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Editorial on the Research Topic 
Dynamical systems, PDEs and networks for biomedical applications: Mathematical modeling, analysis and simulations


In recent decades, mathematics for healthcare [1] and quantitative biomedicine have become increasingly important. This research area includes various aspects such as modeling, analysis and simulation of numerous highly relevant processes in clinical practice and combines different scientific disciplines like biology, bioengineering, physics, mathematics and medicine. Important biomedical applications are for instance cellular, biochemical and biomolecular processes, tumour growth, electrophysiology of the heart or the brain, tissue regeneration and biomedical engineering. In this line of research, mathematical and computational modeling, cf. e.g. [2–4], have become essential components in interdisciplinary and multidisciplinary research projects and contributes significantly to a better understanding of real-world phenomena. The great importance of this research field also results in the establishment of numerous research centres and research groups in the field of mathematics for healthcare and quantitative biomedicine.
New interdisciplinary research fields like computational cardiology [5], computational neurosciences [6] and computational oncology [7] arise and can be used to develop new therapies and help in improving clinical decision [8–12]. There are plenty of important examples of mathematical and numerical approaches which are applied to drug (safety) testing or drug development, the analysis and simulation of complex dynamics in the heart or the brain such as cardiac arrhythmias [13] or seizures [14], and are becoming more and more relevant these days. Computer modeling of complex dynamic processes like wound and bone healing [15] gives new insights into how such complex biological processes work and helps to make better predictions.
The origins for these developments lie in the great opportunities for developing not only complex (and detailed) models that can be tested against experimental data, which is becoming available in increasing amount and quality, but also computational methods to solve these models. Together, this opens new challenges and prospects for a systematical investigation of both biological and mathematical issues from life science. Thus, this Research Topic is focused on advanced methods in mathematical and computational modeling of biomedical phenomena using (experimental) data, their analysis and numerical simulations that contribute to a significantly improved comprehension of these phenomena. The main focus of this Research Topic is three-fold: 1) modeling approaches using differential equations or networks describing the behavior of single cells, cell groups, tissue or organs. 2) The analysis of the dynamics and behavior of certain biomedical models improving the state-of-art understanding of certain phenomena like cardiovascular and neurological diseases and disorders. 3) Improved numerical methods to simulate and analyze complex biomedical models.
In computational cardiology, the electrophysiological behavior of cardiac tissue is usually modelled either by the monodomain or bidomain models, which mathematically represent coupled systems of partial and ordinary differential equations, and give insights into the conduction properties of the electrochemical wave traversing the cardiac muscle. The bidomain model is considered to be the gold standard for numerical simulations and the monodomain model is a special case assuming equal anisotropy rates. Jæger et al. studied and compared the bidomain model, which represents the average over a large number of cardiomyocytes, and the EMI model, which is considered to be more accurate since it includes explicitly the extracellular space (E), the cell membrane (M) and the intracellular space (I). The authors showed the limitation of the bidomain model and that it can be derived directly from the cell-based EMI model as well as their similarities. Both models provide remarkably similar results when the parameters of importance for the conduction velocity lie in the normal range. The authors concluded that the bidomain model represents normal cardiac conduction very well if the scale of interest contains many cells, but cannot be used to study conduction in the vicinity of individual cells. Therefore, depending on the biomedical application one has three accurate models of different complexity and different numerical efforts. In this line of research, Mulimani et al. and Zykov et al. studied different types of spiral waves occurring in monodomain models. Monodomain models have been proved to be good approximations of cardiac tissue for wave propagation. Mulimani et al. focused their investigations on the effects of cellular parameters on the properties of the action potential of a myocyte. For instance, this study provides an understanding of how changes in the action potential at single-cell level can be related to changes in spiral-wave frequency at tissue level, which may also result in life-threatening cardiac arrhythmias. Furthermore, Zykov et al. investigated spiral wave instability in a modified Barkley model and showed the existence of two quite different parameter regions of this instability. The first region can be linked to the presence of a Hopf bifurcation and is a well known scenario, while the second region cannot be explained by a Hopf bifurcation and a hysteresis phenomenon was detected on its boundary. Besides the efficient modelling of a certain problem, the development of advanced numerical algorithms are important. Xiao et al. introduced a Fourier filter-based physics-informed convolutional recurrent network that can solve partial differential equations without labeled data. This approach was applied to several problems such as the two-dimensional viscous Burger’s equation and FitzHugh–Nagumo reaction-diffusion equations. On single-cell level Hustad et al. pointed out that ODE computations can use a substantial fraction of the total computer time of a heart simulator and they focused on systematically studying how to efficiently use modern multicore CPUs for this costly computational task. Furthermore, they concluded that the largest performance improvement of the ODE solvers arises from using SIMD vectorisation. Molinari et al. established an experimentally calibrated computational model of ex-vivo cardiac radiofrequency catheter ablation featuring the inclusion of three-dimensional myocardial anisotropy, the implementation of a multi-scale time lag thermal ablation model, and the adoption of a model of cell death for the estimation of tissue damage and lesion sizing. The investigation gave new insights into the anisotropic thermal behavior of cardiac tissue and proved that the intrinsic anisotropic microstructure plays a crucial role in the thermo-electrical response of the tissue undergoing hyperthermic treatments.
In the realm of neuroscience, Daversin-Catty et al. introduced a new mathematical and numerical formalism of pulsatile viscous fluid flow in networks based on topological and geometrical model reduction, which is a robust and effective computational approach for large scale in silico studies. Moreover, different computational scenarios were studied, e.g. perivascular space flow induced by cardiac pulse wave-induced movement of the inner vascular wall. Furthermore, the framework established a foundation for future computational studies of perivascular flow to improve our understanding of brain transport. Yamakou et al. investigated coherence resonance and self-induced stochastic resonance in multiplex neural networks, which consist of electrically connected FitzHugh–Nagumo model neurons, in the presence of spike-timing-dependent plasticity. Here, several important questions leading to interesting future research directions were addressed, such as: Which of these noise-induced resonance phenomena is more robust to parametric perturbations? In order to better understand burst generation in inhibitory half-center central pattern generators, Olenik et al. studied a minimal network of two neurons coupled through depressing synapses. They have shown that synaptic depression of inhibition can enable the two-cell (Morris–Lecar model) network to produce burst solutions of different periods, when the strength of the maximum synaptic conductance is varied. Furthermore, Liu et al. investigated BAM neural networks with delays. By using generalized Halanay inequalities and constructing appropriate Lyapunov functionals, some novelty criteria are obtained for the asymptotic stability of BAM neural systems with time delays. Spiliotis et al. analyzed network dynamics under healthy, Parkinsonian and deep brain stimulation conditions with the aim to improve deep brain stimulation treatment. For this purpose the authors built a large scale computational model that consists of certain elements of the basal ganglia network. This new approach is based on the detection of network communities or modules central to activity distribution. The aim of the paper was two-fold: 1) to identify positions of nodes of high functional impact using network analysis and 2) to explore the relationship between anatomical structure and neural activity using modified Hodgkin–Huxley models. The analysis showed that in all modular areas, Parkinsonian conditions alter power spectrogams.
The last area of this Research Topic concerns modeling and analysis to inform healthcare decision-making in terms of therapy/drug delivery (Zlobina et al.), managing infections (Kuttler et al.), informing new drugs’ discovery (Bondar et al.) and managing pandemics (Chattopadhyay et al.). Zlobina et al. proposed that a qualitative model with a proper level of abstraction can be used to predict the response of a wound to dynamic therapy and investigated mathematically the most effective spatio-temporal regimes for drug delivery to accelerate wound closure. This study provides a possible optimal regime of therapy that focuses on macrophage activity and a hypothesis of treatment outcome to be tested in future experiments. Kuttler et al. introduced a mathematical model for bacterial growth and control by antibiotics treatment, including quorum sensing as a special kind of communication. The system is formalized by a system of semi-linear parabolic partial differential equations and can be used for in silico studies of bacterial cooperative behavior in the special case of quorum sensing. The obtained data suggest that even a small bacterial population maintains an essential quorum. Bondar et al. discussed general principles of protonation-coupled protein conformational dynamics and how these apply to G-Protein Coupled Receptors. The authors found that the internal H-bond networks contain sites where structural rearrangements upon protonation change could be transmitted throughout the protein. In Chattopadhyay et al. a novel method of approximating a closed form solution of the ensemble averaged density profiles and correlation statistics of coupled dynamical systems, drawing from a technique used in mathematical biology to calculate a quantity called the basic reproduction number R0, was presented. It was shown that the R0 formulation can be used to calculate the correlation between diffusivity paths, agreeing closely with the exact numerical solution of the double-diffusion model.
The topics covered in this Research Topic are far from exhaustive. Rather, they point to a broader range of problems that can not only be addressed by available mathematical and computational approaches, but also stimulate the development of novel tools and techniques.
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The bidomain model is considered to be the gold standard for numerical simulation of the electrophysiology of cardiac tissue. The model provides important insights into the conduction properties of the electrochemical wave traversing the cardiac muscle in every heartbeat. However, in normal resolution, the model represents the average over a large number of cardiomyocytes, and more accurate models based on representations of all individual cells have therefore been introduced in order to gain insight into the conduction properties close to the myocytes. The more accurate model considered here is referred to as the EMI model since both the extracellular space (E), the cell membrane (M) and the intracellular space (I) are explicitly represented in the model. Here, we show that the bidomain model can be derived from the cell-based EMI model and we thus reveal the close relation between the two models, and obtain an indication of the error introduced in the approximation. Also, we present numerical simulations comparing the results of the two models and thereby highlight both similarities and differences between the models. We observe that the deviations between the solutions of the models become larger for larger cell sizes. Furthermore, we observe that the bidomain model provides solutions that are very similar to the EMI model when conductive properties of the tissue are in the normal range, but large deviations are present when the resistance between cardiomyocytes is increased.

Keywords: bidomain model, EMI model, cell-based model, cardiac electrophysiology, cardiac conduction, cardiac tissue models, numerical simulation


1. INTRODUCTION

Mathematical models are indispensable for understanding the complex processes underlying cardiac electrophysiology. A wide variety of models have been developed for the key processes going on across the membrane of cardiomyocytes (see, e.g., Rudy and Silva, 2006; Rudy, 2012; Qu et al., 2014; Amuzescu et al., 2021), where the latter paper presents a comprehensive overview of the evolution of these models. The models of the membrane dynamics have also been extended to yield descriptions of the electrophysiological properties of cardiac tissue, commonly represented by the bidomain model or the somewhat simpler monodomain model (see Tung, 1978; Neu and Krassowska, 1993; Sundnes et al., 2007; Clayton and Panfilov, 2008; Vigmond et al., 2008; Linge et al., 2009; Niederer et al., 2011a; Franzone et al., 2014). The use of mathematical models for understanding the properties of the cardiac action potential (AP) across the membrane of cardiomyocytes is very widespread, and so is the use of the bidomain/monodomain models for understanding the properties of the excitation wave traversing cardiac tissue during each heartbeat. However, the spatial bidomain/monodomain models have two inherent limitations. The main limitation is that the extracellular space, the membrane of the myocyte, and the intracellular space are all assumed to be present everywhere. This assumption is indeed courageous but has provided surprisingly accurate results and presently underpins the understanding of cardiac conduction. The second limitation is that convergence is obtained using a relatively coarse mesh (Δx ~ 0.25 mm, see Xie et al., 2004; Clayton and Panfilov, 2008; Niederer et al., 2011b) and thus a typical mesh block contains several hundred cardiomyocytes (see, e.g., Jæger et al., 2021a,b). Therefore, understanding of the conduction properties (see, e.g., Henriquez, 2014; Veeraraghavan et al., 2014) close to the myocytes cannot be achieved using these models (see, e.g., Jæger et al., 2021a).

These limitations of the homogenized (bidomain/monodomain) models are well known and several authors have developed alternatives where all individual cells are explicitly represented in the models (see, e.g., Spach et al., 2007; Jacquemet and Henriquez, 2009; Hubbard and Henriquez, 2014; Lin and Keener, 2014; Tveito et al., 2017a; Weinberg, 2017; Jæger et al., 2019, 2021a; Domínguez et al., 2021; Jæger and Tveito, 2021). Here, we will apply the EMI model where both the extracellular space (E), the cell membrane (M) and the intracellular space (I) are explicitly represented in the model (see, e.g., Tveito et al., 2017a,b; Jæger and Tveito, 2021), and compare properties with the homogenized bidomain model. First, we will show how the bidomain model can be derived from the more accurate EMI model. Earlier derivations of the bidomain equations (see, e.g., Neu and Krassowska, 1993; Franzone et al., 2014; Henriquez and Ying, 2021) relies on homogenization of cardiac tissue, whereas the derivation given here follows directly from the EMI model. As part of this derivation, we can identify the main sources of deviations between the models.

Next, we will compare the properties of the bidomain model and the EMI model using numerical simulations. We first show that the deviations between the results obtained by the bidomain model and the EMI model become small as the cell size is reduced. This property is consistent with the error introduced in the derivation of the bidomain model. Secondly, we demonstrate that, for conduction properties providing a normal excitation wave with a conduction velocity of about 50 cm/s, the solutions of the EMI model and the bidomain model are very similar. However, as the resistance between the myocytes (through the gap junctions) is increased, the deviation between the solutions increases considerably.

It should be noted that the representation of all individual cardiomyocytes implies a significant increase in the computation load since the mesh resolution needs to be reduced from about Δx ~ 0.25 mm for a finite difference method (FDM) of the bidomain model to about δx ~ 10 μm for a finite element method (FEM) code solving the EMI model (see Jæger et al., 2021a,b). The number of mesh blocks is Δx3/δx3 = 15, 600 times larger for the EMI model than for the bidomain model, and, therefore, the computational load increases significantly when every myocyte in the tissue is resolved.

The choice of using either an averaged model like the bidomain model or a cell-based model like the EMI model, depends on the application under consideration. The bidomain model is very useful for simulating large scale problems, whereas EMI is better suited when the dynamics close to individual myocytes, or even inside individual myocytes, are of importance.



2. METHODS

In this section we will derive the bidomain model commonly used to model the electrical activity of the heart from a more detailed model where each cell is represented. This cell-based model is referred to as the EMI model and is derived from Maxwell's equations of electromagnetism in Agudelo-Toro (2012) and Jæger and Tveito (2021). We will start by introducing the equations of the EMI model before we describe the derivation of the bidomain model from these equations. Finally, we discuss how the bidomain model parameters can be defined using the parameter values and tissue geometry of the EMI model.


2.1. The EMI Model

Consider a domain consisting of a single cell, Ωi, surrounded by an extracellular space, Ωe, with a cell membrane, Γ, separating the two spaces Ωi and Ωe. For such a domain, the electrical activity may be modeled by the EMI model (see, e.g., Roberts et al., 2008; Stinstra et al., 2010; Tveito et al., 2017a; Jæger et al., 2019), given by the equations
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Here, ui, ue, and v are the intracellular, extracellular and membrane potentials (in mV) defined in Ωi, Ωe and at Γ, respectively, ni and ne are the outward pointing normal vectors of the intracellular and extracellular spaces, respectively, Cm is the specific membrane capacitance (in μF/cm2), Iion is the ionic current density across the membrane (in μA/cm2), Im the sum of the capacitive and ionic current densities (in μA/cm2), and σi and σe are the intracellular and extracellular conductivities, respectively (in mS/cm). The Equations (6) and (7) are Dirichlet and Neumann boundary conditions, respectively, for the outer boundary of the extracellular space.


2.1.1. Extension to Cells Connected by Gap Junctions

To model collections of connected cardiac cells, e.g., like illustrated in Figure 1A, the EMI model for a single cell may be extended to include a model for the currents through the gap junctions connecting neighboring cells (see, e.g., Tveito et al., 2017a; Jæger and Tveito, 2021; Jæger et al., 2021c). For example, for two connected cells 1 and 2, the EMI model can be extended to include equations of the form

[image: image]
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where Γg is the interface between the two cells (i.e., the intercalated disc). Furthermore, [image: image] and [image: image] are the intracellular potentials of the two cells, w is the potential difference between the two cells, and [image: image], and [image: image] are the outward pointing normal vectors of the cells. In addition, Cg is the specific capacitance of the intercalated discs (in μF/cm2), Igap is the current density through the gap junction proteins located at the intercalated discs (in μA/cm2), and I1,2 is the sum of the capacitive current density over the intercalated discs and the current density through the gap junction proteins connecting the two cells. The current density through the gap junction proteins, Igap, is commonly modeled using the simple passive model

[image: image]

where Rg is the specific resistance of the gap junctions (in kΩcm2) and Gg is the corresponding specific conductance (in mS/cm2). A further explanation of the coupling between two adjacent cells is given in section 1.2.4 of Jæger and Tveito (2021).


[image: Figure 1]
FIGURE 1. (A) Illustration of an EMI model domain for four connected cells. The intracellular space (orange) is denoted by Ωi and the extracellular space (red) is denoted by Ωe. The cell membrane is defined as the interface between the intracellular and extracellular spaces and is denoted by Γ. Similarly, the intercalated discs (purple) are denoted by Γg and are defined as the interface between neighboring cells. Each cell is shaped as a cylinder with a diameter increasing slightly toward the center of the cell. (B) Illustration of the finite element mesh used to represent a single cell in the EMI model simulations.





2.2. Derivation of the Bidomain Model From the EMI Model

Instead of using the detailed model (Equations 1–11), modeling of the electrical activity of cardiac tissue is usually performed using the homogenized bidomain and monodomain models. In these models, the detailed geometry of the individual cells and intercalated discs do not have to be represented in the computational mesh because the intracellular space, the extracellular space and the cell membrane are all assumed to exist everywhere in the tissue. We will now describe a possible derivation of the homogenized bidomain model from the EMI model equations described above. Note, however, that more rigorous versions of this derivation, using mathematical two-scale homogenization, have also been presented (see, e.g., Neu and Krassowska, 1993; Franzone et al., 2014; Henriquez and Ying, 2021).


2.2.1. Starting Point of the Derivation

Assume that we have a relatively large collection of cells, and consider a small volume, Δ, in this cell collection, as illustrated in Figure 2A. We assume that this volume contains a number of cells with an associated surrounding extracellular space, and that the EMI model equations apply in the extracellular domain, in the intracellular domain, at the cell membrane and at the intercalated discs in this small block of tissue.


[image: Figure 2]
FIGURE 2. Illustration of a tissue block, Δ, containing a number of cells (orange) and a surrounding extracellular space (red). In Step 1 of the derivation we approximate the discontinuous intracellular space (A) consisting of individual cells connected by gap junctions by a continuous intracellular space (B).



Step 1: Approximating the Intracellular Conductivity

As a first step in the derivation, we wish to approximate the intracellular conductivity to take both the purely intracellular space and the gap junctions between neighboring cells into account. In other words, we wish to reformulate the full EMI model (Equations 1–11) to a system of the form
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where [image: image] is the average conductivity of the intracellular space including gap junctions. We wish to express [image: image] such that the total intracellular resistance of a tissue block is close to the total intracellular resistance of the tissue block when the full EMI model (Equations 1–11) applies. Such an expression for [image: image] is derived below in section 2.3.3.

In the remaining part of the derivation we will treat the intracellular domain as a continuous domain (see Figure 2B), and assume that the simplified EMI system (Equations 12–18) applies.



Step 2: Applying the Divergence Theorem

In the next step of the derivation, we consider the purely intracellular part of the tissue block Δ and apply the divergence theorem for [image: image] to obtain,

[image: image]

where [image: image] is the intracellular space contained in the tissue block and [image: image] is the boundary of the intracellular space contained in the tissue block. This boundary can be separated into the boundary between the intracellular space and the extracellular space contained in the tissue block, i.e. the cell membrane, and the intracellular part of the outer boundary of the tissue block in each spatial direction. Rewriting the surface integral, we obtain

[image: image]

where [image: image] is the intracellular part of the boundary of the tissue block in the positive x-direction, [image: image] is the intracellular part of the boundary of the tissue block in the negative x-direction, and the surfaces [image: image], [image: image], [image: image], and [image: image] are defined similarly for the intracellular part of the boundaries of the tissue block in the y- and z-directions. Furthermore, ΓΔ is the membrane contained in the tissue block.

By applying the divergence theorem and similar definitions for the extracellular space, we likewise obtain

[image: image]



Step 3: Applying the EMI Model Equations (12–(14)

By inserting Equations (12) and (13) into Equations (20) and (21), we find that the right hand sides of Equations (20) and (21) are zero. Moreover, by inserting Equation (14), we get

[image: image]

for the intracellular part, and

[image: image]

for the extracellular part.



Step 4: Extending the Variables and Parameters to Be Defined Everywhere

In order to avoid having to represent the detailed geometry of the cell tissue, we now define some new variables Ui, Ue, and V that each are defined in the entire domain Ω = Ωi∪Ωe, and thus also in the entire tissue block, Δ. We want these variables to fulfill the integral conditions specified in Equations (22) and (23). In addition, we assume that the definitions of the membrane potential and Im specified in Equations (15) and (16) apply in the entire domain. In other words, in an arbitrary tissue block, Δ, of Ω, we seek solutions Ui, Ue, and V such that
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Here, n is the outward pointing normal vector of the tissue block, and [image: image], σe, Cm, Im and Iion have been extended to be defined in the entire domain.



Step 5: Approximate the Surface Integrals

Since Im is now defined in the entire tissue block, and not just on the membrane, the surface integral over the membrane can be approximated by

[image: image]

where Δ is the entire tissue block and χ is the membrane surface to volume ratio, i.e., the surface area of the membrane contained in Δ divided by the volume of Δ.

In addition, the integrals in Equations (24) and (25) over the outer boundary of the tissue block is separated into the intracellular and extracellular parts of the tissue block, and in this step of the derivation, we wish to approximate these integrals to be defined over the entire tissue block boundaries. In order to do this, we apply the approximation

[image: image]

and similar approximations for the remaining surfaces. Here, [image: image] is the average fraction of the cross-sectional area of the tissue block perpendicular to the x-direction that is occupied by the intracellular space and Ax,+ is the entire boundary of the tissue block in the positive x-direction. Inserting this type of approximation in all the integrals over the outer boundaries of the tissue block, Equations (24) and (25) can be approximated as

[image: image]
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Furthermore, we may define a set of scaled bidomain conductivities,

[image: image]
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where [image: image], [image: image] and [image: image] and [image: image], [image: image] and [image: image] refer to the possible directional dependence of [image: image] and σe. We also define the associated bidomain conductivity tensors,

[image: image]

By introducing these tensors, Equations (30) and (31) can be rewritten as

[image: image]
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where ∂Δ represents the entire outer surface of the tissue block.



Step 6: Reapply the Divergence Theorem for the New Variables

We may now reapply the divergence theorem for the newly defined variables Ui and Ue defined in the entire tissue block. This yields

[image: image]
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We also note that the volume Δ was chosen arbitrarily. Therefore, the more general relation
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holds.



Step 7: Rearranging the Terms and Inserting Equations (26) and (27)

By rearranging Equation (39) and adding Equations (39) and (40), these equations may be rewritten as

[image: image]
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Finally, by inserting Equations (26) and (27), we obtain the bidomain model equations
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where we recall that Mi and Me are intracellular and extracellular conductivity tensors (in mS/cm) defined in Equations (32)–(34), χ is the membrane surface to volume ratio (in cm−1), Cm is the specific membrane capacitance (in μF/cm2), Iion is the current density through ion channels, pumps and exchangers on the cell membrane (in μA/cm2) and V and Ue (in mV) are the bidomain model membrane and extracellular potentials, respectively, defined in the entire domain. Furthermore, the intracellular potential (in mV) may be computed by

[image: image]

In addition, the boundary conditions

[image: image]

[image: image]

are assumed to hold at the boundary of the domain where ΩD coincides with the EMI model boundary [image: image], and ΩN coincides with the EMI model boundary [image: image]




2.3. Expressions for the Bidomain Model Parameters

The bidomain model as derived above introduces a set of new parameters, namely the conductivity tensors, Mi and Me, and the surface to volume ratio, χ. Considering their definitions, values for these parameters may be derived from the geometry and parameters of the EMI model. In this subsection, we suggest an approach for making these definitions by considering an EMI model mesh of a volume Ω, containing an intracellular volume, Ωi, and extracellular volume, Ωe, a surface for the cell membranes, Γ, and a collection of surfaces for the intercalated discs, Γg. For simplicity, we assume that the value of all the EMI model parameters and the tissue geometry do not vary in different parts of the domain, so that the bidomain model parameters can be treated as constants throughout the domain. In addition, we assume that the total domain Ω = Ωi∪Ωe is shaped as a rectangular cuboid with lengths Lx, Ly and Ly in the x-, y- and z-directions, respectively. An alternative approach for setting up the bidomain model conductivities from the EMI model parameters and a simplified tissue geometry is presented in Henriquez and Ying (2021).


2.3.1. Surface to Volume Ratio, χ

In order to compute the surface to volume ratio from an EMI model mesh, we may simply compute

[image: image]
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where AΓ,Ω represents the total membrane area in the domain and VΩ represents the volume of the domain. Assuming an even distribution of cells throughout the domain, the surface to volume ratio can then be defined as

[image: image]




2.3.2. Average Cross-Sectional Area Fractions

We first consider the average intracellular fraction of the cross-sectional area perpendicular to the x-axis, [image: image]. Let Ax(x) be the cross-sectional area of Ω perpendicular to the x-axis, and let [image: image] be the fraction belonging to Ωi. Then

[image: image]

Hence,

[image: image]

Similar arguments yield

[image: image]
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Here, VΩi can be computed from the EMI model mesh as

[image: image]



2.3.3. Average Intracellular Conductivity

As described above, we wish to define an average conductivity [image: image] such that the simplified EMI model (Equations 12–18) is a good approximation of the full EMI model (Equations 1–11). In particular, we wish to find a [image: image] such that the total intracellular resistance of the simplified model is close to the total intracellular resistance of the full model. To simplify this argument, we assume that there is no capacitive current across the intercalated discs, i.e. that the current between two cells is given by Igap (see Equation 11).

We start by considering the total resistance in the x-direction of the domain. In the full EMI model (Equations 1–11) with the capacitive current set to zero, this is given by the sum of the resistance over the purely intracellular space ([image: image]) and the resistance over the gap junctions ([image: image]) (Shaw and Rudy, 1997):

[image: image]

The total resistance in the purely intracellular space is given by (Plonsey and Barr, 2007)

[image: image]

where [image: image] is the average intracellular cross-sectional area of the domain perpendicular to the x-direction. Assuming that the cells are organized as a regular grid in the x-, y- and z-directions, the total resistance through gap junctions in the x-direction is given by

[image: image]

where Rg is the specific gap junction resistance (in kΩcm2), as it appears in the full EMI model, [image: image] is the area of a single intercalated disc perpendicular to the x-direction and Nx, Ny, and Nz are the number of cells in the x-, y-, and z-directions, respectively. Thus, Nx − 1 is the number of intercalated disc collections along the length of the domain in the x-direction, NyNz is the number of intercalated disc for each such collection, and [image: image] is the total cross-sectional area of each of the intercalated disc collections.

In the simplified model (Equations 12–18), the total resistance is given by (Plonsey and Barr, 2007)

[image: image]

Therefore, in order for the total resistance to be the same in the two formulations, we wish [image: image] to satisfy
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which yields

[image: image]

From the EMI model mesh, we may compute

[image: image]

as the total area of all intercalated discs perpendicular to the x-direction, [image: image]. Since [image: image] is defined as the area of a single intercalated disc perpendicular to the x-direction, we note that

[image: image]

where (Nx − 1)NyNz is the total number of intercalated discs in the x-direction. Inserting Equations (63) into Equation (61) yields

[image: image]

We also note that from Equation (52), we have that
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and inserting this into Equation (64), we obtain

[image: image]

where δx = Lx/(Nx − 1). Similar arguments for the y- and z-directions result in
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Since

[image: image]

the anisotropy is governed by the difference between [image: image] and [image: image] and similar for the other combination of axes.



2.3.4. Intracellular Conductivity Tensor

Inserting Equations (52) and (66)–(68) into Equation (32), we get
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2.3.5. Extracellular Conductivity Tensor

The extracellular conductivity tensor can be found directly from the cross-sectional area fractions and we get

[image: image]





3. RESULTS

In order to compare the EMI model with the homogenized bidomain model, we set up a few example applications and perform numerical simulations of the two models. Note here that all EMI model simulations are performed in three dimensions (3D), whereas the bidomain model simulations are performed in two dimensions (2D) or one dimension (1D).


3.1. Simulation Set-Up

In our numerical simulations of the EMI model, we consider collections of cells shaped as cylinders with a slightly varying diameter. In all simulations, except for the ones where the cell length is varied and is explicitly specified, each cell is 120 μm long (in the x-direction) and has a radius varying from 6 μm at the cell ends to 7 μm at the center of the cell (see Figure 1). We let the distance from the boundary of the extracellular space to the cell collection be 2 μm in all spatial directions. The parameter values used in the simulations are specified in Table 1. The parameters used in the bidomain model are computed from the EMI model parameters and mesh as described in section 2.3.


Table 1. Default parameter values used in the simulations.

[image: Table 1]

All EMI model simulations are performed in 3D. However, for our example test cases with a 1D strand of cells and a 2D grid of cells, we use 1D and 2D versions, respectively, of the bidomain model. In the simulations of a 1D strand of cells, we apply homogenous Neumann boundary conditions on the outer boundary of the extracellular domain in the y- and z-directions and homogenous Dirichlet boundary conditions in the x-direction. In the simulations of a 2D grid of cells, we apply homogenous Neumann boundary conditions on the outer boundary of the extracellular domain in the z-direction and homogenous Dirichlet boundary conditions in the x- and y-directions.



3.2. Numerical Methods

The EMI model simulations are performed using the operator splitting procedure described in Jæger et al. (2021c,d), the numerical methods applied to (Jæger et al., 2021d) and the MFEM C++ finite element method library (Anderson et al., 2020; MFEM, 2021). For details on the numerical methods applied to solve the EMI model, we refer to Jæger et al. (2021a,c,d). The bidomain model simulations are performed in Matlab using a first-order temporal operator splitting procedure as described in Sundnes et al. (2006), where the ordinary differential part of the equations is solved using forward Euler and the partial differential part of the equations is solved using an implicit finite difference scheme. Unless otherwise specified, we use a time step of Δt = 0.001 ms in the simulations of both models. In the bidomain model simulations, we use a spatial discretization of Δx = Δy = 10 μm, roughly matching the typical edge length in the applied EMI model finite element mesh.



3.3. 1D Strand of Cells With a Passive Membrane Model

We first consider an example with a 1D strand of cells connected in the longitudinal direction (x-direction). The total length of the cell strand is 2 mm and we consider a number of different choices for the length of a single cell (and the associated total number of cells). In addition, we vary the value of the specific gap junction resistance, Rg. The membrane dynamics, Iion, is modeled by a simple passive membrane model

[image: image]

where Rm = 5 kΩcm2 is the specific membrane resistance and v0 = −80 mV is the resting membrane potential. We stimulate the first (leftmost) 400 μm of membrane in the x-direction by a constant stimulus current of size −10 μA/cm2. Figure 3 shows the intracellular potential at time t = 20 ms along a line in the x-direction in the center of the domain for the EMI model and the associated solution of the bidomain model for a few combinations of cell length and Rg values. We observe that for small cells (lower panels), the solution of the bidomain model is in very good agreement with the results of the EMI model. However, if the cell size is increased, and the gap junction resistance is increased, there is a significant difference between the results of the EMI model and the bidomain model.


[image: Figure 3]
FIGURE 3. Intracellular potential, ui, at time t = 20 ms in EMI model and bidomain model simulations using a passive membrane model (Equation 74) and the default parameter values specified in Table 1, except that the value of Rg is increased by the factor indicated by the column titles. In addition, the cell length (Lcell) is varied as described for each row of plots.




3.4. 1D Strand of Cells With an Active Membrane Model

Next, we consider an example with a 1D strand of 20 cells of length 120 μm with an active membrane model, modeled by the human left atrial base model from Jæger et al. (2021b). We initiate a traveling wave by stimulating the first 360 μm of cell membrane in the x-direction (corresponding to three cardiomyocytes) by a 1 ms long constant stimulus current of size −40 μA/cm2. We measure the conduction velocity as the distance between a point a in the center of the domain in the x-direction and a point b located at 4/5 of the total domain length, divided by the difference in time between when the membrane potential in these two points reach a value above −20 mV. Using the default parameter values specified in Table 1, we get a conduction velocity of 50.8 cm/s in the bidomain model simulation. This is close to the value found in the EMI model simulation, which is 53.3 cm/s.

In Figure 4, we further investigate the relationship between the conduction velocity found in the bidomain and EMI model simulations when Rg is increased, representing reduced cell coupling. We consider two different discretization resolutions, the default resolution of Δt = 0.001 ms and Δx ~ 10 μm and a refined resolution of Δt = 0.0005 ms and Δx ~ 5 μm. We observe that for values of Rg relatively close to the default value, the conduction velocities found in simulations of the bidomain and EMI models are very similar. However, when Rg is considerably increased, the difference between the two model formulations appears to be more significant and the conduction velocity is considerably higher in the bidomain model simulations than in the corresponding EMI model simulations. Furthermore, we observe that for the EMI model, conduction is blocked when Rg is increased by a factor larger than about 2,000, whereas for the bidomain model, Rg can be increased by a factor of about 20,000 before conduction is blocked for the default resolution and conduction is not blocked for the considered values of Rg for the refined resolution. In addition, we note that the simulations of refined resolution appears to give very similar conduction velocities as for the default resolution in the EMI model simulations. For the bidomain model simulations, the two resolutions give very similar results for the first range of Rg values, but as the Rg value is severely increased, we can observe a difference between the two resolutions.


[image: Figure 4]
FIGURE 4. Conduction velocity as Rg is increased in EMI model and bidomain model simulations of a strand of 20 connected cells with an active membrane model (Jæger et al., 2021b). The values on the x-axis represent the factor with which the default Rg value in Table 1 is multiplied. The remaining parameter values are as specified in Table 1. Note that the plot is separated into three panels in order to improve the visibility of the data. Note also that we consider two different discretization resolutions in the simulations of each model. In the default case, Δt = 0.001 ms and Δx in the bidomain model and the typical edge length in the EMI model is 10 μm, whereas in the refined case (dashed lines), both the spatial and temporal discretization steps are reduced to half of the default values.




3.5. 2D Grid of Cells With an Active Membrane Model

Next, we consider a case of a grid of 25×25 connected cells with the same active membrane model as for the 1D strand simulations. We stimulate the membrane of an area corresponding to the 5×5 cells in the lower left corner by the same stimulation current as in the 1D case. Figure 5 shows the membrane potential, v, and the extracellular potential, ue, from the EMI model and bidomain model simulations using the default parameter values specified in Table 1 at time t = 5 ms. The solution of the two models appears to be very similar. However, in Figure 6, we have performed a similar simulation where Rg is increased by a factor of 200. We consider the solution at t = 20 ms and observe that the traveling excitation wave has clearly traveled faster and reached further in the bidomain model simulation than in the EMI model simulation, consistent with the results of Figure 4.


[image: Figure 5]
FIGURE 5. Membrane potential, v, and extracellular potential, ue, at time t = 5 ms in EMI model and bidomain model simulations using the default parameter values specified in Table 1 and an active membrane model (Jæger et al., 2021b). This simulation required a CPU time of 132 min for the EMI model and 2 min for the bidomain model.



[image: Figure 6]
FIGURE 6. Membrane potential, v, and extracellular potential, ue, at time t = 20 ms in EMI model and bidomain model simulations using and active membrane model (Jæger et al., 2021b) and the default parameter values specified in Table 1, except that the value of Rg is increased by a factor of 200.





4. DISCUSSION

The bidomain model continues to provide essential insights into cardiac conduction and how the electrochemical dynamics of the heart is affected by blocking ion channels (see, e.g., Zemzemi et al., 2013; Sharifi, 2017), increasing gap junction resistance (see, e.g., Roth, 1988; Bruce et al., 2014), introducing ischemia (see, e.g., Stinstra et al., 2004, 2005; Heidenreich et al., 2012) or performing defibrillation (see, e.g., Skouibine et al., 2000; Trayanova et al., 2006, 2011; Quarteroni et al., 2017). However, as almost any model, its utility is limited by the inherent resolution of the model. It is useful for understanding cardiac conduction at the tissue level, but it cannot be applied for analyses of conduction close to individual cardiomyocytes. Therefore, detailed models representing individual myocytes have been developed.

Here, we show that the bidomain model can be derived directly from the cell-based EMI model. Classically, the bidomain model is derived using elegant homogenization techniques (see Neu and Krassowska, 1993; Henriquez and Ying, 2021). In the derivation presented here, the deviation between the properties of the bidomain model and the EMI model is seen directly as part of the derivation. In short, the advantage of the present derivation is that it is more straightforward to follow and that it gives indications of where the deviations in the results between the two models stem from.


4.1. Source of Difference Between EMI and Bidomain Solutions

There are essentially three steps in the derivation of the bidomain model where approximations are introduced and thus, most likely, are responsible for the difference in the solutions of the two models. First; the resistance of the intracellular space and the gap junctions are combined into one common and averaged resistance. Second, the average of a function over a volume is approximated by the average of the same function over the surface of the volume. Third, the average of a function on a surface is approximated by the average of the same function on an extended surface. It is beyond the scope of this paper to perform a detailed analysis of these deviations, but based on these observations, it comes as no surprice that the error becomes smaller when the cell size is reduced.



4.2. Differences and Similarities

The EMI model and the bidomain model provide remarkably similar results when the parameters of importance for the conduction velocity are in the normal range. It is safe to claim that the bidomain model represents normal cardiac conduction very well if the scale of interest contains many cells. Certainly, the bidomain model cannot be used to study conduction in the vicinity of individual cells, and it also runs into difficulties for large cells combined with high values of resistance across the gap junctions. It is observed that the bidomain model consistently overestimates the conduction velocity. For normal parameters, the difference is small, but for strongly increased resistance across the gap junctions, the bidomain model significantly overestimates the conduction velocity.
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Spiral waves of excitation in cardiac tissue are associated with life-threatening cardiac arrhythmias. It is, therefore, important to study the electrophysiological factors that affect the dynamics of these spiral waves. By using an electrophysiologically detailed mathematical model of a myocyte (cardiac cell), we study the effects of cellular parameters, such as membrane-ion-channel conductances, on the properties of the action-potential (AP) of a myocyte. We then investigate how changes in these properties, specifically the upstroke velocity and the AP duration (APD), affect the frequency ω of a spiral wave in the mathematical model that we use for human-ventricular tissue. We find that an increase (decrease) in this upstroke-velocity or a decrease (increase) in the AP duration increases (decreases) ω. We also study how other intercellular factors, such as the fibroblast-myocyte coupling, diffusive coupling strength, and the effective number of neighboring myocytes and fibroblasts, modulate ω. Finally, we demonstrate how a spiral wave can drift to a region with a high density of fibroblasts. Our results provide a natural explanation for the anchoring of spiral waves in highly fibrotic regions in fibrotic hearts.
Keywords: mathematical models of cardiac tissue, action-potential (AP), cardiac fibrosis, spiral waves, drift of spiral waves
1 INTRODUCTION
Nonlinear waves in the form of rotating spirals are ubiquitous spatiotemporal patterns that occur in a variety of biological or physical systems; these include chemical-reaction waves in the Belousov-Zhabotansky system [1–5], oxidation waves of carbon monoxide on the surface of platinum [6–8], calcium-signalling waves in Xenopus oocytes [9], cyclic-AMP signalling waves in the aggregration process of Dictyostelium discoideum [10, 11], and, notably, action-potential (AP) waves that mediate muscle contraction in cardiac tissue. The organization of these AP waves in the form of spirals or scrolls in cardiac tissue is associated with abnormal and life-threatening heart rhythms known as arrhythmias. In particular, ventricular arrhythmias can lead to sudden cardiac death; therefore, it is important to understand the dynamics of such waves.
The rhythm of a normal heart is maintained by the trains of waves that are generated by its pacemaker, the sino-atrial node (SAN). This normal rhythm in a heart can be disturbed by the formation of a spiral wave, which can override the function of the SAN as the primary source of waves and entrain the heart to follow the spiral-rotation frequency. There are multiple mechanisms through which spiral waves can occur in cardiac tissue [12–18].
Ex vivo and in vitro studies [19–27] show that VT is associated with functional reentry that leads to the formation of a spiral wave. A multiple-spiral state is linked to ventricular fibrillation (VF) that results in a chaotic heart rate [13–15, 23, 28–30], and a quivering of the left ventricle, which renders it incapable of pumping oxygenated blood to the body; and, in the absence of medical intervention, this leads to death in a few minutes. It is crucial, therefore, to develop a detailed understanding of how spiral waves in cardiac tissue can get destabilized and form multiple spiral waves. Some studies have shown that heterogeneity-induced spatial gradients in the frequency ω of a spiral wave can lead to such an instability [31, 32] or to the drifting of this spiral wave [28, 33–35]. We build on the results of these studies to investigate which physiological factors affect ω and how they modulate it. In mammalian hearts, cardiac tissue is heterogeneous: there can be cellular heterogeneity, e.g., cardiac fibroblasts in addition to myocytes, or a spatial variation of electrophysiological properties, e.g., along the apico-basal direction in a heart, or between intermural layers [36] of the heart, or because of conduction inhomogeneities [37].
We investigate the effects of various intracellular (ion-channel conductances) and intercellular (gap-junctional factors) parameters on the spiral-wave frequency. At the single-cell level, we show how changes in ion-channel conductances modulate action-potential (AP) properties, such as its upstroke velocity [image: image] and duration (APD). We then examine how these changes in AP properties affect the spiral-wave frequency ω at the tissue level. We find that an increase (decrease) in [image: image] (APD) increases (decreases) ω. We then investigate the effects of intercellular coupling strength on ω by changing the coupling strength in the following two ways: a) by modifying the diffusion constant D of the medium; b) by interspersing inexcitable point obstacles in the medium, thereby reducing the effective number of neighboring myocytes. We find that ω is unaffected by a change in D, but, with point obstacles, ω decreases with an increase in the density of these obstacles. We examine two models for fibrosis, which occurs in diseased hearts and is usually accompanied by a proliferation of fibroblasts [38–42]. These models allow us to study how various fibroblast parameters, e.g., the fibroblast-myocyte coupling and the AP of the coupled myocyte, affect ω and spiral-wave dynamics; the fibroblast parameters include its resting potential and the number of fibroblasts coupled to a myocyte. Moreover, we show that a spiral in a medium with a heterogeneous distribution of fibroblasts, drifts towards the region with a high density of fibrolasts.
The paper is organized as follows. The Materials and Methods Section 2 contains (a) the details of the myocyte and tissue models that we use in our simulations and (b) the numerical techniques we use to solve the governing equations. We then provide the findings of our study in Section 3 on Results. Finally, in the Discussion, Section 4, we discuss our results in the light of other past studies and mention some of the limitations in our study.
2 MATERIALS AND METHODS
2.1 Model
For myocytes we use the TP06 human-ventricular-cell model [43], in which the transmembrane potential Vm of an isolated myocyte is governed by the following ordinary differential equation (ODE):
[image: image]
Iion is the sum of all the ion-channel currents with Ii the ith ion-channel current, and Cm the normalized transmembrane capacitance. In Table 1 we list the currents in the TP06 model; their dependence on Vm is given, e.g., in Ref. 43.
TABLE 1 | The various ionic currents in the TP06 model [43].The details of the ion-channel and ion-pump equations for the currents and the parameter values that we use for the TP06 model are given in the Supplementary Material.
[image: Table 1]The spatiotemporal evolution of Vm in mathematical models for cardiac tissue is governed by the following reaction-diffusion partial differential equation (PDE):
[image: image]
D is the diffusion coefficient; we restrict ourselves to a scalar D for simplicity; the TP06 case is described in detail in Ref. 43. It is convenient to use the following non-dimensionalised ion-channel conductances and diffusion coefficients:
[image: image]
where G stands for a typical conductance, Gc is the control value of the conductance, and the control diffusion constant D0 = 0.001 54 cm2/ms; for the conductances we consider, Gc = 14.838, 0.000 039 8, 0.153 nS/pF for GNa, GCaL, and GKr, respectively.
We use the following two models for the fibroblast cells:
• Model-I: We model the fibroblast cells as inexcitable obstacles and we replace the myocytes at random with these inexcitable obstacles throughout our simulation domain such that the percentage of sites with obstacles is po. The gap-junctional current between the myocyte and inexcitable obstacles in this model is zero (see Refs. 37, 44).
• Model-II: We model the fibroblasts in our study as an electrically passive cells, as in Ref. 45. Each myocyte is coupled to Nf fibroblasts; and the myocyte and fibroblast transmembrane potentials Vm and Vf, respectively, obey the following coupled ODEs:
[image: image]
Cf, Ef, and Ggap are the membrane capacitance of a fibroblast, the fibroblast resting potential, and the fibroblast-myocyte gap-junctional coupling, respectively. We use a bilayer model for fibroblast-myocyte couplings: fibroblasts, in the top layer, are coupled to myocytes in the bottom layer, as in Ref. 16, which contains a schematic diagram of this bilayer and the PDEs that describe the spatiotemporal evolution of waves of activation in this model; we do not include fibroblast-fibroblast couplings. Moreover, when we consider a heterogeneous distribution of fibroblasts in Section 3.4, we first consider a homogeneous region in which each myocyte is coupled to Nf fibrloblasts, which are in a layer above the myocyte cell layer as described in detail in Ref. 16. Now we introduce heterogeneity, which results in a gradient in the density of fibroblasts, we removing all the Nf fibroblasts that are coupled to a myocyte at a site, so that the percentage of myocyte cells, at which we retain the myocyte-fiboblast coupling, is pf. To study gradients in the density of fibroblasts, we use a space-dependent density that varies linearly as we move away from chosen central site:
[image: image]
where ri is the distance from the centre, r0 is the position of the centre, and rmax is maximum radial distance from the centre.
2.2 Numerical Methods
We update the ODEs via the forward-Euler method for Eqs 1, 4. For our two-dimensional (2D) tissue simulations as in Eq. 2 we use a square domain with N × N grid points with N = 512, the forward-Euler scheme for time marching, and a central-difference scheme with a five-point stencil for the Laplacian, with the time and space steps Δt = 0.02 ms and Δx = 0.025 cm, respectively. The control value of the diffusion coefficient D = D0, with D0 = 0.001 54 cm2/ms, which gives us a conduction velocity CV ≃ 70 cm/s, as has been reported for human-ventricular-tissue models [43, 46].
2.3 Data Aquisition

• We generate a spiral wave by the cross-field protocol; we pass a traveling plane wave (S1) from one end of the domain; and when the wave back of S1 reaches the middle of the domain, we pass another plane wave (S2) perpendicular to S1; when the wavefront of S2 meets the wave back of S1, a phase singularity is created at the junction; this creates a spiral wave [see Supplementary Figure S1].
• We calculate the frequency ω by recording the time-series of the transmembrane potential Vm at four representative positions in the simulation domain. From the principal peak in the Fourier transforms of these time series, we obtain ω (we take the average of the values at the four representative positions). [We show in Supplementary Table S1] that this frequency is within error bars of the frequency ωtip of rotation of the tip of the spiral wave.]
• For the radius of the tip trajectory of rigidly rotating spiral waves, which is, on average, circular, we fit the average trajectory to a circle with radius r and center (xc, yc), by using a nonlinear regression model, to obtain the mean radius and the mean values of the coordinates of the center of the circle; we also calculate the standard deviation of the fluctuations in r by using the mean position of the center (xc, yc) and the coordinates (x, y) of the points that lie on the unaveraged tip trajectory that we compute.
• We calculate CV by pacing the simulation domain at one end with a pacing cycle length of 1 Hz; we use 20 pulses. We record the time series of Vm at two designated grid points A and B, which are separated by a distance lAB. These grid points are chosen such that the line between the two grid points is normal to the wavefront. We obtain the times tA and tB at which the wavefront hits the grid points A and B, respectively; the difference tB − tA gives the time taken by the wavefront to propagate A to B; therefore, CV [image: image]. In the disordered case, with inexcitable obstacles distributed at random in the simulation domain, we record the time series of Vm at multiple points and repeat the above procedure; we then take the mean of the CVs obtained from these points; we also compute the standard deviation of the CVs (see Supplementary Table S2).
3 RESULTS
We present the results of our in-silico studies as follows: In Section 3.1 we examine the dependence of the AP and of ω on various ion-channel conductances. Section 3.2 is devoted to the effects of the gap-junctional coupling on ω. In Section 3.3 we investigate the effects of the fibroblast-myocyte coupling on the myocyte AP and ω. We elucidate the drift of spiral waves in domains with an inhomogeneous distribution of fibroblasts in Section 3.4.
3.1 Effects of Conductances on the AP and the Spiral-Wave Frequency ω
The cell membrane of a myocyte is embedded with various ion channels, which we list in Table 1; Vm depends on the currents through these ion channels (Eq. 1), so, if we vary the conductances of these channels, we can modulate the AP of the myocyte. To study the effects of these ion channels on the AP, we choose three representative major ionic currents for our study: INa, ICaL, and IKr. Figure 1A shows the APs of a myocyte for control values (magenta) and for the cases where the conductances GNa (black), GCaL (blue), and GKr (red) are increased three-fold. We find that increasing GCaL (GKr) increases (decreases) the APD, whereas GNa has no significant effect on the APD (Figure 1B). This is because the inward current ICaL augments depolarization, and IKr, being an outward current, enhances repolarization; although INa is an inward current, it is active only during the early upstroke phase of the AP, therefore, it cannot affect the APD siginificantly. Futhermore, we find that increasing GNa increases the upstroke velocity [image: image], but GCaL and GKr do not affect on [image: image] (Figure 1). We have also checked the effects of other ion-channel conductances and ion-pump parameters on the AP. The results are consistent with our findings above, namely, increasing (decreasing) the conductances of inward (outward) currents increases (increases) the APD of the myocyte; and INa is the only current that can change the value of [image: image]. We give details in Supplementary Figure S1.
[image: Figure 1]FIGURE 1 | (A) Action-potential plots for the control paramater set (magenta) and the cases when the conductances GNa (black), GCaL (blue), and GKr (red) are increased by a factor of three relative to their control values. (B,C): Plots of the APD and [image: image], respectively, versus SG, the non-dimensionalized conductance (Eq. 3).
We now study how these changes in [image: image] and the APD affect the dynamics of a spiral wave. In Figure 2A we show spiral-tip trajectories and how the radius r, of the averaged circular trajectory, varies with the three conductances GCaL (blue), GNa (black), and GKr (red); the columns are labelled by the values of SG (Eq. 3), which multiply only the conductance that labels a row (all other conductances are held at their control values as we move along a row in Figure 2A). In Figures 2B–D we give plots versus SG of, respectively, r, CV, and ω, for all these three conductances. In particular, we find that ω increases if we increase the values of GNa and GKr; by contrast, ω decreases as we increase GCaL. This is consistent with the variation of r and of CV with SG (Figures 2B,C), for ω is related to r and CV as in Eq. 6.
[image: image]
[image: Figure 2]FIGURE 2 | (A) Traces of the tip trajectories of a spiral for different values of conductances of three ion channels: GCaL (blue), GNa (black), and GKr (red); the columns indicate SG (Eq. 3), which multiplies only the conductance that labels a row (all other conductances are held at their control values as we move along a row). (B–D): Plots versus SG of, respectively, r, CV, and ω (see text), for all these three conductances; one-standard-deviation error bars are shown for r.
If we raise the values of GCaL and GKr, then we find an increase and decrease the spiral core radius r, respectively, whereas GNa has no significant effect on the value of r (Figure 2B). Furthermore, Figure 2C shows that CV increases with GNa, whereas GCaL and GKr do not affect CV; this is because only GNa affects the value of [image: image] (Figure 1C), which determines how fast a myocyte is excited and, therefore, how rapidly a wave of excitation propagates through our cardiac-tissue model. This result, along with Figure 1B, implies that the change in the APD is associated with the change in the value of r; a large (small) value of the APD is associated with a large (small) value of r; and conductances such as GNa have no significant effect on the APD because they do not affect r substantially. We have also checked this correlation between the APD and r for other conductances (see Supplementary Figure S2) and have found similar results. In summary, the rise of ω with the increase of GNa is primarily because of the increase in CV, and the decline (rise) of ω, with the increase of GCaL (GKr), can be attributed principally because to the increase (decrease) in r.
3.2 Effect of the Gap-Junctional Coupling on ω
The strength of the gap-junctional coupling between the cells in cardiac tissue can change in diseased conditions, e.g., in the wake of a myocardial infarction [47–49]. It is, therefore, instructive to investigate the role of the diffusive coupling betwen the cells on spiral-wave dynamics. To study the effect of D on ω, we first plot, in Figure 3A, r (blue curve) and CV (red curve) versus SD, the non-dimensionalised diffusion constant in Eq. 3; this shows that both r and CV increase with SD, because a high diffusive coupling enhances the propagation of waves. The increase in CV is offset by the increase in r, so ω (see Eq. 6) does not depend on SD significantly, as we show in Figure 3B.
[image: Figure 3]FIGURE 3 | Plots versus SD (Eq. 3) of (A) r (blue curve) and CV (red curve) and (B) ω.
We can also reduce the effective coupling strength between the cells in the medium by interspersing the medium with inexcitable point obstacles. These obstacles mimic collagen deposits in fibrotic tissue [38, 50]. The random distribution of these obstacles disrupts the propagation of a wave, as we show by the pseudocolor plots of Vm in Figure 4A; and it reduces the velocity of the wave [37, 44, 47]. In Figure 4B we plot CV versus po; clearly, CV decreases as the obstacle density po increases; and beyond po ≃ 38%, we observe conduction block with CV = 0. This result is consistent with the earlier study in Ref. 51. This reduction in CV, with the increase of po, contributes to the decline of ω with increasing po, which we depict by the plot in Figure 4C. Futhermore, because of the disorder-induced corrugated wavefront (Figure 4A), it becomes difficult to track the spiral-tip trajectory for po > 10%; for po < 10%, the value of r remains unaltered (see Supplementary Figure S3). Nonetheless, the simultaneous decrease of ω and CV, as we increase po, tells us that the change in CV is responsible principally for the variation of ω.
[image: Figure 4]FIGURE 4 | (A) Pseudocolor plots of Vm illustrating the propagation of a plane wave through the simulation domain with randomly distributed inexcitable obstacles (Model-I); the obstacle density po = 35%. (B,C): Plots versus po of the plane-wave conduction velocity CV and the spiral-wave frequency ω. CV vanishes after po ≥ 38%; i.e., there is conduction block.
3.3 Effect of the Fibroblast-Myocyte Coupling on AP Properties and ω
Fibroblast cells, which maintain the structural integrity of a heart, are known to (a) proliferate in diseased conditions [38, 39] and (b) form gap-junctional couplings with myocytes. Such couplings can modulate the electrophysiological properties, e.g., of the AP, of the myocytes [45, 52, 53]. We show in Figures 5A,B, how the fibroblast-myocyte coupling affects the AP morphology, APD, and [image: image] for different values of fibroblast resting potential Ef and the number Nf of fibroblasts coupled to a myocyte in Model-II. We see that the APD and [image: image] increase and decrease, respectively, as we increase Ef. For a fixed value of Ef, increasing Nf decreases both APD and [image: image]. This is because fibroblasts act as current sinks when coupled to myocytes. These changes in the properties of the AP, because of the fibroblast-myocyte coupling, affect the dynamics of wave at the tissue level. We show in Figure 5C that the rise in the APD and the decline in [image: image] (Figure 5B) increases and decreases the values of r and CV, respectively, as we increase Ef. In Figure 5D we show how the combination of these effects on CV and r affect the variation of ω with Ef and Nf.
[image: Figure 5]FIGURE 5 | (A) APs of an isolated myocyte (black -) and a myocyte coupled to fibroblasts with various paramters: Ef = 0 mV, Nf = 1 (blue -); Ef = 0 mV, Nf = 4 (blue - -); Ef = −50 mV, Nf = 1 (red -); Ef = −50 mV, Nf = 4 (red - -). (B) The values of the APD and [image: image] for different values of Ef and two different values of Nf. (C) The values of r and CV for different values of Ef and two different values of Nf. (D) The varition of ω with changes in Ef for two different values of Nf.
3.4 Drift of Spiral Waves in Domains With an Inhomogeneous Distribution of Fibroblasts
Fibrosis is a natural wound-healing process that occurs in the heart after a patient suffers from a condition such as infarction or heart attack [40–42], and such fibrotic tissue can affect the propagation of excitation waves [14, 37, 47, 48, 54, 55], which can promote arrhythmias. We now show how a heterogeneous density of fibroblasts in the medium (Model-II) can affect the dynamics of a spiral wave. Figure 6A shows the heterogeneous distribution of fibroblasts in the medium; here, yellow indicates fibroblast-myocyte composites and blue indicates myocytes. The density of fibroblasts decreases radially outwards from the centre that is marked by a red octagram in Figure 6A (Section 2; Eq. 5). Figure 6B shows the spatial variation of the APD in the medium because of the heterogeneous fibroblast density. Figures 6C,D show the spatiotemporal evolution of a spiral in this case. It shows that a spiral, initiated at the left side of the domain in the region with a low density of fibroblasts, drifts towards the region with a high density of fibroblasts; and the spiral remains anchored to the central region, where the fibroblast density is maximum. The trajectory of the spiral tip is shown in white in Figure 6D (see also the Supplementary Movie M1). In Figure 6D, we have shown the drift data up until a simulation duration of t = 60 s. The spiral indeed goes near to the red star (highest fibrotic density region shown in Figure 6A), anchors to it, and becomes stable (at t = 114 s); and the spiral does not meander after anchoring. This can be observed in the Supplementary Movie M1 provided in the Supplementary Material. This drifting of a spiral towards the region with a high density of fibroblasts is associated with the tendency of the spiral wave to drift towards the region with the highest value of the APD [33, 34, 56–58]. Such anchoring of a spiral wave to a region with a high density of fibrosis has been seen in experiments on real hearts [23, 28, 59–61]. Our study illustrates how a region with a high density of fibroblasts can behave like an attractor and an anchoring point for spiral waves in fibrotic tissue. Such drifting of a spiral wave, in a medium with heterogeneity, has also been reported in other studies in contexts other than fibrosis [33, 34, 56–58].
[image: Figure 6]FIGURE 6 | (A) The radially decreasing distribution of the fibroblast density (Model-II Eq. 5) away from a center, marked by a red octagram; yellow indicates fibroblast-myocyte composites and blue denoted myocytes. (B) The distribution of the APD because of the gradient in fibroblast density. (C,D): Pseudocolor plots of Vm showing a spiral wave in the simulation domain: a spiral initiated in the small-APD region, proximal to the left boudary, drifts towards the large-APD (low-ω) region. The tip trajectory of the spiral is marked by the white line.
4 DISCUSSION
We have used in silico simulations of detailed mathematical models for cardiac tissue to examine the effects of various electrophysiological parameters of a cardiac cell and cardiac tissue on the AP properties and on electrical-wave dynamics. Our work is of relevance when spiral waves are formed in real hearts where their are gradients in electrophysiological parameters along the transmural [36, 62, 63] and the apico-basal [64, 65] directions. Moreover, heterogeneities can be also be induced in the heart because of diseases [64, 66–68]. In this context, we have shown how changes in various ion-channel conductances of a myocyte or the fibroblast-myocyte coupling can modulate the AP of a myocyte. We have then checked how these changes affect the spiral-wave frequency ω. We find that an increase (decrease) in [image: image] or decrease (increase) in the APD increases (decreases) ω: large values of [image: image] increase CV; and a low APD is associated with low values of the mean spiral-tip-trajectory radius r; these are related to ω through Eq. 6. Our study has provided a natural understanding of how changes in the AP, at the single-myocyte level, can be related to changes in ω at the cardiac-tissue level. Moreover, we have investigated how changes in the gap-junctional coupling between the cells and SD affect ω. We have also reduced the effective coupling between the cells by interspersing the medium with inexcitable obstacles; ω changes with the density of the obstacles. It is of interest to investigate such effects on ω, because they provide insights into spiral-wave dynamics in excitable media with heterogeneities [68]. We illustrate this in detail in Figure 6 for a simulation domain with a heterogeneous distribution of fibroblast; here, we demonstrate the drift of a spiral wave towards the region with a high density of fibroblasts; such a drift has been seen in real hearts [23, 59–61].
We have explored the validity of the frequency relation Eq. 6 (Ref. 15) for a wide range of electrophysiological parameters in the models that we use. We show in Supplementary Figure S1 that our measurements of ω and [image: image] are consistent with a linear relation (see the fit that is indicated by a black line); at very low values of CV, e.g., near conduction block in Model-I which accounts for fibrosis-induced disorder, this linear relation breaks down. The randomness in these models introduces errors in the determination of r of the spiral wave, especially for large randomness; e.g., as we increase pf, we observe, in Supplementary Figure S6 that the tip trajectory of the spiral wave becomes very noisy. Note also that the CV of a plane wave is distinct from CVtip the velocity of the tip of the spiral wave as it goes around its trajectory (on average a circle with radius r); clearly, ωtip = CVtip/(2πr) (see Supplementary Table S1).
Some earlier studies have investigated the properties of spiral waves in two-variable mathematical models for cardiac [69–75]. However, such studies have been conducted in the weak- or strong-excitability limits; real cardiac tissue exhibits various degrees of excitability depending on different electrophysiological parameters. Our study, which employs electrophysiologically detailed mathematical models for cardiac tissue, has allowed us to study spiral-wave dynamics with greater realism than is possible with two-variable models for cardiac tissue. The drifting of a spiral wave towards regions with a large APD has been reported in contexts other than fibrosis [33, 34, 56–58]. Moreover, anomalous drift of a spiral towards a region with a small APD, which has been observed in generic models [34], is not seen in our study; and it is yet to be reported in any of the electrophysiologically-detailed mathematical models for the cardiac tissue. It is also observed in the two-variable models that the radius of the spiral tip trajectory is very large, in the weakly excitable limit, compared to what is observed in the strongly excitable limit [72, 76].
In our realistic models, if we consider two parameters that control excitability, e.g., GNa and D, then we observe that r does not increase with a decrease in the value of GNa (Figure 2); but we observe an increase in r, as we increase the value of D (see Supplementary Figure S5. Hence, our systematic study, which uses a detailed human-ventricular-tissue mathematical model, provides an important point of reference for future in silico and experimental studies of such spiral waves in cardiac tissue.
For the study of spiral-wave dynamics in the fibrosis, we have considered two types of models for fibrosis: (a) Model-I and (b) Model-II (Section 2). With these models we have investigated the following: The change of ω in (i) Model-I and (ii) Model-II as we change fibrosis parameters such as po (in Model-I) and Nf and Ef (in Model-II). (iii) In Model-II we show that ω decreases with an increase in Nf in homogeneous fibrotic tissue. Furthermore, we consider a heterogeneous model, based on Model-II, in which the fibroblast density Pf (number density of myocyte cells coupled to Nf fibroblast cells at a site) is highest at a central site and decreases outwards from this center. We find that a spiral wave, initiated far away from the center where Pf is low, drifts towards the region with the highest fibroblast density, i.e., the center, which has the lowest ω. There are earlier studies in this direction such as in Refs. 77, 78 that uses Model-I type fibrosis. The study of Ref. 77, induces spiral waves by a bursting or pacing mechanism and investigates the dependence of ω on the fibrosis density (Model of type I). This study shows that ω is dependent on the maximal local fibrosis density. The study in Ref. 78, considers a local fibrotic region (Model-I type) and studies the anchoring of a spiral wave initiated far from this region. The mechanism of anchoring here involves the breaking up of the spiral waves around the fibrotic tissue and a consequent alteration of the initial spiral wave; this is eventually driven near to the fibrotic tissue and is then anchored around it. However, our study investigates the drift of the spiral wave in Model-II and shows the experimentally observed drift of spiral waves towards the region of highest fibroblast density. Also, our gradient in the fibroblast density based on Model-II, in contrast to that of Refs. 77, 78, uses a continuous gradient in the fibroblast density and, in addition, with fibroblasts that are treated as passive, but electrically active, cells. We note that, multiple studies have shown that fibroblast cells are electrically active, especially in the context of infarction (see, e.g., Refs. 14, 49, 53, 79, 80). Such fibroblasts are used in our Model-II but not in the studies mentioned in Refs. 77, 78. Thus, our work extends considerably these earlier studies.
4.1 Limitations of Our Study
We end our discussion with some limitations in our study. We have used a monodomain model for cardiac tissue. Bidomain models of cardiac tissue account for the extracellular matrix. However, monodomain models have been proved to be good approximations of cardiac tissue for wave propagation [81] for the types of excitations we consider. Furthermore, our tissue model does not incorporate the effects of mechanical deformations, stretch-activated channels, and stress-dependent diffusion tensors [82–84]. Such deformations can affect the dynamics of spiral waves [85] and the drift of spirals in a heterogeneous medium; we defer an investigation of the interplay between deformation and drift for future work.
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Wound healing consists of a sequence of biological processes often grouped into different stages. Interventions applied to accelerate normal wound healing must take into consideration timing with respect to wound healing stages in order to maximize treatment effectiveness. Macrophage polarization from M1 to M2 represents a transition from the inflammatory to the proliferative stage of wound healing. Accelerating this transition may be an effective way to accelerate wound healing; however, it must be induced at the appropriate time. We search for an optimal spatio-temporal regime to apply wound healing treatment in a mathematical model of wound healing. In this work we show that to maximize effectiveness, treatment must not be applied too early or too late with respect to peak inflammation. We also show that the effective spatial distribution of treatment depends on the heterogeneity of the wound surface. In conclusion, this research provides a possible optimal regime of therapy that focuses on macrophage activity and a hypothesis of treatment outcome to be tested in future experiments. Finding optimal regimes for treatment application is a first step toward the development of intelligent algorithms for wound treatment that minimize healing time.

Keywords: wound healing, mathematical model, macrophage polarization, optimal treatment regime, partial differential equations (PDE)


1. INTRODUCTION

Delayed wound healing presents an important health-care problem. There is no decisive finding regarding the best therapy for delayed wound healing due to the variety of complications that can ensue [1]. In the case of acute wounds, a growing research area in wound healing has focused on methods to accelerate wound healing such as application of an electric field, application of stem cells, and the passive release of therapeutic molecules in so-called smart bandages [2]. Less attention has been given to the timing of any given therapy. A treatment may exert no effect or even a negative effect on healing tissues if not applied appropriately [3]. For example, certain treatments can accelerate specific stages of inflammation but have little effect on others [4, 5]. In other cases, treatment can induce toxic side-effects [6]. For this reason each treatment should be applied only at the appropriate stages of wound healing. The emergence of bioelectronic devices provides the opportunity to achieve drug delivery in a continuous and controlled fashion [7, 8].

Wound healing consists of several stages: hemostasis, inflammation, proliferation, and remodeling [9–11]. During hemostasis, a blood clot is formed to stop bleeding [12]. Inflammation begins immediately after a blood clot formation. At this time, chemokines are released to attract immune cells - neutrophils and macrophages. During the proliferative stage, angiogenesis, collagen deposition, and the formation of granulation tissue occur. The main participants in this stage are fibroblasts and anti-inflammatory macrophages. During remodeling, unnecessary blood vessels are removed, the extracellular matrix is remodeled, and tissue architecture is restored.

Wound acceleration can be achieved by shortening the duration of one or more of the wound healing stages. Determining the optimal timing for a therapy requires one to map the direct effect of the therapy on the targeted biological processes to the overall wound closure time.

Mathematical modeling in this field may help to predict optimal treatment regimes and to plan future experiments. Existing mathematical models have served to investigate different aspects/stages of wound healing [13–15]. Models of inflammation have suggested strategies to avoid chronic inflammation by control of neutrophil apoptosis and macrophage phagocytosis [16]. The model presented in Xue et al. [17] suggests a mechanism by which a deficiency in oxygen supply can limit macrophage recruitment and slow healing. The models describing production of the extracellular matrix by fibroblasts allowed researchers to investigate scar formation [18]. The role of cell migration and proliferation on wound closure was investigated in Javierre et al. [19]. Thus, we propose that a qualitative model with a proper level of abstraction can be used to predict the response of a wound to dynamic therapy.

In this study, we investigate mathematically the most effective spatio-temporal regimes for drug delivery to accelerate wound closure. In particular, we identify the effects of delivering substances that can accelerate macrophage polarization on wound closure times. Macrophage polarization modeling, to our knowledge, has been applied to several biological situations but not to wound healing [20, 21].

Macrophages play important roles at all stages of wound healing [9–11, 22]—from clearing the wound of debris by phagocytosis to maintaining cell proliferation of the tissue being repaired. Macrophages can perform various tasks due to their ability to transform into several phenotypes depending on external stimuli [23]. The most famous phenotypes are M1 (pro-inflammatory) and M2 (anti-inflammatory), identified in vitro [24]. In a wound, the set of stimuli received by macrophages is constantly changing and their phenotype undergoes a dynamic transition. The ability to regulate the macrophage phenotype and achieve a controlled time-dependent transition from the M1 phenotype to the M2 phenotype is a promising approach to accelerate wound healing [25–27]. There are several substances that can induce macrophage polarization from the pro-inflammatory to the anti-inflammatory subtype [28–30]. This type of treatment can have adverse effects if applied improperly [31, 32]. For example, a fast transition from the inflammatory to the proliferative stage may slow down the cleaning of the wound of debris (e.g., removal of harmful bacteria and damaged cells).

We focus our attention on accelerating wound closure of acute wounds. For simplicity, and to this end, we consider a simple model with only one stable state – the healthy one. That is, our model does not capture switching between chronic and normal wound healing regimes. However, in order to appropriately capture trade-offs of early treatment, we model wound debris over time, which is actively degraded by M1 macrophages. Tracking this state, we quantify wound cleaning time with the understanding that any remaining wound debris can be an indicator of prolonged inflammation and potential infection preventing wound closure. That is, wound debris should decay in a timely manner for the treatment to be realizable.

In summary, we examine wound healing time and wound debris cleaning time in response to different spatio-temporal signals inducing macrophage polarization. Overall, decoupling the different modalities of wound healing trajectories reduces complexity of the model and allows us to gain intuition for optimal treatment strategies. We find that actuation of M1–M2 polarization must be applied with care and optimal timing can depend on the duration of the treatment, time of initiation, placement of the actuator, and initial distribution of wound debris.



2. MATHEMATICAL MODEL


2.1. Background

The timing and coordination of biological processes involved in wound healing are complex, however, many of them can be lumped into a single state [33]. A good model should contain the minimal number of variables needed to describe the process [14].

We consider a five state system, which provides an appropriate level of abstraction for our study. In order to study the effects of macrophage polarization we must make them explicit states. M1 macrophages are associated with the early stages of inflammation [11, 34] and the upregulation of M2 signals corresponds to initiation of the proliferation stage [9, 10]. The remaining states defined as wound debris, temporary tissue, and new tissue represent primary activity in early and later stages of wound healing.

Debris of both internal and external origin appear in the wound at the moment of injury, when healthy tissue is damaged. The debris activate M1 macrophages and are then removed by them.

M1 macrophages clean up debris mainly by phagocytosis [35]. Soon after that, M1 macrophages become anti-inflammatory M2 macrophages in a process called efferocytosis (M1 macrophages phagocytose apoptotic neutrophils, transforming into M2 macrophages) [36, 37]. The upregulation of M2 macrophages is associated with the end of inflammation [38] and the onset of proliferation during wound healing [10, 11].

The proliferative stage is characterized by the production of an extracellular matrix facilitated by fibroblasts and the growth of new blood vessels [39, 40]. These processes are regulated by M2 macrophages [10] and are needed to help new tissue form correctly, thus, we consider these agents as “temporary tissue” in our model.

During the remodeling stage, the extracellular matrix is remodeled and extra blood vessels are removed [39]; new healthy tissue replaces temporary tissue indicating wound closure. Here, we consider a wound where only the top epithelial layer is damaged and new tissue grows from the edge of the wound as epithelial cells proliferate and migrate inward. Thus, new tissue in our model is growing as a sheet from the wound edge [41].

These five states capture the well characterized wound healing stages and changing wound conditions inducing a biological response.



2.2. Equations

Consider a wound of radius R. Let the axis r to be directed from the wound center to the edge (Figure 1A). Concentrations of substances and populations of cells are functions of r. A schematic of the interaction between the modeled biological processes including macrophage participation in wound healing is shown in Figure 1B.


[image: Figure 1]
FIGURE 1. (A) Geometry of the model: the r-axis is directed from the wound center; R is the wound radius. (B) Schematic of the model of wound healing. Wound debris Db attract M1 macrophages that remove debris. M1 macrophages become M2 macrophages, which induce production of temporary tissue C that helps new tissue N to grow.


Db is wound debris consisting of damaged cells and bacterial cells promoting infection. We assume the wound debris to be non-active and only eliminated by M1 macrophages:

[image: image]

where M1 is the population of M1 macrophages, which are attracted by debris (k2Db) and removed in the reactions corresponding to debris elimination (k1DbM1), macrophage polarization [image: image], and natural death (kd1M1). Spatial migration of macrophages is described by a classical diffusion term [42]. Thus, the dynamics of M1 macrophages are described by the following equation:

[image: image]

where the diffusion is written in a cylindrical coordinate system. M2 is the population of M2 macrophages whose dynamics are driven by M1 polarization [image: image], their death rate (−kd2M2), and migration as follows:

[image: image]

Proliferation is a complex process involving fibroblasts. The extracellular matrix (ECM) formation and its partial destruction is controlled by a complex coordination of enzymes [39, 40]. This finely tuned system supporting new tissue growth has been modeled in several works [18, 43, 44]. Here, we use a simplified model of proliferation. The temporary tissue variable C represents the temporarily formed ECM and active enzymes. Temporary tissue production is induced by M2 macrophages (k5M2) and is destroyed thereafter (−krC). The dynamics are described by the following equation:

[image: image]

The state C is an intermediate state leading to the growth of new healthy tissue, N. To model growth of new healthy tissue, we assume that the top layer of the skin, the epithelium, grows as a sheet from the edge of the wound [41]. Epithelial cells divide, but this process slows down if there are too many cells. Thus, the epithelial growth velocity is described as N(1 − N). If the amount of new tissue reaches N = 1 it does not grow any more. New tissue cells can migrate to adjacent areas with a migration rate Dn that is much slower than that of macrophages. The equation [image: image] is known in the theory of nonlinear dynamical systems as the Fisher-Kolmogorov equation [45], and its solution can be represented as a running wave [42]. However, this is possible only in the presence of temporary tissue, so the rate of new tissue growth is proportional to C. The dynamics of new tissue are described by the following equation:

[image: image]

In order to reduce the number of parameters, we reparameterize the model by introducing new variables:

[image: image]

where T and L are characteristic time and length scales. The system of equations in the reparameterized form is:
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[image: image]

[image: image]

[image: image]

[image: image]

where [image: image] [image: image], [image: image] [image: image], k = Kk1T. The parameter values used in numerical simulations are listed in Table 1.


Table 1. The values of parameters used in numerical simulations.

[image: Table 1]

We assume a time scale of 8 h and a spatial scale of 0.03 mm. For β the rate of attraction of macrophages by debris/pathogen was reported in Hau et al. [46] as 1/day and in Andersson et al. [47] as 0.5/day. We set β = 1. The degradation rate of macrophages varies in literature from 0.014/h [34] to 0.12/h [49]. We accept the values γ1 = γ2 = 0.1. We select parameters k, q and ρ such that M1 and M2 dynamics agree with those found in Du et al. [48]. The value of μ was set such that temporary tissue is removed 3 weeks after injury [39]. The coefficient of diffusion for macrophages can be deduced from cell migration experiments. In Wheeler et al. [51], the mean displacement of cells on plastic was 20-30 μm in 6.5 h, giving the estimate for the diffusion coefficient [50] [image: image]=0.27 − 0.61. We assume [image: image].

Finally, the parameters [image: image] and [image: image] were selected in such a way that complete wound closure was observed by day 14, while no changes in wound closure were observed in the first 2 days as is consistent with some experiments [52]. The sensitivity analysis of the model to variations in parameters is shown in Supplementary Figures S5, S6.

The initial conditions are:

[image: image]

We assume zero-flux boundary conditions for macrophages on the right and left boundaries of the considered region:

[image: image]

New tissue is assumed to be constant at the edge of the wound and non-moving through the center of the wound:

[image: image]

The system of Equations (6)–(10) was solved numerically on a uniform mesh consisting of 100 spatial cells. Five equations were written in each cell, with the diffusion term approximated using a central difference scheme. The resulting system of 500 ordinary differential equations was solved in Matlab R2020a by the ode15s solver. The results of wound healing model simulations are shown in Figure 2. The wound radius is measured as the distance from wound center to the location r, where n(r) > 0.95.


[image: Figure 2]
FIGURE 2. Results of wound healing model simulations, R = 3 mm. (A) time-dependence of all variables at a radius r = 2 mm from the wound center (B) new tissue profiles as functions of r for several time points. (C) wound radius vs. time: wound healing time is 13.47 days.




2.3. Model of Wound With Actuator

In order to investigate regimes of wound healing treatment we include actuator induced macrophage polarization into the model. This actuator is applied at a radius r = rp. We assume that the actuator delivers a biochemical at the point of application and its concentration θ is described by the following function in time and space (see Figure 3A):

[image: image]

where θ0 is the amplitude of the treatment controlled by the actuator. One can see that θ = θ0 at the location of the actuator, r = rp. In this work we assumed σ1 = 0.3 mm and σ2 = 0.09 mm. The treatment substance delivered affects macrophage polarization, so equations for m1 and m2 with actuators may be rewritten as follows:

[image: image]

[image: image]

In order to find the optimal regime, we test the model with impulses of actuator treatment of duration Δt beginning at time t0 (see Figure 3B):

[image: image]

We present a piece-wise linear function for simplicity. We assume linear growth and a decrease at the beginning and end of the signal. We tested other impulse-like shapes for actuation and found that the general behavior of the system response remained unchanged.


[image: Figure 3]
FIGURE 3. Spatio-temporal characteristics of treatment induced by actuation. (A) Treatment substance distribution in space. The actuator is located at r = rp. (B) Time dependence of the actuator amplitude.





3. RESULTS

We define wound healing time as the time from injury (t=0) to the moment when the wound radius reaches zero. Application of an actuator that accelerates macrophage polarization in the model decreases the time of wound healing. The results are shown in Figures 4–6.


[image: Figure 4]
FIGURE 4. Wound healing time dependence on the treatment beginning time t0. (A) plots for different treatment durations Δt, rp = 0.9 mm. (B) plots for different actuator positions rp, Δt = 1 day.


The beginning time of actuation plays an important role in wound healing (see Figure 4). Large values of t0 make the treatment less effective: wound healing time increases as t0 increases. In our simulations for t0 > 3d the treatment does not have any effect: the value of healing time tends to the value of healing without treatment (13.47 days for the given set of parameters).

Interestingly, for shorter treatment durations Δt, healing time plots have a minimum away from the extremes (see plots for Δt < 2d in Figure 4A). There exists a time-window in the wound healing process when treatment is most effective. This time-window is likely characterized by some underlying biological process. If the treatment duration is short and applied early, the treatment ends before the most effective time-window is reached. This is not observed for longer treatments (Δt = 2 − 3 days) because even with early application at t0 = 0, the treatment duration overlaps with the most effective time-window for treatment.

This means that there is a non-trivial optimal treatment beginning time t0. In other words, there is a short window of time during wound healing when artificial acceleration of macrophage polarization is most effective. The plots for other actuator positions rp are shown in the Supplementary Figure S1. Similar trends are observed for different placement of the actuators.

Figure 5 shows how wound healing time depends on the duration of treatment. The longer the treatment time Δt is, the more effective it is at accelerating wound healing. However, for Δt larger than 2–3 days, wound healing time approaches a lower bound. This means that further prolongation of the treatment has minor effects. The plots for other values of rp are shown in Supplementary Figure S2. Again, we find a similar trend regardless of actuator placement.


[image: Figure 5]
FIGURE 5. Wound healing time dependence of treatment duration Δt for different beginning times t0. rp = 0.9 mm.


Figure 6A shows the dependence of wound healing time on the actuator position rp. The treatment substance in this model is approximated by a piece-wise function (14) on a bounded domain. To ensure the bounded domain stays within the region of interest we constrain the actuator placement: 0.3 mm≤ r≤2.7 mm. The plots are decreasing from the wound center to the edge. This implies that an actuator located close to the wound edge is beneficial. The plots for other Δt and t0 are shown in Supplementary Figures S3, S4.


[image: Figure 6]
FIGURE 6. Wound healing time dependence on the actuator position rp. (A) plots for different treatment durations Δt, t0 = 0h (B) plots for different initial distributions of debris in the wound, t0 = 0h Δt = 3days.


The results above might be the consequence of the initial uniform distribution of the debris in the wound (see initial conditions). We provide additional simulations with debris accumulation in the center and at the edge of the wound. Alternative initial conditions for the debris variable take the following form:

[image: image]

and

[image: image]

Wound healing time dependence on rp for the three different types of initial conditions on debris distribution is shown in Figure 6B. One can see that debris distribution in the wound bed affects the dependence of healing time on actuator placement.

For the case a(r) = 2r/R, there is more debris on the edge. If the actuator is placed near the edge, we can get much shorter healing times. For the case 2(1 − r/R) (more debris in the wound center), there exists an optimal position of the actuator away from the edge (rp ≈ 1.8 mm). One can see that the optimal actuator position is sensitive to the distribution of the debris in the wound. Debris distribution cannot be estimated in the framework of this rough modeling and must be investigated experimentally.

Figure 7 demonstrates the limitations of treatment regimes. In addition to wound healing time, we define the wound cleaning time for debris removal. Because debris is a diminishing variable in our model, it tends to zero as time goes to infinity. We define wound cleaning time as the time when the maximal value of debris across the wound bed falls below a small threshold 0.025:

[image: image]

Because the treatment applied in this model accelerates M1 to M2 transition, it not only accelerates the proliferation-remodeling stages but removes M1 cells performing debris removal. Too large application of this treatment can make debris removal too slow—this is the cost of accelerating the proliferative and remodeling stages. Figure 7A shows that a shorter wound healing time corresponds to a longer time required for wound cleaning or debris removal. For some scenarios, wound cleaning may take even longer than wound closure, which is physically unrealizable and indicative of complications in wound healing.


[image: Figure 7]
FIGURE 7. Optimal regimes of wound treatment. (A) wound healing time and wound cleaning time as functions of treatment beginning time, t0 (Δt = 2d8h). Blue dashed line: healing time without treatment. (B) Parametric plane for the choice of the treatment regime: green crosses – the safe and beneficial regimes of treatment; red squares – wound cleaning takes a longer time than wound healing; blue diamonds – wound healing time diminishes less than 10% in comparison with the non-treated wound (rp=0.6 mm). Arrows labeled “a” and “b” represent the same change in treatment strategy but demonstrate different outcomes due to different reference points.


We can see two main limitations of the treatment regimes, divided by vertical dotted lines in Figure 7A. The regimes with small t0 (left of the first dotted line) lead to too slow wound cleaning. Regimes with very large t0 (to the right of the second dotted line) result in insufficient improvement in wound healing. We define “insufficient” by a less that 10% reduction in wound healing time when treatment is applied. This threshold is of course arbitrary and can be chosen by the user. For reference, in Liang et al. [53], the authors demonstrated accelerated wound closure on a pig wound by applying a continuous external electric field and reduced the time for wound closure by ~12–18%. Thus, we opine that below a 10% threshold, the cost and potential side effects of applying the treatment outweigh the benefit.

Only the regimes with middle values of t0, between the vertical dotted lines in Figure 7A, shorten wound healing time sufficiently, while keeping a reasonable wound cleaning time.

Figure 7B shows these 3 types of regimes in the (t0,Δt) parametric plane. The regimes marked as red squares correspond to regimes when wound cleaning takes a longer time than wound healing, whereas blue diamonds correspond to regimes when wound healing time diminishes less than 10% in comparison with a non-treated wound. Green crosses represent the effective regimes of wound treatment. We find that the treatment should be applied between 0 and 1 days. Applying treatment past 1 day in all scenarios does not significantly reduce the wound healing time, hence, the treatment is ineffective. We note that in our simulations, M1 macrophage activity, which is associated with inflammation, peaks at around 24 h. Thus, we may hypothesize that treatment is best applied shortly after or just shy of peak inflammation, thereby, accelerating the transition from the inflammatory state to the proliferative state. Applying treatment too early can result in chronic wounds given a less than reasonable time is provided for inflammation, a stage in wound healing critical for preventing infections.

Of course, one can choose more stringent conditions for optimal regimes (maybe 10% healing time improvement is not enough, or the threshold in the condition (20) should be smaller. Some variants of other threshold selections are shown in Supplementary Figure S7). Among all the regimes presented in Figure 7B the smallest healing time (11.37 days) is observed for the treatment regime t0 = 8 h and Δt = 2 days 8 h. This reduces wound healing time by approximately 2 days. In practical situations there might be additional constraints on the duration of treatment, or maximum concentration that is not considered here. However, our model demonstrates the principles of wound treatment regime optimization.



4. DISCUSSION

To our knowledge, the mathematical model presented here is the first one that considers the role of macrophage polarization explicitly in wound healing. The model takes into account the presence of two types of macrophages in the wound—M1 and M2. It is believed that in addition to these primary subtypes, there are several other subtypes of macrophages. All subtypes of macrophages were found in vitro as a result of identifying corresponding activating stimuli. The exact subtypes of macrophages in wounds have not been established and are considered to be roughly similar to those found in vitro. It is most likely that macrophages of different types can be present in the wound simultaneously. However, the functions that these macrophages perform are more important for the healing process than the markers found in vitro. Therefore, in this model, we clearly divide the functions of the macrophages into inflammatory and reparative, keeping in mind that such pure cell lines may not exist in reality. This separation of functions of macrophages gave us the opportunity to draw up a rather simple naive model and identify general patterns for the effect of varying treatment regimens on wound healing time.

Admittedly, this model has its limitations. The model constructed in this work does not take into account the details of macrophages polarization due to the poor knowledge of this mechanism in vivo [34]. It is known that M2 macrophages can appear in response to stimulation by certain cytokines, for example, IL4, produced by basophils and mast cells [11]. There are indications that M1 macrophages are converted to M2 subtypes after they phagocyte apoptotic neutrophils [38]. We made a model in which the M1 population is replaced by M2 although the mechanisms of this transition in vivo are not well understood. Thus the mechanisms of polarization and their effects on timing cannot be included. Still we derive biologically meaningful results.

Our results imply that a treatment targeting macrophage polarization should not take place too early. Otherwise, M1 macrophages do not have enough time to eliminate wound debris and wound healing can be delayed. Details of this scenario is out of scope of our model. The onset of this scenario is especially important for infected wounds when the debris consists not only of damaged cells but of bacterial pathogen [54]. In the case of bacterial pathogen, the first equation in the model should include pathogen reproduction and regimes where pathogen persistence may occur. This may lead to continuation of M1 recruitment, inflammation persistence, and prevent full wound closure. On the other hand, treatment targeting macrophage polarization should not begin too late, because it becomes ineffective and toxic side effects are unknown.

The model can still be used to guide experiments. The parametric plane of treatment regimes in the (t0, Δt) coordinate plane (Figure 7B) may serve as a first approximation for planning wound treatment strategies. Although the boundaries separating the three regimes in Figure 7B may shift across experiments, we might expect the general pattern to hold. For example, if an experimentally tested treatment regimen is found to not shorten healing time to a desirable extent, then the implication is that the domain of actuation is in the blue region of Figure 7B. A reasonable choice for the next strategy is to decrease t0 and increase Δt with the goal of shifting the system from the blue to green region (arrow a in Figure 7B). However, if the new regimen leads to complications in the inflammatory stage, this implies the shift pushed the actuation domain into the red region, as shown by arrow b in Figure 7B. Having this mathematically derived parametric plane may help experimenters orient in an unknown field of regimes. The specific values of the thresholds and the corresponding shapes of the boundaries can be clarified experimentally.

We note that the geometry of the domain of actuation corresponds to a ring of a given width at a given radius. Recent advances in the design of bioelectronic devices provide the ability to deliver biochemicals with spatio-temporal precision [7]. Thus, we would like to take full advantage of these capabilities to understand the dependence of treatment effectiveness on proximity to the wound center compared to the wound edge. The lack of knowledge about debris distribution in the wound makes it difficult to predict the optimal actuator position. However, we demonstrate several possible solutions for different debris distributions in the wound. Experiments on wound treatment should be done to clarify the optimal spatial distribution of treatment actuators.

Nonetheless, the general trends for changes in wound healing times with respect to changes in actuation timing are similar for various fixed spatial profiles. The importance of considering spatial context in wound treatment remains an open question. If considering spatial information can significantly improve treatment strategies, then such numerical studies can inform future actuator design.



5. CONCLUSION

Wound healing consists of a sequence of stages with different cells performing different functions. Therefore, it is reasonable to assume that at each stage, different medications should be applied to improve healing. However, to our knowledge, there are not many studies of dynamic wound treatment regimens. In this work, we attempted to find the optimal wound treatment regimen by affecting macrophage polarization.

Actuating macrophage polarization for acceleration of wound healing must be done in a narrow time interval, beginning from the peak time of M1. Too early and too strong treatment of this type may slow down wound cleaning and lead to chronic inflammation. Delayed treatment may have too small of an effect. For the particular parameter values chosen here, the optimal actuating time is between 0.7 and 3.1 days. The shortest observed wound healing time was 11.37 days for a ~15.5% reduction in wound healing time. This is comparable to the results in Liang et al. [53], where time for wound closure was reduced by ~12–18%.

To our knowledge, this is the first work in search of an optimal spatio-temporal regime of wound treatment, which can be tested experimentally. We also note that we are only presenting one method of intervention. In the future, this study can be expanded to include additional intervention strategies targeting other biological processes. Thus, this naive modeling approach may help to predict optimal regimes for various treatments with known distinct actions. Combining approaches could potentially lead to unprecedented reductions in wound healing times. We believe this is the first step toward designing smart treatment and development of algorithms for smart wound healing devices.
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Radiofrequency catheter ablation (RFCA) is the mainstream treatment for drug-refractory cardiac fibrillation. Multiple studies demonstrated that incorrect dosage of radiofrequency energy to the myocardium could lead to uncontrolled tissue damage or treatment failure, with the consequent need for unplanned reoperations. Monitoring tissue temperature during thermal therapy and predicting the extent of lesions may improve treatment efficacy. Cardiac computational modeling represents a viable tool for identifying optimal RFCA settings, though predictability issues still limit a widespread usage of such a technology in clinical scenarios. We aim to fill this gap by assessing the influence of the intrinsic myocardial microstructure on the thermo-electric behavior at the tissue level. By performing multi-point temperature measurements on ex-vivo swine cardiac tissue samples, the experimental characterization of myocardial thermal anisotropy allowed us to assemble a fine-tuned thermo-electric material model of the cardiac tissue. We implemented a multiphysics and multiscale computational framework, encompassing thermo-electric anisotropic conduction, phase-lagging for heat transfer, and a three-state dynamical system for cellular death and lesion estimation. Our analysis resulted in a remarkable agreement between ex-vivo measurements and numerical results. Accordingly, we identified myocardium anisotropy as the driving effect on the outcomes of hyperthermic treatments. Furthermore, we characterized the complex nonlinear couplings regulating tissue behavior during RFCA, discussing model calibration, limitations, and perspectives.
Keywords: radiofrequency ablation, myocardial anisotropy, hyperthermal tissue damage, fiber Bragg grating sensors, finite element analysis
1 INTRODUCTION
Cardiac arrhythmias are the most common and disabling pathologies worldwide (Pires et al., 1995; Kornej et al., 2020; Siontis et al., 2021) with increasing incidence–it is estimated that about 16 million people in the United States will suffer from this condition by 2050 (Patel et al., 2014). In the context of minimally invasive procedures, cardiac radiofrequency catheter ablation (RFCA) emerged as the leading clinical routine for treating cardiac arrhythmias (Nath et al., 1994). RFCA causes hyperthermic lesions destroying myocardial regions responsible for arrhythmias foci. Radiofrequency (RF) energy is carried out through a delivery antenna to target areas where the temperature is raised to at least 50°C (Wood et al., 2011). Cellular excitability is eliminated in correspondence with the ablation sites, and thermal damage is produced (Morady, 1999).
Despite the extensive clinical achievements which result in a high success rate and low mortality, RFCA is still subject to several drawbacks. An excessive thermal increase can produce steam pops and unwanted tissue lesions (Zaltieri et al., 2021). On the contrary, failure to achieve target temperatures can lead to incomplete tissue ablations, which may provoke recurrent arrhythmias that often require repeated clinical interventions. Since the temperature profoundly affects the outcome of this procedure, considerable interest has matured in predicting macroscopic thermal patterns and, in turn, estimating the expected lesion size to make RFCA risk-free and prevent failures.
Computational modeling has emerged as a feasible way to predict the outcome of cardiac RFCA procedures and to tackle specific unanswered questions. Numerical techniques, including the Finite Element Method (FEM), have been extensively used in numerous studies on cardiac RFCA (Dillon-Murphy et al., 2018; Roney et al., 2020) and, more generally, RFCA of biological tissues. Within the spectrum of RFCA, the electromagnetic source is approximated by a quasi-static form of Maxwell’s equations, often disregarding the effects of external factors. Heat transfer is usually modeled via the classical Pennes’ bio-heat equation due to its relative ease of implementation (Trujillo and Berjano, 2013; González-Suárez and Berjano, 2015; Park et al., 2016; Qadri et al., 2017; Petras et al., 2019). Only a few more complex models incorporating non-Fourier effects have been proposed in the literature (Tzou, 1995; Sahoo et al., 2014; Singh and Melnik, 2019). Besides, the vast majority of computational studies include simplified two-dimensional geometries (Schutt et al., 2009; Joseph and Rajappan, 2012; Hamaya et al., 2018; Singh and Melnik, 2019). The 2D nature of the current models dramatically reduces their reliability and predictability–planar domains cannot investigate cardiac microstructural features, i.e., rotational anisotropic conduction.
The role of the myocardial fibers on thermal conductive properties remains unexamined mainly, both from the experimental and computational points of view. Previous works claimed the anisotropic thermal and electrically conductive nature of the myocardium as a possible explanation for the discrepancies found between elliptical experimental/clinical lesions and the computed spherical ones (Petras et al., 2019, 2018). Only one study hitherto was found, which integrates anisotropic conductive properties in the analysis of cardiac ablation (Xie and Zemlin, 2016). Nevertheless, the work focused on pulsed-field ablation with penetrating needles and neglected tissue heat transfer. In a recent contribution (Molinari et al., 2022), we derived a novel thermo-mechanical framework for cardiac RFCA based on energetic reasoning and variational procedures also accounting for tissue microstructure. We showed that complex patterns of tissue damage and residual strains appear depending on the applied contact force and local material properties. Here, we aim at generalizing the classical thermo-electric model from the literature, considering, for the first time, a three-dimensional model of RFCA including anisotropic thermo-electrical conduction, a three-state cellular death model, and a higher-order formulation for heat transfer. In addition, we work out an experimental-based model tuning considering an innovative high-resolution measure of the thermal profile during the RFCA procedure employing Fiber Bragg Grating (FBG) sensors.
The final aim of the work is to assess the influence of the underlying myocardial microstructure on the thermal behavior at the tissue level. Accordingly, we present a multiphysics material model, implemented in a multiscale computational framework fine-tuned via multi-point temperature measurements on ex-vivo swine cardiac tissue undergoing RFCA. We exploited FGB sensors due to their excellent metrological and physical characteristics (i.e., small size, high thermal sensitivity, good accuracy and spatial resolution, short response time, immune to electromagnetic fields (Schena et al., 2016)), obtaining high spatio-temporal resolution of temperature maps in tissue depth. Ultimately, we integrated the space and time evolution of thermal ablation into a simplified three-dimensional finite element model of the cardiac tissue. We further considered multiscale boundary conditions, incorporating the effect of blood flow, electrical impedance, and power dissipation circuit, thus addressing and discussing several open questions of clinical relevance.
The manuscript is organized as follows. In Section 2 we provide the experimental setup developed and the RFCA protocol adopted. Besides, a description of FBGs for temperature measurements is described in terms of working principle, sensors positioning, and tissue damage estimation. In Section 3 we detail the computational model developed in terms of geometry, microstructured, and boundary conditions. We work out our generalized theory of heat transfer, further introducing an additional coupled model of thermal damage by means of cellular death and thermal dependency of material properties. Section 4 presents experimental and modeling results based on numerical convergence, sensitivity analysis, and fine-tuning of the anisotropic constitutive parameters. In particular, we discuss model accuracy and predictability quantifying the relative error between simulations and experiments. Section 5 closes the manuscript with a critical discussion of the results, highlighting limitations and perspectives.
2 RFCA ON EX-VIVO SWINE MYOCARDIUM
This section describes the experimental setup and the RFCA protocol used to investigate the temperature variation (ΔT) in the porcine myocardium. A focus on the FBG sensors’ working principle is provided.
2.1 Experimental Setup and RFCA Protocol
Two freshly excised swine hearts were collected from the local slaughterhouse. Three myocardial specimens with a thickness of at least 30 mm were extracted from the left ventricular area (such a thickness ensures that the RFCA treatment is confined within the ventricular wall) and put into a water bath at ≈ 37°C to achieve body temperature. Each specimen was then positioned in a container filled with saline solution, placed upon a precision digital scale (EU C7500, Gibertini Elettronica, Novate Milanese, MI). An RF antenna (FlexAbilityTM Ablation Catheter Sensor EnabledTM, Abbott Medical, MN, United States) with 2.5 mm of tip diameter and connected to a cooling system (Cool Point™, Abbott Medical, MN, United States) delivering 17 [mL/min] of saline solution was positioned on the surface of the tissue. A slight pressure was exerted on the antenna until the value of about 12 gf (i.e., about 0.118 N) was displayed by the scale, to simulate clinical pressure conditions. A perforated plexiglass positioner was exploited to hold the RF antenna in place. Four optical FBG arrays were inserted into the specimen with the help of four steel needles 20 Gauge calipered. RF impulses were produced by a RF generator (Generatore Ampere, Abbott Medical, MN, United States). A spectrum analyzer (si255 based on Hyperion Platform, Micron Optics, Atlanta, GA, United States) connected to a personal computer was employed during all the RFCAs to collect the fibers’ outputs at 1 kHz of sampling frequency. Impedance measurement was performed during the ablation procedure. The values at the starting and ending instants of each RF delivery process of the protocol described below are provided in Table 1. In Figure 1A, the experimental setup is shown.
TABLE 1 | Impedance values at the starting (Ii) and ending (If) instants of each of the six experimental RF delivery process.
[image: Table 1][image: Figure 1]FIGURE 1 | (A) Representation of the experimental setup: a) RF generator; b) cooling system; c) container with saline solution holding the myocardial specimen; d) digital scale; e) plexiglass RF antenna holder; f) spectrum analyzer connected to the four optical fibers; g) personal computer; h) thermometer for temperature reference. On the right, a zoom-in on the tissue specimen displaying the placement of the RF antenna and the four fiber optics is reported. (B) Schematic of the RF antenna and FBGs placement within the specimen. The FBGs positioning into the y-z plane (left image) and in the x-z plane (central image) with respect to the RF antenna (red rectangle) is reported. On the right, the arrangement of the FBGs in one of the two planes (x–z) is depicted as an example. The RF antenna tip is considered as the origin of the plane.
Two RFCAs were performed for 60 s of treatment time at 30 W of power delivery in two different points of each specimen. On every tissue sample, fibers placement and RF deliveries were executed according to the experimental protocol detailed as follows: 1) the RF antenna was set in a specific point of the tissue surface; 2) the four optical fibers were placed in a x-z plane parallel to the longitudinal axis of the antenna; 3) a first RF delivery was performed; 4) the optical fibers were removed, and the antenna was moved about 4 cm below the previous application site; 5) the four optical fibers were inserted in a y-z plane parallel to the longitudinal axis of the antenna and mutually orthogonal to the previous x-z plane; 6) a second RFCA was performed. For the sake of clarity, an example of fiber positioning is shown in Figure 1B.
2.2 FBGs for Temperature Measurements
Multi-point ΔT measurements were performed into swine myocardial specimens (starting from the initial tissue temperature T0 ≈ 37°C) during RFCA by means of four nominally identical FBG arrays (FiSens GmbH, Braunschweig, Germany). Each array enclosed 7 FBGs (acrylate coating, reflectivity value [image: image], FWHM value [image: image] 2 nm, and declared thermal sensitivity ST = 0.01 nm°C) of 1 mm in length and 2 mm of edge-to-edge distance (total sensing length of 19 mm), each of whose set at a specific wavelength (i.e., Bragg wavelength, λB nm) ranging from 1,500 to 1,600 nm.
2.2.1 Working Principle
Once illuminated by a broadband source, an FBG operates as a notch filter which reflects a narrow spectrum of light centered around its λB. As shown in (1), λB is function of the core effective refractive index (ηeff [⋅]) and the grating period (Λ [nm]) (Erdogan, 1997):
[image: image]
Both ηeff and Λ depend on ΔT and strain (ϵ). These two parameters cause a shift in the reflected spectrum, thus of λB (ΔλB). As the experiments were performed in a strain-free configuration, the ΔλB was attributable to the ΔT contribute only, as also proven in a previous work (Zaltieri et al., 2020). The relationship between ΔλB and ΔT reads:
[image: image]
2.2.2 Sensors Positioning Within Tissue
Before each RFCA, the optical fibers were inserted into the myocardial tissue and placed into the specimen (according to anatomical landmarks), parallel to the longitudinal axis of the RF antenna and spaced 2 mm, 4 mm, 6 mm, and 8 mm apart from it. The fiber insertion was adjusted to have all the FBGs as reported in Figure 1B. For ease of reference, the optical FBG arrays are denoted with “A” associated to a number from 1 to 4, starting from the closest to the RF antenna to the farthest one. Also, the fibers belonging to the x-z plane (which is parallel to the RF antenna) are denoted by the subscript “P” (i.e., A1P, A2P, A3P, and A4P), while the ones lying in the y-z plane (which is transversal to the x-z plane) are denoted by the subscript “T” (i.e., A1T, A2T, A3T, and A4T).
The 7 FBGs embedded in each array are labelled with a progressive number from 1 to 7 (i.e., FBG1, FBG2, FBG3, FBG4, FBG5, FBG6 and FBG7), starting from the outermost to the innermost. In each plane, a total amount of 28 sensing points distributed in a tissue area of 6 mm × 19 mm are positioned.
2.2.3 Hyperthermal Tissue Damage Estimation
At the end of the experimental session, the hyperthermal damage caused to the myocardial tissue by RFCA was evaluated. For each specimen, in correspondence with every ablation site, tissue was sectioned along the insertion plane of the arrays. The dimensions of each lesion (intended as the area that visually showed a lighter coloring, as common in the literature (Calzolari et al., 2017)) were manually estimated in terms of length and depth by means of a digital caliper.
3 COMPUTATIONAL MODEL
3.1 Computational Domain and Myocardial Fiber Modeling
The computational model developed in the present work replicates the experimental setup described before by means of a simplified geometry model. We included a tissue sample of 8 cm × 8 cm × 3 cm and the surrounding domain of saline solution 13 cm × 13 cm × 9 cm (see Figure 2A). The chosen dimensions, with constant thickness, are in line with the physical dimensions of a porcine ventricular wall and do not affect the overall numerical results as discussed in the following. The catheter and electrode geometries have been omitted to reduce the overall computational burden and have been considered by appropriate thermal and electrical boundary conditions detailed in the next sections. The geometry is encapsulated in a larger box to which a coordinate scaling was applied. Therefore, these regions are treated as having an infinite extent compared to the scale length of the model, thereby minimizing boundary effects. According to well-established evidence, ventricular myocardial rotational anisotropy was implemented assuming a 120°counterclockwise rotation of the fibers, from epicardium to endocardium (Lombaert et al., 2012). To set a direct comparison with experimental data, fibers were assumed parallel to the tissue surface and aligned to the x-axis of the epicardial layer (see Figure 2B). We remark that myocardial fibers rotate continuously throughout the ventricular wall building up a sheet-like transverse isotropic material changing the conductivity properties along the depth. In other words, the material is both anisotropic and heterogeneous. The fiber rotational anisotropy is thus described by the law:
[image: image]
being z the thickness direction with versor n.
[image: Figure 2]FIGURE 2 | (A) Computational geometry, including the myocardium and saline solution domain. (B) 3D fiber distribution showing myocardium rotational anisotropy. The inset provides the fibers local reference system with a right-handed orthonormal set of basis vectors (f, t, n), where f denotes the muscle fiber axis, t the sheet (or cross–fiber) axis, and n the sheet–normal axis n = f ×t.
3.2 Multiscale Electrical Model
The electric potential due to the ablative procedure was determined by solving the time-harmonic Maxwell’s equations (quasi-static regime), complemented by the constitutive relations:
[image: image]
where V is the electric potential, E the electric field vector, J the current density vector, D the electric displacement vector, ɛ the electrical permittivity constant, and ω the angular frequency. Considering the frequency spectrum of RFCA, the wavelength of the electromagnetic field is [image: image], several orders of magnitude larger than the spatial scale of the system, i.e., [image: image]. Accordingly, we can assume the biological medium as resistive and solve the quasi-static form of the electrical problem.
The second-order conductivity tensor σ is introduced to model the anisotropic electrical conduction in the ventricular wall as:
[image: image]
where σf, σt, σn [S/m] are the conductivities in the fiber and transverse directions, respectively, and R = [f t n] is the rotation matrix tensor, based on the local fiber reference system see Figure 2B):
[image: image]
The saline solution was modelled as an isotropic medium with constant conductivity σsol.
We further adopted a multiscale modeling approach, coupling the 3D computational domain with an external 0D electrical circuit composed of an AC voltage generator, an input, and output resistance. The latter is fine-tuned in a pre-processing step to match the experimentally measured impedance and the applied power source, according to the RFCA protocol (see Figure 3). The electric potential from the AC voltage generator follows a sigmoidal increase from 0 to [image: image] in a time window of 1s, with p = 30 W being the applied power; Dirichlet boundary conditions were applied to the electrode tip [image: image] and the outer surface of the saline solution [image: image] to simulate the connection with the external circuit; a homogeneous Neuman boundary condition (−σ ∇V ⋅ n = 0) was applied at the catheter surface to simulate electrical insulation.
[image: Figure 3]FIGURE 3 | (A) External 0D electrical circuit coupled to the 3D computational model, to apply the RF stimulus. (B) Procedure employed to calibrate the output resistance Rout, matching the experimentally measured impedance.
3.3 Heat Transfer Model
Heat transfer was described using two alternative formulations:
[image: image]
[image: image]
where Eq. 5a refers to the parabolic heat equation based on the classical Fourier’s theory (Pennes, 1998) employed for the saline solution domain, and Eq. 5b denotes the so called dual-phase-lag (DPL) equation (Tzou, 1995), which is solved for the myocardium. Here, T [K] is the temperature, ρ [kg/m3] the density, c the heat capacity [J/kg ⋅ K], k [W/m ⋅ K] the thermal conductivity tensor, Qs = J ⋅ E [W/m3] the external electromagnetic heating source, and τq, τt [s] the phase-lag time constants.
Classical Fourier-based models fail to capture the finite thermal propagation speed due to the inherently heterogeneous microstructure of the biological medium and fast transient temperature increase occurring in hyperthermal treatments due to the small time scales and high-temperature gradients involved. Different theories have been proposed to account for non-Fourier behavior (e.g., hyperbolic heat equations and relativistic heat transfer). Among them, the so-called dual-phase-lag proposed by (Tzou, 1995) characterizes this phenomenon by means of a hyperbolic heat equation including two thermal relaxation time constants τq and τt, to control the delayed response between the heat flux and temperature gradient induced in the medium. In such a framework, τq defines the time lag between the heat flux and temperature gradient, while τt governs the phase lag in establishing the temperature gradient in the conductive medium, accounting for microstructural inhomogeneities of the biological tissue. Notably, the constraint τq < τt (i.e., heat flux precedes the temperature gradient established in the tissue) must be satisfied not to violate the causality principle (Singh and Melnik, 2019). As shown in (López Molina et al., 2014), parabolic heat equation (Fourier’s theory) and hyperbolic heat conduction (DPL) converge for infinite time or infinite distance from the electrode. Our findings confirm the assumption that both heat conduction models recover the steady-state solution. In contrast, the DPL model is required to catch the initial transient temperature increase, which has a critical impact on the evolution of the damage pattern in the tissue.
Consistently with the electrical problem, Eq. 3, we introduce tissue thermal anisotropy by means of the conductivity tensor k, with kf, kt, kn, the fiber and transverse thermal conductivities, respectively; the saline solution was modeled as an isotropic medium, with a constant thermal conductivity ksol. According to the experimental setup, we did not consider blood perfusion in the ventricle and applied the following boundary conditions for the heat transfer model (see Figure 4): a constant temperature T0 = 37°C was imposed to the outer boundaries of the saline solution domain; thermal insulation (−k∇T ⋅ n = 0) was assumed at the catheter surface; a Robin convective boundary condition (−k∇T ⋅ n = h(T − Tc)) was applied at the electrode-solution and electrode-tissue interface to simulate the effect of saline cooling, assuming a coolant temperature Tc = 25°C, and a heat transfer coefficient h = 5,927 [W/m2 ⋅ K] calculated as in (González-Suárez and Berjano, 2015) by assuming an irrigation rate of 17 [mL/min].
[image: Figure 4]FIGURE 4 | Electrical (A) and thermal (B) boundary conditions. In (A), [image: image] and [image: image] refer to the electric potential measured at the connection node between the 3D model and the input/output resistances of the 0D circuit. In (B) h is the thermal convection coefficient to simulate the electrode cooling, T0 = 37 C is the reference temperature and Tcool = 25 C is the temperature of the coolant solution.
3.4 Thermal Damage Modeling
Thermal damage in ventricular tissue was assessed by using the three-state variable model of hyperthermic cell death proposed by (O’Neill et al., 2011). Such a compartment model assumes the occurrence of three cell states, i.e., alive or native (N), vulnerable or unfolded (U), and dead or denatured (D). The system allows for cell reversibility to the native state N if the thermal history is short enough (reverse transition between N and U states) and preceding irreversible damage in state D. Accordingly, the kinetic equations read:
[image: image]
resulting in a system of 3 coupled ODEs controlling the dynamics of each state, readily:
[image: image]
The model must satisfy the global volumetric constraint N + U + D = 1 (conserved cell population). The reaction rates [image: image] are temperature dependent and determined by the Arrhenius law, where ΔEi [J/mol] is the activation energy, Ai [1/s] the frequency factor, T [K] the absolute temperature and R [J/mol ⋅ K] the universal gas constant. Consistently with previous works (Qadri et al., 2017; Singh and Melnik, 2019), such a dynamic model allows us to predict and quantify several key features of the RFCA procedure. In particular, the tissue is considered to be completely damaged if N < Nthr, with Nthr a tissue-dependent threshold.
In Figure 5(left), we show the time course of the three state variables applying the RFCA heating curve compared with the temperature rise (black). The model replicates the nonlinear features observed experimentally and characterizes the latency of the cell death rate. Interestingly, the intermediate state balances the transition towards the irreversible dead state. Figure 5(right) also provides the phase portrait parametrized by the temperature value in the range 40 ÷ 100°C for 800 s. The dynamical system is characterized by the fixed point [image: image] that changes to [0, 0, 1] once the cell population constraint is included. It is worth mentioning that the fast temperature increase due to RFCA critically modifies the reaction rates αi driving the system towards the vulnerable state. Such dynamics is much faster than the system’s natural evolution towards the global fix point (dead state), enriching the nonlinear evolution of the lesion.
[image: Figure 5]FIGURE 5 | Three-state cellular model: (left) variables dynamics during RF hyperthermic treatment; (right) N-U-D phase portrait of system 7 for constant temperature applied for 800s (40 ÷ 100°C).
3.5 Thermal Dependency of Material Properties
Predictive simulations of RFCA have been shown to critically depend on the biophysical modeling of tissue parameters (Trujillo and Berjano, 2013). All parameters included in the simulations were gathered from literature and reported in Table 2. Consistently with the phenomenological approach adopted, we assumed temperature dependency for the following myocardial constitutive parameters (c, k, σ). In particular σ increases with temperature while k and c decrease. As a part of the model calibration, different mathematical functions were tested to describe such a temperature dependency (Petras et al., 2019):
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where (⋅)0 refers to the baseline value of the parameter at body core temperature T0 = 37°C, λi are rates of increase/decrease, f(⋅, ⋅, ⋅) is a smoothed Heaviside function with a continuous second derivative, implemented via piecewise 5th-degree polynomials; the parameters Tm = 68.5°C and ΔTm in (Eqs 8c–8e) control the step reference temperature and the transition zone, respectively. Possible generalizations of the chosen formulation are discussed in the conclusions.
TABLE 2 | Material properties for the 3D model including the myocardium and saline solution domains.
[image: Table 2]4 RESULTS AND DISCUSSION
4.1 Experimental Results
FBGs data were exported and processed in MATLAB® (Mathworks, Natick, MA, United States) environment. For each experiment, the ΔT trends estimated by the 28 FBGs embedded in the four arrays are analyzed with respect to T0 during the 60 s of RFCA. In the Supplementary Material (SM), the plots showing the temperature increase caused by the RF heating effect are reported for all the six experiments. The ΔT measured by each FBG strictly depends on its placement with respect to the RF antenna tip. In fact, FBGs positioned closer to the antenna (see Figure 1B, right image), measured higher ΔT than the distant ones, also exhibiting faster temperature rises. For example, among the sensors belonging to the same array (e.g., from FBG1 to FBG7 of A1T), FBG1 always measures the maximal ΔT values. Also, proceeding deeper into the tissue from FBG1 to FBG7, the obtained ΔT trends decrease. Furthermore, referring to FBGs placed into the tissue at the same depth but belonging to different arrays (e.g., all the FBG1s of A1T, A2T, A3T, and A4T), the ΔT trends are progressively lower starting from A1T to A4T. For the sake of completeness, for each FBG the average temperature was computed across the six experiments, together with the standard deviation. Figure 6 shows the average temperature trends relative to FBG1, FBG2, FBG3 and FBG4 of the arrays A1 and A2, respectively. Such multi-point measurement enabled the identification and quantification of two-dimensional temperature maps to depict the temperature spatial distribution into the treated tissues at the end of each RFCA. More precisely, FBGs data were collected from the start of treatment to the moment of RF discharge. A total amount of 28 experimental values related to the 28 measurement sites as previously depicted were obtained. A linear interpolation was implemented along such temperature values and 2D experimental temperature maps were produced for all the performed RFCAs, both along x-z and y-z planes.
[image: Figure 6]FIGURE 6 | Electrical Temperature evolution during the RFCA treatment for the first 4 FBGs of Array 1 (A) and Array 2 (B). Average temperature and confidence bands were computed from the 6 experimental trials. Solid black line indicates the results of the calibrated computational model.
We remark that statistical averages were derived from the whole data set to represent a robust information bandwidth to fit the computational model. As described in the following, the tuning procedure was developed such to identify the optimal anisotropy ratio matching average and variance in tissue depth at different locations.
In Figure 7A, two representative experimental temperature maps showing the temperature distributions at the final instant of the treatment (i.e., 60th s) are provided.
[image: Figure 7]FIGURE 7 | (A) comparison of experimental (left) and computational (right) temperature maps, revealing different elongations of the thermal lesion across orthogonal directions. (B) Half-sections of the tissue after RFA treatment, sliced at the lesion site, along the plane of the FBGs’ arrays. (C) 3D views of the numerical lesion resulting from the calibrated model.
The temperature maps evaluated on the x-z plane (top) and on the y-z plane (bottom), and the isothermal level at T = 50°C (solid black curve) are reported. Temperatures greater than 50°C are considered responsible of myocardial tissue permanent injury. As consequence, it is supposed that the area included into the curve may be representative of the damaged tissue (Zhang et al., 2016). However, the two temperature maps differ in terms of dimension and size of the tissue area surrounded by the 50°C isotherm (which is larger in the y-z plane with respect to the x-z plane). These results confirm the occurrence of a preferential direction along which the heat diffuses. In this specific case, heat transport is higher along the y-axis (Figure 7A, bottom) than the x-axis (Figure 7A, top). Moreover, heat spreads mostly in the y-z plane than in the x-z plane. We remark that the observed anisotropic evolutions critically depend on FGB location with respect to ventricular microstructure. However, though following anatomical landmarks, FGB positioning does not get information on the underlying fiber structure. Moreover, the in-depth measure along the seven sensors gathers thermal information from twisted myocardial fibers (see Figure 1). The definition of the appropriate myocardial anisotropy requires then an accurate parametric tuning as described in the following section.
Such findings are supported by comparing the hyperthermal damages’ dimensions obtained manually by means of the digital caliper. In Figure 7B, the two images of the produced lesions sectioned along the x-z plane (upper image) and y-z plane (down image) are shown. As expected, both length and depth of the damage evaluated in the y-z plane are greater than the ones evaluated in the x-z plane (i.e., 7.8 mm vs. 6.6. mm in length, 5 vs. 3.8 mm in depth). In both cases, the lesions which were manually assessed result in larger dimensions than the ones obtained from the 2D temperature maps by using the thermal isocontour method: for instance, widths were 6.6 and 7.8 mm (Figure 7B) vs. almost 10 and 18 mm (Figure 7A), respectively. Two main motivations can justify such a discrepancy: 1) the occurrence of measurement errors caused by possible inaccuracies in the visual evaluation of the damaged area as there is no unequivocal method for visually assessing the extent of the lesions (no evidence is given that the damaged area uniquely consists of the zone with lighter color), and 2) the adoption of the isothermal curve at 50°C as the sole criterion for the lesion evaluation. Significantly, using this approach, the lesion is determined only based on the local temperature and does not account for the effects of the thermal treatment duration. In addition, there have been concerns about the actual value of the temperature threshold, and various alternatives have been proposed in the literature, e.g., 55 and 59°C (Zhang et al., 2016). To cope with such a non-unique definition, in the following, we provide a rationale based on the three-state dynamics cell model.
4.2 Model Setup and Convergence Analysis
Numerical simulations were performed with the finite element software COMSOL Multiphysics® (Comsol 5.6, COMSOL, Stockholm, Sweden). We discretized the computational domain with mixed linear tetrahedral and hexahedral elements. In particular, hexahedral elements were used to discretize the additional domain for the coordinate scaling (see Section 2.1), with a significantly reduced number of elements in the mesh. From a relatively coarse discretization, the mesh was gradually refined near the electrode area, which is strongly affected by hyperthermic treatment. To solve the problem in the time domain, an implicit BDF scheme with adaptive time stepping was adopted. A preliminary convergence analysis ensured that the results were independent of the numerical approximation. Specifically, five different meshes were tested, and the optimal discretization (71,501 degrees of freedom) was chosen to achieve an error below 1% for the maximum temperature of each FBG, compared to the reference solution, i.e., the one with the finest mesh (see Molinari et al. (2021)).
4.3 Sensitivity Analysis and Model Calibration
In the following, we present the extensive sensitivity analysis performed to fine-tune the computational model and match experimental data. Virtual probes were positioned in the computational model following FBG positions in the experimental setup to obtain consistency for quantitative comparison. Initially, a preliminary model tuning was conducted using the parabolic Fourier model Eq. 5a getting a basal thermo-electric profile in the myocardium. Then, the DPL model Eq. 5b was introduced to better replicate the transient temperature rise during RFCA treatment. Finally, the parameters for anisotropic thermal conductivity were adjusted to match the spatial temperature distribution obtained from the multi-point measurements. For the sake of conciseness, the complete set of numerical analyses are available at (Molinari et al., 2021). In the following, we will rather present how the calibration process was carried out and discuss the main findings of the study.
4.3.1 Electrical Model Tuning
Different functional forms for the electrical conductivity were tested, as described in Section 3.5, with the linear function resulting in better compatibility with reference data. The linear increase rate λσ was calibrated to achieve an impedance drop at the end of ablation in the range of experimental measurements (2 ± 0.63 Ω). A value of λσ = 0.1 was selected and included in the upcoming analyses.
4.3.2 Fourier Thermal Model Tuning
A preliminary numerical examination confirmed that the baseline value of thermal conductivity k0 = 0.6 [W/m ⋅ K], gathered from literature, provided optimal results in terms of temperature distribution within the tissue. Afterwards, we calibrated the two proposed functions for thermal conductivity, i.e., smoothed step (ΔTm = 55°C, λk = −0.006) and linear (λk = −0.001). Results comparison shows that both strategies furnish similar values, albeit with significantly reduced computational time in the case of the linear decrease of k. Accordingly, we assumed a linear temperature dependence for the thermal conductivity.
4.3.3 DPL Model Time Constant Tuning
After calibrating the myocardium’s thermal and electrical constitutive properties using the parabolic heat conduction, we investigated the effect of phase lag on the model outcome. To handle separately the two phase-lagging phenomena reproduced in the model (i.e., heat flux and temperature gradient delays), we performed two different tests by modifying the value of one of the time constants while keeping the other fixed. Our investigations determined that the values reported in (Sahoo et al., 2014) (τq = 8 s, τt = 0.045 s) best fit our experimental data.
4.3.4 Thermal Anisotropy Tuning
Experimental results outlined in Section 4.1 showed a higher temperature increase in the longitudinal direction than in the tissue depth due to myocardial fiber architecture. To achieve optimal agreement with the time course of temperature curves, we performed multiple numerical tests by varying the coefficients kf and kn introduced in Section 3.3, i.e., the heat conduction values in the fiber and sheet-normal directions, respectively. Starting from an isotropic conductive medium (i.e., kf = kt = kn = k), multiple combinations were tested, with increased conductivity along the fibers (kf = 2k, 3k, 5k, 6k) and decreased conductivity in the sheet-normal direction (kn = 0.8k, 0.7k, 0.6k, 0.5k), holding k = k(T) the thermal dependent conductivity tensor as in Eq. 8b. Our parametric analysis revealed negligible sensitivity to the cross-fiber conductivity kt, and we identified [kf, kt, kn] = [6k, k, 0.5k] as the optimal values that provide the best fit for the experimental temperature curves. We note that, during the optimization process, thermal anisotropy mainly influences the initial temperature increase. In contrast, both contributions, electrical and thermal anisotropies, are required to reproduce experimental transient temperature increases and steady-state values. As a representative example, Figure 8 compares thermal and electrical anisotropy fitting for different ratios versus the corresponding isotropic case.
[image: Figure 8]FIGURE 8 | Comparison between thermal and electrical anisotropy fitting. Left: thermal isotropy for three levels of electrical anisotropy. Right: electrical isotropy for three levels of thermal anisotropy.
A conclusive study was conducted to test the sensitivity of the computational model to the alignment of the FBG arrays and myocardial fibers. We tested five different fiber distributions by gradually rotating the fibers at epicardial level by 10°. As expected, due to the higher conductivity in the fiber direction, we noticed a decrease in temperature as the level of misalignment increases. However, this effect was negligible, particularly for FBGs that are distant from the RF antenna. We remark that FBG arrays have been placed according to anatomical landmarks on the surface of the ventricular surface and the adopted fitting procedure considered the statistical average-variance over the total experiments. Accordingly, the conducted parametric analysis was able to identify the rotational anisotropy ratio recovering the temperature rise with negligible error (see next Section).
4.4 Model Accuracy and Damage Prediction
We present the results obtained from the calibrated model, which are thoroughly compared with the experimental counterpart. In Figure 6, we provide the time evolution of the simulated temperature profiles (solid black) over imposed to the average value and confidence bands of the experimental recordings (dashed color) for each FBG. Though clear accordance among calibrated model and ex-vivo measurements is obtained, we quantified the goodness of fit using two different strategies. First, we computed the relative error (ΔFBGi) between the numerical and the average experimental temperature at each instant of the RFCA (Figures 9A, B). Additionally, we analyzed the relationship between experimental and simulated temperatures using the Pearson correlation coefficient ρ (Figure 9 C, D). The plots display the statistical analysis results for the first FBGs of A1 and A2. The error settles below 5% for each FBG of the two arrays, with a slightly higher value (6%) for FBG1/A1 in the initial phase of the RFCA treatment. However, given the non-critical temperature (below 43°C) experienced by the tissue, we reasonably considered this result of minor importance.
[image: Figure 9]FIGURE 9 | Relative error between simulated and measured temperatures for the first 4 FBGs of Array 1, 2. (A,B) Relative error and (C,D) Pearson correlation coefficient between the numerical and the average experimental temperature at each instant of the RFCA.
As confirmed in Table 3, we found an excellent correlation between the predicted and experimental data. More significant relative errors, still below 10%, were found for FBG1 and FBG2 of the remaining arrays, while the correlation remained positive ([image: image] 0.98). Nevertheless, given the distance of the FBGs from the ablation site, the absolute temperature increase was limited (below 43°C). Therefore the marginal discrepancies between the model and the measurements were not considered meaningful. The complete results, including the 28 FBGs traces, are provided in (Molinari et al., 2021).
TABLE 3 | Maximum absolute error and correlation coefficients for the simulated and measured temperatures for the first 4 FBGs of Array 1 and 2.
[image: Table 3]Finally, we provide a quantitative analysis of damage assessment and lesion prediction criterium. The lesion was first computed with the 50°C thermal isocontour method (consistently with the visual post-processing of experimental data). The computed damage volume, shown in Figure 7, is 12.6 mm in width and 3.6 mm in depth. Both experimental and computational lesions exhibit an ellipsoidal shape, with the major axis oriented towards the muscular fibers. Then, a numerical sensitivity analysis was performed by using the cell-death model varying the threshold value Nthr ∈ [0.8 ÷ 0.99]. Figure 10 shows how the cell-based computed damage volume grows as the threshold increases also depending on the ablation time. We identify Nthr ≈ 0.95 ÷ 0.98 as the optimal value for the present model vs. experimental lesions. We further note that the computational lesion follows the fiber rotation across the tissue and that the irreversible damage volume concentrates below the tissue surface according to the expected RF concentration in the presence of blood flow and saline boundary conditions. This result broadly supports the work of (Xie and Zemlin, 2016) though an extended validation in this direction is required.
[image: Figure 10]FIGURE 10 | 3D views of the numerical lesion resulting from the three-state cell model for different threshold levels Nthr: (A) 0.8, (B) 0.9, (C) 0.95, and (D) 0.99. A shaded view of the 50°C thermal isocontour method is provided for comparison.
5 DISCUSSION
In the present study, we developed an experimentally calibrated finite element computational model of ex-vivo cardiac RFCA. The key innovative features of the proposed methodology are the inclusion of three-dimensional myocardial anisotropy, the implementation of a multi-scale time lag thermal ablation model, and the adoption of a dynamical model of cell death for the estimation of tissue damage and lesion sizing.
Remarkably, model calibration relies on accurate multi-point temperature measurements obtained via FBG sensors. The study offered novel insights into the anisotropic thermal behavior of cardiac tissue, which was poorly addressed in the literature. In a combined experimental-computational modeling framework, we proved that the intrinsic anisotropic microstructure of the myocardium plays a pivotal role in the thermo-electrical response of the tissue undergoing hyperthermic treatments. Furthermore, we showed that a comprehensive sensitivity analysis must comply with complex nonlinear couplings and heretogeneous materials properties.
5.1 Limitations
Limitations to this study need to be acknowledged. First, the computational domain was idealized. Experimental thickness variation, and associated microstructure, may represent a possible source of error in model tuning. However, a priori sensitivity analysis of varying tissue thickness indicated that overall results do not change since temperature decreases rapidly with tissue depth and significant heating only occurs in the vicinity of the electrode. Because of clinical applications, however, a patient-specific image-based realistic geometry will be mandatory for maximizing model reliability and further improving its predictability (Sung et al., 2021).
Second, material modeling lacks of cardiac electro-mechanical couplings (Singh and Melnik, 2019; Pandolfi et al., 2016, 2017; Gizzi et al., 2015; Ruiz-Baier et al., 2020), as well as tissue-electrode contact mechanics (Petras et al., 2018). Besides, three-dimensional blood hemodynamics and saline irrigation (accounted in the present study by means of multiscale boundary conditions) shall be considered in line with recent computational studies (Petras et al., 2019). We remark that our experimental calibration is performed on ex-vivo samples, with no external perfusion. Accordingly, we did not include the perfusion term in the heat equation to be consistent with our experimental dataset. However, additional volumetric sources (accounting for blood perfusion, metabolism, to name a few) and multi-field coupling phenomena should be included when modeling in-vivo cardiac ablation. In addition state-of-the-art machine learning algorithms and data assimilation procedures (Barone et al., 2020a,b; Zaman et al., 2021) are also foreseen in view of a patient-specific optimization applications (Lopez-Perez et al., 2019; Aronis et al., 2021).
From the experimental point of view, it was not possible to ensure an identical placement of the sensors within the tissues for all the experiments and no measurements were performed contemporary in the x-y plane due to difficulties in sensors positioning. We opted for a solution minimizing the positioning error of the FBGs caused by the manual insertion of the optical fibers. A dedicated 3D-printed holding setup for FBG insertion is a route we are exploring for further improving the current measurement technique.
Finally, more objective criteria for the estimation of tissue damage taking advantage of histological techniques are expected. We investigated a smooth transition of the damage criterium through a parametric analysis of the threshold value. In view of generalized robust and reliable multiscale modeling approaches, an extended validation of the damage criterium is foreseen to cope with a broad spectrum of clinical applications.
5.2 CONCLUSION
The present work has the ultimate purpose of improving the predictive capabilities of RFCA computational models in view of personalized therapy planning, design, and development of new RFCA systems and protocols and ultimately paving the way to a dramatic improvement in the safety of clinical procedures.
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Flow of cerebrospinal fluid in perivascular spaces is a key mechanism underlying brain transport and clearance. In this paper, we present a mathematical and numerical formalism for reduced models of pulsatile viscous fluid flow in networks of generalized annular cylinders. We apply this framework to study cerebrospinal fluid flow in perivascular spaces induced by pressure differences, cardiac pulse wave-induced vascular wall motion and vasomotion. The reduced models provide approximations of the cross-section average pressure and cross-section flux, both defined over the topologically one-dimensional centerlines of the network geometry. Comparing the full and reduced model predictions, we find that the reduced models capture pulsatile flow characteristics and provide accurate pressure and flux predictions across the range of idealized and image-based scenarios investigated—at a fraction of the computational cost of the corresponding full models. The framework presented thus provides a robust and effective computational approach for large scale in-silico studies of pulsatile perivascular fluid flow and transport.
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1 INTRODUCTION
Flow of cerebrospinal fluid (CSF) in perivascular spaces (PVSs) is a key transport mechanism in and around the brain [1–3]. A PVS is a space or potential space along or around a blood vessel through which fluid and particles can pass [4]. Such spaces appear along blood vessels on the brain surface (surface or pial PVSs) or along blood vessels within the brain parenchyma (parenchymal PVSs). While their shape and structure, and to some extent existence, remain disputed [4–8], PVSs are typically represented as (elliptic) annular structures surrounding the blood vessels. As such, surface and parenchymal PVSs form structural networks, dual to and in close interaction with the vascular network, and the surrounding brain tissue and/or subarachnoid space.
Mathematical and computational models are playing an increasingly important role in understanding and predicting PVS flow characteristics [9]. Theoretical models have quantified the resistance in PVS networks [10], while detailed numerical simulations can predict perivascular fluid velocities and pressures in idealized [11–17] and image-based geometries [18]. However, computational fluid dynamics simulations rapidly become prohibitively expensive for large, three-dimensional PVS networks. A natural question is therefore whether reduced models can accurately capture PVS flow and transport characteristics and magnitudes. Of particular interest and relevance are geometrically-reduced models for which the computational domain is reduced from an initial three-dimensional representation to a network of topologically one-dimensional branches. Such models have been subject to active research over the last decades in the context of the vasculature, arterial blood flow, and tissue perfusion [19–29]. For the one-dimensional arterial blood flow models, see e.g., the seminal work of Olufsen [19], the vasculature is typically represented by a branching network of centerlines, and the model variables are the time-varying cross-section flux and vascular area. The corresponding PVS flow setting has received less attention from the mathematical and numerical community on the other hand.
In this work, we introduce a geometrically-reduced mathematical model and numerical solution techniques for the time-dependent flow of an incompressible viscous fluid such as CSF in surface PVS networks. The cross-section flux and average pressure are the primary model variables. We consider different computational scenarios including PVS flow induced by a systemic pressure gradient, by cardiac pulse wave-induced movement of the inner vascular wall and by vasomotion in idealized or image-based model geometries. We evaluate the accuracy and efficiency of the reduced models by qualitative and quantitative comparison with the full three-dimensional model analogues.
The reduced models provide accurate approximations of the cross-section average pressure, cross-section flux and net flow in all geometries considered with relative model discrepancies in the peak flux between 0 and 35% and in the peak pressure between 0 and 52%. For realistic three-dimensional geometries, the reduced model reduces the computational costs (memory and runtime) by factors of 50 −200× with higher factors expected for larger scale networks.
2 MATERIALS AND METHODS
2.1 PVS Geometries (3D and 1D)
In general, we consider a perivascular tree-like domain Ω consisting of a network of branching generalized annular cylinders Ωi, with Ω ⊆∪i∈IΩi, spatial coordinates x ∈ Ω and time t ≥ 0. The boundary is denoted ∂Ω, with boundary normal n. We assume that each generalized annular cylinder Ωi has a well-defined and oriented, topologically one-dimensional centerline Λi with coordinate s. We set Λ = ∪i∈IΛi. Along s, we define the cross-sections Ci = Ci(s, t) of Λi with area Ai = Ai (s, t). We denote the inner radius of Ωi by [image: image] and the outer radius of Ωi by [image: image]; these radii will in practice vary with s, t and the angular coordinate θ. We denote the set of bifurcation points i.e. the points at which the centerlines of branches meet by [image: image].
We introduce three specific geometries of increasing complexity: from an axisymmetric cylinder (A) to an image-based perivascular geometry without any bifurcations (B) and one with a bifurcation (C) (Figure 1 and Table 1). The image-based geometries (B) and (C) are constructed from non-pathological artery segments from the Aneurisk dataset repository [30], and thus define high-fidelity 3D representations of human brain surface arteries. In each of these geometries, the PVS domain is defined by creating a generalized annular cylinder surrounding the vascular segment with the vascular wall as the inner surface of the PVS. The width of the PVS is set proportional to the blood vessel diameter (by factor of 0.95) and scaled (to a mouse scale) [18, 31]. Three-dimensional PVS flow in geometries A and C have been studied previously [18] and will be used for comparison. We define as PVS inlets and outlets (∂Ωin and ∂Ωout) the PVS ends surrounding the vascular inlets and outlets, respectively, noting however that fluid may flow both in and out of both the inlet and outlets. We denote the inner PVS wall (boundary) by ∂Ωinner and outer wall by ∂Ωouter.
[image: Figure 1]FIGURE 1 | Overview of the full three-dimensional and topologically one-dimensional reduced model domains. The idealized geometry (A) (the axisymmetric PVS) is a single 1 mm long axisymmetric annular cylinder represented by its two-dimensional angular cross-section. Geometry (B) (the image-based PVS) is generated from a cerebral artery segment (Aneurisk dataset repository, case id C0092) and represents an image-based perivascular space without bifurcation. Geometry (C) (the bifurcating image-based PVS) is generated from a middle cerebral artery (MCA M1–M2) segment (Aneurisk dataset repository, case id C0075) and represents an image-based perivascular space including a bifurcation.
TABLE 1 | Geometrical or numerical PVS domain characteristics for domains A, B, C.
[image: Table 1]The 3D PVS construction and the 1D centerline extraction are performed using PVS-meshing-tools [32], largely based on VMTK [33]. The extracted centerline comes with underlying data including the branch lengths and vessel radii. The centerline radius refers to the radius of the maximal inscribed circle of the vessel cross-sections. The meshing of both 3D and 1D PVS domains is performed within PVS-meshing-tools [32] using meshio [34] and GMSH [35]. The centerline meshes consist of topologically one-dimensional intervals embedded in three dimensions. The bifurcation points [image: image] are explicitly labeled within each centerline mesh. Each branch is also separately tagged and given a consistent orientation. This procedure allows for the identification of bifurcation points as the outlet of one (parent) centerline and the inlet of other (daughter) centerlines, and a split of the full perivascular network into oriented mesh branches.
2.2 Stokes Flow in a Deforming Perivascular Domain
Flow of CSF in surface PVSs is reported to be laminar, with low Reynolds numbers (10–4−10–2) and moderate Péclet numbers (102–104) for 1 μm spherical particles transported at low Reynolds number [31], a mean flow speed of up to 60 μm/s, and parabolic flow profiles [31]. We therefore model the flow of an incompressible, viscous fluid flowing at low Reynolds and Womersley numbers via the time-dependent Stokes equations over a time-dependent domain Ω = Ω(t) representing the PVS. The fluid velocity v = v (x, t) for x ∈ Ω(t) at time t and the CSF pressure p = p (x, t) then solve the following system of time-dependent partial differential equations (PDEs) [18, 36]:
[image: image]
[image: image]
where ρ is the fluid density and μ is the dynamic fluid viscosity. To model CSF at body temperature, we set the fluid density to ρ = 103 kg/m3 and the dynamic viscosity to μ = 0.697 × 10–3 Pa s. As in our previous full models of perivascular flow [18], the initial PVS mesh defines the reference domain Ω(0), and we assume that Ω(t) at time t > 0 is given by a deformation d of the reference domain: Ω(0)↦Ω(t) with x = d (X, t), X ∈ Ω(0), x ∈ Ω(t). We denote the domain velocity associated with d by w (thus [image: image]).
2.3 Boundary Conditions, Initial Conditions and Periodicity
At the PVS ends, we prescribe a traction condition corresponding to a known, applied pressure [image: image]:
[image: image]
We either prescribe (i) zero pressure at both ends [image: image], or (ii) a constant-in-time pressure gradient [image: image] by setting [image: image] at the inlet, letting [image: image] at the outlet furthest from the inlet with distance Lout, and setting [image: image] at any other outlets such that the average pressure gradient over each branch path [image: image] is constant and equal to the prescribed pressure gradient [image: image] mmHg/m. This static pressure difference can represent e.g., a hydrostatic pressure difference, a venous pressure differential, or some other systemic pressure difference. Other types of boundary conditions could also be considered, see e.g., a discussion of compliance conditions in [18], or [37].
On the inner and outer PVS walls (along the length of the PVS), we set the fluid velocity v to match a known, prescribed domain velocity w = w (x, t). For the inner PVS wall, we either (i) consider a rigid wall and set v = w = 0, or (ii) impose a pulsating wall displacement:
[image: image]
with reference to the initial (fixed) mesh with coordinates X and prescribe [image: image]. To represent wall motion induced by the cardiac pulse wave, we let the amplitude A be defined by the juxtaposition of an experimentally-observed wall motion time series [31] either applied uniformly along the length of the PVS or as a travelling wave along the PVS length with wave speed c = 1 m/s and frequency 10 Hz. We refer to [18] for the detailed description. To represent wall motion due to vasomotion, we consider a similar set-up but with a travelling sinusoidal wave in time with a frequency of 0.1 Hz and wave length λ = 8 mm [38], and an amplitude A of 7.5% of the initial inner radius R1. We note that for all models, the wall moves in the normal (radial) direction only. For the outer PVS wall ∂Ωouter, we set v = w = 0.
The system starts at rest with v = w = 0 at t = 0. The system reaches the periodic steady state nearly immediately, and we report results starting from the first cycle.
2.4 Model Reduction Assumptions
We define a reduced, topologically one-dimensional, model approximation of the full PVS flow model [(1) with the given boundary and initial conditions] under the following stipulations. For each branch Ωi(t) with centerline Λi and local coordinate system (s, r, θ), where s represents the path length (or axial coordinate), r is the radial coordinate and θ is the angular coordinate, we suppose that:
(I) Axial symmetry. Fields and input parameters are independent of the angular coordinate θ;
(II) Radial displacements. Boundaries displace in the radial direction only;
(III) Fixed centerline. The centerline Λ is fixed in time and defines the axial direction;
(IV) Constant cross-section pressure. The pressure field is independent of the angular and radial coordinates i.e., p = p (s, t);
(V) Axial velocity profile The axial velocity vs, i.e., the velocity component in the axial direction can be decomposed in the form
[image: image]
where vvp is a given velocity profile varying radially only, [image: image] is to be determined.
For the velocity profile vvp, we here choose a normalized annular Poiseuille flow:
[image: image]
This velocity profile is parabolic in r (as for Poiseuille flow in a cylinder) with a logarithmic correction that accounts for the annulus.
In particular, the domain velocity w is assumed independent of the angular coordinate θ. Note that we do not assume other velocity components (than the axial) to necessarily be zero. We emphasize that these assumptions will in general not be satisfied by realistic geometries and flows. Thus, the reduced model defines a model approximation associated with a certain modelling error.
2.5 Reduced Model Equations
Under the assumptions (I–V), the full PVS flow model can be reduced to the following system of time-dependent differential equations: find the cross-section flux [image: image] and the cross-section average pressure [image: image] such that for each centerline Λi (denoting [image: image] and [image: image]):
[image: image]
[image: image]
hold.
[image: image]
Moreover, Ai = Ai (s, t) denotes the cross-section area, while [image: image] is a lumped flow parameter that depends on the domain geometry and the choice of velocity profile vvp:
[image: image]
and where [image: image] is the velocity profile integrated over each cross-section:
[image: image]
We also define the (one-dimensional) normal stress induced by [image: image] and [image: image]:
[image: image]
which corresponds to an average of the axial (s-)component of the normal stress in (2) over each cross-section
At the bifurcation points [image: image], we impose the following two conditions representing conservation of flux and continuity of normal stress, respectively:
[image: image]
[image: image]
where Λp and [image: image], [image: image] represent the centerlines of the parent and two daughter branches, respectively, associated with the bifurcation point b and s⋅ = ι⋅(b) where ι⋅ denotes the map from three-dimensional bifurcation point to the one-dimensional centerline coordinate for each branch Ω⋅.
System (6) defines a set of equations for each branch centerline Λi and is closed by the bifurcation conditions (11, 12), together with boundary conditions at the PVS inlet and outlets, as well as initial conditions for the cross-section flux. Specifically, in place of the traction condition (2), we prescribe the corresponding pressure difference for the (average) normal stress [image: image] cf. (10). In this manner, the (one-dimensional) solutions [image: image] and [image: image] of the reduced model (6) define approximations of the (three-dimensional) axial flux and pressure solving (1) integrated or averaged over each cross-section:
[image: image]
The factor r originates from integrating in cylindrical coordinates. We note that the wall velocity w, which defines a boundary condition for the full PVS model (1), enters as a body force in the reduced model (6).
2.6 Numerical Solution and Software
We solve the full PVS (1) via a previously developed and verified arbitrary Lagrangian-Eulerian (ALE) formulation and finite element discretization [18]. This solver builds on the standard FEniCS finite element software suite [39], and is openly available [40].
To compute numerical solutions to the reduced model (6), we consider a first-order implicit Euler scheme in time and a higher-order finite element method in space. The finite element mesh [image: image] of the centerline Λ is composed of mesh segments [image: image], one for each centerline branch Λi. Each mesh segment is a mesh consisting of intervals embedded in [image: image]. We label the set of bifurcation points [image: image], inlet points [image: image] and outlet points [image: image], and define the following finite element spaces:
• The flux space Vh is the space of continuous piecewise quadratics over [image: image] for each i.
• The (average) pressure space Qh is the space of continuous piecewise linears on [image: image].
• The Lagrange multiplier space [image: image] where B is the number of bifurcation points.
The flux is thus solved on each mesh segment representing the PVS network branches and may be discontinuous across bifurcations. We impose the flux conservation condition (11) weakly using a Lagrange multiplier formulation. The pressure is solved on the whole mesh and is continuous at bifurcations by construction.
For each discrete time tk, given [image: image] at the previous time tk−1 and time step Δt = tk − tk−1, we solve for the approximate cross-section flux [image: image], average pressure [image: image] and a Lagrange multiplier [corresponding to the normal stress (10) at the bifurcation points] [image: image] solving
[image: image]
for all finite element test functions ψ ∈ Vh, ϕ ∈ Qh, and ξ ∈ Rh. The left-hand side bilinear form a is defined by:
[image: image]
where λb (or ξb) is simply the entry of the vector λ (or ξ) corresponding to bifurcation point b, and we define the natural jump:
[image: image]
The right-hand side linear form L is:
[image: image]
where the superscript iI (iO) in the inlet (outlet) terms above refers to the unique centerline branch associated with the inlet (outlet) points.
The numerical solver for the reduced model was implemented in the well-established FEniCS Project finite element software [39]. The solver, and in particular the definition of the partially continuous flux space, builds on mixed-domain features [41] and relies on the latest development version of FEniCS. All data and source code are available via Zenodo [42].
2.7 Overview of Computational Models, Output Functionals and Model Error Measures
An overview of the six computational models considered is given in Table 2. Each model is labeled with reference to its domain (A, B, or C) followed by a number indicating the driving forces included: (1) a given pressure drop, (2) wall movement due to cardiac pulsations and (3) wall movement due to vasomotion. For each model, we consider the full three-dimensional version as well as the reduced model.
TABLE 2 | Overview of computational models parameterized by domain, prescribed pressure gradient [image: image] and wall motion pattern (see Methods).
[image: Table 2]To compare the solutions from the full and reduced models, we consider the following quantities of interest. For each domain, we define a set of cross-sections as follows. For domain A, we define the left-most end as the inlet (s = 0) and define an upper cross-section. For domain B, we consider the inlet and outlet ends of the PVS, as well as upper and lower cross-sections. For domain C, we consider the inlet at s = 0, and the two outlets, as well as three additional cross sections near the inlet, on the largest daughter branch relatively close to the bifurcation, and near the outlet of the other daughter branch.
We then compute for each cross section C(s) the averaged pressure [image: image] and the cross-section flux [image: image]:
[image: image]
for a quadrature scheme with points xk and weights wk defined over C and an approximation |C| of the cross-section area. Here nC is the normal vector of the cross-section. The averaging is implemented by using the Frenet frame associated with Λ to map from an annular cylinder in a reference domain onto the cross-section, similar to the implementation of the averaging operator in fenics_ii [43].
With this in hand we define the percentagewise relative model discrepancy Eq(t) in the flux by
[image: image]
and similarly for the pressure Ep. We typically compute this quantity if the flow is driven by a constant pressure gradient. In this case the fluid starts at rests and then quickly develops to stationary, annular Poiseuille flow. We then compute Eq(T) and Ep(T), where T denotes the final time.
For pulsatile flow, we typically compare the percentagewise relative error in peak pressure [image: image] and peak cross-section flow [image: image] at some cross section C (s′, t), where
[image: image]
and [image: image] is similarly defined. Finally, we compare the net fluxes Q of the full and reduced model, where Q associated with the velocity v = v (x, t) can be computed as:
[image: image]
and the corresponding quantity associated with the flux [image: image] by:
[image: image]
where the integration in time is over one period [0, T].
3 RESULTS
The prescribed pressure gradient and the pulsating PVS walls each induce pressure gradients and fluid flow in the different PVS geometries. For each of the models (Table 2), we compare the simulation results from the full PVS (1) defined over the three-dimensional model domains and the reduced system (6) defined over the topologically one-dimensional domains, quantify the discrepancies between the models and the computational costs.
3.1 Reduced Model Exactly Predicts Pressure-Driven Axisymmetric Flow Characteristics
Flow in an axisymmetric annular cylinder of length ℓ driven by a constant pressure difference Δp (Model A1) is described by the analytic expression:
[image: image]
where α is the lumped flow parameter given by (8) and which is constant in time and space in this case. For the velocity profile (5) defined over geometry A (cf. Table 1), α = 7325.3/m2, and μα/ρ = 5105.7/s. Thus, the time-dependency is negligible after only a few milliseconds, and the flow develops near-instantaneously to steady-state Poiseuille flow.
Both the full and reduced models reproduce the exact annular Poiseuille flow characteristics of this case (Figure 2A). The numerical difference between the analytic and computed reduced solutions for the cross-section flux [image: image] and average pressure [image: image] is at machine precision ([image: image] and [image: image]) (T = 1 s). In general, the total error is the sum of the model error and the numerical error associated with the space-time discrete approximation (13). For Model A1, the model error is zero as the model reduction assumptions (I–V) are exactly fulfilled by the geometry and flow pattern. As the total error also vanishes, we note that the numerical error is also negligible for this case.
[image: Figure 2]FIGURE 2 | PVS flux and pressure in an axisymmetric annular cylinder induced by a constant pressure difference or cardiac wall motion (Models A1, A2). (A) Model A1: A constant pressure gradient induces annular Poiseuille flow in both the full axisymmetric model (upper panel) and the reduced model (lower panel): snapshot of steady solution at T = 0.1. (B–E) Model A2: Inner wall pulsations induce bidirectional and oscillatory flow. (B) Snapshot of the full model solutions at peak outflux (t = 0.05). Different cross-sections are marked in green (at the inlet) and blue (in the interior). (C) Pressure (upper panel) and cross-section flux [image: image] (lower panel). (D) Cross-section flux predicted by the full model (dotted line) and the reduced model (solid line) at inlet versus time. (D) As for (C) but at the interior cross-section marked in (B).
3.2 Reduced Model Accurately Captures Axisymmetric PVS Wall Pulsations
Next, we examine the PVS flow and pressure generated by uniform axisymmetric pulsations of the inner PVS wall (Model A2, Figures 2B–E). The inner wall movement changes the inner domain radius R1 in time. The fluid is pushed out at the both ends as the PVS width decreases, and flows back in at both ends as the PVS width returns to baseline. This behaviour is reproduced by both the full (Figure 2B [18]) and reduced models (Figure 2C). We note that the reduced model assumptions (IV, V) do not hold in this scenario as the PVS axial velocity profile is no longer identical to the Poiseuille velocity profile, and the pressure is not perfectly constant on each cross-section. Comparing the full and reduced cross-section fluxes [image: image] and [image: image], we observe however that the two models still agree closely (Figures 2D,E), both at the inlet and at an interior cross-section. Moreover, the time-profile of the reduced and full cross-section flux approximations are very similar (both at the inlet and at the interior cross-section, Table), though with small (Δt s) shifts in time. The peak outfluxes occur at the inlet and outlet; the peak outflux for the full model is 1.53 × 10–3 μm3/s, and 1.47 × 10–3 μm3/s for the reduced model (Figure 2D). The peak pressure occurs in the middle of the domain; the peak pressure for the full model is 0.194 and 0.193 Pa for the reduced model. Using (19) the relative error in the peak cross-section flux at the inlet is [image: image] and in the peak cross-section (average) pressure [image: image]. There is thus a small discrepancy between the two models, as expected by the violation of the reduced model assumptions.
3.3 Radial Geometry Variations Induce Small Model Errors
In contrast to the axisymmetric geometry A, the image-based geometries B and C express angular and axial variations in radius. The inner and outer radii of these geometries vary along the length of the domain (with s) and depend on the angular coordinate θ, with the latter violating model assumption I. To study the resulting model error in isolation, we again examine the pressure-driven flow predicted in full and reduced models but now of geometry B (Model B1, Figure 3). The full numerical approximation of the pressure is nearly constant over each cross-section. On the other hand, the velocity profile varies between cross-sections and with the angular coordinate within each cross-section (Figure 3A). Therefore, we expect a larger model error in the reduced model compared to the previous case(s). At steady state (t = 0.5), the reduced pressure approximation [image: image] varies nearly linearly along the length of the domain as expected, and the reduced flux approximation [image: image] is essentially constant along the centerline with value [image: image]L/s. Computing the corresponding cross-section flux from the full model, we find values ranging from 3.5 × 10–4 to 5.31 × 10–4 μL/s. The relative model discrepancy (18) in the pressure is Ep = 2.6% and for the flux Eq = 12.6%.
[image: Figure 3]FIGURE 3 | In an image-based perivascular segment with varying radii, a pressure difference between inlet and outlet induces a pressure field that is nearly constant on each cross-section, but a velocity field that varies with the radial, angular and axial coordinates. (A) Full pressure and velocity approximations in the domain (left) along with close-up views of the pressure (middle) and velocity magnitude (right) at two cross-sections; (B) Reduced average cross-section pressure (left) and cross-section flux approximations (right).
3.4 Reduced Model is Robust with Respect to Wall Motion Amplitude and Frequency
Cardiac wall motion and vasomotion may drive pulsatile perivascular flow with different flow characteristics. To evaluate the model discrepancy induced by different physiological drivers, we compare the full and reduced models over an image-based PVS segment driven by wall motion induced by the cardiac pulse wave (Model B2) and by vasomotion (Model B3). The cardiac pulse wave induces wall motion at a higher frequency (10 Hz) travelling at a higher wave speed (1000 mm/s), while vasomotion creates pulsations at lower frequencies (0.1 Hz) and at a lower wave speed (0.8 mm/s). Both models include angularly, axially and temporally varying radii, and we expect model assumptions I, IV-V to not hold.
Both pairs of models induce pulsatile bidirectional flow in and out of the PVS segment in synchrony with the pulsating wall (Figure 4, Supplementary Video S1) with peak pressure magnitude in the middle of the segment, and conversely, low velocities in the middle of the domain and higher velocities near the PVS ends. Both model scenarios lead to pressure fields that are nearly constant on each cross-section (Figures 4C, 5), but with angularly varying velocity profiles (Figures 4B, 5).
[image: Figure 4]FIGURE 4 | Cardiac wall motion induces substantial pulsatile pressures and velocities in an image-based perivascular space segment, with the reduced model accurately capturing flow, pressure and transport characteristics. (A) Snapshot of the pressure and velocity at time of peak pressure (t = 0.05 s); (B) Velocity at upper and lower cross-section [zoom of (A)]; (C) Pressure at upper and lower cross-sections [zoom of (A)]; (D) Cross-section flux from reduced model (left) and full model (right); (E) cross-section average pressure from reduced model (left) and full model (right); (F) full and reduced model cross-section fluxes at the lower cross-section over time; (G) full and reduced model pressures at the lower cross-section over time.
[image: Figure 5]FIGURE 5 | Vasomotion induces higher domain deformations but lower wall velocities, pressure differences and cross-section fluxes. (A) Snapshots of the full model pressure and velocity at different time points with cross-section velocities (top). (B) Average pressure (upper panel) and flux (lower panel) for the full and reduced models at upper and lower cross-sections over time. The values at the different cross-sections are slightly shifted in time due to the travelling vasomotion. The pressure model discrepancy dominates the flux differences.
For the cardiac wall motion, the overall cross-section average of the full pressure [image: image] ranges from −0.05 to 0.26 Pa, while the full cross-section flux [image: image] ranges from −1.54 × 10–3 to 1.95 × 10–3 μL/s. The reduced model accurately captures the temporal and spatial characteristics of the full model (Figures 4D–G). For the reduced model, the overall cross-section pressure [image: image] ranges from −0.06 to 0.29 Pa, while the cross-section flux [image: image] is between −1.61 × 10–3 and 2.23 × 10–3 μL/s. Comparing the full and reduced pressure and flux over time at an interior, lower cross-section with axial coordinate s′ (Figures 4B,C), we observe that the reduced model slightly overestimates the peak pressure and flux when compared to the full model (Figures 4F,G). Using (19) at this cross-section we find that the relative error of the peak pressure is [image: image] and the relative error of the peak flux is [image: image]. One shall note that the space discretization of the initial 3D model has a non negligible impact on these relative errors. Indeed, using a finer 3D mesh composed of 333000 tetrahedrons instead of the initial 63000 lowers the relative error of the peak pressure [image: image] to 12.1%. The relative error on peak flux is not significantly impacted but [image: image] was already very small.
For the vasomotion scenario, the domain movement is larger compared to the cardiac wall motion, but the wall velocity is lower (peak wall speed of 0.001 vs. 0.005 mm/s). The resulting peak (in terms of magnitude) cross-section pressure is −0.012 Pa and peak cross-section flux is 9.14 × 10–5 μL/s (Figure 5, Supplementary Video S2). These are one-to-two orders of magnitude lower than for the cardiac wall motion scenario. Comparing the full and reduced models in two interior (upper and lower) cross-sections, we observe that the cross-section pressure [image: image] matches pulsatile behaviour of the average cross-section pressure in the full model [image: image] (Figure 5B) but that the peak amplitude is higher. The largest model differences in pressure at the lower cross-section is at the peak pressure; there the relative difference in peak pressure is [image: image]. The similar observations hold for the flux, but the model discrepancies are lower: the relative difference in peak flux is [image: image]. Moreover, the full and reduced models agree on a pressure phase shift of 0.5s. In agreement with our previous findings, the reduced pressure approximation displays a greater model discrepancy with higher predicted pressure variations in the reduced model (Figure 5B).
3.5 Reduced Model Captures Flow and Transport Characteristics Through Bifurcations
Now, we turn to compare the full and reduced model predictions of physiologically realistic perivascular flow in an image-based PVS surrounding a vascular bifurcation (Model C12). The prescribed pressure difference between inlet and outlets as well as the cardiac wall motion induces pulsatile flow with a net flow component [18] (Figure 6A, Supplementary Video S3). We note that the domain radii vary both angularly and axially, also for the initial domain, and also that the presence of a bifurcation region induces non-Poiseuille/non-Womersley-type velocity profiles. Comparing the full and reduced average pressure and flux at the time of peak velocity (Figures 6F,J), we note that the reduced model captures the qualitative and quantitative flow and pressure characteristics. The bifurcation conditions are satisfied at the bifurcation point b (Figures 6C,G) with a parent branch flux [image: image]L/s and daughter branch fluxes [image: image]L/s and [image: image]L/s. The uneven flux distribution is induced by the smaller average width of one of the daughter vessels. The predicted stress [image: image] is continuous (data not shown).
[image: Figure 6]FIGURE 6 | Flow through a bifurcating PVS (Model C12) (A) Snapshot of pressure and velocity from full model at peak velocity (t = 0.05). (B) Full versus reduced cross-section flux at inlet (in) and outlets (out1 and out2) over time. (C) Snapshot of reduced cross-section pressure at peak velocity. (D) Snapshot of average cross-section pressure at the same time. (E) Pressure at upper, middle and lower cross-sections [zoom of (A)]. (F) Full versus reduced cross-section average pressure at cross-sections. (G) Snapshot of reduced cross-section flux at peak velocity (t = 0.05). (H) Snapshot of cross-section flux from the full model at the same time. (I) Flux at upper, middle and lower cross-sections [zoom of (A)]. (J) Full versus reduced cross-section flux at cross-sections.
The reduced peak cross-section flux (over time) at the inlet is −1.5 × 10−3 μL/s, and 1.2 × 10−3 μL/s and 7.9, ×, 10−4 μL/s at the outlets (Figure 6B).
Comparing the relative difference in peak flux at the inlet and outlets, we note that the discrepancy is largest at larger daughter outlet (sout) with a relative difference [image: image]. Comparing the full and reduced peak pressures at the upper (su), middle (sm) and lower (sl) cross-sections, we find relative differences [image: image], [image: image], and [image: image]. The analogous numbers for the fluxes are [image: image], [image: image], and [image: image]. Thus, the relative differences in peak flux are larger near the bifurcation region (Figures 6F,J).
The net flow is a key quantity of interest for the physiological relevance of perivascular flow and transport. The net flow per cycle in the full model is 3.5 × 10−5, and 2.9 × 10−5 μL for the reduced model, corresponding to a relative difference of 17%.
3.6 Reduced Models Offer Orders of Magnitude Saving in Computational Resources
Accurate direct three-dimensional simulations of pulsatile perivascular fluid flow in large, deforming vascular networks involve a significant computational cost. The expense is dominated by solving large linear systems of equations at each time step. For instance, even the moderate-resolution single-bifurcation model considered here (model C12) includes more than 17 000 vertices, 88 000 mesh cells and 400,000 degrees of freedom. For a small-scale idealized model such as axisymmetric Model A2, the reduced model uses 2.1% of the number of degrees of freedom but approximately the same amount of memory and longer runtime (0.16 vs. 0.35 s per time step, Table 3). However, the one-dimensional models reduce computational cost substantially for the image-based geometries (Table 3). For the image-based perivascular segment (Model B2), the reduced model uses 0.4% of the number of degrees of freedom, 2.0% of the runtime, and 2.1% of the memory of the full model. For the image-based bifurcating PVS (Model C12), the reduced model uses 0.18% of the number of degrees of freedom, 0.6% of the runtime and 2.0% of the memory of the full model. Overall, the reduced model reduces the computational expense, both in terms of computational time and memory, by several orders of magnitude for image-based PVS segments.
TABLE 3 | The geometrically-reduced models reduce computational cost by orders of magnitude.
[image: Table 3]DISCUSSION
We have proposed a new mathematical and numerical framework based on topological and geometrical model reduction for computational modelling and simulation of steady and pulsatile fluid flow in deformable perivascular space networks. The reduced model is defined over a perivascular centerline network and predicts the fluid flux and average pressure in each cross-section of each network branch. By numerically comparing direct three-dimensional simulations of the fluid flow with the reduced model results for a range of physiological scenarios, we find that the reduced model accurately captures the important flow characteristics with cross-section peak pressure discrepancies ranging from 0% to 52% and peak flux discrepancies ranging from 0% to 35%. Our findings indicate that reduced model is robust with respect to physiologically relevant spatial and temporal variations in the vascular radius. Moreover and importantly, the computational cost of the reduced model is several orders of magnitude lower than that of the corresponding full model.
While geometrically-reduced network models of pulsatile blood flow have become a standard computational tool [19, 23, 44], network models of perivascular fluid flow have mainly focused either on quantifying flow resistance [7, 10] or predicting steady flow [45]. In the latter, Tithof et al present the results of a network model of glymphatic flow under different parameters, using resistance models to compute flow in idealized domains. For the open channel flow, they compute the flow therein via Darcy’s law v = −(κA/ν)∇p with permeability
[image: image]
This relationship holds under the assumption of Poiseuille flow in the open, annular channel (for which there is an analytic solution) and corresponds to the permeability required for this solution to satisfy Darcy’s law. For steady-state flow (∂tv = ∂ssv = 0) driven by a constant pressure difference, the reduced model (6) simplify to the Darcy flow equation with permeability
[image: image]
In the idealized Model A1 scenario, the two definitions of κ (23, 24) agree, with κ = 1.36 × 10–4 mm2, and thus the models coincide within this regime.
Rey and Sarntinoranont [13] also introduced two hydraulic models to predict fluid flow induced by blood pressure wave pulsations, and in particular net flow and transport. Their models also capture the pulsatile flow generated by the volume changes induced by a pulsating inner boundary, but under other modelling assumptions and without considering bifurcations, and thus differ from the one considered here. However, their peak fluid velocities of the order tens of μm/s is of the same order as the fluid velocities predicted in single branches here (Models A2, B2, B3), as are the pressures on the order of up to 0.3 Pa.
Several different bifurcation conditions have been proposed in the literature. In one-dimensional blood flow models, the most common conditions are conservation of flux combined with continuity of pressure [44, 46]. These conditions may be imposed directly on the pressure and flux solution variables [44], or weakly in the variational formulation [46]. Here, we also enforce conservation of flux, but in place of the strong pressure continuity condition, we weakly impose the continuity of the normal stress. This approach gives a natural setting for Stokes flow and allows for a compatible variational formulation using a Lagrange multiplier space.
In terms of limitations, we here focus on models of perivascular flow and the effect of vascular pulsations on perivascular flow, and not on the full interplay between vascular, perivascular and interstitial flow and deformation, nor on the transfer across the blood-brain barrier or the glial limitans. For healthy arterial and venous regions, in which the blood flow dynamics dominate the perivascular flow and pressure, we expect this one-way (vascular-to-perivascular) coupling to capture the leading order dynamics. Moreover, in light of the expected high resistance of the interstitial space [13, 45, 47, 48], we expect the perivascular-interstitial transfer and interstitial flow to be relatively small under physiological conditions. However, in light of the importance of quantifying and characterizing the different potential pathways, coupled fluid dynamics in vascular, perivascular and interstitial spaces will be considered in subsequent work.
We here consider open (in contrast to porous) domains. This is an appropriate modelling choice for surface perivascular spaces surrounding arteries or veins [6, 8]. For parenchymal perivascular spaces, within the pial-glial interface or within the smooth muscle cell basement membranes [49], however, a porous media representation may be more appropriate. In such a case, the Stokes flow (1) are naturally replaced by a Darcy or Brinkman flow model with an additional permeability κ [50]. The analogous reduced model [corresponding to (6)] would include an additional lower order term for the flux [image: image] weighted by this permeability. For parenchymal and capillary perivascular spaces, we would also expect the coupled interplay between vascular, perivascular and interstitial spaces to be non-negligible.
Surface PVSs may be of different shapes ranging from annular cylinders with no or some ellipticity to fully separated segments [7], or be defined as more irregular expansions of the subarachnoid space [6, 51]. The image-based vascular geometries used here define high-fidelity representations of inner boundaries of human surface PVSs. However, the representation of surrounding PVSs as annular structures is clearly an approximation, and a response to the lack of appropriate three-dimensional data of human surface PVSs. An interesting point in this regard, and an opportunity for further study, is the quantification of the model error introduced by approximating these non-regular structures by elliptic annular cylinders with a fixed centerline. We would expect more irregular geometries to induce larger differences between the full and reduced models, but the relative importance and role of ellipticity and other geometrical irregularities remain undetermined.
Our simulations rely on a high-order discretization in space to ensure stability of the model, combined with a first-order discretization in time. A temporal sensitivity analysis on key output quantities i.e. pressure and cross-section flux showed expected convergence as the time resolution is reduced, and was used to determine the employed time step. The use of a higher-order discretization in time could also be considered. We also note that we have considered simplified (prescribed traction) boundary conditions at the PVS inlet and outlets. Compliance or resistance-based boundary conditions could of course also be considered, e.g., as in previous work [18], or [37]. We have focused on cardiac pulse wave-induced wall motion and vasomotion, two physiological factors that generate changes in vascular radius of up to 15% [31, 38] and only moderate wall velocities. However, the vascular and perivascular diameters may change more dramatically. For instance, Enger et al [52] report of a nearly 40% increase and 50% decrease in arteriole diameter during cortical spreading depression, and intriguingly the vascular and perivascular wall motions may differ between e.g., sleep states [53]. If these changes lead to significantly higher wall velocities than those considered here, we would expect a further breakdown of the reduced model assumptions, specifically assumption V, which in turn would be expected to impact the accuracy of the reduced models.
While many aspects of brain influx and clearance remain enigmatic, perivascular fluid flow along the cerebral vasculature is widely recognized as a key transport mechanism. The computationally inexpensive yet accurate reduced models presented here give an efficient and flexible framework for computational modelling and simulation of pulsatile flow in idealized or realistic networks including complete representations of e.g., the cerebral arteries or veins and many generations of arterioles/capillaries. This framework thus establishes a foundation for future computational studies of perivascular flow to improve our understanding of brain transport.
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The stability of rigidly rotating spiral waves is a very important topic in the study of nonlinear reaction-diffusion media. Computer experiments carried out with a slightly modified Barkley model showed that, in addition to one region of instability observed earlier in the original Barkley model, there is another one exhibiting completely different properties. The wave instability in the second region is not related to the Hopf bifurcation. Moreover, hysteresis effects are observed at the boundary of the region. This means that in the vicinity of this region of instability, direct integration of the model equations leads either to a rigidly rotating or meandering spiral, depending on the initial conditions.

Keywords: excitable media, spiral wave, instability, hysteresis, modified Barkley model


1. INTRODUCTION

Excitable media represent a broad class of non-equilibrium reaction-diffusion systems that play an important role in physical, chemical, and biological applications [1–4]. For example, wave processes in excitable media are intensively studied in various distributed systems, including the colonies of Dictyostelium discoideum [5], the Belousov-Zhabotinsky chemical reaction [6], the heart muscle [7], the eye retina [8], the neocortex [9], CO oxidation on the platinum single crystal surface [10], and many others.

An excitable medium can be viewed as an ensemble of active elements coupled locally by diffusion-like transport processes. Each individual active element has a resting state, resistant to small external perturbations. However, it can be excited by the application of a suprathreshold stimulus or by interacting with their neighbors. Therefore, locally induced excitation can propagate through the medium as a self-sustaining wave. Such a wave represents a rapid transition from a stable resting state to an excited one followed by a slow recovery transition (refractory) back to the resting state. Under normal conditions, the wave back follows the wavefront, and they never touch each other.

However, under some special conditions, the propagating wavefront can be broken [1, 11]. Then the front and the back of the wave propagating in a two-dimensional medium coincide at one point called a phase change point [2]. Near this point, the front and the back are moving in opposite directions and the boundary of the excited region curls around this singularity point. As a result, the broken wave is winding up into a spiral permanently rotating within the medium.

Such self-sustained activity unexpectedly appearing in cardiac or neuronal tissues strongly destroys their dynamics that results in life-threating diseases. In this context, an understanding of possible scenarios of spiral wave dynamics is of great theoretical importance and has many practical applications.

One important aspect of this study is investigation of spiral wave stability. In a homogeneous low excitable two-dimensional medium spiral wave rigidly rotates around a round core. However, under a variation of the medium's parameters this well-ordered dynamics can be destroyed that leads to a transformation of a circular trajectory of the spiral wave tip into the so-called meandering one, e.g., hypotrochoid or epitrochoid [12, 13].

Spiral wave meander has been observed in experiments with chemical solutions [14] and in computations performed with different reaction-diffusion models [15–17]. The investigation of spiral wave instability attracts a great attention from a theoretical point of view [18–21].

In this study we would like to find out domains of the spiral wave meandering within the parameter space of a slightly modified Barkley model of an excitable medium.



2. MODEL

In many studies it was demonstrated that the basic features of the wave dynamics can be reproduced by the two-component reaction-diffusion system

[image: image]

where the variables u and v represent the activator and inhibiter species, respectively. Typically the nullcline F(u, v) = 0 is a non-monotonic function creating possibility for undamped wave propagation. The second nullcline G(u, v) = 0 is monotone and intersects the first one at only one point (u0, v0). Below the functions F(u, v) and G(u, v) are taken in the form proposed by Barkley [22]:
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Note, that in the original Barkley model the value of the parameter kϵ is fixed as kϵ = 1. Three other constants a, b, and ϵ have been used as important control parameters. A variation of each of these three parameters results in a simultaneous influence on such important medium's characteristics as the propagation velocity, pulse duration and refractoriness. In the modified model under consideration the constant kϵ is introduced, which has no influence on the duration of a single pulse and its propagation velocity. However, this parameter allow us to control the recovery process because its characteristic time is determined as the product kϵϵ. Thus the activation and the recovery processes have different time constants, if kϵ≠1. Such a jump in the characteristic time constant is a fairly common and useful tool in simulations of excitable media [12, 23, 24].

In all computations below the parameter D is fixed as D = 1. The Laplacian in Equation (1) was approximated using the five-point finite-difference method on the rectangular 500 × 500 grid with spatial step Δx = Δy = 0.3. After this spatial discretization the model equations are integrated in time with the explicit forward Euler method with time step Δt = 0.01 and no-flux boundary conditions. The spiral wave tip is determined as a point where u = 0.5 and du/dt = 0. A part of an isoconcentration line u(x, y, t) = 0.5 corresponds to the wave front where du/dt>0, and another part, where du/dt < 0, represents the wave back.



3. RESULTS


3.1. Single Domain of Meandering Spiral Waves

As the first step of our study the parameters are fixed as ϵ = 0.01 and kϵ = 2, while the constants a and b are used as important control parameters. The obtained computational results are illustrated in Figures 1, 2.


[image: Figure 1]
FIGURE 1. Parameter space of the modified Barkley model with ϵ = 0.01 and kϵ = 2. Within the SE region wave segments created in two dimensional medium are shrinking. Within the BI region the system (1)–(3) exhibits the bistability. Rotating spiral waves are analyzed between these two regions. Within the white domain spiral waves rotates around a circular core, while they are meandering within the light gray domain. Black spots correspond to parameter values used in Figure 2.



[image: Figure 2]
FIGURE 2. Spiral waves dynamics obtained for the system (1)–(3) with ϵ = 0.01, kϵ = 2 and b = 0.01 for different values of the parameter a. In (A) a = 0.22, in (B) a = 0.4, in (C) a = 0.6, and in (D) a = 0.8. Thick and dotted solids represent the wave front and back, correspondingly. The trajectory of the spiral wave tip is shown in red.


Within the parameter space shown in Figure 1 there is a line

[image: image]

which determines the boundary of the bistability (BI) domain, where b< a−1. Here the nullclines of the system (1)–(3) have two intersections points.

We analyse another part of the parameter space, where b>a−1 and the system has only one rest point. Here he existence of spiral waves is limited by another line, where the radius of the core of the spiral wave becomes infinitely large. In the subexcitable (SE) region above this line, the wave segments formed after a wave break are not able to curl around the created singularity point, but simply shrink and disappear. An analytical expression for this line was obtained earlier [25] and has the form

[image: image]

where Bc = 0.535 is a critical value of the parameter [image: image], as it was shown in [26]. Here du and cp are the duration and the propagation velocity of a single pulse through a one dimensional medium, correspondingly. It can be seen, that the analytical approximation expressed by Equation (4) is in good agreement with the direct reaction-diffusion calculations illustrated by asterisk in Figure 1.

In order to analyse the dynamics of the spiral wave, numerous calculations were performed at various points in the parameter space. A broken plane excitation wave [2] was used as initial conditions. Initially, we fixed a relatively small value of the parameter b. A rigidly rotating spiral wave with a large core was generated near the boundary of the SE region. Then the parameter a increases step by step from one calculation to the next. The size of the core decreases as a increases, and the rotation period decreases. At some computational step, rigid rotation becomes impossible, and a meandering trajectory of the spiral wave tip is observed. This occurs on the left boundary of the light gray region in the Figure 1.

Meandering spirals were observed in the entire light gray region. It is found that in this meandering region the trajectory of the spiral wave tip may look like an epitrochoid (Figure 2A) or a hypotrochoid (Figure 2B). In the white region, to the right of the light gray region and until the BI domain, the tip of the spiral wave moves along a circular trajectory. The radius of this trajectory strongly decreases as a increases.

The computational data shown in Figures 1, 2 look qualitatively similar to ones obtained earlier for the original Barkley model with kϵ = 1 and ϵ = 0.02 [22, 27]. However, the size of the instability domain is considerably smaller in the case under consideration. Note, that while the used value of the parameter ϵ is smaller, the characteristic recovery time determined by the product kϵϵ remains the same.




4. SECOND DOMAIN OF MEANDERING SPIRAL WAVES

In the second part of our study the value of the parameter ϵ is further decreased to ϵ = 0.005 and kϵ is increased to kϵ = 4 in order to conserve the characteristic recovery time. The data obtained in the corresponding computations are shown in Figures 3, 4.


[image: Figure 3]
FIGURE 3. Parameter space of the modified Barkley model with kϵ = 4 and ϵ = 0.005. Within the light gray domain tip trajectories look like epi- or hypo-trohoids, like in Figure 1. Within the dark gray domain the tip trajectories are more complicated and disordered. Within the white domain spiral waves rotates around a circular core. Black spots correspond to parameter values used in Figure 4.
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FIGURE 4. Spiral waves dynamics obtained for the system (1)–(3) with ϵ = 0.005, kϵ = 4, and b = 0.01 for different values of the parameter a. In (A) a = 0.22, in (B) a = 0.4, in (C) a = 0.6, and in (D) a = 0.8. Thick and dotted solids represent the wave front and back, correspondingly. The trajectory of the spiral wave tip is shown in red. In the left lower corner of (D) the trajectory is magnified.


As well as in the previous case, the existence of spiral waves here is limited by the lines defined by Equations (4) and (5). Note that the accuracy of the analytical estimate represented by Equation (5) becomes better as ϵ decreases.

Figure 3 clearly shows that there are two regions of instability in the parameter space. The spiral waves in the light gray region show dynamics very similar to those observed in the light gray region in Figure 1. Here, the trajectories of the spiral wave tips resemble epitrochoids or hypotrochoids, for example (see Figure 4A).

In the dark gray region, the tip trajectories become much more complex and are not as well ordered as shown in Figure 4D. In the parameter region surrounding these two regions, the trajectory of the spiral tip is circular.

Note that the light gray domain in Figure 3 is much smaller than in Figure 1. You can also see that the radius of the circular trajectory of the spiral tip is much smaller for these ϵ and kϵ values, while the values of a and b are the same. This follows from a comparison of Figures 1B,C with Figures 3B,C.



5. HYSTERESIS PHENOMENON

As the next step of our study the value of the parameter ϵ is considerably decreased to ϵ = 0.001 in the numerical computations. Simultaneously the parameter kϵ is increased to kϵ = 20 in order to conserve the characteristic recovery time.

Under these modified values a part of the parameter space shown in Figure 5 looks qualitatively similar to the picture obtained for the original Barkley model as well as for one shown in Figure 1. Within the subexcitable region SE there are no self-sustained spiral waves. Wave segments initiated in this parameter region are shrinking and disappear. Within the rest of the parameter space presented in Figure 5 self-sustained spiral waves have been observed. They are rotating rigidly within the white region, while inside the light gray region they are meandering. Some examples of spiral wave dynamics are shown in Figure 6.


[image: Figure 5]
FIGURE 5. A small part of the parameter space of the modified Barkley model with kϵ = 20 and ϵ = 0.001. The 2D medium does not support self-sustained spiral waves within the SE domain. Within the gray region spiral waves are unstable. Black spots correspond to parameter values used in Figure 6.



[image: Figure 6]
FIGURE 6. Four examples of the trajectories of the spiral wave tip observed within the gray parameter region shown in Figure 5 with b = 0.002 and (A) a = 0.028, (B) a = 0.04, (C) a = 0.06, (D) a = 0.08.


However, this is only a very small part of the entire parameter space investigated at these parameter values. The results obtained in a wider parameter space are shown in Figure 7. The regions of subexcitability (SE) and bistability (BI) are indicated here. Self-sustaining spiral waves are observed between these two regions. Within the narrow white region, the rigid rotation of spiral waves is stable. The transition to meandering spiral motion occurs in a very small light gray region with a≪1 and b≪1, which is almost invisible in Figure 7 but is shown in Figure 5.


[image: Figure 7]
FIGURE 7. Parameter space of the modified Barkley model with kϵ = 20 and ϵ = 0.001. The 2D medium does not support self-sustained spiral waves within the SE domain. Within the dark gray region spiral waves are unstable. Within the white region between these two domains rigidly rotating spirals with a circular core have been observed. Black spots correspond to parameter values used in Figure 8.


In the dark gray region, the trajectories of the spiral tips are very different from those of the hypotrachoids and epitrachoids shown in Figure 6. A step by step increase of the parameter a within the dark gray domain results in a strong transformation of the spiral tip trajectory. Indeed, rigidly rotating spiral describing a perfect circular shown in Figure 8A transforms into a jagged trajectory in Figure 8B. Further increase of a results in increasing of angular loops of the trajectory in Figure 8C and their dynamics becomes more irregular in Figure 8D.


[image: Figure 8]
FIGURE 8. Four examples of the trajectories of the spiral wave tip observed within the gray parameter region shown in Figure 5 with b = 0.01 and (A) a = 0.22, (B) a = 0.4, (C) a = 0.6, (D) a = 0.8.


Moreover, at the boundary of this region a hysteresis effect in the spiral wave dynamics has been observed. This phenomenon is illustrated in Figure 9. Here the trajectories of the spiral wave tip are shown obtained for different values of the parameter a and b = 0.015. The computations have been started at a = 0.31 and result in rigidly rotating spiral shown in Figure 9A. This stationary rotating wave is used as the initial conditions for the next computations performed with a = 0.32 and illustrated in Figure 9B. After a short transient process the spiral wave trajectory approaches the circular shape. However, a jump to a = 0.325 leads to a destabilization of the rigid rotation and appearance of a rather complicated trajectory, shown in Figure 9C. This wave pattern has been used as the initial conditions for the computations in which the parameter a has been returned back to a = 0.32. However, the spiral tip trajectory does not return back to a circular one, as can be seen in Figure 9D. A rigid rotation restores only for a = 0.31. The further decrease of a also results in a circular trajectory. Thus, it is demonstrated that for a = 0.32 the shape of the spiral tip trajectory depends on the initial conditions.


[image: Figure 9]
FIGURE 9. The trajectories of the spiral wave tips obtained numerically for the modified Barkley model with the parameter b fixed as b = 0.015 and varied parameter a. (A) a = 0.31, (B) a = 0.32, (C) a = 0.325, (D) a = 0.32.


The observed hysteresis effect exists not only for b = 0.015, but for all other values of b corresponding to the boundary of the instability domain represented by a dashed-dotted line in Figure 9. In particular for a = 1.0 and b = 0.328, as well as for a = 1.4 and b = 0.51. It has been observed not only by a variation of the parameter a and fixed parameter b, but also by a variation of the parameter b and fixed a.



6. SUMMARY

Thus, the numerical computations performed with a slightly modified Barkley model demonstrate the existence of two quite different parameter regions of spiral wave instability. Within a region located near the SE domain a transition from rigid rotation to spiral meandering follows a well known scenario. Here the instability is induced by the Hopf bifurcation that results in a hypotrachoidal or epitrachoidal trajectory of the spiral wave tip.

The spiral tip trajectories look more complex in the new found region (see Figure 4). The smooth circular trajectory transforms here into a jagged one and even becomes randomized (see Figure 8). This resembles a transition to hypermeandering spiral dynamics reported for the FitzHugh-Nagumo model [13], but is very unusual for the well studied Barkley model. The observed instability cannot be explained by the Hopf bifurcation as was done for the original Barkley model.

At the boundary of this new found instability region the hysteresis phenomenon was detected (see Figure 9). Note, that the similar hysteresis phenomenon was recently observed in the context of the Barkley model within the bistability region [25]. Moreover, a hysteresis phenomenon has been described in context of the FitzHugh-Nagumo model [28, 29].

Thus, the results obtained are quite general and applicable to quite different reaction-diffusion models, which should stimulate further research in this area.
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Short-term synaptic plasticity is found in many areas of the central nervous system. In the inhibitory half-center central pattern generators involved in locomotion, synaptic depression is believed to act as a burst termination mechanism, allowing networks to generate anti-phase bursting patterns of varying periods. To better understand burst generation in these central pattern generators, we study a minimal network of two neurons coupled through depressing synapses. Depending on the strength of the synaptic conductance between the two neurons, this network can produce symmetric n : n anti-phase bursts, where neurons fire n spikes in alternation, with the period of such solutions increasing with the strength of the synaptic conductance. Relying on the timescale disparity in the model, we reduce the eight-dimensional network equations to a fully-explicit scalar Poincaré burst map. This map tracks the state of synaptic depression from one burst to the next and captures the complex bursting dynamics of the network. Fixed points of this map are associated with stable burst solutions of the full network model, and are created through fold bifurcations of maps. We derive conditions that predict the bifurcations between n : n and (n + 1) : (n + 1) solutions, producing a full bifurcation diagram of the burst cycle period. Predictions of the Poincaré map fit excellently with numerical simulations of the full network model and allow the study of parameter sensitivity for rhythm generation.

Keywords: Poincaré map, neuronal bursting, dynamical system (DS), synaptic depression, central pattern generator


1. INTRODUCTION

Short-term synaptic plasticity may have a role in burst activity in central pattern generators (CPGs). Short-term synaptic depression is commonly found in neuronal networks involved in the generation of rhythmic movements, such as in the pyloric CPG of the spiny lobster [1, 2], or in the lumbosacral cord of the chick embryo [3]. Synaptic depression modulates the strength of synapses in response to changes to the presynaptic firing frequency. At a high neuronal firing frequency, depression weakens the strength of synapses and therefore reduces the magnitude of the postsynaptic response. At low firing frequency, it allows sufficient time for the synapse to recover from depression between spikes, leading to a stronger postsynaptic response. In reciprocal networks, synaptic depression has been shown to act as a “switch,” giving rise to a wide range of network dynamics such as synchronous and multi-stable rhythms, as well as fine tuning the frequency of network oscillations [4–6].

Brown [7] pioneered the idea that synaptic depression acts as a burst termination mechanism in CPGs composed of reciprocally inhibitory neurons and involved in rhythm generation of locomotion. When one side is firing during a burst the other, antagonistic side, is prevented from firing by synaptic inhibition. However, the weakening of inhibition as a result of synaptic depression eventually releases the antagonistic side so that it starts firing, terminating the burst on the side that had originally been firing. This rhythmogenesis hypothesis has been considered one of a handful of standard mechanisms for generating locomotion rhythms in vertebrates [8–10]. It has been proposed as an explanation of the antiphase burst rhythm in struggling in Xenopus tadpoles [11].

Bose and Booth [6] investigated burst generation in a generic half-center CPG that consists of two identical, tonically active Morris-Lecar [12] neurons coupled through inhibitory depressing synapses. Numerical simulations showed that when the reciprocal synaptic conductance between the two neurons is varied, the network produces symmetric n : n anti-phase bursts, with stronger synaptic coupling leading to longer bursts. They used methods from geometric singular perturbation theory to separate the timescales of the fast membrane, and the slow synaptic dynamics of the network to derive one-dimensional conditions necessary for the existence of stable n : n solutions (for n ≤ 2). According to these conditions the type of firing pattern largely depends on the slow depression dynamics of the synapses between the two neurons, and can therefore be predicted by knowing the strengths of the synaptic conductances of the two synapses. Thus, the scalar conditions derived in Bose and Booth [6] provide a method to numerically identify the type of stable n : n pattern for any given value of the coupling strength and n ≤ 2. However, they do not predict the exact period of such solutions. Furthermore, while they provide good arguments for the validity of their reduction assumptions and the resulting scalar conditions, they do not verify them numerically.

Here we extend the previous analysis by providing a Poincaré map of the slow depression dynamics. This allows us not only to predict the types of stable n : n solutions the full network can produce, (for any n), but also to study how varying the coupling strength affects the period of such solutions. To do this, we build on, and numerically test, the assumptions on the fast-slow timescale disparity made in Bose and Booth [6]. We reduce the two-cell model to a scalar Poincaré map that tracks the evolution of the depression from the beginning of one burst to the beginning of the next burst. Stable fixed points of our map are associated with stable n : n burst solutions. Our map construction is motivated by the burst length map of a T-type calcium current, utilized by Matveev et al. [13], which approximates the anti-phase bursting dynamics of a network of two coupled Morris-Lecar neurons. In contrast to our model, the network described in the Matveev et al. [13] paper does not contain short-term synaptic depression, and burst termination is instead accomplished through the dynamics of a slow T-type calcium current.

The Poincaré map derived here replicates the results from numerical simulations of the full two-cell ODE system: Given the strength of maximum conductance between the two neurons, fixed points of our map predict the type and period of n : n patterns, the switch between burst solutions of different periods, as well as the occurrence of co-existent solutions. In addition to proving the existence and stability of fixed points, our map shows that fixed points are created via a fold bifurcation of maps. Finally, we use our map to derive algebraic conditions that allow us to predict parameter values of the maximum conductance at which n : n solutions bifurcate to (n + 1) : (n + 1) solutions, and vice versa. Because our map is fully explicit, it lays the framework for studying the effects of other model parameters on network dynamics without the need to run expensive numerical integrations of the ODEs.

This paper is organized as follows. First, we introduce the network of two neurons, and describe the properties of single cell and synapse dynamics. We use numerical simulations of the network to provide an intuition for the range of possible burst dynamics the system can produce. Next, we state and justify the simplifying assumptions that are necessary for the map construction. Finally, we analytically derive the first return map of the depression variable as well as the conditions that are required for stable n : n solutions. We end this work with a discussion.



2. MATERIALS AND METHODS

We consider a pair of identical Morris-Lecar neurons [12], with parameters from Bose and Booth [6]. The Morris-Lecar model is a set of two first-order differential equations that describe the membrane dynamics of a spiking neuron. The depolarisation is modeled by an instantaneous calcium current, and the hyperpolarisation by a slow potassium current and a leak current. The membrane potential vi and potassium activation wi of neuron i (i, j = 1, 2) is described by:

[image: image]

[image: image]

Here vs is the inhibitory reversal potential, and [image: image] and sj are the maximal synaptic conductance and the synaptic gating, respectively, constituting the total inhibitory conductance [image: image]sj from neuron j to neuron i. Function f(vi, wi) describes the membrane currents of a single cell:

[image: image]

The currents include a constant current I, and three ionic currents: an instantaneous calcium current, a potassium current, and a leak current, with respective reversal potentials vCa, vK, and vL, as well as maximum conductances gCa, gK, and gL. The function h(vi, wi) models the kinetics of the potassium gating variable wi, and is given by

[image: image]

The steady-state activation functions m∞ and w∞ as well as the default model parameters are described in the Supplementary Material 1.

The dynamics of the synaptic interactions between the neurons are governed by a synaptic gating variable si and a depression variable di:

[image: image]

[image: image]

Variable di describes a firing rate dependent depletion mechanism that governs the amount of depression acting on the synapse. The model is agnostic with respect to the exact mechanism of this depletion, be it pre- or post-synaptic. When the voltage of cell i is above firing threshold (vi > vθ), variable di decays with time constant τb, and recovers with time constant τa when voltage is below firing threshold (vi < vθ). Since the synaptic inhibition occurs on a much faster timescale than synaptic depression, we assume that si is instantaneously reset to di whenever vi increases above vθ, where it remains throughout vi > vθ. Whenever vi < vθ, the synaptic variable decays exponentially with time constant τκ. The equations for the depression model are identical to the Bose and Booth [14] model. These equations are a mathematically tractable simplification of the established phenomenological depression model previously described by Tsodyks and Markram [15].

When the total inhibitory conductance [image: image]sj is constant, the membrane dynamics are determined by the cubic v-nullcline v∞(vi) and the sigmoid w-nullcline w∞(vi), satisfying [image: image] and [image: image]i = 0, respectively. In case of no inhibition ([image: image] = 0), the two curves intersect near the local minimum of v∞ to the left of vθ (commonly referred to as “left knee” of v∞), creating an unstable fixed point pf with a surrounding stable limit cycle of period T = Ta + Ts (Figure 1A). Here Ta is the amount of time the membrane potential spends above firing threshold (vi > vθ), while Ts is the time it spends below firing threshold (vi < vθ). Trajectories along that limit cycle have the familiar shape of the action potential (Figure 1B). Applying a constant nonzero inhibition, e.g., by letting sj = 1 and [image: image] > 0, moves the cubic v∞ with the ensuing unstable fixed point down w∞ in the (vi, wi) -plane. When [image: image] is large enough, the fixed point moves past the left knee and becomes stable via a subcritical Andoronov-Hopf bifurcation, attracting all previously periodic trajectories. In the following section we will refer to the value of the total conductance [image: image]sj at the bifurcation point as gbif.


[image: Figure 1]
FIGURE 1. Periodic solution of ML model neuron. (A) Projection of limit cycle onto (v, w)-phase plane with v-nullcline (blue, v∞) and w-nullcline (orange, w∞). Unstable fixed point pf is indicated by an orange dot; firing threshold vθ is denoted by a dashed line. (B) Corresponding voltage trace v(t) of an action potential.


The two-cell network model is numerically integrated using an adaptive step-size integrator for stiff differential equations implemented with XPPAUT [16] and controlled through the Python packages SciPy [17] and PyXPP [18]. The following mathematical analysis is performed on the equations of a single cell. Unless required for clarity, we will therefore omit the subscripts i, j from here on.



3. RESULTS


3.1. Anti-phase Burst Solutions

Short-term synaptic depression of inhibition in a half-center oscillator acts as a burst termination mechanism [7] and is known to produce n : n anti-phase burst solutions of varying period. Such n : n solutions consist of cells firing bursts of n spikes in alternation. Figure 2D shows the timecourse of a typical 4 : 4 burst. While one cell is firing a burst it provides an inhibitory conductance to the other cell, preventing it from firing.


[image: Figure 2]
FIGURE 2. Voltage traces of cell 1 (blue) and cell 2 (orange) of numerically stable solutions. (A–D) 1 : 1, 2 : 2, 3 : 3, and 4 : 4 anti-phase solutions for increasing values of [image: image]. (E) Suppressed solution.


Therefore, at any given moment one cell is spiking while the other is suppressed and does not spike. We will refer to the currently firing cell as “active” and we will call the suppressed cell “silent.” Additionally, we will distinguish between two phases of a n : n solution: We will refer to the time interval when a cell is firing as the “active phase,” and we will call the remaining duration of a cycle, when a cell is not firing, the “silent phase.”

With each action potential of the active cell, short-term depression leads to a decrease of d, and consequently of s. If d depresses faster at spike time than it can recover in the inter-spike-intervals (ISIs), the total synaptic conductance [image: image]s will eventually become sufficiently small to allow for the silent cell to be released [19, 20] and start firing, thus inhibiting the previously active cell. While a cell is silent its depression variable can recover. Once the silent cell becomes active again its synaptic inhibition will be sufficient to terminate the burst of the previously active cell and commence a new cycle. As previously demonstrated by Bose and Booth [6], in a two-cell reciprocally inhibitory network with synaptic depression the coupling strength [image: image] determines the type of n : n solution. Increasing [image: image] produces higher n : n burst solutions with more spikes per burst and a longer cycle period. Figure 2 shows numerically stable n : n solutions for varying values of [image: image]. For small values of [image: image] the network produces anti-phase spiking 1:1 solutions (Figure 2A). As [image: image] is increased the network generates solutions of increasing n, that is 2 : 2 (Figure 2B), 3 : 3 (Figure 2C), and 4 : 4 (Figure 2D). When [image: image] is sufficiently large (Figure 2E), one of the cells continuously spikes at its uncoupled period T while the other cell remains fully suppressed. Depending on the initial conditions either of the two cells can become the suppressed cell, which is why the suppressed solution is numerically bistable.

Branches of numerically stable n : n solutions and their associated limit cycle period for varying values of [image: image] are depicted in Figure 3 (see Supplementary Material 2 for algorithm description). Not only do higher n : n solutions branches require stronger coupling [image: image], but also within n : n branches the period increases with [image: image]. In line with Bose and Booth [6] we find small overlaps between solution branches indicating numerical bistability, for example such as between the 2 : 2 and 3 : 3 solution branches. Branches of higher n : n burst solutions occur on increasingly smaller intervals of [image: image], for instance is the [image: image] interval of the 5 : 5 branch shorter than that of the 4 : 4 branch and so on. The interval between the 5 : 5 branch and the suppressed solution (region between dotted lines in Figure 3) not only contains even higher numerically stable n : n solutions, such as 11 : 11 bursts, but also other non-symmetric n : m solutions as well as irregular, non-periodic solutions. However, the analysis in the following sections will only be concerned with the numerically stable and symmetric n : n solutions.


[image: Figure 3]
FIGURE 3. Numerically computed bifurcation diagram of the cycle period of stable n : n solutions for increasing coupling strength [image: image]. Regions of bistability are indicated by light blue vertical stripes. Dashed lines show the interval between the 5 : 5 and the suppressed solution, where higher period n : n solutions occur on increasingly smaller intervals of [image: image].




3.2. Mathematical Analysis of Two-Cell Network

The goal of the following mathematical analysis is to reduce the complexity of the eight-dimensional system to a more tractable problem. As we will explain, we do this by approximating the full dynamics by a reduced system that describes the evolution of the depression variable d of either of the two cells. We will construct the solution of d in a piecewise manner from one spike to the next, first during the active phase, and then during the silent phase. This construction will require two assumptions about the membrane and synaptic dynamics. The first assumption states that during a burst the active cell fires at its uncoupled period T, which simplifies the construction of the solution of d. The second assumption states that once the inhibitory conductance acting on the silent cell drops below a critical threshold, the cell is immediately released and fires. The second assumption is necessary to predict the release time of the silent cell, which allows us to model the recovery of d during the silent phase. In other words, the second assumption requires that the release of the silent cell from inhibition depends only on the timecourse of the inhibition, and not on the membrane dynamics of the silent cell. The approximate validity of both assumptions can be observed in coupled relaxation-oscillator types of neurons such as the Morris-Lecar model we use, and will be numerically verified below. Both assumptions were first used in Bose and Booth [6] to derive algebraic conditions that guarantee the periodicity of the depression variable for different n : n solutions. However, here we will use these assumptions to construct a Poincaré map of d, which will provide a geometric intuition for the dynamics of the full two-cell network and its dependence on model parameters.

Our first assumption about the model states that the active cell fires at its uncoupled period T, that is, during the active phase of a burst we have ISI = T. Solution profiles in Figure 2 suggest that the ISIs are indeed approximately constant. Numerically computing ISIs for all stable n : n solutions in Figure 3 reveals that ISIs differ by at most 1ms from the intrinsic firing period T ≈ 376 ms. Assuming ISI = T seems reasonable given that inhibition acting on the silent cell decays exponentially on a much shorter timescale τκ than the duration of the ISI. Therefore, once the silent cell is released its trajectory quickly approaches the spiking limit cycle. Naturally the above assumption requires a sufficiently small τκ, and fails when τκ is large. In the Supplementary Material 3 we numerically explore how different values of τκ affect the ISIs of the active cell. Finally, assuming ISI = T allows us to ignore the non-linear membrane dynamics during the active phase, and to construct the evolution of the synaptic variables iteratively from spike to spike.

Our second assumption states that the silent cell is released and spikes as soon as the total inhibitory conductance [image: image]s acting on it drops below some threshold value. We call this critical threshold value the “release conductance,” and define it as the value of [image: image]s at the time when the voltage of the silent cell first crosses the firing threshold vθ, that is when that cell is released and fires its first spike. Recall that when a cell is silent its v- and w-nullclines intersect at a stable fixed point and [image: image]s > gbif. A sufficient condition for the silent cell to be released is therefore [image: image]s < gbif. However, depending on the topology of the stable manifold, the (v, w)-trajectory of the silent cell can escape the stable fixed point and allow the cell to produce a spike for [image: image]s > gbif. In this case the value of the release conductance depends on the type of n : n solution and the coupling strength [image: image]. For any stable n : n solution in Figure 3 we can compute an associated release conductance numerically by recording the value of [image: image]s at the time of the first spike of the silent cell. Such values of the release conductance are shown in Figure 4A, and the graph suggests that as n increases, the value of the release conductance converges to some constant conductance value g⋆ ≈ 0.0068 mS/cm2. Here g⋆ is the value of [image: image]s at the end of a cycle of a suppressed solution, just before the active cell spikes. Using g⋆ as a constant approximation for the release conductance will allow us to formulate a scalar condition that predicts the release time of the silent cell. Moreover, using g⋆ is convenient because its exact value can be derived explicitly, as will be shown in the following section.


[image: Figure 4]
FIGURE 4. Numerically computed values of the release conductance (A) and release delay (B) for various n : n solutions and values [image: image]. The dashed line indicates the analytical approximation of the release conductance by g⋆.


Assuming a constant release conductance for all n : n solutions will naturally introduce some error in the prediction of the release time of the silent cell. We can compute that error for any associated solution in Figure 4A by calculating the time interval between the first spike of the silent cell and the time when [image: image]s first crosses g⋆. We will call this time interval the “release delay.” Figure 4B shows the numerically computed graph of such release delays. For n > 1 the absolute delays are smaller than 2 ms. Therefore, using

[image: image]

as a constant release condition for all n : n solutions allows us to accurately predict the timing of the release of the silent cell. And to simplify the terminology, from now on we will refer to Equation (7) simply as the “release condition.”

In summary: We assume that the release condition is sufficient to predict when the silent cell is released. Due to the symmetry of n : n solutions the release occurs at exactly half the period of the full cycle. The release time therefore uniquely determines the type of n : n solution. Furthermore, computation of the release time does not depend on the membrane nor the synaptic dynamics of the silent cell. Instead, the solution of the synaptic variable s of the active cell is sufficient to predict when [image: image]s = g⋆ is satisfied. Finally, the value of s at each spike time is determined by the evolution of the depression variable d of the active cell. Constructing a solution of d during the active phase of either cell will therefore uniquely determine the solution of the full eight-dimensional network. However, finding the solution d requires us to know the initial value d(0) at the start of a cycle at t = 0. In the next section we will construct a scalar return map that tracks these initial values d(0) from cycle to cycle of stable n : n solutions.



3.3. Construction of the Scalar Poincaré Map

In this section we construct the scalar Poincaré map [image: image]. Here the discrete variable d⋆ tracks the values of the continuous depression variable d at the beginning of each n : n burst. The map Πn therefore describes the evolution of d, of either of the two cells, from the beginning of one cycle to the beginning of the next cycle. To simplify the map construction we will assume that an active cell fires exactly n times before it becomes silent. We will construct Πn by evolving d first during the active phase and then during the silent phase of the n : n limit cycle. The terms “active” and “silent” phases will be defined in terms of the state of the depression variable. During the active phase the depression variable of the active cell both decays and recovers, while during the silent phase it only recovers. First, let us give explicit definitions of the active and silent phases of a burst. A schematic illustration of both phases is given in Figure 5.


[image: Figure 5]
FIGURE 5. Schematic diagram of the active and silent phases for a 3 : 3 solution. (A) Membrane potentials of cell 1 (v1 blue) and cell 2 (v2 orange). Gray patches depict Δt intervals. (B) Total synaptic conductance of cell 1 ([image: image]s1) as it crosses the release conductance g⋆. (C) Solution d1(t) of depression variable of cell 1, during active (blue) and silent phases (orange).


Suppose that at t = 0 cell 1 becomes active with some initial d(0). Cell 1 then fires n spikes at the uncoupled period T = Ta + Ts. Let s(t) and d(t) be the corresponding solutions of the synaptic and depression variables of cell 1. After n spikes the total conductance [image: image]s(t) acting on the silent cell 2 has decayed sufficiently to satisfy the release condition (Equation 7). That is at some time t = (n − 1)T + Ta + Δt, where Δt < Ts will be determined below, we have [image: image]s(t) = g⋆ [6]. Cell 2 is then released and prevents cell 1 from further spiking. Once released, cell 2 also fires n spikes until cell 1 becomes active once again. Let Pn denote the full cycle period of a n : n solution:

[image: image]

We can now define the active and silent phases of cell 1 explicitly. The active phase of a burst is the interval that lasts from the first spike time up until the beginning of the silent phase of the last spike, that is for time 0 < t < (n − 1)T + Ta. During the active phase of cell 1, the silent cell 2 is inhibited sufficiently strong to prevent it from firing, hence [image: image]s > g⋆. The silent phase of cell 1 is the remaining duration of the cycle when the cell is not firing, that is for (n − 1)T + Ta < t < Pn. The silent phase lasts for (n − 1)T + Ta + 2Δt.

Note that only the silent phase depends on Δt, which will play a central role in the construction of Πn. From Equation (8) Δt can be computed as

[image: image]

We can use Equation (9) and the numerically computed bifurcation diagram of the period for stable n : n solutions in Figure 3 to obtain the graph of Δt as a function of [image: image] (Figure 6). Each continuous branch of Δt is monotonically increasing and corresponds to a n : n burst: Stronger coupling [image: image] increases the total synaptic conductance [image: image]s that acts on the silent cell, thus delaying its release. It is easy to see that for any n-branch we have Δt < Ts: Once Δt crosses Ts, the active cell can “squeeze in" an additional spike and the solutions bifurcate into a (n + 1) : (n + 1) burst.


[image: Figure 6]
FIGURE 6. Numerically computed bifurcation diagram of Δt for varying [image: image]. Each continuous branch is associated with a stable n : n burst solution. Increasing [image: image] increases Δt until the solutions bifurcate at Δt ≈ Ts.


Distinguishing between the active and silent phases of a n : n cycle allows us to describe the dynamics of the depression variable d explicitly for each phase. As can be seen from Figure 5C, during the active phase d depresses when v > vθ and recovers when v < vθ. In contrast, during the silent phase d only recovers and does not depress. Given the initial d⋆ = d(0) at the beginning of the cycle and the number of spikes in the active phase n, we can now construct the burst map Πn. The map

[image: image]

is a composition of two maps. Map

[image: image]

models the evolution of d in the active phase. Fn takes an initial value d⋆ and calculates Δt. Map

[image: image]

models the recovery of d in the silent phase. Given some Δt map Qn computes d⋆ at the start of the next cycle.

Our aim in the following analysis is to elucidate the properties of Πn and to understand the structure of its parameter space by exploring how the stable and unstable fixed points of Πn are created. To that effect it will be useful to include not only positive, but also negative values of d⋆ to the domain of Πn. But it is important to add that values d⋆ < 0 are biologically impossible as the depression variable models a finite pool of neurotransmitters, and therefore must be positive. Because Πn maps first from d⋆ to Δt, and then back to d⋆, we will also consider negative values of Δt, interpreting them as n : n solutions with partially overlapping bursts. As will become evident, Δt < 0 is only a formal violation of the biological realism of the map Πn, as numerically stable n : n solutions of the full system of ODEs only exist for Δt > 0.

We start the construction of Πn by first considering the active phase and building the map Fn. At each spike time tk where d(tk) = dk, variable d decays first for the duration of Ta, as described by the solution to Equation (5). At t = tk + Ta we have

[image: image]

The depression variable then recovers for Ts until tk+1, where for 0 < t < Ts:

[image: image]

By substituting t = Ts we can build a linear map that models the depression of d from spike time tk to the subsequent spike time tk+1 during the active phase:

[image: image]

where to keep the notation simple we let

[image: image]

[image: image]

Given constant Ta and Ts, the derived parameter λ determines how much the synapses depresses when v > vθ, while ρ determines how much it recovers when v < vθ. Since 0 < λ, ρ < 1, the map in Equation (15) is increasing and contracting, with a fixed point at

[image: image]

where 0 < ds < 1. The value ds is the maximum depression value that can be observed in the suppressed solution where the active cell fires at its uncoupled period T (see Figure 2E). Using the release condition in Equation (7) allows us to derive the value of the minimum coupling strength that will produce the full suppressed solution, denoted as [image: image]s. Solving Equation (7) for s(t) with t = Ts and setting the initial value s(0) = dsλ then gives us the aforementioned approximation of the release conductance g⋆:

[image: image]

By substituting the definition of ds in Equation (18) and rearranging, we can also write [image: image]s as a function of λ and ρ:

[image: image]

Note that the above dependence of [image: image]s on λ is linear and monotonically decreasing. Increasing λ reduces the strength of the depression of the active cell. This in turn allows the active cell to fully suppress the silent cell at smaller values of [image: image].

Solving Equation (15) gives us the linear map δn, that for some initial d⋆ computes the depression at the nth spike time, that is d(tn):

[image: image]

Since λ < 1, function δn is a linearly increasing function of d⋆ with a fixed point at ds for all n. Having identified d after n spikes, we can now use the release condition [image: image]s = g⋆ (Equation 7) to find Δt. At the last (nth) spike of the active phase at time tn = (n − 1)T the synapse variable s is set to the respective value of [image: image], and mirrors the value of d for the duration of Ta. At the end of the active phase at time tn + Ta variable d has decayed to [image: image], therefore

[image: image]

Finally s decays exponentially for Δt < Ts. Solving (Equation 6) with initial condition [image: image] yields:

[image: image]

Substituting s(Δt) into s of the release condition (Equation 7) gives then

[image: image]

Our assumption of the release condition guarantees that the silent cell 2 spikes and becomes active when [image: image]s − g⋆ crosses zero. Solving (Equation 24) for Δt allows us to compute Δt as a function of d⋆, which defines the map Fn:

[image: image]

Figure 7A shows Fn for various n, which is a strict monotonically increasing function of d⋆ as well as [image: image]. Larger values of d⋆ and [image: image], respectively, cause stronger inhibition of the silent cell, and therefore prolong its release time and the associated Δt. Map Fn is defined on [image: image], where da is a vertical asymptote found by solving [image: image] in Equation (21) for d⋆, which yields

[image: image]

We now turn to the construction of map Qn, which describes the recovery of the depression variable during the silent phase. As we have identified earlier, the recovery of d in the silent phase of a n : n solution starts at time tn + Ta and lasts for the duration of (n − 1)T + Ta + 2Δt. Substituting that duration into the solution of d (Equation 5) with the initial condition [image: image] yields the map Qn:

[image: image]

We can find [image: image], i.e., the value of d at the nth spike time, by rearranging the release condition in Equation (24):

[image: image]

Map Qn is shown in Figure 7B for various values n. Note that Qn is monotonically increasing as larger values Δt imply a longer recovery time, and hence Qn grows without bound. All curves Qn intersect at some [image: image] where

[image: image]

As we will show in the next section, all fixed points of the full map Πn occur for d⋆ < 1. We will therefore restrict the domain of Qn to [image: image] and the codomain to (−∞, 1). Additionally, while values Δt > T will be helpful in exploring the geometry of Πn, recall from Figure 6 that in the flow system n : n solutions bifurcate into (n + 1) : (n + 1) solutions exactly when Δt = Ts, and we will address this concern in the last part of our map analysis.


[image: Figure 7]
FIGURE 7. Maps Fn (A) and Qn (B) for [image: image] = 0.5 mS/cm2 and n = 1, 2, 3, 4. Curves Fn intersect at [image: image] which is indicated by a dashed vertical line. Curves Qn intersect at [image: image].


Having found Fn and Qn, we can now construct the full map [image: image]:

[image: image]

where we substituted τ = 2τk/τa. Recall that [image: image] and g⋆ are obtained from Equations (21) and (19), respectively. Since d is the slowest variable of the system and τa ≫ τκ, we will also assume τ < 1. Figure 8A depicts Πn for various n. Intersections of Πn with the diagonal are fixed points of the map. Figure 8B shows Π2 with n = 2. Varying the synaptic strength [image: image] moves the curves Πn up and down the [image: image]-plane. For [image: image] < 0.0015 mS/cm2 map Π2 has no fixed points. As [image: image] is increased to [image: image] ≈ 0.0015 mS/cm2, curve Π2 coalesces with the diagonal tangentially. When [image: image] > 0.0015 mS/cm2, a pair of fixed points emerge, one stable and one unstable fixed point, indicating the occurrence of a fold bifurcation of maps.


[image: Figure 8]
FIGURE 8. Map [image: image]. (A) Πn for n = 1, 2, 3, 4 at [image: image] = 0.5 mS/cm2. (B) Π2 with n = 2 for various [image: image]. The identity function is illustrated by a diagonal line.


Πn is monotonically increasing with respect to [image: image] and also d⋆:

[image: image]

[image: image]

The monotonicity of Πn w.r.t. [image: image] is evident from Equation (30), while the monotonicity w.r.t. d⋆ follows from the monotonicity of both Qn and Fn. In the following sections we will heavily rely on this monotonicity property of Πn. Just as Fn, curves Πn spawn at the asymptote da (Equation 26), and because

[image: image]

fixed points of Πn lie in (da, 1).



3.4. Existence and Stability of Fixed Points

We introduce the fixed point notation [image: image] with [image: image]. The existence of fixed points [image: image] for [image: image] sufficiently large can be shown from the strict monotonicity of Πn with respect to [image: image] and d⋆ (Equations 32, 31), as well as the fact that the slope of Πn is monotonically decreasing,

[image: image]

In the limit [image: image] the value of Πn decreases without bound for any [image: image] > 0. In the limit [image: image] → 0, Πn also decreases without bound, but as [image: image] → ∞ values of Πn approach 1. It follows from Equation (31) and the intermediate value theorem that for some [image: image] large enough Πn intersects the diagonal. Moreover, because Πn and its slope are monotonic with respect to d⋆, there exists some critical fixed point [image: image] where Πn aligns with the diagonal tangentially with

[image: image]

[image: image]
 

3.5. Fold Bifurcations of Maps

Fixed points of Πn satisfy the fixed point equation

[image: image]

As we have already shown, for [image: image] > [image: image]b(n) solutions to Equation (37) exist in pairs of stable and unstable fixed points. Solving (Equation 37) explicitly for d⋆ is not trivial, but solving for [image: image] is straightforward and given by [image: image], where

[image: image]

is defined for d⋆ < 1 and [image: image]. Plotting d⋆ against [image: image] gives the fixed point curves, which are shown in Figure 9A. Note the typical quadratic shape of a fold bifurcation of maps. It is also evident that the fold bifurcations occur for increasingly smaller [image: image] as n is increased. Moreover, the graph suggests that for n > 1 unstable fixed points have negative values of d⋆.


[image: Figure 9]
FIGURE 9. (A) Fold bifurcation diagrams of stable (continuous curves) and unstable (dotted curves) fixed points of Πn for varying n. (B) Cycle periods computed from stable fixed points of Πn (blue), and the corresponding periods from stable n : n solutions acquired via numerical integration of the system of ODEs (orange).


Equation (38) also allows us to find the critical fixed point connected with the fold bifurcation, namely [image: image], which is the global minimum of [image: image]:

[image: image]

[image: image]

Function Gn is strictly monotonic on the respective intervals of [image: image] that correspond to the stable and unstable fixed points, that is

[image: image]

[image: image]

which allows us to express the stable and unstable fixed points as the inverse of Gn on their respective intervals of [image: image]. Because we are primarily interested in the stable fixed points [image: image], we define the stable fixed point function [image: image] as

[image: image]

Function ϕn([image: image]) is also monotonic, and is therefore straightforward to compute numerically. We use the Python package Pynverse [21] for that purpose.

Having found the stable fixed points [image: image] as a function of [image: image], we can now compute the associated cycle period. Recall that the period is given by Equation (8), which can be written as a function of [image: image]:

[image: image]

where map Fn (Equation 25) calculates Δt given a stable fixed point [image: image]. Figure 9B shows the period Pn([image: image]) computed from Equation (44) versus the cycle period of stable n : n solutions, computed from numerically integrating the full system of ODEs. The overlap between blue and orange curves suggests that stable fixed points of Πn accurately predict the cycle period of stable solutions of the flow system.

It is evident from Figure 9A that ϕn is strictly increasing with [image: image]. This property follows directly from the quadratic normal form of the fold bifurcation, but can also be shown using implicit differentiation and the fixed point equation Φn[ϕn([image: image]), [image: image]] = 0 in Equation (37). For [image: image] we get:

[image: image]

The inequality follows from ∂Πn/∂[image: image] > 0 and the fact that [image: image] for [image: image]. Equation (45) allows us to explain why the period Pn increases with [image: image], as seen in Figure 9B. Differentiating Pn gives:

[image: image]

where the partial derivatives of [image: image] are:

[image: image]

[image: image]

Equation (46) and (47) have an intuitive biological interpretation: Increasing the coupling strength between the neurons leads to overall stronger inhibition of the silent cell, which delays its release and leads to a longer cycle period. The latter allows more time for the synapse to depress in the active phase and recover in the silent phase, resulting in overall larger values of [image: image], that is weaker depression at the burst onset.

While fixed points of our Poincaré map predict the cycle period of the flow system excellently, its construction relies on the strong assumption that the active phase contains exactly n spikes. As is evident from Figure 9B this assumption is clearly violated in the flow system, as stable n : n bursts exists only on certain parameter intervals of [image: image]. The multi-stability of fixed points of maps Πn in Figure 9B does therefore not imply a similar multi-stability of the flow system. In the last sub-section we will analyze the mechanisms that guide how the stable n : n are created and destroyed, and use our previous analysis to derive the corresponding parameter intervals of [image: image] where such solutions exist.



3.6. Stable Solution Branch Borders

Let [image: image] and [image: image] denote the left and right parameter borders on [image: image] where stable n : n solutions exist. That is, as [image: image] is increased stable n : n solutions are created at [image: image] and destroyed at [image: image]. When [image: image] is reduced beyond [image: image], n : n solutions bifurcate into (n − 1) : (n − 1) solutions, while when [image: image] is increased beyond [image: image], n : n solutions bifurcate into (n + 1) : (n + 1) solutions. Let us briefly recap our observations regarding [image: image] and [image: image] from the numerical bifurcation diagram in Figure 9B. For n > 1 there are the following relations:

[image: image]
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Equations (49, 50) are self-explanatory. Equation (51) formally describes occurrence of co-existence between stable n : n and (n + 1) : (n + 1) solutions. Equation (52) implies that the parameter interval on [image: image] of n : n solutions decreases with n, in other words, bursts with more spikes occur on increasingly smaller intervals of the coupling strength. All of the above relations are reminiscent of the bifurcation scenario of type period increment with co-existent attractors, first described for piecewise-linear scalar maps with a single discontinuity by Avrutin and colleagues [e.g., see 22–24]. While our maps Πn are fully continuous, the above observation suggests that a different piecewise-linear scalar map that captures such period increment dynamics of the full system might exist. We will explore what such a map might look like in the discussion.

Let us now find algebraic equations that will allow us to calculate the critical parameters [image: image] and [image: image] associated with the left and right n : n branch borders. Recall that the period Pn derived from the fixed points of Πn is an increasing function of [image: image] (Equation 46). That is, as the coupling strength increases, it takes longer for the total synaptic conductance to fall below the value of the release conductance, which delays the release of the silent cell, and Δt becomes larger. When Δt > Ts, the active cell can produce another spike and the solution bifurcates into a (n + 1) : (n + 1) solution. Note, however, that at [image: image] the bifurcation into a (n − 1) : (n − 1) does not occur at Δt = 0. Here the mechanism is different: A sufficient reduction of [image: image] causes the total synaptic conductance to drop below the release conductance in the previous ISI, which allows the silent cell to be released one spike earlier.

Using the above reasoning we can now formulate the conditions for both bifurcations at [image: image] and [image: image]. As in the previous sections, we will only restrict ourselves to the analysis of the stable fixed points given implicitly by [image: image] (Equation 43). At the right bifurcation border [image: image] we have Δt = Ts, and after substituting our Fn map (Equation 25) this translates into

[image: image]

which lets us define a function

[image: image]

whose root is the desired right bifurcation border [image: image]. In case of the left bifurcation border at [image: image], the release condition is satisfied just before the active cell has produced its nth spike, where total synaptic conductance is given by

[image: image]

which can be rewritten as a function

[image: image]

whose root is [image: image]. Both [image: image] and [image: image] are increasing with respect to [image: image], which makes finding their roots numerically straightforward.

Figure 10 shows the period Pn([image: image]) as predicted by the fixed points of Πn (Equation 44) plotted on their respective intervals [image: image] (blue), as well as the cycle period acquired from numerical integration of the full system of ODEs (orange). Here [image: image] and [image: image] were computed from Equations (56) and (54), respectively. Note that the width of n : n branches decreases with n, which confirms the inequality in Equation (52). That is, bursts with more spikes occur on increasingly smaller intervals of [image: image], which can be interpreted as a lost of robustness with respect to the coupling strength of long-cyclic solutions. We also note the occurrence of bistability between pairs of n : n and (n + 1) : (n + 1) branches, which also confirms our initial observation in Equation (51). As previously observed in Figure 9B our maps prediction of the cycle period is accurate. However, the mismatch in the left and right branch borders is significant. This mismatch might be due to the millisecond release delay error (Figure 4B) induced by our assumption of a constant release conductance for all n : n solutions (see Equation 7). Another explanation for the border mismatch could be that our assumptions on the time scales of (v, w) vs s- and d-dynamics do not hold near the stability borders, and that they can only be captured by more complex approximations. Nevertheless, our map allows approximate extrapolation of the cycle period and the respective bifurcation borders where numerical integration of the ODEs would require a very small time step.


[image: Figure 10]
FIGURE 10. Bifurcation diagram of the period of stable n : n solutions computed analytically from fixed points of Πn, plotted on the respective intervals of [image: image] (blue), and computed from numerical integrations of the ODEs (orange).





4. DISCUSSION

Synaptic depression of inhibition is believed to play an important role in the generation of rhythmic activity involved in many motor rhythms such as in leech swimming [25] and leech heart beat [26], and in the lobster pyloric system [1, 2]. In inhibitory half-center CPGs, such as believed to be found in the struggling network of Xenopus tapdoles, synaptic depression can act as a burst termination mechanism, enabling the alternation of bursting between the two sides of the CPG [11]. Modeling can shed light on the underlying mathematical principles that enable the generation of such anti-phase bursts, and help identify the components that control this rhythm allowing it to switch between different patterns.

To study the mechanisms of burst generation in half-center CPGs we have analyzed a neuronal model network that consists of a pair of inhibitory neurons that undergo a frequency dependent synaptic depression. When the strength of synaptic inhibition between the neurons is varied, such a simple network can display a range of different n : n burst patterns. Using the timescale disparity between neuronal and synaptic dynamics, we have reduced the network model of eight ODEs to a scalar first return map Πn of the slow depression variable d. This map Πn is a composition of two maps, Fn and Qn, that model the evolution of the depression during the active and silent phases of n : n solutions respectively. Both Fn and Qn maps are constructed by using the dynamics of a single uncoupled neuron. Fixed points of Πn are created in pairs through a fold bifurcation of maps, where the stable fixed point correspond to stable n : n burst solutions of the full two-cell system of ODEs. The results from our one-dimensional map match excellently with numerical simulation of the full network. Our results are also in line with Brown's [7] rhythmogenesis hypothesis, namely that synaptic depression of inhibition is a mechanism by which anti-phase bursting may arise.

We have studied n : n solutions assuming that the synaptic coupling [image: image] between the two cells is symmetrical. However, Bose and Booth [6] have shown that asymmetrical coupling ([image: image]1, [image: image]2) can result in network solutions of type m : n, where one cell fires m spikes, while the other n spikes. It is conceivable that our map construction can be extended to also capture such m : n solutions. Remember, in the case of symmetrical coupling with n : n solutions, the timecourse of the depression variables d1 and d2 were in anti-phase, and it was therefore sufficient to track only one of the two variables. To capture the full network dynamics in case of asymmetrical coupling one would also have to account for burst patterns of type m : n, where the solutions of the depression variables d1 and d2 are not simply time-shifted versions of each other. To do that, one could track the state of both variables by constructing a two-dimensional Poincaré map Π(d1, d2). While geometrical interpretation of two-dimensional maps remains challenging, there exist a number of recent studies which have employed novel geometrical analysis methods to understand the dynamics of two-dimensional maps of small neuronal networks [27–29]. Generally speaking, our map construction approach is applicable to any small network, even with more than two neurons. As long as the network dynamics occur on separable timescales the main challenges to the map construction lie in identifying the slowest variables, and finding an appropriate, simplified description of their respective timecourses. In theory, the reduction approach can be also applied to neuronal systems with more than two timescales [e.g., see 30].

In tadpoles, struggling is believed to be initiated by an increase in the firing frequency of reciprocally inhibitory commisural interneurons, which has been hypothesized to lead to stronger synaptic depression of inhibition and result in the iconic anti-phase bursting [11]. It would therefore be interesting to study how varying the cell intrinsic firing period T could affect the network rhythm. While we have laid out the framework to perform such an investigation, due to the choice of neural model we have avoided varying T. Recall that T is a derived parameter in the Morris and Lecar [12] model, and can therefore not be varied in isolation of other model parameters. This makes verifying any analytical results from our map analysis via numerical integration of the ODEs difficult. A more abstract model such as the quadratic integrate-and-fire model [31] allows varying T independently of other model parameters, and could be more fitting for such an investigation.

Our simulations of the network showed that n : n solutions lose robustness as their period is increased. That is, solutions with a larger cycle period occur on increasingly smaller intervals of the coupling strength. We were able to replicate this finding by numerically finding the respective left and right borders of stable n : n branches of fixed points of Πn, and showing that the distance between these borders shrinks with n. We have also noted the resemblance of our bifurcation diagram to one where such n : n branches are created via the bifurcation scenario of type period-increment with co-existent attractors, first described for scalar linear maps with a discontinuity [24, 32]. It is worthwhile noting that the bifurcations of piecewise linear maps studied by Avrutin et al. [32] result from a “reinjection” mechanism [33]. Here the orbit of a map performs multiple iterations on one side of the discontinuity, before jumping to the other side and being reinjected back into the initial side of the discontinuity. The stark difference of such a map to our map is that reinjection allows a single scalar map to produce periodic solutions of varying periods. In contrast, we rely on n different maps Πn to describe the burst dynamics without explicitly capturing the period increment dynamics. It is therefore conceivable that despite the complexity and non-linearity of the dynamics of our two-cell network, a single piecewise-linear map might be already sufficient to capture the mechanisms that shape the parameter space of the full system. In their discussion, Bose and Booth [6] briefly outline ideas about how such a linear map could be constructed.

In addition to stable n : n solutions, the numerical continuation by Bose and Booth [6] also revealed branches of unstable n : n solutions. While we have identified fold bifurcations of our burst map, we have not found corresponding bifurcations of the flow ODE system, and have generally ignored the significance of unstable map fixed points. However, the quadratic nature of the period bifurcation curve is reminiscent of a saddle-node on an invariant circle (SNIC) bifurcation, where the oscillation period lengthens and finally becomes infinite as a limit cycle coalesces with a saddle point. SNIC bifurcations have been studied in great detail [e.g., 34], and a next step would be to provide a rigorous explanation of not only the map dynamics, but also of the flow dynamics of the ODE system.

We have shown that when the strength of the maximum synaptic conductance is varied, synaptic depression of inhibition can enable our two-cell network to produce burst solutions of different periods. This result is in line with the idea that one role of synaptic depression in the nervous system may be to allow a finite size neuronal network to participate in different tasks by producing a large number of rhythms [6, 11, 35]. To change from one rhythm to another would only require a reconfiguration of the network through changes in synaptic coupling strength. Thus short-term synaptic depression of inhibition may provide means for a network to adapt to environmental challenges without changing its topology, that is without the introduction or removal of neurons.
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In the published article, there was an error in Figure 10 as published. The analytically derived graph was plotted orange, and the numerically computed graph was plotted blue. In the correct version the analytically computed graph is blue, and the numerically computed graph is orange. The corrected Figure 10 and its caption appear below.
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FIGURE 10
 Bifurcation diagram of the period of stable n:n solutions computed analytically from fixed points of Πn, plotted on the respective intervals of [image: image] (blue), and computed from numerical integrations of the ODEs (orange).


In the published article there is a typo in section 1, paragraph 5, where the singular form “parameter” was used, instead of the correct plural “parameters”. The last sentence of the paragraph previously stated:

“Because our map is fully explicit, it lays the framework for studying the effects of other model parameter on network dynamics without the need to run expensive numerical integrations of the ODEs.”

The corrected sentence appears below:

“Because our map is fully explicit, it lays the framework for studying the effects of other model parameters on network dynamics without the need to run expensive numerical integrations of the ODEs.”

A correction has been made to section 1.

In the original article, Equations 31 and 32 miss the differential in the denominator. A correction has been made to Results, “Construction of the Scalar Poincaré Map,” Equations 31, 32:
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Moreover, in the published article Equation 36 misses the differential symbol in the denominator. A correction has been made to Results, “Existence and Stability of Fixed Points,” Equation 36:

[image: image]

In the published article in Equation 47, the symbol δn in the denominator is written incorrectly, the n should be a subscript. The correct Equation 47 is:

[image: image]

A correction has been made to section 3.5.

In the published article in Equations 41 and 42, the “smaller than” and “greater than” signs appear in the wrong order. The correct Equations 41 and 42 are:
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[image: image]

In the published article in the Equations 51-54 some symbols have incorrect subscripts. The correct Equations 51-54 are:
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[image: image]
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A correction has been made to section 3.6.

Finally, in the published article in Results, “Stable Solution Branch Borders,” paragraph 4, Equation 58 was quoted instead of Equation 54. The corrected sentence is:

Here [image: image] and [image: image] were computed from Equations (56) and (54), respectively.

In the published article in the last sentence of section 4, paragraph 2, a wrong type of citation format was used. The original sentence previously stated “Our results are also in line with [7] rhythmogenesis hypothesis, namely that synaptic depression of inhibition is a mechanism by which anti-phase bursting may arise.”

The corrected sentence appears below:

“Our results are also in line with Brown's [7] rhythmogenesis hypothesis, namely that synaptic depression of inhibition is a mechanism by which anti-phase bursting may arise.”

In the published article there was a typo in the acknowledgments. The first sentence previously stated: “MO thank the Wellcome Trust for financial support of his Ph.D. study.”

The corrected sentence appears below: “MO thanks the Wellcome Trust for financial support of his Ph.D. study.”

The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
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Model analogies and exchange of ideas between physics or chemistry with biology or epidemiology have often involved inter-sectoral mapping of techniques. Material mechanics has benefitted hugely from such interpolations from mathematical physics where dislocation patterning of platstically deformed metals and mass transport in nanocomposite materials with high diffusivity paths such as dislocation and grain boundaries, have been traditionally analyzed using the paradigmatic Walgraef-Aifantis (W-A) double-diffusivity (D-D) model. A long standing challenge in these studies has been the inherent nonlinear correlation between the diffusivity paths, making it extremely difficult to analyze their interdependence. Here, we present a novel method of approximating a closed form solution of the ensemble averaged density profiles and correlation statistics of coupled dynamical systems, drawing from a technique used in mathematical biology to calculate a quantity called the basic reproduction number R0, which is the average number of secondary infections generated from every infected. We show that the R0 formulation can be used to calculate the correlation between diffusivity paths, agreeing closely with the exact numerical solution of the D-D model. The method can be generically implemented to analyze other reaction-diffusion models.

Keywords: double diffusion, reproduction number, autocorrelation, spatiotemporal correlation, Fick's diffusion


1. INTRODUCTION

Transport of mass, heat or electricity in inhomogeneous media has been modeled [1–3] involving distinct conducting paths such as diffusion in metals containing a large number of dislocations and/or grain boundaries [4], fluid flows in fissured rocks and media with double porosity [5, 6], heat or electricity conduction in fiber reinforced composites [10] have been addressed by Aifantis through continuous models, typically based on coupled sets of linear partial differential equations (the double diffusivity or D-D model) involving 4 phenomenological constants: 2 diffusion coefficients for each one of the two paths and two mass exchange constants between the paths. The above two-state idea was also utilized later in developing the first dynamical model of dislocation patterning, commonly known as the Walgraef-Aifantis (W-A) model [1, 2] that could distinguish between two dislocation populations: slow or “immobile” dislocation and fast or “mobile” ones that brings plastic deformation about. It turns out that the linearized version of the W-A model is identical in form to the D-D model variant of the two-state reaction-diffusion (R-D) formulation used to describe transport of multiple families of species such as vacancies and interstitials in crystalline lattices, impurity, segregation in dislocation and grain boundaries or trapping and precipitation process in alloys.

Over the last two decades, the D-D and W-A models have become quite popular in both the applied mathematics [11] and the material science [12] communities due to the interesting mathematical properties of the former and robust interpretation of experimental observations of the latter groups of models. This includes implementation of D-D type models in interpreting molecular and mesoscopic transport in condensed matter and cosmological systems [13], i.e., Most of such models though overlooked the contribution of stochastic forcing or spatial randomness, e.g., surface impurities in materials, restricting the implementation of such models in explaining experimental observations. A recent series of stochastically driven D-D models [7–9] have not only addressed this issue of steering qualitative phenomenological models closer to experimental descriptions, technically these have opened up further possibilities of cross-disciplinary implementation of these models from material science to other fields and vice versa.

Anomalous diffusion involving multiple species and media has for long remained an interesting field of research. The diffusive behavior changes their characteristics depending on the choice of medium. There are many plausible reasons for this. One of them is that there exists some void grain boundary in the medium which represents an especially high diffusivity path inside the medium. Also, there are relatively narrow domains in the medium where the diffusion rate is slower. Simultaneous diffusion in multiple media has been traditionally analyzed using double-diffusion models [4–6, 10, 14] that is a coupled system of partial differential equations involving interacting variables. These D-D models considered two species of diffusive elements, one that follows the regular path, another following a high-diffusive path, with eventual dynamics determined by a dynamical equilibrium of these competing paths.


1.1. State of the Art

Elias C. Aifantis developed and introduced the concept of double diffusion step by step in Aifantis and Hill [5, 6] and Aifantis [15, 16]. A continuum basis for diffusion in regions with multiple diffusivity was introduced in Aifantis [15]. Simultaneously, in Aifantis [17], the diffusion in media with a continuous distribution of high-diffusivity paths was modeled. Finally, Aifantis provided a formulation generalizing this idea of the diffusion in solid media for wide range of applicability in different physical process, in double porosity [18], from metallurgy to soil science [14] polymer physics and geophysics, in Aifantis and Hill [5, 6]. Another explanation of this double diffusion model was provided in Hill [19] using the concept of discrete random walk model. In [5, 6]–[19], Aifantis and Hill studied the basic mathematical questions of the model. Mainly they studied uniqueness, maximum principles and basic source solutions in Aifantis [20] and Hill [19] and boundary value problems in Hill [19]. Kuttler and Aifantis studied the existence and uniqueness of the weak form of the nonclassical diffusion equation in Kuttler and Aifantis [21].

The diffusion process in a media is not deterministic. Indeed there are stochastic effects initiated and controlled by several factors. Randomness can be related to thermal fluctuations, grain size changes, impurity effects, etc. Recent studies of a type of non-equilibrium system involving multiple states of diffusion of a diffusing species, called stochastic resetting, is governed by a dynamics similar to a double-diffusion system [22]. These types of interactive features play an important role in the process and it became necessary to take into account of the stochastic agents. In nanoscales or nanopolycrystals, the diffusion near the grain boundary following two paths, regular and high diffusive, can be affected by stochastic fluctuations [7]. Deterministic internal length gradient method can not completely explain relaxation time for diffusion in nanopolycrystals. Considering boundary layer fluctuations, stochasticity was added in the modeling and first stochastic gradient nanomechanics (SGNM) model was proposed in Chattopadhyay and Aifantis [8]. Using SGNM model, relaxation time is discussed thoroughly for a specific superconductors [23] in Chattopadhyay and Aifantis [9]. Also, linear stochastic resonance has been predicted and how stochastic effects start affecting the system is explained in Chattopadhyay and Aifantis [9].



1.2. Open Questions

The present article is the first in line to provide a closed form approximate perturbative solution of the nonlinear model (close to the linearized stationary state) resulting from a combination of the D-D and W-A models. The D-D:W-A composite model leads to a coupled system of reaction-diffusion (R-D) equations where the diffusion terms are identical to those contained in both models, the linear terms as in the D-D model [7, 8] while the nonlinear terms resemble the W-A model (3rd order). In addition, the composite model contain second order cross-coupled terms that do not lend themselves to an exact analytical solution, not even in their linearized form. The underlying physical picture represents a system of multiple diffusive relaxation, including boundary layer shear (nonlinear terms), and driven by stochastic forcing as in the two models. The present model considers simultaneous diffusion in the lattice or grain interior along the grain boundaries but also allow for trapping and impurity effects. In other words, diffusing species can be trapped in both grain interiors along dislocation cores and dislocation dipoles as well as in the counterparts of the defects within the grain boundary space, as also impurity of lattice imperfection that are stochastically distributed and hence extremely difficult to account for.

While diffusion mediated interaction between multiple species is intrinsically nonlinear, traditional analyzes have relied on the dual approach of numerical modeling (nonlinear systems) and exactly solvable linear models (approximate only). Most of these studies are deterministic with occasional stochastic models strictly restricted to linear models. The present study outlines a generic approach, repurposed from the field of mathematical biology, to provide approximate closed form solutions of inherently nonlinear coupled systems irrespective of their origin. While there is no paucity of numerical estimation of nonlinear models, including those for double diffusion ([8] and references therein), from the perspective of theoretical modeling, analytical clarity had to give way to quantitative precision. More importantly, a closed form solution offers a direct methodological link between the process and its parameters that is not available from brute numerical evaluation in a multi-parameter space. The present study is thus a major breakaway from the linearity assumption, retaining closer proximity to experiments while also comparing favorably with numerical solutions, as we will later show.

Nonlinear diffusion equations, a classical example of parabolic type equations, play an important role in the modeling of diffusion equations with nonlinearity [24], in particular, for stochastically driven diffusive systems. One is for free boundary problems such as the distribution of temperature in a homogeneous material during phase-transition [25], i.e., the time evolution of the phase boundaries, the so called Stefan problem.

Another is for reaction-diffusion problems, such as the Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) model for propagation of an advantageous gene in a population [26, 27], Gray Scott Model for diffusion of chemical species [28]. Similar style of modeling can be found for dislocation profiles in a material. Walgraef and Aifantis (WA model) proposed a model of a system of Reaction-Diffusion equations considering two profiles of dislocation flows, immobile dislocation for slow moving and mobile for relatively speedy moving [1]. The W-A model has been studied extensively numerically, toward bifurcation analysis and pattern formation in Pontes et al. [11] and Spillotis et al. [12]. None of these were targeting a closed form analysis, as is the target in this study.

The article provides a generic technique, repurposed from a diverse domain (mathematical biology), to solve systems of coupled nonlinear equations. Following a general introduction and pointers to open questions in Section 1, Section 2 summarizes the model equation and provides a physical explanation of the mechanisms involved. Section 3 represents the nondimensionalized representation of the model in Section 2, the relevant non-dimensional governing equations and their linear stability analysis. Section 4 first discusses a popular method used in mathematical epidemiology in the calculation of the time varying reproduction number R0, then identifies the phenomenology as one of analyzing the covariance of two (or more) coupled variables in a dynamical system, and then uses this hypothesis to connect with the cross-coupling between D-D variables. Section 5 provides the anatomy of the time (t) evolution of the reproduction number R0(t) in the equivalent D-D model as one measuring the strength of cross-correlation between the different diffusing species. Finally, Section 6 summarizes the outcomes of this continuum (approximate) mapping that then is compared against direct numerical evaluation of this model.




2. THE MODEL

In this work, we focus on a closed-form, albeit approximate, solution of the D-D model for nano polycrystal diffusion by considering nonlinear source terms in the original W-A model, representing additional exchange of diffusion species between the two paths. These new non-linear exchange terms represent the transfer of diffusion species through dislocation atmosphere i.e., diffusing species segregated in dislocation cores and dislocation dipoles. We study in particular how the “transmissibility” of the species affect their diffusion and corresponding trapping processes. We observe how their internal interactions can affect their behavior. We study how the transmissibility of the species affects their diffusion.

Considering [image: image] and [image: image] as the concentrations/densities for the two distinct D-D species along two different paths, the governing equations of diffusion are given by

[image: image]

[image: image]

where D1, D2 are diffusion coefficients, k1, k2 are the rate mass exchange between different paths. The nonlinear terms represent the interactions between different species (or dislocation paths, in case of two diffusive paths in the material body) when the density of one species influences the creation or annihilation of the other.



3. NON-DIMENSIONALIZATION OF THE DOUBLE DIFFUSING WALGRAEF-AIFANTIS MODEL

Let [image: image], [image: image]. Substituting in Equations (1a–1b), then assuming that the diffusion coefficients remain unchanged after scaling, and choosing coefficients of nonlinear product terms as unity after scaling, for σ1 = σ2 = σ, we have

[image: image]

[image: image]

Note, the variables ρ1 and ρ2, representing Equations (2a, 2b), are non-dimensional. The numerical model uses this system of a non-dimensional dynamical system.


3.1. Linear Stability Analysis

Equations (2a,2b) can be represented as the following coupled reaction-diffusion model

[image: image]

[image: image]

where [image: image], and [image: image]. We analyze the system stability near the Homogeneous Equilibrium (HE) state or at the uniform steady state [image: image] [1, 12], in line with the approach used in Spillotis et al. [12], i.e., where

[image: image]

[image: image]

Solving these equations we get the HE state, [image: image]. Perturbing around this equilibrium state, perturbations defined as [image: image], we get [image: image].

Now near the HE states, the linearized version of the Equations (3a, 3b) are

[image: image]

where [image: image], and JF is the Jacobian of [image: image] at the equilibrium states [image: image]. We consider [image: image] for real ω and get

[image: image]

where [image: image]. As this is a system of two variables, the signatures of trace and determinant of the matrix [image: image] defines the stability of the system. The determinant should be always positive and trace should be always negative for all real values of ω. We test these conditions for the HE state at (0, 0) and arrive at the following closed form expressions for the Trace (Tr) and Determinant (Det) of the model:

[image: image]

[image: image]

For [image: image], Trace is always negative and determinant is always positive. Hence, the HE state at (0, 0) is a stable state.




4. BIOLOGY TO MATERIALS' MODELING

It is usual practice in infectious disease epidemiology and modeling to measure the “speed” of the propagation of the infection. This measurement is generally called the basic reproduction number R0 that effectively equates to the number of secondary infections generated from each infected member of the population. R0 depends on the numbers of currently infected, susceptible and the rate of infection in the population. This R0 is the threshold parameter for an infectious disease, determining whether it becomes an epidemic, pandemic, or extinct in a community. The epidemiologists follow several methods to calculate R0. Two of these, referred to as the next generation method and the age-structured method [29–31] are widely used. Both are effective and popular in infection modeling studies.

In this work, we show how the concept of R0 can be made an auxiliary method in studying the diffusion process in a medium. We show how the profile of time evolution of R0 can help us to understand the diffusion-dynamics of two species, and can be used as a substitute to the enumeration of correlation functions.

Our starting point in this “reverse mapping” scheme from mathematical biology to material science relates to the origin of the concept of basic reproduction number R0. Let I(t) be a time-evolving quantity whose value at time t is dependent on its values at previous time points. This essential non-Markovian distribution ensures non-trivial values for all I(t − τ), where 0 ≤ τ ≤ t, as long as I(t) is defined. Representing I(t) as the number of infected individuals at time t in a population, non-Markovian kinetics ensures that I(t) should depend on the number of infected, present in the population, at time t − τ, since the new infections can only be generated by the previous infections. The time required for an infected individual to generate a new infection, from the onset of its infection, is called the generation time τ. Clearly, τ is a non-negative continuous random variable which has a probability density function, say g(τ). In the case of infectious diseases, g(τ) is generally taken as Gamma or a lognormal distribution.



5. “GENERATION TIME” IN DOUBLE DIFFUSION: COMPARISON WITH RANDOM WALK MODEL

We can think of double diffusion as the continuum limit of a random walk model where the random walker diffuses along two different diffusive paths, occasionally jumping between them [19]. Here, by different diffusivity of paths we mean the probability of left jump (pi), right jump (qi), staying at same position without making any jump (ri) are different for the two paths, where i = 1, 2 for path-1 and path-2. Let us introduce a random time interval τ, having a probability density function g(τ), during which the walker diffuses along the same path before making any jump to the other path. The time τ can be thought of as the generation time for the double diffusion model, in parallel with the well defined generation time for an infectious disease. For this random walk model of double diffusion, let the probability of jumping from path-1 to path-2 be ℙ(1 → 2) = s1 and same for path-2 to path-1 be ℙ(2 → 1) = s2. Therefore, the generation time in case of our double diffusion model can be compared to the survival time of the random walker on a single path before making a jump to the other. Now, for the random walk model of double diffusion we must have pi + qi + ri + si = 1 for i = 1, 2. Therefore, the probability that the random walker continues on path i, in two consecutive jumps, is (1 − si). Hence the corresponding survival probability on path i is given by a geometric distribution. More explicitly, the probability that the walker will stay on path i for n consecutive jumps is [image: image]. Motivated by the fact that the geometric distribution has memoryless property, and exponential distribution is the only continuous distribution having memoryless property, it is reasonable to assume that the generation time is exponentially distributed in the continuum limit of this random walk model of double diffusion.


5.1. The Reproduction Number R0 and Its Mapping to the D-D Model

Following the similar concept in the case of double diffusion, we can think of the density ρ(t) of certain species is dependent on its density ρ(t − τ) at earlier times (0 ≤ τ ≤ t). The time required for generating new particles of the same species from the old ones is a continuous random variable τ with some density function g(τ). Therefore, in the same token, as defined in case of infectious diseases, we can define a quantity R0 for a species in a double-diffusive process as

[image: image]

where g(τ) is the generation time.

Figures 1–4 compare the R0 equivalent of an equivalent epidemic rate model with that of the autocorrelation function (Equations (2a, 2b) at the quantitative level, providing interesting insights into the D-D reaction-diffusion model. It can be easily understood from the mathematical expression of R0(t) that it is a measure of the production rate of a species from the population of the same species at an earlier epoch, rather than due the conversion of other species. On the other hand, autocorrelation is a measure of the abundance of a species as a whole, aggregating the production of a species from it's own population as well as due to the conversion of other species. Therefore, the autocorrelation function together with the time-varying R0(t), gives us interesting spatio-temporal insights about the observed abundance.


[image: Figure 1]
FIGURE 1. Comparison of normalized autocorrelation and R0 at x = 0.2. Outset is in log scale and inset is in original scale. (A) Shows that the autocorrelation (in blue) is decreasing at later times although the R0 is increasing for the species ρ1 (orange curve). This indicates that at x = 0.2 the production of ρ1 occurs from its own population at small timescales. On the other hand in (B), the simultaneous decreasing behavior of the autocorrelation and R0 indicate that at x = 0.2 the production of ρ2 also occurs at smaller timescales. However, in case of ρ2, its production occurs due to the conversion of ρ1 into ρ2, since the measure of self-creation R0 is decreasing in this case.


A comparison between Figures 1, 2 with Figure 3 clearly indicates that while asymmetric cases (x < 0.5) ensure only partial convergence between the R0 and autocorrelation profiles, i.e., only one of the two double diffusing variables match both profiles, at x = 0.5, the profiles match (approximately) for both variables.


[image: Figure 2]
FIGURE 2. Comparison of normalized autocorrelation and R0 at x = 0.3. Outset is in log scale and inset is in original scale. (A) Shows that the autocorrelation function and R0 for the species ρ1 have the same increasing trend as a function of time. The understanding we get from this trend is that the species ρ1 is produced fom its own species for long time-scales. (B) Indicates that the dynamics of the species ρ2 is quite different than ρ1. The species ρ2 is produced from the conversion of ρ1 instead from its own ancestors, as the R0 for ρ2 decreases over time.



[image: Figure 3]
FIGURE 3. Comparison of normalized autocorrelation and R0 at x = 0.5. Outset is in log scale and inset is in original scale. (A) Shows similar trend for R0 and autocorrelation as in Figure 2A, which indicates that the production of ρ1 is boosted by the abundance of its ancestor. (B) Whereas, the production of ρ2 occurs both by the conversion of ρ1 for some time and due to its own population at later times.



[image: Figure 4]
FIGURE 4. Comparison of normalized autocorrelation and R0 at x = 0.6. Outset is in log scale and inset is in original scale. The dynamics at x = 0.6 is almost similar to that of at x = 0.5, as shown in Figure 3. (A) Autocorrelation and R0 of ρ1 at x = 0.6. (B) Autocorrelation and R0 of ρ2 at x = 0.6.


Note, the dynamics of ρ1 as shown in Figure 5 matches those for x = 0.3, 0.5, 0.6. However, the species ρ2 is mostly created by the conversion of the species ρ1. These 5 figures clearly indicate that only for the symmetric case x = 0.5, the time dynamical evolution of the reproductive number for an epidemic model matches the average energy dissipation rate of individual variables (expressed as autocorrelation functions), not otherwise. This is not unexpected as the point x = 0.5 (spatial scale 0 < x <1) represents the point of dynamical equilibrium between two diffusing species, that also represents infection flux equilibrium between susceptible-infected-recovered species in an epidemic model. In other words, a fair quantitative comparison between the R0 vs. the D-D model is only ensured at x = 0.5.


[image: Figure 5]
FIGURE 5. Comparison of normalized autocorrelation and R0 at x = 0.7. Outset is in log scale and inset is in original scale. (A) Autocorrelation and R0 of ρ1 at x = 0.7. (B) Autocorrelation and R0 of ρ2 at x = 0.7.





6. CONCLUSIONS

Clearly, a comparison of the dynamical variable R0(t), motivated by the epidemiological literature, with the autocorrelation function reveals the richness of the dynamics of a reaction-diffusion system which offers an option of interpolating the results from the epidemic model into the double-diffusion domain, in the process providing a closed form solution of the latter that has remained elusive thus far. Comparing the time evolution of R0 with the autocorrelation function gives the information of the origin of the observed abundance of different species in a reaction-diffusion system as explained in Figures 1–5. The analogy is strictly restricted to the spatially symmetric (x = 0.5) conformation though, a point of dynamical equilibrium between two (or multiple) diffusing species, an analogy with the stationary state fixed point of an epidemic model in dynamical equilibrium.

Therefore, the introduction of the epidemiologically motivated quantity R0(t) into the studies of the reaction-diffusion systems can play a crucial role in understanding such systems in more depth. Since this interpolation between two unrelated disciplines only uses the mathematical similarity between two (or multiple) reaction-diffusion species, expressed as double-diffusion in material science, as compared to infection rate growth in epidemiology, the approach is generic enough to be applied to all coupled reaction-diffusion models. At the point of symmetry (x = 0.5 in our model), both quantities (R0 and autocorrelation) will asymptotically match their values with evolving time allowing for a closed form mapped (from mathematical biology) solution of the R-D model. As a comparison with the numerical solution confirms close convergence with the approximate mapped solution (based on the R0(t) formula as a descriptor of the correlation strength of the diffusing variables), the solution provides handle to studies analyzing higher order perturbations and relevant bifurcations, also including stochastic terms. Future studies involving calculation of correlated superconducting fluxes would be presented using the same method.
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A central component in simulating cardiac electrophysiology is the numerical solution of nonlinear ordinary differential equations, also called cardiac ionic cell models, that describe cross-cell-membrane ion transport. Biophysically detailed cell models often require a considerable amount of computation, including calls to special mathematical functions. This paper systematically studies how to efficiently use modern multicore CPUs for this costly computational task. We start by investigating the code restructurings needed to effectively enable compiler-supported SIMD vectorisation, which is the most important performance booster in this context. It is found that suitable OpenMP directives are sufficient for achieving both vectorisation and parallelisation. We then continue with an evaluation of the performance optimisation technique of using lookup tables. Due to increased challenges for automated vectorisation, the obtainable benefits of lookup tables are dependent on the hardware platforms chosen. Throughout the study, we report detailed time measurements obtained on Intel Xeon, Xeon Phi, AMD Epyc and two ARM processors including Fujitsu A64FX, while attention is also paid to the impact of SIMD vectorisation and lookup tables on the computational accuracy. As a realistic example, the benefits of performance enhancement are demonstrated by a 109-run ensemble on the Oakforest-PACS system, where code restructurings and SIMD vectorisation yield an 84% reduction in computing time, corresponding to 63,270 node hours.
Keywords: cardiac electrophysiogy, ionic cell models, multicore CPUs, lookup tables (LUTs), SIMD vectorisation
1 INTRODUCTION
Computer simulation has firmly established itself as an important approach to studying cardiac electrophysiology, see e.g. Vigmond et al. (2009); Trayanova (2011). One essential component of any heart simulator is the computation of the total transmembrane ionic current density, conventionally denoted by Iion. The importance of Iion is due to its close interaction with the transmembrane potential v, i.e., the difference between the intra- and extracellular potentials. A coordinated evolvement of [image: image] in space and time is a prerequisite for the proper functioning of the heart. Physiologically, Iion is intricately determined by various transmembrane currents through ionic channels, pumps and exchangers, even subcellular calcium handling. Thus, mathematical modeling of Iion is challenging and still remains an active research field. Many cell models have been developed over the years, where two examples of widely used cell models are the ten Tusscher–Panfilov model (see ten Tusscher and Panfilov (2006)) and the Grandi–Pasqualini–Bers model (see Grandi et al. (2010)).
The majority of the cell models take the form of a system of nonlinear first-order ordinary differential equations (ODEs) with initial conditions:
[image: image]
where [image: image] is a vector of so-called state variables including the transmembrane potential itself, a set of individual ionic concentrations, and a set of gating variables, see e.g. Alonso et al. (2016) for a review. The evolution of [image: image] determines the total transmembrane ionic current density Iion, which in turn contributes to the dynamic change of v. The particular ODE inside the system in Eq. (1) that describes the dynamics of v has its simplest form as follows:
[image: image]
where Cm denotes the membrane capacitance. If electrophysiology is simulated over a cardiac tissue or the entire heart, then Eq. (2) can be incorporated into a partial differential equation (PDE) of the reaction-diffusion type, such as in the monodomain and bidomain models, see e.g. Colli Franzone et al. (2014).
1.1 Need for Huge Amounts of Computation
Many of the right-hand side functions in Eq. (1), i.e., f1, f2, …, fN, where N denotes the number of state variables of a cell model, are nonlinear and involve special mathematical functions such as the exponential, logarithmic and power functions. For example, the ten Tusscher–Panfilov model [see ten Tusscher and Panfilov (2006)] adopts N = 19 state variables and the authors’ own C++ source code [see ten Tusscher (2021)] counts 77 calls to the exponential function and 4 calls to the logarithmic function. On a computer, these calls to the special mathematical functions will be translated into a large number of basic floating-point operations (FLOPs). For example, profiling tools have revealed that typical compilers will generate in total around 1500 FLOPs each time the 19 right-hand side functions of the ten Tusscher–Panfilov model are evaluated on a computer (see Section 3.2).
ODE computations can use substantial time of a heart simulator. Inside a monodomain or bidomain simulator of a cardiac tissue or an entire heart, an ODE system of form Eq. (1) exists “everywhere”, i.e., with the same spatial resolution as for the intra- and extracellular potential fields. For the latest simulation strategy based on the EMI (extracellular-membrane-intracellular) approach, see e.g., Tveito et al. (2017); Jæger et al. (2021a), a high spatial resolution is still needed to resolve the cell membrane surfaces, resulting in considerable computational effort needed to solve the individual ODE systems. Multiple studies have investigated how simulations using the monodomain model or the bidomain model can be scaled to thousands of compute nodes [see e.g., Niederer et al. (2011); Mirin et al. (2012); Colli Franzone et al. (2018)]. Operator splitting is typically used with the monodomain, bidomain, and EMI models such that the non-linear ODE part is decoupled from the linear PDE part [see Clayton et al. (2011); Tveito et al. (2017)]. Thus, the performance of the ODE part, which does not require any communication, may be studied independently of the PDE part. For whole-heart simulations using the monodomain or bidomain model with reasonably accurate meshes, the number of ODE systems is in the millions, even ranging as high as 370 million [see Mirin et al. (2012)], whereas the time step is typically limited to around 25 µs [see Niederer et al. (2011)]. In other words, 40,000 time steps must be solved for each second of simulated time.
Besides the above simulation scenario, an ensemble scenario can also require solving many instances of a cell model. This is needed to study the sensitivity of a cell model with respect to its internal parameters, or to fit the model parameters with real-word cellular measurements [see e.g., Jæger et al. (2021b)]. The number of instances can easily be colossal, if the number of parameters of interest is large and/or the resolution needed to study each parameter is high.
No matter which scenario, when the required temporal/spatial/parameter resolution is high, there arises the need for numerically solving a large number of ODE system instances over a large number of time steps. This can lead to a gargantuan amount of computing time even on a supercomputer. The present paper thus aims to investigate how the modern multicore CPU architectures can be efficiently used for this purpose.
1.2 Need for Effective Use of Modern Processor Architectures
The primary design goal of a modern multicore CPU is to execute FLOPs fast. This is in principle a good match with numerically solving cardiac ionic cell models, which typically have a high computational intensity, i.e., the number of FLOPs executed per byte of memory traffic. Effective utilisation of the floating-point capability of a multicore CPU requires employing all the processor cores while each delivers a sizeable portion of its theoretical peak floating-point performance. Achieving the latter is not straightforward, because it requires each processor core to execute, most of the time, in a single-instruction-multiple-data (SIMD) style. The individual ODE system instances, in both simulation and ensemble scenarios, can be computed independently and thus readily offer parallelisation across the processor cores. However, inappropriate data structures, memory access patterns and/or code structure can seriously limit or even prohibit SIMD vectorisation. This important topic will be addressed in Section 2.3.
Executing FLOPs using SIMD vectorisation alone does not necessarily lead to the best computing speed. Another concern is the necessity of the FLOPs. Modern compilers are good at common subexpression elimination, thus avoiding unnecessary repetitions of FLOPs, but they are unable to decide the most economical way of evaluating the special mathematical functions. A classical method is to pre-evaluate a costly function for a certain value range and resolution, and store these pre-computed values in a lookup table. Later evaluations of the function are then replaced by reading (approximate) values from the table. The number of arithmetic operations is reduced at the cost of extra memory usage by the lookup table itself and extra memory traffic due to repeatedly accessing the lookup table. Moreover, using lookup tables may prohibit a compiler from vectorising the other parts of the computation. Section 2.4 will thus discuss the considerations and programming details about lookup tables.
The contribution of this paper is not about devising new ODE solvers with lower algorithmic complexity, higher accuracy or better stability. Instead, our approach to getting fast computing speed is rooted in a resource-efficient usage of modern multicore processor architectures. We discuss the code restructurings that are needed to help modern compilers automatically enable SIMD vectorisation. The speed improvement due to vectorisation is thoroughly investigated by both time measurements and profiling. To our knowledge, these aspects have not been systematically studied in the literature.
Another novelty of this paper is a deep dive into the pros and cons of using lookup tables, where we also study some related programming nuances. Although a number of choices concerning the trade-off between accuracy and speed may be considered when using lookup tables, we have devoted our attention to the programming details. We report accuracy results to verify the correctness of our implementation and contrast with the error associated with the use of SIMD vectorisation.
The ODE models used in this paper for performance study in Section 3 are realistic cardiac ionic cell models (see Table 1), whereas we have only adopted the simplest ODE solvers. The rationale is that more sophisticated ODE solvers often use simple ODE solvers as the building blocks. Thus, a thorough understanding of how to obtain hardware resource efficiency for simple ODE solvers is readily extended to the wealth of advanced ODE solvers.
TABLE 1 | Cell models used in the numerical experiments of this paper. The “FLOPs” column lists the number of floating-point operations required to compute a single time step for a naïve implementation using the Forward Euler scheme. Section 3.2 describes how performance counters were used to obtain the operation counts.
[image: Table 1]The remainder of this paper is organised as follows. Section 2.1 briefly explains the basic steps of implementing ODE solvers, including directive-based parallelisation. Section 2.2 points out the inefficiency of naïvely implemented ODE solvers. Section 2.3 carefully examines the topic of SIMD vectorisation on modern multicore processors. Section 2.4 is devoted to the details of using lookup tables as an alternative to getting fast computing speed. Section 2.5 demonstrates how SIMD vectorisation and lookup tables can be combined. Thereafter, Section 3 contains an extensive set of numerical experiments about the benefits due to, respectively, SIMD vectorisation and lookup tables. The topic of accuracy also receives close attention in Section 3. Finally, Section 4 comments on the related work and provides some concluding remarks.
2 SIMD VECTORISATION AND LOOKUP TABLES FOR DELIVERING PERFORMANCE
As argued in Section 1.1, huge amounts of computation may arise from numerically solving many instances of a cell model, in both simulation and ensemble scenarios. At the same time, as discussed in Section 1.2, utilising the computational potential of modern processors can be non-trivial. This section thus aims to investigate two strategies for enhancing the performance of typical solvers of a cell model, specifically, use of SIMD vectorisation and lookup tables. We will start with explaining the basic steps of implementing an ODE solver, for the purpose of setting the programming scene needed to dive into the two strategies.
2.1 Basic Steps of Implementing an ODE Solver
The basic steps of implementing an ODE solver are largely generic, such that automated code generation can allow an easy plug-and-play of the solution strategy and cell model, while keeping manual coding to a minimum level. We will use as an illustrating example the simplest ODE solver, namely, the forward Euler method. This choice is motivated by both its simplicity and its relevance as building blocks in many advanced ODE solvers. Simplicity is also the reason for choosing, later in this section, the FitzHugh-Nagumo cell model [see FitzHugh (1961); Nagumo et al. (1962)] that has only two state variables, for the ease of presentation. We remark that the same (automated) programming process applies to other ODE solvers and cell models.
Specifically, to numerically solve a system of ODEs in the form of Eq. (1), the computational work per time step of the forward Euler (FE) method is as follows:
[image: image]
This simple numerical scheme only requires evaluating the right-hand functions [image: image] with the latest state variables. The downside of FE is that it may require a very small time step size Δt = tℓ+1 − tℓ, and thereby a tremendous number of steps, to produce a stable solution of a stiff ODE system.
2.1.1 Algorithmic Skeletons
The algorithmic skeleton for solving individual ODE system instances in a simulation scenario will differ from that in an ensemble scenario (see Section 1.1). Suppose the computational work of an ODE solver (e.g., FE) per time step is coded as a subroutine named compute_ODE_step[image: image], these two algorithmic skeletons can be found, respectively, in Algorithm 1 and Algorithm 2. Moreover, a realistic simulation scenario can also have a PDE component per time step, due to operator splitting used for solving e.g. the monodomain or bidomain equations. This is shown in Algorithm 3 where the v values from all the cells are jointly updated per time step additionally to accommodate the PDE contribution.
Algorithm 1. Simple skeleton for the simulation scenario (outer loop over time).
[image: FX 1]
Algorithm 2. Simple skeleton for the ensemble scenario (outer loop over cells).
[image: FX 2]
Algorithm 3. Operator-splitting skeleton for the simulation scenario (outer loop over time).
[image: FX 3]
2.1.2 Automated Code Generation
Mathematical models of the ionic current density are typically very complex, involving many parameters and internal variables. Manual coding of compute_ODE_step, which is needed in any of the algorithmic skeletons, can therefore be nontrivial and error-prone. Here, two factors support an approach of automated code generation. First, most ODE solution strategies are generic and independent of a specific cell model. Second, the research community has developed several domain-specific standards to facilitate sharing of the existing cell models, thus offering standardised input to automated code generators. One such open standard is the CellML language [see Cuellar et al. (2003)] based on XML. The benefits of automation include avoidance of human programming errors, a flexible choice of the programming language for the generated code, and easy experimentation with different cell models.
As an example, we will show in Listing 2 a piece of auto-generated code that implements a single FE step for the two-variable FitzHugh-Nagumo (FHN) cell model [see FitzHugh (1961); Nagumo et al. (1962)]:
[image: image]
where v and w are state variables, and α, ɛ and γ are model parameters. Correspondingly, Listing 1 contains two assisting enum types that are used instead of integer literals when indexing arrays in order to improve readability. The FHN model is used in code listings in this section due to its simplicity. The results presented in Section 3 use the more realistic models listed in Table 1.
Listing 1:. Auto-generated enum declarations for the FHN model.
[image: FX 4]
Listing 2:. Auto-generated code of one FE step applied to the FHN model.
[image: FX 5]
The C code in Listing 2 is auto-generated by Gotran [see Hake et al. (2020)]: a code generation framework for cell models and the associated ODE solvers. The input format of the FHN model can be found at the CellML website [see CellML (2022)].
2.1.3 Shared-Memory Parallelisation Using OpenMP
The need for parallelisation arises when the number of ODE system instances involved in a simulation or ensemble scenario is large. For both cases, parallelisation is straightforward because the ODE system instances can be computed independently. An automated code generator, such as Gotran, can easily create a subroutine that uses OpenMP directives for this purpose. Listing 3 is such an example, which loops over a collection of cells and invokes FHN_step_FE_single (implemented in Listing 2) for each cell. The code in Listing 3 is typically used in a simulation scenario, wrapped within an outer loop over time.
Listing 3:. Example of OpenMP parallelisation (simulation scenario).
[image: FX 6]
2.2 Issues of Inefficiency
The auto-generated code shown in Listings 2 and 3 can be readily used in any simulation scenario. A corresponding version of Listing 3 for an ensemble scenario can also easily be auto-generated. Switching to another cell model and/or a different explicit ODE solver will in general pose no challenge. Thanks to the automated insertion of OpenMP directives, the generated code can use all the CPU cores of a shared-memory system. Listings 2 and 3 can also be used without change inside a distributed-memory parallel monodomain or bidomain simulator. (Here, we assume that each MPI process is assigned with a partition of the cells.)
However, we can only label the above auto-generated code as naïve, because the obtained performance will be considerably lower than the ideally achievable level. The main reason is the inability of compilers to enable SIMD vectorisation for this code. Specifically, the first argument to function FHN_step_FE_single in Listing 2 assumes that the N state variables for each cell are stored contiguously in memory. This means that the state variables of all the cells are stored logically as an “array of structs”, as used by Listing 3. Although such a data structure makes sense by grouping the state variables of each cell, the downside is that compiler-supported SIMD vectorisation will fail completely. Code restructuring needed for auto-vectorisation will be addressed in Section 2.3, whereas the potential performance benefits of using lookup tables will be the topic of Section 2.4.
2.3 SIMD Vectorisation
2.3.1 Computing with Vectors
Modern CPUs use special registers and instructions for SIMD vectorised operations. For example, the AVX-512 vector instruction set provides 512-bit vectors, so that eight double-precision (64-bit) floating-point numbers may be stored together in a vector register, and arithmetic operations such as addition and multiplication can be performed simultaneously to all the numbers stored in these vectors. To efficiently read and store vector registers, the content of a vector should lie contiguously and aligned in memory. The latter means that the start address of the vector in memory is a multiple of the vector width.
Conceptually, simultaneous solution of multiple instances of the same cell model suits perfectly for SIMD vectorisation. This is because the identical computation takes place in the different cells, i.e., the same operations are applied to different values. The rare situation of conditional branching (e.g., the outcome of an if test depends on the actual value of a state variable) can also be vectorised through masking. In the following, we will discuss how to restructure the auto-generated naïve code, so that compilers can automatically carry out the SIMD vectorisation, by using suitable compiler options/hints and vectorised math libraries.
2.3.2 Restructuring for Optimal Memory Layout
As discussed in Section 2.2, the auto-generated naïve code (as shown in Listings 2 and 3) adopts a natural but vectorisation-unfriendly data structure, where the state variables of each cell are stored contiguously in memory. For effective use of the vector registers, a vectorisation-friendly data structure should let the same state variable from all the cells be stored contiguously. The entire data structure thus has the layout of a “struct of arrays”. To guarantee memory alignment, each state-variable array may need to be padded. Suppose the number of cells is C, the number of no-use 64-bit values padded at the end of each array can be calculated as 8 - modulo(C,8) for the case of 512-bit vector width. In practice, all the state-variable arrays (with padding) are concatenated into a very long 1D array. This can be seen in Listing 4.
2.3.3 Compiler-Supported Auto Vectorisation for the Simulation Scenario
When the memory-related code restructuring is done, SIMD vectorisation can be automatically enabled by a compiler. There are multiple ways of providing vectorisation hints to a C compiler, but we will focus on the simd construct of OpenMP as it is supported by all the major compilers. (The code examples given in this paper require OpenMP version 4.5 or newer.) In Listing 3, we used the compiler directive of #pragma omp parallel for to parallelise the for loop. Listing 4 shows a modified version based on a restructured SIMD-friendly data layout, where we have also added the necessary compiler hints to enable auto-vectorisation. Specifically, the additional simd clause suggests to the compiler that multiple iterations of the loop could be computed together as a vector.
The simd clause may be followed by additional clauses: The simdlen clause specifies the preferred number of lanes per SIMD vector. In the following code listings, we assume that the user has defined the constant VECTOR_LENGTH which is passed as the argument to simdlen. The aligned clause can be used to provide information about the alignment of arrays, so that the compiler can employ aligned vector load/store instructions.
When using the Clang compiler, however, specifying only OpenMP pragmas does not lead to successful vectorisation, because Clang is unable to prove that vectorisation can safely be applied. We therefore specify an additional Clang-specific pragma, see Listing 4, where we instruct the compiler to assume memory safety, relieving Clang of the requirement to prove that there are no overlapping memory accesses. For the sake of brevity, we only show the vectorisation hints based on OpenMP in the remaining listings.
Listing 4:. Step function for the FitzHugh-Nagumo model (simulation scenario) with SIMD-friendly data layout restructuring.
[image: FX 7]
2.3.4 Compiler-Supported Auto Vectorisation for the Ensemble Scenario
The simd OpenMP clause works best when applied to the inner loop. In case the outer loop is over the cells, vectorisation becomes more complicated as the compiler will have to perform outer loop vectorisation. Listing 5 shows how to restructure the code in the ensemble scenario to enable auto vectorisation. When the loops are structured in this manner with cells in the outer loop and time in the inner loop (we refer to this loop structure as Cell–Time), we minimise memory traffic, as the parameters and state variables can easily fit in cache between two time steps. Furthermore, expressions that are not a function of the state variables or time will not change between time steps and can therefore be reused such that the total amount of computation is reduced. Since the number of iterations in the inner loop over time (i.e., the number of time steps) is the same for all cells, outer loop vectorisation can safely be applied in this scenario. However, we observed that only the Intel compiler was able to perform vectorisation for the function in Listing 5. We therefore investigated two alternative loop structures in order to achieve vectorisation with the other compilers.
Listing 6 uses a Time–Cell loop structure similar to the simulation scenario, with the difference being that the parameters are no longer shared between all cells. This loop structure can lead to very high memory traffic, because all parameters must be read and all state variables read and written for each inner iteration in the loop. The three code blocks following the comments “Assign parameters”, “Assign states”, and “Compute FE step” are the same as in Listing 5 and were omitted for brevity.
If we solve the model for smaller batches of cells, we facilitate caching of both arrays and reduce the memory traffic. Listing 7 shows a Cell–Time–Cell loop structure where the outermost loop divides the work into batches that are mapped to different OpenMP threads with the “parallel for” directive, and then the middle loop iterates over time, whereas the innermost loop iterates over the elements in a batch. We should choose the batch size to be a multiple of the hardware SIMD vector length, and the batch size is here controlled via a compile-time defined constant VECTOR_LENGTH. In practice, all vector lengths are a power of 2, so 25 = 32 would be a reasonable choice of batch size that would work well on any CPU. Note that some extra bookkeeping is needed to handle the case where the total number of cells does not evenly divide the batch size. The performance of the different loop structures is discussed in Section 3.4.
Listing 5:. Cell–Time loop structure in FE solution of the FitzHugh-Nagumo model (ensemble scenario) with SIMD-friendly data layout restructuring.
[image: FX 8]
Listing 6:. Time–Cell loop structure in FE solution of the FitzHugh-Nagumo model (ensemble scenario) with SIMD-friendly data layout restructuring.
[image: FX 9]
Listing 7:. Cell–Time–Cell loop structure in FE solution of the FitzHugh-Nagumo model (ensemble scenario).
[image: FX 10]
2.3.5 Using Vectorised Math Libraries
The cell models often involve calls to the exponential function (exp), the logarithmic function (log), and the power function (pow). The expm1 function is also relevant in the context of some numerical schemes that require evaluating ex − 1 where x may be close to zero, in which case exp(x)-1 is prone to rounding errors and expm1(x) produces more accurate results. In the standard C library, these are defined as functions with a scalar input and output, but we need to evaluate these functions on all the elements in a vector simultaneously to achieve SIMD. Fortunately, there are vectorised math libraries that provide C functions that use SIMD instructions to evaluate these math functions for selected vector lengths.
Intel’s Short Vector Math Library (SVML) and the GNU C library, glibc, both provide vectorised versions of the relevant math functions for the x86 instruction set. Shibata and Petrogalli [see Shibata and Petrogalli (2020)] developed a vector math library, SLEEF, that supports the ARMv8 instruction set in addition to x86. There are also other vector math libraries, but these three libraries all integrate with compiler auto-vectorisation when used with a compatible compiler.
As vectorised implementations of expm1 are not available for all libraries, we have used a preprocessor macro to control whether expm1(x) or (exp(x)-1) is used. expm1(x) is used in the naïve implementations, and (exp(x)-1) is used in all vectorised code unless otherwise stated.
We should note that the libraries vary slightly in the accuracy to which the functions are evaluated, and the instructions used (and thereby the total number of floating point operations) may also vary. Our goal in this study is not to compare the vector math libraries, but they are a necessary component when using auto-vectorisation on cell models that contain calls to math functions. When studying the performance and accuracy of cell models, we will therefore have to consider the influence of the math libraries used. Time measurements of using vectorised math libraries, as well as an accuracy analysis will be provided in Section 3.3.
2.3.6 Explicit Control of the Vector Length
In some instances, the compiler may generate instructions with a shorter vector length than the maximal supported vector length, often resulting in sub-optimal performance. There are mechanisms that allow the user to instruct the compiler to target a specific vector length, but the exact mechanism varies for each compiler. For the Intel compiler on Oakbridge (see Table 2), we observed that 256-bit vectors would be used by default when targeting the Cascade Lake CPU, although the hardware vector length is 512 bits. When we appended simdlen(8) to the simd clause, the compiler would instead use 512-bit instructions (8 SIMD lanes with 64-bit floating-point values). For GCC, the flag -mprefer-vector-width=512 can be used to the same effect.
TABLE 2 | Hardware specifications (compute node level) of the five target platforms. ISA is an abbreviation of “instruction set architecture”.
[image: Table 2]For the Fujitsu compiler on Wisteria, we pass the flags -msve-vector-bits=512 and -ffj-interleave-loop-insns=4. The second flag instructs the compiler to interleave 4 iterations of the loop such that 4 × 8 cells are processed in parallel in each OpenMP thread. Interleaving loop iterations increases the amount of instruction-level parallelism at the cost of an increased register pressure, which seems to be very beneficial on the A64FX CPU with somewhat higher latencies for arithmetic instructions than the CPUs found in the other systems. We found that interleaving 4 loop iterations yielded the best performance on Wisteria.
2.4 Lookup Tables
The rationale for using lookup tables is to reduce the amount of computation, by repeatedly referring to tables of pre-computed values. Most cell models contain a number of expressions that are functions of the transmembrane potential v, so these expressions may be pre-evaluated for a chosen sampling of the expected v values, before the ODE solution procedure. For instance, we may assume v ∈ [−100 mV, 50 mV] in the healthy heart, and we can thus pre-evaluate the expressions at equally spaced points in this interval with a resolution of vstep. Expressions that are a function of more than one state variable are usually not considered for using lookup tables, because the memory footprint (and setup cost) of the tables grows exponentially with the number of input variables.
Let f(v) denote an expression that depends on v and assume that a lookup table has been pre-computed for the interval [vmin, vmax] with resolution vstep. When the lookup table is later repeatedly used, the actual v values may not coincide with the pre-chosen sampling values. Suppose a particular v value lies between two consecutive sampling points: va ≤ v < vb = va + vstep. The typical strategy is to use a linear interpolation by computing wa [image: image] and wb = 1 − wa, and then use wa ⋅ f (va) + wb ⋅ f (vb) as the approximation of f(v). The two values of f (va) and f (vb) are fetched from the pre-computed lookup table that is stored in memory. Note that if multiple expressions use the same input variable, the weights wa and wb remain the same for all these expressions. For memory efficiency, the pre-evaluated values of these expressions can be collected as a large 2D table where each column corresponds to one expression.
2.4.1 The Rush–Larsen Scheme and Lookup Tables
When solving stiff ODE systems, the forward Euler scheme may require a very small Δt in order to maintain stability. Rush and Larsen [see Rush and Larsen (1978)] proposed the use of an exponential integrator for the gate variables, which are governed by quasi-linear equations on the form:
[image: image]
where [image: image] and τw are functions of the transmembrane potential. Let vi denote the latest computed transmembrane potential. If v is assumed to be constant when updating w, Eq. (5) becomes a linear ODE with an analytical solution:
[image: image]
The Rush–Larsen scheme (RL) applies Eq. (6) to all the gating equations, whereas the FE scheme in Eq. (3) is used for the remaining equations.
When using lookup tables in the context of RL, it is convenient to rewrite Eq. (6) on the form:
[image: image]
where a (vi) and b (vi) are two pre-tabulated expressions:
[image: image]
[image: image]
Sundnes et al. [see Sundnes et al. (2009)] showed that the RL scheme can be generalised to equations that are not quasi-linear by performing an additional linearisation step. This leads to a first-order accurate generalised Rush–Larsen scheme, which we will simply refer to as GRL1. Both RL and GRL1 schemes will be used in the numerical experiments later.
2.4.2 Memory Layout of a Multi-Expression Lookup Table
A lookup table containing M expressions evaluated at S points, can be represented as an S × M array in memory. This choice of memory layout suits well for the row-major storage scheme used by the C programming language. To find linear interpolations of the M expressions with the same input variable, we need to extract two consecutively tabulated values for each expression. Accessing two consecutive rows of the tabulated values (when the table is S × M) is much more efficient than accessing two columns that are not contiguous in memory (if the table is M × S).
We have implemented the ten Tusscher–Panfilov (TP06) model [see ten Tusscher and Panfilov (2006)] using lookup tables. Our selection of tabulated expressions is based on the implementation found in the openCARP cardiac simulator [see Plank et al. (2021)], which also makes use of the RL scheme. In total 12 out of the 19 state variables are gating variables that can be solved with Eq. (7). Eleven of the gating variables are functions of v, and the last one is a function of Cass (free diadic subspace calcium concentration). We have therefore created one lookup table for the 11 expressions related to v and another table for Cass. The v table also contains 6 expressions that appear on the right hand side of the equations for the non-gating variables.
2.5 Combining SIMD Vectorisation and Lookup Tables
Reconciling the scattered memory access patterns arising from the use of lookup tables with the need for contiguous memory accesses for effective use of SIMD vectorisation is non-trivial. We propose a partitioned method for the TP06 model where lookup tables are used for the 12 gating variables, and the non-gating variables are computed using SIMD vectorisation. The rationale for this partitioned method is that computing the gating equations using lookup tables is very effective. Specifically, updating each gating variable requires only eight FLOPs: two FLOPs for Eq. (7), in addition to the three FLOPs required for the linear interpolation of each of the two pre-tabulated expressions (a and b). Listing 8 shows the code skeleton with two inner loops.
Listing 8:. Combined use of SIMD vectorisation and lookup tables when solving the ten Tusscher–Panfilov model with the RL scheme (simulation scenario).
[image: FX 11]
The complete source code for the experiments in this paper is available online at https://github.com/KGHustad/cell-model-cpu-code.
3 EXPERIMENTS AND PERFORMANCE MEASUREMENTS
3.1 Overview of Hardware Testbeds
As our aim in this paper is to compare different optimisation strategies for a wide range of CPU architectures, we have used five different hardware testbeds. The first three testbeds are using the supercomputers Oakforest-PACS, Oakbridge-CX and Wisteria-O operated by the Information Technology Center at the University of Tokyo, whereas the “Milan” and “ThunderX2” testbeds are part of the eX3 infrastructure hosted at Simula Research Laboratory. Each testbed consists of a single compute node with one or two multicore CPUs. An overview of the CPU and memory specifications for the testbeds is given in Table 2.
Table 3 lists the compiler flags we used to enable auto-vectorisation. Since Listing 4 makes use of preprocessor conditionals, we have provided additional flags to define constants controlling which code path is compiled. With ARMClang and the Fujitsu compiler (running in Clang mode) we pass the flag -DHINT_CLANG_SIMD, and with the other compilers we pass the flag -DHINT_OMP_SIMD).
TABLE 3 | Compiler flags used to enable auto-vectorisation.
[image: Table 3]3.2 Counting Floating-Point Operations with Performance Counters
Some CPU architectures provide performance counters that enable the programmer to count the number of floating-point instructions executed for each vector length. The set of performance counters available is highly architecture-dependent, and we will limit our discussion here to the Intel Cascade Lake CPU architecture found on the “Oakbridge” system in Table 2. Listing 9 demonstrates how the perf command in Linux can be used to count number of floating-point operations (FLOPs). Note that the performance counters must be multiplied by the number of SIMD lanes and summed up in order to obtain the total FLOP count. Written out, the total number of floating-point operations is computed as
[image: image]
Listing 9:. Command used to count number of floating point operations on Intel Cascade Lake CPUs.
[image: FX 12]
In Table 1 we have used performance counters to count the number of floating-point operations required to solve a single step with a naïve FE implementation for each of the three cell models that are used in this section.
3.3 Speed and Accuracy of Vectorised Math Libraries
We measured the performance of selected scalar and vectorised math functions for each of the testbeds. The math function is called for every element in an array of length 30,000, and then this is repeated 20,000 times in an outer loop. We annotate the inner loop with #pragma omp for simd to enable vectorisation via OpenMP. We have selected the exp(), expm1(), log(), pow() functions for this benchmark, as these are the only math functions that are used when solving the cell models in this paper. The benchmark is single-threaded, and the number of function evaluations per second is reported in Table 4.
TABLE 4 | Single-threaded performance of scalar and vectorised math library calls. The units for the Scalar and SIMD columns is millions of function evaluations per second.
[image: Table 4]The Intel-based systems (Oakbridge and Oakforest) both see a speedup when using SIMD, and although the speedup is more pronounced on Oakforest, the absolute performance is 2.5–4 times higher on Oakbridge, despite having only 1.6 times the theoretical peak performance. The last x86 system, Milan, achieves speedup that exceeds expectations, considering that its 256-bit vector length would allow it to perform arithmetic at 4 times the rate of a scalar implementation. The theoretical peak performance of Milan and Oakbridge are comparable, and it seems likely that the high speedup is explained by the scalar implementations performing poorly on Milan. As there is no vectorised implementation of expm1() in libmvec version 2.27, we see no speedup for that function.
On Wisteria, we observe a reasonable 6–8 times speedup for all functions except expm1(). ThunderX2 achieves a modest speedup only for the exp() and log() functions, whereas the vectorised expm1() function sees a substantial degradation in performance.
We also measured the accuracy of the vectorised math libraries by calling each function with 1 million different input values, and then comparing the result with reference solutions with the MPFR library [see Fousse et al. (2007)] computed using 120 bits of accuracy. Table 5 reports the maximum error in units of least precision (ULPs). If the true, infinite-precision value is located on the midpoint between two floating-point values of similar magnitude, the error would be 0.5 ULPs. The input values were generated by interpreting randomly generated bytes as a double-precision floats, and then we discarded values outside the desired domain (the input domains are listed in Table 5) and subnormal values (that are too small to represent in full precision). For the pow() function, we also omit values where the answer would have been subnormal.
TABLE 5 | Maximum error of vectorised math library calls when evaluating input values in the prescribed ranges. The error is reported in units of least precision (ULPs).
[image: Table 5]pow() on Wisteria has very poor accuracy for two input values where the correct answers (6.11 × 10–308, 2.48 × 10–307) are small but not subnormal (as they are greater than 2.23 × 10–308). If those two values are ignored, the maximum error was 36.206 ULPs, which is still significantly greater than the other systems. The remaining errors reported in Table 5 are all below 3 ULPs, which should be well within the accuracy requirements for the solution of cell models.
3.4 Performance of Vectorised ODE Solvers
In our performance measurements of the ODE solver, we use the throughput metric “cell steps per second”, which is simply defined as
[image: image]
The advantage of a such a throughput metric is that it simplifies the comparison of results with differing numbers of cells or time steps, and it can easily be used to estimate the solution time for a problem with a given number of cells and time steps.
Table 6 and Table 7 show the single-threaded and multi-threaded performance of the naïve and auto-vectorised implementations using the FE scheme, where we have used it to solve three realistic ODE models as shown in Table 1. We set OMP_NUM_THREADS=1 in the environment when measuring single-threaded performance, and we set it to the number of logical cores when measuring the multi-threaded performance. The “SoA” column uses a “struct of arrays” memory layout, as discussed in Section 2.3.2, but it does not provide any SIMD hints to the compiler. The “SIMD” column adds SIMD hints to the SoA implementation. We also report speedup factors comparing the SIMD implementation to both the naïve and the SoA implementation. The CPU clock speed is typically somewhat lower when executing vector instructions than when execution scalar instructions, especially when all cores are under heavy load, and this is one of the reasons why the speedup is generally higher in the single-threaded case. The other reason would be that we are more likely to encounter a memory bandwidth bottleneck when using all threads. For the JT21 model on the ThunderX2, we see a pronounced reduction in performance for the SoA implementation compared to the naïve implementation, but the other system–model combinations generally show a slight improvement for SoA over naïve.
TABLE 6 | Single-threaded performance of naïve and auto-vectorised implementations. The FE scheme is used; C = 11688851 cells. “SoA” refers to the “struct of arrays” memory layout discussed in Section 2.3.2.
[image: Table 6]TABLE 7 | Multi-threaded performance of naïve and auto-vectorised implementations; The FE scheme is used; C = 11688851 cells. “SoA” refers to the “struct of arrays” memory layout discussed in Section 2.3.2.
[image: Table 7]Table 8 shows the multi-threaded performance in an ensemble simulation with the JT21 model using the FE and GRL1 schemes. The three loop-structures discussed in Section 2.3.4 are shown in separate columns, and we also report the performance when vectorisation is disabled. When the Cell–Time loop structure is successfully auto-vectorised, it outperforms the other two loop structures, as we observe for Oakbridge and Oakforest. Both of the other loop structures are successfully auto-vectorised on all systems, but the Cell–Time–Cell loop structure is more cache friendly and performs better than the Time–Cell loop structure.
TABLE 8 | Multi-threaded performance of an ensemble simulation using the JT21 model; C = 11688851 cells. The most performant implementation for each system is in boldface.
[image: Table 8]To quantify the error of the vectorised code relative to the scalar code, we use the relative root-mean-square (RRMS) norm given by
[image: image]
where N is the number of time steps. We have solved the TP06 model for one second using a time step Δt = 1 µs for the FE, RL and GRL1 schemes. The RRMS error for the transmembrane potential is reported in Table 9. The RL and GRL1 schemes exhibit a larger error when (exp(x)-1) is used instead of expm1(x).
TABLE 9 | RRMS error when solving the TP06 model using SIMD and vectorised math functions. For each ODE solver scheme a reference solution is computed on Milan using scalar math functions and with compiler optimisations disabled. The model is solved for 1 s with a time step Δt = 1 µs.
[image: Table 9]3.5 Speed and Accuracy Related to Using Lookup Tables
Table 10 reports the multi-threaded performance of naïve, auto-vectorised and lookup table (LUT) implementations for the TP06 model. Across all systems the LUT implementation is 3.5–4.7 times faster than naïve. ThunderX2 clearly favours LUT, which we attribute to its 128-bit vector length. Oakforest and Wisteria, on the other hand, clearly favour SIMD with their 512-bit vector length. On Oakbridge, which also has 512-bit vector units, LUT is marginally faster than SIMD. The fact that SIMD doesn’t perform better on Oakbridge is likely due to the somewhat low speedup of the vectorised math library (see Table 4). On Milan, SIMD and LUT perform very similarly, which is roughly in line with expectations.
TABLE 10 | Multi-threaded performance of naïve, auto-vectorised and LUT implementations for the TP06 model in a simulation scenario. The Rush–Larsen scheme is used with Δt = 0.1 µs, C = 11688851 cells. “SoA” refers to the “struct of arrays” memory layout discussed in Section 2.3.2. The most performant implementation is in boldface.
[image: Table 10]When solving the non-gating equations with SIMD vectorisation and the gating equations with LUT, we see an improvement over only SIMD or LUT on the three x86-based systems. As ThunderX2 has a very limited speedup from the use of SIMD vectorisation, the combination of SIMD and LUT performs worse than the LUT implementation. On Wisteria, the use of SIMD vectorisation leads to much greater speedups than the use of LUT, and shifting parts of the computation from SIMD to LUT leads to a loss in performance compared to the pure SIMD variant.
Whereas the speedup of the LUT implementation is largely insensitive to the CPU vector width and depends more on the model formulation, the speedup of the SIMD implementation strongly depends on the vector width. For the TP06 model, it seems that we need more than 4 SIMD lanes for the SIMD implementation to outperform the LUT implementation. However, the observations we have made regarding the speedup solving the TP06 model with a LUT does not generalise to all cell models, and other models may see smaller or larger gains from using a LUT.
Figure 1 compares the accuracy of the LUT implementation to the naïve implementation. The two solutions are plotted together in the top panel, and the difference is plotted in the bottom panel. The error introduced by the LUT is greatest during the upstroke, but the absolute error does not exceed 5 × 10−5mV at any point.
[image: Figure 1]FIGURE 1 | Comparison of the TP06 model solved with and without the use of lookup tables. The RL scheme is used with Δt = 1 µs. In the upper plot, the two numerical solutions cannot be distinguished by eye. The RRMS error of the LUT solution compared with the non-LUT solution is 1.36 × 10–7.
3.6 Speeding up a 109-Ensemble Computation
Recent studies [see e.g., Tveito et al. (2018); Jæger et al. (2020, 2021a)] have used cardiac cell models to decode the observed effect of a drug on a chip of human induced pluripotent stem cell-derived cardiomyocytes. In these studies, the assumption is that there is a set of model parameters corresponding to the drug effect, and the computational problem consists of searching through the higher-dimensional parameter space. The optimisation problem is particularly expensive because one has to solve the cell model for a long time period until steady state is reached.
In this section, we have set up an ensemble simulation where we try to optimise 11 parameters by pre-computing solutions for a cartesian grid in the parameter space. Note that we treat the remaining model parameters as constant, similar to how all parameters are essentially constant in the simulation scenario. With 5–12 grid points for each parameter, the total number of parameter sets was 1,020,937,500. This parameter mesh can be used directly to solve the optimisation problem by taking the parameter mesh point that minimises the cost function as the solution, or it can be used to guide the search of another optimisation algorithm.
Each parameter set is solved for 102 seconds using a GRL1 scheme with a time step Δt = 10 µs. The model is paced at 1 Hz, and the 100 first seconds are intended to allow the model to reach steady state. We then record the solution for the last 2 seconds at a temporal resolution of 5 ms. By comparing the two last action potentials, we can determine whether steady state has indeed been reached. For some choices of parameters, there is no steady state solution with a period equal to the pacing period. Figure 2 shows traces of the transmembrane potential for 1000 different sets of parameters for t ∈ [100 s, 101 s).
[image: Figure 2]FIGURE 2 | Traces of the transmembrane potential and calcium concentration for 1000 different sets of parameters in an ensemble simulation.
The 1,020,937,500 parameter sets were divided into batches of size 50,048 so that we could use a batch job in the queue system on Oakforest to achieve task-level parallelism. Each of the 20,400 batches was solved on a single node, and the resource limits on Oakforest allowed us to use up to 2048 nodes concurrently. This job expended 11,990 tokens (and one token equals an hour of compute time for a single node). We ran one of the batches both with and without SIMD vectorisation so that we can extrapolate an estimate for how many tokens we would have needed if we had run the entire job with a scalar implementation. The codes differ only in the absence of vectorisation compiler hints for the non-SIMD version, i.e. the line #pragma omp for simd is replaced by #pragma omp for. The expm1 function was used to evaluate expressions on the form (ex − 1). Without SIMD, the solver achieved a throughput of 37.0 million cell steps per second, whereas the SIMD version reached 232.25 million cell steps per second, equating to a speedup by a factor of 6.28. If we extrapolate from this speedup factor, we can estimate the cost of running the whole simulation without vectorisation to 75,260 node hours. In other words, the use of vectorisation lead to a reduction in compute time of approximately 63,270 node hours. Since the power draw per compute node on Oakforest is approximately 331 W [see TOP500 (2021)], 63,270 node hours translates to an energy consumption of approximately 20,942 kW h.
4 RELATED WORK AND CONCLUSION
4.1 Related Work
The code vectorisation in this work is automatically enabled by the compilers, with the help of a few hints that are provided in the form of compiler directives and additional clauses. Such an implicit vectorisation approach is programmer-friendly and portable, except perhaps a few #if defined (XXX) directives to accommodate compiler-specific details. The downside is that concerns over safety or efficiency may prevent the compiler from vectorising more complicated code, such as a loop body containing scattered memory accesses due to the use of lookup tables. To handle such situations will require explicit vectorisation. The first alternative is to directly program with SIMD intrinsics. The challenge is that different processor architectures may support different intrinsic instruction sets. For example, AMD CPUs currently only support (extended) SSE instructions with 128-bit and 256-bit vector widths [see AMD64 Technology (2021)], whereas high-end Xeon and Xeon Phi processors also support AVX-512 instructions with 512-bit vector width [see Intel (2021)]. On Arm processors, the diversity is even larger with respect to SIMD vectorisation. There are currently three SIMD instruction set architectures applicable: SVE, Neon and Helium [see Arm Intrinsics (2022)]. However, a specific Arm processor may only support one of them. An explicit vectorisation of the ten Tusscher–Panfilov model for IBM A2 CPUs was developed as part of the “Cardioid” monodomain simulator [see Mirin et al. (2012)]. As a second approach to explicit vectorisation, there are high-level wrapper libraries that offer portability and improved programmability. Two such examples are VCL [see Fog (2017; 2022)] and MIPP [see Cassagne et al. (2018); MIPP (2021)]. Both are implemented using C++ and support various SSE and AVX/AVX-512 instructions, whereas the latter also supports Arm Neon instructions. The single-instruction-multiple-thread (SIMT) execution model found on graphics processing units (GPUs), which resembles CPU-based SIMD execution in some respects, has been applied to cardiac cell models [see e.g., Neic et al. (2012); Sachetto Oliveira et al. (2018)].
Using lookup tables is a widely used approach to saving the computational cost of directly evaluating mathematical functions. The different scientific domains that have used this performance enhancing strategy are summarised in a recent publication [see Marsh et al. (2021)], which also discusses a methodology for predicting the speedup due to using lookup tables. For cardiac simulations in particular, the topic of using lookup tables has been addressed in e.g. Cooper et al. (2006); Mirin et al. (2012); Green et al. (2019), where the latter contains a detailed study about the accuracy loss caused by lookup tables.
4.2 Conclusion
We have seen that the largest performance improvement of the ODE solvers arises from using SIMD, and the code vectorisation in this work has been automatically enabled by the compilers. There are two conditions for this “easy” approach. First, some restructurings of a naïve implementation are needed. The most important code restructuring is to re-organise the overall data structure as a “struct of arrays” with padding, see Section 2.3.2. The other code restructurings include swapping the cell–time loop ordering or adding an additional loop level for the ensemble scenario, see Section 2.3.4. Second, appropriate compiler hints are needed inside the source code. We have chosen to use the OpenMP simd construct together with the #pragma omp parallel for directive, as illustrated in Listings 4, 5, 6 and 7. This choice has the benefit of simultaneously enabling SIMD vectorisation and multi-threaded parallelisation, both are essential for achieving the full potential of multi-core CPUs for the ODE solving procedure.
In connection with the compiler-enabled auto-vectorisation, we have presented the necessary compiler options for the different compilers, see Table 3. We have also studied the performance gain (or even loss) due to vectorisation of four frequently used mathematical functions on five hardware testbeds (see Table 4), as well as the appropriate vectorised math libraries to be used. We have found that the relative benefit of using SIMD is correlated with the peak SIMD floating-point throughput of the hardware platform. Moreover, the minor accuracy loss due to using vectorised math libraries can be found in Table 5. It has been shown through actual ODE computations, see Table 9, that the slightly inaccurate vectorised math libraries will not affect the overall accuracy.
The use of lookup tables may interfere with the auto-vectorisation, but we have demonstrated that the two techniques can be used to solve different parts of the cell model, which on some of the target platforms yielded higher performance than using either technique by itself. The decision about whether to use lookup tables is hardware specific. On platforms that only support small vector widths or have no high-quality vectorised math libraries, the speedup potential due to lookup tables can be large. The exact performance benefit, however, depends on the size and resolution of the lookup tables, which may affect the computational accuracy. A direction for future work is to investigate whether explicit vectorisation (using high-level wrapper libraries) can be used to combine SIMD parallelism with lookup tables without partitioning the state variables. In particular, such a combination should be attempted with the help of automated code generation, e.g., inside the modern cardiac simulator openCARP [see Plank et al. (2021); openCARP (2022)].
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In this article, issues of both stability and dissipativity for a type of bidirectional associative memory (BAM) neural systems with time delays are investigated. By using generalized Halanay inequalities and constructing appropriate Lyapunov functionals, some novelty criteria are obtained for the asymptotic stability for BAM neural systems with time delays. Also, without assuming boundedness and differentiability for activation functions, some new sufficient conditions for proving the dissipativity are established by making use of matrix theory and inner product properties. The received conclusions extend and improve some previously known works on these problems for general BAM neural systems. In the end, numerical simulation examples are made to show the availability of the theoretical conclusions.
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1 INTRODUCTION
The BAM neural network model, proposed by Kosko in [1], consists of neurons in two layers, the x-layer and the y-layer. The neurons of the same layer are sufficiently interconnected to the neurons arranged in the other layer, but neurons do not interconnect among the same layer. A useful feature of BAM is its ability to invoke stored pattern pairs in the case of noise. For detailed memory structure and examples of the BAM neural network, please refer to [2]. In recent years, BAM neural systems have received significant attention due to their wide applications in a lot of fields such as pattern recognition, image processing, signal processing, associative memories, optimization problems, and other engineering areas [3–6].
In general, due to the limited switching speed and signal propagation speed of neuron amplifiers, the implementation of a neural network will inevitably have a time delay. We also know that using a delayed version of the neural network is very important to solve some motion-related optimization problems. However, research shows that time delay may lead to divergence, oscillation, and instability, which may be bad for BAM neural systems [7, 8]. Therefore, these applications of the BAM neural systems with delays greatly rely on the dynamical behavior of the neural systems. For these reasons, it is necessary to study the dynamical behavior of the neural systems with delays, and it has been widely studied by a great number of researchers [9, 10].
In the design and analysis of neural networks, stability analysis is a very important and essential link. As small as a specific control system or as large as a social system, financial system, and ecosystem, it is always carried out under various accidental or continuous disturbances. After bearing this kind of interference, it is very important whether the system can keep running or working without losing control or swinging. For neural networks, because the output of the network is a function of time, for a given input, the response of the network may converge to a stable output, oscillate, increase infinitely, or follow a chaotic mode. Therefore, if a neural network system wants to play a role in engineering, it must be stable.
The notion of global dissipativity proposed in the 1970s is a common notion in dynamical systems, and it is applied in the fields of chaos and synchronization theory, stability theory, and robust control and system norm estimation [11–14]. Hence, it is a special and interesting problem to study the dissipativity of dynamical networks. Up to now, the dissipativity for several classes of simple neural networks with delays has begun to attract initial interest in investigation, and some sufficient conditions have been received [15–17]. Yet, to our knowledge, only a few articles have not been used for Lyapunov–Krasovskii functionals or Lyapunov functionals [18–22]. In this study, a few dissipativity conclusions have been received for BAM neural networks with varying delays via inner product properties and matrix theory, which are different from the neural systems’ model investigated in [23, 24].
Inspired by the previous discussion, the global asymptotic stability and dissipativity of BAM neural systems with time delays are investigated. Some new criteria to ensure the dissipation and stability of the BAM neural system are received. Compared with the previous results, our main results are more general and less conservative. The innovations of the study are at least the following aspects.
1) The BAM neural network model studied in this article has a time-varying delay.
2) In our article, the nonlinear activation functions we assumed are not differentiable and bound.
3) In this article, the sufficient conditions for the dissipativity of BAM neural networks with time-varying delay are obtained by using only the inner product property and matrix theory.
4) Moreover, the global attraction sets, namely, positive invariant sets, are obtained.
The structure of the article is organized in the following. The model description and some preliminary knowledge with some necessary definitions and lemmas are given in Section 2. In Section 3, by constructing Lyapunov functionals, we discussed the global asymptotic stability for the equilibrium point of delayed BAM neural systems. Some sufficient criteria are obtained and discussed to guarantee the global dissipativity by using inner product properties in Section 4. Two examples and their simulation conclusions are provided in Section 5. In the end, some results are reached in Section 6.
2 PRELIMINARIES
Notations: In this article, let Rn be a Euclidean space with the inner product [image: image] and the norm [image: image], where [image: image]. The matrix norm is [image: image] for A ∈ Rn×n, where λmax(ATA) denotes the maximum eigenvalue of ATA. λmin(A) denotes the minimum eigenvalue of A. A > 0 denotes that matrix A is symmetric positive definite. E is a unit matrix.
In this article, the model of delayed BAM neural networks is investigated.
[image: image]
for t > 0, [image: image] represents neuron in the first layer at time t, and [image: image] represents neuron in the second layer at time t; A = diag (a1, a2, …, an) and B = diag (b1, b2, …, bn), in which ai > 0 and [image: image] denote passive decay rates, respectively; [image: image] are synaptic connection strengths; [image: image] and [image: image] denote nonlinear activation functions; [image: image] represents the external inputs to the neurons; [image: image] which are required for axonal transmission and neural processing of signals are time delays.
In this study, we considered the following continuous activation functions:
(H1): [image: image], activation functions fj(⋅) and gi(⋅) satisfy fj(0) = gi(0) = 0, and there exist constants lj, mi > 0 such that
[image: image]
Remark 1:. The hypothesis of activation function H1 in this study has been widely used in some references. In particular, when discussing the stability, synchronization, and dissipation of neural networks, H1 is a common assumption. In the study, the activation function is Lipschitz continuous, so it is monotonously increasing. But it may not be differentiable or bounded. However, in [8, 13], the activation function should not only satisfy the hypothesis H1 of this study but also satisfy the boundedness. In [15], the derivative of the activation function also satisfies boundedness. In this study, the activation function only needs to satisfy the hypothesis H1. Compared with [8, 13, 15], the assumption of excitation function in this study is more general.The initial condition of the system (1) is considered as
[image: image]
where [image: image] and φ(s), ψ(s) ∈ C[(− α + t0, t0), Rn].
Definition 1:. [25]. The neural system (1) is globally dissipative if there exists a compact set S ⊆ R2n, such that ∀z0 ∈ S, ∃ T(z0) > 0, when t ≥ t0 + T(z0), z(t, t0, z0) ⊆ S, in which z(t, t0, z0) represents the solution for (1) from initial time t0 and initial state z0. A set S is said to be forward invariant if ∀z0 ∈ S indicates z(t, t0, z0) ⊆ S for t ≥ t0.
Definition 2:. [26]. The point [image: image] with [image: image] is the equilibrium of system (1) if
[image: image]
Lemma 1:. [27]. For every positive k > 0 and every a, b ∈ Rn,
[image: image]
holds, in which X > 0.
Lemma 2:. (Generalized Halanay inequalities) [28]. If V(t) ≥ 0, t ∈ (−∞, + ∞) and
[image: image]
for t ∈ [t0, + ∞), in which γ(t) ≥ 0, η(t) ≥ 0, and ξ(t) ≤ 0 are continuous functions and τ(t) ≥ 0, and there exists α > 0 such that
[image: image]
Then,
[image: image]
where [image: image], and the upper-right Dini derivative [image: image].
3 GLOBAL ASYMPTOTIC STABILITY FOR BAM NEURAL NETWORKS
First of all, under condition (H1), neural system (1) always at least has an equilibrium point. In the following, the asymptotic stability of the equilibrium point will be proved. For simplicity, we transformed the equilibrium point of system (1) to the origin. We assumed that [image: image] is an equilibrium of neural system (1). By the transformation [image: image], one can transform system (1) into the system as follows:
[image: image]
where [image: image], in which [image: image]. Functions fj(⋅), gi(⋅) satisfy the condition (H1); hence, [image: image] satisfy
[image: image]
[image: image]
Remark 2:. It is easy to verify that systems (1) and (2) have the same stability. Therefore, to prove the stability of the equilibrium point z* of the system (1), it is sufficient to prove the stability of the trivial solution of the system (2).
Theorem 1:. Under condition (H1), if there exist positive definite diagonal matrices P = {pi} ∈ Rn×n, N = {ni} ∈ Rn×n and constants ς1, ς2, β1, β2 > 0 such that
[image: image]
[image: image]
where M = diag{m1, …, mn}, L = diag{l1, …, ln}; then the zero solution of neural system (2) is a unique equilibrium point and is globally asymptotically stable. Proof. Now, we chose Lyapunov functional.
[image: image]
Then,
[image: image]
By Lemma 1, we obtained
[image: image]
[image: image]
From Eqs 6, 7, then
[image: image]
This implies that the origin solution of system (2) is asymptotically stable. So the equilibrium point of system (1) is asymptotically stable.
Corollary 1:. Under condition (H1), suppose L = M = E, ς1 = ς2 = β1 = β2 = 1, if there exist positive definite diagonal matrices P = {pi} ∈ Rn×n, N = {ni} ∈ Rn×n such that
[image: image]
[image: image]
then, the origin solution of network (2) is a unique equilibrium point, and it is globally asymptotically stable.
4 GLOBAL DISSIPATIVITY FOR BAM NEURAL NETWORKS
In this part, the global dissipativity for the BAM neural system (1) is considered.
Theorem 2:. Under assumption (H1), suppose [image: image] is a solution of system (1) and
[image: image]
then for any given ɛ > 0, there exists T such that for all t ≥ T
[image: image]
So, network (1) is dissipative, and the closed ball [image: image] is an absorbing set, where [image: image] [image: image]. Proof. The Lyapunov functional should be considered:
[image: image]
Then,
[image: image]
By [image: image], (H1), and Lemma 1, there exists σ1, σ2, σ3, ρ1, ρ2, ρ3 > 0 such that
[image: image]
[image: image]
[image: image]
Similar to Eqs 11–13, then
[image: image]
[image: image]
[image: image]
By using Eqs 11–16 in Eq. 10, it is easy to obtain
[image: image]
Then, by Lemma 2, we obtain
[image: image]
where [image: image].So, for the given sufficient small ɛ > 0, there exists T ≥ 0 such that
[image: image]
where ɛ > 0 is sufficiently small. □
Corollary 2:. If taking δ1, δ2, δ3, ρ1, ρ2, ρ3 = 1, under assumptions (H1), suppose that [image: image] is a solution of network (1) and
[image: image]
then network (1) is dissipative, and the closed ball [image: image] is an absorbing set for any ɛ > 0, where [image: image].
Corollary 3:. Under assumptions (H1), suppose that [image: image] is a solution of network (1), if
[image: image]
and
[image: image]
then system (1) is globally stable, where [image: image][image: image].
Remark 3:. In the existing articles, a lot of researchers studied the qualitative behaviors of neural systems via the Lyapunov function with linear matrix inequality techniques [26, 29, 30]. However, in this article, some new sufficient criteria of dissipativity of BAM neural networks with time delays are given by only using the property of matrix theory and inner product.
5 NUMERICAL SIMULATIONS
In the part, two examples are presented to show the effectiveness.
Example 1. Investigation of the delayed BAM neural network model.
[image: image]
in which [image: image] and [image: image]. Let τ1 = 1, τ1 = 0.9, σ1 = 0.8, σ2 = 0.7, A = B = E, I = J = 0 and
[image: image]
Choose fj(yj) = (|yj + 1| + |yj − 1|)/2, gj(xj) = (|xj + 1| + |xj − 1|)/2, j = 1, 2, l1 = l2 = m1 = m2 = L = M = β1 = β2 = ς1 = ς2 = 1.
By computing, we can get
[image: image]
[image: image]
So, from Theorem 1, network (18) has a unique equilibrium, and it is globally asymptotically stable. By MATLAB, a unique equilibrium of network (18) (0,0,0,0)T is given, and the simulation results are given in Figure 1.
[image: Figure 1]FIGURE 1 | Trajectories of system (18) for [x(0), y(0)]T = (−0.4, 0.5, 0.2, −0.5)T.
Example 2. The BAM neural model with delays is considered as (Eq. 18), where [image: image], [image: image] and x(0) = (−1, 1.5)T, y(0) = (0.8, −1.5)T. Let τ1 = 0.9, τ2 = 0.9, σ1 = 0.8, σ2 = 0.8, A = B = E, I = (1, 0.5)T, J = (2.5, 0.5)T and
[image: image]
Choose fj(yj) = (|yj + 1| + |yj − 1|)/2, gj(xj) = (|xj + 1| + |xj − 1|)/2, j = 1, 2 and l1 = l2 = m1 = m2 = l = m = δ1 = δ2 = δ3 = ρ1 = ρ2 = ρ3 = 1.
By computing, we can get γ = 7.75, ξ(t) = 2.703, η(t) = 1.04. Let α = 4, ɛ = 0.98, it follows from Theorem 2 and is observed that system (18) is global dissipativity. Figures 2, 3 reflect the behaviors for the states x1(t) and x2(t) with different initial conditions. Figures 4, 5 show the phase plane behaviors of y1(t) and y2(t) with different initial conditions. Figures 6, 7 demonstrate the behaviors of the time domain for the states x1(t), x2(t) and y1(t), y2(t) with different initial conditions. System (18) is globally dissipative from the numerical simulations.
[image: Figure 2]FIGURE 2 | Time response of the state variable x1(t) with different initial values.
[image: Figure 3]FIGURE 3 | Time response of the state variable x2(t) with different initial values.
[image: Figure 4]FIGURE 4 | Time response of the state variable y1(t) with different initial values.
[image: Figure 5]FIGURE 5 | Time response of the state variable y2(t) with different initial values.
[image: Figure 6]FIGURE 6 | Time response of the state variable x1(t) and x2(t) with different initial values.
[image: Figure 7]FIGURE 7 | Time response of the state variable y1(t) and y2(t) with different initial values.
Remark 4. : In the numerical simulation part of [13], the author only gives the simulation diagram of the BAM neural network model with one node. This article presents the simulation diagram of the BAM neural network model with two nodes. Moreover, in [13], the values of σ(t) and τ(t) are all 1, while the values of σ1(t), σ2(t), τ1(t), and τ2(t) in this study are different. Therefore, in numerical simulation, this study is more general in the value of the model and time delay. In addition, the unique equilibrium point (0,0,0,0)T of the system (18) is obtained by MATLAB. Figure 1 shows an image which is globally asymptotically stable of the system (18) under initial conditions [image: image]. Figures 2–5 show the state diagram of x1(t), x2(t), y1(t), and y2(t) under different initial conditions with respect to time t. Figures 6, 7 show the state diagrams of x1(t), x2(t) and y1(t), y2(t) under different initial conditions with respect to time t. The previous figures given in this study can more intuitively reflect the stability and dissipation of the BAM neural network model.
6 CONCLUSION
In this study, by using matrix theory, inner product properties, generalized Halanay inequalities, and constructing appropriate Lyapunov functionals, novel sufficient criteria of the global asymptotic stability of the system and the global dissipativity of the equilibrium point have been derived for a type of BAM neural systems with delays. The given results might have an impact on investigating the instability, the existence of periodic solutions, and the stability of BAM neural networks. A comparison between the results and the correspondingly previous works implies that the derived criteria are less conservative and more general through numerical simulations.
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In this paper, we numerically investigate two distinct phenomena, coherence resonance (CR) and self-induced stochastic resonance (SISR), in multiplex neural networks in the presence of spike-timing-dependent plasticity (STDP). The high degree of CR achieved in one layer network turns out to be more robust than that of SISR against variations in the network topology and the STDP parameters. This behavior is the opposite of the one presented by Yamakou and Jost (Phys. Rev. E 100, 022313, 2019), where SISR is more robust than CR against variations in the network parameters but in the absence of STDP. Moreover, the degree of SISR in one layer network increases with a decreasing (increasing) depression temporal window (potentiation adjusting rate) of STDP. However, the poor degree of SISR in one layer network can be significantly enhanced by multiplexing this layer with another one exhibiting a high degree of CR or SISR and suitable inter-layer STDP parameter values. In addition, for all inter-layer STDP parameter values, the enhancement strategy of SISR based on the occurrence of SISR outperforms the one based on CR. Finally, the optimal enhancement strategy of SISR based on the occurrence of SISR (CR) occurs via long-term potentiation (long-term depression) of the inter-layer synaptic weights.
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1 INTRODUCTION
Spiking activity in neural systems can be induced and affected by noise, which can be internally produced by the system itself and/or externally by processes acting on the system. The sources of neural noise include 1) synaptic noise, which is externally produced, and is caused by the quasi-random release of neurotransmitters by synapses and/or random synaptic input from other neurons, and 2) channel noise, which is internally produced and comes from the random switching of ion channels [47, 49]. Synaptic and channel noise have been found to give rise to peculiar dynamical behavior in neural networks, including various resonance phenomena. The most prominent forms of these noise-induced resonance phenomena include: stochastic resonance (SR) [3, 28], coherence resonance (CR) [36], self-induced stochastic resonance (SISR) [10, 34], and inverse stochastic resonance (ISR) [18, 42]. The emergence and the dynamics of SR, CR, SISR, and ISR are quite different from each other, and therefore, they have mostly been separately investigated in previous research works. It might nevertheless be possible that fundamental relationships exist between some or even all of these noise-induced resonances and that efficient enhancement schemes for information processing could emerge from their co-existence in a neural network. Some research works have shown intriguing results about the interplay between some of these noise-induced resonance phenomena. The bifurcation and stochastic analysis in [48] revealed that the parameter that changes the relative geometric positioning (and stability) of the fixed point (the quiescent state of the neuron) with respect to the fold point of the cubic nullcline of the FitzHugh-Nagumo (FHN) model [11] can cause a switch between SISR and ISR in the same synaptic weak-noise limit. Experiments have frequently shown that real biological neurons with similar physiological features, excited by identical stimuli, may spike quite differently, thus expressing different neuro-computational properties [40]. The analysis presented in [48] may, therefore, provide a qualitative explanation for this particular behavior. Zamani et al. [51] later showed a similar behavior between SR and ISR in a minimal bistable spiking neural circuit, where both mechanisms could co-exist under careful preparations of the neural circuit. Whether and if so, how all of these different types of noise-induced resonance mechanisms are related and what efficient enhancement schemes for information processing emerge from their interactions is far from being completely understood.
In this paper, CR and SISR will be the phenomena of interest. In fact, in both CR and SISR, small random perturbations of an excitable neural system with a large time scale separation ratio may lead to the emergence of coherent spiking activity. The mechanisms behind these noise-induced resonance phenomena, however, are entirely different, see [10]. CR [36] occurs when a maximal degree of regularity in the neuron’s spiking activity is achieved at an optimal noise intensity without a periodic input signal, provided the neuron’s bifurcation parameters are tuned near the Hopf bifurcation [25, 26, 36] or the saddle-node bifurcation [17, 19, 20, 27] threshold. In this case, a relatively small noise amplitude can easily (without overwhelming the entire dynamics) drive the neuron towards a coherent spiking activity that emerges right after the bifurcation threshold. Thus, during CR, noise plays a relatively passive role. In the FitzHugh-Nagumo neuron model (that will be used in this work), CR requires that the noise source is attached to the slow recovery variable—mimicking the dynamics of channel noise [10].
SISR, on the other hand, occurs when a vanishingly small noise intensity perturbing the fast variable of an excitable system results in the onset of a limit cycle behavior that is absent without noise [34]. SISR combines a coherence resonance-type mechanism with an intrinsic reset mechanism, and no external periodic driving is required. The period of the coherent oscillations created by the noise has a non-trivial dependence on the noise intensity and the timescale between the fast variable and slow variable of the excitable system. SISR essentially depends on the interplay between three different timescales: the two timescales of the deterministic part of the excitable system (i.e., the fast and slow timescale of the fast and slow variable, respectively), plus a third timescale characteristic of the noise, which plays an active role in the mechanism of SISR, in contrast to CR. Thus, the mechanism behind SISR is different from that of CR (see [10]), and remarkably, it can also occur away from bifurcation thresholds in a parameter regime where the zero-noise (deterministic) dynamics do not display a limit cycle nor even its precursor. The properties of the limit cycle that SISR induces are controlled by both the noise intensity and the time scale separation ratio. Moreover, unlike CR, SISR requires a strong timescale separation ratio between the variables of the excitable system. In the FitzHugh-Nagumo neuron model, SISR (in contrast to CR) requires that the noise source is attached to the fast membrane potential variable—mimicking the dynamics of synaptic noise [10].
Of course, it is worth pointing out that a neuron can have both channel and synaptic noise simultaneously. In this case, CR and SISR will compete with each other. The dominant phenomenon will correspond to the one whose conditions are met first. It is shown in [10, 34] that SISR will dominate CR because the oscillations due to SISR are contained in those of CR. Thus, the conditions necessary for SISR can always be met first. In the current work, we shall not consider the situations where we have both channel and synaptic noise in a given layer. Just one type of noise will be considered in a given layer, and thus the competition between CR and SISR in a given layer will also not be considered.
The characteristic features of CR and SISR based on (1) time-delayed feedback couplings and network topology [1, 15, 30], 2) the multiplexing of layer networks [6, 31, 39, 46, 50], and 3) the use of one type of noise-induced resonance mechanism to optimize another type [50] have been established. It has been shown that appropriate selection of the time-delayed feedback parameters of FHN neurons coupled in a ring network can modulate CR: with a local coupling topology, synaptic time delay weakens CR, while in cases of non-local and global coupling, only appropriate synaptic time delays can strengthen or weaken CR [1, 15, 30, 38]. The enhancement of CR and SISR in neural systems with multiplex layer networks has recently attracted attention. In a multiplex network [5], the nodes participate in several networks simultaneously, and the connections and interaction patterns are different in the different networks, although the nodes preserve their identities across the different networks or layers. Since there may exist different types of relations between neurons or brain regions, multiplex networks have also been proposed as neurophysiological models [8]. For instance, functional couplings, like synchronization, between brain regions can be realized in different frequency bands. And each such frequency band can process a different type of information, for instance in language processing, phonetic, semantic and prosodic information [13]. But the main purpose of our paper is a formal investigation of the interplay between different types of stochastic resonance in a model where the individual units follow FHN dynamics, as FHN has become a paradigmatic model system for nonlinear dynamics [24] where many features can be studied in rather explicit terms.
In particular, the enhancement of CR in one layer of a multiplex network of FHN neurons based on the occurrence of SISR in another layer was established in [50]. In this case, two enhancement schemes for CR were compared: In one scheme (CR-CR scheme), one layer of the multiplex network is configured so that CR is optimal and the other layer configured so that CR is non-optimal in isolation. In the other scheme (SISR-CR scheme), one layer of the multiplex network is configured so that SISR is optimal, and the other layer is configured so that CR is non-optimal in isolation. It was then shown that depending on which optimal resonance mechanism (CR or SISR) we had in one layer of the multiplex network, the best enhancement of CR in the other layer would depend on the multiplexing time delay and strength between the two layers. With weaker multiplexing strength and shorter time delays between the layers, the CR-CR scheme performs better than the SISR-CR scheme. But with stronger multiplexing connections, the SISR-CR scheme outperforms the CR-CR scheme, especially at weaker noise amplitudes and longer multiplexing time delays. This result suggests that the interactions between different noise-induced resonance mechanisms in neural networks could open up new possibilities for control and enhancement of information processing. These enhancement schemes could allow us to enhance information processing in neural networks more efficiently, using the interplay between different noise-induced resonance mechanisms and the multiplexing of layer networks. Enhancement schemes based on multiplexing (or, in general, on connecting several layers to form a multilayer network) are advantageous because the dynamics of one layer can be controlled by adjusting the parameters of another layer. So far, the enhancement of CR and SISR based on the multiplexing of neural layer networks has been established only in regular networks in the absence of STDP [6, 31, 39, 46, 50].
Adaptive (or learning) rules in biological neural networks have been linked to an important mechanism, namely, spike-timing-dependent plasticity (STDP) [16, 29]. STDP describes how the synaptic weights get modified by repeated pairings of pre-and postsynaptic action potentials (spikes) with the sign and the degree of the modification dependent on the relative timing of the firing of neurons. Depending on the precise timing of pre-and postsynaptic action potentials, the synaptic weights can exhibit long-term potentiation (LTP, i.e., persistent strengthening of synapses) or long-term depression (LTD, i.e., persistent weakening of synapses). There are two main types of STDP—Hebbian excitatory STDP (eSTDP) and anti-Hebbian inhibitory STDP (iSTDP). In this paper, we will focus only on eSTDP.
The ubiquity and importance of STDP in neural dynamics require us to investigate the enhancement of CR and SISR in adaptive neural networks driven by STDP. Such an investigation should be instrumental both theoretically and experimentally. Some previous works have shown the crucial role of adaptivity in network of coupled oscillators. For example, in [2] it is shown that the plasticity of the connections between oscillators plays a facilitatory role for inverse stochastic resonance (ISR), where adaptive couplings guide the dynamics of coupled oscillators to parameter domains in which noise effectively enhances ISR. In [12], it is shown how the interaction of noise and multiscale dynamics, induced by slowly adapting feedback, may affect an excitable system, giving rise to a new mode of behavior based on switching dynamics which allows for an efficient control of the properties of CR.
In the current work, the main questions we want to address are the following: 1) How do network topology and STDP parameters affect the degree of coherence due to CR and SISR? 2) In the presence of STDP, which of these noise-induced resonance phenomena is more robust to parametric perturbations? 3) In the presence of STDP, is an enhancement of the less robust phenomenon in an isolated layer network still possible via multiplexing? 4) Can the occurrence of one resonance phenomenon in one layer be used to enhance the other phenomenon in another layer in the presence of STDP? 5) If the answers to the previous questions are affirmative, then what behavior (LTP or LTD) of the STDP learning rule optimizes the multiplexing enhancement strategy?
Here is an outline of the remainder of this article: In Section 2, we present the mathematical model of the stochastic neural networks and give a brief description of the STDP learning rule and the dynamical differences in the emergent nature of the two noise-induced resonance phenomena that are of interest. In Section 3, we present the numerical methods used in our numerical simulations. In Section 3.1, we discuss the results of the dynamics of CR and SISR in isolated layer networks. In Section 3.2, we discuss the results of the enhancement of SISR using the multiplexing technique. Finally, we summarize our findings and conclude in Section 4.
2 MATHEMATICAL MODEL
We consider the following two-layer multiplex network, where each layer represents a network of N diffusively coupled FHN neurons in the excitable regime and the presence of noise:
[image: image]
[image: image] and [image: image] represent the fast membrane potential variables and the slow recovery current variables in the first layer, respectively. Similarly, [image: image] and [image: image], respectively represent the membrane potential and recovery current variables for the neurons in the second layer. The index i = 1, … , N stands for the ith neuron in the network of N neurons. 0 < ɛ1 ≪ 1 and 0 < ɛ2 ≪ 1 are the time-scale separation ratios between the fast membrane potential and the slow recovery current variables in the first and second layers, respectively. γ1 > 0 and γ2 > 0 are co-dimension-one Hopf bifurcation parameters in each of the layers and thus define the excitability threshold. α ∈ (0, 1) is a constant parameter. σ1W1i is the uncorrelated Gaussian white noise with standard deviation σ1, and similarly for [image: image], and [image: image]. σ1W1i and [image: image] which are attached to the fast membrane potential variables should be interpreted as representing synaptic noise sources, while σ2W2i and [image: image] which are attached to the slow recovery variables both represent channel noise sources.
The terms [image: image], [image: image], [image: image], and [image: image] in Eq. 1 represent synaptic currents (modelled by diffusive electrical couplings) and also govern the STDP learning rule between connected neurons. We point out that we are using adaptive (based on STDP) electrical synapses so that we can directly compare our results to those in [50] where non-adaptive electrical synapses are used to study CR and SISR. The intra-layer synaptic currents [image: image] and [image: image] of the ith neuron in the layer 1 and layer 2 at time t are respectively given by
[image: image]
where the synaptic connectivity matrices [image: image] and [image: image] of the layer 1 and layer 2, respectively, have [image: image] if the neuron j is pre-synaptic to the neuron i; otherwise, [image: image]. The synaptic connections in each layer, represented by the connectivity matrices A1 and A2, are modeled in terms of the time-invariant Watts-Strogatz small-world network [41, 43, 44], where the in-degree of the ith neuron in the ℓth layer (i.e., the number of synaptic inputs to the neuron i in layer ℓ) is given by [image: image], (ℓ = 1, 2). The intra-layer time delays of the electric synaptic coupling in layer 1 and layer 2 are represented by τ1 and τ2, respectively.
The inter-layer synaptic currents [image: image] and [image: image] (which we shall also sometimes refer to as multiplexing currents) of the ith neuron in layer 1 and layer 2 at time t are respectively given by
[image: image]
where τ12 represents the multiplexing (inter-layer) time delay of the electrical synaptic coupling between layer 1 and layer 2. With increasing time t, the intra-layer synaptic strengths [image: image] and [image: image], and the multiplexing (inter-layer) synaptic strength [image: image] for each synapse are updated with a nearest-spike pair-based STDP rule [33]. To prevent unbounded growth, negative conductances (i.e., negative coupling strength) and elimination of synapses (i.e., [image: image]), we set a range with the lower and upper bounds: [image: image]. The initial intra-layer synaptic weights (i.e., [image: image] and [image: image]), are normally distributed with mean and standard deviation equal to 0.1 and 0.02, respectively. And each of the N initial inter-layer synaptic weights [image: image] is uniformly distributed in the interval [0.0001, 1]. They are updated according to the rule
[image: image]
The intra-layer synaptic modifications [image: image] and [image: image] depend on the relative time difference [image: image] [image: image] between the nearest-spike times of the post-synaptic neuron i and the pre-synaptic neuron j. The inter-layer synaptic modification [image: image] depends on the relative time difference [image: image] between the nearest-spike times of the ith post-synaptic neuron in layer 2 and the ith pre-synaptic neuron in layer 1. The parameter λ represents the learning rate. It was found that small learning rates lead to more robust learning [32]. Hence, in this work, we choose a small learning rate (i.e., λ = 0.0001) which, by the way, also simulates the effect of STDP on the long-term evolution of a neural network [37]. In the numerical simulations, we will consider eSTDP with an asymmetric Hebbian time window for the synaptic modifications given by [4, 22]:
[image: image]
where LTP occurs if [image: image], [image: image], and [image: image] (i.e., a post-synaptic spike follows a pre-synaptic spike); LTD if [image: image], [image: image], and [image: image] (i.e., a post-synaptic spike precedes a pre-synaptic spike); and no synaptic modification if [image: image]. In Eq. 5, P1, P2, and P12 (D1, D2, and D12) represent the potentiation (depression) adjusting rate parameters in layer 1, layer 2, and between layer 1 and 2, respectively. And τ1p, τ2p, and τ12p (τ1d, τ2d, and τ12d) represent the potentiation (depression) temporal window parameters in layer 1, layer 2, and between layer 1 and 2, respectively. The amount of synaptic modification (i.e., strengthening or weakening) is controlled by the adjusting rate parameters P1, P2, P12, D1, D2, and D12, while the time window for the synaptic modification is controlled by τ1p, τ2p, τ12p, τ1d, τ2d, and τ12d.
Experimental investigations [7, 9, 14, 45, 52] have shown that for a fixed stimulus, D1τ1d > P1τ1p ensures dominant depression of synapses, otherwise (i.e., D1τ1d ≤ P1τ1p) dominant potentiation. In Figures 1A,B, we show the asymmetric Hebbian time window for the synaptic modification [image: image] given by Eq. 5 ([image: image] and [image: image] have the same behavior). We see that [image: image] varies, depending on the relative time difference [image: image] between the nearest spike times of the post-synaptic neuron i and the pre-synaptic neuron j. In Figure 1A, for a fixed value of D1 (= 0.5), τ1d (= 20), and τ1p (= 20), we show the effects of P1 on LTP and LTD. In Figure 1B, for a fixed value of D1 (= 0.5), τ1(= 20), and P1 (= 0.5), we show the effects of τ1d on LTP and LTD. In the same way, fixing P1 and τ1d and varying D1 and τ1p show similar effects on LTD and LTP. Thus, for a particular noise intensity, when we fix parameter values of D1 and τ1p, the inequality D1τ1d > P1τ1p (D1τ1d ≤ P1τ1p) can switch from LTD (LTP) to LTP (LTD) by changing the values of the parameters P1 and τ1d. Hence, the synapses can exhibit LTD and LTP if we vary only two parameters (i.e., P1 and τ1d or D1 and τ1p) and keep the other two constant. Therefore, throughout our studies, we fix the depression adjusting rate parameter at D1 = 0.5 and the potentiation temporal window parameter at τ1p = 20, and choose the potentiation adjusting rate parameter P1 ∈ [0.1, 1] and the depression temporal window parameter τ1d ∈ [0.2, 30] as the alterable (control) parameters of the eSTDP learning rule.
[image: Figure 1]FIGURE 1 | Time windows for an asymmetric Hebbian eSTDP learning rule. Plot of synaptic modification [image: image] versus [image: image]. [image: image] and [image: image] are spiking times of the ith post-synaptic and the jth pre-synaptic neurons, respectively. The blue and magenta curves represent LTP, while the red and cyan curves represents LTD. Th effects of P1 and τ1d on LTD and LTP are indicated in panels (A) and (B), respectively. The other eSTDP parameters are fixed at: D1 = 0.5, τ1p = 20.
3 NUMERICAL RESULTS
To quantify the degree of SISR (i.e., the degree of coherence of the spiking activity induced by the mechanism of SISR), we use the normalized standard deviation of the mean interspike interval, commonly known as the coefficient of variation [36]. Because the coefficient of variation is based on the time intervals between spikes, it does relate to the timing precision of information processing in neural systems [35] and naturally becomes an essential statistical measure in neural coding. The coefficient of variation (CV) of N coupled neurons is defined as [30]:
[image: image]
where
[image: image]
⟨ISIi⟩ and [image: image] are respectively the mean and the mean squared (over time) inter-spike intervals (ISI) of the ith neuron (i.e., [image: image], where [image: image] and [image: image] two consecutive spike times bounding the mth interval). We determine the spike occurrence times by the upward crossing of the membrane potential variable vℓi past the spike detection threshold of vth = 0.0. If CV = 1, we get a Poissonian spike train (rare and incoherent spiking). If CV < 1, the spike sequence becomes more regular, and CV vanishes for periodic deterministic spikes. CV > 1 corresponds to a spike point process that is more variable than a Poisson process. Thus, a neural network undergoing a high degree of CR or SISR will show a pronounced minimum in the values of CV [36].
For our investigations, we numerically integrate the set of stochastic differential equations in Eq. 1 with the Hebbian eSTDP rule of Eq. 4 by using the fourth-order Runge-Kutta algorithm for stochastic processes [21] and the Box-Muller algorithm [23]. The integration time step is fixed at dt = 0.01 for a total time of T = 1.0, ×, 106 unit. Averages are taken over 20 different realizations of the initial conditions. For each realization, we choose random initial points [vℓi (0), wℓi (0)] for the ith neuron in the ℓth layer with uniform probability in the range of vℓi (0) ∈ (−2, 2) and wℓi (0) ∈ (−2/3, 2/3). The initial synaptic weights [image: image], and [image: image] are normally distributed with mean and standard deviation equal to 0.1 and 0.02, respectively. Furthermore, in our simulations, we use small-world networks generated by the Watts-Strogatz algorithm [41, 43, 44]. The average degree ⟨sℓ⟩ and the rewiring probability βℓ ∈ [0, 1] will be taken as the network parameters to control the degrees of CR and SISR. We note that in the context of small-world networks with rewiring probability βℓ ∈ (0, 1), it is possible to interpolate between a regular ring network by setting βℓ = 0 and a random network by setting βℓ = 1 in the Watts-Strogatz algorithm.
Following the work in [10, 50], we note that while CR and SISR generally require an excitable regime (achieved by fixing γ1 = γ2 = 0.75) for their occurrence, for the particular case of the FHN neuron model, the occurrence of CR requires the presence of only channel noise. Thus, when investigating CR in a given layer of Eq. 1, we will set all synaptic noises to zero (i.e., [image: image]) in that layer. Secondly, because the CR has been shown [10] to be rather insensitive against variations of the timescale separation ratio, we will fix these parameters at the standard and most commonly used value ɛℓ = 0.01, (ℓ = 1, 2) in the layer in which we investigate CR. On the other hand, the occurrence of SISR in a given layer network of Eq. 1 requires 1) presence of only synaptic noise, and thus, when investigating SISR in a given layer, we will set all channel noises to zero (i.e., [image: image]) in that layer, and 2) a stronger timescale separation ratio between the fast and slow variables of the FHN model. Thus, we will set ɛℓ = 0.001 (ℓ = 1, 2) in the layer in which we investigate SISR—a much smaller value than for CR. The constant parameter α ∈ (0, 1) is fixed at 0.5 throughout our simulations.
3.1 Optimal CR and SISR in an Isolated Layer
Before investigating the dynamics of CR and SISR in the multiplex network of Eq. 1, we should first understand their dynamics in an isolated layer network. Thus, this subsection is devoted to the investigation of CR and SISR in a single isolated layer of Eq. 1. We present the numerical results on the dynamics of CR and SISR in terms of the network parameters (i.e., the average degree ⟨s1⟩, the rewiring probability β1, and the intra-layer time delay τ1) and the parameters of the eSTDP learning rule (i.e., the potentiation adjusting rate P1 and depression temporal window τ1d) in layer 1 of Eq. 1.
3.1.1 With respect to Network Parameters: ⟨s1⟩, β1, τ1
The average number of synaptic inputs per neuron (i.e., the average degree connectivity) in layer 1 is given by [image: image], where the in-degree of the ith neuron in layer 1 (i.e., the number of synaptic inputs to the neuron i in layer 1) is given by [image: image]. The higher (lower) the value of ⟨s1⟩, the denser (sparser) the network in layer 1. The rewiring probability β1 of layer 1, satisfying 0 ≤ β1 ≤ 1, reflects the degree of randomness in the network. The network is 1) regular for β1 = 0 with a high clustering high mean geodesic distance between neurons, 2) random for β1 = 1 with a low clustering and low mean geodesic distance between neurons, and 3) small-world for β1 ∈ (0, 1) with a relatively high clustering but low mean geodesic distance between neurons. The time delay τ1 between the signal transfer between any pair of connected neurons originates from the finite transmission speed of the neural signal along the axon pre-synaptic neuron.
Figures 2A,B depicts the variation in the degree of CR in layer 1 (in isolation) of Eq. 1. We show the variation of CV as a function of the channel noise intensity σ2 (with σ1 = 0) and the average degree ⟨s1⟩ of this layer. In these panels, CR is characterized by a family of non-monotonic CV curves as a function of the noise intensity σ2. Panels A and B also indicate that the phenomenon of CR is robust to changes in the average degree of the network connectivity ⟨s1⟩. As ⟨s1⟩ increases, the minimum of the CV curves (taking the value CVmin = 0.1108 at σ2 = 7.3 × 10–6) does not change. However, when the network is very sparse, i.e., when ⟨s1⟩ = 1, we can see that the green line in Figure 2A extends a little more to the left compared to the denser network configurations. This indicates that when ⟨s1⟩ = 1, a relatively weaker noise intensity can enhance the degree of CR. Therefore, in the rest of our simulations, to have the best degree of CR while also allowing the network to have a small-world topology, we will fix the average degree of the layer networks at ⟨s1⟩ = 2.
[image: Figure 2]FIGURE 2 | Variation of CV w.r.t. the average degree ⟨s1⟩ and the noise intensity σ2 for CR or σ1 for SISR. Panels (A) and (B) show CR characterized by a family of non-monotonic CV curves w.r.t. σ2 (σ1 = 0) at ɛ1 = 0.01. Panels (C) and (D) show SISR characterized by a family of non-monotonic CV curves w.r.t. σ1 (σ2 = 0) at ɛ1 = 0.001. In both phenomena, the other parameters of the layer 1 are fixed at: β1 = 0.1, τ1 = 1, P1 = 0.1, τ1d = 20, D1 = 0.5, τ1p = 20, N = 50.
Figures 2C,D show the variation in the degree of SISR in layer 1 (in isolation) of Eq. 1. In this case, we switched on the synaptic noise intensity σ1 (and turned off the channel noise, i.e., σ2 = 0), decreased the timescale separation parameter from ɛ = 0.01 to ɛ = 0.001, and kept the rest of the parameters at the same values as in Figures 2A,B. In contrast to CR, SISR is sensitive to changes in the average degree parameter ⟨s1⟩. In particular, when the network is very sparse, i.e., when ⟨s1⟩ = 1, the degree of SISR becomes significantly lower, with a minimum value of the CV curve around CVmin = 0.4 for a wide range of the noise intensity, i.e., σ1 ∈ (3.7 × 10–7; 1.9, ×, 10–2). As the network becomes denser, i.e., ⟨s1⟩ increases, the degree of SISR also increases with the minimum value of the CV curves occurring at CVmin ≈ 0.1903 for σ1 ∈ (3.7 × 10–7; 1.9, ×, 10–2). Thus, in the rest of our simulations, to have a high (low) degree of SISR, we will fix the average degree of the layer networks at ⟨s1⟩ = 10 (⟨s1⟩ = 1), in contrast to CR.
Interestingly, in Figure 2, we see that the best degree of coherence is higher for CR (with CVmin = 0.1108) than for SISR (with (CVmin ≈ 0.1903). In previous work [50], where we investigated CR and SISR in one isolated layer of Eq. 1 in the absence of STDP, the opposite behavior occurs, i.e., SISR produces a higher degree of coherence (with CVmin = 0.012) than CR (with CVmin = 0.130), when all the other parameters are at their optimal values. This means that in the presence (absence) of STDP, the degree of coherence due to CR (SISR) is higher than that of SISR (CR). Furthermore, while the degree of CR is higher than that of SISR, the range of values of the noise intensity in which the degree of CR is high is significantly smaller than that of SISR. This is explained by the fact that high coherence due to SISR emerges due to the asymptotic matching of the deterministic and stochastic timescales. While the high coherence due to CR emerges as a result of the proximity to the Hopf bifurcation [10, 50]. Figures 2C,D indicate that this matching of timescales occurs for a wider range of values of the synaptic noise intensity (with flat-bottom CV curves), hence the larger interval for coherence. On the other hand, Figures 2A,B show a smaller interval of the channel noise intensity in which the degree CR is highest. In this case, the noise intensity has to be just right (not too weak or strong) to let the systems oscillate between the excitable and the oscillatory regimes via a noise-induced Hopf bifurcation, leading to the emergence of a limit cycle behavior (i.e., noise-induced coherent oscillations). The noise channel noise should not be too weak so that the systems do not stay for too long in the excitable regime, thereby destroying the coherence. Nor should it be too strong to overwhelm the entire oscillations in the oscillatory regime, hence the relatively smaller noise interval for the highest coherence in the case of CR.
Figures 3A,B depict the variation in the degree of CR in layer 1 (in isolation) of Eq. 1 as a function of the channel noise intensity σ2 and the network rewiring probability β1 at an optimal value of the average degree (i.e., ⟨s1⟩ = 1) chosen from Figure 2A. The other parameters are kept fixed at the values given in Figure 2. From Figures 3A,B, we notice that variations in the rewiring probability do not destroy the high degree of CR. Here the minimum of the CV curves remain very low. However, we can observe that when the network is regular, i. e, when β1 = 0.0, the minimum of the CV curve (see, e.g., the green curve in Figure 3A) is noticeably lower than when we have small-world (with β1 ∈ (0, 1)) and the random network (with β1 = 1) topology. Nevertheless, because in this work we are interested in non-regular networks (i.e., β1 ∈ (0, 1]), we will fix β1 to a very low, but non-zero value (i.e., β1 = 0.1) to have a high degree of CR in a small-world network. Hence, in the rest of our simulations, to have the best degree of CR in our small-world network, we will fix the rewiring probability of the layer networks at β1 = 0.1.
[image: Figure 3]FIGURE 3 | Variation of CV w.r.t. the wiring probability β1 and the noise intensity σ1 for SISR or σ2 for CR. Panels (A) and (b) show the CV curves due to CR (σ1 = 0, ɛ1 = 0.01, ⟨s1⟩ = 2). Panels (C) and (D) show the CV curves due to SISR (σ2 = 0, ɛ1 = 0.001, ⟨s1⟩ = 10). In both phenomena, the other parameters are fixed at: τ1 = 1, P1 = 0.1, τ1d = 20, D1 = 0.5, τ1p = 20, N = 50.
Figures 3C,D show the variation in the degree of SISR in layer 1 (in isolation) of Eq. 1 as a function of the synaptic noise intensity σ1 and the network rewiring probability β1 at the optimal value of the average degree (i.e., ⟨s1⟩ = 10) chosen from Figure 2C. The rest of the parameter values are the same as in Figures 3A,B. We observe again that the degree of SISR is more sensitive to changes in the parameter β1 than the degree of CR. Furthermore, we observe that varying the rewiring probability β1 has the opposite effect on the degree of SISR compared to its effect on the degree of CR. The more regular the network is (see, e.g., the red curve in Figure 3C), the higher the CV curve and hence the lower the degree of SISR. Thus, in the rest of our simulations, to have the best degree of SISR in our network, we will fix the rewiring probability of the layer networks at β1 = 1 (see the green curve in Figure 3C).
Figures 4A,B depict the variation in the degree of CR in layer 1 (in isolation) of Eq. 1 as a function of channel noise intensity σ2 and the intra-layer time delay τ1 of the network, at an optimal value of the average degree (i.e., ⟨s1⟩ = 2) and the network rewiring probability (i.e., β1 = 0.1) chosen from Figure 2A and Figure 3A, respectively. Again we notice, from the low values of the minimum of the CV curves, the robustness of the degree of CR to variations of a network parameter, i.e., τ1. Nonetheless, with the low degree of CR, we can still observe that when the synaptic connections between the neurons are instantaneous (i.e., when τ1 = 0), the CV curve (see the green curve in) is slightly lower than the rest of the curves. Further increase in the time delay does not affect the degree of CR. In the rest of the simulations, to have the best degree of CR in our network, we will fix the intra-layer time delay at a low but non-zero value, i.e., at τ1 = 1.
[image: Figure 4]FIGURE 4 | Variation of CV w.r.t. the time delay τ1 and noise intensity σ1 for SISR or σ2 for CR. Panels (A) and (B) show the CV curves due to CR (σ1 = 0, ɛ1 = 0.01, ⟨s1⟩ = 2). Panels (C) and (D) show the CV curves due to SISR (σ2 = 0, ɛ1 = 0.001, ⟨s1⟩ = 10). In both phenomena, the other parameters are fixed at: τ1 = 1, P1 = 0.1, τ1d = 20, D1 = 0.5, τ1p = 20, N = 50.
Figures 4C,D show the variation in the degree of SISR in layer 1 (in isolation) of Eq. 1 as a function of synaptic noise intensity σ1 and the intra-layer time delay τ1 at an optimal value of the average degree (i.e., ⟨s1⟩ = 10) and the network rewiring probability (i.e., β1 = 1) chosen from Figure 2C and Figure 3C, respectively. We observe that the degree of SISR is again more sensitive to parametric perturbations than the degree CR. Moreover, the variation in the degree of SISR as a function of the intra-layer time delay τ1 is not linear and significantly depends on values of the synaptic noise σ1. In Figure 4A, for τ1 = 0.0, we have CV values which are higher and lower than those at τ1 = 1,000 and τ1 = 500, respectively. Thus, in the rest of the simulations, to have the best degree of SISR in our network, we will fix the intra-layer time delay at τ1 = 1,000.
3.1.2 With respect to STDP Parameters: P1, τ1d
Using the insight from the previous section on the effects of each network parameter (i.e., ⟨s1⟩, β1, and τ1) on the degree of CR and SISR, we now investigate the effects of STDP on the degree of CR and SISR by varying the parameters P1 of the potentiation adjusting rate and τ1d of the depression temporal window. To do this, we first note that the results in Figures 2–4 are obtained when the parameters of STDP (i.e., P1 and τ1d) are kept fixed at the values indicated in the captions. So in the sequel, we fix the network parameters at their non-optimal values, i.e., at values at which each phenomenon produces the lowest degree of coherence. Then, we vary the parameters (P1 and τ1d) of the STDP learning rule in layer 1.
Extensive numerical simulations (not shown) have indicated that the variations in the degree of CR and SISR with respect to P1 and τ1d are higher at the corresponding optimal network parameter values indicated in Figures 2–4 than at the non-optimal network parameter values. Qualitatively, however, the variations in the degrees of both phenomena are essentially the same when we have optimal or non-optimal network parameter values. Because we are interested in the highest degree of CR and SISR, we present the results on the effects of STDP on the degree of CR and SISR when the network parameters are non-optimal. We will then investigate the enhancement strategies of the degree of each phenomenon using the multiplexing technique.
In Figures 5A,B, we show the variations in degree of CR and SISR in layer 1 (in isolation) of Eq. 1 as a function of the channel (σ2) and synaptic (σ1) noise intensity and the potentiation adjusting rate parameter P1 at corresponding non-optimal values of the network parameters, respectively. Figure 5A shows that the higher (compared to the degree of coherence induced by SISR in Figure 5B) degree of coherence induced CR is more (compared to the robustness of the coherence induced by SISR in Figure 5B) robust to variations in the potentiation adjusting rate parameter P1. Even though the lowest CV values for each value of P1 are relatively close to each other, we have the lowest (highest) CVmin = 0.1363 (CVmin = 0.1804) occurring at P1 = 0.1 (P1 = 1). For SISR, we the lowest (highest) CVmin = 0.2009 (CVmin = 0.2588) occurs at P1 = 0.1 (P1 = 1).
[image: Figure 5]FIGURE 5 | Variation of CV w.r.t. the potentiation adjusting rate P1, depression temporal window τ1d, and the noise intensity σ1 or σ2, with the corresponding non-optimal network parameter values. Panel (A) and (B) show the values of CV during CR (σ1 = 0, ɛ1 = 0.01, ⟨s1⟩ = 10, β = 1, τ1 = 100, τ1d = 20) and during SISR (σ2 = 0, ɛ1 = 0.001, ⟨s1⟩ = 1, β = 0.1 τ1 = 600, τ1d = 20). Panel (C) and (D) show the values CV during CR (σ1 = 0, ɛ1 = 0.01,⟨s1⟩ = 10, β = 1, τ1 = 100, P1 = 1) and during SISR (σ2 = 0, ɛ1 = 0.001, ⟨s1⟩ = 1, β = 0.1, τ1 = 600, P1 = 1). In both phenomena, the other parameters are fixed at: D1 = 0.5, τ1p = 20, N = 50.
In Figures 5C,D, we show the variations in degree of CR and SISR in layer 1 (in isolation) of Eq. 1 as a function of the channel (σ2) and synaptic (σ1) noise intensity and the depression temporal window τ1d at corresponding non-optimal values both of the network parameters and the potentiation adjusting rate parameter P1 (obtained from Figures 5A,B), respectively. For CR, we the lowest (highest) CVmin = 0.0254 (CVmin = 0.1849) occurs at τ1d = 0.01 (τ1d = 30). For SISR, we the lowest (highest) CVmin = 0.1245 (CVmin = 0.2632) occurs at τ1d = 0.01 (τ1d = 30). Thus, unlike the opposite effects of the variations in each network parameter on the degree of CR and SISR, the variations in the STDP parameters have similar effects on the degree of CR and SISR.
In previous work [50], we aimed at enhancing CR (and not SISR) via the multiplexing technique because CR showed more sensitivity to parametric perturbations than SISR in the absence of the STDP learning rule. The results in Figures 2–5 indicate that the degree of CR becomes more robust to parametric perturbations than the degree of SISR, which is particularly sensitive to the variations in the parameters of the STDP learning rule. For this reason, in the next section, we focus only on the enhancement of the more sensitive phenomenon, i.e., SISR, via the multiplexing technique used in [50].
3.2 Enhancement of SISR via the Multiplexing Technique
It has been shown in [50] that in a two-layer multiplex network with static (non-adaptive) synaptic couplings, CR or SISR in one layer could induce and enhance CR in the other layer. Here, we address whether enhancing a low degree of SISR in one layer of a multiplex network is possible using an enhanced CR or SISR in the other layer when adaptive synaptic couplings drive the network. Then, we investigate which enhancement scheme is best: 1) the CR-SISR scheme or 2) the SISR-SISR scheme.
In the CR-SISR scheme, we use the results from Section 3.1 and we set layer 1 such that it has a low degree of SISR, i.e., we choose the network and STDP parameter values (⟨s1⟩ = 1, β1 = 0.1, τ1 = 600, P1 = 1, τ1d = 0.01) so that the CV curve is high—indicating a poor degree of SISR in layer 1 in isolation. We also set layer two such that it has a high degree of CR, i.e., we choose the network and the STDP parameter values (⟨s1⟩ = 2, β2 = 0.1, τ2 = 1, P2 = 0.1, τ2d = 20) so that the CV curve is low—indicating a high degree of CR in layer 2 in isolation. Then, we couple the two layers in a multiplex fashion, i.e., each neuron in a layer is coupled only to its replica neuron in the other layer via a synaptic coupling driven by STDP. In the SISR-SISR scheme, we have the same settings as in the CR-SISR scheme, except that in layer 2, we set the network and STDP parameter values (⟨s2⟩ = 10, β2 = 1, τ2 = 1, P2 = 0.1, τ2d = 20) so that the CV curve is high—in indicating a high degree of SISR in layer 2 in isolation.
The STDP driving the multiplexing (inter-layer) synaptic connections is governed by synaptic weight [image: image] that evolves according Eqs. 4, 5. Similarly to the intra-layer synaptic weights of the isolated layer networks of Section 3.1, we will fix the depression adjusting rate parameter at D12 = 0.5 and the potentiation temporal window parameter at τ12p = 20, and vary only the potentiation adjusting rate P12 ∈ [0.05, 1], the depression temporal window τ12d ∈ [0.2, 30], and the inter-layer time delay τ12 ∈ [0.0, 1,000] parameters in the intervals indicated.
In Figure 6, we show the performance of each scheme in enhancing the low degree of SISR in layer 1. Figures 6A,B depict the performances for an instantaneous (i.e., τ12 = 0) multiplexing and for a time-delayed (τ12 = 1,000) multiplexing between layer 1 and layer 2, respectively. We recall that layer 1 is the layer of interest, i.e., the layer with a low degree of SISR when it is in isolation. The red curve in Figures 6A,B represents the degree of coherence due to SISR in layer 1 when it is in isolation. We can see that for the selected set of network and STDP parameters (i.e. ⟨s1⟩ = 1, β1 = 0.1, τ1 = 600, P1 = 1, τ1d = 0.01), the degree of coherence due to SISR is very low as indicated by the high values of the red CV curve for values of the synaptic noise intensity in some interval, i.e., σ1 ∈ (5.0, ×, 10–8, 3.5 × 10–2).
[image: Figure 6]FIGURE 6 | Variation of CV of the controlled layer (exhibiting SISR) w.r.t. the noise intensity σ1 and the inter-layer time delay τ12. Panels (A) and (B) show the CV curves in the absence (τ12 = 0) and presence (τ12 = 1,000) of the inter-layer time delay τ12, respectively. The red curves represent the variation in the degree of SISR in layer 1 when in isolation. The black and the green curves show the enhancement performances of the CR-SISR and SISR-SISR schemes, respectively. Panel (C) shows that for the same value of the inter-layer time delay, the SISR-SISR scheme always outperforms the CR-SISR scheme. Parameters of layer 2 in the CR-SISR scheme: [image: image], [image: image], ɛ2 = 0.01, ⟨s2⟩ = 2, β2 = 0.1, τ2 = 1, P2 = 0.1, τ2d = 20. Parameters of layer 2 in the SISR-SISR scheme: [image: image], [image: image], ɛ2 = 0.001, ⟨s2⟩ = 10, β2 = 1, τ2 = 1, P2 = 0.1, τ2d = 20. Parameters of layer 1 in isolation and in both schemes: ɛ1 = 0.001, ⟨s1⟩ = 1, β1 = 0.1, τ1 = 600, P1 = 1, τ1d = 0.01, N = 50. Parameters of the inter-layer STDP: P12 = 1, τ12d = 30, D12 = 0.5, τ12p = 20.
When layer 1, with its poor degree of SISR, is multiplexed with layer 2 exhibiting a high degree of CR, the performance of this CR-SISR scheme is depicted by the black curve in Figures 6A,B which represent the new degree of SISR in layer 1. We see that the multiplexing of layer 1 with another layer exhibiting a strong CR can significantly improve the degree of SISR in layer 1 by lowering the red CV curve, which becomes black. On the other hand, when layer 1, with its poor degree of SISR, is multiplexed with layer 2 exhibiting a high degree of SISR, the performance of this SISR-SISR scheme is depicted by the green curve in Figures 6A,B which represent the new degree of SISR in layer 1. We see that the multiplexing of layer 1 with another layer exhibiting a strong SISR can significantly improve the degree of SISR in layer 1 by lowering the red CV curve, which becomes green. However, in both schemes, this enhancement of SISR in layer 1 fails when the synaptic noise intensity is larger than 1.9 × 10–2, a point from which the black and the green CV curves of the CR-SISR and SISR-SISR schemes lie above the red CV curve of layer 1 in isolation.
Furthermore, we observe that even though the degree of the coherence induced by CR can be higher than the degree of coherence induced by SISR in an isolated layer network driven by STDP, the degree of SISR induced via a multiplexing SISR-SISR enhancement scheme is higher than that induced by a CR-SISR enhancement scheme. This is clearly indicated by the black and green curves simulated with no inter-layer time delay in Figure 6A and with an inter-layer time delay in Figure 6B. For the majority of values of the synaptic noise intensity of layer 1, the green curve lies entirely below the black one.
To further investigate the effect of the inter-layer time delay τ12 on the degree of coherence due to SISR in layer 1, we computed the minimum value of the CV curve, (i.e., CVmin) for a wide range of values of the inter-layer time delay τ12. The result is shown in Figure 6C, where the green curve representing the enhancement performance of the SISR-SISR scheme always lies below the black curve, which represents the performance of the CR-SISR scheme, as the inter-layer time delay changes in τ12 ∈ [0, 1,000]. Figure 6C also indicates that when the inter-layer time delay is at τ12 = 550 and τ12 = 1,000, the SISR-SISR scheme performs significantly better than at other values of the inter-layer time delay and the CR-SISR scheme. The best inter-layer time delay values in the CR-SISR scheme occur at τ12 = 0 and at τ12 = 350. The results presented in Figure 6 are for fixed values of the alterable parameters of the inter-layer STDP learning rule, i.e. P12 = 0.05 and τ12d = 30.
Now we investigate the effects of varying these two parameters on the performances of the CR-SISR and SISR-SISR enhancement schemes. To implement this, we fix, from Figure 6C, the inter-layer time delay at the optimal value for each scheme, i.e., τ12 = 350 and τ12 = 1,000 for the CR-SISR and the SISR-SISR scheme, respectively. Figures 7A,B show the performances of the CR-SISR and SISR-SISR schemes as a function of the multiplexing STDP parameters, i.e., P12 and τ12d, respectively. For the CR-SISR scheme, we observe that a larger depression temporal window (i.e., τ12d → 30) and a smaller potentiation adjusting rate (P12 → 0.05) yield the lowest minimum CV value, given by CVmin = 0.2989 which occurs at the synaptic noise intensity of [image: image].
[image: Figure 7]FIGURE 7 | Minimum CV against the multiplexing potentiation adjusting rate P12 and depression temporal window τ12d for layer 1 exhibiting SISR when multiplexed to layer 2 exhibiting CR and SISR in Panels (A) and (B), respectively. The SISR-SISR scheme outperforms the CR-SISR scheme in enhancing SISR in layer 1 in the entire (τ12d, P12) plane. Parameter values in panels (A) and (B) are the same as in (Figure 6A) with τ12 = 350 and τ12 = 1,000 in the CR-SISR and SISR-SISR scheme, respectively. Panel (C) shows the time-evolution of population-averaged inter-layer synaptic weights [image: image] with an initial normal distribution of mean 0.1 and standard deviation 0.02 at the values of P12, τ12d, and σ1 (see main text) at which CVmin achieves it lowest value in CR-SISR and the SISR-SISR schemes. LTP (LTD) favours the SISR-SISR scheme (CR-SISR scheme).
The SISR-SISR scheme in Figure 7B shows better overall performance compared to the CR-SISR scheme with respect to these inter-layer STDP parameters. First, we observe that the surface of the graph CVmin in the SISR-SISR scheme (with the highest value at CVmin = 0.2098, occurring at P12 = 0.5 and τ12 = 0.5) lies entirely below the surface of the graph CVmin in the CR-SISR scheme (with the lowest value at CVmin = 0.2989, occurring at P12 = 0.05 and τ12d = 30). Secondly, from Figure 7B, we observe that small (i.e., P12 = 0.1), but not too small values (unlike in the CR-SISR scheme in Figure 7A with P12 = 0.05) of the potentiation adjusting rate and large values of the depression temporal window (i.e., τ12 = 30) parameters yield the lowest minimum CV value, given by CVmin = 0.1005 which occurs at the synaptic noise intensity of [image: image].
In [50], the synaptic connections between the FHN neurons are static, and the effects of STDP on the strength of synaptic couplings are entirely ignored. The results [50] show that intermediate and strong multiplexing between the layer networks is required for the enhancement of the coherence, irrespective of the enhancement scheme. However, in the current paper, the inter-layer synaptic strength may not be static. Thus, we cannot choose a priori the strength of the inter-layer synaptic connections because this is entirely controlled by the STDP rule, which depends on the neurons’ random spiking times. The best performance of the CR-SISR scheme (indicated by the lowest of value of CVmin in Figure 7A) occurs when P12 = 0.05, τ12d = 30, τ12 = 350, and σ1 = 1.9, ×, 10–4. While the best performance of the SISR-SISR scheme (indicated by the lowest value CVmin in Figure 7B) occurs when P12 = 0.1, τ12d = 30, τ12 = 1,000, and σ1 = 7.3 × 10–5. Now, using these two sets of parameter values, we computed the time-evolution of the population-averaged multiplexing synaptic weights [image: image] with an initial normal distribution of mean 0.1 and standard deviation of 0.02. The results are depicted in Figure 7C where the green curve shows that the best enhancement of SISR via the SISR-SISR scheme occurs via LTP, i.e., the strengthening of the inter-layer synapses from the initial value. In contrast, the red curve shows that the best enhancement of SISR via the CR-SISR scheme occurs via LTD, i.e., the weakening of the inter-layer synapses from the initial value. We note that the red curve in Figure 7C is close to zero, but not exactly zero (since the elimination of synapses has been avoided by bounding [image: image]). The fact that the weak multiplexing of layer networks could enhance resonance phenomena in one of the layers was already discovered in [39]. However, this remains an observed behavior as the precise mechanism behind it is still elusive. A theoretical explanation of weak-multiplexing-induced resonance phenomena should be rewarding in theoretical studies and applications, e.g., in neuroengineering.
4 SUMMARY AND CONCLUSION
In this paper, we have numerically investigated the effects of varying the network and STDP parameters on the degree of CR and SISR in isolated and coupled (multiplexed) layer networks consisting of electrically connected FHN model neurons. In the isolated layer networks and for a fixed set of parameters, the results indicate that: 1) in the presence of STDP, the degree and the robustness of the coherence due to CR are always higher than those of the coherence due to SISR, unlike in the absence of STDP where the opposite behaviors occur [50], 2) the degree of coherence due to SISR increases with the average degree of the network connectivity and the rewiring probability of the network topology. While the degree of the coherence due to SISR shows a nonlinear response to the variation in the electric time delay between the neurons—smaller and significantly larger time delays yield a higher degree of coherence than intermediate values, and 3) the degree of coherence due to SISR increases with a decreasing (increasing) value of the depression temporal window (potentiation adjusting rate) parameter of the STDP learning rule, especially at (relatively) larger synaptic noise intensities.
In the multiplex networks, we set up two enhancement schemes for the more sensitive phenomenon, i.e., SISR in layer 1, based on the multiplexing with layer 2 and using SISR and CR acting as the enhancing phenomena each with a high degree of coherence in layer 2. In the first enhancement scheme (termed the CR-SISR scheme), we have SISR with a low degree of coherence, achieved with specific values of the network and STDP parameter in layer 1 obtained in advance. And in layer 2 we have CR with a high degree of coherence, achieved with specific values of the network and STDP parameters obtained in advance. In the second enhancement scheme, termed the SISR-SISR scheme, we have SISR with a low degree of coherence in layer 1. And in layer 2 we have SISR with a high degree of coherence. Our results showed that: 1) both schemes can significantly enhance (as indicated by the relatively lower value of the CV curves) the poor degree of SISR in layer 1, 2) at the optimal inter-layer time delay (τ12) of each scheme, a larger depression temporal window (τ12d) and a smaller potentiation adjusting rate (P12) parameters of the inter-layer STDP learning rule improve the CR-SISR and SISR-SISR enhancement schemes. However, for the SISR-SISR scheme, the potentiation adjusting rate parameter should not be too small, 3) the SISR-SISR scheme outperforms the CR-SISR scheme in the enhancement of SISR in layer 1 for all the parameter values of the inter-layer STDP learning rule, and 4) at their respective optimal inter-layer time delay, synaptic noise intensity, potentiation adjusting rate, and depression temporal window parameter values, the SISR-SISR scheme enhances SISR in layer 1 via long-term potentiation (LTP) of the synaptic strength between the layers. In contrast, the CR-SISR scheme enhances SISR in layer 1 via long-term depression (LTD) of the synaptic strength between the layers.
Interesting future research directions on the topic would be to investigate the robustness of the results presented in this paper when the topologies of the layer and multiplex networks are different and when the networks are driven by homeostatic structural plasticity.
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G-protein signaling pathways mediate communication across cell membranes. The first steps of this communication occur at the cell membrane, where upon receiving an external signal –the binding of an agonist ligand– the membrane-embedded G-Protein Coupled Receptor adopts a conformation recognized by a cytoplasmatic G protein. Whereas specialized GPCRs sense protons from the extracellular milieu, thus acting as pH sensors in specialized cells, accumulating evidence suggests that pH sensitivity might be common to distinct GPCRs. In this perspective article we discuss general principles of protonation-coupled protein conformational dynamics and how these apply to GPCRs. To dissect molecular interactions that might govern the protonation-coupled conformational dynamics of GPCRs, we use graph-based algorithms to compute graphs of hydrogen bond networks. We find that the internal H-bond networks contain sites where structural rearrangements upon protonation change could be transmitted throughout the protein. Proton binding to bulk-exposed clusters of titratable protein sidechains ensures the pH sensing mechanism is robust.
Keywords: G-protein coupled receptor (GPCR), G protein, pH, hydrogen bond (H-bond), graph theory—graph algorithms
INTRODUCTION
G-Protein Coupled Receptors (GPCRs) mediate communication between eukaryotic cells and their environments. Signals sensed by GPCRs can be of external origin, such as light or odors, or endogenous, such as hormones or neurotransmitters. Humans have >750 GPCRs [1], and about 30–35% of the drugs target GPCRs that respond to endogenous signals (endo-GPCRs)—though just a minority (10%) of the known GPCRs are used as targets [2–4]. As endo-GPCRs are significantly conserved between human and mouse, and are expressed preferentially in the brain [1], they are of tremendous interest in expanding the repertoire of GPCRs used for therapeutics [4]. Moreover, since the majority of the GPCRs that are currently targeted by approved drugs couple to cytoplasmatic G proteins Gs or Gi [4], in the future G proteins might also become drug targets [5, 6], e.g., by using ligands that can modulate interactions between G proteins and their upstream/downstream interaction partners and thus impact signal transduction pathways.
The general principles of how GPCRs interact with G proteins to effect cell signaling are illustrated in Figure 1A. Upon binding of an agonist the GPCR changes conformation and binds to the G protein (Figure 1A). Some class B GPCRs alter their ligand specificity upon interactions with receptor activity-modifying proteins, RAMPS, which are single-pass transmembrane proteins with an extracellular domain [7]. Both GPCRs and G proteins are dynamic [8, 9]. GPCRs can couple to lipids [10, 11], can bind sodium ions [12, 13], and change protonation during their function [14, 15]. Indeed, recent data were interpreted to suggest that “proton-sensing and H+-gated agonism are recurring features of GPCR signaling biology” [16]; however it remains unclear how GPCRs couple proton binding with protein conformation. Mechanisms for protonation-coupled function have been dissected for microbial rhodopsins –which, similar to GPCRs, are seven-helical membrane proteins, and pass through discrete intermediate conformations during their reaction cycles. Here, we rely on GPCRs and microbial rhodopsin structures to dissect interactions potentially important for protonation-coupled conformational change. We computed H-bond networks using the graph-based algorithms Bridge [17, 18] and C-Graphs [19] and as H-bond criterion a distance of ≤3.5 Å between the donor and acceptor heavy atoms; the graph computations included all H-bonding protein sidechains, and water-mediated bridges between sidechains with up to three water molecules in a bridge. Thus, nodes of an H-bond graph are H-bonding protein sidechains, and edges, sidechain-sidechain H-bonds or water-mediated bridges between sidechains. We suggest that GPCRs that couple proton binding with conformational change might use mechanisms similar to other membrane proteins (Figure 1B).
[image: Figure 1]FIGURE 1 | GPCR activation and protonation-coupled conformational dynamics with H-bond networks. (A) Agonist and G-protein binding may associate with protonation-coupled formation of a continuous H-bond network inside the GPCR. (B) Schematic representation of a membrane protein with a bulk-exposed proton antenna cluster and an internal proton-binding site. (C,D) Close view of the internal H-bond network (C) and H-bond graph (D) computed for bacteriorhodopsin, pdb 7z09 [39]. Gray and red nodes represent, respectively, protein sidechains and water oxygen atoms; only selected nodes are labeled. (E,F) Molecular graphics (E) and H-bond graph (F) computed for Acetabularia rhodopsin I, pdb 5awz [40]. (G,H) Molecular graphics (G) and H-bond graph computed for archaeorhodopsin-3, pdb 6gux [41]. Only some helices are displayed in panels E,G. Groups underlined in panels C,E,G were implicated in proton binding [40, 41, 78]. Molecular graphics included in Figure 1 and Figure 2 were prepared with Visual Molecular Dynamics, VMD [79]. H-bond graphs in panels D, E, H were computed with C-Graphs [19] using structures aligned with OPM [80].
INTERNAL H-BOND NETWORKS OF STATIC GPCR STRUCTURES DEPEND ON THE RESOLUTION
Analyses of H-bonds in static experimental structures of GPCRs are commonly used to formulate hypotheses about reaction mechanisms. As summarized below, the view of internal H-bond networks of GPCRs depends drastically on the resolution at which structures were solved, and on the internal number of water molecules.
The structure of the (inactive) visual rhodopsin GPCR from squid presented a remarkable internal protein-water H-bond network hypothesized to mediate propagation of structural change during receptor activation [20]. Much of this H-bond network remains present in structures of the early intermediates batho and lumi [19]. Moreover, some of the internal water molecules of squid rhodopsin are conserved in structures of jumping-spider rhodopsin-1 and adenosine A2A receptor (AA2AR), suggesting conserved roles of water molecules in propagating structural change [19].
A difficulty with identifying protein-water H-bond networks of GPCRs based on static structures is that the number of internal water molecules tends to depend on the resolution: GPCR structures solved at resolutions of 2 Å or higher typically have at least 30 internal water molecules, some of which are found at conserved sites [21]. A dataset of 63 GPCR structures solved at a resolution of 2.5 Å or better, and with at least 10 internal water molecules, were found to host a conserved, core protein-water H-bond network that inter-connects functionally important regions of GPCRs [21]; within this dataset, structures solved at resolution of at least 2.3 Å and with more internal water molecules had additional local H-bond clusters [21]. In stark contrast with the extended H-bond network of the inactive squid rhodopsin structure, two recent structures of G-protein bound GPCRs solved at resolutions of 2.9–3.15 Å [22, 23], which lack internal water molecules, have only small, localized H-bond clusters of up to 3-4 protein sidechains [24]. This suggests that both the resolution and internal water content need to be accounted for in hypotheses about putative roles of H-bond networks for conformational couplings of GPCRs [21, 24].
PROTONATION CHANGE DURING GPCR FUNCTION AND PH-SENSING GPCRS: LESSONS FROM MICROBIAL RHODOPSINS AND OTHER PROTON-BINDING MEMBRANE PROTEINS
GPCRs that change protonation during function include bovine rhodopsin –two internal Glu groups, one at the ligand binding site (E3.28 in the standard Ballesteros-Weinstein numbering scheme for class A GPCRs), and one at a conserved functional motif (E3.49) [14]; the M2 muscarinic receptor –two conserved carboxylic groups, D2.50 and D3.32, might change protonation [25]; the calcium receptor –whose activity might be modulated by proton binding to carboxylic sidechains [26]; the μ-opioid receptor –the propensity of the ligand to H-bond to H6.52 could explain pH sensitivity [27]; AA2ARs –ligand binding depends on pH-sensitive interactions of E169 and H264 at the extracellular side [28, 29].
Other GPCRs signal changes in extracellular pH to ensure cell homeostasis, i.e., their biological function is to sense pH, and they have been implicated in disease conditions associated with acidic pH –cancer, inflammatory disease, and ischemia [30, 31]. As no three-dimensional structures have been solved for these canonical pH-sensing GPCRs, their reaction mechanism remains elusive. Central roles for proton sensing have been assigned to H-bonding extracellular His sidechains [32], or to a triad of internal carboxylic groups [33]. How the protonation change of external His sidechains would cause receptor structural changes, and how protons from the extracellular bulk would make their way to internal carboxylic groups, are key open questions. As summarized below, we suggest that mechanisms used by microbial rhodopsins, and by other proton-binding membrane proteins, provide clues about common principles of action for protonation-coupled membrane proteins.
Membrane proteins are commonly thought to rely on internal H-bond networks to couple protein conformation with a change in protonation, typically of a carboxylate and/or His sidechains, as these moieties titrate in a pH range relevant to biology [34, 35]. Protonation change at internal sites of membrane proteins involves H-bond paths that transiently inter-connect proton donor and acceptor pairs. In the bacteriorhodopsin proton pump (Figures 1C,D 2A), a few internal carboxylic groups, including D85, D96 and E194/E204 (Figures 1C,D) change protonation during bacteriorhodopsin’s function. In the resting state, the primary proton acceptor D85 H-bonds with T89 and water, protonated D115 with T90, D212 with Y57 and Y185, and the proton-release site E194-E204 with S193. At the cytoplasmic side, a cluster of carboxylic groups might function as a proton-collecting antenna [36–38] that picks up protons and delivers them to an internal carboxylic group [37, 38] (Figure 2A).
[image: Figure 2]FIGURE 2 | H-bond networks of GPCRs. Dotted lines indicate selected clusters of bulk-exposed carboxylic and His groups. (A) Carboxylic groups of bacteriorhodopsin, based on pdb 5zim [81]; Asp/Glu groups labeled are part of the proton-collecting antenna [37, 38]. (B) Carboxylic and His groups of human GPR4 from model AF-P46093-F1-model_v2, UniProt entry P46093 [61]. (C,D) Carboxylic and His groups of AA2AR (panel B, pdb 5nm4, 1.7Å resolution [63]) and of rAmy-AMY1R (pdb 7tyf [72]). (E–G) C-Graphs H-bond graphs computed with water bridges (E) vs. for protein sidechains (F) for AA2AR based on pdb 5 nm4, and for G-protein bound AA2AR, pdb 5g53, 3.4 Å resolution [82] (G). H-bond networks of AA2ARs were reported in Refs. [19, 21]. In panels (E,F), stars indicate groups of a synthetic construct. (H) Selected H-bonds of AA2AR. (I) Bridge2 H-bond graph of the CTR-G protein complex, pdb 6e3y, 3.3 Å resolution [70]. (J) C-Graphs H-bond graph for the CTR, pdb 7tyf, 2.2 Å resolution [72]. Panels (E–G,J) use structures with the receptor domain oriented along the membrane normal using VMD and OPM [80].
The protein-water H-bond graph computed from a high-resolution structure (1.05 Å) of bacteriorhodopsin [39] contains 79 H-bonding sidechains and water molecules, and 73 H-bonds between these groups (Figure 1D); when we computed the H-bond graph of the same structure without water molecules, only 19 H-bonds remained. We obtained similar results for a 1.6 Å resolution structure of Acetabularia rhodopsin I [40] (Figure 1E), whose H-bond graph has about 3.7-fold more H-bonds when both protein sidechains and water molecules are included (Figure 1F), than when water was excluded. Likewise, for the 1.3 Å resolution structure of archaerhodopsin-3 [41] (Figure 1G) the protein-water H-bond graph has about 3.8-fold more H-bonds than when (Figure 1H), vs. 24 H-bonds when only sidechains were included in computations.
The H-bond graphs above of microbial rhodopsins have H-bonds that are common at proton-binding sites of membrane transporters and receptors, including GPCRs [42, 43]. In class A GPCRs, the conserved D2.50 is paired with S7.46 [21, 44, 45]. In bacteriorhodopsin, for which proton binding has been studied extensively, including with Fourier Transform Infrared Spectroscopy [38, 46–50], Nuclear Magnetic Resonance [51], time-resolved serial femtosecond crystallography [52, 53], and computations [54–56], the internal proton donor D96 H-bonds to T46, and D115, which remains protonated throughout the reaction cycle, H-bonds to T90 (Figure 1D). Interhelical H-bonds of the corresponding Asp are present in Acetabularia rhodopsin-1 and archaerhodopsin-3, though in the former D100 (corresponding to bacteriorhodopsin D96) H-bonds to an Asn (N48) instead of a Ser/Thr. More generally, Asp/Glu-Ser/Thr and Asp-Asn H-bonds are rather common in membrane transporters and receptors [42]. Similarly, bulk-exposed proton antenna clusters that deliver/release a proton to/from an internal site (Figures 1B, 2A), as proposed for bacteriorhodopsin, have also been discussed for cytochrome c oxidase and for photosystem II [36–38, 44, 57–59].
The AlphaFold [60] model deposited for the pH-sensing GPR4 [61] suggests that a large cluster of Asp, Glu, and His groups is located at the extracellular site, where pH must be sensed, and several carboxylic and histidine sidechains, at the core of the receptor (Figure 2B). Although details of the predicted structural model might be debatable, we suggest that, qualitatively, the overall arrangement with a bulk-exposed carboxylic-histidine cluster and several internal titratable sidechains resembles that of bacteriorhodopsin (Figures 1B, 2A,2B) and other microbial rhodopsins (Figures 1E–H).
Given the lack of experimental structures for pH-sensing GPCRs, below we further dissect internal H-bond networks of AA2AR as a class A receptor for which activation upon proton binding was recently discovered [16], and the calcitonin receptor (CTR), as a class B GPCR involved in cell signaling paths likely to depend on pH; as proton sensing appears to be rather common to GPCRs, studies of H-bond networks of GPCRs susceptible of pH sensitivity could inform on general principles of function.
INTERNAL H-BOND NETWORKS OF THE ADENOSINE A2A RECEPTORS
AA2ARs are targeted by one of the most consumed substances in the world, caffeine, and by drugs against Parkinson’s disease [62]. Very recently, experimental data were interpreted to suggest that acidic pH can activate AA2AR [16], but it remains unclear how AA2ARs may couple proton binding to protein conformational change for receptor activation.
AA2AR (Figure 2C) contains relatively few internal carboxylic and His sidechains; there are, however, numerous other charged and polar sidechains within the transmembrane region of AA2AR, such that its protein-water H-bond graph computed for the highest-resolution structure [63] has no fewer than 82 H-bonds (Figure 2E). An extended H-bond cluster with 19 H-bonding protein sidechains and water molecules extends across >20 Å along the membrane normal, from S6 (1.32) to N181; a few other relatively large protein-water H-bond clusters are present, such that the entire receptor is spanned by H-bond clusters. H250 (6.52) and H278 (7.42) are located in the ligand binding site [64], with H278 part of an H-bond cluster with Y9 (1.35) and E13 (1.39) (Figures 2F,G). In an active-like structure, D52 (2.50) is H-bonded to S91 (3.39), S281 (7.46) and N284 (7.49) (Figure 2H), thus being part of a network that connects several GPCR motifs involved in ligand binding and receptor activation. For detailed analyses and discussions of GPCR H-bond networks of GPCRs, including of the adenosine A2A receptor we refer the reader to [21].
Without water molecules, the H-bond graph of the same AA2AR structure consists of just 29 H-bonds, and the largest H-bond cluster has 4 H-bonding sidechains (compare Figure 2E with Figure 2F). Likewise, the H-bond graph obtained for AA2AR in the AA2AR-G complex has 21 H-bonds, with local H-bond clusters of up to 4 H-bonding sidechains (Figure 2G). This finding is compatible with the aforementioned observations on the chemokine [23] and cannabinoid [24] receptors bound to G proteins, with the graph computations presented above for microbial rhodopsins (Figure 1), and with computations suggesting important roles of water-mediated interactions in GPCR activation [21, 65, 66]. That is, internal water molecules might be needed to establish extended connections throughout active-like, G-protein bound GPCRs. Moreover, the H-bond networks at the extracellular side, where bulk water molecules could visit the receptor at least transiently, are likely dynamic and could rearrange upon binding of an agonist, including –in the recently proposed acid sensor AA2AR [16]- upon proton binding.
Internal His, Asp and Glu of AA2AR mentioned above are conserved in the non-proton-sensing adenosine A1 and A2B receptors, which suggests that details of the intra-molecular interactions of titratable groups might determine pH sensitivity. Further studies that integrate high-resolution static structures with spectroscopy, site-directed mutagenesis, and computation, will be needed to unravel mechanisms of proton binding to adenosine receptors.
H-BOND NETWORKS FOR ALLOSTERIC REGULATION OF THE CALCITOCIN RECEPTOR
The CTR is among the best-studied class B GPCRs that are regulated by RAMPs. By itself, the CTR has high affinity for calcitocin (CT), being implicated in bone homeostasis. In complex with one of the three RAMPs, CTR forms amylin receptors, AMY1-3R, which have high affinity for the peptide amylin (Amy) and are involved in the control of food intake [7]; in addition to Amy, AMY1R binds the neuropeptide calcitonin gene-related peptide [7] and could be involved in migraines [67]. Whether and how pH impacts CTRs is unclear, though observations of an increased expression of the CTR at acidic pH [68] and of pH-dependent interactions between calcitonin and model membranes [69], suggest that CTR could be among GPCRs whose functioning is influenced by pH.
A structure of the human(h) CTR bound to Gαsβγ and to salmon calcitocin (sCT) was initially solved with cryo-EM at a resolution of 4.1 Å [70] and then refined to a resolution of 3.3 Å [71]. Although some ambiguity remained in the CTR-CT interactions, the structure suggested polar receptor-ligand contacts and a number of H-bonds within the CTR and at the CTR-G protein interface [71]. The transmembrane region of the refined CTR structure contains several local H-bond clusters, but they are localized, with at most 4-5 sidechains in a cluster, and most of the H-bond graph consists of singular H-bonds (Figure 2I). Such a picture is compatible with the findings for AA2AR and other GPCRs, which need internal water molecules to establish extended H-bond clusters.
Cryo-EM structures solved were recently at resolutions of 2.0–3.3 Å for ligand-bound Gs-CTR and Gs-AMY1-3R [72]. Protein-water H-bonds were suggested to help stabilize the active conformation of the receptor, and to contribute to the binding of sCT [72]. The H-bond graph we computed for the CTR domain contains 51 sidechain-sidechain and water-mediated H-bonds; the largest H-bond clusters contain two water molecules each and 5-6 protein sidechains (Figure 2J). Several Asp, Glu, and His sidechains are part of the internal H-bond network, and thus of interest for potential couplings between protonation change and protein conformation. A large cluster of carboxylic and His sidechains that faces the extracellular bulk (Figure 2D) could couple protonation change with ligand binding.
CONCLUSION
Protonation is of general importance for the post-translational regulation of protein function [35], and a number of GPCRs bind protons during function [25, 73] or function as pH sensors implicated in cancer [32]. H-bond graphs of GPCRs and microbial rhodopsins suggest that GPCRs might share with other protonation-coupled membrane proteins common principles of how protonation change couples with protein conformation (Figure 1B). In the future, given the rapid pace at which GPCR structures are solved, H-bond graph computations could help identify H-bond networks and sites where the H-bond network is interrupted –which could guide, e.g., the placing of internal water molecules in GPCR structures. H-bond graphs of high-resolution structures of GPCRs trapped in distinct intermediates could help interpret spectroscopic fingerprints for putative proton-binding sites of GPCRs. We anticipate that future studies will capitalize on improvements in cryo-EM structure solving [74], computational modeling of GPCR conformational intermediates [75], and public repositories for GPCRs [76, 77].
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A mathematical model for bacterial growth and control by antibiotics treatment, including Quorum sensing as a special kind of communication, is introduced. We aim in setting up a flexible model structure allowing for fast simulations and overview about the general behavior. The deterministic approach can be used for in silico studies of bacterial cooperative behavior in the special case of Quorum sensing. Since antibiotic treatment is the basic and vital way to fight pathogenic bacteria, in the present study, we propose a modification of a reaction-diffusion model of communication processes in a bacterial population exposed to antibiotics. The dynamical biological system is formalized by a system of semilinear parabolic PDEs. The numerical solution of the 2D problem is based on a hybrid computing procedure, which includes a finite difference method combined with a Monte-Carlo simulation of population dynamics. Computational experiments are performed to describe space-time distributions of key chemical compounds characterizing Quorum sensing during the growth of a bacterial population and its decrease resulting from the predetermined strategy of antibiotic treatment.
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1. Introduction

Bacteria are not just single cells and acting individually, but have been discovered to form successful communities which have various possibilities to interact, within colonies but also beyond. One such mechanism, detected in more and more bacterial species, is the so-called “Quorum sensing” [1]. It is based on an intracellular gene regulation system and uses signal molecules, the so-called, which are produced inside the cells and can be transported and diffuse in the extracellular space.

Quorum sensing systems are known to control many important phenotypic changes of the bacteria. Historically first luminescence of the marine bacterial species Vibrio fischeri was found in the light organ of the squid Euprymna scolopes. Later, more and more species were found to use similar systems for different purposes, like pathogenicity and biofilm production [2]. Furthermore, Quorum sensing may even influence the resistance against several stressors like antibiotics to some extent, as considered e.g., in [3].

More concretely, we consider the Gram-negative bacterial species Pseudomonas putida IsoF, whose Quorum sensing system is quite well-known and has been used in many previous publications as a model organism for this purpose. Even though, this sounds very specific, P. putida uses a type of Quorum sensing system as many other Gram-negative bacteria also do, with slight differences in the molecule structure, but analogous architecture of the gene regulation system [4]. Usually, they use so-called Acyl-homoserine lactones (short: AHL) as autoinducer molecules. Thus, the ppu system of P. putida can be taken as prototype system, and the mathematical modeling can easily be transferred also to other species and their Quorum sensing systems. As a special property, P. putida also produces an enzyme which can degrade autoinducers, the so-called Lactonase [5]. Corresponding models have been considered in previous publications and can be taken as standard [6, 7].

However, as a main treatment of bacterial infections in patients since many decades, antibiotics are used, fight against bacterial infections and to kill or at least reduce growth of the bacteria. We aim in setting up a simple and fast to calculate model. This means, we focus on the most essential parts: growth of whole colonies, decrease during the presence of antibiotics. To keep it as simple as possible, we neglect any refined structures of the colony growth, as they may play a minor role for our purposes. Based on this, we want to keep the basic Quorum sensing model in, including the Lactonase in the model setup. By that we can always check, if (and when) the Quorum sensing system, including the behavioral changes controlled by it, is active or not, given a certain antibiotics treatment.

For our in silico study, we focus on the situation of bacterial colonies, e.g., on surfaces of medical devices or on laboratory equipment. They can be easier ”treated” than bacterial infections in a living host, where many side aspects may play a role. We want to set up a prototype model which is easy to handle, but already provides the structure to be adapted to more concrete situations. The hybrid structure contains a time-dependent colony growth including an explicit saturation and the effect of the antibiotics treatment on the one hand side, as well as a classic reaction-diffusion model to describe the spread of AHL and Lactonase molecules on a surface layer. For the antibiotics treatment we assume for simplification that it can be applied on the whole surface at once, e.g., by putting a water-based layer above which contains the antibiotics in a homogeneous concentration. Thus, it is sufficient to use one homogeneous time-dependent variable for the antibiotics for the whole system.

The model approach allows to easily make simulations, to place the bacterial colonies, also to handle many of them at once. It provides a simplified structure, which can also be easily used to control such systems, e.g., how a treatment should look like to keep a bacterial population under control, such that it doesn't activate it's Quorum sensing system and by that doesn't become pathogenic.

The present study aims in the development of the mathematical model of Quorum sensing in a Gram-negative bacterial population under the inhibitory action of antibiotics. The overall goal is to design a hybrid model that provides a quick approach by combining the continuous deterministic approach (expressed by the reaction-diffusion model of bacterial communication) and the discrete stochastic simulation of vital activity of bacteria exposed to antibiotics. By that, we keep the model as simple as possible to focus on the essential behavior. The paper is organized as follows. The mathematical statement of the reaction-diffusion problem, the applied numerical method, and the computational setup are presented in Section 2. Section 3 focuses on the computer simulations of space-time distributions of key characteristics of Quorum sensing for P. putida bacterial species. We will perform a full cycle of mathematical modeling and computer simulation to explore the changes in chemical compounds characterizing bacterial communication at varying strategies of antibiotic treatment.



2. Mathematical problem statement and computational details


2.1. Governing equations for modeling of bacterial Quorum sensing

The basic model of the bacterial communication process describes the dynamics of changes in concentrations of key chemical compounds such as AHL and Lactonase, which characterize the “quorum level” in a bacterial population and the “level” of its degradation, respectively [8]. The bacterial Quorum sensing model can be referred to as a reaction-diffusion dynamical system. In the two-dimensional case, the mathematical model is expressed by an initial-boundary value problem for a system of partial differential equations:
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where U(x, y, t) is the AHL concentration and L(x, y, t) is the Lactonase concentration produced by bacteria, both given in mol/l; l is the linear size of the solution domain in μm; tob is the observation time in h; γU, γL→U, γL, DU, DL are model parameters (detailed description below) associated with the processes of diffusion and degradation of main chemical compounds.

The governing Equations (1)–(2) describe the dynamics and diffusion of AHL and Lactonase concentrations, the natural degradation of AHL and Lactonase, degradation of AHL by Lactonase due to the negative feedback, the production of AHL and the reaction of Lactonase resulting from the positive feedback. The generation terms F1(x, y, t, U) and F2(x, y, t, U) are defined by the assumed normal distribution of bacterial population density and the Hill function taking into account the possible changes in bacterial concentration:
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where [image: image] is the position of the bacterial colony with the number v; N(t) is the normalized function defined the dynamics of a bacterial population density; σ = σ(t), ε, αU, βU, βL, Uth, n are model parameters, which specify the principles underlying the time dependence of the bacterial population density and its spatial distribution in the solution domain.

Therefore, the mathematical model is formalized by an initial-boundary value problem for the system of semilinear reaction-diffusion PDEs. Some remarks devoted to the existence and uniqueness of solutions can be found in [8] supported by theoretical reviews [9, 10]. Obviously, the construction of analytical solutions for the considered problem meets essential difficulties. Thus, we focus in our present study on the application of numerical methods, namely a finite difference method combined with a stochastic procedure for the simulation of the bacterial population dynamics, to obtain solutions of the problem (1)–(6).



2.2. Numerical scheme for solving the problem

The equations of the system (1)–(2) could be written in the following general form:
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where u = U, q = γU + γL→UL, D = DU, F = F1 for Equation (1) and u = L, q = γL, D = DL, F = F2 for Equation (2).

To solve the problem numerically, we apply a splitting finite-difference method [11]. For instance, we use the concept of the Peaceman-Rachford alternating direction method. Notice that the main advantage of the method is a fairly good correlation between accuracy and computational costs. This method is quite simple in programming, at the same time, for standard problems it is absolutely stable and has the second order of accuracy with respect to space and time variables. For small Courant numbers, this method is used even to test other schemes. The disadvantages of this scheme include conditional convergence when the number of spatial variables is more than two. In addition, this method is conditionally stable when solving problems with the Neumann and Robin boundary conditions [11, 12]. Since our particular problem does not have such limitations, the alternating direction method turned out to be a promising candidate for constructing a numerical algorithm.

Here, let us introduce [image: image] as a space-time grid covering the solution domain:

[image: image]

To deal properly with functions, we introduce the discrete function space of grid functions, which is isomorphic to finite dimensional Euclidean spaces. Further, the space of grid functions is equipped with an appropriate discrete norm (for instance, l2 norm is further used).

Therefore, we have the following finite difference approximation on the first temporal semi-step k + 1/2 for i = 2, 3, ..., N, j = 2, 3, ..., M, k = 1, 2, ..., K:

[image: image]

where the iterative sequence [image: image], s = 1, 2, ..., converges to the [image: image], starting with [image: image]; [image: image] for the Equation (1) and [image: image] for the Equation (2).

In this case, we supplement the computational scheme by the iterative procedure due to the presence of nonlinear terms in the generation parts of equations. In order to calculate the Lactonase concentration, we set [image: image] for the Equation (2). Further, we suppose that [image: image] to calculate the AHL concentration with the Equation (1). And then, we again solve Equation (2) with [image: image] to obtain the update distribution of the Lactonase concentration.

In a similar way, we can derive the computational scheme for the second time semi-step k + 1:

[image: image]

where the iterative sequence [image: image], s = 1, 2, ..., converges to the [image: image], starting with [image: image]; [image: image] for the Equation (1); [image: image] for the Equation (2); [image: image] for (2) and [image: image] for (1). The systems defined by (8)–(9) are supplemented by discrete initial and boundary conditions:

[image: image]

[image: image]

To solve the systems of linear equations on each time layer, we apply the Thomas algorithm.



2.3. Computational algorithm for simulation of bacterial population dynamics

The mathematical problem statement allows us to calculate the space-time distributions of chemical compounds regulating Quorum sensing for bacterial colonies, which are located at a priori defined positions in the computational domain. At the same time, we can provide simulations in a more realistic manner by including the algorithm of modeling bacterial population dynamics into the general computation scheme. In the present study, we use the ideas of a stochastic generation and the logistic growth of a bacterial population. The approach to constructing a hybrid scheme combining a deterministic model and stochastic modeling of bacterial evolution has been proposed before and successfully tested in our previous studies [7, 13, 14].

The computational algorithm is based on the following assumptions. During the observation process, bacteria colonies of circular shapes are growing stochastically on the plane OXY according to the logistic law. First, up to three bacterial colonies start to grow simultaneously from randomly chosen points [image: image], and besides, with different probabilities, i.e. the probability of appearance of one colony is essentially greater than for two and three (for example, for one colony p1 = 0.6, for two colonies p2 = 0.3, and for three colonies p3 = 0.1). According to the Monte-Carlo method, a new bacterial colony can appear at a random time, but with a small probability on each time layer (for instance, pv = 0.1). The linear size (radius) of each bacterial colony is denoted by [image: image]. The time-dependent value of R is calculated by the logistic law of growth:

[image: image]

where R0 is the initial linear size of a bacterial colony, which can grow up by assumption to a limiting linear size of I, in μm, and r is the parameter related to the rate of bacterial growth in 1/h.

Here, we suppose that all bacterial colonies grow with a similar velocity. If the colonies are overlapping, the source functions F1 and F2 are determined by a superposition of corresponding contributions. Note also that the parameter σ in (5) is approximately estimated according to the “3-Sigma rule,” specifically, as Rv(t)/3.

Further, we start the degradation of a bacterial population by simulating the action of antibiotics at a defined time, when the total bacterial concentration reaches 4.6·1011 cells/l. This value corresponds to the normalized value of N(t) equaled to the unit. At the same time, we stop “generating” new bacterial colonies.

In addition, we need to formalize the relation between the linear size of bacterial colonies and the antibiotic action. In the present study, we apply a simplified approach. We suppose that the concentration of antibiotics does not depend on spatial coordinates, but is homogeneous on the whole surface, and it can be specified as a time-dependent function. To be precise, let us consider the antibiotics of ciprofloxacin as an example [15]. An approximation of concentration dynamics for ciprofloxacin can be plotted with the use of empirical data: the maximum value reaches at time moment 4–8 h and approximately after 12–24 h the concentration falls to a certain level. We use the Rayleigh distribution for the approximation:

[image: image]

Hence, we can assume for simplicity that the linear size of each bacterial colony reduced due to antibiotic action can be expressed as follows:

[image: image]

where [image: image] is the current value of the linear size of v colony; θ is the empirical constant provided the certain density of alive population; the parameter m corresponds to the maximum value of antibiotic concentration.

Further, to determine the time-dependent bacterial density N(t) (the normalized value) we assume here for simplicity that this function can be described by the formula for the growth range:

[image: image]

and we use the following expression to approximate decreasing in the bacterial population density as a result of the degradation due to a single antibiotic treatment:

[image: image]

where a, b1, b2, μ are approximation parameters, which, in particular, provide a smooth behavior of N(t) at time moment td.

Notice that the Equations (15)–(16) provide a model description of time-dependent behavior of the bacterial concentration (namely, the periods of bacterial growth and degradation to equilibrium values, the velocity of changes in concentration, the relative level of degradation). The ”height” of the bacterial concentration is influenced by the parameters αU, βU, αL, and the corresponding dimensions are correspondent to the basic Equations (5)–(6).

Therefore, the space distribution of a bacterial population is stochastically simulated on each time layer, taking into account the mechanisms of growth and degradation. At the same time, for all bacterial colonies, we calculate the corresponding bacterial concentration in view of the growth or degradation phase.




3. Computational experiments results and discussions


3.1. General algorithm, specification of the model object, and computational setup

By construction, the procedure of model implementation includes the Monte-Carlo simulation of bacterial population growth, the finite difference iterative scheme to solve PDEs and calculate the chemical compounds, the algorithm for simulation of the degradation of a bacterial population due to antibiotic action, and the functional dependence for bacterial concentration, taking into account the time-dependent decrease of the bacterial amount. The flowchart of the general computational algorithm is shown in Figure 1.


[image: Figure 1]
FIGURE 1
 The flowchart of the general algorithm.


The program implementation of 2D model of bacterial Quorum sensing was performed in Matlab. The designed software is intended for computer simulations of space-time distributions of chemical compounds such as AHL and Lactonase concentrations at given parameters. Figure 2 illustrates the program application architecture diagram. In these terms, conducting simulations requires initialization of the model as well as computational parameters. The graphical user interface (GUI) permits to submit all parameters and options that are necessary to accomplish a quorum sensing simulation. The GUI provides options to access the core system and modules that compute and visualize the antibiotic strategy (as time-dependent function of an antibiotic concentration), characteristics of bacterial populations (location at each moment, summarized linear size, total amount, etc.), and space-time distributions of main characteristics of quorum sensing, namely AHL and Lactonase concentrations during the observation process.


[image: Figure 2]
FIGURE 2
 The program application architecture diagram.


For instance, we will consider Pseudomonas putida IsoF as an object of mathematical modeling [16].

Pseudomonas putida is a Gram-negative rod-shaped bacterium of Pseudomonas genus, that lives in soils, waters, and plants. Generally, P. putida is defined as a nonpathogenic bacterium due to the lack of virulence-related genes [17]. P. putida IsoF is considered as an object due to its versatility and ease of handling to examine Quorum sensing. Note also that recent research suggests that P. putida can be a human pathogen causing nosocomial infections in patients with a weakened immune system like cancer patients and newborns [18]. P. putida can provide the exchange platform for more virulent and antibiotic resistant microorganisms such as deadly Pseudomonas aeruginosa [19]. Most infections caused by P. genus demonstrate resistance to certain antibiotics and their combinations. Therefore, P. putida represents an important model organism to perform simulations of Quorum sensing characteristics in a bacterial population under antibiotic action.

Let us assume that we have a two-dimensional domain limited by 0 ≤ x ≤ 100 μm and 0 ≤ y ≤ 100 μm. The time of observation is up to 50–100 h. We choose the model parameter values as listed in Table 1 using previously estimated values [8]. The empirical parameter θ in (14) is fixed to be 0.2. The time of start of antibiotic action is estimated as td = 10 − 16 h.


TABLE 1 Parameter values estimated for the bacterium P. putida.

[image: Table 1]

The values of the parameters for bacterial density approximation (15)–(16) are established empirically from microbiological experiments for Pseudomonas bacterial species [20, 21]. We specify a following set of approximation parameters for the bacterial dynamics: b1 = 6 h, b2 = 18 h, μ = 1.4 1/h. Figure 3 illustrates the time-dependent behavior of bacterial density for the species P. putida. In this case, we suppose 30% decreasing in the bacterial population density within 10 h due to a single antibiotic action.


[image: Figure 3]
FIGURE 3
 The time dependence of the normalized bacterial density under single antibiotic treatment.


In addition, we conducted a numerical study of the stability of a constructed computational scheme. As far as the initial and boundary conditions are strictly defined for the corresponding chemical substances, here we examine the stability of the computational scheme by variation of the “amplitude part” of the generating terms defined by Fm. In more detail, we vary the parameters of αU, βU, and βL. Here we assume that the parameters of αU, βU, and βL alternately increase by 20, 30, 40, 50% while the others remain the same (with respect to the initial values as listed in Table 1). In order to estimate the perturbations of grid functions under the “amplitude parameters” variation, we use the following estimations: [image: image], where m = 1 corresponds to the AHL and Lactonase concentrations calculated for the last time moment at h1 = h2 = 1 μm and τ = 0.01 h at initial parameters listed in Table 1. For these computations we suppose that there is only one bacterial colony located at the central position of the computational domain with a linear size of 10 μm.

Figure 4 shows the estimation of the perturbation of corresponding grid functions. These data suggest an appearance of slight perturbations of the AHL and Lactonase concentrations under the variation of the “source functions.” The almost linear growth of the estimations indicates the numerical stability of the computational algorithm.


[image: Figure 4]
FIGURE 4
 The estimation of the perturbations of grid functions for AHL concentration (A), and the Lactonase concentration (B) under the variation of the parameters of generating terms αU (1), βU (2), and βL (3).




3.2. Time-dependent simulations of Quorum sensing characteristics in bacterial population of P. putida under antibiotics action

We conducted numerical experiments for the 2D reaction-diffusion model combined with the procedure of the Monte-Carlo simulation of bacterial growth and further degradation of the population due to antibiotic action. According to the above algorithm, one, two or three bacterial colonies with a circular shape can start to grow at an initial time. The initial radius R0 of each bacterial colony is set to be 1 μm. The parameter of the rate of logistics population growth is assumed to be r = 0.4 1/h, the limiting value of linear size is I = 20 μm. During the bacterial evolution process, a new bacterial colony appears with a small probability specified as 0.1 per time step of the simulation, chosen to be 0.5h. Concretely, for the first simulation, we had two bacterial colonies at the start moment and the total amount V, equaled to 4.

In the first case, we suppose that we do a single antibiotic treatment when the bacteria reach the critical value of population density. The time-dependent function (13) defining the dynamics of antibiotic concentration during the observation time is shown in Figure 5A. The parameters of the approximation (13) are set to be A0 = 1.65 and A1 = 32. Here we can claim that antibiotics reach an acting maximum concentration after 3.5–4 h after adding and acting during 10–13 h. Figure 5B illustrates the dynamics of the total value of linear size [image: image] of bacterial colonies. We see that the bacterial population has time to reach the equilibrium value before we start the degradation by antibiotics at t = 12 h. After that, the R(t) leveled off at 2.017 μm.


[image: Figure 5]
FIGURE 5
 The dynamics of changes in antibiotic concentration (A), and the total linear size of bacterial colonies at single antibiotic treatment (B).


The following figures (Figures 6A,B) present the space distributions of key chemical compounds characterizing Quorum sensing in the bacterial community, namely the AHL and Lactonase concentrations calculated at a fixed time 12 h. In addition, graphs in Figure 7 visualize the maximum values of the AHL and Lactonase concentrations as time dependencies. These data indicate that the Lactonase concentration reached a maximum value before adding antibiotics, whereas the AHL concentration declined slightly due to the interaction between these players. The results suggest that the AHL concentration fell gradually, followed by a stabilization to the level of 4.89·10−10 mol/l, at the same time, the Lactonase concentration decreases more essential and leveled to the value of 6.76·10−13 mol/l. The average value of the AHL concentration equals 1.36·10−10 mol/l at the final time point.


[image: Figure 6]
FIGURE 6
 The distributions of chemical compounds calculated at time 12 h: (A)—the AHL concentration; (B)—the Lactonase concentration.



[image: Figure 7]
FIGURE 7
 The time-dependent profiles of maximum values of chemical compounds during the observation time 50 h: (A)—the AHL concentration and (B)—the Lactonase concentration at single antibiotic treatment.


This means that antibiotic action affects the enzyme, preventing the bacterial quorum to a greater extent than the signaling substance that provides the quorum itself. We can observe that a small bacterial population that has been reduced by a factor of ten is still producing signaling molecules. This effect can be referred to as the emergence of increasing the resistance of reduced bacterial population. Hence, we can conclude that a single antibiotic treatment leads to a reduction in the bacterial population under the assumed conditions of computational experiments. However, the Quorum sensing level in a reduced population remains very high compared to a saturated population, and a bacterial population will be able to quickly restore their numbers in the presence of a nutrient medium. Therefore, the obvious strategies for suppressing Quorum sensing are to use a multiple antibiotic treatments strategy, an increasing antibiotic doze, a combination of different antibiotics, or even combining application of antibiotics and natural degrading enzymes.



3.3. A multiple antibiotic treatment strategy: Numerical experiments

Note that due to the stochasticity underlying the simulation of population generation and growth an exact reproduction of the computational experiments is not possible. Let us consider a computational experiment in which we apply a multiple antibiotic treatment strategy. For instance, we assume that antibiotic treatment was done three times, specifically at 12, 24, and 36 h (Figure 8A). In these terms, the function of bacterial density dynamics N(t) includes three degradation phases as presented in Figure 8B. Figure 9A shows the changes in the total bacterial linear size R(t) during the observation time. The graph is characterized by a sharp decline to the value of 4.8·10−5 μm. The simulations suggest a more significant decrease in the AHL concentration as presented in Figure 9B, where the maximum value corresponds to 1.78·10−10 mol/l at the final time t = 50 h. Nevertheless, the quorum level remains considerable even for a negligible population size. Concretely, the average value of AHL concentration is equal to 4.26·10−11 mol/l at the last moment. This effect is caused by the diffusion processes and long relaxation time of the AHL concentration. Moreover, as we mentioned above, antibiotic adding has a strong effect on the Lactonase concentration, resulting in the suppression of this enzyme, which in turn does not essentially inhibit the AHL concentration.


[image: Figure 8]
FIGURE 8
 The dynamics of changes in the antibiotic concentration—(A) and the normalized bacterial concentration dynamics—(B) under multiple exposure to antibiotics.



[image: Figure 9]
FIGURE 9
 The time dependence of total linear size of bacterial colonies—(A) and the dynamics of the maximum values of the AHL concentration—(B) at the multiple antibiotic treatment.


We conducted a series of computational experiments, varying the interval between antibiotic treatment: 4, 8, 12, 16 h with a triple sequential addition of the same concentration. The findings allow us to conclude that all applied strategies lead to significant degradation of the bacterial population and a decrease in the AHL concentration. The total linear size of the population varies in the range of 2·10−5 − 4·10−4 μm and the average value of the AHL concentration changes from 2·10−11 to 8·10−11 mol/l at t = tob. It follows that the frequent use (within the considered range) of antibiotics does not confer treatment benefits.

It should be pointed out that we simulate the effect of a powerful antibiotic action in a simplified situation, excluding the growth of the population after treatment. However, as known, pathogenic species of the P. genus exhibit resistant behavior [22], i.e., capable of continuing their vital activity under antibiotic treatment. Obviously, the intervals of antibiotic exposure should not exceed the duration of the antibiotic action (in our case, it is about 16 h), otherwise the surviving population will strive to restore equilibrium amount.

Figures 10A–C show frames of evolution of a typical bacterial population growing in colonies under triple antibiotic treatment 12 h apart (12, 24, 36 h, respectively). In this computational experiment, we assume that the bacterial population can continue to grow after antibiotic action (for example, after 55 h), but more slowly than in the initial case (the parameter of the logistic growth r = 0.1). Also, new bacterial colonies can appear during simulations. The space distributions of the AHL concentration are presented in Figures 10D–F computed at fixed moments: at the beginning of bacterial evolution—5 h, at the beginning of antibiotic action—12 h, and at the final time 100 h. Figure 11 gives a detailed visualization of time-dependence of the total linear size of the population and the average value of the AHL concentration. Our data indicate that after 17 h, the population restored its numbers. At the same time, the “communication level” of the bacterial population is only 20% of the equilibrium value in the absence of inhibition due to antibiotics. This effect is caused by a long relaxation time of the AHL concentration and an additional increase in the Lactonase concentration.


[image: Figure 10]
FIGURE 10
 The dynamics of bacterial population (A–C), and the space distributions of the AHL concentration—(D–F), calculated at the corresponding moments 5, 12, and 100 h.



[image: Figure 11]
FIGURE 11
 The time dependence of the total linear size of bacterial colonies—(A) and the dynamics of the average value of the AHL concentration—(B).





4. Conclusions

In summary, we have shown that the developed hybrid mathematical model allows to examine the behavior of key chemical compounds characterizing bacterial communication during antibiotic treatment. We have proposed suitable computational techniques to conduct time-dependent simulations of bacterial quorum sensing. The computational procedure for the model implementation includes the following points: First, we performed the Monte-Carlo simulation of bacterial maturation and population growth. Then, to estimate chemical compounds, the system of PDEs was numerically solved with the finite difference iterative scheme. Finally, we conducted simulations of the degradation of a bacterial population due to antibiotic action, taking into account the time-dependent decrease in the number of bacteria.

The continued insilico studies of bacterial cooperative behavior hold great promise in microbiology. Computational experiments based on the mathematical model of Quorum sensing in pathogenic bacteria provide a set of tools for building a new level of understanding of the mechanisms of response formation to external influences. The obtained data suggest that even a small bacterial population maintains an essential quorum, which will be able to restore the equilibrium population size provided the nutrient medium and in the absence of further external inhibitors (or, for example, a weak immune system). The big advantage of the presented approach is that it allows for a quick overview and estimate of the system behavior, what was our purpose here. Additional studies are required to modify the mathematical model, e.g., by introducing space-time distributions of bacterial biomass and antibiotic concentration, providing more details and accuracy, but requiring more computational effort and more detailed knowledge about the biological system. This general approach can be useful for further studies of optimal modes of antibiotic and other treatments.
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Physics-informed convolutional recurrent network (PhyCRNet) can solve partial differential equations without labeled data by encoding physics constraints into the loss function. However, the finite-difference filter makes the solution of 2D incompressible flow challenging. Hence, this paper proposes a Fourier filter-based physics-informed convolution recurrent network (named Fourier filter-based PhyCRNet), which replaces the finite-difference filter in PhyCRNet with the Fourier filter to solve the 2D incompressible flow problem. The suggested network improves the accuracy of the partial derivatives, solves the inverse Laplacian operator, and has similar generalization ability due to inheriting the framework of PhyCRNet. Four examples, including the 2D viscous Burger, FitzHugh–Nagumo RD, vorticity and the two-dimensional Navier- Stokes (N-S) equations, validate the correctness and reliability of the proposed Fourier filter-based PhyCRNet.
Keywords: fourier filter, convolutional recurrent network, 2D incompressible flow, inverse laplacian operator, physics-informed
1 INTRODUCTION
Partial differential equations (PDEs), play a crucial role in modeling a wide variety of problems in applied mathematics, physics, biology, chemistry, and engineering technology and thus are widely used to express and interpret the laws involved [1,2]. Although many phenomena can be analyzed and solved through PDEs modeling, such as weather forecasting [3], communication technology [4] and electromagnetic induction [5], in many cases, the analytical solution of PDEs is unavailable, and researchers solve PDEs by numerical methods, i.e., finite-difference, finite volume, and finite element methods [6]. Although some classic numerical methods achieve very high accuracy, the balance between computational cost and accuracy is still a vital issue.
Recently, the rapid development and application of deep learning have provided an alternative solution to PDEs of positive and inverse problems. Theoretically, the universal approximation theorem proves that deep neural networks can simulate arbitrarily complex functions [7]. Due to the development of deep learning and the improvement of computing power, several studies have been proposed utilizing deep learning to solve PDEs [8–15]. The latest related research can be mainly divided into discovering PDEs from data and solving PDEs. The pioneering work in inverse problem research is the sparse regression method introduced by Rudy et al. [8]. On this basis, Long et al [11] proposed an improved neural network, the PDE-Net, to obtain the PDE coefficients and solve PDE. The Physics-informed Neural Network (PINN) proposed by Rassi et al. [16] introduced an innovative approach to encoding physical constraints into loss functions, with many improved PINN versions bring used to solve problems in different scenarios [17–21]. Other researchers propose operator schemes to solve PDEs. For example, Lu et al. [22] introduced a neural network of DeepONets for learning nonlinear operators, while Li et al [23] proposed the Fourier neural operator (FNO) utilizing the Fourier transform, which afforded a much faster solution rate and a stronger generalization ability than other neural networks. Recent research fused neural operators and PINNs to improve the interpretability and speed up the network’s fitting [24,25]. Nevertheless, such a strategy requires quantitative and high-quality training data.
Recent studies have revealed that PDEs can be solved by training the network constraints, such as physical constraints [26,27], without labeled data. However, due to limitations of the network training process, the time extrapolation results are often unsatisfactory. Therefore, researchers have introduced time series prediction deep learning networks in the study to solve PDEs [28–30] with the help of classical numerical methods to solve time-dependent PDEs [31–33]. For instance, the physics-informed based convolutional recurrent network (PhyCRNet) introduced by Ren et al. [30] considers all aspects. Indeed, it starts from the initial conditions without any labeled data, extracts spatial features using a convolutional neural network (CNN) [34], utilizes a convolutional long and short term memory network (ConvLSTM) [35] to learn its evolution, and finally encodes the output values into the loss function through the finite-difference filter for physical constraints. Hence, PhyCRNet solves PDEs using the equations as constraints and supervises the network’s convergence, without high-quality training data.
However, the 2D incompressible flow refers to a flow in which the density remains constant in two-dimensional fluid parcel, which is characterized by stream function and the associated velocity fields and vorticity, as defined by the stream function’s partial derivatives. Typical numerical methods use pseudo-spectral methods to balance the solution rate and accuracy by using the vorticity as the initial field, calculating the partial derivatives in the spectral space, and solving the equations using time iterations [36–38]. Nevertheless, calculating the stream function from the vorticity involves calculating the inverse Laplace operator, which is difficult to solve by the finite-difference method. Overall, PhyCRNet has the following disadvantages in solving the 2D incompressible flow problem.
1. The differential accuracy of the finite-difference is not high, resulting in an inaccurate calculation loss function and affecting the convergence speed and accuracy of the solution.
2. Calculating the inverse Laplace operator is challenging when using the finite-difference filter and in the case of calculating the stream function.
3. Finite-difference differential calculation accuracy is related to the grid spacing and the number of cells, and the computational overhead is higher in high-resolution calculations.
Based on these shortcomings, it is necessary to improve the PhyCRNet.
Hence, this paper employs the discrete Fourier transform [39] in the pseudo-spectral method [40] to replace the finite-difference filter in the PhyCRNet and optimize PhyCRNet. The main contribution of this method is solving the problem of efficient solution of the differential operator and the inverse Laplace operator during the vorticity calculation of the stream function in PhyCRNet. In the Fourier filter-based PhyCRNet, we first transform the network’s output into the Fourier space for partial differentiation and calculate the Laplace and the inverse operators, followed by the inverse Fourier transform. Finally, the physical constraints are achieved by encoding and thus effectively solving PhyCRNet’s problem. This improved network has a faster solution than the finite-difference method in large-scale calculations [23].
The remainder of the paper is organized as follows: Section 2 introduces the Fourier filter-based PhyCRNet, while Section 3 provides two examples of two-dimensional viscous Buger’s equation and FitzHugh–Nagumo RD equations to verify the performance of the Fourier filter-based PhyCRNet in solving some basic PDEs. Then, two examples, including the vorticity equation and the 2D incompressible Navier-Stokes equation, demonstrate the advantages of the Fourier filter-based PhyCRNet, finally, Section 5 concludes this work.
2 METHODOLOGY
This section introduces the proposed Fourier filter-based PhyCRNet, whose structure describes the PDEs to be solved and then introduces the related algorithms and network frameworks. Finally, the related content of the improved PhyCRNet (namely, Fourier filter-based PhyCRNet) is introduced.
2.1 Problem statement
Our proposed method focuses on the time series prediction and solution of spatiotemporal PDEs. Numerical experimental equations such as Burger’s equation are widely used to verify the method and have the following general form [41,42].
[image: image]
where [image: image] represents the possible solutions found in the time range [image: image] and the physical space [image: image] and [image: image] is the nonlinear operator parameterized with [image: image]. Also, for the initial and boundary conditions, there are characterizations of the form [image: image] = 0 and [image: image] = 0, where [image: image] represents the boundary interval. The boundary conditions such as Dirichlet and Neumann have not been discussed in this work for the time being.
2.2 PhyCRNet
PhyCRNet proposed by Ren et al adopts ConvLSTM to learn temporal evolution and constructs the network loss function with PDE constraints. It propagates information into future times and solves equations without labeled data as PINN. It has stable extrapolability after training which makes it better than other deep learning methods. For more detailed work on PhyCRNet, refer to the work [30].
2.3 The discrete fourier transform
The discrete Fourier transform (DFT), a fundamental transformation in digital signal processing, is widely used in convolution, image processing, and frequency analysis [43–45]. Its implementation is similar to the continuous Fourier transform, which for a given certain sequence of real numbers [image: image], it is represented as a sequence of complex numbers [image: image] utilizing the discrete Fourier transform. DFT is defined as follows:
[image: image]
where [image: image]. At the same time, the original discrete function can also be reconstructed by the inverse discrete Fourier transform (IDFT), defined as:
[image: image]
By considering the 2-dimensional function [image: image] as an example, according to Eqs 2, 3:
[image: image]
For the function after the discrete Fourier transform, its corresponding derivative can be quickly obtained in the Fourier space.
[image: image]
Different from the finite difference filter in PhyCRNet to solve the derivative, the spatial derivative is calculated as the product of spectrum and [image: image] in the wave number domain after the discrete Fourier transforms the function. So, the Fourier filter proposed in this paper is used to calculate spatial derivatives of loss function by discrete Fourier transform. This strategy is more adaptable to solving many PDEs types.
Moreover, the pseudo-spectral method has advantages in solving the 2-dimensional incompressible flow equation [46]. Indeed, given vorticity ([image: image]) and the stream function ([image: image]) at time t, this method first updates ζ forward at time [image: image]. Then the Poisson equation with periodic boundary is considered as a relationship between the two to update [image: image] forward at time [image: image]. The Poisson equation involves the inverse Laplace operator calculation, which is trivial to implement by the discrete Fourier transform when its mean state is known [47]. This is why the discrete Fourier transform is superior to the finite-difference. Assuming that the mean state is one, the inverse Laplace operator is computed as follows:
[image: image]
The improvement proposed in this work is to replace the finite-difference filter in the PhyCRNet with the discrete Fourier transform, and then perform the PDE residual connection to integrate the physical constraints into the neural network (further details are presented in Section 2.4). The resulting network has two advantages. First, it overcomes the inability of PhyCRNet to efficiently solve the inverse Laplace operator. Indeed, the Fourier filter-based PhyCRNet can solve PDEs similar to describing 2D incompressible flows, enhancing the network’s generalization ability. Second, the Fourier transform has higher accuracy than the finite-difference method when calculating high-order partial derivatives, and its computational efficiency is faster in large-scale scientific computing.
2.4 Fourier filter-based PhyCRNet
This section introduces the structure of proposed network. As illustrated in Figure 1, the network consists of the encoding module, time series module, decoding module, input and output connection module and Fourier filtering module. Firstly, the encoding module is used to extract spatial features through CNN and then output to the time series module. Secondly, the time series module captures the time dependence of spatial features and establishes time series relationships. In this way, the network generates the predicted values only under the initial condition. Then, the decoding module reconstructs the discrete output of the time series module by the sub-pixel convolutional layer (pixel shuffle) to achieve the same resolution as the input. In addition, a convolution layer without activation function is added at the end of the module. Finally, the input-output connection module adopts a forward Eulerian method to establish the relationship of [image: image] and [image: image].The Fourier filtering module calculates the spatial derivative involved in the computation of loss function. The Fourier filter calculates the spatial partial derivatives by transforming the input to the spectral space, which turns into a simple multiplication in the frequency domain compared with the finite difference. For more details, please refer to 2.3 for the idea of Fourier filtering and 2.5 for loss construction.
[image: Figure 1]FIGURE 1 | The architecture of Fourier filter-based PhyCRNet. It comprises CNN layers with activation functions in the encoder. In the decoder, Pixel Shuffle conducts super-resolution reconstruction to obtain the resolution of the input value, and considers a CNN layer without an activation function for convolution processing. H and C are the hidden state and cell state of ConvLSTM, respectively. All outputs are incorporated into the loss function using DFT and IDFT. Fourier transform loss function with physics-informed.
2.5 Fourier transform loss function with physics-informed
Given that the Fourier filter-based PhyCRNet is trained without labeled data, the loss function construction controlled by the PDEs is significant and must preserve high accuracy and efficiency. The loss function accuracy depends on the partial derivatives, which unlike the chained derivatives of Physics-informed Neural Network (PINN) [16], the Fourier filter-based PhyCRNet uses the Fourier filter formed by the discrete Fourier transform (as introduced in Section 2.3) to calculate the partial derivatives in the PDEs. Hence, we calculate [image: image] in Eq. 1 and construct the PDEs residual connection to integrate the physical constraints into the loss function of the neural network. Then the PDEs residual connection is formed and the physical constraints are integrated into the loss function in the neural network. As an example, solving the 2-dimensional PDEs, [image: image] can be defined according to the left side of Eq. 1:
[image: image]
where [image: image] is obtained by traditional numerical methods. The shared network parameter [image: image] is obtained during training by using the minimization loss function [image: image] in Eqs 8, 9, defined as the sum of squares of the discrete values of [image: image] over all spatial and temporal periods
[image: image]
[image: image]
where [image: image] denotes the [image: image] norm.
3 NUMERICAL EXPERIMENTS
This section validates the proposed Fourier filter-based PhyCRNet by utilizing nonlinear PDEs and two PDEs for describing the 2D incompressible fluid flow. The trial involving two nonlinear PDE (2D viscous Burger’s equations and FitzHugh–Nagumo RD equations) verifies that the Fourier filter-based PhyCRNet possesses the capabilities of PhyCRNet. And two 2D incompressible fluid flow PDEs test the feasibility and advantages of Fourier filter-based PhyCRNet. All numerical implementations and constructed networks are coded using Pytorch [48], and all models are trained on an NVIDIA GeForce GTX 3090 with 24 GB of memory.
3.1 Network parameters
The main difference between Fourier filter-based physics-informed convolutional recurrent network (PhyCRNet) and PhyCRNet is the calculation of the partial derivatives, while the other remaining structure is the same. In the encoding part, three convolutional layers are used for feature extraction, with 8, 32, 128 units respectively using a convolutional kernel (4[image: image]4) and a stride of 2 and ReLU function as the activation function. In the decoding part, for the standard connection between the input and output, sub-pixel convolution is performed through pixel shuffle to complete super-resolution reconstruction. Then a convolutional layer is added, using a convolutional kernel (5[image: image]5) and a stride of one to ensure constant resolution without an activation function. The convolution operation in ConvLSTM involves a convolution kernel (3[image: image]3) and a stride of 1. At the same time, the training of both networks are trained using the stochastic gradient descent Adam optimizer [49].
3.2 Evaluation metrics
Three evaluation metrics, mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE), are widely used in the evaluation of deep learning networks. In order to evaluate the solution accuracy of the network in this paper, an accumulative root mean square error (a-RMSE) is defined and the same evaluation metric is used for training and extrapolation.
[image: image]
where [image: image] represents the number of time steps in the period [image: image], and [image: image] represents the full-field a-RMSE. m and n are the resolutions in the spatial region, while [image: image] and [image: image] represent the reference solution and the prediction, respectively.
3.3 2D viscous Burger’s equations
Considering the following 2D viscous Burger’s equations with periodic conditions:
[image: image]
where [image: image] is the fluid’s velocity ([image: image] and [image: image]), [image: image] is the viscosity coefficient, Δ is the Laplace operator, [image: image] is the gradient operator, and [image: image] denotes the initial condition. Here, we set [image: image] = 0.005, and the spatial region is [image: image] with a resolution of [128 × 128].
The initial condition [image: image] is generated in a Gaussian random field, according to [image: image] where [image: image]. The experimental reference value is obtained by a pseudo-spectral method with a fourth-order Runge-Kutta method ([image: image]). PhyCRNet and the Fourier filter-based PhyCRNet both are trained with a relatively large time step ([image: image]) for iterative calculation. In the finite-difference filter module of PhyCRNet, Eq. 12 is used to calculate Δ, and the following difference filter Eq. 13 is used to calculate ▽:
[image: image]
[image: image]
[image: image]
However, in Fourier filter-based PhyCRNet, Eq. 5 is used to calculate ▽, and Δ is calculated by a method similar to Eq. 6, while [image: image] is calculated by the difference filter in Eq. 14 uniformly. Except for the calculation of spatial derivatives, all parameters are the same as Ref. [30]. The learning rate starts at [image: image] and decays to 99% every 50 epochs. During the period [0,0.4], PhyCRNet and Fourier filter-based PhyCRNet are trained separately to obtain the numerical solution of the two-dimensional viscous Burger’s equation for 200 time steps. Then, based on the trained model, the solution for the last 200 time steps (within time [0.4, 0.8]) is predicted to verify the model’s extrapolation performance. According to the training method mentioned in [30], we pretrain the model from 100 and then 200 time steps, then extrapolate for another 200 time steps. The relevant codes and data come from open source [30].
Figure 2 depicts four snapshots of [image: image] taken from the training phase (t = 0.1, 0.3 s) and the extrapolation phase (t = 0.6, 0.8 s), respectively. Each snapshot from top to bottom are reference solutions, predictions by PhyCRNet and ours, and errors of PhyCRNet and ours, respectively. From Figure 2, it can be found that the results of both networks are very agreement with the reference in training and extrapolation. It verifies that the Fourier filter-based PhyCRNet has the same capability to solve basic PDEs as PhyCRNet.
[image: Figure 2]FIGURE 2 | The results of Fourier filter-based PhyCRNet and PhyCRNet network solving the two-dimensional viscous Burger’s equation. Four representative moments are selected for comparison as training (t = 0.1, 0.3 s) and extrapolation (t = 0.6, 0.8 s), and the errors across the interval are compared. The subfigures from top to bottom are reference solutions, predictions by PhyCRNet and ours, and errors of PhyCRNet and ours, respectively.
3.4FitzHugh–Nagumo RD equations
Considering the following the FitzHugh–Nagumo (FN) RD equations:
[image: image]
Same as 3.2, except for the Fourier filter, the network hyperparameters and equation coefficients are the same as [30]. [image: image] and [image: image] are two interactive components. [image: image], [image: image], [image: image] and [image: image] are equation coefficients by [image: image], [image: image], [image: image] and [image: image], respectively. The IC is IC_FN1 and the reference solution is calculated using a method in 2D domain of [0.128] for 12,000 time steps ([image: image]) [30]. Two model are trained to solve this PDEs for 200 time steps with time duration of [0, 1.2] and used to achieve the inference for [1.2, 2.4], where [image: image]. The learning rate is set as 5 × 10–5 and decays by 0.5% every 50 epochs. Besides, we pretrain the model from 100 and then 200 time steps to extrapolate for another 200 time steps.
During training (t = 0.6, 1.2 s) and extrapolation (t = 1.8, 2.4 s) phases, the reference solutions, predicted solutions and error maps are shown in Figure 3. Although FitzHugh–Nagumo RD equations are more complex than Burger’s equation, Fourier filter-based PhyCRNet and PhyCRNet have the same outstanding performance with the truth reference both in training and extrapolation. The error maps of two model exhibit near-perfect results, especially the extrapolation error of the field variable [image: image] is smaller. Considering that this PDEs has a more complex nonlinear form, the above two neural network methods capture the dynamic evolution process in the long-term, which is different from the traditional forward Euler integration scheme.
[image: Figure 3]FIGURE 3 | The results of Fourier filter-based PhyCRNet and PhyCRNet network solving the FitzHugh–Nagumo RD equations. Four representative moments are selected for comparison as training (t = 0.6, 1.2 s) and extrapolation (t = 1.8, 2.4 s), and the errors across the interval are compared. The subfigures from top to bottom are reference solutions, predictions by PhyCRNet and ours, and errors of PhyCRNet and ours, respectively.
3.5 Vorticity equation
This section focuses on the experimental validation of the Fourier filter-based PhyCRNet to solve the problems that the finite-difference filter of PhyCRNet cannot solve. Since the finite-difference filter cannot solve problems like inverse Laplace operators and there is a time iteration relationship between the input and output modules, the finite-difference method imposes the solution of some PDEs not to have a good propagation relationship between the input and output.
Consider a simple equation for describing 2D incompressible nonviscous fluid flow, namely the vorticity equation, which takes the following form
[image: image]
where [image: image] represents the vorticity, the stream function [image: image] is used to describe the flow of the fluid, and [image: image] represent the velocity of the fluid in the x and y directions, respectively. The initial flow function for the equation is:
[image: image]
where [image: image] = 0.15. When calculating the reference solution, we calculate [image: image] and [image: image] of the initial state from Eq. 17. On the 2D region [image: image] with a resolution of 256 × 256, a pseudo-spectral method with a fourth-order Runge-Kutta time integral ([image: image]) is used to solve the vorticity equation. The solution reveals that the vorticity [image: image] moves forward first, then uses the method of Eq. 6 to update the stream function [image: image], and then calculates [image: image]. Using vorticity as a bridge between the input-output connection modules of the network can more effectively capture the time evolution. During network training and extrapolation, the time step is chosen to be [image: image]. Fourier filter-based PhyCRNet is trained for 100 time steps within [0,0.1] to solve the vorticity equation, and the solution is extrapolated based on the training model for another 100 time steps within time [0.1,0.2]. The learning rate starts at 5[image: image] and then decays to 99% every 100 epochs. The entire training time is 6.5 h.
Figures 4, 5 compare the vorticity and velocity fields predicted by Fourier filter-based PhyCRNet and the ground-truth reference values. Four representative time instances are selected for the training (t = 0.025, 0.075 s) and extrapolation (t = 0.125, 0.175 s) phases. From Figures 4, 5, we conclude the following. First, we can see in figures that both the vorticity and velocity fields are close to the true reference during the training and extrapolation phases. Especially in the training phase, many errors are close to zero. As the extrapolation period increases, the error also increases. However, when the extrapolation is at the same training time, the shape of the rotation is still the same. In the region with a larger value, the error becomes larger, but the evolution trend of the solution can still be used as a reference. As the extrapolation time increases, the error also increases. This conclusion is also verified in Figure 8C according to the time-varying a-RMSE.
[image: Figure 4]FIGURE 4 | The vortex results for solving the vorticity equation with Fourier filter-based PhyCRNet. Four representative moments are selected for comparison, presenting the training (t = 0.025, 0.075 s) and extrapolation (t = 0.125, 0.175 s) maps, and compare the errors across the interval. From top to bottom are reference solutions, predictions and errors.
[image: Figure 5]FIGURE 5 | The velocity results for solving the vorticity equation with Fourier filter-based PhyCRNet. Four representative moments are selected for comparison, presenting the training (t = 0.025, 0.075 s) and extrapolation (t = 0.125, 0.175 s) maps, and compare the errors of the entire interval. From top to bottom are reference solutions, predictions and errors.
3.6 Two-dimensional Navier-Stokes equation
We consider the 2D Navier-Stokes equations for a incompressible viscous fluid in the form of vorticity on the unit torus [23]:
[image: image]
The reference is all from the open source code of [23]. The initial condition [image: image] with periodic boundary condition are generated according to [image: image], where [image: image].We set [image: image], and the forcing is kept fixed [image: image]). The equation is solved by a pseudo-spectral method, where first, the velocity field is calculated in the Fourier space. The vorticity field is then differentiated, and the nonlinear term is calculated in the physical space. In terms of time, we use the Crank-Nicolson scheme, and the time step is δ[image: image]. All data are generated on a grid with 256 × 256 resolution. The model is trained for 200 timesteps within the [0, 2] period, and we extrapolate over [2,4], where [image: image]. The entire training time process lasts 12.5 h.
The vorticity and velocity field predicted by the Fourier filter-based PhyCRNet and the ground-truth are illustrated in Figures 6, 7, respectively. The figures clearly show that the velocity and vorticity fields agree with the ground truth during the training phase. According to the error distribution, the error is minimal and, on many occasions, close to zero. In the extrapolation stage, although the error is increased compared to the training phase, the evolution of the vorticity and velocity fields can still be predicted accurately by the trained model of Fourier filter-based PhyCRNet. This reveals that Fourier filter-based PhyCRNet affords appealing stability.
[image: Figure 6]FIGURE 6 | The vorticity field results of Fourier filter-based PhyCRNet solving the 2D N_S equation. Four representative snapshots are selected as comparisons, namely training (t = 0.5, 1.5 s) and extrapolation (t = 2.5, 3.5 s), and compared the errors over the entire interval. From top to bottom are reference solutions, predictions and errors.
[image: Figure 7]FIGURE 7 | The velocity field results of Fourier filter-based PhyCRNet solving the 2D N_S equation. Four representative time instants are selected as comparisons, namely training (t = 0.5, 1.5 s) and extrapolation (t = 2.5, 3.5 s), and compare the errors of the whole interval one by one. From top to bottom are reference solutions, predictions and errors.
3.7 Errors comparison
The error propagation maps of 2D viscous Burger’s equations and FitzHugh–Nagumo RD equations are shown in Figures 8A,B, respectively. The performance of the proposed methods is different in the two experiments. There may be caused by the Fourier filter performs smooth filtering when calculating spatial derivatives and the setting of hyperparameters which is not the optimal setting of Fourier filter based PhyCRNet for solving 2D viscous Burger’s equations. Overall, the errors of both models are on the same level, which indicates that Fourier filter-based PhyCRNet has the same capability to solve the basic PDEs as PhyCRNet.
[image: Figure 8]FIGURE 8 | The a-RMSE of the four Equations. (A) 2D viscous Burger’s equations; (B) FitzHugh–Nagumo RD equations; (C) Vorticity equation; (D) 2D Navier-Stokes equation.
In Figure 8C, we observe that the errors of vorticity and velocity are very small during the training phase, and the errors gradually increase as the extrapolation time increases. Since both values are not in the same order of magnitude, the a-RMSE of the vorticity is significantly larger than the velocity field, below 0.7 and 0.02, respectively. As shown in Figure 8D, the a-RMSE of vorticity and velocity during the training and extrapolation phases is below 0.04 and 0.01, respectively. This further verifies the effectiveness of the Fourier filter-based PhyCRNet in solving 2D N-S equations.
3.8 Convergence study
It is significant to conduct the convergence study of the Fourier filter-based PhyCRNet. Fourier method is widely used to solve PDEs, and its convergence has been verified in previous studies (Hald, 1981; Tadmor, 1989; Bardos and Tadmor, 2015). Besides, the convergence of PhyCRNet has been verified. The Fourier filter that replaces the finite difference filter has a higher solution accuracy, so the calculation of the loss function is more accurate. The loss function is used to evaluate the error between the predicted value of the network and the target value. The trained network reaches convergence by back-propagation algorithm [50–52]. According to Eqs 7, 8, the loss function with physical constraints is trained to converge to an acceptable error range, which guarantees the convergence of the network. Therefore, we focus on the loss history of the neural network. Since the loss histories of the four experiments are similar at training phases, we choose the 2D Navier-Stokes equation as the representative example to show the convergence history of the proposed method in Figure 9. It is obvious that as the number of iterations increases, the loss value decreases. However, the convergence trend gradually becomes stable with the iteration. More precisely, the network training has reached a reasonable convergence range after training.
[image: Figure 9]FIGURE 9 | The convergence history of Fourier filter-based PhyCRNet.
4 DISCUSSION
As a widely used fluid model, incompressible flow has many variants for different scenarios and there are many traditional numerical methods [53–58]. The development of deep learning in recent years has also made rapid progress in the exploration and solution of incompressible flow models [59–61]. This paper develops the Fourier filter-based PhyCRNet to solve PDEs. Through four numerical experiments, we verify the capability of our proposed method in the solution of general PDEs and equations describing 2D incompressible flows, respectively. By comparing the predicted values of the Fourier filter-based PhyCRNet with the reference solution, it shows that the proposed network inherits the advantages of PhyCRNet, that is, the ability of extrapolate and encode physical constraints into loss function, and has the following strengths:
1. The calculation of the inverse Laplace operator. It introduces the Fourier filter to calculate the inverse Laplace operator, which the finite-difference filter cannot achieve. In the 2D incompressible flows, the solution is to iterate forward on the vorticity field and update the velocity field after the Laplace inverse operation. The Fourier filter-based PhyCRNet can efficiently solve 2D incompressible flows with the inverse Laplace operator.
2. The accuracy of partial derivatives. It adopts a discrete Fourier transform to calculate partial derivatives improving the solution accuracy. Here we only consider numerical experiments in the periodic domain, but after processing the output with methods such as periodic extension [62,63], the Fourier filter can extend the proposed method to the aperiodic domain.
3. The computational efficient of network. Because of Fourier method, the calculation of the inverse Laplace operator and partial derivatives is very efficient. Due to the small amount of experimental computation and the computational cost of the time series module dominates the entire training process, there is no noticeable performance in the solution of the 2D viscous [image: image] equation and FitzHugh–Nagumo RD equations.
4. The proposed network exploits the powerful fitting capabilities of deep learning, while avoiding the dependence of the quality of training data. When carrying out network constraints, the fusion of physics-informed adopts the classical numerical method, so the prediction accuracy after training cannot be better than that of the traditional numerical method. Overall, the proposed method provides a reference deep learning method for scientific computing.
5 CONCLUSION
In this paper, a Fourier filter-based PhyCRNet is proposed by replacing the finite-difference filter with the Fourier filter to improve the accuracy of derivatives and overcome the difficulty of solving the inverse Laplacian operator. The proposed method integrates the physics-informed into the loss function by traditional numerical method to enhance the interpretability and improve the convergence rate. Numerical results demonstrate that the Fourier filter based PhyCRNet not only has the ability to solve general partial differential equations with PhyCRNet, but also is very effective, accurate and easy to implement for 2D incompressible flow. Certainly, the method proposed is not to replace the classical numerical method, but as an emerging field of deep learning to solve partial differential equations, it can bring a new method to scientific computing.
In the future, the proposed network can extend to the solution of problem with irregular regions and various boundary conditions. Furthermore, the graph neural network can be used to replace the convolutional network to extract spatial features more effectively.
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An important question in computational neuroscience is how to improve the efficacy of deep brain stimulation by extracting information from the underlying connectivity structure. Recent studies also highlight the relation of structural and functional connectivity in disorders such as Parkinson’s disease. Exploiting the structural properties of the network, we identify nodes of strong influence, which are potential targets for Deep Brain Stimulation (DBS). Simulating the volume of the tissue activated, we confirm that the proposed targets are reported as optimal targets (sweet spots) to be beneficial for the improvement of motor symptoms. Furthermore, based on a modularity algorithm, network communities are detected as set of nodes with high-interconnectivity. This allows to localise the neural activity, directly from the underlying structural topology. For this purpose, we build a large scale computational model that consists of the following elements of the basal ganglia network: subthalamic nucleus (STN), globus pallidus (external and internal parts) (GPe-GPi), extended with the striatum, thalamus and motor cortex (MC) areas, integrating connectivity from multimodal imaging data. We analyse the network dynamics under Healthy, Parkinsonian and DBS conditions with the aim to improve DBS treatment. The dynamics of the communities define a new functional partition (or segregation) of the brain, characterising Healthy, Parkinsonian and DBS treatment conditions.
Keywords: electric field volume conductor model, dynamical systems, Hodgkin Huxley neurons, complex networks, movement disorder
1 INTRODUCTION
Movement disorders like Parkinson’s disease and dystonia are characterised by abnormal functioning of the whole basal ganglia (BG) - thalamocortical network. In Parkinson’s disease, one of the main characteristics of the altered BG network behaviour is a synchronised abnormal β − activity (12–35 Hz) Kühn et al. [1]; Neumann et al. [2]. This enhanced BG rhythm also affects thalamic activity by sending strong inhibitory signals via GPi (internal segment of the globus pallidus). The hyperpolarisation of thalamic neurons due to increased inhibitory BG output increases the burst discharges Kim et al. [3]; Galvan et al. [4], which in turn triggers motor dysfunction through the thalamocortical pathway Kim et al. [3].
Deep brain stimulation (DBS) of the BG was shown to be an efficient treatment for movement disorders Deuschl et al. [5]; Vidailhet et al. [6], but its therapeutic mechanism is still not fully understood. The application of DBS leads to firing pattern alterations, and in particular, to disruption of hypersynchronised β-band oscillations Kühn et al. [1]; Kim et al. [3]; Crompe et al. [7]. Indeed, recordings in animal models Xu et al. [8]; Kim et al. [3]; Crompe et al. [7] and observations from computational network models Rubin and Terman [9]; Popovych and Tass [10]; So et al. [11]; Galvan and Wichmann [12] suggest that DBS in the subthalamic nucleus (STN) results in more periodic and regular firing at higher frequencies in the BG-thalamic network.
Two important questions arise concerning the structural connectivity and DBS effectiveness. The first question is how to determine those electrode positions which are the most effective for the activation of neural pathways to improve DBS outcome. The second question which naturally arises, is which differences in neural activation patterns will emerge within the brain’s structural network when simulating different conditions (i.e., Healthy, Parkinsonian and DBS). Due to the strongly heterogeneous nature of the connection topology and the stochastic and nonlinear large scale interactions of the underlying units/neurons, the emergent macroscopic behavior usually is far from trivial to predict Spiliotis and Siettos [13]; Siettos and Starke [14]; Deco et al. [15,16]; Bassett and Bullmore [17]; Bullmore and Sporns [18]; Iliopoulos and Papasotiriou [19]. Self-organisation, sustained oscillations, travelling waves, multiplicity of stationary states and spatio-temporal chaos are paradigms of the rich nonlinear behaviour at the coarse-grained systems level Spiliotis and Siettos [13]; Siettos and Starke [14]; Deco et al. [15,16]; De Santos-Sierra et al. [20]; Crowell et al. [21]; Spiliotis et al. [22], indicating thus that a precise structure–function relation remains a major open problem Deco et al. [16].
As the primary aim of this paper, we identify positions of nodes of high functional impact using network analysis. We test then the hypothesis that such high-connectivity nodes are pivotal in shaping network activity and are highly effective stimulation targets for restoring the normal network function. Notably, the electric field-based approximation of the volume of tissue activated (VTA) Butson et al. [23]; Butenko et al. [24], computed at these nodes for a monopolar DBS, overlapped with target areas previously shown to be effective against akinetic symptoms of Parkinson’s disease Dembek et al. [25].
The critical high-connectivity nodes were identified according to three different, but interrelated measures:
1) Using the measure of “clustering coefficient,” nodes are identified which form triplet interactions. This triangular interconnection allows for circular information flow and information feedback. This triplet organisation constitutes the complex level of connectivity, and is speculated to play a role in e.g. effective information distribution but also complex oscillatory network rhythm formation.
2) Using the measure of “betweenness centrality,” high-connectivity nodes are identified (also known as hubs and defined by their so-called nodal efficiency van Hartevelt et al. [26]). This nodal efficiency is related to the degree of influence of nodes in the network and can be interpreted as the amount of flow that passes through these nodes. Such hubs act as central crossroads, enhancing the ability of parallel information transfer and the functional integration in brain networksvan Hartevelt et al. [26].
3) Using the measure of “eigencentrality” (or eigenvector centrality), nodes are identified which specifically connect with other nodes of high centrality. In this way, targeting such nodes will likely influence a large population of other nodes. In many cases, centrality measures correlate strongly Li et al. [27]; nodes with extreme values of “betweenness centrality” also show high “eigencentrality” values.
The second aim of this study was to explore the relationship between anatomical structure and neural activity (i.e., functional connectivity) using modified Hodgkin-Huxley models Terman et al. [28]; Rubin and Terman [9]; So et al. [11]; Spiliotis et al. [22]. In the current study, we address this question by combining the community structures (i.e., sets of high-connectivity nodes as identified using modularity measures, Newman [29]) and a large scale biophysical model which produces virtual neural activity. We study three different conditions: Healthy, Parkinsonian state and Parkinsonian conditions with DBS. In the latter case, we extend the previous computational model Spiliotis et al. [22] in order to simulate specific spatial positions of DBS electrodes Mandali et al. [30].
Predicting DBS outcome using neural networks is not novel Rubin and Terman [9]; Popovych and Tass [10]; Spiliotis et al. [22]; Fleming et al. [31], in the cited studies, however, smaller networks were studied without taking into account connectivity structure and VTA. In the current study, we follow a different approach: initially, we integrate the high dimensional nonlinear system, which produces spatiotemporal patterns consistent with either Healthy (normal) or Parkinsonian states. Then we average the activity over the different community structures that have been previously identified using modularity network measures.
The second main result of the study shows that in all areas (the detected communities), including neocortical ones, Parkinsonian conditions alter power spectrogams, but mainly subcortical structures, with e.g., slowing of activity in the thalamus and faster activity in pathways connecting pallido-thalamic and subthalamic-pallidal nodes. Under DBS, in turn, the simulation reveals that this stimulation at high-connectivity nodes is able to restore thalamic activity, and partly also cortical one, while on the one hand, hyperdirect-pathway associated nodes remain largely unaffected, and on the other, structures in close vicinity of the electrode mainly follow the stimulation.
2 NETWORK CONNECTIVITY FROM DATA SOURCES
To describe the structural connectivity of the network, data from different studies on human brain anatomy were utilised.
2.1 Data sources
For the current model, published data on anatomical and fiber tract positions were used from different sources: The basal ganglia nuclei and their substructures were taken from the DISTAL Atlas Ewert et al. [32]; Chakravarty et al. [33]. The Melbourne Subcortex Atlas Tian et al. [34] was used to define substructures of the thalamus, while the relevant cortical regions were selected using the Brainnetome Atlas parcellation Fan et al. [35]. Fiber tracts classified to pathways in the vicinity of the STN were taken from Petersen et al. [36], and projections of the ventral anterior nucleus to motor cortical regions, required to complete the BG-thalamo-cortical network, were extracted from the structural group connectome of 90 PPMI Parkinsons’s disease-patients GQI Marek et al. [37], post-processed in Ewert et al. [32]. All data were represented in MNI (Montreal Neurological Institute) space.
2.2 Structural connectivity of the basal ganglia-thalamo-cortical network
To investigate DBS network effects in Parkinsons’s disease, the classic circuit model of the BG-thalamo-cortical network was employed Milardi et al. [38] (Figure 1A). It consists of three inputs from motor cortical regions: the direct pathway that involves the striatum and continues as a GABAergic projection to the GPi and SNr (substantia nigra pars reticulata); the indirect pathway that also involves the striatum, but has GABAergic projections to the GPe (external segment of the globus pallidus), which in turn inhibits the STN, GPi and SNr. In addition to these pathways, there is the hyperdirect pathway through which the STN receives a direct excitatory input from the cortical areas. The glutamatergic efferents of the STN innervate the GPe, GPi and SNr. GABAergic projections of the two latter nuclei to the ventral anterior (VA) and ventral lateral (VL) regions of the thalamus represent the output of the BG circuit to the thalamo-cortical network Bosch-Bouju et al. [39].
[image: Figure 1]FIGURE 1 | Basal ganglia-thalamo-cortical circuits. (A): Circuit model comprising all main connections. MC/PMC—motor and premotor cortical regions, respectively. For explanations, please see the main text. (B): Simulated reduced circuit model with highlighted (bold arrows) connections possibly affected by STN-DBS. The synaptic connection between Striatum and Globus Pallidus pars externa/interna (GPe and GPi) were modelled by different constant currents. (C): Structural connectivity of the simulated network is based on the pathway atlas of human motor network constructed from multimodal data including diffusion, histological and structural MRI data, fused to a virtual 3D rendering Petersen et al. [36]. (C1): Projections from GPi to thalamus (VA nucleus) are shown in red, connections between subthalamic nucleus (STN) and GPe are shown in green, projections from STN to GPi are shown in violet. (C2): Connections between motor cortex (MC/PMC) and the thalamus projections were obtained by classifying fiber tracts from Marek et al. [37] and are shown in orange. Projections from motor cortex to STN (hyperdirect pathway) are shown in blue. Nuclei are shown in the following colours: GPe in light grey, GPi in dark grey, STN in dark orange, thalamus (VA nucleus) in yellow and motor cortex (M1) in light grey.
The interstructural connectivity of the network was simulated using data based on the pathway atlas of human motor network obtained from multimodal imaging, including diffusion, histological and structural MRI data, fused to a virtual 3D rendering Petersen et al. [36] or classified based on their position relative to the involved structures (thalamo-cortical projections), see Figure 1. Note that the grouping of fibers leads to an emergence of network nodes. In the current study, the simulated network (Figure 1B) does not include the substantia nigra (SN). The reason for this omission is that the dopaminergic projections of the SNc (substantia nigra pars compacta) are not myelinated, and hence less excitable (by approx. two orders of magnitude) by extracellular fields Tarnaud et al. [40], yielding a very low chance that DBS actually would affect them directly. Furthermore, to ensure homogeneity of the BG pathways, only those present in Petersen et al. [36] were employed, which did not include the striatonigral and the nigrothalamic projections. For the same reason, only the VA neurons were simulated, as they predominantly receive the pallidal output, unlike the VL nucleus that is mostly innervated by the SNr afferents Lanciego et al. [41]. Note that although the projections from the VL to the motor cortex exist, we excluded them to avoid modelling of intrinsic dynamics between subregions of the thalamus.
3 MODELLING STRUCTURAL BASAL GANGLIA-THALAMO-CORTICAL NEURONAL NETWORK USING COMPLEX NETWORK THEORY AND PATHWAY CLASSIFICATION
Structural brain connectivity refers to the set of anatomical links (or axonal tracts) which join different brain regions. The connectivity can be described and simplified employing elements of complex network theory Bullmore and Sporns [18]; Stam and Reijneveld [42], where the neural elements at the beginning and the end of a tract serve as nodes of the network, while the anatomical tract is described as edge of the network. The topological structure of the network plays an important role in the emergent neural activity and brain functionality, however it is not well understood how the structure or topology shapes the dynamics Deco et al. [15,43]. The knowledge of the network structural properties is important since it allows to build realistic computational models and to shed light on mechanisms underlying brain functionality or dis-functionality (i.e., movement disorders), and to predict the neural dynamics on multiple scales Honey et al. [44,45]. Using the structural connectivity of Section 2, we build a directed network. The internal connectivity structure within the areas STN, GPe, GPi, thalamus and motor cortex areas had to be defined using complex network theory Stam and Reijneveld [42]; Watts and Strogatz [46].
3.1 Construction of complex network using the structural connectivity
The resulting structure of Section 2.2 is used to obtain the connectivity network in the form G = (V, E), where V is the set of nodes and E represents the set of edges. The nodes of the structural network are defined as points in three-dimensional space and correspond to the starting and ending point of a fiber tract. The resolution is set at 1mm3, meaning that if two (or more) ending (or starting) points lying within the same cube of 1mm3, they are considered as one node. The connectivity information is included in the adjacency (or connectivity) matrix A: if there is a fiber tract starting at position x = (x1, y1, z1) and ending at y = (x2, y2, z2) then A(x, y) = 1, otherwise A(x, y) = 0. The resulting connectivity constitutes a graph G = (V, E), where the V is the set of nodes and E is the set of edges or tracts. At the given resolution of 1mm3, the network contains 134 STN nodes, 244 and 246 GPe and GPi nodes, respectively, 833 thalamic nodes and 2070 cortical nodes.
3.2 Intrastructural small-world network connectivity
The pathway classification analysis in Section 2.2 does not contain information about the internal connectivity of each region (i.e., how the nodes are connected within a region). We model connectivity within each area using small-world structures Watts and Strogatz [46]; Bassett and Bullmore [47]; Bullmore and Sporns [18]; Stam and Reijneveld [42]; Spiliotis and Siettos [13], thus increasing overall network connectivity beyond the interstructural projections. In such small-world complex networks Mark [48]; Watts and Strogatz [46], each node interacts with its k nearest neighbours; additionally, a few randomly chosen remote connections (with a small probability p) within the area are also formed Watts and Strogatz [46]. Small-world structures are commonly used in computational neuroscience Netoff et al. [49]; Berman et al. [50]; She et al. [51]; Bassett and Bullmore [17,47]; Fang et al. [52]; De Santos-Sierra et al. [20] as a result of two main characteristics which they show: highly clustered property together with short path length Bullmore and Sporns [18]; Watts and Strogatz [46]; Newman [29], enhancing in this way the signal or rhythm propagation within the network and the synchronizability in the network.
The GPe/GPi, thalamus and MC layers were modelled as separate small-world networks. Each node increases the initial number of connections (or the degree of the node) by k = 20 degrees on average. The local internal connections lay in a distance less than 5 mm (these are the local neighbours); however, the small-world topology Watts and Strogatz [46] allows remote connections (in a distance greater than 5 mm) with a small probability p = 0.05. The choices of k and p in this model are phenomenologically extracted. These values turn out to be successful i.e. the values k and p are chosen such that the network will give high values of clustering coefficient compared to a random network (where the clustering coefficient is very low and simultaneously a low value of the characteristic path length, see also Watts and Strogatz [46]. Similar values have been used in other studies and with the chosen values, the connectivity structure resembles real-neuronal connectivity as it is shown for example, in the work of De Santos-Sierra et al. [20] and Netoff et al. [49].
For the STN, we chose a modified small world approach which results from the experimental findings of Gouty-Colomer et al. [53]; Ammari et al. [54]. The STN area is characterised by sparse connectivity, where local and remote connections coexist. Specifically, only 20% of the STN neurons develop connections (collaterals) within the other STN neurons Gouty-Colomer et al. [53]. Almost 80% of these connections are local within a distance of 200–400 μ m radius, and the other 20% are contacts which occur farther away, i.e., [image: image] m. In this sense, the 20% of neurons, which form STN connections, have both local and remote connections analogous to the small-world property Spiliotis et al. [22]. Similar to the previous connectivity, in our model, only the 20% of STN neurons show an average of 25 connections each, while few of these are randomly chosen remote connections Spiliotis et al. [22]; Gouty-Colomer et al. [53]).
3.3 Network properties: Degree distributions, path distances and centralities
Network measures such as a quantification of homogeneity are used to identify structural properties of the underlying neuronal network. These measures allow to categorise structural elements according to connectivity properties (i.e., profiles), segregating them into discrete entities. The main categories are clustering and distancing measures, centralities and communities detection Bullmore and Sporns [18]; Stam and Reijneveld [42]. Another subdivision of the network measures is the local and global description. The local description refers to the individual property of the i−th node, while the ensemble over the whole set of nodes in the network defines the global description (or distribution) for the network. The statistical distribution of a network property in this paper is characterised by its mean (the first-order statistical measure).
3.3.1 Degree distribution
The degree of a node i refers to the number of edges connected to it Bullmore and Sporns [18]. In directed networks, a node has both an in-degree and out-degree, which are the numbers of in-coming and out-going edges, respectively. A high degree of connectivity (increased numbers of links) of the i−th node defines the importance of a node in the network. The degree distribution P(k) defines the probability of a randomly selected node to have specific degree k. Averaging over all the nodes of the network, we obtain the mean degree, the first characteristic of the connectivity. The degree distribution after pathway classification analysis (Section 2.1), as long as internal connectivity is not considered, follows a power law of the form.
[image: image]
where the exponent γ was calculated as γ ≈ 2.5.
The main characteristic of a power-law degree distribution is that only a few high-connectivity nodes acting as central nodes or hubs (nodes with a high number of connections) exist, while the majority of nodes show little connectivity. The high-connectivity nodes or hubs are responsible for an effective and fast spreading of information or signals in the network. Figure 2A depicts the degree distribution of P(k) in the network, while Figure 2B shows the degree distribution of the network including internal connections. In the latter case, the network thus combines both power law properties (describing connections among nuclei) and small world characteristics (describing local connectivity within nuclei). This generates an almost symmetric distribution of P(k).
[image: Figure 2]FIGURE 2 | Statistical properties of the connectivity network. (A) The degree distribution (depicted in logarithmic scale) follows a power law as Eq. 1 with critical exponent γ = 2.54. (B) The augmented network, using a small world network for the internal connectivity. The resulting distribution is a combination of power laws, meaning that the central nodes still exist and act as hubs. Furthermore, each neuron is connected on average with the 20 nearest neighbours in a radius of 5 mm. (C) The distribution of path lengths in the network. The mean value was calculated as ml = 4.43. (D) The distribution of clustering coefficients. There are few nodes with a high value of clustering coefficient.
3.3.2 Paths lengths, efficacy, and clustering coefficient
In graph theory, a path is a sequence of successive steps between two nodes, assuming that it is never intersecting a single node more than once. The minimum distance (i.e., the minimum steps in case of binary networks) between two nodes defines the shortest path length. Averaging over the set of all shortest paths, we obtain the mean path length of the network:
[image: image]
The mean path length shows the ability of the network to spread information between any two nodes. A low mean shortest path length [image: image] signifies that any two randomly chosen nodes can interchange information via just very few intermediate nodes (in our case ≈ 4 nodes).
Another similar measure which is applied in the case where there is no connecting path between two nodes (i.e., di→j = ∞), is the global efficiency [image: image]:
[image: image]
This measure avoids calculating with infinity, since if there is no pathway between two nodes i.e., di→j = ∞ ⇒ 1/di→j = 0. The [image: image] is comparable with inverse [image: image], and according to the Cauchy inequality for the arithmetic and harmonic mean, we obtain
[image: image]
For the augmented network, the mean path length was computed to be [image: image], while the inverse global efficacy resulted in [image: image]. Figure 2C shows the distribution of distances between any two nodes (i.e., di→j).
Beyond the information flow between any two nodes, information flow among three nodes in a circular path, with the first node communicating with the second, and the second with the third, but the third communicating back to the first, another quality of information is made possible, i.e. feedback information. This would enable a circuitry to act in control loops, allowing for rhythm generation. To quantify this property, we introduce the clustering coefficient, which measures the local property of a node i to form triangle motifs. The clustering coefficient of a node i is defined as ratio:
[image: image]
The higher the number of triangles (that exist) with respect to the i − th node, the higher the clustering coefficient. Figure 2D depicts the distribution of clustering coefficients. The mean clustering coefficient is computed as [image: image]. The distribution shows the existence of few nodes with high values of c.
3.3.3 Betweenness centrality
Besides the ability to generate feedback-loops, information flow within a network is governed by the degree of interconnectivity between nodes. Centrality measures are used to identify such high-interconnectivity nodes in the network. The significance of a node is related to the degree of influence which it exerts in the network. For example, the influence can be interpreted as the amount of flow which passes from this node. Important nodes act as central crossroad or hubs in the network.
“Betweenness centrality” measures the amount of influence which a node has with respect to the total information flow in the network (serving as a bridge between subgraphs, i.e., sets of nodes of the network). The “betweenness centrality” (Bc) mathematically is defined as the fraction of all shortest paths in the network that pass through a given node, specifically the “betweenness centrality” of a node i is defined as:
[image: image]
where gjk(i) is the number of shortest paths from j to k passing from node i, and gjk is the number of shortest paths between nodes j and k. Bridging nodes that connect disparate parts of the network often have a high ‘betweenness centrality’. Higher values of Bc(i) indicate that the node acts as a central node influencing most of the other nodes in the network. The importance of these hubs is also highlighted pathophysiologically in the sense that therapeutic intervention in, e.g., Parkinson’s disease alters both the structural and functional connectivity profile in patients (a study which, however, obviously does not have any data on the Healthy state of the network as a basis of comparisons) van den Heuvel and Sporns [55].
Figure 3 depicts the distribution of Bc of the network. Indeed, the large majority of nodes shows very low centrality. However, there are few nodes with high Bc. In Figure 3B, black filled circles depict the spatial localisation of these central nodes in the network. As can be seen in this figure, these high-centrality nodes can be found in the STN, GPe and GPi, as well as the thalamus, but also in the motor cortex. We propose these nodes as very promising targets for DBS treatment. The coordinates of these hubs in MNI space, and the brain area they belong to, are given in Table 1.
[image: Figure 3]FIGURE 3 | Probability distribution (A,C) and position (B,D) of nodes with high centrality measures. (A,C): Probability distribution of centrality nodes. (A) The distribution of “betweenness centrality” follows a power law distribution. Thus, [image: image]90% of the nodes have a “betweenness centrality” [image: image]20,000, and only 0.5% a centrality value of 200,000. (C) The distribution of “eigencentrality” also follows a power law distribution. Thus, again [image: image] 99% of the nodes have a value [image: image] 0.2, and only 0.2% an “eigencentrality” value of 0.17. (B,D) Position of high centrality nodes (i.e., the nodes with the highest Bc or Ec values in each region, usually with a Bc > 200.000/Ec > 0.17) in MNI brain space coordinates shown as black dots. Brain regions are colour-coded as given in the figure. Most of these nodes are located in STN and GPi, thalamus (Tha) and GPe, but also some in the motor cortex (MC).
TABLE 1 | High centrality nodes, which might have high effectiveness in the DBS treatment.
[image: Table 1]3.3.4 Eigencentrality
Beyond betweenness centrality, identifying nodes with high-connectivity, nodes with high connectivity connected to other nodes with high connectivity represent a special type of network information distribution, since nodes with such high “eigencentrality” (Ec), are hypothesised to play an important role in fast and effective signal distribution within the network.
For each node in the network, a positive number xi is assigned. The number xi is set to be proportional to the sum of the weights of all nodes connected to i:
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where λ has to be identified. The last equation shows that the element xi is the i−th element of the eigenvector of the adjacency matrix (corresponds to the eigenvalue λ). The eigencentrality (or eigenvector centrality) is defined when one chooses λ = λ1 the highest eigenvalue of the adjacency matrix A. Then
[image: image]
which gives the eigenvector centrality the nice property that it can be large either because a vertex has many neighbours or because it has important neighbours (or both) Newman [56].
3.4 Detection of communities and modularity
Networks characteristically are made up of sets of nodes (subgraphs) which are densely connected among each other within the network, and which have sparse connections to other subgraphs Newman [29]. We hypothesise that such densely connected subgraph groups (or communities) play a significant role in information processing within the network. Assigning and allocating these densely connected communities to brain structures allows to construct a modular view of the network’s dynamics Newman [29].
In this paper, the modality index identifies such densely connected communities. The modality index Newman [29] assigns a community numbersi to each node. For example, in the case of two communities, then si = ±1. Here, we seek the best network partition in order to optimise the modularity function Q:
[image: image]
where m = 1/2∑kij is the total number of edges in the network, and Bij = Aij−kikj/2m is the resultant modularity matrix, also known as graph Laplacian matrix. In such matrices, the optimisations can be achieved using graph partitioning or spectral partitioning (eigenvalues-eigenvectors decomposition) of the matrix B Newman [29]; Leicht and Newman [57].
Figure 4 shows the communities for the augmented network as determined by the optimisation of the Q function. Using structural brain segmentation and following anatomical partitioning, the resulting communities can be assigned to distinct brain areas. Specifically, six communities emerged from the simulation as populations with 294, 473, 189, 399, 290, and 330 members, all located in MC (see also Figure 7). Three important communities were detected in BG and the thalamus, the first one with 780 members in the thalamus, the second with 293 members connecting GPi and thalamus, and the third with 283 members connecting STN and GPe (see also Figure 9). In addition, one community with 41 members was obtained in the STN itself, and further two communities with 184 and 107 members connecting MC and STN as hyperdirect patwhway (see also Figure 10). The localisation of these communities in virtual space is given in Figure 4, as projection onto the MNI coordinate space in Figure 5.
[image: Figure 4]FIGURE 4 | Community detection using the modularity-index algorithm Leicht and Newman [57]. The algorithm identifies 12 major areas with the number of members of densely connected communities higher than 100. Remarkably, the modularity partition generated by the simulation is in line with anatomical brain separation.
[image: Figure 5]FIGURE 5 | Community detection using the modularity-index algorithm Leicht and Newman [57], now projecting the same communities as in Figure 4 onto MNI space sections, showing motor cortical areas as surface projection (A), thalamus and basal ganglia as frontal cut projection (B) and STN-MC connections as hyperdirect pathway projected onto a frontal section (C). As in the previous figure, the 12 major areas are located in MC (6), thalamus (1) and basal ganglia (2), as well as three communities in locations associated with the hyperdirect pathway (one in STN in light orange, two connecting STN and MC; dark orange and green).
4 DEEP BRAIN STIMULATION AT CENTRALITY NODES: ELECTRIC FIELD APPROXIMATION
As outlined above, the centrality nodes (defined by the higher values of the “betweenness centrality” Bc and the “eigencentrality” Ec, as well as the clustering coefficient c) can be hypothesised to be possible stimulation targets especially effective in neuromodulation. To evaluate this hypothesis, for each of the three measures (Bc, Ec and c), first the centre of mass was calculated for the four positions in or close to the STN with the highest values (see coordinates as given in Table 1). For centre of mass positions, next an approximation of the volume of tissue activated (VTA) for a conventional DBS signal (2 mA 90 μs rectangular pulse with a 130 Hz repetition rate) was calculated. The stimulation was conducted in a monopolar mode, with the active contact placed at the coordinates of the centrality nodes, and the approximation was based on the electric field magnitude Åström et al. [58], thresholded at 150 V/m. Using the simulation platform OSS-DBS Butenko et al. [24], the field was computed in a heterogeneous and anisotropic volume conductor defined with data from Zhang and Arfanakis [59] and Horn [60]; Horn et al. [61].
Since the centrality nodes were located very close to each other, the three corresponding VTAs overlapped strongly; all three being located in the dorsolateral STN (Figure 6A), which is a clinically established target for treating motor symptoms of Parkinsons’s disease Benabid et al. [62]. It must be, however, noted that the employed structural connectivity of the network (Figure 1) was inherently biased towards the dorsolateral region. Next, we estimated the structural connectivity of these VTAs using the previously described pathway atlas, but now also including fibers beyond the motor circuit. In all three cases, nearly the same fibers were “recruited” by the stimulation, namely, the motor pallido-subthalamic projections, the hyperdirect pathway descending from the primary motor cortex (upper and lower extremity), and the dorso-lateral prefrontal cortex. Importantly, for the given stimulation amplitude, a recruitment of the corticofugal pathway was not predicted, allowing to avoid capsular side-effects Tommasi et al. [63]; Xu et al. [64]. Beyond this, no activation in the pallidothalamic projections was observed.
[image: Figure 6]FIGURE 6 | Recruitment of neural tissue by monopolar STN-DBS at the centrality nodes. (A): All three (overlapping) VTAs are located in the dorsolateral STN (left; green for between-centrality nodes, yellow for clustering coefficient, and blue eigencentrality) and predominantly recruit motor pallidosubthalamic projections, the hyperdirect pathway from the primary motor cortex (upper and lower extremities), as well as its branch descending from the dorso-lateral prefrontal cortex (right). Note that the latter was not used to construct the network model. For the particular stimulation protocol (2 mA), no corticofugal fibers are recruited according to the computational model. (B): The VTAs (green for between-centrality nodes, yellow for clustering coefficient, and blue eigencentrality) overlap with target areas, whose stimulation is clinically proven to improve motor symptoms, especially akinesia Dembek et al. [25]. While an overlap also with regions producing possible side-effects exists, this overlap is significantly smaller (note that the regions delineated in Dembek et al. [25] overlap as well).
Noteworthy is the spatial relation of the centrality nodes obtained by our simulation to the target spots of the STN-DBS. The VTAs significantly overlapped with STN regions shown to be effective in treating hypokinetic symptoms of Parkinsons’s disease, while a region implicated in side-effect occurrence was largely avoided Dembek et al. [25] (Figure 6B). Moreover, the VTAs of the present study contained the effective target points which were determined by projecting actual target coordinates of patients treated successfully with DBS for Parkinsons’s disease onto MNI space in another study on a large cohort Horn et al. [65]. Such a coincidence of the centrality nodes and the so-called sweet spots might explain the efficiency of the STN as a target for various neurological disorders. This relatively small nucleus is a site of convergence of various neural circuits (even though not all of them include the STN itself). Hence, its stimulation allows a wide-spread neuromodulatory intervention.
5 MODELLING THE DYNAMICS OF THE THALAMO-CORTICAL BASAL GANGLIA CIRCUIT
After establishing the structural components and determining promising target regions in the previous sections on structural simulation, we also wished to explore the functional consequences of DBS on network activity patterns. For this, we worked on the same structural model as above, and superimposed modified Hodgkin-Huxley modelling.
In the augmented network, each node serves as a neuron (hypothesising a homogeneous neural population on the 1 mm3 cube), and the edges represent synaptic links between the neurons. Consequently, depending on the region, each node-neuron is modelled with a variation of Hodgkin-Huxley’s current-balance equations Terman et al. [28]; Rubin and Terman [9]; Hodgkin and Huxley [66]. In this section, we present the mathematical description of the neurons from each area of the basal ganglia (BG), thalamus and cortex. Next, we couple the neural activity of neurons according to structural connectivity within and between the subthalamic nucleus (STN), globus pallidus externa (GPe) and interna (GPi), thalamus (Tha) and motor cortex (MC).
5.1 Modelling and simulations of neurons in STN-GPe-GPi nuclei
The properties of neurons are expressed using the conductance-based biophysical model of Hodgkin-Huxley’s formalism as also has been used in previous work of Terman et al. [28]; Rubin and Terman [9]; Popovych and Tass [67]. The dynamics of each STN, GPe and GPi neuron are given by a current balance equation for the membrane potential: Terman et al. [28]; Bevan and Wilson [68]; Popovych and Tass [10]:
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where C is the membrane capacity, Vi is the membrane potential of the ith neuron, xi denotes the gating variables n, h, r and x∞ is the steady state value for the gating variables. The quantity [image: image] is the intracellular concentration of calcium. The exact description of the ionic currents ILEAK, IK, INa, ICa and the synaptic current Isyn for the STN and GP neurons are given in the supplementary material. The current IDBS in Eq. 10 models DBS on STN neurons only and the form is described in the Supplementary Material. In the absence of DBS treatment the value is: IDBS = 0.
5.2 Synaptic suppression of pallido-thalamic projections
Here, we model the GABAergic short term depression. The functionality of the GABAergic synapse and the resulting release of neurotransmitters is dependent on the firing history of the presynaptic neuron Zucker and Regehr [69]; Farokhniaee and McIntyre [70]. High-frequency stimulation induces suppression of GPi GABAergic synaptic transmission Farokhniaee and McIntyre [70], which in turn, leads to a thalamic activity facilitation.
The synaptic activity is defined by the activation variable si, which is given by Laing and Chow [71]; Ermentrout and Terman [72]; Compte et al. [73]:
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where H(V) is a smooth approximation of the step function, i.e., [image: image], where α, β stands for the rate of activation and inactivation, respectively, and typically, α = O(1), β = O(ϵ) holds Laing and Chow [71]; Ermentrout and Terman [72]; Terman [74].
The inhibitory GaBAergic synaptic current for the ith neuron is given, by
[image: image]
where Aij has the value 1 or 0, depending on whether the neuron is connected or not. The summation is taken over all presynaptic neurons.
In case of existent synaptic suppression the GABAergic synaptic current changes to
[image: image]
where the factor Pj describes the probability of a neurotransmitter release (in the {ij} synapses), and follows the dynamics Benita et al. [75]:
[image: image]
where tsp corresponds to the last spike-time of the presynaptic neuron and AD is the depression factor (0 < AD < 1), in our case, the value AD = 0.8 was used. The value P0 describes the steady state of P and in our case was set to 1. To simplify, when a presynaptic neuron fires at time tsp the functionality of the synapse (the release of neurotransmitters) is reduced (suppressed by a factor AD). In the absence of neural activity the synapse returns to a full ability of release, in a time scale 1/τ where τ = 400 ms Benita et al. [75].
5.3 Modelling neurons in the thalamus
The mathematical description of the thalamic neurons is given by the following equation.
[image: image]
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where C is the membrane capacity and Vi is the membrane potential of the ith neuron, while the Eq. 18 describes the first order kinetics for the gating variables h, r. The currents ILEAK, IK and INa are the ionic currents, IT is the T-type calcium channel. The synaptic current Isyn has the form Isyn = IGPTH + ITHTH, where the GABAergic current IGPTH represents the inhibition of the GPi area to the thalamus, while ITHTH represents the internal excitatory or inhibitory thalamic connections. The current ISM represents sensorimotor excitation (from motor cortex areas to thalamus). The detailed description of the ionic and synaptic currents is given in the Supplementary Material.
5.4 Modelling and simulations of neurons in the motor cortex
The motor cortex neurons MC, are described as one-compartment soma, and following the equations Pospischil et al. [76]:
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where Vi is the membrane potential, and xi represents the gating variables for potassium and sodium current, of the ith neuron. The gating variable pi represents the activation gate of the slow, voltage-dependent potassium current IM. The current Iapp is added to tune the oscillatory behaviour of MC neurons around 20Hz. Each MC neuron has different value of Iapp which is extracted randomly from the interval [2, 3]. The synaptic activity is given from the current Isyn and the exact form is described at Supplementary Material. The whole MC area is modelled as small world network. In this network, 20% of the neurons send inhibitory signals. i.e., replicate interneurons. The cortical neurons show a regular spiking activity Pospischil et al. [76]. The exact description is given in the Supplementary Material.
5.5 Average over the detected communities macroscopic description
In this paper, we obtain a macroscopic description of the dynamics of the detected communities of Section 3.4, by averaging the mean voltage activity [image: image] of neurons over the population in the community; specifically, we define:
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The mean voltage activity [image: image] is used for the characterisation of rhythmic activity using Fourier spectral analysis under different states (Healthy, Parkinsonian or DBS in Parkinsonian conditions). In all simulations, the Fourier power spectrum is normalised dividing by the highest absolute value. In this context, the Parkinsonian state was modelled, in brief, by increasing the activity of STN, decreasing the activity of GPe (D2 dopamine-mediated receptor activity effect in the indirect pathway), and simultaneously increasing the activation of GPi due to D1 dopamine-mediated activity in the direct pathway. The detailed description of is given in Section 3 of the Supplementary Material.
6 COLLECTIVE DYNAMICS OF THE STRUCTURAL CLUSTERS (COMMUNITIES)
Structural connectivity can have significant impact on the large-scale dynamics of the brain Deco et al. [43]; Papadopoulos et al. [77]; Deco et al. [15], However, the connection between anatomical-structural and functional brain connectivity is far from been trivial. Large-scale computational models and their complex nonlinear dynamics constitute an important method to explore this connection Papadopoulos et al. [77]; Schirner et al. [78]. Here, we propose a new method which correlates the structural and functional connectivity, specifically focusing on densely connected communities as identified by the modality index (Section 3.4).
6.1 Analysis of macroscopic activity in motor cortex clusters
The network analysis resulted in the identification of 6 MC areas consisting of 294, 473, 189, 399, 290 and 330 nodes, respectively. For each area, we extract the Fourier spectrum for the macroscopic variable of Eq. 22, averaging all values of each member of the detected community. The results are depicted in Figure 7. The first column depicts the six different cortical node sets (six clusters emerging from modularity analysis) in red on the virtual brain surface. The next three columns show the power spectra in three different conditions (i.e., Healthy, Parkinsonian and DBS). Under healthy conditions, the activity peaks in the low and high γ band (i.e. ≈ 80 Hz and ≈ 190–290 Hz, with one to three peaks). Under Parkinsonian conditions, these peaks are often blunted, i.e., with less obvious peaks in e.g., MC1, MC3 and MC6 (Parkinsonian conditions depicted as blue curves, and healthy conditions depicted as red curves, for comparison see also column 1 of Figure 8 which depicts the differences between Healthy and Parkinsonian cases).
[image: Figure 7]FIGURE 7 | Simulation of frequency spectrograms of cortical sets of nodes as average neuronal activity (power on ordinate given as relative value) in a frequency range of 0–400 Hz. The six rows depict six different cortical node sets (six clusters emerging from modularity analysis) shown in red on the virtual brain surface. The spectrograms correspond to healthy conditions (red traces), Parkinsonian conditions and DBS in a Parkinson-affected network (both as blue traces), as shown in the different columns. Traces from healthy conditions are superimposed as fine red traces. Under healthy conditions, the activity peaks in the low and high γ band (i.e., ≈80 Hz and ≈190–290 Hz, with one to three peaks). Under Parkinsonian conditions, these peaks are generally blunted, and DBS is able to reverse this at least in some instances (e.g., clusters in MC3, MC4 and MC5, where spectrograms under DBS deviate less from healthy conditions than spectrograms under Parkinsonian conditions by as much as 17–28%, taking the overall area under the curve differences as a measure; see Figure 8).
[image: Figure 8]FIGURE 8 | Differences of the spectrum between Park-Healthy and DBS-Healthy [subtracting the spectrum according to Eq. 23]. Each row represents one of six cortical sets of nodes as emergent from centrality measure modelling. The columns show the differences of these frequency spectra by subtracting Park vs. Healthy, DBS vs. Park and DBS vs. Healthy. The shaded area under the curve as a measure of frequency spectrum divergence is computed and depicted in columns 1, 2 and 3. The MC3, MC4 and MC5 areas in the cases of DBS vs. Healthy show a reduction in the computed area compared to Park vs. Healthy, indicating that DBS reduces the spectrum difference compared to Parkinsonian condition, although differences to the healthy condition remain.
To better estimate the differences between the conditions, we generated difference curves of the spectrograms of Figure 7 based on the following subtraction pairs: |PX(f)|−|PY(f)|, where |PX|, |PY|, are the power spectra of the states X, Y, respectively, and represent: healthy, Parkinsonian or DBS conditions, see Figure 8. By further calculating the area under the curve (AUC, Valor et al. [79]) for each of these difference pairs i.e.,
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(numbers in insets in Figure 8) one can estimate the degree of change expected to occur when changing the condition. Comparing the difference between healthy and Parkinsonian conditions [Park-Healthy, Eq. 23], one can see that the spectrograms differ by [image: image] arbitrary units for most MC clusters, save in two locations (MC2 and MC6), where the values are below 50. Obviously, thus, the effect of Parkinsonian conditions is heterogeneous in the MC network, albeit within moderate boundaries; overall, the difference is in the range of 50 ± 5 (arbitrary units).
Comparing these differences now to differences DBS-Healthy, see Eq. 23, the relative effect of DBS can be gauged: In two areas, DBS actually induced more differences than the disease condition alone (MC1, MC2, with values 62 and 49, compared to 55 and 45), in three areas, DBS reduces the differences (which might be interpreted as a normalisation of activity), i.e., in MC3, MC4 and MC5 (with values 47, 40 and 44 compared to 58, 55 and 53), and in one area, there is virtually no effect of DBS regarding this measure (MC6, with a value 49, compared to 49). Again, this leads to the conclusion that the effect of DBS is heterogeneous regarding cortical activity, with alterations by +18 and +8% (positive changes meaning that the frequency spectrogram digresses even more from healthy conditions under DBS than under Parkinsonian conditions alone) occurring in some regions (MC1, MC2), and −20, −28 and −17% in others (MC3, MC4, MC5; negative values indicating that the spectrograms under DBS show less of a difference against healthy conditions than under Parkinsonian conditions without DBS), and in fact only a minimal change (+0.9%) in MC6, see Figure 8 (Supplementary Table S4). Using repetitive analyses with the data, we did not see changes of [image: image], while the effect sizes particularly of beneficial DBS effects in the order of 17%–28%. Therefore, we think that the differences are unlikely due to random sampling errors. Overall, just averaging these changes, this amounts to a change of cortical spectral activity by [image: image]. Where are the clusters positioned on the cortex? With MC1 and MC2, those regions where DBS seems to accentuate differences in spectral activity, we see the largest clusters forming (incidentally) a “W” or “∞” figure. With MC3, MC4 and MC5, it appears that these clusters are positioned very close to the frontal or dorsal end of the MC2 cluster, or indeed at fragmented positions of the MC1 cluster; those regions interestingly show a reduction in spectrogram difference induced by DBS. One might speculate that normalising effects of DBS are reflected in spatially fragmented changes in the cortex, but not when considering large networks. Overall, obviously, the reason for the heterogeneity in functional connectivity or for the impact of DBS remains unknown and we hope that the current analysis spurs further detailed investigations into this matter.
6.2 Analysis of macroscopic activity in basal ganglia-thalamic clusters
The second group of communities (clusters), identified by modularity measure, belongs to the basal ganglia or thalamus. Specifically, the first thalamic cluster contains 780 neurons, the second community contains 293 neurons connecting GPi and thalamus and the third cluster consists of 283 neurons connecting STN and GPe. For each cluster, we extract the Fourier spectrum for the macroscopic variable of Eq. 22. These Fourier spectra of all members of the detected communities were averaged. The results are depicted in Figure 9. The three rows depict node sets emerging from modularity analysis in the thalamus (top), in the GPi-thalamic pathway (middle) and the STN-GPe pathway (bottom), depicted as red dots on the virtual brain sections.
[image: Figure 9]FIGURE 9 | Simulation of frequency spectrograms of basal ganglia and thalamic sets of nodes as average neuronal activity (power on ordinate given as relative value) in a frequency range of 0–400 Hz. The three rows depict node sets emerging from modularity analysis in the thalamus (top), in the GPi-thalamic pathway (middle) and the STN-GPe pathway (bottom), depicted as red dots on the virtual brain sections. The spectrograms correspond to healthy conditions (red traces), Parkinsonian conditions and DBS in a Parkinson-affected network (both as blue traces), as shown in the different columns. Traces from healthy conditions are superimposed as fine red traces. Under healthy conditions, the activity peaks in the low γ band (i.e., ≈ 46 Hz) in the thalamus, while in the pathways projecting from GPi to the thalamus and projecting from the STN to GPe, low frequency activity in the low β band is seen (i.e. ≈ 13–14 Hz). Under Parkinsonian conditions, the situation reverses: in the thalamus, higher frequency γ activity is blunted, and low-frequency activity emerges (at ≈6 Hz, i.e., θ band), while in the cited pathways, peak frequencies are shifted to higher frequencies (≈25 and 50 Hz, i.e., in the β and low γ band). DBS clearly changes this situation: In the pathways directly connected to the STN (which is the stimulation target), the dominant frequencies are in the DBS frequency and harmonics (i.e., 130 and 260 Hz). This leads to a restoration of thalamic activity, where again the activity is peaking in the low γ band (i.e., ≈38 Hz).
Under healthy conditions (column 2 in Figure 9), in the thalamus, the activity peaks in the low γ band (i.e., ≈ 46 Hz). In the pallido-thalamic cluster (projections from GPi to thalamus; GPi-Thal), the neuronal activity is characterised by a slow β band rhythm (i.e., ≈ 13–14 Hz). The third cluster comprises neurons projecting from the STN to GPe (STN-GPe), again showing a maximum of activity in the low β band (i.e., ≈ 13–14 Hz).
Under Parkinsonian conditions, the situation reverses: in the thalamus, higher frequency γ activity is blunted, and low-frequency activity emerges (at ≈ 6 Hz, i.e., θ band), while in the cited pallidal pathways, peak frequencies are shifted to higher frequencies (≈25 and 50 Hz, i.e., in the β and low γ band). DBS clearly changes this situation: In the pathways directly connected to the STN (which is the stimulation target), the dominant frequencies are in the DBS frequency and harmonics (i.e., 130 and 260 Hz). Importantly, this leads to a restoration of thalamic activity, where again the activity is peaking in the low γ band (i.e., ≈ 38 Hz), not quite reaching the frequency under healthy conditions, but definitely different from low-frequency Parkinsonian activity.
6.3 Analysis of macroscopic activity in clusters associated with the hyperdirect pathway
The third group of communities emerging from the simulation were clusters associated with the hyperdirect pathway, as shown in Figure 10. These include one cluster in the STN, and two clusters connecting MC and STN. The first cluster is made of 41 neurons, and the other two of 184 and 107 neurons. Under healthy conditions, in a set of STN nodes quite different from the one projecting to the GPe of the BG-thalamic clusters (compare with Figure 9), the activity is also distinctly different as it peaks at 21 Hz (compared to 14 Hz in the BG-cluster), with a much wider frequency distribution into higher frequencies. These nodes probably relate to the hyperdirect pathway, as they are close to the nodes of MC-STN connections. In the latter, under healthy conditions, peak activity emerges at ≈ 160–180 Hz, i.e. in the high γ range.
[image: Figure 10]FIGURE 10 | Simulation of frequency spectrograms of the STN (top row) and the hyperdirect pathway connections (two bottom rows) as average neuronal activity (power on ordinate given as relative value) in a frequency range of 0–400 Hz. The three rows thus depict node sets emerging from modularity analysis in the STN itself (top), and in nodes connecting MC and STN, i.e., two clusters of connections involving the hyperdirect pathway (middle and bottom), depicted as red dots on the virtual brain sections. The spectrograms correspond to healthy conditions (red traces), Parkinsonian conditions and DBS in a Parkinson-affected network (both as blue traces), as shown in the different columns. Traces from healthy conditions are superimposed as fine red traces. Under healthy conditions, in a set of STN nodes quite different from the one projecting to the GPe of the previous figure, the activity is also distinctly different as it peaks at 21 Hz, with a very wide frequency distribution into higher frequencies. These nodes probably relate to the hyperdirect pathway, as they are close to the nodes of the second row, i.e., MC-STN connections. In the latter, under healthy conditions, peak activity emerges at ≈ 160–180 Hz, i.e., in the high γ range. Under Parkinsonian conditions, STN nodes narrow down their spectrum to two peaks (at 44 and 86 Hz), and a loss of the wide spectral activity. Under DBS, in the STN nodes a wider distribution of frequencies appears again, albeit as an appearance of peaks at harmonic frequencies of 44 Hz (44, 88, 172 Hz). In the hyperdirect pathway related nodes, however, DBS does not change much in the activity, save appearance of a 130 Hz peak (then stimulating frequency). In the first cluster (middle), the frequency distribution otherwise remains more or less similar, and in the second cluster (bottom), the 160 Hz peak is blunted.
Under Parkinsonian conditions, STN nodes narrow down their spectrum to two peaks (at 44 and 86 Hz), and a loss of the wide spectral activity. Under DBS, in the STN nodes a wider distribution of frequencies appears again, albeit as an appearance of peaks at harmonic frequencies of 44 Hz (44, 88, 172 Hz). In the hyperdirect pathway related nodes, however, DBS does not change much in the activity, save appearance of a 130 Hz peak (then stimulating frequency). In the first cluster (see middle row in Figure 10), the frequency distribution otherwise remains more or less similar, and in the second cluster (bottom row in Figure 10), the 160 Hz peak is blunted.
7 DISCUSSION AND CONCLUSION
In this study, we provided insights into complex network processes in order to obtain a new approach gauging the effectiveness of DBS. Additionally, we investigated the relationship between structural and functional connectivity, presenting a new in silico methodological approach to explore dynamics of brain motor area functions under healthy and Parkinsonian conditions, as well as the impact of Deep Brain Stimulation (DBS). Using a state-of-the-art network (constructed from data based on the pathway atlas of human motor network, obtained from various types of imaging, including diffusion, histological and structural MRI data, all fused to a virtual 3D rendering, Petersen et al. [36]) and integrating this network into advanced complex network measures, Bullmore and Sporns [18], we detected nodes, with high-connectivity and thus pivotal impact on the activity distribution within the network. These nodes are hypothesised to be ideal targets for DBS application. Our results based on betweenness centrality propose the following MNI coordinates (13.5, −12.8, −6.3) as optimal STN target. The following optimal points (sweet spots) are suggested in other publications: (12.5, −12.72, −5.38) in Dembek et al. [25]; (12.42, −12.58, −5.92) in Horn et al. [65]; (11.83, −11.63, −5.8) in Bot et al. [80] and (10.83, −13.31, −7.01) in Akram et al. [81], see also Table 2 in Dembek et al. [25]. Remarkably, completely different methodologies [e.g., we use graph theory, while Dembek et al. [25] use VTA with Probabilistic Stimulation Maps (PSM)] result in very similar STN sweet spots. The advantage of using a graph-theoretical approach, as in the current study, is that it is simple and takes only a few seconds to estimate the best stimulus target. Furthermore, this method could be combined in the future with already established statistical methods used e.g., Dembek et al. [25].
As a next step, we computed the volume of tissue activated (VTA) at the positions around the STN, which had emerged as pivotal nodes. Comparing these VTAs to clinically established DBS targets in Parkinsons’s disease, it is evident that the position of the nodes matches well with areas associated with alleviation of motor symptoms Benabid et al. [62]; Dembek et al. [25]; Horn et al. [65], suggesting that the high-connectivity nodes can infer potentially effective stimulation sites. Future studies should investigate whether a match between such nodes and neurosurgical targets also occurs when analysing networks constructed based on whole brain structural connectomes.
The second part of the current study addresses modelling of functional changes within a neuronal network. Specifically, here, we propose a new method to analyse network activity under different conditions (i.e., Healthy, Parkinsonian and DBS), using knowledge of detailed structural network connectivity in a large scale Basal ganglia-thalamo-cortical model. This new approach is based on the detection of network communities or modules central to activity distribution. Network analysis of structural connectivity showed that the communities or groups of highly-connected nodes can be assigned to distinct anatomical regions (Figure 4). Such a modular network organisation, in comparison to a random distribution network, clearly shows advantages like greater robustness, adaptivity, and evolvability of network function Meunier et al. [82]. Although the relation of structural/functional connectivity and how neural activity could emerge from the brain’s anatomical connections has been studied in several other experimental and computational studies Deco et al. [16,43]; Horn et al. [83], the current view of modular activity organisation is new.
Our analysis showed that in all modular areas, including neocortical ones, Parkinsonian conditions alter power spectrogams, but mainly subcortical structures, with e.g., slowing of activity in the thalamus and faster activity in pathways connecting pallido-thalamic and subthalamic-pallidal nodes. Under DBS, in turn, simulations reveal that this stimulation at high-connectivity nodes is able to restore thalamic activity, and partly also cortical one, while on the other hand, hyperdirect-pathway associated nodes remain largely unaffected. Specifically, the simulations suggest that nuclei directly involved in DBS (STN, Pallidum) mainly follow the stimulation. The thalamus, in turn, translates this into a concordant shift of its activity to the low-γ frequency band (from θ under Parkinsonian conditions), while the motor cortex, in turn, shows a discrete, and inhomogeneous response. Thus, theoretically, the thalamus also under these conditions may serve as activity gate to the cortex, while the motor cortex only adjusts in a minor way—presumably thus preserving general functionality, which would likely be lost if strong rhythmicity were to emerge in the cortex. Importantly, at least a part of these conclusions is also clinically confirmed. In a recent study Neumann et al. [84] on Parkinsons’s disease patients receiving DBS, using clinical, behavioural and fiber tracking informed computational models, the hypokinetic state depends on suppressing indirect pathway activity and not on the hyperdirect pathway. By contrast, in that study, cognitive impairment in Parkinson’s disease patients could be attributed to modulation of the hyperdirect pathway, suggesting that the hyperdirect and indirect pathways, converging in the subthalamic nucleus, are differentially involved in cognitive aspects of motor programming and kinematic gain control during motor performance.
The present study constitutes a computational approximation of the basal ganglia-thalamo-cortical network, with assumptions and limitations. Regarding the assumptions, synaptic coupling was tuned to be consistent to produce beta-band oscillatory activity within the basal ganglia, as a pathophysiological marker of Parkinson’s disease. Further, an internal connectivity in the nuclei was assumed to take the form of small world complex structures. This novel approach in basal ganglia modelling has a reasonable justification in previous publications, both modelling and experimental Netoff et al. [49]; Berman et al. [50]; She et al. [51]; Bassett and Bullmore [17,47]; Fang et al. [52]; De Santos-Sierra et al. [20]. As a limitation of the model, the exact structure of the connectivity on this microscopic level is not known, and hence also it remains to be clarified in the future how this can be analogously modelled. In the current study, the striatal input to GPe and GPi was simplified as different, but homogeneous constant currents to all neurons in GPe and GPi, but with different values between GPe and GPi, as well as healthy and Parkinsonian conditions.
As a future modelling perspective, one important topic will be the investigation of how this structural separation of the network can help to construct a low-representation model of brain activity (also called neural manifolds). The low representation will be tested under several DBS variations (i.e., functional connectivity) with respect to the parameters of DBS implantation (position, frequency, shape).
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As a result of its wide range of applications, FSI has grabbed the attention of researchers and scientists. In this study we consider an incompressible, laminar fluid flowing through the bifurcated channel. The wavy walls of the channel are considered elastic. Moreover, a magnetic field is applied towards the axial direction of the flow. Using a two-way fluid-structure interaction, an Arbitrary Lagrangian-Eulerian (ALE) formulation is used for coupling the problem. The problem is discretized using [image: image] and [image: image] finite element methods to approximate the displacement, pressure, and velocity. The linearized system of equations is solved using Newton’s iterative scheme. The analysis is carried out for the Reynolds number and Hartman number. The ranges of the studied parameters are Reynolds number [image: image] and Hartmann number [image: image]. The hemodynamic effects on the bifurcated channel and elastic walls are calculated using velocity, pressure, wall shear stresses (WSS), and loads at the walls. The study shows there is an increase in boundary load as the values of the Hartman number increase hence WSS increases. On the other hand, an increase in the Reynolds number increases the resistance forces hence velocity and WSS decrease. Also, numerical values of WSS for rigid and elastic walls are calculated. Studies showed that WSS decreases for the FSI case when compare to CFD (computational fluid dynamic) case.
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INTRODUCTION
Cardiovascular disorders are now the leading cause of death worldwide, accounting for around a quarter of all deaths in the modern era [1–3]. Cardiovascular problems include atherosclerosis, carotid aneurysm, and deep vein thrombosis, which cause heart attack, stroke, and embolism all stem from platelet aggregation [4]. Recent years have seen a large number of theoretical and experimental studies on arterial blood flow [4]. To better understand how the cardiovascular system’s physiological blood flow might be diagnosed, researchers are eager to examine how blood flows through an aortic artery bifurcation. The evaluation of blood flow through different types of geometries under different flow sites is highly essential because the leading cause of death in the world by arterial diseases is connected with the flow problems in the blood arteries. Viscosity, size, and form of arteries, as well as flow characteristics such as laminar, pulsatile, and turbulent all, have a significant impact on how blood moves through the vessels [5]. Numerous theoretical and experimental investigations on arterial blood flow have been conducted recently. Blood flow hemodynamics strongly depends upon the non-Newtonian characteristics, flow behavior, and shape of the artery. Fojas et al.[6] study the two-dimensional carotid artery model with bifurcation. An arbitrary Lagrangian-Eulerian (ALE) technique was used to solve the system of nonlinear equations. Comparisons were made between the findings of the hemodynamic simulations and the Doppler ultrasonography measurements of physiological blood velocity.
A literature review shows that many experiments were performed to measure the velocity field in bifurcation [7, 8], and the pressure drop model was proposed [9, 10]. Mekheimer [11] Proposed a theoretical investigation of a mixture of blood and synovial with heat distribution, volume fraction and concentration effects through stenosed concentric tubes. They concluded synovial fluid which has less friction than other fluids, can help to speed up the blood flow in the area of atherosclerosis. Flow past in a branching tube was analyzed by [12]. Yung et al. [13] numerically investigated the flow in bifurcation. For analytical and numerical research, basic “Y” type bifurcations with sharp corners were taken as assumptions, but experimental articles did not specify specific geometry employed in experiments. Thus, it is only possible to study the correlation between these theoretical and experimental results qualitatively. For the first time [14, 15], conducted thorough experiments to explore the primary and secondary flow field in a single bifurcation with smoothed corners and precisely defined geometric parameters. Numerical simulation performed by Zhao et al. [16] showed agreement between experimental and computational results by [14, 15].
Magnetohydrodynamics (MHD) is the study of fluids with magnetic characteristics. Human blood flow in the vascular system is greatly influenced by the use of MHD. Magnetic devices have been developed for a variety of applications, including medication transporters, cancer treatment, cell separation, etc. In medical research, the theory of electromagnetic field was first introduced by Kolin [17]. Later, Korchevskii, Marochnik [18] offered the opportunity to control the blood flow in the arterial lumen system by spreading a magnetic field. Ahmed et al. [19] proposed a unique model of unsteady MHD fluid flow and heat transfer across carbon nanotubes utilizing variable viscosity. MHD effects on blood flow in bifurcated arteries with minor stenosis in the parent lumen were studied by Srinivasacharya and Rao [20]. They used the finite difference method to solve the resulting set of equations numerically. The hemodynamics effects like flow rate, shear stresses are calculated for the involved parameter. Abdelsalam et al.[21] investigated the effects of chemical interaction and laser radiation with MHD and electroosmotic flow of non-Newtonian hybrid fluid in a sinusoidal channel. The aim of the research is to help restrict the growth of bacteria, promote oxygen binding to the blood, transfer oxygen to organs, and activate white blood cells. Mekheimer et al. [11] used a vertical micro channel to investigate the effect of diamond and copper nanoparticles on the electro-magneto-hydro dynamically regulated peristaltic pumping of a couple stress fluid. They found the irreversibility process enhanced with the sphere shaped particles also, MHD reduced the bolus size. Further investigation on MHD flows and their applications can be seen in the articles [22–25] and references therein.
Researchers are eager to examine how blood flows through an aortic artery bifurcation to better understand how the cardiovascular system’s physiological blood flow might be diagnosed. Blood flow across diverse geometries and flow sites are critical since arterial diseases are the leading cause of death in the globe, and because flow problems in the blood arteries are the primary cause of death. The blood flow is greatly affected by physical properties such as viscosity, vessel size and shape, and flow behaviour, such as laminar or pulsatile. Many vascular disorders can be linked back to abnormal blood flow dynamics in the arteries. Having a better knowledge of these dynamics could help in both healthy and pathological conditions. The hemodynamics of blood flow cannot be predicted accurately if we assume rigid walls. So this study is not effective in many practical cases. Therefore, FSI is taken into account [26]. FSI between blood and wall artery is difficult to model. Both modeling and computing efficiency is advancing rapidly in this discipline. Taking into consideration the FSI for the vessels and blood can be achieved by introducing a 2D or 3D elastic structure, utilizing a Lagrangian [27], Eulerian [28], or ALE (Arbitrary Lagrangian-Eulerian) framework [29]. Zhao et al. [30] studied the blood flow in the aortic arch using FSI. The system of equations is formed using the ALE frame. They studied the elasticity and wall stress in the aorta wall. Studies show that difference in the elastic characteristics of the different layer is responsible for the pathological state. Methods et al. [31] performed an FSI simulation in a patient-specific artery using the ALE concept. The fluid flow pattern and WSS were given special consideration in their study. In [32] the hemodynamics characteristic of blood flow using FSI were discussed. The coupling of the non-linear system of the equation with FSI is performed using the Gauss-Seidel iterative algorithm. Recently Shahzad et al. [33] studied the hemodynamics effects of non-Newtonian fluid flowing in the bifurcated artery. The theoretical model for stenosed bifurcated artery was constructed. They used an ALE technique to study the elastic wall behavior for non-Newtonian fluid.
In this study, a fluid-structure interaction simulation is performed for the bifurcated channel. The walls of the channel are considered wavy and elastic. The magnetic field is applied toward the axial direction of the flow. How Re and Ha affect the hemodynamics of the channel were studied. In the next section, physical configuration and mathematical modeling are performed. After that solution methodology is explained. The result and discussion section highlighted the major outcomes of the study. The conclusion based on the results is highlighted in the last section.
PHYSICAL CONFIGURATION AND MATHEMATICAL MODELING
The coordinate system and the geometry of the problem are shown in Figure 1. The wall of the channel is considered wavy with width [image: image]. The total length of the channel is [image: image]. The geometrical elements that influence the fluid dynamics in branching geometries are: change in cross-sectional area from mother to daughter branch, shape change in bifurcation module, flow driven at a bifurcation, and flow path curvature in the bifurcation module. Further, we suppose that walls of the bifurcated channel are constructed of linear elastic and isotropic material with a particular Young’s modulus and Poisson ratio. Which we defined as [34]
[image: image]
where [image: image], Lame coefficient; [image: image], Shear modulus; [image: image], Young’s Modulus; [image: image], Poisson ratio.Where [image: image] and value of [image: image].
[image: Figure 1]FIGURE 1 | Geometry of the wavy bifurcated channel.
We consider the incompressible, two–dimensional, viscous, biomagnetic fluid flowing through the bifurcated channel. The walls of the bifurcated channel are considered wavy. The upper wall and lower walls move with velocity 1. The parabolic inlet with [image: image] is considered at the inlet. While at outlet boundaries pressure is assumed zero. The low magnetic Reynolds approximation is assumed [35].
Lagrangian and Eulerian descriptions are commonly used in continuum mechanics to describe solid and fluid motion, respectively. With regards to fluid and solid domains mixing (fluid structure interaction), ALE is a more generic approach. For the fluid-structure interaction, we can write the governing equations in two dimensions as [34].
Continuity equation
[image: image]
Momentum equations
[image: image]
[image: image]
The governing equation for the solid displacement is given by
[image: image]
where [image: image], velocity component; [image: image], mesh coordinate velocity; [image: image], electrical conductivity of the fluid; [image: image], density of the fluid; [image: image], viscosity of the fluid; [image: image], solid stress tensor; [image: image], magnetic field strength.
The elastic deformation of the walls caused by the fluid and pressure forces can be represented in terms of the Kirchhoff stress tensor as [36].
[image: image]
[image: image]
where [image: image], [image: image], [image: image] is related by the strain [image: image] as [image: image], and
[image: image]
where [image: image], second Piola-Kirchhoff stress tensor; [image: image], Young’s modulus; [image: image], Poisson’s ratio; [image: image], solid displacement vector.
Making use of the dimensionless variables listed bel
[image: image]
where [image: image], channel height; [image: image], inlet velocity; [image: image], Reynolds number; [image: image], Hartmann number.
By taking a dimensionless parameter into account and omitting bar sign for simplicity, we can rewrite Eqs 2–5 as
[image: image]
[image: image]
[image: image]
[image: image]
At the inlet, a parabolic velocity profile is assumed as [image: image]. Pressure determines the outflow boundary conditions. The outlet’s pressure is set to zero.
SOLUTION METHODOLOGY
To address the FSI problem, the interdependent system of partial differential Eqs 8–10 are solved with the ALE approach, based on FEM. Galerkin finite element method [35] was used to transform and discretize the equations. This approach combines the ability to move the boundary domain, holding a moving domain with a moving procedure. The ALE approach is explained in greater detail in the articles [37–41]. A solution accuracy is improved by applying hybrid mesh which consists of rectangular and triangular elements. The requirements for the nonlinear iteration’s convergence are stated as
[image: image]
where [image: image] is the general component of the solution. Figure 2 depicts the coarse level grid of the problem. The key steps to study the structural analysis of the domain using FEM are discretization, meshing, and mesh refinement. FEM schemes are used to address the complex fluid flow problems by dividing the domain into subdomains or elements. Since discretization of the domain into finite elements is a key step so meshing is performed at multiple levels but for optimization, only a coarse level is presented (see Figure 2). The first and second-order polynomial space ([image: image] and [image: image]) is generated in the form of a hybrid grid consisting of quadrilateral and triangular elements to approximate the domain. Grid independence tests are performed to confirm that the results produced are independent of the number of mesh elements. The numerical values of WSS for the upper wall at Re = 200 and Ha = 0 are calculated for various refinement levels and shown in Table 1 (coarse to extremely fine). With the improvement of refinement levels, the absolute error decreases and is minimum for extremely fine level. Therefore, the study is conducted at an extremely fine level.
[image: Figure 2]FIGURE 2 | Coarse mesh for the discused problem.
TABLE 1 | Grid convergence for various refinement levels at Re = 200 and Ha = 0.
[image: Table 1]RESULTS AND DISCUSSION
A two–dimensional theoretical model for bio-magnetic flow in a bifurcated channel with elastic wavy walls is proposed. The magnetic field is applied to the axial direction of the flow. The nonlinear differential equations are transformed into a dimensionless form by utilizing appropriate scales. The system of equations is discretized using ALE and is solved using the FEM approach. The numerical solution is obtained for the various values of the parameters involved. Results for various values of Ha and Re are produced to gain a physical understanding of the situation. The results are demonstrated by the mean of streamlines, velocity surfaces, displacements, and WSS.
In Table 2 WSS are calculated for the variation of Reynolds and Hartmann number. Also, a comparison is made for CFD (rigid wall) and FSI (elastic wall) cases. WSS decreases for the FSI case as compared to the CFD case where the walls of the channel are considered rigid. WSS decreases when the viscous forces inside the channel increase i. e for increasing Reynolds number. The magnetic field has opposite effects on WSS as compared to Re. WSS is minimum for pure hydrodynamic cases i.e., Ha = 0, but when the value of Hartmann number increases the pressure at the walls increases hence WSS increases (see Table 1).
TABLE 2 | WSS comparison for CFD and FSI case.
[image: Table 2]Figure 3 shows the variation of velocity magnitude for various values of Hartmann number at Re = 300 (left) and 500 (right). Due to an increase in viscous forces the velocity magnitude inside the channel decreases. Therefore, an increase in Reynolds number retards the velocity. On the other hand velocity magnitude inside the channel is maximum for the pure hydrodynamic case. An increase in magnetic field strength give rise to WSS, as a result, velocity magnitude inside the channel decreases. Due to the elastic nature of the walls, a reasonable distortion can be observed for the variation of Hartmann number (see Figure 3). In Figure 4 streamlines are drawn for various values of the Hartmann number. Recirculation near the walls is maximum for the pure hydrodynamic case (Ha = 0). As Hartmann varies, the recirculation pattern decreases. The fluid exerts more pressure on the wall, which results in to increase in WSS. In Figure 5 streamlines for the variation of Reynolds number are drawn and observed near the bifurcation region. As increase in Reynolds number increases the viscous forces which consequently retards the flow and thereby reduced the flow velocity. This can also be observed by the recirculation pattern of the fluid near the walls (see Figure 5). Figure 6 plots the velocity profile for the expanded and contracted region for the variation of Hartmann number. An increase in Hartmann’s number reduces the velocity. Moreover, due to the parabolic inlet, a parabolic profile of velocity is observed.
[image: Figure 3]FIGURE 3 | Velocity contours for Re 300 (left) and 500 (right).
[image: Figure 4]FIGURE 4 | Streamlines for various Hartmann numbers at Re = 300.
[image: Figure 5]FIGURE 5 | Streamlines for various Reynolds numbers at Ha = 0.
[image: Figure 6]FIGURE 6 | Velocity profile for various cut lines defined.
Mechanical properties of the bifurcated channel are very important because they are directly related to recirculation area, flow pattern, WSS, etc. Due to the elastic behavior of wavy walls, a noticeable deformation can be seen for the variation of Hartmann number, which results in to decrease in the recirculation which gives rise to the wall shear stress. Figure 7 plots the WSS against the Hartmann number for the variation of Re. Also, a comparison is made between the CFD and FSI cases. A significant decrease in WSS for the FSI case. A boundary load is simulated in Figure 8. A significant change in the load at the boundary is observed for the variation of the Hartmann number. At Ha = 0, due to parabolic inlet velocity, there is a negligible load at the boundary. But it gradually starts increasing for variation of Ha. A noticeable change can be seen at Ha = 10.
[image: Figure 7]FIGURE 7 | WSS vs. Ha for variation of Re.
[image: Figure 8]FIGURE 8 | Boundary load for different Ha.
CONCLUSION
A fluid-structure interaction study of two–dimensional biomagnetic flow in a bifurcated channel is conducted. The walls of the channel are assumed elastic. The magnetic field is applied to the axial direction of the flow. The nonlinear differential equations are transformed into a dimensionless form by utilizing appropriate scales. The system of equations is discretized using ALE and is solved using the FEM approach. The major findings of the study are highlighted as.
• WSS is higher for CFD (rigid wall) case as compared to FSI (elastic wall) case.
• WSS decreases for increasing values of Reynolds number.
• Compared to the pure hydrodynamic scenario, the magnetic field reduces the gain in velocity.
• There is an increase in the recirculation patterns near the walls of the channel for the variation of Hartmann number. Hence pressure exerted by the fluid on the wall increases.
• The magnetic field increases the boundary load as compared to the pure hydrodynamic case.
• The magnetic field increases the WSS and hence the risk of atherosclerosis reduces.
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Compiler

ARMClang
Fujtsu
GCC

Intel

Version

210
470
11.1.0
19.1.3.304

System

ThunderX2

Wisteria

Milan

Oakbridge/ Oakforest

Flags

-03 -fopenmp -ffast-math - fsimdmath -fno-math-errno
-Nclang -Ofast - fopenmp

-03 -fopenmp -ffast-math -march=native

-03 -gopenmp -fp-model fast=2 -march=native
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Name

Oakforest
Oakbridge
Wisteria
Milan

Thunderx2

CPU

1 x Intel Xeon Phi 7250

Peak performance: 3 TFLOPS

2 x Intel Xeon Platinum 8280
Peak performance: 4.8 TFLOPS
1 x Fujitsu AB4FX

Peak performance: 3.4 TFLOPS
2 x AMD EPYC 7763

Peak performance: 5.0 TFLOPS
2 x Cavium ThunderX2 CN9980
Peak performance: 1.0 TFLOPS

ISA

x86-64

x86-64

ARM v8.2-A

x86-64

ARM v8.1-A

SIMD width
(bits)

512
512
512
256

128

Memory

16 GiB MCDRAM + 96 GiB DDR4
192 GiB DDR4

32 GiB HBM

2 TiB DDR4

1 TiB DDR4

Peak memory bandwidth

MCDRAM: > 400 GB/s DDR4: 125 GB/s

281 GB/s

1024 GB/s

410GB/s

341 GB/s
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Model Name State variables FLOPs References

ten Tusscher-Panfiov (2006) TPOS 19 1500 ten Tusscher and Panfilov (2006)
Jaeger-Tveito (2021) J121 25 1322 Jaeger et al. (2020, 2021a)
Grandi-Pasqualini-Bers (2010) GPB 39 2149 Grandi et al. (2010)
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Parameter Value Ref

Electrical model

Myocardium fiber electrical conductivty [S/m) & 03367 Wang et al. (2001)

Myocardium transverse electrical conductivity [S/m) o, o 0.1683 Wang et al. (2001)

Saline solution electrical conductivity [S/m] ol 14 Sauerheber and Heinz, (2015)

Myocardium electrical permittivity [F/m)] Cois 3,260 (Gabriel, 1996; Raghavan et al., 2009)

Saline solution electrical permittivity [F/m] foor 80 Raghavan et al. (2009)
Maribo-Mogensen et dl. (2013)
Nértemann et al. (1997)

Thermal model

Myocardium fiber thermal conductivity [W/m - K] K 06° Koncan et al. (2000)

Saline solution thermal conductivity [W/m - K] Keot 06 Ozbek and Philips, (1979)

Myocardium heat capacity [J/kg - K] & 3017 Petras et al. (2019)

Saline solution heat capacity [J/kg - K] Csot 4,178 Kho et al. (2021)

Myocardium density (kg/m°] o 1,076 Petras et al. (2019)

Saline solution density [kg/m®) ol 997 Kho et al. (2021)

Relaxation time heat flux [s] % 8 Sahoo et al. (2014)

Relaxation time temperature gradient [s] 13 0.045% Sahoo et al. (2014)

Cell-death model

Frequency factor N — U [1/s] Ay 368 x 10%° Park et l. (2016)

Frequency factor U — D [1/s] Ay 5.68 x 10° Park et al. (2016)

Frequency factor U — N [1/s] As 258 x 10° Park et l. (2016)

Activation energy N — U [J/mol] AE, 210, x, 10° Park et al. (2016)

Activation energy U — D Jimol) AE 386 x 10° Park et l. (2016)

Activation energy U — N [J/mol] AE; 472 x10° Park et al. (2016)

aparameter included in the parametric analysis.
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System

Oakbridge
Oakforest
Milan
Wisteria
ThunderX2

Throughput (10° . Selsteps) Speedup
Naive SoA SIMD Lt SIMD & LUT D 2 SMDALUT
96.0 9.3 3743 393.4 5524 39 44 58
469 4758 354.3 1963 4235 76 42 9.0
1632 1709 754.5 762.3 1198.0 4.6 4.7 73
175 213 245.0 743 208.5 14.0 42 "ne
718 79.7 1160 250.1 1993 16 35 28





OPS/images/fams-08-822782/inline_140.gif
Zpl(n)





OPS/images/fphys-13-904648/fphys-13-904648-t009.jpg
System

Oakbridge (with expm1)
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Milan

Wisteria
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211 %107
2.00 x 107'¢
340 x 107°
267 x 107°
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RL

134 x 107"
148 x 107
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248 x 107"
249 x 107
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129 x 1072
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Oakbridge

Oakforest
Oakforest

Milan
Milan

Wisteria
Wisteria

ThunderX2
Thunderx2

SIMD

On

On

On

On

On

Cell-Time Time-Cell Cell-Time-Cell

FE GRL1 FE GRL1 FE GRL1
6311 3589 1543 1822 8752 2575
150.5 90.0 85.3 57.8 1101 7
4224 2376 1082 8941 1141 947
635 378 16.1 137 160 141
2718 1612 2921 2752 7293  499.0
2692 1587 1512 1059 1674 1168
414 194 104.5 703 125.1 791
408 196 17.8 120 175 119
103.5 586 83.5 60.9 112.2 76.6
1114 626 641 406 796 479
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Oakbridge
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Oakforest
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Milan
Milan
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Wisteria
Wisteria

ThunderX2
ThunderX2
ThunderX2

Model

TPOB
Jr21
GPB

TPOB
JT21
GPB

TPO6
Jr21
GPB

TPOB
Jr21
GPB

TPOB
JT21
GPB

Throughput (10° - Selsters) Speedup
Naive SoA SIMD s swp
1278 1340 4817 38 36
1488 1472 4447 30 30
87.4 911 2394 27 26
55.7 59.8 3987 72 67
68.3 66.1 3766 55 57
364 395 2342 6.4 59
1994 2198 9208 46 42
2504 2560 8335 33 33
170.2 1645 5189 30 32
27.8 332 2966 107 89
251 410 3210 128 78

195 224 1675 86 75
94.1 97.6 137.1 15 14
1425 142 1693 12 15
755 83.1 109.1 14 13
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Oakbridge
Oakbridge
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Oakforest
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Milan
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Wisteria
Wisteria
Wisteria

ThunderX2
ThunderX2
ThunderX2

Model

TPO6
J121
GPB

TPOB
J121
GPB

TPO6
J121
GPB

TPOB
J121
GPB

TPOB
J121
GPB

Throughput (10° - Selstess) Speedup
Naive  SoA SIMD ~ So s
2917 3039 15070 52 50
3622 3559 17970 50 50
2039 2047 8204 40 40
0499 0525  4.081 82 78
0645 0651 5.116 79 79
0351 0406 3526 100 87
1186 1336 5910 50 4.4
1590 1624 6712 42 44
1094 1103 4073 37 37
0578 0694 6604 14 95
0532 0871 7.649 144 88
0413 0475 4211 102 89
0911 0951 1.500 17 1.6
1620 1.080 1.849 1.4 1.7
0.747 0.787 1179 1.6 15
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Function (value range)
System

Oakbridge
Oakforest
Mian
Wisteria
ThunderX2

exp (~700, 700)

2.623
1.471
2.623
1.923
2313

expm1 (~700, 700)

2.753
2.008
0.735
0.763
0.992

log (10, 10,5%9)

1.496
1.276
1.343
1.343
1.883

pow (—30, 30) x
(30, 30)

0.998
1,035
0.998
1.62x10'"®
0.998
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Oakbridge
Oakbridge
Oakbridge
Oakbridge

Oakforest
Oakforest
Oakforest
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Milan
Milan
Milan
Milan

Wisteria
Wisteria
Wisteria
Wisteria

ThunderX2
ThunderX2
ThunderX2
Thunderx2

Function

e
expmi

Scalar

261.0
167.4
202.4
83.4

439
237
385
139

91.7
151.8
739
268

85.6
253
791
16.4

88.4
45.6
64.8
256

SIMD

760.6
648.8
663.6
4271

260.0
223.4
2471
103.9

7436
1383
583.6
150.7

633.1
243
534.7
1134

123.0
271
102.9
226

Speedup

291
388
328
5.12

592
9.44
6.41
7.50

8.11
091
7.89
5.96

7.40
0.96
6.76
6.92

1.39
0.59
169
0.88
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Model dofs Time (s) Memory (MB)

Full Reduced Full Reduced Full Reduced
A2 9,108 194 0.16 035 180 146
B2 287, 432 1067 42.33 0.83 6261 133
c12 401, 156 749 130.67 0.76 8874 176

Number of degrees of freedom d.0.i.s, computational tim (average time for a single time
step) and memory usage (peak memory usage throughout the simulation) for the full
models (2D/3D) and reduced models (1D).
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Model A1
Model A2
Model B1
Model B2
Model B3
Model C12

Domain

OCLWm®> >

Pressure
Gradient Ap [Pa/mm]

0.1995
0.0
0.1995
0.0
0.0
0.1995

Wall motion pattern

None

Cardiac pulsations (uniform)
None

Cardiac pulsations (traveling)
Vasomotion (traveling)
Cardiac pulsations (traveling)

Model assumptions

0]

BRSNS

()

Lesss S

(n

N NN

vy

> % % % S

>

XX X X X N2

Wall pulsations are applied uniformly in space (uniform) or s a traveling waven space (traveling). Each of the models satisfy some of the reduced model assumptions (I-V), but only Model

A1 satisfies all
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Domain L (mm) D, (mm) Dpys (mm) Mesh (full) Mesh (reduced)

cells vertices hmin (mm) vertices hmin (mm)
A 1 004 006 1920 1053 13x 102 65 16 x 102
B =1 0.036-0.047 0.035-0.044 63144 12404 9.4 x10° 356 28x 10
c <1 0.024-0.046 0.023-0044 88074 17318 6.4 x10° 249 99x10°

L denotes an approximate domain length, D, = 2R, is the range of the arterial diameters, Dy indicates the range of widiths of the perivascular space (Dys = Rz = Ry, 50 that Ry = 2.95R,)
cells and vertices indicate the number of mesh cels and mesh vertices respectively for the full 2D or 3D) modl and reduced models, and hynax denotes the maximal mesh cell size for each
mash. The vertices for the one-dimensional geomeltrias are uniformiy spaced in the interior of the domain
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Centrality
measure

Subthalamic nucleus
(STN)

Globus pallidus
externa (GPe)

Globus pallidus
interna (Gpi)

Thalamus (Tha)

Motor cortex
areas (MC)

Betweenness
centrality

Eigencentrality

(15, =13, -4),(13, -14, -7),
(13, -11, -6), (13, =13, -8) center:
(135, 128, -6.3)

(15, -14, =8), (14, -15, -8),
(11, =12, =7), (15, ~13, —4) center:
(138, -135, -6.8)

(18, -4, -7), (18, -6, -2),
(19, =5, -1), (20, =6, -3)
center: (188, -53, -3.3)

(23, -7, 1), (20, =6, 1),

(22,-4,1),(20, -2, 0) center:

(213, -48, 0.8)

(18, -9, 1), (20, =9, 1),
(19, -9, 0), (18, -10, 1)
center: (18.8, 9.3, ~0.8)

(20, -9, -1), (12, -1, =6),
(13, -1, -6), (13, -2, -7)
center: (145, 3.3, -5)

19, -7, 13), (9, -5, 4),
(9, -4, 6) (8, -4, 5)
center:

(11.25, 5.0, 7.0)

(19,-8,10) (18, -8,10),
(18, -8,9), (19, -9, 9)
center: (18.5, ~8.3, 9.5)

(16,2, 51), (16, 1, 49),
(20,9, 46), (18, 2, 49)
center: (17.5, 3.5, 48.8)

(29, -20, 34), (27, 19,
33), (28, -22, 33),

(19, -1, 50) center:
(258, -15.5, 37.5)
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