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Editorial on the Research Topic
Leveraging machine learning for omics-driven biomarker discovery

Here, we organized a Research Topic on “Leveraging Machine Learning for Omics-driven
Biomarker Discovery.” In total, about 12 outstanding works were presented in this thematic
issue, and they have been highlighted as follows.

• Chen et al. comprehensively investigated the expression dysregulation and prognostic
significance of HSF2, and the relationship with clinicopathological parameters and
immune infiltration across cancers. Their study revealed the varied expression of
HSF2 in different types and stages of cancers, which suggests that the effects of
HSF2 on oncogenesis may vary across different cancer types. A significant correlation
between HSF2 expression and patients’ prognosis was observed. HSF2 expression was
strongly related to immune cell infiltration, immune checkpoints, TMB, and MSI. They
integrated existing data to explore the potential function of HSF2 in cancers and provides
insights for targeting HSF2 to improve the therapeutic efficacy of immunotherapy.

• Zhang et al. found that CANX, BID, NAMPT, and BIRC5 were immune-autophagy-
related genes with independent prognostic value, and the risk prognostic model based on
them was theyll constructed. Through GSE168845, immune-related genes, autophagy-
related genes, and immune-autophagy-related differentially expressed genes (IAR-DEGs)
were identified. Then, the lasso Cox regression model was established to evaluate the
correlation of IAR-DEGs with the immune score, immune checkpoints, methylation, and
one-class logistic regression (OCLR) score. Further analysis showed that CANX, BID,
NAMPT, and BIRC5 were potential targets and effective prognostic biomarkers for
immunotherapy combined with autophagy in kidney renal clear cell carcinoma.

• Sun et al. analyzed the correlation of hub mIR-DEGs with clinicopathological factors,
immune invasion, and immune checkpoints, and re-evaluated the expression of hubmIR-
DEGs and their effect on the tumor by OCLR scores in KIRC. Co-expressed metastatic
immune-related differentially expressed genes (mIR-DEGs) were screened out, and the
mIR-DEGs-based prognostic model that had good predictive potential was established. In
addition, targeted small-molecule drugs were predicted for mIR-DEGs. This study
preliminarily confirmed that FGF17, PRKCG, SSTR1, and SCTR were targeted genes
that can be used as potential therapeutic targets and prognostic biomarkers for renal
cancer. Preliminary validation found that PRKCG and SSTR1 were consistent with
predictions.
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• Zhong et al. objectives are to screen for characteristic genes
specific to PTC and establish an accurate model for diagnosis
and prognostic evaluation of PTC. They screened differentially
expressed genes in TCGA database and discovered a three-gene
signature (GJB4, RIPPLY3, ADRA1B) that was statistically
significant and externally validated. For experimental
validation, immunohistochemistry in tissue microarrays
showed that thyroid samples’ proteins expressed by this
three-gene were differentially expressed. The protocol
discovered a robust three-gene signature that can distinguish
prognosis, which will have daily clinical application.

• Chen et al. proposed a method based on Gradient Boosting
Decision Tree (GBDT) to identify the susceptible genes of gastric
cancer through a gene interaction network. Based on the known
genes related to gastric cancer, they collected more genes that
can interact with them and constructed a gene interaction
network. Random Walk was used to extract the network
association of each gene and they used GBDT to identify the
gastric cancer-related genes. To verify the AUC and AUPR of
their algorithm, they implemented 10-fold cross-validation.
GBDT achieved AUC of .89 and AUPR of .81. This work
selected ftheir other methods to compare with GBDT and
found GBDT performed best.

• Zhou et al. aimed to satisfy the increasing demand for novel
sensitive biomarkers and potential therapeutic targets in the
treatment of GII and GIII gliomas. Their study revealed the
multi-omics landscape of H2BC12 in gliomas through
bioinformatics approaches. They identified the differentially
up-regulated expression of H2BC12 in GII and GIII glioma
tissue and proved its significant ability in predicting the adverse
overall survival of GII and GIII gliomas patients. They verified
that H2BC12 was a promising biomarker for the diagnosis and
prognosis of patients with WHO grade II and III gliomas In a
forward-looking way.

• Xia et al. purposed Xgboost to identify RP-related genes.
Xgboost adds a regular term to control the complexity of the
model, hence using Xgboost to find out true RD-related genes
from complex and massive genes is suitable. The problem of
overfitting can be avoided to some extent. To verify the potheyr
of Xgboost to identify RD-related genes, they did 10-cross
validation and compared it with three traditional methods:
Random Forest, Back Propagation network, and Support
Vector Machine. The accuracy of Xgboost is 99.13% and
AUC is much higher than the other three methods.
Therefore, this article can provide technical support for the
efficient identification of RD-related genes and help researchers
have a deeper understanding of the genetic characteristics of RD.

• Xiao et al. identified familial cohorts showing MMD
susceptibility and performed THEYS on five affected
individuals to identify susceptibility loci, which identified
point mutation sites in the titin (TTN) gene. Moreover, TTN
mutations were not found in a cohort of 50 sporadic MMD
cases. They also analyzed mutation frequencies and used
bioinformatic predictions to reveal mutation harmfulness,
functions, and probabilities of disease correlation.
rs771533925 and rs72677250 were likely harmful mutations
with the involvement of TTN in MMD etiology-related
pathways. CRISPR-Cas12a assays designed to detect TTN
mutations provided results consistent with THEYS analysis,

which was further confirmed by Sanger sequencing. This
study recognized TTN as a new familial gene marker for
moyamoya disease and demonstrated that CRISPR-Cas12a
has the advantages of rapid detection, low cost, and simple
operation, and has broad prospects in the practical application
of rapid detection of MMD mutation sites.

• Fan et al. explored the pharmacological mechanisms of
Chongcaoyishen decoction (CCYSD) against chronic kidney
disease (CKD) via network pharmacology analysis combined
with experimental validation. The bioactive components and
potential regulatory targets of CCYSD were extracted from the
TCMSP database, and the putative CKD-related target proteins
were collected from the GeneCards and OMIM database.
114 kinds of cellular functional activities and 112 related
cellular signaling pathways were involved in this network
pharmacological analysis. Except for the autophagy and
oxidative stress injury, the mechanism of CCYSD against
CKD may also relate to inflammatory injury, cell cycle
regulation, apoptosis, and other mechanisms. Their work
provided an integrative network pharmacology approach
combined with in vivo experiments to explore underlying
mechanisms governing the CCYSD, promoting the
explanation and understanding of CCYSD in CKD’s treatment.

• Chen et al. aimed to illustrate what topics the research focused
on and how they varied in different periods of all the studies on
brain metastases with topic modeling. They used the latent
Dirichlet allocation model to analyze the titles and abstracts
of 50,176 articles on brain metastases retrieved from web of
Science, Embase, and MEDLINE. The work further stratified the
articles to find out the topic trends of different periods. The
study identified that a rising number of studies on brain
metastases were published in recent decades at a higher rate
than all cancer articles. Overall, the major themes focused on
treatment and histopathology. Radiotherapy took over the first
and third places in the top 20 topics. Since the 2010s, increasing
attention concerned with gene mutations. Targeted therapy was
a popular topic of brain metastases research after 2020.

• Yi et al. found candidate prognostic biomarkers and provided
clinicians with an accurate method for survival prediction of
ACC via bioinformatics methods. Linear discriminant analysis,
K-nearest neighbor, support vector machine, and time-
dependent ROC were performed to identify meaningful
prognostic biomarkers (MPBs). Four MPBs (ASPM, BIRC5,
CCNB2, and CDK1) with high accuracy of survival
prediction were screened out, and their mutations and copy
number variants were associated with the overall survival of
ACC patients. They established two nomograms which provided
clinicians with an accurate, quick, and visualized method for
survival prediction, which might constitute a breakthrough in
the treatment and prognosis prediction of patients with ACC.

• Li et al. aimed to investigate if machine learning approaches can
be used to predict postoperative unplanned 30-day hospital
readmission in old surgical patients. They extracted
demographic, comorbidity, laboratory, surgical, and
medication data of elderly patients older than 65 who
underwent surgeries under general anesthesia in west China
Hospital, Sichuan University from July 2019 to February 2021.
Different machine learning approaches were performed to
evaluate whether unplanned 30-day hospital readmission can
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be predicted. Model performance was assessed using the
following metrics: AUC, accuracy, precision, recall, and
F1 score; and RF + XGBoost showed the best prediction
capability. The most five important features of RF + XGBoost
were operation duration, white blood cell count, BMI, total
bilirubin concentration, and blood glucose concentration.
Machine learning algorithms can accurately predict
postoperative unplanned 30-day readmission in elderly
surgical patients.
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Background: As a common cancer of the urinary system in adults, renal clear cell
carcinoma is metastatic in 30% of patients, and 1–2 years after diagnosis, 60% of patients
die. At present, the rapid development of tumor immunology and autophagy had brought
new directions to the treatment of renal cancer. Therefore, it was extremely urgent to find
potential targets and prognostic biomarkers for immunotherapy combined with
autophagy.

Methods: Through GSE168845, immune-related genes, autophagy-related genes, and
immune-autophagy-related differentially expressed genes (IAR-DEGs) were identified.
Independent prognostic value of IAR-DEGs was determined by differential expression
analysis, prognostic analysis, and univariate and multivariate Cox regression analyses.
Then, the lasso Cox regression model was established to evaluate the correlation of IAR-
DEGs with the immune score, immune checkpoint, iron death, methylation, and one-class
logistic regression (OCLR) score.

Results: In this study, it was found that CANX, BID, NAMPT, and BIRC5 were immune-
autophagy-related genes with independent prognostic value, and the risk prognostic
model based on them was well constructed. Further analysis showed that CANX, BID,
NAMPT, and BIRC5 were significantly correlated with the immune score, immune
checkpoint, iron death, methylation, and OCLR score. Further experimental results
were consistent with the bioinformatics analysis.

Conclusion: CANX, BID, NAMPT, and BIRC5 were potential targets and effective
prognostic biomarkers for immunotherapy combined with autophagy in kidney renal
clear cell carcinoma.

Keywords: immune-autophagy, kidney renal clear cell carcinoma, prognosis, biomarkers, autophagy
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INSTRUCTION

Renal cell carcinoma (RCC), which originates from renal tubular
epithelial cells, has always been one of the most common
malignant tumors, second only to bladder cancer in adult
urinary system malignancies (Siegel et al., 2020). Among them,
kidney renal clear cell carcinoma (KIRC) is the most common
subtype (accounting for 70–80% of all RCC cases), and it is also
one of the most aggressive subtypes with the worst prognosis
(Linehan, 2012; Vuong et al., 2019). These tumors are
asymptomatic in the early stages of the disease and are usually
diagnosed by complications of distant metastasis in the later
stages (Hsieh et al., 2017; Tito et al., 2021), 60% of patients with
renal clear cell carcinoma die within 1–2 years after diagnosis,
and 30% of patients have distant metastases at the time of
diagnosis (Casuscelli et al., 2019). Treatment of KIRC can be
partial or radical nephrectomy, ablation therapy, and active
monitoring of KIRC, while metastatic tumors are treated with
therapeutic action, but the overall prognosis is still limited, and
immune-related adverse events still need to be improved
(Choueiri and Motzer, 2017; Loo et al., 2019; Hofmann et al.,
2020; Rizzo et al., 2021). Due to the complex etiology of KIRC and
the high heterogeneity of tumor tissues, the treatment and
diagnosis of patients are still not ideal. Therefore, it is urgent
to find new markers to guide the clinical treatment and diagnosis
of KIRC.

Previous studies have confirmed that KIRC is closely related to
von Hippel-Lindau (VHL) gene changes (Zhang et al., 2018;
Zhang et al., 2020). In addition, ferroptosis-related genes, some
miRNAs, and pathways also participate in regulating the process
of KIRC regulation (Lu et al., 2021; Zhang et al., 2021).
Autophagy plays a vital role in cell physiology, including
adaptation to metabolic stress, removal of dangerous
substances, renewal during differentiation and development,
and prevention of genome damage (Levine and Kroemer,
2008; Levine and Kroemer, 2019). Enormous studies have
shown that autophagy is a double-edged sword in the
occurrence and treatment of tumors. On the one hand,
autophagy can degrade damaged organelles before cell
canceration to maintain cell homeostasis and exert a tumor
suppressor effect; on the other hand, autophagy can promote
the circulation of cell metabolites and meet the nutritional needs
of cells. Therefore, in the advanced stage of tumor development,
autophagy can provide energy and nutrition for tumor cell
proliferation and invasion and can improve tumor cell
tolerance to radiotherapy and chemotherapy (Galluzzi et al.,
2015; Galluzzi and Green, 2019; Kocaturk et al., 2019).

Since the relationship between iron death and tumors is
regulated by many autophagy-related genes, the expression of
autophagy-related genes in tumor tissues can be used to assess the
prognosis of patients. This study obtained KIRC gene expression
information by analyzing The Cancer Genome Atlas (TCGA)
database and then analyzed the differential expression of immune
autophagy-related genes in the sample, so as to construct a model
containing multiple genes to effectively predict the survival of
KIRC patients, analyze the risk scoring model correlation with
immune status, explore potential mechanisms, provide diagnosis

and treatment basis for clinical treatment, and find new
therapeutic targets.

MATERIALS AND METHODS

Microarray Data Analysis and Screening of
Immune-Autophagy-Related Differentially
Expressed Genes
To compare immune-autophagy-related differentially expressed
genes (IAR-DEGs) in KIRC, the Gene GEO database was used.
The GSE186645 dataset was selected for subsequent analyses. A
total of 1,793 human immune-related genes (IRGs) were
downloaded from ImmPort database (https://www.immport.
org./home), and a total of 223 human autophagy-related genes
were downloaded from the Human Autophagy Database (HADb)
(http://autophagy.lu/clustering/index.html). The cutoff
conditions were set to an adjusted p-value <0.05, and the
absolute value of log-fold change | log2FC| ≥ 1 was statistically
significant for the DEGs. ImageGP was used to create volcano
maps and venn maps online.

Functional Enrichment Analysis of
Immune-Autophagy-Related Differentially
Expressed Genes in Kidney Renal Clear Cell
Carcinoma
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were performed by
ClusterProfiler software package to explore functional
annotation and enrichment pathways, with p < 0.05
representing statistically significant differences.

Survival Analysis and Verification
In order to further evaluate the expression and prognostic value
of IAR-DEGs in KIRC, differential analysis and prognostic
analysis through “survival” package were conducted. Based on
the Cox proportional hazards model and Kaplan–Meier model,
the hazard ratio (HR) was calculated, with p < 0.05 representing
statistically significant differences.

Construction and Validation of the
Immune-Autophagy-Related Differential
Expressed Gene-Related Prognostic Model
According to the preliminary screening of IAR-DEGs with
differentially expressed and prognostic significance, univariate
Cox analysis of overall survival (OS) was performed to identify
the survival-related IAR-DEGs with a significant prognosis value
(p < 0.05). Then, multivariate Cox regression analysis was
performed to construct a prediction model based on IAR-
DEGs, and the IAR-DEGs were independent prognostic
factors. Signatures were established based on the coefficients
corresponding to independent prognostic genes. Patients from
TCGA-KIRC dataset were divided into low- and high-risk groups
weighted by the risk score obtained from the multivariate Cox
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regression. t-Distributed stochastic neighbor embedding (t-SNE)
and principal component analysis (PCA) were used to explore the
distribution characteristics of different groups by R packages.
Finally, the effectiveness of prognostic indicators was evaluated
by the area under the curve (AUC) of “time receiver operating
characteristic curve (ROC).”

Construction of Clinicopathological
Correlation Analysis and the Nomogram
Based on “survival” package in R software, combined with the
clinicopathological characteristics, the correlation between IAR-
DEGs and clinicopathological characteristics was analyzed.
Through R package “rms,” the nomogram and calibration
curve were obtained. Risk scores associated with prognostic
models were used as prognostic factors to evaluate 1-, 3-, and
5-year OS.

Relationship Between
Immune-Autophagy-Related Differentially
Expressed Genes and Immune
Microenvironment
The relationship between IAR-DEGs expression levels and
immune cells was analyzed using the xCell algorithm in the
“immunedeconv” R package. The immune score and the effects of
gene expression levels on eight immune checkpoint-related genes
were also analyzed using the “ggplot2” R package. Finally, TIDE
algorithm was used to evaluate two different mechanisms of
tumor immune escape using IAR-DEG markers.

Relationship Between Methylation and
Ferroptosis With
Immune-Autophagy-Related Differentially
Expressed Genes
The third-order RNA sequencing data of genes were obtained
based on TCGA dataset, and the association with ferroptosis-
related genes and m6A-related genes in “ggplot2” R package was
analyzed.

One-Class Logistic Regression Scores of
Immune-Autophagy-Related Differentially
Expressed Genes in Kidney Renal Clear Cell
Carcinoma
Tumor-associated RNA-seq data were obtained from TCGA-
KIRC, mRNAsi was calculated by one-class logistic regression
(OCLR) algorithm, and the dryness index was obtained.

Cell Lines, Patient Samples, RNA
Extraction, and Quantitative Real-Time PCR
Human kidney cell line HK-2 and human KIRC cell lines, 786-O
and caki-1, were originally purchased from the cell repository of
Shanghai Institute of Life Sciences. The cells were cultured in

1640 Medium (Gibco, Grand Island, NY, USA), containing 10%
fetal bovine serum (FBS) (Gibco), penicillin (25 U/ml), and
streptomycin (25 mg/ml), with 5% CO2 environment.

In this study, 19 fresh samples, including tumor tissues and
adjacent normal kidney tissues, were collected from patients who
underwent laparoscopic radical nephrectomy for KIRC from
2019 to 2020 in the Department of Urology, Zhongda
Hospital, and stored at 80°C. All patients were diagnosed with
KIRC and did not receive any antitumor therapy preoperatively,
and none of them had a history of long-term drug use. The
clinical characteristics of 19 clear cell RCC (ccRCC) patients are
listed in Table 1. The methodology of this study followed the
criteria outlined in the Declaration of Helsinki (revised in 2013),
and ethical approval was obtained from the Ethics Committee and
Institutional Review Board for Clinical Research of Zhongda
Hospital (ZDKYSB077). All patients or their relatives who
participated were informed and signed an informed consent form.

Total RNA was isolated with Total RNA Kit (OMEGAbiotec,
Guangzhou, China) according to the manufacturer’s instructions.
Complementary DNAwas synthesized using the HiScript II Q RT
SuperMix (R223-01) reagent kit (Vazyme Biotech Co., ltd.,
Nanjing, China). The qRT-PCR was performed using the
SYBR green PCR mix (vazyme). The specific primers set for
mIR-DEGs and GAPDH are listed in Supplementary Table S1.
Data were normalized to GAPDH expression levels using the
2−ΔΔCt method.

Tissue Microarray Construction and
Immunohistochemistry
All specimens were fixed in 10% neutral formaldehyde solution
and embedded in paraffin. Envision two-step dyeing and DAB
color development were used. Primary antibodies BID (ab32060,
Abcam, Cambridge, UK), NAMPT (ab236874, Abcam), and
BIRC5 (ab76424, Abcam) were used in this study.

Western Blotting Analysis
Total proteins from HK-2 and human KIRC cells lysed in
radioimmunoprecipitation assay (RIPA) (KeyGen, Nanjing,
China) buffer were extracted and quantified by bicinchoninic
acid (BCA) assay (KeyGen, China). Proteins were analyzed by
10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE), and the gels were transferred onto polyvinylidene
fluoride (PVDF) membranes. Then, bovine serum albumin
(BSA)-blocked PVDF membranes were incubated with specific
primary antibodies BID (1:1,000; ab32060), NAMPT (1:1000;
ab236874), BIRC5 (1:5,000; ab76424), and CANX (1:2000;
ab133615) overnight at 4°C, followed by incubation of
secondary antibodies for 1 h. Finally, bands were visualized
using an enhanced chemiluminescence (ECL) kit (vazyme, China).

Statistical Analysis
The statistical analysis was carried out by R software
(version 4.0.2). The Perl programming language (version 5.30.2)
was used for data processing. Multivariate Cox regression analyses
were used to evaluate prognostic significance. When p < 0.05 or
log-rank p < 0.05, the difference was statistically significant.
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RESULTS

Identification of
Immune-Autophagy-Related Differentially
Expressed Genes in Kidney Renal Clear Cell
Carcinoma Compared With Normal Renal
Tissues
The volcano map shows 1,826 upregulated DEGs and 1,809
downregulated DEGs that we screened in GSE168845
(Figure 1A). Then, 1,793 human IRGs from ImmPort database
and 223 human autophagy-related genes fromHADbwere analyzed
by Venn diagram, and five co-expressed genes were obtained:
CANX, MAPK1, BIRC5, NAMPT, and BID (Figure 1B). In the
GO/KEGG pathway enrichment analyses, we found five co-
expressed differential genes enriched in “aging” in biological
process (BP); “dendrite cytoplasm,” “neuron projection
cytoplasm,” and “plasma membrane projection cytoplasm” in
cellular component (CC); and molecular function (MF) enriched
in “MAPkinase activity,” “MAPkinase activity,” and “death receptor
binding.” Importantly, the five co-expressed genes in KEGG were
mainly enriched in “Platinum drug resistance,” “Apoptosis,” and
“Apoptosis-multiple species” (Figure 1C).

Differential Expression Analysis and
Survival Analysis of
Immune-Autophagy-Related Differentially
Expressed Genes in Kidney Renal Clear Cell
Carcinoma
Through a screening in TCGA-KIRC database, we compared the
expression levels of CANX, MAPK1, BIRC5, NAMPT, and BID
in normal kidney tissues and renal clear cell tumor tissues, and we
found that their expression levels in tumor tissues were
upregulated (Figure 2A). And Kaplan–Meier model analysis

shows that the expression levels of the above five DEGs are
significantly related to the prognosis, the high expression of
CANX and MAPK1 is associated with a good prognosis (Figures
2C,F), and the high expression of BID, BIRC5, and MAPK1 is
associated with a poor prognosis (Figures 2B,D,E). Univariate Cox
regression analysis (Figure 3A) and multivariate Cox regression
analysis (Figure 3B) were used to further explore the correlation
between the five DEGs and prognosis, showing that CANX, BIRC5,
NAMPT, and BID are independent prognostic factors for KIRC.

Construction and Validation of the
Immune-Autophagy-Related Differentially
Expressed Gene Prognostic Risk Model
We used lasso Cox regression to construct a prognostic model of
DEG-related risks, Risk Score � (−0.4879) * CANX + (0.3075) *
NAMPT + (−0.3041) * BIRC5 + (0.694) * BID (Figure 4A,
Figure 4B). According to the median risk score (50%), patients
were divided into high-risk and low-risk groups. It can be seen in
the t-SNE and PCA heat maps that BID, BIRC5, and NAMPT are
highly expressed in the high-risk group, and CANX is low in the high-
risk group (Figure 4C). If HR � 2.333, the prognosis model can be
considered as a risk factor model. The median survival time of the
high-risk group was significantly lower than that of the low-risk group
(Figure 4C). We used ROC to evaluate the prognostic prediction
efficiency of the model, and the results showed that the AUCwas 0.73
(1-year OS), 0.685 (3-year OS), and 0.697 (5-year OS) (Figure 4C).

Relationship Between
Immune-Autophagy-Related Differentially
Expressed Genes and Clinicopathological
Factors and the Construction Nomogram
Regarding the correlation between CANX, BID, NAMPT, BIRC5,
and clinicopathological characteristics in the risk prognosis

TABLE 1 | Clinical characteristics of 19 ccRCC patients.

Sample number Age Gender AJCC T N M Fuhrman Tumor size (cm) Chemotherapy Radiotherapy

1 59 Female I T1 N0 M0 I 3 No No
2 74 Male III T3 N0 M0 II 3.1 No No
3 52 Male I T1 N0 M0 II 6 No No
4 78 Female III T3 N0 M0 III 8.5 No No
5 82 Female III T3 N0 M0 II 4 No No
6 54 Male III T1 N1 M0 I 2.5 No No
7 46 Male IV T3 N0 M1 IV 16 No No
8 64 Male I T1 N0 M0 III 3 No No
9 23 Male I T1 N0 M0 II 2 No No
10 82 Female I T1 N0 M0 III 3.3 No No
11 77 Male I T1 N0 M0 II 3.4 No No
12 68 Male I T1 N0 M0 II 0.8 No No
13 43 Male IV T4 N0 M0 II 9.5 No No
14 65 Female III T3 N1 M0 IV 10 No No
15 70 Female II T2 N0 M0 II 9 No No
16 58 Male I T1 N0 M0 II 4.3 No No
17 74 Female I T1 N0 M0 II 2 No No
18 40 Male IV T3 N0 M1 III 10.7 No No
19 44 Male I T1 N0 M0 I 1.8 No No

Note. ccRCC, clear cell renal cell carcinoma; AJCC, American Joint Committee on Cancer.
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model, our results show that the immune-autophagy-related DEGs
associated with T stage, N stage, M stage, and pathological stage are
BIRC5 and BID (Figures 5A–D), there is no age-related gene, and
the gene related to the patient’s gender is BIRC5 (Figures 5E,F).
We used the nomogram to predict 1-, 3-, and 5-year OS in the
entire TCGA cohort (Figure 5G). We also found that the 1-, 3-,
and 5-year OS on the nomogram is consistent with the calibration
curve of predicted probability, and the 1-year OS is the highest
(Figure 5H).

Gene Set Enrichment Analysis of
Immune-Autophagy-Related Differentially
Expressed Genes
We used Gene Set Enrichment Analysis (GSEA) to analyze the
KIRC patient data in TCGA-KIRC database. The results showed
that both BIRC5 and BIDmediate ion channel transport (Figures
6A,B), and both NAMPT and CANX mediate the channel of
NABA secretion (Figures 6C,D).

Correlation Between the Expression of
Immune Infiltrating Cells in Kidney Renal
Clear Cell Carcinoma Tissues and
Immune-Autophagy-Related Differentially
Expressed Genes
The KIRC population in TCGA-KIRC database was divided
into immune-autophagy-related DEG low-expression group
(G1) and immune-autophagy-related DEG high-expression
group (G2), and the correlation between the expression of
immune-infiltrating cells and immune-infiltrating cells was
analyzed. The results show that CANX, NAMPT, BIRC5,
and BID are highly correlated with the expression levels
of a variety of immune infiltrating cells, and the
expression levels of monocytes, myeloid dendritic cells,
and CD8+ effector memory T cells are significantly
correlated with CANX, NAMPT, BIRC5, and BID. It suggests
that these cells may be related to the progression of KIRC
(Figure 7).

FIGURE 1 | Screening of differentially expressed genes. Volcano plots of differentially expressed genes (DEGs) between normal renal tissues and renal cancer in
GSE168845 samples (A). Adjusted p-value < 0.05 and log2-fold change (absolute) > 1.3; 635 DEGs were screened with 1,826 upregulated genes and 1,809
downregulated genes. Red represents upregulated genes, and blue indicates downregulated genes. A total of 1,793 human immune-related genes (IRGs) were
downloaded from ImmPort database (https://www.immport.org./home), and a total of 223 human autophagy-related genes were downloaded from the Human
Autophagy Database (HADb) (http://autophagy.lu/clustering/index.html). Venn diagram showing the five immune-autophagy genes according to the three datasets (B).
Graph showing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the five immune-autophagy genes (C). The five immune-
autophagy genes were CANX, MAPK1, BIRC5, NAMPT, and BID.
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Correlation Between the Expression of
Immune Checkpoint in Kidney Renal Clear
Cell Carcinoma Tissues and
Immune-Autophagy-Related Differentially
Expressed Genes
Based on the original intention of this study to have a positive
effect on the targeted drug therapy of KIRC, we also statistically

analyzed the correlation between the expression level of immune
checkpoints in KIRC tissues and the expression of immune-
autophagy-related DEGs. The results showed that CD274,
HAVCR2, LAG3, and PDCDILG2 were significantly correlated
with BID (Figure 8A); CD274 and PDCDILG2 were significantly
correlated with BIRC5 (Figure 8C); CTLA4, LAG3, PDCD1,
PDCDILG2, TIGIT, and SIGLEC15 were significantly correlated
with NAMPT (Figure 8E); and CD274, CTLA4, LAG3, PDCD1,

FIGURE 2 | Differential expression and survival analyses of immune-autophagy genes in kidney renal clear cell carcinoma (KIRC). Expression profile of the five
immune-autophagy genes in KIRC samples compared with normal tissues (A). Kaplan–Meier plots showing CANX, MAPK1, BIRC5, NAMPT, and BID with prognostic
value (B–F).
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and TIGIT were significantly correlated with CANX (Figure 8G).
It can be seen that both CD274 and PDCDILG2 have appeared
three times. It is speculated that they are sensitive immune
checkpoints for KIRC treatment and diagnosis.

In addition, the response of CANX, BID, NAMPT, and BIRC5
with different expression levels to immune checkpoint inhibitors
was predicted based on Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm (Figures 8B–H). The results
indicated that the p-values of all immune-autophagy-related
genes except NAMPT were <0.05, which indicated that the
immune checkpoint inhibitors were effective against KIRC
with high expression of CANX, BID, and BIRC5, and the
survival period was prolonged after immune checkpoint
inhibitor treatment.

Relationship Between Methylation,
Ferroptosis, and Expression of
Immune-Autophagy-Related Differentially
Expressed Genes
Following the same analysis method, the results in Figure 9 show
that the expression of immune-autophagy-related DEGs is
correlated with the expression levels of multiple ferroptosis-
related genes, and NCOA4, EMC2, NFE2L2, HSPB1, SAT1,
and DPP4 are significantly correlated with CANX, NAMPT,
BIRC5, and BID.

In addition, we analyzed the correlation between m6A
methylation-related genes and immune-autophagy-related
DEGs by the same method and found that CANX, NAMPT,
BIRC5, and BID were significantly correlated with multiple
methylated genes (Figure 10). We further verified that
m6A-related genes were differentially expressed in kidney
cancer and normal tissues and were statistically significantly
associated with patient prognosis (Supplementary Figures
S1, S2). In particular, METTL14, VIRMA, ZC3H13,
TYHDC2, YTHDF3, YTFDF2, IGF2BP2, and RBMX were
significantly associated with four immune-autophagy-
related DEGs.

Assessment of the One-Class Logistic
Regression Scores of
Immune-Autophagy-Related Differentially
Expressed Genes in Kidney Renal Clear Cell
Carcinoma
By OCLR scores, we found that, except for BID, the expression
levels of CANX, NAMPT, and BIRC5 were significantly
different from the dryness degree of KIRC (Figure 11).
These results suggested that CANX, NAMPT, and BIRC5
may influence the degree of similarity between KIRC cells
and stem cells and thus affect the BP and degree of
dedifferentiation of tumors.

FIGURE 3 | The correlation between the five differentially expressed genes (DEGs) and prognosis. The forest plot shows the results of the univariate Cox regression
analyses of the five immune-autophagy genes in The Cancer Genome Atlas–kidney renal clear cell carcinoma (TCGA-KIRC) (A). The forest plot shows the results of the
multivariate Cox regression analyses of the five immune-autophagy genes in TCGA-KIRC (B). And CANX, BIRC5, NAMPT, and BID were significant.
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Validation of the Expression of Differentially
ExpressedGenes in Clinical Tissue Samples
To detect the expression of four genes (CANX, BID,
NAMPT, and BIRC5) in KIRC, we performed the qRT-PCR
in KIRC cells and clinical tissue samples. We
verified the expression levels of four genes in normal
kidney cell lines (HK-2 cells) and two KIRC cell lines (786-
O and caki-1). The results showed that the expression
levels of four genes were significantly increased in

KIRC cells compared with normal kidney cells (Figures
12A–D). In addition, Western blotting results showed that
protein levels of NAMPT and BIRC5 were expressed at
increased levels in RCC cell lines 786 and caki-1, but there
was no significant difference in protein levels of BID and
CANX (Figure 12J). BID, NAMPT, and BIRC5 were
detected with the same results in tumor tissues and with
adjacent normal kidney tissues, while CANX was not
significantly different (Figures 12E–H). Then we detected

FIGURE 4 |Construction of a prognostic model for the risks associated with differentially expressed genes (DEGs). The calculations for the model according to the
multivariate Cox regression analyses (A,B). The prognostic model was analyzed by survival time, survival status, target gene expression heat map, and 1/3/5-year overall
survival (C). lambda.min � 0.0035. Riskscore � (−0.4879) * CANX + (0.3075) * NAMPT + (−0.3041) * BIRC5 + (0.694) * BID.
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the protein expression of BID, NAMPT, and BIRC5 in the
tissues by immunohistochemistry (IHC). Results
demonstrated that NAMPT and BIRC5 were significantly

increased in KIRC tissues compared with adjacent normal
kidney tissues. However, BID was negative in most tissues
(Figure 12I).

FIGURE 5 | The four immune-autophagy genes significantly correlate with multiple clinicopathological factors in kidney renal clear cell carcinoma (KIRC) patients.
The relationships between CANX, BIRC5, NAMPT, and BID and clinicopathological factors in the entire The Cancer Genome Atlas (TCGA) cohort (A–F). Nomogram for
predicting 1-, 3-, and 5-year overall survival (OS) in the entire TCGA cohort (G). Calibration curves of nomogram on consistency between predicted and observed 1-, 3-,
and 5-year survival in entire TCGA cohort (F). Dashed line at 45° indicates a perfect prediction.
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DISCUSSION

Early symptoms of clear cell RCC are insidious, and patients often
have metastases at the time of diagnosis. Because of its complex
biological characteristics, surgical resection is not easy, more than
one-tenth of patients will have a fatal relapse within 5 years after
traditional partial or radical nephrectomy, and it is not sensitive
to radiotherapy and chemotherapy (Fu et al., 2016; Pandey et al.,
2020). In recent years, targeted therapies against vascular
endothelial growth factor (VEGF) and immunotherapy have
gradually replaced nonspecific immune methods as the
primary medical treatment for patients with KIRC
(Şenbabaoğlu et al., 2016; Barata and Rini, 2017; Smith et al.,
2018; Dizman et al., 2020). Even though researchers have made
some progress in this area, the selection of biomarkers, the

combined use of drugs, and the ambiguity of immune
checkpoints are still crucial issues that cannot be ignored
(Tang et al., 2013; Ghatalia et al., 2017; Mao et al., 2021).
Therefore, studying the mechanism of the occurrence and
development of clear cell RCC has become a clinically urgent
need to solve the problem.We understand that autophagy-related
genes are closely related to cancer, and their expression levels
differ at different cancer stages. Few studies are linking the
prognosis and treatment of KIRC with autophagy-related
genes. We hope to illustrate this kind of relevance through
some analyses.

In this study, we first conducted Venn diagram analysis from
the genes in the GSE168845, ImmPort database, and HADb to
obtain five co-expressed immune-autophagy-related DEGs, and
we discarded MAPK1 after performing multivariate Cox

FIGURE 6 | Gene Set Enrichment Analysis (GSEA) of immune-autophagy-related differentially expressed genes (DEGs). Single gene enrichment analysis of
BIRC5 (A), BID (B), NAMPT (C), and CANX (D).
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FIGURE 7 | Correlation between the expression of immune infiltrating cells in kidney renal clear cell carcinoma (KIRC) tissues and immune-autophagy-related
differentially expressed genes (DEGs). The difference of expression of immune infiltration cells in KIRC tissues with high and low CANX (A), NAMPT (B), BIRC5 (C), and
BID (D) gene expression. G1 is a low-expression group, and G2 is a high-expression group.
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FIGURE 8 | Correlation between the expression of immune checkpoint in kidney renal clear cell carcinoma (KIRC) tissues and immune-autophagy-related
differentially expressed genes (DEGs). The difference of expression of immune checkpoint in KIRC tissues with high and low CANX (A), NAMPT (C), BIRC5 (E), and BID
(G) gene expression. The difference of expression of ICB response in KIRC tissues with high and low BID (B), BIRC5 (D), NAMPT (F), and CANX (H) gene expression. G1
is a low-expression group, and G2 is a high-expression group.
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regression analysis. We found that the expression levels of CANX,
BIRC5, BID, and NAMPT in tumor tissues were significantly
higher than their expression levels in normal tissues, indicating
that they are all significantly related to tumor occurrence and
development. The Kaplan–Meier model we established shows
that patients with high expression of BID and BIRC5 have a worse
prognosis. By contrast, patients with high expression of CANX

have a better prognosis, which is consistent with the results of our
DEG-related risk prognosis model constructed by lasso Cox
regression. In order to better understand the correlation
between these four immune-autophagy-related DEGs and
tumors, we also statistically analyzed their correlation with
tumor stage, histopathological morphology, patient age, patient
gender, and other clinicopathological characteristics. In addition,

FIGURE 9 | Relationship between methylation, ferroptosis, and expression of immune-autophagy-related differentially expressed genes (DEGs). The difference of
expression of ferroptosis-related genes in kidney renal clear cell carcinoma (KIRC) tissues with high and low CANX (A), NAMPT (B), BIRC5 (C), and BID (D) gene
expression. G1 is a low-expression group, and G2 is a high-expression group.
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the calibration curves and nomogram showed a good prediction
effect. The expression level of immune-autophagy-related DEGs
is also significantly correlated with immune infiltration, immune
checkpoints, methylation, and iron death. Among these results,
the performance of BIRC5 and BID is particularly outstanding;
immune infiltrating cells such as monocytes, myeloid dendritic
cells, CD8+ effector memory T cells, and immune checkpoint
CD274 deserve special attention. Furthermore, we performed the

qRT-PCR analysis and IHC in clinical samples and found that the
expression of NAMPT and BIRC5 was significantly higher in
ccRCC tissues when compared with that in adjacent normal
tissues. More in vivo and in vitro experiments are needed to
authenticate these findings.

Baculoviral IAP repeat containing 5 (BIRC5) has been broadly
studied among cancer therapeutic targets, and its main function is
to suppress cell death (Li et al., 2019). Numerous researches have

FIGURE 10 | Correlation between m6A methylation-related genes and immune-autophagy-related differentially expressed genes (DEGs). The difference of
expression of methylation of m6A related genes in kidney renal clear cell carcinoma (KIRC) tissues with high and low CANX (A), NAMPT (B), BIRC5 (C), and BID (D) gene
expression. G1 is a low-expression group, and G2 is a high-expression group.
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shown that BIRC5 contributes to tumor cell immune escape by
inhibiting apoptosis and confirmed that its expression is strongly
correlated with prognostic status and OS in various cancers (e.g.,
lung, colorectal, prostate, and ovarian cancers) (Cao et al., 2019;
Filipchiuk et al., 2020; Wang et al., 2021). However, there are no
relevant studies to explore the therapeutic effects of BIRC5 small-
molecule inhibitors in tumors (Li et al., 2019). BH3-Interacting
Domain Death Agonist (BID), as the activator and integrator, is
involved in apoptosis-related pathways (Billen et al., 2008; Gryko
et al., 2014). Lee found that BID proteins are involved in
mediating DNA damage responses and promoting normal cell
apoptosis (Lee et al., 2004). Regrettably, there are no relevant

studies that explored the specific action mechanism and related
functions of BID in tumors. Nonetheless, studies have suggested
that TAT-BID + DOXmay be a potentially effective combination
for the treatment of cancers, but no final conclusions can be
drawn due to the absence of protein and cytokine pathways
(Zhang et al., 2004; Goncharenko-Khaider et al., 2010;
Orzechowska et al., 2015). Additionally, nicotinamide
phosphoribosyltransferase (NAMPT) is an important cofactor
involved in various biochemical reactions (Travelli et al., 2018). It
is now generally believed that NAMPT is highly expressed in cells
with active proliferation, especially tumor cells (Garten et al.,
2015), which implicates NAMPT-targeted small-molecule

FIGURE 11 | Assessment of the one-class logistic regression (OCLR) scores of immune-autophagy-related differentially expressed genes (DEGs) in kidney renal
clear cell carcinoma (KIRC). Scatter diagram illustrating the relationship between CANX (A), NAMPT (B), BIRC5 (C), and BID (D) and OCLR score in KIRC. The horizontal
axis in the figure represents the gene expression distribution, and the vertical axis is the OCLR score distribution. G1 is a low-expression group, and G2 is a high-
expression group.
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inhibitors as potential tumor therapeutic agents. Existing related
studies have identified NAMPT inhibitors and their vectors as
important directions for anticancer therapy (Garten et al., 2009;
Bi and Che, 2010; Lucena-Cacace et al., 2018; Zhang et al., 2019;
Galli et al., 2020). Ultimately, calnexin (CANX), an endoplasmic
reticulum lectin chaperone protein (Ellgaard et al., 2016; Kozlov
and Gehring, 2020), has been confirmed to be upregulated in
tumors including lung cancer and oral squamous carcinomas,
and its ability to inhibit the proliferation of CD4+ T and CD8+

T cells in tumor tissues (Kobayashi et al., 2015; Alam et al., 2019;
Chen et al., 2019), as well as the release of cytokines (PD-1, IFN-γ,

and TNF), which eventually promotes tumor growth.
Unfortunately, there is no clear mechanism for the regulation
of CANX in tumors (Li et al., 2001; Kobayashi et al., 2015;
Ellgaard et al., 2016; Alam et al., 2019; Chen et al., 2019;
Kozlov and Gehring, 2020).

In summary, BIRC5, BID, NAMPT, and CANX, which were
finally screened by bioinformatics analysis of autophagy-
immune-related genes, are important in tumorigenesis,
progression, and apoptosis. Regrettably, there are no relevant
studies to explore their specific mechanisms and functions in
KIRC and the potential efficacy of relevant targeted small-

FIGURE 12 | The expression of these genes in human kidney renal clear cell carcinoma (KIRC) specimens, adjacent normal tissues, and cell lines. (A–D) qRT-PCR
analysis of CANX (A), BID (B), NAMPT (C), and BIRC5 (D) in KIRC cell lines. GAPDH was used as a loading control. (E–H) qRT-PCR analysis of CANX (E), BID (F),
NAMPT (G), and BIRC5 (H) in paired KIRC tissues (n � 19). (I) Representative images of BID, NAMPT, and BIRC5 protein immunochemistry in KIRC tissues compared
with adjacent normal kidney tissues. Magnification, ×5 and ×20. (J) Western blotting analysis of related differentially expressed genes (DEGs) expression levels in
normal kidney cell line (HK-2 cells) and two KIRC cell lines (786-O and caki-1). *p < 0.05, **p < 0.01, and ***p < 0.001.
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molecule inhibitors. We believe that this will be an important
concept and direction for the academic community to investigate
the mechanism and function of autophagy-immunity in renal
cancer afterward.

Our study still had some limitations. The dataset we used to
construct and validate the IAR-DEG prognostic signature was
obtained from ImmPort database. We failed to locate suitable
data from other immunological databases to verify the reliability
of the screened genes. We only performed preliminary expression
studies on these four IAR-DEGs in the signature. However,
further functional analysis and mechanistic studies were not
carried out.

CONCLUSION

In this study, we obtained immune-autophagy-related
genes with independent prognostic value through
comprehensive bioinformatics analysis. We established
the prognostics risk model. A significant correlation was
found among immune-autophagy-related genes and the
immune score, immune checkpoint, methylation,
ferroptosis, and OCLR score. As a result, CANX, BID,
NAMPT, and BIRC5 were potential targets and effective
prognostic biomarkers for immunotherapy combined
with autophagy.
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Fei Chen1†, Yumei Fan1†, Xiaopeng Liu1,2†, Jianhua Zhang1†, Yanan Shang1, Bo Zhang1,
Bing Liu1, Jiajie Hou1, Pengxiu Cao1 and Ke Tan1*

1Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and
Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China, 2Department of
Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China

Heat shock factor 2 (HSF2), a transcription factor, plays significant roles in corticogenesis
and spermatogenesis by regulating various target genes and signaling pathways.
However, its expression, clinical significance and correlation with tumor-infiltrating
immune cells across cancers have rarely been explored. In the present study, we
comprehensively investigated the expression dysregulation and prognostic significance
of HSF2, and the relationship with clinicopathological parameters and immune infiltration
across cancers. The mRNA expression status of HSF2 was analyzed by TCGA, GTEx, and
CCLE. Kaplan-Meier analysis and Cox regression were applied to explore the prognostic
significance of HSF2 in different cancers. The relationship between HSF2 expression and
DNAmethylation, immune infiltration of different immune cells, immune checkpoints, tumor
mutation burden (TMB), and microsatellite instability (MSI) were analyzed using data
directly from the TCGA database. HSF2 expression was dysregulated in the human
pan-cancer dataset. High expression of HSF2 was associated with poor overall survival
(OS) in BRCA, KIRP, LIHC, and MESO but correlated with favorable OS in LAML, KIRC,
and PAAD. The results of Cox regression and nomogram analyses revealed that HSF2was
an independent factor for KIRP, ACC, and LIHC prognosis. GO, KEGG, and GSEA results
indicated that HSF2 was involved in various oncogenesis- and immunity-related signaling
pathways. HSF2 expression was associated with TMB in 9 cancer types and associated
with MSI in 5 cancer types, while there was a correlation between HSF2 expression and
DNA methylation in 27 types of cancer. Additionally, HSF2 expression was correlated with
immune cell infiltration, immune checkpoint genes, and the tumor immune
microenvironment in various cancers, indicating that HSF2 could be a potential
therapeutic target for immunotherapy. Our findings revealed the important roles of
HSF2 across different cancer types.
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INTRODUCTION

The incidence and mortality of cancer are increasing rapidly
every year worldwide, posing a serious threat to public health
(Sung et al., 2021). Among the most common cancers, breast,
lung, and liver are the main causes of high mortality worldwide.
Although scientists have made considerable efforts to improve
the diagnosis and treatment of cancer, the 5-years survival rate for
cancer patients remains disappointing (Ferlay et al., 2021; Sung
et al., 2021). Concurrently, the economic burden of cancer on
countries worldwide is gradually increasing (Ferlay et al., 2021;
Sung et al., 2021). Therefore, there is an urgent need to find
diagnostic biomarkers and new treatments for cancer.

Cancer cells face multiple internal and external stresses that are
distinct from those faced by normal cells (Jeggo et al., 2016). These
stimuli cause dysfunction of proteostasis as a result of protein
misfolding, gene mutation, oncogene activation, inhibition of
tumor suppressors, chromosomal rearrangement, oxidative stress,
hypoxia, and impaired degradation of proteins (Hanahan and
Weinberg, 2011; Jeggo et al., 2016). Upon exposure to these
various stimulators, heat shock factor (HSF), which is the original
regulator of the heat shock response (HSR), controls the rapid and
dynamic expression of heat shock proteins (HSPs) (Akerfelt et al.,
2010; Fujimoto and Nakai, 2010; Gomez-Pastor et al., 2018). HSPs,
acting asmolecular chaperones, are involved in various physiological
and pathological processes, such as the folding and assembly of
nascent polypeptides and the intracellular transport of proteins, and
to exhibit cytoprotective effects. The HSF family contains five
members, including HSF1, HSF2, HSF4, HSF5, and HSFY
(Akerfelt et al., 2010; Fujimoto and Nakai, 2010; Gomez-Pastor
et al., 2018). Numerous studies have demonstrated that HSF1 is
associated with DNA damage repair, reprogrammed metabolism
oncogenesis, andmetastasis (Mendillo et al., 2012; Dai and Sampson,
2016; Dai, 2018;WangG. et al., 2020; Puustinen and Sistonen, 2020).
Thus, HSF1 is believed to be a potential therapeutic target for
anticancer therapy (Zhang B. et al., 2021; Chen et al., 2021).

In contrast to HSF1, HSF2 has been shown to play an important
role in mediating organ development, differentiation, and the
ubiquitin proteasome pathway (Rallu et al., 1997; Mathew et al.,
1998; Widlak and Vydra, 2017). HSF2 is necessary for
embryogenesis and spermatogenesis as evidenced by knocking
out the HSF2 gene in mice (Sarge et al., 1994; Rallu et al., 1997;
Björk et al., 2010). Apoptosis of spermatocytes is remarkably
increased, and the maturation of male germ cells is impaired in
HSF2-null mice (Sarge et al., 1994; Rallu et al., 1997; Björk et al.,
2010). A recent study revealed that HSF2 promoted spermatogenesis
by regulating the expression of HSP and Y chromosomal multicopy
genes, including SLX, SLY, and SSTY2 (Akerfelt et al., 2008). HSF2 is
also associated with brain development, as evidenced by HSF2-null
mice exhibiting enlarged ventricles, a small hippocampus, and
neurons mispositioning (Kallio et al., 2002; Wang et al., 2003;
Chang et al., 2006). As a member of the HSF family, previous
studies have suggested that HSF2 could form heterotrimers with
HSF1 to promote the transcription of HSP and some other genes
(Sistonen et al., 1994; Ostling et al., 2007; Sandqvist et al., 2009).
However, the precise function and molecular mechanisms of HSF2
in tumorigenesis still need to be explored.

Although increasing evidence indicates that HSF2 may play a
vital role in the tumorigenesis of some specific types of cancers, a
systematic pan-cancer analysis of HSF2 has not yet been
conducted. Therefore, the aims of this study were to explore
the expression profile, prognostic value, methylation level of
HSF2, and potential relationship between HSF2 expression
and immunological functions in 33 different types of cancer.

MATERIALS AND METHODS

Heat Shock Factor 2 Expression in
Pan-Cancer
The Cancer Genome Atlas (TCGA, https://www.cancer.gov/)
database, which is widely used for comprehensive analyses of
human cancers, was employed to investigate the differential
expression of HSF2 across different cancer types. RNA
sequencing data and clinical follow-up information for
patients with 33 types of cancers were downloaded from the
TCGA database. Because the normal tissues sequencing data
included in the TCGA are very limited and many patients lack
transcriptome sequencing results for their normal tissues, we
obtained data for normal tissues from the Genotype-Tissue
Expression (GTEx) database. The cell line expression matrix of
HSF2 in pan-cancer was obtained from the CCLE dataset (https://
portals.broadinstitute.org/ccle/about). The above analyses were
constructed using the R (v4.0.3) software package ggplot2 (v3.3.
3). R software v4.0.3 and ggplot2 (v3.3.3) were used for
visualization. R software v4.0.3 was used for statistical analysis.

Heat Shock Factor 2 Expression and its
Clinical Correlation in Pan-Cancer
The correlations of HSF2 expression with tumor stage and DNA
methylation were investigated using the UALCAN database
(http://ualcan.path.uab.edu/).

Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG), and Gene Set
Enrichment Analysis (GSEA)
GO, KEGG, and GSEA were conducted to examine the biological
and molecular functions of HSF2 across different cancer types
using a total of 300 genes that were positively correlated with
HSF2. GO analysis was applied to investigate the BP, CC, andMF
associated with HSF2 in different cancers. All three analyses were
performed using the R package Cluster Profiler.

cBioPortal Database
The genetic alterations of HSF2 in different cancer types were
obtained using the cBioPortal database.

The Prognostic Potential of Heat Shock
Factor 2 in Pan-Cancer
The survival data from 33 types of cancer were obtained from the
TCGA database for further overall survival (OS), disease-specific
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survival (DSS), disease-free interval (DFI), and progression-free
interval (PFI) analyses. Univariate Cox regression analysis was
used to analyze HSF2-related survival with the R package limma,
survival, and forestplot to show the p value, HR, and 95% CI. The
Kaplan-Meier (KM) method was used to investigate the prognostic
value ofHSF2 in human cancers using theR packages limma, survival,
and survminer. R software v4.0.3 was used for statistical analysis.

Univariate and Multivariate Cox Regression
Analyses and Construction of a Nomogram
Cox regression analysis, including univariate, and multivariate
analyses, was used to examine the prognostic value of HSF2 in
KIRP, ACC, and LIHC. The forest plot was constructed using the R
package “forest plot” to exhibit the hazard ratio (HR), 95% CI, and
p-value. The nomogramwas constructed using the R package “rms”.

Correlation of Heat Shock Factor 2
Expression With Tumor Cell Infiltration and
Immune Modulator Genes in Pan-Cancer
We obtained the data for 33 types of human cancer in TCGA
from the GDC data portal website. For reliable immune score
evaluation, we used the R software package “Immuneeconv” to
integrate the two latest algorithms, including TIMER, and xCell.
Heatmaps of the immune infiltration scores or immune
modulator genes and HSF2 expression in different cancer
types were generated with Spearman correlation analysis. The
horizontal axis in the heatmaps shows the type of cancer, the
vertical axis shows different immune cell infiltration scores, and
the color shows the correlation coefficients. Additionally, R
software v4.0.3 was used for statistical analysis.

Relationships Between Heat Shock Factor 2
Expression and TMB or MSI in Pan-Cancer
We obtained the data for 33 types of human cancer in TCGA
from the GDC data portal website. For pan-cancer analysis, the
horizontal axis shows the correlation coefficient between HSF2
expression and TMB/MSI, the ordinate is the type of cancer, the
size of the dots in the figure shows the degree of the correlation
coefficient, and the different colors represent the significance of
the p value. Correlation analysis between HSF2 and TMB/MSI
was performed using Spearman’s method and R software v4.0.3
was used for statistical analysis. A p-value less than 0.05 was
considered statistically significant.

RESULTS

Heat Shock Factor 2 is Abnormally
Expressed in Human Pan-Cancer
Based on the results from The Cancer Genome Atlas (TCGA)
data alone, HSF2 expression was increased in CHOL, COAD,
ESCA, HNSC, LIHC, LUSC, and STAD, but decreased in BRCA,
KICH, KIRC, LUAD, PRAD, THCA, and UCEC tissues
compared with adjacent normal tissues (Figure 1A). We also

estimated HSF2 expression in paired cancer tissues and adjacent
normal tissues in pan-cancer using TCGA datasets. HSF2
expression was significantly higher in CHOL, COAD, ESCA,
HNSC, LIHC, and LUSC, but remarkably lower in BRCA, KICH,
KIRC, PRAD, and THCA than in paired adjacent normal tissues
(Figure 1B). Because several cancers lack corresponding normal
tissue controls, we therefore combined the data from the TCGA,
and Genotype Tissue-Expression (GTEx) (Figure 1C). After
combining the data from TCGA and GTEx, the expression
difference of HSF2 achieved significance in 25 out of 33
cancer types. HSF2 expression was higher in CHOL, DLBC,
GBM, HNSC, LGG, LIHC, PAAD, and THYM but lower in
ACC, BLCA, BRCA, CESC, COAD, KICH, KIRC, LAML, LUAD,
OV, PRAD, READ, SKCM, TGCT, THCA, UCEC, and UCS
(Figure 1C). Moreover, we also investigated the expression of
HSF2 in different cancer cell lines according to the Cancer Cell
Line Encyclopedia (CCLE) database (Figure 1D).

Association of Heat Shock Factor 2
Expression With Clinicopathological
Features in Different Cancer Types
The relationship between HSF2 expression and the
clinicopathological characteristics of patients with different
cancers was investigated based on individual cancer stages,
including stages 1, 2, 3, and 4. HSF2 expression was generally
increased in CHOL, COAD, ESCA, KIRP, LIHC, LUSC, STAD,
and UCS (Figure 2). In contrast, HSF2 expression was dramatically
decreased in BRCA, KIRC, KICH, LUAD, SKCM, THCA, UCEC,
and UVM (Figure 2). Moreover, HSF2 expression was stable in
some cancers, including ACC, BLCA, CESC, DLBC, HNSC, MESO,
OV, PAAD, READ, and TGCT (Supplementary Figure S1).

Prognostic Values of Heat Shock Factor 2 in
Human Pan-Cancer
Next, we investigated the interrelationship between HSF2
expression and the prognosis of pan-cancer patients, including
overall survival (OS), disease-specific survival (DSS), disease-free
interval (DFI), and progression-free interval (PFI). Regarding the
OS analysis, Cox regression results from 33 types of cancer
suggested that HSF2 expression was markedly related to OS in
6 types of cancer, including ACC, GBM, KICH, KIRP, LIHC, and
PAAD (Figure 3A). The results from the Kaplan-Meier (KM)
survival curves demonstrated that higher HSF2 expression was
correlated with worse OS in BRCA, LIHC, KIRP, and MESO, but
with better OS in LAML, KIRC, and PAAD (Figure 3B).
Moreover, we explored the relationship between HSF2
expression and DSS in cancer patients. As shown in
Supplementary Figure S2A, HSF2 expression was associated
with poor DSS in three types of cancer, including KIRP, LIHC,
and UCEC. KM of DSS analysis indicated that upregulated HSF2
expression corresponded with poor DSS in patients with KIRP,
LIHC, and KICH but with favorable DSS in patients with KIRC
(Supplementary Figure S2B). Moreover, Cox regression analysis
of PFI demonstrated that upregulated HSF2 expression was a risk
factor in ACC, KICH, KIRP, and LIHC and was a protective
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FIGURE 1 | HSF2 expression levels in pan-cancer. (A) Upregulated or downregulated expression of HSF2 in various human cancers from TCGA datasets. (B)
Increased or decreased expression of HSF2 in paired cancer tissues and adjacent normal tissues from TCGA datasets. (C) HSF2 differential expression across different
cancer types in the TCGA andGTEx databases. (D) ThemRNA level of HSF2 in different cancer cells according to the CCLE database. *p < 0.05; **p < 0.01; ***p < 0.001.
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factor in PAAD (Supplementary Figure S3A). Results from the
KM of PFI analysis suggested that increased HSF2 expression was
associated with a poor PFI in ACC and LIHC but with a favorable
PFI in CHOL, KIRC, and LGG (Supplementary Figure S3B).
Subsequently, we also assessed the association between HSF2
expression and DFI and identified that dysregulated HSF2
expression influenced DFI in patients with KIRP, LIHC, and
UCEC (Supplementary Figure S4A). KM DFI analysis revealed
that increased HSF2 mRNA expression was correlated with an
unfavorable DFI in BLCA, CESC, and LIHC (Supplementary
Figure S4B).

Heat Shock Factor 2 is an Independent
Prognostic Factor in KIPR, ACC, and LIHC
To further confirm whether HSF2 was an independent prognostic
factor in cancers, univariate and multivariate Cox regression
analyses were performed based on various clinicopathological
characteristics, such as age, T stage, N stage, M stage, TNM stage,
and grade. Univariate Cox regression analysis demonstrated that
HSF2 expression (p < 0.001), T stage (p < 0.001), N stage (p <
0.001), M stage (p < 0.001), and TNM stage (p < 0.001) were
significantly correlated with OS in KIPR (Figure 4A); HSF2
expression (p < 0.05), T stage (p < 0.001), M stage (p <

FIGURE 2 | Correlation of HSF2 expression and clinicopathological parameters across different cancer types. The clinical correlations between HSF2 expression
levels and tumor stage in different cancer types were examined using the UALCAN database. *p < 0.05; **p < 0.01; ***p < 0.001.
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0.001), and TNM stage (p < 0.001) were obviously correlated with
OS in ACC (Figure 4D); HSF2 expression (p < 0.001), M stage
(p < 0.05) and TNM stage (p < 0.001) were strongly correlated
with OS in LIHC (Supplementary Figure S5A). Multivariate
analysis indicated that N stage (p < 0.01), M stage (p < 0.01), and
TNM stage (p < 0.05) were significantly correlated with OS in
KIPR (Figure 4A); HSF2 expression (p < 0.05) and T stage (p <
0.05) were obviously correlated with OS in ACC (Figure 4D);
HSF2 expression (p < 0.001) and TNM stage (p < 0.001) were
markedly correlated with OS in LIHC (Supplementary Figure
S5A). In addition, a nomogram was constructed based on
multivariate analysis (Figures 4B,E; Supplementary Figure

S5B). The C-index and calibration curve confirmed the
accuracy in predicting the 1-, 3-, and 5-years survival rates of
cancer patients. The C-index of the prognostic nomogram was
0.918, 0.828, and 0.696 in KIPR, ACC, and LIHC, respectively
(Figures 4C,F; Supplementary Figure S5C).

DNA Methylation and Genetic Alteration
Analysis of Heat Shock Factor 2 in
Pan-Cancer
A growing body of evidence suggests that DNA methylation is an
epigenetic molecular mechanism for gene expression and that DNA

FIGURE 3 | Prognostic potential of HSF2 in pan-cancer. (A) Correlation analysis of HSF2 expression with OS by the Cox regression model in various cancers. (B)
OS curves comparing high and low expression of HSF2 in multiple cancer types using Kaplan-Meier methodology.
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FIGURE 4 | Internal validation of HSF2 as an independent prognostic factor for KIRP patients and ACC patients. (A,D) Univariate and multivariate Cox regression
analyses were performed to determine HSF2 as an independent prognostic factor. (B,E) A prognostic nomogram integrating HSF2 expression and clinicopathologic
variables was constructed to estimate OS. (C,F) Calibration plots to predict the OS of KIRP and ACC at 1, 3, and 5 years.
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hypermethylation leads to the inactivation of a broad range of tumor
suppressor genes. Therefore, we investigated the potential link
between DNA methylation and HSF2 expression. With respect to
the TCGA database, we observed that the DNA methylation level
of HSF2 was obviously increased in CHOL, KIRC, LIHC, LUSC,
and PAAD but decreased in TGCT and THCA based on the
UALCAN database (Figure 5A). Moreover, we observed that
DNA methylation was negatively correlated with HSF2

expression in many types of cancer, including ACC, BLCA,
BRCA, CESC, CHOL, DLBC, ESCA, HNSC, KICH, KIRC, KIRP,
LAML, LGG, LIHC, LUAD, LUSC, PAAD, PCPG, PRAD, SARC,
SKCM, TGCT, THYM, UCEC, USC, and UVM (Supplementary
Figure S6). In contrast, DNA methylation was positively associated
with HSF2 expression in OV (Supplementary Figure S6).

In addition, we investigated the alteration frequency of HSF2
in different cancer types according to the cBioPortal database.

FIGURE 5 | DNA methylation and mutation profile of HSF2 in pan-cancer. (A) The promoter methylation level of HSF2 in across different cancer types was
investigated according to the UALCAN database. (B) The alteration frequency of HSF2 with different mutation types was obtained from the cBioPortal database. *p <
0.05; **p < 0.01; ***p < 0.001.
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FIGURE 6 | GO and KEGG enrichment analyses for HSF2 in cancers. Top 20 pathways enriched in the BP, MF, and KEGG analyses in (A) BRCA, (B) CESC, (C)
LUAD, and (D) STAD.
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The highest incidence rate of genetic variations of HSF2 was
observed in DLBC, and deep depletion was the primary type
(Figure 5B).

GO and KEGG Analyses of Heat Shock
Factor 2 in Pan-Cancer
First, we identified genes with positive or negative coexpression with
HSF2 using the TCGA database (Supplementary Table S1), and the
top 50 genes that were positively and negatively associated with
HSF2 in different cancers are shown (Supplementary Figure S7). To
explore the molecular mechanisms by which HSF2 regulates
oncogenesis, we performed GO and KEGG analyses using the
300 genes that were positively related to HSF2 in several cancers
(Figure 6). The top 5 enriched BP GO terms were covalent
chromatin modification, peptidyl-lysine modification, histone
modification, DNA replication, and chromosome segregation in
BRCA; RNA splicing, peptidyl-lysine modification, regulation of
mRNA metabolic process, regulation of chromosome organization,
and protein acylation in CESC; RNA splicing, mRNA splicing,
DNA replication, DNA conformation change, and double-strand
break repair in LUAD; and nucleocytoplasmic transport, nuclear
transport, peptidyl-lysine modification, covalent chromatin
modification, and histone modification in STAD (Figures
6A–D). The top 3 enriched MF terms of GO were ubiquitin-like
protein transferase activity, ubiquitin-protein transferase activity,
and cysteine-type peptidase activity in BRCA; ubiquitin-like
protein transferase activity, histone binding, and single-stranded
DNA binding in CESC; ubiquitin-like protein transferase activity,
ubiquitin-protein transferase activity, and ubiquitin-like protein
ligase activity in LUAD; and histone binding, helicase activity,
and tubulin binding in STAD (Figures 6A–D). The top 3
enriched CC terms of GO were nuclear speck, chromosomal
region, and nuclear envelope in BRCA; nuclear chromatin,
nuclear speck, and chromosomal region in CESC; chromosomal
region, nuclear speck, and spindle in LUAD; and nuclear speck,
nuclear envelope, and chromosomal region in STAD
(Supplementary Figures S8A–D).

Moreover, KEGG pathway analysis suggested that HSF2 was
associated with signaling pathways related to the spliceosome,
RNA transport, cell cycle, ubiquitin-mediated proteolysis, and
Hippo signaling pathway in BRCA; spliceosome, cell cycle,
MAPK signaling pathway, mRNA surveillance pathway, and
shigellosis in CESC; spliceosome, cell cycle, viral
carcinogenesis, oocyte meiosis, and RNA transport in LUAD;
and RNA transport, ubiquitin-mediated proteolysis, hepatitis B
infection, pathogenic Escherichia coli infection, and Salmonella
infection in STAD (Figures 6A–D).

Heat Shock Factor 2-Related Signaling
Pathways in Cancers Identified by GSEA
GSEA was further performed to explore the signaling pathways
and molecular mechanisms that were differentially affected
by HSF2 in human cancers. Regarding the GO terms, the
top 3 pathways influenced by HSF2 were the histone
acetyltransferase complex, alternative RNA spicing via the

spliceosome, and mitotic sister chromatid segregation in
BRCA, CESC, LUAD, and STAD (Figures 7A–D). Among the
KEGG terms, the top 3 pathways affected by HSF2 were
ubiquitin-mediated proteolysis, herpes simplex virus 1
infection, and the mRNA surveillance pathway in BRCA; basal
transcription factor, inositol phosphate metabolism, and cell
cycle in CESC; DNA replication, mismatch repair and cell
cycle in LUAD; and ubiquitin-mediated proteolysis, RNA
degradation, and spliceosome in STAD (Figures 7A–D). More
importantly, regarding the Reactome terms, the outcome of
GSEA indicated that in addition to the cell response to
stress, different immunity-related pathways were associated
with HSF2, including the adaptive immune response,
TRIF (TICAM1)-mediated TLR4 signaling, MyD88-dependent
TLR4 cascade, TLR3 cascade, TLR4 cascade, and various
bacterial or viral infections. Taken together, these findings
imply that there is a close relationship among HSF2, the
inflammatory response, and the tumor microenvironment
(TME) (Figures 7A–D).

Association of Heat Shock Factor 2
Expression and Immune Cell Infiltration in
Pan-Cancer
Because immune-infiltrating cells play an important role in
cancer initiation and development, we then estimated the
association between HSF2 expression and the infiltration
levels of six major immune cells in 32 types of cancers.
Using the data obtained from the TIMER database, the
correlation between HSF2 expression, and the infiltration
levels of these immune cells was investigated separately.
The results implied that HSF2 expression was markedly
correlated with the infiltrating level of B cells in 16 types of
cancer, CD4+ T cells in 12 types of cancer, CD8+ T cells in 16
types of cancer, macrophages in 17 types of cancer, neutrophils
in 18 types of cancer, and DCs in 18 types of cancer
(Figure 8A). In addition, HSF2 positively correlated with
these six types of immune cells in KIRC, LIHC, PAAD,
and PRAD but negatively correlated with these immune
cells in SARC (Figure 8A). To further confirm the
relationship between HSF2 expression and infiltration of 38
subtypes of immune cell subtypes, we utilized the xCell
database. HSF2 expression was negatively related to the
infiltration levels of most immune cells in LUSC, SARC,
and UCEC (Figure 8B).

Relationships Between Heat Shock Factor 2
Expression and Immune Checkpoint Genes,
Chemokines, Immunostimulators, and
MHC-Related Genes in Pan-Cancer
Because immune checkpoint genes play an important role in
tumor immunotherapy, the correlations between HSF2 and
immune checkpoint genes, immunoinhibitors, and
immunostimulators were subsequently analyzed. Notably,
we observed that HSF2 was significantly correlated with
most immune checkpoint genes, including PD-1, PD-L1,
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FIGURE 7 | Merged enrichment plots for HSF2 according to GSEA in cancers. Merged plots of GSEA indicating the signaling pathways correlated with HSF2
based on the GO, KEGG, and Reactome analyses in (A) BRCA, (B) CESC, (C) LUAD, and (D) STAD.
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FIGURE 8 | Correlations of HSF2 expression with the infiltration level of immune cells across different cancer types. (A) Heatmap of correlations between the
expression of HSF2 and the level of immune infiltration in 32 types of human cancer using TIMER. (B) Heatmap of correlations between the expression of HSF2 and the
level of immune infiltration in 33 types of human cancer using xCell. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 9 | Correlations of HSF2 expression with immune checkpoint genes, chemokines, immunostimulators, and MHC-related genes across different cancer
types. (A) Heatmap of correlations between HSF2 expression and immune checkpoint genes. (B) Heatmap of correlation between HSF2 expression and chemokines.
(C) Heatmap of the correlation between HSF2 expression and immunostimulators. (D) Heatmap of the correlation between HSF2 expression and MHC-related genes.
*p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 10 | Correlations of HSF2 expression and TMB and MSI in pan-cancer. (A) The stick chart shows the associations between HSF2 expression and TMB in
pan-cancer. (B) Relationship between HSF2 expression and TMB in 9 tumors types. (C) The stick chart shows the associations between HSF2 expression and MSI in
pan-cancer. (D) Relationship between HSF2 expression and MSI in 5 tumors types. Correlation analysis was performed using Spearman’s method.
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CTLA4, KDR, TGFBR1, and IL10RB, in OV, PAAD, PRAD,
and LIHC (Figure 9A). Interestingly, HSF2 expression was
positively correlated with the expression of different
chemokines in PAAD and PRAD but negatively associated
with the expression of most chemokines in SRAC
(Figure 9B). Moreover, we found that the expression of
HSF2 was significantly and positively associated with
immunostimulators in HNSC, KICH, KIRC, LIHC, OV,
PAAD, and PRAD (Figure 9C). Additionally, HSF2
expression was positively correlated with most MHC-
related genes in KIRC, OV, PAAD, and PRAD
(Figure 9D). In contrast, HSF2 expression was negatively
and strongly associated with most MHC-related genes in
LGG and SARC (Figure 9D).

Relationships Between Heat Shock Factor 2
Expression and TMB and MSI in
Pan-Cancer
TMB and MSI are two emerging biomarkers associated with
the immunotherapy response. The relationships between HSF2
expression level and TMB across different cancer types were also
investigated. The expression level of HSF2 was markedly and
positively correlated with TMB in many cancers, including ACC,
BRCA, GBM, LAML, LUAD, and SKCM, but negatively correlated
with TMB in ESCA, THCA, and PAAD (Figures 10A,B).
Additionally, the correlation of HSF2 expression with MSI was
also explored in pan-cancer, among which READ, UCEC, and UCS
exhibited a positive correlation while DLBC and PRAD exhibited a
negative correlation with HSF2 expression (Figures 10C,D).

FIGURE 11 | The expression of various immune checkpoint genes between the HSF2 low-expression group and the high-expression group in different cancer
types. *p < 0.05, **p < 0.01, ***p < 0.001.
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Effect of Heat Shock Factor 2 Expression on
the Expression of Immune Checkpoints
Cancer patients were separated into high-expression and low-
expression groups based on HSF2 expression. We then evaluated
the effect of HSF2 expression on the expression of well-known
immune checkpoints (CD274, CTLA4, HAVCR2, LAG3,
PDCD1, PDCD1LG2, TIGHT, and SIGLEC15) to estimate the
immunotherapy responses correlated with HSF2 expression.
Significantly lower expression of most immune checkpoint
genes was observed in the HSF2 high-expression group than
in the HSF2 low-expression group in ACC, CESC, GBM, LGG,
LUSC, PCPG, SARC, and THCA (Figure 11). In contrast, the
expression of most immune checkpoint genes was higher in the
HSF2 high-expression than low-expression group in LIHC,
PAAD, PRAD, and STAD (Figure 11).

DISCUSSION

Cancer has become a serious threat to human health worldwide due
to its high morbidity and mortality (Ferlay et al., 2021; Sung et al.,
2021). Early detection and effective treatment are important
prerequisites for improving the prognosis of cancer patients
(Zhong et al., 2016; Fan et al., 2021; Liu et al., 2021). At present,
the most common cancer treatments include surgical resection,
radiation, and adjuvant chemotherapy, but the effectiveness is still
limited. Therefore, it is urgent and necessary to identify novel tumor
biomarkers and to understand their molecular mechanisms involved
in tumorigenesis and progression for the development of more
effective diagnostic methods and treatment strategies. HSF2, a
transcription factor for the heat shock response, plays significant
roles in corticogenesis and spermatogenesis by regulating various
target genes, and signaling pathways (Rallu et al., 1997;Mathew et al.,
1998; Widlak and Vydra, 2017). Nevertheless, HSF2 has not been
largely studied in the cancer field, and its role in oncogenesis or pan-
cancer is still unclear. In the present study, we employed an array
of bioinformaticsmethods to explore the potential tumor-promoting
or tumor-suppressing roles of HSF2 by investigating the significant
correlation between HSF2 expression and the prognosis of cancer
patients, DNA methylation, TMB, MSI, immune cell infiltration
levels, and immune checkpoint genes in pan-cancer according to
the results from the TCGA, GTEx, UALCAN, and cBioPortal
databases.

Here, we conducted the first comprehensive systematic
analysis of HSF2 across 33 cancer types. Our results showed
that HSF2 was dysregulated in various human cancers, which was
consistent with previous studies from other clinical and
preclinical data (Mustafa et al., 2010; Li et al., 2014; Björk
et al., 2016; Zhong et al., 2016; Meng et al., 2017; Yang et al.,
2018; Yang et al., 2019). We investigated HSF2 expression in
various types of cancers and their corresponding normal tissues
according to the TCGA database and observed that HSF2 was
differentially expressed in 14 types of cancer (Figure 1). When
combining the data from TCGA and GTEx, HSF2 was
dysregulated in up to 25 types of cancer (Figure 1). HSF2 has
been reported to be expressed at high levels in patients with lung

cancer and affects the growth and migration of lung cancer cells
by regulating the expression of HSPs (Zhong et al., 2016). HSF2 is
also dysregulated in breast cancer cells to modulate their
proliferation and invasion (Li et al., 2014; Yang et al., 2018).
In breast cancer cells, HSF2 has been identified to mediate
transcription of the miR-183/-96/-182 cluster, which is highly
expressed to promote tumorigenesis by directly regulating RAB21
expression (Li et al., 2014). Moreover, HSF2 mediates expression
of the ALG3 enzyme, which subsequently promotes the growth
and migration of breast cancer cells (Yang et al., 2018). ALG3
silencing significantly suppresses tumor growth and
downregulates HSF2 expression, suggesting the presence of a
feedback loop between these two genes (Yang et al., 2018).
Additionally, previous studies have shown a higher level of
HSF2 expression in HCC than in normal liver tissues (Yang
et al., 2019). Mechanistically, HSF2 interacts with euchromatic
histone lysine methyltransferase 2 (EHMT2) to suppress the
expression of fructose-bisphosphatase 1 (FBP1) (Yang et al.,
2019). Knockdown of FBP1 facilitates the HIF1 activation and
upregulates the expression of glucose transporter 1 (GLUT1),
lactate dehydrogenase A (LDHA), and hexokinase 2 (HK2) to
increase aerobic glycolysis in HCC (Yang et al., 2019). These
results reveal that HSF2 may act as an oncogene to promote the
initiation and progression of HCC. In addition, in ESCC, miR-
202 inhibits apoptotic cell death by directly targeting HSF2, which
subsequently affects the expression of HSP70 (Meng et al., 2017).
In contrast, HSF2 expression is clearly decreased in prostate
cancer tissues (Björk et al., 2016). The reduced expression of
HSF2 is associated with the metastasis of prostate cancer,
indicating that HSF2 is a tumor suppressor in prostate cancer
(Björk et al., 2016). Altogether, these previous studies suggest that
HSF2 may function as an oncogenic or tumor-suppressing gene
in different tumors.

In view of the pathological and clinical significance of HSF2
across different cancer types, we also investigated whether HSF2
could be used as a potential biomarker for the early diagnosis of
human cancers. Therefore, we examined the relationship between
HSF2 expression and OS, DSS, DFI, and PFI across different
cancer types (Figure 3; Supplementary Figures S2–4). The
results indicated that high expression of HSF2 was a risk
factor and associated with poor OS, DSS, DFI, and PFI in
some cancers but seemed to be protective in KIRC and
PAAD. Moreover, a nomogram including HSF2 and
clinicopathological characteristics was constructed and
exhibited good predictive power for the OS of KIRP, ACC,
and LIHC patients (Figure 4; Supplementary Figure S5).
These observations, together with the clinicopathological
features, illustrate that HSF2 is a newly identified multicancer-
relevant gene with prognostic potential in cancer risk
prediction and they support the possible effect of HSF2 on
lymph node metastasis in COAD, ESCA, LIHC, LUSC,
and STAD.

To further explore the molecular mechanism by which HSF2
affects oncogenesis, we performed KEGG and GSEA analyses.
The results directly demonstrated the involvement of HSF2 in
colorectal cancer, renal cell carcinoma, hepatocellular carcinoma,
endometrial cancer, small cell lung cancer, chronic myeloid
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leukemia, and viral carcinogenesis (Figures 6, 7). Moreover,
HSF2 was found to be associated with ubiquitin-mediated
proteolysis based on the KEGG and GSEA results (Figures 6,
7). A recent study indicated that the degradation of p53 was
inhibited in HSF2-depleted cells by regulating the expression of
PSMD10, an oncogene that interacts with the ubiquitin ligase
MDM2 (Lecomte et al., 2010). In addition to PSMD10, the
expression of some proteasome subunits, including PSMD1,
PSMD2, PSMC4, ubb, and ubc, was also downregulated in the
absence of HSF2 (Lecomte et al., 2010). As proteasome inhibition
is an important strategy for the treatments of cancers, targeting
HSF2 may be a valuable tool to reduce chemoresistance to
proteasome inhibition. More importantly, we found that HSF2
was associated with various oncogenesis-related pathways, such
as the cell cycle, Hippo signaling pathway, mismatch repair, ErbB
signaling pathway, and mTOR signaling pathway (Figures 6, 7).
Consistent with our previous studies, the results of the present
study strengthen the important role of HSF2 in
neurodegenerative diseases, including spinocerebellar ataxia
(Figures 6, 7). Our previous study demonstrated that HSF2
deficiency accelerated disease progression and shortened
lifespan in a mouse model of Huntington’s disease, suggesting
that HSF2 could be a potential therapeutic target for
neurodegenerative diseases by regulating the expression of αB-
crystallin (CRYAB) (Shinkawa et al., 2011). Our GSEA results
further implied that HSF2 was closely associated with the histone
acetyltransferase complex (Figure 6). A previous study has shown
that HSF2 can interact withWDR5, a core component of the Set1/
MLL H3K4 histone methyltransferase complex (Hayashida,
2015). Moreover, HSF2 modifies active histone markers in the
CRYAB promoter, including H3K4me3, H3K14Ac, and
H3K27Ac (Hayashida, 2015). In fact, in addition to HSPs,
HSF2 also regulates other target genes associated with
oncogenesis, such as c-Fos (Wilkerson et al., 2007).
Bioinformatics analysis has demonstrated that HSF2 may be
involved in the oncogenesis of thyroid carcinoma by
mediating the expression of SERPINA1 and FOSB (Lu and
Zhang, 2016).

Oncogenesis is a complicated process accompanied by increased
proliferation, resistance to cell death, enhanced angiogenesis, escape
from immune surveillance, and tumor microenvironment (TME).
The TME has attracted wide attention in cancer immunotherapy
and has been identified as amain contributor to cancer initiation and
development. It is well known that immunosurveillance affects the
prognosis of cancer patients and that tumors can evade immune
responses and immunotherapy by taking advantage of immune
checkpoint genes, such as PD-1, PD-L1, and CTLA-4 (Gong et al.,
2018; Kruger et al., 2019). Recently, immunotherapy has been
recognized as an effective new strategy for cancer treatment.
Although immunotherapy has made breakthroughs in cancer
treatment, it still faces many challenges, and only a limited
proportion of cancer patients respond well to immunotherapy
(Gong et al., 2018; Kruger et al., 2019). Therefore, the
identification of new targets and biomarkers is the key to further
improving the efficacy of immunotherapy. Tumor-infiltrating
immune cells, including B cells, T cells, dendritic cells,
macrophages, and neutrophils, are the major part of the TME.

Notably, our GSEA and KEGG results suggested that HSF2 was also
involved in many immunity-associated pathways (IL−17 signaling
pathway and the adaptive immune system) and various microbial
infections (hepatitis B, shigellosis, Yersinia infection, and herpes
simplex virus 1 infection) (Figures 5, 6). A recently study showed
that HSF2 was upregulated in ulcerative colitis and was negatively
associated with colon inflammation in mice (Wang W. et al., 2020;
Zhang F. et al., 2021). NLRP3 inflammasome activation and IL-1β
secretion are greatly enhanced in HSF2−/−DSS model mice (Zhang
et al., 2020). Consistently, overexpression of HSF2 significantly
suppresses inflammation-related processes, indicating that HSF2
participates in inflammation. Moreover, the expression of HSF2
is obviously higher in the intestinal mucosa of UC patients (Miao
et al., 2014). More importantly, serum HSF2 levels are positively
correlated with the expression of IL-1β and TNF-α. Knockdown of
HSF2 potentiates the production of IL-1β and TNF-α induced by
LPS (Miao et al., 2014; Wang W. et al., 2020; Zhang et al., 2020;
Santopolo et al., 2021; Zhang F. et al., 2021). Here, to further estimate
the relationships between HSF2 and the TME, we first examined the
correlation of HSF2 expression and the abundance of different
infiltrating immune cells across different cancer types. HSF2
expression was significantly linked with the abundance of
infiltrating CD4+ T cells in 12 types of cancer, CD8+ T cells in
16 types of cancer, B cells in 16 types of cancer, macrophages in 17
types of cancer, neutrophils in 18 types of cancer, and DCs in 18
types of cancer (Figure 8). In addition, HSF2 positively correlated
with these six types of immune cells in KIRC, LIHC, PAAD, and
PRAD but negatively correlated with them in SARC (Figure 8A).
We also used the xCell algorithm to further estimate the relationship
between HSF2 expression and the level of infiltrating immune cells
and found that HSF2 expression was significantly correlated with
infiltrating CD4+ T helper (Th) cells and macrophages in most
cancer types (Figure 8B). Tumor-associated macrophages (TAMs)
within the TME have attracted great interest in basic science
regarding their roles in metastasis, angiogenesis, and
immunosuppression in various cancers (Mills et al., 2016;
DeNardo and Ruffell, 2019; Anderson et al., 2021). The
infiltration of TAMs in and around the tumor nest is one of the
most important hallmarks of the process of cancer development.
Macrophages consist of at least two subgroups, including
proinflammatory M1 macrophages, and antiinflammatory M2
macrophages (Mills et al., 2016; Duan and Luo, 2021). M1
macrophages are cancer resistant due to their intrinsic
phagocytosis, high antigen presenting capacity, and antitumor
inflammatory activity. M1 macrophages also produce reactive
oxygen species (ROS) and cytokines and are correlated with a
favorable prognosis in cancer patients. In contrast, M2
macrophages are endowed with a repertoire of tumor-promoting
capabilities associated with immunosuppression, angiogenesis, and
neovascularization. A better understanding of their polarization into
a protumoral phenotype to regulate tumor growth, angiogenesis,
metastasis, and immune evasion prompted us to investigate their
clinical significance as biomarkers in diverse cancers (Mills et al.,
2016; DeNardo and Ruffell, 2019; Anderson et al., 2021; Duan and
Luo, 2021). Here, we observed that HSF2 was significantly and
negatively associated with the abundance of infiltrating
macrophages, including M1 and M2 phenotypes, in most tumors,
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and illustrating the complexity of the TME.Moreover, accumulating
evidence suggests that Th cells are essential to the development of
the immune response and are involved in the response to
antitumor immunotherapy (Basu et al., 2021; Renaude et al.,
2021). T helper 1 (Th1) and T helper 2 (Th2) cells are the two
predominant subtypes of CD4+ Th cells. Th1 cells play an antitumor
role by orchestrating immunity against tumor cells. Th1 cells
enhance the generation and function of CD8+ T cells, prevent
angiogenesis, promote the senescence of tumor cells, and protect
effector cytotoxic T lymphocytes from exhaustion; thus, modulating
the Th1 cell response may lead to effective immune-based
therapy (Basu et al., 2021; Laba et al., 2021; Renaude et al., 2021).
Following differentiation, Th2 cells can produce IL-4, IL-5, IL-10, IL-
13, and IL-17, not all of which are beneficial in cancer and
contribute to tumor growth and metastasis. Simultaneously,
infiltration of Th2 cells in the TME is usually connected with a
poor prognosis in human cancers (Basu et al., 2021; Laba et al., 2021;
Renaude et al., 2021). In the present study, we found that
HSF2 expression was negatively associated with the infiltration
level of Th1 cells but positively correlated with the level of
infiltrating Th2 cells in most tumor types. More directly, we
also investigated the effects of HSF2 expression on immune
modulators, including immunoinhibitors, immunostimulators,
chemokines, and MHC-related genes (Figure 9). Intriguingly, we
observed that the expression of HSF2 was greatly associated
with most immunoinhibitors, including PD-1, PD-L1, and
CTLA4, in OV, PAAD, PRAD, and LIHC (Figure 9).
Furthermore, HSF2 was also significantly correlated with the
expression of different chemokines in PAAD, PRAD, and SARC;
positively associated with immunostimulators in HNSC, KICH,
KIRC, LIHC, OV, PAAD, and PRAD; and strongly correlated
with most MHC-related genes in KIRC, OV, PAAD, PRAD,
LGG, and SARC (Figure 9). Additionally, HSF2 expression
significantly affected the expression of well-known immune
checkpoints (Figure 11). TMB influences the possibility of
generating immunogenic peptides, therefore affecting the
response to immunotherapy in cancer patients. MSI is another
important index for predicting oncogenesis and tumor
development. Therefore, TMB and MSI could act as predictive
factors for the efficacy of immune checkpoint inhibitors
(Sha et al., 2020; Li et al., 2021). Here, we observed that the
expression of HSF2 was associated with TMB and MSI in several
cancer types (Figure 10). These results provide further clues
regarding the correlation between HSF2 expression and cancer
immunity. Based on our observations, targeting HSF2 may be a
promising immunotherapeutic strategy for the treatment of specific
cancers. Until now, there have been no small molecule drugs
specifically targeting HSF2. Efforts are needed to develop novel
drugs or RNAi techniques targeting HSF2 in tumor-infiltrative
immune cells. Conversely, engineering tumor-specific
macrophages and Th cells by modulating HSF2 expression may
also be a promising strategy to increase the efficacy of
immunotherapy.

Our results may provide better prognostic prediction and
immune-oncological perspectives regarding the application
of HSF2 as a prognostic biomarker. However, despite

performing these bioinformatics analyses by collecting
information from various databases, this study has several
limitations. First, some contradictory findings of individual
cancers in different databases were observed. It is therefore
necessary to further investigate the expression and function
of HSF2 using a large sample size. A deeper understanding of
these differences may facilitate the development a global view
to generate cancer development mechanisms with HSF2
expression. Second, although the signaling pathways and
prognostic value of HSF2 in different cancer types were
explored, there were no in vitro or in vivo experiments to
verify these findings. Third, the effects of HSF2 on immune
cell infiltration and immunotherapy in human cancer require
experimental and clinical validation.

CONCLUSION

The results of the current study reveal the varied expression of
HSF2 in different types and stages of cancers, which suggests that
the effects of HSF2 on oncogenesis may vary across different
cancer types. A significant correlation between HSF2 expression
and the prognosis of cancer patients was observed. HSF2
expression was strongly related to immune cell infiltration,
immune checkpoint genes, TMB, and MSI. The present study
integrated existing data to explore the potential function of HSF2
in cancers and provides insights for targeting HSF2 to improve
the therapeutic efficacy of immunotherapy.
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The early clinical symptoms of gastric cancer are not obvious, and metastasis may have
occurred at the time of treatment. Poor prognosis is one of the important reasons for the
highmortality of gastric cancer. Therefore, the identification of gastric cancer-related genes
can be used as relevant markers for diagnosis and treatment to improve diagnosis
precision and guide personalized treatment. In order to further reveal the pathogenesis
of gastric cancer at the gene level, we proposed a method based on Gradient Boosting
Decision Tree (GBDT) to identify the susceptible genes of gastric cancer through gene
interaction network. Based on the known genes related to gastric cancer, we collected
more genes which can interact with them and constructed a gene interaction network.
Random Walk was used to extract network association of each gene and we used GBDT
to identify the gastric cancer-related genes. To verify the AUC and AUPR of our algorithm,
we implemented 10-fold cross-validation. GBDT achieved AUC as 0.89 and AUPR as
0.81. We selected four other methods to compare with GBDT and found GBDT
performed best.

Keywords: gastric cancer, susceptibility gene, gradient boosting decision tree (GBDT), random walk (RW), gastric
cancer-related genes

INTRODUCTION

There are about 950,000 new cases of gastric cancer worldwide each year, and nearly 700,000 deaths.
It is one of the most serious tumors (Rawla and Barsouk, 2019). The early clinical symptoms of
gastric cancer are not obvious, and metastasis may have occurred at the time of treatment (Axon,
2006). Poor prognosis is one of the important reasons for the high mortality of gastric cancer (Eguchi
et al., 2003). Therefore, the identification of gastric cancer-related genes can be used as relevant
markers for diagnosis and treatment to improve diagnosis precision and guide personalized
treatment (Duffy et al., 2014).

Identifying gastric cancer-related genes plays an important role in the treatment of gastric cancer.
Research onmetastasis-related genes is conducive to timely detection of early metastasis, screening of
new markers and therapeutic targets, thereby improving the survival rate of patients (Arturi et al.,
1997). Using animal models to screen gastric cancer metastasis-related genes (Wang and Chen,
2002), fully mimic the process of tumor metastasis in vivo, with high metastasis efficiency, clear
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phenotypic characteristics, and good clinical similarity. Cell line
derived xenograft (CDX) model is a tumor model constructed by
transplanting cultured tumor cells into immunodeficient mice
(Georges et al., 2019). The cell lines used in the CDX model have
been cultured in vitro for many generations, and their biological
characteristics have changed significantly. Some tumor cell lines
that adapt to culture in vitro and have metastatic potential have
been selected, so it is easy to obtain the metastasis model. The
establishment of the CDXmodel can be realized by subcutaneous
injection, intraperitoneal injection, caudal vein injection, and so
on (Lallo et al., 2017). Zhu et al. (2020) established a
xenotransplantation model by subcutaneous injection of
gastric cancer cell line BGC-823 into the hind limbs of nude
mice. They found that mir-106a had the potential to promote
tumor growth by targeting Smad7. At the same time, they found
that mir-106a was related to peritoneal metastasis of gastric
cancer. At present, studies have found that gastrin level has a
strong relationship with the development of gastric cancer. Zu
et al. (2018) successfully established a cell xenotransplantation
model by subcutaneous injection of human gastric cancer cell line
SGC-7901 in nude mice. They found that gastrin can inhibit the
proliferation of poorly differentiated gastric cancer cells and
enhance the inhibitory effect of cisplatin on gastric cancer by
activating erk-p65-mir 23a/27a/24 axis. Tumor cells with
biological enzyme markers can also be used to establish a
CDX model (Agashe and Kurzrock, 2020), which is helpful to
dynamically monitor tumor metastasis in vivo and facilitate the
screening of metastasis related genes. Miwa et al. (2019)
successfully established the intraperitoneal metastasis model by
injecting MKN1 (MKN1 LUC) and MKN45 (MKN45 LUC)
gastric cancer cells stably expressing luciferase and n87, Kato
III, nugc4, and ocum-1 gastric cancer cells into the abdominal
cavity of nude mice. The liver metastasis model was successfully
established by injecting MKN1 Luc and MKN45 Luc directly into
the portal vein of mice. Because the establishment of CDX model
uses passage cell lines and lacks the microenvironment of tumor
growth in human body (Lallo et al., 2017), it cannot well simulate
the growth and metastasis of tumor in the human body. Patient
derived cell models (PDC) use patient derived tumor cells isolated
from malignant effusions such as ascites and pleural effusion
(Bolck et al., 2019). Therefore, it can better reflect the
individualized characteristics of patients and show unique
advantages in the screening of tumor metastasis related genes
and clinical drug screening. Lee et al. (2015) established a PDC
model with cells collected from patients with metastatic cancer.
The study found that the genomic changes of primary tumor and
offspring PDC model were highly consistent, and the correlation
of average variant allele frequency was 0.878. Further compared
the genomic characteristics of primary tumor P0, P1, and P2 cells,
and found that three samples (P0, P1, and P2 cells) were highly
correlated. The drug response of the model reflects the clinical
response of patients to targeted drugs. Although the PDC model
established by metastatic patient derived tumor cells can reflect
the individualized characteristics of patients, it is cultured in vitro,
which is difficult to culture and cannot simulate the process of
tumor metastasis in vivo. Therefore, the use of this model to
screen metastasis related genes is limited. The metastasis related

genes screened by the above CDX model and PDC model are
conducive to the discovery of relevant molecules promoting
gastric cancer metastasis and provide help for the early
detection of gastric cancer metastasis in the clinic (Almagro
et al., 2014). Patient derived xenograft (PDX) model improves
the shortcomings of the CDX model and the PDC model. It is a
better model to screen metastasis related genes at present. The
model is a xenotransplantation model established by
transplanting fresh clinical surgical specimens into
immunodeficient mice. It maintains the microenvironment of
primary tumor growth, so it can better simulate the biological
behavior of tumors in vivo. Choi et al. (2016) successfully
established 15 cases of gastric cancer PDX models, and found
that the histological and genetic characteristics of the tumor
models remained stable in subsequent passages and were
highly consistent with the primary tumor. This discovery
made the use of PDX models for the development of gastric
cancer molecules possible. Research and individualized treatment
are possible. The PDX model has relatively consistent genomics
characteristics with the primary tumor, which is very conducive
to the screening of individualized metastasis-related genes. Zhang
et al. (2015) successfully established 32 PDX models of gastric
cancer, and found that the gene amplification of FGFR2, MET,
and ERBB2 is very similar between PDX models and their parent
tumors, and the expression of PTEN and MET proteins are also
moderately consistent. These data are in vivo testing of
individualized therapy and screening of transfer-related genes
provides a theoretical basis. There are many methods of tissue
transplantation when establishing a PDX model, including
subcutaneous transplantation, renal capsule transplantation,
orthotopic transplantation, etc. (Okada et al., 2018). Among
them, subcutaneous transplantation is the most commonly
used transplantation method. Guo et al. (2019) established a
PDX model of gastric cancer by subcutaneous transplantation
and revealed the molecular mechanism of ISL1 that promotes
gastric cancer metastasis by combining the ZEB1 promoter and
the cofactor SETD7. ISL1may be a potential prognostic marker of
gastric cancer. Because the microenvironment of orthotopic
transplantation tumors is closer to the human environment,
orthotopic transplantation can simulate the growth of tumors
in the human body better than subcutaneous transplantation, and
it is easier to simulate clinical metastasis, which is beneficial to
screening metastasis-related genes. Wang et al. (2018) found that
28 miRNAs are differentially expressed in invasive gastric cancer
through array analysis. Among these 28 miRNAs, miR-29b is one
of the most significantly down-regulated miRNAs. RNA response
element (miRNA response element, MRE) binds to the negative
regulation of MMP2, thereby affecting the development of gastric
cancer.

However, this kind of animal model experiment method is
very costly and time consuming. With the continuous
enhancement of computing power, computing methods have
been able to process massive amounts of biological data and
mine knowledge from the data (Zhao et al., 2021). Deep learning,
machine learning, and reinforcement learning have been widely
used in the fields of biology and medicine (Zhao et al., 2020a;
Tianyi et al., 2020). These methods use existing knowledge to
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construct complex mathematical models to predict new
knowledge (Zhao et al., 2020b). In this paper, we extracted
network association of each gene by Random Walk (RW) and
used GBDT to identify the gastric cancer-related genes.

METHOD

We obtained 435 genes that are known to be related to gastric
cancer in DisGeNet (Piñero et al., 2020). We collected genes that
can interact with these 896 genes in HumanNet V2.0 (Hwang
et al., 2019). Based on the interaction information, we built a gene
interaction network. This network contains 1331 nodes, and each
node is a gene.

Extracting Features by RW
The core formula of RW is as follows:

Pt+1 � (1 − γ)APt + γP0 (1)

A is the adjacency matrix of the gene interaction network. P is
random walk matrix. γ is a parameter that is needed to be set. We
set γ as 0.5 based on experience.

If ‖Pt+1 − Pt‖> ℓ (we can set ℓ as arbitrarily small number), we
can repeat Formula (1). Otherwise, we could obtain Pt+1 as the
final RW matrix.

Identifying Gastric Cancer Susceptibility
Gene by GBDT
After obtaining the feature of genes by RW, we need to build a
classifier to identify whether a gene is associated with gastric
cancer GBDT does not need to scale the data to build model,

and it is also suitable for data sets where dual features and
continuous features exist at the same time. First, the decision
tree used by GBDT is a CART regression tree. Whether it is
dealing with regression problems or two classifications and
multiple classifications, the decision trees used by GBDT are
all CART regression trees. Because the gradient value to be
fitted in each iteration of GBDT is a continuous value, a
regression tree is used. The most important thing for the
regression tree algorithm is to find the best division point,
then the division point in the regression tree contains all the
desirable values of all features. The criterion for the best
division point in the classification tree is entropy or Gini
coefficient, which are both measured by purity, but the
sample labels in the regression tree are continuous values,
so it is no longer appropriate to use indicators such as
entropy, instead of the square error, which can judge the
degree of fit very well.

The process of constructing CART is as follows:
Input: training data set D. Output: regression tree f (x).
Recursively divide each region into two sub-regions in the

input space where the training data set is located and determine
the output value on each sub-region to construct a binary
decision tree:

min[min∑(yi − c1)2 +min∑(yi − c2)2] (2)

As shown in Formula (2), we need to choose (j, s) to minimize
min∑(yi − c1)2 +min∑(yi − c2)2. Then, we need to introduce (j,
s) to divide the area and determine the corresponding output
value:

R1(j, s) � x
∣∣∣∣x(j)≤ s, R2(j, s) � x

∣∣∣∣x(j)> s (3)

FIGURE 1 | ROC curves of 10-cross validation.
FIGURE 2 | PR curves of 10-cross validation.
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FIGURE 3 | Comparison chart of AUC values of five methods.

FIGURE 4 | Comparison chart of AUPR values of five methods.
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c
�
m � 1

N
∑

x1∈Rm(j,s)
yi, x ∈ Rm,m � 1, 2 (4)

Continue to call Steps (1) and (2) for the two sub-regions until
the stop condition is met.

Divide the input space into M regions (R1, R2, ..., Rm), build
the final decision tree.

f(x) � ∑M
m�1

c
�
mI(x ∈ Rm) (5)

Gradient boosting is an improved algorithm of the Boosting
Tree. There are three steps to implement the Boosting Tree.
Step 1 Initialize f0(x) � 0.
Step 2 Calculate residual rmi � yi − fm−1(x), i � 1, 2, . . . , N.
Step 3 Fit the residual rmi to obtain regression tree and obtain
hm(x).
Step 4 Update fm(x), fm(x) � fm−1(x) + hm(x).
Step 5 The final regression boosting tree would be: fM(x) �∑M

m�1hm(x).
Based on the Decision Tree and Gradient Boosting, we can

combine them to obtain the final GBDT.
First, we need to initialize week learner.

f0(x) � argminc∑
N

i�1
L(yi, c) (6)

For each sample i � 1, 2,..., N, we need to calculate the negative
gradient (residual):

rim � −[zL(yi, f(xi))
zf(xi) ]

f(x)�fm−1(x)
(7)

Use the residual obtained in the previous step as the new true
value of the sample and use (xi, rim) as the training data of the
next tree to obtain the new regression tree fm(x). The leaf node
area of fm(x) is Rjm, j � 1, 2, . . . , J. J is the number of
leaf nodes.

Calculate the Best Fit Value

γjm � argmin ∑
xi∈Rjm

L(yi, fm−1(xi) + γ) (8)

Update Strong Learner

fm(x) � fm−1(x) +∑J
j�1
γjmI(x ∈ Rjm) (9)

Get the Final Learner

f(x) � fM(x) � f0(x) + ∑M
m�1

∑J
j�1
γjmI(x ∈ Rjm) (10)

RESULTS

Since we obtained 435 genes that are known to be related to gastric
cancer in DisGeNet and 896 genes that have strong interaction
with them, the 435 genes were used as the positive samples and 896
were used as negative samples. We used these data to build GBDT
model to identify gastric cancer susceptibility genes.

We applied 10-cross validation to verify the accuracy of our
model. The AUC (Area Under Curve) and AUPR (Area Under
Precision Curve) of our model is shown as Figures 1 and 2,
respectively. The average AUC of 10-cross validation is 0.89 ±
0.008 and average AUPR of 10-cross validation is 0.81 ±
0.006. Since the number of negative samples is significantly
higher than positive samples, to balance the training sample
set, we randomly selected 435 negative samples from 896
genes each time and repeat the 10-cross validation. In
addition, we also compared our method with other methods,
such as Support Vector Machine (SVM), Xgboost, Adaboost, and
Deep Neural Network (DNN). We totally randomly sampled five
negative sets. The performance of these methods is shown as
Figures 3 and 4.

As shown in Figures 3 and 4, the AUC and AUPR of GBDT
are higher than other methods, which explains the superiority of
our method over other methods.

CONCLUSION

Through early detection, early diagnosis, and early treatment,
the cure rate of patients with early gastric cancer can reach 85%;
However, the 5-year survival rate of patients with advanced
gastric cancer is less than 10%. At present, inhibitors targeting
vascular endothelial growth factor (VEGF), epidermal growth
factor (EGF), and tyrosine kinase have been successfully
developed, showing significant curative effects on gastric
cancer. This greatly encourages us to study the characteristic
markers of recurrence or metastasis of gastric cancer from
the perspective of genes. Few genes related to gastric cancer
have been found in cohort studies and animal model experiments.
However, due to the cost, such methods cannot be popularized
large scale.

In this paper, we proposed a novel method to identify gastric
cancer-related genes in large scale. Genes that interact more
closely are more likely to be related to similar diseases. Based
on this hypothesis, we considered to use the gene interaction
information to build a network and infer the gastric cancer-
related genes by this network. RW was applied to encode the
features of genes and GBDT was implemented to identify gastric
cancer-related genes. We verified our method by two kinds of 10-
cross validation experiments. Our method showed high accuracy
in both experiments, indicating that our method can be used to
identify genes related to liver fibrosis. The method proposed in
this article will provide guidance for genetic mechanism and
clinical treatment of gastric cancer.
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Metastatic Immune-Related Genes for
Affecting Prognosis and Immune
Response in Renal Clear Cell
Carcinoma
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Background: In renal clear cell carcinoma, a common cancer of the urinary system,
25–30% patients are metastatic at initial diagnosis and 20–30% patients have a tendency
of recurrence and metastasis after local surgery. With the rapid development of tumor
immunology, immune agents have brought new directions to tumor therapy. However, no
relevant studies have explored the role of immune-related genes in kidney cancer
metastasis.

Methods: Co-expressed metastatic immune-related differentially expressed genes (mIR-
DEGs) were screened by GSE12606, GSE47352, and immunorelated genes. Then,
differential expression analysis, prognostic analysis, and univariate and multivariate Cox
regression analysis in KIRC were performed to determine independent prognostic factors
associated, and the risk prognostic model was established. The correlation of hub mIR-
DEGs with clinicopathological factors, immune invasion, and immune checkpoints was
analyzed, and the expression of hub mIR-DEGs and their effect on tumor were re-
evaluated by OCLR scores in KIRC.

Results: By comprehensive bioassay, we found that FGF17, PRKCG, SSTR1, and SCTR
were mIR-DEGs with independent prognostic values, which were significantly associated
with clinicopathological factors and immune checkpoint–related genes. The risk
prognostics model built on this basis had good predictive potential. In addition,
targeted small molecule drugs, including calmidazolium and sulfasalazine, were
predicted for mIR-DEGs. Further experimental results were consistent with the
bioinformatics analysis.

Conclusion: This study preliminarily confirmed that FGF17, PRKCG, SSTR1, and SCTR
were targeted genes affecting renal cancer metastasis and related immune responses and
can be used as potential therapeutic targets and prognostic biomarkers for renal cancer.
Preliminary validation found that PRKCG and SSTR1 were consistent with predictions.
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INTRODUCTION

Renal cell carcinoma (RCC) is the most common renal
malignancy originating from tubular epithelium (Siegel et al.,
2018). Kidney renal clear cell carcinoma (KIRC) accounts for
approximately 80% of all clinical cases of renal cell carcinoma in
adults and is the most common histological subtype (Ricketts
et al., 2018). In the 2021 Global Cancer Statistics, RCC accounted
for approximately 4% of all newly diagnosed cancers, ranking
sixth among cancers in men and ninth among cancers in women
(Siegel et al., 2021). 25%–30% of patients are metastatic at initial
diagnosis (Ljungberg et al., 2011), and 20–30% of patients tend to
have recurrence and metastasis after local surgery (Athar and
Gentile, 2008; Mao et al., 2021a). Due to resistance to radiation
and chemotherapy (Braun et al., 2021), surgical resection is still
the best treatment for RCC (Escudier et al., 2019).

In recent years, the treatment of RCC has made rapid progress.
Much evidence has confirmed that RCC is highly immunogenic
(Şenbabaoğlu et al., 2016) and is highly responsive to
immunotherapy (Escudier, 2012). Among the most advanced
therapies, immunotherapy can effectively and safely treat tumors
(Xie et al., 2019; Frega et al., 2020). Its characteristic is to stimulate
specific immune response and inhibit and kill tumor cells, thereby
reducing tumor metastasis and recurrence. As an indispensable
part of immunotherapy, the tumor immune microenvironment
(TIME) has attracted more and more attention. The tumor is
always in a complex tissue microenvironment, and the changes of
immune microenvironment may affect the occurrence,
development, and metastasis of tumor in different ways. The
analysis of the immune microenvironment will help improve the
response of immunotherapy. Some researchers have found that
the TIME can be used as an important prognostic indicator,
which could also enhance the potential of precision therapy
(Taube et al., 2018; Vuong et al., 2019). Although the advent
of immunotherapy and targeted therapy has diversified the
treatment of RCC, some patients with RCC develop symptoms
only when their cancer cells have metastasized to a distant point
in their body, and the five-year survival rate of these patients is
usually less than 20% (Dunnick, 2016). The prognosis for patients
with renal cell carcinoma remains dismal. Therefore, it is urgent
to search for targeted biomarkers related to metastasis and
immunity in RCC.

In this study, the comprehensive bioinformatics analysis of
GSE12606 (Stickel et al., 2009), GSE47352 (Gao et al., 2017), and
immune-related genes was performed, and independent
prognostic factors were identified by differential expression
analysis, survival analysis, and univariate and multivariate Cox
regression analysis, which contributed to renal cancer metastasis.
The good prognostic risk model was constructed based on
metastatic immune-related independent prognostic genes. In
addition, we found that hub target genes were closely
associated with the tumor immune microenvironment and
immune checkpoint genes. Based on the target gene, we
successfully predicted the potential therapeutic drugs to
prevent renal cancer progression and assist immunotherapy.
In conclusion, this study provided insights into immune-
related molecular mechanisms underlying the progression of

renal cancer from primary to metastatic stage and identified
biomarkers that might have prognostic value.

MATERIALS AND METHODS

Screening of IR-DEGs in Primary and
Metastatic KIRC
To acquire metastatic immune-related differentially expressed
genes (mIR-DEGs) in primary and metastatic kidney renal clear
cell carcinoma (KIRC), we used the GEO database (https://www.
ncbi.nlm.nih.gov). The GSE12606 and GSE47352 datasets were
selected for subsequent analysis (Supplementary Table S1). The
cut-off conditions were set to p-value < 0.05, and the absolute
value of log-fold change (|log2FC|) ≥ 1, which had been adjusted
for multiple testing via the Benjamini–Hochberg procedure, was
statistically significant for the DEGs. We use ImageGP to create
volcano maps and Venn maps online.

Functional Enrichment Analysis of
mIR-DEGs
Enrichment analysis of mIR-DEGs was performed by Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis in the “ClusterProfiler”
package.

Identification of Independent Prognostic
mIR-DEGs
Univariate and multivariate Cox regression analyses were
performed on mIR-DEGs, and the forest maps were
established by the “Forestplot” R package. The univariate Cox
regression analysis result was included in the multivariate
regression analysis when p threshold value < 0.05, and the
independent prognostic genes were finally identified with p <
0.005. RNA sequencing data of 539 renal clear cell carcinoma
samples and 72 paracancerous samples, obtained from The
Cancer Genome Atlas (TCGA) database (https://
cancergenome.nih.gov/), were used to evaluate mIR-DEGs’
expression and prognosis by Gene Expression Profiling
Interactive Analysis (GEPIA) (http://gepia2.cancer-pku.cn/
index) and “survival” package. The basic information of
TCGA-KIRC patients is listed in Supplementary Table S2.

Construction and Validation of the Hub
mIR-DEGs’ Prognostic Model
Hub mIR-DEGs were selected based on univariate and
multivariate Cox regression analysis, differential expression
analysis, and prognostic analysis of mIR-DEGs. The lasso Cox
regression was used to construct the risk prognosis model of hub
mIR-DEGs based on the “GLMnet” R package. Risk coefficients
were calculated by centralized standardized analysis in TCGA:
Risk Score �∑7iXi × Yi (X: coefficients, Y: gene expression level).
Then, t-distributed stochastic neighbor embedding (t-SNE) and
principal-component analysis (PCA) were used to explore the
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distribution characteristics of different groups by R packages.
Finally, the effectiveness of prognostic indicators was evaluated
by the area under the curve (AUC) of “time receiver-operating
characteristic (ROC) curve.” Furthermore, Spearman correlation
analysis was used to explore the relationship between the model
score and the immune score by QUANTISEQ, and the R software
package Pheatmap was used to verify the relationship.

Construction of Clinicopathological
Correlation Analysis and the Nomogram
Based on the “survival” package in R software, combined with the
clinicopathological characteristics of patients (TNM stage,
pathological stage, histologic stage, and laterality), the
correlation between FGF17, PRKCG, SSTR1, and SCTR in the
prognostic model and clinicopathological characteristics was
analyzed. Through the R package “rms,” the nomogram and
calibration curve were obtained. Risk scores associated with
prognostic models were used as prognostic factors to evaluate
one-, three-, and five-year OS.

Assessment of the Immune
Microenvironment About Hub mIR-DEGs in
KIRC
The correlation between FGF17, PRKCG, SSTR1, and SCTR
expressions and copy number and various immune cells in
KIRC were searched and analyzed through the gene module
by TIMER (https://cistrome.shinyapps.io/timer/), including
B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils,
and dendritic cells.

In this study, kidney cancer immune cells were investigated by
the QUANTISEQ1-2 algorithm, which quantifies tumor immune
status based on human RNA-seq data, and the proportion of
different immune cells and other uncharacterized cells present in
the sample by a deconvolution algorithm, including B cells,
macrophages, M2 macrophages, monocytes, neutrophils, NK
cells, CD4+ T cells, CD8+ T cells, Tregs, myeloid cells, and
uncharacterized cells (Finotello et al., 2019; Plattner et al., 2020).

Relationship Between Immune
Checkpoint–Related Genes and Expression
of Hub mIR-DEGs in KIRC
The relationship between SIGLEC15, TIGIT, CD274, HAVCR2,
PDCD1, CTLA4, LAG3, and PDCD1LG2 and hub mIR-DEGs’
expression was analyzed using the “ggplot2” R package.
Subsequently, the Tumor Immune Dysfunction and Exclusion
(TIDE) algorithmwas used to evaluate the potential ICB response
of different hub mIR-DEGs’ expression levels to immune
checkpoint inhibitors in KIRC.

OCLR Scores of Hub mIR-DEGs in KIRC
Tumor-associated RNA-seq data were obtained from TCGA-
KIRC, mRNAsi was calculated by the OCLR algorithm, and the
dryness index was obtained.

Prediction of Small Molecule Drugs for Hub
mIR-DEGs
The hub mIR-DEGs were used for drug prediction in
Connectivity Map (www.broadinstitute.org), which was
commonly used to explore potential drugs for the treatment of
diseases. Therefore, Enrichment > 0.7, p < 0.02, and Percent non-
nulld >75 were used for screening. The PubChem22 database
(www.pubchem.ncbi.nlm.nih.gov) was used to retrieve the
molecular structure of identified drugs.

Cell Lines, Patient Samples, RNA
Extraction, and Quantitative Real-Time
Polymerase Chain Reaction (qRT-PCR)
The human kidney cell line, HK-2, and human KIRC cell lines,
786-O and caki-1, were originally purchased from the cell
repository of Shanghai Institute of Life Sciences. The cells
were cultured in 1640 medium (GIBCO), containing 10% FBS
(GIBCO), penicillin (25 U/ml), and streptomycin (25 mg/ml),
and at 5% CO2 environment.

In this study, 19 fresh samples, including tumor tissue and
adjacent normal kidney tissue, were collected from patients who
underwent laparoscopic radical nephrectomy for KIRC from
2019 to 2020 in the Department of Urology, Zhongda
Hospital, and stored at 80°C. All patients were diagnosed with
KIRC and did not receive any antitumor therapy preoperatively.
Clinical characteristics of 19 KIRC patients are listed in
Supplementary Table S3. The methodology of this study
followed the criteria outlined in the Helsinki Declaration
(revised in 2013), and ethical approval was obtained from the
Ethics Committee and Institutional Review Board for Clinical
Research of Zhongda Hospital (ZDKYSB077). All patients or
their relatives who participated were informed and signed an
informed consent form.

Total RNA was isolated with Total RNA Kit (OMEGAbiotec,
Guangzhou, China) according to the manufacturer’s instructions.
Complementary DNAwas synthesized using the HiScript II Q RT
SuperMix (R223-01) reagent kit (Vazyme Biotech Co., Ltd.,
Nanjing, China). The qRT-PCR was performed using the
SYBR Green PCR Mix (Vazyme Biotech Co., Ltd., Nanjing,
China). The specific primers set for mIR-DEGs and GAPDH
are listed in Supplementary Table S4. Data were normalized to
GAPDH expression levels using the 2−ΔΔCt method.

Tissue Microarray Construction and
Immunohistochemistry
All specimens were fixed in 10% neutral formaldehyde solution
and embedded in paraffin. Envision two-step dyeing and DAB
color development were used. The primary antibody (FGF17,
ab187982, Abcam; PRKCG, ab181558, Abcam; SSTR1, ab140945,
Abcam) was used in this study.

Statistical Analysis
The statistical analysis was carried out by R software (version
4.0.2). The Perl programming language (version 5.30.2) was used
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FIGURE 1 | Screening for independent prognostic genes in KIRC. (A,B) Volcanomaps of GSE12606 andGSE47352. (C) Venn diagram of GSE12606, GSE47352,
and immune-related genes. (D) GO|KEGG enrichment analysis of IR-DEGs. (E,F) Forest plots of univariate and multivariate Cox regression analysis of IR-DEGs. (G)
Based on the GEPIA database for differential expression of the four IR-DEGs. (H–K) Survival analysis of four IR-DEGs, including SCTR (H), SSTR1 (I), PRKCG (J), and
FGF17 (K).
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for data processing. Multivariate Cox regression analyses were
used to evaluate prognostic significance. When p < 0.05 or log-
rank p < 0.05, the difference was statistically significant.

RESULTS

Identification of mIR-DEGs
Sequencing data related to primary and metastatic renal carcinoma
were obtained from the GEO database (Figures 1A,B). 1,377
metastatic DEGs (mDEGs) were screened in GSE12606, and 1,525
mDEGs were screened in GSE47352. Then, the mDEGs and
1,793 immune-related genes, which are from the ImmPort
database, were analyzed by Venn diagram, and 14 co-expressed
genes were obtained by the intersection of the three gene sets
(Figure 1C). Then, through GO/KEGG pathway enrichment
analysis (Supplementary Table S5), it was found that the
functions of 14 mIR-DEGs were mainly concentrated in
“reproductive structure development,” “reproductive system
development,” “positive regulation of pathway-restricted SMAD
protein phosphorylation,” “G protein-coupled peptide receptor
activity,” “peptide receptor activity,” “growth factor activity,”
“TGF-beta signaling pathway,” “MAPK signaling pathway,” and
“Cytokine-cytokine receptor interaction” (Figure 1D). To further
clarify the correlation between mIR-DEGs and prognosis, univariate
and multivariate Cox regression analysis (Supplementary Table S6)
showed that FGF17, PRKCG, SSTR1, and SCTR were independent
prognostic factors for the progression of KIRC from primary to
metastatic stage (Figures 1E,F). Consequently, after screening hub
mIR-DEGs with stringent criteria, the results conform to the
Bonferroni correction significant level and minimize the inflation
of Type I errors from multiple testing issues.

Differential Expression Analysis and
Survival Analysis of Hub mIR-DEGs in KIRC
Using the TCGA-KIRC database, we verified the expression levels of
four mIR-DEGs that were significant in univariate Cox regression
analysis and found the expression levels of PRKCG and FGF17 were
up-regulated and SCTR and SSTR1 were down-regulated in 539
tumors and 72 paracancerous samples (Figure 1G). Then,
Kaplan–Meier model analysis showed that the above four mIR-
DEGs were significantly associated with prognosis, and the high
expressions of SCTR and SSTR1 and TGFB2 were associated with
good prognosis (Figures 1J,K), while the high expressions of PRKCG
and FGF17 were significantly associated with poor prognosis (Figures
1H,I). Combined with multivariate Cox regression analysis, FGF17,
PRKCG, SSTR1, and SCTR were identified as the hub metastatic
immune-related independent prognostic factors, which influenced the
progression of primary to metastatic kidney cancer.

Construction and Validation of the Hub
mIR-DEGs’ Prognostic Risk Model
Based on hub mIR-DEGs, lasso Cox regression was used to
construct relevant risk prognosis models, lambda.min � 0.0103,
Risk Score� (−0.1637) × SCTR + (−0.2632) × SSTR1 + (0.1711)

× PRKCG + (0.7824) × FGF17 (Figures 2A,B). Patients were
assigned into high-risk and low-risk groups according to the
median risk score (50%). Survival status and hub mIR-DEGs’
heatmaps in different groups were displayed by t-SNE and PCA,
indicating that FGF17 and PRKCG were highly expressed in the
high-risk group, while SSTR1 and SCTR were lowly expressed in
the high-risk group (Figure 2C). The prognostic model was the
risk factor model due to HR � 2.445, and the median survival
time of the high-risk group was significantly shorter than that of
the low-risk group (Figure 2C). Finally, we evaluated the
prognostic prediction efficiency of the model by the ROC
curve. We found that the AUC was 0.71 (one-year OS), 0.673
(three-year OS), and 0.711 (five-year OS), respectively
(Figure 2C). In addition, Spearman correlation analysis was
used to explore the correlation between the hub mIR-DEGs risk
prognosis model and the tumor immune microenvironment in
KIRC (Figures 3A–K). The risk prognosis model was
significantly negatively correlated with the infiltration of M2
macrophages (r � −0.12, p � 0.004), neutrophils (r � −0.40, p �
1.97e-21), CD4+ T cells (r � −0.26, p � 0.1.37e-09), and myeloid
dendritic cells (r � −0.25, p � 3.91e-09) (Figures 3C,E,G,J) and
significantly positively correlated with the infiltration of
monocytes (r � 0.22, p � 4.88e-07) and uncharacterized cells
(r � 0.23, p � 4.62e-08) (Figures 3D,K). These results indicated
that the hub mIR-DEG–based risk prognosis model, including
FGF17, PRKCG, SSTR1, and SCTR, had good predictive effect
and was significantly correlated with the KIRC immune
microenvironment.

Relationship Between Hub mIR-DEGs and
Clinicopathological Factors and the
Construction Nomogram
We analyzed the correlation of FGF17, PRKCG, SSTR1, and SCTR in
the risk prognosismodel with clinicopathological features. The results
showed that the expression of PRKCG and SSTR1 was correlated
with T stage (Figure 4A), PRKCG was correlated with N stage
(Figures 4B,C), and the expression of PRKCG, SSTR1, and SCTR
was associated with M stage, pathologic stage, and histologic stage
(Figures 4D–F). One-, three-, and five-year OS was predicted by the
nomogram, and the potential value of M stage for prognosis was
determined in KIRC patients (Figure 4G). Subsequently, time-
dependent ROC curve analysis showed that AUCFGF17 � 0.627,
AUCPRKCG � 0.694, AUCSSTR1 � 0.758, and AUCSCTR � 0.737,
indicating a good prognostic value of hub mIR-DEGs for KIRC
patients (Figure 4H). In addition, we find that the calibration curve of
the predicted probability was in good agreement with the one-, three-,
and five-year OS on the nomogram, and the three-year OS was the
best fit (Figures 4I–K).

Assessment of the Immune
Microenvironment About Hub mIR-DEGs in
KIRC
In order to explore the potential relationship between the
expression of FGF17, PRKCG, SSTR1, and SCTR in KIRC and
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the level of immune invasion, TIMER was used to conduct
correlation analysis. First, we found positive correlations
between SCTR and CD4+ T cells (R � 0.11, p � 1.88e-02).
SSTR1 and CD8+ T cells (R � 0.188, p � 7.77e-05), CD4+
T cells (R � 0.172, p � 2.14e-04), macrophages (R � 0.208, p �
9.33e-06), neutrophils (R � 0.129, p � 5.70e-03), and DCs (R �
0.127, p � 6.88e-03) were positively correlated; PRKCG was
positively correlated with CD4+ T cells (R � 0.209, p � 6.40e-
06) and neutrophils (R � 0.102, p � 2.95e-02). FGF17 was

positively correlated with CD4+ T cells (R � 0.262, p � 1.14e-
08) but negatively correlated with B cells (R � −0.200, p �
1.60E-05) and DCs (R � −0.168, p � 3.08E-04) (Figures
5E–H). The copy numbers of SCTR, SSTR1, and PRKCG
were significantly correlated with the infiltration levels of
B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and DCs (Figures 5A–C). However, FGF17
was only associated with CD8+ T cells, neutrophils, and
DCs (Figure 5D).

FIGURE 2 | Establishment and validation of prognostic models in KIRC. (A,B) Lasso regression analysis results. (C)Risk score distribution, survival status, and four
hub IR-DEGs in low- and high-risk groups. Kaplan–Meier survival curve of two groups. Time-dependent ROC curve analyses in TCGA set.
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FIGURE 3 | Spearman correlation analysis between the model score and the immune score. (A) B cells. (B) M1 macrophages. (C) M2 macrophages. (D)
Monocytes. (E) Neutrophils. (F) NK cells. (G) CD4+ T cells. (H) CD8+ T cells. (I) Tregs. (J) Myeloid dendritic cells. (K) Uncharacterized cells.
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FIGURE 4 | Four IR-DEGs correlate with multiple clinicopathological factors in KIRC. Relationships between IR-DEGs and clinicopathological factors in the entire
TCGA cohort, including T stage (A), N stage (B), M stage (C), histologic grade (D), pathologic stage (E), and laterality (F). (G) Nomogram for predicting one-, three-, and
five-year OS in the entire TCGA cohort. (H–K)Calibration curves of nomogram on consistency between predicted and observed one-, three-, and five-year survival in the
entire TCGA cohort. The dashed line at 45° implies a perfect prediction, and the actual performances of our nomogram are shown by blue lines.
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FIGURE 5 | Relationship of immune cell infiltration with IR-DEG levels in KIRC. Infiltration level of various immune cells under different copy numbers of IR-DEG
levels, including SCTR (A), SSTR1 (B), PRKCG (C), and FGF17 (D). Correlation of IR-DEG expression levels with B cell, CD8+ T cell, CD4+ T cell, macrophage,
neutrophil, and dendritic cell infiltration levels, including SCTR (E), SSTR1 (F), PRKCG (G), and FGF17 (H).
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Relationship Between Immune
Checkpoint–Related Genes and Expression
of Hub mIR-DEGs
Based on the apparent correlation between hub mIR-DEGs, risk
prediction models, and tumor immune microenvironment, we
further explored the relationship between hub mIR-DEGs and
immune checkpoints, providing potential directions for future
immunotherapy (Figure 6). We found significant differences
between FGF17 and CTLA4, CD274, and PDCD1LG2
(Figure 6A). PRKCG was significantly different from
SIGLEC15, CTLA4, TIGIT, LAG3, and PDCD1 (Figure 6B).
SSTR1 was significantly different from CTLA4, LAG3, and
PDCD1 (Figure 6C). SCTR was significantly different from
HAVCR2 and CTLA4 (Figure 6D). CTLA4 was strongly
correlated with four hub mIR-DEGs. Our results suggested
that CTLA4 might be a potential target for preventing KIRC
progression and metastasis through immune checkpoint
inhibitors in the risk prognosis model.

Assessment of the OCLR Scores of Hub
mIR-DEGs in KIRC
Through the dryness index, we discovered significant differences in
dryness degree between hub mIR-DEGs in KIRC (Figure 7). These
results suggested that FGF17, PRKCG, SSTR1, and SCTR might
affect the degree of similarity between KIRC cells and stem cells, thus
affecting tumor biological processes and degree of dedifferentiation.

Prediction of Small Molecule Drugs for Hub
mIR-DEGs
Based on the former analysis we performed, we can propose an
assumption that FGF17, PRKCG, SSTR1, and SCTR had a
potential role in the progression and metastasis of KIRC.
Therefore, based on probes of FGF17 (221376_at), PRKCG
(206270_at), SSTR1 (208482_at), and SCTR (210382_at), we
predicted potential targeted drugs with immunotherapeutic
effects and prevention of KIRC metastasis through
Connectivity Map (Figure 8A). The structural formula and
molecular formula of targeted drugs with the most potential
value were obtained through PubChem22, including 5224221,
calmidazolium, sulfasalazine, carbenoxolone, and tribenoside
(Figures 8B–F).

Validation of the Expression of mIR-DEGs in
Clinical Tissue Samples
To detect the expression of four genes (FGF17, PRKCG,
SSTR1, and SCTR) in KIRC, we performed the qRT-PCR in
KIRC cells and clinical tissue samples. We verified the
expression levels of four genes in the normal kidney cell
line (HK-2 cells) and two KIRC cell lines (786-O, caki-1).
The results showed that the expression levels of FGF17 and
PRKCG were significantly increased in KIRC cells compared
with normal kidney cells, while SSTR1 and SCTR were down-
regulated in KIRC cells (Figures 9A–D). FGF17, PRKCG, and

FIGURE 6 | Differential expression of immune checkpoint—related genes in KIRC tissues. (A–D) Comparison of immune checkpoints in different expression levels
of IR-DEGs and M stage in KIRC, including FGF17 (A), PRKCG (B), SSTR1 (C), and SCTR (D). G1 is IR-DEG upexpression in non-metastatic KIRC. G2 is IR-DEG
downexpression in non-metastatic KIRC.
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SSTR1 were detected with the same results in tumor tissues
and adjacent normal kidney tissues, while SCTR was not
significantly different (Figures 9E–H). Then, we detected
the protein expression of FGF17, PRKCG, and SSTR1 in
the tissues by IHC. The IHC results showed that PRKCG
was strongly expressed in the cytoplasm of KIRC tissues
compared with adjacent normal kidney tissues. The
expression of SSTR1, which was mainly expressed in the
cytosol and cytoplasm, was significantly decreased. FGF17
positive expression was mainly distributed extracellularly, but
FGF17 was negative in most tissues (Figure 9I).

DISCUSSION

Renal cell carcinoma was one of the most common urinary
system tumors; about 25–30% of patients were metastatic at
initial diagnosis, and 20–30% of patients had a tendency of
recurrence and metastasis after local surgery, especially ccRCC
(Jung et al., 2001). Many studies had shown that, in mRCC, the
top three metastases were lung (45–75%), bone (15–34%), and
liver (20%), whose five-year survival rates were 36–50%, 35%, and
18–43%, respectively (Staehler, 2011; Hatzaras et al., 2012). Given
the rapid development of tumor immunology, a large number of

FIGURE 7 | OCLR scores of hub IR-DEGs in KIRC. OCLR scores of hub IR-DEGs at different expression levels in KIRC, including FGF17 (A), PRKCG (B),
SSTR1 (C), and SCTR (D). G1 is IR-DEG down-expression and G2 is up-expression in KIRC.
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previous studies had found that traditional immunotherapy, such
as IFN-α and IL-2, could extend the OS to a certain extent, but
their response duration was limited, and only a few patients could
fully respond (Floros and Tarhini, 2015; Mao et al., 2021b).
Currently, new immunotherapy drugs have been developed
successively, such as cancer vaccine (Amin et al., 2015),
adoptive cell therapy (Tang et al., 2013), and checkpoint
inhibitors (Ghatalia et al., 2017). These drugs were reported to
be capable of prolonging the response time of combination drugs
and improving the OS significantly. Therefore, it was of great
significance to elucidate the molecular mechanism of immune-
related invasion and metastasis of RCC and to identify potential
biomarkers for immunotherapy in RCC.

In this study, we firstly screened in GSE12606, GSE47352, and
immune-related genes to analyze the co-expression of differential
genes in primary and metastatic renal carcinoma. Secondly,
FGF17, PRKCG, SSTR1, and SCTR were identified as
metastatic immune-related independent risk factors by
differential expression analysis, prognostic analysis, and
univariate and multivariate Cox regression analysis. Then, the
risk prognostic model was constructed based on lasso regression
analysis, that is, Risk Score� (−0.1637) × SCTR + (−0.2632) ×
SSTR1 + (0.1711) PRKCG+ (0.7824) FGF17. The predictive value
of this model was favorable. There were significant correlations
between the expression levels of four mIR-DEGs and
clinicopathological factors, immune infiltration, and immune
checkpoint. In addition, the calibration curves and nomogram
showed an excellent prediction effect. Subsequently, through
OCLR scores, it was further confirmed that the expressions of
FGF17, PRKCG, SSTR1, and SCTR were different in KIRC, which
might lead to tumor metastasis by promoting tumor
dedifferentiation. Therefore, all of these results preliminary
indicate that FGF17, PRKCG, SSTR1, and SCTR may impact

the progression and metastasis in KIRC. Furthermore, their
significant association with KIRC immune microenvironment
and immune checkpoint–related genes also implied that mIR-
DEGs may be potential targets and prognostic biomarkers for
KIRC immunotherapy.

FGF17, as a member of the fibroblast growth factor (FGF)
family, was located at 8p21.3 and played a significant role in the
occurrence and progression of cancer (Tabarés-Seisdedos and
Rubenstein, 2009). Studies had shown that the dual inhibition of
FGF and CSF1 or VEGF signals was expected to enhance the
antitumor effect by targeting immune escape and angiogenesis in
the tumor microenvironment (Katoh, 2016). Protein kinase C
gamma (PRKCG), as an isoenzyme of protein kinase Cs (PKCs)
(Nishizuka, 1984), mediates IL-2 expression and tumor immune
response (Chen et al., 1994). The 20th serine site could also be
phosphorylated in p53 to activate apoptosis of colon cancer cells
(Kawabata et al., 2012). Somatostatin receptor 1 (SSTR1) was a
subtype of SSTR, belonging to the G-protein–coupled receptor
(GPCR), which was involved in various signal transduction
mechanisms in different parts of the human body (Nagarajan
et al., 2020). Studies had found abnormal expression of SSTR in
prostate cancer, colorectal cancer, breast cancer, and leiomyoma
(Reubi et al., 1998), and high expression of SSTR1 could reduce
the proliferation of acetaldehyde dehydrogenase (ALDH) positive
cells, resulting in silenced and proliferation inhibition of colon
cancer stem cells (Zou Y et al., 2019). Therefore, somatostatin
analogs (SSAs) had been studied for immunotherapy of various
cancers (Li et al., 2005). Secretin receptor (SCTR), also known as
GPCR, was abnormally expressed in many cancers to affect the
proliferation of tumor cells (Awasthi et al., 2012). Low expression
of SCTR could stimulate tumor cell proliferation through the
PI3K/AKT signaling pathway (Lee et al., 2012), and the
combination of PI3K inhibitors and tumor chemoradiotherapy

FIGURE 8 |Prediction of small molecule drugs targeting IR-DEGs in KIRC. (A)mRNA probes were used to predict potential drugs for KIRC. (B–F) Prediction results
of targeted drugs, including 5224221 (B), calmidazolium (C), sulfasalazine (D), carbenoxolone (E), and tribenoside (F).
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FIGURE 9 | Expression of these hub genes in human KIRC specimens, adjacent normal tissues, and cell lines. (A–D) qRT-PCR analysis of FGF17 (A), PRKCG (B),
SSTR1 (C), and SCTR (D) in KIRC cell lines. GAPDH was used as a loading control. (E–H) qRT-PCR analysis of FGF17 (E), PRKCG (F), SSTR1 (G), and SCTR (H) in
paired KIRC tissues (n � 19). (I) Representative images of FGF17, PRKCG, and SSTR1 protein immunochemistry in KIRC tissues compared with adjacent normal kidney
tissues. Magnification: ×50, ×200; *p < 0.05, **p < 0.01, ***p < 0.001.
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had been shown to inhibit tumor proliferation. In summary, we
found significant differences in the expression of FGF17, PRKCG,
SSTR1, and SCTR in cancer, which are correlated with immune
response and adjuvant therapy. However, the specific functions
and potential mechanisms of these four immune-related genes in
KIRC metastasis remained unclear and needed further
exploration. In addition, we performed qRT-PCR analysis on
clinical specimens and found that the mRNA expression levels of
FGF17, PRKCG, and SSTR1 were significantly different between
kidney cancer tissues and normal tissues adjacent to the cancer.
However, more in vivo and in vitro experiments are needed to
confirm these findings.

Interestingly, the gene probes targeting FGF17, PRKCG,
SSTR1, and SCTR predicted potential targeted agents for renal
cancer metastasis and adjuvant immunotherapy, including
5224221, calmidazolium, and sulfasalazine. Current studies
had found that calmidazolium, as calmodulin inhibitors, could
not only affect the survival status of various immune cells (Hu
et al., 2019) but also affect the inositol-1,4,5-triphosphate
receptor/calcium/calmodulin pathway by mediating RACK1
and regulate the proliferation of preglomerular microvascular
smooth muscle cells and mesangial cells, thus treating kidney
diseases (Cheng et al., 2011). In addition, calmidazolium can
induce apoptosis and down-regulate stem cell–related genes to
inhibit the growth of embryonal carcinoma cells (Lee et al., 2016).
Sulfasalazine, as sulfonamide antibiotic, had antibacterial, anti-
inflammatory, and immuno-suppressive effects. Studies had
shown that sulfasalazine could be involved in cancer cell death
and T cell immunity by inhibiting the ferroptosis-related NF-κB
signaling pathway and systemic Xc transporters (Dixon et al.,
2012; Dixon et al., 2014). At present, sulfasalazine had been found
to have significant effects on tumor cells in breast cancer (Yu
et al., 2019), thyroid cancer (Zou L et al., 2019), kidney cancer
(Sourbier et al., 2007), and bladder cancer (Ogihara et al., 2019).
Although calmidazolium and sulfasalazine had been proven to
affect the occurrence, metastasis, and apoptosis of various
tumors, their specific mechanisms were still unclear, and there
was no relevant study on the efficacy in KIRC, which was worth
further exploration.

There are also some limitations in this study. First, the
retrospective study determined that there is heterogeneity in
the results, so further in vivo and in vitro experiments are
needed to validate the findings of this study. Second, it is
necessary that we need more basic and large clinical trials to
validate these findings.

CONCLUSION

In this study, we obtained hub mIR-DEGs with prognostic value
through comprehensive bioinformatics analysis, including
FGF17, PRKCG, SSTR1, and SCTR, which were significantly
associated with methylation, ferroptosis, and immune
checkpoint–related genes in KIRC. Preliminary validation

found that PRKCG and SSTR1 were consistent with
predictions. These indicators could be new targets and
prognostic biomarkers for KIRC’s metastasis and
immunotherapy. Furthermore, we had predicted the formula
of targeted small molecule drugs based on hub mIR-DEGs.
However, this prediction still needed lots of basic experimental
demonstration.
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Retinal Degeneration (RD) is an inherited retinal disease characterized by degeneration of
rods and cones photoreceptor cells and degeneration of retinal pigment epithelial cells.
The age of onset and disease progression of RD are related to genes and environment. At
present, research has discovered five genes closely related to RD. They are RHO, PDE6B,
MERTK, RLBP1, RPGR, and researchers have developed corresponding gene therapy
methods. Gene therapy uses vectors to transfer therapeutic genes, genetically modify
target cells, and correct or replace disease-causing RD genes. Therefore, identifying the
pathogenic genes of RD will play an important role in the development of treatment
methods for the disease. However, the traditional methods of identifying RD-related genes
are mostly based on animal experiments, and currently only a small number of RD-related
genes have been identified. With the increase of biological data, Xgboost is purposed in
this article to identify RP-related genes. Xgboost adds a regular term to control the
complexity of the model, hence using Xgboost to find out true RD-related genes from
complex andmassive genes is suitable. The problem of overfitting can be avoided to some
extent. To verify the power of Xgboost to identify RD-related genes, we did 10-cross
validation and compared with three traditional methods: Random Forest, Back
Propagation network, Support Vector Machine. The accuracy of Xgboost is 99.13%
and AUC is much higher than other three methods. Therefore, this article can provide
technical support for efficient identification of RD-related genes and help researchers have
a deeper the understanding of the genetic characteristics of RD.
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INTRODUCTION

Hereditary eye diseases include syndromes and non-syndromic forms of retinal degeneration,
hereditary glaucoma, corneal dystrophy and eye movement disorders. Retinal degeneration (RD) is a
group of single-gene hereditary blindness caused by loss of function of photoreceptor cells or retinal
pigment epithelium (RPE). The incidence of RDs worldwide is 1/3,000–1/2,000 (Berger et al., 2010).
According to whether they are accompanied by systemic symptoms, they are divided into simple and
systemic RDs (Wennström et al., 2003).The former mainly includes retinitis pigmentosa (RP), Rod
cell dystrophy (cone-rod dystrophies, CORD), Leber congenital amaurosis (Leber congenital
amaurosis, LCA), etc. The latter mainly includes Usher syndrome and Bardet-Biedl syndrome
(Muller et al., 2010).Up to now, more than 300 pathogenic genes have been reported for RD, which
suggests that RD has a high degree of clinical and genetic heterogeneity, the diagnosis of this type of
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disease is extremely difficult (Benayoun et al., 2009). Research on
the pathogenic genes of RDs and the development and
application of related molecular diagnostic techniques are the
prerequisites for the diagnosis, prevention and treatment of RDs.
Both single-gene Mendelian or complex hereditary eye diseases
require genetic testing to determine the underlying cause. There
are nearly 1,200 genes related to eye diseases in the human
online Mendelian genetic database (on-line Mendelian
inheritancein man, oMIM) (http://www.omim.org)(Amberger
et al., 2015). RD is a type of disease with obvious clinical
phenotypic heterogeneity and genetic heterogeneity, and it is
also the main type of ophthalmic genetic diseases and rare and
difficult ophthalmic diseases. At present, the vast majority of RD
is still incurable in ophthalmology, and research on its diagnosis
and treatment has always been a hot spot. Diagnosing RD at the
genetic level is helpful for a deep understanding of the disease
mechanism (Boycott et al., 2017). Distinguishing what kind of
gene mutation causes the disease can more accurately
understand the occurrence, development and outcome of the
disease. This is especially important for RD with obvious
heterogeneity. The genetic heterogeneity of RD requires a
new disease naming and definition system. The system
should include at least two main factors, namely the disease-
causing gene and the name of the disease related to it. For
example, EYS-related retinitis pigmentosa is more accurate than
retinitis pigmentosa alone, and it is easier to explain the
condition to the patient.

Because of the large number of pathogenic genes of retinal
degeneration and the different mutation genes and loci in
different families, it is very difficult to selectively screen
candidate pathogenic genes. At present, the research on
molecular genetics of hereditary eye disease is mainly family
single gene research, which leads to controversy and deficiency in
the genetic research of RD gene (Fan et al., 2006). A
comprehensive and systematic analysis of known gene
variation data may be helpful for the further study of such
problems. Genes and mutations associated with retinal
degeneration are controversial. Some genes were first reported
to be disease-related, and then no mutations were reported.
Although a large number of mutations in retinal degeneration
are concentrated in a few genes, and the mutations of many genes
only explain the causes of a very small number of patients, it is
possible that only a very small number of patients with this gene
carry mutations, but it cannot be ruled out that the previous
research only found changes in a single gene and mistakenly
believed that it was the cause of the disease. The controversial and
questionable problems such as mutation penetrance and related
risk factors reported in single gene research also bring confusion
to researchers. In addition, because there was no public database
containing a large number of variation data and a large number of
control validation, some high-frequency SNPs were found in
patients and were regarded as pathogenic mutations. These
mutations are listed in the human gene mutation database
(HGMD) as pathogenic mutations (Stenson et al., 2020),
which mislead the follow-up molecular genetics research. At
present, the reported variation analysis doubts and corrects the
pathogenicity of individual Retnet genes and mutations (Pozo

et al., 2015), such as the previously reported pathogenic genes
fscn2 (MIM: 607643) and or2w3 of retinitis pigmentosa and
hmcn1 (MIM: 608548) of macular degeneration (Fisher et al.,
2007; Zhang et al., 2007; Sharon et al., 2016), and the subsequent
research reports are questionable, but due to the lack of clinical
phenotype analysis of patients with the same mutation, It is still
impossible to completely deny its possibility as a pathogenic gene.
In addition, single-gene research cannot comprehensively and
systematically understand the genetic mutation spectrum of the
people with hereditary retinal degeneration of this ethnic group.
Different races have different gene mutation spectrums.
Common disease-causing gene mutations in European and
American populations are not common in Asian
populations; based on common gene mutations in Asian
populations, they may be very rare in European and
American populations. For example, the pathogenic gene
CNGA3 (MIM: 600053) of pyramidal cell dystrophy is the
most frequently mutated gene in Chinese patients (Huang
et al., 2016), and the most common recessive genetic mutation
in foreign reports is ABCA4 (MIM: 601691) (Maugeri et al.,
2000), CNGA3 only explains a small part of the cause of the
disease (Wissinger et al., 2001). Even the Asian population has
a different mutation spectrum. The highest mutation
frequency in the Japanese retinitis pigmentosa population is
EYS (MIM: 612424)(Oishi et al., 2014; Arai et al., 2015), and
this gene mutation is very rare in Chinese patients (Xu et al.,
2014; Chen et al., 2015). It is very important and necessary to
conduct a comprehensive multi-gene systematic analysis of all
retinal degeneration genes, and to understand the clinical
characteristics, gene mutation frequency spectrum and
discover the main pathogenic genes of the people with
retinal degeneration of this nation. At the same time, it also
provides important clinical evidence for the clinical diagnosis,
genetic counseling, and prevention of hereditary eye diseases.

Although researchers have made great achievement in
identifying RD-related genes, identifying the huge and
complex acid sequences needs an algorithm which has high
computational efficiency and high recognition accuracy. The
generation of multi-omics data allows us to combine different
data from a large number of samples to explore RD-related
genes at a comprehensive level (Zhao et al., 2021a). Integrating
multiple omics data to discover biological knowledge on a large
scale has become a universal method. An endless stream of
methods have been developed to apply to different research
problems, such as identification of disease-related gene (Zhao
et al., 2020; Antonarakis, 2021), identification of disease-related
protein (Katako et al., 2018; Zhao et al., 2021b), identification of
disease-related metabolite (Lei and Tie, 2019; Zhao et al.,
2021c), disease-related drug target identification (Agamah
et al., 2020; Zhao et al., 2021d), etc. Chen (Chen and
Guestrin, 2016) purposed a novel method named Extreme
Gradient Boosting (Xgboost) in 2004. He improved the
boosting algorithm. Its multi-threaded parallel and
regularization term not only improve the accuracy of the
algorithm but also reduce the running time. Therefore,
Xgboost is a suitable algorithm to solve the problem of
identifying RD-related genes.
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METHODS AND MATERIALS

Data Description
We searched RD-related genes from DisGeNET (Piñero et al.,
2020) by the key word “Retinal Degeneration.” There are 207
genes which are known to be related to RD in this database. We
downloaded the sequences of these genes corresponding proteins
from Uniprot (Consortium, 2019).

We also obtained 5,000 genes as genes potentially associated
with RD from Genecard (Safran et al., 2010). Our aim is to
identify RD-related genes from these 5,000 genes.

Feature Extraction
Compositional Analysis
Since the real constitution of RD-related genes encoded proteins
is quite different from the non-related genes’, the frequency of the
occurrence of the all 20 amino acids in these proteins could be
quite different.

We totally calculated the average amino acid composition of
207 RD-related genes encoded proteins. These proteins are
richest in “L,” and the composition of “G,” “A,” “V,” “E,” “S”
is very high.

Dissociation Constant
The protein structure is significantly related to the chemical
characteristic of amino acid, especially hydrophobic and
hydrophilic (Aftabuddin and Kundu, 2007). Aftabuddin et al.
divided 20 amino acids into six groups based on the ranges of the
hydropathy. The reason why the gene is related to RD is
significantly related to the function of the protein it encodes.
Therefore, the hydrophilicity and hydrophobicity of amino acids
in protein are the key to judging whether the gene is related to RD.
Table 1 shows the six groups of the 20 amino acids.

So, the sequence of every protein could be diverted to a 6-
dimension sequence. Each dimension is the average composition
of one of these six groups.

PEST Regions
In 1986, Rechsteiner M and Rogers SW (Rechsteiner et al., 1996)
made the assumption that the amino acids of “P,” “E,” “S” and “T”
can serve as proteolytic signals. Nowmore and more reports have
verified that the sequence which contains PEST regions can cause
the rapid degradation of proteins.

The Epestfind program can be used to identify all poor and
potential PEST protein sequences. (Espreafico et al., 1992) http://
emboss.bioinformatics.nl/cgi-bin/emboss/epestfind.

We only included potential PEST protein region as a feature to
identify the RD-related genes. We counted the number of
potential pest regions in each sequence.

In conclusion, we totally extracted three kinds of features (Figure 1).
So, we used these 27-dimensions to identify the RD-related.

Methods and Framework
Extreme Gradient Boosting
The Extreme Gradient Boosting (Xgboost) is the improvement of
traditional Gradient Boosting Decision Tree (GBDT). Xgboost
implements the first and the two order derivatives from the loss
function by applying two order Taylor expansion. However, the
traditional GBDT algorithm only implements first derivative
information during optimizing. Xgboost runs significantly
faster than GBDT. Because it has two advantages. On the one
hand, Xgboost supports automatic multi-core parallel computing
through open MP. On the other hand, Xgboost proposes a new
data format Dmatrix, which can be preprocessed first and then
trained. This improves the efficiency of each iteration of the
training process and reduces the model training time. In addition,
we can input the sparse matrix into xgboost.

First, we need to obtain our train set {xi, yi}N, yi ∈ {−1, 1} and
set the number of leaf nodes as J. Then, we need to initialize the
final function.

F0(x) � 1
2
log

1 + �y

1 − �y
(1)

Then, the gradient of training samples can be obtained by:

y
�
i � −zL(yi, F(xi))

zF(xi) (2)

Then, the CART regression tree {Rjm}J can be constructed.
Rjm is the jth feature space.

Then, each leaf node’s regression value can be obtained by:

rjm � ∑xi∈Rjm
y
�
i

∑xi∈Rjm

∣∣∣∣∣y�i

∣∣∣∣∣(2 − ∣∣∣∣∣y�i

∣∣∣∣∣)
(3)

Finally, the final model is as following:

TABLE 1 | The six groups of the 20 amino acids.

Groups Amino acids

Strongly hydrophilic R,D,E,N,Q,K,H
Strongly hydrophobic L,I,V,A,M,F
Weakly hydrophilic or Weakly hydrophobic S,T,Y,W
Proline P
Glycine G
Cysteine C

FIGURE 1 | Flow chart of Feature extraction.
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Fm(x) � Fm−1(x) +∑J
j�1
rjmI(x ∈ Rjm) (4)

The objective function is consisted by loss function and
regularization term, which can be used to show the quality of
our method.

Obj(Θ) � L(θ) +Ω(Θ) (5)
L(θ) represents loss function. Algorithms such as artificial neural
networks only use loss function to evaluate the quality of training,
which is easy to cause over fitting. The regularization parameters
Ω(Θ) are introduced into methods such as support vector
machine, which can effectively reduce over fitting. However,
the introduction of regularization parameters will increase the
complexity of the model.

CART is the basic unit of Xgboost. Therefore, the
objective function in formula (5) can also be represented
as following:

Obj(Θ) � ∑n
i

l(yi, y
�
i) +∑T

t�1
Ω(ft) (6)

Each tree is obtained based on the last tree we constructed.

y
�0

i � 0,

y
�1

i � f1(xi) � y
�0

i + f1(xi),
y
�2

i � f1(xi) + f2(xi) � y
�1

i + f2(xi),
..
.

y
�2

i � ∑t
k�1

fk(xi) � y
�t−1
i + ft(xi),

(7)

Finally, we can obtained the first and the two order derivatives
from the loss function.

Obj(t) � ∑n
i

(l(yi, y
�t−1
i ) + gift(xi) + 1

2
hif

2
t(xi)) + Ω(ft)

+ constant (8)
The next part is to obtain regularization term. Firstly, we

define the decision tree as:

ft(x) � wq(x), w ∈ RM, q: Rd → {1, 2,/,M} (9)
w represents leaf node’s score. q(x) is used to determine the
position of the input sample in the tree. The regularization term
can be represented as following:

Ω(f) � γM + 1
2
λ∑M
j�1
w2

j (10)

We need to set γ and λ to balance the complexity of the model.
So tth tree’s objective function is as following:

Obj(t) ≈ ∑n
i�1
(giwq(xi) + 1

2
hiw

2
q(xi)) + γM + 1

2
λ∑M
j�1
w2
j

� ∑M
j�1
((∑gi)wj + 1

2
(∑ hi + λ)w2

j) + γM

(11)

We could define Gj � ∑gi and Hj � ∑ hi, then we get:

Obj(t) � ∑M
j�1
(Gjwj + 1

2
(Hj + λ)w2

j) + γM (12)

RESULTS

Experiment Description
We totally got 207 true RD-related genes and we randomly
selected 5,000 genes as the negative samples. To verify the
effectiveness of Xgboost on identifying RD-related genes, we
did ten-cross validation.

We randomly divided these 5,207 sequences into ten
groups. For every group, we choose 520 sequences as the
test set and the rest 4,687 sequences as the train set. So, we
did ten experiments in total. Besides, every sequence has
become a training set and a test set. We set the parameters
of Xgboost as the Table 2.

Evaluation Criteria
We use four evaluation ways to evaluate the performance of
Xgboost on identifying RD-related genes.

We put the results of the ten experiments in the Table 2. A
total of 5,207 sequences were tested. As showed in Table 3, we
could calculate the Accuracy = 99.13%, Precision = 99.04%, Recall
= 99.23%, Specificity = 99.04%.

Experiments Result
In this study, the label of randomly selected genes is 0, and the
label of RD-related genes are 1.

The Figure 2 shows the curves of the ten times experiments’
accuracy. As we can see, the experiment with the lowest accuracy
is also more than 98%.

To verify the superiority of the Xgboost, we also use the same
data to do the ten-cross validation by other methods.We use Back

TABLE 2 | The parameters of the Xgboost.

Setting items The value set

Booster gbtree
Silent 0
Learning rate 0.3
Maximum depth of a tree 6
Minimum sum of instance weight 1
Subsample ratio 1
Experimental parameter 1

TABLE 3 | The results of the ten experiments.

Prediction

1 0 Total
True Label 1 205 (TP) 2(FN) 207

0 20(FP) 4,980 (TN) 5,000
Total 225 4,982 5,207
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Propagation network (BP), Random Forest (RF), Support Vector
Machine (SVM) respectively. The error statistics of the average
results of 10 experiments are shown in the following table.

As we can see in the Table 4, we could see the performance of
Xgboost is the best, and the performance of BP is the worst.
Although RF is better than the Xgboost in the evaluations of

‘Precision’ and “Specificity,” the accuracy of the Xgboost is the
best. Besides, Xgboost uses the least time to build up the model.

Figure 3 is the ROC curve of four methods. The red line is the
curve of Xgboost. The green line is the curve of RF. The blue and
black one is the SVM and BP respectively. As we can see in the
figure, Xgboost is the best among these four methods. Then we
draw a figure of AUC in the Figure 4.

As we can see in the Figure 4, the AUC of Xgboost is very close
to 1. It shows the high accuracy of the Xgboost.

CONCLUSION

Typical clinical features of RD include early night blindness,
subsequent progressive vision loss and narrowing of the visual
field, fundus showing osteocytic pigmentation, waxy pale atrophy
of the optic disc, and electroretinogram (ERG) cone and rod Cell
function decline, etc., the early rod cell response amplitude
decline is more serious than the cone cell response amplitude.
Due to the high degree of heterogeneity of the RP phenotype,
many retinopathy have similar symptoms with RP, which is very
easy to confuse.

Therefore, exploring RD from a genetic perspective is very
helpful for clinical diagnosis, treatment and research on the
pathogenic mechanism of diseases. With the popularization
of high-throughput sequencing technology, a large amount
of genome and proteomic data has been released.
However, no method has been proposed to specifically
identify RD-related genes. In this article, we propose a
method based on XGboost to identify RD-related genes.
We extracted three features of the corresponding proteins
of 207 genes known to be related to RD. Each gene has 27-
dimensional features, and we input these features into
Xgboost for training. Through 10-fold cross-validation, we
confirmed the accuracy of our method to identify RD-related
genes with AUC as 0.99.

FIGURE 2 | The accuracy of ten experiments.

TABLE 4 | Comparison of the Xgboost with alternative models.

Algorithm ACC (%) Precision (%) Recall (%) Specificity (%)

Xgboost 99.13 99.04 99.23 99.04
BP 82.50 78.13 90.25 74.76
Random Forest 97.99 99.64 96.34 99.65
SVM 94.16 94.62 93.64 94.68

FIGURE 3 | ROC curve of four methods.

FIGURE 4 | AUC of four methods.
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In summary, we propose a method for large-scale identification
of RD-related genes. This type of machine learning method can
prioritize genes that are potentially related to RD to save
researchers the cost of conducting biological experiments.
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Moyamoya disease (MMD) has a high incidence in Asian populations and demonstrates
some degree of familial clustering. Whole-exome sequencing (WES) is useful in
establishing key related genes in familial genetic diseases but is time-consuming and
costly. Therefore, exploring a new method will be more effective for the diagnosis of MMD.
We identified familial cohorts showing MMD susceptibility and performed WES on 5
affected individuals to identify susceptibility loci, which identified point mutation sites in the
titin (TTN) gene (rs771533925, rs559712998 and rs72677250). Moreover, TTNmutations
were not found in a cohort of 50 sporadic MMD cases. We also analyzed mutation
frequencies and used bioinformatic predictions to reveal mutation harmfulness, functions
and probabilities of disease correlation, the results showed that rs771533925 and
rs72677250 were likely harmful mutations with GO analyses indicating the involvement
of TTN in a variety of biological processes related to MMD etiology. CRISPR-Cas12a
assays designed to detect TTN mutations provided results consistent with WES analysis,
which was further confirmed by Sanger sequencing. This study recognized TTN as a new
familial gene marker for moyamoya disease and moreover, demonstrated that CRISPR-
Cas12a has the advantages of rapid detection, low cost and simple operation, and has
broad prospects in the practical application of rapid detection of MMD mutation sites.

Keywords: moyamoya disease, TTN, CRISPR-Cas12a, RNF213, MMP3

INTRODUCTION

Moyamoya disease (MMD) is a chronic progressive, cerebrovascular, and occlusive disease of
unknown etiology first reported by Suzuki in 1969 (Kuroda and Houkin, 2008). Compared with
western country, the incidence of MMD is higher in China, Korea and Japan, among which MMD is
the main cause of stroke in children and adolescents (Kim, 2016; Zhao et al., 2018; Deng et al., 2021).
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Previous studies have shown a higher incidence of moyamoya
disease in East Asia, among which, particularly in China, the
incidence of moyamoya disease in the north is significantly higher
than in the south (Hu et al., 2017). In recent years, a number of
studies have confirmed a genetic susceptibility for MMD,
proposing that genetic factors play a major role in the
pathogenesis of MMD (Liu et al., 2011; Morito et al., 2014;
Kobayashi et al., 2015; Kim, 2016). For example, 10–15% of
MMD patients have a family history, and the prevalence of these
people with a family history is 30–40% higher than that of
ordinary people (Kim, 2016). Therefore, it is easier to obtain
potential genetic related genes through the research on family
patient.

The first pathogenic gene to be associated with MMD was the
ring finger protein 213 (RNF213) (Kamada et al., 2011).
Moreover, two mutations within the RNF213 gene
(rs112735431 and rs148731719) were known to be associated
with MMD pathogenesis in Chinese patients (Wu et al., 2012;
Zhang et al., 2017; Wang Y. et al., 2020). In 2010, researchers
discovered that the-1171 locus of theMMP3 gene in Chinese Han
patients was closely related to the onset of MMD (Li et al., 2010);
this work also represented the first research on susceptibility
genes in China. Other studies have also shown that 6–10% of
Chinese MMD cases are likely to be familial in origin (Hishikawa
et al., 2013). In addition, a novel missense mutation 377T > C and
two polymorphisms (420A > G and 487C > T) in the TGIF gene
were identified in a Taiwanese family segregated with
holoprosencephaly (HPE) and moyamoya disease, speculated
the possible association between TGIF mutation and MMD
(Chen et al., 2006). An extensive genetic study on specific
gene in MMD patients might shed light on the pathogenesis
of MMD. Our previous studies have shown that specific gene
mutations does not lead to inheritance of the disease. To some
extent, our data can serve as a useful complement to family-based
research.

With the development of high-throughput sequencing
technology, WES has been increasingly utilized in the study
of Mendelian diseases and complex diseases. The human
exome region accounts for only 1% of the entire genomic
sequence, but approximately 85% of known pathogenic
mutations are located in coding regions (Manolio et al.,
2009). Notably, traditional mutation site screening mostly
uses Sanger sequencing or WES, which is time-consuming and
costly, not being beneficial to the large-scale screening of
samples. The CRISPR-Cas system is an important immune
defense system of Archaea and bacteria against viral and
plasmid infection (Ishino et al., 1987; Jansen et al., 2002;
Mojica et al., 2005). Cas12a (cpf1) is a new type of
programmable DNA enzyme found in the CRISPR system
and contains an RuvC domain and a specific nuclease domain
(Zhou et al., 2014). Some studies have found that Cas12a also
has the ability to cut non-target DNA following cleavage of the
target DNA (Gilbert et al., 2013; Qi et al., 2013). The CRISPR-
Cas system has extremely high sensitivity and efficiency in
the detection of nucleic acids, which has changed the
process of molecular diagnosis of various diseases
(Chertow, 2018).

In the pre-experiment, we verified the utility of the CRISPR-
Cas12a and Sanger to detect specific gene (RNF213 and MMP3)
mutations. In this study, we usedWES to analyze familial cases of
MMD from Chinese patients. The CRISPR-Cas12a system was
used to screen the mutation loci of disease-related families and
identify related genes, thereby uncovering the molecular basis
of MMD.

METHODS

Collection of Clinical Samples
We recruited MMD patients (≥18 years old and ≤70 years old,
male: female = 1:1) without previous medical history. Diagnostic
criteria were based on the Japanese Research Committee on
moyamoya disease of the Ministry of Health, Welfare and
Labour, Japan (RCMJ) criteria (Research Committee on the
Pathology and Treatment of Spontaneous Occlusion of the
Circle of Willis and Health Labour Sciences Research Grant
for Research on Measures for Infractable Diseases, 2012).
Their clinical diagnosis was confirmed by imaging with
transcranial computed tomography (CT), magnetic resonance
imaging (MRI), or digital subtraction angiography (DSA) along
with various clinical judgments. Fasting samples of venous blood
were collected from all patients and healthy control subjects
separately during the same period. All subjects signed the
consent form prior to entering the trial.

Primer Design and Preparation of crRNA
Wild-type and mutant templates were designed with reference to
the known mutation detection loci for the specific gene.
Amplimers and crRNAs were then designed for the known
mutation regions and oligonucleotides (crDNA) were
synthesized. crDNA and cr-T7-F were mixed and boiled for
10 min, then the double-stranded transcription template being
formed by natural cooling. The transcription template was then
incubated for 16 h at 37°C under enzymatic-free conditions using
the HiScribe T7 Quick High Yield RNA Synthesis Kit (NEB,
Ipswich, United States). After the completion of the reaction, 2 μL
of DNase 1 (TianGen, Beijing, China) was added to eliminate
unreacted template before purifying the crRNA. Wild-type and
mutant template sequences, amplimers, and crDNAs, were
synthesized by Tianyi Huiyuan Biotechnology Co., Ltd.
(Supplementary Table S1).

Validation of the CRISPR-Cas12a
Fluorescence Detection System
Fncas12a uses 5′-KYTV-3′ 999 as protospacer adjacent motif
(PAM). It was chosen as the detection protein for providing more
target sequence options compared with Ascas12a and Lbcas12a
(Tu et al., 2017). In brief, 50 ng of template DNA was added into
the detection reagent mixture containing 0.75 μM crRNA, 1.5 μM
Fncas12a, 50pM of fluorescent probe, and 3 μL of NEBuffer 3.1
(NEB, Ipswich, United States). Reactions (50 μL) were then
incubated at 37°C for 1h prior to fluorescence quantification.
All reactions were carried out at 37°C.
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Clinical Sample Testing
Following plasma separation, DNA was extracted from venous blood
samples. Thereafter, polymerase chain reactions (PCR)were performed
using 50 ng of DNA as the template with specific primers
(Supplmentary Table S1) at the following cycle conditions: 95°C
for 5 min; 30 cycles of 95°C for 3min; 56°C for 10 s, and 72°C for
20 s; followed by 72°C for 5min. PCR products were then visualized by
agarose gel electrophoresis and were sequenced using the Sanger
method. In parallel, 1–5 μl of amplified product was used for
CRISPR-Cas12a fluorescence detection.

Collection and Selection of Samples for
Whole-Exome Sequencing
We collected five samples from the familiy with clinical
manifestations of the MMD phenotype from Liaocheng People’s
Hospital Center from June 2020 to December 2020 (Table 1). All five
family members were subjected toWES as depicted in the flow chart
in Supplementary Figure S1. This study was approved by the ethics
committee of Liaocheng People’s Hospital, Shandong Province.
Informed consent for DNA analysis was obtained from patients
in line with local Institutional Review Board (IRB) requirements at
the time of collection.

Library Construction for Whole-Exome
Sequencing
DNA extracted from peripheral blood was fragmented to an
average size of 180–280 bp and subjected to DNA library creation
using established Illumina paired-end protocols. The Agilent
SureSelect Human All ExonV6 Kit (Agilent Technologies,
Santa Clara, CA, United States) was used for exome capture
according to the manufacturer’s instructions. The Illumina
NovaSeq 6,000 platform (Illumina Inc., San Diego, CA,
United States) was utilized for genomic DNA sequencing in
Novogene Bioinformatics Technology Co., Ltd. (Beijing,
China) to generate 150-bp paired-end reads with a minimum
coverage of 10× for 99% of the genome (mean coverage of 100×).

Whole-Exome Sequencing Data Analysis
After sequencing, base-call file conversions and demultiplexing
were performed with bcl2fastq software (Illumina). The resulting
fastq data were submitted to in-house quality control software to
remove low quality reads; and these were then aligned to the
reference human genome (hs37d5) using the Burrows-Wheeler
Aligner (bwa) (Li and Durbin, 2009). Duplicate reads were
marked using sambamba tools (Tarasov et al., 2015). Single

nucleotide variants (SNVs) and indels were identified by
samtools to generate Genome VCF (gVCF) (Li et al., 2009).
Raw calls for the SNVs and INDELs were further filtered with the
following inclusion thresholds: 1) a read depth > 4; 2) a root-
mean-square mapping quality of covering reads that was > 30;
and 3) a variant quality score > 20. Copy number variants (CNVs)
were detected with CoNIFER software (Version 0.2.2) (Krumm
et al., 2012). Annotation was performed using ANNOVAR (2017)
(Wang et al., 2010). Annotations included minor allele
frequencies from public control data sets as well as
deleteriousness and conservation scores, thus enabling further
filtering and assessment of the likely pathogenic variants.

Selection of Candidate Mutation Loci
Filtering for rare variants was performed as follows. First, variants
with a MAF < 0.01 in 1000 genomic data (1000g_all) (Auton et al.,
2015), esp6500siv2_all, and gnomAD data (gnomAD_ALL and
gnomAD_EAS); (Kim, 2016) only SNVs occurring in exons or
splice sites (splicing junction 10 bp) were further analyzed since
we were targeting amino acid changes; (Deng et al., 2021)
synonymous single nucleotide variants (SNVs) which were not
relevant to the amino acid changes predicted by dbscSNV were
discarded; the small fragment non-frameshift (<10bp) indel in the
repeat region defined by RepeatMasker was discarded; and (Zhao
et al., 2018) variations were screened according to SIFT scores
(Kumar et al., 2009), PolyPhen (Adzhubei et al., 2010),
MutationTaster (Schwarz et al., 2010) and CADD (Kircher et al.,
2014) software packages. Potentially deleterious variations were
reserved if the scores from more than half of the four software
packages identified the variations as harmful (Muona et al., 2015).
Sites (>2bp) that did not affect alternative splicing were also removed.
To better predict the harmfulness of each variation, we applied the
classification system put forward by the American College ofMedical
Genetics and Genomics (ACMG). The variations were classified as
pathogenic, likely to be pathogenic, of uncertain significance, likely to
be benign, or benign (Richards et al., 2015). Depending upon various
considerations (pedigree, homozygous, and compound
heterozygous), variants were considered to be candidate causal
variations. The relationship between the proband and the parents
was estimated using the pairwise identity-by-descent (IBD)
calculation in PLINK (Purcell et al., 2007). The share of IBD
between the proband and parents for all trios ranged from 45 to 55%.

Statistical Analysis
SPSS 17.0 software was used for statistical analysis. The qualitative
data and the number of cases described in percentage, and the
quantitative data were compared by independent sample t-test or
analysis of variance. p < 0.05 indicates a significant difference.

RESULTS

The Ability of CRISPR-Cas12a to Detect
Mutations
Literature searches identified RNF213 as a susceptibility gene for
MMD. In addition, two SNP loci of RNF213, rs112735431 and
rs148731719 have been confirmed closely related toMMD(Liu et al.,

TABLE 1 | Sample information.

Specimen
No.

Sex (male/
female)

Patient or Normal (P: Patient; N:
Normal)

B1 F P
B2 M N
B3 M N
B4 M N
B5 F P
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2011; Zhang et al., 2017; Wang Y. et al., 2020). crRNA was designed
to detect these two SNP pointmutation loci inRNF213. The cleavage
efficiency of the crRNAs was then verified against wild-type and
mutant-target DNA (Supplementary Figure S3). The fluorescence
levels derived from the mutant were significantly higher than the
wild type (p < 0.05), indicating that the CRISPR-Cas12a system
constructed with the indicated crRNAs could successfully detect
whether there was a mutation at this locus in clinical samples.

Detection of RNF213 Gene Locus by
CRISPR-Cas12a and Sanger Sequencing
We collected 34 samples of patients who had been clinically
diagnosed with MMD and 37 healthy control samples from
Liaocheng People’s Hospital. DNA was extracted from these
samples and the RNF213 gene of samples was tested using the
CRISPR along with Sanger sequencing (Supplementary Table S2).
The coincidence rate of the CRISPR-Cas12a system and Sanger
sequencing for detecting mutation samples was 100%, indicating
that the CRISPR-Cas12a detection is accurate and highly sensitive.

Analysis of the Correlation Between Gene
(RNF213, MMP3) Mutations and MMD
First, the results of the Sanger test for RNF213 showed that there was
a C>Tmutation at locus rs112735431 and aG >Amutation at locus
rs148731719 in the RNF213 gene (Supplementary Figure S4A).
T-tests showed that the p value for the rs112735431 locus mutation

was < 0.05 when comparing between the case group and the healthy
control group from the Liaocheng area. In contrast, there was no
significant difference between the groups with respect to rs148731719
(p > 0.05) (Supplementary Table S3), indicating that the
rs112735431 mutation within the RNF213 gene was significant
(p < 0.05) and that the rs112735431 was a significant mutation
locus for MMD in the RNF213 gene.

Then, we identified a base insertion mutation (rs3025058) in
the MMP3 gene (Supplementary Figure S4B). This mutation
was identified by Sanger sequencing and detected in 67.6% of the
34 patients with MMD in Shandong province, and 5.4% of the 37
controls, indicating statistical significance (p < 0.05). The 1171
(6A/6A) mutation in theMMP3 gene is associated with the risk of
MMD. furthermore, the risk of the (6A/6A) genotype is higher
than that of the (5A/6A) genotype (Supplementary Table S3.

Whole-Exome Sequencing
The pedigrees of five samples and the results of the patient’s CT and
CAT tests are shown in Figure 1. The average sequencing depth of
the five samples exceeded 100×, and the coverage of regions > 10×
exceeded 99%. The number of SNVs and Indels obtained from each
sample after data analysis are shown in Supplementary Table S4.

Screening for Candidate Pathological
Changes
Mutation loci were screened in accordance with the scores
predicted by SIFT, PolyPhen, MutationTaster, and CADD.

FIGURE 1 | Exome sequencing maps for the MMD family. (A) Pedigree charts. Squares: male; circles: female; black-filled symbols: patients; (B) CT of patient B1;
(C) CTA (Computed Tomography Angiography) of patient B1.
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Candidate loci were further screened according to the process
shown in Figure 2. The analysis identified multiple recessive
pathogenic genes and notably, of these, loci mutation-related
genes were within the TTN gene (rs771533925, rs559712998 and
rs72677250) (Table 2).

Validation of Candidate Loci by
CRISPR-Cas12a
The test results obtained by the CRISPR-Cas12a system for
mutation loci in the TTN gene in family samples (Figure 3)
were consistent with those obtained from WES sequencing
(Table 3), thus verifying the presence of mutations in the
samples.

Validation of Candidate Loci by
CRISPR-Cas12a in Sporadic Samples
Next, CRISPR-Cas12a system was used to test a total of 50
sporadic samples for gene mutations. No mutation was found
at rs771533925, rs559712998 and rs72677250 of TTN gene in
sporadic samples (Figure 4).

The Deleterious Effects of rs771533925,
rs559712998 and rs72677250
In addition, SIFT (Choi and Chan, 2015) PROVEAN (Vaser
et al., 2016) and PolyPhen (Adzhubei et al., 2013) algorithms
were used to predict the effects of amino acid substitutions on
protein function (Table 4). All three databases showed that
rs771533925 was potentially destructive. On the contrary,
rs559712998 was considered tolerable according to these
analyses. However, while rs72677250 was considered
tolerable according to the SIFT database, it was considered
to be potentially harmful according to the PROVEAN and
PolyPhen databases.

TTN Mutation Sites rs72677250,
rs559712998 and rs771533925 Global
Population Frequency and Function
Analysis
We analyzed the risk alleles (rs72677250, rs559712998 and
rs771533925) in accordance with the EXAC database. We
identified significant differences in frequency across the global
population. The highest frequency of rs72677250 in the South

FIGURE 2 | Analysis Flow Chart 2. Advanced analysis pipeline: Screening based on mutation sites and their harmfulness; Screening based on sample recessive
patterns; Screening based on candidate genes and relationship with disease phenotypes; Pathway enrichment of candidate genes through GO and KEGG analysis (also
using DisGeNet and Phenolyzer to analyze gene-disease phenotype associations).
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TABLE 2 | The detailed information of point mutation site.

Sample
ID

Variant RS ID Gene Coding DNA
change

Protein change Zygosity ACMG ExonicFunc SIFT,Polyphen2_HVAR,Polyphen2_HDIV,MutationTaster,CADD

B1 2:
179412799-

C-T

rs771533925 TTN c.G66359A;
c.G88631A;
c.G66935A;

p.R22245H; p.R29544H;
p.R22312H; p.R22120H;

p.R28617H

het . missense
SNV

D/D/D/D/24.0

c.G85850A;
c.G66734A;
c.G93554A

B2 2:
179412799-

C-T

rs771533925 TTN c.G66359A;
c.G88631A;
c.G66935A;

p.R22245H; p.R29544H;
p.R22312H; p.R22120H;

p.R28617H

het . missense
SNV

D/D/D/D/24.0

c.G85850A;
c.G66734A;
c.G93554A

B1 2:
179466289-

C-T

rs559712998 TTN c.G28615A;
c.G47731A;
c.G28816A;

p.V16838I; p.V9539I;
p.V9606I; p.V9414I;

p.V15911I

het . missense
SNV

T/B/B/D/20.2

c.G55435A;
c.G50512A;
c.G28240A

B4 2:
179466289-

C-T

rs559712998 TTN c.G28615A;
c.G47731A;
c.G28816A;

p.V16838I; p.V9539I;
p.V9606I; p.V9414I;

p.V15911I

het . missense
SNV

T/B/B/D/20.2

c.G55435A;
c.G50512A;
c.G28240A

B5 2:
179466289-

C-T

rs559712998 TTN c.G28615A;
c.G47731A;
c.G28816A;

p.V16838I; p.V9539I;
p.V9606I; p.V9414I;

p.V15911I

het . missense
SNV

T/B/B/D/20.2

c.G55435A;
c.G50512A;
c.G28240A

B3 2:
179476144-

C-T

rs72677250 TTN c.G24193A;
c.G43108A;
c.G23992A;

p.E15297K; p.E8065K;
p.E7998K; p.E14370K;

p.E7873K

het . missense
SNV

T/P/D/D/23.7

c.G45889A;
c.G50812A;
c.G23617A

B5 2:
179476144-

C-T

rs72677250 TTN c.G24193A;
c.G43108A;
c.G23992A;

p.E15297K; p.E8065K;
p.E7998K; p.E14370K;

p.E7873K

het . missense
SNV

T/P/D/D/23.7

c.G45889A;
c.G50812A;
c.G23617A
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Asian population was 0.00003269, the highest frequency of
rs559712998 in the East Asian population was 0.002574, the
highest frequency of rs771533925 in the East Asian population
was 0.00005568, and the total frequency of rs559712998
mutations was 0.000192; the latter being the highest frequency
of all three mutation sites (Table 5). According to age analysis of
these three loci within the global population, we found that the
rs72677250 mutation site was predominant in subjects aged
50–55 years, the rs559712998 mutation site was predominant
in subjects aged 30–80 years, and the rs771533925 mutation site
was predominant in subjects aged 65–70 years (Figures 5A–C).
GO analysis was then conducted using Cytoscape 3.8.2 software
with the ClueGO (Bindea et al., 2009) plugin, showing that the
mutation locus for TTN were involved in a range of important
biological processes, including myosin thick filament assembly in
skeletal muscle, positive regulation of protein transport, serine/
threonine kinase activity, and cardiac muscle fiber development
(Figure 5D).

DISCUSSION

Moyamoya disease is a chronic and progressive disease that can
cause cerebral ischemia, cerebral infarction, cerebral hemorrhage,
etc., which is a great harm to patients (Kuroda andHoukin, 2008).
Patients suffering from moyamoya disease generally could not

heal themselves without scientific treatment, and even the
condition may continue to aggravate, causing irreversible
harm, and bringing great economic burdens to patients and
their families to a certain extent (Zhang et al., 2022).

Screening family genetic patients to obtain new or known gene
mutations, whole-exome sequencing has the advantages of accuracy
and comprehension (Zhang et al., 2021). However, whole-exome
sequencing has drawbacks such as time-consuming and high cost,
which is not conducive to the large-scale screening of samples. On
this basis, the CRISPR technology is used to detect new or known
disease-causing gene loci, filling the blank of large-scale sample
screening in terms of gene sequencing.

The CRISPR-Cas system can recognize foreign DNA or RNA,
directing cleavage to silence the expression of the foreign gene
(Brouns et al., 2008; Marraffini and Sontheimer, 2008; Garneau
et al., 2010). It can be identified as an efficient gene editing tool
for its precise targeting ability (Nelles et al., 2016). Studies have
indicated that a diagnostic platform based on CRISPR-Cas represents
an exciting prospect for the detection of cancer and genetic diseases
(Mali et al., 2013). Cas12a (cpf1) is a new type of programmableDNA
enzyme found in the CRISPR system (Zhou et al., 2014). In the
presence of specific directing crRNA,Cas12a also has the ability to cut
non-target DNA after cleavage of the target DNA (Gilbert et al., 2013;
Qi et al., 2013). Therefore, the CRISPR-Cas12a system can be more
effective for in vitro detection by adding a fluorescent DNA reporter
(Mohanraju et al., 2016; Nelles et al., 2016; Koonin et al., 2017) which
can emit detectable fluorescence after cleavage. This provides a
fluorescence-based assay which only requires low technology
instrumentation such as a microplate reader to provide
quantitative measurements of mutations.

The rs112735431 and rs148731719mutations in theRNF213 gene
are known to be associatedwith the pathogenesis ofMMD inChinese
subjects (Liu et al., 2011;Morito et al., 2014; Kobayashi et al., 2015;Hu
et al., 2017). RNF213 is located on human chromosome 17 (the
17q25.3 region) and its expression occurs in different organs
(Kuriyama et al., 2008). An imbalance leads to vascular smooth
muscle hyperplasia and thickening, thus leading to vascular stenosis,
one of the key pathogenic factors responsible for MMD (Li et al.,
2010). Additionally, other studies have shown that the 1171 (6A/6A)
mutation in the MMP3 gene is associated with heightened MMD
susceptibility with the risk of the (6A/6A) genotype being higher than
the (5A/6A) genotype (Wang et al., 2013; Ma and You, 2015; Wang
X. et al., 2020). Preliminary experiments analyzed rs112735431 and
rs148731719 mutations in the RNF213 gene in MMD patients and
healthy control subjects. In the pre-experiment, we discovered that it

FIGURE 3 | CRISPR-Cas12a analysis of TTN gene mutation loci in
familial samples. (A–C) CRISPR-Cas12a test results for rs72677250 (A),
rs559712998 (B), and rs771533925 (C).

TABLE 3 | Analysis of TTN Gene Mutation Results by CRISPR test and Sanger
Sequencing in Family Samples.

TTN detection site Sanger CRISPR-Cas12a

N = 5 N = 5

RS559712998 MUT 3 (60%) 3 (60%)
WILD 2 (40%) 2 (40%)

RS771533925 MUT 2 (40%) 2 (40%)
WILD 3 (60%) 3 (60%)

RS72677250 MUT 2 (40%) 2 (40%)
WILD 3 (60%) 3 (60%)
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was the rs112735431RNF213 genemutation but not the rs148731719
mutation affecting the occurrence and development of MMD. At
present, Sanger sequencing is mostly carried out for cerebrovascular
diseases, and CRISPR technology is rarely studied. Therefore, we first
used CRISPR-Cas12a system to compare the technical feasibility. The
results showed that rs112735431 and rs148731719 mutations of the
RNF213 gene were successfully detected by the CRISPR-Cas12a
system with 100% agreement with the results of Sanger sequencing.

In this study, we performedWES on five family members of
the MMD family to identify MMD genetic-related mutation
loci, establishing a new candidate susceptibility loci in the

TTN gene. We also detected mutant loci in MMD patients and
healthy controls to investigate differences in the mutation loci
across the population using CRISPR-Cas12a assays. Then, we
compared CRISPR-Cas12a technology with Sanger
sequencing and WES for the detection of mutations to
highlight the diagnostic efficacy of CRISPR-Cas12a. Finally,
we conducted the analysis of population frequency,
harmfulness, and functional enrichment on TTN.

Our WES analysis also identified a number of recessive
pathogenic genes in five members of two MMD families. The
TTN was identified as the gene containing mutation-related

FIGURE 4 | CRISPR-Cas12a analysis of TTN gene mutation loci in sporadic samples. (A–C) CRISPR-Cas12a test results for rs559712998, rs72677250 (A),
rs771533925 (B), and rs72677250 (C).

TABLE 4 | Hazard prediction of RS771533925, RS559712998 and RS72677250 mutations.

Gene PROVEAN prediction SIFT prediction Polyphen

rs771533925 TTN Deleterious Damaging possibly_damaging
rs559712998 TTN Neutral Tolerated benign
rs72677250 TTN Deleterious Tolerated possibly_damaging

PROVEAN (Protein Variation Effect Analyzer) is a tool to predict whether biomolecular structure Variation affects Protein function; SIFT(sorts intolerant from tolerant) is a tool for predicting
non-synonymous variations based on sequence homology; PolyPhen (Polymorphism Phenotyping) is a tool which predicts possible impact of an amino acid substitution on the structure
and function of a human protein using straightforward physical and comparative considerations.
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loci (rs771533925, rs559712998 and rs72677250). The EXAC
database was used to analyze the risk alleles (rs72677250,
rs559712998 and rs771533925). Significant differences were
identified in the frequencies of these alleles across the global
population. Based on PROVEAN, SIFT, and PolyPhen
algorithms, rs771533925 and rs72677250 were considered
to be potentially damaging in all three databases where

rs559712998 was considered to be tolerable in contrast. GO
analysis showed that the targets of TTN were involved in many
important biological processes. Together with actin and
myosin, TTN constitute an important component of human
cardiac muscle and skeletal muscle. Interestingly, serum
antibodies directed against TTN were found in patients
with melanoma-associated retinopathy, suggesting TTN was

TABLE 5 | Analysis of RNF213 and MMP3 gene mutation.

Gene Genotype Sanger sequencing results Control group

Liao cheng

Case group

(n = 34) (n = 37)

RNF213 rs112735431 Mutation wild 8 (23.5%) 0 (0%)
26 (76.4%) 37 (100%)

p value 0.0019
rs148731719 Mutation 4 (11.8%) 3 (8.1%)

wild 30 (88.2%) 34 (91.9%)
p value 0.6082

MMP3 6A6A 23 (67.6%) 2 (5.4%)
5A6A 11 (32.4%) 35 (94.6%)
5A5A 0 (0%) 0 (0%)
p value 0.00001
6A allele frequency 57 (83.8%) 39 (52.7%)
5A allele frequency 11 (16.2%) 35 (47.3%)
p value 0.0001

FIGURE 5 | Global population frequency and function analysis of TTN mutation sites. (A–C) Global population frequencies among different age groups for the
rs72677250mutation (A), rs559712998mutation (B), and rs771533925 mutation (C). Analysis included heterozygous variant carriers, homozygous variant carriers. (D)
GO functional enrichment analysis of TTN using a two-sided hypergeometric test with Bonferroni correction.
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a potential biomarker for melanoma and also an
association with carcinogenesis. Future studies should
address the role of TTN gene mutations in the pathogenesis
of MMD.

In the present study, CRISPR–Cas12a was developed as a
novel assay that could sensitively and specifically detect MMD
mutation gene loci. Moreover, compared with Sanger
sequencing, the CRISPR-Cas12a method is easier, cheaper,
and more sensitive for single gene mutations, so it should
be promoted to use widely. Also, CRISPR-Cas12a assays were
conducted to detect mutations in the candidate genes within
the MMD family. Similarly, SNP loci within the TTN gene were
readily detected with results consistent with the WES analysis.
Further detection of mutations in the TTN gene in 50 clinical
samples revealed that there was no mutation in the TTN gene
SNP loci and no recessive genetic risk for loci mutations. We
speculated that mutations at the TTN locus may play an
important role in the familial inheritance of MMD.
However, our data is limited and a large number of
samples are still needed to verify. What’s more,
these mutations are likely suitable for identifying patient
pedigrees and assessing the genetic risk of MMD in large-
scale screening.

CONCLUSION

Our study identified TTN, a new specific candidate gene in
familial moyamoya disease. We also established that CRISPR-
Cas12a assays, which can effectively detect MMDmutations, and
with significant advantages in time, suggest utility in the rapid
detection of MMD mutations. Furthermore, with the detection
technology embedded within the reagents, the instrumentation
required is comparatively easy, proposing the CRISPR-Cas12a
system could be readily developed as accurate, portable diagnostic
tests for MMD. Therefore, the CRISPR-Cas12a system can be
used to overcome obstacles created by previous platforms and
provide a highly sensitive and convenient detection system for
MMD mutations with DNA acquired from clinical blood
samples.
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Identification of a 3-Gene Prognostic
Index for Papillary Thyroid Carcinoma
Lin-Kun Zhong1†, Xing-Yan Deng2†, Fei Shen3†, Wen-Song Cai3, Jian-Hua Feng3,
Xiao-Xiong Gan3, Shan Jiang4, Chi-Zhuai Liu1, Ming-Guang Zhang1, Jiang-Wei Deng1,
Bing-Xing Zheng1, Xiao-Zhang Xie1, Li-Qing Ning1, Hui Huang1, Shan-Shan Chen5,
Jian-Hang Miao1* and Bo Xu2*

1Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, China, 2Thyroid, Vascular Surgery Department,
Maoming People’s Hospital, Maoming, China, 3Department of Thyroid Surgery, Guangzhou First People’s Hospital, School of
Medicine, South China University of Technology, Guangzhou, China, 4Reproductive Medicine Center, Boai Hsopital of
Zhongshan, Zhongshan, China, 5Department of Intensive Care Medicine, Zhongshan City People’s Hospital, Zhongshan, China

The accurate determination of the risk of cancer recurrence is a critical unmet need in
managing thyroid cancer (TC). Although numerous studies have successfully
demonstrated the use of high throughput molecular diagnostics in TC prediction, it has
not been successfully applied in routine clinical use, particularly in Chinese patients. In our
study, we objective to screen for characteristic genes specific to PTC and establish an
accurate model for diagnosis and prognostic evaluation of PTC. We screen the
differentially expressed genes by Python 3.6 in The Cancer Genome Atlas (TCGA)
database. We discovered a three-gene signature Gap junction protein beta 4 (GJB4),
Ripply transcriptional repressor 3 (RIPPLY3), and Adrenoceptor alpha 1B (ADRA1B) that
had a statistically significant difference. Then we used Gene Expression Omnibus (GEO)
database to establish a diagnostic and prognostic model to verify the three-gene
signature. For experimental validation, immunohistochemistry in tissue microarrays
showed that thyroid samples’ proteins expressed by this three-gene are differentially
expressed. Our protocol discovered a robust three-gene signature that can distinguish
prognosis, which will have daily clinical application.

Keywords: PTC, SVM diagnostic model, COX analysis, accurate diagnosis, prognostic evaluation

BACKGROUND

Thyroid cancer (TC) is the most common malignant tumour in the endocrine system (The Lancet,
2017), whose most popular type is papillary thyroid carcinoma (PTC), accounting for 80–90% of all
thyroid malignancies (Schneider and Chen, 2013; Kennedy and Robinson, 2016). If timely detection,
diagnosis, and evaluation can be achieved during the early stages of PTC, coupled with the
development of corresponding surgical methods, the patient’s follow-up treatment, disease
surveillance, and prognosis will significantly improve. Therefore, it is of great importance to
study the early screening, diagnosis, and prognosis of PTC.

Currently, the main clinical diagnostics for TC include high-resolution ultrasonography (US) and
fine-needle aspiration (FNA), while FNA is the safest and most reliable test that can provide a
definitive preoperative diagnosis of malignancy (Zheng et al., 2015; Ko et al., 2017). However, the
sensitivity and specificity of FNA are reported to be 68–98% and 56–100%, respectively. This led to
an increased rate of uncertain outcomes, underwent unnecessary diagnostic surgery, and received
lifelong thyroid hormone replacement therapy with associated surgical complications. Preoperative
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molecular analysis using a panel of genetic alterations would
overcome the limitation of FNA diagnosis (Muzza et al., 2020).
Molecular markers have become a potential tool for TC
management to distinguish benign from malignant lesions,
predict aggressive biology, prognosis, recurrence, and identify
novel therapeutic targets (Nylén et al., 2020).

Recently, with the development of genome sequencing
technologies, more and more accumulating evidence has
revealed that tumour biomarkers, including protein-coding
genes, non-coding RNAs and immune genes, are informative
for cancer detection and prognosis classification (Zhong et al.,
2020; Gan et al., 2021). mRNAs have a great potential in
physiological and pathological processes and predict the
prognosis of various types of tumour patients (Feng et al.,
2019; Tschirdewahn et al., 2019). Therefore, the dysregulated
expression or mutation of RNA may be a promising predictor of
poor prognosis in PTC. Thus, mRNAs’ dysregulated expression
or mutation may be a promising predictor of poor prognosis
in PTC.

The accurate determination of cancer diagnosis and treatment
risk is a significant unmet need in PTCmanagement. Patients and
physicians must weigh the benefits of currently available
therapies against the potential morbidity of these treatments.
Herein we screen for characteristic genes specific to PTC and
establish and validate an accurate model for PTC diagnosis and
prognostic evaluation.

METHODS

Patients and Tissue Samples
Tissue microarrays (TMA) of human TC (IWLT-N-58T53 TC-
1503) involved in this experiment and research were purchased
from Wuhan Aiwei Biological Technology Co. LTD., along with
the detailed clinical information. It included 29 cases of PTC and
29 cases of para-cancer tissue. Of the 29 patients, 21 were female
(aged 24–66 years), and eight were male (aged 27–60 years).

Gene-Expression Data Sets
The gene expression and clinical data used for modelling were
derived from TCGA (http://www.cbioportal.org/datasets), which
contained gene expression data from 568 samples and clinical
information from 516 samples. From The Cancer Genome Atlas
(TCGA) database, clinical information was screened via the
Cancer Type Detailed PTC parameter, of which a total of 399
samples were found. In these 399 PTC patients, 395 cases had
RNA-seq data, of which 52 had para-cancer tissue data creating a
total number of 447 RNA-seq data points. The gene expression
data used to validate our model came from GSE27155 (Giordano
et al., 2005; Giordano et al., 2006) of the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). The differentially expressed (DE)
mRNAs between normal and PTC samples were assessed using
the R Studio. software program (RStudio version 1.1.463; http://
www.rproject.org), and the R package, Limma. log2FC (fold
change) > 2 and p-value < 0.05 were considered for
subsequent analyses (Gong et al., 2019). The project/collection
had a total of 99 samples: four from normal patients, 10 cases of

follicular adenomas, 13 cases of follicular thyroid carcinomas, 7
cases of eosinophilic thyroid adenomas, 8 cases of thyroid
carcinomas, 51 cases of PTC, 4 cases of anaplastic thyroid
carcinomas, and 2 cases of medullary thyroid carcinomas. In
this study, we selected the 4 cases of normal patients and 51 cases
of PTC to analyze.

Feature Selection Methods
Python 3.6 was utilized to screen TCGA expression data for DE
genes. The processing steps were as follows: Delete genes with an
average expression value of less than 10 reads, which are
considered to be genes of no research value in survival
differences. Judge whether or not there is a significant
difference at p < 0.05 between the two comparison groups
using the SciPy package (https://www.scipy.org/) to perform
t-test on the different study groups. Calculate the fold change
value difference between groups by taking the mean value of
different groupings.

To find genes for use in modelling, we screened for
characteristic genes that significantly affected PTC survival.
The R 3.6 software was used to perform a univariate cox
regression analysis between DE genes and clinical data (time,
status) in 395 patients (Gill, 1992). Genes with a hazard ratio
(HR) greater than 1, or less than 1, and a Wald test p-value of less
than 0.05 were genes that significantly affected PTC survival.
Therefore, selected these genes as characteristic genes for use in
establishing a diagnostic model. We summarize the selection
process in Figure 1.

Establishing the Diagnosis and Prognosis
Model
This study used the sklearn package (http://scikit-learn.org)
provided in Python 3.6 to establish a Support vector machine
(SVM) model to differentiate between cancer and non-cancer.
Use the SVM classifier model to explore the optimal three-gene
signature prognosis model. Based on the univariate Cox
regression analysis of the selected characteristic genes, we
established a prognostic model to calculate a patient’s
prognosis by calculating their ‘RiskScore’ (Xiong et al., 2017).
According to a set threshold (HR > 1 or HR < 1, p < 0.05), three-
gene (Table 2) were found to be significantly associated with
overall survival.

To test the diagnostic predictive power of the three-gene
signature that we selected, we randomized TCGA PTC
patients into a training set (312 samples, 70%) and a test set
(135 samples, 30%). The training set was used for 10% cross-
validation. The optimal parameters of the final model were (“C”:
1, “gamma”: 1,000, “kernel”: “rbf”), with the final average
accuracy being 0.9263 (Standard Deviation: ± 0.0117). The
average accuracy of our best model using the training set was
0.9679. To verify the effectiveness of this model, we used the best
model predictions that gave an average accuracy of 0.9259. In
addition, to verify the diagnostic predictive power of our three-
gene signature, we also used the three-gene in GSE27155 and
established an SVM model in the same way. Due to the small
number of negative samples, we chose to use the 3-fold
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cross-validation and pre-determined optimal parameters of the
model (“C”: 15, “gamma”: 1, “kernel”: “rbf”). This gave an
accuracy of 0.9464 (SD: ± 0.0430).

Microarray Preprocessing
Briefly, after deparaffinization in xylene and rehydration with
graded concentrations of alcohol to distilled water, the TMA
slides were washed in Tris-buffered saline with 0.1% Tween 20
(TBST), the slides were incubated with the primary antibody
against GJB4 (1:10, Abcam, A9888), RIPPLY3 (1:75, Sigma-
Aldrich, HPA055541), ADRA1B (1:50, Abcam, ab84405) at
4 °C overnight. After washing three times in TBST, the
specifically bound secondary antibody was detected with
the DAKO EnVision detection System (Dako Diagnostics,
Switzerland). Immunostaining scores were independently
performed by two experienced pathologists who did not
know the patient’s clinical pathology data and the
immediate clinical outcome. The staining intensity was
scored as negative (1), weak (2), moderate (3) or strong
(4). The staining extent was scored as 1 (≤10%), 2
(11–50%), 3 (51–75%) or 4 (>75%). A total expression
score was calculated by multiplying the staining intensity
score with that of the staining extent. ≤ 8 points were
considered as low expression. Otherwise, it is considered as
a high expression. Histological classification of the samples,
stained with hematoxylin and eosin, was performed by two
independent clinical pathologists.

Functional Enrichment Gene Ontology
Analysis
GO functional annotation pathway enrichments were performed
in R using the “clusterProfiler” package, and P adjusted (FDR) <
0.05 was statistically significant.

Construction of the Protein-Protein
Interaction Network
The DE mRNA were imported into the STRING database
(https://string-db.org/) (UniProt Consortium, 2010) to
construct a PPI network. The network analysis plug-in in
Cytoscape software was used to analyze network topological
features to screen the hub nodes in the PPI network
(Saito et al., 2012). Degree centrality denotes several
direct connections of a node to all other nodes in the
network.

Data Analysis
Statistical analysis was performed using R 3.4.0 (https://www.r-
project.org/), Python 3.6 (https://www.python.org/) and
Graphpad Prism version 7.0 (GraphPad Software). A two-
tailed Student’s t-test was used for comparisons between
two independent groups. This study used the sklearn
package (http://scikit-learn.org) provided in Python 3.6 to
establish an SVM model to differentiate between cancer and
non-cancer. All statistical analyses were two-sided. p < 0.05
was defined as indicating statistical significance (Ge et al.,
2019).

RESULTS

Bioinformatics Analysis Was Used to
Screen Differentially Expressed Genes
A total of 20,531 genes were screened from TCGA.
After deleting genes with a mean expression of less than
10, 15,370 genes remained. The number of DE genes between
tumour tissue and adjacent tissues was 762, of which
545 genes were upregulated, and 217 genes were down-

FIGURE 1 | Flowchart of PTC prognostic signatures generation and validation procedures.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8079313

Zhong et al. 3-Gene Prognostic for PTC

90

https://string-db.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.python.org/
http://scikit-learn.org
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


regulated. The expression values of the DE genes were
converted by log10 and displayed by heatmap. As seen
from the heatmap (Figure 2), there is a significant
difference between the tumour and the normal tissue,
indicating that the results identified in this study are
credible. The top 10 significantly upregulated and the top
10 significantly downregulated DE mRNA are displayed in
Table 1.

Cox Regression Analysis Was Used to
Screen Characteristic Genes
Through univariate Cox regression analysis, a hazard ratio
was calculated for each gene according to the set threshold
(HR > 1 or HR < 1, p < 0.05), To screen-specific biomarkers
with accurate diagnostic ability. There were three genes
found to be significantly related to overall survival
(Table 2). These genes were GJB4, RIPPLY3, and
ADRA1B. These three genes will be used as feature genes
for subsequent modelling, and the specific information of
genes is shown in Table 4.

FIGURE 2 | Heatmap of significantly differentially expressed genes. Each row represents a separate gene, each column represents a separate sample, a gradient
from green to red indicates a low to high level of expression, and the samples are clustered from two types of tissue: normal tissue (green) and cancer tissue (red).

TABLE 1 | The top 10 upregulated and downregulated DE mRNA genes.

Type Genes LogFC p value

Up-regulated ARHGAP36 8.894666584 <0.001
DMBX1 8.212911341 <0.001
SLC18A3 8.071324334 <0.001
TRY6 7.77283886 <0.001
TMPRSS6 7.625107474 <0.001
PRSS1 7.59111566 <0.001
MMP13 7.567785968 <0.001
KLK6 7.468232832 <0.001
LOC400794 7.390954657 <0.001
GABRB2 7.299817152 <0.001

Down-regulated KCNA1 −4.139432844 <0.001
TFF3 −3.811991634 <0.001
LRP1B −3.692660909 <0.001
RELN −3.629457676 <0.001
IPCEF1 −3.521246594 <0.001
ZNF804B −3.519727733 <0.001
CNTN5 −3.507769597 <0.001
AGR3 −3.492012695 <0.001
VIT −3.43067668 <0.001
FAM180B −3.414101394 <0.001

DE,diferentially expressed;FC,fold change.
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Establishing and Validate the Cox
Prognostic Model
To test the prognostic prediction ability of the screened three-
gene signature, we calculated the Risk-Score of each patient in the
TCGA training set by using the established prognostic model.
The risk assessment score formula was as follows: risk score=
(-0.057×expression value of GJB4) + (−0.021×expression value of
ADRA1B) + (-0.110×expression value of RIPPLY3). Table 3
Then the patients were ranked according to risk-score, and the
risk-score median (−0.7766) was taken as the threshold. The 312
patients were divided into two groups, 156 patients with low risk
and 156 patients with high risk. Of these 312 persons, 280 had
survival information (OS), of which 156 were low risk, and 124
were high risk. Kaplan-Meier survival curves and ROC curves
were used to examine the predictive power of three-gene
biomarkers. Kaplan-Meier survival curves showed that the

survival rate in the high-risk group was significantly lower
than that in the low-risk group (log-rank p value = 0.038),
Figure 3. The ROC curve was shown in Figure 4, and the
AUC value was 0.7513, indicating that the three-gene
signatures had a certain prognostic predictive ability. To
further verify the prognostic capability of the three-gene
signatures, we calculated the risk score of the patients in the
test set and the PTC patient data set of the whole TCGA
respectively and divided the patients into high-risk and low-
risk patients’ groups according to the same threshold (−0.7766),
Table 4. The Kaplan-Meier survival curves for both data sets
showed significantly lower survival rates in the high-risk group
than in the low-risk group (log-rank p value = 0.017 and 0.0022),
with AUC values of 0.9023 and 0.7910, respectively. The training
set and the results of two confirmations showed that the three-
gene biomarkers screened had a strong prognostic capability.

Immunohistochemical Verification Results
of Characteristic Gene Tissue Microarray
To further verify the protein expression level of three-gene
signatures in PTC tissue and analyze its relationship with
clinicopathological features, immunohistochemistry was used
to detect the protein expression level of tri-factor in 29 PTC
tissue chips. The results of this study showed that the protein

TABLE 2 | Univariate Cox regression analysis results.

Gene symbol Beta HR (95% CI) p. value

GJB4 −0.057 0.94 (0.91–0.98) 0.0066
ADRA1B −0.021 0.98 (0.96–0.99) 0.0067
RIPPLY3 −0.11 0.9 (0.81–0.99) 0.0360

TABLE 3 | Differential expression information of characteristic genes.

Gene symbol mRNA description logFC P UP DOWN

GJB4 gap junction protein beta 4 4.0572 <0.001 UP
ADRA1B adrenoceptor alpha 1B 2.4496 <0.001 UP
RIPPLY3 ripply transcriptional repressor 3 2.1379 <0.001 UP

FC,fold change.

TABLE 4 | Survival analysis sample.

Data set High risk Low risk High risk for OS Low risk for OS p value

Training set 156 156 156 124 0.038
Test set 72 63 52 63 0.017
All data 228 219 176 219 0.002

FIGURE 3 | Kaplan-Meier curves for the low- and high-risk groups separated by the Risk-Score of the 3-gene signature in the TCGA PTC data. The blue line
represents the patients with low risk and the others represent patients with high risk. Significant differences in overall survival between the two groups were analyzed by
log-rank test. (A) Kaplan-Meier curves for training data survival; (B)Kaplan-Meier curves for test data; (C) Kaplan-Meier curves for all data.
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expression levels of GJB4 and ADRA1B in cancer cells were
significantly higher than those in paired para-cancer cells (p <
0.05) (Figure 5), and the protein expression level of RIPPLY3 was
not significant difference between the cancer cells and the para-
cancer cells.

GO Enrichment Analyses and Construction
of the PPI Network
Functional enrichment GO analyses were performed to
investigate the underlying mechanisms of the DE mRNA
genes’ prognostic effects. Our results demonstrate that the
DE mRNA genes are linked with activating pathways, such
as tumour development and progression regulation, based
on GO analysis of three cohorts (Figure 6). PPI network

reveal that the potential connection between key mRNA genes
(Figure 7).

DISCUSSION

In our study, the results above clearly demonstrate that the three-
gene signatures we screened for and selected have a strong ability
to distinguish between cancerous and non-cancerous samples.
The genes signature include GJB4, RIPPLY3, and ADRA1B. It
was reported that GJB4 and ADRA1B genes play an essential role
in developing many malignant tumours. It has been shown that
GJB4 is involved in tumorigenesis and may act as a tumour
promoter, Wang et al. (Wang et al., 2019) indicated that miR-492
promoted cancer progression by targeting GJB4 and was a novel

FIGURE 4 | Receiver operating characteristic curves (ROC) for the prognosis models. (A) ROC fited based on training data; (B) ROC fited based on test data; (C)
ROC fited based on all TCGA PTC data.

FIGURE 5 | The immunohistochemical results of GJB4, RIPPLY3, and ADRA1B characteristic gene tissue chips indicated that the expression in tumor tissues was
significantly higher than that in adjacent tissues.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8079316

Zhong et al. 3-Gene Prognostic for PTC

93

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


biomarker for bladder cancer. Liu et al. (Liu et al., 2019) showed
that GJB4 was highly expressed in gastric cancer tissues and cells,
the high expression of GJB4 was significantly correlated with the
overall survival of gastric cancer patients, and the cell
proliferation and migration of gastric cancer cells were
significantly inhibited by knockout GJB4. At the same time,

targeting GJB4 may be exploited as a modality for improving
lung cancer therapy had been proved (Lin et al., 2019). The
ADRA1B gene is a member of the adrenergic receptor alpha 1
(ADRA1) subfamily, which also includes ADRA1A and
ADRA1D, and has been shown to promote the development
of cancer in the epinephrine cell pathway. Adrenergic receptor

FIGURE 6 | The GO enrichment analyses. (A). Biological process; (B). Cellular component; (C). Molecular function.

FIGURE 7 | The PPI networks of DE mRNA.
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antagonists have also been shown to be useful in the treatment of
various types of cancer, including prostate and breast cancer
(Freudenberger et al., 2006; Harris et al., 2007). In present, no
studies have been reported on the relationship between GJB4 and
ADRA1B gene in TC. However, our study demonstrated that the
GJB4 and ADRA1B genes may not be able to promote the thyroid
cancer progression and development, and it may even be a
protective gene.

Although no direct studies have proved that RIPPLY3 (also
known as DSCR6) is closely related to PTC or other malignant
tumours, current studies have found that the RIPPLY3 gene plays
a role in developing the pharynx and its derivatives in vertebrates
(Tsuchiya et al., 2018). Li et al. (Li et al., 2013) showed that
RIPPLY3 is closely associated with Down syndrome (DS). Studies
have found that people with DS have an increased risk of thyroid
disease (mainly autoimmune), with a lifetime prevalence of
between 13 and 63% (AlAaraj et al., 2019). These results
suggest that RIPPLY3 may affect the development of the
thyroid gland, and its abnormal expression may lead to the
occurrence and development of PTC. The GO enrichment
analysis revealed that the chief pathways regulated the cell-
molecular function and the enzyme activity. Previous studies
have demonstrated the gene effect on thyroid cell function and
cell morphology (Yu et al., 2017; Rudzińska et al., 2019).

At present, the preoperative diagnosis of PTC is still mainly
FNA. However, according to the Bethesda grading standard, the
proportion of FNA diagnosis results is suspicious or uncertain is
3–18% (Misiakos et al., 2016). In the era of precision therapy, we
need an accurate diagnosis, which requires an accurate prognosis.
To find prognostic molecular markers of PTC, this study obtained
the gene expression characteristic of tumor prognosis through
TCGA to screen characteristic genes and carry out an effective
risk assessment of tumour prognosis.

However, our study has some limitations, the most important
one is the limited number of patients in our database group
confined to the limitation to TCGA、GEO. There is still a lack of
large sample data sets and clinical samples to verify the accuracy
of the three-signature prognosis model. Also, we should further
investigate the correlation between the three gene expression
levels and the clinicopathological features. Fortunately, gene
sequencing technology is gradually maturing and becoming
faster and less expensive. We will continue to collect cases of

TC tissue to verify our signature further. Furthermore, although
we believe that the three-gene signature is promising in selecting
patients who will benefit from the three-gene prognostic model,
its significant value still needs to be verified in prospective studies.

CONCLUSION

This study screened for DE genes (GJB4, RIPPLY3, ADRA1B)
that were significantly related to the diagnosis and prognosis of
PTC. The three-gene diagnostic model could accurately predict
the occurrence of PTC and guide prognosis.
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Network Pharmacology and
Experimental Validation to Reveal the
Pharmacological Mechanisms of
Chongcaoyishen Decoction Against
Chronic Kidney Disease
Zhenliang Fan1†, Jingjing Chen2†, Qiaorui Yang3 and Jiabei He4*

1Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China, 2Department of
Rheumatology and Immunology, The First Hospital Affiliated to Army Medical University, Chongqing, China, 3Graduate School,
Heilongjiang University of Chinese Medicine, Harbin, China, 4Department of Oncology Radiotherapy, Affiliated Zhongshan
Hospital to Dalian University, Liaoning, China

Objective: To explore the pharmacological mechanisms of Chongcaoyishen decoction
(CCYSD) against chronic kidney disease (CKD) via network pharmacology analysis
combined with experimental validation.

Methods: The bioactive components and potential regulatory targets of CCYSD were
extracted from the TCMSP database, and the putative CKD-related target proteins were
collected from the GeneCards and OMIM database. We matched the active ingredients
with gene targets and conducted regulatory networks through Perl5 and R 3.6.1. The
network visualization analysis was performed by Cytoscape 3.7.1, which contains ClueGO
plug-in for GO and KEGG analysis. In vivo experiments were performed on 40 male SD
rats, which were randomly divided into the control group (n = 10), sham group (n = 10),
UUO group (n = 10), and CCYSD group (n = 10). A tubulointerstitial fibrosis model was
constructed by unilateral ureteral obstruction through surgery and treated for seven
consecutive days with CCYSD (0.00657 g/g/d). At the end of treatment, the rats were
euthanized and the serum and kidney were collected for further detection.

Results: In total, 53 chemical compounds from CCYSD were identified and
12,348 CKD-related targets were collected from the OMIM and GeneCards. A total
of 130 shared targets of CCYSD and CKD were acquired by Venn diagram analysis.
Functional enrichment analysis suggested that CCYSD might exert its pharmacological
effects in multiple biological processes, including oxidative stress, apoptosis,
inflammatory response, autophagy, and fiber synthesis, and the potential targets
might be associated with JAK-STAT and PI3K-AKT, as well as other signaling
pathways. The results of the experiments revealed that the oxidative stress in the
UUO group was significantly higher than that in normal state and was accompanied by
severe tubulointerstitial fibrosis (TIF), which could be effectively reversed by CCYSD
(p < 0.05). Meanwhile, aggravated mitochondrial injury and autophagy was observed in
the epithelial cells of the renal tubule in the UUO group, compared to the normal ones
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(p < 0.05), while the intervention of CCYSD could further activate the autophagy and
reduce the mitochondrial injury (p < 0.05).

Conclusion: We provide an integrative network pharmacology approach combined with
in vivo experiments to explore the underlyingmechanisms governing the CCYSD treatment
of CKD, which indicates that the relationship between CCYSD and CKD is related to its
activation of autophagy, promotion of mitochondrial degradation, and reduction of tissue
oxidative stress injury, promoting the explanation and understanding of the biological
mechanism of CCYSD in the treatment of CKD.

Keywords: Chongcaoyishen decoction, chronic kidney disease, oxidative stress injury, autophagy, mitochondrial
injury, tubulointerstitial fibrosis

INTRODUCTION

Chronic kidney disease (CKD) mainly refers to the irreversible
structural and/or functional impairment of the kidney resulted
frommultiple causes for more than 3 months. With the change of
people’s lifestyle, CKD has become a chronic disease seriously
affecting human health along with chronic diseases, such as
diabetes and hypertension (Webster et al., 2017). The
increasing prevalence of CKD has been accompanied by the
increasing healthcare costs. According to incomplete statistics,
the annual cost of CKD patients in the world is up to five billion
dollars, and nearly one million CKD patients die because they
cannot afford the high cost of treatment (Couser et al., 2011;
Djudjaj and Boor, 2019).

However, the treatment of chronic kidney disease (CKD) is
not a breakthrough which deserves celebrating at present. The
mainstay of therapy for CKD contains angiotensin-converting
enzyme inhibitor and angiotensin II inhibitor that can alleviate
glomerular “three highs” status (Aggarwal and Singh, 2020) by
means of controlling the blood pressure and blood glucose,
correcting metabolic acidosis with sodium bicarbonate,
restricting protein intake, and taking alpha-keto acid.
However, these conventional treatment measures are mainly
symptomatic treatment and the suboptimal therapy delaying
renal function decline, and treating related complications does
not always work effectively because it is hard to grasp the key of
pathological changes and pathogenesis of CKD (Collins et al.,
2012; National Kidney Foundatio, 2012; Humphreys, 2018).
Therefore, it has been a hot issue in relevant research fields to
find out drugs that can effectively delay the deterioration of renal
function and improve the prognosis by targeting the core
pathological changes in the progression of CKD (Gewin, 2018).

With the continuous promotion of traditional Chinese
medicine (TCM) in the clinical treatment of CKD, its efficacy
in delaying the deterioration of renal function and improving the
prognosis of patients has gradually been approved by clinicians
and patients. For this reason, many emerging studies in recent
years have gradually revealed the mechanism of action and
intervention targets of TCM in the treatment of CKD.
According to the current research results, TCM compound has
the advantage of multiple components and multiple targets in the
treatment of CKD, which is incomparable to Western drugs with

single chemical components, and can simultaneously intervene
multiple targets closely related to the progress of CKD.

Chongcaoyishen decoction (CCYSD) has been applied in
clinical practice for many years. Based on the pathological
characteristics of patients with CKD, it emphasizes that the
treatment should focus on “supplementing and removing the
deficiency and combining reinforcement with elimination.”
Previous studies have fully confirmed that CCYSD can
effectively delay renal deterioration in patients with CKD,
relieve clinical symptoms, and improve the prognosis of
patients (Mo et al., 2019b; Ziyang, 2019; Ma et al., 2020).
Although the researchers have carried out many basic studies
before, we still cannot figure out a definite explanation to the
specific target and exact mechanism of CCYSD in the treatment
of chronic kidney disease. In this study, we used network
pharmacology to explore the bioactive ingredients in CCYSD
and its mechanism of action in treating CKD. Subsequently,
experimental verification was carried out on the results of the
network pharmacology study to further explore the specific
mechanisms of CCYSD in treating CKD.

DATA AND METHODS

Network Pharmacology Analysis
Data Sources
In this study, the bioactive ingredients of Chongcaoyishen
decoction and the possible intervention targets of CCYSD
were screened from the Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCMSP). The
targets related to chronic kidney disease were extracted from
GeneCards and OMIM databases, and ClueGO plug-in from
Cytoscape 3.7.1 was used for Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis in order to analyze the biological functions and
signaling pathways involved in the drug regulatory network.

Screening of Active Components and Targets of
Chongcaoyishen Decoction
The bioactive ingredients of Cordyceps sinensis, Astragalus
membranaceus, leeches, rhubarb in wine, cardamom, and
Sergium sergii were searched in the TCMSP database, and the
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bioactive ingredients and their corresponding targets were
reserved with oral bioavailability (OB) ≥30% and drug-like
property (DL) ≥0.18 as screening conditions.

CKD Target Screening
Taking “chronic kidney diseases” as the keyword, we surveyed the
related targets of CKD from GeneCards (https://www.genecards.
org/) and retrieved 12,183 genes associated with CKD. A total of
202 related gene targets were retrieved from Online Mendelian
Inheritance in Man (OMIM, https://omim.org/). After removing
the duplicates from GeneCards and OMIM databases, we
obtained 12,348 non-repeating gene targets.

Construction of a Drug Regulatory Network and
Functional Enrichment Analysis
Based on the collected data, we constructed the drug regulatory
network using Perl5 and R 3.6.1 to showcase the correlation
between the common targets of active ingredients in CCYSD and
potential targets for CKD.

The common targets of active ingredients in CCYSD and
potential targets for CKDwere collected and input into Cytoscape
3.7.1 to construct a CKD–CCYSD–ingredients–target interaction
network, which showcases the abundance of bioactive
constituents from CCYSD exerts therapeutic effects on CKD
through multiple gene targets.

Meanwhile, the plug-in from Cytoscape 3.7.1, ClueGO, was
used to perform visual analysis of KEGG and GO functional
enrichment. The KEGG and GO pathway analyses were screened
for kappa >0.74 and p < 0.01. The top 30 items of GO analysis and
the top 30 items of KEGG analysis were mapped as bar plots and
bubble plots, and the positions of relevant nodes were adjusted,
aiming to obtain a clearer network graph.

Experimental Research
Animals and Experimental Groups
A total of 40 SPF Sprague Dawley (SD) rats (180–220 g) were
supplied by the Experimental Animal Center of Heilongjiang
University of Chinese Medicine [SCXK (Black) 2017-014]. All
these rats were housed in an environmentally controlled room
(22 ± 2°C, humidity 60 ± 10%, 12 h/12 h light/dark cycle) with
free access to water and lab chow.

According to the random number table, all the animals were
randomly and equally divided into four groups: the control group,
sham group, UUOgroup, andCCYSD group (n= 10 in each group).

Main Reagents
ELISA 96-well kit: superoxide dismutase (SOD, Solebo
BC0170), reduced glutathione (GSH, Solebo BC1170), and

malondialdehyde (MDA, Solebo BC0020). Western blot
primary antibody: GAPDH (Cymofei MA5-15738), α-SMA
(Cymofei MA1-06110), COL-III (CSI007-01-02), and LC3B
(PA1-46286).

TIF Modeling and Drug Administration
Unilateral ureteral obstruction (UUO) was established by the
surgical method. In brief, rats were anesthetized with
pentobarbital, and then, the left renal ureter was separated
from the abdomen. After ureter ligation and severance, the
muscles and skin were sutured layer by layer to allow the rats
to recover. The rats in the UUO group and CCYSD group
received the UUO model, while the rats in the sham group
received a similar surgical approach without ligation or
severance, and the rats in the control group did not undergo
any treatment.

The day after the surgery, the rats in the CCYSD group were
administered intragastrically with CCYSD at a dose of 0.00657 g/
g/d once a day for seven consecutive days, which is equal to the
decoction with a dose of 0.657 g/ml (Jie, 2015; Fan et al., 2019; Mo
et al., 2019a). The rats in the sham group and UUO group were
given the same dosage of normal saline (2 ml). The control group
received nothing. Seven days after the surgery, all rats were
euthanized, and the blood and tissues were collected for
further analysis.

Sample Collection
2 h after the last administration, 5 ml of inferior venous blood
was collected from anesthetized rats and centrifuged at 3,000 r/
min for 15 min at 4°C to separate the serum. The left kidney
was separated into three parts and stored in a 2.5%
glutaraldehyde electron microscopy fixative solution, 10%
neutral formalin fixative solution, and liquid nitrogen,
respectively.

Enzyme Linked Immunosorbent Assay
The serum oxidative stress-related markers were detected by
ELISA: the spectrophotometer was preheated for 30 min and
zeroed with distilled water. Superoxide dismutase (SOD, Solebo
BC0170), reduced glutathione (GSH, Solebo BC1170), and
malondialdehyde (MDA, Solebo BC0020) were tested
according to the corresponding instructions.

Histological Analysis
Pathological observation: the renal tissues were fixed by
formalin, embedded by paraffin, and sectioned at 3 μm.
H&E staining was performed with hematoxylin and eosin
staining after gradient elution. Then, the specimen was

TABLE 1 | Serum oxidative stress levels of rats in each group (�X ± S).

Malondialdehyde (nmol/mL) Superoxide dismutase (U/mL) Reduced glutathione (μg/mL)

Control group 7.90 ± 0.80 263.89 ± 35.01 645.42 ± 84.98
Sham group 7.38 ± 0.49 244.25 ± 24.51 655.68 ± 82.92
UUO group 8.68 ± 0.42* 193.80 ± 32.52* 406.60 ± 55.72*
CCYSD group 7.39 ± 0.45# 265.18 ± 28.85# 589.18 ± 65.45#

*Compared with the sham group, p < 0.05; #compared with the UUO group, p < 0.05.
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washed with running water again, dehydrated by graded
ethanol, and vitrified by dimethylbenzene, and the neutral
resin was used for sealing. Weigert ferric hematoxylin
staining solution, Masson cyanating solution, and
lichunred fuchsin staining solution were used for Masson
staining in sequence. Three fields were randomly selected for

each section, and the proportion of interstitial fibrosis area
was calculated with ImageJ software. Electron microscopy:
the renal tissue was fixed with glutaraldehyde first and with
2% osmium tetroxide solution later. Then, the samples were
dehydrated by epoxy propylene, and the epoxy resin 828 was
substituted for it at 35 and 45°C for 12 h, respectively.

TABLE 2 | Biological active ingredients in CCYSD.

Mol ID Molecule Name OB (%) Caco-2a DL

MOL000096 (-)-Catechin 49.68 −0.03 0.24
MOL000228 (2R)-7-hydroxy-5-methoxy-2-phenylchroman-4-one 55.23 0.87 0.2
MOL000438 (3R)-3-(2-hydroxy-3,4-dimethoxyphenyl) chroman-7-ol 67.67 0.96 0.26
MOL000033 (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R,5S)-5-propan-2-yloctan-2-yl] c-2,3,4,7,8,9,11,12,14,15,16,17-

dodecahydro-1H-cyclopenta [a] phenanthren-3-ol
36.23 1.45 0.78

MOL000224 (4E,6E)-1,7-bis (3,4-dihydroxyphenyl) hepta-4,6-dien-3-one 33.06 0.29 0.31
MOL000380 (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano [3,2-c] chromen-3-ol 64.26 0.93 0.42
MOL000442 1,7-Dihydroxy-3,9-dimethoxy pterocarpene 39.05 0.89 0.48
MOL000235 1,7-Diphenyl-3,5-dihydroxy-1-heptene 49.01 0.61 0.18
MOL000238 1,7-Diphenyl-5-hydroxy-6-hepten-3-one 32.65 0.8 0.18
MOL000371 3,9-Di-O-methylnissolin 53.74 1.18 0.48
MOL000260 5-[(2R,3R)-7-methoxy-3-methyl-5-[(E)-prop-1-enyl]-2,3-dihydrobenzofuran-2-yl]-1,3-benzodioxole 65.55 1.27 0.4
MOL000374 5’-Hydroxyiso-muronulatol-2’,5’-di-O-glucoside 41.72 −2.47 0.69
MOL000242 7-O-Methyleriodictyol 56.56 0.46 0.27
MOL000378 7-O-Methylisomucronulatol 74.69 1.08 0.3
MOL000379 9,10-Dimethoxypterocarpan-3-O-β-D-glucoside 36.74 −0.63 0.92
MOL000471 Aloe emodin 83.38 −0.12 0.24
MOL000243 Alpinolide peroxide 87.67 0.51 0.19
MOL001439 Arachidonic acid 45.57 1.2 0.2
MOL000358 Beta-sitosterol 36.91 1.32 0.75
MOL000387 Bifendate 31.1 0.15 0.67
MOL000417 Calycosin 47.75 0.52 0.24
MOL008998 Cerevisterol 39.52 0.35 0.77
MOL008999 Cholesteryl palmitate 31.05 1.45 0.45
MOL000953 CLR 37.87 1.43 0.68
MOL000274 Cordycepin 45.37 0.79 0.87
MOL002297 Daucosterol_qt 35.89 1.35 0.7
MOL000258 Dehydrodiisoeugenol 56.84 1.19 0.29
MOL002288 Emodin-1-O-beta-D-glucopyranoside 44.81 −1.12 0.8
MOL002235 EUPATIN 50.8 0.53 0.41
MOL000433 FA 68.96 −1.5 0.71
MOL000392 Formononetin 69.67 0.78 0.21
MOL000554 Gallic acid-3-O-(6’-O-galloyl)-glucoside 30.25 −1.96 0.67
MOL000296 Hederagenin 36.91 1.32 0.75
MOL000398 Isoflavanone 109.99 0.53 0.3
MOL000439 Isomucronulatol-7,2’-di-O-glucosiole 49.28 −2.22 0.62
MOL000354 Isorhamnetin 49.6 0.31 0.31
MOL000239 Jaranol 50.83 0.61 0.29
MOL000422 Kaempferol 41.88 0.26 0.24
MOL001645 Linoleyl acetate 42.1 1.36 0.2
MOL000006 Luteolin 36.16 0.19 0.25
MOL000211 Mairin 55.38 0.73 0.78
MOL002251 Mutatochrome 48.64 1.97 0.61
MOL002303 Palmidin A 32.45 −0.36 0.65
MOL011169 Peroxyergosterol 44.39 0.86 0.82
MOL002259 Physciondiglucoside 41.65 −2.64 0.63
MOL000230 Pinocembrin 57.56 0.38 0.2
MOL002260 Procyanidin B-5,3’-O-gallate 31.99 −1.61 0.32
MOL000098 Quercetin 46.43 0.05 0.28
MOL002268 Rhein 47.07 −0.2 0.28
MOL002293 Sennoside D_qt 61.06 −0.7 0.61
MOL002276 Sennoside E_qt 50.69 −0.74 0.61
MOL002280 Torachrysone-8-O-beta-D-(6’-oxayl)-glucoside 43.02 −1.23 0.74
MOL002281 Toralactone 46.46 0.86 0.24

aCaco-2: permeability.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8478124

Fan et al. Network Pharmacology and Experimental Validation

100

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


The specimen was heated at 60°C for 48 h before repairing
and cutting into semi-thin slices. Methylene blue was applied
to dye and locate the specimens, which were then cut into
ultra-thin slices. Uranyl acetate and lead citrate were used
for double staining in order to observe the slices under
transmission electron microscopy (JED1400PLUS).

Western Blot
Immunoblotting was performed using standard protocols with
frozen tissues which were ground in liquid nitrogen. RIPA lysis
buffer, benzonase nuclease, protease, and phosphatase inhibitors,
used in the study, were added to lysate at room temperature, and
the supernatant was extracted by centrifugation at 13,000 r/min
for 10 min. Total protein concentration was determined by the
BCA method. After 150 V electrophoresis, the membrane was
incubated with primary antibody and then secondary antibody.
Immunoblots were treated with a chemiluminescence detection
system followed by the exposure to Hyperfilm ECL.

Statistical Analysis
All data collected in this study were analyzed using IBM-SPSS
Statistics 26.0 software, and the continuous measurement data
were expressed as the mean ± standard deviation (�x ± s). The
data, which coincide with normal distribution and satisfy
homogeneity variance, between groups were compared
through one-way ANOVA (Table 1) and that between
groups with the Tukey method. Otherwise, significant
differences were analyzed by the Kruskal–Wallis test and
tested with the Kruskal–Wallis test and Mann–Whitney U
rank-sum test (Figures 7, 8B). p < 0.05 was considered
statistically significant.

RESULTS

Active ingredients in CCYSD: by retrieving the TCMSP
database, a total of 53 kinds of non-repeating bioactive
ingredients of CCYSD were selected, including organic
acids, lipids, biophenols, sterols, flavonoids, and other

FIGURE 1 | Venn diagram summarizing the intersection targets of
CCYSD and CKD.

FIGURE 2 | Regulatory network of CCYSD in the treatment of CKD.
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main compounds, for example, catechuic acid, arachidonic
acid, procyanidin B-5,3’-O-gallic acid, rhein acid, allyl
peroxide, biphenyl diester, toralactone, dehydrodiiso-
eugenol, kaempferol, β-sitosterol, cerevisterol, ergosterol
peroxide, calycosin, isoflavone, and foxglove flavonoid
(Table 2).

Potential Target Prediction of CCYSD
To identify the intersection of CCYSD ingredients and CKD
targets, a Venn diagram analysis was carried out. A total of 132
potential targets were identified, which matched with the related
targets of 53 active ingredients. 12,348 non-repeating targets
closely related to CKD were screened from GeneCards and

FIGURE 3 | The top 30 of GO enrichment analysis.
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FIGURE 4 | The top 30 signaling pathways from KEGG analysis.
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OMIM databases. As shown in Figure 1, 130 intersecting targets
were obtained after matching.

Regulatory Network Construction and Key
Targets
To identify the core proteins of CCYSD intervention for CKD, a
regulatory network was constructed by matching the ingredients of
CCYSDwith CKD targets and lines were drawn between them. At the
same time, the importance of components and targets was evaluated
according to the degree of connection between the components and
targets in the regulatory network. As shown in Figure 2, quercetin,
foxglove flavonoids, 7-O-methylthiamine, isorhamnetin,
catechuic acid, aloe-emodin, kumatakenin, and cordycepin
are at key positions in the regulatory network of CCYSD,
which are closely related to multiple gene targets. Among the

gene targets, PRSS1, CHRM3, ATG16l1, AR, PTGS1, MTOR,
NFKBIA, ALOX5, ESR1, CRP, GABRA1, ADORA2B,
COL3A1, ATG101, HIF1A, CASP9, ADORA2A, MAPK8,
ATG 3. ATG5, ATG7, BECN1, ESR1, IL6, BCL2, and other
gene targets are important in the regulatory network,
indicating that these genes are involved in the occurrence
and development of CKD and are regulated by CCYSD in
different degrees, which may be central targets for the
therapeutic effect of CCYSD.

Enrichment Analysis of GO and KEGG
To further explore the potential signaling pathways regulated by
CCYSD, the functional enrichment analyses of GO and KEGG
were carried out based on the potential targets of CCYSD via
ClueGO plug-in from Cytoscape 3.7.1. Filtering criteria was set as
p value cutoff = 0.05 and q value cutoff = 0.05. Finally, 114

FIGURE 5 | Mechanism network of CCYSD in the treatment of CKD.
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biological progresses were obtained by GO functional enrichment
analysis, and 112 related cell signaling pathways were obtained by
KEGG pathway enrichment analysis (Figures 3, 4).

Subsequently, 45 signaling pathways and functional activities
with kappa >0.74 and p < 0.01 were labeled in the network by
analyzing kappa statistics (Figure 5). As showcased in Figure 5, the
pharmacological mechanisms of CCYSD in the treatment of chronic
kidney disease may be involved with autophagy, apoptosis, the p53
signaling pathway, Th17-cell differentiation, adipocytokine signaling,
C-type lectin receptor signaling, the ErbB signaling pathway, the TNF
signaling pathway, the IL-17 signaling pathway, cholinergic
protrusion signaling, the sheath ester signaling pathway, the NF-
κB signaling pathway and HIF-1 signaling pathway, the RIG-1-like
receptor signaling pathway, the phosphokinase C signaling pathway,
and the cytochrome P450 system phagocytic metabolism of
heterologous substances and other mechanisms.

Both GO and KEGG enrichment analysis suggested that the
therapeutic effect of CCYSD on CKD was mostly related to the
regulation of oxidative stress injury, inflammatory response,
apoptosis, and autophagy in renal tissues. Further exploration of
the abovementioned mechanisms in treating CKD and delaying
renal tubulointerstitial fibrosis would be conducted in the
subsequent experiments in vivo.

Pathological Changes of Renal Tissue
To further verify the key pharmacological mechanism of CCYSD in
the treatment of CKD as predicted previously, UUO rats were
constructed and administered intragastrically with CCYSD

in vivo. According to Figure 6, the obstructed kidney tissues of
UUO animals were significantly larger than that of the normal ones.
Compared with the control group, the histological changes of the
renal interstitium were examined by H&E staining, which exhibited
the widened renal interstitium, dilated renal tubule, and a wide range
of exfoliation in the brush border of renal tubular epithelial cells in
the UUO group. More infiltration of inflammatory cells and
interstitial hemorrhage were also seen in some fields. The results
of Masson staining showed increased extracellular matrix and
fibrous proliferation in the renal interstitium. Although obvious
tubule damage and renal interstitial fibrosis were also observed in the
CCYSD group, these pathological changes mentioned above can be
reversed by CCYSD to some extent.

Degree of Renal Tissue Fibrosis
To evaluate the TIF, we detected fibrotic molecular marker (α-
SMA and COL-III) expression levels and calculated the area of
TIF with Masson staining. Compared with the control group, the
expression levels of α-SMA and Col-III and the area of TIF in
UUO renal tissues were significantly higher (p < 0.05). However,
compared with the UUO group, the administration of CCYSD
significantly meliorated fibrosis (p < 0.05) by lowering the
expression levels of α-SMA and COL-III and shrinking the
area of fibrosis (p < 0.05) (Figure 7).

Oxidative Stress Level in the Body
In order to evaluate the levels of oxidative stress in rats, we invalidated
the expression changes of MDA, SOD, and GSH in serum. It was

FIGURE 6 | Pathological changes of renal tissue.
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found that compared with the sham group, the serum MDA level in
the UUO group was significantly increased, while the levels of SOD
and GSH were markedly decreased (p < 0.05) (Table 1). This kind of
fluctuation from serum largely reflected the oxidative stress injury
levels in kidney tissues (Hruska et al., 2017; Nordholm et al., 2018).
However, CCYSD treatment significantly reversed these alterations in
UUO rats, which indicates the increase in SODandGSHand decrease
in MDA (p < 0.05). All these findings suggested that CCYSD
administration significantly attenuated the oxidative stress injury of
CKD, which was consistent with the prediction results of network
pharmacology analysis given above. Oxidative stress injury is likely to
be the crucial target of CCYSD in treating CKD.

Autophagy Level in Renal Tissue
To examine the effects of CCYSD on autophagy in renal tissue,
the number and morphology of autophagosomes and autophagy-
lysosomes were determined by transmission electron microscopy
(TEM) (Figure 8A). A small amount of autophagosomes existed
in normal renal tissues to maintain the circulation of substances
in cells. On the contrary, the number of autophagosomes and
autophagy-lysosomes was dramatically increased in renal tubular
epithelial cells from the UUO group and further increased in the

CCYSD group. Meanwhile, the level of Atg5 and LC3II/LC3I
ratio in renal tissues verified the findings we discovered under
TEM. The distinct autophagy was induced in renal tissues in the
UUO group, and the activity of autophagy can be largely
enhanced after the intervention of CCYSD (p < 0.05) (Figure 8C).

In addition, we also observed significant differences in the
degree of mitochondrial damage in the renal tubule epithelial cells
of each group under TEM. We found that severe mitochondrial
damage observed in the renal tubular epithelial cells of the UUO
group was relieved by treatment with CCYSD (Figure 8B). At the
same time, we also discovered many subcellular structures such as
mitochondria in some autophagosomes in CCYSD groups.
Therefore, we speculated that the mitochondrial protective
effect of CCYSD might be related to the activation of autophagy.

DISCUSSION

In recent years, as the prevalence of chronic diseases such as
diabetes and hypertension increased with each passing year,
chronic kidney disease secondary to that mentioned above has
increased rapidly (Webster et al., 2017), which provokes

FIGURE 7 | TIF levels in each group. (A): α-SMA relative expression level in renal tissue; (B): col-III relative expression level in renal tissue; (C): the area of TIF with
Masson staining; *compared with the sham group, p < 0.05; and #compared with the UUO group, p < 0.05.
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enormous burdens on the public healthcare system around the
world. Although growing importance has been attached to the
prevention and treatment of CKD, a majority of patients will
eventually receive dialysis or kidney transplantation because
current treatment can only delay the progression of CKD to a
certain extent. Abundant doctors are trying to apply Chinese
medicine to the treatment of CKD, and massive research
achievements have been obtained from clinical observation.

CCYSD, the renowned traditional Chinese herbal decoction,
has been proven to be therapeutically effective and widely used in
treating CKD for more than 10 years. What we had proved before
was not only the clinical curative effect but also the potential
mechanisms of CCYSD in treating CKD (Zhang, 2016; Mo et al.,
2019a; Mo et al., 2019b). This study aims to detect the mechanism
of CCYSD in treating CKD based on network pharmacology
analysis, providing a supplement therapy strategy of TCM for
CKD, and to further explore the specific mechanisms of CCYSD
in treating CKD coupled with subsequent experimental
validation. The network pharmacology systematically detected

that the active ingredients such as cordycepin, quercetin, luteolin,
and kaempferol play an important role in the treatment of CKD.
114 kinds of cellular functional activities and 112 related cellular
signaling pathways were identified by GO and KEGG enrichment
analysis mainly including apoptosis, autophagy, ubiquitin protein
ligase system, protein phosphorylation, G protein-coupled
receptor activation and serine/threonine kinase system, purine
receptor family, regulation and control of nuclear transcription
factor, hypoxia-inducing factor, inflammation, cell cycle
regulation, hemodynamic regulation, and vascular endothelial
cell injury, as well as a variety of cell functions and signaling
pathways.

Notably, several signaling pathways and cell functions are closely
related to autophagy, which were directly involved in autophagy
regulation appearing in the drug regulatory network of CCYSD
against CKD. Due to the vital role of autophagy regulation in
CCYSD found through network pharmacological analysis, we
carried out further exploration and verification in subsequent
in vivo rats UUO model validation. Previous studies have

FIGURE 8 | Autophagy and mitochondrial damage in the renal tissue. (A): autophagosomes and autophagy-lysosomes in the renal tubular epithelial cells of each
group under TEM; (B): degree of mitochondrial injury in renal tubular epithelial cells in each group under TEM; (C):the level of Atg5 and LC3II/LC3I ratio in renal tissue;
*compared with the sham group, p < 0.05; and #compared with the UUO group, p < 0.05).
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confirmed that damaged mitochondria are the main sources of
ROS in cells and induce oxidative stress damage in tissues
(Shen et al., 2018). Autophagy can specifically degrade
damaged mitochondria in cells and avoid the massive
release of ROS when mitochondria rupture in order to
reduce the oxidative stress damage caused by it. In this
study, we found that tubulointerstitial fibrosis is directly
related to oxidative stress injury, and CCYSD can delay this
kind of fibrosis and significantly reduce oxidative stress injury
in vivo. Transmission electron microscopy further showed that
CCYSD can activate autophagy in epithelial cells and decrease
mitochondrial damage. All these findings demonstrated that
mitochondrial damage in the process of TIF can
compensatively activate autophagy and, thus, play a self-
protective role to some extent. Multiple bioactive
components in CCYSD activate autophagy to delay TIF and
treat CKD by degrading damaged mitochondria and ameliorating
oxidative stress injury of tissues. Nevertheless, there were some
limitations in the study. First, we only focused on the top 30
compounds and targets in the network pharmacology analysis,
while ignoring these ranking after 30, which may attribute to a
slight deviation of the results. Second, the validation of potential
targets and signaling pathways is limited. Other predicted important
targets and pathways not mentioned above require further
experimental verification in the coming future.

CONCLUSION

In summary, the pharmacological mechanism of CCYSD on
chronic kidney disease may be mainly related to its autophagy
activation. CCYSD can promote orderly degradation of

damaged mitochondria and avoid mitochondrial rupture and
ROS release by activating autophagy, thereby delaying the
progression of TIF and CKD. However, 114 kinds of cellular
functional activities and 112 related cellular signaling pathways
were involved in this network pharmacological analysis. Except
for the autophagy and oxidative stress injury, the
pharmacological mechanism of CCYSD against CKD may
also relate to inflammatory injury, cell cycle regulation,
apoptosis, and other mechanisms. We only chose to verify
the crucial role of the autophagy activity in the treatment of
CKD with CCYSD, while other predicted vital targets and
signaling pathways require further experimental verification
in the future. Therefore, the secret of “multi-ingredients,
multitargets, and multi-pathways mode” in the treatment of
CCYSD against CKD needs further exploration.
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The Value of H2BC12 for Predicting
Poor Survival Outcomes in Patients
With WHO Grade II and III Gliomas
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Purpose: Glioma is a common primary malignant brain tumor. Grade II (GII) gliomas are
prone to develop into anaplastic grade III (GIII) gliomas, which indicate a higher malignancy
and poorer survival outcome. This study aimed to satisfy the increasing demand for novel
sensitive biomarkers and potential therapeutic targets in the treatment of GII and GIII
gliomas.

Methods: A TCGA dataset was used to investigate the expression of H2BC12 mRNA in
GII and GIII gliomas and its relation to clinical pathologic characteristics. Glioma tissues
were collected to verify results from the TCGA dataset, and H2BC12 mRNA was detected
by RT-qPCR. ROC analysis was employed to evaluate the classification power for GII and
GIII. The significance of H2BC12 mRNA GII and GIII gliomas was also investigated. In
addition, H2BC12 expression-related pathways were enriched by gene set enrichment
analysis (GSEA). DNA methylation level and mutation of H2BC12 were analyzed by the
UALCAN and CBioPortal databases, respectively.

Results: Based on the sample data from multiple databases and RT-qPCR, higher
expression of H2BC12 mRNA was found in GII and GIII glioma tissue compared to normal
tissue, which was consistent with a trend with our clinical specimen. H2BC12mRNA had a
better power in distinguishing between GII and GIII and yielded an AUC of 0.706 with a
sensitivity of 76.9% and specificity of 81.8%. Meanwhile, high H2BC12 levels were
associated with IDH status, 1p/19q codeletion, primary therapy outcome, and the
histological type of gliomas. Moreover, the overall survival (OS), disease-specific
survival (DSS), and progress-free interval (PFI) of GII glioma patients with higher levels
of H2BC12 were shorter than those of patients with lower levels as well as GIII patients. In
the multivariate analysis, a high H2BC12 level was an independent predictor for poor
survival outcomes of gliomas. The Wnt or PI3K-AKT signaling pathways, DNA repair,
cellular senescence, and DNA double-strand break repair were differentially activated in

Edited by:
Sheng Li,

Zhongnan Hospital, Wuhan University,
China

Reviewed by:
Jingzhe Han,

Harrison International Peace Hospital,
China

Fangang Meng,
Capital Medical University, China

*Correspondence:
Zhaogang Dong

zhaogang.dong@email.sdu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 17 November 2021
Accepted: 23 March 2022
Published: 25 April 2022

Citation:
Zhou J, Xing Z, Xiao Y, Li M, Li X,

Wang D and Dong Z (2022) The Value
of H2BC12 for Predicting Poor Survival

Outcomes in Patients With WHO
Grade II and III Gliomas.

Front. Mol. Biosci. 9:816939.
doi: 10.3389/fmolb.2022.816939

Abbreviations: WHO, World Health Organization; GSEA, gene set enrichment analysis; ssGSEA, single sample gene set
enrichment analysis; H2Bub1, H2B monoubiquitination; H2BC12, H2B Clustered Histone 12; MSigDB, Molecular Signatures
Database; ssGSEA, single-sample GSEA; ROC, receiver operating characteristic; tROC, time-dependent ROC; OS, overall
survival; AUC, area under the curve; DSS, disease-specific survival; PFI, progress-free interval; FDR, False Discovery Rate; WT,
wild type; MUT, mutant type.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8169391

ORIGINAL RESEARCH
published: 25 April 2022

doi: 10.3389/fmolb.2022.816939

110

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.816939&domain=pdf&date_stamp=2022-04-25
https://www.frontiersin.org/articles/10.3389/fmolb.2022.816939/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.816939/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.816939/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhaogang.dong@email.sdu.edu.cn
https://doi.org/10.3389/fmolb.2022.816939
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.816939


phenotypes that were positively associated with H2BC12. H2BC12 DNA methylation was
high in TP53 nonmutant patients, and no H2BC12 mutation was observed in gliomas
patients.

Conclusion: H2BC12 is a promising biomarker for the diagnosis and prognosis of
patients with WHO grade II and III gliomas.

Keywords: H2BC12, TCGA, diagnosis, prognosis, gliomas

INTRODUCTION

Gliomas are tumors that occur at glial cells, which are important
for cerebral nerve cells. They constitute themost prevalent primary
brain cancer malignancy (Kiran et al., 2019). According to World
Health Organization (WHO) classifications, histologically
confirmed gliomas can be categorized into four grades: I, II, III,
and IV. This is crucial for appropriate therapeutic strategies or
clinical outcomes. Low-grade gliomas (LGG) show highly variable
clinical behaviors (Cancer Genome Atlas Research Network et al.,
2015) and correlate to a more favorable survival outcome.
However, they still carry a 70% risk of disease progression
within 10 years (Kiran et al., 2019). Aggressive and proliferative
high-grade gliomas (HGG) show an unfavorable course, even when
treated by surgical resection, radiotherapy, or chemotherapy that
could prolong survival (Stupp et al., 2005; Huang et al., 2017).
Treatment and prognosis also differ substantially among the four
grades of glioma. It is worth noting that grade II (GII) gliomas are
traditionally considered to have a low degree of malignancy, and
they are prone to developing into anaplastic grade III (GIII)
gliomas, indicating a higher malignancy with huge social, and
medical burdens. Unfortunately, GIII exhibits invasive growth and
complex pathological processes due to the lack of biomarkers for
diagnosis and individualized treatment. GIII is associated with very
poor survival outcomes in comparison to GII, and this has
important therapeutic implications (Beppu et al., 2011; Suzuki
et al., 2015). Thus, discriminating between GII and GIII gliomas is
very important. However, the clinical reality is that clinicians often
face difficulty when determining whether a patient has a GII or
GIII glioma even if they have the patient’s histopathology results.
Much scientific research combines GII and GIII as low-grade
gliomas, while fewer studies have investigated the difference
between GII and GIII, such as differences in survival outcome,
key drivers of survival, and biomarkers, etc. The various clinical
biomarkers currently used, such as O6-methylguanine-DNA
methyltransferase (MGMT), have insufficient sensitivity, and
specificity when it comes to gliomas (Wick et al., 2014). Several
novel biomarkers for the diagnosis and prognosis of gliomas have
been explored, including YPEL1 (Li et al., 2022) and ELK3 (Liu
et al., 2021). However, these biomarkers are still not available for
clinical use. Therefore, we must find novel biomarkers with high
sensitivity and specificity urgently to improve the early diagnosis
and molecular-targeted therapy of patients with gliomas.

It is known that a genetic predisposition for tumorigenesis is
always accompanied by epigenetic alterations. Genome instability
is characterized by the accumulation of genetic alterations such as
point mutations, copy number alterations, or changes in

chromosome numbers, and structures (Hanahan and
Weinberg, 2011). For example, aberrant histone modifications
can potentially enhance the oncogenic drivers in disease
progression, metastatic potential, and resistance to therapy
(Müller and Almouzni, 2017). Structurally, histone
modification-related proteins are responsible for the compact
chromatin in nucleosomes and can be modified via diverse
enzymes, including histone family genes (H2A, H2B, H3, and
H4), two heterodimers (H2A and H2B), and one DNA-associated
H3/H4 tetramer (Sansó et al., 2012). Heterodimers H2A and H2B
are important in chromatin-related processes including
transcription, DNA replication, and repair (Moyal et al., 2011;
Chen et al., 2012). It has been established that H2B
monoubiquitination (H2Bub1) at lysine 120 is vitally
significant in proper DNA repair, and lacking H2Bub1 is
associated with abnormal H2AX phosphorylation, resulting in
durable DNA damage response (Kari et al., 2011; Sadeghi et al.,
2014). Notably, RNF20/40, ubiquitin ligases indispensable for
H2Bub1 were also a part of tumorigenesis (Sethi et al., 2018; Zhou
et al., 2021). Recent research indicated that low H2Bub1
expression was prognostic for disease progression, which
supported the role of H2Bub1 as a tumor suppressor (Tarcic
et al., 2017). Furthermore, loss of H2Bub1 was associated with
poor differentiation, cancer stemness, and enhanced malignancy
of non-small cell lung cancer (Zhang et al., 2019). Based on the
above findings, histone genes might play a crucial role in
tumorigenesis, and progression.

Here, H2B Clustered Histone 12 (H2BC12) was investigated in
GII and GIII glioma tissue, assessing biomarkers for gliomas,
associations with clinical characteristics, prediction survival
outcome values, and the involved biological pathways. The
methylation level and mutation of H2BC12 were also
analyzed. Our findings suggested that H2BC12 might be
recognized as a promising biomarker for the prognosis of GII
and GIII gliomas.

MATERIALS AND METHODS

Data Acquisition
Target RNA-seq data in TPM format, which were documented in
TCGA and GTEx databases, were jointly processed by Toil
workflow software (Vivian et al., 2017) and then downloaded
from UCSC XENA (https://xenabrocwser.net/datapages/).
TCGA database was searched for GII and GIII gliomas tissue
(n = 528) and GTEx database was consulted to obtain matched
normal tissue (n = 1,152). RNA-seq data were log2 transformed.
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Corresponding clinical data were also obtained. The inclusion
criteria were defined as WHO GII or GIII classified patients with
complete prognostic information.

Inclusive and Exclusive Criteria of Enrolled
Patients for the Construction of Risk
Signature
The inclusive criteria of patients with gliomas for model
construction were as follows: 1) patients with primary gliomas;
2) pathologic types of WHO II or III grade; 3) complete
clinicopathological parameters; 4) only samples with RNA-
sequencing data; 5) overall survival (OS) as the primary
endpoint; 6) minimum follow-up of 90 days. The exclusion
criteria included 1) patients with recurrent gliomas and 2)
incomplete survival status and clinical information.

GSEA Analysis
Hallmark gene set collections, including C2. cp.v7.2. symbols.gmt
[Curated] and h. all.v7.2. symbols.gmt [Hallmarks], were
retrieved from the Molecular Signatures Database (MSigDB)
and chosen as target sets. Correlations between H2BC12
expression and all genes were characterized by R (v.3.6.3),
followed by GSEA analysis using R package clusterProfiler (Yu
et al., 2012). The significance threshold was set to |ES|>1, p.
adjust<0.05, and FDR<0.25.

Analysis of Immune Infiltration and Immune
Regulatory Factor
From Bindea’s investigation (Bindea et al., 2013), the marker gene of
24 immune cells was retrieved. Based on mRNA TPM data, single-
sample GSEA (ssGSEA) (Finotello and Trajanoski, 2018) was
utilized to quantify the number of tumor-infiltrating immune
cells. Spearman correlation was used to determine the
relationship between H2BC12 and 24 cells. The ggplot2 package
was used to create the figures. Moreover, the correlation between
H2BC12 and immune regulatory factors, such as immune inhibitors,
immune stimulators, and the MHC molecule from the TISIDB
databases (http://cis.hku.hk/TISIDB/), was also analyzed.

DNA Methylation Level and Mutation
Analysis of H2BC12
The UALCAN database (Chandrashekar et al., 2017) (http://ualcan.
path.uab.edu/index.html) was used to analyze the correlation
between the DNA methylation level of the H2BC12 promoter
region and the clinical characterization of gliomas. The
CBioPortal database (Gao et al., 2013) (http://www.cbioportal.org/
) was used to analyze H2BC12 mutation in patients with gliomas.

RNA Extraction and Quantitative Real-Time
RT-qPCR
Glioma tissues were collected from the Department of Neurosurgery,
Liaocheng People’s Hospital (Shandong, China), and they included
tissues from 22 GII and 26 GIII gliomas. Tissue RNAs were extracted

using the RNAprep pure FFPE kit [cat. no. DP439, TIANGEN
Biotech (Beijing) Co., Ltd.] according to instructions. The All-in-
one™ First-Strand cDNA Synthesis kit (cat. no. QP006,
GeneCopoeia, Inc.) was used to reverse-transcribe an equal
amount of total RNA from each sample to cDNA. H2BC12 was
detected using the CFX96 qPCR instrument (Bio-Rad Laboratories,
Inc.) with the All-in-one™ qPCRMix (cat. no. QP001, GeneCopoeia,
Inc.). The primers for H2BC12 were as follows: forward 5′-AGA
AGGGCTCGAAGAAAGCC-3′, reverse 5′-ATGGTCGAGCGC
TTGTTGTA-3’. The size was 235 bp. The primers for GAPDH
were as follows: forward 5′-GAAGGTGAAGGTCGGAGTC-3′,
reverse 5′-GAAGATGGTGATGGGATTTC-3’. The size was 225
bp. The conditions were as follows: following initial denaturation at
95°C 10min, then 40 cycles of 95°C for 15 s, 62°C for 20 s, and 72°C
for 10 s. The amplification specificity was determined by melting
curve analysis. Data were normalized to GAPDH, and relative
expression levels were evaluated using the 2−ΔΔCT method.

Statistical Analysis
R (v.3.6.3) was run to complete all statistical analyses. The diagnostic
receiver operating characteristic (ROC) curve was generated using
package pROC, while the time-dependent ROC (tROC) curve was
plotted with assistance from package timeROC. Differential
expression of H2BC12 in gliomas versus normal was statistically
analyzed via Wilcoxon rank-sum tests. For correlational analysis
between H2BC12 mRNA and clinicopathologic characteristics,
tumor samples were assigned to two cohorts representative of
high and low H2BC12 expression, respectively, with the cutoff
value being the median H2BC12 expression of all samples. A Chi-
square test was implemented to identify significance. Comparisons
between two sets of data were completed by a Wilcoxon rank-sum
test for two groups or the Kruskal–Wallis test when there were three
groups or more. Prognostic significance of H2BC12 mRNA
expression and clinicopathologic characteristics for overall survival
(OS) of gliomas patients were identified by univariate and
multivariate Cox regression analysis. The survival significance of
H2BC12 mRNA expression in subgroups of clinicopathologic
characteristics was investigated by stratification and Kaplan-Meier
analysis. p value < 0.05 was considered statistically significant.

RESULTS

Clinical Characteristics
The expression of H2BC12 mRNA and the corresponding
clinicopathologic characteristics of 528 primary tumors were
obtained from the glioma dataset; of these, 523 RNA-seq
datasets were available. Matched clinical data were retrieved:
WHO grade II and III, IDH status, 1p/19q codeletion, primary
therapy outcome, gender, race, age, histological type, laterality,
and OS event (Table 1).

High Expression of H2BC12 mRNA in Grade
II and III Gliomas Tissue
Apart from gliomas samples acquired, matched normal samples
(n = 1,152) were obtained from the GTEx database. H2BC12
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mRNA was examined in two cohorts, showing a significant
upward trend in primary tumor tissue. Furthermore, the level
of H2BC12 mRNA in GIII gliomas was higher than that of GII
gliomas (Figure 1A, p < 0.001). And H2BC12 of GIII and GII
were both higher than normal. Results of our clinical specimen
showed a similar trend between GII and GIII (Supplementary
Figure S1A, p < 0.05). These results revealed that H2BC12 might
be an oncogene in gliomas.

ROC Analysis for H2BC12 as a Biomarker of
Grade II and III Gliomas
ROC curve was plotted to evaluate the diagnostic significance of
H2BC12 mRNA for gliomas. The area under the curve (AUC)
was 0.823 with 83.0% sensitivity and 68.4% specificity
(Figure 1B), indicating significance in distinguishing between
normal and tumor samples with certain accuracy. Furthermore,
ROC analysis was also performed to compare GII and GIII
gliomas. As shown in Figure 1C, AUC was 0.632, and the
corresponding sensitivity and specificity were 56.5 and 72.5%,
achieving a classification power for GIII and GII. The results of
our clinical specimen also revealed that the AUC was 0.706 with a
sensitivity of 76.9% and specificity of 81.8% (Supplementary
Figure S1C). It seems that the results from our clinical specimen
were better than from the dataset. This indicated that H2BC12
mRNA might be a more reliable biomarker.

Correlations Between H2BC12 mRNA and
Clinicopathologic Characteristics of
Gliomas
The correlational analysis demonstrated that there were
significant associations between the H2BC12 mRNA and
clinicopathologic characteristics, including IDH status, 1p/19q
codeletion, primary therapy outcome, and histological type
(Figures 2A–D). Our clinical results showed that H2BC12
mRNA was significantly correlated with IDH status, which
was consistent with the conclusions drawn from the TCGA
database (Supplementary Figure S1B, p < 0.05). In addition,
tumor samples of each clinicopathologic subgroup were divided
into two groups according to the median H2BC12 mRNA.
Further analysis revealed that high H2BC12 mRNA expression
was significantly associated withWHO grade, IDH status, 1p/19q
codeletion, primary therapy outcome, histological type, OS event,
disease-specific survival (DSS) event, and progress-free interval
(PFI) event (Table 2, p < 0.001). Collectively, H2BC12 mRNA
expression is intimately correlated with clinicopathologic

TABLE 1 | Characteristics of patients with gliomas based on TCGA.

Characteristic Levels Overall

n 528
WHO grade, n (%) GII 224 (48%)

GIII 243 (52%)
IDH status, n (%) WT 97 (18.5%)

Mut 428 (81.5%)
1p/19q codeletion, n (%) codel 171 (32.4%)

non-codel 357 (67.6%)
Primary therapy outcome, n (%) PD 110 (24%)

SD 146 (31.9%)
PR 64 (14%)
CR 138 (30.1%)

Gender, n (%) Female 239 (45.3%)
Male 289 (54.7%)

Race, n (%) Asian 8 (1.5%)
Black or African American 22 (4.3%)
White 487 (94.2%)

Age, n (%) ≤40 264 (50%)
>40 264 (50%)

Histological type, n (%) Astrocytoma 195 (36.9%)
Oligoastrocytoma 134 (25.4%)
Oligodendroglioma 199 (37.7%)

Laterality, n (%) Left 256 (48.9%)
Midline 6 (1.1%)
Right 261 (49.9%)

OS event, n (%) Alive 392 (74.2%)
Dead 136 (25.8%)

DSS event, n (%) Alive 397 (76.3%)
Dead 123 (23.7%)

PFI event, n (%) Alive 318 (60.2%)
Dead 210 (39.8%)

FIGURE 1 | The expression of H2BC12 mRNA in normal, GII, and GIII glioma tissue and its clinical value as a biomarker for distinguishing between GII and GIII
gliomas. H2BC12 showed significantly higher expression in GII or GIII tissue versus normal tissue (A), p < 0.001. The diagnostic ROC curve showed the accurate
discriminative capability of H2BC12 in distinguishing between normal and GII + GIII (AUC = 0.823). (B) ROC analysis of H2BC12 in classification power for GII and GIII
(AUC = 0.632).

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8169394

Zhou et al. H2BC12 Predicts Gliomas Survival Outcome

113

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


features, suggesting that H2BC12 might be involved in glioma
progression.

Role of H2BC12 in Grade II and III Glioma
Patient Survival
Gliomas were considered to have different degrees of malignancy
and survival outcomes. However, few studies investigated the
relationship between gene expression and survival outcomes for
GII and GIII separately. First, we explored the role of H2BC12 in
survival outcomes, and Figure 3A shows that the OS of GII +
GIII patients with high H2BC12 expression was much poorer
compared to those with low H2BC12 expression (p < 0.001).
Similar results were also observed as regards DSS and PFI
(Figures 3B,C, p < 0.001). The prognostic value of H2BC12
in GII or GIII was further evaluated. Figures 3D–F shows that
OS, DSS, and PFI of GII gliomas with higher levels of H2BC12
were shorter than those with lower levels [HR = 3.28 (1.68–6.37)
for OS, HR = 3.51 (1.73–7.12) for DSS, and HR = 2.16 (1.38–3.38)
for PFI]. A similar trend was also shown in GIII patients, and HR
was 2.76 (1.78–4.26) for OS, 3.32 (2.10–5.26) for DSS, and 2.62
(1.78–3.85) for PFI (Figures 3G–I, p < 0.001). Besides, the tROC
curves were drawn to identify the predictive ability of H2BC12
mRNA for OS of GII and/or GIII patients. The AUC values for 1-,
2-, and 3-years OS of GII + GIII were 0.766, 0.702, and 0.677,
respectively (Figure 3J). The AUC values for 1-, 2- and 3-years

GII were 0.492, 0.664, and 0.714 (Figure 3K). The AUC values
for 1-, 2-, and 3-years GIII were 0.760, 0.675, and 0.6499
(Figure 3L). To identify the prognostic factors for OS of
gliomas patients, univariate regression analysis was performed
using a Cox model, demonstrating significant prognostic
significance of H2BC12 mRNA, WHO grade, 1p/19q
codeletion, TP53, IDH status, age, and histological type for OS
(Table 3, p < 0.01). Additionally, a further multivariate model
was established and revealed that H2BC12 mRNA, WHO grade,
IDH status, age, and histological type had independent
prognostic significance for gliomas OS (Table 3, p < 0.05). It
was suggested that H2BC12 was equipped with a good prognostic
performance.

Clinical Stratification
As proven in multivariate Cox regression analysis, primary
therapy outcome, IDH status, age, and histological type were
independent prognostic factors for glioma OS. Then, clinical
stratification was conducted based on the glioma dataset; in
subgroups of primary therapy outcomes PD&SD, primary
therapy outcome PR&CR, IDH status: Mut, age < = 40, and
age >40, patients with lowH2BC12 expression had better survival
outcomes than those with highly expressing H2BC12 (Figures
4A–F, p < 0.001). This reflected that H2BC12 had independent
prognostic significance for glioma OS, and increased H2BC12
was associated with poorer OS.

FIGURE 2 | Association between H2BC12 expression and clinicopathologic characteristics. H2BC12 expression correlated significantly with IDH status (A), p <
0.001, 1p/19q codeletion (B), p < 0.001, primary therapy outcome (C), p < 0.01, and histological type (D), p < 0.01.
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H2BC12-Related Signaling Pathways Based
on GSEA
GSEA was performed to find the activated signaling pathways
related to H2BC12 in gliomas. Based on the curated collection,
there were six signaling pathways activated in H2BC12
overexpressed phenotype, including pathways in cancer, Wnt
or the PI3K-AKT signaling pathway, DNA repair, cellular
senescence, and DNA double-strand break repair. Based on
the Hallmarks collection defined by MSigDB, other than the
above six pathways, the KRAS signaling up, TNFA signaling via
NFKB, G2M checkpoint, glycolysis, hypoxia, and p53 pathways
also presented with significant enrichment in H2BC12
overexpressed phenotype (Figure 5; Table 4). Collectively,
H2BC12 mRNA might serve as an important player in the
initiation and development of gliomas.

H2BC12 ExpressionWas Linked to the Level
of Immune Infiltration and Immune
Regulatory Factor
Tumor-infiltrating lymphocytes are independent indicators of
cancer survival. As result, we evaluated whether H2BC12 was
related to immune infiltrate in gliomas. According to our
findings, H2BC12 showed a strong positive correlation with
macrophages, eosinophils, neutrophils, and T cells; H2BC12
exhibited a strong inverse relationship with pDC, NK

CD56bright cells, TReg, and DC (Figure 6A). Further analysis
showed that compared with the low-H2BC12 group, the
infiltration of Neutrophils and T cells in the high-H2BC12
group was significantly increased (Figure 6B). The infiltration
levels of pDC, NK CD56bright cells, Treg, and DC were
significantly reduced in the high-H2BC12 group (Figure 6C).
Moreover, Results of the relationship of H2BC12 with immune
regulatory factors showed that H2BC12 was positively correlated
with immun inhibitors, including PDCD1LG2, LGALS9, and
L10RB (Figure 7A), as well as immune stimulators, including
CD40, CD86, and MICB (Figure 7B), and MHC molecules,
including HLA-DMA, HLA-DMB, and HLA-DOA (Figure 7C).

H2BC12 Promoter Methylation Level and
Mutation Analysis
The level of DNAmethylation in the H2BC12 promoter region in
patients with TP53 nonmutant was significantly higher than that
in patients with TP53 mutant (Supplementary Figure S2A).
Moreover, the levels in those aged between 41 and 60 years
were significantly higher than in those aged between 21 and
40 years (Supplementary Figure S2B). There have not been any
significant differences in terms of gender or race yet
(Supplementary Figure S2C, D). In addition, the H2BC12
mutation was not investigated in glioma patients and was very
low in most brain tumors (Supplementary Figure S2E).

TABLE 2 | Relationship between H2BC12 mRNA expression and clinical characteristics in gliomas.

Characteristic Levels Low expression of H2BC12 High expression of H2BC12 p

n 264 264 <0.001
WHO grade, n (%) GII 138 (29.6%) 86 (18.4%)

GIII 95 (20.3%) 148 (31.7%)
IDH status, n (%) WT 13 (2.5%) 84 (16%) <0.001

Mut 250 (47.6%) 178 (33.9%)
1p/19q codeletion, n (%) codel 148 (28%) 23 (4.4%) <0.001

non-codel 116 (22%) 241 (45.6%)
Primary therapy outcome, n (%) PD 33 (7.2%) 77 (16.8%) <0.001

SD 76 (16.6%) 70 (15.3%)
PR 36 (7.9%) 28 (6.1%)
CR 84 (18.3%) 54 (11.8%)

Gender, n (%) Female 117 (22.2%) 122 (23.1%) 0.727
Male 147 (27.8%) 142 (26.9%)

Race, n (%) Asian 4 (0.8%) 4 (0.8%) 0.230
Black or African American 7 (1.4%) 15 (2.9%)
White 245 (47.4%) 242 (46.8%)

Age, n (%) ≤40 131 (24.8%) 133 (25.2%) 0.931
>40 133 (25.2%) 131 (24.8%)

Histological type, n (%) Astrocytoma 61 (11.6%) 134 (25.4%) <0.001
Oligoastrocytoma 69 (13.1%) 65 (12.3%)
Oligodendroglioma 134 (25.4%) 65 (12.3%)

Laterality, n (%) Left 122 (23.3%) 134 (25.6%) 0.412
Midline 2 (0.4%) 4 (0.8%)
Right 137 (26.2%) 124 (23.7%)

OS event, n (%) Alive 237 (44.9%) 155 (29.4%) <0.001
Dead 27 (5.1%) 109 (20.6%)

DSS event, n (%) Alive 240 (46.2%) 157 (30.2%) <0.001
Dead 23 (4.4%) 100 (19.2%)

PFI event, n (%) Alive 196 (37.1%) 122 (23.1%) <0.001
Dead 68 (12.9%) 142 (26.9%)
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FIGURE 3 | High expression of H2BC12 is associated with poor OS, DSS, and PFI in patients with GII and/or GIII. OS (A), p < 0.001, DSS (B), p < 0.001, and PFI
(C), p < 0.001 were significantly poorer in GII + GIII patients with high H2BC12 expression than those with lowH2BC12 expression. Furthermore, OS, DSS, and PFI of GII
(D–F) and GIII (G–I) were analyzed respectively. OS, Overall Survival; DSS, Disease-Specific Survival; PFI, Progress-Free Interval. (J) tROC curve demonstrated AUC
values for 1-, 2-, and 3-years survival in GII + GIII as 0.766, 0.702, and 0.677, respectively. The 1-, 2-, and 3-years AOC values in GII were 0.492, 0.664, and
0.714 (K). The 1-, 2-, and 3-years AOC values in GIII were 0.760, 0.675, and 0.6499 (L).
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DISCUSSION

Gliomas are fatal tumors most prevalent in the central nervous
system (CNS), and they are among the most devastating forms of
cancer. Low-grade tumors grow slowly with lesser malignant
properties than high-grade tumors (Perez and Huse, 2021; Zhao
et al., 2021). However, there is a high risk of disease progression to
advanced gliomas in most low-grade glioma patients (Kiran et al.,
2019). It is well known that GII gliomas can easily develop into
GIII gliomas, which leads to a poor survival outcome after

receiving chemotherapy (Xiao et al., 2020). There are no
suitable biomarkers to discriminate between GII and GIII
gliomas. The role of survival outcome, key drivers of survival,
etc. remains to be further explored. According to bioinformatics,
the WHO included several molecular markers, such as IDH
mutation status and chromosome 1p or 19q codeletion (1p/
19q codeletion) status, into the guidelines for the diagnosis of
gliomas to increase the accuracy in disease diagnosis and further
treatment (Louis et al., 2016). In this context, the demand for
biomarkers with prognostic and diagnostic values is increasing,

TABLE 3 | Correlations between overall survival and mRNA expression of H2BC12 analyzed by univariate and multivariate Cox regression.

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

WHO grade (GIII vs. GII) 466 3.059 (2.046–4.573) <0.001 1.845 (1.147–2.967) 0.012
1p/19q codeletion (non-codel vs. codel) 527 2.493 (1.590–3.910) <0.001 1.293 (0.670–2.496) 0.443
TP53 (High vs. Low) 527 1.689 (1.189–2.400) 0.003 1.352 (0.874–2.091) 0.175
IDH status (Mut vs. WT) 524 0.186 (0.130–0.265) <0.001 0.455 (0.281–0.735) 0.001
Gender (Male vs. Female) 527 1.124 (0.800–1.580) 0.499
Age (>40 vs. ≤40) 527 2.889 (2.009–4.155) <0.001 3.491 (2.191–5.561) <0.001
Histological type (Oligoastrocytoma&Oligodendroglioma vs. Astrocytoma) 527 0.606 (0.430–0.853) 0.004 1.018 (0.642–1.615) 0.939
H2BC12 (High vs. Low) 527 4.415 (2.885–6.756) <0.001 2.267 (1.252–4.104) 0.007

Bold values indicates that the significant values (p ≤ 0.05).

FIGURE 4 | Clinical stratification analysis of the survival difference in the high- and low-H2BC12 groups by primary therapy outcome, IDH status, and age. Kaplan-
Meier survival curves of patients in the high- and low-H2BC12 groups within eight clinically stratified subgroups, including primary therapy outcome: PD&SD (A), primary
therapy outcome: PR&CR (B), IDH status: WT (C), IDH status: Mut (D), age<=40 (E) and age>40 (F), respectively. Patients in the low-H2BC12 group had better survival
outcomes than those in the high-H2BC12 group across all clinically stratified subgroups except the IDH status of WT (p < 0.01).
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which will be of vital significance for the treatment and prognosis
of patients with GII and GIII gliomas.

In this study, we firstly obtained RNA-seq data documented in
TCGA and matched normal samples from GTEx in the UCSC
XENA database, demonstrating that H2BC12 mRNA significantly

increased in tumor tissue compared to normal control. A similar
trend was observed between GII and GIII and was also confirmed by
the clinical specimen. These suggested that H2BC12 might be active
in promoting glioma initiation. H2BC12 encoded a replication-
dependent histone that was a member of the histone H2B family.

FIGURE 5 | Enrichment plots fromGSEA. GSEA results showing pathways in cancer (A), signaling by wnt (B), the PI3K-AKT signaling pathway (C), DNA repair (D),
cellular senescence (E), DNA double-strand break repair (F), KRAS signaling up (G), TNFA signaling via NFKB (H), G2M checkpoint (I), glycolysis (J), hypoxia (K), and
the p53 pathway (L), which are differentially enriched in H2BC12-high expression phenotype. NES, normalized ES; p. adj, p. adjust; FDR, False Discovery Rate.
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H2B played a crucial role in chromatin-related processes involved in
transcription, DNA replication, and repair. Kim et al. (Kim et al.,
2012) reported the top six most highly expressed genes in breast
cancer, including STAT3, CTSD, SREBF1, IGFBP5, and DDR1, from
49 signature genes of tumor dormancy based on cancer cell line data
and microarray data, which further verified the role of H2BC12 as a
potential tumor dormancy marker (Kim et al., 2012). Dormant cells
are highly adaptable in chemotherapy since they can rapidly target
proliferating cells. Meanwhile, they can still survive for a long time
and even reproduce after chemotherapy is terminated. Han et al.
(Han et al., 2019) reported that H2BC12 displayed increased
expression in drug-resistant cell MDA-MB-231 in breast cancer,

showing a close relationship between the H2BC12 and drug
resistance. Here, we found that H2BC12 mRNA presented with
high expression in gliomas compared with normal tissues, and its
expression in GIII was also higher than in GII. This implied that
H2BC12 might be a therapeutic target or biomarker and that it is
involved in promoting glioma progression.

Research revealed that H2A and H2B are important
participants in chromatin transcription, DNA replication, and
repair (Li et al., 2017). Similarly, we noted the good diagnostic
performance of H2BC12 for GII and GIII, characterized by an
AUC of 0.823. Meanwhile, H2BC12 could distinguish GIII
gliomas from GII gliomas with 76.9% sensitivity and 81.8%

TABLE 4 | Gene sets enriched in positively correlated with H2BC12 mRNA expression phenotype high.

MSigDB collection Gene set name NES p.adj FDR

c2.cp.v7.2.symbols.gmt [Curated] KEGG_PATHWAYS_IN_CANCER 1.622 0.009 0.006
REACTOME_SIGNALING_BY_WNT 1.441 0.009 0.006
WP_PI3KAKT_SIGNALING_PATHWAY 1.634 0.009 0.006
REACTOME_DNA_REPAIR 1.620 0.009 0.006
REACTOME_CELLULAR_SENESCENCE 1.963 0.009 0.006
REACTOME_DNA_DOUBLE_STRAND_BREAK_REPAIR 1.759 0.009 0.006

h.all.v7.2.symbols.gmt [Hallmarks] HALLMARK_KRAS_SIGNALING_UP 1.754 0.003 0.001
HALLMARK_TNFA_SIGNALING_VIA_NFKB 2.189 0.003 0.001
HALLMARK_G2M_CHECKPOINT 1.996 0.003 0.001
HALLMARK_GLYCOLYSIS 1.603 0.003 0.001
HALLMARK_HYPOXIA 1.726 0.003 0.001
HALLMARK_P53_PATHWAY 1.483 0.003 0.001

NES, normalized enrichment score; p.adj, adjust p value; FDR, false discovery rate.

FIGURE 6 | Correlation analysis between H2BC12 and immune infiltration. (A) Association analysis between H2BC12 expression and immune cells. (B, C)
Differences in immune cell infiltration levels between high and low H2BC12 expression groups.
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specificity, which might improve the diagnosis and therapy of
gliomas. We then profiled the association between H2BC12 and
clinicopathologic characteristics of gliomas. Notably, the
increased H2BC12 was correlated significantly with IDH
status, 1p/19q codeletion, primary therapy outcome, and
histological type. This demonstrated that H2BC12 mRNA is
closely related to the clinicopathologic characteristics of
gliomas, and H2BC12 might be involved in disease progression.

The tROC curve also validated the moderate prognostic value of
H2BC12 for OS of GII and/or GIII in 1, 2, and 3 years. This indicated
that H2BC12 might predict the survival outcome of gliomas, which
was consistent with a previous study that showed that signatures
based on histone gene family are potentially good indicators for the
outcome of cervical cancer patients (Li et al., 2017). It was worth
noting that the AUC was different between GII and GIII. In GII, the
AUC of 3 years was more than that of 2 years and then 1 year.
However, the opposite trend was observed in GIII, and the AUC of
1 year was better than those of 2 or 3 years. This gave us a hint that
H2BC12 had a different value for predicting survival outcomes in
patients with GII and GIII. However, its predictive power was

different for different years in GII and GIII, indicating H2BC12
might play an important role in gliomas progression. No previous
studies have reported a link between H2BC12 and gliomas. Further
survival analysis was conducted to validate the association of high
H2BC12 expression with adverse survival outcomes of GII and GIII
patients. Interestingly, the higher H2BC12, the shorter OS, DSS, and
PFI of GII patients. A similar trendwas also observed inGIII patients.
We thus believe that H2BC12 serves as a high-risk factor for GII and
GIII. Previous bioinformatics analysis identified that high H2BC12
predicted adverse outcomes of breast, pancreatic, and ovarian cancers
(Li et al., 2018; Li andZhan, 2019; Yu et al., 2020).Wenext performed
univariate and multivariate analyses to identify factors predicting OS
with Cox regression models. Results showed that H2BC12, WHO
grade, IDH status, age, and histological type could all be prognostic
factors for gliomas. Given this, a further clinical stratification analysis
was designed to identify whether H2BC12 was an independent
predictor.

Finally, we conducted GSEA to uncover the H2BC12-related
pathways in gliomas. Results showed that there were six pathways,
including pathways in cancer, the Wnt or PI3K-AKT signaling

FIGURE 7 | The relationship between H2BC12 and immune regulatory factor. The level of H2BC12 mRNA was positively correlated with immune inhibitors (A),
immune stimulators (B), and MHC molecules (C). Red indicated a significant positive correlation, and blue indicated a significant negative correlation.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 81693911

Zhou et al. H2BC12 Predicts Gliomas Survival Outcome

120

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


pathway, DNA repair, cellular senescence, and DNA double-strand
break repair, which demonstrated differential enrichment in higher
H2BC12. Research reveals that activated PI3K-AKT could facilitate
the invasiveness of glioma cells (Li et al., 2019). DNA repair genes are
associated with gliomas (Tang et al., 2018). DNA repair damage is the
main cause of radio-resistance and chemo-resistance in gliomas
(Zeng et al., 2019). A study suspected that targeting an H2Bub1
that regulates both transcription andDNAdamage repairmay inhibit
an oncogenic transcriptional expression profile while simultaneously
impairing the ability of the cell to effectively repair DNA damage,
thereby increasing its sensitivity to a second drug that induces DNA
damage (Jeusset and McManus, 2021). It has also been found that
RNF20 (and RNF40) expression is increased in luminal B tumors,
and er-positive tumors with high H2Bub1 abundance have poorer
survival (Tarcic et al., 2017). All these findings indicate the potential
important role of H2BC12 in gliomas progression. Moreover, as a
new therapeutic strategy, immunotherapy, has drawn the attention of
the field of gliomas. However, only a minority of glioma patients got
responses due to a lacking of effective biomarkers (Chiocca et al.,
2019). The current results showed that H2BC12 had a positive
correlation to immune cells, including macrophages, NK cells,
Treg, and T cells. These findings gave us a hint that H2BC12
might be involved in the immunoregulation of gliomas, which
was consistent with a previous study that DNAJC10 was
correlated with immune cell infiltrations and immune checkpoint
genes (Liu et al., 2022) as well as the replication factor C2 (Zhao et al.,
2022). Furthermore, our results also showed that H2BC12 was
positively associated with immune regulatory factors, including
immune inhibitor PDCD1LG2, immune stimulator CD40, and
MHC molecule HLA-DMA. H2BC12 could be a potential
prognostic marker and immunotherapy marker in gliomas.

In all, this study verified the significance of H2BC12 in the
diagnosis and prognosis of GII and GIII gliomas. Inevitably,
limitations still exist. First, the study was carried out only with
bioinformatics analysis, requiring further validation in clinical
samples. Second, there is a need to clarify the H2BC12-
mechanism of action.

CONCLUSION

This study identified the differentially up-regulated expression of
H2BC12 in GII and GIII glioma tissue and proved its significant

ability in predicting the adverse overall survival of GII and GIII
gliomas patients. H2BC12, therefore, has promising application
for the diagnosis and prognosis of gliomas.
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Identification of Four Novel Prognostic
Biomarkers and Construction of Two
Nomograms in Adrenocortical
Carcinoma: A Multi-Omics Data Study
via Bioinformatics and Machine
Learning Methods
Xiaochun Yi, Yueming Wan, Weiwei Cao, Keliang Peng*, Xin Li and Wangchun Liao

Department of Urology, Yueyang People’s Hospital, Hunan Normal University, Yueyang, China

Background: Adrenocortical carcinoma (ACC) is an orphan tumor which has poor
prognoses. Therefore, it is of urgent need for us to find candidate prognostic
biomarkers and provide clinicians with an accurate method for survival prediction of
ACC via bioinformatics and machine learning methods.

Methods: Eight different methods including differentially expressed gene (DEG) analysis,
weighted correlation network analysis (WGCNA), protein-protein interaction (PPI) network
construction, survival analysis, expression level comparison, receiver operating
characteristic (ROC) analysis, and decision curve analysis (DCA) were used to identify
potential prognostic biomarkers for ACC via seven independent datasets. Linear
discriminant analysis (LDA), K-nearest neighbor (KNN), support vector machine (SVM),
and time-dependent ROC were performed to further identify meaningful prognostic
biomarkers (MPBs). Cox regression analyses were performed to screen factors for
nomogram construction.

Results: We identified nine hub genes correlated to prognosis of patients with ACC.
Furthermore, four MPBs (ASPM, BIRC5, CCNB2, and CDK1) with high accuracy of
survival prediction were screened out, which were enriched in the cell cycle. We also found
that mutations and copy number variants of these MPBs were associated with overall
survival (OS) of ACC patients. Moreover, MPB expressions were associated with immune
infiltration level. Two nomograms [OS-nomogram and disease-free survival (DFS)-
nomogram] were established, which could provide clinicians with an accurate, quick,
and visualized method for survival prediction.

Conclusion: Four novel MPBs were identified and two nomograms were constructed,
which might constitute a breakthrough in treatment and prognosis prediction of patients
with ACC.

Keywords: adrenocortical carcinoma,WGCNA, hub genes, nomogram, prognosis, immunemicroenvironment, copy
number variations
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INTRODUCTION

Though adrenocortical carcinoma (ACC) is an uncommon
malignancy, the prognosis of patients with this malignancy is
poor (Jasim and Habra, 2019). The disease tends to occur in 3 to
4-year-old children and 40 to 50-year-old adults (Libé, 2018). The
incidence of ACCs in children is reported to be as low as 0.2% of
pediatric cancers (Libé, 2018). As a recent study reported, there
were 15,800 new cases of ACC worldwide in 2018 (Bray et al.,
2018). However, the incidence of ACCs varies from place to place
around the world (Bray et al., 2018). In some countries, such as
southern Brazil, the incidence is 10–15 times what it is in America
(Bray et al., 2018). But the consensus is that this malignancy
heavily endangers health and is very difficult to cure (Lo et al.,
2019). According to the previous studies, some researchers tried
to diagnose ACC earlier to grasp the optimal treatment
opportunity (Lo et al., 2019). What is worse, about 40 percent
of ACCs had distant metastasis when they were diagnosed
(Guillaume et al., 2014). Nowadays, the discoveries of new
small biomarkers greatly aid diagnosis of malignant tumors by
using the methods of molecular biology and bioinformatics (He
et al., 2017). In order to better diagnosis ACCs and improve the
prognosis of patients, the objective of the research is to screen
several effective prognostic biomarkers of ACC. Also, we
attempted to provide clinicians with several choices for ACC
therapy. The CMap analysis demonstrated that five small
molecule drugs including chlorpromazine, trifluoperazine,
alpha-estradiol, 15-delta prostaglandin J2, and vorinostat
might be novel drugs for ACC treatment. These MPBs were
also significantly enriched in the cell cycle. As for the enriched
drugs, ASPM was significantly enriched in 6 drugs, BIRC5 was
associated with 6 drugs, CCNB2 was related to 11 drugs, and
CDK1 was enriched in 6 drugs. Moreover, we devoted ourselves
to provide clinicians with an accurate, individual, and visualized
method to predict overall survival (OS) or disease-free survival
(DFS) of patients with ACC. To do this, we thought it could help
clinicians to understand and master the illness and better
formulate the treatment scheme.

METHODS AND MATERIALS

ACC Microarray Studies Identification
All the GEO datasets were downloaded from the GEO database
(http://www.ncbi.nlm.nih.gov/geo/). For differentially expressed gene
(DEG) screening, datasets with related control tissues were collected
and used. Then two datasets including GSE75415 (West et al., 2007)
and GSE12368 (Soon et al., 2009) were included. Then four
datasets including GSE76021 (Pinto et al., 2016), GSE19750
(Demeure et al., 2013), GSE10927 (Giordano et al., 2009), and
GSE76019 (Surakhy et al., 2020) from this database were collected
and used in the present study, because of the complete clinical and
survival information they contained. Moreover, we retrieved
microarray data of ACC (TCGA-ACC data) and the related
clinical information via The Cancer Genome Atlas (TCGA)
database (https://genome-cancer. ucsc.edu/). All in all,
GSE12368 and GSE75415 were included for DEG identification

because they included normal tissues. GSE76021, GSE19750,
GSE10927, GSE76019, and TCGA-ACC data were included
because they had related clinical information (stage, grade, etc.)
and survival information. The details of all the datasets are shown
in Supplementary Table S1.

Data Preprocessing and DEG Identification
For the TCGA data, we firstly downloaded RNA sequencing data
(FPKM value) of gene expressions from the TCGA database
using R package “TCGAbiolinks” (Colaprico et al., 2016). In
order to compare and validate the results with GEO datasets,
these data were further transformed into a transcripts per
kilobase million (TPM) profile. For the datasets from the
GEO database, the robust multichip average algorithm
(Irizarry et al., 2003) was used because the data were
displayed as RAW series. Moreover, log2 transformation
and normalization were conducted based on R package
“affy” (Gautier et al., 2004).

How we validated the results among this study is shown in
Supplementary Figure S1. A total of 29 ACCs included in
GSE76021 were used for WGCNA. We sorted genes
according to their variance across all samples, all genes
were selected for WGCNA. Moreover, differentially
expressed genes (DEGs) between ACCs and normal tissues
were filtered out by the criterion (p value < 0.05, |log2 fold
change (FC) | ≥ 1.5) via R package “limma” (Ritchie et al.,
2015) for further study. Then DEGs overlapped between
GSE75415 and GSE12368 were screened for subsequent
analysis.

Co-Expression Network Construction
Before conducting WGCNA, the expression matrix of the
transcript level was checked via two approaches
(goodSamplesGenes and sample network methods) in R
package “WGCNA” (Zhang and Horvath, 2005). Only
samples of Z.Ku ≥ -2.5 were included for co-expression
network construction. By means of the scale free topology
criterion, β (soft threshold power beta) was chosen. We
subsequently transformed adjacency into TOM. Then based
on the TOM, genes were classified into modules via the branch
cutting approach. Some important parameters set in the
present study were shown as below: minClusterSize = 30,
deepSplit = 2. In addition, by selecting a cut line reckoned
dissimilarity of module eigengenes (MEs), modules showing
high correlation with each other were merged.

Survival-Associated Module Identification
After determining modules composed of genes, two methods
were applied on screening hub modules which were relevant to
survival status (the aimed clinical trait). The correlation between
module eigengenes and traits were quantized. Next, through
evaluating gene significance (GS), the relationship between
genes and traits was measured. In addition, the average GS of
all the genes in a module was further worked out, which
represented the module significance (MS). After finishing the
above analyses, we identified the most related module as the key
module.
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Connectivity Map Analysis
As a convenient webtool, researchers can quickly locate molecule
drugs which have potential against related diseases through
CMap (https://portals.broadinstitute.org/cmap/) (Lamb et al.,
2006). Therefore, CMap analysis was conducted via the
screened DEGs, in order to explore potential drugs showing a
strong relationship with ACC. Drugs meeting the requirement
[number of instances (n) > 10, p value < 0.05] were considered
significant. Furthermore, drugs with |mean| ≥ 0.40 were further
screened out, which might be useful choices for treating ACC.

Candidate Hub Gene Construction
After choosing the key module, genes of |cor.geneModuleMembership|
>0.8 and |cor.geneTraitSignificance|>0.2 were regarded as hub genes
in WGCNA. Then we constructed a protein-protein interaction
(PPI) network of these genes via the Search Tool for the Retrieval
of Interacting Genes (STRING) (Szklarczyk et al., 2015). The
following parameters were important and listed: network
scoring: degree cutoff = 2; cluster finding: node score cutoff =
0.2, k-core = 2, and max. depth = 100. A vehicle named network
analyzer in Cytoscape (Shannon et al., 2003) was used for the
gene degree of connectivity calculation. In this research, we
regarded a gene as a hub gene in the PPI network when its
degree ≥4.We also constructed a PPI network for DEGs to screen
hub genes in DEGs by using the same standard. Finally, genes
overlapping between hub genes in WGCNA and hub genes in
DEGs were considered as candidate hub genes, which were
included for further analysis. Gene ontology (GO) (Ashburner
et al., 2000) enrichment analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000)
pathway analysis were conducted via R package
“clusterProfiler” (Yu et al., 2012) for functional annotation of
candidate hub genes. We selected p < 0.05 as the standards to
define significant BPs and KEGG pathway terms.

Hub Gene Identification
Hub genes related to survival and prognosis of ACC patients were
screened through performing survival analysis among candidate
hub genes based on R package “survival” (Therneau, 2015) for
datasets with complete survival information (GSE19750,
GSE76019, GSE76021, and TCGA-ACC data). For TCGA-
ACC data, 79 samples with complete overall survival (OS)
information were included for OS analysis, meanwhile 54
samples with complete disease-free survival (DFS) information
were included for DFS analysis. According to the candidate hub
gene expression levels, we split samples into two groups (high
expression group and low expression group) in all the datasets
(the median expression of each candidate hub gene in each
dataset was set as the grouping standard). Genes of p < 0.05
in all survival analyses were considered as hub genes.

Hub Gene Validation
Based on datasets with complete stage information (GSE10927,
GSE19750, GSE75415, GSE76019, GSE76021 and TCGA-ACC
data), we plotted tumor stage (I, II, III and IV) boxplots using the
“ggstatsplot” (Patil, 2018) R package. Moreover, tumor grade
boxplots were also plotted based on GSE10927 (low grade and

high grade) and GSE19750 (grade 1, grade 2, grade 3, and grade
4). A one-way analysis of variance (ANOVA) test was conducted
to evaluate the results when samples were divided into more than
two groups. We used unpaired t test to measure the statistical
significance when samples were divided into two groups.
Moreover, the difference of hub gene expression values in
ACCs, ACAs, and normal adrenal samples were measured
using GSE10927, GSE12368, GSE19750, GSE75415, and
TCGA-BLCA data.

Receiver Operating Characteristic Analysis
and Decision Curve Analysis
Through R package “plotROC” (Sachs, 2017), ROC curve analysis
was performed. In GSE10927, GSE12368, GSE19750, and
GSE75415, the AUC was calculated to differentiate ACC
samples and normal tissues. In GSE10927, GSE19750,
GSE75415, GSE76019, GSE76021, and TCGA-ACC data, we
worked out the AUC to distinguish localized ACC and
advanced ACC. In this study, we regarded ACC of stages I or
II as localized ACC and ACC of stages III or IV as advanced ACC.
In both GSE10927 and GSE19750, we worked out the AUC to
distinguish ACC of low grade (grades 1 or 2) and ACC of high
grade (grades 3 or 4). Moreover, we distinguished ACA and ACC
in GSE10927, GSE12368, and GSE75415. In this study, we
thought genes could distinguish ACC samples from normal
tissues (localized ACC from advanced ACC or low grade ACC
from high grade ACC) well when the AUC was more than 0.70.
Furthermore, DCA (Vickers and Elkin, 2006) was performed for
verifying the hub genes’ diagnostic potential by using GSE76021.

Linear Discriminant Analysis, K-Nearest
Neighbor, and Support Vector Machine to
Screen Genes With High Accuracy of
Predicting OS Among Hub Genes
To validate hub genes’ prognostic potential, genes were taken as
variables, relative mRNA expression values of which were taken
as variable values. LDA, KNN, and SVM analyses were
immediately conducted. LDA was conducted via R package
“MASS” (Venables and Ripley, 2002). The cross validation
approach was used to pick out the best K parameter via R
package “caret” (Kuhn, 2015). Based on the best K parameter,
R packages “class” (Venables and Ripley, 2002) and “kknn” were
used for the KNN method. In addition, we performed four types
of SVM methods via R package “e1071”. They were linear-SVM,
polynomial-SVM, radial basis function (RBF) SVM, and sigmoid-
kernel SVM, separately. The SVM factors setting was based on
“kernlab” in R software. TCGA-ACC data were included in this
part. We regarded a gene as a meaningful prognostic biomarker
(MPB) with the average accuracy of classification in three
analyses ≥0.80.

Time-Dependent ROC Analysis for MPBs
To verify the potential of the prognosis prediction of MPBs, based
on TCGA-ACC data, time-independent (1-, 3-, 5-years) receiver
operating characteristic (ROC) analysis was conducted via the
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“timeROC” (Heagerty et al., 2000) package. The AUC was
worked out, we considered that MPBs showed good
performance for prognosis prediction when the AUC was
more than 0.70 (the same as we set in ROC analysis before).

MPB Mutations and Copy Number
Variations
With the aimof screening outmutations andCNVsof geneswith high
accuracy of predicting OS, all the ACCs and their CNV data from the
TCGA database were obtained. The genetic alterations of these genes
were screened via the CBio Cancer Genomics Portal (http://www.
cbioportal.org/). The correlation between CNVs and relative MPB
expression was subsequently identified. The results were measured by
ANOVA or Kruskal–Wallis methods. In addition, the relationship
between mutations or CNVs of prognostic biomarkers and ACC
patients’ survival was screened via survival analysis.

Functional Exploration of MPBs
Gene set enrichment analysis (GSEA) might help researchers to
comprehend the role of genes in biological behaviors. Therefore, we
conducted GSEA for MPBs. A total of 79 ACCs were divided into a
high-expression group (n = 39) and low-expression group (n = 40)
according to the prognostic biomarkers’ expression median.
“c2.cp.kegg.v7.0.symbols.gmt” was chosen as the annotated gene
set. We thought a biological pathway of nominal p < 0.05, |ES| >
0.6, gene size (n) ≥100, and FDR <25% to be significant. In addition,
“DSigDBv1.0.gmt” was downloaded from the Drug SIGnatures
DataBase (Yoo et al., 2015) (http://tanlab.ucdenver.edu/DSigDB/
DSigDBv1.0/download.html) to explore drugs highly associated
with prognostic biomarkers. Also, we set the same cut-off criteria
as KEGG pathways identification.

Exploring the Relationship Between MPBs
and Immune Microenvironment
In this part, the association between MPBs and immunocytes was
explored via TIMER (Li et al., 2017) (https://cistrome.shinyapps.
io/timer/). We thought an MPB with |correlation coefficient (cor)
| ≥0.2 and p value < 0.05 strongly related to an immune cell
infiltrating level as previously found. Furthermore, we explored
MPB expressions in 33 different cancer types by using the gene
module in TIMER.

Exploring the Difference of Immune
Infiltration Levels Between a Low
Expression and High Expression of MPBs
Based on TCGA-ACC data, ESTIMATE scores, immune scores,
and stromal scores were firstly evaluated via applying the
ESTIMATE algorithm based on R package “estimate”
(Yoshihara et al., 2013). Then we divided ACCs into a high-
(ESTIMATE, immune, stromal) score group and low-
(ESTIMATE, immune, stromal) score group to perform
survival analysis via R package “survival”. Moreover, we
conducted an unpaired t test to test the difference of score
levels between a low expression and high expression of MPBs.

Cox Proportional Hazards Regression
Analysis
With the aim of the prognostic value of MPB validation, MPBs
and other essential clinical features (gender, age, stage, and
laterality) from TCGA-ACC data were selected for OS and
DFS univariable Cox analysis. A factor of p value < 0.05 was
identified and further selected to conduct multivariate Cox
analysis. This analysis could determine whether an MPB was
independent from the rest of the clinical factors for predicting OS
or DFS of ACCs.

Nomogram Construction
Moreover, with the aim of exploring a simple, quick, and
visualized method to predict the possibility of OS or DFS of
patients with ACC, two nomograms were constructed (one for
OS, the other for DFS) via TCGA-ACC data by using package
“rms” (Yizhou et al., 2013). Factors showed meaningful p value
in Cox regression analysis (including MPBs and clinical
features). Calibrate curves were drawn to test the
nomogram, the 45° line was defined as the best prediction.
In addition, we evaluated the consistency index (C-index)
between the actual probability and predicted probability to
further measure the prediction effectiveness of the nomogram
(Michael and Ralph, 2010). With the aim of avoiding the over-
fitting problem, we conducted cross-validation before
nomogram construction. Two datasets (GSE10927 and
GSE19750) including their OS information were obtained
for external verification of the OS-nomogram by calculating
C-index and AUC. Meanwhile, GSE76019 and GSE76021 with
integral DFS information were included for DFS-nomogram
verification.

RESULTS

DEG Screening
By using the “limma” package in R, we screened 511 DEGs in
GSE75415 and 724 DEGs in GSE12368, separately. As shown in
Figures 1A,B, 203 over-expressed and 308 low-expressed genes
were screened via GSE75415. Furthermore, 258 genes with high
expression and 466 genes with low expression were explored via
GSE12368. The DEGs both belonged to GSE75415 and
GSE12368, including 165 genes (59 upregulated and 106
downregulated) which were finally screened out (Figures
1C,D). All the DEGs we identified are available in
Supplementary Table S2.

Weighted Co-Expression Network
Construction and Key Module Identification
After weeding out the outlier samples, a total of 29 samples
were used in WGCNA (Supplementary Figures S2A,B). After
constructing a co-expression network, the soft-thresholding
[beta (β) = 9 (scale free R2 = 0.84)] was determined as shown
in Supplementary Figures S2C–F. In WGCNA, soft-
thresholding was used for further adjacencies evaluation.
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Immediately, genes were assigned to modules. Also, modules
with pairwise correlation of > 0.75 were merged. Finally, 51
modules were screened out (Supplementary Figure S2G).
Among them, the most relevant module was the blue module
(P = 2e-05, r = 0.80) (Figure 2A). We also found that the MS of
the blue module was the highest compared with the rest of the
modules (Figure 2B). As shown in Figure 2C, MM and GS of
the blue module showed a significant relationship (P = 1e-200,
cor = 0.73). Thus, we regarded the blue module as the key
module in the present study.

Five Small Molecule Drugs Showed
Powerful Potential to Treat ACC
By performing CMap analysis, we could recommend some drugs
to treat ACC. As shown in Supplementary Table S3, we screened
out eight molecule drugs. Five small molecule drugs including
chlorpromazine, trifluoperazine, alpha-estradiol, 15-delta
prostaglandin J2, and vorinostat might be potential drugs to
treat ACC. The detailed information of the five drugs is
shown in Supplementary Table S3.

Candidate Hub Gene and Hub Gene
Identification
Firstly, a PPI network of the 165 DEGs was built. We regarded 74
genes as hub biomarkers because of their high degrees of
connectivity (degree ≥ 4, Supplementary Figure S3A). A total

of 123 genes with |cor.geneModuleMembership| > 0.8; |
cor.geneTraitSignificance| > 0.2 were screened, 99 of which
were subsequently chosen via PPI network construction
(degree ≥ 4, Supplementary Figure S3B). Finally, 29 genes
overlapping between hub genes in DEGs (n = 74) and hub
genes in the hub modules (n = 99) were identified, which were
considered to be candidate hub genes.

As shown in Supplementary Table S4, the survival analysis
indicated that 24 genes were associated with overall survival (OS)
and diseases-free survival (DFS) in TCGA-ACC data. A total of
19 genes were associated with OS in GSE19750. Overall, 21 genes
in GSE76019 and 29 genes in GSE76021 were associated with
event-free survival (EFS). Genes that showed a significant p value
(p < 0.05) in these survival analyses were considered to be hub
genes related to survival and prognosis of patients with ACC.
Finally, nine genes [ASPM (abnormal spindle microtubule
assembly), BIRC5 (baculoviral IAP repeat containing 5),
CCNB2 (cyclin B2), CDK1 (cyclin dependent kinase 1),
DLGAP5 (DLG associated protein 5), FOXM1 (forkhead box
M1), RACGAP1 (Rac GTPase activating protein 1), TOP2A
(DNA topoisomerase II alpha), and TPX2 (TPX2 microtubule
nucleation factor)] were screened out. The results of survival
analyses of the hub genes are shown in Figure 3 (OS, TCGA-ACC
data), Supplementary Figure S4 (DFS, TCGA-ACC data),
Supplementary Figure S5 (OS, GSE19750), Supplementary
Figure S6 (EFS, GSE76019), and Supplementary Figure S7
(EFS, GSE76021). Also, we explored univariate Cox analysis
for the nine genes based on TCGA-ACC data, GSE76019, and

FIGURE 1 | (A) Volcano plot visualizing DEGs in GSE75415. (B) Volcano plot visualizing DEGs in GSE12368. (C) Identification of overlapped upregulated DEGs
between GSE75415 and GSE12368. (D) Identification of overlapped downregulated DEGs between GSE75415 and GSE12368.
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GSE76021. As shown in Supplementary Table S5, the result was
consistent with what we got for survival analysis.

Hub Gene Validation
Based on GSE10927, GSE19750, GSE75415, GSE76019,
GSE76021, and TCGA-ACC data, the stage plots of hub genes
were determined and these genes did not perform as well as we
expected. In TCGA-ACC data, ASPM (F = 6.939, p = 0.001),
BIRC5 (F = 3.368, p = 0.034), CCNB2 (F = 4.844, p = 0.009),
CDK1 (F = 6.779, p = 0.001), DLGAP5 (F = 4.170, p = 0.014),
FOXM1 (F = 7.569, p = 0.001), RACGAP1 (F = 4.717, p = 0.009),
TOP2A (F = 4.687, p = 0.008), and TPX2 (F = 5.232, p = 0.005)
were significantly associated with tumor stage (Supplementary
Table S6). In GSE10927, only ASPM showed a significant p value
(F = 4.254, p = 0.030) (Supplementary Table S6). In GSE19750,
GSE75415, and GSE76019, unfortunately none of these hub genes
were closely relevant to tumor stage (Supplementary Table S6).
In GSE76021, only CCNB2 (F = 7.569, p = 0.001) was significantly
related to tumor stage (Supplementary Table S6). As for grade
plots, the results of the unpaired t test suggested that ASPM,
BIRC5, CCNB2, CDK1, DLGAP5, FOXM1, RACGAP1, TOP2A,
and TPX2 were closely related to tumor grade based on
GSE10927 (the p values are shown in Supplementary Table
S7). In GSE19750, only CCNB2 (F = 6.271, p = 0.013) was
significantly associated with tumor grade (Supplementary Table

S6). In bioinformatics analysis of each dataset (GSE10927,
GSE12368, GSE19750, and GSE75415), all the hub genes were
highly expressed in ACCs compared to normal tissue
(Supplementary Table S8).

ROC and DCA
By using GSE10927, GSE12368, GSE19750, and GSE75415, ROC
curve analysis was performed and the AUC was evaluated for
distinguishing ACCs and normal samples. The AUC values of
hub genes were greater than 0.84, which suggested that all of the
hub genes could distinguish ACCs from normal tissues well
(Table 1). Also, the AUC was calculated to distinguish
localized ACC (stages I or II) and advanced ACC (stages III
or IV) based on all the datasets we mentioned in this study. In
TCGA-ACC data, all the hub genes could distinguish localized
ACC and advanced ACC well (Table 1). In GSE19750, BIRC5
(AUC = 0.727) and TOP2A (AUC = 0.765) worked well
(Table 1). In GSE76019, only ASPM (AUC = 0.713) could
distinguish localized ACC and advanced ACC well (Table 1).
In GSE10927, GSE75415, and GSE76021, none of these hub genes
could distinguish localized ACC from advanced ACC well
(Table 1), which is not what we expected. According to the
results of distinguishing ACC of low grade and ACC of high
grade, all these genes showed a significant p value (AUC > 0.80)
based on GSE10927 (Table 1). But in GSE19750, BIRC5

FIGURE 2 | (A) Heatmap of the correlation between module eigengenes (MEs) and different clinical information of ACC [tumor stage, survival years (survival time),
and survival status]. (B) Distribution of average gene significances and errors in the modules associated with the survival status of ACC. (C) Scatter plot of module
eigengenes related to survival status in the blue module.
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(AUC = 0.495) could not distinguish ACC of low grade and
ACC of high grade well (Table 1). As for results of AUC to
distinguish ACA and ACC, the AUC values of hub genes were
greater than 0.85 by using GSE10927 and GSE12368, which
suggested that all the hub genes worked well (Table 1). But in
GSE75415, only FOXM1 (AUC = 0.747), TOP2A (AUC = 0.726),
and TPX2 (AUC = 0.726) could distinguish ACC and ACA well.
All the results of this part are shown in Table 1. As for the DCA
results, eight of the hub genes (ASPM, BIRC5, CDK1, DLGAP5,
FOXM1, RACGAP1, TOP2A, and TPX2) expressed a strong
potential for clinical practice (Supplementary Figure S8).
Whatever the threshold probability (Pt) expressed, the eight
genes displayed great potential. For CCNB2, it performed well,

only Pt was approximately between 0.20 and 0.60. All in all, these
results suggested that though these hub genes performed well in
some datasets, they need to be tested by more in-depth study.

Hub Gene-Associated Biological Pathways
GO analysis indicated that candidate hub genes were involved in
10 biological processes (BPs), including nuclear division,
organelle fission, mitotic nuclear division, chromosome
segregation, nuclear chromosome segregation, sister chromatid
segregation, mitotic sister chromatid segregation, cell cycle
checkpoint, regulation of chromosome segregation, and
microtubule cytoskeleton organization involved in mitosis
(Supplementary Figure S9A). As for the KEGG pathways,

FIGURE 3 | Overall survival analyses on hub genes (ASPM (A), BIRC5 (B), CCNB2 (C), CDK1 (D), DLGAP5 (E), FOXM1 (F), RACGAP1 (G), TOP2A (H), and
TPX2 (I)) based on TCGA-ACC data. Survival curves for patients in different groups. Red lines represent high expression of hub genes, while blue lines represent low
expression of hub genes.
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candidate biomarkers were majorly associated with cell cycle,
progesterone-mediated oocyte maturation, oocyte meiosis,
cellular senescence, and p53 signaling pathway
(Supplementary Figure S9B). To summarize, we found that
candidate hub genes were majorly associated with cell cycle
and DNA replication-related biological pathways.

Four MPBs Showed Powerful Potential to
Predict OS
To pick out some genes with great value for predicting OS among the
nine hub genes, threemethods including LDA, KNN, and SVM from
the machine learning field were included in this part. As Table 2
describes, though all the sixteen biomarkers might perform well in
recognizing ACCs from alive ACC samples (the average accuracy ≥
0.70), four MPBs including ASPM (average accuracy = 0.8228),
BIRC5 (average accuracy = 0.8059), CCNB2 (average accuracy =
0.8080), andCDK1 (average accuracy = 0.8080)were screened out for
more accurate prediction of OS. Furthermore, time-dependent ROC
analysis for the four genes was conducted. We concluded that all the
four MPBs could predict OS of patients with ACC well (Figure 4).
For ASPM, the AUCs of 1-, 3-, and 5-years OS were 0.816, 0.939, and
0.885, respectively (Figure 4A). For BIRC5, theAUCs of 1-, 3-, and 5-
years OS were 0.816, 0.953, and 0.790, respectively (Figure 4B). For
CCNB2, the AUCs of 1-, 3-, and 5-years OS were 0.762, 0.948, and
0.805, respectively (Figure 4C). For CDK1, the AUCs of 1-, 3-, and 5-
years OS were 0.841, 0.925, and 0.863, respectively (Figure 4D).

Mutations and CNVs of MPBs Were
Associated With OS of Patients With ACC
According to the result, four MPBs were altered in 15 (20%) of 76
ACC patients (Figure 5B). The most altered gene was ASPM
(12%, Figure 5A). And we further concluded that mRNA high
was the main type (Figure 5A). For exploring the relationship
between gene expression and gene alteration, we found that genes
with more alterations were more likely to be highly expressed.
Figure 5C shows the network containing 54 nodes (including
4 MPBs and 50 most altered neighbor genes). In addition, this
network also demonstrated that CDK1 and BIRC5 were the
targets of some kinds of anticancer drugs, which suggested
that ASPM and CCNB2 might be new therapeutic targets to
treat ACC. Moreover, CNVs of ASPM (gains), BIRC5 (shallow
deletions, gains), CCNB2 (shallow deletions, gains), and CDK1
(shallow deletions, gains) caused their higher expressions
compared with samples without CNVs (diploids), which
demonstrated that CNVs of MPBs were associated with their
expression levels (Figure 5D).

As for the effect of CNVs and mutations of genes on OS, we
concluded that ACCs with ASPM shallow deletions (p = 0.0200)
had better OS compared to those affected by ASPM copy number
gains. In addition, there was a contrary conclusion that ACCs
with shallow deletions in CDK1 (p = 0.0047) had poor OS
(Figure 5E). Moreover, ACCs of alterations in the four
biomarkers had worse OS (total alterations: p < 0.0001; ASPM
alterations: p = 0.00015; BIRC5 alterations: p = 0.00055; CCNB2
alterations: p < 0.0001; CDK1 alterations: p < 0.0001; Figure 5F).T
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TABLE 2 | The accuracy of classification of LDA-based classifier, KNN-based classifier, linear-SVM-based classifier, polynomial-SVM-based classifier, RBF-SVM-based
classifier, and sigmoid-kernel-SVM based classifier.

TCGA-ACC LDA KNN Linear-SVM Polynomial-SVM RBF-SVM Sigmoid-kernel SVM Average accuracy

ASPM 0.8354 0.8101 0.8101 0.8228 0.8354 0.8228 0.8228
BIRC5 0.8101 0.8228 0.8101 0.7722 0.8101 0.8101 0.8059
CCNB2 0.7975 0.8481 0.7975 0.8101 0.7975 0.7975 0.8080
CDK1 0.7848 0.8354 0.8101 0.8101 0.8101 0.7975 0.8080
DLGAP5 0.7595 0.7975 0.7595 0.7722 0.7722 0.7848 0.7743
FOXM1 0.7595 0.7848 0.7595 0.7595 0.7468 0.7722 0.7637
RACGAP1 0.7975 0.7848 0.7975 0.7975 0.7975 0.6329 0.7680
TOP2A 0.7848 0.7975 0.7342 0.7975 0.7975 0.7089 0.7701
TPX2 0.7342 0.7848 0.7342 0.7595 0.7468 0.7342 0.7490

Note: LDA: linear discriminant analysis; KNN: K-nearest neighbor; RBF: radial basis function; SVM: support vector machine.

FIGURE 4 | Time dependent ROC analyses at 1, 3, and 5 years based on MPB expression. (A) ASPM, (B) BIRC5, (C) CCNB2, and (D) CDK1.
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Identification of MPB-Related Biological
Pathways and Drugs
With the standards set before, interestingly, ASPM, BIRC5,
CCNB2, and CDK1 were involved in just one KEGG signaling
pathway called cell cycle as shown in Supplementary Table S8 (p
values are also described in Supplementary Table S8). As for the
enriched drugs, ASPM was significantly enriched in 6 drugs,

BIRC5 was associated with 6 drugs, CCNB2 was related to 11
drugs, and CDK1 was enriched in 6 drugs (Table 3).

MPB Expressions Were Related to Immune
Infiltration Level in ACC
Immune infiltration level was an independent predictor of
sentinel lymph node status and survival in tumors. Here we

FIGURE 5 | A summary of mutations and CNVs of MPBs. (A)Genetic alterations associated with MPBs and expression heatmap of MPBs based on the data from
TCGA. (B) The total alteration frequency of MPBs in TCGA-ACC is illustrated. (C) The network contains 54 nodes, including our 4 query genes and the 50most frequently
altered neighbor genes. The relationship between hub genes and tumor drugs is also illustrated. (D) Correlation between different CNV patterns and mRNA expression
levels of MPBs respectively. (E) Survival analysis of ACC patients with CNVs of MPBs based on TCGA ACC data. (F) Survival analysis of ACC patients with
mutations of MPBs based on TCGA ACC data.
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assessed the correlation of MPB expressions with immune
infiltration level in ACC. The analysis concluded that ASPM
expression was positively relevant to tumor purity (cor = 0.300,
p = 0.009) and infiltrating levels of B cells (cor = 0.272, p = 0.020) and
dendritic cells (cor = 0.236, p = 0.044) but had no significant
correlations with infiltrating levels of CD8 + T cells, CD4 + cells,
macrophages, and neutrophils (Supplementary Figure S10A).
Unfortunately, BIRC5 expression was not related to tumor purity
or infiltrating levels of immune cells (Supplementary Figure S10B).
Moreover, there was a positive relationship between CCNB2
expression and tumor purity (cor = 0.268, p = 0.021) and
infiltrating level of dendritic cells (cor = 0.238, p = 0.043)
(Supplementary Figure S10C). As for CDK1, the expression of
CDK1 only had a positive correlation with tumor purity (cor =
0.283, p = 0.015) (Supplementary Figure S10D). To summarize, we
found that ASPM, CCNB2, and CDK1 expressions were significantly
associated with tumor purity, which could be a sign that ASPM,
CCNB2, and CDK1 played specific roles in immune infiltration
in ACC.

In addition, as shown in Supplementary Figure S13, ASPM
expression (Supplementary Figure S11A), BIRC5 expression
(Supplementary Figure S11B), and CCNB2 expression

(Supplementary Figure S11C) were significantly higher in 17
types of cancer compared with adjacent normal tissues. In 25
cancer types, CDK1 showed an upregulated trend when
comparing to normal tissues (Supplementary Figure S11D).
Unfortunately, there was a lack of adjacent normal tissues in ACC
(based on TCGA data), and we could not compare the expressions
between ACC and normal tissue of MPBs. But as per our previous
results in this study, all the MPBs were over-expressed (based on
GSE10927, GSE12368, GSE19750, and GSE75415).

Association of MPB Expressions With
Immune Microenvironment Score Levels
Then we found that patients with ACC in the high ESTIMATE-
score group had better OS and disease-free survival (DFS).
Patients of low ASPM expression and low CDK1 expression
had higher ESTIMATE scores (Figure 6C). As shown in
Figure 6D, there was a trend where ACCs which had a high-
immune score had superior OS compared to those with a low-
immune score. Meanwhile, patients with a high-immune score
had better disease-free survival (DFS) compared with patients
with a low-immune score, significantly (Figure 6E). The unpaired

TABLE 3 | Gene set enrichment analyses in four hub genes’ (ASPM, BIRC5, CCNB2, CDK1) high-expression phenotype.

Gene symbol Reference gene set Name Size ES NES NOM p-val FDR q-val

ASPM c2.cp.kegg.v7.0.symbols.gmt KEGG_CELL_CYCLE 122 −0.7048 −2.1129 0.0000 0.0029
DSigDBv1.0.gmt LUCANTHONE_CTD_00006227 202 −0.8190 −1.8734 0.0000 0.0357

MONOBENZONE_PC3_DOWN 196 −0.6530 −2.1874 0.0000 0.0160
8-AZAGUANINE_PC3_DOWN 192 −0.6831 −2.1539 0.0000 0.0160
THIOGUANOSINE_MCF7_DOWN 145 −0.6482 −2.0313 0.0000 0.0392
AZACYCLONOL_MCF7_UP 123 −0.6266 −1.5119 0.0481 0.2097
RESVERATROL_MCF7_DOWN 100 −0.8126 −1.8743 0.0000 0.0377

BIRC5 c2.cp.kegg.v7.0.symbols.gmt KEGG_CELL_CYCLE 122 −0.7182 −2.2001 0.0000 0.0000
DSigDBv1.0.gmt DASATINIB_CTD_00004330 474 −0.6359 −1.7919 0.0000 0.0585

LUCANTHONE_CTD_00006227 202 −0.8058 −1.8166 0.0000 0.0538
MONOBENZONE_PC3_DOWN 196 −0.6272 −2.0778 0.0020 0.0415
8-AZAGUANINE_PC3_DOWN 192 −0.6720 −2.1018 0.0000 0.0488
THIOGUANOSINE_MCF7_DOWN 145 −0.6460 −1.9901 0.0000 0.0248
RESVERATROL_MCF7_DOWN 100 −0.8303 −1.9074 0.0000 0.0322

CCNB2 c2.cp.kegg.v7.0.symbols.gmt KEGG_CELL_CYCLE 122 −0.6765 −2.0239 0.0000 0.0110
DSigDBv1.0.gmt DASATINIB_CTD_00004330 474 −0.6032 −1.7238 0.0041 0.0930

LUCANTHONE_CTD_00006227 202 −0.7869 −1.7530 0.0000 0.0810
MONOBENZONE_PC3_DOWN 196 −0.6328 −2.0912 0.0000 0.0598
8-AZAGUANINE_PC3_DOWN 192 −0.6633 −1.9833 0.0000 0.0525
THIOGUANOSINE_MCF7_DOWN 145 −0.6569 −1.9812 0.0000 0.0481
PRENYLAMINE_MCF7_UP 140 −0.6343 −1.6213 0.0120 0.1535
MEFLOQUINE_MCF7_UP 136 −0.6014 −1.5385 0.0373 0.2092
AZACYCLONOL_MCF7_UP 123 −0.6562 −1.5766 0.0237 0.1748
AZACITIDINE_PC3_UP 115 −0.6318 −1.4942 0.0339 0.2350
FENDILINE_MCF7_UP 112 −0.6230 −1.5397 0.0354 0.2081
RESVERATROL_MCF7_DOWN 100 −0.8189 −1.8592 0.0000 0.0580

CDK1 c2.cp.kegg.v7.0.symbols.gmt KEGG_CELL_CYCLE 122 −0.7160 −2.1710 0.0000 0.0049
DSigDBv1.0.gmt DASATINIB_CTD_00004330 474 −0.6174 −1.7945 0.0020 0.0569

LUCANTHONE_CTD_00006227 202 −0.8038 −1.8426 0.0000 0.0481
MONOBENZONE_PC3_DOWN 196 −0.6407 −2.1553 0.0000 0.0338
8-AZAGUANINE_PC3_DOWN 192 −0.6686 −2.0766 0.0000 0.0501
THIOGUANOSINE_MCF7_DOWN 145 −0.6511 −2.0313 0.0000 0.0485
RESVERATROL_MCF7_DOWN 100 −0.8223 −1.8556 0.0000 0.0474

Note: ES, enrichment score; NES, normalized enrichment score; NOM p-val, nominal p value; FDR, false discovery rate q value.
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t test indicated that there was a negative relationship between
ASPM expression and immune score level (Figure 6F). As shown
in Figure 6G, an ACC patient with a high-stromal score had
better OS. Meanwhile, patients with a high-stromal score had
better disease-free survival (DFS) compared with patients with a

low-stromal score, significantly (Figure 6H). The unpaired t test
also suggested that there was a negative relationship between
ASPM expression and stromal score level (Figure 6I). These
results demonstrated that high expressions of MPBs had worse
OS and DFS in ACC patients indirectly.

FIGURE 6 | ESTIMATE scores were associated with overall survival (A) and disease-free survival (B) of patients with ACC. Correlation of MPB (C) expression with
ESTIMATE scores in ACC. Immune scores were associated with overall survival (D) and disease-free survival (E) of patients with ACC. Correlation of MPB (F) expression
with immune scores in ACC. Stromal scores were associated with overall survival (G) and disease-free survival (H) of patients with ACC. Correlation of MPB (I)
expression with stromal scores in ACC. *: p < 0.05; **: p < 0.01; NS: no significance.
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Prognostic Value of the Four Biomarkers
According to the result of univariate Cox analysis (Table 4),
ASPM, BIRC5, CCNB2, CDK1, and pathologic stage were
interfering factors of OS. p values are shown in Table 4.
Subsequent multivariate Cox analysis confirmed that ASPM
could predict the prognosis of ACC patients by individual. By
using the Coxph function in R package “survival”, we
conducted a Schoenfeld individual test for investigating the
proportional hazards assumption. The global Schoenfeld test
showed no significance (p = 0.1936, Supplementary Figure
S12A). Also, each variable including age (p = 0.6709), gender
(p = 0.6919), laterality (p = 0.6219), pathologic stage (p =
0.1688), ASPM (p = 0.3394), BIRC5 (p = 0.1285), CCNB2 (p =
0.4813), and CDK1 (p = 0.0657) was not statistically
significant (p > 0.05, Supplementary Figure S12A). Thus,
this Cox model conformed to the proportional hazards
assumption. For DFS, ASPM (hazard ratio = 2.768, 95% CI
of ratio: 1.450–5.284, p = 0.002), CCNB2 (hazard ratio = 2.441,
95% CI of ratio: 1.422–4.189, p = 0.001), CDK1 (hazard ratio =
1.928, 95% CI of ratio: 1.040–3.576, p = 0.037), and pathologic
stage (hazard ratio = 1.848 95% CI of ratio: 1.024–3.338, p =
0.042) were interfering factors of DFS via univariate Cox
analysis. ASPM must be the most important factor for DFS
of ACC patients suggested by multivariate Cox analysis
(hazard ratio = 7.335, p = 0.012). By using the Coxph
function in R package “survival”, we conducted a
Schoenfeld individual test for investigating the proportional
hazards assumption. The global Schoenfeld test showed no
significance (p = 0.8934, Supplementary Figure S12B). Also,
each variable including age (p = 0.3864), gender (p = 0.8702),
laterality (p = 0.5409), pathologic stage (p = 0.5914), ASPM
(p = 0.3790), BIRC5 (p = 0.4194), CCNB2 (p = 0.5385), and
CDK1 (p = 0.5581) was not statistically significant (p > 0.05,
Supplementary Figure S12B). Thus, this Cox model
conformed to the proportional hazards assumption.

Clinical Application of MPBs
Based on the factors which showed a significant p value in
multivariate Cox analysis, we constructed two nomograms
(one for OS, the other for DFS) to make better use of these
prognostic biomarkers. Two features including ASPM and
pathologic stage were used for construction of the OS-
nomogram (Figure 7A) meanwhile the DFS-nomogram
contained three factors including ASPM, CDK1, and
pathologic stage (Figure 8A). By reviewing the C-index and
AUC, we found that both the two nomograms performed well
in survival prediction. The OS-nomogram could make accurate
predictions about ACC patients’ OS via TGCA-ACC data
(C-index: 0.875; AUC: 0.871; Figure 7E), GSE10927 (C-index:
0.748; AUC: 0.740; Figure 7F), and GSE19750 (C-index: 0.612;
AUC: 0.844; Figure 7G). As for the predication performance of
the DFS-nomogram, it was obvious that the DFS-nomogram
showed accurate prediction potential of ACC patients’DFS based
on TCGA-ACC data (C-index: 0.834; AUC: 0.818; Figure 8E),
GSE76019 (C-index: 0.694; AUC: 0.735; Figure 8F), and
GSE76021 (C-index: 0.749; AUC: 0.783; Figure 8G). As the
result of the calibration curve suggested, both the OS-
nomogram (Figures 7B–D) and DFS-nomogram (Figures
8B–D) had good prediction effectiveness compared to the
ideal model for a nomogram’s 1-, 3-, and 5-years OS estimates.

DISCUSSION

Though ACC is a relatively orphan malignant tumor, most ACCs
are diagnosed in advanced stages (Guillaume et al., 2014). The
5-years survival rate of ACC is still not satisfactory (only 35% as
reported) (Guillaume et al., 2014). In consideration of the poor
prognosis of ACC patients, it was of urgent need to explore a few
effective and novel biomarkers predicting the survival and
prognosis of patients with ACC by integrative bioinformatics

TABLE 4 | Cox univariable and multivariable analyses of overall survival (OS) and disease-free survival (DFS).

Variable Univariate analysis Multivariate analysis

HR LCI UCI p value HR LCI UCI p value

Overall survival (OS) ASPM 3.184 2.157 4.701 <0.001 3.262 1.138 9.350 0.028
BIRC5 2.862 1.946 4.209 <0.001 1.941 0.811 4.646 0.137
CCNB2 2.812 1.935 4.085 <0.001 0.989 0.443 2.208 0.978
CDK1 3.873 2.342 6.405 <0.001 0.489 0.140 1.710 0.263
Age 1.011 0.987 1.036 0.365
Gender 1.000 0.468 2.135 0.999
Laterality 0.841 0.394 1.796 0.654
Pathologic stage 2.912 1.858 4.562 <0.001 1.943 1.191 3.170 0.008

Disease-free survival (DFS) ASPM 2.768 1.450 5.284 0.002 7.335 1.538 34.994 0.012
BIRC5 1.674 0.979 2.865 0.060
CCNB2 2.441 1.422 4.189 0.001 2.297 0.717 7.362 0.162
CDK1 1.928 1.040 3.576 0.037 0.114 0.021 0.617 0.012
Age 0.998 0.963 1.034 0.919
Gender 2.386 0.665 8.563 0.182
Laterality 0.423 0.132 1.348 0.146
Pathologic stage 1.848 1.024 3.338 0.042 1.205 0.597 2.433 0.602
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analysis. Moreover, we attempted to provide clinicians a simple,
quick, and accurate method for survival prediction by
constructing nomograms.

Based on WGCNA, DEG, and PPI analysis, we identified nine
genes which might be candidate biomarkers in ACC. We further
explored the potential functions of these hub genes. The results of
functional enrichment analysis suggested that the hub genes were
majorly enriched in cell cycle and DNA replication-related pathways.
Cell cycle is the basic process of cell proliferation (Kaistha et al., 2015).
Interestingly, two previous studies demonstrated that most of the
nine biomarkers were effectively involved in the cell cycle of renal cell

carcinoma (Chen et al., 2018;Wang et al., 2018), whichmade usmore
confident in our findings. Yuan at al. confirmed that ASPM, FOXM1,
RACGAP1, and TPX2 were significantly associated with not only
tumor progression but also prognosis of ACC (Yuan et al., 2018). In
the same datasets they used (TCGA-ACC data and GSE19750), we
came to the same conclusion. But in other datasets (GSE10927,
GSE19750, GSE75415, GSE76019, and GSE76021), these genes were
not significantly related to tumor progression as we expected.
Therefore, we thought there needs to be stronger evidence and
more in-depth validation for exploring the correlation between the
nine genes and tumor progression. Previous studies indicated that

FIGURE 7 | The nomogram for predicting the proportion of ACC patients with 1-, 3-, or 5-years OS (A). The calibration plots for predicting 1- (B), 3- (C), or 5- (D)
year OS. Receiver operating characteristic (ROC) curves and area under the curve (AUC) statistics to evaluate the diagnostic efficiency of the nomogram in TCGA-ACC
data (E), GSE10927 (F), and GSE19750 (G).
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DNA replication regulation was one of the core events of cell cycle
regulation (Fragkos et al., 2015). Cell cycle and DNA replication
influenced each other and there existed a complicated relationship
between them (Lin et al., 2017). To summarize, the conclusions of the
above studies provided strong support for suggesting the sixteen
genes as new prognostic biomarkers for ACC patients.

Then four MPBs (including ASPM, BIRC5, CCNB2, and CDK1)
with higher accuracy in predicting survival were screened out among
the nine genes by performing LDA, KNN, SVM, and time-dependent
ROC. The effect of mutations and CNVs of MPBs were subsequently
evaluated. These MPBs were altered in 15 (20%) patients with ACC.
ASPM was altered most and mRNA high was the main type. The
next-step process concluded thatmutations and CNVs ofMPBs were
related to ACC patients’ OS.

Considering that the tumor immune microenvironment
showed a strong correlation with progression and treatment of

tumors. We also attempted to explore the relationship in this
study. The results suggested that MPB expressions were
significantly correlated with immune infiltration level in ACC.
Moreover, high expressions of MPBs were effectively associated
with worse survival in patients with ACC.

In addition, the CMap analysis demonstrated that five small
molecule drugs including chlorpromazine, trifluoperazine, alpha-
estradiol, 15-delta prostaglandin J2, and vorinostat might be
novel drugs for ACC treatment. These MPBs were also
significantly enriched in cell cycle. As for the enriched drugs,
ASPM was significantly enriched in 6 drugs, BIRC5 was
associated with 6 drugs, CCNB2 was related to 11 drugs, and
CDK1 was enriched in 6 drugs. All in all, these drugs might be
potential choices for treating ACC.

A nomogram mainly assigns scores to each value level of each
influencing factor through the contribution of each influencing factor

FIGURE 8 | The nomogram for predicting the proportion of ACC patients with 1-, 3-, or 5-years DFS (A). The calibration plots for predicting 1- (B), 3- (C), or 5- (D)
year DFS. Receiver operating characteristic (ROC) curves and area under the curve (AUC) statistics to evaluate the diagnostic efficiency of the nomogram in TCGA-ACC
data (E), GSE76019 (F), and GSE76021(G).
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to the outcome variable in the model, and then adds each score to
obtain the total score. Finally, through the functional conversion
relationship between the total score and the occurrence probability of
the outcome event, the predicted value of the individual outcome
event is calculated. In this manuscript, based on the factors which
showed a significant p value in multivariate Cox analysis, we
constructed two nomograms (one for OS, the other for DFS) to
make better use of these prognostic biomarkers. Clinicians might
realize the individualized and accurate prediction of ACC patients via
the two nomograms.

We also have to discuss the deficiencies of our study. Firstly,
there was a lack of validation by using in vitro or in vivo models.
Therefore, we will verify the four genes by conducting histology
or animal experiments in further research. Secondly, although we
identified and validated the four MPBs which were related to
prognosis of ACC patients by using several independent datasets,
these datasets were of small size, and there was a lack of clinical
trials by using samples from patients. Therefore, we need to verify
our results by collecting large amounts of patient samples and
relevant clinical data in a further study.

In conclusion, we performed eight independentmethods to screen
nine hub genes related to survival and prognosis of ACC by using
seven independent datasets. Four MPBs among them were further
screened out, which performed well in ACC survival and prognosis
prediction. Furthermore, two nomograms including the OS-
nomogram and DFS-nomogram were established, which provided
clinicians with a quick, accurate, and visualized method for OS and
DFS prediction of patients with ACC.
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Identifying Topics and Evolutionary
Trends of Literature on Brain
Metastases Using Latent Dirichlet
Allocation
Jiarong Chen1,2,3*, Matt Williams3,4, Yanming Huang1 and Shijing Si5*

1Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central
Hospital, Jiangmen, China, 2Department of Oncology, Jiangmen Central Hospital, Jiangmen, China, 3Computational Oncology
Group, Department of Surgery and Cancer, Imperial College London, London, United Kingdom, 4Department of Radiotherapy,
Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom, 5Duke University, Durham, NC,
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Research on brain metastases kept innovating. We aimed to illustrate what topics the
research focused on and how it varied in different periods of all the studies on brain
metastases with topic modelling. We used the latent Dirichlet allocation model to analyse
the titles and abstracts of 50,176 articles on brain metastases retrieved from Web of
Science, Embase and MEDLINE. We further stratified the articles to find out the topic
trends of different periods. Our study identified that a rising number of studies on brain
metastases were published in recent decades at a higher rate than all cancer articles.
Overall, the major themes focused on treatment and histopathology. Radiotherapy took
over the first and third places in the top 20 topics. Since the 2010’s, increasing attention
concerned about gene mutations. Targeted therapy was a popular topic of brain
metastases research after 2020.

Keywords: brain metastases, topic modelling, LDA, research trends, research topics

1 INTRODUCTION

Brain metastases are a common and devastating complication of cancer. It is estimated that brain
metastases develop in 20% of patients with cancer (Nayak et al., 2012; Tabouret et al., 2012) although
the true rate, as measured in autopsy studies may be as high as 40% (Percy et al., 1972; Tsukada et al.,
1983; Achrol et al., 2019). The prognosis of patients who develop brain metastases is poor, with only
7% surviving more than 2 years (Hall et al., 2000).

Brain metastases are the result of haematogenous seeding of spread cells from primary tumours to
the brain (Achrol et al., 2019). The most common primary tumours for patients with brain
metastases are lung, breast, colorectal cancers, melanoma and renal cell carcinoma (Ostrom
et al., 2018; Achrol et al., 2019). Established treatments for brain metastases include surgery,
chemotherapy and radiotherapy, while newer approaches include immunotherapy and targeted
therapies (Soliman et al., 2016; Niranjan et al., 2019; Galldiks et al., 2020). Prognostic factors,
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including age, Karnofsky performance status (KPS) and control
of primary tumour are well recognized, and predict median
overall survival periods of between 2.3 and 7.1 months (Gaspar
et al., 1997). Given their frequency and poor outcomes, there has
been a substantial amount of research into identifying the
mechanisms behind brain metastases and improving treatment
strategies. Molecular analyses have revealed some genes specific
to the risk of developing brain metastases, such as the tumour
suppressor LKB1 and KRAS (Zhao et al., 2014). Gene expression
profiling of brain metastases suggests metastases evolve from
primary tumours in order to gain more neuronal cell
characteristics and adapt to the microenvironment in the brain
(Park et al., 2011; Brastianos et al., 2015).

An important element of conducting research is to understand
the current literature. One way of doing this is through systematic
reviews and meta-analysis. However, such approaches have very
carefully defined inclusion criteria, and thus offer very detailed
analysis, but only of a small portion of the literature. For example,
our current systematic review and network meta-analysis of first-
line treatment for brain metastases includes only randomized
trials of different treatment approaches (Williams et al., 2018); it
therefore explicitly excludes published work on risk factors,
biology, prognosis, etc. As a consequence, such systematic
reviews ignore much of the published literature (Kozlowski
et al., 2021), and thus do not help us understand the literature
as a whole.

One approach to obtaining a better overview of the total
scope of the literature is topic modelling, and the commonest
approach is latent Dirichlet allocation (LDA). LDA is a
popular topic modelling algorithm that has been widely
used in different areas such as marketing, economics and
bioinformatics (Blei et al., 2003; Shirota et al., 2014; Liu
et al., 2016; Amado et al., 2018; Kozlowski et al., 2021) and
helps discover topics in large corpora of text through
clustering. Rather than considering the meaning of the
sentences, the LDA model breaks the input text into single
words and looks at groups of words that then occur together
(Delen and Crossland, 2008; Liu et al., 2016). Such an approach
requires some degree of pre-processing, in terms of removing
common, non-significant words, and aligning related words
that may have different ending (lemmatization). LDA allows
us to identify research topics across a large body of literature
and, importantly, does not require us to define a target topic
defined before the analyses, and thus offers a relatively
unbiased view of the literature.

In this study, we retrieved articles on cancer in general and
brain metastases specifically and analysed the number of articles
published, extracted topics and themes using LDA, and examined
trends in these over time.

2 MATERIALS AND METHODS

2.1 Publication Assessment
We used a previously developed website to identify studies
published and indexed in PubMed between 1947 and 2021
(https://esperr.github.io/pubmed-by-year/). We carried out two

separate searches with terms of cancer and brain metastases on
the platform in June 2021 to identify relevant publications, and
reported numbers in each category and proportions over time.

2.2 Study Cohort
We searched for relevant studies with keywords of “brain
metastases” (Supplementary Table S1) without limits on time
or language (Soon et al., 2014; Zheng et al., 2016). The search was
conducted in three databases including Web of Science
(1970–2021), Embase (1947–2021) and MEDLINE (1950–2021)
in June 2021. The search results were then imported into Endnote
20 (Camelot United Kingdom Bidco Limited, United Kingdom).
We identified and removed duplicates with Endnote by comparing
title, author, year, journal, volume and issues.

2.3 Data Pre-Processing
We extracted the title and abstract of every study found in the
search. We pre-processed the text using a standard approach,
and in line with other work (Cheng et al., 2020; Min et al., 2020).
All text were converted to lowercase and we removed double
spaces, special characters, and numbers. Subsequently, we
applied a list of general English stop words and general
words in abstracts (such as introduction, aim, purpose,
method, conclusion, and discussion) to the titles and
abstracts to remove non–information-bearing words from the
text. We lemmatized words using the Python package scispaCy.

2.4 Topic Modelling and Themes
LDA, first proposed by Blei et al. (2003) in 2003, has been widely
used in the biomedical literature analysis. The process for LDA is
shown as follows:

First, the Dirichlet distribution η and θ in the selection process
are defined: θ with parameter α for word selection and η with
parameter β for topic section. Second, the general process for each
document W is described in the following two steps:

1) Choose θ ~ Dir(β).
2) For each of the n words ωn:

a) Choose a topic zn ~ Multinomial(θ).
b) Choose a word ωn from p (ωn|zn; β), a multinomial

probability conditioned on the topic zn.

Every cleaned, lemmatized abstract and title were treated as a
single entry for the model. Topic analyses were conducted using
the LDA model imported from the Gensim package in Python
(3.0). The LDA model ignores the order of occurrence of terms
and sentence structure and so regards each entry as a “bag-of-
terms.” Topics were defined as co-occurrence probability of
individual words from the bag-of-terms. Following Cheng’s
study (Cheng and Hung, 2018), we chose the number of
topics that yields the largest perplexity score. We identified the
20 topics, and manually grouped topics into related themes.

Finally, we collected all the textual data collected from every
article (i.e., title and abstracts with stop words removed) into
individual words to develop the text corpus for the whole data set
and subsequently analyzed the word frequency using
CountVectorizer in the Python package scikit-learn.
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2.5 Visualization of Topics
Word clouds of the top 20 topics were generated using the
WordCloud package in Python. Figures were plotted
independently for each topic based on the first 20 terms. Size
variation of the terms indicated the probability of the term in
that topic.

2.6 Topic Trends
To illustrate the change of research trends on brain metastases in
different periods, we stratified the data into cohorts by decades of
the publishing dates. We illustrated the top 10 topics with 20
terms in the analysis for each cohort.

3 RESULTS

3.1 Publication Trends
Besides the absolute numbers of studies on brain metastases, it is
useful to look at relative proportions. As illustrated in Figure 1A,
literature on both brain metastases and cancer took up increasing
proportions of all publications on PubMed during 1947 and 2021.
All cancer research formed 7% of the articles in 1947, but
gradually increased to 14% by 2009. However, within that
general increase in research on brain metastases, brain
metastases comprised less than 1% of all cancer research
before 1968, but was over 3% by 2020 (Figure 1B).

3.2 Data Inclusion
We retrieved 90,028 results, including 21,158 from MEDLINE,
35,651 from Embase and 33,219 from Web of Science. After
duplicates removal, 50,176 results remained for further analysis
(Figure 2). There were fewer than 50 articles on brain metastases
per year before 1955 but the number kept increasing steadily
between the 1960’s and 1980’s and reached 100 publications per
year in 1974. The increase rate became even higher since 2000 and

FIGURE 1 | Publication trends on cancer and brain metastases. (A) Annual PubMed proportion for cancer and brain metastases (source: https://esperr.github.io/
pubmed-by-year/). (B) Percentage of articles on brain metastases in all cancer studies.

FIGURE 2 | Flow chart of study inclusion.
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publications stayed above 1,000 per year after 2007 (Figure 3A).
The articles published in the 2010’s overtook the total number
between 1947 and 2009 (Figure 3B).

3.3 Topics on Brain Metastases
We identified 20 topics for brain metastases-related articles
(Table 1; Figure 4). These topics correlated with different
areas, including treatment (T1, T3, T6, T15, T17, and T19),
tumour relationship (T2, T7, T12, and T16), histopathology
(T4, T8, T9, T11, T14, and T20), diagnosis (T10, T13, and
T18) and prognosis (T5). Treatment for brain metastases was
the commonest topic, and in particular radiotherapy played a key
role in two leading topics (T1 and T3). Another major theme was
around discovering the fundamental mechanism of brain
metastases.

3.4 Topic Trends in Different Periods
There were 251 studies whose publishing years were not available.
Thus, these studies were excluded from the trend analysis. Given
the small number of studies (n = 77) published between 1947 and
1949, we included studies from 1947–1949 in the 1950’s cohort
(Supplementary Table S2).

During 1947–1959, most of the articles tended to be
descriptions of the symptoms, primary cancer and survival of

patients with brain metastases. In the 1960’s, more studies
reported data on the detection of metastatic lesions from autopsy
or scan. Chemotherapy became the commonest term for the first
time in four of the top 10 topics in the 1970’s (T1, T5, T6, and T10).
Topic trends also revealed the involvement of improving imaging
techniques in diagnosing brain metastases. Computed tomography
(CT) firstly occurred in the term list of the 1970’s, followed by
magnetic resonance imaging (MRI) and positron emission
tomography (PET) in the topic terms of the 1980’s and 1990’s.
These imaging techniques remained of interest during 2000 and
2019. The involvement of new techniques in radiation also emerged
since the 1990’s focusing on stereotactic radiotherapy (SRS). Starting
from the 2010’s, terms related to gene mutations, such as epidermal
growth factor receptor (EGFR), tyrosine kinase inhibitor (TKI) and
anaplastic lymphoma kinase (ALK), became increasingly common
in the articles. Targeted therapy was a popular topic of brain
metastases research after 2020.

4 DISCUSSION

Brain metastases occur in more than 20% of all cancer patients
and carry a poor prognosis (Nayak et al., 2012; Tabouret et al.,
2012). Research into brain metastases is important, and existing

FIGURE 3 | The number of articles by year of publication.
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approaches, such as systematic reviews, while important, are
limited in their scope. In this study, we retrieved articles on
brain metastases and analysed the topics with the LDA model.
Furthermore, we split the articles into cohorts according to their
published dates and illustrated topics of different periods. An
increasing number of articles on brain metastases have been
published since 1950, rising at a higher rate than overall cancer
research (Figure 1). We identified 20 main topics for articles and
grouped these into 5 themes, of which treatment was the
commonest.

We used LDA in this work as it allows us to identify research
topics in the text of published studies and importantly does not
require predefined target topics. In that sense, LDA allows us to
develop an unbiased report of the literature, in contrast to
systematic reviews which impose strict criteria. It also has
convenient computational properties that allow us to scale up
the analysis, and thus assess very large bodies of work.

Within the 20 different topics, we identified five themes
that show the main areas of interest in publications about
brain metastases. As expected, treatment was the commonest

TABLE 1 | The highest frequent terms for 20 topics of the brain metastases-related articles.

Topic id Topics Highest frequent terms of topics

1 Radiotherapy patient, survival, brain, month, metastasis, treatment, irradiation, treat, radiation, radiotherapy, year, therapy, median,
follow, chemotherapy, disease, rate, tumour, local, time

2 Lung cancer lung, metastasis, carcinoma, patient, cell, liver, cancer, lymph, stage, node, small, pulmonary, adenocarcinoma, brain, case,
bone, bronchial, squamous, non, disease

3 Stereotactic radiosurgery dose, use, volume, field, treatment, technique, target, ray, cm, irradiation, gamma, radiation, beam, carcinoid, high,
stereotactic, fraction, position, film, normal

4 Basic science cell, tumour, mouse, human, growth, brain, antibody, line, culture, cd, metastatic, antigen, use, melanoma, lymphocyte,
specific, show, virus, injection, tissue

5 Prognosis patient, factor, analysis, value, prognostic, survival, group, significant, index, test, use, high, study, significantly, ratio,
correlation, clinical, score, predict, regression

6 Treatment development treatment, clinical, disease, therapy, brain, use, review, discuss, therapeutic, well, new, system, also, make, important,
development, give, patient, possible, many

7 Primary brain tumour tumour, case, tumour, malignant, patient, intracranial, meningioma, glioma, operation, metastasis, surgical, surgery,
glioblastoma, astrocytoma, metastatic, primary, lesion, diagnosis, brain, grade

8 Brain damage research on animal rat, day, animal, brain, injury, increase, secondary, damage, follow, injection, induce, effect, change, min, spinal, control,
ischemia, cord, decrease, study

9 Protein structure structure, secondary, protein, form, olfactory, gene, type, sequence, dendrite, terminal, region, beta, different, find, contain,
analysis, bind, suggest, site, study

10 Symptoms seizure, patient, secondary, epilepsy, eeg, syndrome, generalize, discharge, focal, focus, disorder, epileptic, paralysis,
temporal, cause, onset, occur, partial, type, drug

11 Nervous system neuron, nucleus, cortex, secondary, response, area, stimulation, activity, primary, dopamine, increase, change, effect,
motor, study, cortical, nerve, system, suggest, evoke

12 Primary cancer metastasis, cancer, brain, patient, metastatic, breast, carcinoma, primary, tumour, bone, site, lung, cns, case, disease,
diagnosis, renal, survival, liver, time

13 Symptoms & lesion characteristics case, report, year, patient, lesion, present, old, symptom, diagnosis, show, cerebral, right, examination, leave, reveal, sign,
brain, nerve, clinical, disease

14 Pharmacology brain, effect, receptor, acid, activity, increase, cell, induce, release, membrane, concentration, bind, also, enzyme,
mechanism, mouse, protein, system, rat, drug

15 Chemotherapy patient, response, dose, day, chemotherapy, treatment, week, toxicity, therapy, mg, combination, disease, treat, complete,
receive, month, study, phase, drug, cycle

16 Tumour type tumour, cell, tissue, case, show, carcinoma, type, primary, find, stain, brain, cat, large, positive, small, muscle, thyroid,
kidney, body, contain

17 Palliative care patient, secondary, care, symptom, study, brain, disorder, injury, use, result, depression, pain, problem, life, hospital,
function, medical, condition, stress, general

18 Imaging lesion, brain, image, use, contrast, method, mr, study, high, mri, imaging, value, obtain, time, weight, patient, technique,
result, normal, magnetic

19 Clinical trials group, effect, control, study, treatment, significant, trial, difference, compare, significantly, result, week, measure, patient,
improvement, reduce, placebo, receive, primary, test

20 White matter and cognitive deficit patient, matter, subject, white, secondary, control, disease, change, brain, study, dementia, normal, memory, task, atrophy,
ad, word, deficit, frontal, hemisphere
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theme which accounted for six out of 20 topics, and
importantly, the first and third commonest topics. Other
topics were focused on the relationship between brain
metastases and primary tumours, as well as histopathology,
with an interest in understanding the mechanism of
metastasis. Apart from these, prognosis and diagnosis were
also important themes.

Radiotherapy appeared in both the first and third topics,
indicating its crucial role in the treatment of brain metastases
(Table 1; Figure 4). Traditionally, radiotherapy has been
delivered as whole brain radiotherapy (WBRT) (Soffietti et al.,
2005). However, there have been long-standing attempts to
improve outcomes by varying dose and fractionation since the
early 1960’s (Chu and Hilaris, 1961; Peirce, 1964; Hindo et al.,
1970; Hendrickson, 1977), which correlates with the importance
of radiotherapy in our data since the 1960’s (Supplementary
Table S2).

The development of SRS which offers better local control and
less normal tissue dosimetry (Soffietti et al., 2005; Graham et al.,
2010; Abraham et al., 2018), has influenced the development of
the literature. Since the 1990’s, nearly all topics which included
radiotherapy focused on the use of stereotactic techniques and

related topics accounted appeared in at least one of the top 10
topics in those decades (T1 in the 1990’s, T7 and T8 in the 2000’s,
T3 and T9 in the 2010’s) (Supplementary Table S2).

Chemotherapy and related terms first occurred as the topmost
terms in four of the top 10 topics in the 1970’s (T1, T5, T6, and
T10) (Supplementary Table S2) when there were a variety of
studies trying to improve the outcome of brain metastases
patients with chemotherapy (Gercovich et al., 1975; Black,
1979). However, this then decreased after the 1970’s as people
became aware of the effect of the blood-brain barrier in reducing
the effect of chemotherapy in brain metastases. More recent work
focuses on combining chemotherapy and radiotherapy (T9 in the
1990’s, T1 in the 2000’s) (Supplementary Table S2).

There has been a substantial increase in interest in the basic
science associated with brain metastases since the 2000’s (T6 in
the 2000’s, T2, T7, T8, and T10 in the 2010’s, T2, T8, T9, and T10
since 2020). Targetable mutations, such as EGFR and ALK, were
commonly reported in the studies since the 2010’s (T2, T7, T8,
and T10 in the 2010’s), along with the relevant targeted therapy
agents, including crizotinib, alectinib, and lorlatinib (T4 since
2020) (Hida et al., 2017; Martínez et al., 2017; Camidge et al.,
2018; Khandekar et al., 2018) (Supplementary Table S2).

FIGURE 4 | Term frequency clouds of 20 topics on brain metastases. Topics in blue: topics related to treatment (T1, T3, T6, T15, T17, and T19). Topics in red:
topics related to tumour relationship (T2, T7, T12, and T16). Topics in purple: topics related to histopathology (T4, T8, T9, T11, T14, and T20). Topics in mocha: topic
related to prognosis (T5). Topics in green: topics related to diagnosis (T10, T13, and T18).
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Imaging plays an important role in the diagnosis and
management of brain metastases, and the topic trends follow
this. CT first occurred in the term list of the 1970’s (T3 in the
1970’s), followed by MRI and PET which appeared in the top 10
topics of the 1980’s (T10 in the 1980’s) and 1990’s (T1 in the
1990’s). Imaging techniques for brain metastases remained a
popular topic between 2000 and 2019 (T5 and T9 in the
2000’s, T1 and T4 in the 2010’s, T5 since 2020)
(Supplementary Table S2).

The major omission is surgery. Despite the key role of surgery
in the management of brain metastases, especially for large
metastases (Soffietti et al., 2017; Rosenfelder and Brada, 2019)
and several randomized trials showing the benefits of surgery
combined with WBRT (Mintz et al., 1996; Gállego Pérez-Larraya
and Hildebrand, 2014), surgically associated terms such as
resection occurred only in topics related to radiosurgery (T7
in the 2000’s, T3 in the 2010’s) (Supplementary Table S2). This is
in keeping with a general lack of research in surgery, and is a good
example where the small number of studies examining surgery is
a reflection of the weakness of the literature, rather than a
measure of the relative importance of surgery.

There are some limitations to this study. First, even though we
did not set limitations on languages or publication time, it is
difficult to include all articles especially those written not in
English or published before 1947 due to the restrictions in the
databases we used.Meanwhile, the number of articles in the initial
period was relatively small so that we combined articles between
1947 and 1949 with those of the 1950s when analysing topics of
different periods. Second, an inspection of titles and abstracts
shows many recent articles used new words and terms; however,
these newer topics did not occur often enough to make the top 20
topics overall. Thirdly, the LDA model breaks sentences into a
package of separate words and is more likely to consider their
frequency. Therefore, the results may not convey the original
context and significance of some phrases.

Overall, brain metastases remain a challenging clinical problem
with high morbidity and poor prognosis. We have used LDA to
provide an unbiased report of all the research into brain metastases
since the last 1940's, and compared it to the baseline amount of
research into cancer. It is notable that the literature on brain
metastases has risen to occupy a larger proportion of the published
cancer literature over time, and that themain therapeutic approach
that dominates the literature is radiotherapy. While we do not
suggest that simple count is sufficient to measure importance (i.e.
theremay be a few key, practice changing trials that involve surgery
or chemotherapy), it does help us understand the scope of the
literature. We think that this is important for several reasons.
Firstly, it helps us understand that general scope of all literature in
brain metastases. Secondly, it highlights where we might to focus
our efforts for systematic reviews, where there may be more
literature to review. Thirdly, it highlights both where they may
be options to optimize existing treatments (e.g. optimizing
radiotherapy) and also to address deficits in the literature (e.g.

the relative absence of literature on surgery). This is important for
clinicians, and also for research funders, who may want to reflect
on the potential routes to improving the areas of research
conducted in brain metastases.

5 CONCLUSION

In this paper, we presented an analysis of topics on brain metastases
research by utilizing LDA modelling, which revealed the history of
brain metastases studies and illustrated how treatment and
diagnostic techniques developed in different periods. We found
that brain metastases attracted increasing attention with a higher
rate than overall cancer research, especially since 2000. Among all
research on brain metastases, the most common themes were
treatment and histopathology and radiotherapy occupied the first
and third places in the top 20 topics, demonstrating its crucial role in
brain metastases research.
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Background: Although unplanned hospital readmission is an important

indicator for monitoring the perioperative quality of hospital care, few

published studies of hospital readmission have focused on surgical patient

populations, especially in the elderly. We aimed to investigate if machine

learning approaches can be used to predict postoperative unplanned 30-day

hospital readmission in old surgical patients.

Methods: We extracted demographic, comorbidity, laboratory, surgical, and

medication data of elderly patients older than 65 who underwent surgeries

under general anesthesia in West China Hospital, Sichuan University from July

2019 to February 2021. Different machine learning approaches were performed to

evaluate whether unplanned 30-day hospital readmission can be predicted. Model

performance was assessed using the following metrics: AUC, accuracy, precision,

recall, and F1 score. Calibration of predictions was performed using Brier Score. A

feature ablation analysis was performed, and the change in AUCwith the removal of

each feature was then assessed to determine feature importance.

Results: A total of 10,535 unique surgeries and 10,358 unique surgical

elderly patients were included. The overall 30-day unplanned

readmission rate was 3.36%. The AUCs of the six machine learning

algorithms predicting postoperative 30-day unplanned readmission

ranged from 0.6865 to 0.8654. The RF + XGBoost algorithm overall

performed the best with an AUC of 0.8654 (95% CI, 0.8484–0.8824),

accuracy of 0.9868 (95% CI, 0.9834–0.9902), precision of 0.3960 (95%

CI, 0.3854–0.4066), recall of 0.3184 (95% CI, 0.259–0.3778), and F1 score

of 0.4909 (95% CI, 0.3907–0.5911). The Brier scores of the six machine

learning algorithms predicting postoperative 30-day unplanned

readmission ranged from 0.3721 to 0.0464, with RF + XGBoost showing

the best calibration capability. The most five important features of RF +

XGBoost were operation duration, white blood cell count, BMI, total

bilirubin concentration, and blood glucose concentration.

Conclusion: Machine learning algorithms can accurately predict postoperative

unplanned 30-day readmission in elderly surgical patients.
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Background

The unplanned hospital readmission rate is one of the most

widely used indicators to assess hospital care quality (Gupta and

Fonarow, 2018). Due to its substantial contribution to medical

resource costs, unplanned hospital readmission is increasingly

recognized as an important public health concern, especially in

developed countries (Jencks et al., 2009; Axon and Williams,

2011). Geriatric surgical patients, vulnerable to chronic illnesses,

are at higher risk of unplanned hospital readmission with

compounded factors. Although not all of these readmissions

are preventable, it is critical to propose an effective framework for

their early identification. A substantial body of models exists to

identify patients at risk for unplanned readmission (Miotto et al.,

2016; Kansagara et al., 2011; van Walraven et al., 2012; ohnson

et al., 2019). However, most of them were created based on a

specific disease cluster and cannot be extrapolated to the entire

postoperative population, particularly elderly surgical patients

(Ali and Gibbons, 2017; Ko et al., 2020; Kong and Wilkinson,

2020; Mišić et al., 2020; Sander et al., 2020; Shebeshi et al., 2020;

Wasfy et al., 2020; Amritphale et al., 2021).

Recently, machine learning (ML) algorithms were considered

to be potential tools for developing clinical predictive models

because of their ability to deal with multidimensional datasets

and make accurate predictions (Deo, 2015; Jordan and Mitchell,

2015). Since ML algorithms can process nonlinear relationships

and interactions between predictors, they may be increasingly

used inmedical modeling. In this study, we aimed to investigate if

ML-based algorithms can accurately predict postoperative

unplanned 30-day readmission in an elderly surgical patient

cohort using input features, such as demographic,

comorbidity, laboratory, surgical, and medication data.

Methods

Data extraction

This study has been registered in the Chinese Clinical Trial

Registry (ChiCTR-1900021290), and ethical approval was

obtained from the Ethical Review Board of West China

Hospital, Sichuan University, China. All the relevant clinical

data were prospectively collected during the course of our routine

anesthesia risk assessment, intraoperative records, and

postoperative follow-up using a structured data schema

designed by our institution. We extracted perioperative

information of elderly patients older than 65 who underwent

surgeries under general anesthesia in West China Hospital,

Sichuan University from July 2019 to February 2021. For

patients who had multiple admission records, we only

included their first admissions for analysis. Meanwhile, for

patients who underwent multiple surgeries during a single

hospitalization, we included all their surgeries for analysis. A

flow chart describing the inclusion and exclusion process is

shown in Figure 1.

Model endpoint definition

The label “postoperative 30-day unplanned readmission”was

defined as follows: readmission due to the same surgical disease

or postoperative complications within 30 days postoperatively in

an unplanned fashion. Our professional follow-up personnel

collected this information by telephone 30 days after surgery.

Data preprocessing

There were few admissions with missing data. Variables with

a missing data rate greater than 30% were not included for model

development. For numeric variables with a missing data rate less

than 5%, the median of each variable was used for imputation.

For numeric variables with a missing data rate between 5% and

30%, we performed various imputation techniques using mean

absolute error (MAE) scores as estimated metrics for

comparison. To estimate the score on an original full dataset,

we excluded all missing value rows and randomly removed some

values to create a new version of the dataset with artificially

missing data. Then, we compared the performance of the random

forest (RF) regressor on the complete original dataset with that

on the altered dataset that used different imputation techniques.

The comparison results presented in Figure 2 showed that we

could find the lowest MAE to impute the missing values.

Considering the extreme imbalanced classification

between the readmitted samples and non-readmitted

samples (the readmission rate is only 3.36%), we both

oversampled and undersampled the training set using the

Synthetic Minority Over-sampling Technique (SMOTE) and

Edited Nearest Neighbors (ENN). The SMOTE generated

noisy samples by interpolating new points between

marginal outliers and inliers, while ENN cleaned the space

resulting from oversampling. Utilizing the SMOTE + ENN

(SMOTEENN) algorithm provided by the imbalanced-learn

Python library, we achieved a more balanced data distribution

of readmitted samples and non-readmitted samples

(Lemaître et al., 2017).
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FIGURE 1
Flow chart of inclusion and exclusion process for overall data set.

FIGURE 2
Imputation techniques in differentmissing data groups. FD, Full data; KNN, k nearest neighbor; BR, BayesianRidge; DTR, DecisionTreeRegressor;
ETR, ExtraTreesRegressor; KNR, KNeighborsRegressor; MAE, Mean Absolute Error. BayesianRidge performed the best with the lowest MAE among
all imputation techniques.
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Our data were randomly divided into a training set and a test

set according to a 70–30 split. We estimated models based on the

training data (70%) and evaluated models based on the test data

(30%). Each split was carried out to preserve the proportion of

readmitted and not readmitted cases in the entire dataset. This

random split was repeated ten times.

Feature selection

We focused on features that are easily accessible and not only

available after discharge. For the preoperative laboratory data, we

kept the last value prior to surgery. Before feature selection, we

obtained 145 initial available variables. In model development,

variable selection reduces the number of attributes and allows the

selection of a subset of relevant features. Generally, there are

three classes of optimal feature selection algorithms as follows:

filter, wrapper, and embedded methods. In this study, we used

the wrapper method because it can measure the usefulness of

features based on the classifier performance through the search

process, where different combinations of features are evaluated

and compared by scores based on predictive model accuracy

(Chandrashekar and Sahin, 2014).

To eliminate irrelevant, weakly relevant, or redundant

features and reduce model overfitting as well as improve

model generalization ability, we used a multilayer perceptron

(MLP) as an estimator to implement a genetic algorithm (GA),

which is a stochastic search algorithm based on the mechanics of

evolution and natural selection (Torkamanian-Afshar et al.,

2021). GA uses three operators, that is, selection, crossover,

and mutation to improve the quality of solutions. We used

Distributed Evolutionary Algorithms in Python to implement

GA, while the function returns the optimal setting of feature

selection as a binary array with the best accuracy score (Rainville

et al., 2014). The independent probability for each attribute to be

flipped was 0.1 in multiple flip-bit mutations. Tournament

selection was set as the selection operator with a tournament

size of 3. The population size was 100, the crossover probability

was 0.5, and the mutation probability was 0.2.

The full list of features includes demographic data (e.g., age,

gender, and body mass index [BMI]), available obtained

laboratory tests prior to surgery (e.g., glucose concentration

and oxygen saturation), descriptive intraoperative vital signs

(e.g., systolic blood pressure), comorbidity (e.g., hypertension),

and surgery descriptions (e.g., surgery type and anesthesia).

Model creation, training, and testing

This study considered different widespread types of models,

that is, logistic regression, MLP, RF, extreme gradient boosting

(XGBoost), and light gradient boosting machine (LGBM). The

latter three are bagging or boosting ensemble learning

algorithms. XGBoost is an optimized distributed gradient

boosting library designed to have strong predictive power. It

does not build the full tree structure but builds it greedily. It

provides a parallel tree boosting that solves scientific problems,

such as regression, classification, and ranking, in a fast and

accurate way. LGBM is a high-performance gradient lifting

framework that is based on a decision tree. Thus, it splits the

tree leaf-wise with the simplest fit, whereas other boosting

algorithms split the tree depth- or level-wise instead of leaf-

wise. LGBM is quick because it uses a histogram-based algorithm

that quickens the training procedure. We calculated MAEs as

weights to combine RF and XGBoost into a hybrid model.

One of the advantages of using the abovementioned

algorithms is that we can easily calculate the scores for all the

input features, which represent the importance of each feature. A

specific feature with a higher score means that it will have a larger

effect on the model prediction. Random Forest Classifier, Logistic

Regression, andMLP Classifier used in this study are from Scikit-

learn. The XGB Classifier and LGBM Classifier were

implemented using the xgboost and lightgbm packages

(Python Software Foundation, 9450 SW Gemini Dr., ECM#

90772, Beaverton, OR 97008, United States) separately.

Model hyperparameters were set before training to improve

the performance of the algorithms. We used

RandomizedSearchCV and GridSearchCV provided by Scikit-

learn. Five-fold cross-validation was applied to the training set,

meaning that we calculated the average metrics while each of the

five partitions was treated only once as a test set and four times as

a training set. Before parameter optimization, all model classifier

parameters were set to default values. We first used a random

search with 200 iterations, and then a smaller range was

determined based on the parameter selected in the previous

step, and Grid Search worked with a small number of

hyperparameters.

We used block bootstrapping to generate confidence

intervals (CIs) for the performance metrics on the test set.

Rather than randomly sampling procedures, we randomly

sampled patients 1,000 times, included all predictions in the

bootstrap sample, and sorted the performance metrics of each

bootstrap sample.

Evaluation metrics

Model performance was assessed using the following

metrics: area under the ROC curve (AUC), accuracy,

precision, recall, and F1 score. ROC curve, as a visualization

tool, can infer model performance by illustrating the

relationship between precision and recall as we vary the

threshold for selecting positives. Each time a different

threshold was selected, a set of false-positive and true-

positive rates were obtained. The calibration of the model

was evaluated by Brier score and calibration plots. The 95%
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CIs of the abovementioned indicators were calculated through

1,000 repeated sampling. A feature ablation analysis was

performed, and the change in AUC with the removal of

each feature was then assessed to determine feature

importance.

Results

Characteristics of the patients

Inclusion and exclusion criteria were strictly followed

during the entire screening process. A flow chart indicating

the inclusion and exclusion process is shown in Figure 1.

Finally, a total of 10,358 elderly patients were included. The

overall 30-day unplanned readmission rate was 3.36%. The

demographic data and surgery-related information of patients

are shown in Table 1.

Model performance

The AUCs of the six ML algorithms predicting postoperative

30-day unplanned readmission ranged from 0.6371 to

0.7686 including all features (Table 2) and from 0.6865 to

0.8654 including selected features (Table 3). The RF +

XGboost classifier including selected features overall

performed the best with an AUC of 0.8654 (95% CI, 0.8484-

0.8824), the accuracy of 0.9868 (95% CI, 0.9834–0.9902), the

precision of 0.3960 (95% CI, 0.3854–0.4066), recall of 0.3184

(95% CI, 0.259–0.3778), and F1 score of 0.4909 (95% CI,

0.3907–0.5911) (Table 3); The ROC curves of all the six ML

algorithms predicting postoperative unplanned 30-day hospital

readmission are shown in Figure 3, and the Precision-Recall

(P-R) curves of all the six ML algorithms are also shown in

Figure 4.

The Brier score of the RF + XGboost model predicting

postoperative 30-day unplanned readmission was 0.0372 (95%

CI, 0.0371–0.0372), showing the best calibration capability

among all the ML algorithms (Table 4).

Feature importance

After performing a feature ablation analysis, we found that

the five most important features of the RF + XGboost model were

operation duration, white blood cell count, BMI, total bilirubin

concentration, and blood glucose concentration. Figure 5

presents the feature importance of three models (RF、

XGboost, and RF + XGboost) predicting postoperative

unplanned 30-day hospital readmission.

Discussion

We used five ML models separately and one hybrid model to

predict the 30-day postoperative unplanned readmission of elderly

patients. To analyze the performance of the proposed framework,

TABLE 1 Summary of demographic characteristics and perioperative
data in this cohort.

Variables Training set Testing set

Patients, n 6,916 3,442

Surgery, n (%) 7,058(67.0) 3,477(33.0)

Age (SD) 72.1(5.8) 71.9(5.7)

Female, n (%) 2,990(43.2) 1,507(43.8)

Readmission, n (%) 237(3.36) 117(3.36)

ASA

Ⅰ, n (%) 11(0.16) 5(0.14)

Ⅱ, n (%) 3,426(48.54) 1,667(47.94)

Ⅲ, n (%) 3,531(50.03) 1764(50.73)

Ⅳ, n (%) 84(1.19) 39(1.12)

Ⅴ, n (%) 6(1.0) 2(0.06)

Surgery type

Abdominal, n (%) 3,711(52.58) 1782(51.25)

Orthopedic, n (%) 1,246(17.65) 673(19.36)

Thoracic, n (%) 636(9.01) 304(8.74)

Cardiac, n (%) 295(4.18) 163(4.69)

Neuro, n (%) 11(0.16) 5(0.14)

Other, n (%) 1,159(16.42) 550(15.82)

The values in bold mean that they have the best performance in the metrics compared

with all the other ML algorithms.

TABLE 2 Performance of classification models including all features.

Model AUC (95% CI) Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1 (95% CI)

RandomForest 0.7105 (0.6860–0.7350) 0.9620(0.9610–0.9630) 0.3501(0.3000–0.4001) 0.0120 (0.0110–0.0130) 0.0240 (0.0230–0.0250)

LogisticRegression 0.7145 (0.7110–0.7180) 0.9580 (0.9570–0.9590) 0.2160 (0.1820–0.2500) 0.0250 (0.0240–0.0260) 0.0442 (0.0431–0.0452)

XGBoost 0.6795 (0.6750–0.6840) 0.9606 (0.9601–0.9611) 0.2665 (0.2000–0.3333) 0.0125 (0.0120–0.0130) 0.0237 (0.0233–0.0240)

LGBM 0.6725 (0.6690–0.6760) 0.9595 (0.9590–0.9600) 0.2085 (0.1670–0.2500) 0.0125 (0.0120–0.0130) 0.0230 (0.0220–0.0240)

MLP 0.6371 (0.5741–0.7000) 0.9475 (0.9380–0.9570) 0.1621 (0.0630–0.2611) 0.0740 (0.0250–0.1230) 0.0920 (0.0350–0.1490)

Random + XGBoost 0.7686(0.7396–0.7977) 0.9524 (0.9523–0.9525) 0.3471 (0.3315–0.3627) 0.1030(0.0950–0.1110) 0.1120(0.1100–0.1140)

The values in bold mean that they have the best performance in the metrics compared with all the other ML algorithms.
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we investigated the advantages and benefits of the proposed model

over traditional ML models. Among all the algorithms, the RF +

XGboost hybrid model generally performed relatively better, with

an AUC of 0.8654 (95% CI, 0.8484–0.8824) and a Brier score of

0.0372 (95% CI, 0.0371–0.0372). For a single ML algorithm, RF

nearly had the best performance in predicting the 30-day

postoperative unplanned readmission, which has previously

been reported (Peng et al., 2010; Hsieh et al., 2011; Alickovic

and Subasi, 2016; Gowd et al., 2019). In addition, all ML models

tended to perform similarly or better than the traditional approach

(van Walraven et al., 2010; Cotter et al., 2012; Donzé et al., 2013;

Low et al., 2017).

TABLE 3 Performance of classification models including selected features.

Model AUC (95% CI) Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1 (95% CI)

RandomForest 0.7566 (0.7481–0.7651) 0.9862 (0.9838–0.9885) 0.3950 (0.3900–0.4000) 0.3089 (0.1600–0.4578) 0.4287 (0.3952–0.4622)

LogisticRegression 0.7384 (0.7357–0.7411) 0.9503 (0.9474–0.9532) 0.2936 (0.2252–0.3620) 0.155 (0.1223–0.1878) 0.1957 (0.1406–0.2508)

XGBoost 0.7230 (0.7136–0.7324) 0.9862 (0.9835–0.9889) 0.3977(0.3854–0.4100) 0.3289(0.2622–0.3955) 0.4371 (0.3931–0.4812)

LGBM 0.7161 (0.6778–0.7544) 0.9867 (0.9855–0.988) 0.3882 (0.3763–0.4000) 0.3261 (0.2945–0.3578) 0.4385 (0.4197–0.4573)

MLP 0.6865 (0.6504–0.6226) 0.9744 (0.9711–0.9778) 0.2683 (0.2226–0.3140) 0.2434 (0.1568–0.3300) 0.2653 (0.6026–0.3281)

Random + XGBoost 0.8654(0.8484–0.8824) 0.9868(0.9834–0.9902) 0.3960 (0.3854–0.4066) 0.3184 (0.259–0.3778) 0.4909(0.3907–0.5911)

The values in bold mean that they have the best performance in the metrics compared with all the other ML algorithms.

FIGURE 3
The ROC curves and AUCs of six ML algorithms predicting postoperative unplanned 30-day hospital readmission in this cohort. ROC, receiver
operating characteristic; AUC, area under the curve; RF, random forest; LR, logistic regression; XGBoost, eXtreme Gradient Boosting; LGBM, Light
Gradient Boosting Machine; MLP, Multilayer Perceptron.
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In the RF + XGboost model, the five most important features

were operation duration, white blood cell count, BMI, total

bilirubin concentration, and glucose concentration. Long

duration of surgery is an important factor resulting in

multiple postoperative complications, including unplanned 30-

day postoperative readmission (Phan et al., 2017; Polites et al.,

2017). Increased white blood cell count usually indicates an

increased likelihood of infection. Postoperative infection is

also an important reason for unplanned readmissions, such as

lung infection requiring anti-infective treatment or wound

infection requiring readmission for debridement or surgery.

An increase in BMI is closely associated with higher incidence

of hypertension, coronary heart disease, and diabetes, while

reduced BMI, on the other hand, is also a sign of

malnutrition and frailty status in the elderly (Graboyes et al.,

2018; Sperling et al., 2018; Workman et al., 2020; Cutler et al.,

2021). Hyperbilirubinemia reflects underlying hemolysis and

hepatic dysfunction. Such patients have decreased tolerance

for massive intraoperative blood loss, hypotension, and

hepatic ischemia (Liao et al., 2013; Arvind et al., 2021).

Elevated blood glucose level, usually including type 2 diabetes

mellitus and impaired fasting glucose, is associated with

postoperative infections, which are common causes of

postoperative unplanned readmissions (Jones et al., 2017;

Martin et al., 2019).

FIGURE 4
The P-R curves of six ML algorithms predicting postoperative unplanned 30-day hospital readmission in this cohort. P-R, Precision-Recall; RF,
random forest; LR, logistic regression; XGBoost, eXtreme Gradient Boosting; LGBM, Light Gradient Boosting Machine; MLP, Multilayer Perceptron.

TABLE 4 Calibration of classification models including selected
features.

Model Brier Score (95% CI)

RandomForest 0.0383 (0.0377–0.0388)

LogisticRegression 0.0399 (0.0394–0.0403)

XGBoost 0.0389 (0.0386–0.0392)

LGBM 0.0377 (0.0375–0.0379)

MLP 0.0464 (0.0408–0.0519)

Random + XGBoost 0.0372(0.0371–0.0372)

The values in bold mean that they have the best performance in the metrics compared

with all the other ML algorithms.
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To improve the performance of unplanned readmission risk

prediction, we combined the RF and XGBoost classifiers by setting

weights according to MAE. Our study demonstrates that the

combined model could perform significantly better than

individual models in predicting unplanned readmission.

Meanwhile, among all the models, MLP did not achieve relatively

good scores, which may be because the neural network algorithm is

relatively complex for small unbalanced text datasets. Actually, the

performance ofML algorithms is closely related to the imbalance rate

of a label (e.g., imbalance rate of unplanned readmission). When the

number of positive samples is excessively low (<10%),ML algorithms

are easily overfitted. In this study, the 30-day unplanned readmission

rate was lower than 5%, indicating a high probability of predicting

patients as negative samples. Although we used SMOTEENN as a

sampling method to reduce the imbalance rate, the classification

performance has much room for improvement, as seen from the

recall and F1 scores. The Brier score of the hybrid model is 0.0372

(95% CI, 0.0371–0.0372), which is also the lowest among all the

algorithms.

Our analysis of postoperative patients provides us with three key

insights into the prediction of unplanned readmission. First, ML is a

powerful artificial intelligence approach to using data to imitate the

way that humans learn and make decisions, gradually improving its

accuracy. In this study, nearly all models achieved an AUC of more

than 0.7, whereas studies predicting unplanned readmissions

achieved AUC in the range of 0.54–0.92 (Artetxe et al., 2018).

Second, hybrid models may perform better than individual models.

Third, effective data processing is essential to assist decision-making.

Strategies to reduce potentially avoidable 30-day readmissions may

help improve the quality of care and outcomes.

Limitations

Somepotential limitations should be considered. First, we did not

include the information of hospital personnel for analysis. There is no

doubt it is closely related to the patients’ outcome; second, this is a

monocenter study, and most of the patients came from western

China. As a result, further external validation is needed. Third, the

sample size is relatively small compared to some retrospective studies.

Fourth, during data collection and follow-up, it is inevitable that some

data will be missing.

FIGURE 5
The feature importance of three ML algorithms predicting postoperative unplanned 30-day hospital readmission. RF, random forest; XGBoost,
eXtreme Gradient Boosting.
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Conclusion

ML algorithms can accurately predict postoperative

unplanned 30-day readmission in elderly surgical patients.
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