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Editorial on the Research Topic

Automatic methods for multiple sclerosis new lesions detection

and segmentation

Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system

(CNS) affecting more than half a million persons in Europe, with a prevalence rate of 83 per

100,000 with higher rates in northern countries and a female/male ratio around 2.0 (Pugliatti

et al., 2006). Today, conventional MR imaging (MRI) is widely used for the patient follow-

up, the monitoring of the therapy effects, and more generally in a perspective of personalized

medicine, for the understanding of the individual MS progression (Thompson et al., 2018).

One of the major challenges in using MRI for MS is the segmentation of lesions whose

number, location and appearance at a given time point, are crucial indicators for diagnostic

and to tailor treatment to the specific individual disease’s evolution.

To cope with inter- and intra-observer variability and reduce the burden and complexity

of lesions identification for clinicians, a large number of techniques have been proposed

in the literature for the automatic segmentation of MS lesions (see Garcia-Lorenzo et al.,

2013; Valverde et al., 2017; Danelakis et al., 2018 for reviews). Several challenges have

been proposed to evaluate the performances of these methods (e.g., Carass et al., 2017;

Commowick et al., 2021 to cite the most recent ones). Moreover, recently Bonacchi et al.

(2022) proposed an overview of Artificial Intelligence applications for MS clinical practice.

A growing literature focuses on the delineation of new MS lesions on T2/FLAIR

occurring between two consecutive exams. Detecting the apparition of new MS lesions is

of central interest in clinical practice. Indeed, while the palette of Disease Modifying Drugs

(DMDs) approved for MS has presently an unknown impact on the compartmentalized

neurodegenerative process within the CNS, they aim to substantially reduce, or even stop,

the accumulation of new lesions. Consequently, the assessment of such an accumulation

allows the clinician to monitor the efficiency of a given DMD on each patient it follows,

and therefore to consider a change of treatment in case of insufficient efficiency. Moreover,

there is a direct link between accumulation of new lesions and increasing handicap (Sormani

et al., 2013). Automating the detection of these new lesions or helping clinicians to identify

them would therefore be a major advance for evaluating the patient disease progression and

response to treatment.
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In 2021, we launched a MICCAI challenge, MSSEG-II (see

https://www.ofsep.org/fr/etudes/msseg-ii-challenge-miccai-2021),

to compare automated solutions for this specific task i.e., the

detection of new lesions appearing at the second time point

of two T2/FLAIR images of the patient. For that purpose, we

used a large database: 100 patients, each with two time points,

the time between the two time points varying between 1 and

3 years. Data were extracted from the national OFSEP cohort

(Vukusic et al., 2020), the national French MS registry (https://

clinicaltrials.gov/ct2/show/NCT03603457), with 3D FLAIR images

from different centers and scanners (15 different scanners in

total) using the OFSEP specific protocol (Cotton et al., 2015;

Brisset et al., 2020). Only 3D FLAIR images—that is the mostly

used clinical sequence for MS brain—were considered. As in our

previous challenge (Commowick et al., 2021), the evaluation of

solutions was performed on the dedicated FLI-IAM infrastructure

(https://www.francelifeimaging.fr/en/about/noeuds/iam/), which

comprises Shanoir, a web-oriented solution for imaging data

storage and sharing for preclinical and clinical research studies

(Barillot et al., 2016; Kain et al., 2020); and the VIP platform

(Glatard et al., 2013) for the execution of the corresponding docker

of each image processing algorithm/pipeline on EGI infrastructures

(https://www.egi.eu/). The use of FLI-IAM allows to automate the

competition’s process through a sustainable framework and remove

the potential biases (e.g., challengers manually optimizing their

parameters for each provided case). The ground truth was defined

based on the manual delineation, using ITK Snap, of the 100 cases

by four neuroradiologists with an MS expertise. Then, a consensus

was formed in two steps: a senior expert neuroradiologist examined

and confirmed (or declined) disputed lesions among the experts;

then a fusion using the STAPLE (Warfield et al., 2004) algorithm

was performed. This consensus was then the reference for the

evaluation procedure. Forty cases were provided to challengers

(e.g., for algorithm training) and 60 cases for algorithm testing.

The manual segmentations were provided with the former and

unknown to the challengers for the latter.

The present RT gathers 10 papers about solutions for the

automatized detection of new lesions in MS subsequent images.

All but one (Dufresne et al.) competed during MSSEG-II challenge

and were executed on FLI-IAM infrastructure. They are based on a

deep learning approach, the U-net architecture (Ronneberger et al.,

2015) with its 2D or 3D versions. Wemay distinguish two classes of

approaches, ones that use exclusively the examples provided by the

Miccai challenge organizers and those which introduce additional

real (Hitziger et al.) or synthetic (Andresen et al.; Kamraoui et al.;

Valencia et al.) datasets. Finally, joint modeling, mixing both

a registration and a segmentation task, have been investigated

(Andresen et al.; Dufresne et al.; Salem et al.).

Then, Hitziger et al. train a 2D U-net with residual units with

axial, coronal and sagittal slices. The corresponding slices from the

two time-point volumes are paired and introduced to the system

as a two-channel input. The predictions from each orientation

are then merged with different strategies. The best performances

are obtained for the unanimous voting strategy where lesions

are confirmed in each orientation. The gain in performance by

introducing additional datasets (25 supplementary patients to the

initial 40 patients training set) seems weak.

In the same line, Sarica and Seker propose a 2D U-net solution

where the standard plain blocks are replaced by residual units and

attention gates are introduced to, respectively, enhance the model

performances and focalize on new MS lesions on each 2D slice. A

majority voting generates the final 3D binary output.

Similarly, Ashtari et al. introduce residual units, this time in

a 3D U-net version and data augmentation methods to improve

robustness and generalizability of the obtained model.

Basaran et al. consider the recent 3D U-Net version (“No-

NewU-Net”) combined with several image preprocessing step

brain extraction, bias correction, registration and multiple data

augmentation methods.

To overcome the difficulty of a supervised training based on

scarce new lesion annotated examples, Kamraoui et al. interestingly

propose to first pretrain a 3D U-Net on a large one time-point MS

dataset (transfer learning), second to pretrain the model used for

time-points by introducing realistic synthetic data, and finally to

fine-tune the obtained network with the real two time-points data

as provided by MSSEG-II.

To tackle class imbalance between voxels belonging to new

lesions or not, Schmidt-Mengin et al. introduce a two-stage training

strategy to iteratively define a fixed number of patches (30%)

containing lesions. This “online hard example mining” strategy is

implemented with two 3D U-Nets applied patch-wise in cascade.

Such a strategy, applied for the first time on 3D brain scans, seems

to emphasize false positive rate.

Instead of using a unique intensity-based approach, Andresen

et al., Salem et al., and Dufresne et al. propose to consider a

deformation-based approach. Maps of non-corresponding regions

between subsequent images are generated during the registration

process. In Andresen et al. such maps are then used by a fully

convolutional network to segment new lesions that occur across

time. Offset maps with baseline allow exploring morphology

appearance of new lesions. New lesions are rare and similarly

to the previous paper (Kamraoui et al.) the authors insert

synthetic lesions during the network training. In Salem et al.

the authors introduce a cascade of two 3D U-net patch-

wise fully convolutional neural networks. The first registration

network learns the deformation field to register the individual

sequence of FLAIR images, while the second performs new

lesions segmentation. The latter is fed by registered FLAIR images

and the deformation maps. Indeed, the first network allows to

filter the majority of non-lesion voxels and reveals the possible

new lesion candidates, while the second refine the detection

in reducing misclassified voxels. The simultaneous training of

registration and segmentation modules improves the performances

compared to a sequential learning. Valencia et al. propose to

improve the previous results in adding synthetic images. The

hypothesis is that the introduction of T1-weighted images (T1w),

artificially generated, in addition to the FLAIR images improves

new MS lesions detection. They use a generative adversarial

network (GAN) with an additional MS FLAIR dataset (136 cases)

in order to generate T1w corresponding images. The trained

GAN is then used to generate the T1w corresponding to the

provided MSSEG-II FLAIR images. They show an improvement

of the sensitivity performance compared to the only use of

FLAIR images.
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TABLE 1 Averaged (patient-wise) score for the four experts.

New lesion cases
(n = 32)

No new lesion
(n = 28)

DSC F1 Sensitivity Specificity PPV ηTP ηFP ηFN ηFP ηFP

Expert 1 0.629 0.709 0.650 1.000 0.707 6.063 1.281 1.094 0.036 1.453

Expert 2 0.597 0.601 0.526 1.000 0.813 4.500 0.844 2.375 0.000 0.000

Expert 3 0.535 0.637 0.580 1.000 0.760 4.313 1.094 2.500 0.107 3.981

Expert 4 0.459 0.519 0.407 1.000 0.801 4.469 0.594 2.375 0.036 0.623

DSC, dice score; PPV, positive predictive value; ηTP, mean number of true positives; ηFP, mean number of false positive; ηFN, mean number of false negative. The provided sensitivity, precision,

and PPV are computed at the voxel scale.

Finally, in Dufresne et al., a different deformation-based

approach is proposed where deformable registration and

local intensity change detection are jointly estimated as a

unified optimization problem solving. The joint method is

evaluated on synthetic and real MS datasets and compared

to the sequential version, where registration and change

detection are performed successively, to demonstrate the

performance improvement obtained by the former. Such

an optimization approach cannot discriminate between new

lesions from evolving lesions. It is interesting to note that this

is the only non-Deep Learning-based method presented in

this RT.

In Table 1, we provide several indexes for the readers in order to

have a flavor of the current performances reached by the different

solutions described in this RT compared to human experts.

To conclude, MS new lesions detection and segmentation

remain very difficult tasks. Presently, automatic methods can

be more sensitive for detecting new lesions, but produce more

false positive compare to manual delineation by experts. Thus,

in spite of slight persistent differences, performances between

automatic solutions and human experts are closer than in the

previous challenge (see Commowick et al., 2021). However, in

order to be used in clinical routine, several steps need to be

completed, such as the integration of computerized solutions

in the hospital information flow and the quantification of the

uncertainty associated to the automatic lesion detection, in

place of the standard binary output, to leverage the clinician’s

work for obvious lesion and requiring his/her expertise only

for difficult cases (Lambert et al., 2022). This will lead to the

design of a new family of computerized medical assistants for

care improvement.

Data from the MSSEG challenges are available here https://

shanoir.irisa.fr/shanoir-ng/welcome and can be used to evaluate

new solutions.
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Multiple sclerosis (MS) is an autoimmune disease that causes lesions in the

central nervous system of humans due to demyelinating axons. Magnetic

resonance imaging (MRI) is widely used for monitoring and measuring MS

lesions. Automated methods for MS lesion segmentation have usually been

performed on individual MRI scans. Recently, tracking lesion activity for

quantifying and monitoring MS disease progression, especially detecting new

lesions, has become an important biomarker. In this study, a unique pipeline

with a deep neural network that combines U-Net, attention gate, and residual

learning is proposed to perform better new MS lesion segmentation using

baseline and follow-up 3D FLAIR MR images. The proposed network has a

similar architecture to U-Net and is formed from residual units which facilitate

the training of deep networks. Networks with fewer parameters are designed

with better performance through the skip connections of U-Net and residual

units, which facilitate information propagation without degradation. Attention

gates also learn to focus on salient features of the target structures of various

sizes and shapes. The MSSEG-2 dataset was used for training and testing

the proposed pipeline, and the results were compared with those of other

proposed pipelines of the challenge and experts who participated in the same

challenge. According to the results over the testing set, the lesion-wise F1 and

dice scores were obtained as a mean of 48 and 44.30%. For the no-lesion

cases, the number of tested and volume of tested lesions were obtained as

a mean of 0.148 and 1.488, respectively. The proposed pipeline outperformed

22 proposed pipelines and ranked 8th in the challenge.

KEYWORDS

deep residual learning, U-Net, attention gate, convolutional neural networks,multiple

sclerosis (MS), MS lesion activity segmentation, lesion activity, MS new lesions

segmentation

1. Introduction

Multiple sclerosis (MS) is an autoimmune disease characterized by demyelinating

axons in the central nervous system, resulting in white matter (WM) lesions (Steinman,

1996; Calabresi, 2004). Magnetic resonance imaging (MRI) is widely utilized for various

purposes, such as disease diagnosis, patient follow-up, and therapy monitoring. In
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clinical practice, MRI data can be used to diagnose and assess

MS lesions, which helps physicians better understand the natural

history of MS (Lladó et al., 2012; Combès et al., 2021). Fluid

Attenuated Inversion Recovery (FLAIR) is an MRI technique

that provides images in which WM lesions emerge as high-

intensity areas, allowing for tracking of the disease progression

(Rovira et al., 2015). In particular, this technique facilitates

lesion segmentation to acquire quantitative features such as the

number and volume of lesions (Roy et al., 2018). Since manual

segmentation of such lesions is prone to high interobserver

variability and time-consuming processes (Egger et al., 2017;

Commowick et al., 2018), accurate automated segmentation

methods are required to perform this process (Ma et al., 2022).

The emergence of new lesions or the expansion of existing

lesions is referred to as lesion activity (McFarland et al., 1992).

The most important biomarker for monitoring inflammatory

changes and disease progression in MS is to track lesion activity

between two longitudinal MR images (Patti et al., 2015; Combès

et al., 2021). Recently, the delineation of new MS lesions on

T2/FLAIR by comparing two time-points MRI data has gained

attraction. Determination of new lesions has become even more

important than identifying the total number and volume of

lesions as it allows clinicians to determine whether a given

anti-inflammatory disease modifying drug (DMD) is effective

for the patient (Moraal et al., 2010). However, detection and

delineation of new lesions appearing at the second-time point

are particularly challenging and intra- and inter-rater variability

are unavoidable due to small and subtle new lesions (McKinley

et al., 2020). Therefore, automating the detection of these new

lesions will be a significant improvement in assessing the disease

activity of a patient.

Recently, deep learning methods, especially those relying

on convolutional neural networks (CNNs) (LeCun et al., 2015),

have improved the performance of brain lesion segmentation

tasks (Akkus et al., 2017); such as brain tumor segmentation

(Havaei et al., 2017), brain extraction (Kleesiek et al., 2016), and

MS lesion segmentation (Roy et al., 2018; Aslani et al., 2019;

Zhang et al., 2019). Most of these methods rely on encoder-

decoder networks, taking MRI data as an input and generating

a segmentation output for each pixel (Danelakis et al., 2018).

Many CNN-based methods and their variations have also been

proposed with different input strategies, such as multi-scale

(Brosch et al., 2016), multi-branch (Aslani et al., 2019), and

cascaded (Valverde et al., 2017) approaches. However, these

together with most of the classical methods perform lesion

segmentation on a single MRI data. For determining MS lesion

activity, classical image processing approaches have been usually

preferred such as image differences, intensity-based approaches,

and deformation fields (Ganiler et al., 2014; Lesjak et al., 2016;

Salem et al., 2018; Köhler et al., 2019). However, some of

these approaches have high variability and inconsistency as

they use two different segmentation outputs obtained from the

baseline and follow-up images to produce the lesion activity

(Krüger et al., 2020). To perform better lesion activity

segmentation, deep learning approaches relying on CNNs are

essential which take these two images as input; however,

these methods have been so far limited for the MS lesion

activity segmentation. Salem et al. (2020) who used a classical

approach in their previous study proposed the first CNN-

based longitudinal approach for detecting new T2-w lesions in

brain MRI. In their study, intensity- and deformation- based

features from two time-points data were incorporated into the

proposed network and trained within an end-to-end procedure.

Gessert et al. (2020b) have proposed a CNN-based method

using two FLAIR images acquired at two different times to

detect lesion activity. They used two-path architectures with

attention-guided interactions to process two time-points of

MRI data. Furthermore, they extended their work to full 4D

deep learning using a history of MRI volumes and proposed

a 3D ResNet-based multi-encoder-decoder network in which

temporal aggregation was performed by convolutional gated

recurrent units (convGRUs) for lesion activity segmentation

(Gessert et al., 2020a). However, the dataset of these studies

consists of MR images from the same scanner, which decreases

the generalizability of these methods toward the intensity and

texture characteristics variations, which can be inherited if the

data is obtained from different scanners. Thus, there is a need for

new deep learning approaches to cope with variations problems

that may arise through the use of data from multiple scanners as

well.

The patch-based and image-based approaches are generally

used in CNN-based medical image segmentation (Aslani

et al., 2019). Image-based segmentation approaches exploit the

global structure information when processing the entire image;

however, the patch-based approaches ignore this information

due to the small patch sizes. In image-based segmentation,

the 3D MRI data is processed either using slice-based or 3D

segmentation methods (Brosch et al., 2016; Tseng et al., 2017).

In slice-based image segmentation, each 3D MRI is converted

into 2D slices along the x, y, and z axes, and then used as an

input for deep learning models. After, these processed slices are

aggregated to reconstruct a 3D binary output segmentation. In

the 3D segmentation, meaningful information from the original

3D images is extracted with 3D kernels in a CNN. However,

applying traditional 3D segmentation with a large number of

parameters to a small dataset is prone to a high risk of overfitting

issues which is a common issue in medical image analysis

(Brosch et al., 2016). To address this overfitting issue, several

approaches have been proposed such as defining three 2D

kernels for each of the three plane orientations around the voxel

(Liu et al., 2017; Tetteh et al., 2020); however, these approaches

include more parameters for each plane when compared to the

slice-based approach (Aslani et al., 2019).

Training deeper neural networks are challenging due to

problems such as degradation problem. To solve these issues, He

et al. (2016a,b) presented a deeper residual learning framework
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that uses identity mapping to ease the network training phase.

Ronneberger et al. (2015) modified and extended the fully

convolutional network (FCN) architecture (Long et al., 2015) to

build the U-Net architecture which works with fewer training

images and combines feature maps from multiple levels to

enhance the segmentation accuracy. U-Net achieves promising

results in medical image segmentation by combining low-level

features with high-level semantic features. Combinations of U-

Net and residual learning were also used for different image

segmentation problems, such as road extraction using remote

sensing data (Zhang et al., 2018). In addition, the attention gate

(AG) model is proposed for automatically learning to focus on

more features related to the target structures of various sizes and

shapes (Oktay et al., 2018). AG uses high-level features from

skip connections and low-level features from an upsampling

operation to emphasize important features. This allows the

network to focus on the small and subtle lesions appearing in

the target MR images.

In this study, an automated segmentation pipeline with

a fully convolutional neural network was used to detect

and segment the new lesions observed in follow-up images.

This study uses images from “Multiple sclerosis new lesions

segmentation challenge (MSSEG-2)” 1 which consists of 3D

FLAIR images acquired from different centers and scanners

(1.5T and 3T). Residual units and attention gates are

incorporated into the U-Net architecture for the new MS lesion

activity task. The slice-based approach was preferred as the

input strategy due to the above-mentioned advantages. Slices

extracted from these pairs of MR scans were combined by

stacking corresponding baseline and follow-up slices into the

input channel dimension and then utilized as input values for

the proposed model. This study has two major contributions to

MRI base lesion activity monitoring. First, it is shown that an

encoder-decoder-based architecture, namely U-Net, provided

acceptable results in detecting and segmenting the lesion

activity. Second, it is demonstrated that using a whole-brain

slice approach with the U-Net architecture including residual

blocks and modified attention gates significantly improves the

segmentation of lesion activity on MRI data acquired from

different scanners.

2. Materials and methods

2.1. Data, preprocessing, and preparation

In this study, a total of 100 patients’ MRI data that was

associated with MS disease provided by the MSSEG-2 challenge
2 was utilized. The voxel size of each MRI data in this dataset

varies from 0.5 × 0.5 × 0.5 mm3 to 1.2 × 1.2 × 1.2 mm3. The

dataset was divided into two groups for training and testing. 40

1 Challenge website: https://portal.fli-iam.irisa.fr/msseg-2/

2 Challenge Data: https://portal.fli-iam.irisa.fr/msseg-2/data/

image pairs were used for the training and the remaining were

used for testing. For each patient, raw 3D T2/FLAIR MRI pairs

were obtained from 15 different MRI scanners at 1.5T and 3T. A

rigid registration was applied to these images to bring them into

a middle point in which the ground truth data was calculated

by the challenge organizers. Thereafter, a consensus delineated

ground truth data for the follow-up images were formed by a

majority voting among the four experts and validated by a senior

expert neuroradiologist.

Data preprocessing is a crucial step for the segmentation

task in medical image processing since the raw MRIs may have

irrelevant information like non-brain tissues and skulls. Thus,

brain extraction followed by N4 bias field correction (Tustison

et al., 2010) was performed on these raw 3D images using

the Anima MS longitudinal preprocessing script 3. Intensity

normalization was performed on each 3D MRI scan using the

99th percentile and Kernel Density Estimate (KDE) with the

Gaussian kernel similar to one described by Reinhold et al.

(2019) and Zhang and Oguz (2020). Then, early fusion was

performed on the baseline and follow-up images to produce

2-channel input data allowing the proposed model to obtain

temporal features fromMRI sequences.

The resulting 3D MRI data consists of orthogonal plane

orientations which yield three views. From this data, the axial,

sagittal, and coronal views along the x, y, and z axes were

obtained as 2D slices. Since each generated 2D slice has a

different size that depends on the orientation, zero padding was

applied to obtain a 512 x 512 slice size for all orientations by

centering the brain without affecting the original voxel size. As

discussed in detail by Hashemi (2019), zero padding does not

deform the patterns in the image and does not affect the network

weights during the backpropagation. To restrict excessively

unbalanced data and ignore non-informative samples, the slices

which have at least one pixel delineated as a new lesion on the

follow-up MR images were chosen to create a training subset.

As a result, a total of 2,637 2D slices for each time point were

derived to be used for training and validation sets. Afterward,

the baseline and follow-up images were stacked to generate a 2-

channel feature map for each plane orientation. Finally, all 2D

stacked slices extracted from all three planes were aggregated

to generate a single training input, which allowed to increase

training samples and use the contextual information in all

directions. Figure 1 shows the raw and preprocessed input data

for the two time points dataset with the delineated ground truth

data.

2.2. Model architecture

2.2.1. U-Net

U-Net, an encoder-decoder network with skip connections,

has shown competitive results in the medical field (Ronneberger

3 Anima scripts: RRID SCR_017072 https://anima.irisa.fr/
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FIGURE 1

The raw, preprocessed, and delineated mask slices including two-time points for the new MS lesions segmentation task.

et al., 2015). This network concatenates features from different

levels to enhance segmentation performance. It consists of

encoding, bridge, and decoding paths. In the encoding path, the

feature map from each layer is downsampled by halving the size

to encode the input image into the feature representations. As

for the decoding path, the corresponding encoding path which

has high-resolution features (semantically low) is combined with

the upsampling of the feature maps produced from the lower

dimension to better learn representations with the following

convolutions. The bridge connects these paths as a transition

block. Each block in each layer has two sets of 3 x 3 convolutional

layers with a Rectified Linear Unit (ReLU) activation for both

downsampling and upsampling operations. The final layer of the

U-Net utilizes a 1 x 1 convolution with a sigmoid activation to

predict each pixel value ranging from 0 to 1 (Ronneberger et al.,

2015). The standard blocks in the U-Net architecture can be

replaced with residual units to enhance the model performance.

2.2.2. Residual learning

Adding more layers to build a deeper neural network could

enhance the performance of networks; however, increasing the

depth of the network may slow down the training process,

perhaps resulting in a degradation problem (He et al., 2016a).

Deep residual learning uses several residual blocks together in

which an identity mapping is created to handle the performance

problem, and also address the degradation problem (He et al.,

2016a). The residual unit is comprised of two 3 x 3 convolutional

blocks, each with Batch Normalization (BN), a ReLU activation,

and a convolutional layer, as well as an identity mapping that

combines the input and output of the residual unit. Figure 2

shows the residual unit including identity mapping within the

proposed model. Each residual unit is formulated according to

He et al. (2016b) as the following:

yl = h(xl)+ F(xl,Wl) (1)

xl+1 = f (yl) (2)

where xl and xl+1 are the input and output of the l-th unit

while F, f, and h indicate the residual function, activation

function, and identity mapping, respectively. He et al. (2016b)

also recommended a full pre-activation as demonstrated in

Figure 2. In this study, a full pre-activation residual unit was

used to construct and design the deep residual attention gate

U-Net.

2.2.3. Attention gate

Attention gates help the models to focus on learning the

salient features beneficial for specific tasks while avoiding
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FIGURE 2

A residual unit with identity mapping. xl and xl+1 are the input and output of the l-th unit, respectively.

unnecessary regions in an input image (Oktay et al., 2018).

These are used during concatenating skip connection and

upsampling to focus more features related to different sizes

and shapes on the target structure. Contextual information

(gating) obtained at coarser scales is used to achieve feature

selectivity in AGs. Figure 3 shows the overview of the attention

gate mechanism.

2.2.4. Deep residual attention gate U-Net

In this study, the combination of U-Net, deep residual

learning, and attention gate was proposed for the new MS

lesion segmentation task. In this combination, the residual

unit will facilitate the network training. Information will be

able to propagate without degradation thanks to the skip

connections within a residual unit and between low and

high levels of the network. Thus, deep neural networks are

built with fewer parameters while still achieving a competitive

segmentation performance. As such, the standard blocks were

replaced with residual blocks in the proposed model. AGs,

modified by adding BN and a ReLU activation for both input

features before convolutional operations, were added between

the corresponding encoding part and the upsampling of features

maps produced from the lower level. Thus, allowing the model

to learn to focus on salient features of various shapes and sizes.

Figure 3 demonstrates the details of the designed network with

the input data formed by the axial, sagittal, and coronal views

extracted from the baseline and follow-up 3D MRI for the new

MS lesion segmentation.

2.3. Implementation details

The training set comprised 3D FLAIR images of 40 patients

and only 29 had new lesions in their follow-up images. These

29 MR images were divided into the training and validation

sets (24 patients for training and 5 patients for validation).

To prepare input data, each 3D image was divided into its

axial, sagittal, and coronal views. Two-channel input feature

data was created using each corresponding 2D slice from both

time points as discussed previously. Keras (version=2.4)4 and

TensorFlow (version 2.4)5 libraries were used for the model

development in Python language (version 3.7)6 (Chollet, 2015;

Abadi et al., 2016). The Google Colaboratory, having a Tesla

K80 GPU, was used for the training procedure (Bisong, 2019).

The proposed model was trained by using the Adam optimizer

(Kingma and Ba, 2014), an initial learning rate of 1e-4 (adjusting

with patience=10 and factor=0.1 during the training), and a

batch size of 8 over 200 epochs, respectively. The validation

dice score was also monitored to choose the best model, and

model weights were saved based on the best validation dice score

during the training. Early stopping (patience=50) was exploited

to prevent overfitting as well. Hashemi et al. (2022) used the sum

of dice loss with a 1.5 coefficient and binary cross entropy loss

as a custom loss function for MS lesion segmentation. Similarly,

in this study, a hybrid loss function consisting of binary focal

loss and dice loss [dice loss + (1 × binary focal loss)] was

employed in order to handle unbalanced labeled data between

lesion and background since lesion pixels constitute a minor

portion of the whole image. The total loss function is defined

as follows:

Lt = (1−
2 gt pr + 1

gt + pr + 1
)+ (1× (−gtα(1− pr)γ log(pr)

−(1− gt)αprγ log(1− pr))) (3)

where gt denotes the ground truth, and pr indicates prediction.

0.25 and 2.0 default values were used for the parameters of α and

γ , respectively.

Keras data generator was used for performing real-time

data augmentation such as vertical flipping, horizontal flipping,

4 https://keras.io/

5 https://www.tensorflow.org/

6 https://www.python.org/
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FIGURE 3

The architecture of the proposed model combines U-Net, residual learning, attention gate, and a slice-based approach. In AG adapted from

Oktay et al. (2018), xl is the input features, α is the attention coe�cients used to scale the xl , and g collected from a coarser scale is the gating

signal which provides contextual information.

random rotation, and shift range to increase the number of

training samples. Figure 4 shows the proposed pipeline for

new lesion segmentation of MS activity. First, 3D MRIs were

converted into their plane orientations along the x, y, and z

axes. Then, 2D slices of two-time points were fused together

to create a single input training data for the proposed model.

Predicted 2D slices based on the axial, sagittal, and coronal views

were converted into the 3D binary segmentation output, and

then the final output segmentation mask was generated by using

the majority voting among 3D binary outputs obtained from

each view.

To compare components of the designed network, a

testing subset was created from the MSSEG-2 test dataset

provided by the challenge organizers. This subset comprised

MRI data of 7 patients by considering the different scanners

and new lesion loads. Satisfactory results with the MSSEG-

2 dataset could not be obtained by the implementation

of the original U-Net. Therefore, this implementation was

modified with transpose upsampling instead of a simple

upsampling operation, and batch normalization to make the

neural network more stable. A hybrid loss function, the

summation of binary focal and dice losses, was used for

all models.

2.4. Metrics

2.4.1. Dice similarity coe�cient

The segmentation of new lesions was considered one of

the two most important evaluation criteria for the challenge.

This indicates how many new lesions are precisely overlapped

in the ground truth which is also known as the Dice score

(Commowick et al., 2018). In other words, the Dice Similarity

Coefficient (DSC) is used to measure the similarity of the

evaluated segmentation and the ground truth. It is formulated

as follows:

DSC =
2TP

2TP + FP + FN
(4)

where TP, FP, and FN denote the true positive, false positive, and

false negative pixels/voxels, respectively.

2.4.2. F1 score

Another important evaluation criterion was the detection

of new lesions. This shows the number of new lesions that are

correctly detected or not without considering the precision of

their contours. Lesion sensitivity, which is the proportion of

the detected lesions in the ground truth, and lesion positive
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FIGURE 4

The proposed pipeline of new MS lesions segmentation using a slice-based approach including the majority voting for the final 3D

segmentation output using the predicted 2D axial, sagittal, and coronal slices.

predictive, which is the proportion of TP lesions in the automatic

segmentation, were used to compute the F1 score. Lesion

sensitivity (S) and lesion positive predictive (P) can be calculated

with the following equations (Commowick et al., 2018):

S =
TPG

M
(5)

P =
TPA

N
(6)

where M and N denote the number of lesions in the

ground truth and the automatic segmentation, respectively.

TPG indicates the number of lesions correctly detected by the

automatic segmentation among the number of lesions in the

ground truth. TPA denotes the number of lesions correctly

detected by the ground truth among the number of lesions in

the automatic segmentation. Hereafter, these two metrics can be

formulated to calculate the F1 score with the following equation.

F1 =
2SP

S+ P
(7)

2.4.3. Metrics for no new lesions

Patients with MS may not have new lesions for their follow-

up images. This is usual in clinical cases, and this challenge

has also similar cases in both training and test data sets. For

example, the testing set is comprised of 28 patients with no new

lesions and 32 patients with at least one or more new lesions.

The number and volume of new lesions were used as evaluation

metrics as well. The volume of new lesions was calculated by

multiplying the number of voxels in the segmentation with the

voxel volume. A value of zero is the optimal value for these

metrics.

2.4.4. Other overlap and surface metrics

Overlap metrics consider the voxel-based overlap of the

segmentation output (A) and manual annotation mask (G)

while surface metric computes the average symmetric surface

distance. The surface metric considers contours obtained from

the segmentation output and manual annotation mask. As

described in Commowick et al. (2018), the MSSEG-2 challenge

provides a report on the test data set including some of these

measures, such as:

• Positive Predictive Value (PPV):

PPV =
A ∩ G

A
(8)

• Sensitivity (Se):

Se =
A ∩ G

G
(9)

• Specificity (Sp):

Sp =
B− A ∩ G

B− G
(10)

where B reveals the entire image.

• Mean Surface Distance (S):

S =

∑
i∈AS

d(xi,GS)+
∑

j∈GS
d(xj,AS)

NA + NG
(11)

where d indicates the minimal Euclidean distance of a point

of one surface to the other surface. NA and NG reveal the

number of points of each surface, respectively.

2.5. 3D binary image reconstruction

The slices from each view were used to reconstruct the final

3D binary segmentation output. The 3D binary segmentation
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TABLE 1 Prediction results of evaluating the challenge test data set published on the challenge website.

Methods F1 Score Dice score Number of tested lesions Volume of tested lesions (mm3)

Expert 1 0.712 0.631 0.036 1.453

Expert 3 0.636 0.598 0.000 0.000

Expert 2 0.607 0.536 0.107 3.981

Mediaire-B∗ 0.541 0.437 0.536 29.235

Empenn 0.532 0.424 0.286 4.258

Mediaire-A 0.525 0.432 0.429 15.908

Expert 4 0.524 0.461 0.036 0.623

LaBRI-IQDA 0.517 0.500 1.143 38.486

SNAC 0.514 0.485 0.321 5.726

MedICL 0.500 0.507 0.536 12.713

LaBRI-D&E 0.498 0.472 1.964 177.131

ITU (Ours) 0.480 0.443 0.148 1.488

New Brain 0.477 0.451 0.786 12.371

LYLE 0.441 0.409 0.036 0.470

SCAN 0.433 0.403 0.071 5.373

Neuropoly-2 0.410 0.409 0.107 0.498

SCA-withPriors 0.216 0.224 2.464 302.121

IBBM+ 0.143 0.155 3.786 123.309

Bold and italic values are the highest and the second-best scores among other proposed methods excluding the experts, respectively. Dice and F1 Score are expected to be a high numerical

value while the Number of and Volume of Lesions are expected to be a low numerical value. The Number of and Volume of Lesions metrics are calculated for no new lesion cases.

The source data can be accessed at https://doi.org/10.5281/zenodo.5775523. ∗ and + indicate the first and last ranks among the participants, respectively. This table is ordered

according to the highest to the lowest based on the F1 score.

was produced by using the 2D predicted slices from each

plane orientation. Then, a majority voting was applied to

these 3D segmentation outputs to generate the final 3D binary

segmentation as shown in Figure 4.

3. Results

TheMSSEG-2 challenge aims to segment and detect newMS

lesions by comparing the baseline and the follow-up 3D FLAIR

images of a patient. Twenty four teams with a total number

of 30 pipelines participated in this challenge. Deep learning

approaches, most of them relying on the U-Net architecture,

were proposed by most of the participants, while only one of the

teams used a conventional statistical method and the subtraction

between two MR images (Commowick et al., 2021). Table 1

shows the average quantitative metric results of some of the

methods presented in the challenge, including the results of the

experts7.

Four metrics were used to evaluate the proposed pipelines

for new MS lesion segmentation and detection. The test data set

consists of MR images of 60 patients and 32 of them were used

7 Quantitative metrics for all proposed pipeline are available at https://

doi.org/10.5281/zenodo.5775523

for the calculation of the F1 and dice scores due to possessing

new lesions at their follow-up images. The remaining patients’

data were used for the calculation of the number of tested lesions

and volume of tested lesions. According to the challenge results,

our proposed pipeline was ranked 8th for F1 and dice scores

among the proposed methods. The proposed pipeline produced

a mean score of 48% for the F1 score and a mean score of

44.30% for the dice score. For the no-lesion cases, our pipeline

was ranked in 5th and 4th places with a mean score of 0.148

and 1.488, respectively for the number of tested and volume of

tested lesions. Also, the highest F1 and dice scores including the

expert raters were amean score of 71.20 and 63.10% respectively,

which belonged to expert 1. As for the number of tested and

volume of tested lesions, the highest score was 0 which belonged

to expert 3. On the other hand, the highest F1 and dice scores

for the automated methods belonged to teams Mediaire-B and

MedICL with a mean score of 54.10 and 50.70%, respectively.

The highest score for the number of tested lesions and volume of

tested lesions belonged to team LYLE with a mean score of 0.036

and 0.498, respectively. The lowest F1 and dice scores, belonging

to the team IBBM, had a mean score of 14.30 and 15.50%,

respectively. Figure 5 shows the segmentation performance of

the proposed model, consensus, and experts on a slice of an axial

view of four patients. As seen in the figure, the proposed model

had competitive performance compared to the segmentation

output of experts.
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FIGURE 5

The best and worst performances of the proposed model compared to the consensus and each expert segmentation for F1 and dice scores. A

slice of axial view from patients 6 and 2 for the F1 score and patients 60 and 53 for the dice score is presented.

The challenge also provides additional metrics discussed

in Section 2.4.4 for a complete evaluation although these

metrics were not considered for the ranking. The results

obtained from some of the proposed methods and experts for

additional metrics are given in Table 2. Accordingly, the results

of our pipeline with respect to sensitivity, specificity, PPV, and

surface distance were a mean score of 0.364, 1.000, 0.675, and

8.548, respectively. Our pipeline had competitive performance

TABLE 2 Prediction results of evaluating the challenge test data set

published on the challenge website for other useful metrics.

Methods Sensitivity Specificity PPV Surface distance

Expert 1 0.650 1.000 0.707 5.907

Mediaire-B 0.616 1.000 0.394 8.803

Expert 3 0.589 1.000 0.760 5.990

Expert 2 0.526 1.000 0.813 4.543

MedICL 0.514 1.000 0.556 9.194

Expert 4 0.407 1.000 0.801 7.885

Proposed model 0.364 1.000 0.675 8.548

LYLE 0.344 1.000 0.703 7.210

SCAN 0.340 1.000 0.678 8.521

IBBM 0.170 1.000 0.242 24.102

Bold and italic values are the highest and the second-best scores among some of the

proposed methods and the experts, respectively. Sensitivity, Specificity, and PPV are

expected to be a high numerical value while Surface Distance is expected to be a

low numerical value. The source data can be accessed at https://doi.org/10.5281/

zenodo.5775523. This table is ordered according to the highest to the lowest based on

the sensitivity score.

compared to experts and other proposed pipelines in some of

thesemetrics. For example, the highest PPV score among experts

and proposedmethods were amean of 0.813 and 0.703 for expert

1 and the team LYLE, respectively. Also, the highest score for

surface distance belonged to expert 2 and the team LYLE with a

mean score of 4.543 and 7.210.

Finally, comparisons between U-Net, U-Net with AGs, U-

Net with RUs, U-Net with RUs, and AGs (two types) were

realized for the new MS lesion segmentation. The results of U-

Net, U-Net + AGs, U-Net + RUs, and U-Net + RUs + AGs are

presented in Table 3. As seen in this table, the proposed model

achieved the highest dice and F1 scores, a mean score of 58.70

and 61.10%, respectively. U-Net + RUs achieved the highest PPV

score, a mean score of 62.40%. Furthermore, this network had

fewer training parameters and performed better compared to the

U-Net architecture.

TABLE 3 The evaluation results of the proposed method with di�erent

components using a subset of the MSSEG-2 test dataset.

Methods Dice score F1 Score PPV Total parameters

U-Net + RUs + AGs 0.587 0.611 0.567 4,934,613

U-Net + RUs 0.551 0.441 0.624 4,722,897

U-Net + AGs 0.505 0.592 0.609 7,947,109

U-Net 0.558 0.490 0.467 7,771,585

Bold values indicate the highest scores in the columns of dice, F1 score, and PPV while

the lowest value in the column of total parameters. This table is ordered according to the

highest to the lowest based on the dice score.
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FIGURE 6

Analysis of di�erences in detection and segmentation by using F1 and dice scores for each expert and each team that participated in the

challenge, respectively.

4. Discussions

In this study, a deep learning model was developed to

handle the problem of identifying new MS lesions using the

baseline and the follow-up 3D FLAIR MR images. Activity

segmentation particularly for new lesions is a more challenging

task compared to lesion segmentation in a single-time MR

scan due to small lesion loads. MS lesion segmentation using

traditional and deep learning approaches has usually been

studied in a single MRI scan in recent years. However, deep

learning approaches for MS lesion activity using the baseline

and follow-up MR images still remain limited. In most of these

studies, the researchers have been using their own datasets

making it difficult to compare and reproduce their results with

the proposed pipeline. Thus, in this study, comparisons were

performed on the automatedmethods proposed in the challenge.

Moreover, comparisons were performed among components

used for building the designed network as well. The proposed
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FIGURE 7

Analysis of the number and volume of lesions detection for each expert and each team that participated in the challenge (The data of volume of

tested lesions was scaled by log10).

network, which combines the strengths of U-Net, residual

units, and attention gates, has outperformed other methods

comprising different combinations of components in terms of

dice and F1 scores.

A whole-brain slice-based approach was used as patch-based

CNNs lack spatial information about MS lesions due to the

patch size limitation (Aslani et al., 2019). The results indicated

that the proposed pipeline with this approach had a competitive

performance formostmeasures compared to the other pipelines,

as given in Table 1. Segmentation performance of new MS

lesions improved significantly when baseline and follow-up

MRI scans were stacked in the input channel dimension. Thus,

baseline and follow-up scans for each patient were stacked as

a two-channel input for the proposed pipeline. Furthermore,

attention gates modified with BN and ReLU allowed the model

to focus on small and subtle new lesions.
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Figure 6 presents the analysis of differences in detection

and segmentation for F1 and dice scores for each expert and

each team that participated in the challenge, respectively. The

red box highlighted the team performance of this study for

these two metrics. According to F1 and dice scores, proposed

methods could not reach the expert level; however, some

methods were able to outperform experts which revealed varying

scores in different patients 8. Based on this observation, it

was concluded that detection and segmentation of MS new

lesions in longitudinal studies is a difficult task even for

experts. Therefore, an external reviewer may be needed while

analyzing the new lesions with automated methods for the

lesion activity.

The evaluation metrics for no new lesions are indicated in

Figure 7. The number of connected components in automatic

segmentation was used to find the number of lesions detected.

Also, the volume of lesions detection (mm3) was used to

evaluate the segmentation performance of both automated

and expert delineation outputs. As seen in Figure 7 and

Table 1, the proposed pipeline outperformed compared to some

of the other proposed methods. The dotted red rectangle

highlights the proposed pipeline within this study. Accordingly,

some of the proposed methods, including ours, outperformed

some experts.

Instead of using a 3D segmentation approach requiring

more computational power and learning parameters, the

proposed method and the slice-based approach were used

together for detecting and segmenting new lesions on the follow-

up images. While the appearance of new lesions is of primary

interest for the challenge, enlarged or disappearance of MS

lesions could be also studied. Different MRI modalities such as

T1-and T2-weighted can also be incorporated into the given task

to extract more features related to the size or location of new

MS lesions even though the FLAIR images reveal lesions as more

intense. To achieve a robust automated model for the given task,

large datasets from different scanners are needed; however, it is

difficult to obtain such datasets.

5. Conclusion

In this study, an automated pipeline for new MS lesion

segmentation using the baseline and follow-up 3D FLAIR MRI

has been designed with a deep learning-based network that

fuses the strengths of U-Net, residual learning, and AG. For

more accurate segmentation of new MS lesions, this network

architecture was designed as a deep encoder-decoder network

to enhance the U-Net by replacing plain blocks with residual

blocks and adding attention gates. These residual blocks replaced

8 Evaluation results and analysis slides at https://files.inria.fr/empenn/

msseg-2/Challenge_Day_MSSEG2_Results_2021.pdf

with the plain blocks facilitate the training. Skip connections

within both residual units and U-Net facilitates the propagation

of information in both forward and backward phases during

the training procedure. AGs integrated into the proposed model

emphasize important features propagated over skip connections.

A hybrid loss function was introduced as the addition of dice

loss and 1 × binary focal loss. The input data for the proposed

method was prepared by converting 3D scans into their plane

orientations of axial, sagittal, and coronal views which yielded

2D slices. Baseline and follow-up slices were stacked to create

a two-channel feature mapping for each plane orientation.

Then, all slices extracted from all three planes were grouped

into a single input to increase training samples and to use

the contextual information in all directions. The predicted 2D

slices for each view were aggregated using a majority voting

to generate the final 3D binary output. Although new MS

lesion segmentation and detection pose a difficult problem

due to small lesion sizes, the proposed method has achieved

comparable segmentation performance compared to the experts

and top-ranked automated methods in the challenge. Finding

the appropriate data sets and using the existing ones as publicly

available will reduce the gap for the data required in these studies

and the lack of which is frequently discussed, and will allow

different studies to be carried out. This study provides clues

about the recent techniques regarding the MS lesion activity

segmentation that can be used as a guide for future studies in

this field.
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Triplanar U-Net with lesion-wise
voting for the segmentation of
new lesions on longitudinal MRI
studies

Sebastian Hitziger*, Wen Xin Ling, Thomas Fritz,

Tiziano D’Albis, Andreas Lemke and Joana Grilo

Mediaire GmbH, Berlin, Germany

We present a deep learning method for the segmentation of new lesions in

longitudinal FLAIR MRI sequences acquired at two di�erent time points. In

our approach, the 3D volumes are processed slice-wise across the coronal,

axial, and sagittal planes and the predictions from the three orientations are

merged using an optimized voting strategy. Our method achieved best F1

score (0.541) among all participating methods in the MICCAI 2021 challenge

Multiple sclerosis new lesions segmentation (MSSEG-2). Moreover, we show

that our method is on par with the challenge’s expert neuroradiologists: on an

unbiased ground truth, our method achieves results comparable to those of

the four experts in terms of detection (F1 score) and segmentation accuracy

(Dice score).

KEYWORDS

multiple sclerosis, lesion detection, longitudinal lesion segmentation, biomedical

image segmentation, deep learning, MRI

1. Introduction

Multiple Sclerosis (MS) is a chronic, autoimmune disease which causes lesions in

the central nervous system (CNS) (Kuhlmann et al., 2017). Magnetic resonance (MR)

imagery is routinely used for diagnosis (Thompson et al., 2018) and prognosis (Brownlee

et al., 2019) of MS by assessing the dissemination of CNS lesions in space and time.

The lesions appear as white matter hyperintensities on T2 or fluid attenuated inversion

recovery (FLAIR) weightedMR sequences. Tracking changes in the lesion load over time

facilitates monitoring of MS activity and measuring the efficacy of disease modifying

therapies (Sormani et al., 2016).

However, manually detecting and delineating lesions on MR images is a time-

consuming and error-prone process with high intra- and inter-expert variability (Altay

et al., 2013; Egger et al., 2017), especially when the MR acquisitions differ in terms

of scanners, sequences, resolution, and quality. For these reasons, a great number of

automated methods for lesion detection have been proposed and originally relied on

explicit statistical features such as voxel intensities (Van Leemput et al., 2001; Lao et al.,

2008; Shiee et al., 2010; Mortazavi et al., 2012; Schmidt et al., 2012; García-Lorenzo

et al., 2013). However, most methods target cross-sectional segmentation and although

Frontiers inNeuroscience 01 frontiersin.org

22

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.964250
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.964250&domain=pdf&date_stamp=2022-08-12
mailto:s.hitziger@mediaire.de
https://doi.org/10.3389/fnins.2022.964250
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.964250/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hitziger et al. 10.3389/fnins.2022.964250

the ISBI 2015 challenge provided longitudinal datasets, methods

were not assessed on their ability to segment new or enlarging

lesions (Carass et al., 2017). Existing approaches for new lesions

segmentation mostly use classical image processing techniques

such as image subtraction (Battaglini et al., 2014; Ganiler et al.,

2014; Fartaria et al., 2019), deformation fields (Bosc et al., 2003;

Salem et al., 2018), or statistical features from the independently

segmented time points (Schmidt et al., 2019).

In the recent past, a number of unsupervised (Baur et al.,

2021) and supervised deep learning (Zhang and Oguz, 2020;

Ma et al., 2022) methods have been suggested for lesion

segmentation. Especially convolutional neural networks (CNN)

with encoder-decoder architectures and skip connections such

as the U-Net (Ronneberger et al., 2015) have shown good

performance in the ISBI 2015 and MICCAI 2016 lesion

segmentation challenges (Carass et al., 2017; Commowick et al.,

2018). Despite the potential of CNNs for lesion segmentation

accuracy, their performance has remained below that of human

experts (Carass et al., 2017; Commowick et al., 2018). In

addition, deep learning based methods have only recently

been designed explicitly for the segmentation of new lesions,

which only appear in the follow-up but not the baseline scan.

The authors of McKinley et al. (2020) independently segment

both time point volumes and use the masks and confidence

maps to identify new and enlarging lesions. Fully convolutional

networks, in contrast, directly take as input the different time

points (Krüger et al., 2020). To incorporate correlations between

the different time points in the network architecture, Gessert

et al. (2020b) use attention-guided interactions and (Gessert

et al., 2020a) convolutional gated recurrent units. The authors

of Salem et al. (2020) suggest a combined registration and new

lesion segmentation network.

To foster the development ofmethods for assessing temporal

lesion activity, the objective of the MICCAI 2021 Multiple

sclerosis new lesions segmentation (MSSEG-2) challenge was the

design of a method for automatic segmentation of new MS

lesions on FLAIR MR sequences. Based on two FLAIR time

points of a patient, methods had to delineate lesions that had

formed on the follow-up but not on the baseline scan. The

performance of the submitted algorithms was evaluated in terms

of (a) their ability to detect new lesions, measured by the F1

score, and (b) the segmentation accuracy of the new lesions,

measured by the Dice score. Pairs of FLAIR volumes from 40

patients were given to the challenge participants for training the

algorithms, another 60 patients were held out for validation.

Our approach to this challenge starts with the observation

that plain end-to-end CNNs with U-Net like architecture

perform exceptionally well in most biomedical image

segmentation tasks. This was clearly shown by the authors

of the nnU-Net (Isensee et al., 2021), a framework which

relies on either 2D or 3D U-Nets (Çiçek et al., 2016) and

adjusts its hyperparameters to the given segmentation

task. It achieved excellent results in many segmentation

challenges, including the ISBI 2015 longitudinal lesion

segmentation. While the authors found their 3D version

to outperform the 2D counterpart, the performance of

2D models can be enhanced by integrating more 3D

information. The triplanar or 2.5D approach processes

slices across all three orthogonal directions and then merges

the predictions from the different orientations (Roy et al., 2019;

Henschel et al., 2020; Sundaresan et al., 2021). A triplanar

approach was also used by the winner of the MICCAI 2016

challenge (McKinley et al., 2016).

In this approach, we adapt the triplanar segmentation

approach and use a single 2D U-Net (Ronneberger et al., 2015)

as base model. This model is trained on slices from the axial,

coronal, and sagittal planes. To incorporate information from

both time point volumes, corresponding slices from the two

volumes are paired and given as a two-channel input. Compared

to other triplanar U-Net approaches, our architecture contains

two main differences:

• It uses a single U-Net which is trained on sagittal,

coronal, and axial slices, allowing to share common features

across orientations. This is opposed to the training of

three orientation-specific U-Nets in previous approaches

(McKinley et al., 2016; Roy et al., 2019; Sundaresan et al.,

2021).

• For merging the predictions from different orientations,

we observed that single orientation predictions tend to

contain many false positive lesions. Hence, we challenge

the commonly used softmax averaging and compare it to

voting strategies of different sensitivity.

We submitted two segmentation pipelines to the

challenge, mediaire-A and mediaire-B, which use the

same model architecture but make use of different

data: while the model in mediaire-A is trained only

on the official training data, we use additional datasets

for training the model in mediaire-B, as described

below. Besides this difference, the two pipelines

are identical.

Both segmentation pipelines were evaluated by the challenge

organizers on the unseen test set, resulting in mediaire-B

ranking 1st and mediaire-A 3rd across all submitted models

in terms of detection performance (F1 score). In additional

validations, where we compare our pipelines to the challenge’s

annotators, we show that our algorithms are on par with

the neuroradiologists in terms of F1 score and segmentation

accuracy (Dice score).

2. Materials and equipment

The majority of the 3D FLAIR images used in this

study for training and testing the models was provided
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TABLE 1 Datasets used for training, validation, and testing, provided by the MSSEG-2 challenge organizers and internal data.

Name Source No. of patients Sequence Voxel resolutions

TRAIN-MSSEG2 OFSEP HD 40 (29) 3D FLAIR 0.5–1.2 mm anisotropic

TEST-MSSEG2-NL OFSEP HD 32 3D FLAIR 0.5–1.2 mm anisotropic

TRAIN-B-NL Internal 25 3D FLAIR 0.5–1.2 mm anisotropic

VAL-A-NL Internal 20 3D FLAIR 0.5–1.2 mm anisotropic

The suffix -NL denotes that all datasets exhibit new lesions, otherwise the number of patients with new lesions is denoted in parentheses. Each dataset contains 3D FLAIR images of a

patient, a baseline and a follow-up scan. Note that the internal datasets in VAL-A-NL are a subset of TRAIN-B-NL. The datasets are described in more detail in Section 2.

by the MSSEG-2 challenge organizers. In addition, 25

internal datasets with pairs of 3D FLAIR images were used

for training and validation. All used data, including the

corresponding ground truth masks, is described in the

following paragraphs. An overview of the datasets is provided

in Table 1.

2.1. MSSEG-2 datasets

The data provided by the organizers of the MSSEG-2

challenge consists of 100 pairs of 3D FLAIR weighted MRI

sequences from the OFSEP HD cohort1, each corresponding

to two scans of the same patient acquired at different time

points (1–3 years apart). The images had been acquired on

15 MRI scanners from different manufacturers (GE, Philips,

Siemens) in different locations and exhibited varying resolutions

and anisotropic voxel sizes, with resolutions between 0.5

and 1.2 mm. Besides the 3D FLAIR sequences, no other

sequences were used for the creation of the ground truth or

provided to the participants. For each data pair, a consensus

ground truth mask was created from the delineations of

four expert neuroradiologists using the protocol described in

the following paragraph. Forty of the 100 3D FLAIR image

pairs were provided to the challenge participants for training

their models, together with the four experts’ new lesion

segmentations and the consensus ground truth masks. We will

refer to these datasets as TRAIN-MSSEG2. The remaining 60

pairs were used for evaluating the submitted models. These

datasets, including consensus ground truth and the experts’

segmentation masks, were provided to the participants after

publication of the official challenge results for further analysis.

For the calculation of the challenge’s main metrics, i.e., the

Dice and the F1 score, only the 32 of the 60 dataset pairs

that exhibited new lesions were taken into account. We

will denote this subset, which is used for the evaluations

in Section 4, as TEST-MSSEG2-NL. The remainder of the

MSSEG-2 test datasets were used by the challenge organizers

for further evaluations which are outside the scope of this

1 https://www.ofsep.org/en/hd-cohort

study and are not used here. The information on data, data

access, and annotations is also available on the challenge

websites.2–4

2.1.1. Consensus reading protocol

For every dataset, manual delineations of new lesions

were performed by four expert neuroradiologists, medically

trained for MS and at the start of their career (a few years

after taking their permanent position). They received

instructions to delineate lesions not in contact with

other lesions and above 3 mm in size in one of the

image planes. The delineation was performed using the

software ITK Snap, for which the experts had received a

user manual.

Based on the resulting four expert segmentation masks,

a consensus ground truth was created with the help of a

senior expert neuroradiologist with much longer experience

in neuroradiology and MS than the other four experts.

The ground truth creation was done in two steps: (i)

lesion approval or rejection and (ii) delineation. In step

(i), every majority lesion, i.e., found by at least three of

the four experts, automatically transferred to the ground

truth; for any disputed lesion, i.e., found by at most two

of the experts, the senior expert decided whether to accept

or reject it. In step (ii), the delineation of every accepted

lesion was calculated using the STAPLE (Akhondi-Asl and

Warfield, 2013) algorithm based on the concerned experts’

lesion segmentations.

As the ground consensus ground truth masks were created

by the experts, a direct evaluation of the experts on this

same ground truth would be biased. Therefore, we additionally

created expert-specific unbiased ground truth masks to compare

our pipelines to the experts (see Section 3.6).

2 https://portal.fli-iam.irisa.fr/msseg-2/data/

3 https://gitlab.inria.fr/amasson/lesion-segmentation-challenge-

miccai21/-/blob/master/DATASET.md

4 https://files.inria.fr/empenn/msseg-2/Challenge_Day_MSSEG2_

Introduction.pdf
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2.2. Internal datasets

While our model in pipeline mediaire-A was trained only

on the challenge’s official 40 patient volumes, we added internal

datasets to train pipeline mediaire-B. These consisted of 25

pairs of all 3D FLAIR images from 25 patients, where each

pair exhibited new lesions, and will be referred to as TRAIN-

B-NL. The datasets had been acquired on different scanners

by Siemens (Aera 1.5 T, Magnetom Vida 3.0 T, Skyra 1.5 T,

Skyra 3.0 T) and Philips (Achieva 1.5 T, Achieva 3.0 T) and

had anisotropic voxel resolutions between 0.5 and 1.2 mm.

In order to match the challenge data, we also only used the

3D FLAIR sequences for ground truth creation and model

training without any additional sequences. Each of the image

pairs was annotated by up to four experts (a medical doctor

and neuroscientist, a radiologist, and two radiographers with

special training in segmenting MS lesions, all of them with more

than 2 years of experience with MS-specific MRI interpretation

and annotation), and a consensus ground truth had been

formed similar to the one used in the challenge, as described

in Section 2.1.1. The segmentations were performed using an

annotation application integrated into an internal image viewer.

As we trained the models in pipelines mediaire-A and

mediaire-B on 5 data folds (see Section 3.1.2) with random

80–20% train-validation splits, we validated the individual fold

models on these validation splits. However, for the validation of

the orientation merging strategies (cf. Section 3.4), we required

the final ensemble model of all folds. For this purpose, we

used a subset of 20 patients from TRAIN-B-NL. Since pipeline

mediaire-B was trained on these datasets, they could only be

used to validate mediaire-A and we denote them as VAL-A-

NL. We assume that the results of comparing the orientation

merging strategies transfer qualitatively from mediaire-A to

mediaire-B, as the pipelines are very similar.

2.3. Pre-processing

For each patient in the datasets provided by the MSSEG-2

challenge, the organizers had transformed the two scans onto a

common middle point through rigid registration.

We further applied the following preprocessing steps to all

3D FLAIR image pairs in the challenge’s and internal training,

validation, and test sets: (1) affine registration of each pair of

3D FLAIR images to the MNI template, (2) cropping the FOV

to an area around the brain, (3) resampling the volume to 256

× 256 × 256 voxels, and (4) pixel normalization through mean

subtraction and division by the standard deviation.

To increase the generalization ability of the model,

data augmentation was performed on the preprocessed 3D

volumes of the training sets during training, including contrast

augmentation, rotations, flipping across the three orthogonal

planes, elastic deformations, and bias field augmentation.

3. Methods

The basis for our segmentation pipeline, which we refer to

as triplanar U-Net, is a 2D U-Net (Ronneberger et al., 2015). It

has two input channels with corresponding slices—either axial,

coronal, or sagittal—from the two different time points of each

patient. The output of the model is a single-channel 2D binary

mask, representing the segmentation of the new lesions found in

the corresponding slice. For an illustration and the dimensions

of the network (see Figure 1).

Compared to previously suggested triplanar U-Net

architectures (Roy et al., 2019; Sundaresan et al., 2021), our

approach has two main differences:

1. It uses a single U-Net which is trained on sagittal, coronal,

and axial slices, allowing to share common features across

orientations. This is opposed to training three orientation-

specific U-Nets in the former approaches. Note that this

procedure requires the all slices to be of the same dimensions,

which is ensured by resampling the volume to a regular cube,

as described in Section 2.3.

2. For merging the predictions from different orientations, we

test different techniques. In addition to softmax averaging

(i.e., averaging the predicted probabilities), we implement

and validate three voting strategies of different sensitivities to

optimize the method’s recall and precision. The best strategy

is then implemented.

3.1. Model training

The U-Nets trained for pipelines mediaire-A and mediaire-

B use exactly the same training protocol and hyperparameters.

However, only the 40 datasets in TRAIN-MSSEG2 were used for

training mediaire-A, while mediaire-B was trained on TRAIN-

MSSEG2 plus the additional 25 datasets in TRAIN-B-NL (see

Section 2).

We trained the triplanar U-Net on batches, each combining

a total of 20 axial, coronal, and sagittal slices from different

patient volumes for robustness. For the updates of the model

weights, we used stochastic gradient descent with momentum

and an initial learning rate of 0.0001, which was reduced when

the validation loss plateaued. Training was performed with early

stopping when the validation loss stopped decreasing, which was

usually the case after around 50 epochs.

3.1.1. Loss function

Recently, it has been observed that combined loss functions

tend to be more robust and accurate, especially in segmentation

tasks with high class imbalance. For instance, the self-

configuring segmentation network nnU-Net (Isensee et al.,

2021) uses the combo loss as a default, which is the sum of the
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FIGURE 1

Architecture of the 2D U-Net used. Input are C = 2 slices (axial, coronal, or sagittal) corresponding of dimension 256 × 256, corresponding to

the two FLAIR time points. In every layer of the encoding branch (left), two convolution blocks, consisting of Conv2D (3 × 3), BatchNorm, and

ReLU activation, are applied. When passing to a new layer, dimensions are reduced to half by max pooling while the number of channels is

doubled in the first convolution block. In the decoding branch (right), the max pooling operations are replaced by transpose convolutions for

upsampling and the data from the corresponding layer of the encoding branch is concatenated through skip connections. Output of the U-Net

is the 256 × 256 binary mask containing the new lesions segmentation.

Dice loss and the cross entropy loss. For training our models,

we use a combination of Dice loss and the TopK loss (Wu

et al., 2016), which has shown good performance, for example

in the winning and runner up model (Ma, 2021) of the Miccai

2020 ADAM segmentation5 challenge. The TopK is a hard-

mining variant of the cross-entropy loss, focussing only on the

k% hardest voxels. We denote with gic ∈ {0, 1}, pic ∈ (0, 1)

the ground truth index and the softmax prediction for voxel i

and class c, respectively, and by select_topk the function that

returns the k% largest values. Then the partial loss functions

LDice, LTopK, and the total loss function Ltotal are defined by

LDice = 1−
2
∑

i,c gic · pic
∑

i,c g
2
ic +

∑
i,c p

2
ic

LTopK = −mean
(
select_topk (SCE)

)

Ltotal = LDice + LTopK

where SCE = {giclog(pic)}i,c is the set of cross entropy scores

for all voxels and classes. Note that LTopK reduces to the cross

entropy loss for k = 100. In our experiments, we chose k = 10.

3.1.2. Cross validation

For each pipeline, mediaire-A and mediaire-B, we train the

triplanar U-Net five different data folds, resulting in modelsM0,

5 https://adam.isi.uu.nl/

..., M4. For each Mi, we hold out 20% of the training data. For

inference, the ensemble of all five fold models will be used for

segmentation, as explained in Section 3.2.

3.2. Inference

The segmentation process at inference is depicted in

Figure 2. From the two 3D FLAIR volumes of each patient,

three datasets are created, consisting of pairs of axial, coronal,

and sagittal slices, respectively. For each such dataset, inference

is performed slice-wise with every fold model M0, ..., M4

and the ensemble average of the resulting softmax slices is

calculated, resulting in axial, coronal, and sagittal predictions.

Then, the three single-orientation predictions are merged

to produce the final segmentation mask. This is explained

in detail in Section 3.4, where different merging strategies

are compared.

3.3. Metrics

To evaluate our experiments, we use the official performance

metrics from the MSSEG-2 challenge. These are defined via the

true positives (TP), false positives (FP), and false negatives (FN)

on the lesion level (TPl, . . .) and the voxel level (TPv, . . .). The
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FIGURE 2

Segmentation process using the triplanar U-Nets M0, ..., M4 trained on slices from the three orthogonal planes of the di�erent training folds. The

3D FLAIR input volumes are sliced along the coronal, axial, and sagittal planes and grouped together in pairs of corresponding slices. For every

orientations, the segmentation is now performed independently: (I) each slice pair is given as a two-channel 2D input to the models M0, ..., M4

and predicted softmax scores are averaged. (II) In the final step, the predictions of the individual orientations are merged to yield the final

segmentation.

principal new lesion detection metric is the F1 score, but we also

investigate precision and recall. They are defined as

F1 score =
2 ∗ TPl

FPl + 2 ∗ TPl + FNl

Recall =
TPl

TPl + FNl

Precision =
TPl

TPl + FPl

The principal segmentation metric used is the Dice score,

which is the equivalent of the F1 score on a voxel level:

Dice score =
2 ∗ TPv

FPv + 2 ∗ TPv + FNv

We note that the quantities TPl, FPl, and FNl depend on the

definition of when lesions in the prediction and the ground

truth shall be matched. In the competition evaluation, a match

requires certain overlap thresholds to be fulfilled. This is

described in detail in the official documentation6. All metrics

in this paper were calculated using the “animaSegPerfAnalyzer”

command from the Anima toolbox7, which was also used by

the challenge organizers to calculate the official results for the

leaderboard.

6 https://portal.fli-iam.irisa.fr/files/2021/06/

MS_Challenge_Evaluation_Challengers.pdf

7 https://anima.irisa.fr/

3.4. Validation of orientation merging
strategies

As described in Section 3.2, the inference pipeline requires

to merge predictions from different orientations. While softmax

averaging is commonly used for this step (McKinley et al.,

2016; Roy et al., 2019; Sundaresan et al., 2021), we additionally

compare three different voting strategies in order to find the

optimal balance of recall and precision. This step is depicted in

Figure 2(II).

Starting from the predicted probability maps (softmax

scores) of each orientation, we first calculated the softmax

average as a baseline approach. For the other approaches, which

operated on a lesion level, we first thresholded the softmax scores

of each of the three orientations to yield hard predictions. Then

three different lesion-selection strategies were applied: A lesion

was predicted if detected in (a) at least one orientation (union);

(b) at least two orientations (majority); (c) all orientations

(unanimous voting). The exact segmentation of each selected

lesion was defined as the union of the corresponding positive

voxels across orientation predictions.

The four approaches were implemented into pipeline

mediaire-A and used for segmenting the internal datasets VAL-

A-NL (see Section 2.2). The segmentation masks were then rated

against the corresponding expert annotations and the results

in terms of F1 score, precision, recall, and Dice are shown in

Figure 4. The optimal strategy was chosen based on the best

F1 score. As mediaire-B was trained on datasets containing
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VAL-A-NL, this validation could not be performed directly for

this pipeline. However, due to the similarity of both pipelines, it

was assumed that the optimal strategy for mediaire-A would also

be the best strategy for mediaire-B.

3.5. Challenge evaluation: Comparison to
other participants

Both pipelines, mediaire-A and mediaire-B were submitted

to the challenge among a total of 29 rated submissions from

24 teams. For all submitted pipelines, the organizers calculated

the predictions on the test dataset with 60 patients. However,

for calculating the scores on the detection (F1 score) and the

segmentation leaderboard (Dice score), only the 32 patients in

TEST-MSSEG2-NL, i.e., those with at least one new lesion, were

taken into account (cf. Section 2.1).

The official raw scores for all submissions are publically

available8. In addition to the official average scores across

patients, we visualize the score distributions across patients.

3.6. Challenge evaluation: Comparison
on unbiased ground truth

For assessing how our pipelines mediaire-A and mediaire-

B perform compared to human neuroradiologists, we evaluate

the lesion delineations conducted by the four challenge experts.

A naive approach would simply rate the human segmentation

masks against the consensus ground truth, as it has been done

for the segmentation masks produced by the algorithms. In

fact, the resulting scores from this approach are published by

the challenge organizers and correspond to those in Figure 5.

However, this approach comes with a problem: The ground truth

has been created based on the individual segmentation masks of

the human experts, which makes it biased toward these experts.

Thus, the measured human performance is likely to be higher

than it would be on an unbiased ground truth.

We therefore suggest a comparison on an unbiased ground

truth of the official challenge test datasets with new lesions,

TEST-MSSEG2-NL (cf. Section 2.1), constructed from the

corresponding experts’ segmentation masks and the consensus

ground truth masks, which were provided to the participants

after the challenge. For a fair comparison, the segmentation

mask si of Expert i should be rated against a ground truth

ui whose definition is independent of si. We create ui from

the segmentation masks of all other experts Si = {sj|j 6= i}

using the challenge’s consensus reading protocol, as described

in Section 2.1.1. By doing so, we exclude the minimal

information necessary (segmentation si) to unbias the ground

8 https://zenodo.org/record/5775523#.YkVWKjxCRhE

truth while preserving the maximal expert knowledge available

(segmentations Si and senior expert decisions). The protocol

involves (i) the acceptance or rejection of lesions found by any

expert and (ii) calculating the segmentation of each accepted

lesion through majority voting. While (ii) is a simple voxel-wise

calculation, the decisions (i) on disputed lesions are taken by

a senior expert. We cannot consult the senior expert, however,

we can derive the decisions as they are implicitly contained in

the consensus ground truth c. The only assumption we make

for this derivation is that of constant decisions: if a disputed

lesion l was approved (rejected) by the senior expert in the

original reading, this same lesion l is also approved (rejected)

in a different reading (where the number of total expert masks

may be different).

The complete lesion selection process (i) is illustrated in

Figure 3 for the example of creating an unbiased ground truth u4

for Expert 4: First, all lesions in the segmentation masks s1, s2, s3

are grouped into majority lesions (found by at least two experts)

and disputed lesions. The majority lesions are automatically

accepted according to the protocol (cf. Section 2.1.1). If a lesion l

is disputed, i.e., found by a single expert, it must have been found

by at most two experts in the original reading (as this reading

had an additional expert). Hence, it was already a disputed lesion

in the original reading (cf. Section 2.1.1) and we can derive the

senior expert’s decision from the consensus ground truth c: if c

contains lesion l, it has previously been approved and we include

it into the unbiased ground truth. Otherwise, it has previously

been rejected and we exclude it.

Having selected all relevant lesions, their exact

segmentations are calculated as (ii) the voxel-wise majority

vote across the segmentation masks s1, s2, s3, resulting in the

unbiased ground truth u4.

We apply the protocol (i, ii) defined above to generate

unbiased ground truth masks u1, . . . , u4 for all experts and all

patients in the test set. Each expert i is now evaluated by rating

the segmentation si against ui in terms of recall, precision, F1

score, and Dice score. As each expert is now rated against a

different ground truth, their scores are not directly comparable.

Hence, for every expert i, we also rate pipeline mediaire-A and

mediaire-B on ui and compare the resulting scores to this expert.

From these four individual assessments, we then calculate the

mean scores for experts, mediaire-A, andmediaire-B to compare

the average performance model vs. human performance.

3.6.1. Statistical testing

In order to assess whether our pipeline performance is

comparable to or better than the expert performance, we tested

for statistical significance. To this end, we first defined a margin

d = 0.05 and regarded performances as comparable if their

absolute difference was below d. If we wanted to test for

comparability only, we could use equivalence tests with margin

d. However, since we want to investigate if the models are
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FIGURE 3

Illustration of unbiased ground truth creation u4 for Expert 4, (right) from the segmentation masks of experts 1, 2, and 3 (left). If a lesion is found

by at least two experts (blue lesion), it is automatically selected for u4. Otherwise, it is a disputed lesion (green, red) and has to be decided on by

the senior expert. If it is contained in the consensus ground truth c (red lesion), it has been accepted by the senior expert before, so we approve

it. Otherwise, it is rejected.

comparable or better than the experts, we choose to conduct

noninferiority tests (Walker and Nowacki, 2011) with margin

d. This leads to the null hypothesis H0 that the expected

difference E(Y −X) between expert performance Y and pipeline

performance X is above d. We assess the validity of the null

hypothesis H0 using paired difference Student’s t-tests with

significance level α = 0.05. The tests are conducted for F1

score andDice and for every combination of pipeline and expert.

In addition, we test the pipelines average performance across

the different masks ui against the average performance across

experts.

3.7. Implementation

The model is implemented and trained in Python using the

PyTorch package.

4. Results

4.1. Validation of orientation merging
strategies

As described in Section 3.4, we tested four different

strategies for merging the predictions from the three orthogonal

orientations: three lesion voting procedures and softmax

averaging. Figure 4 shows the performances of the respective

methods validated on the datasets in VAL-A-NL (Section 2.2).

The most inclusive strategy, union of all lesions, achieves the

best recall but a very low precision and thus a bad overall F1

score. While majority voting is significantly better, unanimous

voting clearly achieves best F1 score due to a high precision.

The baseline method, softmax averaging, shows a performance

similar to majority voting. It is only in terms of segmentation

accuracy (Dice), that softmax averaging outperforms all voting

strategies.

It is interesting that the precision gain when using the

very restrictive unanimous voting strategy largely outweighs

the slight loss in recall. Apparently, the weakness of a single-

orientation model is not its capability to find enough lesions—

it rather bears the risk of classifying too many confounding

hyperintensities as lesions. The unanimous voting strategy could

also be reformulated as: Accept only lesions which have been

“seen” in all three orientations.

Since the focus of the challenge is on the detection

performance and the most important metric is the F1 score, we

implement unanimous voting in both pipelines mediaire-A and

mediaire-B.

4.2. Challenge evaluation: Comparison to
other participants

The boxplot in Figure 5 shows the official F1 scores of

the challenge’s main leaderboard for all 29 submissions rated

against the consensus ground truth of the datasets in TEST-

MSSEG2-NL. It also includes the scores obtained by the experts’

segmentation masks when rated against the consensus ground
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FIGURE 4

Performance of pipeline mediaire-A with di�erent strategies for merging the predictions from axial, coronal, and sagittal orientation. Scores are

calculated on the 20 datasets in VAL-A-NL. The approaches union, majority voting, unanimous voting, and softmax averaging are compared in

terms of F1 score, precision, recall, and Dice.

FIGURE 5

F1 scores of experts (gray), our pipelines mediaire-A and mediaire-B (red), and the models submitted by the other MSSEG-2 participants (black),

calculated on the 32 datasets in TEST-MSSEG2-NL, all of which exhibited new MS lesions. Horizontal bars indicate the median and white circles

the mean values. All experts and models are ordered by their mean F1 score, which also determined the ranking of the main challenge

leaderboard. The three best performing methods are our pipeline mediaire-B, Empenn, and pipeline mediaire-A. The scores of the expert

segmentations are shown for reference, however, these scores are biased as discussed in Section 3.6.

truth. As discussed in Section 3.6, the latter scores are positively

biased, as the rated segmentation masks were the basis for

the ground truth creation. An unbiased comparison between

our submissions and expert performance is therefore done in

Section 4.3.

In terms of detection performance (F1 score), the three best

methods are mediaire-B (0.541), Empenn (0.532), and mediaire-

A (0.525), respectively. The second best submission Empenn

performed segmentation with a 3D nnU-Net (Isensee et al.,

2021) trained on official and internal datasets. The great majority

of submissions, including all top 10 methods, used deep learning

with 3D or 2.5D U-Net-like architectures.

4.3. Challenge evaluation: Comparison
on unbiased ground truth

The results of the comparison between algorithms and

experts on the unbiased ground truth of the TEST-MSSEG2-

NL data (cf. Section 4.3) are shown in Figure 6. Clearly,

both pipelines mediaire-A and mediaire-B have higher recall

but lower precision than the experts (second and third

plot, respectively). In the overall detection performance, the

algorithms slightly outperform the experts on average (first plot,

last block) and only Expert 1 achieves a slightly higher F1 score.

This is in contrast to the evaluation on the (biased) consensus
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FIGURE 6

Unbiased comparison of each of the experts 1, . . . , 4 to segmentation pipelines mediaire-A and mediaire-B, in terms of F1 score, recall,

precision, and Dice. The scores are calculated on the unbiased ground truth masks of the 32 patients in TEST-MSSEG2-NL. For every expert, this

unbiased mask is constructed from the other expert masks (cf. Section 3.6) resulting in four individual comparisons with di�erent ground truths.

In the last block of each plot, we show the average score across the four experts against the average score of each pipeline across the di�erent

ground truth masks. Clearly, the segmentation pipelines have a higher recall while the experts have higher precision. In terms of F1 and Dice

scores, the pipelines achieve slightly higher average results.

TABLE 2 p-values for testing non-inferiority of the performance of a pipeline (rows) compared to an expert (columns) with a margin of d = 0.05.

Expert 1 Expert 2 Expert 3 Expert 4 Mean

mediaire-A
F1 score 0.3186 0.0367 0.1160 0.1015 0.0551

dice 0.2037 0.0447 0.0873 0.0261 0.0161

mediaire-B
F1 score 0.2935 0.0248 0.0361 0.0326 0.0135

dice 0.2254 0.0245 0.0532 0.0204 0.0101

Significant p-values (p < 0.05) are marked in bold. The last column shows the p-values for the scores averaged across the different experts. The values are calculated using paired t-tests

using the pipeline and expert scores on the 32 datasets in TEST-MSSEG2-NL.

ground truth in Section 4.2, where experts 1, 2, and 3 had

significantly higher F1 scores than all submitted methods. In

terms of segmentation accuracy (last plot), expert and algorithm

performances are very similar.

The differences in F1 score and Dice between experts and

models are relatively small and statistically not significant.

We therefore tested for non-inferiority, i.e., if each pipeline’s

performance is within a d = 0.05 margin or better than

each expert’s performance using paired t-tests, as described in

Section 3.6.1. The resulting p-values are shown in Table 2 with

the significant values (p < 0.05) in bold. In terms of F1 score,

the results for mediare-A are significant only when compared

to Expert 2, while for mediaire-B they are significant when

compared to expert experts 2, 3, 4 and the average across experts.

In terms of Dice score, test results for mediaire-A and mediaire-

B are significant when compared to experts 2 and 4 and themean

of experts.

In conclusion, we showed that our better pipeline, mediaire-

B, is at least comparable to three (two) of the four experts and

the expert average in terms of F1 score (Dice score).

Processing of the segmentations took an average of 97 s per

dataset (±2 s standard deviation) on a Laptop with graphics

processing unit (CPU: Intel Core i7-10750H, 32 GiB RAM;GPU:

NVIDIA GeForce RTX 2080 Super, 8 GiB RAM).

5. Discussion

The detection of new MS lesions is clinically important for

diagnosis, prognosis, and treatment monitoring. An automatic

method with a detection and segmentation accuracy comparable

to that of an expert neuroradiologist can be highly beneficial

to improve diagnostic quality by providing a “second pair

of eyes,” to decrease inter-rater variability, and to reduce the

manual reading time and effort. For instance, the study in

Altay et al. (2013) assumed a maximal time of 10 min for

a clinician to count lesions on an MS dataset and showed

significant variability in the results of clinicians of different

expertise level.

We presented a deep learning based approach using the

U-Net to segment new lesions on 3D FLAIR volumes by

processing slices from axial, coronal, and sagittal planes. We

showed that our U-Net based segmentation pipelines not
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only outperform all other competing methods in the MSSEG-

2 challenge in terms of detection accuracy measured by

lesion-wise F1-score. They are also on par with an average

expert neuroradiologist, both in detection (F1 score) and

segmentation accuracy (Dice score) when compared on an

unbiased ground truth. The automatic lesion segmentation

was performed in <2 min on a Laptop with GPU, which is

significantly less than the expected annotation time needed by

a human annotator.

As a major difference to other triplanar or 2.5D U-

Nets with softmax averaging of orientations, our algorithm

uses unanimous voting which only accepts lesions that have

been confirmed in all three orientations. Even though this

approach may seem restrictive, it is actually aligned with

the diagnostic guideline for MS lesions detection that lesions

should be confirmed on multiple planes to avoid false

positive results (Filippi et al., 2019). In addition, we saw

in Section 4.3 that our algorithm outperformed the human

experts in recall but had lower precision. For any less

restrictive strategy than unanimous voting, this discrepancy

would have been even more severe, which also becomes clear

from the validation in Figure 4. We therefore suggest that

unanimous voting is a key factor for the good performance of

our algorithm.

Another slight performance gain was achieved through the

use of additional training data, leading to a higher recall of

the model mediaire-B compared to mediaire-A (cf. Figure 6).

While the augmentation of the training size does not always

lead to improved model performance in our experience, we took

particular care to optimize the distribution of the additional

data: (i) we added only patients with new lesions, leading to

a recall improvement with only slight decrease in precision,

and (ii) the corresponding consensus ground truth was created

using a protocol similar to the one used by the challenge

organizers.

While the presented outcomes are encouraging, there is

still room for improvement: our algorithms had a higher

recall than the average neuroradiologist, however, the

precision was lower. Future works may therefore focus on

an improved false positive reduction. Furthermore, we could

observe a performance gain by increasing the relatively small

training set from 40 (mediaire-A) to 65 datasets (mediaire-B).

Training on a larger set could therefore increase performance

even further.

Another limiting factor of this study is the use of only

3D FLAIR datasets acquired with high resolution which does

not necessarily reflect the clinical reality. While the presented

approach can be applied to 2D, low-resolution, or low-quality

datasets, we do not know how well the present results translate

to such a data regime. In particular, the information in thick

slices may not be sufficient to distinguish a lesion from

brain tissue. To this end, we suggest a follow-up study with

a larger and more diverse training and test set in order

to yield a complete assessment covering a broad range of

clinical settings.
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The detection of new multiple sclerosis (MS) lesions is an important marker of

the evolution of the disease. The applicability of learning-basedmethods could

automate this task e�ciently. However, the lack of annotated longitudinal

data with new-appearing lesions is a limiting factor for the training of robust

and generalizing models. In this study, we describe a deep-learning-based

pipeline addressing the challenging task of detecting and segmenting new MS

lesions. First, we propose to use transfer-learning from a model trained on a

segmentation task using single time-points. Therefore, we exploit knowledge

from an easier task and for which more annotated datasets are available.

Second, we propose a data synthesis strategy to generate realistic longitudinal

time-points with new lesions using single time-point scans. In this way, we

pretrain our detection model on large synthetic annotated datasets. Finally,

we use a data-augmentation technique designed to simulate data diversity

in MRI. By doing that, we increase the size of the available small annotated

longitudinal datasets. Our ablation study showed that each contribution lead to

an enhancement of the segmentation accuracy. Using the proposed pipeline,

we obtained the best score for the segmentation and the detection of new MS

lesions in the MSSEG2 MICCAI challenge.

KEYWORDS

new lesion detection, new lesions segmentation, data augmentation, transfer

learning, data synthesis

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous

system. The pathology is characterized by inflammatory demyelination and axonal

injury, which can lead to irreversible neurodegeneration. The disease activity, such as

MS lesions, can be observed using magnetic resonance imaging (MRI). The detection

of new MS lesions is one of the important biomarkers that allow clinicians to adapt the

patient’s treatment and assess the evolution of this disease.

Recently, the automation of single time-point MS lesion segmentation has shown

encouraging results. Many techniques showed performance comparable to clinicians in

controlled evaluation conditions (refer to Commowick et al., 2016; Carass et al., 2017).

Thesemethods use a single time-point scan to segment all appearing lesions at the time of

the image acquisition. However, these cross-sectional techniques are not adapted to the

longitudinal detection of new lesions. Indeed, using these methods requires repeatedly
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running the segmentation process for each time-point

independently to segment MS lesions before detecting new

ones. Unlike the human reader, these methods are not designed

to jointly exploit the information contained at each time point.

Consequently, single-time MS lesion segmentation methods

performance is not optimal for the detection of new lesions

between two time-points. Moreover, inconsistencies may appear

between segmentations of both time-points since they are

processed independently.

To specifically address this detection task using both

time-points at the same time, some detection methods have

been proposed. In one of the earliest studies, Bosc et al.

(2003) used a nonlinear intensity normalization method

and statistical hypothesis test methods for change detection.

Elliott et al. (2013) used a Bayesian tissue classifier on the

time-points to estimate lesion candidates followed by a

random-forest-based classification to refine the identification

of new lesions. Ganiler et al. (2014) used image subtraction

and automated thresholding. Cheng et al. (2018) integrated

neighborhood texture in a machine learning framework.

Salem et al. (2018) trained a logistic regression model with

features from the image intensities, the image subtraction

values, and the deformation field operators. Schmidt et al.

(2019) used lesion maps of different time-points and FLAIR

intensities distribution within normal-appearing white

matter to estimate lesion changes. Krüger et al. (2020)

used a 3D convolutional neural network (CNN) where

each time-point is passed through the same encoder. Then,

the produced feature maps are concatenated and fed into

the decoder.

Training learning-based methods for the task of new

lesions detection require a dataset specifically designed for

the task. The most obvious form of the training data would

be a longitudinal dataset of MS patients (with two or more

successive time-points) with new appearing lesions carefully

delineated by experts in the field. However, the construction

of such a dataset is very difficult. To begin, new lesions may

take several months or even years to appear and be visible

in a patient’s MR image. Moreover, a time-consuming and

costly process is necessary for several experts to annotate new

lesions from the two time-points and to obtain an accurate

consensus segmentation. Although the organizers of the

MICCAI Longitudinal Multiple Sclerosis Lesion Segmentation

Challenge (MSSEG2-challenge MICCAI, 2021) provided such a

dataset, the training set is severely impacted by class imbalance

(refer to Section 2.5.3 for more details) due to the difficulty

of finding new lesions in the follow-up scan. This under-

representation of new lesions in longitudinal datasets is limiting

the training of state-of-the-art deep learning algorithms from

scratch on this complex task. Besides, achieving generalizing

results on unseen domains (refer to Mårtensson et al., 2020;

Bron et al., 2021; Omoumi et al., 2021) may require more

data diversity.

Several studies tackled the problem of training data scarcity.

First, transfer learning is a strategy used to create high-

performance learners trained with more widely available data

from different domains when the target domain/task data are

expensive or difficult to collect (refer to Torrey and Shavlik,

2009; Weiss et al., 2016). Second, synthetic data generation is

performed by using a model able to simulate realistic artificial

data that can be used during training (refer to Tremblay

et al., 2018; Tripathi et al., 2019; Khan et al., 2021). Third,

data-augmentation is a set of techniques used to handle the

variability in real-world data by enhancing the size and quality

of the training dataset (refer to Shorten and Khoshgoftaar,

2019). Recently, Zhang et al. (2020) showed that applying

extensive data augmentation during training also enhances the

generalization capability of the methods.

In this article, we propose an innovative strategy integrating

these three strategies into a single pipeline for new MS lesion

segmentation to tackle data rarity for our task. First, we use

transfer-learning to exploit the larger and more diverse datasets

available for the task of single-point MS lesion segmentation

which does not require longitudinal data. Second, we propose

a novel data synthesis technique able to generate two realistic

time-points with new MS lesions from a single FLAIR scan.

Third, we use a data-augmentation technique to simulate a large

variety of artifacts that may occur during the MRI acquisitions.

This technique aims to enhance both the variability and size of

the training data and to improve the generalization of ourmodel.

2. Methods and materials

2.1. Method overview

To deal with data rarity for new MS lesion segmentation,

we proposed a three stage pipeline as shown in Figure 1. In

Stage One, an encoder-decoder network is trained on the task

of single time-point MS lesions segmentation. This step aims

to train the encoder part of the network to extract relevant

features related to MS lesions that can be used in the next steps.

Stage One enables to indirect use of large datasets dedicated to

single time-point MS lesion segmentation for the task of new

lesions segmentation. This stage is detailed in Section 2.2. In

Stage Two, the new lesions segmentationmodel composed of the

previous task encoder is pretrained with synthetic data. To this

end, we trained external models able to generate two realistic

time-points from a single image also taken from single time-

point MS datasets. It combines the effects of lesion inpainting

and lesion generating models to simulate the appearance of new

lesions. This strategy is detailed in Section 2.3. In Stage Three,

the decoder is fine-tuned with real longitudinal data from the

new MS lesion training-set of the MSSEG2 MICCAI challenge.
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FIGURE 1

The pipeline of our new MS lesion segmentation method. The three stages include: First, the pre-training on the task of single-time-point MS

lesion segmentation (Task 1). Second, pre-training on the task of new MS lesions segmentation (Task 2) with synthetic data. Third, fine-tuning

the model with real data. The encoder weights are trained (T) in Stage One and freezed (F) in Stage Two and Stage Three.

2.2. Transfer-learning from single
time-point MS lesion segmentation task

The encoder used for new MS lesion segmentation is first

trained on single time-point lesion segmentation (refer to

Figure 2, from Stage One to Stage Two). This choice is motivated

by two reasons. First, we consider that datasets for MS lesion

segmentation with lesion mask segmentation by experts are

more diverse and larger than available datasets for new lesion

segmentation (which requires a longitudinal study). Second, the

task of MS lesion segmentation is tightly close to the one of

newMS lesion segmentation. By learning to segment lesions, the

model implicitly learns the concept of a lesion, either the lesion

is considered new or was already existing in the first time-point.

To conclude, since there is a proximity between the two tasks,

there is likely a gain from exploiting a large amount of training

data for the first task to improve the second task’s performance.

2.2.1. Model architecture design

Ourmethod is based on the transfer learning from the task of

“Single time-point MS lesion segmentation” to the task of “new

lesions segmentation from two time-points.” Thus, two different

architectures are used but with the same building blocks for each

task. For the first task, a 3D U-Net shape architecture is used,

as shown in Figure 3A. This kind of architecture has been very

effective and robust for MS lesion segmentation (Isensee et al.,

2021; Kamraoui et al., 2022). It is composed of an encoder and a

decoder linked with one another by skip connections.

For the second task, a siamese-encoder followed by a single

decoder is used, as shown in Figure 3B. The shared-weights

encoders are chosen to extract the same set of features from both

time points. Then, these features resulting from the different

levels of both encoder paths are aggregated (refer to Figure 3B).

The aggregation module is composed of concatenation and a

convolution operation. Feature maps are first concatenated by

channels (i.e., the result channel size is two times the original

size), then the convolution operation aggregates the information

back to the original channel size. Finally, the aggregated features

are passed through the decoder.

2.3. Time-points synthesis

The data synthesis method is based on the simulation of

newMS lesions between two time-points using single time-point
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FIGURE 2

The diagram represents our training method. Input images are augmented with the proposed method (DA). The encoder trained in Stage One is

used in Stage Two and Stage Three to extract feature maps (FMs) of the two-time points. The aggregation block (Concat. FMs) is used to

combine features.

FLAIR images. As shown in Figure 4, our pipeline generates

“on the fly” synthetic 3D patches that represent longitudinal

scans of the same patient with evolution in their lesion mask.

The synthetic data is generated in three steps. In the first

step, a 3D FLAIR patch and its MS lesion segmentation mask

are randomly sampled from different MS lesion segmentation

datasets (refer to Section 2.5.1). Then, the patch and lesion mask

are randomly augmented with flipping and rotations. A copy of

the FLAIR patch is performed to represent the two time-points.

Then, both identical patches are altered with the described data

augmentation (refer to Section 2.4) to differentiate the two

patches. At this point, the lesion masks of the two synthetic

time-points are still identical. Thus, there are no new lesions.

In the second step, a connected component operation is used

to separate each independent lesion from the lesion mask. Each

lesion is either inpainted (i.e., removed) from one of the two

time-points or both of them, or it can be kept in both of the time-

points. The lesion inpainting model is used to inpaint the lesion

region with hallucinated healthy tissue (refer to Section 2.3.1).

Next, the new lesionmask is constructed from lesion regions that

have been kept in the second time-point but not the first one. In

the third step, the lesion generator model is used to simulate new

synthetic lesions at realistic locations (using white/gray matter

segmentation and a probabilistic distribution of MS lesions on

the brain in the MNI space). Synthetic lesions are generated for

one of the time-points or both of them (refer to Section 2.3.2).

Similar to the previous step, the new lesion mask is updated to

include only the generated lesions on the second time-point.

2.3.1. Lesion inpainting model

The lesion inpainting model is trained, independently and

priorly to our proposed pipeline, with randomly selected 3D

FLAIR patches which do not contain MS lesions or white

matter hyperintensities. Similar to Manjón et al. (2020), A

3D U-Net network is optimized to reconstruct altered input

images. Specifically, the input patch is corrupted with Gaussian

noise (i.e., with a mean and a standard deviation of the image

intensities) in lesion-like areas at random locations. When the

model is trained, it can be used to synthesize healthy regions in

lesion locations that are replaced with random gaussian (refer to

Manjón et al., 2020 for details).

2.3.2. Lesion generator model

The lesion generator is trained before our proposed pipeline

to simulate realistic lesions. The generator is a 3D U-Net

network with two input channels and one output channel. The

first input channel receives an augmented version of 3D FLAIR

patches containing MS lesions where lesions are replaced with

random noise. The second input channel receives the MS lesion

mask of the original 3D FLAIR patch. The output channels

predict the original 3D FLAIR patch with lesions. Thus, the

trainedmodel can simulate syntheticMS lesions from a 3D patch

of FLAIR and its corresponding lesion mask.

2.4. Data augmentation

The quality of the MRI greatly varies between datasets.

The quality of the images depends on several factors such

as signal-to-noise ratio, contrast-to-noise ratio, resolution, or

slice thickness. Since our training set is limited, it does

not reflect the diversity of real-world images. To make our

training stages robust to the large variety of artifacts that

may occur during the MRI acquisitions, an extensive Data
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FIGURE 3

(A) Represents U-Net like architecture composed of an encoder (in red) and a decoder for the task of MS lesion segmentation (in green). This

task requires a single time-point as input and produces the MS lesion mask. (B) Shows a siamese-encoder (in red) to extract the same sets of

features from the two time-points. Same-level features are aggregated with a combination module and are forwarded to a decoder for the task

of new lesions segmentation (in blue).

Augmentation (DA) is used (refer to “DA” in Figure 2 and “Data

Augmentation” in Figure 4). Such DA technique also helps to

better oversample the scarce samples with new lesions (refer to

Section 2.5.3).

We use an improved version of the data augmentation

strategy proposed in Kamraoui et al. (2022), which simulates

MRI quality disparity. During training, we simulate “on the fly”

altered versions of 3D patches. We randomly introduce a set of
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FIGURE 4

Synthetic time points with new MS lesion generation pipeline. Dashed orange and green rectangles on images represent areas where lesions are

inpainted or generated.

alterations in the spatial and frequency space (k-space): Blur,

edge enhancement, axial subsampling distortion, anisotropic

downsampling, noise, bias-field variation, motion effect, MRI

spike artifacts, and ghosting effect. Figure 5 shows augmentation

samples.

For the blur, a gaussian kernel is used with a randomly

selected standard deviation (SD) ranging between [0.5, 1.75].

For edge enhancement, we use unsharp masking with the

inverse of the blur filter. For axial subsampling distortion, we

simulate acquisition artifacts that can result from the varying

slice thickness. We use a uniform filter (a.k.a mean filter) along

the axial direction with a size of [1×1×sz] where sz ∈ 2, 3, 4. For

anisotropic downsampling, the image is downsampled through

an axis with a random factor ranging between [1.5, 4] and

upsampled back again with a B-spline interpolation. For noise,

we add to the image patch a Gaussian noise with 0 mean and an

SD ranging between [0.02, 0.1]. Bias-field variation is generated

using the study of Sudre et al. (2017) which considers the bias

field as a linear combination of polynomial basis functions.

Motion effect has been generated based on the study of Shaw

et al. (2018). The movements are simulated by combining in the

k-space a sequence of affine transforms with random rotation

and translation in the ranges [−5, 5] degrees and [−4, 4] mm,

respectively. Both MRI spike artifacts and the ghosting effect

have been generated with the implementation of Pérez-García

et al. (2021).

2.5. Data

Different datasets are used for the training and validation of

the two tasks (refer to Table 1).

2.5.1. Single time-point datasets

For time-points synthesis (refer to 2.3) and encoder

pretraining (refer to 2.2), we jointly used three datasets

containing single time-points FLAIR and lesion masks. First, the

ISBI (Carass et al., 2017) training-set contains 21 FLAIR images

with expert annotation done by two raters. Although the dataset
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FIGURE 5

Examples of data augmentation applied on FLAIR images.

TABLE 1 Summary of the used datasets. For each dataset, the object count (Obj. Count) and the total volume (Tot. Vol. cm3) represent, respectively,

the total number and the total volume in cm
3 of lesions or new lesions (depending on the task).

Task Dataset Patients Time-point Raters Obj. count Tot. vol. (cm3) Clinical site/Scanners

MS lesion segmentation

ISBI 5 4-5 2 514 243 Single-site

MSSEG’ 16 15 1 7 512 367 Multi-site: three sites

In-house 43 1 2 2,391 1,313 Multi-site

New MS lesion segmentation

MSSEG2

Training-set

40 2 4 123 23 Multi-site:

15 MRI scanners

MSSEG2

Test-set

60 2 4 174 60 (GE scanners only in Test-set)

is composed of longitudinal time-points from 5 patients, the

provided expert annotations focus on the lesion mask of each

time-point independently from the others and do not provide

new lesion masks. Thus, we use the 21 images independently.

Second, the MSSEG’16 training-set (Commowick et al., 2016)

contains 15 patients from three different clinical sites. Each

FLAIR image is along with a consensus segmentation for MS

lesions from seven human experts. Third, our in-house (Coupé

et al., 2018) dataset is composed of 43 subjects diagnosed with

MS. The images were acquired with different scanners and

multiple resolutions and their lesion masks have been obtained

by two human experts.

All images were pre-processed using the lesionBrain pipeline

from the volBrain platform (Manjón and Coupé, 2016). First,

it includes image denoising (Manjón et al., 2010). Second, an

affine registration to MNI space is performed using the T1w

modality, then the FLAIR is registered to the transformed T1w.

Skull stripping and bias correction have been performed on

the modalities, followed by the second denoising. Finally, the

intensities have been normalized with kernel density estimation.

2.5.2. Two time-points datasets

The dataset provided by the MSSEG2-challenge (MICCAI,

2021) is used to train our method. The challenge dataset features

a total of 100 patients with MS. For each patient, two 3D FLAIR

sequence time-points have been acquired spaced apart by a 1–

3 years period. The dataset has been split into 40 patients for
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training and 60 patients for testing. A total of 15 different MRI

scanners were used for the acquisition of the entire dataset.

However, all images from GE scanners have been reserved only

for the testing set to see the generalization capability of the

algorithms. Reference segmentation on these data was defined

by a consensus of four expert neuroradiologists.

For preprocessing, the challenge organizers proposed a

docker1 built with the Anima scripts. It includes bias correction,

denoising, and skull stripping. In addition, we added a

registration step to the MNI space using a FLAIR template, (i.e.,

the training and inference are performed in the MNI space,

then the segmentation masks are transformed-back to the native

space for evaluation).

Before challenge day, the testing set (the 60 patients) was not

publicly available. Thus, to test our methods (refer to Section

3.1.1), we defined an internal validation subset from the 40

challenge training data. Of the 40 patients, six cases containing

confirmed new lesions were kept out from the training-set and

were used as an internal test-set. For the challenge evaluation

(refer to Section 3.2), the model submitted to the challenge

organizers was trained on the entire MSSEG2 training-set.

2.5.3. Dataset class imbalance

Anomaly detection/segmentation tasks, such as MS lesion

segmentation, suffer from class imbalance where the positive

class is scarce (refer to Johnson andKhoshgoftaar, 2019). Herein,

the MSSEG2-challenge (MICCAI, 2021) dataset is composed

of 100 patients (40 for training and 60 for test) and all the

MS Lesions Segmentation datasets combined account for 64

patients and 79 images. Therefore, the number of image is

similar. However, the class imbalance is highly different when

evaluating the class imbalance using the number of objects

to detect/segment (which represent MS lesions for the first

task and new lesions for the second one) and their total

volume for each dataset (refer to Table 1). Indeed, we see that

the MSSEG2-challenge datasets (especially training-set) suffer

from more severe under-representation of the positive class.

Consequently, it will be more difficult to train a model for New

MS lesion segmentation than for the task of single time-point

MS lesion segmentation. Furthermore, it shows that MS lesion

segmentation datasets could significantly enrich the training of

New MS lesion segmentation models.

2.6. Implementation details

First, all models are trained on 3D image patches of size [64×

64×64]. For the two time-points new lesionmodel, an ensemble

of five networks (different training/validation data-split) is used.

1 https://github.com/Inria-Empenn/lesion-segmentation-challenge-

miccai21/

During inference, the consensus (prediction average) of the

ensemble segmentation is taken. For each voxel, the two classes,

output probabilities of the five networks are averaged, and the

class with the highest probability is picked (new lesion voxel or

not).

Second, the Dice-loss (soft DICE with probabilities as

continuous values) is used as a loss function for the training of

the single time-point MS lesion segmentation and the two time-

points new lesion models. The mean-squared error is used as

a loss function to train time-point synthesis models (inpainting

and lesion generator models).

Finally, the experiments have been performed using

PyTorch framework version 1.10.0 on Python version 3.7 of

Linux environment with NVIDIA Titan Xp GPU 12 GB RAM.

All models were optimized with Adam (Kingma and Ba, 2014)

using a learning rate of 0.0001 and a momentum of 0.9.

2.7. Validation framework

2.7.1. Evaluation metrics

The assessment of a segmentation method is usually

measured by a similarity metric between the predicted

segmentation and the human expert ground truth.

First, we use several complementary metrics to assess

segmentation performance. Namely, we use the Dice similarity

coefficient, the Positive Predictive Value (PPV or the precision),

and the true positive rate (TPR, known as recall or Sensitivity).

Dice =
2× TP

(TP + FN)+ (TP + FP)
, (1)

PPV =
TP

TP + FP
, TPR =

TP

TP + FN
, (2)

where TP, FN, and FP represent, respectively, true positives, false

negatives, and false positives.

Second, recent studies (i.e., Commowick et al., 2018)

question the relevance of classic metrics (Dice) compared to

detection metrics, which are used for MS diagnostic and clinical

evaluation of the patient evolution. Thus, in addition to the

voxel-wise metrics, we also use lesion-wise metrics that focus on

the lesion count. We use the lesion detection F1 (LesF1) score

defined as

LesF1 =
2× SL × PL

(SL + PL)
, (3)

where SL is lesion sensitivity, i.e., the proportion of detected

lesions and PL is lesion positive predictive value, i.e., the

proportion of true positive lesions. For result harmonization

with challenge organizers and participants, the same evaluation

tool is used, i.e., animaSegPerfAnalyzer (Commowick et al.,

2018). All lesions that are smaller in size than 3mm3 are

removed. For SL, only ground-truth lesions that overlap at least
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10% with segmented volume are considered positive. For a

predicted lesion to be considered positive for PL, it has to be

overlapped by at least 65% and do not go outside by more than

70% of the volume.

Finally, to jointly consider the different metrics (i.e.,

segmentation and detection performance), it would be

convenient to aggregate them into a single score. Thus, we

propose the average of DICE and LesF1 (Avg. Score) as an

aggregation score for comparing different methods.

2.7.2. Statistical test

To assert the advantage of a technique obtaining the highest

average score, we conducted a Wilcoxon test (i.e., paired

statistical test) over the lists of metric scores. The significance of

the test is established for a p-value below 0.05. In the following

tables, * indicates a significantly better average score when

compared with the rest of the other approaches.

3. Results

Several experiments were conducted on our methods,

including an ablation study and the comparison with state-of-

the-art methods in competition during the challenge evaluation.

3.1. Internal validation

3.1.1. Ablation study

To evaluate each contribution of our training pipeline,

Table 2 compares our full method with a baseline and other

variations of our method on the internal validation dataset. The

baseline in this experiment was trained with real time-points

only and by using a classic data augmentation composed of

orthogonal rotations and mirroring.

First, when using only transfer learning on top of the

baseline, we measured an increase in DICE and TPR compared

to the baseline but approximately the same LesF1 and PPV.

Second, when using only time-point synthesis pretraining on

the top of the baseline, we obtained a significantly higher

LesF1 compared to the baseline and an increase in DICE. This

variation also obtained the highest PPV at the expense of the

lowest TPR. Third, when comparing the use of the proposed

data augmentation, we see an increase in DICE and PPV

but approximately the same LesF1. Finally, when combining

the transfer learning, time-point synthesis pre-training, and

the proposed data-augmentation, we obtained the highest Avg.

Score, DICE, LesF1, and TPR.

3.1.2. The impact of longitudinal dataset size

Figure 6 shows the performance of our method when

trained with different longitudinal dataset sizes. From the 34

patients available for the training with two time-points in

Internal Validation settings (refer to Section 2.5.2), we tested the

performance of our model when training on 34, 36, 17, 8, and

0 patients. In the case of 0 patients, our method performance

was obtained using synthetic data only (i.e., Stage Two where

only cross-sectional MS segmentation databases were used as

described in Table 1). For the rest of the experiments, the

reported number of patients with two time-points was used for

the fine-tuning step (i.e., Stage Three).

First, for the baseline version (i.e., with neither pre-training

nor data augmentation), the graph can be separated into two

phases. From 0 to 17 patients, the graph shows an increase

in both metrics. From 17 to 34 patients, metrics of baseline

versions reach a plateau. Since the baseline is trained from

scratch, its performance improves with the increase in dataset

size. However, the performance increase is less significant for the

second phase since it is more difficult to improve metrics when

approaching their optimal value.

Second, for our method, the graph shows two phases. From

0 to 8 patients, the performance decreases slightly. From 8 to

34 patients, the graph shows a slow increase in metrics until

plateauing. Since we use transfer learning and pretraining on

synthetic data for our method, its performance does not depend

only on the number of patients fromMSSEG2 Training-set. The

drop in performance in the first phase can be explained by the

fact that using eight patients for fine-tuning is less effective than

using the model trained on synthetic data only.

3.2. Challenge evaluation

To evaluate our method on the challenge dataset, Table 3

compares it to the leader-board state-of-the-art methods. Results

of the top performing methods were reported from challenge-

day results.

Besides the top-performing methods, Table 3 also includes

the expert raters’ performance to give an insight into human

performance. Their performance is measured compared to

each other, contrary to the top methods that are evaluated

using consensus segmentation. Raters x vs. y means that we

evaluate the performance of rater x when considering rater

y segmentations as ground truth. Indeed, we consider that

such a strategy can be more meaningful than the consensus

segmentation in our case since the expert consensus already

encodes the raters’ segmentation and, thus, is unfair when

compared to other strategies that did not participate in the

consensus.

First, from the top five best-performing methods, LaBRI-

IQDA (Kamraoui et al., 2021; our team’s submission during

the challenge-day) obtained the best score for the challenge.

This method was similar to the proposed baseline with data

augmentation. Second, the proposed method (results obtained

after challenge-day) obtained the highest LesF1 and Average
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TABLE 2 The internal validation results for the ablation study.

Transfer learning Time-point synthesis Data augm. Avg. Score DICE LesF1 TPR PPV

✓ ✓ ✓ 0.543* 0.514* 0.573* 0.500* 0.546

✓ ✗ ✗ 0.483 0.480 0.486 0.461 0.532

✗ ✓ ✗ 0.501 0.461 0.541 0.384 0.602*

✗ ✗ ✓ 0.477 0.464 0.488 0.406 0.565

✗ ✗ ✗ 0.469 0.449 0.489 0.413 0.534

✓ and ✗ symbolize using or not each contribution. Bold values indicate the best result for a metric and * indicates that the advantage is statistically significant (Wilcoxon test).

FIGURE 6

The performance in the internal validation of our method and the baseline based on the number of patients used for training (from MSSEG2

Training-set).

scores. Moreover, these both scores are significantly better

than all the listed state-of-the-art methods. The DICE score

obtained by MedICL was not significantly better than the

one obtained by our method. Third, all but one (Empenn)

leader-board automatic method obtained better DICE than

raters segmentation. Our proposed method, LaBRI-IQDA, and

MedICL even surpassed all raters in Average Scores.

Figure 7 shows the segmentation of new lesions by our

proposed method. As a ground-truth reference, we compare the

segmentation with the consensus segmentation of raters. We

also compare each rater segmentation against their consensus.

From the five segmentation, we see that our segmentation is the

most accurate with the consensus. Each of the human experts

Rater 2, Rater 3, and Rater 4 missed one or multiple lesions

when segmenting this sample. Although Rater 1 did not miss

any lesions, we see that our segmentation is the closest to the

consensus.

Overall, our method obtained the best result in the MSSEG2

challenge evaluation (during the challenge and after). Moreover,

the result of the experiments showed that our segmentation is

objective and can produce more accurate segmentations than

human raters.

4. Discussion

The transfer-learning from a single time-point MS lesion

segmentation task is an effective method to train the model for

the task of two time-points new MS lesion segmentation even

with a small dataset. Indeed, it enables us to exploit the large
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TABLE 3 Results of MSSEG2-challenge (MICCAI, 2021) evaluation.

Experiment Avg. Score DICE LesF1

Raters 1 vs. 2 0.466 0.426 0.507

Raters 1 vs. 3 0.499 0.434 0.564

Raters 1 vs. 4 0.434 0.382 0.486

C
h
al
le
n
ge
-d
ay

LaBRI-IQDA (Kamraoui et al., 2021) 0.507 0.498 0.515

MedICL (Zhang et al., 2021) 0.503 0.506 0.5

SNAC (Cabezas et al., 2021) 0.496 0.484 0.513

Mediaire-B (Dalbis et al., 2021) 0.489 0.436 0.541

Empenn (Masson et al., 2021) 0.478 0.423 0.532

The Proposed Method 0.523* 0.495 0.550*

From top to bottom, the table shows the challenge raters’ agreement on the segmentation compared to each other, the leader-board results of the challenge-day top methods, and the

result of the method described in this article (obtained after challenge-day). For automatic methods, bold values indicate the best result for a metric, and * indicates that the advantage is

statistically significant (Wilcoxon test).

FIGURE 7

The segmentation of the proposed method and the expert rater on a sample image from MICCAI 2021—longitudinal multiple sclerosis lesion

segmentation testing dataset. The segmentations are compared against the consensus of the four raters using the colors: green, red, and blue

to symbolize TP, FN, and FP regions of new lesions.

available MS cross-sectional datasets compared to longitudinal

datasets. In our case, the encoder for the first task was compatible

with the siamese-encoder of the second task and thus was

used to extract MS-relevant features from the two time-points.

Additionally, we used a learnable aggregation module for time-

points feature combination. Besides, by freezing the encoder

weights after the transfer-learning from the first to the second

task, we ensure that the extracted features in the second task
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are dataset-independent from the second task dataset (smaller

dataset). This independence ensures that the high performance

of the proposed method is stable and generalizing.

Longitudinal time-points synthesis is an original approach

on how to augment data diversity. It can be extended to

other change detection tasks where longitudinal data are hard

to acquire. According to the results of our experiments, this

strategy turns out to be very effective when used as pretraining.

Indeed, when the model is first pretrained with time-point

synthesis, it is subject to a wider range of diversity, which aims

to constrain the model to extract more generalizing features.

The proposed data augmentation method is an effective

technique to make our learning process less dependent on

MRI quality and acquisition artifacts. It simulates different

acquisition conditions to enhance generalization and helps to

better over-sample the available new lesions examples. Our

data-augmentation comparison (refer to Table 2) showed the

proposed augmentation method contributes to segmentation

accuracy in both internal validation and challenge evaluation

(i.e., MRI from scanners not seen during training).

The ablation study performed using the internal validation

process showed that each contribution, taken separately,

enhanced the segmentation accuracy. It also showed that when

combining all contributions, we achieved the best results.

Similarly, the challenge evaluation showed that the proposed

method achieved better results than the best-performing

methods of the challenge.

Our experiment in Section 3.1.2 has shown interesting

behavior of our method when trained on only 8 patients

(minor performance decrease compared to using synthetic

data only). The fine-tuning and optimization by selecting the

best weights combination based on a very limited validation

set has foreseeably led to overfitting. Thus, it is advised

that the number of samples and their quality (containing

enough new MS lesions) are sufficient so the fine-tuning step

could enhance the performance. If the labeled dataset is not

sufficient, combining both synthetic and real data could also

be explored.

Our study explored the possibility of using a similar task

such as MS lesion segmentation to better train new MS lesion

segmentation models. Transfer learning has led to satisfactory

results. However, other methods for instance multi-task learning

and consistency regularization should be explored likewise.

Other of our experiments (that have not been covered in our

paper) investigated such strategies on both single time-point MS

and new MS lesion segmentation. Unfortunately, it is difficult

to deal with the different class imbalances and complexities of

both tasks which makes optimizing jointly over single time-

point MS and new MS lesion segmentation harder. We believe

that a training-set containing both the segmentation of new

lesions and the segmentation of other lesions contained in

both time points could lead the community to propose better

segmentation/detection models.

Although it is sometimes difficult for experts to agree

upon whether a lesion is new or not, their consistency in

the segmentation of new lesions is even more difficult. This

inconsistency, despite being mitigated by the consensus of

several experts, will have repercussions on the quality of the

segmentation accuracy. Thus, we believe that if there is interest

in the quantification of new lesion volume, the output of

models trained only on one modality (FLAIR) and for the task

of new lesion segmentation should be taken with precaution.

Combining the outputs of this model with another one trained

on a single time-point with several modalities (T1w and FLAIR)

could lead to better and more accurate segmentation.

Besides the detection of new lesions, another interesting

biomarker for MS clinicians is the measurement of disappearing

lesions. Our proposed method could potentially be used for

this task by inverting the time-point order. However, it has not

been validated in our study and requires the appropriate expert

annotations.

5. Conclusion

In this article, we propose a training pipeline to deal with

the lack of data for new MS lesion segmentation from two time

points. The pipeline encompasses transfer learning from single

time-point MS lesion segmentation, pretraining with time-point

synthesis, and data-augmentation adapted for MR images. Our

ablation study showed that each of our contributions enhances

the accuracy of the segmentation. Overall, our pipeline was

very effective for new MS lesions segmentation (Best score in

MSSEG2-challenge; MICCAI, 2021) and can be extended to

other tasks that suffer from longitudinal data scarcity.
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Manual detection of newly formed lesions in multiple sclerosis is an important

but tedious and di�cult task. Several approaches for automating the detection

of new lesions have recently been proposed, but they tend to either

overestimate the actual amount of new lesions or to miss many lesions. In

this paper, an image registration convolutional neural network (CNN) that

adapts the baseline image to the follow-up image by spatial deformations and

simulation of new lesions is proposed. Simultaneously, segmentations of new

lesions are generated, which are shown to reliably estimate the real new lesion

load and to separate stable and progressive patients. Several applications of the

proposed network emerge: image registration, detection and segmentation of

new lesions, and modeling of new MS lesions. The modeled lesions o�er the

possibility to investigate the intensity profile of new lesions.

KEYWORDS

convolutional neural networks, non-correspondences, image registration, shape and

appearance adaptation, multiple sclerosis, new lesions

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease that progressively destroys

the axons in the central nervous system. With an estimated number of more than 2

million affected,MS is the leading cause of neurological disability in young adults (WHO,

2008). The detection and quantification of new MS lesions based on magnetic resonance

(MR) imaging is a crucial task in the monitoring of MS, since the presence of new lesions

indicates drug inefficacy. The manual segmentation of MS lesions, however, is time-

consuming and complex. In a postmortem study (Geurts et al., 2005), only 40% of lesions

detected on histopathology were also found on FLAIR MR scans. The detection of new

lesions is considered to be an even more challenging task, exhibiting high intra- and

inter-rater variance. The automation of (new) MS lesion detection and segmentation has

therefore attracted substantial attention recently, e.g., through several public challenges

(Commowick et al., 2016, 2021; Carass et al., 2017).
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Existing methods for automatic longitudinal examination of

MS may be classified into lesion detection and change detection

approaches (Lladó et al., 2012). Lesion detection approaches

segment all lesions on MR volumes of single time points.

For a longitudinal quantification of changes, a subsequent

differentiation of static, dynamic and new lesions is needed.

Köhler et al. for example use a semi-automatic segmentation

approach to mark lesions in individual MR scans. Afterwards,

they affinely register all images to a reference scan and finally

distinguish between stable, dynamic and new lesions based on

the intersection of lesion masks from all time points (Köhler

et al., 2019).

Change-detection approaches on the other hand directly use

both images from subsequent time points to detect changes

between baseline and follow-up. These approaches can be

subclassified into intensity- and deformation-based approaches

(Salem et al., 2020). Intensity-based approaches compare pre-

registered scans of subsequent time points on a voxel-by-

voxel basis to segment new lesions, e.g., Moraal et al. (2010),

Ganiler et al. (2014), and Battaglini et al. (2014); Jain et al.

(2016); Fartaria et al. (2019). Deformation-based approaches,

however, use non-rigid image registration and analyze the

resulting deformation fields to find new or evolving lesions (Rey

et al., 2002; Cabezas et al., 2016). Works combining ideas from

intensity- and deformation-based approaches show improved

performance compared to using intensity-based solutions alone

(Cabezas et al., 2016; Salem et al., 2018).

The majority of recent methods for new MS lesion

segmentation are based on deep learning (Krüger et al., 2020a;

McKinley et al., 2020; Salem et al., 2020; Combès et al., 2021).

A trend reflected in the submissions to the MICCAI 2021—

Longitudinal Multiple Sclerosis Lesion Segmentation (MSSEG-

2). Challenge (Commowick et al., 2021), most of which perform

image registration as a pre-processing step and subsequently

use a 2D or 3D U-Net-like architecture to segment new

lesions. Especially promising segmentation results are achieved

by Dalbis et al. (2021) and Zhang et al. (2021) that both use

a 2.5D approach with image slices of all three directions as

network input.

Salem et al. (2020) propose a fully convolutional network

(FCN) that consists of four registration blocks followed by

a segmentation block. Each registration block registers the

baseline scan of a certain modality (T1, T2, PD, and FLAIR) to

the respective follow-up scan. The resulting deformation fields

are then fed to the segmentation part of the network (Salem

et al., 2020). For the MSSEG-2 challenge, the authors adapt their

approach to work with FLAIR images only.

Using image registration as a pre-processing step to

lesion load change or new lesions detection may cause

underestimation of changes, since not only geometrical

distortions but also changes of interest are erroneously

eliminated by the registration step. Joint image registration and

non-correspondence estimation may overcome this problem

(Dufresne et al., 2020). Classic, i.e., iterative approaches that

estimate non-correspondences during the registration process

can be found in (Ou et al., 2011; Chen et al., 2015;

Dufresne et al., 2020; Krüger et al., 2020b). Ou et al. (2011)

estimate the matching uniqueness between voxel pairs to

weigh the image distance measure during the registration

process. A similar approach is followed by Krüger et al.

(2020b) who use probabilistic correspondences between sparse

image representations to define the weight map. In Chen

et al. (2015) and Dufresne et al. (2020), a segmentation

mask of non-corresponding regions is generated during the

registration process. This segmentation is used to mask out

the image distance measure in non-corresponding image

regions. Together with regularization of the segmentation,

non-corresponding regions are thus found as outliers in the

image distance and segmented directly. Following this approach,

we propose in Andresen et al. (2022) what is, to the best

of our knowledge, the first method that tackles joint image

registration and non-correspondence segmentation with deep

learning. For the MSSEG-2 challenge, we use this approach to

register baseline and follow-up images of MS patients while

simultaneously segmenting non-corresponding regions. The

non-correspondence segmentation is then refined with a second

FCN, resulting in a final segmentation of new MS lesions

(Andresen et al., 2021).

While all these approaches handle non-correspondences by

weighing them down during the registration process, other

methods for image registration with non-correspondences

directly model both spatial and intensity differences between

images to make them look alike (Trouvé and Younes, 2005;

Rekik et al., 2015; Wilms et al., 2017; Bône et al., 2020). Uzunova

et al. propose the joint shape and appearance autoencoder

(SAAE) that reconstructs images from a global template using

spatial deformations and intensity transformations (Uzunova

et al., 2021). This allows the reconstruction of different

modalities within the same framework. To assure a proper

disentanglement of shape and appearance, guided filtering (He

et al., 2013) is used such that the appearance offsets do not

change the shape of the template.

Inspired by Uzunova et al. (2021), we now extend our

image registration CNN for newMS lesions detection (Andresen

et al., 2021) to ANCR-Net (appearance adaptation in non-

correspondent regions and image registration network). ANCR-

Net not only spatially deforms the baseline image, but also

changes its appearance in non-corresponding image areas to

match the follow-up. The spatial displacement accounts for

general misalignments between the baseline and the follow-

up images, as well as for old lesions changing shapes and

sizes. The intensity transformations, however, are not applied

to the entire baseline images but only in non-corresponding

areas, which allows us to directly model newly appearing MS

lesions. Different from Andresen et al. (2021), we use only one

CNN whose segmentation branch is trained in a supervised
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manner. The trained network offers several applications for MS

lesion analysis: 1) detection and segmentation of new lesions, 2)

registration of baseline to follow-up images and 3) modeling the

appearance of new lesions.

2. Materials and methods

2.1. Training objective

As described in Andresen et al. (2022), CNN-based image

registration of baseline image B :� → R and follow-up

image F :� → R with simultaneous non-correspondence

segmentation can be formulated with the following training

objective (Andresen et al., 2022).

LNCR = (1− N) · D
(
F, B ◦ ϕ

)
+ αRϕ + βRN , (1)

with image distance measure D and regularizers Rϕ and RN .

The diffeomorphic deformation field ϕ :R → R
3, with

ϕ = exp(v) and the segmentation of non-correspondences

N :� → [0, 1] are both network outputs. The regularizers

Rϕ = ‖∇v‖22 and RN =
∑

x∈�
N + γ tanh

(
‖∇N‖2

)
enforce

smoothness of the velocity field v and small, regularly bordered

segmentations N. The image distance measure D is evaluated

only in corresponding image regions, while non-corresponding

areas with large image distance are masked out. Based on outlier

detection in the image distance measure, the network is able to

simultaneously segment non-correspondences and to spatially

align baseline and follow-up images.

Taking ideas from Uzunova et al. (2021), we now want to

model new MS lesions as appearance offsets between baseline

and follow-up images in non-corresponding image regions. This

results in the new training objective

L = D
(
F, (B+ N · A) ◦ ϕ

)
+ αRϕ + βLDice(N ◦ ϕ, S). (2)

Appearance offsets A :� → R are masked with the non-

correspondence segmentation N and added to the baseline

image. The appearance adapted baseline is then spatially

deformed to match the follow-up image. Normalized cross-

correlation is used as an image distancemeasure. The regularizer

Rϕ is defined as in Eq. (1). Other than our previous

approach, we now use the Dice loss between the network’s

non-correspondence segmentation N and the ground truth

segmentation S, making the regularization of N obsolete.

The intuition behind this method is that only in the

regions of new lesions, strong intensity changes are to be

expected between the baseline and the follow-up. Thus, intensity

transformations are only applied in the non-corresponding

image regions in order to directly model the newly appearing

MS lesions. The spatial displacement ϕ in turn accounts for

old lesions changing shapes and sizes as well as for general

misalignments between the baseline and the follow-up images,

but not for newly appearing lesions.

2.2. Network architecture

Consistent with previous works, the proposed ANCR-Net

consists of one encoder and two separate decoders whose exact

architecture is shown in Figure 1. The encoder starts with two

separate convolutional blocks that process input MR images

and their subtraction image. The resulting feature maps are

concatenated and passed through multiple max pooling and

convolution operations, analogously to the U-Net (Ronneberger

et al., 2015). Another common feature to the U-Net is that

our network also has decoders connected to the encoder via

skip connections. The first decoder outputs the diffeomorphic

deformation ϕ and the other generates non-correspondence

and appearance offset maps N and A. Outputs are generated

on three levels of resolution to provide deep supervision on

both branches (Hering et al., 2019; Andresen et al., 2022). The

loss function is determined at all three levels of resolution

and a weighted sum is calculated to give a final loss for

backpropagation. The weighting factors are chosen to be 0.7, 0.2

and 0.1 for each level, respectively, giving the finest resolution

level the highest weight. Input to the network are five stacked

axial slices sampled to an isotropic resolution and image size

of 368 × 512 pixels. To generate segmentation results for the

entire image volume, we iterate slice-wise through the volume

and keep the segmentation of the central slice of the stacked

input patches.

2.3. Network training

For network training, we use theMSSEG-2 challenge dataset.

It consists of 40 whole-head FLAIR MR image pairs. Baseline

and follow-up images have been rigidly pre-aligned for each

patient. NewMS lesions—if present—were manually segmented

in the pre-aligned images by four medical experts and combined

to one ground truth label of new lesions, which are used for

network training.

New MS lesions are rare and mostly small, resulting

in lesions being severely underrepresented in the data. To

account for the class imbalance problem, we pre-train the

network by inserting simulated lesions into the images that

do not have real new lesions and deforming them with

random elastic deformations. The network is then trained

in a supervised manner using Dice loss and mean squared

error between predicted and ground truth deformations as loss

function. For lesion simulation, we generate a mask indicating

candidate locations of lesions as follows. First, brain extraction

is performed on both time points separately and the union of

the brain masks is defined as the final brain mask. Second,

baseline and follow-up images are normalized to values between

0 and 1 and thresholded above 0.1 to exclude the ventricles

from the final mask. The brain mask is then multiplied with

the thresholded MR images. As the simulated lesions should not
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FIGURE 1

Architecture of the proposed network for new MS lesions modeling. Input to the network are baseline and follow-up MR images and their

subtraction image. Two decoders generate a di�eomorphic deformation field ϕ for registration of baseline to follow-up and a segmentation N

of new lesions together with appearance o�sets A. Numbers below or above the blue boxes indicate the number of feature maps. Since the max

pooling does not change the number of features, we omit the numbers before max pooling for visualization purposes.

protrude beyond the edge of the brain, the mask is subsequently

shrunk using morphological erosion.

Artificial lesions are inserted on the fly during pre-training

by first selecting a random number of new lesions (minimum

one and maximum five) and randomly selecting locations

from the candidate locations extracted before. At each selected

location, we simulate a new lesion as a Gaussian ellipsoid whose

values are added to the image intensities.

After lesion insertion, a random elastic deformation is

applied to the image which then serves as fixed image whereas

the original image is used as moving image. In addition, the

following augmentation techniques are randomly applied to the

moving and reference images during both the pre- and the final

network training:

• Gaussian noise (inside brain region only)

• Rotation (±5◦, performed on both images)

• Shift (±3 pixels in the axial plane, performed on both

images)

• Brightness change (inside brain region only)

• Brightness gradient (inside brain region only)

• Adaptive histogram equalization

Pre-training is performed for 200 epochs, Adam optimization

and a learning rate of 1e−4 that is decayed every 20th epoch

with a factor of 0.8. After pre-training, ANCR-Net is trained

with the loss function (2) using only image patches containing

new lesions in the manual ground truth. Each of these patches is

passed twice to the network, once with the original orientation

and once flipped horizontally. Training is again performed

with Adam optimization, exponentially decaying learning rate

starting from 1e−4 and run for 400 epochs to assure full

convergence. All code is made publicly available at https://

github.com/juliaandresen/ANCRNet.git.

3. Experiments and results

The proposed method is validated on the test dataset of the

MSSEG-2 challenge, consisting of 60 FLAIR MR image pairs. In

our observations, the ground truth segmentation for one patient

in the test data (ID 12) is not correct, thus we discard patient 12

from the test set and report results for the remaining 59 patients.

For all experiments, we perform five-fold cross-validation on

the training data, splitting the dataset into 32 training and 8

validation images per fold. The networks are ensembled and

segmentations combined by majority vote. Each lesion in the

resulting segmentations that is smaller than 3 mm3 in volume

is discarded. All metrics reported for new lesions detection

and segmentation compare the manual consensus ground

truth with the non-correspondence segmentations N. The

non-correspondence segmentations are multiplied with brain

masks generated by the default pre-processing pipeline1 before

metrics calculation.

1 https://github.com/Inria-Empenn/lesion-segmentation-challenge-

miccai21/

Frontiers inNeuroscience 04 frontiersin.org

52

https://doi.org/10.3389/fnins.2022.981523
https://github.com/juliaandresen/ANCRNet.git
https://github.com/juliaandresen/ANCRNet.git
https://github.com/Inria-Empenn/lesion-segmentation-challenge-miccai21/
https://github.com/Inria-Empenn/lesion-segmentation-challenge-miccai21/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Andresen et al. 10.3389/fnins.2022.981523

3.1. New lesions detection

New lesions detection performance is measured with several

metrics. First, we report lesion sensitivity SensL, the proportion

of detected new lesions in the ground truth. The lesion positive

predictive value PPVL gives the proportion of true positive

lesions out of all lesions segmented by the network. Finally, the

F1-Score combines SensL and PPVL as

F1 =
2 · SensL · PPVL

SensL + PPVL
. (3)

These metrics are not suitable for images that do not contain

lesions in the ground truth. For these cases, we report average

number and volume of erroneously detected lesions. We

additionally give the proportion Detp of patients correctly

identified as progressing, i.e., at least one ground truth lesion

is detected. For patients without new lesions we report Dets,

the proportion of patients correctly identified as stable, i.e., no

segmentation is generated for these patients.

Results are summarized in Table 1 both for images with and

without ground truth lesions. For comparison, we report the

average performance of the four medical experts who segmented

the MSSEG-2 challenge data and of the three teams achieving

best results in the four metrics considered at the challenge:

MedICL (Zhang et al., 2021) achieving the highest Dice score,

Mediaire-B (Dalbis et al., 2021) achieving the best F1-Score and

LYLE (Ashtari et al., 2021) who performed best for number and

volume of erroneously detected lesions. The results per patient

can be found in the Supplementary material.

The PPVL results show that most automated methods,

including ours, tend to overestimate the number of new MS

lesions and generate quite a lot of false positives. This is

particularly true when the proposed pre-training is not used.

In return, they are able to reliably detect real new lesions, even

exceeding the average detection rate of medical experts. Despite

the high proportion of false positives on the images with newMS

lesions, ANCR-Net manages to correctly identify 89.3% of the 28

patients without a ground truth lesion in the test set as stable. At

the same time, an average of 63.3% of ground truth lesions are

correctly identified by our network. For 25 out of the 31 patients

in the test set, our CNN manages to correctly detect at least

one ground truth lesion. Considering not only correctly detected

new lesions but all generated lesions, ANCR-Net identifies 29

patients as progressing. While the competitive methods achieve

high detection rates either for stable or progressive patients, our

method is the only one capable of reliably detecting new lesions

and keeping the number of false positives low in stable patients,

thus properly separating stable and progressing patients. In

addition, our network also reliably estimates the real number of

new lesions, with a mean error of only 1.322 lesions.

In Figure 2, contentious new lesions not included in the

ground truth but segmented by at least one of the four experts

and also by our proposed network are shown. The figure

highlights the difficulty of the new lesions detection problem that

is further aggravated by the changing size and shape of lesions.

Automatic methods for new lesion detection inherently suffer

from these difficulties, leading to the observed high proportion

of false positives.

3.2. Segmentation of new lesions

To measure lesion segmentation performance, average Dice

score, surface distance and Hausdorff distance are considered.

Results are reported in Table 2 and again compared to experts’

performance and best performing challenge submissions.

Segmentation performances overall are quite low, which is

reflected both in the Dice score and in the surface-based

metrics. The average surface distance is comparable for almost

all automaticmethods with a value of just over 9 mm.Only LYLE

achieves amean surface distance of 7.209mm. The results for the

Hausdorff distance vary more. Here, too, LYLE performs best

with 38.883mm. Our methods achieves the second lowest value

of 42.618mm.

Considering Dice score, the best performing method

(MedICL) achieves a value of 0.523. Our method scores second

with 0.470. Even the experts only achieve an average Dice

score of 0.573. This highlights the difficulty of the MS lesion

segmentation task. Lesion borders often appear blurred, making

their exact delineation difficult. Still, Dice scores do not take

into account separate lesions, but only measure the overlap of

all segmented pixels. We therefore also compute Dice scores

for the test data on lesion-level and report scores averaged over

1) all lesions in ground truth and 2) all detected ground truth

lesions. Lesion-wise Dice scores are even lower than the results

in Table 2 with 0.412 for our method and 0.558 for the experts

when averaging is performed over all ground truth lesions. For

detected ground truth lesions, the average lesion-wise Dice score

is 0.631, showing that lesion delineation works well in the case

of identified lesions, but the gap to experts is still large (experts’

average 0.817).

Finally, factors influencing the detection and segmentation

quality of ANCR-Net are analyzed. For each lesion in themanual

ground truth, volume, convexity, contrast to surrounding tissue

and contrast to the baseline image are considered. For lesion

volume, the cube root of the volume is used as a very rough

estimate of lesion diameter. As described in Lian et al. (2012),

the convexity is calculated as the quotient of the lesion volume

and the volume of the convex hull of this lesion. To calculate

the contrast to the surrounding tissue, we determine the mean

intensities within the lesion and in a small area around the

lesion (found by binary dilation of the lesion segmentation with

a spherical structuring element). The contrast is then calculated

as the difference in mean intensity divided by the average of the

two mean intensities (Nabavizadeh et al., 2019). The contrast

to the baseline image is determined analogously using the
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TABLE 1 New lesion detection results for images with and without new lesions in ground truth.

Model Data With new lesions Without new lesions

F1 SensL PPVL Detp Number Volume Dets

Experts Validation 0.732 0.697 0.772 0.871 0.000 0.000 1.000

Ours, w/o PT Validation 0.591 0.634 0.624 0.828 0.545 6.959 0.636

Ours Validation 0.622 0.666 0.623 0.862 0.455 6.948 0.636

Experts Test 0.635 0.609 0.663 0.815 0.045 1.514 0.955

MedICL Test 0.516 0.760 0.465 0.871 0.536 12.713 0.643

Mediaire-B Test 0.559 0.707 0.507 0.806 0.536 29.235 0.643

LYLE Test 0.455 0.431 0.522 0.742 0.036 0.470 0.964

Ours, w/o PT Test 0.566 0.623 0.612 0.839 0.250 4.443 0.750

Ours Test 0.582 0.633 0.582 0.806 0.107 2.039 0.893

Reported are average F1 score, lesion sensitivity and positive predictive lesion value for images containing new lesions. For stable patients, the average number of erroneously detected

lesions and their volume are reported. The results are given for the medical experts who generated the manual ground truth data as well as for our proposed method with and without

pre-training (PT) and compared to the three pipelines that performed best in the MSSEG-2 challenge (Ashtari et al., 2021; Dalbis et al., 2021; Zhang et al., 2021). Best results are given in

bold font and second best in italics. No method manages to significantly outperform all other methods (according to a Wilcoxon signed rank test with significance level 0.05).

FIGURE 2

False positives generated by our CNN for patients 1, 23, 62, and 66 that were controversial among the experts. For each patient, baseline,

follow-up and the segmentation of new lesions as generated by our network are shown. Segmentation contours of expert 1, 2, 3, and 4 are

overlaid in blue, orange, green and red, respectively.

mean intensities within the lesion area in baseline and followup

images.

Results are shown as scatter plots in Figure 3 where each

point represents a ground truth lesion. It can be seen that

lesion convexity does not seem to strongly influence the lesion

detection performance. The pre-training on artificial lesions

with an elliptical shape does not result in better detection of

lesions with such a shape (as measured by convexity). The

other considered metrics, however, have a greater impact on

the detection performance of ANCR-Net. Larger lesions are

detected with higher accuracy. Likewise, lesions that show a

strong contrast to the background and especially to the baseline

image are detected better than lesions with low contrast.

To analyze the influence of the considered lesion

characteristics on the segmentation performance of ANCR-Net,

linear regression is performed. For each lesion characteristic,

we remove outliers biasing the regression results by discarding

those lesions whose characteristic is smaller/larger than the

5 %-/95 % percentile of the respective characteristic. Also, we

perform the regression once for all the remaining lesions and
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once for only those lesions that are detected by ANCR-Net. Each

of the considered metrics shows a small positive correlation

with Dice-score. A comparison of the regression results for

all lesions and only for detected lesions shows again that the

TABLE 2 New lesion segmentation results for medical experts, our

proposed method with and without pre-training (PT) as well as the

three approaches performing best in the MSSEG-2 challenge (Ashtari

et al., 2021; Dalbis et al., 2021; Zhang et al., 2021).

Model Data Dice SD HD

Experts Validation 0.663 4.013 29.885

Ours, w/o PT Validation 0.512 7.231∗ 41.502∗

Ours Validation 0.502 7.753∗ 37.688∗

Experts Test 0.573 6.211 32.639

MedICL Test 0.523 9.352 61.835

Mediaire-B Test 0.451 9.010∗ 44.866∗

LYLE Test 0.422 7.209∗ 38.883∗

Ours, w/o PT Test 0.463 12.335 48.167

Ours Test 0.470 9.053∗ 42.618∗

Reported are average Dice score, surface distance (SD) and Hausdorff distance (HD).

Results marked with ∗ are averaged over non-empty predicted segmentations only. For

Mediaire-B two patients and for LYLE five patients are excluded from the distance

calculation.With ANCR-Net, two patients from the validation data and two patients from

the test data for the version trained with pre-training are excluded from the calculation.

Significantly best results are presented in bold font.

lesion volume and the contrast to the baseline image strongly

influence the ANCR-Net detection rate. Interestingly, none of

the metrics seem to have a very strong impact on segmentation

performance when only looking at the detected lesions (red lines

in Figure 3). Solely the contrast to the surrounding tissue gives

a significant influence on the quality of the segmentation, with

an R2 of 0.085. Overall, lesion size and contrast to the baseline

image are crucial for the detection of the lesions, but less so

for their precise delineation, while contrast to the surrounding

tissue is more critical for good segmentation.

3.3. Modeling of new lesions

Network outputs allow to not only spatially align baseline

and follow-up, but also to model the appearance of newly

formed lesions. To do so, the appearance offset mapmasked with

the segmentation output is added to the baseline image and the

adapted baseline is spatially deformed to match the follow-up

image. In Figure 4 some exemplary results are shown for image

registration and appearance adaptation between baseline and

follow-up using new lesion modeling. For more examples refer

to the Supplementary material.

The figure shows that the deformed and appearance adapted

baseline images resemble the follow-up images well. The

FIGURE 3

Lesion characteristics influencing the lesion detection and segmentation performance of ANCR-Net. Di�erent colors represent di�erent

patients. The results of a linear regression measuring the influence of the respective lesion characteristic on Dice score are shown. Red lines

show the results using only those lesions detected by ANCR-Net, whereas orange lines show the results considering all lesions. For each

regression line, the slope s and the R2 value are given.
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FIGURE 4

Modeling of new lesions. The appearance map is masked with the new lesions segmentation and added to the spatially deformed baseline

image. The upper row shows baseline and follow-up images, the masked appearance map, deformed and appearance adapted baseline. In the

lower row the di�erence image between follow-up and baseline, the appearance map, the segmentation of our CNN and the di�erence image

between follow-up and adapted baseline are shown. The ground truth lesion segmentation is overlaid in red onto the network’s segmentation.

modeled lesions do not overcompensate the overall intensity

difference between baseline and follow-up images. Instead, the

difference images show similar values inside and outside new

lesions. The modeled lesions thus fit the intensity distribution

of the baseline image. Investigating the modeled lesions, it

can be seen that, even though MS lesions appear primarily as

bright spots in FLAIR MR images, some of them still exhibit an

irregular intensity profile. These irregular intensity profiles can

be seen particularly well in the masked appearance maps (upper

row in third and seventh columns in Figure 4), which might be

used to analyze the morphology of newly forming MS lesions.

4. Discussion

We presented ANCR-Net, a CNN for the adaptation

of baseline FLAIR MR images from MS patients to the

respective follow-up images. Spatial deformations are

applied to align baseline and follow-up structures, and

new lesions are simulated in non-corresponding image

areas. The trained network gives three outputs, namely a

diffeomorphic deformation field to spatially align baseline and

follow-up, a segmentation of new lesions and an appearance

offset map that can be used to model newly appeared

MS lesions.

New lesions detection and segmentation performances

were compared to approaches scoring best in the MSSEG-2

challenge. The proposed CNN achieved highest lesion sensitivity

(proportion of detected ground truth lesions) and F1-Score.

Most automatic methods for new MS lesions segmentation tend

to produce quite a lot of false positives. ANCR-Net was the only

method capable of keeping the number of such false positives

comparably low while still detecting 63.3% of the new lesions

on average. Thus, our method is the one best suited to separate

stable and progressing patients.

Segmentation performances overall were quite low, but even

the medical experts achieved an average Dice score of only

0.573. Our method achieved the second-best Dice score of all

automatic methods, with a value of 0.470. Evaluations on lesion

level showed that correctly detected lesions are indeed well

delineated, a fact that the overall Dice score fails to reflect.

Whether the exact delineation of the new lesions is actually

crucial for MS monitoring, or rather their number and size,

should be further investigated. Here, our network could be a

valuable tool as it estimated the true number of new lesions very

well, with a mean deviation of only 1.3 lesions.

The modeled new lesions were shown to fit well with the

intensity profile of the baseline images and were able to match

the baseline to the follow-up image. Some modeled lesions

exhibit an irregular intensity profile that might give new insights

into the morphology of MS lesions. The intensity profile of the

lesions can be analyzed independently of the surrounding MR

images using our masked appearance offsets maps. Distracting

or influencing factors of the original images can thus be

eliminated. Extensions to multimodal network inputs would

also allow analyzing different types of MS lesions. Sheng et al.

for example differentiate between hypo-, iso- and hyperintense

lesions on susceptibility-weighted imaging (Sheng et al., 2019).

Such a distinction could easily be made automatically based on

our modeled lesions.

Network training using random intensity transformations

makes the method robust to appearance variations between

time points, as they might e.g., be introduced by imaging

artifacts (see also Section 3 in Supplementary material). Still,
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the challenge training data is limited to 40 cases with high

quality and well pre-registered images, thus performance may

degrade in less controlled settings. The training dataset should

therefore be extended with more data that reflects the natural

variability of images in clinical practice. For example, the images

could be noisier, or they could have been taken with different

scanners at each visit. Also, the current method is designed for

monomodal data. Extensions to multimodal inputs could be

achieved by training ANCR-Net for each modality separately

and then combining the results for the different modalities. How

the method can be extended to take advantage of the different

modalities in a single CNN will be the subject of future research.

Overall, the automatic analysis of new MS lesions remains

a very difficult task. Our network achieves good values for all

metrics considered, performing comparable to state-of-the-art

methods for new MS lesions detection and segmentation. It

is the only method capable of reliably separating stable and

progressing patients, which additionally allows estimating the

real new lesion load. Beyond that, the generated appearance

offset maps offer the possibility to investigate morphology

and intensity profile patterns of newly developed MS lesions.

Our method is thus an important step toward automating the

analysis of new MS lesions and achieving the performance of

medical experts.
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The assessment of disease activity using serial brain MRI scans is one of

the most valuable strategies for monitoring treatment response in patients

with multiple sclerosis (MS) receiving disease-modifying treatments. Recently,

several deep learning approaches have been proposed to improve this analysis,

obtaining a good trade-o� between sensitivity and specificity, especially when

using T1-w and T2-FLAIR images as inputs. However, the need to acquire two

di�erent types of images is time-consuming, costly and not always available

in clinical practice. In this paper, we investigate an approach to generate

synthetic T1-w images from T2-FLAIR images and subsequently analyse the

impact of using original and synthetic T1-w images on the performance of a

state-of-the-art approach for longitudinal MS lesion detection. We evaluate

our approach on a dataset containing 136 images from MS patients, and 73

images with lesion activity (the appearance of new T2 lesions in follow-up

scans). To evaluate the synthesis of the images, we analyse the structural

similarity index metric and the median absolute error and obtain consistent

results. To study the impact of synthetic T1-w images, we evaluate the

performance of the new lesion detection approach when using (1) both

T2-FLAIR and T1-w original images, (2) only T2-FLAIR images, and (3) both

T2-FLAIR and synthetic T1-w images. Sensitivities of 0.75, 0.63, and 0.81,

respectively, were obtained at the same false-positive rate (0.14) for all

experiments. In addition, we also present the results obtained when using the

data from the international MSSEG-2 challenge, showing also an improvement

when including synthetic T1-w images. In conclusion, we show that the use of

synthetic images can support the lack of data or even be used instead of the

original image to homogenize the contrast of the di�erent acquisitions in new

T2 lesions detection algorithms.
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1. Introduction

Artificial intelligence, particularly deep learning (DL), is

currently widely used in medical imaging applications (Zhou

et al., 2021; Chen et al., 2022). Tasks such as processing

images (Razzak et al., 2018), segmenting anatomical structures

(Fritscher et al., 2016) or diagnosing diseases such as

stroke (Feng et al., 2018), brain tumors (Işın et al., 2016),

and multiple sclerosis (Nair et al., 2020), are subjects of

numerous domains of research. DL has been demonstrated

to be a revolutionary tool in the field, improving state-of-

the-art results. However, the algorithms developed with DL

techniques have the major drawback of needing a large amount

of data to train the model. Traditional data augmentation

approaches, such as geometric transformations, intensity

operations, filtering (Shorten and Khoshgoftaar, 2019), and

deformable techniques such as deformable image registration

or randomized displacement field, have been used to overcome

this inconvenience. Nevertheless, some of these techniques

have their own limitation such as the case of the geometric

transformations which do not account for variations resulting

from different imaging protocols or sequences, sizes, shapes,

locations and appearances of the specific pathology (Yi et al.,

2019) and produce highly correlated images in the training set,

which prevents model improvements. Therefore, novel ways to

mitigate these limitations have been studied including the use of

image synthesis with DL (Chlap et al., 2021) .

Image synthesis consists of the generation of new parametric

images, including derivingmore tissue contrast from a collection

of image acquisitions (Lundervold and Lundervold, 2019).

Image synthesis makes the synthesis of new medical images

possible, including images that may not have been available in

the original dataset. In medical imaging, image synthesis has

been explored using different approaches, such as atlas based

approaches (Burgos et al., 2015), machine learning approaches

(Jog et al., 2017) and, lately, deep learning techniques (Pinaya

et al., 2022), especially the use of generative adversarial networks

(GANs) (Yi et al., 2019). This last method is currently widely

used. The GAN framework was proposed by Goodfellow et al.

(2014) and has lead to impressive results. Using GANs, it is

possible to generate realistic- looking images from an implicit

distribution that follows the real data distribution (Kazeminia

et al., 2020). GAN approaches for synthesis can be either

conditional, where an example of the desired output is specified

and therefore labeled datasets are needed; or unconditional,

where the output is a sample of a random class, using as unique

input a noise vector. Unconditional strategies are less applied in

the medical field. However, there were several studies, such as

the one by Bermudez et al. (2018), where a deep convolutional

GAN (DCGAN) learned to mimic the distribution of an entire

high resolution magnetic resonance (MR) image, resulting

in synthetic images that human observers could not reliably

distinguish from the real images. From the conditional point

of view, there are a large variety of works. For instance, in the

image translation from computed tomography (CT) images to

MR images, Wolterink et al. (2017) proposed a strategy using

unpaired data of CT and MR cardiac images fed in a Cycle

Consistency GAN (CycleGAN) (Zhu et al., 2017) for image

translation and corresponding segmentation mask. The use of

cross-modality in MR studies, such as the proposal by Lee

et al. (2020), where a missing MR image (modality) can be

inferred using its remaining contrast pairs with the application

of collaGAN, an image imputation method (Lee et al., 2019). In

Hi-Net (Zhou et al., 2020), the authors used different synthesis

combinations, such as T1 and T2 sequences, to synthesize

Fluid-attenuated inversion recovery (FLAIR) sequences, T1

and FLAIR sequences to synthesize T2 sequence, and T2 and

FLAIR sequences to synthesize T1 sequences. Zhou et al.

(2020) showed how their method outperformed state-of-the-

art methods such as the pix2pix model (Isola et al., 2017) or

CycleGAN (Zhu et al., 2017) by utilizing the correlation between

different modalities for a modality-specific network that learns

the representation of each individual modality and a fusion

network dedicated to learn the common latent representation of

the multimodal data.

Manymedical image analysis approaches can take advantage

of image synthesis as an strategy to overcome the lack of

data or the necessity of several MR sequences. This is the

case for multiple sclerosis (MS) which is a central nervous

system inflammatory demyelinating disorder. MRI plays an

essential role in establishing an accurate and early diagnosis

of MS (Hemond and Bakshi, 2018), and monitoring treatment

response, mainly by assessing new T2 lesion formations. There

are several approaches of new T2 lesions detection pipelines

using DL (McKinley et al., 2020; Salem et al., 2020). Two typical

constraints in the pipelines are the lack of annotated data and

the necessity of these models to use more than one MR image

modality in order to determine the number, size and location

of the lesion. Hence, some image synthesis proposals have been

developed to overcome this drawback. For instance, Salem et al.

(2019) proposed a model to generate synthetic MS lesions inMR

images, while Wei et al. (2019) developed a model to synthesize

the FLAIR modality by mapping multisequence source images.

We contribute to literature through the application of image

synthesis to improve new T2 lesions detection for MS studies.

To do so, synthetic T1-w MR images obtained of the original

T2-FLAIR sequence are used in an algorithm for new T2 lesions

detection. For the synthesis of the images, we propose an

adversarial synthesis method based on the pix2pix approach

(Isola et al., 2017). The performance of the synthetic images

is evaluated when using them in the new T2 lesions detection

pipeline from Salem et al. (2020). We also present the results

of applying the proposed strategy to the MSSEG-2 challenge

(Commowick et al., 2021). Our primary contribution is to

demonstrate that the addition of synthetic T1-w images can

contribute to the improvement of the sensitivity of the new

T2 lesion detection algorithms when added to the original T2-

FLAIR image as input to the detection models.
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2. Materials and methods

In the development of this analysis, we used an in-

house clinical dataset. The synthesis pipeline is based on 3D

conditional GANs inspired by the pix2pix approach (Isola et al.,

2017), while the recent proposal of Salem et al. (2020) is used for

the detection of the new T2 lesions.

2.1. Dataset

The dataset used in this study contains 136 cases of MS

patients with clinically isolated syndrome (CIS) where 73 cases

had new T2 lesions in follow-up scans. The mean time between

MR scans was 12 months (range 3–27 month). Basal and follow-

up scans were obtained using a Siemens Tim Trio 3T with a 12-

channel phased array coil. The MRI protocol included sagittal

T1- weighted 3D magnetization-prepared rapid acquisition of

gradient echo (MPRAGE) [repetition time (TR) = 2,300 ms,

echo time (TE) = 2.98 ms, inversion time (TI) = 900 ms, voxel

size = 1.0 x 1.0 x 1.2 mm3] and transverse fast fluid-attenuated

inversion recovery (FLAIR) (TR = 5,000 ms, TE = 394 ms,

TI = 1,800 ms, flip angle = 120◦, voxel size = 1.0 x 1.0 x 1.0

mm3). The protocol was approved by the Vall d’HebronHospital

(Barcelona, Spain) Research and Ethics Committee. Informed

consent was obtained from each participant before enrolment

in the study.

As the gold standard to evaluate the detection method, the

number of new/enlarging T2 lesions was obtained after the

review of the MRI images by an expert observer (a technician

with more than 15 years of experience in assessing new T2

lesions for MS under neuroradiologist supervision) who was not

blinded to the radiological report or clinical information.

In addition, we used the MSSEG-2 challenge dataset

(Commowick et al., 2021) to extend the evaluation of our

approach. A total of 100 MS patients were gathered where

only 3D FLAIR sequences were acquired at a first and second

timepoints (separated in from 1 to 3 years in time) using a total

of 15 different MRI scanners (three GE scanners, six Philips

scanners, and six Siemens scanners). The image characteristics

vary with different resolutions and different voxel size (from 0.5

mm3 to 1.2 mm3). Data was separated according to 40 scans

for training and 60 for testing. This database allows us to test

the usefulness of our approach when missing T1 images in the

training set.

2.2. Methodology

2.2.1. Preprocessing

The preprocessing done to all the images was the following.

First, all images were registered to the MNI512 template. An

affine transformation was applied to the follow-up image, while

for the basal image, the concatenation between two affine

transformations, one from basal to follow-up scans and the one

from follow-up scans to the MNI512 template, was applied.

ANTs (Avants et al., 2009) with default linear interpolation was

used for this purpose. Later, skull stripping was applied with

HD-BET (Isensee et al., 2019), and finally, the images were

normalized in the range [0–1].

2.2.2. Proposed T1-w synthesis approach

The image generation architecture is based on the pix2pix

architecture (Isola et al., 2017) which is a conditional GAN

architecture where the network learn the mapping from the

input to the output image as well as the loss function to train

this mapping. Similarly to GANs, pix2pix architecture consists

of a generator and a discriminator. During the training process,

the generator tries to generate realistic samples in order to fool

the discriminator while the discriminator tries to distinguish

between real and synthetic samples (Xin et al., 2020).

A semantic image clustering of the T2-FLAIR image, which

was obtained with the FSL FAST algorithm (Zhang et al.,

2001; Jenkinson et al., 2012), together with its T1-w intensity

pair as ground truth (Figure 1A) is used as input to the

adversarial network. A different number of image clusters

obtained using FSL FAST are considered in our experimental

evaluation. We consider a minimum of 3 clusters corresponding

to gray matter, white matter and cerebrospinal fluid (CSF), 5

clusters corresponding to gray matter, white matter, CSF and

two partial volumes of the border between the tissues, and

finally 7 and 9 clusters. These last clusterings of the image

do not have a biological meaning but are considered here

to study the impact on the synthesis model when smaller

intensity clusters are used to perform the intensity mapping

between modalities.

From each cluster volume and the T1-w image, patches

of 32 x 32 x 32 are extracted and used as inputFrontiFron

to the generator, which is a 3D ResUNet architecture of 8

blocks (Figure 2A), in essence a U-Net with residual layers.

The UNet architecture (Ronneberger et al., 2015) is widely

used in medical imaging due to its ability of capturing context

through the extraction of high and low-level features and

enable precise location. Adding residual connections allows

merging feature maps from higher resolution layers with

deconvolved maps to preserve localization details and improve

back-propagation (He et al., 2016). Distinct from the original

UNet architecture, which uses skip connections implemented

with concatenations, we use summations to reduce the model

complexity (Guerrero et al., 2018). After each residual layer

in the downscaling path, pooling is applied. The discriminator

is a ResNet with 4 blocks (Figure 2B), where the residual

blocks are followed by pooling. Labels smoothing is used

during the training of the model to improve the generalization

and prevent the network to become over-confident about its
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FIGURE 1

Pipelines used in this work; (A) pipeline for the synthesis of T1-w images, and (B) pipeline for new T2-w lesion detection in longitudinal analysis.

The dashed line in (A) indicates that original T1-w images are used only in the training of the synthesizer.

prediction, therefore improving the accuracy (Müller et al.,

2019).

Both the generator and discriminator have residual layers.

Proposed by He et al. (2016), residual architectures facilitate the

training of deeper networks, making them easier to optimize,

and helping to improve the accuracy. Each block consists of two

convolutions followed by batch normalization. The size of the

kernel for the convolutions inside the residual blocks is 3 x 3 x

3. The pooling layers are implemented by striding with a kernel

size of 2 x 2 x 2.

2.2.3. New T2 lesion detection algorithm

The detection of new T2 lesions in longitudinal images is

performed using the approach of Salem et al. (2020). It consists

of a fully convolutional network (FCNN) that accounts for two

3D architectures: first registration and then segmentation, which

are trained end-to-end. The inputs to the FCNN are the basal

and follow-up images, while the output is a new T2 lesion

segmentation mask (Figure 1B).

The network consists of two architectures: the first one is

a 3D U-Net for registration where for each input modality,

the architecture learns the deformation fields and nonlinearly

register the baseline image to the follow-up image. A second

architecture, a 3D U-net, performs the final detection and

segments the new T2-w lesions. Gradient descent is used as

the optimizer and the network simultaneously learns both

deformation fields and the new T2-w lesion segments. The loss

function of the registration architecture is an unsupervised loss

function (Balakrishnan et al., 2019) which has two components:

one that penalizes differences in appearance and a second

one that penalizes local spatial variation. For the segmentation

architecture, the well known cross-entropy loss function is used.

The network was trained using 3D patches of 32 x 32 x 32 with

a step size of 16 x 16 x 16 extracted from both baseline and

follow-up images. Adam was used as optimizer.

In the original work, Salem et al. (2020), the input modalities

were T1-w, T2-w, PD-w, and T2-FLAIR. In this work, we

modified them to be only T2-FLAIR (referred to FLAIR-only) or

T2-FLAIR and T1-w images (referred to T2-FLAIR + T1). The
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FIGURE 2

Adversarial synthesis model which takes as input the T2-FLAIR image clustering together with a T1-w intensity image as ground truth and

generates a T1-w synthetic image as output. Core element modules in both architectures are composed of residual layers as described in He

et al. (2016) with two convolutional layers (k = 3 x 3 x 3), followed by batch normalization, and finally a pooling layer by striding (k = 2 x 2 x 2).

(A) The generator is a patchwise 3D encoder/decoder architecture where c is the number of clusters. Merged layers are implemented using

summation instead of concatenation, using added element modules. (B) The discriminator is a patchwise 3D decoder architecture.

aim of this work is to evaluate the performance of the approach

when using the synthetic T1 images generated as explained in

the previous subsection.

2.3. Experimental evaluation

Three different experiments were performed in this study.

First, we evaluated the image synthesis and determined which

number of partial volumes improves the performance of the new

T2 lesion detection algorithm.

Subsequently, using the in-house dataset, we compared the

performance of using T1-w synthetic images for the lesion

detection against two different models trained with original

images, as shown in Figure 3, and described as:

• Baseline: model trained using original T2-FLAIR and T1-

w images.

• FLAIR-only: model trained using only original T2-

FLAIR images.

• Synthetic: model trained using original T2-FLAIR original

images and synthetic T1-w images, obtained from the

original T2-FLAIR images.

Finally, we also evaluated our image synthesis and lesion

detection proposal using the data from the international

MSSEG-2 challenge (Commowick et al., 2021), showing the

obtained performance when using FLAIR-only and when adding

the generated T1-w images.

2.3.1. Evaluation metrics for image quality

The quality of the images is evaluated locally

measuring the voxel-wise intensity differences between

a real image, y, and its approximation, y, using the

median absolute error (MAE) expressed as Equation (1).

While the more similar images y and y are, the lower

the MAE.

MAE(y, y) = median
∣
∣y− y

∣
∣ (1)

For a global evaluation, we use the structural similarity

index metric (SSIM) proposed by Wang et al. (2004) and

defined in Equation (2), which accounts for variations

in luminance, contrast, and structure correlation, and has

been found to correlate with the quality of perception of
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FIGURE 3

Three di�erent models are trained according to the input images: (A) original T1-w and T2-FLAIR images, (B) using only original T2-FLAIR

images, and (C) using synthetically obtained T1-w images (from the original T2-FLAIR images) along with the original T2-FLAIR images.

the human visual system (Hore and Ziou, 2010). It is

defined as:

SSIM(y, ỹ) =
2µyµỹ + c1

µ
2
y + µ

2
ỹ
+ c1

·
2σyσỹ + c2

σ
2
y + σ

2
ỹ
+ c2

·
cov(y, ỹ)+ c3

σyσỹ + c3
,

(2)

where µ denote the mean and σ is the standard deviation

values of the luminance of the images, cov(y, ỹ) is the covariance

between y and ỹ, and ci is a constant that is used to avoid a

null denominator (Hore and Ziou, 2010). The SSIM values range

within zero and one, where zero indicates null similarity and one

indicates total similarity.

2.3.2. Evaluation metrics for new T2 lesions
detection performance

To evaluate the performance of the different trained models

in the new T2 lesion detection algorithms, we use sensitivity,

false discovery rate, and precision between the manual lesion

annotation and the output segmentation mask. The sensitivity

is defined as:

Sensitivity =
TP

TP + FN
(3)

where TP and FN denote the number of correctly and missed

lesion region candidates, respectively. In terms of detection, a

lesion is consideredTP if there is one voxel overlapping (Cabezas

et al., 2016; Salem et al., 2018, 2020). The false discovery rate is:

FDR =
FP

FP + TP
(4)

where FP denote the number of incorrectly classified lesion

regions as positive. The precision is defined as:

Precision =
TP

TP + FP
(5)

where TP and FP denote the numbers of correctly and miss

classified lesion region candidates, respectively.

2.3.3. Statistical analysis

For each of the performance metrics of the detection of new

T2 lesions, we applied the pairwise non-parametric Wilcoxon

signed-rank test (two-sided) (Woolson, 2007), to assess the

hypothesis of similar distributions between the different

pairs of approaches. The results were considered significant

for (p < 0.05).

3. Experimental results

To train and test the required models, we used the two

subset configurations already available from the Vall d’Hebron
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TABLE 1 Similarity between images and performance of the lesion detection algorithm when using 3, 5, 7, and 9 clusters in the synthesis of T1-w

images.

Similarity Detection

Modalities SSIM MAE Sensitivity FDR Precision

T2-FLAIR+ T1S (3c) 0.89± 0.07 0.11± 0.05 0.51± 0.38 0.07± 0.17 0.69± 0.42

T2-FLAIR+ T1S (5c) 0.91± 0.07⋆ 0.09± 0.05⋆ 0.73± 0.31⋆ 0.11± 0.20 0.83± 0.29⋆

T2-FLAIR+ T1S (7c) 0.90± 0.07 0.10± 0.05 0.81± 0.23▽ 0.14± 0.19 0.86± 0.19▽

T2-FLAIR+ T1S (9c) 0.90± 0.07 0.09± 0.05 † 0.77± 0.30 † 0.25± 0.27 ⋄ 0.73± 0.29

Significant differences in metrics between 5c and 3c are marked with ⋆, differences between 7c and 3c are marked with ▽, while differences between 9c and 3c are marked with †. Results

of FDR for 9c are significantly lower with respect to the other 3 approaches (marked with ⋄).

FIGURE 4

Examples of original and synthetically obtained images. The first column shows the original T2-FLAIR image, while the second column shows

the original T1-w image. The following columns show the T1-w images obtained from the T2-FLAIR image using a di�erent number of clusters

(3, 5, 7, and 9).

Hospital. Set A included 101 patients, including 38 patients

with new T2 lesions, and set B included 35 patients, all of

whom had new T2 lesions. For the synthesis of T1-w images,

set A was used for training, and set B was used for testing.

Similarly, for the new T2 lesion detection models, the images

from the 38 patients with new T2 lesions of set A were

used for training, while the images from set B were used

for testing (notice that for the model trained with synthetic

images, the synthetic version of the images from set A were

also computed).

We obtained the synthesized T1-w images using four

different number of clusters of the T2-FLAIR image: 3, 5, 7, and

9 clusters. Table 1 shows the results of each case according to

the similarity with the original image. For the inference of the

new T2 lesion detection, voxels with≥ 0.5 probability of being a

lesion are taken as part of a lesion, while a lesion has a minimum

of three neighboring voxels.

According to the similarity measures, the most similar image

was obtained when using 5 clusters. Differences according to

SSIM are small, while using MAE the performance of using 5

and 9 clusters are significantly different (p < 0.05) than when

using 3 clusters. This difference in behavior of the measures

shows the benefit of comparing the similarity between images

both globally and locally. Figure 4 shows a qualitative example

of each case, showing a high global similarity with respect to

the ground truth, although there are discrepancies, mainly in the

borders of the tissues, which are captured by the local similarity.

Although the adversarial network exhibits common artifacts

such as the intensity shift, they were more visible when using the

approach with 3 clusters. On the contrary, when using 5, 7 and 9

clusters, axial slices generated tend to preserve better delineation

of some structures.

Table 1 also shows the detection inferences computed with a

fixed voxel probability threshold ≥ 0.5. Note that when using
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T1S (7c), higher sensitivity and precision were obtained. To

make these values more comparable, we inferred the detection

using a threshold ≥ 0.3 for T1S (3c), T1S (5c) and T1S (9c)

in an attempt to reach a similar operating point to that of

the approach using T1S (7c). Under these conditions, T1S (3c)

reached a sensitivity of 0.67 ± 0.33 with 0.14 ± 0.24 FDR, T1S

(5c) increased the sensitivity to 0.78 ± 0.29 but with an FDR of

0.27±0.3, while T1S (9c) reached a sensitivity of 0.79±0.34 with

0.30 ± 0.26 FDR. Considering all these results, we can see that

although all models were able to detect lesions, the best trade-

off with the different detection measures was obtained when

using 7 clusters in the synthesis of the T1-w sequence. Notice

that images generated with 7c were not showing the best overall

quality measurements but provided better feature information

to improve the MS lesion detection.

Applying the synthesis based on 7 clusters (7c), we also

evaluated the use of the synthetic T1-w images on the

performance of the detection, using the 3 different approaches

seen in Figure 3. Table 2 shows the obtained results. When using

the original images, the sensitivity was 0.75 ± 0.29 at FDR

of 0.09 ± 0.18, while when using only T2-FLAIR images as

input the values were 0.63 ± 0.37 and 0.14 ± 0.24, respectively.

When using the T2-FLAIR images along with the T1-w images

synthesized from the same T2-FLAIR image, as an input, the

sensitivity increased to 0.81 ± 0.23, without increasing the FDR

with respect to the model using only T2-FLAIR images. The

increase in sensitivity was significant with respect to the other

models (p < 0.05). The precision between models showed

that when using only T2-FLAIR images the performance was

significantly lower (p < 0.05) than when using T1-w images,

either real or synthesized. Comparing the use of both kinds of

images, the results were similar.

3.1. Results using the MSSEG-2 dataset

In this experiment, we used our adversarial synthesis model

trained with the in-house dataset to generate T1-w images for

all the cases of the international MSSEG-2 challenge, where

only T2-FLAIR images were available (Commowick et al., 2021).

TABLE 2 New T2 lesion detection performance evaluation using the

models shown in Figure 3.

Modalities Sensitivity FDR Precision

Results with original images

T2-FLAIR+ T1(Baseline) 0.75± 0.29 0.09± 0.18 0.85± 0.27

T2-FLAIR (FLAIR-only) 0.63± 0.37 0.14± 0.24 0.71± 0.38

Results with synthetic T1

T2-FLAIR+ T1S (7c) 0.81± 0.23 ⋆ ▽ 0.14± 0.19 0.86± 0.19▽

Significant differences of the T2-FLAIR + T1S (7c) model w.r.t the Baseline and

FLAIR-only models are marked with ⋆ and▽, respectively.

We compared the performance of the MS lesion detection

approach using only the T2-FLAIR images [original VICOROB

submission to the challenge using Salem et al. (2020) with only

T2-FLAIR images] vs. the model trained using both T2-FLAIR

and T1-w synthetic images. Notice that all theMSSEG-2 training

dataset was used to train both models, while the evaluation was

done directly using the MSSEG-2 testing set, including both the

active and stable cases.

The obtained results are illustrated in Table 3, where the

two approaches are compared with some of the best pipelines

participating in the challenge. Table 3 illustrates also the

agreement of the approaches with the different expert raters.

Interestingly, the performance of the model when using T1-

w synthetic images was higher than the model using only

T2-FLAIR images. For the active patients, we obtained an

improvement in terms of sensitivity and precision of 0.12 and

0.2, respectively, while also reducing the FDR. Notice that the

accuracy of the model was similar to that of some of the

top participants in the challenge (MEDIAREB, EMPENN and

SNAC, see the MSSEG-2 challenge webpage for details of the

participants), yielding also a performance that was comparable

in terms of sensitivity to those of the human raters. Regarding

the stable patients, where no new lesions were present, we

observed a reduction in the total number of FP obtained and

in the number of cases with FPs (11% of the 28 stable cases).

Furthermore, it should be noted that our synthesis model was

trained directly using the in-house dataset and only using

images from a Siemens machine. This shows a capability of the

model to adapt the source knowledge into the target domain

of the challenge where data from different MRI scanners were

available, producing T1-w images which indeed could be used to

improve MS lesion detection.

4. Discussion

In this study, we investigated the usefulness of synthetic T1-

w images in a longitudinal lesion detection pipeline. Starting

from single T2-FLAIR images, we propose obtaining synthesized

T1-w images that are subsequently used as an additional image

modality to look for new abnormalities in the longitudinal

analysis of the brain. Experiments show that although strong

structural differences exist between T2-FLAIR and T1-w images,

given the contrast difference between the two modalities,

realistic T1-w images were able to be produced. In addition,

the results show that adding the synthetic images to T2-FLAIR

images in the detection pipeline provides new and reliable

information that helps obtain better detection.

Our approach for generating T1-w images relies on intensity

clustering of the T2-FLAIR images. The obtained clusters allow

us to guide intensity information during the generation process.

We have shown that images using more than 3 clusters are more

similar to the original T1-w images. Most likely, the use of a few
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TABLE 3 Results of the MSSEG-2 challenge 2021.

MSSEG-2 challenge Active patients Stable patients

Sensitivity FDR Precision N◦ of cases with FP (%)

Expert 1 0.71± 0.38 019± 0.31 0.72± 0.38 1 (4%)

Expert 2 0.61± 0.37 0.13± 0.21 0.68± 0.39 3 (11%)

Expert 3 0.61± 0.37 0.13± 0.23 0.69± 0.40 0 (0%)

Expert 4 0.47± 0.39 0.06± 0.19 0.66± 0.46 1 (4%)

MEDIAREB 0.69± 0.40 0.39± 0.34 0.49± 0.36 10 (36%)

EMPENN 0.59± 0.32 0.33± 0.32 0.51± 0.36 8 (29%)

SNAC 0.66± 0.40 0.39± 0.33 0.49± 0.35 4 (14%)

VICOROB (FLAIR-only) 0.50± 0.39 0.43± 0.34 0.35± 0.32 6 (23%)

VICOROB (FLAIR+ T1S) 0.62± 0.39 0.39± 0.38 0.55± 0.39 3 (11%)

Testing set composed by 60 patients: active patients n = 32, stable patients n = 28. Sensitivity, FPR and precision are shown for active patients, while the number of cases that presented

FPs are provided for stable cases.

FIGURE 5

Example of image generations in a lesion area. First column shows the original T2-FLAIR and T1 image. The rest of the columns show the

clustering result and the corresponding generated image using di�erent numbers of clusters (3, 5, 7, and 9, respectively).

clusters does not account for the inherent partial volumes of MR

images, while using more clusters allows better mapping of the

partial volumes.

Regarding the lesion detection process, the best results were

obtained when using 7 clusters. We observed that using more

than 3 clusters allowed us to obtain additional information

from the lesion areas that turns out to help in the lesion

detection process. Note that the main goal of the synthesis is to

provide images with complementary information to the network

to improve lesion detection rather than produce high-quality

synthetic images. Interestingly, we noticed that in the lesion

areas, the model using 9 clusters tended to resemble too much

the original T2-FLAIR cluster intensities in the generated T1

images, forcing an intensity mapping that deviates from the

intensities present in the original T1. This can be seen in the

example shown in Figure 5, where the generated image using

9 clusters produces more hypointense voxels in the lesion area

than in the original T1 due to the larger number of clusters used

and the intensity mapping learned from the model.

Comparing the detection performance when using only

T2-FLAIR images vs. adding synthetic T1-w images, we

found that there was a statistically significant difference in

sensitivity between the two models. This indicates that the

addition of T1-w synthetic images provides meaningful and

additional information for the detection of the lesions. In

contrast, the performance when using original T1-w images or

synthetic images is similar, although we obtained slightly better

results with the synthetic images. Our hypothesis is that in

image synthesis, what is learned during training are the most

predominant features of a T1-w image that can be extracted

from a T2-FLAIR modality. These features may be related to

the lesions, and therefore, the sensitivity during detection could
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improve. This may also be related to the number of clusters

used. When using 5 clusters, we obtained more similar images

than using 7 clusters, although the best performance for lesion

detection was obtained when using the synthetic images from

7 clusters.

There is one limitation of this work that should be

mentioned. All the images used in the study to train the synthesis

model were taken from the same scanner, which was a Siemens

Tim Trio 3T. Although the experiments done using the MSSEG-

2 Challenge showed the capability of the synthesized images

to improve the MS lesion detection even when using images

from different MRI scanners (Siemens, Philips and GE), further

investigations should be done in this line. As a future work,

we plan to evaluate more exhaustively our synthesis approach

when using images from different MRI scanners, analyzing

not only the impact on the image generation and on the

lesion detection performance, but also its applicability as an

image standardization procedure. Furthermore, it could be very

interesting to extend the study using more advanced synthesis

models such as cycleGAN (Zhu et al., 2017) or Hi-Net (Zhou

et al., 2020), which could in turn improve the generalization and

the performance of the MS lesion detection approaches.

In conclusion, the results shown in this work demonstrate

that the inclusion of synthetic images can support the lack of

data. Specifically, we have seen how the inclusion of synthetic

T1-w images on the lesion detection models helped to improve

the overall performance. Our approach could benefit the clinical

acquisition of MRI sequences, helping to reduce time and

costs. Moreover, synthetic images could also be used instead

of the original images to homogenize the contrast of the

different acquisitions.

Data availability statement

The datasets presented in this article are not readily

available because the dataset used in this work is an in-house

dataset from the Vall d’Hebron Hospital (Barcelona, Spain)

that includes T1-w and FLAIR images from 136 MS patients.

Informed consent was obtained from each participant before

enrolment in the study. The agreement done for sharing the

data restricts the usability of the entities participating in this

research study. Requests to access the datasets should be directed

to xavier.llado@udg.edu.

Ethics statement

The studies involving human participants were reviewed and

approved by Vall d’HebronHospital (Barcelona, Spain) Research

and Ethics Committee. The patients/participants provided their

written informed consent to participate in this study.

Author contributions

LV, AC, MS, SV, AO, and XL contributed to the conception

and design of the study. ÀR organized the database and provided

clinical information. All authors contributed to manuscript

revision, read, and approved the submitted version.

Funding

AC holds an FPI grant from the Ministerio de Ciencia,

Innovación y Universidades with reference number PRE2018-

083507. This work has been supported by DPI2020-114769RB-

I00 from theMinisterio de Ciencia, Innovación y Universidades.

The authors gratefully acknowledge the support of the NVIDIA

Corporation with their donation of the TITAN X GPU used

in this research. This work has been also supported by ICREA

Academia Program.

Conflict of interest

Author SV was employed by company Tensor Medical.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Avants, B. B., Tustison, N., and Song, G. (2009). Advanced normalization tools
(ants). Insight J. 2, 1–35. doi: 10.54294/uvnhin

Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J., and Dalca, A.
V. (2019). Voxelmorph: a learning framework for deformable medical image

registration. IEEE Trans. Med. Imaging 38, 1788–1800. doi: 10.1109/TMI.2019.28
97538

Bermudez, C., Plassard, A. J., Davis, L. T., Newton, A. T., Resnick, S. M.,
and Landman, B. A. (2018). “Learning implicit brain MRI manifolds with deep

Frontiers inNeuroscience 10 frontiersin.org

68

https://doi.org/10.3389/fnins.2022.954662
mailto:xavier.llado@udg.edu
https://doi.org/10.54294/uvnhin
https://doi.org/10.1109/TMI.2019.2897538
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Valencia et al. 10.3389/fnins.2022.954662

learning,” inMedical Imaging 2018: Image Processing, volume 10574 (Houston, TX:
International Society for Optics and Photonics), 105741L.

Burgos, N., Cardoso, M. J., Guerreiro, F., Veiga, C., Modat, M., McClelland,
J., et al. (2015). “Robust ct synthesis for radiotherapy planning: application
to the head and neck region,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention (Munich: Springer),
476–484.

Cabezas, M., Corral, J., Oliver, A., Díez, Y., Tintoré, M., Auger, C., et al.
(2016). Improved automatic detection of new t2 lesions in multiple sclerosis using
deformation fields. Am. J. Neuroradiol. 37, 1816–1823. doi: 10.3174/ajnr.A4829

Chen, X., Wang, X., Zhang, K., Fung, K.-M., Thai, T. C., Moore, K., et al.
(2022). Recent advances and clinical applications of deep learning in medical
image analysis. Med. Image Anal. 2022, 102444. doi: 10.1016/j.media.2022.1
02444

Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., and
Haworth, A. (2021). A review of medical image data augmentation techniques
for deep learning applications. J. Med. Imaging Radiat. Oncol. 65, 545–563.
doi: 10.1111/1754-9485.13261

Commowick, O., Cervenansky, F., Cotton, F., and Dojat, M. (2021). “Msseg-
2 challenge proceedings: multiple sclerosis new lesions segmentation challenge
using a data management and processing infrastructure,” in MICCAI 2021-24th
International Conference on Medical Image Computing and Computer Assisted
Intervention (Strasburg), 1–118.

Feng, R., Badgeley, M., Mocco, J., and Oermann, E. K. (2018). Deep learning
guided stroke management: a review of clinical applications. J. Neurointerv. Surg.
10, 358–362. doi: 10.1136/neurintsurg-2017-013355

Fritscher, K., Raudaschl, P., Zaffino, P., Spadea,M. F., Sharp, G. C., and Schubert,
R. (2016). “Deep neural networks for fast segmentation of 3d medical images,”
in International Conference on Medical Image Computing and Computer-Assisted
Intervention (Athens: Springer), 158–165.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., et al. (2014). Generative adversarial networks. arXiv preprint arXiv:1406.2661.
doi: 10.48550/arXiv.1406.2661

Guerrero, R., Qin, C., Oktay, O., Bowles, C., Chen, L., Joules, R.,
et al. (2018). White matter hyperintensity and stroke lesion segmentation
and differentiation using convolutional neural networks. Neuroimage Clin. 17,
918–934. doi: 10.1016/j.nicl.2017.12.022

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (Las Vegas, NV: IEEE), 770–778.

Hemond, C. C., and Bakshi, R. (2018). Magnetic resonance imaging
in multiple sclerosis. Cold Spring Harb. Perspect. Med. 8, a028969.
doi: 10.1101/cshperspect.a028969

Hore, A., and Ziou, D. (2010). “Image quality metrics: PSNR vs. SSIM,” in 2010
20th International Conference on Pattern Recognition (Istanbul: IEEE), 2366–2369.

Isensee, F., Schell, M., Pflueger, I., Brugnara, G., Bonekamp, D., Neuberger,
U., et al. (2019). Automated brain extraction of multisequence mri using artificial
neural networks. Hum. Brain Mapp. 40, 4952–4964. doi: 10.1002/hbm.24750
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Multiple sclerosis (MS) is an inflammatory and demyelinating neurological

disease of the central nervous system. Image-based biomarkers, such as

lesions defined on magnetic resonance imaging (MRI), play an important

role in MS diagnosis and patient monitoring. The detection of newly formed

lesions provides crucial information for assessing disease progression and

treatment outcome. Here, we propose a deep learning-based pipeline for

new MS lesion detection and segmentation, which is built upon the nnU-Net

framework. In addition to conventional data augmentation, we employ

imaging and lesion-aware data augmentation methods, axial subsampling

and CarveMix, to generate diverse samples and improve segmentation

performance. The proposed pipeline is evaluated on the MICCAI 2021 MS new

lesion segmentation challenge (MSSEG-2) dataset. It achieves an average Dice

score of 0.510 and F1 score of 0.552 on cases with new lesions, and an average

false positive lesion number nFP of 0.036 and false positive lesion volume

VFP of 0.192 mm
3 on cases with no new lesions. Our method outperforms

other participating methods in the challenge and several state-of-the-art

network architectures.

KEYWORDS

multiple sclerosis, new lesion detection, data augmentation, nnU-Net, MRI,

longitudinal lesion segmentation, biomedical segmentation

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory neurological disease affecting

the central nervous system (CNS). Generally detected in young adults, ages 20–40,

demyelinated lesions in the CNS lead to cognitive and physical disabilities, affecting

vision, learning and memory, musculoskeletal system, and internal organ dysfunctions

(Ghasemi et al., 2017). While MS is not fatal, average life expentancy is 5–10 years lower

than average. TheMcDonald diagnostic criteria (Thompson et al., 2018) for MS provides

guidelines for diagnosing the patient based on the number of lesions, lesion size, and

locations of lesions in the brain and spinal cord. Disease progression for MS patients

is highly varied and unpredictable, therefore, identifying disease trajectories and closely

following them are important for prognosis and treatment decisions.
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Multiple sclerosis is typically diagnosed via the patient

showing symptoms in combination with supporting medical

imaging of the brain. Specifically, the presence of lesions on

brain MRI scans is a predictive image-based biomarker for

MS diagnosis. Common multi-modal brain MRI acquisitions

are composed of T1, T2, fluid-attenuated inversion recovery

(FLAIR) and proton-density modalities. Lesions in the

periventricular, juxtacortical, and infratentorial regions are

presented as hyperintensities on T2-weighted and FLAIR MRI,

or hypointensities on T1-weighted MRI (Filippi et al., 2019).

To monitor the progression of the disease, patients may

take multiple MRI scans at different time points, typically

6–12 months apart. The detection of newly formed lesions

provides crucial information for assessing disease activity

and treatment outcome. Formation of new lesions correlates

with the progression and severity of the disease and is

often complemented with increased symptoms (Weiner et al.,

2000). Manual assessment of these imaging scans can be time

consuming, especially when attempting to identify formations

of new lesions compared to the baseline scan. Automated

detection and segmentation of brain lesions substantially aid

neuro-radiologists in tracking the progression of the disease.

Additionally, state-of-the-art machine learning methods can

provide fast and reliable quantitative information on detected

abnormalities, such as lesion load, lesion number, or even patient

outcome (Tousignant et al., 2019; McKinley et al., 2020).

Recent developments in convolutional neural networks

(CNNs) have shown promising results for image segmentation

tasks (Alzubaidi et al., 2021). The two-dimensional (2D) U-

Net (Ronneberger et al., 2015) and three-dimensional (3D) U-

Net (Çiçek et al., 2016) architectures have been widely adopted

in biomedical image segmentation tasks due to their ability

in incorporating multi-scale spatial context and generalisability

across different biomedical domains. nnU-Net (Isensee et al.,

2021a), a U-Net based medical image segmentation network

which employs a self-adapting framework, has shown excellent

performance in a number of organ segmentation tasks (Isensee

et al., 2021a,b). nnU-Net stands for “no new U-Net.” Its strong

performance across a variety of datasets is not due to a new

network architecture, but rather to automating the process of

manual configuration of setting up a neural network. nnU-Net

configures its network and pipeline subject to dataset properties

and available GPU memory budget, maximizing the training

patch size which the GPU memory will allow.

Nevertheless, there are still several challenges in applying

these methods to brain image segmentation tasks, such as for

MS lesion segmentation. The first challenge is the scarcity of

data and annotation. Most of the public MS lesion datasets,

such as the 2016 MSSEG (Commowick et al., 2018) and the

2015 ISBI MS (Carass et al., 2017) datasets, only contain images

from a dozen of subjects. In a field where data diversity is

paramount, data augmentation methods become critical tools

to boost model performance. The second challenge is the class

imbalance problem. In MS lesion segmentation, almost all of the

foreground voxels represent healthy brain tissues and the lesions

only constitute for a minority of the voxels. This means that

the deep learning models tend to learn from the healthy tissues

instead of the lesions of interest. In an attempt to allow the

network to learn features from underrepresented classes, patches

which contain the underrepresented class are often oversampled

(Rahman and Davis, 2013). Despite oversampling strategies, the

class imbalance problem is amplified even more when working

with longitudinal MS data, where the objective is to detect new

lesions. New lesions to detect in follow-up scans can make up as

little as 0.01% of the 3D image volume.

There is still room for improvement for current lesion

segmentation methods in detecting small lesions and tracking

their temporal trajectories in disease progression. Commowick

et al. (2018) finds that lesion detection rates fall significantly

as lesion volumes decrease, resulting in false negative results

in automated segmentation. This forms a critical challenge

when newly formed lesions need to be considered for MS

progression monitoring, which these lesions are often small and

hard to detect.

In this paper, we propose a deep learning pipeline for new

MS lesion segmentation. The developed pipeline is built upon

the nnU-Net framework and we incorporate multiple brain-

image preprocessing steps as well as imaging and lesion-aware

data augmentation techniques. We evaluate the pipeline on the

MSSEG-2 challenge dataset (Commowick et al., 2021a), which

demonstrates promising results for both new lesion cases and

no new lesion cases.

2. Methods

2.1. Related works

2.1.1. Deep learning for MS lesion segmentation

There have been contributions to machine learning methods

specifically for MS lesion segmentation. Numerous methods

were developed following the 2015 ISBI Longitudinal Multiple

Sclerosis Lesion Segmentation Challenge (Carass et al., 2017).

Valverde et al. (2017) employed a cascade of two 3D patch-wise

CNNs, where the first CNN proposed candidate lesion voxels

and the second one reduced falsely classified voxels. Birenbaum

and Greenspan (2017) developed a multi-view longitudinal

CNN and utilized priors about lesion intensities and spatial

distribution to extract candidate lesions. Similar to Valverde

et al., and Birenbaum et al. also used 3D patches for model

training. Contrary to patch-based training, Aslani et al. (2019)

proposed a multi-branch CNN which takes whole slices of the

brain as input. Three 2D ResNets were separately trained for the

axial, sagittal, and coronnal planes, the outputs of which were

fused to generate a final 3D segmentation. Zhang et al. (2019)

developed a fully convolutional densely connected network
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(Tiramisu) using a 2.5-dimensional input where slices were

stacked from three anatomical planes, providing both global and

local context in segmentation.

Transformer networks are now a widely adopted network

model for both natural language processing and computer

vision tasks due to their self-attention mechanisms. The Vision

Transformer (ViT) (Dosovitskiy et al., 2021) showcased that

a pure transformer applied on sequences of image patches

can achieve competitive image classification performance.

Consequently, a multitude of transformer-based frameworks for

medical image segmentation have been proposed. The majority

of these models utilize CNNs in conjunction with transformers,

taking advantage of both local and global context information

extraction. TransBTS performs 3D CNN encoding followed

by a transformer for global feature modeling in multi-modal

brain tumor segmentation (Wang et al., 2021). TransUNeT

employs a hybrid CNN-Transformer architecture for multi-

organ abdominal image segmentation (Chen et al., 2021).

UNETR implements a pure transformer encoder based on

ViT in combination with resolution-wise convolutions and a

deconvolutional layer for decoding the image back into the

original dimension (Hatamizadeh et al., 2022). It performs

competitively with state-of-the-art methods in multi-organ CT

and MRI brain tumor segmentation tasks.

2.1.2. Data augmentation

Data augmentation can be classified into four categories:

affine transformations, elastic transformations, intensity

alterations, and incorporation of synthetic data. Affine

transformations include flipping, rotation, scaling, and shearing

of the image. Affine transformations do not drastically change

the shape characteristics of the abnormal region with respect

to its surrounding tissue. Elastic transformations generate a

displacement grid with random displacements, which is used

to deform individual voxels of the input image (Çiçek et al.,

2016). The non-linear transformations alter the boundaries

of the abnormal region with respect to its surrounding tissue,

producing diverse samples. Intensity alterations introduce

Gaussian noise, Gaussian blurring, sharpening, salt and pepper

noise, and gamma augmentation etc. to improve model

robustness against intensity distribution shift, which concerns

imaging scans acquired from different scanner models, scanner

acquisition parameters, or scanner strengths. Synthetic data

augmentation utilizes generative models or MixUp (Zhang

et al., 2018) techniques to generate new samples. For example,

generative adversarial networks (GANs) (Goodfellow et al.,

2014) were introduced for data augmentation in biomedical

image segmentation (Shin et al., 2018; Sandfort et al., 2019;

Hong et al., 2021). MixUp (Zhang et al., 2018) and related

methods such as MixMatch (Berthelot et al., 2019) and CutMix

(Yun et al., 2019) designed specific operations on two or more

images to generate new samples. For brain lesion images, a

lesion-aware augmentation method, CarveMix (Zhang et al.,

2021), was proposed to combine two brain MRI scans to

increase training data diversity. CarveMix randomly extracts

lesion regions on the sagittal plane from one image and overlays

them onto a target image (Zhang et al., 2021).

2.2. Proposed pipeline

The proposed pipeline consists of a brain image

preprocessing step, followed by nnU-Net (Isensee et al.,

2021a) for lesion segmentation, which is trained with imaging

and lesion-aware data augmentation. An overview of the

pipeline is presented in Figure 1.

2.2.1. Preprocessing

Skull is stripped using an atlas-based brain extraction

tool (Doshi et al., 2013) followed by N4 bias field correction

(Tustison et al., 2010). This is implemented using the MSSEG-

2 longitudinal preprocessing script on Anima1 provided by the

challenge organizers. In addition, as the segmentation problem

concerns imaging scans taken at different time points, we also

perform intra-subject image registration so that scans of the

same subject can be aligned and new lesions can be better

differentiated. Since new lesions are defined on the follow-up

scan, we register the baseline scan to the space of the follow-

up scan. Affine image registration is performed, followed by

free-form deformation, implemented using the MIRTK toolbox

(MIRTK, 2021) using normalized mutual information as the loss

function. Free-form deformation assists lesion segmentation in

two ways: (1) brain structures, such as gyri, ventricles etc., are

better registered; (2) lesions which slightly grow between scans

are elastically registered so that the subsequent segmentation

network can focus more on newly formed lesions.

2.2.2. Segmentation network

We adopt nnU-Net (Isensee et al., 2021a) as the

segmentation network, with a two-channel input: preprocessed

baseline scan and preprocessed follow-up scan. The output of

the network is a binary 3D prediction of new lesions which

have formed in the follow-up scan. The network consists of six

resolution levels, formed from contracting and expanding paths.

On the contracting path, each resolution level consists of two

convolutional layers, each with a 3 × 3 × 3 convolution kernel,

followed by instance normalization and LeakyReLU operation.

At the start of each resolution level, the first convolution has a

stride of (2,2,2), which effectively downsamples the feature map.

At the lowest resolution level, the first convolution has a stride

of (2,1,2).

1 Anima scripts: RRID:SCR_017072, https://anima.irisa.fr.
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FIGURE 1

The proposed 3D framework for multiple sclerosis new lesion detection and segmentation. Framework comprises of brain extraction and N4

bias correction (Pre), intra-subject registration (Reg), imaging and lesion-aware data augmentations (Aug+), and nnU-Net. The pipeline takes

input the baseline and follow-up FLAIR MRI scans, and outputs the proposed binary segmentation for new lesions.

On the expanding path, each resolution level consists of two

convolutional layers with a 3×3×3 convolution kernel, followed

by instance normalization and LeakyReLU operations, followed

by an additional transposed 2 × 2 × 2 convolution operation.

The transposed convolution has a stride of (2,1,2) at the lowest

resolution level, and a stride of (2,2,2) at all other resolution

levels. By utilizing skip connections, features extracted from the

contracting path are concatenated with features at the expanding

path at their respective resolution level. The network uses

32-dimensional features maps at the highest resolution layer,

which is increased to 320 feature maps at the lowest resolution

layer. Please refer to Figure 2 for a graphical representation of

the architecture.

2.2.3. Hyperparameters and implementation
details

We implement the 3D full-resolution U-Net model of nnU-

Net, using the 3d_fullres configuration, utilizing PyTorch.

A single NVidia Tesla T4 GPU with 16GB RAM is used. Due

to the GPU memory limit, 3D patches of size 128×112×160

are extracted from the original 3D images for model training.

Patches are drawn randomly from the image with a 67%

probability, and are ensured to include the lesion region with

a 33% probability. The network is trained using a combination

of Dice and cross-entropy loss, formulated as,

L = −
2

|K|

∑

k∈K

∑
i∈I ŷi(k)yi(k)∑

i∈I ŷi(k) + yi(k)
−

∑

i∈I

∑

k∈K

yi(k) log ŷi(k) (1)

where k denotes the class, K denotes the number of classes

(K = 2 in our method), i denotes a given voxel, I denotes

the set of voxels over the image, ŷ is the softmax output of the

segmentation network, y is the one-hot encoding of the ground

truth label for the new lesions, and subscript i(k) is the number

of voxels in the training patch for class k.

We use the stochastic gradient descent optimizer with

Nesterov momentum of 0.99, an initial learning rate of 0.01, a

polynomial learning rate decay and a batch size of 2 patches.

When developing themodel on the training data, five-fold cross-

validation is used. Each model is trained for 1,000 epochs. After

training, for each fold, we select the model which produces the

highest Dice score. For inference, we ensemble segmentation

outputs from the five models from each fold. No post-processing

step is applied.

2.2.4. Imaging and lesion-aware data
augmentation

Incorporation of data augmentation methods increases

model generalizability and robustness, and decreases overfitting.

We utilize multiple data augmentation techniques, including

the default augmentations that nnU-Net provides in the

batchgenerators data augmentation framework (Isensee et al.,

2020). These augmentations includemirroring, rotating, scaling,

channel translation to simulate registration errors, elastic

deformations, linear downsampling, brightness and contrast

augmentation, gamma augmentation, Gaussian and Rician noise

augmentation, and random cropping.
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FIGURE 2

The 3D nnU-Net architecture for segmenting new lesions. It contains six resolution levels formed from contracting and expanding paths, and

skip connections to recover fine-grain detail from the contracting path. The input to the network is a pair of baseline image and follow-up

image. The output is the prediction of the new lesions.

In addition to these augmentations, inspired by Kamraoui

et al. (2021, 2022), we introduce axial subsampling to simulate

the image acquisition process on the axial plane. Brain MRI

typically acquires a stack of 2D image slices in the axial plane to

form a 3D volume, which can be of a high resolution within the

axial plane but subject to low resolution across the plane (Chai

et al., 2020). Axial subsampling augmentation is performed by

applying a median filter of size [1 × 1 × n] where n ∈ 2, 3, 4

to the axial image slices. This effectively blurs the image in the

sagittal and coronal planes. Figure 3A illustrates an example of

axial subsampling.

Finally, to increase the diversity of lesion images, a lesion-

aware data augmentation method, CarveMix (Zhang et al.,

2021), is used. CarveMix extracts a 3D region of interest

(ROI) according to the lesion location and shape from

one subject and mixes it with the brain image of another

subject, thus creating augmented training samples. To increase

diversity in augmentation, the lesion-aware ROI is generated by

thresholding the distance transform of the lesion using a random

threshold (Zhang et al., 2021). A synthetic image,X, and its label,

Y, is generated by,

X = Xi ⊙Mi + Xj ⊙ (1−Mi) (2)

Y = Yi ⊙Mi + Yj ⊙ (1−Mi) (3)

where {Xi, Yi} denotes one pair of image and label, {Xj,

Yj} denotes a second pair of image and label, Mi denotes

the binary mask of the ROI, and ⊙ represents voxel-wise

multiplication. We randomly select two subjects for CarveMix

augmentation when training. Incorporation of CarveMix data

augmentation increases the total volume which the lesion

class covers in an image, thus reducing the effect of class

imbalance caused from the foreground class making up a small

percentage of the overall image. Figure 3B illustrates an example

of CarveMix augmentation.

3. Results

3.1. Data

We evaluate the pipeline on the MICCAI 2021 MS new

lesion segmentation challenge dataset (MSSEG-2) (Commowick

et al., 2021a), which provides 3D FLAIR images of 100 MS

patients. The images were acquired from 15 different scanners,

six of them 1.5T and nine of them 3T, including three GE

scanners, six Philips scanners, and six Siemens scanners. Dataset

scanner information can be found at the MICCAI 2021MSSEG-

2 challenge demographics data (Commowick et al., 2022). The

images have varying image size and voxel spacing, which we

resample to the median spacing of the dataset, 0.977 × 0.977 ×

0.530mm3, before model training. Each patient was scanned

twice, with 1–3 years between the two time points, constituting

for a total of 200 images. Only new lesions at the second time

point were annotated. Existing lesions, growing or shrinking

lesions were not delineated. Each patient was annotated by

four neuroradiologist and one consensus new lesion mask was

provided. We use the consensus lesion masks as ground truth

for model training and evaluation.

The dataset has been partitioned into 40 training and 60 test

subjects by the challenge organizers. Of the 40 training subjects,

11 of them do not exhibit new lesions, which are referred to as

“no-new lesion cases.” We exclude these 11 no-new lesion cases
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FIGURE 3

Imaging and lesion-aware data augmentations applied on the MSSEG-2 training set. (A) Example of axial subsampling (n = 4) to simulate the

blurring in image acquisition. (B) Example of the CarveMix augmentation. Lesions from subject B are carved out and fused onto scan from

subject A. Contours delineate lesion labels.

from the training set, utilizing the remaining 29 cases for model

training. Of the 60 test subjects, 28 of them do not exhibit new

lesions. We use all 60 subjects for testing.

3.2. Evaluation metrics

The method is evaluated using the Anima analyzer

tool’s animaSegPerfAnalyzer2 function, provided by the

MSSEG-2 challenge organizers in order to provide a fair

comparison with other participating methods. In line with

the MSSEG-2 evaluation, we use the default configuration of

animaSegPerfAnalyzer, which excludes lesion volumes

smaller than 3mm3. The performance is evaluated separately for

patients with new lesions and those with no-new lesions on the

test set. For the new lesion cases, we report new lesion detection

and segmentation performance, true positive lesion count, false

positive lesion count, and false negative lesion count; for the

no-new lesion cases, we calculate the number of new lesions

detected (false positive lesions) and the volume of these false

positive lesions.

3.2.1. Performance on new lesion cases

New lesion detection performance is evaluated using the F1

score. The F1 score measures how many lesions are correctly or

incorrectly detected, regardless of the precision of its contours.

2 Anima scripts: RRID:SCR_017072, https://anima.irisa.fr.

It is formulated as,

F1 = 2
SL · PL

SL + PL

where SL denotes the lesion detection sensitivity (recall) and PL

denotes the positive predictive value (precision). The optimal

F1 score is 1. A lesion is considered as being detected or true

positive if the automatic detection overlaps with at least 10% of

the ground truth lesion volume and does not go outside by more

than 70% of the volume (Commowick et al., 2018).

New lesion segmentation performance is evaluated using the

Dice similarity coefficient, DSC, which measures spatial overlap.

DSC is formulated as,

DSC = 2
| A ∩ G |

| A | + | G |

where A denotes the automatic segmentation and G denotes the

ground truth. The optimal DSC is 1.

In addition to the metrics used in the MSSEG-2 challenge,

we also present results for average true positive lesion count,

nTP , average false positive lesion count, nFP , and average false

negative lesion count, nFN . Average true positive lesion count

evaluates the average correctly detected lesions by the automated

method. nFP evaluates the average incorrectly detected lesions

by the automated method. Finally, nFN evaluates the lesions not

detected by the automated method. These metrics are averaged

over the 32 new lesion cases in the test set. The consensus ground

truth segmentation contains a total of 224 new lesions, therefore

the optimal average true positive lesion count, nTP , is 7 ( 22432 ).

The optimal score for nFP or nFN is 0.
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TABLE 1 Comparison of the proposed method to the challenge participating methods in terms of DSC, F1 scores, the number of true positive

lesions nTP , the number of false positive lesions nFP , the number of false negative lesions nFN, and volume of false positive lesions VFP (unit:mm
3),

averaged across cases.

New lesion cases No-new lesion cases

(n = 32) (n = 28)

Method DSC F1 nTP nFP nFN nFP VFP

Expert 1 0.629 0.709 6.063 1.281 1.094 0.036 1.453

Expert 3 0.597 0.637 4.500 0.844 2.375 0.000 0.000

Expert 2 0.535 0.601 4.313 1.094 2.500 0.107 3.981

Expert 4 0.459 0.519 4.469 0.594 2.375 0.036 0.623

Proposed 0.510 0.552 4.969 2.031 2.281 0.036 0.192

MedICL 0.507 0.500 5.344 5.063†† 1.875 0.536††† 12.713

LaBRI-IQDA 0.500 0.515 5.563 6.094†† 1.656 1.143†† 38.486∗

SNAC 0.485 0.514 5.219 3.689† 2.031 0.321 5.726

LaBRI-D&E 0.472 0.496 5.500 9.156††† 1.750 1.964†† 177.131

NVAUTO 0.469 0.464∗ 5.344 12.000††† 1.906 3.286††† 68.211∗

LaBRI-Iw 0.453∗ 0.463∗ 5.000 6.719†† 2.250 0.857† 27.761∗

New Brain 0.451∗∗∗ 0.476∗∗∗ 4.032 2.903 3.355 0.786† 12.371

ITU 0.443 0.480 4.688 3.094 2.438 0.148 1.487

Mediaire-B 0.437∗∗ 0.541 5.688 4.469†† 1.500 0.536††† 29.235∗

Mediaire-A 0.432∗∗∗ 0.524 5.156 3.500 2.031 0.429† 15.908∗

Empenn 0.424∗ 0.532 4.178 2.719 3.031 0.286†† 4.258∗

McEwan-IM 0.423∗∗∗ 0.453∗ 5.469 8.531††† 1.781 0.857† 16.504

PVG 0.414∗∗∗ 0.449∗ 4.032 2.903 3.355 0.107 1.031

Neuropoly-1 0.411∗∗∗ 0.425∗∗∗ 3.625 2.813 3.563 0.286† 8.615

IAMLAB 0.411∗∗∗ 0.412∗∗∗ 5.094 6.844††† 2.156 1.679††† 19.753∗

LYLE 0.409∗∗∗ 0.443∗∗ 3.406 1.250 3.594 0.036 0.470

Neuropoly-2 0.409∗∗∗ 0.413∗∗∗ 3.656 1.906 3.469 0.107 0.498

SCAN 0.403∗∗∗ 0.431∗∗ 4.156 2.406 3.031 0.071 5.373

SCA-SimpleUNet 0.400∗∗∗ 0.448∗ 5.406 6.344††† 1.813 0.750††† 31.232∗

I3M 0.398∗∗∗ 0.358∗∗∗ 4.250 4.313† 3.000 0.393 14.800

Neuropoly-3 0.379∗∗∗ 0.416∗∗∗ 3.719 2.625 3.500 0.321† 19.240

The NoCoDers 0.365∗∗∗ 0.381∗∗∗ 4.750 7.594††† 2.500 1.370††† 25.848∗

Vicorob 0.357∗∗∗ 0.369∗∗∗ 3.906 4.094†† 3.156 0.964† 88.402

HufsAIM 0.346∗∗∗ 0.407∗∗∗ 2.938 1.979 4.156 0.444† 17.128∗

CMIC 0.330∗∗∗ 0.362∗∗∗ 3.906 6.094††† 3.344 4.714††† 123.442

MIAL 0.309∗∗∗ 0.332∗∗∗ 4.516 6.097† 2.774 1.464†† 177.861

SCA-withPriors 0.223∗∗∗ 0.216∗∗∗ 2.750 6.719†† 4.219 2.464††† 302.121

LIT 0.214∗∗∗ 0.242∗∗∗ 2.406 11.063 4.469 0.607† 35.404

IBBM 0.155∗∗∗ 0.145∗∗∗ 1.906†† 7.625††† 5.188† 3.786††† 123.309∗∗∗

Optimal score 1.000 1.000 7.000 0.000 0.000 0.000 0.000

The methods are sorted in the descending order of DSC. Best results are in bold. Asterisks indicate statistical significance (∗p ≤ 0.05, ∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.005) when using a paired

Student’s t-test compared to the proposed method. We implement the Mann-Whitney U-test for nTP , nFP , and nFN metrics due to their non-normal distribution. The dagger symbols

indicate statistical significance (†p ≤ 0.05, ††p ≤ 0.01, and †††p ≤ 0.005) when using a Mann-Whitney U-test compared to the proposed method.

3.2.2. Performance on no-new lesion cases

For no-new lesion cases, the number and volume

of falsely predicted lesions are evaluated. To count

the number of false positive lesions, the Anima tool,

animaConnectedComponents3 function is used with

default parameters. The volume of false positive lesions is

3 Anima scripts: RRID:SCR_017072, https://anima.irisa.fr.
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calculated by multiplying the number of lesion voxels by

voxel spacing. We denote number of false positive lesions

as nFP , and volume of false positive lesions as VFP . The

optimal scores for both false positive lesion number and

volume are 0.

3.3. Results

3.3.1. Comparison against participating
methods in the challenge

The proposed pipeline is compared against MSSEG-2

participating methods and also four expert raters (Commowick

et al., 2021b), reported in Table 1. The performance of MSSEG-2

participating methods and four expert raters is acquired from

Commowick et al. (2021b). Table 1 shows that the proposed

pipeline ranks competitively against methods submitted to the

MSSEG-2 challenge. For the new lesion cases, it outperforms

the other methods in terms of both the average DSC and the

average F1 scores. Also, our method outperforms three of the

experts in nTP and nFN metrics. Our method correctly identifies

24 of the 32 new lesion cases as having new lesions. We achieve

comparable performance to Experts 1, 2, 3 and 4, which correctly

identify 26, 25, 27, and 22 of the 32 new lesion cases as having

new lesions, respectively. A non-zero F1 score is regarded as a

method having correctly identified a new lesion case.

For the no-new lesion cases, the proposed pipeline achieves

the lowest metrics for false positive lesions, including the average

number nFP and the average volume VFP . It correctly identifies

27 out of 28 no-new lesion cases as subjects with no-new lesions.

When comparing to expert raters, on the new lesion cases, the

proposed pipeline outperforms Expert 4 in terms of DSC and F1

scores and approaches the performance of Expert 2. On the no-

new lesion cases, the proposed pipeline outperforms or achieves

a comparable performance to Experts 1, 2 and 4.

3.3.2. Sensitivity vs. specificity analysis

Table 1 shows that there is a reverse correlation between the

results for new lesion cases vs. no-new lesions cases, especially

in the participating methods for the MSSEG-2 challenge. In

Figure 4, we plot the average DSC and F1 scores against

the average nFP and VFP metrics. It shows that methods

which perform well in new lesion cases do not perform

as well in no-new lesion cases. Contrary to other methods,

the proposed pipeline does not suffer from severe negative

correlation, which performs well in both new lesion and no-new

lesion cases.

FIGURE 4

Comparison of di�erent methods in new lesion metrics (DSC and F1) vs. no-new lesion metrics (nFP and VFP). X-axis denotes one of the no-new

lesion metrics in logarithmic scale and Y-axis denotes one of the new lesion metrics. Star denotes the proposed pipeline. (A) Plot of average DSC

vs. average false positive lesion count nFP . (B) Plot of average DSC vs. average false positive lesion volume VFP . (C) Plot of average F1 vs. average

false positive lesion count nFP . (D) Plot of average F1 vs. average false positive lesion volume VFP .
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TABLE 2 Comparison of the proposed method to recent state-of-the-art deep learning architectures in terms of DSC and F1 scores, the number of

false positive lesions nFP , the number of true positive lesions nTP , the number of false positive lesions nFP , the number of false negative lesions nFN,

and volume of false positive lesions VFP (unit:mm
3), averaged across cases.

New lesion cases No-new lesion cases

(n = 32) (n = 28)

Method DSC F1 nTP nFP nFN nFP VFP

Proposed 0.510 0.552 4.969 2.031 2.281 0.036 0.192

nnU-Net 0.490 0.548 4.562 1.281 2.688 0.036 0.138

(Isensee et al., 2021a)

TransBTS 0.477 0.470∗ 5.492 5.718†† 1.848 0.939† 12.238

(Wang et al., 2021)

UNETR 0.462 0.468∗ 5.343 9.031††† 1.906 4.214††† 23.705∗

(Hatamizadeh et al., 2022)

TransUNet 0.428∗∗ 0.434∗∗ 4.491 4.043†† 2.102 1.081†† 9.620

(Chen et al., 2021)

Tiramisu 2.5D 0.363∗∗∗ 0.365∗∗∗ 4.313 4.625†† 2.938 1.384†† 15.120

(Zhang et al., 2019)

Optimal score 1.000 1.000 7.000 0.000 0.000 0.000 0.000

The methods are sorted in the descending order of DSC. Best results are in bold. Asterisks indicate statistical significance (∗p ≤ 0.05, ∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.005) when using a paired

Student’s t-test compared to our proposed method. We implement the Mann-Whitney U-test for nTP , nFP , and nFN metrics due to their non-normal distribution. The dagger symbols

indicate statistical significance (†p≤ 0.05, ††p ≤ 0.01, and †††p ≤ 0.005) when using a Mann-Whitney U-test compared to the proposed method.

3.3.3. Comparison against state-of-the-art
architectures

We also compare the proposed pipeline to a number of state-

of-the-art convolutional and transformer-based architectures,

which have demonstrated excellent performance in biomedical

image segmentation tasks. These architectures include the

standard nnU-net (Isensee et al., 2021a), TransBTS (Wang

et al., 2021), UNETR (Hatamizadeh et al., 2022), TransUNet

(Chen et al., 2021), and Tiramisu 2.5D (Zhang et al., 2019). In

order to evaluate methods fairly, we train these methods using

the same preprocessed data, described in Section 2.2.1, which

includes atlas-based brain extraction, N4 bias field correction,

and free-form deformation registration, and use the standard

data augmentation. The quantitative comparison results are

reported in Table 2, and an example segmentation for visual

comparison is provided in Figure 5. Table 2 shows that nnU-Net

with standard data augmentations performs favorably against

these state-of-the-art methods, and the proposed pipeline

further improves performance possibly due to the additional

data augmentation that we have introduced.

3.3.4. Ablation study

We carry out an ablation study to evaluate the impacts of

different components of the pipeline, including brain extraction

and N4 bias correction (Pre), affine and free-form image

registration (Reg) and additional data augmentation methods

including axial subsampling and CarveMix (Aug+). By default,

standard data augmentation methods are used which come with

nnU-Net, described in Section 2.2.4. The ablation study results

are presented in Table 3.

Interestingly, adding pre-processing alone or registration

alone does not drastically change performance metrics.

However, when they are combined, for new lesion cases, the

DSC score is increased from 0.476 to 0.490 and the F1 score

is increased from 0.533 to 0.548. When imaging-related and

lesion-aware data augmentations (Aug+) are introduced, the

DSC score is further increased to 0.510 and the F1 score

is increased to 0.552. This demonstrates that all the three

components play an important role in the proposed pipeline.

We also observe that when DSC and F1 scores are increased,

metrics concerning no-new lesion cases become poorer. The

undesired increase in false positive lesion count and lesion

volume is discussed in detail in Section 3.3.6.

3.3.5. Exclusion of no new lesion cases during
training

The MSSEG-2 training dataset is composed of 40 subjects.

11 subjects do not exhibit new lesions in their follow-up scans.

These subjects were removed from the training dataset, thus

we only utilized 29 subjects. We carry out an additional study

to investigate the impact of the exclusion of these images,

by comparing the performance on the test set when utilizing
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FIGURE 5

Visual comparison of the proposed segmentation pipeline to other methods. The proposed method produces a segmentation closest to the

ground truth annotation.

TABLE 3 Results for the ablation study, presenting DSC and F1 scores, the number of false positive lesions nFP , the number of true positive lesions

nTP , the number of false positive lesions nFP , the number of false negative lesions nFN, and volume of false positive lesions nFP (unit:mm
3), averaged

across cases.

New lesion cases No-new lesion cases

(n = 32) (n = 28)

Pre Reg Aug+ DSC F1 nTP nFP nFN nFP VFP

0.476 0.533 4.250 1.281 3.000 0.000 0.000

X 0.475 0.524 4.688 1.281 2.563 0.000 0.000

X 0.473 0.525 4.188 1.343 3.062 0.036 0.083

X X 0.490 0.548 4.562 1.281 2.688 0.036 0.138

X X X 0.510 0.552 4.969 2.031 2.281 0.036 0.192

Best results are in bold.

all 40 subjects for segmentation model training against using

the 29 subjects with new lesions. Results are presented in

Table 4. Interestingly, removing the no new lesion subjects result

in slightly higher DSC and F1 score, without compromising

performance in the no new lesion cases. This is likely due

to higher average representation of the foreground class (new

lesions) in the altered training set. In addition, reducing the

training set from 40 to 29 subjects decreased the model training

time by 27.5%.

3.3.6. Sources of failure

We carry out a qualitative investigation on the test set to

better understand where our method fails. In the no-new lesion

cases, the proposed pipeline correctly classifies 27 out of the 28

subjects. The one misclassified (subject ID: 004) is incorrectly

segmented to have 1 new lesion, which amount to 14 false

positive voxels (3.875 mm3), shown in Figure 6. The segmented

region has a higher intensity compared to surrounding regions

and we suspect that it is likely to be a new lesion. Two of four
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TABLE 4 Comparison between using the complete MSSEG-2 training set (40 subjects) against using 29 subjects which excludes the no new lesion

cases.

New lesion cases No-new lesion cases

(n = 32) (n = 28)

Training set DSC F1 nFP VFP

29 subjects with new lesions 0.510 0.552 0.036 0.192

All 40 subjects 0.502 0.530 0.036 0.192

We present the DSC and F1 scores, the number of false positive lesions nFP and their volume VFP (unit:mm3), averaged across cases. Best results are in bold.

FIGURE 6

The region which we incorrectly classify as a lesion in the

no-new lesion cases in the MSSEG-2 test set (subject ID: 004).

We suspect the segmented region to be a new lesion, two of the

human raters also classify this region as a new lesion.

expert raters also delineate this region as a new lesion, although

the consensus segmentation does not regards this as a lesion,

which leads to the misclassification of our method. This test set

subject is the cause of the undesired increase in false positive

lesion count and false positive lesion volume in Table 3.

In the new lesion cases, when assessing against the DSC and

F1 score, there is still room for improvement in performance.

There are possibly three sources of failure that affect the

DSC and F1 scores. The first is the incorrect segmentation

of growing lesions. The pipeline employs affine and non-rigid

registration to align the baseline scan to the follow-up and

thus suppresses the detection of growing lesions. However, the

remaining mis-alignment for some growing lesions still leads to

the boundary voxels, i.e., the grown regions of lesions, being

incorrectly segmented as new lesions. Secondly, the proposed

pipeline may miss some tiny and less apparent new lesions.

In some cases, new lesions which form in the follow-up scan

are very small and less hyperintense compared to large new

lesions. This makes the detection of these lesions very difficult

and leads to misclassifications. Finally, new lesion segmentation

is a generally challenging task even for human raters and

there are indiscrepancies between annotations from different

human experts. The noise in the annotations may limit what an

automated method can achieve (Zhang et al., 2020). We present

examples of all three sources of failure in Figure 7.

4. Discussion and conclusion

Here we demonstrate that by incorporating appropriate

preprocessing steps, an nnU-net segmentation network, imaging

and lesion-aware data augmentation techniques, we can

achieve promising performance in new MS lesion segmentation

tasks. The proposed pipeline outperforms other challenge

participating methods in both new lesion cases and no-new

lesion cases, in terms of DSC, F1, nFP and VFP scores.

We also observe that in terms of network architecture, the

recently popular transformer architectures may not necessarily

outperform convolutional neural network architectures, such as

nnU-net (Table 2). The design of proper pre-processing steps

and problem-specific augmentations may play a more important

role in this particular lesion segmentation task (Table 3).

In addition to the DSC and F1 score used by the MSSEG-

2 challenge, we introduce extra evaluation metrics, nTP , nFP ,

and nFN , for the new lesion cases to understand the method

performance. While many methods have a high nTP and a

lower nFN score, the results suggest that a lower nFP is what

differentiates our method and the Experts to the other methods,

thus providing a higher DSC and F1 score. The nTP , nFP ,

and nFN results also suggest that they should be analyzed

with respect to each other, as evaluating a method solely with

one of these metrics can be misleading. For example, the top

performing method in correctly identified average true positive

lesions, nTP , ranks 10th in DSC score, and the top performing

method in fewest average false positive lesion count ranks 17th

in both DSC and F1 score. Methods with higher nTP score also

have high nFP scores, with respect to Experts’ performance. The

results on the new metrics show that methods differ on their

approach to achieve optimal DSC and F1 scores, and suggest that

extra thought should be considered when evaluating a method

solely on one metric.
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FIGURE 7

Examples of three di�erent sources of error. Ground truth and predicted lesions are delineated in red. (A) (subject ID: 012) False positive

segmentation of a growing lesion. (B) (subject ID: 078) False negative classification of a new lesion. (C) (subject ID: 036) False positive

segmentation of a region classified as healthy/not-new in the consensus label, but annotated as a new lesion in two of the four provided expert

annotations.

Future efforts to improve the proposed method include

further investigation of the sources of failure described

in Section 3.3.6 and bridging the gap between automatic

segmentation and expert raters. The current MSSEG-2

challenge dataset only contains annotations of new lesions.

To discriminate new lesions from growing lesions, future

works may include curating a dataset of both lesion types and

training automated methods for detecting and differentiating

these lesions. Also, additional post-processing steps could be

developed to inspect local neighborhoods of detected new

lesions and check whether they are connected to existing

lesions or not, thus decreasing false positives for new lesion

detection. However, too large of a local context may come

at the cost of decreasing true positives too. Furthermore,

the proposed pipeline only focuses on lesions in the brain

region and the pre-processing step removes the spinal cord

region. Despite the MSSEG-2 testing dataset not featuring any

new lesions in the spinal cord, MS lesions can form in this

region. Inclusion of the spinal cord into the preprocessing

step and training data will extend the application of the

proposed pipeline.

In conclusion, we propose an nnU-Net-based pipeline for

multiple sclerosis new lesion segmentation. A contribution

of the pipeline is that it incorporates task-specific data

augmentation methods, including axial subsampling, which

simulates MRI acquisition-based image artifacts, and CarveMix,

which increases the diversity of lesion images. When evaluating

on the MSSEG-2 dataset, the proposed pipeline achieves

excellent performance in evaluation metrics for both new lesion

and no-new lesion cases.
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Automated segmentation of newmultiple sclerosis (MS) lesions in 3D MRI data

is an essential prerequisite for monitoring and quantifying MS progression.

Manual delineation of such lesions is time-consuming and expensive,

especially because raters need to deal with 3D images and several modalities.

In this paper, we propose Pre-U-Net, a 3D encoder-decoder architecture with

pre-activation residual blocks, for the segmentation and detection of new

MS lesions. Due to the limited training set and the class imbalance problem,

we apply intensive data augmentation and use deep supervision to train our

models e�ectively. Following the same U-shaped architecture but di�erent

blocks, Pre-U-Net outperformsU-Net and Res-U-Net on theMSSEG-2 dataset,

achieving a Dice score of 40.3% on new lesion segmentation and an F1 score

of 48.1% on new lesion detection. The codes and trained models are publicly

available at https://github.com/pashtari/xunet.

KEYWORDS

multiple sclerosis, new lesions, segmentation, U-Net, pre-activation

1. Introduction

Multiple sclerosis (MS) is a common chronic, autoimmune demyelinating disease

of the central nervous system (CNS), which causes inflammatory lesions in the brain,

particularly in white matter (WM). Multi-parametric MRI is widely used to diagnose

and assess MS lesions in clinical practice. Particularly, FLuid Attenuated Inversion

Recovery (FLAIR) images provide high contrast for white matter lesions appearing as

high-intensity regions. It is highly relevant to monitor lesion activities, especially the

appearance of new lesions and the enlargement of existing lesions, for several purposes,

including prognosis and follow-up. More specifically, lesional changes between two

longitudinal MRI scans from an MS patient are the most important markers for tracking

disease progression and inflammatory changes. To this end, the accurate segmentation

of new lesions is an essential prerequisite to quantifying lesional changes and measuring

features, such as new lesion volumes and locations. However, manual delineation of such

lesions is tedious, time-consuming, and expensive, especially because experts need to deal

with 3D images and several modalities; therefore, accurate computer-assisted methods

are needed to automatically perform this task.
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Longitudinal MS lesion segmentation, however, remains

very challenging since MS images often change subtly over time

within a patient, and new lesions can be very small although

they vary dramatically in shape, structure, and location across

patients. The MSSEG-2 MICCAI 2021 challenge (Confavreux

et al., 1992; Vukusic et al., 2020) aims to develop effective data-

driven algorithms for the segmentation of new MS lesions by

providing a dataset of 40 pairs of 3D FLAIR images acquired at

two different time points (with varying intervals) and registered

in the intermediate space between the two time points. For each

pair, new lesions are manually annotated by multiple raters, and

the consensus ground truths are obtained through a voxel-wise

majority voting (see Figure 1).

Over the past decade, convolution neural networks (CNNs)

with an encoder-decoder architecture, known as U-Net

(Ronneberger et al., 2015), have dominated medical image

segmentation. In contrast to a hand-crafted approach, U-Net

can automatically learn high-level task-specific features for MS

lesion segmentation. This work extends our previous effort

(Ashtari et al., 2021a) in the MSSEG-2 and proposes Pre-U-

Net, a 3D U-Net architecture with pre-activation residual blocks

(He et al., 2016a,b), for segmenting new MS lesions. We use

deep supervision (Lee et al., 2015) and perform intensive data

augmentation to effectively train our models. In contrast to

FIGURE 1

Qualitative results on new MS lesion segmentation. The three examples are from three di�erent patients in the test set. The new lesions are

shown in red in the segmentation maps. The new lesions circled in yellow (rows 2-3 and column 6) are successfully detected only by Pre-U-Net,

while the new lesion circled in blue (row 3 and column 3) is not captured by any of the models, representing a very di�cult case. The

patient-wise Dice score for each example is displayed on the segmentation map.

the existing methods, our models directly segment new MS

lesions on longitudinal 3D FLAIR images in an end-to-end

fashion in contrast to the common two-step approach, where

cross-sectional segmentation is first performed individually

for each time point, and new lesions are then extracted by

comparing the longitudinal segmentation maps and applying

further post-processing. Depending on the metric used, the

MSSEG-2 challenge has four leaderboards. Our Pre-U-Net

model achieved competitive scores, and our team, LYLE, was

ranked first in two of the leaderboards among 30 participating

teams in the challenge.

The rest of this paper is organized as follows: Section 2 briefly

reviews relevant semantic segmentation techniques. Section 3

presents our approach to longitudinal MS lesion segmentation.

Experiments are presented in Section 5. We conclude this paper

in Section 6.

2. Related work

Over the past few years, considerable efforts have been

made in the development of fully convolutional neural networks

for semantic segmentation. Encoder-decoder architectures, in

particular U-Net (Ronneberger et al., 2015) and its variants,
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FIGURE 2

The proposed encoder-decoder architecture. The two lower-resolution auxiliary maps are only used in the training phase as deep supervisions.

are dominant in the segmentation of brain lesions. nnU-Net

(Isensee et al., 2019) makes minor modifications to the standard

3D U-Net (Çiçek et al., 2016), automatically configuring the

key design choices. It has been successfully applied to many

medical image segmentation tasks, including longitudinal MS

lesion segmentation (Isensee et al., 2020). McKinley et al.

(2018) proposed an architecture, in which dense blocks (Huang

et al., 2017) of dilated convolutions are embedded in a shallow

encoder-decoder network. Myronenko (2019) proposed a U-

Net-style architecture with a heavier encoder but a lighter

decoder for brain tumor segmentation, taking a variational auto-

encoder (VAE) approach by adding a branch to the encoder

endpoint. Ashtari et al. (2021b) proposed a lightweight CNN for

glioma segmentation, with low-rank constraints being imposed

on the kernel weights of the convolutional layers in order

to reduce overfitting. Aslani et al. (2019) proposed a deep

architecture made up of multiple branches of convolutional

encoder-decoder networks that perform slice-based MS lesion

segmentation. La Rosa et al. (2020) proposed a U-Net-like

model, to automatically segment cortical and white matter

lesions based on 3D FLAIR andMP2RAGE images. These works

and most of the MS research in medical imaging have focused

on the cross-sectional segmentation of lesions, while only a few

efforts have been made to detect and segment new lesions on

longitudinalMRI scans. For example, Nills et al. (2020) proposed

a two-path CNN jointly processing two FLAIR images from

two time points to address longitudinal segmentation of new

and enlarged lesions. In contrast, this paper proposes a single-

path U-shaped architecture whose input is the 2-channel image

constructed simply by concatenating two longitudinal FLAIR

images which are co-registered.

3. Method

In this section, we describe the proposed encoder-decoder

architecture, called Pre-U-Net, and its building blocks.

3.1. Overall architecture

The overall architecture, as shown in Figure 2, follows a

U-Net-like style made up of encoder and decoder parts. A

3 × 3 × 3 convolution is used as the stem layer. The network

takes a 2-channel image of size 128 × 128 × 128 and outputs

a probability map with the same spatial size. The network has
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FIGURE 3

The proposed blocks. (A) U-Net block. (B) Res-U-Net block. (C) Pre-U-Net block.

4 levels, at each of which in the encoder (decoder), the input

tensor is downsampled (upsampled) by a factor of two while

the number of channels is doubled (halved). Downsampling

and upsampling are performed via strided convolution and

transposed convolution, respectively. The kernel size of all

downsamplers and upsamplers is 2 × 2 × 2. We use deep

supervision at the three highest resolutions in the decoder,

applying pointwise convolutions (head blocks) to get three

auxiliary logit tensors.

3.2. Baseline models

Depending on which block is used, we build and compare

three baselines: (i) U-Net, (ii) Res-U-Net, and (iii) Pre-U-

Net. All these variants follow the same overall architecture as

explained in Section 3.1 but differ in their encoder/decoder

blocks. The block for each model is detailed in the following.

3.2.1. U-Net block

The U-Net block used here is similar to that of nnU-Net

(Isensee et al., 2019) except for some minor modifications. As

shown in Figure 3A, this block is composed of two convolutional

layers with kernel sizes of 3×3×3. A Group Normalization (Wu

and He, 2018) layer (with a group size of 8) comes after each

convolutional layer and before LeakyReLU activation.

3.2.2. Res-U-Net block

Inspired by the basic ResNet block (He et al., 2016a), a

Res-U-Net block is, as shown in Figure 3B, similar to U-Net

block except that a shortcut connection is used between the last

GroupNormalization layer and the last LeakyReLU activation. A

pointwise convolution (i.e., a kernel size of 1×1×1)may be used

in the shortcut connection to match the input dimension with

the output dimension of the residual mapping. As investigated

by He et al. (2016a), residual connections have been proven

effective to avoid vanishing/exploding gradients and speed up

the convergence, especially in very deep networks.

3.2.3. Pre-U-Net block

Similar to the pre-activation residual block (He et al.,

2016b), a pre-U-Net block consists of two convolutional layers

with kernel sizes of 3 × 3 × 3, with LeakyReLU activation

coming before each convolutional layer and after Group

Normalization (with a group size of 8). Note that the pre-U-Net

block, in contrast to U-Net and Res-U-Net blocks, starts with

normalization, applying convolution-activation-normalization

in reverse order (see Figure 3C). He et al. (2016b) suggest that

such a pre-activation design together with identity mappings

as the shortcut connections makes information propagate more

smoothly than the post-activation design (which is used in

the basic ResNet block). Through ablation experiments, they

show that the pre-activation design reduces overfitting more

significantly, meaning that it leads to slightly higher training

loss at convergence but lower test error compared to the post-

activation design.

4. Experiments

All themodels are implemented using PyTorch (Paszke et al.,

2019) and PyTorch Lighting (Falcon, 2019) frameworks and

trained onNVIDIA P100 GPUs.We evaluate the performance of

Pre-U-Net for MS lesion segmentation on the MSSEG-2 dataset.

We follow the same training workflow in all the experiments. In

the following, we first provide the details of this workflow, then

present the evaluation protocol and the results.

4.1. Setup

4.1.1. Data

A total of 40 and 60 MS patients are represented in the

MSSEG-2 training and test set, respectively. For each patient,

two longitudinal 3D FLAIR images are acquired at different

time intervals (e.g., 1 year, 3 years) and registered in the

intermediate space between the two time points. New lesions

that a patient developed between the two time points were

manually delineated by multiple raters, and the consensus
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TABLE 1 An overview of the MSSEG-2 dataset.

Data Modality Median voxel size (mm) Median shape No. of total

cases

No.

with-new-lesion

cases

No.

without-new-lesion

cases

Training FLAIR (0.53, 0.98, 0.98) (320, 256, 256) 40 29 11

Test FLAIR (0.65, 0.98, 0.98) (280, 256, 256) 60 32 28

All FLAIR (0.60, 0.98, 0.98) (297, 256, 256) 100 61 39

The third column indicates the median value of voxel size for each axis. The fourth column indicates the median number of voxels along each axis.

ground truths were obtained through a voxel-wise majority

voting (see Figure 1). The training (test) set includes images that

have no new lesions since, in real clinical practice, many patients

under treatment do not develop any new lesions during the time

interval. Further details on the MSSEG-2 dataset are reported

in Table 1. Note that both the training and test sets were fixed

across our experiments as well as for all the challengers.

4.1.2. Preprocessing

For each case, we first concatenate the two FLAIR images

to form a 2-channel 3D image as the input. This is valid

since the two FLAIR images are co-registered, and therefore,

spatially aligned. The resulting image and its ground truth are

then cropped with a minimal box filtering out zero regions.

MSSEG-2 data are heterogeneous in the sense that the images

may be acquired with different protocols in multiple institutes

using different scanners, making intensity values greatly vary

across patients and even across time points within the same

patient. Therefore, we normalize each image channel-wise

using a z-score to have intensities with zero mean and unit

variance. Moreover, all the images and their ground truths

are then resampled to the same voxel size of 1 mm3 using

trilinear interpolation.

4.1.3. Data augmentation

To reduce overfitting caused by data insufficiency and

heterogeneity, it is crucial to perform an effective data

augmentation workflow before feeding the data into the

network. P3During training, the data preprocessing and

augmentation are integrated into a single pipeline operating on

a batch of 2 samples at each step on the fly. From each sample,

we first crop a random 128 × 128 × 128 patch whose center

lies within the foreground (i.e., new lesions) with a probability

of 66%. Such an oversampling technique ensures that at least

66% of the patches contain some lesion, which in turn alleviates

the class imbalance problem caused by the relatively small size

of new lesions. The patches then undergo spatial transforms,

including random affine and random flip along each spatial

dimension, and intensity transforms, including random additive

Gaussian noise, random Gaussian smoothing, random intensity

scaling and shifting, random bias field, and random contrast

adjusting. All the preprocessing operations and augmentation

transforms are computed on CPU using the MONAI library ().

4.1.4. Optimization

All networks are trained for 100,000 steps with a batch size of

2 (each patch is processed on oneGPU) using AdamWoptimizer

with an initial learning rate of 1e−5, weight decay of 1e−2,

and cosine annealing scheduler. P3Therefore, each network in

training is fed by a total of 200,000 different patches of size

128 × 128 × 128. It is worth mentioning that since the training

set consists of 40 subjects, there are 5,000 = 200,000/40 patches

per subject, among which around 3,300 = 5,000 ×0.66 patches

are expected to contain new lesions.

The loss Ltotal is computed by incorporating the three

deep supervision outputs and the corresponding downsampled

ground truths, according to

Ltotal = λ0L(G0,P0)+ λ1L(G1,P1)+ λ2L(G2,P2), (1)

where λ0 = 1, λ1 = 0.5, and λ2 = 0.25; Gi and Pi correspond

to the deep supervision at resolution [128/(2i)]3; and the loss

function L(·, ·) is the sum of soft Dice (Milletari et al., 2016) and

Focal loss (Lin et al., 2017), that is

L(G,P) = LDice(G,P)+ LFocal(G,P), (2)

where

LDice(G,P) = 1−
2〈G,P〉 + ǫ

‖G‖2 + ‖P‖2 + ǫ
,

LFocal(G,P) = −
1

N
〈G, (1− P)γ log(P)〉, (3)

where G ∈ {0, 1}J×N and P ∈ [0, 1]J×N represent the one-

hot encoded ground truth and the predicted probability map

for each voxel, respectively, with J denoting the number of

segmentation classes and N denoting the number of voxels

in the patch. The small constant ǫ = 10−5 is commonly

used to smooth the soft Dice loss and avoid division by zero.
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The focusing parameter γ = 2 smoothly controls the rate

at which well-classified voxels are suppressed in the Focal

loss, and 1 denotes a J × N matrix of ones. The Focal loss

has proved effective in tackling the class imbalance problem,

which is present in the MSSEG-2 training set since the total

volume of new lesions is generally much smaller than that of

the background, and nearly one-third of the patients have no

new lesions.

4.1.5. Inference

A test image in the inference is first subjected to z-score

intensity normalization and resampled to a voxel size of 1 mm3.

The prediction is then made using a sliding window approach

with a 50% overlap and a window size of 128×128×128 (which

is equal to the patch size used in training). For a given voxel

from overlapping windows, themean of the predictions is simply

taken as the final value (the SlidingWindowInferer

module from MONAI was used to perform the sliding window

inference). The resulting probability map is resampled back to

the original voxel size and finally thresholded by 0.5 to obtain a

binary segmentation map.

4.1.6. Evaluation

The Dice score and Hausdorff Distance (HD) are used

as metrics to assess the performance of segmentation for the

patients that have some new lesions in their ground truths. The

Dice score measures the voxel-wise overlap between the ground

truth and the prediction, defined as

Dice(g, y) =
2
∑N

n=1 gnyn
∑N

n=1 gn +
∑N

n=1 yn
(4)

where gn ∈ {0, 1} and yn ∈ {0, 1} represent the ground truth

and the binary prediction for a voxel, respectively, and N is

the number of voxels. Hausdorff Distance (HD) evaluates the

distance between the boundaries of ground truth and prediction,

computed according to:

HD(G,Y) = max{max
g∈G

min
y∈Y

‖g− y‖, max
y∈Y

min
g∈G

‖y− g‖}, (5)

where G and Y denote the set of all voxels on the surface of

ground truth and prediction, respectively.

Lesion-wise sensitivity (SEN), positive predictive value

(PPV), and F1 score are used as metrics to quantify the detection

rate of new lesions. Let G be the ground truth and Y be the

prediction. To compute these lesion level metrics, we follow

Commowick et al. (2018), according to which the connected

components of G and Y (with a 18-connectivity kernel) are first

extracted, and all new lesions smaller than 3 mm3 in size are

removed, yielding new tensors G̃ and Ỹ. The metrics are then

defined as

SEN =
TP

TP+ FN
, (6)

PPV =
TP

TP+ FP
,

F1 =
2TP

2TP+ FP+ FN
,

where TP, FP, and FN are the number of true positives, false

positives, and false negatives, respectively, in the detection

of new lesions (i.e., connected components). The rules by

which a lesion is considered detected are explained in

Commowick et al. (2018).

For cases without any new lesions in their ground truths, we

use the following two metrics:

• The Number of new Lesions Predicted (NLP) by the

algorithm. This is obtained by counting the number of

connected components in the predicted segmentation.

• The Volume of new Lesions Predicted (VLP) by the

algorithm. This is obtained by simply multiplying the

number of voxels in the predicted segmentation by the

voxel volume.

All the metrics mentioned above were computed using

animaSegPerfAnalyzer from the Anima toolbox

(available at https://anima.irisa.fr/, RRID: SCR_017017 and

RRID: SCR_01707).

5. Results and discussion

5.1. Quantitative evaluation

We performed five-fold cross-validation in all the

experiments to estimate how capable our models are in

generalizing to unseen data. The cross-validation results on

the MSSEG-2 training set are reported in Table 2. For each

network, we used an ensemble of the five models trained during

the cross-validation on the training set for predicting the test

set labels. The test results are reported in Table 3 and illustrated

by notched box plots in Figure 4, where pairwise Wilcoxon

signed-rank tests were used to identify the significant differences

in the test scores of baselines.

Pre-U-Net was superior to all the other models in terms

of both segmentation and detection performance for the test

cases with some new lesions, achieving a Dice score of 40.3%,

HD of 35.0, SEN of 47.5%, PPV of 53.6%, and F1 score of

48.1%. While having almost the same number of parameters

and the same computational complexity (FLOPS), Pre-U-Net

outperformed U-Net, the second-best baseline, and significantly

outperformed Res-U-Net, with p-value< 0.05 for the Dice score,

p-value < 0.01 for the F1 score, and p-value < 0.05 for HD.
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TABLE 2 Results obtained by five-fold cross-validation on the MSSEG-2 training set.

Model No. of params FLOPs With-new-lesion cases Without-new-lesion cases

Dice (%)↑ HD (mm)↓ SEN (%)↑ PPV (%)↑ F1 (%)↑ NLP↓ VLP (mm3)↓

U-Net 28.7 M 1264.7 G 45.2 (5.5) 39.0 (14.1) 51.0 (12.1) 52.9 (6.1) 48.9 (7.6) 0.1 (0.2) 9.2 (20.6)

Res-U-Net 28.9 M 1280.8 G 42.4 (11.4) 46.4 (15.9) 49.3 (22.9) 60.6 (6.6) 49.9 (14.8) 0.2 (0.4) 4.0 (9.0)

Pre-U-Net 28.9 M 1280.8 G 45.6 (9.5) 40.1 (13.2) 54.5 (13.8) 53.8 (6.8) 51.9 (11.3) 0.0 (0.0) 0.0 (0.0)

Symbols ↑ and ↓ indicate that a metric is desired to be higher and lower, respectively. The mean and standard deviation (SD) of a score across the folds are reported as “mean (SD).” The

best results are in boldface.

TABLE 3 Results on the MSSEG-2 test set.

Model No. of params FLOPs With-new-lesion cases Without-new-lesion cases

Dice (%)↑ HD (mm)↓ SEN (%)↑ PPV (%)↑ F1 (%)↑ NLP↓ VLP (mm3)↓

U-Net 28.7 M 1264.7 G 38.9 (31.1) 43.1 (27.3) 45.2 (36.8) 51.2 (39.6) 45.3 (35.7) 0.0 (0.2) 0.4 (2.3)

Res-U-Net 28.9 M 1280.8 G 34.9 (29.5) 44.2 (29.0) 43.6 (38.4) 38.4 (38.5) 33.7 (33.1) 0.0 (0.0) 0.0 (0.0)

Pre-U-Net 28.9 M 1280.8 G 40.3 (30.5) 35.0 (22.3) 47.5 (37.9) 53.6 (38.3) 48.1 (34.8) 0.0 (0.2) 0.5 (2.5)

Predictions were made using the five models from the cross-validation as an ensemble. Symbols ↑ and ↓ indicate that a metric is desired to be higher and lower, respectively. The mean

and standard deviation (SD) of a score across patients are reported as “mean (SD).” The best results are in boldface.

FIGURE 4

Comparison of di�erent models on the MSSEG-2 test set. (A–C) Show box plots of Dice score (%), F1 score (%), and Hausdor� Distance (mm),

respectively. The asterisks indicate how significantly a model score di�ers from those of the other baselines when using a pairwise Wilcoxon

signed-rank test (*p-value < 0.05, **p-value < 0.01).

Overall, Pre-U-Net proved more effective than the other models

at segmentation and detecting new lesions. Nevertheless, note

that Pre-U-Net was onlymarginally superior to U-Net, and there

was no statistically significant difference between the twomodels

in terms of the segmentation or detection metrics.

Res-U-Net, with an NLP of 0.0 and VLP of 0.0, performed

slightly better for the test cases that have no new lesions whereas

Pre-U-Net is the winner in terms of validation scores. In fact,

the differences in NLP and VLP scores are marginal, and all of

our models are sufficiently accurate to detect no lesions (i.e.,

produce a segmentation map in which all elements are zero)

for patients without any new lesions. Our team, LYLE, with the

Pre-U-Net model (Ashtari et al., 2021a) was ranked first in the

MSSEG-2 challenge in the two leaderboards based on the NLP

and VLP metrics. All the four leaderboards (based on Dice, F1

score, NLP, and VLP metrics) and the patient-wise scores for

each participating team can be found on https://portal.fli-iam.

irisa.fr/msseg-2/challenge-day/.

5.2. Qualitative evaluation

Figure 1 presents qualitative comparisons of baselines.

The top row exemplifies a patient with a single lesion
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that is detected by all the models. However, Pre-U-Net,

with a patient-wise Dice score of 61.1%, yields a lesion

that overlaps most with the lesion in the ground truth

compared to U-Net with a patient-wise Dice score of

51.9% and Res-U-Net with a patient-wise Dice score

of 36.9%.

Moreover, Pre-U-Net demonstrates superior performance

in detecting new lesions. This capability is evidenced in the

middle and bottom rows, where Pre-U-Net detects the two

new lesions circled in yellow whereas U-Net and Res-U-Net

fail to capture them. Note that as observed in the bottom row,

Pre-U-Net, with a patient-wise Dice score of 68.3%, shows

only a slight improvement in the segmentation performance

over U-Net, with a patient-wise Dice score of 66.6%; however,

Pre-U-Net indeed outperforms U-Net significantly when it

comes to new lesion detection. Nevertheless, some new

lesions are extremely challenging to detect even for experts,

and all the models fail to capture them. For example, the

lesion circled in blue on the ground truth (row 3 and

column 3 in Figure 1) is detected by none of the models

including Pre-U-Net.

Future work aims at improving new MS lesion detection,

especially in the presence of such difficult lesions. This might

include, for instance, incorporating the individual delineations

of raters into our models. Indeed, in cases where there

is more uncertainty due to a weaker consensus among

raters (e.g., three raters delineated a set of voxels differently

than the other one), our models are also more likely to

result in false predictions. Moreover, we will investigate

the possibility of transfer learning from a simpler lesion

segmentation task with a bigger dataset for further tackling

the data insufficiency and class imbalance problems faced in

this work.

6. Conclusion

We devised a U-Net-like architecture consisting of pre-

activation blocks, called Pre-U-Net, for longitudinal MS

lesion segmentation. We successfully trained our models by

using data augmentation and deep supervision, alleviating

the problem of data insufficiency and class imbalance. The

effectiveness of Pre-U-Net was evaluated in segmenting and

detecting new white matter lesions in 3D FLAIR images on

the MSSEG-2 dataset. Pre-U-Net achieved a Dice score of

40.3% and F1 score of 48.1%, outperforming the baselines, U-

Net and Res-U-Net. In particular, Pre-U-Net is, as reflected

by F1 scores, more effective than the baselines at detecting

new lesions, and it is competitive with U-Net in terms

of segmentation performance, as evidenced by Dice and

HD scores.
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Detecting new lesions is a key aspect of the radiological follow-up of patients

with Multiple Sclerosis (MS), leading to eventual changes in their therapeutics.

This paper presents our contribution to the MSSEG-2 MICCAI 2021 challenge.

The challenge is focused on the segmentation of new MS lesions using two

consecutive Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance

Imaging (MRI). In other words, considering longitudinal data composed of

two time points as input, the aim is to segment the lesional areas, which are

present only in the follow-up scan and not in the baseline. The backbone of

our segmentation method is a 3D UNet applied patch-wise to the images, and

in which, to take into account both time points, we simply concatenate the

baseline and follow-up images along the channel axis before passing them

to the 3D UNet. Our key methodological contribution is the use of online

hard example mining to address the challenge of class imbalance. Indeed,

there are very few voxels belonging to new lesions which makes training

deep-learning models di�cult. Instead of using handcrafted priors like brain

masks or multi-stage methods, we experiment with a novel modification to

online hard example mining (OHEM), where we use an exponential moving

average (i.e., its weights are updated with momentum) of the 3D UNet to mine

hard examples. Using a moving average instead of the rawmodel should allow

smoothing of its predictions and allow it to give more consistent feedback

for OHEM.
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Introduction

Multiple Sclerosis (MS) is a chronic autoimmune

demyelinating inflammatory disease of the central nervous

system and represents the leading cause of non-traumatic

motor disability of young people in Europe and North America

(Howard et al., 2016). MS lesions, consisting of focal areas of

demyelination, edema, and auto-immune inflammation, are

visible on Magnetic Resonance Imaging (MRI), especially on

Fluid Attenuated Inversion Recovery (FLAIR) as contiguous

areas of hypersignal (Filippi et al., 2019). The decrease or

absence of new FLAIR lesion formation over time is a key

radiological endpoint in clinical trials assessing disease-

modifying therapies in MS, and the absence of such radiological

activity takes part in the “No Evidence of Disease Activity”

score, used to monitor patient’s disease control and to discuss

potential therapeutic change at the individual level (Hegen et al.,

2018). Novel lesion identification and segmentation is usually

performed manually, or using semi-automated procedures, by

radiologists or neurologists and is time-consuming and subject

to intra- and inter-rater variability (Altay et al., 2013). The aim

of the MICCAI MSSEG-2 challenge was to benchmark new

automatic methods to segment new lesions based on two FLAIR

MRIs from two longitudinal visits (baseline and follow-up)

of the same patient. Already published methods for this task

consists mostly of either non-deep learning methods (Cabezas

et al., 2016) or deep learning methods using multiple MRI

sequences (McKinley et al., 2020; Salem et al., 2020); there are

very few deep learning methods for this precise task based

uniquely on FLAIR sequences (Gessert et al., 2020). The present

paper describes our contribution to the challenge. The backbone

of our approach is a patch-wise 3D UNet (Çiçek et al., 2022).

Our key methodological contribution is to introduce online

hard example mining (Shrivastava et al., 2016) (OHEM) to

tackle class imbalance. Indeed, one important characteristic

of the dataset is that there are fewer voxels belonging to a

new lesion (positive) than not belonging to a new lesion

(negative), images comprise on average approximately 0.005%

of positive voxels. Notably, we use a moving average of our

3D UNet to perform inference for hard example mining.

Our goal is that, similar to He et al. (2020), doing so will

provide more stable predictions as training progresses. The

present paper extends that published in the proceedings of

the MICCAI MSSEG-2 2021 workshop (Commowick et al.,

2021) by providing a more extensive description of the

methodology as well as more detailed experimental results

including the testing of the algorithm on another cohort

(Bodini et al., 2016) distinct from the MICCAI MSSEG-2

testing dataset.

Methods

Preprocessing

We resampled each FLAIR image to a voxel size of 0.5mm

as it is the highest resolution of the training dataset and applied

a z-score normalization to each FLAIR individually. As the

two consecutive FLAIR images (baseline and follow-up) of a

patient have been aligned in the halfway space using a rigid

transformation by the challenge providers, our method starts by

concatenating them along the channel dimension, resulting in a

tensor of shape 2∗D∗H∗W, where D, H, andW are, respectively,

the depth, height, and width of the resampled FLAIR image.

This tensor is then subdivided into patches of shape 2∗32∗32∗32,

which are passed through a 3DUNet to obtain the segmentation.

Model

Our backbone model is a standard 3D UNet, which can be

described by the following equations:

B (n) : = 2x
{
3DConvolution (n)→Group Normalization

→ ReLU}

3D UNet : = B (16) ↓→ B (32) ↓→ B (64) →

↑ B (32) →↑ B (16) → Conv (1)

where the numbers in the parentheses are the number

of filters, ↓ indicates max pooling and ↑ indicates trilinear

upsampling. The model is trained on patches of size 32. For

inference, we split the image into a grid of patches of size 32, with

a stride of 24. This means that the patches have an overlap of 8

pixels. In these overlapping regions, we averaged all predictions

and binarized the final output with a threshold of 0.5.

Dataset

We used the MICCAI MSSEG-2 datasets (Commowick

et al., 2021) for training, validation, and the first testing set (see

Appendix). We also used a second testing set consisting of a

previously published MS cohort from our laboratory (Bodini

et al., 2016). This cohort was constituted of 19 patients with

active relapsing remitting MS (13 women, mean age 32.3 years

sd 5.6) who underwent two MRIs with FLAIR spaced from

minimum 31 days to maximum 120 days. Of those 19 patients,

only 18 had available FLAIR MRIs for each visit. As only one of

those 18 remaining patients had no new lesions at the second

visit, we focused on the 17 patients that presented new lesions

Frontiers inNeuroscience 02 frontiersin.org

94

https://doi.org/10.3389/fnins.2022.1004050
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Schmidt-Mengin et al. 10.3389/fnins.2022.1004050

FIGURE 1

Illustration of our training strategy. B patches are fed to a first 3D UNet and the segmentation errors are computed for each patch. The patches

are ranked according to their errors, and the topB patches are selected to perform a training step with a second 3D Unet. The weights of the first

3D UNet are momentum-updated with the weights of the second 3D Unet.

at the second visit for the second testing dataset. For these

17 patients, the new lesions at the second visit were manually

contoured in native space and verified by a senior neurologist.

After rigid co-registration to halfway space (FLIRT, http://fsl.

fmrib.ox.ac.uk/) (Jenkinson and Smith, 2001), we gave the

baseline and the follow-up FLAIR as input to our algorithm, and

the manually contoured lesion mask as ground truth to evaluate

our algorithm performances. Acquisitions for our testing cohort

were run on a 3 Tesla Siemens machine, with a 32-channel head

coil (Repetition Time: 8.88ms; Echo Time: 129ms; Inversion

Time: 2.5ms; Flip Angle: 120◦; Pixel size: 0.9× 0.9× 3 mm).

Training

As the images contain very few positive voxels, we do not

sample the patches uniformly during training. One common

strategy is to over-sample patches containing positive regions

with a constant ratio. However, this ratio must be fine-tuned

by hand. If it is too high, it can result in many false positives.

Instead, our method uses a 3D UNet with momentum weight

updates to perform hard example mining. A training iteration

consists of three steps, illustrated in Figure 1 and described by

Algorithm 1. In the first step, we select a batch of B = 128

patches, which contains 30% of positive patches and 70% of

uniformly sampled patches (i.e., mostly negatives due to the class

imbalance). We then pass this batch through a 1st 3D UNet,

denoted by UNet, to obtain a prediction for each element of

the batch and compute the segmentation errors with respect to

the ground truth. Second, we select the B = 32 patches with the

highest error and perform a training step on them with a second

Algorithm 1. The algorithm used for the training with OHEM and

momentum update.

3D UNet, denoted Unet. Last, we perform a momentum update

of the weights of the 1st 3D UNet, with the second 3D Unet. The

use of momentum ensures that the predictions given by the 1st

3D UNet do not fluctuate too much during training and provide

reliable samples for online hard example mining.

Training—OHEM vs. oversampling
comparison

We optimized each network for 3 h on one NVIDIA Tesla

P100 graphic card using Adam (Kingma and Ba, 2022). Note

that for OHEM, the duration of one iteration is roughly 2 times

longer. In the end, 3 h of training corresponds to about 30k
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iterations with OHEM and 64k without. The initial learning rate

was set to 10−3 and decayed to 10−4 and 10−5 after, respectively,

50 and 80% of the training time. We split the dataset into 30

patients for training, and 10 for validation.

We compared the learning curves using the Dice score on

the validation set for six training procedures: three with OHEM

with a momentum of, respectively, 0, 0.9, and 0.99, and three

without OHEM but with oversampling with a probability p

of, respectively, 0 (uniform), 0.1, and 0.5. This oversampling

probability meant that we sampled positive patches (i.e., with

a new lesion at a second time point) with a probability p and

other patches (that could be randomly positive or negative) with

a probability 1-p for the training.

Training—Final approach provided for the
MSSEG-2 challenge

We used the model described before, using OHEM with a

momentum of 0.9, and trained the model on the whole MICCAI

MSSEG-2 training dataset for 30k iteration. As above, the initial

learning rate is set to 10−3 and decayed to 10−4 and 10−5 after,

respectively, 50 and 80% of the training time.

Evaluation metrics for the testing dataset

The evaluation procedure was defined by the MICCAI

MSSEG-2 committee (Commowick et al., 2021). We briefly

recall this procedure in the following. The MICCAI MSSEG-

2 testing dataset of 60 patients was divided into two subsets,

according to the presence or absence of new lesions in patients:

28 patients without new lesions and 32 patients with new lesions.

Those two datasets were evaluated differently.

All new lesions from the ground truth and our algorithm

prediction were individualized by computing the connected

components, and all lesions smaller than 3 mm3 were removed

(Commowick et al., 2018). The detection was defined at the

lesion level using the algorithm described by Commowick et al.

(2018) with the parameters α = 10%, β = 65%, and γ = 70%,

which were set by the MICCAI MSSEG-2 committee.

For the 28 patients without new lesions, the following

metrics are reported: the lesion volume prediction per patient

in mm3, and the new lesion detection rate per patient.

For the 32 patients with new lesions, the evaluation aimed at

assessing both the quality of the detection and the segmentation.

For evaluating the segmentation, the (voxel-level) Dice score per

patient was reported. For evaluating the detection, the following

metrics were used: the mean sensitivity Sens (=recall) at the

lesion level per patient for detecting new lesions, and the mean

positive predictive value PPV (=precision) at the lesion level per

patient for detecting new lesions and the F1 score at the lesion

level (which combines lesion-level Sens and PPV) per patient

(Commowick et al., 2018).

The calculation of those metrics is described below. True

positives with respect to the ground truth TPgt were defined

as the number of new lesions from the ground truth that were

correctly detected by our algorithm. True positives with respect

to our prediction TPpred correspond to the number of new

lesions predicted by our algorithm that were correctly detected

by the ground truth.

• Dice =
2 |PRED∩GT|
|PRED|+|GT| , where PRED is the network

prediction and GT the ground truth segmentation,

|PRED ∩ GT| is the number of overlapping voxels between

the prediction and the ground truth, |PRED| is the number

of voxels in the prediction and |GT| the number of voxels

in the ground truth.

• Sens =
TPgt

nnew lesionsgt
where TPgt and nnew lesions_gt are,

respectively, the true positives with respect to the ground

truth and the number of new lesions in the ground truth.

• PPV =
TPpred

nnew lesionspred
where TPpred and nnew lesions_pred

are, respectively, the true positives with respect to our

prediction and the number of new lesions in our prediction.

• F1 = 2∗Sens∗PPV
Sens+PPV where Sens and PPV are, respectively, the

previously defined sensitivity and Positive Predictive Value.

All of those metrics were compared to zero for patients

without new lesion, and to the ground truth segmentation of

patients with new lesion, which is the consensual segmentation

from four expert annotators (Commowick et al., 2021).

All results are presented as mean, Standard Error to the

Mean (SEM), and rank among other challenge pipelines

when available.

For the second testing dataset, constituted by the 17 patients

with new lesions in our cohort, we used exactly the same

evaluation procedure that we described above for the patients

with new lesions from the MICCAI MSSEG-2 testing dataset.

Implementation details

Our algorithmswere implemented on PyTorch (Paszke et al.,

2017) and written using TorchIO library (Pérez-García et al.,

2021). The implementation was based on that of Wolny et al.

(2020). Training was performed on an NVIDIA Tesla P100

graphic card.

Results

Results on the validation set: Impact of
the OHEM procedure

The comparison of the learning curves for the proposed

OHEM procedure and the forced oversampling procedure is
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FIGURE 2

Evolution of the Dice score as a function of training time for the OHEM and the forced oversampling procedure (denoted as “Uniform”). For

OHEM, µ is the momentum. For “Uniform”, patches were sampled with respective probabilities, p for those with new lesions, and 1-p for the rest

(not necessarily without new lesions). One can observe that the “Uniform” procedure with p > 0 ended up performing best and that, when using

OHEM, choosing µ > 0 seems to be beneficial.

shown in Figure 2. One can observe that, on this task, the

OHEM procedure, even with increasing the momentum to

0.99, did not give better results in terms of training speed nor

plateau of the Dice score. However, we observed that using

OHEM gives a positive momentum that helped to reach a higher

plateau of the Dice score on the validation set compared to a

null one.

Results on the testing set

Results on the first testing set from MICCAI MSSEG-2 are

shown in Table 1. In the 32 patients with new lesions, our

network achieved a mean lesion-level F1 score per patient of

0.446 (SEM 0.057), ranking 13th over 29 approaches for this

metric. Themean Dice per patient was 0.400 (SEM 0.051), which

ranked 18/29. Our mean sensitivity at the lesion level per patient

was 0.616 (SEM 0.069) and our mean positive predictive value at

the lesion level per patient was 0.383 (SEM 0.054). Concerning

the 28 patients without new lesions, for whom any prediction is a

pure false positive, on average, 0.75 (SEM 0.32) new lesions were

predicted per patient (ranking our approach 15/29), with a mean

lesion volume per patient among those 28 patients without new

lesion of 31.2 mm3 (SEM 13.0), which corresponded to a rank

of 20/29.

On our second testing set from our laboratory, on the 17

patients with new lesions, the mean Dice per patient was 0.465

(SEM 0.046). At the lesion level, our network achieved a mean

sensitivity per patient of 0.901 (SEM 0.043) and a mean positive

predictive value per patient of 0.239 (SEM 0.030), resulting in a

mean lesion-level F1 score per patient of 0.365 (SEM 0.038).

Figure 3 shows an example of inference on a follow-up MRI

from this second testing set from our laboratory.

Discussion

The main contribution of this work was the introduction

of online hard example mining (OHEM) to deal with class

imbalance. The rest of the approach is constituted of a

standard 3D UNet. We first showed that the use of a non-

negative momentum helped the training procedure. However,

overall, OHEM did not perform better than a predefined

fixed oversampling and especially performed worse when

an oversampling probability of p = 0.1 was used for

fixed oversampling.

On the MICCAI MSSEG-2 testing set, our approach

ranked in the mid-class of the challenge (Dice score of 0.400,

corresponding rank 18/29; lesion-level F1 score of 0.446,

rank 13/29). Interestingly, compared to other pipelines of the

challenge, our worst performances were on the subset of patients
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TABLE 1 Results on the testing set using MICCAI MSSEG-2 evaluation metrics, with the specific evaluation metrics from MICCAI MSSEG-2 testing

dataset for the 32 patients with new lesions (a) as well as for the 28 patients without new lesions (b), and the 17 patients with new lesions from our

second testing dataset (c).

(a) MICCAI MSSEG-2 testing dataset: patients with new lesions (n = 32)

Lesion-level F1 score per patient,

mean (SEM); rank

Dice score per patient,

mean (SEM); rank

Sens at lesion level per patient,

mean (SEM)

PPV at lesion level

per patient,

mean (SEM)

0.446 (0.057); 13th/29 0.400 (0.051); 18th/29 0.616 (0.069) 0.383 (0.054)

(b) MICCAI MSSEG-2 testing dataset: patients without new lesion (n = 28)

Number of new lesions predicted per patient, Lesion volume predicted in mm3 per patient,

mean (SEM); rank mean (SEM); rank

0.750 (0.320); 15th/29 31.2 (13.0); 20th/29

(c) Second testing dataset: patients with new lesions (n = 17)

Lesion-level F1 score per patient,

mean (SEM)

Dice score per patient, mean

(SEM)

Sens at lesion level per patient,

mean (SEM)

PPV at lesion level

per patient, mean (SEM)

0.365 (0.038) 0.465 (0.046) 0.901 (0.043) 0.239 (0.030)

without new lesions, where any prediction is a false positive.

Together with the relatively high sensitivity but relatively low

PPV, this could be explained by a bias in the OHEM training

toward a high detection rate, resulting in a greater false positive

rate. This trend was even stronger when we evaluated the

algorithm performances on our second testing dataset, with a

higher Dice score of 0.465, a higher sensitivity of 0.901 but a

lower PPV of 0.239.

When compared to other pipelines of the challenge, the

best pipeline in the subset of patients without new lesions,

consisting of a 3D UNet with pre-activation block, also used

an oversampling strategy for Regions of Interest with new

lesions, but was also ranked in the mid-class of the challenge

for the Dice score on the patients with new lesions (with a

Dice score of 0.409). The most accurate pipeline in terms of

Dice score (even better than several annotators), which did

not use any oversampling strategy, was ranked in the mid-

class of the challenge for the subset of patients without new

lesions for the score of new lesions detection rate. This is

consistent with the idea that dealing with the oversampling

of positive examples is a key problem in the balance between

false positive and false negative predictions in this new lesion

segmentation task. We believe, given the medical utility of

this task at the individual level for patient follow-up, that a

compromise between sensitivity and PPV favoring sensitivity is

clinically relevant if the algorithm is considered as an auxiliary to

the neurologist or radiologist. Indeed, the interrater variability

in manual new lesions detection is mainly explained by false

negative rate (Altay et al., 2013), i.e., new lesions that were not

detected by the rater. We believe that sensitive algorithms could

help neurologists or radiologists to detect those overlooked

new lesions. The clinicians could subsequently easily remove

false positive predictions of the algorithm after visual checking.

However, there is still a long way to go for clinical applications

of algorithms for new lesion segmentation. This will require

not only algorithm improvement but also prospective validation

studies on larger and very diverse datasets.

There was only one pipeline in the challenge that did

not use deep learning. Even if they outperformed four deep

learning teams on average, their rankingwas low on theMICCAI

MSSEG-2 testing dataset, with a mean Dice of 0.309 for patients

with new lesions, and a mean volume of new lesions detected of

177.9 mm3 for patients without new lesions. This does not mean

that non-deep-learning methods are not potentially useful for

this task but this would require additional comparisons which

are outside of the scope of the present work. To our knowledge,

most of the previously published deep learning algorithms

(McKinley et al., 2020; Salem et al., 2020) or recent non deep

learning based on deformation field (Cabezas et al., 2016) used

to segment new lesions on MS MRIs are based on multiple MRI

sequences and not only on a single sequence. It is the same when

looking at previously published deep learning algorithms used to

segment the lesion load transversally (Valverde et al., 2019; Zeng

et al., 2020). So, even if clinically relevant (Hegen et al., 2018), the

challenge task allows neural network to learn less information

for prediction than in most of the state of art methods, and

it can partly explain the difficulty of the task. The previous

work from Gessert et al. (2020) based on attention gated two
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FIGURE 3

Example of prediction on one patient from our second testing dataset (Bodini et al., 2016).

paths convolutional neural networks was to our knowledge the

most relevant deep learning work published on the task of

segmenting MS new lesion based only on two follow up FLAIR

sequences. They did not require an oversampling procedure to

deal with class imbalance and had very good lesion-wise true

positive rate and lesion-wise false positive rate. However, we

could not compare methods since their proposed evaluation

metrics differed from the ones provided by MICCAI MSSEG-2

(Commowick et al., 2018).

This work has several limitations. First, concerning the

OHEM training methodology (Shrivastava et al., 2016), it did

not improve the training procedure on this task and did not

outperform significantly other competing 3D UNets across the

challenge. Despite being an interesting methodology to deal

with class imbalance, we have to keep in mind that it has been

developed for detection in 2D natural images (Shrivastava et al.,

2016) using fast R-CNN (Wang et al., 2016). Even though it has

shown promising results in Bian et al. (2022) work on heartMRI,

unveiling its full potential for 3D medical image segmentation

may require further adaptations and developments. Second, we

chose to compare OHEM and fixed oversampling as a function

of training time and not as a function of epochs. Training time

could be influenced by many parameters like machine heat

and GPU availability. However, we believe it was the fairest
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way to compare methods. Indeed, the unit cost of each epoch

(or iteration) has no reason to be the same for the different

techniques. Even worse, it can vary across epochs due to the

nature of the OHEM method. Another limitation is that we

used a single split into training and validation rather than a

cross-validation strategy. Thus, we did not use all samples for

testing and we did not assess their variability when varying

the training set. We made this choice because we had to

provide one single result for the challenge. We did not use data

augmentation in our training strategy to be able to compare

different oversampling strategies and momentum, but OHEM

comportment should be explored with data augmentation in

future work. Due to the short delay between baseline and follow-

up MRIs in the MICCAI MSSEG-2 dataset (from 1 to 3 years)

as well as in our second testing dataset (maximum 120 days),

we could not explore the influence of severe atrophy in this

task. An adjacent and clinically useful task for longitudinal

follow-up of MS patients, that we could not assess here due to

challenge constraints focusing on new lesions, is the detection

of shrinking and enlarging lesions. Furthermore, it is likely

that the use of multicontrast MRI could improve the results

over the use of FLAIR alone. The aim of the MICCAI 2021

MSSEG-2 challenge was to develop an algorithm only based

on two longitudinal FLAIRs. Thus, our present work only uses

FLAIR as input and a comparison with a multicontrast input

is left for future work. Another important aspect that remains

to be studied is generalizability to other acquisition settings.

In the MICCAI MSSEG-2 challenge, there was quite a variety

of different MRI machines. Furthermore, it is interesting to

note that the General Electric machines present in the MICCAI

MSSEG-2 dataset were not present in the training dataset.

However, further experiments, which could not be performed

within the challenge setting, would be required to demonstrate

generalizability across acquisition settings. Future work will

be to go further into dealing with class imbalance during

training with a fixed oversampling strategy, as it gave interesting

results on the validation set and in other pipelines of the

challenge. The difficulty with a fixed oversampling strategy is the

arbitrary choice of the oversampling factor. Perhaps inserting

neurological priors to guide the oversampling factors and

adapting them to the anatomical region could be a promising

idea, allowing to take into account the complexity of prediction

in some brain areas and the variability of the lesion load over

brain regions in MS to tune locally the probability of patches

from those regions to be oversampled.

Conclusion

In this paper, we described our contribution to the

MICCAI MSSEG-2 challenge (Commowick et al., 2021).

The main new methodological component was the use

of online hard example mining (OHEM) for handling

class imbalance. Overall, on the challenge testing set,

our pipeline ranked at the mid-class, with an average

Dice of 0.400 and an average F1 score of 0.446. For

this specific application, on the validation set, OHEM

did not provide any improvement over a standard fixed

oversampling strategy. Nevertheless, such a strategy may

deserve further investigation for medical imaging problems

with class imbalance.
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Appendix

We used the MICCAI MSSEG-2 dataset (Commowick et al.,

2021), consisting in 100 MS patients with two longitudinal

FLAIR MRI spaced from 1 to 3 years, acquired with 6 Philips

scanners (Ingenia 1.5T, 2 Ingenia 3T, 1 Achieva dStream

3T, 1 Achieva 1.5T, 1 Achieva 3T), 6 Siemens scanners (1

Aera 1.5T, 1 Skyra 3T, 1 Verio 3T, 1 Prisma 3T, 2 Avanto

1.5T), and 3 General Electrics (GE) scanners (Optima MR450w

1.5T, SIGNA HDx 3T, SIGNA HDxt 1.5T), with different

voxel sizes (from 0.5 to 1.2 mm3). Ground truth, consisting

in new lesions on second time point, were delineated by 4

neuroradiologists from different centersmanually on ITK-SNAP

(http://www.itksnap.org/pmwiki/pmwiki.php), and consensus

was obtained with the majority voting for each voxel. The

whole dataset was divided by MSSEG-2 training committee

into 40 patients available to challengers for training and

validation, and 60 patients, not available to the challengers,

for testing. All MRIs acquired with GE were only in the

testing dataset.
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Longitudinal magnetic resonance imaging (MRI) has an important role in

multiple sclerosis (MS) diagnosis and follow-up. Specifically, the presence of

new lesions on brain MRI scans is considered a robust predictive biomarker for

the disease progression. New lesions are a high-impact prognostic factor to

predict evolution to MS or risk of disability accumulation over time. However,

the detection of this disease activity is performed visually by comparing

the follow-up and baseline scans. Due to the presence of small lesions,

misregistration, and high inter-/intra-observer variability, this detection of new

lesions is prone to errors. In this direction, one of the last Medical Image

Computing and Computer Assisted Intervention (MICCAI) challenges was

dealing with this automatic new lesion quantification. The MSSEG-2: MS new

lesions segmentation challenge o�ers an evaluation framework for this new

lesion segmentation task with a large database (100 patients, each with two-

time points) compiled from the OFSEP (Observatoire français de la sclérose en

plaques) cohort, the French MS registry, including 3D T2-w fluid-attenuated

inversion recovery (T2-FLAIR) images from di�erent centers and scanners.

Apart from a change in centers, MRI scanners, and acquisition protocols, there

are more challenges that hinder the automated detection process of new

lesions such as the need for large annotated datasets, which may be not

easily available, or the fact that new lesions are small areas producing a class

imbalance problem that could bias trainedmodels toward the non-lesion class.

In this article, we present a novel automated method for new lesion detection

of MS patient images. Our approach is based on a cascade of two 3D patch-

wise fully convolutional neural networks (FCNNs). The first FCNN is trained to

be more sensitive revealing possible candidate new lesion voxels, while the

second FCNN is trained to reduce the number of misclassified voxels coming

from the first network. 3D T2-FLAIR images from the two-time points were

pre-processed and linearly co-registered. Afterward, a fully CNN, where its

inputs were only the baseline and follow-up images, was trained to detect

new MS lesions. Our approach obtained a mean segmentation dice similarity
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coe�cient of 0.42 with a detection F1-score of 0.5. Compared to the challenge

participants, we obtained one of the highest precision scores (PPVL = 0.52), the

best PPVL rate (0.53), and a lesion detection sensitivity (SensL of 0.53).

KEYWORDS

brain, MRI, multiple sclerosis, automatic new lesion detection, deep learning,

learning-based registration, cascaded training

1. Introduction

Multiple sclerosis (MS) is an inflammatory disease of the

central nervous system and spinal cord, with its etiology remains

elusive. The progression of the disease starts almost in all cases

with an inflammatory syndrome in the CNS, demyelination,

and axonal loss when the immune system mistakenly starts to

attack the protective myelin sheath in the brain. Due to the

nature of the MS disease, no drugs offer neuroprotection when

progression is observed (Ther et al., 2022), although they help

to decrease the myelin loss ratio. MRI imaging techniques are

one of the first choices to be used in clinical practice as reported

in the 2017 revision of the McDonald criteria (McDonald et al.,

2001; Thompson et al., 2018), because of their ability to detect

the early stages of the disease. MS is detected in patients who

have not developed clinically apparent neurological disabilities

5–10 times more frequently on conventional MRI than in the

clinical assessment of relapses (Sahraian and Eshaghi, 2010).

MS Lesion count and volume are very important indicators

for MS diagnosis and progression and have been associated

with the long-term outcome of the disease (Goodin et al.,

2012; Uher et al., 2017; Ouellette et al., 2018). According to

Rovira et al. (2015), patients with clinical and radiological MS

findings that have not been diagnosed as patients with MS must

undergo a follow-up brain MRI. On longitudinal analysis, new

lesions are considered a high-impact prognostic factor for MS

evolution prediction and risk of disability accumulation over

time (Tintore et al., 2015). Furthermore, there is a need for

a lesion quantification approach for the computation of the

volumetric changes in each segmented lesion between two-time

points for the MS lesion evolution (Köhler et al., 2019). Manual

delineation of lesion load in brain volume should be the first

choice during diagnosis, but a large number of MRI slices and

different scanning modalities prevent it, due to being a time-

consuming procedure with large intra- and inter-rater variability

(Altay et al., 2013; Egger et al., 2017). Therefore, there is an

increase in the demand for automatic methods to provide fast,

more robust, and reliable results, specially for the computation

of lesion volumetric changes between two-time points (Köhler

et al., 2019)

Many methods were proposed to automatically detect the

lesion load in MRI scans (Valverde et al., 2017b; Zhang et al.,

2019) and even to review the improvements in the cross-

sectional field (Lladó et al., 2012; Zeng et al., 2020; Shoeibi

et al., 2021). Detecting changes in longitudinal analysis for new

or enlarging lesions in the follow-up scan compared to the

baseline was done initially with traditional image pre-processing

tools. Based on the intensity subtraction between successive

time points, Sweeney et al. (2013) used logistic regression

coefficients to automatically model changes over time. Also,

the work of Elliott et al. (2013) incorporated both spatial and

temporal information in a two-stage classifier starting with

the extraction of relevant features and brain tissues and used

this information to finally segment lesions. In Battaglini et al.

(2014) and Ganiler et al. (2014) authors relied on thresholding

the subtraction of follow-up and baseline images. By taking

the changes in surrounding tissue in mind and not depending

only on the intensity change, deformation field-based methods

were proposed to detect lesion change (Cabezas et al., 2016;

Salem et al., 2018). Relying on segmenting both time points

independently, Schmidt et al. (2019) extended their work on

cross-sectional (Schmidt et al., 2012) in a new pipeline to provide

lesion evolution patterns. Moreover, Jain et al. (2016), based

on a joint expectation-maximization (EM) framework, used the

subtraction of the two-time points and cross-sectional masks of

follow-up and baseline to get the longitudinal changes. Krüger

et al. (2020) used a shared encoder based on a 3D CNN to

process both baseline and follow-up images. The outputs of the

encoders were concatenated and passed to the decoder to detect

the new or enlarged lesions that appear in the follow-up images.

Most traditional methods depend on the manual threshold or

mask subtraction which is affected by the required registration

process and could not provide results comparable to those of

human raters.

The recent advance in processing methods and shift made

by artificial intelligence and deep learning methods, specially

convolution neural networks (CNNs) and its ability to extract

features, have made them one of the first choices to implement

novel approaches. For instance, the first use of CNN in MS

longitudinal data was proposed by Birenbaum and Greenspan

(2016) to reduce false positives after candidate selection,

obtaining segmentation accuracies near to a human rater.

Inspired by the work of Balakrishnan et al. (2019) to compute

the deformation field (DF), Salem et al. (2020) developed a new
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approach to simultaneously learn the nonlinear DF between

follow-up and baseline and from the learned DF and input

images learn the segmentation mask. Denner et al. (2021) used

the same shared encoder and different decoders to learn the

tasks of segmentation and non-rigid registration. To improve

the lesion map segmentation, Gessert et al. (2020) extended

the 4D context by adding a temporal history and adding

convGRU to aggregate the 3D representations from encoders to

be passed to the decoder for the final prediction map. Despite

the increased demand for new lines in longitudinal studies,

work was still hindered by no reference benchmark for proposed

methods. Most methods mentioned previously were trained and

evaluated on in-house data or no public code was available for

comparisons among methods. To overcome this limitation, the

MICCAI Multiple Sclerosis new lesion segmentation (MSSEG-2)

challenge was proposed, offering a new opportunity to progress

within this research and a public performance benchmark

dataset.

In this article, we present a new pipeline for automated

new lesion detection of MS patient images based on a cascade

of two fully convolutional neural networks (FCNNs). The first

FCNN, a filter for misclassified voxels, is used to discard the

vast majority of negative voxels, while the second one is used to

deal with more challenging voxels that were misclassified from

the first FCNN and with the high unbalancing lesion voxels

compared with background, specially hard in longitudinal data

due to the few change in follow-up images (i.e., few lesions).

The proposed architecture builds on an initial prototype that we

presented at the MSSEG-2 challenge (Commowick et al., 2021).

Other works exist either in other domains as coronary calcium

segmentation (Wolterink et al., 2016), liver lesions in CT scans

(Christ et al., 2016), or even based on CNN models in the MS

domain such as the work of Valverde et al. (2017a), which used a

cascaded CNN in cross-sectional lesion detection. The proposed

pipeline was trained and tested with the MSSEG-2 challenge

dataset. The results were obtained using the Anima1 toolbox.

The same measures for the challenge (detection/segmentation)

are reported and compared with the rest of the participants.

2. Methods

The main basic block in our segmentation pipeline is the

U-Net (Ronneberger et al., 2015; Çiçek et al., 2016), which

proved its performance in segmentation tasks, especially in the

medical area. One of the advantages the U-Net has provided to

the medical community is the ability to use a small sample to

create highly detailed segmentation maps, adopted in different

medical applications and obtaining the best performance in

medical challenges (Siddique et al., 2021). Due to its context-

based learning in the two-path architecture of contracting and

1 https://anima.irisa.fr/

expansion paths, the network training is faster and provides

more accurate results than other segmentation models. In this

article, 3D patches were chosen to benefit from the spatial

contextual information in 3DMRI and let the network deal with

input of any size without the need to re-sample or resize images,

which can suffer from information loss, or lesion deformation,

especially in the smaller ones.

2.1. Cascade-based training

In general, training amodel for the detection of small lesions,

where the number of lesion voxels is much less than non-lesion

voxels, makes the model biased to the non-lesion class. However,

the problem is even more challenging in the new lesion change

detection scenario, where the few changes in the follow-up

images may be insufficient to train the model.

To tackle this class imbalance problem, we propose to

perform the following patch extraction strategy around the

lesion voxels (see Figure 1A):

1. Extract all lesion voxels in the training images,

2. Patches of size 32×32×32 are extracted around every selected

voxel in both baseline and follow-up images and stacked

for the T2-w fluid-attenuated inversion recovery (T2-FLAIR)

modality provided in the MSSEG-2 challenge.

3. FCNN1 is trained with the selected patches (details of the

model available in Section 2.2).

4. Overlapped patches are extracted and tested using the trained

FCNN1 to get the probability Y1. The probability threshold

(>0.5) is used to calculate the lesion map. Also, small lesions

(<3 mm3) are removed.

5. Based on the calculated lesionmap, new patches are extracted

with 32 × 32 × 32 size and step 8 × 8 × 8 around the lesion

area and the misclassified lesion by FCNN1.

6. The second network (FCNN2) is trained from scratch with

the newly extracted patches.

7. The output probability from the trained FCNN1 (Y1) is

averaged with the output of the trained FCNN2 (Y2) to

get the final lesion probability mask. To obtain the final

segmentation mask, we threshold the voxel probability > 0.5

and remove the small lesions (< 3mm3).

2.2. Network architecture

The FCNN used in our work for both FCNN1 and FCNN2

is shown in Figure 1B. It follows the most recent proposed

architecture by Salem et al. (2020). The network is a fully CNN

that takes the T2-FLAIR image modality in both baseline and

follow-up as inputs and outputs of the new lesion segmentation

mask. The network consists of two parts as shown in Figure 1C.

The first part is a U-Net block that automatically learns the DF
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A

B

C

FIGURE 1

Proposed pipeline for new MS lesion detection. (A) Cascade-based pipeline, where the output of the first FCNN is used to select the input

features of the second FCNN. (B) The proposed network consists of a 3D registration block and a 3D segmentation block. The inputs are

baseline/follow-up images of the T2-FLAIR modality. The 3D registration block learns the deformation field (DF) and non-linearly registers the

baseline image to the follow-up image. Afterward, the learned DF and the baseline and follow-up images are fed to the segmentation block,

which performs the final detection and segmentation of the new lesions. The network is trained end-to-end using a combined loss function. (C)

The 3D registration and segmentation architectures (see Salem et al., 2020 for more details).

that non-linearly registers the T2-FLAIR baseline image to the

follow-up space. The learned DF and the baseline and follow-up

images are then fed to a second part of the network, another U-

Net that performs the detection and segments of the new lesions.

The network is trained end-to-end with gradient descent and

simultaneously learns both DF and new lesion segmentation.

This model was updated for the MSSEG-2 challenge dataset and

sent to the challenge (referred to as Vicorob).

3D registration architecture: A 3D registration block is

built for the T2-FLAIR modality following the architecture

explained in Salem et al. (2020). This block is inspired by

VoxelMorph, a learning framework for deformable medical

image registration (Balakrishnan et al., 2019). The registration

block learns the DF that non-linearly registers the T2-

FLAIR baseline image to the follow-up space. It is a fully

convolutional network that follows a U-shaped architecture

(Ronneberger et al., 2015). The U-Net architecture consists of

four downsample (the contracting path) and upsample steps

(the expansive path). The core element (CE) block is a two

3D convolution layer (kernel size = 3 and stride = 1) with K

channels. Each convolution is followed by a LeakyReLU layer.

The number of channels, K, of CE blocks is (64, 128, 256,

and 512) and (512, 256, 128, and 64) for the contracting path

and expansive path, respectively. The spatial transformation

(Jaderberg et al., 2015; Balakrishnan et al., 2019) warps the

baseline image to the follow-up image using the learned DF

and enabling end-to-end training. The LeakyReLU activations

are used instead of ReLU so that the learned DFs can have

both positive and negative values (see Salem et al., 2020 for

more details).

3D segmentation architecture: A 3D segmentation CNN

is also used for segmenting the new lesions. It is a two-branch

network where each branch is a U-Net following the architecture

explained in Salem et al. (2020). The U-Net architecture is

exactly the same as the U-Net used in the registration block,

but uses a ReLU activation layer instead of the LeakyReLU

layer. The inputs of the first branch are the T2-FLAIR image

modality in both baseline and follow-up, while the second
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branch input is the DF learned from the first registration block.

The outputs of the two branches are concatenated before the

classification step.

2.3. Loss functions

The loss function used in this work consists of the

summation of an unsupervised and a supervised loss functions.

The unsupervised loss function controls the registration part

of the network (Balakrishnan et al., 2019). It consists of two

components: a similarity part that penalizes differences in

appearance between the moved baseline and follow-up images

combined with a regularization part that enforces a spatially

smooth deformation and often ismodeled as a linear operator on

the spatial gradients of DF, as stated in Balakrishnan et al. (2019).

The supervised function, LCrossEntropy (CrossEntropy), controls

the segmentation part of the network and penalizes differences

between the segmentation and ground truth. Therefore, the total

loss function LTotal is:

LTotal = LCrossEntropy(Seg,GT)
︸ ︷︷ ︸
Segmentation loss function

+
∑

m∈Modalities

(

Similarity part
︷ ︸︸ ︷

1

N

N∑

i=1

(Fmi − Bm(DFm)i)
2 +

Regularization part
︷ ︸︸ ︷∑

p∈DF

‖ ▽DFm(p) ‖
2

)

︸ ︷︷ ︸
Registration loss function

(1)

where Fm, Bm(DFm), and DFm are follow-up image, baseline

image warped by DF (moved baseline), and DF for a modality

m, respectively. Seg and GT are the automatic segmentation and

the ground truth, respectively.

2.4. Model training

To adjust the weights of the cascaded pipeline, each network

is trained individually. For FCNN1 to be more sensitive with

lesion voxels candidate, patches of size 32×32×32 are extracted

around lesion voxels. For FCNN2, the model is trained with

more challenging voxels, which were wrongly classified with

FCNN1. Patches of size 32×32×32 and step size 8×8×8 are

extracted in the area of lesion voxels and incorrectly predicted

lesions from FCNN1.

For training the pipeline, patches are extracted from the

challenge’s 40 patient volumes (the training set), with 25% of

the selected patches used to validate the model after each epoch

and to adjust the hyper-parameters. To adjust the pipeline

weights, training is held for 100 epochs, with early stopping

when no decrease was detected in the model validation loss

after 10 epochs.

2.5. Model testing

When the pipeline training is completed, the weights can be

used with the unseen data. The overlapped extracted patches

from the T2-FLAIR modality in the baseline and follow-up

images and the weights of FCNN1 were used to get the

probability P1, then the same extracted patches are fed to

FCNN2 to get P2. The average of the two probabilities is

computed and threshold by > 0.5 to get a binary mask.

The final binary mask is obtained after removing the isolated

voxels (region volume < 3mm3). Figure 2 shows the cascade

architecture for the testing procedure.

2.6. Implementation details

The proposed method has been implemented in Python2,

using Keras3 with the TensorFlow4 backend (Abadi et al., 2015).

All experiments have been run on a GNU/Linux machine box

running Ubuntu 18.04, with 128 GB RAM. The training was

carried out on a single TITAN X GPU (NVIDIA Corp, United

States) with 12 GB RAM. To promote the reproducibility and

usability of our research, the proposed cascade new MS lesion

detection pipeline will be available for downloading at our

research website.

3. Experimental setup

3.1. Dataset

3.1.1. MSSEG-2

The database used in this article is the MSSEG-2 challenge

dataset. A total of 100 patients with MS were gathered. Only

a 3D T2-FLAIR sequence at the first timepoint and a 3D T2-

FLAIR sequence at a second timepoint (from 1 to 3 years

after the first one) are available. A total of 15 different MRI

scanners are represented (nine scans from three GE scanners

with field strength 1.5T and 3T, 63 scans from six Philips

scanners with field strength 1.5T and 3T, and 28 scans from six

Siemens scanners with field strength 1.5T and 3T). The image

characteristics vary with different resolutions and different voxel

sizes (from 0.5 mm3 to 1.2 mm3). The gathered data are

separated according to 40 scans (11 scans with no new lesions

detected in the second timepoint) for training and 60 (28 scans

2 https://www.python.org

3 https://keras.io

4 https://www.tensorflow.org/
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FIGURE 2

Proposed testing process. The cascade architecture of the trained network is used to segment the unseen data. Patches of size 32×32×32 are

extracted from input modalities (baseline and follow-up) with step size 8×8×8 and fed to both FCNN1 and FCNN2. The average probability mask

from both networks is thresholded with a minimum connected component (<3 mm3) to get the final lesion mask.

with no new lesions detected in the second timepoint) for

testing. All data from GE scanners have been excluded from the

training set.

3.1.2. Pre-processing

The MSSEG-2 challenge dataset is available with a

rigid registration already performed to bring the two-time

points of each patient to a common middle point. For each

patient, the same pre-processing steps were performed

on both baseline and follow-up images. First, a brain

mask was identified and delineated using the ROBEX

Tool (Iglesias et al., 2011). Second, the T2-FLAIR images

underwent a bias field correction step using the N4 algorithm

from the ITK library. Finally, the baseline and follow-up

intensity values from all the training sets were normalized

using a histogram-matching approach based on Nyúl et al.

(2000).

3.2. Evaluation

The MSSEG-2 challenge performance evaluation consists of

two levels as follows:

• New lesion detection: how many individual new lesions in

the ground truth were detected by the evaluated method,

independently of the precision of their contours. F1-score

was chosen for this criteria.

• New lesion segmentation: how well are the lesions in

the ground truth overlapping with those of the evaluated

method. Dice measure has been selected as a score in

these criteria.

The Anima5 toolbox, used by the challenge organizers

for evaluation, is also used in all our evaluations

5 https://anima.irisa.fr/
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(animaSegPerfAnalyzer). Similar to the challenge, the evaluation

of lesion detection and segmentation metrics were calculated

using only 32 patients from the 60 scans provided for evaluation

(only patients with at least one new lesion in the follow-up).

The main metric for evaluating the detection of the new lesions

is the F1-score, but we also computed the precision and recall,

computed as follows:

F1-score =
2 · TP

FN + FP + 2 · TP

PPVL =
TP

TP + FP

SensL =
TP

TP + FN

where PPVL denotes the model precision (the fraction of real

lesions among the predicted ones) and SensL denotes model

sensitivity or recall (the fraction of real lesions that were

predicted). To evaluate the model performance in the cases with

no new lesions detected at the follow-up image, the average

volume (inmm3) of incorrectly predicted lesions is added to the

VolTestedmeasure.

The main metric to evaluate the segmentation is the dice

score (DSC), which is the equivalent of the F1-score on a voxel

level, and is computed as follows:

DSC =
2 · TPs

FNs + FPs + 2 · TPs

In segmentation, TPs and FPs denote the number of voxels

correctly and incorrectly predicted as lesions, respectively, and

FNs represents the number of voxels incorrectly predicted as

non-lesion.

To evaluate the significance of the obtained results, we used

paired t-tests at a 5% level of confidence.

The following models were analyzed, aiming to show the

benefits of the registration step:

• VicorobCascade: This is our main cascade-based model in

which the registration block and segmentation block are

trained simultaneously end-to-end using the loss function

explained in Section 2.3. The T2-FLAIR image modality in

both baseline and follow-up combined with the learned DF

is fed to the segmentation block as first and second inputs,

respectively.

• DemonsDFCascade (a.k.a. the proposed cascade-based

network using the DF obtained from Demons Thirion,

1998): This model does not use the registration blocks

of the proposed network shown in Figure 1B. It uses

only the segmentation block with the T2-FLAIR image

modality in both baseline and follow-up as the first

input. The second input of the segmentation block is

the DF directly computed by registering the baseline to

the follow-up space for the T2-FLAIR modality using the

multi-resolution Demons registration approach from ITK

(Thirion, 1998). This model was used for comparison

with the VicorobCascade model to highlight the impact of

learned-based DF with end-to-end training over the DF

from Demons.

• NoDFCascade (a.k.a. the proposed cascade-based network

without DF): This model does not use the registration

block of the proposed network shown in Figure 1B. It uses

only the segmentation block with just the T2-FLAIR image

modality in both baseline and follow-up as input. This

model is used for comparison with the other two models to

highlight the impact of the addition of the DF in increasing

the detection of new lesions.

In addition to the above models, the non-cascade version

of the three models was added to compare the normal 3D

patch-based training with our proposed cascade-based training

pipeline discussed in Section 2.1. Note that our original

submission to the challenge is referred to here as Vicorob.

4. Results

Table 1 shows the F1-score, DSC, PPVL, and SensL of

the proposed pipeline (VicorobCascade), the two variants

(DemonsDFCascade, NoDfCascade), and the non-cascade

version of each model. Results show the improvement

achieved in evaluation metrics by using the cascaded-based

pipeline over normal (no-cascade-based) training one. In

addition, the results show the benefits of using DF and

also the superiority of our cascade VicorobCascade model,

where deformation fields are learned simultaneously with new

lesion detection.

Figures 3, 4 show visual examples of the improvement of

the VicorobCascade model with respect to the other evaluated

models. In the figures, each column corresponds to the

baseline T2-FLAIR image, the follow-up T2-FLAIR image,

the NoDF, NoDFCascade, DemonsDF, DemonsDFCascade,

Vicorob, and VicorobCascade prediction masks, and the

ground truth mask. Figure 3 shows improvement in the

sensitivity of the model, while Figure 4 shows improvement

in precision.

Analyzing the results per patient, Figure 5 shows

a box plot summarizing the performance of the

VicorobCascade, the two variants (DemonsDFCascade,

NoDFCascade), and the no-cascade-based version of the

three models on the four metrics used in the evaluation

(F1-score, DSC, PPVL, and SensL). The results show

again the superiority of the VicorobCascade over the

other methods.
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TABLE 1 Lesion detection and segmentation results on the MSSEG-2 challenge test set: Comparison between the di�erent models evaluated.

Method F1-score Dice PPVL SensL

Vicorob 36.88± 29.21 35.83± 30.53 34.28± 30.22 49.80± 39.49

VicorobCascade 49.97± 36.75 41.97± 31.51 51.86± 39.31 52.74± 39.62

DemonsDF 31.21± 34.68 29.08± 29.16 35.20± 39.07 36.92± 38.58

DemonsDFCascade 45.59± 35.65 41.84± 30.98 46.51± 38.55 55.70± 37.82

NoDF 23.97± 30.54 25.75± 28.58 34.12± 41.95 27.84± 34.81

NoDfCascade 43.30± 34.24 39.86± 29.19 46.12± 38.55 52.43± 40.58

The results represent the mean F1-score, DSC, PPVL, and SensL computed by the segmentation performance analyzer tool available in Anima (animaSegPerfAnalyzer). Best values are

depicted in bold.

FIGURE 3

Examples of new lesion detection sensitivity improvement in axial slices. Columns correspond to baseline T2-FLAIR, follow-up T2-FLAIR and the

predicted segmentation masks over follow-up T2-FLAIR for NoDF, NoDFCascade, DemonsDF, DemonsDFCascade, Vicorob, and

VicorobCascade, respectively, along with the consensus ground truth (GT) mask, overlaid in green. For the predicted segmentation masks,

green, red, and blue represent true positives, false positives, and false negatives, respectively.

Challenge results

The model previously submitted to the challenge under

Vicorob team (referred to Vicorob) and our new cascade-based

pipelines (VicorobCascade) are compared with the other

challenge participants (29 pipelines for 24 teams submitted to

the challenge). Figures 6, 7 show the boxplot summarizing the

performance F1-score and PPVL per patient, respectively.
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FIGURE 4

Examples of new lesion detection precision improvement in axial slices. Columns correspond to baseline T2-FLAIR, follow-up T2-FLAIR, and the

predicted segmentation masks over follow-up T2-FLAIR for NoDF, NoDFCascade, DemonsDF, DemonsDFCascade, Vicorob, and

VicorobCascade, respectively, along with the consensus ground truth (GT) mask, overlaid in green. For the predicted segmentation masks,

green, red, and blue represent true positives, false positives, and false negatives, respectively.

5. Discussion and future work

In this article, we have proposed a novel automated new

lesions detection approach in longitudinal brainMR images. The

proposed patch-wise pipeline relies on a cascade of two identical

FCNNs, where the first network is trained to be more sensitive

revealing possible candidate lesion voxels, while the second

network is trained to reduce the number of misclassified voxels

coming from the first network output. As mentioned in Salem

et al. (2020), themodel is trained end-to-end and simultaneously

learns both the DF and the appearance of new lesions. As the DF

is learned inside the network and not computed separately using

classic non-rigid registration methods, the execution time of the

network on a testing image is reduced compared to the time

required by the state-of-the-art methods (Cabezas et al., 2016;

Salem et al., 2018) from 2 to 11 min according to the test image

resolution.

Regarding the end-to-end training, we trained the

proposed model (VicorobCascade), two other variants

(DemonsDFCascade and NoDFCascade), and the no-cascade-

based version of the three models. Regarding the results without

cascading, in terms of F1-score, DSC, and SensL, the Vicorob

model was significantly better than all the other methods

(p < 0.05). The F1-score improved by 5.67% compared to the

DemonsDF and by 12.91% with respect to the NoDF model.

In terms of PPVL, however, the performance of the Vicorob

model was similar to that of the DemonsDF, although both

models provided better results than the NoDF model. Notice

that the model trained without any DF (NoDF) detected new

lesions with a sensitivity of 27.84% and an F1-score of 23.97%.

This result shows, as previously discussed in Salem et al. (2020),

that the addition of DF helps to increase the detection of new

lesions. However, the results also show that training the model

end-to-end, simultaneously learning both the DF and the new

lesions (Vicorob pipeline), performs better than using DF

computed by classic deformable registration methods such as

Demons (Thirion, 1998).

Regarding the cascade-based training, the proposed pipeline

using two FCNN outperforms the results obtained with the

baseline (no-cascade-based) approaches. The reported results

show that the cascaded proposed pipeline outperformed

the baseline (no-cascade-based) pipeline in all the proposed
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FIGURE 5

Box plot summarizing the per-patient performance of the VicorobCascade, the two variants (DemonsDFCascade, NoDFCascade), and the

no-cascade-based version of the three models on the four metrics used in the evaluation (F1-score, DSC, PPVL, and SensL).

Vicorob, DemonsDF, and NoDFmodels for all the segmentation

and detection metrics and showed also the superiority of

our VicorobCascade model. The F1-score was significantly

improved by 13.9%, 14.38%, and 20.85% for the Vicorob,

DemonsDF, and NoDF models (p < 0.05), respectively.

Moreover, Figure 3 shows a sensitivity improvement in the

evaluated models. Notice that there is an increase in the

number of true positive voxels (green ones) and decreasing

in the number of false negative voxels (blue ones) between

the non-cascaded and the cascaded-based models. Figure 4

shows a precision improvement for the VicorobCascade model.

Notice also that there is a decrease in the number of false

positive lesions compared to the other models. Regarding

the cases with no new lesions, VolTested decreased from

88.40 mm3 for the Vicorob model to 11.56 mm3 for the

VicorobCascade model.

Regarding the challenge results and compared to the

challenge participants, our model (VicorobCascade) obtains

one of the highest precision scores (PPVL = 0.52), the best

PPVL rate (0.53), and a lesion detection sensitivity (SensL of

0.53) being superior to that of one of the challenge’s human

raters. Analyzing the results per scanner, the VicorobCascade

model provided an F1-score of 0.22, 0.54, and 0.51 for GE,

Philips, and Siemens scanners, respectively. Notice that the

lower results for the GE scanner are due to the fact that

data from this particular scanner were not available in the

MSSEG-2 training set. Within this analysis, we also observed

that the cascade-based approach obtained better results than

the no-cascade one for the three scanners. Notice that there

is a limitation in dealing with different image domains when

data are not available. Furthermore, a clinical correlation with

disability measurements could enrich the clinical evaluation
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FIGURE 6

F1-score per-patient analysis. F1-score for the MSSEG-2 challenge experts, challenge teams’ results, and our cascade-based pipeline

(VicorobCascade).

FIGURE 7

PPVL per-patient analysis. PPVL for the MSSEG-2 challenge experts, challenge teams’ results, and our cascade-based pipeline (VicorobCascade).

The VicorobCascade model got one of the best PPVL values between teams after the Empenn team.

of the automated segmentation results. Unfortunately, the

MSSEG-2 challenge dataset does not include these clinical

disability metrics. This will be taken into account in our future

research work.

In conclusion, we have presented a novel approach for

longitudinal analysis in patients with MS based on a cascade

of two FCNNs, where the first one is able to find the potential

candidates and the second one is optimized to detect new

lesions and reduce the number of false positives. The obtained

results indicate that the proposed end-to-end training model

of the deformation fields along with the detection of new

lesions combined within the cascade-based training pipeline

increases the accuracy of the pipeline. Given the sensitivity

and limited number of false positives, we strongly believe that

the proposed method has the potential to be used in clinical

studies in order to monitor the progression of the disease. We

plan to release the proposed method for downloading at our

research website.
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A unified framework for focal
intensity change detection and
deformable image registration.
Application to the monitoring of
multiple sclerosis lesions in
longitudinal 3D brain MRI
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Vincent Noblet1

1ICube UMR 7357, Université de Strasbourg, CNRS, Strasbourg, France, 2Hôpitaux Universitaires de

Strasbourg, Strasbourg, France

Registration is a crucial step in the design of automatic change detection

methods dedicated to longitudinal brain MRI. Even small registration

inaccuracies can significantly deteriorate the detection performance by

introducing numerous spurious detections. Rigid or a�ne registration are

usually considered to align baseline and follow-up scans, as a pre-processing

step before applying a change detection method. In the context of multiple

sclerosis, using deformable registration can be required to capture the complex

deformations due to brain atrophy. However, non-rigid registration can alter

the shape of appearing and evolving lesions while minimizing the dissimilarity

between the two images. To overcome this issue, we consider registration

and change detection as intertwined problems that should be solved jointly.

To this end, we formulate these two separate tasks as a single optimization

problem involving a unique energy that models their coupling. We focus on

intensity-based change detection and registration, but the approach is versatile

and could be extended to other modeling choices. We show experimentally

on synthetic and real data that the proposed joint approach overcomes the

limitations of the sequential scheme.

KEYWORDS

deformable 3D registration, change detection, longitudinal analysis, multiple

sclerosis, joint minimization, alternating direction method of multipliers (ADMM)

1. Introduction

Multiple sclerosis (MS) is an auto-immune neurodegenerative disease characterized

by the inflammation of the myelin coating that surrounds the nerves. As a consequence,

the transmission of nervous impulses is impaired, causing motor, cognitive and sensorial

disabilities. The evolution of MS is characterized by the apparition of focal lesions in

the brain and in the spinal cord, and by a progressive atrophy of brain tissues. Both
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phenomena can be monitored thanks to Magnetic Resonance

Imaging (MRI) (Kaunzner and Gauthier, 2017). In the clinical

routine, the evolution of the lesion load and of the brain

atrophy is generally assessed qualitatively. However, the precise

quantification of lesion changes over time may be of great

interest to finely characterize the course of the pathology and

to evaluate at the early stage the effect of a therapeutic strategy

(McNamara et al., 2017). Since the manual delineation of lesion

changes in MRI is a tedious and time consuming task, which

is prone to both intra- and inter-observer variability, there is a

great need for efficient and reliable automated tools (Altay et al.,

2013).

Most change detection methods dedicated to lesion

monitoring rely on a sequential scheme that first consists in

removing all changes that are not of interest in order to detect

in a second step only the evolution of lesions (Radke et al.,

2005). To correct for global intensity changes induced by the

difference of MRI acquisition setups, algorithms for bias field

inhomogeneity correction (Song et al., 2017) and histogram-

based intensity normalization procedure (Shinohara et al.,

2014) are generally considered. Then, geometrical discrepancies

due to variation in patient positioning, acquisition-related

geometrical distortion and brain atrophy are corrected thanks

to registration algorithms involving either rigid, affine or

deformable transformations. Finally, the remaining changes

corresponding to the evolution of lesions are detected. This

final step generally consists in thresholding an intensity-based

(Bosc et al., 2003) or deformation-based (Rey et al., 2002) feature

map. The threshold can be chosen according to some statistical

modeling in order to control the expected number of false

positive detections (Rousseau et al., 2007).

Themain flaw of the sequential procedure is that it implicitly

assumes that each correction step can be performed while not

being influenced by the changes that remain to be corrected

in the next steps. As a consequence, the sequence order of the

correction procedures should be carefully chosen. Moreover, for

each correction step, a trade-off should be found between its

performance (i.e., the ability of the method to accurately and

specifically correct a given kind of change) and its robustness

(i.e., the ability not to be biased by another kind of remaining

changes). This observation advocates for a unified formulation

of the change detection problem allowing to estimate all the

different kinds of changes jointly.

In this paper, we address more specifically the interplay

between deformable image registration and focal intensity

change detection. When deformable registration is performed in

the presence of appearing lesions, the estimated transformation

tends to make these new lesions disappear in order to minimize

the dissimilarity between the two images. This is the reason

why the most common practice is to consider only rigid or

affine registration in order not to alter lesion shape. However,

such linear transforms can only compensate for difference in

patient positioning but are not able to capture the complex

deformations induced by brain atrophy, which typically occurs

in MS. These remaining deformations may yield to spurious

detections in atrophied areas, especially in the cortex and around

the ventricles.

We propose to account for the intertwining of deformable

registration and focal intensity change detection by estimating

them jointly. To this end, we show that these two separate

tasks can be formulated as a single optimization problem

involving a unique energy that models their coupling. Basically,

areas corresponding to detected changes are ignored in the

registration similarity criterion, which prevents the lesion

elimination effect described above. Solving this issue allows

us to use of deformable registration, which in turn prevents

from detecting spurious changes in atrophied areas. We propose

an efficient alternating optimization scheme to solve this

unified optimization problem. We focus on demonstrating the

benefits of this joint formulation in the particular case of a

standard intensity-based data similarity criterion. Nevertheless,

the proposed approach is versatile and could easily be extended

to more elaborated modeling choices. Experimental analysis

is performed on the BrainWeb synthetic dataset and on two

annotated real datasets. We first demonstrate in each case the

benefits of considering a deformable registration as compared to

an affine registration only in order to reduce the number of false

detections. Then, we highlight the benefit of the proposed joint

formulation as compared to the standard sequential scheme

in terms of change detection accuracy. A preliminary version

of this work has been published as a conference paper in

Dufresne et al. (2020). In this paper, we provide a more extensive

experimental analysis, which helps to better characterize the

behavior of the proposed method and better understand why it

outperforms the sequential approach.

The paper is organized as follows. In Section 2, the sequential

approach, which will be considered as the reference baseline

method of this work, is described and its limitations are

discussed. In Section 3, we introduce the proposed joint model

and the optmization strategies that has been set up estimate

both change detection map and deformation field. In Section 4,

we give implementation details. Finally, we present and discuss

experimental results in Section 5.2.

2. The sequential approach

The conventional sequential approach consists of three

main steps. First, the images are corrected for global intensity

variations, then they are spatially registered, and finally the

focal intensity changes due to the evolution of lesions are

detected. In this section, we give a brief overview of the common

practices in the registration and change detection steps. Our

goal is not to cover a comprehensive scope of the field but to

formulate the general principles underlying existing methods. In

the remainder of this article, we will denote I1, I2 :� → R the
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baseline and follow-up MRI images, where � ⊂ R
3 is the image

domain.

2.1. Registration

The registration problem can be formulated as:

ŵ = argmin
w

∑

x∈�

ρ(I1, I2, w, x)+ λ19(w), (1)

where w :� → R
3 represents the transformation, ρ(·) is a data

similarity term, and 9(·) is a regularizer weighted by a scalar

λ1 > 0. An overview of deformable registration methods in

medical imaging can be found in Sotiras et al. (2013).

Several transformation models can be considered relying

either on a parametric representation (e.g., rigid, affine,

polynomial, or Bspline-based) or on a non-parametric

deformable mapping (i.e., a displacement vector is estimated for

each voxel).

The role of the data term is to penalize dissimilarity between

I1 and I2 warped with the estimated transformation. For

monomodal registration, it is common to use intensity-based

measures such as the sum of squared intensity differences or the

cross correlation. In the multimodal case, mutual information

is one of the most widely used similarity metric (Kaunzner and

Gauthier, 2017).

In the context of deformable registration, considering the

data term only can lead to an ill-posed problem. To overcome

this issue, the data term has to be balanced with an additional

regularization term 9(w) that enforces some constraints on the

deformation field. For instance, penalizing the ℓ2 or ℓ1 norm of

the gradient of w helps to promote smooth solutions.

2.2. Change detection

The change detection step generally consists in thresholding

a map of feature differences between registered baseline and

follow-up images (see the survey Lladó et al., 2012). These

maps can be calculated directly from either intensity-based

(Sweeney et al., 2013; Ganiler et al., 2014; Cabezas et al., 2016),

or deformation-based (Rey et al., 2002; Cabezas et al., 2016;

Salem et al., 2018) features, and sometimes integrate other kind

of information (Elliott et al., 2013; Sweeney et al., 2013) .

In the perspective of integrating both registration and

change detection in a single joint optimization problem, we

advocate that they should both rely on the same data similarity.

Consequently, we model the binary change map c :� → {0, 1}

defined at each voxel x as follow:

c(x) =






0 if ρ(I1, I2, w, x) ≤ λ2

1 otherwise,
(2)

λ2 ∈ R
+∗ being the detection threshold. The thresholding

scheme (Equation 2) can be reformulated as the following

optimization problem:

ĉ(x) = argmin
c :�→{0,1}

∑

x∈�

(1− c(x)) ρ(I1, I2, w, x)+ λ2c(x). (3)

Since simple thresholding can yield noisy results, most MS

lesion change detection methods also integrate a denoising step

in post-processing to obtain the final changemap. The denoising

can be realized jointly with the change detection by integrating a

regularization term 8(·) in Equation (3):

ĉ(x) = argmin
c :�→{0,1}

∑

x∈�

(1− c(x)) ρ(I1, I2, w, x)+ λ2c(x)+ λ38(c),

(4)

Where λ3 weights the regularization term.

2.3. Limitation of the sequential approach

The main limitation of the sequential approach is illustrated

in Figure 1 involving the baseline (Figure 1) and follow-up

(Figure 1) MRI acquisitions of a patient suffering fromMS. One

can observe in the follow-up scan the apparition of a new lesion

and a slight enlargement of the ventricle reflecting the brain

atrophy process. In the case of affine registration (Figures 1),

we can see on the subtraction image that the lesion is well

detected, but that spurious detection occur around the ventricles

and in the cortical regions due to brain tissue atrophy. Using

a deformable registration (Figures 1) helps to remove these

spurious detection by compensating the ventricles enlargement

and the cortical atrophy. However, it also tends to make the

new lesion disappear (Figure 1), thus altering the shape of the

corresponding detection (Figure 1). The goal of the proposed

joint approach (Figures 1) is to perform an accurate atrophy

correction while preserving the shape of appearing and evolving

lesions, even when the lesion-to-tissue contrast is quite low.

3. Joint approach

3.1. General formulation

To overcome the limitations of the sequential approach,

we advocate a joint modeling of registration and change

detection. The two steps are fundamentally intertwined, since

registration aims at finding correspondences between images,

while change detection determines regions that does not admit

correspondences. Therefore, both tasks should be defined with

the same objective function to work in synergy. We formulate
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FIGURE 1

Warped follow-up images and subtraction images obtained with the sequential a�ne and deformable registration pipelines and the proposed

joint deformable approach, on an example of the dataset described in COM (2021).

the following joint minimization problem that achieves this goal

by unifying the principles described previously:

ŵ, ĉ = argmin
w,c

∑

x∈�

[
(1− c(x)) ρ(I1, I2, w, x)+ λ2c(x)

]

+λ19(w)+ λ38(c).

(5)

With this model, the data term is cancelled in change regions

(where c(x) = 1), so that the estimation of the transformation

is only driven by the regularization term, thus producing

smoothed deformation field in these areas. By this way, it

prevents the lesion disappearing effect observed in Figure 1.

3.2. Modeling choices

The formulation (Equation 5) is versatile and could be

instantiated with a variety of data and regularization terms. In

this paper, the goal is to demonstrate the superiority of the

joint formulation over the sequential approach under standard

modeling choices, which are detailed in the sequel.

First, we assume that, thanks to the intensity normalization

step done as a preprocessing, intensities of both images are

comparable, thus allowing us to consider a data term based on

intensity difference. Consequently, we consider the following

standard similarity measure:

ρ(I1, I2, w, x) =
1

σ 2
‖I2(x− w(x))− I1(x)‖

2
2, (6)

Where σ is a normalization constant defined by the median

absolute deviation of the intensity differences between I1 and

I2. This data term has been used for motion estimation

(Bruhn et al., 2005) and is representative of intensity-based

features commonly used in change detection methods (Sweeney

et al., 2013; Ganiler et al., 2014).

Secondly, we assume that the deformations induced by

brain tissue atrophy are complex but still locally smooth. This

is why we consider a non-parametric representation of the

transformation field w while introducing a first order Tikhonov

regularization term:

9(w) =
∑

x∈�

‖∇w(x)‖22, (7)

Where ∇· is the gradient operator.

Finally, we assume that the detected changes should

be spatially coherent. Consequently, the change map c is

regularized with a standard binary Potts model:

8(c) =
∑

x∈�

∑

y∈N (x)

(1− δ

(
c(x), c(y)

)
), (8)

Where δ is the Kronecker function equal to 1 if its argument

is true andN (x) is the 6-neighborhood of x.

3.3. Optimization

To solve the optimization problem (Equation 5), we rely

on an alternating minimization strategy: at each iteration,

we successively minimize with respect to (w.r.t.) each

variable, while keeping the other fixed. We detail in this

section the optimization strategies dedicated to each of the

two subproblems.

Notice that, since the problem is nonconvex, convergence

toward the global minimum cannot unfortunately be
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guaranteed. However, the results presented in Section 5.2

on several datasets suggest that the optimization process

converges in practice toward a satisfying solution.

Minimization w.r.t. w To make the problem tractable, we

consider the linearized version of the data term (Equation 6)

obtained by replacing I2(y − w(x)) with its Taylor expansion

around y:

ρl(I1, I2, w, x) =
1

σ 2
‖∇⊤I2(x) w(x)+ It(x)‖

2
2, (9)

Where It(y) = I2(y) − I1(y) is the temporal derivative.

Since the Taylor expansion is valid only for small deformations,

we embed the estimation in a coarse-to-fine scheme, which is

a common practice in registration and motion estimation (Hill

et al., 2001).

After Taylor development of I2(y−w(x)), the new data term

ρl in Equation (9) is the composition of a quadratic function

with a linear function of w, which yields a convex term. Since

the regularization term (Equation 7) is also convex, the whole

optimization problem is convex. By substituting ρ by ρl in

Equation (5), the optimisation problem can be addressed with

a variety of efficient optimization methods.

We chose to consider the alternated direction method of

multipliers (ADMM) framework (Boyd et al., 2011). To this end,

we introduce a splitting variable z that decouples the two terms

of Equation (5) that depend on w, and we formulate the problem

in the constrained form:

min
w

∑

x∈�

(1− c(x)) ρl(I1, I2, w, x)+ λ19(z) s.t w = z (10)

The ADMM algorithm is based on the minimization of the

augmented Lagrangian associated with Equation (10) w.r.t. w

and z, and a gradient ascent on the dual variable (Boyd et al.,

2011). It leads to the following iterative updates of w and z (see

Fortun et al., 2018 for a similar derivation with different data and

regularization terms):

wk+1 = prox∑
x(1−c(x))ρl(I1,I2,·,x)

(

zk −
α
k

µ

)

(11)

zk+1 = prox
λ19

(

wk+1 +
α
k

µ

)

(12)

α
k+1 = α

k + µ(wk+1 − zk+1) (13)

Where proxf (x) = argmin
y

1
2‖x − y‖22 + f (y) denotes the

proximity operator of a function f . The subproblem (Equation

11) is voxel-wise and quadratic, and it admits a simple closed

form solution. The subproblem (Equation 12) is equivalent to

a denoising operation with the regularizer 9(·), and it also has

a closed form linear solution that can be computed efficiently

in the Fourier domain. µ is the parameter associated with

the quadratic penalty in the Augmented Lagrangian associated

with Equation (10). The ADMM algorithm is derived from this

Augmented Lagrangian and the update (Equations 11, 12) are its

minimization w.r.t. w and z. Intuitively, µ controls how fast the

constraint w = z is imposed through the optimization process.

Thus, even if it is not strictly speaking a step size, it has a similar

impact on the convergence speed.

Notice that the ADMM framework is flexible enough to

cope with different data and regularization terms with low

computational cost. The requirement is to be able to design a

splitting of the cost function such that the proximity operators

of each iteration have computationally efficient solutions.

Examples of admissible models comprise data terms based on

the ℓ1 penalty function or cross-correlation (Vogel et al., 2013),

and regularizations by total variation or Nuclear norm of the

Jacobian (Bostan et al., 2014).

Minimization w.r.t. c When w is fixed, the estimation

of c amounts to a binary segmentation problem with Potts

regularization:

ĉ = argmin
c

∑

x∈�

[
λ2 − ρ(I1, I2, w, x)

]
c(x)+ λ38(c). (14)

We solve it with a graph-cut method (Boykov et al.,

2001), which is able to find an exact solution with very low

computational cost.

4. Implementation details

4.1. Pre-processing

Before applying the change detection framework, the input

images require to be pre-processed as follows. First, images are

corrected for bias field inhomogeneity using the N4 algorithm

(Tustison et al., 2010). Then, a global scaling of the intensity is

performed in order to enforce the median value of the intensities

inside the brainmask to be equal to 100. Images are then

resampled to 1 mm isotropic resolution. These two steps aim

at harmonizing all input images in terms of intensity range and

spatial resolution. The follow-up scan is then rigidly registered

on the baseline image using ANTs library (Avants et al.,

2011)1 with default parameters and mutual information metric.

Differential bias field inhomogeneity is corrected thanks to the

method described in Lewis and Fox (2004), while considering a

21× 21× 21 median filter size.

4.2. Post-processing

The detection maps are post-processed by discarding the

connected components smaller than 3mm3 and the detections

1 https://github.com/ANTsX/ANTs
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outside brain parenchyma (i.e., the union of gray and white

matter). Notice that the binary change detection map can also

be computed to reflect either positive or negative intensity

changes only.

Brain parenchyma masks are computed from T1-weighted

images using the FAST method provided in the FSL library

(Zhang et al., 2001) or alternatively from FLAIR images using

SAMSEG2 brain parcellation tool (Cerri et al., 2021), in the case

where no T1-weighted image is available.

4.3. Hyperparameter setting

Three hyperparameters have to be set in the proposed

joint formulation (Equation 5): λ1, controlling the spatial

regularization of the deformation field, λ2 acting as a threshold

for the map of intensity differences, and λ3, controlling the

spatial regularization of the change map. Here, we suggest

strategies to find out relevant parameters settings.

The value of λ1 should be chosen to optimally estimate

longitudinal brain atrophy, since it is the main source of

brain deformation in MS. Thus, we consider a subset of 21

images from the dataset OASIS-3 (LaMontagne et al., 2019) that

contains longitudinal Alzheimer and normal aging MRI data

that exhibit various pattern of longitudinal brain atrophy. We

determine the optimal value of λ1 by selecting the one that leads

to the best registration performance on this subset of OASIS-

3. To this end, we derive a registration quality metric from

the provided segmentation maps of brain structures obtained

with Freesurfer. Concretely, the Dice score is computed for each

structure between the segmentation maps of the baseline image

and of the registered follow-up image. The global registration

quality metric is then computed as the sum over all the regions of

the median Dice score observed for each region. This procedure

leads us to find λ1 = 70 as an optimal value.

The values of λ2 and λ3 have to be set to find the best

compromise regarding: (i) The expected intensity difference,

(ii) the noise level that corrupts the images, and (iii) the

spatial extent of the changes. Here, we suggest an approach

to find out optimized setting for each of the two considered

databases (see Sections 5.1.2, 3.2). In practice, λ2 and λ3 have

been fixed to maximize the overall performance of the affine

sequential approach (see Section 5.1.5) in terms of local Dice

Similarity Coefficient (local DSC, see Section 5.1.4) for each

dataset. Considering the localDSC ensures to focus on the ability

of the detection scheme (Equation 14) to recover the detected

changes while not being influenced by false positive detections

that can occur in other parts of the brain. Considering the affine

transformation model ensures that the registration step does not

to alter the geometry of evolving regions. This procedure leads

2 https://surfer.nmr.mgh.harvard.edu/fswiki/Samseg

us to find λ2 = 16 and λ3 = 5 as optimal setting for LesjakDB

dataset and λ2 = 25 and λ3 = 3 for MSSEG-2 dataset.

4.4. Convergence and stopping criteria

The iterations of the alternated minimization of Equation

(5) and of the ADMM algorithm (Equations 11–13) are stopped

when a stopping criterion is verified or when a maximum

number of iterations is reached. The stopping criterion is a

threshold on the norm of the relative changes between two

consecutive iterations, and is set to 10−3 for the alternated

minimization and 2.10−3 for ADMM. The maximum number

of iterations is set to 5 for the alternated minimization and 300

for ADMM.

5. Experimental evaluation

5.1. Evaluation framework

In this section, we report results obtained on one synthetic

dataset and two publicly available real patients datasets. The

synthetic dataset offer the advantage to have an unambiguously

defined ground truth change detection map, while controlling

the amount of noise, bias field inhomogeneity and brain atrophy

that corrupt the images. The real datasets are used to evaluate the

proposed approach in conditions that are closer to the clinical

routine, while considering different acquisition conditions and

various pathological evolution. The first real patients dataset,

denoted in the sequel as LesjakDB (Lesjak et al., 2016), is

dedicated to assess the ability of methods to detect every

kinds of MS lesion evolutions (shrinkage, growth, new and

disappearing), whereas the second dataset, denoted in the sequel

asMSSEG-2 (COM, 2021), only focus on the ability to detect new

appearing lesions.

5.1.1. Synthetic dataset

We evaluate the proposed method on T2-weighted synthetic

volumes generated with the Brainweb simulator (Cocosco

et al., 1997), while considering the normal anatomical model

(i.e., without lesion) and two multiple sclerosis anatomical

models with moderate and severe lesion load. The images

are simulated at a 1 mm3 isotropic resolution (image size:

181 x 217 x 181) with bias field inhomogeneity (20%).

To simulate realistic brain atrophy for the follow-up image,

we applied a deformation field that has been estimated

using a deformable registration (Avants et al., 2008) from

two T1-weighted MRI scans acquired 4 years apart of a

patient suffering from MS that exhibits a significant brain

atrophy evolution (in-house dataset). It should be noted

that these real data images were first affinely registered

onto the brainweb image to ensure the estimated deformable
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TABLE 1 Simulated longitudinal acquisitions.

Scenario Baseline image Follow-up image Simulated atrophy

Lesion appearance without atrophy Normal Moderate No

Lesion growth without atrophy Moderate Severe No

Lesion appearance with atrophy Normal Moderate Yes

Lesion growth with atrophy Moderate Severe Yes

FIGURE 2

Qualitative comparison of the binary change detection maps obtained with the three methods on the synthetic dataset (lesion appearance with

atrophy scenario).

registration to be consistent with the underlying anatomy.

The visual inspection confirms that the simulated image

exhibits a realistic atrophy pattern. Gaussian additive noise

was added with a standard deviation fixed at 5% of the

mean intensity in the brightest tissue (cerebrospinal fluid in

the T2-weighted simulation). We consider several scenarios

of simulated longitudinal acquisition that are summarized

in Table 1.

5.1.2. Real dataset LesjakDB: All kinds of lesion
evolution

LesjakDB dataset (Lesjak et al., 2016) is composed of

20 longitudinal MRI acquisitions of MS patients with two

timepoints. The median time between the baseline and follow-

up studies was 311 days, ranging from 81 to 723 days. Each

MRI acquisition consists in a 2D T1-weighted, a 2D T2-

weighted and 2D-FLAIR sequences. Change detection was

conducted on the FLAIR images only. The FLAIR image size

is 256 × 256 × 49 with an anisotropic spatial resolution of

0.9 × 0.9 × 3 mm. Ground truth change detection maps are

also provided, which were obtained from manual annotations

done by two expert raters. We adjusted some of the ground

truth annotations that did not match the real lesion changes.

The annotated changes include appearing, growing, shrinking

and disappearing lesions. Ground-truth detection maps are

compared to binary detection maps that include both positive

and negative intensity changes.

5.1.3. Real dataset MSSEG-2: Only appearing
lesions

MSSEG-2 dataset (COM, 2021) is composed of 100 pairs

of FLAIR MRI scans from MS patients acquired on various

MR scanners. The provided ground-truth is limited to new

appearing lesions, and was build from the consensus of manual

annotations delineated by four experts. The dataset is separated

into training (40 patients) and testing (60 patients) sets. Since

the proposed approach does not require any training step, we

consider the whole dataset for testing. However, we distinguish

two subgroups of data, namelyMSSEG-2-Change corresponding

the 61 subjects that exhibit at least one new appearing lesion and

MSSEG-2-NoChange corresponding the 39 subjects that do not

exhibit any new appearing lesion. Since the provided ground-

truth is limited to new appearing lesions, they are compared

only to the positive binary change detection maps obtained

with the different methods. Notice, that the proposed method

framework does not discriminate appearing from evolving

lesion. Consequently, lesion evolutions, which are not labeled in

the ground truth detection maps, are erroneously considered as

false positive detection, thus introducing a bias in some of the

evaluation metrics.

5.1.4. Metrics

We report four metrics to evaluate the performance of

the methods to detect changes, namely the Dice Similarity

Coefficient (DSC), the Positive Predictive Value (PPV), the True

Positive Ratio (TPR) and the local DSC. Let TP, TN, FP, and FN

be the number of voxels from estimated change detection map
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TABLE 2 Results computed on the synthetic dataset.

Scenario Method DSC PPV TPR Local DSC

Lesion appearance

no atrophy

affine 0.830 0.782 0.885 0.830

sequential 0.684 0.921 0.544 0.684

joint 0.814 0.887 0.751 0.814

Lesion growth

no atrophy

affine 0.766 0.635 0.964 0.770

sequential 0.685 0.734 0.641 0.688

joint 0.806 0.726 0.902 0.808

Lesion appearance

simulated atrophy

affine 0.460 0.329 0.767 0.810

sequential 0.626 0.960 0.465 0.627

joint 0.743 0.925 0.621 0.744

Lesion growth

simulated atrophy

affine 0.652 0.505 0.919 0.827

sequential 0.753 0.869 0.664 0.754

joint 0.847 0.833 0.861 0.848

The bold values indicate the highest scores among the four methods.

that correspond to True Positive, True Negative, False Positive

and False Negative, respectively.

The DSC is defined as:

DSC = 2TP/(2TP + FP + FN)

and reflects the overall good overlap between the detection map

and the ground truth.

The PPV is defined as:

PPV = TP/(TP + FP)

and reflects the proportion of relevant detections among all the

detected changes.

The TPR is defined as:

TPR = TP/(TP + FN)

and reflects the proportion of the ground-truth changes that

have been detected.

The localDSC correspond the DSC computed on a restricted

area defined as the dilation with a 4-voxel radius spherical

structuring element to the ground truth. This metric enables

us to focus the evaluation on the local spatial accuracy of the

detection method

In addition to the voxel-wise metrics, we also report

lesion-wise metrics, namely the Lesion True Positive Ratio

(L-TPR) and the Lesion Positive Predictive Value (L-

PPV). These metrics have been evaluated thanks to the

animaSegPerfAnalyzer validation tool while considering

the same hyperparameters as in Commowick et al.

(2018).

Since all these metrics are not relevant for data that do

not exhibit any changes, we consider in that specific case

FIGURE 3

Evolution of DSC across iterations of the alternating

optimization scheme of the joint approach on the synthetic

dataset (blue: Lesion appearance, simulated atrophy, orange:

Lesion growth, simulated atrophy).

the number of detected connected components as well as the

volume of detected changes to characterize the false positive

detections.

5.1.5. Variants used for comparison

To demonstrate the benefits of the proposed joint modeling,

we consider three variants of the change detection framework:

• joint: the proposed joint change detection and registration

method described in Section 3.

• sequential: The sequential counterpart of the proposed

method, which successively performs deformable
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FIGURE 4

Qualitative comparison of the binary change detection maps obtained with the three methods and of the jacobian of the deformation field

estimated with the sequential and joint approaches on one selected subject from the MSSEG-2 dataset. Hyperparameters: λ1 = 70 (for sequential

and joint methods), λ2 = 25, λ3 = 3. I1: Baseline, I2: Follow-up, sequential, joint, Ground-truth, and a�ne.

TABLE 3 Results computed on LesjakDB and MSSEG-2-Change datasets.

DataSet Method Local DSC DSC PPV TPR L-PPV L-TPR

affine 0.539± 0.174 0.152± 0.087 0.086± 0.060 0.603± 0.223 0.022± 0.022 0.576± 0.195

LesjakDB sequential 0.424± 0.139 0.317± 0.117 0.293± 0.152 0.323± 0.125 0.088± 0.051 0.577± 0.197

joint 0.501± 0.179 0.353± 0.144 0.323± 0.148 0.447± 0.207 0.103± 0.061 0.574± 0.208

affine 0.626± 0.224 0.142± 0.165 0.081± 0.139 0.633± 0.269 0.015± 0.042 0.840± 0.271

MSSEG-2-Change sequential 0.520± 0.196 0.310± 0.178 0.298± 0.264 0.379± 0.176 0.095± 0.150 0.872± 0.307

joint 0.579± 0.219 0.356± 0.208 0.336± 0.254 0.474± 0.222 0.111± 0.155 0.872± 0.304

MSSEG-2-Change

inverse

affine 0.626± 0.224 0.142± 0.165 0.081± 0.139 0.633± 0.269 0.015± 0.042 0.840± 0.271

sequential 0.625± 0.217 0.348± 0.216 0.290± 0.244 0.550± 0.243 0.094± 0.151 0.977± 0.292

joint 0.655± 0.237 0.378± 0.233 0.312± 0.250 0.619± 0.266 0.091± 0.164 0.947± 0.304

The median± the median absolute deviation (MAD) computed over all subjects are reported for each metric. The MSSEG-2-Change inverse experiment consist in swapping the baseline

and follow-up images to evaluate the ability of the methods to detect disappearing lesions. The bold values indicate the highest scores among the three methods.

registration and change detection. For the two steps,

we use the same model and optimization algorithms

as in substeps of the joint approach described

in Section 3.3.

• affine: The sequential approach where the deformable

registration has been replaced by affine registration,

which corresponds to the most common case. The

affine registration was estimated using ANTs library

(Avants et al., 2011) 3 with default parameters and

mutual information metric. Then, the thresholding and

3 https://github.com/ANTsX/ANTs

smoothing of the change map routine follows model

(Equation 14).

5.2. Results

5.2.1. Synthetic dataset

First, a qualitative visual comparison of the three methods

is provided in Figure 2 for the lesion appearance with

atrophy scenario. The affine method succeeds to detect

almost all the lesion areas, but it suffers from false positive

detection around the ventricles due to brain atrophy. Both

the sequential and the joint methods compensated for

brain atrophy deformation since none of them exhibit false
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FIGURE 5

Boxplots corresponding to the results summarized in Table 3 for LesjakDB (NSubject = 20). Statistical significancy is evaluated thanks to the

Wilcoxon signed-rank test between each pair of methods while applying Benjamini/Hochberg FDR correction.

FIGURE 6

Metrics reporting the performance of the three methods for each subject of LesjakDB.

detections around the ventricles. However, the sequential

method failed to detect the whole lesion areas due to the over-

compensation of lesion changes. This limitation is overcome

by the joint approach that succeeds to detect the entire

lesion areas.

A quantitative comparison of the three methods under

four scenarios is provided in Table 2. First, we consider the

appearance of lesion without atrophy. Unsurprisingly, this

scenario is the most favorable for the affinemethod since there is

no geometric difference to compensate. The sequential approach
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FIGURE 7

Correlation between the performance of the three methods and the ground-truth evolving lesion load (cm3) of the subjects of LesjakDB.

yields to significantly lower values of DSC and local DSC. This

is due to the lesion over-compensation effect, as supported by

the observed low TPR value (i.e., lack of sensitivity) and high

PPV value (i.e., high specificity). Finally, the joint approach

overcomes the shortcoming of the sequential approach and have

performances similar to the affinemethod, with a slight tendency

to underestimate the detected area. Similar observations can

be made about the second scenario involving lesion growth

without atrophy.

The conclusions are drastically different for the two

scenarios involving simulated atrophy. The performance of

the affine method is significantly hampered by the numerous

false detections due to the atrophy. This is illustrated by the

significant decrease of the DSC and PPV values compared to the

cases without atrophy, while the TPR and local DSC values are

less modified. The sequential approach succeeds to compensate

for the simulated brain atrophy, as highlighted by the high PPV

value, but still underestimates the changes to detect, as indicated

by the low TPR value. The joint approach clearly outperforms

the two previous approaches in terms of detection accuracy, as

objectified by the significantly higher DSC value.

The behavior of the joint approach can be monitored

through the iterations of the alternating optimization scheme

(see Figure 3). We can see that the DSC increases across the

iterations, and the convergence is reached in a few iterations.

Concerning the computational burden of the joint approach, it

is about 24min on one single core (Intel(R) Xeon(R) Gold 6130

CPU @ 2.10GHz) for an experiment on the synthetic dataset

(image size: 181 x 217 x 181).

FIGURE 8

Qualitative comparison of the binary change detection maps

obtained with the sequential (purple) and joint (green) approaches

as compared to the ground truth (underlying transparent red) on

one selected subject from the MSSEG-2 dataset.

5.2.2. LesjakDB

First, a qualitative visual comparison of the three methods

is provided in Figure 4. We can draw similar conclusions as
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FIGURE 9

Boxplots corresponding to the results summarized in Table 3 for both MSSEG-2-Change and MSSEG-2-Change inverse (NSubject = 61). Statistical

significancy is evaluated thanks to the Wilcoxon signed-rank test between each pair of methods while applying Benjamini/Hochberg FDR

correction.

for the synthetic dataset (see Figure 2). The affine method

demonstrates a high sensitivity (i.e., the lesion evolution is

well detected) but a lack of specificity (i.e., numerous false

positive detections are detected around the ventricles and in

the posterior part of the cortex). Conversely, the sequential

method has high specificity but lacks sensibility. The joint

approach provides the best visual results, thus illustrating its

ability to achieve both high sensitivity and high specificity.
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FIGURE 10

Number of connected components (left) and volume in cm3 (right) of the detected changes computed for the 39 subjects of

MSSEG-2-NoChange datasets (i.e., subjects without new appearing lesion). Statistical significancy is evaluated thanks to the Wilcoxon

signed-rank test between each pair of methods while appling Benjamini/Hochberg FDR correction.

Figures 4 show the Jacobian of the deformation fields obtained

by the sequential and joint methods, respectively. The specific

pattern characterized by the alternance of both high and

low values of the jacobian (see areas highlighted by the

red squares in Figure 4) reflects the high local contraction

and dilation induced by the deformation field to make the

lesion disappear, thus explaining the lack of sensitivity of the

detection results.

The quantitative evaluation shown in Table 3 (first row)

and in Figure 5 confirms the conclusions of the visual analysis.

The high sensitivity of the affine method is objectified at the

voxel level by a statistically significantly higher TPR than the

two other methods. At the lesion level, all the three methods

exhibit similar L-TPR values, thus emphasizing their ability to

detect the same amount of changing areas. Both the sequential

and joint methods yield significantly higher PPV and L-PPV

compared to the affine method, which illustrates their ability

to reduce the number of false detections induced by brain

atrophy at both voxel and lesion levels. This result highlights

the benefit of using deformable registration in the context of

MS lesion monitoring. The significantly lower TPR achieved

by the sequential method compared to the joint method is the

consequence of the lesion over-compensation effect. Finally,

the joint approach significantly outperforms the two other

approaches in term of voxel-wise global accuracy (see DSC).

Figure 6 highlights the variability of the performance of the

methods across the subjects. It is interesting to notice that,

although the performance of the detection methods greatly

varies from one subject to the other, the ranking among the three

methods appears to be highly consistent across the subjects.

When investigating for the factors that may explain the observed

variability, it appears that the volume of the ground-truth seems

to play a prominent role: the larger is the volume to detect, the

better is the performance of the change detection algorithm (see

Figure 7).

5.2.3. MSSEG-2

Similarly as for the synthetic and LesjakDB datasets, the

qualitative visual comparison of the two approaches based on

deformable registration highlights the lack of sensitivity of the

sequential method due the lesion over-compensation effect (see

Figure 8). The resulting change detection map (purple) is too

small compared to the ground-truth (underlying transparent

red) due to the deformable registration that significantly shrinks

the lesion. With the joint approach, the shape of the lesion

is almost preserved in the warped follow-up image and the

change detection map (green) matches almost perfectly the

ground-truth.

The quantitative evaluation on the subset MSSEG-2-Change

is reported in the second row of Table 3 and in the upper part of

Figure 9.

The fact that both the sequential and joint approaches

lead to significantly higher PPV values as compared to the

affine approach advocates the use of deformable registration

to reduce the number of false detections. The benefit of

considering the joint over the sequential approach to overcome

the lesion overcompensation effect is clearly demonstrated by

the significantly higher TPR and local DSC values obtained with

jointmethod.

It is also interesting to notice that the lesion over-

compensation effect does not affect the special case of

disappearing lesion. Indeed, when registering an image without

lesion on a image with a lesion, the dissimilarity in the area of

the disappearing lesion cannot be corrected by the transport

of intensity of the registration (this is in fact only the case for

Frontiers inNeuroimaging 13 frontiersin.org

128

https://doi.org/10.3389/fnimg.2022.1008128
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Dufresne et al. 10.3389/fnimg.2022.1008128

non symmetric image registration method, see Noblet et al.

(2004) for further explanations). To illustrate this phenomenon,

we consider the MSSEG-2-Change inverse experiment (see the

third row of both Table 3 and the bottom part of Figure 9) that

consist in swapping the baseline and the follow-up image, so

that the ground-truth now correspond to disappearing lesions.

The same conclusion can be drawn from the DSC, PPV, and

TPR as compared to the MSSEG-2-Change experiment. The

most interesting point concern the local DSC that focuses

the evaluation on the disappearing lesion. In that case, there

is no significant difference any more between sequential and

joint approaches contrary to the MSSEG-2-Change experiment,

showing the absence of lesion over-compensation effect in the

specific scenario of detecting disappearing lesions.

Note that all the results presented above in this section are

evaluated on the 61 subjects of MSSEG-2-Change (i.e., subject

presenting at least one new appearing lesion). Indeed, the

presented metrics cannot be computed anymore for the 39

subjects of MSSEG-2-NoChange since the ground-truth change

detection map is empty. This is why we only report the volume

of detected changes for this subset of MSSEG-2 (see Figure 10).

We can notice that both sequential and joint approaches lead

to significantly lower volume of detected changes as compared

to the affine, which appears in line with previous findings

that support the use of deformable registration to reduce the

number of false detections. Also note that the jointmethod yields

consistently to slightly higher volume of detected changes as

compared to the sequentialmethod. This is also the consequence

of the lesion over-compensation effect that affects the sequential

appproach.

6. Conclusion and perspectives

We have presented a method that unifies registration and

change detection for the analysis of longitudinal brain MRI.

It is based on the joint modeling of these two tasks as the

minimization of a single objective function, for which we have

developed an efficient alternating optimization method. The

proposed approach has been evaluated in the context of the

follow-up of multiple sclerosis lesion, which requires deformable

registration to capture characteristic brain atrophy, but also

with the potential caveat to shrink appearing lesions. In this

context, the conventional sequential detection pipeline leads to

large detection inaccuracies around new appearing lesions. We

have demonstrated on simulated and real data that the proposed

joint approach is able to combine the ability of deformable

registration to correct brain atrophy, and a good preservation

of the lesions shape to ensure accurate change detection.

The implementation presented in this paper of the proposed

joint model relies in fact on quite simple modeling assumptions.

The versatility of the optimization approach opens the way

for more sophisticated models that could be handled in the

same framework. Alternative data fidelity terms such as cross

correlation or mutual information, and regularizers such as

total variation could be considered to potentially improve the

performance of the method. Another perspective is to improve

the convergence of the alternating optimization strategy to

ensure a better robustness to local minima. To this end we could

consider a fuzzy change detection map to turn its estimation

into a continuous optimization problem. This would allow us

to use more robust optimization approaches such as Proximal

Alternating Linearized Minimization (Bolte et al., 2014). Finally,

while we have addressed in this paper the registration problem,

the unification principle could be extended to other steps

of the change detection pipeline. In particular, the intensity

normalization and the bias field inhomogeneity correction of

the MRI acquisitions are crucial pre-processing tasks that are

impacted by the presence of evolving lesions. Therefore, the

integration of these two tasks in a single unified model would

be a natural extension of the proposed framework.
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