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Editorial on the Research Topic

Insights in plant symbiotic interactions: 2021
This Research Topic was launched in late 2021 in the frame of a broad initiative covering

most sections of Frontiers in Plant Science. The call for papers attracted 14 original research,

method, review and mini review papers by 74 authors, largely delivering our goal to provide a

transversal insight into the advances in the major symbiotic plant-microbe interactions.

The contributions embrace molecular, cellular, applicative and ecological aspects of

mycorrhizas, symbiotic nitrogen fixation and plant interactions with beneficial endophytes or

plant growth-promoting bacteria.
Mycorrhizal interactions

A broad interest is focused on gene regulation in mycorrhizal symbioses (Genre et al.,

2020), through genomic and transcriptomic data of mycorrhizal fungi and their hosts.

Moreover, novel automated image analyses now allow a breakthrough advancement in the

quantification of arbuscular mycorrhizal colonization, described in a methodological article.

First, Tominaga et al. analyzed and compared transcriptional changes of symbiosis-related

genes in three distinct arbuscular mycorrhizal (AM) morphotypes (Arum-, Intermediate-,

Paris-type) formed by distinct host plants (Lotus japonicus, Daucus carota, Eustoma

grandiflorum), respectively. Similarities in the expression patterns for AM marker genes,

such as ammonium and phosphate transporters (Boussageon et al., 2022), were found upon

colonization with the AM-fungus Rhizophagus irregularis, but also divergent responses to the

phytohormone gibberellin. These results obtained by comparative transcriptomics open

further research to dissect gibberellin-mediated regulation of mycorrhiza establishment. Such

transcriptional changes associated with morphological and developmental changes involved

in AM formation and turnover have been shown to be linked to GRAS transcription factors,

reviewed by Ho-Plágaro and Garcia-Garrido. Genome-wide expression studies in several AM

models have revealed a prominent role of this GRAS gene family in AM development, nicely

summarized in a scheme. However, target genes and downstream processes need further to

be studied. Such a target for root colonizing fungi is proposed by Tamayo et al. at the
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functional level. Indeed, overexpression of a SWEET-type

monosaccharide transporter in potato favored root colonization by

the AM fungus R. irregularis and also by the pathogenic fungus

Fusarium oxysporum, indicating that an increase in sugar transfer

from the host to the fungi is involved in the fungus-plant interaction.

This study showing induction of the SWEET-type sugar transporter

in AM symbiosis opens a number of questions regarding regulation

under natural conditions with a multitude of interactions.

Quantification of root colonization by AM fungi is often needed

for such studies and so far commonly used by manual techniques. An

innovative method is proposed by Muta et al. presenting in a

methodological article a software-based implementation called

TAIM (Tool for Analyzing root images to calculate the Infection

rate of arbuscular Mycorrhizal fungi). A similar approach was

recently developed as a standalone application by Evangelisti et al.

(2021) called “AMFinder” for plant root analyses using deep learning-

based image processing. The novel TAIM method, described here in

detail, is easily accessible from an Web-based online repository, and

has the potential to revolutionize the routine in many laboratories by

changing a critical activity from tedious and error-prone to rapid

and reliable.

Finally, the review by Authier et al. provides a more global and

ecological overview about current knowledge and research gaps

concerning ectomycorrhizal (ECM) networks, found in natural but

even in urban ecosystems. Mycorrhizal plants are interconnected by

common mycorrhizal networks (CMNs) as described for AM plants

(Wipf et al., 2019). The Authors summarize and discuss ECM-based

CMNs contributing significantly to nutrient exchange, carbon trade and

dynamics of plant communities, finally proposing measures for

landscape and urban planning for a better use of mycorrhizal ecoservices.
Symbiotic nitrogen fixation

Four papers deal with signaling processes in symbiotic nitrogen

fixation (Downie, 2014). The review by Hawkins and Oresnik focuses

on the different abiotic stresses rhizobia are exposed to during the

establishment of the root nodule symbiosis – acidic pH, high

osmolarity, reactive oxygen species and low oxygen levels – which

serve as signals; for instance, high osmolarity leads to the induction of

rhizobial nod, nif and fix genes. They also discuss the effects of

nodule-specific cysteine-rich peptides (NCRs and NCR-like peptides)

used by some legumes, to manipulate rhizobial differentiation. Zorin

et al. examine the entire NCR gene family of pea and, based on

mutants and co-expression analysis, predict transcription factors

involved in their regulation. Previous studies have proposed the

involvement of heterotrimeric G-proteins in the symbiotic signaling

in legume/rhizobia symbioses (Pingret et al., 1998). Bovin et al.

examine the genes for the G beta-subunit in two legumes,

providing evidence for this subunit’s role in infection and nodule

development, presumably via cross-talk between G-protein- and

PLC-mediated signaling pathways. The review of Wang et al.

discusses the multiple signals that can play a role in legume nodule

induction, from plant flavonoids over rhizobial Nod factors, effectors
Frontiers in Plant Science 6
and surface polysaccharides to plant peptides, and details the roles of

individual factors in different stages of the interaction.

Another major focus was on cellular aspects of root symbioses,

with two papers investigating rhizobial infection in legumes. The

article by Kitaeva et al. presents original research comparing

microtubule organization in the cells of determinate nodules from

Glycine max, G. soja, Phaseolus vulgaris and L. japonicus. The major

conclusions, based on a further comparison with cytoskeleton

arrangement in indeterminate nodules, outlined interesting

evolutionary and developmental implications impacting

symbiosome accommodation and overall efficiency in nodule

infection. The mini-review by Quilbé et al. presents an update on

the most recent discoveries in the molecular control of intercellular

rhizobial infection, a largely unexplored - but very common -

alternative to the more studied intracellular infection via root hairs.

The review provides a few intriguing starting points to stimulate

future research, such as the apparent minor role of canonical Nod-

factor signaling in intercellular bacterial accommodation, more

strongly controlled by cytokinin signaling, or the peculiar infection

strategies deployed by individual members of the legume family.
Other plant growth-promoting
interactions

Riesco et al. identified potential genomic features involved in the

interaction betweenMicromonospora and their host plants (Trujillo et al.,

2015) exploring the relationship between several tens ofMicromonospora

genomes from contrasting environments with corresponding plant-

related genes. Notably, they could cluster the bacterial genomes

according to solely three groups dealing with ‘plant-associated’, ‘soil/

rhizosphere’, and ‘marine/mangrove’ related traits and showed that

representative inocula from these latter groups produced marked

differences in the plant phenotypes of an inoculated Arabidopsis

thaliana model host. These results confirm that using bacterial

genomic signatures can help to select for host colonization and the

plant benefit, highlighting that the common plant growth promotion

markers should not be used as sole indicators to select beneficial bacteria

to be used in agronomic setups or revegetation settings.

The relationship between host plants and beneficial microbes,

either AM fungi or plant growth promoting bacteria (Souza et al.,

2015) were explored in two elegant studies. In particular, Zhang et al.

isolated several tens of actinomycetes endophytic of several medicinal

plants and tested them for the antifungal activity against F. oxysporum

f. sp. cubense (Foc TR4) in banana and identified a highly beneficial

strain as Streptomyces malaysiensis. Notably, they showed that this

latter S. malaysiensis can stimulate the banana tolerance to Foc TR4

by both stimulating the plant expression of defense-related and

antioxidant enzymes, and by exuding extracellular enzymes and

metabolites with plant beneficial activity. In particular, they showed

that S. malaysiensis 8ZJF-21 extract can inhibit the germination and

growth of Foc TR4 in an in vitro assay and identified nineteen volatile

organic compounds produced by S. malaysiensis as potential

antifungal compounds. Azizi et al. showed that inoculation of the
frontiersin.org
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AM fungal species Funneliformis mosseae or R. irregularis (singly or

co-inoculated) and inoculation of the bacterial species Pseudomonas

fluorescens and P. putida (singly or co-inoculated) improved the

tolerance of common myrtle plantlets to drought effects but not

their water-use efficiency. These effects were seen mostly under the

dual inoculation rather than the single inoculation, with beneficial

side effects on the nutrient dynamics in both the roots and leaves.

In conclusion, this Research Topic, bringing together 14 articles

dealing with different plant-microbe associations, is clearly reflecting

the ongoing research linked to the important topic of such beneficial

interactions. Regarding the challenge to maintain and improve

further plant growth and tolerance under limiting and stressful

conditions, many scientific questions remain still open and will

require answers in the future.
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Morphotypes of arbuscular mycorrhizal (AM) symbiosis, Arum, Paris, and Intermediate
types, are mainly determined by host plant lineages. It was reported that the
phytohormone gibberellin (GA) inhibits the establishment of Arum-type AM symbiosis in
legume plants. In contrast, we previously reported that GA promotes the establishment
of Paris-type AM symbiosis in Eustoma grandiflorum, while suppressing Arum-type
AM symbiosis in a legume model plant, Lotus japonicus. This raises a hitherto
unexplored possibility that GA-mediated transcriptional reprogramming during AM
symbiosis is different among plant lineages as the AM morphotypes are distinct.
Here, our comparative transcriptomics revealed that several symbiosis-related genes
were commonly upregulated upon AM fungal colonization in L. japonicus (Arum-
type), Daucus carota (Intermediate-type), and E. grandiflorum (Paris-type). Despite
of the similarities, the fungal colonization levels and the expression of symbiosis-
related genes were suppressed in L. japonicus and D. carota but were promoted in
E. grandiflorum in the presence of GA. Moreover, exogenous GA inhibited the expression
of genes involved in biosynthetic process of the pre-symbiotic signal component,
strigolactone, which resulted in the reduction of its endogenous accumulation in
L. japonicus and E. grandiflorum. Additionally, differential regulation of genes involved
in sugar metabolism suggested that disaccharides metabolized in AM roots would
be different between L. japonicus and D. carota/E. grandiflorum. Therefore, this study
uncovered the conserved transcriptional responses during mycorrhization regardless of
the distinct AM morphotype. Meanwhile, we also found diverse responses to GA among
phylogenetically distant AM host plants.

Keywords: arbuscular mycorrhizal symbiosis, comparative transcriptomics, gibberellin, arbuscular mycorrhizal
morphotypes, Lotus japonicus, Daucus carota, Eustoma grandiflorum, Rhizophagus irregularis
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INTRODUCTION

More than 70% of terrestrial plants associate with the
symbiotic, arbuscular mycorrhizal (AM) fungi that belong to
Glomeromycotina (Brundrett and Tedersoo, 2018). AM fungi
supply minerals, such as inorganic phosphate and nitrogen, to
their host plants, thus promoting the growth of the hosts (Ezawa
and Saito, 2018; Wang et al., 2020). In return, they obtain
carbohydrates, such as fatty acids, lipids, and monosaccharides,
from the host plants (Bravo et al., 2017; An et al., 2019). This
mutual interaction is established through several steps. Host-
derived signal molecules, strigolactones (SLs), are exudates into
the rhizosphere to attract AM fungi prior to the mutualism
(Akiyama et al., 2005; Besserer et al., 2008; Tsuzuki et al., 2016).
SLs positively regulate formation of hyphopodia on the host root
epidermis (Kobae et al., 2018). After AM fungal hyphae invade
the host epidermis, AM fungi form highly branched hyphal
structures, the arbuscule, in the root cortical cells for nutrient
exchange. Some transporters are localized on a specialized plant-
derived membrane, periarbuscular membrane (PAM), to influx
mineral nutrients and efflux carbohydrates such as lipids and
glucose between the host and fungal symbionts (Kobae and Hata,
2010; Bravo et al., 2017; Luginbuehl and Oldroyd, 2017).

The morphology of AM fungal hyphae is known to be distinct
mainly depending on the host plant species (Smith and Smith,
1997; Dickson et al., 2007). Arum-type AM shows that AM fungal
hyphae elongate in the intercellular space of the host cortex and
form arbuscules in the cortical cells. This AM morphotype is
found in rice (Oryza sativa) and legume model plant roots such
as Medicago truncatula and Lotus japonicus (Hong et al., 2012;
Yu et al., 2014; Takeda et al., 2015). On the other hand, in Paris-
type AM, the fungal hyphae invade the adjacent cortical cells
and show hyphal coils on which arbuscules are formed (Smith
and Smith, 1997; Dickson, 2004; Dickson et al., 2007). Moreover,
an “Intermediate” type of AM showing both morphological
features of Arum- and Paris-type AMs is also found in some
host plants (Dickson, 2004). According to Dickson (2004),
Intermediate-type AM is defined by either the existence of linear
intracellular hyphae on which arbuscules are formed or hyphal
coils with intercellular hyphae. The linear intercellular hyphae are
sometimes found with intercellular hyphae (Dickson, 2004).

Several phytohormones have been revealed to regulate AM
symbiosis. For instance, exogenous treatment of gibberellin
(GA) severely reduces the number of hyphopodia and disturbs
the development of arbuscule (Floss et al., 2013; Yu et al.,
2014; Takeda et al., 2015; Pimprikar et al., 2016). Moreover,
GA represses the expressions of some AM symbiosis-related
genes (Takeda et al., 2015; Pimprikar et al., 2016; Nouri et al.,
2021). Notably, it has shown that a GRAS transcription factor
(TF) required for AM symbiosis, REDUCED ARBUSCULAR
MYCORRHIZA1 (RAM1), is transcriptionally downregulated
in GA-treated L japonicus. This is attributable to the GA-
triggered degradation of GA-signaling repressor, DELLA, which
positively regulates RAM1 expression (Silverstone et al., 2001;
Achard and Genschik, 2009; Floss et al., 2013; Park et al.,
2015). Notably, the RAM1 also regulates other downstream AM
marker genes: REDUCED FOR ARBUSCULE DEVELOPMENT1

(RAD1)–GRAS TF, Vapyrin (Vpy) (protein that regulates
arbuscule development), PHOSPHATE TRANSPORTER4 (PT4),
AMMONIUM TRANSPORTER2;2 (AMT2;2), FatM (acyl-acyl
carrier protein thioesterase), RAM2 (glycerol-3-phosphate
acyltransferase), and STR/STR2 (ABC transporters for lipids)
(Gobbato et al., 2013; Park et al., 2015; Rich et al., 2015, 2017;
Pimprikar et al., 2016; Muller et al., 2020). Thus, it has been
thought that exogenous GA or the absence of functional DELLA
attenuates the transcriptional promotion of downstream genes
to inhibit AM fungal colonization. Interestingly, our previous
study showed that GA suppresses Arum-type AM symbiosis
in L. japonicus and chive, whereas promoting Paris-type AM
symbiosis in Eustoma grandiflorum and Primula malacoides
(Tominaga et al., 2020a). Another expression analysis also
revealed that the expression levels of AM symbiosis-related
genes in E. grandiflorum were increased by GA (Tominaga
et al., 2020b). These findings let us hypothesize that the
regulatory mechanisms underlying AM symbiosis would be
diverse among host plants; however, our past studies did
not simultaneously compare the GA-mediated transcriptional
regulation among various host plants. To date, the effect of GA on
Intermediate-type AM symbiosis has not been investigated yet.

In this study, we conducted comparative transcriptomics
among three AM host plants with different AM morphotypes:
L. japonicus (Arum-type AM), E. grandiflorum (Paris-type AM),
and Daucus carota (Intermediate-type AM) (Dickson, 2004).
Based on plastid genomes, Fabales, Gentianales, and Apiales,
to which L. japonicus, D. carota, and E. grandiflorum belong,
are estimated to appear c. 100 Ma, c. 80 Ma, and c. 90 Ma,
respectively (Li et al., 2019). Our study revealed that Rhizophagus
irregularis infection promoted shoot growth and the expression
of several symbiosis-related genes conserved in all examined
plants, such as RAM1 and STR. However, the AM fungus-
promoted expression of the conserved symbiosis-related genes
was decreased in GA-treated L. japonicus (Arum-type) and
D. carota (Intermediate-type). In contrast, the expression levels
of the conserved genes were not reduced but rather increased
by exogenous GA in E. grandiflorum (Paris-type). This suggests
that the transcriptional reprogramming associated with AM
symbiosis in E. grandiflorum would be tolerant to GA and
unique to this plant species. Additionally, the negative effects
of GA on SL biosynthetic process were commonly observed
in L. japonicus and E. grandiflorum, suggesting that GA-
promoted fungal colonization in E. grandiflorum is independent
of SLs. Thus, our study uncovered the conserved responses
of phylogenetically distant AM host plans regardless of AM
morphotypes. Furthermore, our findings help understand the
diverse effects of GA on host plant species.

MATERIALS AND METHODS

Growth Condition of Plant and Fungal
Materials
The seedlings of L. japonicus “Miyakojima” MG-20, D. carota
cv. Nantes, and E. grandiflorum cv. Pink Thumb were prepared
as in our previous report (Tominaga et al., 2020a). D. carota
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seedlings were grown in light for 7 days. Since E. grandiflorum
exhibited relatively low colonization rates in our previous report
(Tominaga et al., 2020a), high concentration of AM fungal spores,
approximately 6,000 spores of R. irregularis DAOM197198
(Premier Tech, Quebec, Canada), were added to 50 ml 1/5
Hoagland solution containing 20 µM inorganic phosphate. GA3
was dissolved in ethanol and treated at this procedure by diluting
the stock to the 1/5 Hoagland solution at 1 µM. Ethanol was
treated in the same way as the control treatment. The solution
was added to approximately 300 ml autoclaved mixed soil (river
sand/vermiculite, 1:1) in a plastic container combined with
another one as described in Takeda et al. (2015). As a result, each
tested seedling was inoculated with 1,000 spores of R. irregularis.
Then, the prepared seedlings were transplanted into the soil and
kept for 6 weeks under 14 h light/10 h dark cycles at 25◦C.

Quantification and Observation of
Arbuscular Mycorrhizal Symbiosis
The inoculated roots were harvested at 6 weeks post-inoculation
(wpi), and fixation, staining, and quantification of AM fungal
colonization rates were conducted according to previous studies
(Mcgonigle et al., 1990; Tominaga et al., 2020a). To determine the
AM morphotypes of root samples stained with trypan blue, single
cortex layer containing AM fungal hyphae was microscopically
observed by gently squashing the roots.

For fluorescence images, the fragments of fixed roots were
rinsed with phosphate-buffered saline (PBS) and immersed in
ClearSee (FUJIFLIM Wako Pure Chemical, Osaka, Japan) for
1 week in the dark (Kurihara et al., 2015). The instructions of
the manufacturer were followed in the clearing procedure. The
cleared roots were rinsed with PBS and stained with 0.01 mg/ml
WGA-Alexa Fluor 488 (Thermo Fisher Scientific, Waltham,
MA, United States) for 15 min. For the staining of plant cell
wall, the root samples were further treated with 20 µg/ml
Calcofluor White (Sigma-Aldrich, St Louis, MO, United States)
for 15 min. Under a fluorescent stereomicroscope, Leica M205
FCA (Leica Microsystems, Wetzlar, Germany), the relatively
bright fluorescent region, which indicates colonized area, was
excised with a scalpel and embedded in 5% (w/v) agarose
containing 1% (w/v) gelatin. Then, 30–50 µm cross sections were
made using a Linear Slicer PRO-7 (Dosaka EM, Kyoto, Japan)
and observed under a FLUOVIEW FV10i confocal laser scanning
microscope (Olympus, Tokyo, Japan) with 499 nm excitation
and 520 nm emission for WGA-Alexa Fluor 488 and FV10i-SW
software v1.2 (Olympus, Tokyo, Japan). The images were merged
using the ImageJ software v1.51k1.

Transcriptome Analysis
RNA Extraction and RNA Sequencing
Root samples (approximately 100 mg) at 6 wpi were collected
in a nuclease-free tube (INA-OPTIKA, Osaka, Japan) with two
5 mm beads, frozen by liquid nitrogen. The frozen root samples
were set in ShakeMan6 (Bio-Medical Science, Tokyo, Japan)
and homogenized. Then, the total RNA was extracted using

1http://imagej.nih.gov/ij

the real RNA Extraction Kit Mini for Plants (RBC Bioscience,
New Taipei, Taiwan) following the protocol of the manufacturer.
RNase-free DNase I (Takara Bio, Shiga, Japan) was applied to
remove genomic DNA from the RNA samples according to the
instructions of the manufacturer. The purity and quantity of
the total RNA was calculated by measuring the absorbance at
260 and 280 nm (A260: A280) with DeNovix DS-11+ (Scrum,
Tokyo, Japan). RNA-seq library was constructed from the total
extracted RNA and sequenced, and RNA-seq with strand-specific
and paired-end reads (150 bp) was performed with DNBSEQ-
G400 by Genewiz (Tokyo, Japan). Consequently, more than 20
million raw reads per sample were obtained (Supplementary
Table 1). Low-quality reads (<QV30) and adapter sequences
were removed by Fastp (Chen et al., 2018).

Data Analysis
Read mapping was conducted using STAR (Dobin et al., 2013)
for the filtered single-end reads of L. japonicus, D. carota,
and R. irregularis onto their genomes, Lotus japonicus Lj1.0v1,
Daucus carota v2.0, and Rir_HGAP_ii_V2, retrieved from the
Phytozome v132 and Ensembl Fungi3 (Iorizzo et al., 2016; Maeda
et al., 2018; Li et al., 2020). Meanwhile, Bowtie2 with default
parameters except for “–loc al” was applied for E. grandiflorum
to map the reads to de novo reference assembly constructed
from previous RNA-seq data (Tominaga et al., 2020b) by Trinity
v2.8.4 (Grabherr et al., 2011; Langmead and Salzberg, 2012;
Haas et al., 2013). In this study, we mapped the reverse reads
to the indicated genomes or de novo assembly data to perform
specific alignment. The number of mapped reads to the reference
genome was counted using featureCounts v1.6.4 (Liao et al.,
2014) for L. japonicus, D. carota, and R. irregularis, whereas
that of E. grandiflorum was quantified with eXpress v1.5.1
(Roberts and Pachter, 2013) due to using de novo assembled
cDNA sequences as reference unlike others. For identifying
differentially expressed genes (DEGs), each count data showing
different library sizes were normalized by the trimmed mean of
the M-values normalization method, and genes with | Log2 fold
change (FC)| > 1 and false discovery rate (FDR) less than the
indicated values (FDR < 0.01 for plants’ DEGs and FDR < 0.05
for fungal DEGs) were considered DEGs using the EdgeR package
(Robinson et al., 2010).

The transcripts per million (TPM) (Li et al., 2010; Wagner
et al., 2012) of each sample was counted from the count data using
the R software v4.0.2 (R Foundation for Statistical Computing).
Genes that showed zero counts in all samples were excluded from
the analysis, unless otherwise noted. Then, the mean TPM of
all samples in a condition was Log2-transformed for each gene.
The heatmaps in this study were constructed using the heatmaply
package in R (Galili et al., 2018).

Gene Ontology Enrichment Analysis
Differentially expressed gene was sorted depending on their
expression patterns using a Venn diagram4. Then, the gene

2https://phytozome-next.jgi.doe.gov
3https://fungi.ensembl.org/index.html
4http://bioinformatics.psb.ugent.be/webtools/Venn
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ontology (GO) enrichment analysis was conducted using the
ClueGO plugin for Cytoscape (Bindea et al., 2009, 2013).
Additionally, the correlation network of enriched GO terms
was created using the ClueGO. In the analysis, p-values
were calculated using a two-sided hypergeometric test and
corrected using the Benjamini–Hochberg method. The GO
terms of R. irregularis were annotated by EnTAP v0.10.7
(Hart et al., 2020), followed by GO enrichment analysis using
the topGO package in the R environment. In the topGO
study, the enrichment test was performed by calculating
the p-values using the Fisher’s exact test (p < 0.01) and
scoring with the Elim method (Alexa et al., 2006). The
p-values of filtered GO terms were adjusted by the Benjamini–
Hochberg method.

Ortholog Identification
Here, we identified ortholog genes in L. japonicus, D. carota,
and E. grandiflorum to compare the influence of AM fungal
colonization and GA treatment among these different host
species. The proteomes of L. japonicus and D. carota were
retrieved from the Phytozome v12.1 and v13, respectively.
Additionally, coding sequence and amino acid sequences in
the de novo assembly of E. grandiflorum were predicted
using TransDecoder v5.5.0 (Haas et al., 2013). Next, the
ortholog was identified using SonicParanoid with default
parameters in the Python v3.8 environment (Cosentino and
Iwasaki, 2019). Several known genes were used as queries
for BLASTp search against L. japonicus proteome on the
website Phytozome v13 (Supplementary Tables 1, 2). The
resulting top hit L. japonicus gene and its corresponding
orthologs in D. carota and E. grandiflorum were considered
orthogroups and analyzed.

Extraction of Endogenous Strigolactones
and Germination Assay
To extract SLs from the host roots, we referred to the methods
in a previous study with some modifications (Floková et al.,
2020). The fresh 6-week-old roots (100 mg) were homogenized
in ShakeMan6 (Bio-Medical Science, Tokyo, Japan) with 1 ml
of 60% (v/v) acetone stored at −30◦C. The suspensions were
collected by centrifugation and evaporated in vacuo for 30 min
using Savant SpeedVac DNA130 (Thermo Fisher Scientific,
Waltham, MA, United States). Hydrophobic components in
residual water (c. 500 µl) were extracted by ethyl acetate three
times, and the organic layer was evaporated in vacuo. The samples
were resolved in acetone at 400 mg FW root/ml and stored at
4◦C until use. Root exudates of 4-week-old E. grandiflorum were
collected as our previous study and rinsed with 25% acetone
before elution (Tominaga et al., 2020a).

Orobanche minor seeds were incubated on two moist filter
papers for 10 days at 24◦C in the dark. An aliquot of acetone,
1 µM rac-GR24 (StrigoLab, Torino, Italy), and extracted samples
(20 µl) were added to 6-mm glass fiber disks. Then, the
conditioned O. minor seeds were placed on the disks with 20 µl
distilled water. After 5 days of incubation at 24◦C in the dark, the
germination rate (%) was counted.

Biological Replicate and Statistical
Analysis
One glass slide with 10 pieces of root fragments collected from
one plant was considered a biological replicate for colonization
rate quantification. One glass fiber disk with O. minor seeds was
equivalent to one biological replicate. These experiments were
reproduced three times with more than five biological replicates.
In the transcriptome analysis, one library constructed from a
pool of total RNA consisting of three plants was treated as one
biological replicates. Statistical analyses were conducted using the
R software v4.0.2.

RESULTS

Phenotypes of Arbuscular Mycorrhizal
Roots in Different Host Plant Species
Associated With Rhizophagus irregularis
In L. japonicus, a typical Arum-type AM with intercellular
hyphae and highly branched arbuscules in the cortical cells
were formed at 6 wpi with R. irregularis (Figures 1A,D and
Supplementary Figure 1A). We also observed D. carota AM
roots and found linear intraradical hyphae invading the cortical
cells, but we could not confirm intercellular hyphae and clear
hyphal coil (Figures 1B,D and Supplementary Figures 1C,D).
AM morphotype we found in D. carota roots is described as
Intermediate 2 (I2) of four Intermediate type AMs, and D. carota
roots associating with another AM fungus, Glomus mosseae, is
reported to form I2 morphotype (Dickson, 2004). Therefore,
we defined the AM morphotype of D. carota with R. irregularis
as Intermediate-type AM in this study. On the other hand,
E. grandiflorum showed a classical Paris-type AM that forms
hyphal coils elongating in a circle and invading the adjacent
cortical cells and an arbuscule emerging from a hyphal coil
(Figures 1C,D and Supplementary Figure 1E; Tominaga et al.,
2020a). Taken together, the host plant species formed distinct
AM morphologies with a single fungal species, R. irregularis.
By contrast to the distinct AM morphotypes, the shoot growth
promotion by AM fungal colonization was commonly occurred
in each host plant (Figure 1E). However, some exceptions, such
as tomato forming both Arum- and Paris-type AMs depending
on the AM fungal traits, were reported (Cavagnaro et al.,
2001; Dickson, 2004; Smith et al., 2004; Kubota et al., 2005;
Hong et al., 2012).

Although we previously reported that exogenous GA
treatment inhibits or promotes the establishment of Arum- and
Paris-type AM symbiosis, respectively (Tominaga et al., 2020a),
the effects of GA on Intermediate-type AM symbiosis remain
to be cleared. Thus, we treated L. japonicus, D. carota, and
E. grandiflorum with 1 µM GA3 and observed and quantified
fungal colonization. In L. japonicus roots, we confirmed that
GA treatment significantly inhibited the AM fungal colonization
and arbuscule formation compared with the control AM roots,
but some intercellular hyphae were still found as described in
several studies (Figures 2A,D and Supplementary Figure 1B;
Floss et al., 2013; Takeda et al., 2015; Pimprikar et al., 2016;
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FIGURE 1 | Observation of arbuscular mycorrhizal (AM) morphotypes and quantification of plant growth promotion. AM symbiosis-related phenotypes and shoot
fresh weight of Lotus japonicus, Daucus carota, and Eustoma grandiflorum colonized by Rhizophagus irregularis were observed and evaluated at 6 wpi. The
collected AM roots were stained with WGA-Alexa Fluor 488 (green). (A–C) Confocal images of L. japonicus (A), D. carota (B), and E. grandiflorum (C) inoculated
with R. irregularis. The left sides of each confocal fluorescence image are merged with their images in bright field (middle). The enlarged images showing where
intraradical hyphae elongate are set on the right side of the merged pictures. Arrows, arbuscules; solid-line square, intercellular hypha (black arrowhead in the
enlarged image); dotted-line squares, intracellular hyphae penetrating two adjacent cortical cells (white arrowheads in the magnified images); asterisks, hyphal coils
in the root cortical cells; bars, 50 µm. (D) Diagrams of AM morphotypes observed in L. japonicus (upper), D. carota (middle), and E. grandiflorum (bottom). Red lines
indicate intraradical R. irregularis hyphae. (E) The shoot fresh weight (mg) of each host plant grown in axenic conditions (NC) and colonized by R. irregularis (+AMF)
(n = 12). The average percentage values are shown as bars. Asterisks indicate significant differences compared with the controls in the Wilcoxon rank-sum test
(*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 2 | Effects of GA on hyphal structures and AM fungal colonization in tested host plants. Each host plant was treated with 0.01% ethanol (+AMF) for the
control and 1 µM GA3 (+AMF +GA3) for 6 weeks. The AM root samples were stained with WGA-Alexa Fluor 488 (green). (A–C) Confocal images of Lotus japonicus
(A), Daucus carota (B), and Eustoma grandiflorum (C) inoculated with Rhizophagus irregularis in the presence of GA. Arrows, arbuscules; dotted-line squares,
intracellular hyphae invading two adjacent cortical cells, asterisks, hyphal coils; bars, 200 µm in (A) and 50 µm in (B,C). (D) Quantification of AM fungal colonization
rates (%) of the examined plants at 6 wpi. Total, total colonization rate; arbuscules, percentage of arbuscule formation (n = 5, 6). (E) The number of hyphopodia
penetrating the host root epidermis per root length (mm) (n = 5, 6). The average percentage values are represented as bars. Asterisks indicate statistical significance
compared with the controls in the Wilcoxon rank-sum test (**p < 0.01). AM, arbuscular mycorrhizal; GA, gibberellin.

Nouri et al., 2021). Interestingly, the morphologies of hyphal
structures in D. carota and E. grandiflorum were not influenced
by GA treatment (Figures 2B,C). Nevertheless, GA-treated
D. carota showed reduced AM fungal colonization compared
with the control (Figure 2D). These results indicate that
D. carota can form normal but less arbuscules in the presence
of GA compared with the control roots, implying that AM

symbiosis in L. japonicus was more vulnerable to 1 µM GA3
than GA-suppressed AM symbiosis in D. carota. Additionally,
GA-treated E. grandiflorum roots showed enhanced AM fungal
infection with fully developed arbuscules at 6 wpi (Figures 2C,D)
as our previous study has reported the same result at 4 wpi
(Tominaga et al., 2020a). The number of AM fungal entries was
consistent with the colonization rates (Figure 2E). Therefore,
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FIGURE 3 | Comparative analysis on the expression patterns of AM symbiosis-related downstream genes conserved among examined host plants. (A–C)
Heatmaps represent the expression patterns of the selected genes in response to AM fungal colonization and GA treatment in Lotus japonicus (A), Daucus carota
(B), and Eustoma grandiflorum (C) at 6 wpi. The left heatmaps indicate the expression levels of selected genes. The Log2-transformed TPM in every sample is
shown in blue (low expression level), black (mean), and yellow (high expression level); the expression levels are Z-score-normalized to turn the average value and SD
to 0 and 1, respectively, across all samples. The number below the heatmaps indicates biological replicate. The middle ones show Log2-transformed FCs in the
genes compared with the controls. Magenta indicates negative values, green represents positive values, and white means 0. The right ones illustrate significance in
the fold changes in gene expression levels. DEGs (| Log2FC| > 1, FDR < 0.01) and genes showing significantly but slightly different expression levels compared with
the controls (FDR < 0.05) are colored with red and gray, respectively. NC, non-colonized control; +AMF, Rhizophagus irregularis inoculation; +AMF +GA3,
simultaneous application of R. irregularis inoculation and 1 µM GA3. The DEGs were identified by comparing +AMF with NC (+AMF/NC), +AMF +GA3 against NC or
+AMF (+AMF +GA3/NC, +AMF +GA3/+AMF). For the TPM, Log2FC, and FDR values of the selected gene, see Supplementary Table 4. AM, arbuscular
mycorrhizal; DEG, differentially expressed gene; FC, fold change; FDR, false discovery rate; GA, gibberellin; TPM, transcripts per million.
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the association with R. irregularis contributed to the growth
promotion in each tested plant regardless of AM morphotypes,
whereas the responses to exogenous GA in E. grandiflorum AM
roots were unique.

Comparisons of Symbiosis-Related
Genes Shed Light on Conserved and
Specific Transcriptional Responses
Among Arbuscular Mycorrhizal Host
Plants
Based on the results in Figures 1, 2, the transcriptional regulation
of downstream genes required for AM symbiosis would be
expected to be different among the examined plants. To test this
hypothesis, the expression pattern of genes conserved among
the host plants was compared. First, orthogroups, including
each known AM symbiosis-related gene, were identified using
the SonicParanoid software (Supplementary Figure 2A and
Supplementary Tables 2, 3).

We focused on several genes involved in AM symbiosis:
RAM1, RAD1, Vpy, PT4, AMT2;2, AMT2;3, FatM, RAM2,
STR, and STR2 (Supplementary Figure 2A and Supplementary
Table 3). The AP2-EREBP domain TFs, CBX1 and WRI5a/b/c
that are involved in fatty acid biosynthesis and reciprocally
regulate the expression of RAM1, were also included in the
analysis (Luginbuehl et al., 2017; Jiang Y. et al., 2018; Xue
et al., 2018; Shi et al., 2021). Additionally, we identified the
sucrose synthase 1 (SucS1) and glucose transporter (Sugar Will
Eventually be Exported Transporter 1b; SWEET1b) conserved in
the examined plants. In arbuscule-containing cortical cells, SucS1
and SWEET1b are predicted to catalyze sucrose into glucose
and export the monosaccharide via PAM in M. truncatula,
respectively (Hohnjec et al., 2003; Baier et al., 2010; An
et al., 2019). Notably, these genes have been reported to be
transcriptionally upregulated upon AM fungal colonization.

In this analysis, the examined plants were grown under
several conditions as follows: non-colonized control roots
(NC), AM roots (+AMF), and GA-treated AM roots (+AMF
+GA3). A common set of selected genes were transcriptionally
promoted upon fungal colonization at 6 wpi in each plant
(Figure 3). AM fungal colonization, however, did not induce the
expression of E. grandiflorum FatM (EgFatM), D. carota, and
E. grandiflorum SucS1s and SWEET1bs at 6 wpi (Figures 3B,C).
In addition to EgFatM, several transcripts annotated as palmitoyl-
acyl carrier protein thioesterase were transcriptionally activated
upon the AM fungal colonization (Supplementary Table 4).
In L. japonicus, the expression levels of several conserved
genes were undetectable or mostly reduced by exogenous GA
compared with NC and +AMF conditions (Figure 3A). In
contrast, the expression levels of AM symbiosis-related genes
in GA-treated D. carota were still increased compared with
the NC but decreased compared with the +AMF (Figure 3B).
This suggests that the sensitivity of D. carota to negative effect
of GA on the expression of AM symbiosis genes would be
relatively moderate to that in L. japonicus as the colonization
rates showed (Figure 2D). In E. grandiflorum, the expression
of the AM-induced genes was further enhanced by GA than

the NC and +AMF controls (Figure 3C). This result further
supports the positive effect of GA on AM colonization in
E. grandiflorum (Figure 2D).

Eustoma grandiflorum PT4 (EgPT4) and RAM2 (EgRAM2)
were not identified by the SonicParanoid. Therefore, we
conducted a BLAST search for the two genes in E. grandiflorum
with sufficient E-value (<1E-5) (Supplementary Table 3).
Consequently, one gene annotated as phosphate transporter
(TRINITY_DN34977_c0_g1_i1.p1) was found to be homologs
to M. truncatula PT4 (Supplementary Table 3) and was
transcriptionally enhanced upon the AM fungal colonization and
exogenous GA (Supplementary Table 4; Tominaga et al., 2020b).
Additionally, several E. grandiflorum genes were annotated as
glycerol-3-phosphate acyltransferase (RAM2) (Supplementary
Table 4). However, their expression levels were not promoted
upon the AM fungal colonization (Supplementary Table 4).
Alternatively, we might have missed EgRAM2 in the de novo
assembly after removing redundant contigs with CD-HIT
(Tominaga et al., 2020b).

Genes Involved in Phytohormone
Biosynthesis and Signaling Show Similar
Transcriptional Responses to Exogenous
Gibberellin in the Examined Host Plants
Since the number of infecting hyphopodia differed between
L. japonicus/D. carota and E. grandiflorum, we also analyzed
the expression patterns of several SL-related genes. D27,
CCD7, CCD8, and MAX1 are necessary for SL biosynthesis
(Booker et al., 2004, 2005; Auldridge et al., 2006; Alder
et al., 2012; Waters et al., 2012a; Al-Babili and Bouwmeester,
2015). PDR1 in Petunia hybrida encoding a G-type ABC
transporter is predicted to export SLs (Kretzschmar et al.,
2012). Additionally, D14, DLK2, and KAI2, which belong
to a D14 family, have previously been demonstrated as
components in SL, karrikin (KAR), or KAI2-ligand (KL)
signaling or both (Waters et al., 2012b; Kameoka and Kyozuka,
2015; Vegh et al., 2017). Based on the identification using
SonicParanoid, these genes seemed to be conserved in
L. japonicus, D. carota, and E. grandiflorum (Supplementary
Figure 2B and Supplementary Table 3). For SL biosynthetic
genes, LjD27, LjCCD7, and LjCCD8 were transcriptionally
downregulated by GA treatment (Figure 4A). Additionally, the
expression of CCD8 in E. grandiflorum was significantly reduced
upon GA treatment, and EgD27 and EgCCD7 expressions were
slightly inhibited by the treatment. This result suggests that GA
inhibits SL biosynthesis and exudation to the rhizosphere in
E. grandiflorum as found in L. japonicus and O. sativa (Figure 4C;
Ito et al., 2017).

However, a statistically significant induction of DcCCD8 at
2.46-fold was detected in GA-treated AM roots compared with
that in the +AMF condition (Figure 4B and Supplementary
Table 4). To confirm the effect of GA on SL production,
we conducted a germination assay by using O. minor whose
germination is induced by SLs (Ueno et al., 2014; Trabelsi
et al., 2017). To prepare root extraction in the same conditions
as the RNA-seq experiments, the examined plants were
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FIGURE 4 | Comparative analysis of the expression patterns of SL biosynthetic and signaling-related genes conserved among examined host plants. (A–C)
Heatmaps represent the expression patterns of the selected SL-related genes in Lotus japonicus (A), Daucus carota (B), and Eustoma grandiflorum (C) at 6 wpi.
The expression levels and Log2FC compared with the controls of each gene are represented in the left heatmap (blue, low expression level; black, mean; yellow, high
expression level) and the middle one (magenta, negative values; green, positive values; white, zero), respectively. The number below the heatmaps indicates a
biological replicate. In the right one, the red and gray represent DEGs (| Log2FC| > 1, FDR < 0.01) and genes with FDR < 0.05. NC, non-colonized control; +AMF,
Rhizophagus irregularis inoculation; +AMF +GA3, simultaneous application of R. irregularis inoculation and 1 µM GA3. The DEGs were identified by comparing +AMF
with NC (+AMF/NC), +AMF +GA3 against NC or +AMF (+AMF +GA3/NC, +AMF +GA3/+AMF). The calculated values of TPM, Log2FC, and FDR of the selected
genes can be found in Supplementary Table 4. AM, arbuscular mycorrhizal; DEG, differentially expressed gene; FC, fold change; FDR, false discovery rate; GA,
gibberellin; SL, strigolactone; TPM, transcripts per million.

grown in the soil mixture for 6 weeks. Consistent with the
expression analysis, the germination activity of root extracts
was significantly reduced in L. japonicus by GA treatment,
whereas it increased in GA-treated D. carota (Supplementary
Figure 3). The seed germination of O. minor was not promoted
by E. grandiflorum root extracts, which might be attributed to
the low quantities of SLs (Sato et al., 2003; Halouzka et al.,
2020). When we hydroponically grow E. grandiflorum, the
root exudates exhibited germination activity and negative effect
of GA on SL production (Supplementary Figure 3C). Taken
together, the enhanced AM fungal colonization in GA-treated

E. grandiflorum would be mainly supported by unidentified
components but not by SLs.

Of the SL signaling-related genes, DLK2 was significantly
induced in the examined host plants upon AM fungal
colonization compared with NC control (Figure 4). Similarly,
DLK2 induction was reported in other host plants, O. sativa and
Solanum lycopersicum (Choi et al., 2020; Ho-Plagaro et al., 2021).
Moreover, compared with the +AMF control, GA treatment
significantly reduced DLK2 expression in L. japonicus but further
increased in E. grandiflorum (Figures 4A,C; Tominaga et al.,
2020b). The expression of DLK2 in GA-treated D. carota was
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FIGURE 5 | Comparisons of enriched GO among AM roots of examined host plants. (A) Total DEGs (| Log2FC| > 1, FDR < 0.01) in individual host plants during AM
symbiosis at 6 wpi. Their expression patterns classify the DEGs. The values represent the number of DEGs. As for Eustoma grandiflorum, the values indicate the
number of transcripts in de novo assembly data. Group A contains AM-upregulated but GA-downregulated DEGs, Group B represents AM- and GA-upregulated
DEGs, and Group C indicates AM-upregulated DEGs. NC, non-colonized control; +AMF, Rhizophagus irregularis inoculation; +AMF +GA3, simultaneous application
of R. irregularis inoculation and 1 µM GA3. For the determination of DEGs, transcriptomes in the host plants were compared as following: +AMF versus NC
(+AMF/NC), +AMF +GA3 versus +AMF (+AMF +GA3/+AMF). (B–E) Hierarchical clustering of significantly enriched GO terms in the DEGs within Group A + B + C
(upregulated upon AM fungal colonization) (B) and Group A (D) in each host plant at 6 wpi (corrected p < 0.05). The representative GO terms that enriched in each
cluster of (B,D) were plotted in (C,E), respectively. The size of circles represents ratio of DEGs enriched in a GO term to total number of DEGs. The color bar shows
color-coded corrected p-value. The p-values were calculated using a two-sided hypergeometric test in the Cytoscape plugin, ClueGO, and corrected using the
Benjamini–Hochberg method. For the detailed lists of DEGs and complete GO terms in each cluster, see Supplementary Table 6. AM, arbuscular mycorrhizal;
DEG, differentially expressed gene; FC, fold change; FDR, false discovery rate; GA, gibberellin; GO, gene ontology.
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FIGURE 6 | Proposed model for conserved and divergent responses to AM fungi and exogenous GA in genetically distant host plants at 6 wpi. The hypothetical
model and table represent common and different responses to Rhizophagus irregularis colonization and exogenous GA treatment in Lotus japonicus (Arum-type),
Daucus carota (Intermediate-type), and Eustoma grandiflorum (Paris-type) AM roots. AM fungal colonization contributed to growth promotion in each tested plant
forming the distinct AM morphotypes. However, GA treatment suppressed the AM fungal colonization in L. japonicus and D. carota. In contrast, GA treatment also
promoted mycorrhization in E. grandiflorum. These alterations in colonization levels were consistent with the expression levels of the conserved downstream genes
such as RAM1. Interestingly, our findings indicate that the upstream regulation of the symbiosis-related genes would be resistant to GA in E. grandiflorum, but
vulnerable to GA in the others. On the other hand, GA transcriptionally inhibited SL biosynthetic genes (CCD7 and/or CCD8) in L. japonicus and E. grandiflorum,
implying the existence of unidentified branching factors in E. grandiflorum. Moreover, disaccharides mainly metabolized during AM symbiosis might be different:
sucrose and trehalose in L. japonicus and D. carota/E. grandiflorum. Red words in the table indicate different traits and responses found among the examined host
plants in this study. +, positive regulation; –, negative regulation. The figures were created with BioRender.com. AM, arbuscular mycorrhizal; GA, gibberellin; SL,
strigolactone.

slightly reduced (Figure 4B). Thus, DLK2 expression patterns
would simply mirror the GA-mediated changes in AM fungal
colonization level.

Transcriptional Responses to Exogenous
Gibberellin Reflect Fungal Colonization
Rates in Three Host Plant Species
To expand comparative analysis of transcriptional responses to
the AM fungal colonization and GA treatment, we identified
the ortholog genes with a one-to-one relationship among
L. japonicus, D. carota, and E. grandiflorum using SonicParanoid.
This resulted in 2,705 ortholog genes (Supplementary Table 2).
The orthologs were designated as DEGs when they were
differentially expressed at least in one condition of each host
plant, resulting in 467 DEGs (Supplementary Figure 4 and
Supplementary Table 5). Hierarchical clustering showed that the
transcriptional responses to GA in L. japonicus and D. carota AM
roots were similar to each other (Supplementary Figure 4). In
GA-treated E. grandiflorum, the transcriptional responses were
found to be close to that of +AMF samples (Supplementary
Figure 4). These data are consistent with the GA-suppressed AM
symbioses in L. japonicus and D. carota and GA-resistant AM
symbiosis in E. grandiflorum (Figure 2).

Since GA highlighted the different expression patterns of the
conserved and orthologous genes among the examined plants so

far, we next investigated GA-mediated responses shared among
them. In GA-treated plants, the shoots, petioles, and leaves were
significantly elongated, as other studies showed (Supplementary
Figure 5). In addition to promoting plant growth, GA-treated
host plants commonly showed significantly reduced GA20ox
expression as previous study shows (Supplementary Table 4;
Cheng et al., 2015). Therefore, GA appears to have common
effects on plant physiological responses in L. japonicus, D. carota,
and E. grandiflorum as expected.

Comparative Gene Ontology Enrichment
Analysis Among the Examined Plant
Species
To gain further insights into the similarity and difference in
the regulation of AM symbiosis, we utilized our comparative
transcriptome data to infer the physiological functions altered in
the AM roots of each host plant by the GO enrichment analysis.
To this end, DEGs were determined in each host plant, resulting
in 4,056, 3,537, and 6,439 DEGs in L. japonicus, D. carota, and
E. grandiflorum, respectively (Figure 5A). The relatively large
number of DEGs in E. grandiflorum might be attributable to the
redundant or alternative transcripts in de novo assembly (Duan
et al., 2012; Ono et al., 2015), although the redundant contigs
were removed from de novo reference data using CD-HIT (Li and
Godzik, 2006; Tominaga et al., 2020b).
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We classified the DEGs depending on their expression
patterns (Figure 5A). Interestingly, we found that the ratio
of DEGs in Group A representing AM fungus-induced but
GA-suppressed genes was relatively low in E. grandiflorum
(3.6%) compared to L. japonicus (25.2%) and D. carota (15.2%)
(Figure 5A). In contrast, the percentage of DEGs in Group
B representing AM fungus- and GA-induced genes was much
lower in L. japonicus (0.074%) compared to D. carota (2.4%) and
E. grandiflorum (9.0%) (Figure 5A).

As for DEGs upregulated by the AM fungal colonization
(Group A + B + C), GO terms associated with membrane
transport were enriched in all colonized plants (Cluster VII in
Figures 5B,C and Supplementary Table 6). Some GO terms
related to transport activity were still found in Group C of
each host plant (Supplementary Table 6). Additionally, the
analysis also detected peptidase- and fatty acid-related terms in
L. japonicus and D. carota (Cluster II in Figures 5B,C). The
enrichment of fatty acid-related GO term, fatty acid synthase
activity, is consistent with the transcriptional promotions of
FatM and RAM2 in the two hosts colonized by R. irregularis
(Figures 3A,B). On the other hand, some GO terms in
Cluster II were not shared with E. grandiflorum (Figures 5B,C
and Supplementary Table 6), which might be attributable
to the fact that some homologs such as RAM2 were not
identified from the de novo assemble data of E. grandiflorum
by SonicParanoid (Supplementary Figure 1A). However, some
differences were found among different host plants. For example,
the expressions of α-glucosidase and β-fructofuranosidase were
promoted upon AM fungal colonization in L. japonicus
(Cluster III in Figures 5B,C and Supplementary Table 6).
Alternatively, D. carota and E. grandiflorum showed enhanced
expressions of genes encoding trehalose biosynthetic enzymes
and trehalase activity upon fungal inoculation, respectively
(Cluster I, V, and VI in Figures 5B,C and Supplementary
Table 6). These GO terms associating with trehalose also
enriched in Group B, where genes were transcriptionally
activated in both of AM fungal colonization and GA treatment
(Supplementary Table 6). These results suggest that different
disaccharides might be dominantly metabolized during AM
symbioses: sucrose in L. japonicus and trehalose in the
other two plants.

To compare GA-mediated change in AM-responsive genes, we
next focused on Group A genes. As illustrated in the heatmap,
the DEGs in the Group A of E. grandiflorum were significantly
enriched in GO term representing flavin adenine dinucleotide
binding (GO:0050660) (Figures 5D,E and Supplementary
Table 6). In contrast, GO terms representing transmembrane
transport and peptidase were shared in L. japonicus and D. carota
(Cluster II in Figures 5D,E and Supplementary Table 6).
The GO enrichment analysis again revealed that fatty acid
biosynthesis was attenuated in GA-treated L. japonicus AM
roots, corresponding to the negative effect of GA on LjFatM
and LjRAM2 expressions (Figures 3A, 5D,E and Supplementary
Tables 4, 6). Moreover, trehalose-related genes were shown
to be transcriptionally downregulated in GA-treated D. carota
AM roots (Cluster III in Figures 5D,E and Supplementary
Table 6). As for E. grandiflorum AM roots, trehalose metabolism

was transcriptionally upregulated even in the presence of GA
(Supplementary Table 6).

Comparison of Fungal Transcriptome
Obtained From Three Examined Host
Plants
We found that up to 13.7% of the RNA-seq reads are mapped
to the genome of R. irregularis (Supplementary Table 1; Maeda
et al., 2018). This allowed us to compare the transcriptomes
of R. irregularis colonizing each of GA-treated L. japonicus,
D. carota, and E. grandiflorum against one infecting the control
plants. The number of the upregulated DEGs of R. irregularis
was relatively smaller in GA-treated L. japonicus compared to
other plants (Supplementary Figure 6A). On the other hand, the
downregulated DEGs of R. irregularis in GA-treated L. japonicus
were mostly shared with D. carota (24.7%) compared with
E. grandiflorum (9.9%) (Supplementary Figure 6A).

Since R. irregularis seemed to differentially respond to
the examined plants, we next conducted the GO enrichment
analysis on the fungal DEGs. Hierarchical clustering arranged
by Log2FC revealed six clusters (Supplementary Figure 6B).
We found several GO terms associated with a mitogen-
activated protein kinase (MAPK) activity in Cluster IV,
where upregulated DEGs in R. irregularis associating with
GA-treated E. grandiflorum were dominant (Supplementary
Figure 6C and Supplementary Table 7). Additionally, glycogen
metabolism- and wax biosynthesis-related terms were found in
the cluster. Interestingly, DEGs in Cluster VI, where numerous
downregulated DEGs were found in GA-treated L. japonicus,
were enriched in some GO terms corresponding to the elongation
and oxidation of fatty acid (Supplementary Figure 6D and
Supplementary Table 7). This may suggest that the allocation
of host-derived fatty acids is attenuated by GA application in
L. japonicus, which could be explained by the GA-suppressed the
expression levels of genes for fatty acid biosynthesis in its AM
roots (Figures 3A, 5E and Supplementary Tables 4, 6).

DISCUSSION

In this study, our comparative transcriptomics found a partially
common transcriptional response during AM symbiosis among
L. japonicus, D. carota, and E. grandiflorum roots in the absence
of GA. A set of known AM symbiosis-related genes, RAM1,
RAD1, Vpy, PT4, AMTs, STR, and STR2, conserved in the
tested plants were transcriptionally promoted upon AM fungal
colonization (Figure 3). These genes have been also shown
to be transcriptionally upregulated during AM symbiosis in
L. japonicus, M. truncatula, tomato, rice, and Poncirus trifoliata
(Sugimura and Saito, 2017; An et al., 2018). Another study
revealed the conservation of RAD1, STR, and STR2 in broad
AM host lineages across vascular plants and bryophytes and
suggested their common functions in AM symbiosis; these
AM symbiosis-related genes would comparably function in
establishing AM symbiosis as well (Radhakrishnan et al., 2020).
As for the function of the conserved genes, CBX1, WRI5s,
STR, and STR2 have been shown to be required for the full
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development of arbuscule by regulating fatty acid biosynthesis
and transfer to AM fungi (Bravo et al., 2017; Luginbuehl et al.,
2017; Jiang Y. et al., 2018; Xue et al., 2018). Additionally, the
expression levels of genes encoding phosphate and ammonium
transporters were enhanced by AM fungal colonization (Figure 3
and Supplementary Table 4), which would contribute to the host
growth promotion regardless of the distinct AM morphotypes as
shown in a previous report (Figure 1E; Hong et al., 2012). Taken
together, nutrient exchange between the host plants and AM
fungi would be commonly essential to establish AM symbiosis
among the phylogenetically distant host plants. Especially, the
capability of supplying fatty acids to AM fungi appears to be
indispensable for the mutualism because AM fungi utilize lipids
for their growth and reproduction (Kameoka et al., 2019b;
Sugiura et al., 2020).

Nevertheless, GA treatment negatively and positively
regulated the AM fungal colonization in L. japonicus/D. carota
and E. grandiflorum, respectively, which were consistent with
the expression patterns of the conserved genes such as RAM1
(Figures 2D, 3). Recently, CYCLOPS required for both AM
symbiosis and root nodule symbiosis has been reported to
bind the cis-element on LjRAM1 promoter and upregulate
gene expression in concert with a Ca+2/calmodulin-dependent
protein kinase (CCaMK) and a GA-degradable repressor of GA
signaling, DELLA protein (Silverstone et al., 2001; Achard and
Genschik, 2009; Jin et al., 2016; Pimprikar et al., 2016). The
involvement of DELLA in the complex is thought to trigger
the GA-mediated inhibition of RAM1 expression, resulting
in the severe suppression of AM fungal accommodation.
The binding of DELLAs to the CCaMK-CYCLOPS complex
has been also demonstrated in nodule symbiosis (Jin et al.,
2016). D. carota and L. japonicus showed reduced rates of
AM fungal colonization and expression levels of RAM1,
indicating that the GA-mediated transcriptional regulation of
downstream genes would be common (Figure 6). However,
the expression levels of RAM1 and some of the downstream
genes were significantly or slightly promoted in GA-treated
E. grandiflorum (Figure 3C). Although this arose an idea
that GA directly modulates the expression of the downstream
genes, the enhanced AM fungal colonization in GA-treated
E. grandiflorum possibly contributed to the result since the
downstream genes were responsible to AM fungal colonization
levels (Figures 2D, 3 and Supplementary Table 4). On the
other hand, the transcriptional regulation of the downstream
genes in E. grandiflorum would be resistant to exogenous
GA since no inhibitory effect of GA on AM symbiosis was
observed in the host plant except for SL production (Figures 1–4
and Supplementary Figure 3C). Therefore, DELLA might
be dispensable for or inhibiting the expression of RAM1 in
E. grandiflorum, while this study could not uncover the DELLA
function in the host plant. In fact, stabilizing DELLA proteins
in E. grandiflorum suppresses AM fungal colonization and
arbuscule formation (Tominaga et al., 2020a), whereas it did not
change colonization levels or upregulate arbuscule formation
(Takeda et al., 2015; Pimprikar et al., 2016). To clarify the
upstream regulation of these TFs in E. grandiflorum, further
investigation would be necessary.

Strigolactones are thought to potentiate pre-symbiotic fungal
contact to the host roots because some mutants defect in SL
biosynthesis and exudation showed delayed colonization and
decreased the number of hyphopodia (Breuillin et al., 2010;
Kretzschmar et al., 2012; Kobae et al., 2018). Additionally, SL
biosynthesis and exudation are inhibited by exogenous GA (Ito
et al., 2017). Indeed, we could confirm the inhibitory effects of
GA on SL biosynthetic genes in L. japonicus and E. grandiflorum
(Figure 4 and Supplementary Figure 3). Interestingly, the
number of the hyphopodia was drastically induced in GA-treated
E. grandiflorum roots as shown in our previous study (Figure 2E;
Tominaga et al., 2020a). This study also suggests that SLs would
not be involved in the GA-promoted fungal invasion due to
the negative effect of GA on SL production (Figure 4C and
Supplementary Figure 3C). We could not identify the unknown
signal molecule(s) yet; however, the possible existence was
assumed from the GO enrichment analysis on R. irregularis. As
shown in Supplementary Figure 6, some GO terms representing
the activity of MAPK kinase kinase, MAPK Kinase, and
MAPK were detected in R. irregularis colonizing GA-treated
E. grandiflorum (Supplementary Table 7). In plant pathogenic
fungi, such as Ustilago maydis and Magnaporthe oryzae, MAPK
cascade is required for the formation of appressoria and their
virulence after perceiving some signal molecules derived from
the host plants (Hamel et al., 2012; Li X. et al., 2017; Jiang
C. et al., 2018). Although the necessity of the MAPK cascade
in R. irregularis hyphopodia formation remains unclear, the
fungus might sense some signal molecule(s) exudates from
GA-treated E. grandiflorum roots. Except for L. japonicus and
E. grandiflorum, this study indicated that SL biosynthesis in
D. carota might be less sensitive to GA even though exogenous
GA reduced the number of invading hyphopodia (Figures 2E, 3B
and Supplementary Figure 3). A negative feedback regulation in
SL biosynthesis might trigger the increase in DcCCD8 expression
upon exogenous GA at 6 wpi (Hayward et al., 2009; Proust et al.,
2011). Alternatively, the reduction of SL exudation by GA might
have occurred at an earlier time point than 6 wpi in D. carota.

Gibberellin is one of phytohormones that has versatile
functions in abiotic stress responses. Light limitation makes
plants accumulate GA, which results in the elongation of stem
to gain efficient light for photosynthesis (Hisamatsu et al., 2005;
Bou-Torrent et al., 2014; Colebrook et al., 2014; Li W. et al., 2017;
Yang and Li, 2017). Interestingly, far-red treatment and phyB
mutation have been reported to attenuate AM fungal colonization
and SL production in L. japonicus and tomato colonized by
R. irregularis (Nagata et al., 2015). Moreover, host plants forming
Paris-type AM, such as Gentianaceae species, are often found
in forest floor (Yamato and Iwasaki, 2002; Yamato, 2004). Thus,
Paris-type AM symbiosis might enable the hosts to efficiently
accommodate the symbionts in dark places. However, this idea
should be further investigated because some plants are capable
of suppressing shade-induced GA accumulation in petiole and
hypocotyl elongation (Gommers et al., 2018; Paulišić et al.,
2021). Recent study has also introduced that inorganic phosphate
(Pi) inhibits AM symbiosis via GA signaling in Solanaceous
model plants (Nouri et al., 2021). In contrast, E. grandiflorum
might be capable of promoting AM fungal colonization in
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high Pi concentration, although this hypothesis needs to be
explored. Taken together, some plants like E. grandiflorum might
adapt to their surroundings by exploiting the GA-resistant
AM fungal colonization and unidentified signal molecule(s).
The investigations of regulatory mechanisms underlying AM
symbiosis with environmental cues and/or life stages of host
plants would be necessary for further understanding.

The loss of genes encoding enzymes required for
polysaccharide degradation in AM fungi demands host plants
on glucose (Kobayashi et al., 2018). In arbuscules containing
cells of M. truncatula, AM fungi-responsive localization and the
expression of MtSucS1 and MtSWEET1b are thought to produce
glucose and export it toward AM fungi between the symbiotic
interface (An et al., 2019). In fact, our GO enrichment analysis
showed activated sucrose hydrolysis during AM symbiosis in
L. japonicus, which was supported by AM-induced LjSucS1
and LjSWEET1bs expression (Figure 3A and Supplementary
Table 4). In contrast, another disaccharide, trehalose, appeared
to be broken down in D. carota and E. grandiflorum during
AM symbiosis, as the increases in plant trehalase (TRE1) gene
expressions were found in the host plants upon AM fungal
colonization (Figure 5C and Supplementary Tables 3, 5). This
difference might be attributable to the intracellular hyphal
invasion in Intermediate- and Paris-type AM roots (Figures 1B–
D and Supplementary Figures 1C–E). However, the increase
in TRE1 expression was also observed in L. japonicus AM
roots at 6 wpi (Supplementary Table 4). Interestingly, it is
known that most of the storage carbohydrates found in fungi
are trehalose, and AM fungi can synthesize, metabolize, and
accumulate trehalose in the spores and hyphae (Shachar-Hill
et al., 1995; Bago et al., 1999; Pfeffer et al., 1999; Kameoka et al.,
2019a). Additionally, the upregulation of TRE1 expression has
also been seen in Arabidopsis thaliana infected by a pathogenic
fungus, Plasmodiophora brassicae, which is considered as
the maintenance of sugar concentration and physiological
homeostasis in the roots by removing fungal-derived trehalose
(Brodmann et al., 2002). On the other hand, the suppression of
the trehalose precursor trehalose-6-phosphate (T6P) production
has been found in L. japonicus AM roots and predicted to be
related to the decomposition of starch into glucose for AM fungi
(Kolbe et al., 2005; Handa et al., 2015), indicating TRE1 would
be involved in the regulation of symbiotic glucose metabolism.
However, most of trehalose-6-phosphate synthases that catalyze
T6P production were not transcriptionally suppressed at in
D. carota and E. grandiflorum at 6 wpi (Supplementary Table 4).
This suggests that the TRE1 expression enhanced during AM
symbiosis might not be involved in the starch degradation.
Therefore, TRE1 might be required to reduce AM fungi-derived
trehalose concentration in the host plants, for example, when
arbuscules are hydrolyzed in a short period (Kobae et al., 2014;
Floss et al., 2017).

In summary, a particular set of conserved AM symbiosis-
related genes would commonly function to accommodate AM
fungi in the phylogenetically distant AM host plants regardless
of distinct AM morphotypes. However, our transcriptomics and
GA treatment indicate the GA-mediated different molecular
mechanisms regulating the conserved AM symbiosis-related

genes between L. japonicus/D. carota and E. grandiflorum
(Figure 6). These findings advance the comprehensive
understanding of transcriptomic regulation and the diversity
of GA-mediated effects on AM symbioses among host plants.
Additionally, AM fungal traits sometimes affect AM morphotype
formed in a single host species (Cavagnaro et al., 2001; Dickson,
2004; Smith et al., 2004; Kubota et al., 2005; Hong et al.,
2012). Thus, the comparison of GA-mediated regulations
underlying AM symbioses using a single host species would
be expected to further support the causal relationship between
AM-morphotyped and the different GA-mediated regulation of
symbiosis in the next study.
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The Rhizobium-Legume Symbiosis: 
Co-opting Successful Stress 
Management
Justin P. Hawkins  and Ivan J. Oresnik *

Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada

The interaction of bacteria with plants can result in either a positive, negative, or neutral 
association. The rhizobium-legume interaction is a well-studied model system of a process 
that is considered a positive interaction. This process has evolved to require a complex 
signal exchange between the host and the symbiont. During this process, rhizobia are 
subject to several stresses, including low pH, oxidative stress, osmotic stress, as well as 
growth inhibiting plant peptides. A great deal of work has been carried out to characterize 
the bacterial response to these stresses. Many of the responses to stress are also observed 
to have key roles in symbiotic signaling. We propose that stress tolerance responses have 
been co-opted by the plant and bacterial partners to play a role in the complex signal 
exchange that occurs between rhizobia and legumes to establish functional symbiosis. 
This review will cover how rhizobia tolerate stresses, and how aspects of these tolerance 
mechanisms play a role in signal exchange between rhizobia and legumes.

Keywords: rhizobium, legume, symbiosis, stress, pH, osmolarity, oxygen, ROS

INTRODUCTION

Rhizobia-legume symbiosis is a well-studied interaction which results in the formation of a plant 
derived organelle for the purposes of symbiotic nitrogen fixation. Establishment of this interaction 
occurs through a complex signal exchange which is initiated by the secretion of plant derived 
flavonoids that are then recognized by compatible rhizobia species (Oldroyd and Downie, 2008; 
Oldroyd et al., 2011). Recognition of flavonoids results in the production of a lipo-chito-oligosaccharide 
termed Nod factor (NF) which can be  perceived by the host legume (Barnett and Fisher, 2006). 
This triggers calcium spiking in the inner plant cortical cells, resulting in the division of cells 
which will form the nodule primordia (Ehrhardt et  al., 1996; Shaw and Long, 2003). Nod factor 
recognition also leads to root hair curling which can trap attached rhizobia and form a curled 
colonized root hair (Fournier et  al., 2008). Infection thread formation can be  observed after 
signals, such as exopolysaccharides or lipopolysaccharides, are recognized. This structure penetrates 
down toward nodule primordial cells where rhizobia become endocytosed into the cells and 
enclosed in a symbiotic membrane (Jones et  al., 2007). Rhizobia then become bacteroids, which 
may or may not be  terminally differentiated, that functionally serve as a plant organelle to reduce 
atmospheric nitrogen into ammonia which is subsequently utilized by the host legume.

While the signaling events that lead to an effective symbiosis are complex, other factors 
also play a major role in the establishment of an effective symbiosis. During the infection 
and differentiation process, rhizobia are challenged by numerous stresses, both in the rhizosphere 
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and in planta (Figure  1). To tolerate the stresses that are 
encountered, bacteria produce compounds or change their 
lifestyle in order to permit survival. In numerous cases, these 
changes are correlated with the ability to establish a functional 
symbiosis. Molecules involved in plant pathogen recognition 
may also be  necessary for symbiotic establishment, and in fact 
may serve as a signal to the bacteria to produce symbiotic 
signals. The focus of this work is to review aspects of rhizobia 
and plant responses to stress, and how elements of these 
responses may have become co-opted as signals involved in 
establishing a functional symbiosis.

FLAVONOIDS

The symbiotic interaction between legumes and rhizobia initiates 
when flavonoids are recognized by bacteria. The biosynthesis 

of flavonoids in plants is well understood (Ferrer et  al., 2008), 
and to date, thousands of different flavonoids have been isolated. 
The biochemical diversity of flavonoids is achieved through 
modification of a limited number of base structures. These 
molecules play diverse roles in plant biology ranging from 
affecting flower color, auxin transport, and anti-microbial 
defenses (Winkel-Shirley, 2001).

Flavonoids are a known anti-microbial (Hassan and Mathesius, 
2012) and represent one of the first directed challenges from 
plant toward bacteria. The production of these molecules is 
known to be  induced in response to pathogen invasion and 
has been shown to be  directly involved in the plant defense 
response (Cramer et  al., 1985). One subgroup of flavonoids 
called the iso-flavonoids are found exclusively in legumes (Hirsch 
et al., 2001). Iso-flavonoids were originally thought to be involved 
in the defense response against fungi and were shown to also 
have toxic effects on some isolated bacteria. However, it has 

FIGURE 1 | Locations of perceived stress during the rhizobia-legume symbiosis. During symbiosis, there are three distinct environments that symbiotic bacteria 
must contend with: Bulk soil, the rhizosphere, and in planta. Each white box indicates potential “perceived” stressors that may be encountered in each of the 
indicated environments.
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also been shown that iso-flavonoids play a role in rhizobium-
legume symbiosis. Rhizobia which were exposed to purified 
iso-flavonoids from plant root exudates were shown to induce 
the transcription of nodABC, which encode proteins necessary 
for NF synthesis (Hartwig et  al., 1990).

Secretion of the flavone luteolin which is produced by 
Medicago sativa has been shown to occur in distinct areas of 
the developing root where symbiotic interactions may occur 
(Ehrhardt et  al., 1992). Flavones and isoflavones were also 
found to induce transcription of the nod genes in other rhizobia, 
and recognition of specific flavonoids was shown to play a 
role in plant-host specificity during symbiosis. Collectively, it 
seems that the initial role for flavonoids and iso-flavonoids 
secreted by plants was to be  an anti-microbial (Cowan, 1999). 
However, rhizobia have been able to utilize very specific portions 
of flavonoids, the iso-flavonoids, as a signal indicating the 
presence of a compatible host and respond through the production 
of Nod factor to initiate symbiotic signaling.

NOD FACTOR

Signaling between host plants and symbiotic rhizobia or 
mycorrhizae share a common subset of genes and follow a 
similar pathway (Duc et al., 1989; Oldroyd, 2013). Each organism 
produces a lipo-chito-oligosaccharide (myc/nod factor) that is 
recognized by LysM type receptors on the plant (Chabaud 
et al., 2002; Geddes and Oresnik, 2016). Mycorrhizal symbiosis 
is thought to be  an ancient process and able to occur with 
most land-based plants, with the oldest symbiotic interaction 
known to be with the phylum Glomeromycota (Oldroyd, 2013). 
The secretion of myc factor, which is structurally similar to 
nod factor, is essential to its symbiotic interaction with its 
host plants. Comparatively, rhizobial symbiosis is relatively new 
and only occurs with legumes and Parasponia plants through 
recognition of NF by LysM type receptors (Pueppke and 
Broughton, 1999; Madsen et  al., 2003). The similarities of the 
signaling pathway, and insights into Parasponia symbiotic 
signaling, has led to the hypothesis that the use of Nod factor 
for symbiosis evolved from myc factor signaling in mycorrhiza 
(Streng et  al., 2011).

The structure of NF is comprised of 3–5 β(1–4)-linked 
N-acetylglucosamine residues, with a fatty acid tail on the first 
residue, and can have various modifications to the 
N-acetylglucosamine residues (Mylona et al., 1995). Nod factor 
is structurally similar to fungal cell wall chitin, which is a 
known activator of the plant immune response (Pusztahelyi, 
2018). In addition, both Nod factor and chitin are recognized 
by LysM type receptors which are thought to have evolved 
from an ancestral LysM receptor (Zipfel and Oldroyd, 2017). 
The key difference being that Nod factor contains shorter 
N-acetylglucosamine chain lengths. In the S. meliloti – M. 
truncatula model NF is recognized by the LysM receptors 
MtNFP and MtLYK3 (Oldroyd, 2013). This recognition induces 
numerous responses from M. truncatula which are necessary 
for successful symbiotic establishment. Transcriptomic studies 
have also revealed that Nod factor recognition regulates genes 

involved in the plant immune response (El-Yahyaoui et  al., 
2004). Studies have also shown that isolated Nod factor from 
rhizobia can modulate the immune response of both legumes 
and non-legumes. When Arabidopsis thaliana is exposed to 
the known pathogen associated molecular pattern flg22, the 
innate immune response of the plant becomes induced. 
Interestingly, when purified NF isolated from B. japonicum 
was applied, in addition to flg22, a more attenuated immune 
response was observed (Liang et  al., 2013). This suggested that 
Nod factor-mediated suppression of the plants innate immune 
system may be  necessary for successful colonization of plants.

Nod factor is also known to activate the innate defense 
responses from plants. Transcriptomic studies indicate that the 
plant immune response is initially activated due to S. meliloti 
inoculum (Lohar et  al., 2006). Purified Nod factor has also 
been shown to induce the production of ROS in the nodulation 
zone of M. truncatula roots (Ramu et  al., 2002). Further studies 
revealed that increased production of H2O2 can be  observed to 
occur around root hair tips during Nod factor exposure (Cardenas 
et al., 2008). Interestingly, S. meliloti mutant strains over-expressing 
catalase also exhibited slower nodulation and malformed infection 
threads (Jamet et al., 2007). This suggests that while the suppression 
of the plant immune system is necessary for growth of rhizobia 
during symbiotic establishment, the initial immune response 
may bring about changes to both plant and bacteria that promote 
symbiosis. It has been suggested that the presence of H2O2 
might be  necessary for stabilizing the formation of infection 
threads or promoting a physiological change in rhizobia which 
would promote symbiosis (Jamet et al., 2007). These observations 
from early signaling involving the interplay of flavonoids and 
Nod factor production are a clear example of how a potential 
stress, flavonoids, induce a bacterial signal, Nod factor, that 
have become a key component for symbiotic interaction.

ENVIRONMENTAL CONDITIONS

The aforementioned topics on symbiotic signaling and regulation 
of the plant immune response provide a clear example of how 
tolerance of a stress has become intertwined in signaling. 
However, it is also important to consider how physiological 
conditions during symbiotic establishment may also promote 
symbiosis. Bacteria encounter a wide variety of conditions in 
both bulk soil and in planta. Bulk soil conditions can vary 
significantly around the world. In addition, the environment 
in planta can challenge bacteria with changes in osmolarity, 
oxygen content and oxidative stress, decreasing pH, and further 
plant peptide challenges. The following points investigate how 
these conditions can promote physiological changes necessary 
for stress tolerance that end up influencing symbiotic 
establishment or nitrogen fixation (Table  1).

OSMOTIC STRESS

Genes involved in adaptation to varying osmotic conditions 
have been shown to be  critical for the establishment of a 

27

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Hawkins and Oresnik Co-opting Successful Stress Management

Frontiers in Plant Science | www.frontiersin.org 4 January 2022 | Volume 12 | Article 796045

functional symbiotic relationship. Osmotic conditions before 
symbiosis are fully dependent on salts and exudates present 
in the soil. Bulk soil is generally assumed to be  an area of 
low osmolarity (Miller and Wood, 1996). However, the area 
of the rhizosphere is predicted to have a higher osmolarity 
due to plant root exudate and water uptake from both plants 
and bacteria (Jungk, 2002; Miller-Williams et  al., 2006). While 
the osmotic conditions throughout symbiosis in the rhizobia-
legume interaction are unknown, current research is consistent 
with the hypothesis that both high and low osmolarity conditions 
exist throughout symbiosis (Botsford and Lewis, 1990; Dylan 
et al., 1990a). The area of the rhizosphere having high osmolarity 
is particularly interesting as these conditions have been linked 
with inducing genes necessary for symbiosis. The presence of 
high osmotic conditions has been shown to induce transcription 
of genes involved in nodulation and nitrogen fixation (nod, 
nif, and fix genes) through NodD2  in Rhizobium tropici CIAT 
899 (Del Cerro et  al., 2019). This same pattern of regulation 
of these genes through NodD2 is also observed when R. tropici 
is exposed to increased salt stress present in the rhizosphere 
(Pérez-Montaño et  al., 2016). In addition, increased salt 
concentrations are known to regulate exopolysaccharide 
production in S. meiloti (Miller-Williams et  al., 2006). These 
observations provide the most direct link between osmotic 
stress recognition and promoting symbiosis.

The major link between osmotic stress tolerance and 
physiological changes with importance to symbiosis is the 
accumulation of periplasmic glucans in the presence of hypotonic 
stress. The majority of the organisms in the family Rhizobiaceae 
produces a cyclic β(1–2)-linked glucan (York et  al., 1980; Lelpi 
et  al., 1990; Breedveld and Miller, 1994). Accumulation of 
these periplasmic glucans can be  observed when grown under 
hypotonic conditions (Miller et  al., 1986; Dylan et  al., 1990a; 
Breedveld and Miller, 1995). Further study of cyclic β(1–2) 
glucans in S. meliloti determined that the inability to produce 
this polysaccharide, by mutating the gene ndvB, resulted in 

sensitivity to hypotonic conditions, and abolished nodule 
formation on M. truncatula (Dylan et  al., 1990b). It was 
hypothesized that extracellular cyclic β(1–2) may be  involved 
in root attachment, but addition of purified cyclic β(1–2) was 
unable to restore symbiosis with M. truncatula to a ndvB 
mutant strain (Dylan et  al., 1990b). Pseudorevertants of the 
ndvB mutant strain that still did not produce the cyclic glucan 
have been isolated and were found to be  able to establish a 
functional symbiosis with M. truncatula. However, these 
suppressors were still heavily impacted in infection thread 
formation and were sensitive to hypoosmotic stress (Dylan 
et  al., 1990b). This suggested that while cyclic β(1–2) glucan 
production is important for osmotic stress tolerance and can 
be  linked to infection thread formation, their role in symbiosis 
extends past stress tolerance. Suppression of the symbiotic 
phenotype of ndvB mutants was later linked to the production 
the symbiotically important polysaccharide succinoglycan (Nagpal 
et  al., 1992).This lead to the suggestion that production of 
succinoglycan might provide just enough osmoprotectant in 
the form of low molecular weight succinoglycan to allow for 
survival in the absence of the cyclic glucans. In addition, 
succinoglycan may provide or mask a signal necessary for 
symbiosis in the absence of cyclic glucans (Abe et  al., 1982; 
Nagpal et al., 1992). Overall, osmolarity is involved in regulating 
cyclic β(1–2) glucans which have a role in symbiosis that 
extends past stress tolerance.

Another mechanism rhizobia and other bacteria utilize to 
tolerate high osmolarity is the accumulation of ions, such as 
potassium (Yancey et  al., 1982; Csonka, 1989; Botsford and 
Lewis, 1990; Smith et  al., 1994; Miller and Wood, 1996). 
Interestingly, increased potassium levels lead to an increase in 
nitrogenase activity in Bradyrhizobium sp.  32H1 when grown 
under low oxygen conditions (Gober and Kashket, 1987). As 
the bacteroid is predicted to be  an area of elevated osmotic 
stress (Miller and Wood, 1996), this provides a link showing 
that osmotic stress tolerance may be a signal for the regulation 
of nitrogenase in the bacteroid through the regulation of 
potassium concentration.

LOW OXYGEN CONTENT

During symbiotic establishment, rhizobia encounter areas of 
low oxygen concentration in the nodule. Control of oxygen 
concentration is important for symbiosis since oxygen inhibits 
the activity of nitrogenase (Hunt and Layzell, 1993). Oxygen 
levels are controlled through a diffusion barrier to create optimal 
oxygen concentrations for nitrogen fixation (Hunt et al., 1987). 
Tight regulation of oxygen concentration in bacteroids also 
leads to a number of signaling and physiological changes in 
bacteria, which promote symbiosis and nitrogen fixation. It 
has been well documented that a low oxygen concentration 
activates the two-component system FixJL, which in turn 
increases the transcription of the majority of genes involved 
in nitrogen fixation (David et  al., 1988; Virts et  al., 1988). 
Recent work has shown that there are 3 proteins that act 
oxygen sensors in Rhizobium leguminosarum; hFixL, FnrN, and 

TABLE 1 | Bacterial and plant changes due to perceived stress and their role in 
symbiosis.

Stress Response Symbiotic relevance

Bacteria/Pathogen Flavonoid Nod factor induction
NCRs Bacteroid differentiation
Innate immune response Oxidative burst (see ROS)

Flavonoid Nod factor Calcium spiking
Salt/Ion stress Nod factor Calcium spiking

EPS-I IT development
Osmotic cyclic β(1–2) glucans Attachment/ IT formation

Intracellular Potassium 
concentration

Nitrogenase induction

Acidic pH actR/S fixK/nifA
exoR/S/I EPS-I
Nod factor profile Legume host range

Reactive oxygen species EPS-I IT development
Membrane crosslinking IT development

Low oxygen Intracellular potassium Nitrogenase induction
Fix genes Nitrogenase induction
LPS modification Legume host range

28

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Hawkins and Oresnik Co-opting Successful Stress Management

Frontiers in Plant Science | www.frontiersin.org 5 January 2022 | Volume 12 | Article 796045

NifA (Dixon and Kahn, 2004; Zamorano-Sánchez and Girard, 
2015; Reyes-González et  al., 2016). These proteins are tightly 
temporally controlled, with hFixL inducing expression of FnrN 
in zones I and II (meristem zone and invasion zone, respectively) 
of indeterminate nodules. FnrN then induces expression of 
fixNOQP in zone III (nitrogen fixing zone) when oxygen 
concentration is near anaerobic (Rutten et  al., 2021). The 
induction the genes necessary for production of nitrogenase 
in near anaerobic conditions is necessary for function of the 
protein and is also a clear example of how microaerobic stress 
acts as a signal for symbiosis.

Oxygen concentration has also been shown to regulate 
lipopolysaccharide (LPS) synthesis and decoration (Kannenberg 
and Brewin, 1989; Tang and Hollingsworth, 1998). This is 
thought to have a role in adaptation to the low oxygen 
environment. Production and modification of LPS are strain 
specific and are involved in determining host range for symbiosis 
in some rhizobia (Via et  al., 2016). The ability to produce, or 
properly modify, LPS has been linked to defects in symbiotic 
establishment (Keating et  al., 2002). As LPS content and 
decoration are dynamic based upon its environment, it is 
expected that LPS modification would change during symbiosis. 
Recent work has also shown that flavonoids can induce changes 
in decoration of LPS and that these changes are necessary for 
symbiosis (Broughton et al., 2006). It is possible that low oxygen 
concentration might contribute to bringing about a change in 
LPS production and decoration which is necessary for both 
symbiosis and survival in these conditions.

REACTIVE OXYGEN SPECIES

In addition to low oxygen concentration, rhizobia encounter 
reactive oxygen species as part of the innate immune response 
of the plant, and it can be  found throughout symbiotic 
compartments ranging from the IT to mature nodules (Santos 
et al., 2001). Formation of ROS from the plant immune response 
has been shown to be  beneficial for symbiotic establishment 
(Puppo et  al., 2013). ROS are generated upon Nod factor 
recognition and are thought to predominantly occur from the 
activity of NADPH oxidase (Lohar et al., 2007). Rhizobia utilize 
a number of mechanisms to deal with potential damage from 
ROS (Boscari et  al., 2013). The importance of ROS scavenging 
during symbiosis is highlighted by the finding that strains 
which carry mutations in the genes katB/C, which encode for 
catalases, are impaired in forming bacteroids (Jamet et  al., 
2003). However, a positive role for ROS in symbiosis has also 
been observed. When catalase is over-expressed in S. meliloti, 
aberrant IT formation and delayed nodule development are 
observed (Jamet et  al., 2007). While it is unknown exactly 
how ROS may contribute to symbiosis, two main suggestions 
have been made; either ROS plays a role in IT development, 
or ROS induces physiological changes in rhizobium that are 
necessary for symbiosis (Pauly et  al., 2006). Recent work has 
investigated this further and has shown that ROS produced 
by PvRbohB in Phaseolus vulgaris is important for symbiosis. 
Cultivars of P. vulgaris silenced in expression of PvRbohB 

displayed abortive infection threads when inoculated with  
R. tropici (Fonseca-García et  al., 2021). RNAseq data also 
revealed changes in carbon metabolism and cell cycle control; 
both of which can be  linked with symbiosis (Geddes and 
Oresnik, 2016; Fonseca-García et  al., 2021).

Consistent with the hypothesis that ROS may act as a signal 
to bacteria for symbiotic establishment, it has been shown  
B. japoncium exposed to oxidative stress produces an increased 
amount of exopolysaccharides (Donati et  al., 2011). The 
production of exopolysaccharides (EPS) has long been suggested 
to be  involved in the tolerance of various stresses encountered 
by bacteria. In S. meliloti and Pseudomonas syringae, mutants 
unable to produce EPS have been observed to be  sensitive to 
ROS (Király et al., 1997; Lehman and Long, 2013). Furthermore, 
it was shown that low molecular weight succinoglycan (EPS-I) 
is the responsible fraction which scavenges H2O2 from media 
in S. meliloti (Lehman and Long, 2013). Taken together, oxidative 
stress is seen to promote the production of exopolysaccharides 
which are necessary for the tolerance of ROS and critical for 
symbiotic establishment. Since plants are observed to produce 
H2O2 in response to symbiotic establishment, this provides a 
potential example of how in planta conditions promote production 
of a symbiotic signal.

pH STRESS

The ability to tolerate acidic pH conditions has largely been 
studied from the perspective of tolerating acidic soils in the 
environment. The area of the rhizosphere is predicted to be an 
area of increased acidic stress, as throughout their life cycle, 
plants can excrete acidic compounds into the surrounding soil, 
decreasing the pH of the soil by as much as 2 pH units (Faget 
et  al., 2013). This occurs from the secretion of protons to 
maintain the net charge across the root membrane and from 
the secretion of organic compounds (Jones et al., 2003). During 
the symbiotic interaction between rhizobia and legumes, it 
has been hypothesized that many plant derived compartments 
have an acidic pH. The bacteroid and peri-bacteroid space 
have been predicted to be  an acidic compartment, reaching 
a pH of 4.5 (Fedorova et  al., 1999; Pierre et  al., 2013). Studies 
have also determined that the curled colonized root hair is 
an area of localized acidic pH stress (Geddes et  al., 2014). 
These findings are particularly important as S. meliloti is known 
to have poor survival when medium pH decreases below six 
(Hellweg et  al., 2009; Hawkins et  al., 2017).

Transcriptomic studies addressing the response of rhizobium 
to acidic pH and have revealed large networks regulating 
multiple genes in response to acidic pH (Hellweg et  al., 2009; 
Guerrero-Castro et al., 2018). The response of rhizobia to acidic 
pH is primarily regulated though two-component systems, 
actR/S and chvI/exoS/exoR (Dilworth et al., 2000; Fenner et al., 
2004). These systems ultimately control the regulation of 
cytoplasmic pH, or the production of and modification of 
extracellular elements for pH tolerance components (Cunningham 
and Munns, 1984; Chen et  al., 1993). Regulation of potassium 
efflux proteins is important for pH tolerance. The potassium 
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efflux system in R. tropici has been shown to be  regulated by 
glutathione, since mutants in glutathione synthesis were unable 
to accumulate intracellular potassium (Riccillo et  al., 2000). 
Potassium concentrations have been shown to regulate nitrogenase 
activity so this accumulation of K+ in acidic conditions may 
act as a symbiotic signal (Gober and Kashket, 1987). In addition, 
glutathione is involved in tolerating many environmental stressors, 
including pH and ROS stress, and has been shown to be produced 
in increased amounts under acidic conditions (Riccillo et  al., 
2000; Muglia et  al., 2007). Mutations in the synthesis pathway 
for glutathione are known to result in either a fix− or delayed 
nodulation phenotype (Harrison et  al., 2005).

One physiological response of S. meliloti to low pH is the 
production of the symbiotically important exopolysaccharide 
EPS-I (Hawkins et al., 2017). Acidic pH is known to be present 
throughout the symbiotic process, being present in the 
rhizosphere all the way to bacteroids. Mutants which are unable 
to produce succinoglycan are unable to establish functional 
symbiosis with alfalfa. Further investigation has revealed that 
the succinylation of EPS-I is the critical component of the 
symbiotic interaction (Mendis et al., 2016). Production of EPS-I 
is also important for tolerance of low pH and contributes to 
survival in nodules (Hawkins et  al., 2017; Maillet et  al., 2020). 
However, symbiotic defects observed in exo mutant strains are 
likely due to a combination of a loss of pH stress tolerance 
and loss of proper symbiotic signaling. S. meliloti strains that 
lack exoK produce a succinylated high molecular weight EPS-I 
still exhibit high sensitivity to acidic pH, but only display 
minor symbiotic defects (Maillet et al., 2020). Collectively, these 
data suggest that EPS-I plays a role in both stress tolerance 
as well as symbiotic signaling.

It has also been observed that acid tolerant strains of rhizobia 
produce more exopolysaccharides than acid sensitive strains 
under non-stress conditions (Cunningham and Munns, 1984). 
Interestingly, mutations that resulted in an increased production 
of exopolysaccharide in R. leguminosarum and S. meliloti did 
not result in an increased tolerance to acidic media (Howieson 
et  al., 1988; Reeve et  al., 1997). These observations suggest 
that in terms of stress tolerance, the production of 
exopolysaccharides may serve an on/off function rather than 
a gradient of tolerance, and that the increased production of 
exopolysaccharides due to pH stress may have another role.

The response to low pH is largely mediated through the ExoR/
ExoS/ChvI (RSI) system, which has been shown to be upregulated 
due to acidic pH in S. meliloti (Hellweg et  al., 2009; Draghi 
et  al., 2016). The RSI system is well studied for its ability to 
regulate the production of EPS-I and flagella (Cheng and Walker, 
1998b; Heavner et al., 2015). It is long known that the production 
of EPS-I is important for symbiotic interaction (González et  al., 
1996; York and Walker, 1997; Cheng and Walker, 1998a). The 
protein ExoS acts as a sensor kinase which directly phosphorylates 
the response regulator ChvI in response to a signal (Cheng and 
Walker, 1998b; Yao et al., 2004). This system is regulated through 
direct binding of the repressor ExoR to ExoS in the periplasm 
(Chen et  al., 2008). Homologs of this system in Agrobacterium 
tumefaciens have been shown to be  involved in gene regulation 
due to acidic pH, and it has been suggested that acidity is a key 

signal in establishing virulence with plants (Li et al., 2002). Further 
study of the RSI regulon in A. tumefaciens has revealed that at 
acidic pH the repressor ExoR is degraded, resulting in increased 
EPS-I synthesis (Heckel et al., 2014). A mechanism for degradation 
of ExoR in S. meliloti has also been shown (Lu et  al., 2012). 
Degradation of ExoR could account for the increase in transcription 
of exoR at lower pH. Taken together, this suggests that the acidic 
conditions found in the curled colonized root hair leads to the 
production of EPS-I which is necessary for symbiotic signaling 
and stress tolerance, making pH a key environmental regulator 
for symbiosis. Overall, these works suggest that low pH induces 
the production of glutathione and succinoglycan which are both 
involved in stress tolerance and symbiosis.

NODULE-SPECIFIC CYSTEINE RICH 
PEPTIDES

Recently, there has been interest in a subsect of plant produced 
anti-microbial peptides (AMPs) called nodule-specific cysteine 
rich (NCR) peptides for their role in symbiotic establishment 
(Alunni and Gourion, 2016). AMPs are well studied for their 
anti-microbial activity (Maroti et  al., 2011). The mechanism of 
action of AMPs involves the disruption of bacterial membranes 
through interaction with the cell surface and ribosome inactivation. 
In addition to their anti-microbial activity, it has been suggested 
that certain AMPs play a role in signaling (Schopfer, 1999).

NCRs are structurally and functionally similar to AMPs; 
they are predicted to be  around 100 amino acids long, contain 
the conserved cysteine residues for disulfide bridge formation, 
and are predicted to be  largely cationic (Mergaert et  al., 2003). 
These peptides have also been shown to have anti-microbial 
activity against several organisms, including rhizobia (Haag 
et  al., 2011). However, the presence of the protein BacA in 
S. meliloti, a transporter for AMPs, is observed to be  involved 
in tolerating the challenge with NCRs, whereas mutants in 
bacA were observed to be  hypersensitive to the anti-microbial 
activity in planta (Haag et  al., 2011).

In M. truncatula, there are predicted to be  upwards of 300 
different NCRs produced by around 600 different genes (Mergaert 
et  al., 2003; Zhou et  al., 2013). Only legumes of the inverted-
repeat lacking clade (IRLC) are observed to produce NCRs 
(Mergaert et  al., 2006). In these legumes, symbiotic bacteria 
become terminally differentiated into bacteroids in plant nodules 
and cannot revert to normal functioning bacteria. Non-IRLC 
legumes, such as L. japonicus, do not produce NCRs, and 
symbiotic bacteria do not become terminally differentiated 
(Mergaert et  al., 2003). This has led to the suggestion that 
NCRs are directly involved in the terminal differentiation of 
symbiotic bacteria. However, it is worth noting that examples 
of bacteroid differentiation outside of the IRLC legumes are 
starting to be  found. Nodules formed in the Aeschynomene – 
Bradyrhizobium symbiotic relationship are found to house 
differentiated bacteroids with a polyploid genome (Czernic et al., 
2015). While Aeschynomene sp. do not produce NCRs they have 
been shown to produce NCR-like peptides that likely play a 
role in differentiation of bacteroids. Silencing the homolog of 
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dnf1 in Aeschynomene evenia, which is necessary for cleavage 
of NCRs for transport to the symbiosome and is essential for 
symbiosis, results in deformed bacteroids (Czernic et  al., 2015). 
In addition, the protein BclA was identified in Bradyrhizobium 
sp. as having weak homology to BacA. BclA was shown to 
be  necessary for formation of bacteroids and was observed to 
be  able to transport the peptide NCR247 from M. truncatula 
(Guefrachi et  al., 2015). Taken together, there is good indirect 
evidence that these NCR-like peptides are used for 
bacteroid differentiation.

The localization of NCRs suggests much about their role in 
symbiosis. When NCRs are expressed in the nodule, they are 
targeted to the symbiotic membrane by the plant secretory system 
and can also be  found within the cytoplasm of bacteroids (Van 
de Velde et  al., 2010). In the same study, it was also shown 
that a mutation in M. truncatula dnf-1 prevents targeting of 
NCRs to the bacteroid and prevented bacteroids from terminally 
differentiating. Also, when NCR035 from M. truncatula was 
expressed in L. japonicum, which is deficient in NCR production, 
it localized to the symbiosome of bacteroids resulting in the 
production of a single elongated bacteroid indicative of terminal 
differentiation (Alunni et  al., 2007; Van de Velde et  al., 2010). 
This highlighted the importance of NCRs for symbiotic 
establishment in the IRLC legumes. More recent studies on 
NCRs have shown that a mutation in the gene dnf7, which 
encodes for a protein involved in the production of NCR169, 
is unable to perform BNF in M. truncatula (Horváth et  al., 
2015). Nodules in this mutant were impaired in elongation and 
triggered early senescence. This was fully complemented by 
overexpression of NCR169. These studies show the necessity of 
NCRs in regulating bacteroid differentiation and symbiotic 
nitrogen fixation.

Microarray analysis has also revealed that NCR recognition 
may play a role in the bacterial stress response, as well as 
preventing cell division during symbiosis (Penterman et  al., 
2014). After exposure of S. meliloti to NCR247, the expression 
of genes involved in bacterial stress response and cellular division 
was found to be altered in transcription. This includes increased 
transcription of rpoH1, which is involved in regulating genes 
for acid and heat tolerance, and the two-component systems 
exoS-chvI and feuP-feuQ, which are responsible for regulating 
EPS and cyclic β(1–2) glucan production (Reuber et  al., 1990; 
Griffitts et al., 2008). In line with this, NCR247 has been shown 
to induce transcription of the exo genes for EPS-I production, 
and high molecular weight EPS-I has been shown to aid survival 
when exposed to NCR247 (Arnold et al., 2017, 2018). Decreased 
transcription of cell cycle regulators ctrA and gcrA was also 
observed (Penterman et  al., 2014). These observations led to 
the conclusion that NCR recognition may be  a bacterial signal 
that allows for adaptation to in planta conditions and increase 
the production of polysaccharides necessary for symbiosis in 
addition to its role in bacteroid differentiation. This shows that 
NCRs may have evolved in plants from simply being an AMP 
produced as a response to bacterial invasion, to also being 
involved in symbiotic establishment as a signal which induces 
physiological and morphological changes in the bacteria necessary 
for nitrogen fixation.

DISCUSSION

The establishment of the rhizobium – legume symbiotic 
interaction is often described as a direct complex signal exchange 
between both the bacteria and the plant, with emphasis placed 
on how a molecule from one induces changes in the other 
or invokes a signaling response. However, little emphasis has 
been placed on how environmental conditions and stress 
tolerance play into the interaction. Here, we  provide evidence 
that the tolerance of environmental conditions and challenges 
by the plant immune system result in alterations of bacterial 
physiology which promotes establishment of symbiosis between 
plant and bacteria. This broadens our assumptions of the 
signaling cross-talk between legume and rhizobia which is 

FIGURE 2 | Stress tolerance involvement in symbiotic signaling. Changes in 
production of molecules or overall physiology due to stress can be observed 
to affect symbiosis all throughout the process. Each line indicates how a 
potential stress, or a response from a stress, influences the next step in the 
symbiotic process.

31

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Hawkins and Oresnik Co-opting Successful Stress Management

Frontiers in Plant Science | www.frontiersin.org 8 January 2022 | Volume 12 | Article 796045

largely considered from the perspective of secreted signal and 
direct response. In addition, we  should consider overall 
physiological changes in bacteria due to conditions in the soil 
from root exudate or in planta as part of the signal exchange 
symbiosis in addition to the role in surviving the stress 
conditions. If molecules produced as part of the stress response 
by bacteria and plant are examined it can be  seen that stress 
plays an important role from the start of symbiosis, all the 
way to nitrogen fixation (Figure  2).

Some of the examples used are already well studied for their 
role specifically in symbiosis. This includes iso-flavonoids, Nod 
factor, and NCRs. While these molecules now have roles directly 
in symbiotic signaling, their overall origin in this process comes 
from the immune response of the plant. What likely originated 
as a stress challenge of anti-microbials for bacteria and fungi 
with flavonoids and NCRs has turned into critical signals to 
initiate the symbiotic process or for forming terminally differentiated 
bacteroids. Cell wall chitin from fungi which is recognized as 
a PAMP has become inherited by rhizobia in the form of Nod 
factor, which is now the critical signaling molecule secreted by 
bacteria to establish symbiosis. The similarities of the responses 
between either plant immunity or symbiosis are significant and 
stretch much further past what is discussed here (Berrabah et al., 
2015; Tóth and Stacey, 2015; Zipfel and Oldroyd, 2017). It is 
quite likely that as more detailed mechanisms of each of these 
responses are uncovered, it will be  seen that there is significant 
cross-talk or similarities linking stress responses and symbiosis. 
In a number of cases, the difference between either killing the 
bacteria or establishing a functional symbiosis seems to be based 
upon the strength of the plant immune response to the organism. 
A strong response to repel an invader, or an attenuated one to 
induce physiological changes in a potential symbiont.

Other examples of how potential conditions bacteria may 
be  exposed to in the soil or in planta are less directly tied to 
symbiosis, but the link is still quite clear. A large part of the 
stress response of symbiotic rhizobia revolves around production 
or modification of various polysaccharides, such as cyclic β(1–2) 
glucans, lipopolysaccharides, and succinoglycan. These 
polysaccharides are also intrinsically linked to symbiotic 
establishment across a number of different rhizobia-legume 
interactions. While the role of cyclic β(1–2) glucans in symbiosis 
is yet unclear, production and proper decoration of LPS and 
succinoglycan are suggested to be  critical signaling molecules 
to avoid the full activation of the plant immune response (Ojeda 

et  al., 2013; Kawaharada et  al., 2015; Maillet et  al., 2020). 
Additionally, there are around 17 different hypothetical operons 
for polysaccharide production in S. meliloti so it is plausible to 
think other polysaccharides that are yet unclassified may play 
an important role in the stress tolerance/symbiosis picture as well.

Aside from polysaccharide production, these adverse conditions 
encountered also changes cell physiology in terms of ion uptake, 
glutathione production, and shifts in carbon metabolism which 
can all be  linked in some regards to the symbiotic process. It 
is not hard to imagine that symbiotic bacteria may have evolved 
its responses over time to stress conditions present in root 
exudate or in planta to start adjusting its physiology for a 
symbiotic lifecycle. In addition, it is understandable why a 
plant would evolve to promote certain conditions using root 
exudate and use an altered immune response if the eventual 
gain becomes a symbiotic nitrogen fixing bacteria.

One of the major overall goals of nitrogen fixation research 
is to eventually bring the symbiotic relationship between legumes 
and rhizobia to non-legume plants, such as the cereal crops. 
The potential impact this could have in reducing use of nitrogen 
fertilizers, and for overall growth of plants where fertilizers are 
not available, is quite significant. While research in this area 
is new and ongoing, it largely focuses on adjusting and tuning 
directly observed signaling between rhizobia and these plants. 
It is important to remember that aside from signaling and 
adjusting the plant’s immune response to go from immunogenic 
to symbiotic, the overall environment in the rhizosphere and 
in planta may also play a key role for symbiosis and have to 
be  accounted for. At the end of the day, it is always said that 
stress, unfortunately, is a great motivator in life. This also seems 
to be  true with respect to the rhizobium-legume symbiosis.
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Heterotrimeric G-proteins regulate plant growth and development as master regulators
of signaling pathways. In legumes with indeterminate nodules (e.g., Medicago truncatula
and Pisum sativum), the role of heterotrimeric G-proteins in symbiosis development has
not been investigated extensively. Here, the involvement of heterotrimeric G-proteins in
M. truncatula and P. sativum nodulation was evaluated. A genome-based search for
G-protein subunit-coding genes revealed that M. truncatula and P. sativum harbored
only one gene each for encoding the canonical heterotrimeric G-protein beta subunits,
MtG beta 1 and PsG beta 1, respectively. RNAi-based suppression of MtGbeta1
and PsGbeta1 significantly decreased the number of nodules formed, suggesting
the involvement of G-protein beta subunits in symbiosis in both legumes. Analysis
of composite M. truncatula plants carrying the pMtGbeta1:GUS construct showed
β-glucuronidase (GUS) staining in developing nodule primordia and young nodules,
consistent with data on the role of G-proteins in controlling organ development and
cell proliferation. In mature nodules, GUS staining was the most intense in the meristem
and invasion zone (II), while it was less prominent in the apical part of the nitrogen-
fixing zone (III). Thus, MtG beta 1 may be involved in the maintenance of meristem
development and regulation of the infection process during symbiosis. Protein–protein
interaction studies using co-immunoprecipitation revealed the possible composition of
G-protein complexes and interaction of G-protein subunits with phospholipase C (PLC),
suggesting a cross-talk between G-protein- and PLC-mediated signaling pathways in
these legumes. Our findings provide direct evidence regarding the role of MtG beta 1
and PsG beta 1 in symbiosis development regulation.

Keywords: legume-rhizobial symbiosis, heterotrimeric G-protein, beta subunits, RNAi based suppression,
promoter-GUS fusion localization, Medicago truncatula Gaertn, pea Pisum sativum L., co-immunoprecipitation

INTRODUCTION

Heterotrimeric G-proteins are known to respond to a wide variety of external stimuli and interact
with different cytosolic and membrane-associated effectors, therefore they may play an essential
role in regulating plant growth and development as master regulators of signal transduction
pathways (Urano and Jones, 2014; Pandey and Vijayakumar, 2018). Analysis of mutants showed
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that the heterotrimeric G-proteins in plants are involved in such
processes as the control of organ development (Lease et al., 2001;
Ullah et al., 2003; Ding et al., 2008; Mudgil et al., 2009), response
to biotic and abiotic stress (Joo et al., 2005; Llorente et al., 2005;
Delgado-Cerezo et al., 2012), hormonal regulation and signaling,
and cell proliferation (Ullah, 2001).

Heterotrimeric G-proteins consist of G alpha, G beta, and G
gamma subunits and are associated with the cell membrane in the
inactive state. In animals and fungi, G alpha subunits are activated
by several G-protein-coupled receptors (GPCRs); however,
although single GPCRs were found in plants, their functional
association with G-proteins was not shown (Urano and Jones,
2014; Roy Choudhury and Pandey, 2016). Recent studies have
demonstrated that G-proteins in plants are activated by single-
pass transmembrane receptor-like kinases (RLKs) or through
the interaction between RLKs and seven-transmembrane domain
regulators of G-protein signaling (RGSs) (Bommert et al., 2013;
Choudhury and Pandey, 2013; Ishida et al., 2014; Tunc-Ozdemir
et al., 2016). During signal perception, a conformational change
stimulates the exchange of GTP for GDP on the G alpha subunit,
promoting dissociation of the G beta-gamma complex. This event
is required for signal transduction in plants and animals. In
contrast to animals, the genomes of plants encode significantly
less G-protein subunits. For example, Arabidopsis and rice
contain only one G alpha, three extra-large G alpha (XLG), one G
beta, and three G gamma subunits (Perfus-Barbeoch et al., 2004;
Trusov and Botella, 2016).

Using a pharmacological approach, previous studies proposed
the involvement of G-proteins in legume-rhizobial symbiosis
regulation in legumes (Pingret, 1998); however, the exact
mechanisms underlying this regulation and specific components
of the G-protein network remain poorly characterized. Some
effectors of G-protein signaling, such as phospholipase C (PLC)
and D (PLD), are involved in mastoparan-induced root hair
deformations during nodulation (Pingret, 1998; den Hartog et al.,
2001, 2003; Charron et al., 2004; De Los Santos-Briones et al.,
2009). Mastoparan is a well-known heterotrimeric G-protein
agonist. Using a pharmacological approach, the relationships
among G-protein activation, production of phospholipid
metabolites by PLC and PLD, generation of calcium spiking,
expression of specific ENOD genes, and root hair deformations
were revealed in Vicia sativa, Medicago sativa, and Medicago
truncatula (den Hartog et al., 2001, 2003; Charron et al., 2004;
Sun et al., 2007).

In legumes with determinate types of nodules, such as
soybean, a set of G alpha, G beta, and G gamma subunits
were found using a genome-wide approach (Bisht et al.,
2011) and some of them shown to be required for symbiosis
development with rhizobia (Choudhury et al., 2011; Choudhury
and Pandey, 2013, 2015). Moreover, the interaction between
the G alpha subunits of soybean with lysin motif (LysM)-RLKs
NFR1α and NFR1β (involved in Nod factor perception) was
shown using the yeast split-ubiquitin system and bimolecular
fluorescence complementation (Choudhury and Pandey, 2013).
These findings were in line with previous hypotheses regarding
the possible participation of G-proteins in signal transduction
pathways activated upon perception of Nod factors.

In contrast, in legumes with indeterminate nodules, such as
M. truncatula and Pisum sativum, in which nodule primordia
develop in inner cortex and mature nodules retain a persistent
meristem, the role of heterotrimeric G-proteins in symbiosis
development has not been investigated in detail. However, several
isoforms of G-protein subunits have been described in P. sativum
and have been shown to be involved in the regulation of salinity
and heat stress (Misra et al., 2007). Although heterotrimeric
G-proteins are promising downstream components of the Nod
factor perception pathway, their specific role in symbiosis
development remains unclear. Advances in our understanding
of G-protein networks will allow precise manipulation of legume
plants to improve agronomically important traits. Here, RNAi-
based suppression, promoter-β-glucuronidase (GUS) fusion, and
co-immunoprecipitation were used to evaluate the involvement
of the G-protein complex in the nodulation process in the model
legume, M. truncatula, and the crop legume pea P. sativum (pea).

MATERIALS AND METHODS

Bacterial Strains and Inoculation
Inoculation of M. truncatula plants was performed with the
Sinorhizobium meliloti strain 2011. Pea plants P. sativum L. were
inoculated with Rhizobium leguminosarum biovar viciae wild
type strain CIAM1026. Bacterial liquid culture was grown in
B− medium (Van Brussel et al., 1977), diluted up to the optical
density at 600 nm (OD600) 1.0 and applied to plants at the next
day after planting.

Plant Material and Growth Conditions
Seeds of Medicago truncatula cv Jemalong A17 were sterilized in
concentrated sulfuric acid for 10 min followed by washing with
sterile water six times at room temperature. After that the seeds
were incubated in bleach for 2 min with subsequent rinsing with
excess of sterile distilled water three times. Seeds were germinated
on 0.8% water agar in Petri dishes and incubated at 4oC in 24 h for
imbibition. After that the dishes were placed in inverted position
in the dark at 23◦C for germination and incubated for overnight.

Pea seeds of cultivar Finale were sterilized in concentrated
sulfuric acid for 5 min followed by washing at least 4 times with
excess of sterile distilled water. Seeds were germinated on sterile
1% water agar in Petri dishes for 5 – 7 days in the dark at 23◦C.

Constructs for RNAi Based Suppression
of G beta Genes
Fragments of coding sequences of MtGbeta1 or PsGbeta1 genes
(226 bp each, from 150 to 375 bp in both MtGbeta1 and
PsGbeta1) were amplified with specific primers flanked with
attB1 and attB2r sequences using Phusion Plus DNA Polymerase
(Thermo Fisher Scientific, United States). Amplified fragments
were separated by agarose gel electrophoresis and then purified
from the gel using Cleanup standard kit (Evrogen, Russia)
according to the user manual. Purified fragments were cloned
into gateway pDONR221 vector using BP clonase (Thermo Fisher
Scientific, United States). Chemically competent E. coli TOP10
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cells were used for transformation, selection was performed
on LB medium containing kanamycin 100 µg/ml. After
checking by sequencing, the pDONR221 vectors with cloned
fragments were used for recombination in pK7GWIWG2II
destination vector (Ghent University, Belgium) using LR clonase
(Thermo Fisher Scientific, United States). Transformants were
grown on selective LB medium containing spectinomycin
75 µg/ml and chloramphenicol 25 µg/ml. Final constructs were
checked by sequencing.

Protein Synthesis in Escherichia coli and
Co-immunoprecipitation Assay
Full-length coding sequences of MtGbeta1, PsGbeta1,
MtGalpha1, MtGalpha2, PsGalpha1, PsGalpha2 as well as
MtPLC1, PsPLC1, MtPLD1, PsPLD1 genes were amplified with
specific primers flanked with the sequences of restriction sites
(Supplementary Table 1) using Phusion Plus DNA Polymerase
(Thermo Fisher Scientific, United States). After purification
from the gel, the full-length coding sequences were cloned in
the frames into pRSETa-6xHIS or/and pRSETa-3xFLAG vectors
using T4 ligase. Transformants were grown on selective LB
medium containing ampicillin 100 µg/ml. Constructs were
checked by sequencing. Electrocompetent E. coli C41 were
transformed with constructs in pRSETa-6xHIS or pRSETa-
3xFLAG vectors using Gene Pulser XCell electroporation system
(Bio-Rad Laboratories, United States). Transformants were
grown on selective solid LB medium containing ampicillin
100 µg/ml for overnight, then a few fresh colonies were
transferred into a big flask containing 200 ml LB with ampicillin
100 µg/ml. Suspension was grown up to OD600 = 0.6 at 37◦C
in shaker and then synthesis was induced by addition 0.5 mM
IPTG. After 2 h of cultivation at 28◦C with intensive shaking,
the cells were pelleted by centrifugation at 3000 g for 15 min in
50 ml Falcon tubes. Supernatant was removed thoroughly and
cell pellets in tubes were stored at −80◦C.

Frozen bacterial cells containing synthesized proteins were
thawed and resuspended in lysis buffer (2 ml per pellet from 50 ml
of culture) with protease inhibitor cocktail INHIB1-1KT (Merck,
Germany) (0.1 mM AEBSF and 1 µg/ml of each leupeptin,
aprotinin, antipain, pepstatin and chymostatin). Samples were
aliquoted in two 1.5 ml tubes (1 ml) and sonicated 3 times
for 30 s with 30 s pauses on ice. After sonication the lysates
were centrifugated at 20000 g for 25 min. Soluble protein
fractions were collected and used for co-immunoprecipitation.
Co-immunoprecipitation was carried out using a µMACS
kit (Miltenyi Biotec, Germany) containing MicroBeads with
immobilized anti-HIS or anti-FLAG antibodies. Pairs of proteins
with appropriate tags were placed in tubes with 50 µl of µMACS
MicroBeads and incubates with slow shaking at 4◦C for 1.5 h.
Protein mixture and lysis buffer (used for column washing) were
degassed by vacuum for 5 min on ice and then applied to µMACS
columns according to the user manual. Washing was performed
using lysis buffer in total volume of 1 ml. Elution performed
according to the user manual. Eluted proteins were separated in
12% polyacrylamide gels and then transferred to nitrocellulose
membrane for subsequent Western blot analysis.

Promoter Fusion Analysis
2700 bp fragment upstream of start codon of the MtGbeta1
gene was amplified with specific primers containing attB1 and
attB2r sequences using two-step protocol (98◦C 0:30, 60◦C 2:30,
30 cycles) with Phusion Plus DNA Polymerase (Thermo Fisher
Scientific, United States). After purification from the gel, the
promoter was cloned into pDONR221 vector by BP clonase
(Thermo Fisher Scientific, United States). Finally, the promoter
was subcloned into pBGWFS7.0 destination vector using LR
clonase (Thermo Fisher Scientific, United States). E. coli TOP10
cells were used for chemical transformation and selection was
done on LB medium containing spectinomycin 50 µ g/ml.

Agrobacterium rhizogenes Mediated
Plant Transformation
5 – 7 days-old pea seedlings of cv. Finale were transferred to
light into sterile dark plastic boxes with liquid Jensen’s medium
(1 g/l CaHPO4, 0.2 g/l K2HPO4, 0.2 g/l MgSO4, 0.2 g/l NaCl,
7.34 mg/l Na-Fe-EDTA, 87.5 mg/l CuSO4 × 5H2O, 1.16 mg/l
MnSO4 × 7H2O, 2.4 mg/l ZnSO4 × 7H2O, 3.17 mg/l H3BO3,
1 mg/l Na2MoO4 × 2H2O), which were placed in a big plastic
vessel (Sac O2, Belgium). Seedlings were cultivated in the growth
chamber for 5 – 7 days (+ 21◦C, humidity 60%, 16 h/8 h
light/darkness) until the stage of two internodes. Seedlings were
cut at the hypocotyl region and transformed with freshly grown
Agrobacterium rhizogenes strain ARqua 1 carrying an appropriate
construct. After transformation plants were placed on solid
Jensen’s medium (3 – 4 plants per box) in round plastic boxes
with green filter (E1674, Duchefa, The Netherlands). Lower parts
of plants were covered with wet cotton wool and aluminum
foil and cultivated for 10 – 14 days until callus is appeared
(Leppyanen et al., 2019). After that seedlings were transferred to
Emergence medium (3 mM MES pH 5.8, 2.5 g/l KNO3, 0.4 g/l,
MgSO4 × 7H2O, 0.3 g/l NH4H2PO4, 0.2 g/l CaCl2 × 2H2O,
10 mg/l MnSO4 × 4H2O, 5 mg/l, H3BO3, 1 mg/l ZnSO4 × 7H2O,
1 mg/l KI, 0.2 mg/l CuSO4 × 5H2O, 0.1 mg/l, NaMoO4 × 2H2O,
0.1 mg/l CoCl2 × 6H2O, 15 mg/l FeSO4 × 7H2O, 20 mg/l
Na2EDTA, 100 mg/l myoinositol, 5 mg/l nicotinic acid, 10 mg/l
pyridoxine HCl, 10 mg/l thiamine HCl, 2 mg/l glycine, 1%
sucrose, 1% Gelrite agar) containing 150 µg/ml cefotaxime and
incubated for additional 3 – 4 days. Transgenic roots were
selected by visualization of DsRED or GFP (green fluorescent
protein) expression. Plants were transferred into pots with
vermiculite saturated with Jensen’s medium containing 1.5 mM
NH4NO3.

1 days – old M. truncatula cv. Jemalong A17 seedlings were
transferred on Fahreus agar plates [60 mg/l MgSO4 × 7H2O,
50 mg/l KH2PO4, 78 mg/l Na2HPO4, 7.34 mg/l Na-Fe-EDTA,
83 mg/l Ca(NO3)2, 66 mg/l CaCl2, 87.5 mg/l CuSO4 × 5H2O,
1.16 mg/l MnSO4 × 7H2O, 2.4 mg/l ZnSO4 × 7H2O, 3.17 mg/l
H3BO3, 1 mg/l Na2MoO4 × 2H2O], roots were covered with
wet filter paper and incubated in the growth chamber (+ 21◦C,
humidity 60%, 16 h/8 h day/night) for 48 h. Plants were cut off at
the hypocotyl region and transformed with A. rhizogenes Arqua1
strain carrying a necessary construct. Plants were incubated
on Fahreus medium with roots positioned between two wet
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FIGURE 1 | Phylogenetic tree constructed using the Maximum-Likelihood method based on amino acid sequences of G. max and A. thaliana Gbeta genes and their
homologous identified in P. sativum and M. truncatula genomes. Numeric values indicate branch support based on 1000 UltraFast bootstrap replicates.

filter papers for 7 days until calli are appeared. After that they
were transferred to plates with Emergence medium containing
150 µg/ml cefotaxime and incubated for additional 7 days or
more. Plants with transgenic roots were transferred to vermiculite
saturated with Farheus medium.

The fragments of roots without nodules (about 100 mg) or
nodules (10 – 15 nodules per probe) were harvested from the
plants and used for subsequent gene expression analysis. In
experiments on RNAi based suppression and promoter fusion
analysis two or three biological replicates were analyzed with 15 –
20 plants in each group.

Quantitative Reverse
Transcription–Polymerase Chain
Reaction (qRT-PCR) Analysis
Total RNA was isolated from frozen roots. Material was ground
with a mortar and pestle to a fine powder in liquid nitrogen
and extracted with Trizol reagent (Bio-Rad Laboratories,

United States). 1 µg of total RNA was used to synthesize
cDNA with the RevertAid Reverse Transcriptase (Thermo Fisher
Scientific, United States). cDNA samples were diluted to a total
volume of 100 µl. Quantitative real-time PCR was performed
using Bio-Rad iQ Sybr master mix (Bio-Rad Laboratories,
United States) following the manufacturer’s recommendations
and run on a CFX-96 real-time PCR detection system with
C1000 thermal cycler (Bio-Rad Laboratories, United States). The
threshold cycle (Ct) values were calculated using the Bio-Rad
CFX Manager 1.6 program and analyzed using the 2-11Ct
method. List of primers was presented in Supplementary Table 1.

Glucuronidase Staining of Material
Roots with nodules were thoroughly washed in tap water. Parts of
roots with primordia or nodules were degassed under a vacuum
(-0.8 bar; ME 1C vacuum pump, Vacuubrand) for 5 min in
100 mM sodium phosphate buffer (pH 7.0). For GUS staining the
samples were incubated in 100 mM sodium phosphate buffer (pH
7.0), containing 1% Triton-X-100, 1 mM X-Gluc, 1 mM EDTA
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(pH 8.0), 0.5 mM potassium ferricyanide, 0.5 mM potassium
ferrocyanide for 4 – 24 h until staining development. For fixation
plant material was placed in phosphate saline buffer (5 mM
KH2PO4, 140 mM NaCl, 2.7 mM KCl, Na2HPO4 6.5 mM).

Phylogenetic Reconstruction
For identification of homologous of previously detected Galpha,
Gbeta and Ggamma A. thaliana and G. max genes in
P. sativum and M. truncatula genomes BLASTP analysis (v 2.6.0,
word_size = 3, evalue < 10e-20) was performed. Sequences
selected during such analysis were investigated for the presence of
specific G-protein conserved domains (Urano et al., 2013) using
InterProScan web server (Jones et al., 2014).

First of all, for phylogenetic reconstruction amino acid
sequences of selected genes were aligned using MAFFT tool
v7.453 (Katoh and Standley, 2013). Based on these alignments,
a phylogenetic tree was constructed using the Maximum-
Likelihood method with help of the IQ-TREE web server
(Trifinopoulos et al., 2016). The bootstrap values were obtained
from 1000 bootstrap replicates of Ultrafast Bootstrap (Minh et al.,
2013). For visualization of resulted trees R package ggtree was
used (Yu, 2020).

Assessment of Galpha, Gbeta and
Ggamma Gene Expression in Medicago
truncatula
Raw reads from RNA-Seq project PRJNA552042 (Schiessl et al.,
2019) including data for 24, 48, 72, 96,120, and 168 h after
inoculation or mock treatment for WT plants were used for
analysis. The M. truncatula genome version 4.0 was used as a
reference. The reads were mapped to the genome using HISAT2
(Kim et al., 2019) tool v 2.1.0 with default parameters, and raw
counts were obtained by FeatureCounts from Subreasd package
(Liao et al., 2014). The edgeR package was used to calculate CPM
values. Expression data for nodules was obtained from Pecrix
et al. (2018). For data visualization ggplot2 (Wickham, 2016)
package was used and Adobe Illustrator was implemented for
final figures assemblies.

Statistical Methods and Computer
Software
One-way ANOVA and Tukey’s test were used to compare gene
expression levels.

RESULTS

Medicago truncatula and Pisum sativum
Genomes Encode a Set of G-Protein
Alpha, Beta, and Gamma Subunits
A genome-based search for genes encoding G-protein subunits in
the model legume M. truncatula and the crop legume P. sativum
was performed. Briefly, amino acid sequences of Arabidopsis
thaliana and Glycine max orthologs were used for BLASTP
analysis (Camacho et al., 2009), after which, specific domains
were identified using InterProScan (Jones et al., 2014).

The search revealed two Galpha, three extra-large Galpha
(XLG), one Gbeta, and five Ggamma genes in the M. truncatula
genome (sequence v4) (Tang et al., 2014), and two Galpha,
three XLGs, one Gbeta, and six G gamma genes in the
P. sativum genome (sequence v1) (Figure 1 and Supplementary
Figures 1, 2) (Pecrix et al., 2018). Structurally, canonical G beta
subunits contain an N-terminal Coil domain and at least seven
WD40 domains, which form a beta-propeller structure (Urano
et al., 2013). Only one gene encoding a G beta subunit with the
latter structure was found in the genomes of M. truncatula and
P. sativum genomes. However, at least four MtGbeta-like and
two PsGbeta-like genes exist in the genomes of these legumes
and may be of interest for future research. These proteins lack
an N-terminal coil domain as well as family specific domains;
however, they do contain at least seven WD40 domains.

To assess the homology between the identified G beta subunits
and those of well-studied model plants (A. thaliana, Oryza
sativa, G. max), a phylogenetic tree was constructed (Figure 1).
Phylogenetic trees were also constructed for G alpha, G gamma,
and XLG genes (Supplementary Figures 1, 2).

To evaluate the expression levels of G alpha, G beta, and
G gamma in M. truncatula roots after inoculation, a publicly
available RNAseq dataset was analyzed (GSE133612) (Schiessl
et al., 2019). This particular dataset encompasses expression
data across early stages of symbiosis development. In addition,
an RNAseq dataset for nodules was also analyzed (Roux
et al., 2014; Pecrix et al., 2018). In silico analyses revealed
that MtGbeta1 (Medtr3g116500) expression was relatively high
in inoculated roots and nodules and non-inoculated roots.
Moreover, a significant upregulation in the expression of
MtGalpha1 (Medtr1g015750) was detected in inoculated roots
at the early stages of symbiosis development and in nodules,
when compared to control roots (Supplementary Figure 3).
However, MtGalpha2 (Medtr3g105240) was not expressed in
roots or nodules (Supplementary Figure 3).

The Heterotrimeric G-Protein Beta 1
Subunit Positively Regulates Nodulation
in Medicago truncatula and Pisum
sativum
Since the complex of G beta/gamma subunits may play an
important role in signal transduction following signal perception,
the remainder of the study focused on the G beta genes.
Since only one typical G beta 1 subunit was found in both
M. truncatula (MtGbeta1) and P. sativum (PsGbeta1), the role
thereof was evaluated on symbiosis. To silence the Gbeta1
genes in M. truncatula and P. sativum, an RNAi approach was
employed. Composite plants were obtained with approximately
50% suppression of the Gbeta1 gene in the transgenic roots
and nodules of both legumes (Figure 2). As controls, plants
expressing beta-galactosidase under the p35S promoter (GUS-
OE) were used. Comparative analyses showed a statistically
significant decrease in nodule number in the transgenic
fluorescent roots in RNAi lines of both legumes, while other
parameters such as number of lateral roots did not change
(Figures 2A-E and Supplementary Figure 4). It correlated with
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decreasing the expression of early symbiotic markers such as
MtEnod11 and MtRR4 in the transgenic hairy roots of Gbeta1 -
RNAi plants (Figure 2C). The results suggested that MtGbeta1
in M. truncatula (Figures 2A,B and Supplementary Figure 4)
and PsGbeta1 in P. sativum (Figures 2D,E) were required
for symbiosis development in legumes with indeterminate
type of nodules.

The MtGbeta1 Promoter Is Active at the
Various Stages of Symbiosis
Development
Next, the promoter activity of the MtGbeta1 gene was analyzed
in the roots of composite plants expressing pMtGbeta:GUS at
different stages following Sinorhizobium meliloti 2011. At the
early stages of symbiosis development, GUS staining was detected
in the root hairs; however, the intensity of the signal was
comparable to that of non-inoculated plants (Figures 3A,B).
In the developing primordia of nodules and in young nodules
appearing above the surface of roots, strong GUS staining was
observed (Figures 3C,D). Staining was also observed in the
primordia of lateral roots (data not shown). In mature nodules
[2 weeks after inoculation (wai)] (Figures 3E–G), GUS staining
was most intense in the meristem and invasion zone (II), while
the signal was significantly weaker in interzone II-III, and in
the apical part of the nitrogen-fixing zone (III) (Figures 3E,F).
Although a signal was observed in the central part of nodules, it
had a variable pattern, having a less or more pronounced intensity
in the nitrogen-fixing zone (III) depending on the length of
staining time and the level of transgene expression (Figure 3G).
Finally, pMtGbeta:GUS expression was also observed in the
vascular bundles.

G Beta 1 and G Alpha Subunits Interact
in Both Medicago truncatula and Pisum
sativum
Although the G beta subunits of the complex are predominantly
connected to signal transduction in the cell, the activation of the
complex is achieved by G alpha subunits due to their association
with GDP or GTP and their release from the complex. A BLASTP
search revealed two G alpha subunits in M. truncatula, MtG alpha
1 (Medtr1g015750) and MtG alpha 2 (Medtr3g105240), which
showed a high level of homology to two PsG alpha subunits,
PsG alpha 1 (AF537218) and PsG alpha 2 (AF533438) previously
identified in P. sativum (Misra et al., 2007). However, expression
analysis showed that MtGalpha2 was not expressed in roots and
nodules (Supplementary Figure 3), and therefore, MtG alpha 2
was omitted from co-immunoprecipitation experiments.

To verify the interactions between the G beta 1 and G alpha
subunits, in vitro co-immunoprecipitations were performed.
A heterologous protein expression was carried out in Escherichia
coli C41, allowing high levels of expression of all subunits
of interest (MtG beta1, PsG beta 1, MtG alpha 1, PsG alpha
1, and PsG alpha 2) fused to either a 6xHIS or a 3xFLAG
tag (Figures 4, 5). Subunits were co-incubated and complexes
purified using a µMACS column with antibodies. When MtG
beta 1 and MtG alpha1 were co-incubated, both proteins were

identified in the eluate. Moreover, PsG beta 1 co-eluted with both
PsG alpha 1 and PsG alpha 2, as revealed by western blot analysis
(Figure 5). However, the interaction was much stronger between
PsG beta 1 and PsG alpha 2. Therefore, both pea PsG alpha 1 and
PsG alpha 2 subunits may co-precipitate with PsG beta 1 protein
and can be potential participants in heterotrimeric G-protein
complex, while in M. truncatula the formation of one complex
between MtG beta 1 and MtG alpha1 was shown.

Phospholipase C Interacts With G Alpha
and G Beta Subunits in Both Medicago
truncatula and Pisum sativum
The involvement of PLC and PLD in the regulation of nodulation
was previously described using a pharmacological approach
(Charron et al., 2004). In the same study, PLC and PLD
were suggested to be connected with heterotrimeric G-protein
activation. The genome of M. truncatula encodes nine PLC and
fifteen PLD genes (Supplementary Table 2), but we searched for
significantly activated genes at the early stages of symbiosis.

Analysis of transcriptomic datasets for M. truncatula roots
inoculated with rhizobia, or treated with Nod factors (van
Zeijl et al., 2015; Damiani et al., 2016; Schiessl et al., 2019),
revealed that the expression of MtPLC1 (Medtr3g070560,
MtrunA17_Chr3g0113471) (Damiani et al., 2016; Schiessl et al.,
2019) and MtPLD1 (Medtr4g010650, MtrunA17_Chr4g0003411)
increased at the early stages of symbiosis development
(Supplementary Figures 5, 6 and Supplementary Table 2).
Genes in P. sativum were selected based on homology to
the orthologs of M. truncatula and included one PsPLC1
(Psat5g128400) gene and one PsPLD1 (Psat7g255400) gene
(Supplementary Table 2).

The respective coding sequences of MtPLC, MtPLD and
PsPLC, PsPLD were cloned into pRSETa-6xHIS and pRSETa-
3xFLAG, and proteins were expressed as before for co-
immunoprecipitation assays. The assays revealed interactions
between MtG beta 1 and MtPLC, and MtG alpha 1 and MtPLC
(Figures 4, 5). Moreover, PsG beta 1 was able to interact with
PsPLC, while only PsG alpha 2 could interact with PsPLC
(Figures 4, 5). No interactions were detected between any of
the G-protein subunits and MtPLD. It seems like either MtPLD
do not interact with components of G-protein complex or more
complicated regulation through additional regulators may be take
place. At the same time, we could not exclude an incorrect folding
of such big proteins (91.5 kDa) as MtPLD in heterologous system.
Finally, PsPLD expression in the bacterial system failed; hence, its
interaction with G-protein subunits could not be examined.

Kinase Domain of LysM-Containing
Receptor-Like Kinase K1 May Interact
With G alpha Subunit in vitro
G-protein activation is mainly maintained by single-pass
transmembrane RLKs. In P. sativum, at least two RLK complexes
may be involved in the perception of Nod factors, which
are activated at different stages of symbiosis development,
PsSYM10/PsK1 and PsSYM10/PsSYM37 (Zhukov et al., 2008;
Kirienko et al., 2018). In the complex PsSYM10/PsK1, the RLK
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FIGURE 2 | The effect of Gbeta1 gene suppression on root development and nodulation in M. truncatula A17 (A,B) and P. sativum cv. Finale (D,E) plants.
Composite plants with the Gbeta1 gene suppression in transgenic roots (Gbeta-RNAi) were compared with control plants with β-glucuronidase gene overexpression
(GUS-OE). Analysis was performed two weeks after inoculation (2 wai) (M. truncatula) and 3 weeks after inoculation (3 wai) (P. sativum). Approximately 50%
suppression of the Gbeta1 gene in the transgenic roots and nodules of both legumes was revealed (A,D). The number of nodules in transgenic fluorescent roots of
Gbeta-RNAi plants was significantly reduced (B,E), whereas the total number of transgenic fluorescent lateral roots did not change in both cases. Expression of early
symbiotic markers, the MtEnod11 and MtRR4, in the transgenic hairy roots of MtGbeta1-RNAi plants (C). Two biological replicates were analyzed for M. truncatula
and P. sativum, each contained 15 – 20 plants per variant. In case of M. truncatula totally 47 and 26 transgenic fluorescent roots of MtGbeta-RNAi and GUS-OE
plants, correspondently, were included in the analysis, while 29 and 16 transgenic fluorescent roots of PsGbeta-RNAi and GUS-OE plants were used in P. sativum.
The number of nodules were scored only in transgenic fluorescent roots. Values are means ± SEM. ∗, Significant difference at P ≤ 0.05; ∗∗, Significant difference at
P ≤ 0.01; ∗∗∗, Significant difference at P ≤ 0.01; ns, non-significant difference.

PsK1 possesses an active kinase domain and seems to be required
for signal transduction during early stages of pea-rhizobial
symbiosis development (Zhukov et al., 2008; Kirienko et al.,
2018). Here it was demonstrated using a co-immunoprecipitation
assay that the kinase domain of PsK1 RLK interacts with PsG
alpha 2, but not PsG alpha 1 (Figure 6). It may suggest the
involvement of G-protein in the control of early stages of
symbiosis development.

DISCUSSION

The main goal of this study was to analyze the role of the
heterotrimeric G-protein beta subunits as the most important
subunits for signal transduction in the cell during symbiosis
development in M. truncatula and P. sativum. A genome-
based search for genes encoding G-protein subunits revealed
that the M. truncatula and P. sativum genomes encode one
gene each for the canonical G beta subunit, MtG beta 1

and PsG beta 1, respectively. These subunits contain seven
WD40 motifs and a coiled-coil motif at their N-terminal
ends. These findings are in line with previous data for
P. sativum (Misra et al., 2007). Moreover, additional Gbeta-
like genes were found in the genomes of M. truncatula and
P. sativum.

RNAi-based suppression of the MtGbeta1 and PsGbeta1
resulted in a significant decrease in the number of nodules
formed. This suggests that these G beta 1 subunits of
heterotrimeric G-proteins have a positive effect on the
development of symbiosis in both legume plants, which belong to
the same group. Moreover, the results of our experiments based
on RNA interference were in line with those obtained in G. max
for GmGbeta1-4 genes, all having a high level of homology with
MtGbeta1/PsGbeta1 (Choudhury and Pandey, 2013). These
results indicate that MtGbeta1 and PsGbeta1 are required for
symbiosis development in legumes with indeterminate types of
nodules. Further research, however, is necessary regarding their
influence at specific stages of this symbiosis development.
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FIGURE 3 | Localization of MtGbeta1 expression in M. truncatula non-inoculated and inoculated roots, nodule primordia and 2-week-old nodules carrying a
pMtGbeta1:GUS genetic construct. (A) Non-inoculated roots. (B) Inoculated roots. (C) Nodule primordia (50 µm section). (D) Young nodule (50 µm section). (E) A
general view of the nodule. Image was done using dark field like illumination (E–G) Two-week-old nodules (50 µm section). I, meristem zone; II, infection zone; III,
nitrogen fixation zone; arrows indicate vascular bundles (Vb). Scale bars are 50 µm (B,C) and 100 µm (A,D–G).

FIGURE 4 | The result of co-immunoprecipitation of heterotrimeric G-protein subunits and phospholipases C (MtPLC) and D (MtPLD) from M. truncatula.
A heterologous protein expression was carried out in Escherichia coli C41, allowing high levels of expression of all subunits of interest (MtG beta1, MtG alpha 1,
MtPLC, MtPLD) fused to either a 6xHIS or a 3xFLAG tag. The assays revealed interactions between MtG beta 1 and MtG alpha 1 (A) as well as MtG alpha 1 and
MtPLC (B), MtG beta 1 and MtPLC (C). No interactions were detected between any of the G-protein subunits and MtPLD (B,D).

Composite plants expressing GUS under the MtGbeta1
promoter allowed insight into the activity of the MtGbeta1
promoter. During the early stages of symbiosis development,

intensive GUS staining was observed in the developing nodule
primordia and young nodules. Staining was also observed
in the primordia of lateral roots. Gbeta1 promoter activity
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FIGURE 5 | The result of co-immunoprecipitation of heterotrimeric G-protein subunits and phospholipases C (PsPLC) and D (PsPLD) from P. sativum.
A heterologous protein expression was carried out in E. coli C41. Co-immunoprecipitation of PsG beta 1 with PsG alpha 1 and PsG alpha 2 (A) as well as PsG beta
1 with PsPLC (B). PsPLC interacts with PsG alpha 2, but does not interact with PsG alpha 1 (C,D). The interaction was detected between PsG beta 1 and PsG
gamma 1 (E). Eluted proteins were separated in 12% polyacrylamide gels and then transferred to nitrocellulose membrane for subsequent Western blot analysis. E –
elution, NR – non-retained fraction, W – washing.

FIGURE 6 | The result of co-immunoprecipitation between LysM-RLK PsK1
kinase domain and PsG alpha 1 and PsG alpha 2 subunits. LysM-RLK PsK1
interacts with PsG alpha 2, but does not interact with PsG alpha 1.

fits well with the data on the participation of G-proteins in
the control of organ development and cell proliferation. As
shown previously in Arabidopsis, G-proteins may influence
cell cycle regulation through modulation of auxin transport
(Lease et al., 2001; Chen et al., 2006; Mudgil et al., 2009).
In mature nodules, the localization of GUS staining was

the most intense in the meristem and invasion zone (II),
while the signal was less prominent in interzones II-III and
in the apical part of the nitrogen-fixing zone (III). These
results suggest that MtG beta 1 may be involved in the
maintenance of meristem development and regulation of the
infection process. The exact mechanisms behind this still needs
further research. The localization in vascular bundles may
be related to regulation of the nutrients translocating via
the vasculature.

To elucidate the composition of the heterotrimeric G-protein
complex in M. truncatula and P. sativum, the corresponding
G-proteins were expressed in E. coli, and their interactions
analyzed using in vitro co-immunoprecipitations. The interaction
between MtG beta 1 and MtG alpha 1, as well as MtG beta 1
and MtG gamma 1, was shown in our experiments. These
results suggest the existence of a heterotrimeric G-protein
complex comprising the MtG alpha 1/MtG beta 1 subunits
in M. truncatula. Concurrently, two putative complexes
consisting of PsG beta 1 and PsG alpha 1, and PsG beta
1 and PsG alpha 2 may exist in P. sativum. Hence, both
P. sativum PsG alpha 1 and PsG alpha 2 subunits interact
with PsG beta 1, serving as potential participants in the
heterotrimeric G-protein complex, while in M. truncatula, the
formation of a single complex between MtG beta 1 and MtG
alpha1 takes place.

Signal transduction pathway activation depends on Nod
factor perception by a few receptor complexes in M. truncatula
and P. sativum (Ardourel et al., 1994; Geurts et al., 2005;

Frontiers in Plant Science | www.frontiersin.org 9 January 2022 | Volume 12 | Article 80857344

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-808573 January 6, 2022 Time: 16:50 # 10

Bovin et al. Heterotrimeric G-Proteins in Legume-Rhizobial Symbiosis

Kirienko et al., 2018). Since G beta subunits usually do
not bind to receptors themselves, the interaction between
receptors to Nod factors and G alpha subunits were analyzed.
In P. sativum, the interaction between LysM-RLK K1 – the
Nod factor receptor, which controls the earliest reactions
after signal perception (Kirienko et al., 2018) – and the
PsG alpha 2 subunit was demonstrated. In accordance with
these results, it was previously shown that the LysM-RLKs
in soybean, GmNFR1a and GmNFRb, were able to interact
with GmG alpha subunits. This suggests that heterotrimeric
G-proteins may play an important role in plant response to Nod
factor perception in legume plants during the early stages of
symbiosis development.

Subsequent signal transduction in legume-rhizobial symbiosis
may be connected to the activation of PLC and PLD by
heterotrimeric G-protein subunits, as shown by previous
studies using inhibitors (Pingret, 1998; den Hartog et al.,
2003). Analysis of M. truncatula transcriptomic datasets
of roots inoculated with rhizobia or treated with Nod
factors (van Zeijl et al., 2015; Damiani et al., 2016; Schiessl
et al., 2019) allowed the identification of PLC and PLD
genes induced at the early stages of symbiosis. In vitro co-
immunoprecipitation assays showed that MtG beta 1 and
MtG alpha 1 interacted with MtPLC. Similarly, PsG beta 1
interacted with homologous PsPLC, while among the two
alpha subunits, only PsG alpha 2 formed a complex with
PsPLC and not PsG alpha 1. These results demonstrate possible
cross-talk between G-protein- and PLC-mediated signaling
pathways in legumes with indeterminate nodule types. It
is also important to note that during heat and salinity
stress in P. sativum, G-protein subunits interact with other
forms of PsPLC (Y15253) (Misra et al., 2007), suggesting the
specificity of signal transduction pathways in the activation in
different processes.

Although the involvement of PLD in the regulation of root
hair deformations was shown in M. truncatula, no interactions
between PLD and G subunits were detected in both legumes.
However, it could not be excluded that the interaction may be
indirect through the stimulation of PLD by intracellular signals
such as calcium.

In legume plants, two types of calcium reactions take
place in response to the perception of Nod factors. These
include calcium influx into the cells and calcium spiking
in the nucleus and perinuclear space at the early stages
of symbiosis (Shaw and Long, 2003). It was previously
shown that different signaling pathways may be involved
in the activation of calcium influx and calcium spiking.
Perception of Nod factors activates the signaling pathway,
including a receptor kinase with leucine reach repeats in
its extracellular domain, DOES NOT MAKE INFECTIONS 2
(DMI2), and the putative cation channel DOES NOT MAKE
INFECTIONS 1 (DMI1), which are important for the activation
of calcium spiking in the perinuclear zone and nucleus.
In contrast, calcium influx and subsequent deformations of
root hairs are not dependent on DMI2 and DMI1 (Esseling
et al., 2004). Similarly, in the symrk (orthologous to DMI2),
castor, pollux (orthologous to DMI1) (Ané et al., 2004;

Imaizumi-Anraku et al., 2005) Lotus japonicus mutants with
disturbed calcium spiking, nevertheless, the calcium influx
and deformation of root hairs were observed (Miwa et al.,
2006). Finally, both pathways result in the phosphorylation
of calcium and calmodulin-dependent kinase, DOES NOT
MAKE INFECTIONS 3 (DMI3), which stimulates a complex of
transcription factors required for infection thread development
and nodule organogenesis.

Activation of differing signaling pathways may be related to
the involvement of two receptor complexes in legume plants
that regulate calcium influx and calcium spiking (Geurts et al.,
2005). It is interesting to note that the responses induced by
the G-protein complex agonist mastoparan also occurred in
dmi2 and dmi1 M. truncatula mutants, but these responses
were not observed in the dmi3 mutant (den Hartog et al.,
2003). The lack of dependence on DMI2 and DMI1 suggests
that the heterotrimeric G-protein complex may be involved
in the activation of calcium influx, followed by root hair
deformation. This hypothesis will need to be tested in future
studies and requires more precise analysis of G-protein subunits
interaction with kinase domains of receptors to Nod factors.
In our experiments the interaction between PsG alpha and
kinase domain of LysM-RLK K1 was shown. Since LysM-RLK
K1 controls the earliest reactions like deformations after signal
perception in pea plants, further analysis of k1 mutants should
be performed to obtain evidences of G-protein involvement in
signal transduction.
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Supplementary Figure 1 | Phylogenetic tree constructed using the
Maximum-Likelihood method based on amino acid sequences of G. max G alpha
and A. thaliana G alpha and XLG genes and their homologous identified in
P. sativum and M. truncatula genomes. Previously identified and exposed in NCBI
PsGalpha1 (AF537218) and PsGalpha2 (AF533438) were also included in this
tree. Numeric values indicate branch support based on 1000 UltraFast
bootstrap replicates.

Supplementary Figure 2 | Phylogenetic tree constructed using the
Maximum-Likelihood method based on amino acid sequences of G. max and
A. thaliana Ggamma genes and their homologous identified in P. sativum and
M. truncatula genome. Numeric values indicate branch support based on 1000
UltraFast bootstrap replicates.

Supplementary Figure 3 | (A) Heatmap shows log-tranformed CPM values of
Gbeta, Galpha, XLG and Ggamma genes expression in M. truncatula during early
stages of symbiosis development based on Gene expression data from
GSE133612 project (Schiessl et al., 2019). (B) Bar plots represent CPM values of
Gbeta, Galpha, XLG and Ggamma gene expression in M. truncatula nodules and
non-inoculated roots (Roux et al., 2014).

Supplementary Figure 4 | Composite plants of M. truncatula A17 (A,B) and
P. sativum cv. Finale (C,D) plants with the Gbeta1 gene suppression in transgenic

roots (Gbeta-RNAi) (B,D) and control plants with β-glucuronidase gene
overexpression (GUS-OE) (A,C). The number of nodules were scored only in
transgenic fluorescent roots.

Supplementary Figure 5 | Bar plots represent CPM values of MtPLC genes
expression in M. truncatula during early stages of symbiosis development based
on Gene expression data from GSE133612 project (Schiessl et al., 2019).

Supplementary Figure 6 | Bar plots represent CPM values of MtPLD genes
expression in M. truncatula during early stages of symbiosis development based
on Gene expression data from GSE133612 project (Schiessl et al., 2019).

Supplementary Table 1 | List of primers used in this study.

Supplementary Table 2 | The genome of M. truncatula encodes nine PLC and
fifteen PLD genes. Analysis of transcriptomic datasets for M. truncatula roots
inoculated with rhizobia, or treated with Nod factors factors (van Zeijl et al., 2015;
Damiani et al., 2016; Schiessl et al., 2019), revealed that the expression of
MtPLC1 (Medtr3g070560) (Damiani et al., 2016; Schiessl et al., 2019) and
MtPLD1 (Medtr4g010650) increased at the early stages of symbiosis development
(Supplementary Figures 4, 5). Genes in P. sativum were selected based on
homology to the orthologs of M. truncatula and included one PsPLC1
(Psat5g128400) gene and one PsPLD1 (Psat7g255400) gene.
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Overexpression of the Potato
Monosaccharide Transporter
StSWEET7a Promotes Root
Colonization by Symbiotic and
Pathogenic Fungi by Increasing
Root Sink Strength
Elisabeth Tamayo, David Figueira-Galán, Jasmin Manck-Götzenberger and
Natalia Requena*

Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Root colonization by filamentous fungi modifies sugar partitioning in plants by increasing
the sink strength. As a result, a transcriptional reprogramming of sugar transporters
takes place. Here we have further advanced in the characterization of the potato
SWEET sugar transporters and their regulation in response to the colonization by
symbiotic and pathogenic fungi. We previously showed that root colonization by the
AM fungus Rhizophagus irregularis induces a major transcriptional reprogramming of
the 35 potato SWEETs, with 12 genes induced and 10 repressed. In contrast, here we
show that during the early colonization phase, the necrotrophic fungus Fusarium solani
only induces one SWEET transporter, StSWEET7a, while represses most of the others
(25). StSWEET7a was also induced during root colonization by the hemi-biotrophic
fungus Fusarium oxysporum f. sp. tuberosi. StSWEET7a which belongs to the clade
II of SWEET transporters localized to the plasma membrane and transports glucose,
fructose and mannose. Overexpression of StSWEET7a in potato roots increased the
strength of this sink as evidenced by an increase in the expression of the cell wall-
bound invertase. Concomitantly, plants expressing StSWEET7a were faster colonized
by R. irregularis and by F. oxysporum f. sp. tuberosi. The increase in sink strength
induced by ectopic expression of StSWEET7a in roots could be abolished by shoot
excision which reverted also the increased colonization levels by the symbiotic fungus.
Altogether, these results suggest that AM fungi and Fusarium spp. might induce
StSWEET7a to increase the sink strength and thus this gene might represent a common
susceptibility target for root colonizing fungi.

Keywords: potato, SWEET transporters, arbuscular mycorrhizal symbiosis, Rhizophagus irregularis, Fusarium
oxysporum
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INTRODUCTION

Sugar transport proteins play a crucial role in the long-
distance distribution of carbohydrates throughout the plant.
Photosynthates from source tissues have to be transported
to net importer organs such as young leaves, reproductive
structures, roots or tubers, in general known as sinks (Williams
et al., 2000). And thus, a complex regulation of importers
and exporters is required to guarantee the coordinated sugar
partitioning that meets each organ demands. However, plant
colonization by microbes creates new sinks, significantly altering
sugar partitioning and sugar related metabolic activities (Doidy
et al., 2012). Depending on the trophic mechanism exerted by
microbes they might exert extensive tissue maceration leading
to the release of the cell content including sugars (necrotrophs)
or develop sophisticated mechanisms to divert nutrients toward
the colonization interface (biotrophs). However, carbohydrates
play a dual role in plant microbial interactions because they are
necessary to cover the energetic costs of the defense responses
and to sustain microbial growth. Therefore, carbohydrate
reprogramming is intrinsic to plant-microbial compatibility.

There is accumulating evidence that sugar allocation might be
tightly linked to the control of plant defenses and susceptibility
(Moore et al., 2015; Hacquard et al., 2016; Yamada et al.,
2016; Gebauer et al., 2017). For instance, Moore et al. (2015)
showed that the partial resistance of wheat toward multiple
pathogens in the locus Lr67 was due to mutations in a high
affinity glucose transporter from the STP13 cluster. Furthermore,
Yamada et al. (2016) showed that in Arabidopsis the regulation of
the STP13 transporter activity is key for the resistance to bacterial
pathogens. Another example showing how sugar availability
modifies plant defense responses has been reported for the double
mutant SWEET11/SWEET12 in Arabidopsis (Gebauer et al.,
2017). This mutant, impaired in sugar loading into the phloem,
exhibits reduced susceptibility toward the infection by the fungus
Colletotrichum higginsianum. Increased resistance was mediated
by activation of the salicylic acid-mediated defense response
(Gebauer et al., 2017). Although there are several other examples
of sugar transporter activation by microbes that potentially
implicate changes in susceptibility toward those microbes,
perhaps the most prominent example is the activation of rice
SWEET transporters by bacteria of the genus Xanthomonas by
transcriptional activator like (TAL) effectors (reviewed in Eom
et al., 2015; Kim et al., 2021). Because even before knowing which
genes were involved, mutations in SWEET genes were shown to
be susceptibility targets toward those bacteria (Yang et al., 2006;
Antony et al., 2010; Liu et al., 2011).

AM fungi are obligate biotrophs, requiring the plant for their
carbon nutrition, provided in form of monosaccharides and
lipids (Shachar-Hill et al., 1995; Helber et al., 2011; Bravo et al.,
2017; Keymer et al., 2017; Luginbuehl et al., 2017). Consequently,
and similar to other microbes colonizing plants, AM fungi
impose a major reorganization in the carbon partitioning, and an
increase in the sink strength of the colonized tissue (Wright et al.,
1998; Graham, 2000; Boldt et al., 2011; Bitterlich et al., 2014).
Furthermore, AM colonization affects the subsequent or parallel
colonization by other microorganisms, and the defense capacities

of the plant. For instance, AM fungi have been associated with
reduction of incidence of several root rot and wilting phenotypes
caused by several fungal species including Fusarium, as well as by
several oomycetes (summarized in Whipps, 2004).

However, the protection they offer is not universal, and
the magnitude depends on the AM species employed
and on the environmental conditions (Pozo and Azcon-
Aguilar, 2007). Liu and coworkers (Liu et al., 2007) using an
Affymetrix microarray approach demonstrated that mycorrhizal
colonization significantly alters gene expression in a local and
systemic manner and demonstrated the induction of a functional
defense response in shoots toward a pathogenic Xanthomonas
spp. Moreover, a study in rice showed that the transcriptomic
responses imposed by arbuscular mycorrhizal and pathogenic
fungi on plants are partially overlapping, suggesting that root
infecting fungi might have similar plant targets required for
root infection (Guimil et al., 2005). However, the mechanisms
behind are still elusive, and more studies are required involving
complex interactions of AM fungi and pathogens on the same
plant to investigate if modification of sugar partitioning could be
involved in the altered defense responses of mycorrhizal plants.

Two models have been proposed to explain how sugars can
modulate plant defense responses toward microbial pathogens
(Bezrutczyk et al., 2018). In the first model, and given that the
goal of every colonizing microbe is to obtain fixed carbon from
its host, plants starve the pathogen for sugar thereby increasing
resistance. The second model, which is not incompatible with
the first one, proposes that specific sugar ratios at infection sites
elicit defense responses that keep microbes at bay (Bezrutczyk
et al., 2018). There is supporting evidence for both models in
the literature, and likely it depends on many other factors such
as the type of pathogen, the infected organ and the pathogenicity
tools (i.e., effector secretion) of the given microbe. In any case,
it is thus expected that reorganization of plant sugar transporter
expressions will accompany each plant-microbial interaction.

In this context, it is thus conceivable that changes in
susceptibility to pathogens observed in plants colonized by
mycorrhizal fungi might be at least in part due to the changes
in the carbon partitioning imposed by the symbiosis. We decided
to start investigating this hypothesis by further characterizing the
function of several SWEET transporters that were found induced
during symbiosis between potato plants and the AM fungus
Rhizophagus irregularis (Manck-Gotzenberger and Requena,
2016) and in particular by analyzing their involvement in
the colonization by pathogenic fungi. SWEET transporters are
bidirectional sugar facilitators (Chen L. Q. et al., 2015; Eom et al.,
2015; Breia et al., 2021). They can be located either at the plasma
membrane, at the tonoplast or in the Golgi membrane. Although
their primary role in plants is to serve functions such as pollen
nutrition, seed filling, flower and fruit development or phloem
loading (Chen et al., 2010, 2012; Sosso et al., 2015; Yang et al.,
2018), they are a paradigm of how microbes can modify the plant
carbohydrate program toward their own benefit as shown above.
Thus, SWEET transcriptional activation in response to TAL
effectors from pathogenic bacteria such as Xanthomonas spp.
allows those bacteria to access sugars particularly in tissues where
sugar movement is symplastic (Yang et al., 2006; Chen et al., 2010;
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Yu et al., 2011; Cohn et al., 2014; Hu et al., 2014). Furthermore,
disease resistance can be achieved if transcriptional activation is
prevented for instance by mutations in the binding site of TAL
effectors in the promoter of SWEET genes (Chen et al., 2010; Yu
et al., 2011; Streubel et al., 2013).

Here we have analyzed the spatial induction of four
mycorrhiza-induced SWEET genes in potato, their transport
activity and their subcellular localization. The expression of
all potato SWEETs in response to root colonization of the
necrotrophic fungus Fusarium solani was also analyzed, and
the results showed that only one SWEET gene, StSWEET7a, is
induced, while the majority are downregulated. Furthermore,
we present data about the functional role of StSWEET7a,
commonly induced by both symbiotic and pathogenic fungi,
using overexpression composite plants. Our results point toward
a role of StSWEET7a at increasing the sink strength of
colonized roots thereby facilitating the colonization by both
types of microbes.

MATERIALS AND METHODS

Biological Material and Growth
Conditions
Solanum tuberosum cv. Desiree was propagated as cuttings
axenically in plastic containers with Murashige and Skoog
medium containing vitamins and 30 g/L sucrose (Murashige
and Skoog, 1962) solidified with 3 g/L Phytagel (P8169, Sigma-
Aldrich, Germany) at 21◦C and 16 /8 h day/night rhythm.

For mycorrhizal colonization experiments, 2-week-old
cuttings or transgenic composite plants were transferred to 80 ml
falcons with a sand:gravel (1:4) mixture. Plants were inoculated
by mixing the substrate with 2-month-old Daucus carota root
cultures grown monoaxenically in association with R. irregularis
DAOM 197198 (Schenck and Smith, 1982; Kruger et al., 2012)
on M-medium with sucrose at 27◦C in darkness (Bécard and
Fortin, 1988). One Petri dish of carrot roots was used to inoculate
two 80 ml falcons. Plants were grown at 25◦C and 16/8 h
light/darkness photoperiod and fertilized twice a week with 5 ml
Murashige and Skoog nutrient solution with low phosphate
content (50 µM). Non-mycorrhizal controls were treated the
same. After 6 weeks (6 weeks post inoculation), a fraction of the
roots was separated and stored in 1X PBS for further analysis and
quantification of mycorrhizal colonization, while the rest of the
roots and shoots were harvested separately, immediately frozen
in liquid nitrogen and stored at−80◦C until used.

Nicotiana benthamiana was used for transient expression of
GFP fusion proteins in localization analyses. Plants were grown
in soil at 28◦C in a growth chamber (CLF Plant Climatics,
Germany), with a 16/8 h of light/darkness photoperiod and
watered on demand.

Fusarium solani strain BBA72084 (Malonek et al.,
2005), was cultivated on CM at 28◦C for 6 days to obtain
microconidia (Talbot et al., 1993). S. tuberosum plants (3 weeks
old) were inoculated with a spore suspension containing
5 × 106 microconidia/ml, according to Di Pietro et al. (2001).
Roots were harvested 48 h post inoculation.

Fusarium oxysporum f. sp. tuberosi (CABI culture collection,
strain 1411271), was propagated on CM at 28◦C. For the
infection assays, roots of S. tuberosum cv. Desiree cuttings
were immersed in a sterile 0.2% gelatine solution containing
5 × 106 microconidia/ml for 30 min under gentle agitation.
Plants were then transferred to falcons containing the above-
mentioned sand:gravel mixture and grown at 25◦C as described
above, but fertilized with Murashige and Skoog nutrient
solution with full phosphate concentration (1.25 mM). Plants
were harvested at 9 days or 7 weeks post inoculation and
immersed in 1X PBS to visualize infection using WGA-FITC as
described in Rech et al. (2013).

Gene Isolation and Constructs
For growth assays in Saccharomyces cerevisiae, the full-length
cDNAs of StSWEET1b, 2c, 7a, and12a were amplified from
cDNA with PstI and XhoI restriction sites and subcloned
into pCR8/GW/TOPO (Invitrogen by Thermo Fisher Scientific,
Germany), to afterward clone them into pDR196, which contains
a fragment of the plasma membrane ATPase promoter (Rentsch
et al., 1995). The full-length cDNA of Htx2 yeast gene was
also cloned into pDR196 and used as positive control in the
complementation analyses of the EBY.VW4000 mutant strain
(Wieczorke et al., 1999).

For localization analyses in N. benthamiana, the ORFs of
StSWEET1b, 2b, 2c, 7a, and 12a without stop codon were
amplified from cDNA and subcloned into pENTR/D-TOPO
(Invitrogen by Thermo Fisher Scientific, Germany). Afterward,
the constructs were cloned into the destination vector pCGFP-RR
for a C-terminal GFP-tagging (Kuhn et al., 2010).

For overexpression analyses in S. tuberosum roots, the
open reading frame of StSWEET7a was amplified from gDNA,
subcloned into pENTR/D-TOPO (Invitrogen by Thermo Fisher
Scientific, Germany) and cloned into the destination vector
2xP35S-pKGW-RedRoot (Heck et al., 2016).

All primers used for cloning of the constructs are listed in
Supplementary Table 1.

Promoter Analysis
For promoter-reporter assays, 2 kb fragments of the StSWEET1b,
2c, 7a, and 12a promoters were cloned into the Gateway binary
vector pPGFPGUS-RR as described in Manck-Gotzenberger
and Requena (2016). Agrobacterium rhizogenes-mediated
transformation of S. tuberosum and mycorrhizal inoculation
with R. irregularis was carried out.

Yeast Growth Assays
Yeasts were transformed with the corresponding constructs
using a lithium acetate-based method (Gietz and Woods,
2002), and transformants were selected in SD medium by
autotrophy to uracil. For the complementation assay, the
yeast strain EBY.VW4000 (Wieczorke et al., 1999) and SD
media supplemented with fructose, galactose, glucose, and
mannose were used.

1https://www.cabi.org/products-and-services/bioscience-services/
microorganism-supply-services/
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For the complementation assay, the medium contained 1.5%
gold agar (Affymetrix). Yeast cultures were grown in SD liquid
medium without uracil and supplemented with 2% maltose were
diluted to an optical density at 600 nm of 0.4 and then grown
to exponential phase (OD600 0.8–1). Cultures were washed twice
with distilled water and brought to an optical density at 600 nm of
1. Serial 1:10 dilutions were spotted (5 µl) onto plates containing
the different sugars to determine transport as compared with
strains transformed with the empty vector (EV).

Transient Expression of Proteins in
Nicotiana benthamiana
The plasmids constructed for localization analyses were
transformed into Agrobacterium tumefaciens GV3101 strain.
A bacterial suspension was infiltrated into leaves of 3-week-old
N. benthamiana plants using a needleless syringe and the p19
protein of tomato bushy stunt virus was used to suppress gene
silencing in co-transformation, after the protocol of Voinnet
et al. (2003). Cells were kept overnight in the dark in infiltration
media [2% sucrose solution 10 mM MgCl2, 10 mM MES-KOH,
150 µM acetosyringone in dimethyl sulfoxide (DMSO)], with an
OD600 of 0.8–1 at room temperature before co-infiltration with
a ratio of 1:1. After infiltration of the cultures into the underside
of two-three leaves per plant, plants were incubated at 21◦C in a
low illuminated place and confocal microscopy was performed
2–3 days after infiltration.

Agrobacterium rhizogenes-Mediated
Transformation
Agrobacterium rhizogenes ARquaI containing the appropriate
vector was used for the root transformation of S. tuberosum
cv. Desiree. S. tuberosum composite plants were generated by
stab inoculation after (Horn et al., 2014). For this purpose,
2-week-old cuttings were transferred to fresh potato medium
slants without sucrose in 15 cm Petri dishes. The plants were
stabbed into the second or third internode from the roots
with an inoculation needle dipped into the agrobacteria. Two
weeks after transformation, the wild-type roots were cut and
the S. tuberosum cuttings were washed two times in water
supplemented with 600 mg/L Augmentin (AmoxiClav, Hikma
Farmaceutical, Portugal) and 200 mg/L Cefotaxime (Actavis
GmbH & Co. KG, Langenfeld, Germany) and transferred to
fresh potato medium slants without sucrose supplemented with
400 mg/L Augmentin and 200 mg/L Cefotaxime. Transformed
roots were visualized using the DsRed marker under the
fluorescence binocular. Transformed plants were transferred to
80 ml pots 4 weeks after transformation.

Microscopy and Image Processing
Confocal microscopy images were taken using a Leica TCS
SP5 (DM5000) confocal microscope with conventional PMT
detectors and the color camera Leica DFC295, using the LASAF
v2.6 software. The fluorescent proteins eGFP (488 nm) and
WGA-FITC (488 nm) were excited with an argon laser while
DsRed (561 nm) was excited with a DPSS laser. Emission of eGFP
was detected from 493 to 530 nm and DsRed from 566 to 670 nm.

Emission of WGA-FITC was collected from 505 to 525 nm after
excitation at 494 nm (argon laser). Pictures were processed using
ImageJ 1.51n.2

Morphometric Analysis of Composite
Plants
For morphometric analysis of leaf surface and shoot branching,
images of plants were taken and analyzed using AutoCAD 2010
(Autodesk, Inc., San Rafael, CA, United States). For this purpose,
pictures of five plants from each treatment were scaled taking into
account the length of the plate (15 cm). Five leaves of each plant
were used for further calculations.

Quantification of Mycorrhizal
Colonization
Fungal structures were immunostained with WGA-FITC as
described in Rech et al. (2013) for phenotypical analysis and
quantification of mycorrhizal colonization. Quantification of
mycorrhizal structures was carried out according to Trouvelot
et al. (1986). F% represents the frequency of mycorrhization, M%
the intensity of colonization, A% the abundance of arbuscules,
and I% the abundance of hyphae in the root system. Vesicle
quantification was carried out counting the number of vesicles
present along at least 68 fields of vision per biological replicate
observed with the 10×magnification at the confocal microscope
(Leica TCS SP5, DM5000) and expressed as percentage of
vesicles per root segment. Roots of four biological replicates per
treatment (EV mycorrhizal and StSWEET7a OE mycorrhizal)
were analyzed after immunostaining of R. irregularis with WGA-
FITC.

Quantification of Pathogen Colonization
To quantify the F. oxysporum f. sp. tuberosi colonization
at 7 weeks post inoculation (wpi) in EV and StSWEET7a
overexpressing roots, the fungus was stained with WGA-FITC
and confocal microscopy pictures from different root regions for
each treatment (four biological replicates each) were taken, with
n ≥ 17 (n, number of root sections analyzed for each treatment).
Using Fiji, the root surface areas were outlined manually and the
fungal area was determined by applying a Minimum threshold
to the FITC fluorescence channel (Schindelin et al., 2012). The
extent of colonization was calculated as the fraction of root
surface area covered by fungus.

Gene Expression Analyses
Total RNA was extracted using the innuPREP RNA Kit (Analytik
Jena AG). cDNA was synthesized as described in Kuhn et al.
(2010) with the reverse transcriptase SuperScript II (Invitrogen,
United States). Control PCRs were carried out using the
StActin gene (XM_006345899) to check for the absence of
genomic DNA contamination in the cDNA samples. Real time
expression analyses were carried out using an iCycler MyIQ (Bio-
Rad, United States) and MESA Green 231qPCR Master Mix
Plus (Eurogentec, Germany) with 3–5 independent biological

2http://fiji.sc/Fiji
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replicates depending on the experiment. Expression of StActin
gene was used for normalization of the expression of plant
genes as well as of RiTEF (DQ282611). Fugal genes’ expression
was normalized to RiTEF transcript levels. StPT4 (AY793559),
StInvCD141 (Z22645), RiTEF, RiMST2 (HM143864), and StFatM
(PGSC0003DMP400059797) were used as indicators of symbiosis
status. The PCR program consisted in a 1 min incubation at
95◦C, followed by 40 cycles of 30 s at 95◦C, 30 s at 56◦C
and 30 s at 72◦C, where the fluorescence signal was measured.
The specificity of the PCR amplification procedure was checked
with a heat-dissociation protocol (from 57 to 95◦C) after the
final cycle of the PCR. Oligonucleotides used can be found in
Supplementary Table 1.

Determination of Phosphate
Concentration
Potato shoot phosphate concentration was determined with the
Malachite Green Phosphate Assay Kit from Sigma. Frozen tissue
was first homogenized using a mixer mill (three rounds of 1 min
each with a frequency of 25 oscillations per second). A known
amount of frozen tissue powder was collected in a separate tube
to extract the phosphate from and later relativize the phosphate
amount to the corresponding collected weight. Phosphate
isolation was achieved through the incubation of the samples with
250 mM NaOH (sodium hydroxide) for 1 min at 95◦C and later
with an added equivalent volume of 250 mM HCl (hydrochloric
acid, for pH neutralization) for 2 min at 95◦C. Samples were
then centrifuged to precipitate cell debris and supernatants
containing the isolated phosphate were collected into new
tubes. The determination of the phosphate concentration was
conducted according to manufacturer instructions. Absorbances
(λ = 620 nm) were measured using a plate reader (Tecan
Infinite M Nano, Männerdorf, Switzerland) in two replicates.
A calibration curve was prepared according to the manufacturer
specifications and samples were diluted with Milli-Q water to
produce absorbances within the range of the calibration curve.

Statistical Analyses
Data shown in Figure 5A represent the mean of five biological
replicates and error bars correspond to the standard deviation.
For the rest of the figures showing graphs, boxplots were used to
represent the data. In those, the mean is shown by an “x” and
the median by a horizontal line while each dot represents the
individual value for each biological replicate. For each parameter
analyzed, each treatment was first subjected to the Shapiro–
Wilk test for normality. If treatments were normally distributed,
a two-tailed Student’s T-test was applied. In case one of the
treatments (or both) were not normally distributed, a Mann–
Whitney U test was applied. Significance is indicated by asterisks
(∗p < 0.05; ∗∗p < 0.01) or “ns” (non-significant, p ≥ 0.05).
The number of biological replicates (n) is indicated in each of
the corresponding figure legend. Additional statistical analyses
were carried out for data in Figures 4, 6 and Supplementary
Figure 1 that are shown in Supplementary Tables 2, 3. For
data comparing more than two groups and showing no normal
distribution, the Kruskal–Wallis test was carried out and the

significance calculated according to the Mann–Whitney U test.3

If data were showing a normal distribution an ANOVA and a
Tuckey post hoc test were carried out. Significant differences with
p < 0.05 are shown with different letters.

RESULTS AND DISCUSSION

SWEET Promoter Activity Is Induced in
Potato Roots in Arbuscule-Containing
Regions
We had previously shown that root colonization by
arbuscular mycorrhizal fungi induces a major transcriptional
reprogramming affecting the expression of 22 of the 35 SWEET
genes from potato, including the genes StSWEET1b, 2b, 2c,
7a, and 12a. Furthermore, promoter-reporter analyses of three
of these genes in the heterologous host Medicago truncatula
showed promoter activity in arbuscule-enriched regions (Manck-
Gotzenberger and Requena, 2016), suggesting they could be
involved in carbohydrate regulation during symbiosis. Here,
we analyzed the promoter activity of these genes in potato
using the promoter-reporter GUS. Unfortunately, the promoter
of StSWEET2b could not be amplified and was therefore not
included in the assay. All these genes had basal expression levels
in the cortex, sometimes also in root tips (StSWEET2c) under
non-mycorrhizal conditions (Figure 1). However, transcript
accumulation of StSWEET1b, 2c, 7a, and 12a occurred in roots

3https://www.Statskingdom.com

FIGURE 1 | Promoter-reporter assay of S. tuberosum SWEET genes during
AM symbiosis. A 2 kb fragment upstream of the ATG of the S. tuberosum
SWEET genes 1b, 2c, 7a, or 12a was cloned in front of the GUS
(β-glucuronidase) reporter gene and transformed in S. tuberosum. Composite
plants were inoculated with R. irregularis and harvested 4 wpi (weeks post
inoculation). β-Glucuronidase staining was carried out in non-mycorrhizal
control roots and mycorrhizal roots. Fungal colonization was visualized by
WGA-FITC (wheat germ agglutinin-fluorescein isothiocyanate) counterstaining
labeling the fungal cell wall. Scale bars represent 200 µm. DIC, differential
interference contrast; WGA-FITC signal is shown in green.
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colonized by the AM fungus R. irregularis in areas enriched
in arbuscules, and thus consistent with the localization data
previously observed in M. truncatula. This result supports
the hypothesis that these SWEETs could play a role in the
mycorrhizal symbiosis by regulating the carbon partitioning in
colonized roots and eventually increasing their sink capacity.
Interestingly, putative orthologs of several of these genes in other
plants have been shown to be also transcriptionally regulated
during microbial interactions. Thus, for instance, the ortholog
of potato StSWEET1b in M. truncatula was recently functionally
characterized and also found to be strongly expressed in
arbuscule-containing cells and to play a role in arbuscule
maintenance (An et al., 2019). Furthermore, MtSWEET1b is also
induced by nodulation (Kryvoruchko et al., 2016), supporting
a symbiotic role for this transporter. AtSWEET2 is induced
in roots colonized by the pathogenic oomycete Pythium and
its mutation reduces the resistance of plants to this pathogen
(Chen H. Y. et al., 2015). The authors proposed this to be
linked to a mechanism to prevent excess of glucose leakage
out of roots. Three putative orthologs of potato StSWEET7a,
the M. truncatula MtSWEET6, Vitis vinifera VvSWEET7, and
the tomato ortholog SlSWEET7b have been also shown to be
transcriptionally induced by microbes. MtSWEET6 was induced
in roots colonized either by AM fungi or by rhizobia (Kafle
et al., 2019), further supporting our findings in potato (Manck-
Gotzenberger and Requena, 2016). VvSWEET7 transcription
was increased in grapes in response to Botrytis cinerea infection
(Breia et al., 2019), while SlSWEET7b was induced in roots of
tomato upon infection with the root knot nematode Meloidogyne
incognita (Zhao et al., 2018). AtSWEET11 and AtSWEET12 have
been shown to be induced at infection sites during clubroot
disease in order to deliver carbohydrate to the developing
plasmodia and coincident with increases in apoplastic invertase
and sucrose synthase gene expression (Walerowski et al., 2018).
Collectively, these findings suggest that microbial colonization of
plants imposes changes in carbon distribution that are facilitated
by SWEET transporters.

StSWEET1b and StSWEET7a Are
Monosaccharide Transporters
Eom et al. (2015) had proposed that the phylogenetic
classification of SWEETs in clades did not correlate with
their physiological function (seed filling, pollen nutrition, etc.)
but rather with their substrate preference. Thus, it was proposed
that proteins from clade I and II (like StSWEET1b, 2b, 2c and 7a)
would be monosaccharide transporters, while SWEETs in clade
III (like StSWEET12a) would be more likely sucrose transporters.
However, the specificity of SWEET transporters for mono- or
disaccharides is sometimes controversial in the literature. Thus,
while most SWEET transporters are specific for only one type of
sugar, for some others it is not totally clear, and some have been
shown to transport both, mono- and disaccharides (Kim et al.,
2021). Furthermore, some SWEETs have been demonstrated to
transport even sugar unrelated substrates, such as GA (Kanno
et al., 2016; Morii et al., 2020).

In order to investigate the sugar transport activity of
the mycorrhiza-induced potato SWEETs, complementation

analyses in yeast were carried out. To that end, the hexose
transport-deficient strain EBY.VW4000, that can only grow on
monosaccharides if complemented with a functional plasma
membrane-localized hexose transporter was used. The ability of
the selected potato SWEET proteins to restore growth of this
strain was then analyzed using different monosaccharides as
single carbon sources. The full-length cDNAs of the StSWEETs
1b, 2b, 2c, 7a, and 12a were expressed under the control
of the constitutive promoter PMA1 (coding for the yeast
proton ATPase). As a positive control the yeast high affinity
monosaccharide transporter ScHXT2, cloned in the same vector,
was used. Growth of the transformed strains containing either
one of the transporters or the EV was scored on minimal
medium containing 2% of D-glucose, D-fructose, or D-mannose
as single carbon sources. The results showed that the yeast strain
expressing the potato StSWEET1b is able to grow on 2% D-
glucose but it is not able to restore growth on any of the other
monosaccharides analyzed (Figure 2). This is consistent with the
results obtained for the Arabidopsis thaliana and M. truncatula
orthologs, AtSWEET1 and MtSWEET1b, that have been shown
to be specific glucose transporters (Chen et al., 2010; An et al.,
2019).

In contrast to StSWEET1b, StSWEET2b and StSWEET2c,
which also belong to clade I, were not able to complement
the yeast growth on monosaccharides, although some residual
growth was observed for StSWEET2b at pH 5, indicating that
they might transport another substrate or that they are not
localized at the plasma membrane (Figure 2). In fact, both
SWEETs are in the same phylogenetic branch as AtSWEET2,
a vacuolar transporter that likely transports glucose in and
out of the vacuole to buffer the cytoplasmic content, and it is
regulated in response to pathogens (Chen H. Y. et al., 2015).
Similarly, VvSWEET2a, another transporter from this group from
V. vinifera, is also induced by microbial colonization, suggesting
that vacuolar control of sugar might be a critical issue for plants
hosting microbes (Chong et al., 2014). Thus, we hypothesize
that the regulation of StSWEET2b and 2c in potato by AM
fungi might have an impact in the carbon partitioning of sugars
among the cortical cells and allow arbuscule-containing cells
to accumulate sugars in the vacuole to support the increased
metabolic demands of these cells.

Similar to StSWEET1b, StSWEET7a was also able to transport
glucose but in addition fructose and mannose (Figure 2). In all
cases, the transport of these sugars was better at pH 5, while
the glucose transport of StSWEET1b was equally good at both
pHs. V. vinifera SWEET7, a putative ortholog of StSWEET7a,
that is induced during infection with B. cinerea, was shown using
radioactive sugar uptake measurements to also transport glucose
and fructose, as well as polyols (Breia et al., 2019). Surprisingly,
it also showed sucrose transport activity. However, the yeast
strain used for these assays was also the EBYVW.4000 which
contains the SUC2 gene, coding for secreted and intracellular
invertase (Carlson and Botstein, 1982). Therefore, the possibility
that sucrose might be cleaved and taken up exists, and thus
another strain with a deletion in SUC2 could help to rule out that
possibility (Helber et al., 2011). Potato StSWEET12a was unable
to transport monosaccharides in the yeast assay and thus it might
indicate that it is a sucrose transporter, similar to other SWEETs
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FIGURE 2 | Analysis of the monosaccharide transport ability of five S. tuberosum SWEETs in yeast at pH 5 and pH 7. The EBY.VW4000 yeast strain was
transformed with an empty vector (pDR196) or with the positive control ScHXT2 or with the potato transporters StSWEET1b, StSWEET2b, StSWEET2c,
StSWEET7a, or StSWEET12a, all cloned in pDR196. Strains were plated on SD medium without uracil supplemented with 2% maltose (growth control) or with 2%
D-fructose, D-glucose, or D-mannose. Plates were incubated at 28◦C for 5 days (pH 5) or for 12 days (pH 7).

from clade III. We tested several other yeast strains to analyze the
putative sucrose transport ability of StSWEET12a but results were
not conclusive. Hence, other methods, such as the esculin uptake
assay in yeast that was used to show the sucrose transport ability
of StSWEET11 (Abelenda et al., 2019), are necessary.

As mentioned above, some SWEET transporters have shown
to transport more than one substrate (including mono- and
disaccharides) and for a few of them somewhat contradictory
results have been shown. One example is the AtSWEET9, a
sucrose transporter required for nectar production that was
shown to be unable to transport glucose using the same
yeast complementation assay employed here. However, this
transporter exhibited a weak glucose transport activity when
analyzed using FRET sensors (Lin et al., 2014). Also, the vacuolar
transporter AtSWEET16 was shown to be able to take up mono-
and disaccharides when expressed in Xenopus oocytes (Klemens
et al., 2013). However, this is slightly contradictory to the
experiments carried out by Guo et al. (2014). Using isolated
A. thaliana vacuoles they could show that AtSWEET16 and the
closely related AtSWEET17 exhibited similar phenotypes and
sugar accumulation patterns in plants, but transport activity
could be shown only for AtSWEET17 (Guo et al., 2014).

These results show the difficulty of these type of studies
to ascertain the substrate and direction of transport
for SWEET proteins and the need to establish further
complementing methodologies.

Subcellular Localization of Potato
SWEETs
In silico analyses using WoLF Psort4 and the results above
indicated that SWEETs 1b, 7a and 12a are likely plasma
membrane transporters, while SWEET2b and 2c might be
tonoplast transporters. In order to obtain more information

4https://wolfpsort.hgc.jp

about their subcellular localization, the corresponding proteins
were tagged with GFP at their carboxy-terminus and expressed
in N. benthamiana leaves. As positive control free eGFP,
which localizes in the cytoplasm and in the nucleus, was
also analyzed. In all cases, the DsRed fluorescent protein
was used as transformation control, also showing localization
in the cytoplasm and in the nucleus. Confocal microscopy
analyses confirmed that, as predicted, StSWEETs 1b, 7a and
12a have plasma membrane localization (Figure 3). In contrast,
StSWEETs 2b and 2c exhibited tonoplast localization, with visible
accumulation of DsRed in the cytoplasm between tonoplast and
plasma membrane (indicated with white arrows). These results
could explain the inability of StSWEETs 2b and 2c to complement
the mutant yeast strain, because they likely also localize at the
tonoplast in the heterologous host.

Overexpression of StSWEET7a in Roots
Alters Sink Strength, Plant Architecture,
and Mycorrhizal Colonization
In order to investigate the role of StSWEET7a during symbiosis,
we deregulated its expression in roots by ectopically expressing
the gene under the control of a constitutive promoter (CMV
35S) and carried out mycorrhizal colonization assays. Shoots
of potato plant ectopically expressing StSWEET7a in roots
had larger leaves, were less etiolated and survived better than
control plants the adaptation to the substrate after transformation
(Supplementary Figure 1). Furthermore, overexpressing plants
developed less shoot branches than plants transformed with
an EV (Figures 4A,B and Supplementary Figure 1). These
differences in shoot development were, however, no longer visible
at the end of the experiment, Exp1 (Figure 4C). However,
under mycorrhizal conditions, StSWEET7a overexpressing plants
developed significantly smaller roots (Figures 4C,D). In order
to test whether these differences in growth at the end of the
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FIGURE 3 | Subcellular localization of S. tuberosum SWEET proteins. Confocal imaging of ectopically expressed potato SWEET proteins fused to eGFP in
N. benthamiana epidermal cells. Free DsRed was co-expressed as control for transformation and labels the cytoplasm and the plant nucleus. White arrows indicate
cytoplasmic DsRed accumulations between the tonoplast and the plasma membrane. Zoom images of inlets are shown in the last column. Scale bars are 50 µm.

experiment were due to the larger size of the potato leaves
and the reduced branching caused by the ectopic expression
of StSWEET7a, a parallel experiment (Exp2) was carried out
in which shoots from transformed plants were cropped before
transplanting to the pots (Figure 4B). As expected, shoots from
plants in Exp2 were smaller than those of Exp1, while root
sizes were similar. Interestingly, the differences in root size
observed in Exp1 between overexpressing plants and control
plants (EV) were no longer visible when plants were colonized
by R. irregularis (Figure 4D). This is similar of the conserved
response of plants to decapitation that react with an increase
in shoot branching mediated by sugars (Mason et al., 2014;
Salam et al., 2021). This phenomenon has been recently explained
as a competition for sucrose between the apical meristem and
the axillary buds. The apical meristem acts as a strong sink
depriving of sucrose the outgrowing buds and thus preventing

branching (Barbier et al., 2015a,b). Taken together these results
suggest that ectopic expression in roots of StSWEET7a alters the
sugar partitioning in potato producing an increase in the root
sink capacity as indicated by the change in shoot architecture,
with a decrease in shoot branching and an increase in leaf size.
In support of that, decapitation of all plants prior transplanting
in Exp2 abolished the differences in plant architecture observed
between control and StSWEET7a expressing plants in Exp1.

Plants ectopically expressing StSWEET7a in roots in Exp1
were faster colonized by R. irregularis than control plants
(Figures 5A,B). Together with the decrease in root growth of
those plants, this is reminiscent of the phenotype observed in
the experiments of Bitterlich and coworkers, in which silencing of
the SlSUT2, coding for a sucrose importer, increased mycorrhizal
colonization but led to a shift in biomass from the plant to
the fungus, thus abolishing the positive growth response of the
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FIGURE 4 | Effect in plants of the ectopic expression of StSWEET7a. (A) Ectopic expression of StSWEET7a in roots of composite potato plants modified shoot
development as compared with plants transformed with an empty vector (EV). StSWEET7a expressing plants had larger leaves and less branches than EV plants
before transplanting to pots. (B) Graphic representation of how Exp1 and Exp2 were carried out. Plants in both experiments were transplanted 4 weeks after
transformation. In Exp1 plants were directly transplanted to pots, while in Exp2 plant shoots were excised right before transplanting. Plant growth parameters at the
end of each experiment under non-mycorrhizal (Myc–) (C) and mycorrhizal (Myc+) conditions (D). Five biological replicates (n = 5) were used for each treatment.
Statistical significance (calculated as explained in section “Materials and Methods”) is shown with exact p-values and with asterisks, ns, non-significant, p > 0.05;
*p < 0.05; **p < 0.01.
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FIGURE 5 | Ectopic expression of StSWEET7a modifies root colonization when shoot is intact. (A) Quantification of R. irregularis colonization was carried according
to Trouvelot et al. (1986). F% represents the frequency of mycorrhization, M% the intensity of colonization, A% the abundance of arbuscules, and I% the abundance
of hyphae in the root system. Five biological replicates (n = 5) were used for each treatment. Statistical significance (calculated as explained in section “Materials and
Methods”) is shown with exact p-values and with asterisks, ns, non-significant, p > 0.05; ∗p < 0.05; ∗∗p < 0.01. (B) Representative pictures of the observed
colonization in potato roots stained with WGA-FITC (green signal). Scale bars are 200 µm for overview pictures and 30 µm for pictures in inlets depicting single
arbuscules.

mycorrhizal colonization (Bitterlich et al., 2014). In support of
that hypothesis, the number of vesicles, fungal carbon storage
structures, in roots expressing StSWEET7a was significantly
higher than in EV plants (Supplementary Figure 1).

The higher mycorrhizal colonization of StSWEET7a plants
in Exp1 paralleled to a higher expression of the symbiotic
plant phosphate transporter StPT4 but surprisingly not of the
fungal translation elongation factor RiTEF (Figure 6A). This is
interesting because an overexpression of MtSWEET1b, also a
glucose transporter, led also to an increase in the mycorrhization
levels in M. truncatula when inoculated by R. irregularis (An
et al., 2019). However, this increase was also reflected in a
higher RiTEF expression but not on a higher MtPT4 expression
(An et al., 2019), suggesting that MtSWEET1b and StSWEET7a
despite transporting the same substrate are not fully redundant

to each other. An and coworkers hypothesized that a higher
MtSWEET1b activity could fuel monosaccharides toward the
apoplast increasing fungal growth (An et al., 2019). Our results
for StSWEET7a rather suggest that its role could be to support
arbuscule functioning. However, we could not observe any
significant change in the amount of phosphate accumulated in
shoots between StSWEET7a overexpressing and control plants
(Figure 4D). Another interesting observation of An et al.
(2019) was that while impairment of the transport activity
of MtSWEET1b did not alter mycorrhizal colonization, the
expression of a dominant negative form accelerated arbuscule
turn over and decreased MtPT4 expression. This suggests that
MtSWEET1b is able to oligomerize with itself or with other
SWEETs, as it has been demonstrated for AtSWEET1 (Xuan et al.,
2013). Therefore, it is tempting to speculate that StSWEET1b and
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FIGURE 6 | Gene expression analysis in potato roots ectopically expressing StSWEET7a. The impact of StSWEET7a overexpression on the colonization by
R. irregularis was analyzed by qRT-PCR in roots of composite plants under the two experimental conditions (Exp1 and Exp2) using several symbiotic markers.
(A) RiTEF and StPT4 expression, (B) StlnvCD141, (C) RiMST2, RiOLE1-like, StFatM. Transcript levels were normalized to StActin in the case of plant genes and
RiTEF and to RiTEF in the case of fungal genes. Statistical significance was calculated either using a two-tailed Student’s T-test or the Mann–Whitney U test,
depending on the normality, as explained in section “Materials and Methods.” Significance is given by p. Exact p-values are shown, ns, non-significant, p > 0.05;
*p < 0.05; **p < 0.01.
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FIGURE 7 | Effect of the infection by the necrotrophic fungus Fusarium solani on the expression of potato SWEET genes. Transcript levels of all potato SWEET
genes in response to infection by F. solani were analyzed by qRT-PCR and normalized to StTEF1. Background color indicates whether the gene at issue is
upregulated (red), downregulated (green), not regulated (yellow), or not expressed (white) in response to infection with F. solani. Pairwise comparisons were done
with a two-tailed Student’s T-test. Significance is indicated with asterisks, *p < 0.05 or **p < 0.01.

StSWEET7a, which are both induced in arbuscule-containing
cells in potato, could be acting as a dimer controlling glucose
transport during symbiosis.

Interestingly, shoot decapitation prior transplanting in Exp2
accelerated mycorrhizal colonization as compared to Exp1,
but eliminated the advantage given by the ectopic expression
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FIGURE 8 | Ectopic expression of StSWEET7a accelerates potato root colonization by Fusarium oxysporum f. sp. tuberosi. (A) Colonization of potato roots by
F. oxysporum f. sp. tuberosi significantly induces expression of StSWEET7a as shown by qRT-PCR normalized to StActin. Four biological replicates were analyzed
(n = 4). Significance was calculated with a Mann–Whitney U test and represented by an asterisk, *p < 0.05. (B) Symptoms caused by F. oxysporum f. sp. tuberosi
(Fus+) at the base of the shoot in both EV and StSWEET7a composite plants are shown as compared to non-infected plants (Fus–). (C) The extent of colonization by
Fusarium was calculated as the fraction of root surface area covered by fungus using the Fiji software after staining the fungus with WGA-FITC. Confocal microscopy
pictures from different root regions for each treatment (four biological replicates each) were taken, with n > 17, (n, number of root sections analyzed for each
treatment). (D) Representative confocal microscopy pictures showing the colonization of EV and StSWEET7a overexpressing roots by F. oxysporum f. sp. tuberosi.
The fungus was stained using WGA-FITC (left, green channel; center, bright field; right, overlay). Scale bar corresponds to 200 µm.

of StSWEET7a, and all plants were equally well colonized
(Figures 5A,B). In agreement, StPT4 levels were in general
higher in Exp2 but there were no significant differences between
treatments (Figure 6A).

In order to investigate whether the increased colonization
in roots observed in Exp1 in response to the expression of
StSWEET7a was related to changes in the carbon partitioning,
the expression of the cell wall-bound invertase, that cleaves
sucrose into glucose and fructose in the apoplast of sink organs,
was analyzed in roots. Cell wall-bound invertases are essential
enzymes for apoplastic phloem unloading and sink induction

(Proels and Huckelhoven, 2014) and their expression and activity
are known to be induced during symbiosis with arbuscular
mycorrhizal fungi (Schaarschmidt et al., 2006). This induction
takes place in and around arbuscule-containing cells, indicating
that colonized cells act as a new sink organ. In potato, induction
of StInvCD141 gene expression paralleled to the expression of the
mycorrhiza-induced SWEETs, including StSWEET7a (Manck-
Gotzenberger and Requena, 2016). Here we could show that
ectopic expression of StSWEET7a in roots significantly induces
StInvCD141 transcript accumulation under non-mycorrhizal
conditions (Figure 6B), consistent with the hypothesized higher
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sink strength in those roots. In mycorrhizal plants, which already
have a higher level of invertase expression, StSWEET7a also
promoted transcript accumulation of StInvCD141, albeit not
significantly. As we have shown above, StSWEE7a is able to
transport glucose and fructose, and thus, we speculated that its
constitutive expression in roots depletes the apoplast of those
sugars inducing the cell wall-bound invertase what in turn boosts
the unloading of sucrose from the phloem. A similar situation
has been observed in tomato sink leaves, where SlSWEET1a
fuels the unloading of sucrose from the phloem by taking up
hexoses into phloem parenchyma (Ho et al., 2019). In agreement
with our hypothesis that shoot decapitation prior transplanting
increased sink strength in roots, invertase expression was higher
in Exp2 than in Exp1 in all treatments, but differences between
control and StSWEET7a overexpressing plants were no longer
visible (Figure 6B).

We next investigated how these changes affected the
expression of other symbiotic markers and, in particular, how
the transport of fixed carbon toward the fungus could be
affected. AM fungi are known to take up sugars, in the form
of monosaccharides, and lipids from cortical cells (Choi et al.,
2018). Thus, RiMST2, a fungal monosaccharide transporter
only expressed during symbiosis was shown to import glucose
and be critical for arbuscule integrity (Helber et al., 2011).
Furthermore, AM fungi are fatty acid auxotrophs (Wewer
et al., 2014), and arbuscules have been also shown to be
nourished by monoacyl fatty acids synthesized in arbuscule-
containing cells with the concomitant participation of several
mycorrhiza-specific enzymes (Pimprikar et al., 2016; Bravo
et al., 2017; Luginbuehl et al., 2017). We therefore analyzed
the expression of two fungal markers, RiMST2, and RiOLE1-
like, an acyl-CoA desaturase responsible for the synthesis of
the unusual fatty acid, palmitvaccenic acid (16:1111cis) which
is characteristic of AM fungi (Olsson et al., 1995; Graham,
2000; Brands et al., 2020; Cheeld et al., 2020). In addition, and
the expression of the plant marker StFatM, the ortholog of
MtFatM, the plastidial acyl-ACP thioesterase mycorrhiza specific
and required for lipid accumulation in the fungus was also
investigated (Bravo et al., 2017; Brands et al., 2018). All three
markers were transcriptionally more elevated in plants expressing
StSWEET7a in Exp1, although none of them significantly,
suggesting a higher metabolic activity in those roots (Figure 6C).
Surprisingly, while both fungal genes were no longer regulated in
Exp2, expression of StFatM was significantly induced in plants
expressing StSWEET7a, although colonization in those plants
was identical to control plants (Figure 5B). Taken together, these
results suggest that the increase of the sink capacity mediated
by the overexpression of StSWEET7a leads to an increased
transport of fixed carbon toward the fungus boosting arbuscule
development in the root.

The Pathogen Fusarium solani
Represses Most Potato SWEET Genes in
Roots but Induces StSWEET7a
That overexpression of StSWEET7a in mycorrhizal potato roots
led to an increase in the colonization of roots prompted us to

investigate how the colonization by a pathogenic fungus would be
affected in those plants. Sugars in the apoplast might play a dual
role (Bezrutczyk et al., 2018). On one hand they serve as food for
pathogens, and thus plants will try to downregulate sugar export
while pathogens will seek the opposite. And on the other hand,
apoplastic sugars have been shown to act as signals inducing
defense reactions (Herbers et al., 1996; Herbers and Sonnewald,
1998). And hence both, the plant and the pathogen, might try to
regulate sugar export/import to induce or prevent the elicitation
of defense reactions. It is therefore not surprising that in addition
to SWEET transporters, pathogens also induce monosaccharide
transporters that likely try to compensate leakage of sugars to the
microbial side (Fotopoulos et al., 2003; Lemonnier et al., 2014;
Moore et al., 2015).

Therefore, we first analyzed the expression of all potato
SWEETs in response to F. solani. This necrotrophic fungus is the
cause of potato tuber rot and can rapidly colonize the root system
of S. tuberosum. We inoculated potato roots with F. solani spores
and collected samples after 48 h when the fungus was extensively
developing in the apoplastic spaces of the root cortex, but necrosis
has not yet set on, and analyzed SWEET expression (Figure 7).
Surprisingly, and in contrast to the reprogramming of SWEET
genes observed during mycorrhizal colonization that included
many upregulated genes (Manck-Gotzenberger and Requena,
2016), inoculation with F. solani repressed the expression of the
majority of SWEET genes, including StSWEET1b, 2b, 2c and
12a (Figure 7). This is reminiscent of the situation observed
when tomato cotyledons were infected with the necrotrophic
fungus B. cinerea (Asai et al., 2016). In that experiment, most
of the SWEET transporters were donwregulated in the pre-
necrotic stage and only one transporter SlSWEET15 was induced
in response to B. cinerea. The authors suggested that B. cinerea
uses SlSWEET15 to obtain glucose and sucrose from living
tomato cells prior inducing the necrotrophic stage (Asai et al.,
2016). In contrast, the reason why so many other transporters
were downregulated, as it is also the case in our experiment
is not clear. It is possible that either plants try to limit the
amount of sugar released to the apoplastic space to limit pathogen
development, or to change the hexose/sucrose ratio to elicit
defense reactions as mentioned above. But alternatively, this
repression might be mediated by the pathogen in order to prevent
such defense reactions.

Interestingly, the only potato SWEET gene that showed an
upregulation in response to F. solani (albeit not significant)
was StSWEET7a (Figure 7), suggesting that colonization by the
pathogen might activate the expression of this transporter to
provide the fungus with monosaccharides and/or to increase the
sink strength of the root, as in the case of B. cinerea in tomato
(SlSWEET15) or in V. vinifera (VvSWEET7) (Asai et al., 2016;
Breia et al., 2019). We then went on to analyze the expression
of StSWEET7a in potato plants colonized by F. oxysporum f.
sp. tuberosi, a less aggressive pathogen than F. solani (Manici
and Cerato, 1994), that rather behaves like a hemi-biotrophic
fungus and takes longer to colonize the root and produces a
variety of symptoms such as wilting, stem end rot, chlorosis,
necrosis or damping-off (Majeed et al., 2018). Results showed that
this species also induces the expression of StSWEET7a in roots
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(Figure 8A), suggesting that perhaps a common mechanism of
induction might take place in all cases.

Overexpression of StSWEET7a
Accelerates Root Colonization by
Fusarium oxysporum f. sp. tuberosi
To investigate the role of StSWEET7a in the F. oxysporum f.
sp. tuberosi infection we inoculated plants ectopically expressing
StSWEET7a in roots or control plants. Although all plants
were colonized, there were no wilting symptoms at the end of
the experiment. Only minor stem end rot symptoms occurred,
but there were no differences between the two treatments
(Figure 8B). This lack of wilting symptoms by some F. oxysporum
f. sp. tuberosi strains causing dry rot is not unusual, and it has
been previously reported (Tivoli et al., 1988; Manici and Cerato,
1994). However, the microscopic observation of roots, clearly
showed their colonization by the fungus. Furthermore, it could be
observed that increasing the expression of StSWEET7a in roots
led to a faster colonization (Figures 8C,D and Supplementary
Figure 2). Overall, these results support the hypothesis that
induction of StSWEET7a by Fusarium serves the feeding of the
fungus by increasing unloading of sucrose from the apoplast and
thus mirroring the effect of root colonization by the symbiotic
fungus R. irregularis as described above. In addition, we cannot
exclude that StSWEET7a might directly feed root colonizing
fungi by exporting monosaccharides at the places of colonization.

Similar results in other plants have been observed in response
to ectopic expression of other SWEET genes. Thus, in rice,
colonization by the necrotrophic Rhizoctonia solani induces
the expression of OsSWEET11, and plants overexpressing this
transporter were faster colonized than control plants (Gao et al.,
2018). Also, A. thaliana plants in which AtSWEET4 was deleted
were more resistant to B. cinerea (Chong et al., 2014). However,
this is not always the case, and in some cases, overexpression of
several SWEET genes led to increased resistance toward certain
pathogens. Thus, overexpression of VvSWEET4 in V. vinifera
led to a decreased susceptibility toward Pythium irregulare
(Meteier et al., 2019). The authors explain this effect, which is
contrary to the observations made by Chong et al. (2014) in
the same group, by explaining that the rise in sugars in roots
expressing VvSWEET4 was responsible for the observed increase
in flavonoid compounds that ultimately acted as antifungal
agents (Meteier et al., 2019). Also, in sweet potato, resistance to
F. oxysporum was induced in transgenic plants overexpressing
IbSWEET10 (Li et al., 2017). Here the authors suggested that
reduction in sugar content (sucrose, glucose, and fructose)
observed in leaves of the transgenic plants contributed to restrict
the growth of the pathogen (Li et al., 2017).

CONCLUSION

Sugar transport is the hub where plants and their colonizing
microbes converge to regulate it in their own benefit and
SWEET transporters are emerging as important players in this
market. However, because plants are in nature not colonized
by just one type of microorganism, it seems currently difficult

to predict how induction or deletion of a specific SWEET gene
might impact on the colonization of this plant by this or by
other pathogenic/symbiotic microbes. This makes it difficult to
use these transporters as targets to improve plant growth or
resistance. Therefore, attention should be paid to different aspects
such as the root organ in which SWEET transporters are induced
by microbes, whether deregulation takes place systemically or in
one specific organ, as well as the type of microbial interaction
(biotrophic or necrotrophic). All these are key factors that need
to be taken into account in a more systematic manner. An
outstanding question is also how microbes regulate expression
of SWEET genes by mechanisms other than those involving TAL
effectors. Are there other effectors? Why are some transporters
like StSWEET7a induced by pathogenic and symbiotic fungi? Do
they use the same activation mechanisms? And in case plants
are colonized by both microbes simultaneously, how will plant
susceptibility be affected by the deregulation of StSWEET7a? Can
we learn of these mechanisms to produce improved plants? These
and many other questions remain yet unsolved and will require
further research efforts.
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Supplementary Figure 1 | Ectopic expression of StSWEET7a in roots modifies

plant architecture and survival after transplanting. (A) Relative expression of
StSWEET7a (StSw7a) normalized to StActin was measured by qRT-PCR in roots

of composite plants grown under two mycorrhizal conditions (Myc−, Myc+) and

under two different experimental conditions (Exp1 and Exp2). Statistical

significance was calculated using the Mann–Whitney U test. Significance is given
by p-values. Exact p-values are given, ns, non-significant, p > 0.05; ∗p < 0.05;
∗∗p < 0.01. (B) Leaf surface and shoot branching were analyzed in plants

ectopically expressing StSWEET7a as compared to EV plants. The number of
biological replicates for each treatment for leaf surface analyses was five (n = 5)
with five leaves analyzed per biological replicate. Six biological replicates per
treatment were analyzed for root branching (n = 6). Statistical significance was
calculated either using a two-tailed Student’s T-test (leaf surface) or the
Mann–Whitney U test (shoot branching), depending on the normality, as explained
in section “Materials and Methods.” Significance is given by p-values. Exact

p-values are given, ns, non-significant, p > 0.05; ∗p < 0.05; ∗∗p < 0.01. (C)
Survival percentage of transformed plants after transplanting to pots comparing
plants expressing StSWEET7a in roots vs. EV plants. Significance was calculated
according to the Kruskal–Wallis and each pair of groups was compared using the
Mann–Whitney U test. Different letters indicate significance with p-value < 0.05.
(D) Percentage of vesicles (as number of vesicles per root segment) of
transformed plants expressing StSWEET7a in roots compared to EV plants.
Statistical significance was calculated using a two-tailed Student’s T-test.
∗p < 0.05.

Supplementary Figure 2 | Representative pictures of plant roots infected with
Fusarium oxysporum f. sp. tuberosi in plants expressing StSWEET7a or an empty
vector (EV). Confocal microscopy pictures showing F. oxysporum f. sp. tuberosi
colonization 7 weeks post inoculation in four different transgenic lines for each
treatment. The fungus was stained with WGA-FITC (left, bright field; center, green
channel; right, overlay). Scale bar corresponds to 200 µm.
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Understanding plant-microbe interactions with the possibility to modulate the plant’s
microbiome is essential to design new strategies for a more productive and sustainable
agriculture and to maintain natural ecosystems. Therefore, a key question is how to
design bacterial consortia that will yield the desired host phenotype. This work was
designed to identify the potential genomic features involved in the interaction between
Micromonospora and known host plants. Seventy-four Micromonospora genomes
representing diverse environments were used to generate a database of all potentially
plant-related genes using a novel bioinformatic pipeline that combined screening for
microbial-plant related features and comparison with available plant host proteomes.
The strains were recovered in three clusters, highly correlated with several environments:
plant-associated, soil/rhizosphere, and marine/mangrove. Irrespective of their isolation
source, most strains shared genes coding for commonly screened plant growth
promotion features, while differences in plant colonization related traits were observed.
When Arabidopsis thaliana plants were inoculated with representative Micromonospora
strains selected from the three environments, significant differences were in found in
the corresponding plant phenotypes. Our results indicate that the identified genomic
signatures help select those strains with the highest probability to successfully colonize
the plant and contribute to its wellbeing. These results also suggest that plant growth
promotion markers alone are not good indicators for the selection of beneficial bacteria
to improve crop production and the recovery of ecosystems.

Keywords: genome, Micromonospora, microbe-plant interaction, endophyte, actinobacteria, PGP

INTRODUCTION

The relationship between plants and microbial communities present in the soil is highly complex.
These communities and especially those associated with the rhizosphere fluctuate in response
to the surrounding environment which is affected by biotic and abiotic parameters (Sun et al.,
2021; Yukun et al., 2021; Zhang et al., 2021). The collective communities of plant-associated
microorganisms are known as the plant microbiome (Mendes et al., 2013) and play a major role
in plant health and adaptation to environmental factors (Yukun et al., 2021).

In shaping the plant microbiome, plants select for those microbial partners that will contribute
to improve its growth and resilience. In return, the microbiota associated will be provided with
nutrients, mainly secreted as root exudates (Zhang et al., 2021). All together, they establish complex
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microbial-plant and microbe-microbe interactions (microbial
networks) to produce a particular plant phenotype (Reid and
Greene, 2012; Toju et al., 2018).

Hitherto, only a few individual effects that plants and
microbes have on each other have been well-characterized
(e.g., nitrogen fixation of rhizobia). However, it is essential to
understand how different interactions combine to produce a
particular function (chemical, genetic, and/or physical) in a
highly dynamic environment (Reid and Greene, 2012). Levy
and colleagues recently reported that plant- and root-associated
bacteria contained enriched genomes with significant overlap of
the same function (e.g., carbohydrate metabolism) indicating an
evolutionary adaptation to a specific niche (Levy et al., 2018) and
suggesting a common strategy across diverse bacterial taxa to
adapt to a plant environment.

Understanding plant-microbe interactions with the possibility
to modulate the plant’s microbiome is essential to design new
strategies for a more productive and sustainable agriculture
(Finkel et al., 2017; Benito et al., 2022). Most bacterial inoculants
currently used to improve crops are composed of a single strain
randomly isolated and equipped with a set of traits known as
plant growth promotion (PGP) (Bulgarelli et al., 2013; Finkel
et al., 2017; de Souza et al., 2019). In addition, many of the
PGP features have been determined by in vitro screening assays
or inoculation experiments under controlled conditions, rarely
tested in the field (de Souza et al., 2020). Despite being broadly
adopted, these strategies fail to capture important aspects of
plant–microbe interactions (de Souza et al., 2019). To improve
the use of bioinoculants, synthetic microbial communities are
gaining a lot of interest as they can be custom built based
on information derived from their ecology and genetics and
translated into predictable traits. Thus, a key question is how
to design bacterial consortia that will yield the desired host
phenotypic outputs (Herrera Paredes et al., 2018). Together with
the need to understand how microbial communities interact and
shape the plant microbiome, it is also necessary to learn about the
function and contribution of individual microorganisms, at the
organismal/molecular level, to design manageable and traceable
consortia containing all needed functions for a successful
interaction (Vorholt et al., 2017).

Bacterial plant colonization is also a crucial step. In a recent
study, a set of genomic features for bacteria with high capacity
for plant colonization was identified (de Souza et al., 2019). The
combination of colonization features and specific functions that
confer benefits to the plant growth are, therefore, essential to
design bacterial consortia to apply to crops.

It is logical to assume that bacteria closely related to
plant/rhizosphere habitats would present a higher potential to
interact with a plant and contribute to the host phenotype. It is
likely that bacterial communities from a specific niche evolved
and present characteristic traits (metabolism, biofilm formation,
etc.) not found in individuals from other habitats (e.g., soil,
sediments, marine, etc.) (Vorholt et al., 2017; Levy et al., 2018).

Micromonospora is a cosmopolitan actinobacterium widely
found in diverse environments, especially soil, marine, and
freshwater habitats (de Menezes et al., 2012; Genilloud, 2015).
In the last decade, many micromonosporae have been reported

from diverse plant tissues, specially from nitrogen fixing nodules
(Trujillo et al., 2010; Carro et al., 2013; Benito et al., 2022) and this
bacterium has been shown to closely interact with plants acting as
a helper bacterium (Trujillo et al., 2014; Martínez-Hidalgo et al.,
2015). This work was designed to identify the potential genomic
features involved in the interaction between Micromonospora
and known host plants. Seventy-four Micromonospora genomes
representing diverse environments were used to generate a
database of all potentially plant-related genes using a novel
bioinformatic pipeline that combined screening for microbial-
plant related features and comparison with available plant host
proteomes. After this, a comparative genomic analysis based
on the newly generated database was performed. Our results
indicate that the identified genomic signatures help select those
strains with the highest probability to successfully colonize and
contribute to the wellbeing of the host plant. This strategy
could be useful for the selection of other taxa using appropriate
databases. The use of genome sequence data to define genomic
signatures would be an excellent alternative to the limiting
information obtained from defining PGP features.

MATERIALS AND METHODS

Isolation of Strains, Genome
Sequencing, and Phylogenomics
Seventeen Micromonospora strains isolated from nodules and
leaves of six different legumes, as described before (Trujillo et al.,
2010) were selected for whole genome sequencing (Table 1)
with Illumina MiSeq. DNA preparation and sequencing followed
methods described previously (Riesco et al., 2018). Reads were
assembled with SPAdes v. 3.10.1 (Bankevich et al., 2012) and
protein coding sequences (CDSs) were predicted using Prodigal
v. 2.6.2 (Hyatt et al., 2010). Up to date Bacterial Core Gene
(UBCG) tool1 was used for phylogenomic tree reconstruction,
using codon-based alignment and filtering all gap-containing
positions. Visualization of the phylogenomic tree was made using
iTOL online viewer (Letunic and Bork, 2021), with the aid of
table2itol R script.2

Data Compilation and Proteome
Annotation
Fifty-four available Micromonospora genomes were retrieved
from GenBank and IMG depositories (Markowitz et al., 2012;
Clark et al., 2016). Additionally, three Salinispora genomes
were included given their close phylogenetic relationship with
Micromonospora and their unique marine obligate lifestyle
(Millán-Aguinãga et al., 2017; Carro et al., 2018; Riesco et al.,
2018). All genomes were checked for contamination using
CheckM in KBase environment (Parks et al., 2015; Arkin et al.,
2018).

For data normalization, the 74 bacterial proteomes were re-
annotated. HMMER v. 3.1b2 (hmmer.org) was used to annotate
all proteomes against Pfam v. 31.0, TIGRFAM v. 15.0 and the

1https://www.ezbiocloud.net/tools/ubcg
2https://github.com/mgoeker/table2itol
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TABLE 1 | Source of strains used in this study and identification according to the 16S rRNA gene sequence.

Strain Host plant Isolation Plant
collection site

Geographical coordinates Identification (16S rRNA) References

GAR05 Cicer arietinum Nodule Cabrerizos 40◦ 58′ 40′ ′ N; 5◦ 35′ 56′ ′ W M. saelicesensis (99.9%) Riesco et al., 2018

GAR06 C. arietinum Nodule Cabrerizos 40◦ 58′ 40′ ′ N; 5◦ 35′ 56′ ′ W M. saelicesensis (100%) Riesco et al., 2018

LAH08 Lupinus angustifolius Leaf Cabrerizos 40◦ 58′ 39′ ′ N; 5◦ 35′ 48′ ′ W M. noduli (99.9%) Riesco et al., 2018

LAH09 L. angustifolius Leaf Cabrerizos 40◦ 58′ 39′ ′ N; 5◦ 35′ 48′ ′ W M. zamorensis (100%) This study

Lupac 06 L. angustifolius Nodule Saelices 40◦ 40′ 06′ ′ N; 6◦ 38′ 02′ ′ W M. saelicesensis (99.9%) Trujillo et al., 2007

Lupac 07 L. angustifolius Nodule Saelices 40◦ 40′ 06′ ′ N; 6◦ 38′ 02′ ′ W M. saelicesensis (99.9%) Trujillo et al., 2007

MED01 Medicago sp. Nodule Salamanca 40◦ 57′ 26′ ′ N; 5◦ 39′ 37′ ′ W M. arida (99.9%) This study

MED15 Medicago sp. Nodule Salamanca 40◦ 57′ 26′ ′ N; 5◦ 39′ 37′ ′ W M. noduli (100%) Riesco et al., 2018

ONO23 Ononis sp. Nodule Cabrerizos 40◦ 58′ 40′ ′ N; 5◦ 35′ 56′ ′ W M. noduli (100%) Riesco et al., 2018

ONO86 Ononis sp. Nodule Cabrerizos 40◦ 58′ 40′ ′ N; 5◦ 35′ 56′ ′ W M. noduli (99.9%) Riesco et al., 2018

GUI43T Pisum sativum Nodule Cañizal 41◦ 10′ 04′ ′ N; 5◦ 22′ 08′ ′ W M. noduli (100%) Carro et al., 2016

PSH03 P. sativum Leaf Salamanca 40◦ 57′ 24′ ′ N; 5◦ 39′ 31′ ′ W M. arida (99.7%) This study

PSH25 P. sativum Leaf Salamanca 40◦ 57′ 24′ ′ N; 5◦ 39′ 31′ ′ W M. zamorensis (99.7%) This study

PSN01 P. sativum Nodule Salamanca 40◦ 57′ 24′ ′ N; 5◦ 39′ 31′ ′ W M. saelicesensis (99.9%) Riesco et al., 2018

PSN13 P. sativum Nodule Salamanca 40◦ 57′ 24′ ′ N; 5◦ 39′ 31′ ′ W M. saelicesensis (99.9%) Riesco et al., 2018

NIE111 Trifolium sp. Nodule Villamanta 40◦ 17′ 45′ ′ N; 4◦ 6′ 48′ ′ W M. saelicesensis (99.9%) This study

NIE79 Trifolium sp. Nodule Villamanta 40◦ 17′ 52′ ′ N; 5◦ 6′ 56′ ′ W M. saelicesensis (99.9%) This study

Genomic Features of Bacterial Adaptation to Plants (GFOBAP)
HMM protein profiles (Haft, 2001; Finn et al., 2016; The
UniProt Consortium, 2017; Levy et al., 2018). EggNOG-mapper
online tool (Huerta-Cepas et al., 2017) was used to annotate
all proteomes against the EggNOG v. 4.5.1 bacterial database
(Huerta-Cepas et al., 2016).

Construction of the Micromonospora
Database
A cut-off BLAST value was calculated using a pre-established
bacterial core-gene set comprising 92 bacterial genes described in
the UBCG method (Na et al., 2018). All genomes were screened
for these markers and aligned using UBCG 3.0 (Na et al., 2018).
Identity matrices were calculated for all alignments, and the mean
maximum, and minimum percentages were determined. Roary
v. 3.11.2 (Page et al., 2015) was used to define the core and pan-
genomes, using the previously calculated BLAST identity cut-off
for the clustering of proteins.

The selection of plant-related bacterial genes (PR) was
based on a pre-defined dataset of plant-associated annotation
features included in the GFOBAP database (Levy et al.,
2018). Considering the phylogenetic position of Micromonospora
(Nouioui et al., 2018), the dataset was restricted to the
first group of the Actinobacteria (Actinobacteria1 database).
Orthofinder groups, COGs, KEGG Orthologs (KO), Pfam
and TIGRFAM within Actinobacteria1, “Reproducible Plant
Associated Domains” and “Plant-Resembling Plant-Associated
and Root-Associated Domains” (PREPARADOs) were used.
Annotations of the bacterial genomes were screened against
GFOBAP database using data.table v. 1.13.6 and tidyr v. 1.1.2
packages (Finn et al., 2016; Wickham and Henry, 2018) in
R v. 3.6.2 (R Development Core Team and R Core Team,
2011), and only those supported by two or more statistical

approaches as described in the original database were considered
(Levy et al., 2018).

Proteomes of known Micromonospora host plants were
screened in UniprotKB database (release 2018_6) (The UniProt
Consortium, 2017). Eighteen proteomes, comprising different
species of Cicer, Glycine, Lupinus, Medicago, Oryza, Phaseolus,
and Trifolium were used to create a BLAST database, comprising
731,325 proteins.

Proteomes of the 74 bacterial strains were blasted against
the plant proteome database, using BLASTp included in
BLAST + executables v. 2.7.1 (Camacho et al., 2009), with
a threshold of 1e−30 for the E-value, 70% coverage and 30%
identity. All identified coding genes found in the analysis were
labeled as “plant-resembling bacterial genes” (PRB).

Arabidopsis Plant Assays
Nine strains randomly selected from clusters 1 (MED15,
PSN01, and PSH03), 2 (M. aurantiaca DSM 43813T ,
M. chaiyaphumensis DSM 45246T , and M. chalcea DSM
43026T), and 3 (M. pattaloongensis JCM 12833T , M. palomenae
DSM 102131T , and M. olivasterospora DSM 43868T) were
used to inoculate Arabidopsis thaliana Col0 seedlings in axenic
conditions. Forty plants per strain were prepared and inoculated
as described previously (Ortúzar et al., 2020). After 4 weeks, root
length, rosette leaves diameter, number of flowers, and fruits were
registered. Data were standardized using Z-scores and analyzed
by Kruskal-Wallis test. Principal component analysis (PCA) was
used to associate the parameters measured with the strains.

Statistical Analyses and Phylogenomic
Reconstruction
Kruskal-Wallis test (p < 0.05) was used to determine the
relationships between habitat and Micromonospora genome
lengths; number of potential plant-related genes, and habitat
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(IBM R© SPSS R© Statistics v.25). Bar-plots for COG analyses
were made using ggplot2 v. 3.3.3 and ggfortify v. 0.4.11
packages (Tang et al., 2016; Wickham, 2016). FactoMineR v.
2.4, factoextra v. 1.0.7, FactoInvestigate v. 1.7, and cluster
v. 2.1.1 packages (Lê et al., 2008; Kassambara and Mundt,
2017; Maechler et al., 2018; Thuleau and Husson, 2018)
were used for PCA and cluster analysis of the COGs
and plant-related functional KEGG characterization. KEGG
annotations were compared using factoextra package for PCA
and hierarchical clustering. Unique strain KEGG elements were
deleted from the analysis.

P-values (hereafter, q value) generated in KEGG abundance
analysis were corrected using p.adjust tool, included in
stats R native package, with Bonferroni adjustment method
(R Development Core Team and R Core Team, 2011; Jafari and
Ansari-Pour, 2019) and q < 0.05 was used for KEGG elements
abundance in each calculated cluster, unless stated otherwise.
A Pearson’s chi-square test and a contingency table analysis using
multiple regression were used to study the clusters generated
in the KEGG analysis and the habitat distribution of the
strains in each cluster (Beasley and Schumacker, 1995) (IBM R©

SPSS R© Statistics v.25). ComplexHeatmap v. 2.2.0 package (Gu
et al., 2016) was used for heatmap constructions. A flowchart
explaining how the database was constructed is provided in
Figure 1.

RESULTS

Genomic Features and Habitat
Distribution
Genome size ranged from 6.8 to 7.6 Mb (mean 7.1),
with isolates PSH25 and MED01 having the smallest and
largest genomes, respectively. Other genome characteristics
including number of coding DNA, tRNAs, rRNAs, and
regularly interspaced short palindromic repeat sequences
(CRISPR) are summarized in Supplementary Table 1. The
74 bacterial genomes represented soil/rhizosphere (39%),
plant-associated (34%), mangrove/marine sediments (19%),
and other environments (8%) (Supplementary Table 2). No
correlation was found between the Micromonospora genome
sizes and their specific habitats (p < 0.05) (Supplementary
Figure 1). The plant-associated (PA) strains showed similar
genome lengths with a mean of 7.1± 0.4 Mb. The genomes of the
remaining habitats presented higher dispersion values, but their
sizes were very similar to the PA strains (soil/rhizosphere,
7.1 Mb ± 0.4; marine/mangrove sediments 6.7 ± 0.7;
others 6.8 ± 0.4). PCA of the COG distributions and their
relation to the strain habitats were highly influenced by
transcription (K, ∼30%), replication and repair (L, ∼26%),
carbohydrate metabolism and transport (G, ∼16%), and
secondary metabolism (Q, ∼12%) gene categories, accounting
for 84% of the variance (Supplementary Figure 2). The PA
strains were recovered as a well-recognized cluster highly
influenced by the K and G categories, as reported for other
plant-related bacteria (Levy et al., 2018; Pinski et al., 2019).
On the contrary, the strains representing the remaining

habitats were highly dispersed with no apparent correlation.
The complete COG distribution of each strain is given in
Supplementary Table 3.

Genomic Features and Functional
Diversity of Plant-Related
Micromonospora
The Micromonospora core genome based on an identity threshold
of 70% protein homology contained 992 genes (15.5% for an
average genome of 6,407 genes). This data was labeled as not
differential and removed. In addition, 307 ± 38 genes (per
genome) labeled as “plant-resembling genes” in the BLASTp
query against the host plant proteomes were included in the
gene pool (Supplementary Table 4). The above data, together
with the plant-related annotation features supported by two or
more statistical analyses derived from the GFOBAP database
(517 Pfam, 368 KEGG Orthology (KO), 158 TIGRFAM, and
395 Orthofinder-generated orthologs) were combined for a
final database of 69,046 putative plant-related genes (PPR)
(Supplementary Table 4).

The distribution of putative plant-related genes varied among
strains, with M. pisi DSM 45175T showing the highest number
(1,137), followed by M. cremea DSM 45599T (1,121). As
expected, the Salinispora strains had the lowest number of
PPR genes (570-629). The plant-associated strains showed the
highest number of PPR genes as compared to those from
other environments (q < 0.01) with a mean of 1036 ± 58
(Supplementary Figure 3).

Principal component analysis of the putative plant-related
gene COGSs represented in the curated database (69,046)
revealed a distribution highly dependent on four categories:
carbohydrate metabolism and transport (G,∼60%), transcription
(K, ∼20%), secondary metabolism (Q, ∼10%), and inorganic
ion transport and metabolism (P, ∼5%) (Figure 2). Based on
the COG annotations, the Micromonospora strains formed three
groups: the first one (G1), comprised 29 strains of which 22 were
plant-associated (76%), six soil/rhizosphere-related (21%), and a
single mangrove/marine sediment isolate (3%). This group was
highly influenced by K, G, and P categories, showing a compact
distribution (Figure 2). Thirty-five strains made up a highly
heterogeneous group, G2, 18 from soil/rhizosphere (51%), eight
from mangrove/marine sediments (23%), nine plant-associated
(3%), and six from other environments (17%); highly impacted by
secondary metabolism. Group 3 (G3) contained 10 isolates, five
from soil/rhizosphere and 5 from mangrove/marine sediments
which included the three Salinispora strains. Unlike G1, groups
2 and 3, appeared more scattered, showing the diverse origin of
the strains (Figure 2).

KEGG annotations of the putative plant-related genes
were also compared to determine any differential traits
that selected the plant-associated micromonosporae from
other environments (Supplementary Figure 4). PCA analysis
also yielded three groups (referred to as clusters) with
similar strain distribution to the COGs. The first cluster
(C1) contained 30 members, with plant-associated strains
representing 77%, soil/rhizosphere 16.6%, and marine/mangrove
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FIGURE 1 | Bioinformatic workflow for database construction. Symbols: cylinders, databases; circles, pipeline processes; rhomboids, annotations; squares, input
data; balloons, partial results.

sediments accounting for 6.4%. The second cluster (C2) had
32 strains: soil/rhizosphere, 65.6%; mangrove/marine sediments,
12.5%; plant-related 6.3%; and other environments 15.6%.
Cluster 3 (C3) was composed of twelve strains isolated from
soil/rhizosphere (25%); mangrove/marine sediments (66.7%) and
other environments, including the Salinispora strains (8.3%).
Pearson chi-square test revealed a strong correlation between the
strain clusters and their isolation source. A phylogenomic tree of
the study strains, their habitat, and cluster assignment based on
KEGG orthology is provided in Figure 3.

KEGG orthology (KO) revealed significant differences in the
distribution of enriched gene functions within the three clusters.
Cluster 1 (plant-associated) contained the highest number
of overrepresented KEGG annotations with 105, followed
by clusters 2 and 3 with 22 and 2 functions, respectively
(Figure 4). Underrepresented functions were 20 (C1), 24 (C2),
and 16 (C3). The full KEGG annotation list is found in
Supplementary Table 5.

Predictive Functional Signatures of Plant
Associated Micromonospora Strains
Eighteen differential KO categories were identified as genomic
signatures of Micromonospora plant-associated strains
when compared to soil/rhizosphere and marine/mangrove
habitats. Of these, the major categories were carbohydrate
metabolism, membrane transport, amino acid metabolism
and transport, signal transduction, metabolism of cofactors
and vitamins, and nucleotide metabolism (Figure 4 and
Supplementary Table 5).

Plant associated strains (C1) showed an important enrichment
of genes related to carbohydrate metabolism, which decreased
for the rhizosphere/soil related strains (C2) and were depleted in
the mangrove/marine sediment isolates (C3) (except for glucose-
6-phosphate isomerase). Beta-glucosidases that hydrolyze
cellobiose released during the initial hydrolysis of cellulose
(Medie et al., 2012), were found in as many as six copies in
C1 strains. Also, genes coding for L-arabonate dehydratase
(araC) and arabinoxylan arabinofuranohydrolase (xynD) were
over-represented, with more than a two-fold difference with
respect to the overall mean. In addition, malZ, sacA, and
galA genes, coding for several sugar interconversions (e.g.,
raffinose, sucrose, and melibiose to glucose, galactose, and
fructose) were found over-represented in the C1 isolates.
These results are in line with previous results showing that
the endophytic model strain Micromonospora lupini Lupac
08 contained a significant number of functional carbohydrate
related genes, especially for degradation of plant-polysaccharides
(Trujillo et al., 2014). Similar results were reported when
plant-associated bacterial genomes were compared against
those of non-plant environments, but phylogenetically related
(Levy et al., 2018).

Transport systems are highly correlated to lifestyles and are
essential for an organism to survive in a given environment
(Ren and Paulsen, 2007). Several oligosaccharide transporters
were found to be over-represented in C1 isolates (plant
associated). ABC transporter genes for various sugars (e.g.,
msmX, K, E, F, and G) such as raffinose and melibiose were
found highly over-enriched by more than two-fold change
with respect to the overall mean. Part of the ribose ABC
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FIGURE 2 | Principal component analysis (PCA) of putative plant-related genes according to COG categories with strains recovered in groups G1, G2, and G3,
respectively (for Group composition, see Section “Results”). The bar graph represents the contribution (%) of each COG category to dimensions 1 and 2 of the PCA.

transport system coding genes (rbsA, B, and C) were also
found with four to five gene copies per strain. These results
correlate well with the carbohydrate metabolism category as
many of the sugars released by the plant in the form of
root exudates need to be introduced into the bacterial cell
to serve as carbon sources. It was recently shown how
several Pseudomonas strains responded to root exudates by
inducing several transport systems that encoded a Major
Facilitator Superfamily (MFS) transporter and an L-arabonate
dehydratase, an important enzyme for the catabolism of
arabinose (Mavrodi et al., 2021).

Amino acids secreted by the host plant can serve as carbon and
nitrogen sources for plant-associated bacteria. In this category,
genes related to the degradation of leucine, isoleucine, and
valine were especially enriched. Interestingly, genes coding
for branched-chain amino-acid transporters (liv) were also

overrepresented in all strains in cluster 1 (plant-associated), with
a mean of 10 genes per genome (livG and livF). Other enriched
genes related to the metabolism of cysteine and methionine,
tryptophan and lysine were found. A large proportion of genes
encoding for proteins involved in amino acid transport and
metabolism has been proposed as a key function in plant
colonization (Cole et al., 2017). Similar results were also observed
for good plant colonizers related to the sugarcane microbiome
(de Souza et al., 2019).

Transduction systems are especially important for bacteria
to respond to abrupt environmental changes. Seven KO
categories related to signal transduction mechanisms were
also identified as signatures of C1 strains. Five of these were
related to two-component systems of the OmpR families. Several
sensor histidine kinases were enriched by two-fold, including
one representing an osmolarity sensor (EnvZ). In addition, a
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FIGURE 3 | Up-to-date bacterial core gene phylogenomic tree reconstructed with 92 bacterial core genes. Gene support indices are given at nodes as filled purple
circles.

C4-dicarboxylate transport protein was found. The important
role played by a new regulator from the OmpR family in the
symbiosis of Rhizobium etli and Phaseolus vulgaris was recently
reported (Rodríguez et al., 2020). Similarly, transcription
regulators, related to biofilm formation, biosynthesis of
antibiotics, response to osmotic stress and toxic chemicals, and
pathogenicity were found enriched for bacteria colonizing plants
(de Souza et al., 2019).

It is reported that vitamins can act as elicitors or priming
agents to stimulate the plant defense mechanisms (Westman
et al., 2019). Vitamins have also been reported to play an
important role in root colonization (Lugtenberg et al., 2001;
Babalola, 2010). Complete metabolic pathways for production of
thiamine (B1), riboflavin (B2), niacin (B3), pantothenate (B5),
pyridoxine (B6), biotin (B7), and folate (B9) were found in almost
all Micromonospora genomes analyzed. The genes thiD, ilvD, and
one coding for a pyridoxine 4-dehydrogenase (involved in B1, B6,
and B5 biogenesis) were found significantly over-represented in
the plant-associated cluster.

Urate is one of the main end products of rhizobial infected
cells in legumes. It is transported to uninfected nodular cells
where it is transformed into ureides that are transported
in the xylem to the rest of the plant (Baral et al., 2016;
Izaguirre-Mayoral et al., 2018). In this category, genes coding
for xanthine dehydrogenases (xdhG and yagT), involved in the
metabolization of urates, were over-represented in cluster 1
(>two-fold difference).

Genomic Features of Clusters 2 and 3
Cluster 2 (soil/rhizosphere) shared an equal number of over
and underrepresented functions and could be considered a
transition cluster between 1 and 3. Cluster 3 (mangrove/marine
sediments) was characterized by the low number of plant-related
features, presenting only 18 differential features, 16 of them
under-represented (Supplementary Table 5). Most of the under-
represented features (fold < 0.5) were involved in carbon source
metabolism and transport (araA, msmFG, and several multiple
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FIGURE 4 | Differential KEGG annotations between Cluster 1 (Plant
associated), Cluster 2 (Soil/rhizosphere), and Cluster 3 (Mangrove/marine).
Annotations are grouped in their corresponding KEGG categories (first and
last columns).

sugar transport permease coding genes). Clearly, these results
highly correlate with the origin of the strains.

Effect of Micromonospora on
Arabidopsis
After 4 weeks, important growth differences were observed
between the plants inoculated with selected strains from the
three different environments. Those treated with the plant-
associated isolates (cluster 1) showed the best growth and
development, followed by the plants inoculated with strains from
soil/rhizosphere (cluster 2). The least growth was obtained for
the plants inoculated with the strains from mangrove/sediment
(cluster 3) where growth was similar to the control plants,
except for the ones treated with M. pattaloongensis JCM 12833T

(Figure 5). Overall Z-scores of the 360 plants inoculated with the
different isolates showed that strains PSH03, PSN01, and MED15
(plant-associated) had the highest effect on the Arabidopsis plants
(Figure 6A). The number of flowers and fruits, root length, and
rosette leaf diameter values highly correlated in the PCA analysis
with these strains (Figure 6B). Interestingly, all strains used for
plant inoculations shared common markers identified as plant
growth promotion characteristics.

DISCUSSION

Micromonospora, a common bacterium in soils and aquatic
habitats was reported more than 10 years ago, as part
of the legume nitrogen fixing nodule microbiome (Trujillo
et al., 2010; Carro et al., 2012). This actinobacterium has
gained interest, given its potential use in combination with
rhizobia to enhance legume growth and nitrogen fixation
(Martínez-Hidalgo and Hirsch, 2017).

The number of Micromonospora genomes sequenced has
increased in recent years facilitating comparative genomic
analyses in search for plant-growth promotion traits (Trujillo
et al., 2014; Carro et al., 2018). Despite this increase,
representative genomes of strains isolated from plant tissues
(e.g., nodules, roots, etc.) is still low when compared to
the soil environment. In this work we sequenced 17 new
genomes from Micromonospora strains that were previously
isolated from several legumes (Riesco et al., 2018; Benito
et al., 2022). A working database containing 74 Micromonospora
genomes with an almost equal number of soil- and plant-related
representatives was used as the basis of this work. Using a
novel comparative genomic approach that combined a bacterial
plant-related database (Levy et al., 2018) and the proteome of
Micromonospora host plants, we determined a set of genomic
features that suggest a strong relation to plants.

It was recently suggested that bacterial association to plants
is partially reflected in the size of the bacterial genome (larger)
as compared to those which are not associated (smaller) (Levy
et al., 2018). In this study, no significant correlation between
genome size and environment was found. Furthermore, genome
size in the two main isolation habitats (soil and plants) was very
similar (7.1 ± 0.4 Mbp). As expected, the genome sizes of the
Micromonospora and Salinispora strains varied greatly, with a
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FIGURE 5 | Arabidopsis thaliana plants after 4 weeks of growth and inoculated with strains from Cluster 1 (MED15, PSN01, and PSH03), Cluster 2 (M. aurantiaca
DSM 43813T , M. chaiyaphumensis DSM 45246T , and M. chalcea DSM 43026T ), and Cluster 3 (M. pattaloongensis JCM 12833T , M. palomenae DSM 102131T ,
and M. olivasterospora DSM 43868T ).
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FIGURE 6 | (A) Accumulated Z-scores of the growth parameters measured in A. thaliana after 4 weeks of growth and inoculated with Micromonospora strains
selected from clusters C1, C2, and C3. (B) PCA distribution of the strains based on the plant growth parameters measured. Symbols: green circles, C1
(plant-associated); red triangles, C22 (soil/rhizosphere); blue squares, C3 (mangrove/marine sediments).

mean difference of 1.5 Mb. While these two microorganisms
are phylogenetically closely related, important differences can
be found at the genomic level. Salinispora is a marine obligate
bacterium, and its reduced genome strongly suggests an
adaptation to this environment. Micromonospora on the other
hand, appears to have evolved to adapt to multiple niches which
could be translated in larger genomes to accommodate different
life styles (Trujillo et al., 2014).

To select for plant-associated bacteria and especially those
that provide a benefit to the host, PGP traits are commonly

used as selective markers. In the present study, several genomic
characteristics commonly related to plant growth promoting
bacteria were initially included in the pool of 69,046 genes and
tagged as plant-related genes (e.g., siderophores, phytohormones,
etc.), however, most of these traits were not part of the final
list of genomic signatures that differentiated between the strains
and their environments. In fact, many strains included in this
work were previously screened for common PGP traits and most
yielded positive activities for production of siderophores, indol-
acetic acid, and ACC deaminase, irrespective of their origin
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(Ortúzar, 2017). Thus, the presence of PGP traits does not appear
to be reliable for the selection of strains that will successfully
colonize a plant and interact with it (Finkel et al., 2017; Cai et al.,
2018; de Souza et al., 2019).

Root exudates play a key role in the selection of bacterial
communities that colonize a plant and serve as mediators in
the establishment of both positive and negative interactions
in the rhizosphere (Badri and Vivanco, 2009; Chaparro et al.,
2014). Exudates include sugars, amino acids, fatty acids, sterols,
phenolics, and organic acids that serve as carbon and energy
sources for the surrounding bacteria, initiating a cross-talk
which may result in successful root colonization of the host
(Nguyen et al., 2003; Badri and Vivanco, 2009; Mavrodi
et al., 2021). The genomic signatures defined for the plant-
associated micromonosporae were especially rich in genes coding
for carbohydrate metabolism, membrane transport, amino
acid metabolism, and signal transduction, strongly suggesting
that these features are especially important in establishing
communication and successful root colonization. Transcriptomic
analysis of several Micromonospora strains in contact with lupin
root exudates demonstrated that the msm and rsb systems found
enriched in this work, were up regulated (Benito, 2020). Similarly,
a recent study showed how the genomes of a bacterial community
of “robust colonizers” in maize were enriched in similar metabolic
functions (de Souza et al., 2019). Interestingly, these authors also
reported that PGP features were not determinant for a successful
colonization (de Souza et al., 2019). Both results are in line with
those obtained in the present work.

In vitro production of plant cell wall hydrolytic enzymes (e.g.,
cellulases, xylanases, amylases, etc.) was previously demonstrated
in Micromonospora strains isolated from nitrogen fixing nodules
(Trujillo et al., 2014; Benito et al., 2022). When some of these
strains were exposed to the lupin root exudates, several α-
and β-glucosidases were found overexpressed (four to ten-fold)
(Benito, 2020). These enzymes are known to play a key role
in bacterial root colonization and tissue penetration (Reinhold-
Hurek et al., 2006; Liu et al., 2017; Compant et al., 2021). In
addition, cellulases are not restricted to cellulose hydrolysis but
could be involved in other biological functions (Medie et al.,
2012); they have also been shown to be essential for root infection
in rhizobia (Robledo et al., 2012). Furthermore, plant hydrolytic
enzymes were also found highly represented in metagenomic
samples of endophytic bacterial communities residing inside rice
roots (Sessitsch et al., 2012). Overall, carbohydrate metabolism
and its corresponding transports are clearly a main feature of
plant-associated bacteria.

Amino acids are exudated by many plants and can be
used as carbon and nitrogen sources by bacteria surrounding
the rhizosphere (Badri and Vivanco, 2009). Within these
molecules, branched-chain amino acids (LIV) are recognized
as important factors in the bacteroid-legume relationship
as they serve as nitrogen sources for the bacteroid (Prell
et al., 2009a,b). LIV transporters are essential to help LIVs
move across the symbiosome membrane to make nitrogen
available to the bacteroids inside (Prell et al., 2009b). In this
study, LIV transporters were found overrepresented with an
average of 10 copies in the genomes of strains associated

with an endophytic lifestyle (cluster 1). It was previously
reported that Micromonospora increases nutrition efficiency
in Medicago (Trujillo et al., 2014; Martínez-Hidalgo et al.,
2015). Micromonospora could act as a backup system for
the provision of LIV transporters to secure good bacteroid
development and subsequently efficient nitrogen fixation. LIV
transporters were also enriched in the bacterial community of
root colonizers in maize, strongly suggesting that amino acid
metabolism and transport play a key role in plant-microbe
interactions and is not restricted to the rhizobium-legume
symbiosis (de Souza et al., 2019).

Glutamine and arginine together with ureides are end
products in nitrogen fixing nodules. These molecules are
transported through the xylem to other plant organs (e.g.,
leaves) and serve as sources of N (Baral et al., 2016; Izaguirre-
Mayoral et al., 2018). In the case of ureides these are the
final products in determinate nodules, while amino acids are
found in plant species with indeterminate ones (e.g., lupin).
Interestingly, plant-associated micromonosporae (cluster 1) have
been found in both types of nodules (Trujillo et al., 2010;
Carro et al., 2012). Purine metabolism involving plants and
their associated bacteria is very complex and includes various
metabolic pathways (Izaguirre-Mayoral et al., 2018). Apart from
rhizobia and nitrogen fixation in legumes, it is not clear how other
bacteria (e.g., Micromonospora) participate.

Recent studies have demonstrated that vitamins can be used
to prime plant defenses against pathogens and abiotic stress
(Boubakri et al., 2016; Westman et al., 2019). Specifically,
thiamine has been shown to activate systemic acquired resistance
(SAR) in plants against pathogens (Ahn et al., 2005). B-complex
vitamins which act as coenzymes in several metabolic processes
such as glycolysis, Krebs cycle, and nucleic acid synthesis among
others, are produced by plants and microbes, including bacteria
that are present in the microbiome of a plant and could, in turn,
supply vitamins to enhance plant resistance.

The bacterial transcripts of three strains from C1 (M. cremea
CR30T , M. lupini Lupac 08, and M. saelicesensis Lupac 09T)
were obtained when grown in contact with lupin root exudates.
Various genes involved in the transport of sugars and aminoacids
(rbs and liv), multiple sugar transporters (msm and ABC-MS),
synthesis of vitamins (ilvD, coaX and mocA), and carbohydrate
hydrolysis (e.g., galA, bglB, and araC) were found overexpressed
(Benito, 2020). These results are interesting as they coincide with
some of the metabolic functions found in this work. However, it is
necessary to fully validate the genomic signatures with additional
plant assays that include gene expression analyses upon exposure
of the bacterium to the host plant, not only to the root exudates.
In this line, in-planta assays in combination with transcriptomic
analyses are underway.

Important differences in plant phenotype were found when
Arabidopsis plants were inoculated with Micromonospora strains
selected from the three different environment clusters defined
by the genomic traits identified. All strains had previously been
screened for PGP characteristics that included among others,
siderophore, IAA, and AC deaminase production, yielding a
positive reaction. These findings strongly suggest that PGP
markers alone, are not good indicators for the selection of
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bacterial strains to develop a desired phenotype, especially to
increase crop production or the recovery of ecosystems.

CONCLUSION

The genomic features defined in this work, using a new
bioinformatic pipeline confirm and expand those previously
identified in the bacterial adaptation process to plants. Other
studies have shown that several of these genomic markers
are also present in phylogenetically diverse bacterial taxa that
interact with non-leguminous plants. Highly related genomes
of Micromonospora strains isolated from diverse habitats, were
separated in three clusters and their genomic differences
(genomic signatures) could be used to select for strains with
the highest probability to successfully colonize and interact with
a host plant. Many of the genes commonly identified as PGP
did not have any weight as differential characteristics in the
new database, therefore their presence is not necessarily a good
indication to establish a successful interaction with the host
plant. These genetic markers could be considered in microbiome
engineering when Micromonospora strains are included as part of
a consortium aiming to create predictable plant phenotypes.
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Arbuscular mycorrhiza (AM) is a mutualistic symbiotic interaction between plant roots and 
AM fungi (AMF). This interaction is highly beneficial for plant growth, development and 
fitness, which has made AM symbiosis the focus of basic and applied research aimed at 
increasing plant productivity through sustainable agricultural practices. The creation of 
AM requires host root cells to undergo significant structural and functional modifications. 
Numerous studies of mycorrhizal plants have shown that extensive transcriptional changes 
are induced in the host during all stages of colonization. Advances have recently been 
made in identifying several plant transcription factors (TFs) that play a pivotal role in the 
transcriptional regulation of AM development, particularly those belonging to the GRAS 
TF family. There is now sufficient experimental evidence to suggest that GRAS TFs are 
capable to establish intra and interspecific interactions, forming a transcriptional regulatory 
complex that controls essential processes in the AM symbiosis. In this minireview, 
we discuss the integrative role of GRAS TFs in the regulation of the complex genetic 
re-programming determining AM symbiotic interactions. Particularly, research being done 
shows the relevance of GRAS TFs in the morphological and developmental changes 
required for the formation and turnover of arbuscules, the fungal structures where the 
bidirectional nutrient translocation occurs.

Keywords: arbuscular mycorrhiza, GRAS transcription factors, transcriptional regulatory network, transcriptional 
complexes, symbiotic plant genes

INTRODUCTION

Arbuscular mycorrhiza (AM) is a mutual symbiosis between soil-borne fungi from the phylum 
Glomeromycotina and the majority of higher plants. This highly beneficial symbiotic interaction 
substantially boosts plant growth, development and fitness by facilitating growth and reproduction 
under mineral-stress conditions (Clark and Zeto, 2000). In exchange, AM  fungi obtain their 
carbon from the host plant in the form of plant photosynthates and lipids (Bago et  al., 2003; 
Luginbuehl et  al., 2017). This whole process of bidirectional nutrient exchange between plant 
and fungus is closely linked to and highly dependent on environmental and biological variables 
(Smith and Read, 2008).

The formation of AM  requires the host root cells to undergo significant structural and 
functional modifications, leading eventually to reciprocal beneficial effects. A combination of 
genetic, molecular and cellular studies has shown that functional symbiosis appears to occur 
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following a series of plant-controlled checkpoints. During the 
establishment of the symbiosis, host plant root cells regulate 
the development and functioning of arbuscules, which are 
specialized intraradical and highly branched fungal structures, 
through complex stage-specific transcriptional reprogramming 
(Pimprikar and Gutjahr, 2018).

Genes involved in signaling, protein metabolism, nutrient 
transport, secondary metabolite biosynthesis, cell wall 
modification and lipid metabolism are activated during symbiosis, 
suggesting that complex transcriptional regulation is required 
for AM development and functioning. Consequently, a growing 
number of accumulating transcripts encoding putative 
transcriptional regulators as well as certain cis-regulatory elements 
essential for AM-specific gene expression in arbuscule-containing 
cells have been described (Rubio et  al., 2001; Karandashov 
et  al., 2004; Chen et  al., 2011; Pimprikar and Gutjahr, 2018).

Genome-wide characterization and expression studies of TF 
genes activated during AM in Petunia (Rich et al., 2017), Lotus 
(Xue et al., 2015), Medicago (Hartmann et al., 2019) and tomato 
(Ho-Plágaro et  al., 2019), have revealed that the GRAS gene 
family is prominent among the AM-inducible TF genes in 
plants. Moreover, most of these AM-induced GRAS genes 
belong to the scarecrow-like (A and B), RAD1, and RAM1 
subfamilies, which are absent in the whole non-AM host 
Brassicaceae family (Cenci and Rouard, 2017), suggesting that 
these GRAS genes play a specific role during mycorrhization. 
In this minireview, we  discuss the integrative roles of GRAS 
TFs in the regulation of transcriptional changes associated with 
AM  development.

A BRIEF DESCRIPTION OF GRAS TFs 
FUNCTIONS AND INTERACTIONS

The acronym GRAS is based on the first three members identified 
in this family: gibberellin-acid insensitive (GAI), repressor of 
GA1 (RGA), and scarecrow-like (SCL) proteins (Pysh et  al., 
1999). GRAS TFs play a crucial regulatory role in a diverse 
range of fundamental plant biology processes such as plant 
development, gibberellin signaling, stress responses, and symbiotic 
processes (Tian et  al., 2004; Gutjahr et  al., 2015). All GRAS 
proteins are between 360 and 850 amino acids length and share 
a common conserved GRAS domain in their C-terminal region, 
consisting of two leucine heptad repeats (LHRs), as well as the 
motifs VHIID, SAW, and PFYRE (Pysh et  al., 1999). These five 
motifs constitute the GRAS domain (Hirsch et  al., 2009). In 
contrast, the amino (N-) terminal part of GRAS proteins is 
variable as well as intrinsically disordered (Sun et  al., 2011) 
and can also include other motifs such as the DELLA motif, 
which is known to modulate DELLA protein interactions with 
many structurally diverse TFs (Marín-de la Rosa et  al., 2014).

Although several genome-wide analyses have been carried 
out on the GRAS family, and GRAS genes have been characterized 
in a number of plant species, their classification has not been 
fully resolved. Based on a panel of eight representative angiosperm 
species, Cenci and Rouard (2017) identified 29 orthologous 
groups for the GRAS gene family and they regrouped them 

into 17 subfamilies whose names were homogenized based on 
a review of the literature. Interestingly, having found that certain 
members were missing from some taxonomic groups, they 
created five new subfamilies which include the RAD1 and 
RAM1 subfamilies, reported to be  involved in mycorrhizal 
signaling (Park et  al., 2015; Xue et  al., 2015) and missing 
from all Brassicales.

Some of the most representative GRAS protein subfamilies 
act as regulators of GA signaling and root development, which 
are important processes that occur during AM  formation. 
DELLA proteins, which share the amino acid sequence DELLA 
in their N-terminal region, repress gibberellin responses 
(Silverstone et al., 1998). The SCARECROW (SCR) and SHORT-
ROOT (SHR) transcription factors are both involved in radial 
root organization (Cui et  al., 2014), while the SCARECROW-
LIKE3 (SCL3) transcription factor, which mediates GA-promoted 
cell elongation during root development, acts as a coordinator 
of GA/DELLA and SCR/SHR pathways in Arabidopsis (Heo 
et  al., 2011; Zhang et  al., 2011). Nodulation Signaling Pathway 
1 (NSP1) and Nodulation Signaling Pathway 2 (NSP2) GRAS 
TFs regulate the Nod factor–induced transcriptional responses 
in legume species (Smit et  al., 2005). However, members of 
these groups also play a role in mycorrhization, acting as 
positive regulators of strigolactone (SL) biosynthesis in Medicago 
truncatula and Oryza sativa (Liu et  al., 2011).

In a simple biological model of transcriptional regulation, 
gene expression regulation is mediated by the action of 
transcription factors (TFs) which directly bind promoter 
cis-elements. However, the functioning of TFs is often mediated 
by their synergistic and combinatorial capacity to interact with 
other transcription factors and other transcriptional regulators 
(TRs) to form regulatory complexes (Gutjahr et al., 2015). Many 
GRAS proteins have been found to be associated with promoter 
regions. Surprisingly, in some cases, the targeted promoters 
also correspond to other GRAS genes, or even to the same 
GRAS genes (reviewed by Bolle, 2016). However, in most of 
the experiments performed, it is not possible to discern whether 
a protein is directly bound to DNA or whether it is part of 
a complex bound to the chromatin. To date, the direct binding 
of GRAS TFs to DNA has been confirmed for only very few 
GRAS proteins (Hirsch et  al., 2009; Ma et  al., 2014; Li et  al., 
2016). This, together with the involvement of GRAS proteins 
in so many diverse processes, suggests that most GRAS proteins 
do not bind directly to DNA and thus act as TRs rather than 
TFs (Bolle, 2016). Specific interactions of GRAS proteins with 
many other interactor proteins have been described. In addition, 
GRAS proteins, even from different subfamilies, have been 
shown to be  able to interact to form heterodimers, which are 
often necessary for GRAS protein functionality (Bolle, 2016).

GRAS INTERACTIONS AND AM 
SYMBIOSIS REGULATION

Initial evidence of the action of GRAS factors in mycorrhization 
processes emerged from a comparative study between the 
processes of nodulation in legumes, as well as mycorrhization 
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in most plant species (Hirsch et  al., 2009; Liu et  al., 2011). 
The discovery and characterization of the GRAS TF RAM1 
(Required for Arbuscular Mycorrhization 1; Park et  al., 2015; 
Rich et  al., 2015; Xue et  al., 2015; Pimprikar et  al., 2016; 
Müller et  al., 2020) and subsequent identification of many 
other GRAS transcription factors as central regulators of arbuscule 
development in plants forming arbuscular mycorrhiza (Floss 
et  al., 2013; Yu et  al., 2014; Xue et  al., 2015; Heck et  al., 
2016; Hartmann et  al., 2019; Ho-Plágaro et  al., 2019) point 
out the relevance of the GRAS family for mycorrhiza development.

Little is known about how combinations of different GRAS 
protein TFs and TRs control AM formation and functionality. 
Several studies have identified direct interactions between 
GRAS proteins during AM, suggesting that networks of GRAS 
TFs are necessary to regulate mycorrhization and that 
AM-related GRAS proteins act synergistically and in a combined 
manner. Interactions between GRAS proteins appear to play 
a particular role in regulating arbuscule development and 
here we  focus on the integrative role of these GRAS TFs in 
the regulation of morphological and developmental changes 
associated to the accommodation and arbuscule functionality 
in inner cortical cells.

Functional arbuscule development needs host cells to 
be increased in size to accommodate the AM fungal structures. 
Some reports showed that fungal colonization induced cellular 
changes that affected root morphometric parameters (Russo 
et  al., 2019). The accommodation of AM  fungal structures in 
inner cortical cells impacts cortical root cell development 
although the molecular mechanisms behind these changes were 
unknown. Root development is positively regulated by GA in 
Arabidopsis where SCL3 proteins have been shown to interact 
with GA and DELLA signaling through interactions with plant-
specific INDETERMINATE DOMAIN (IDD) family proteins 
which physically bind to both DELLA and the promoter sequence 
of the SCL3 gene (Yoshida et al., 2014). Conversely, GA negatively 
regulate root system development in M. truncatula (Fonouni-
Farde et  al., 2019) and the SHR–SCR module in cortical cells 
in this legume showed a distinct expression pattern than in 
Arabidopsis (Dong et  al., 2021). Interestingly, the SHR–SCR 
module in Medicago is enable to couple cell division with 
rhizobial infection (Dong et  al., 2021).

Curiously, the differential regulation of root developmental 
processes in Arabidopsis, a non-host plant unable to form AM, 
and legume plants is accompanied by the absence in Arabidopsis 
of several GRAS TFs specific for mycorrhizal development. 
Then, it is tempting to speculate that GRAS factors from SCL, 
SHR, and SCR subfamilies, which are implicated in radial root 
organization and that mediate GA-promoted cell elongation 
during root development, are also part of the complex system 
regulating AM  development in roots.

In this sense, Ho-Plágaro et  al., revealed that, in addition 
to some classic GRAS transcription factors involved in 
AM  symbiosis, members of the GRAS subfamilies SHR, SCL3, 
SCR, and SCL32, which form a regulatory module for the 
root elongation process (Heo et  al., 2011; Zhang et  al., 2011), 
are also involved in regulating mycorrhizal processes in tomato 
and showed specific expression in cells containing arbuscules 

(Ho-Plágaro et  al., 2019). Previous evidence demonstrated that 
MIG1 (Mycorrhiza Induced GRAS1) is induced in colonized 
cortical cells and, together with DELLA, promotes cell expansion 
to accommodate the developing arbuscule (Heck et  al., 2016). 
Recently, Seeman and co-workers characterized two new MIG 
(MIG2 and MIG3) and one SCL3 GRAS transcription factors 
that are induced in arbuscule-containing cells and act as positive 
or negative regulators of cortical cell size. MIG3 interacts with 
SCL3  in a transcriptional complex to modulate the activity of 
the central regulator DELLA and antagonizes the positive action 
of MIG1 and DELLA in cortical cell size (Seeman et al., 2022). 
It seems clear that the regulation of cell size to accommodate 
arbuscules in root cortical cells is controlled by a fine-tuned 
regulated network of interactive GRAS transcription factors 
from the DELLA, SCL, SHR, and SCR subfamilies. Thus, it 
is expected that research addressed to this issue will provide 
new and interesting results in deciphering the complex regulatory 
circuits coordinating arbuscule formation and root 
cell morphology.

In addition to its role in rearranging cell morphology to 
house arbuscules, the action of DELLA is essential for arbuscule 
development. In a complex containing CYCLOPS and other 
proteins, DELLA activates RAM1 transcription (Pimprikar et al., 
2016), and consequently the expression of genes involved in 
arbuscule development. RAM1 target genes include plant 
carbohydrate and lipid metabolism genes such as RAM2 
(encoding a glycerol-3-phosphate acyltransferase), as well as 
genes encoding membrane proteins which are essential for the 
formation and functioning of the arbuscules, such as AM-induced 
phosphate transporter genes (Park et  al., 2015; Bravo et  al., 
2017; Luginbuehl et  al., 2017). Furthermore, RAM1 interacts 
with RAD1 (Xue et  al., 2015) and two other M. truncatula 
AM-related GRAS TFs, TF80, and TF124 (Park et  al., 2015), 
supporting the idea that all these regulators interact to control 
arbuscule development. RAD1 (Required for Arbuscule 
Development 1) is a GRAS TF closely related to RAM1, and 
the relative importance of RAM1 and RAD1  in supporting 
arbuscule development appears to differ between plant species 
(Park et  al., 2015; Xue et  al., 2015), pointing to a putative 
diversification of AM  regulatory networks among mycorrhizal 
host species. Accordingly, transcriptomic analyses of ram1 
mutants from L. japonicus, M. truncatula, and P. hybrida, suggest 
differences in the RAM1-induced target genes depending on 
the plant species (Park et  al., 2015; Pimprikar et  al., 2016; 
Luginbuehl et  al., 2017; Rich et  al., 2017).

DELLA has also been shown to be  involved in adverse 
roles during the arbuscule life-cycle. In particular, a 
transcriptional regulatory complex composed of the GRAS 
proteins DELLA and NSP1, together with the transcription 
factor MYB1, a member of the MYB family, forms a regulatory 
module required for arbuscular degeneration (Floss et al., 2017). 
While the specific mechanisms of action and regulation remain 
to be determined, the involvement of DELLA in the modulation 
of both arbuscule formation and degeneration, seems to depend 
on the regulatory complexes formed by the differential 
combination and association of DELLA with specific additional 
GRAS and other TFs.
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Interestingly, downstream targets of RAM1 include genes 
encoding AP2-domain TFs such as the WRI (WRINKLED) family 
(MtWRI5a, MtWRI5b, and MtWRI5c) in M. truncatula (Jiang 
et  al., 2018) and CBX1 (CTTC-BINDING TRANSCRIPTION 
FACTOR1; LjWRI1) in L. japonicus (Xue et  al., 2018). These are 
members of the APETALA2 TF family that have also been described 
as differentially regulated upon mycorrhization (Xue et  al., 2015; 
Ho-Plágaro et  al., 2019). During AM  formation, these AP2/ERF 
domain transcription factors regulate host genes involved in 
phosphate uptake and fatty acid biosynthesis. L. japonicus CBX1 
and M. truncatula WRI5 directly bind to CTTC and AW motifs 
in the promoter sequences of genes involved in phosphate transport 
and fatty acid biosynthesis (Jiang et  al., 2018; Xue et  al., 2018). 
In a genome-wide analysis with several AM-competent plant 
species and some non-AM plants it was shown that CTTC motifs 
are very common in AM-related genes (Favre et  al., 2014), hence 
indicating that RAM1 GRAS TF regulate reprogramming of 
mycorrhizal roots through these downstream target TFs that bind 
CTTC motifs. Curiously, overexpression of WRI5a in M. truncatula 
activates expression of RAM1 and MtRam1 and MtWri5a gene 
expression has been shown to be  interdependent, while WRI5a 
and RAM1 regulate each other at the transcriptional level, thus 
supporting a model in which both TFs form a positive feedback 
loop to regulate AM  symbiosis (Jiang et  al., 2018).

Further research is needed to determine whether WRINKLED 
transcription factor proteins are involved in mycorrhizal gene 
expression independently, cooperatively, or downstream of RAM1 

during AM development. The lack of an AWbox-related cis element 
in the promoter of RAM1 suggests that WRI5a-mediated regulation 
of this gene might be  indirect. The possibility of GRAS/AP2-ERF 
heterocomplex formation also needs to be  explored.

CONCLUDING REMARKS AND 
PERSPECTIVES

In this mini review, we  discuss the key regulatory role played 
by GRAS proteins in AM  formation, as well as AM  symbiotic 
competence, mainly in arbuscule formation (Figure  1). While 
their functional significance for symbiosis remains to be further 
determined, the data suggest the existence of interconnected 
transcriptional modules that are regulated by multiple GRAS 
transcription factors. Although the role of GRAS TFs in 
AM  symbiosis appears to be  conserved in plants, functional 
diversification in the GRAS protein repertoire is a basis for 
variations in AM  traits among plant species. Genome-wide 
characterization and expression studies need to be complemented 
by protein–protein and protein-DNA interaction studies. Also, 
further research into the specific inter-GRAS TF interactions 
and crosstalk, as well as with other TFs and TRs, in addition 
to identification of regulatory transcriptional modules, would 
provide a better understanding of how plants are prepared for 
the establishment of AM  symbiosis. AM-forming fungi, whose 
optimal use would improve plant production in a more sustainable 

FIGURE 1 | Involvement of GRAS TFs in the regulation of arbuscule formation. The DELLA/CYCLOPS complex regulates the expression of RAM1. In this manner, 
RAM1 is able to interact with several other GRAS-domain proteins such as RAD1, regulating the expression of genes involved in arbuscule development and 
functionality, as well as with TFs from the WRI family, activating genes involved in lipid biosynthesis and in nutrient exchanges at the periarbuscular membrane. In this 
model, WRI and RAM1 regulate each other at the transcriptional level. The interaction of the GRAS-domain protein MIG1 with DELLA and NSP1 is necessary to 
regulate genes involved in the radial expansion of cortical cells for AM fungal accommodation, while SCL3, together with MIG3 and DELLA, counteracts the positive 
effect of MIG1 on cell expansion. MYB1 is required for the transcriptional regulation of genes involved in arbuscule degeneration (hydrolytic activity) and interacts 
with both DELLA proteins and the GRAS-domain protein NSP1. The different stages of arbuscule development are shown. The blue and red arrows mark the 
beginning of RAM1 activity and MYB1 activity, respectively. Only GRAS TFs with known function during AM are shown.
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way, are a natural resource that has great potential in agro-
biotechnological procedures. Thus, the identification of essential 
target genes, regulatory modules and downstream processes 
during AM  formation and functioning would be  invaluable 
in order to make AM  symbiosis more effective.
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The nitrogen-fixing symbiosis between leguminous plants and soil bacteria collectively
called rhizobia plays an important role in the global nitrogen cycle and is an essential
component of sustainable agriculture. Genetic determinants directing the development
and functioning of the interaction have been identified with the help of a very limited
number of model plants and bacterial strains. Most of the information obtained from
the study of model systems could be validated on crop plants and their partners.
The investigation of soybean cultivars and different rhizobia, however, has revealed the
existence of ineffective interactions between otherwise effective partners that resemble
gene-for-gene interactions described for pathogenic systems. Since then, incompatible
interactions between natural isolates of model plants, called ecotypes, and different
bacterial partner strains have been reported. Moreover, diverse phenotypes of both
bacterial mutants on different host plants and plant mutants with different bacterial
strains have been described. Identification of the genetic factors behind the phenotypic
differences did already and will reveal novel functions of known genes/proteins, the
role of certain proteins in some interactions, and the fine regulation of the steps during
nodule development.

Keywords: symbiotic nitrogen fixation, rhizobium strains, legume ecotypes/cultivars, symbiotic incompatibility,
partner dependent mutation manifestation

INTRODUCTION

Nitrogen is an essential macronutrient for plants and is required for the synthesis of nucleic
acids, amino acids, and many other important metabolites. It is one of the most limiting elements
for plant growth despite dinitrogen gas (N2) accounting for a large proportion (around 78%) of
Earth’s atmosphere. Its strong chemical stability, however, makes it inaccessible for most organisms
including plants, only certain prokaryotic microorganisms can fix nitrogen, i.e., to break the triple
covalent bonds between the nitrogen atoms and produce ammonium (Vance, 2001).

Leguminous plants have the unique ability to grow in nitrogen-poor soils because they establish
symbiosis (Suzaki et al., 2015) with a wide range of nitrogen-fixing Gram-negative α- and
β-Proteobacteria collectively referred to as rhizobia (Masson-Boivin et al., 2009; Lindström and
Mousavi, 2020). This interaction provides advantages for the participating partners. Legumes
have access to reduced nitrogen, which they can metabolize, at the cost of energy and organic
materials originating from photosynthesis. At the same time, bacteria are provided by a nutrient-
rich environment in the symbiotic nodules formed on the roots or occasionally on the stems of the
host plant (see later), where a much larger population of descendants than in soil can be established.
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As crop and pasture legumes can fix as much as 200–300 kg of
nitrogen per hectare per year (Peoples et al., 1995), they have been
an important element of crop rotation systems for a very long
time and provide multiple benefits for agriculture sustainability
(Stagnari et al., 2017). The ability of legumes to convert N2 into
ammonia, as well as the first isolation and the morphological
changes of rhizobia from and in nodules, were demonstrated in
the 1880s, which was quickly followed by the market introduction
of the first commercial Rhizobium inoculant (Nitragen) in 1895,
almost 20 years earlier than performing industrial-scale ammonia
synthesis by Carl Bosch (for a historical review, see Soumare et al.,
2020). Since then, many inocula containing rhizobia for different
legumes have been developed and commercialized to improve the
yield of leguminous crops through symbiotic nitrogen fixation.

The development of the symbiosis between leguminous
plants and rhizobia is a complex program including several
interconnected developmental processes (bacterial infection and
nodule organogenesis), multiple exchanges of signals (Gibson
et al., 2008), and the activity and coordinated regulation of the
expression of numerous genes (Mergaert et al., 2020; Roy et al.,
2020). Legumes perceive the lack of nitrogen in soils and secrete
flavonoids into the rhizosphere that are recognized as signals by
rhizobia (Peters et al., 1986; Redmond et al., 1986) and—through
their putative interaction with the NodD transcription factor
(TF) proteins (Györgypál and Kondorosi, 1991; Györgypál et al.,
1991; Peck et al., 2006), inducing the expression of nodulation
(nod) genes. The proteins encoded by nod genes are essential
for the synthesis and export of lipo-chitooligosaccharides called
nodulation or Nod Factors (NFs) that have a core structure with
4-5 N-acetyl-glucosamine residues and an acyl chain conserved in
all different species of rhizobia. Length and saturation level of the
acyl chain, as well as the decoration of the backbone with several
chemical modifications, such as methyl, acetyl, carbamoyl, or
fucosyl groups are determined and mediated by enzymes encoded
by the strain-specific nod genes and contribute to the specificity
of the symbiosis between the partners (Dénarié et al., 1996; Long,
1996). Even in the absence of rhizobia (Truchet et al., 1991), the
NFs induce quick ion fluxes through the membrane of root hairs
(Felle et al., 1988), oscillations in calcium concentrations (calcium
spiking) in the nuclei of epidermal cells (Ehrhardt et al., 1996),
swelling and deformation of the root hairs as well as division of
cortical cells (Catoira et al., 2000). The NFs are recognized by a
membrane-anchored receptor complex and the perceived signal
is transmitted through the so-called common symbiosis signaling
(CSS) pathway, shared by another beneficial symbiosis that is
established with arbuscular mycorrhizal fungi (Suzaki et al.,
2015; Kronauer and Radutoiu, 2021) and, then, translated into
gene expression changes by a network of transcription factors
(Diedhiou and Diouf, 2018).

In the presence of NF-producing rhizobia and after the
original electrophysiological changes, bacteria enter the root and
then, invade the cells of the developing nodules (Figure 1).
Depending on the interaction, there are two main ways for
rhizobia to enter root tissues (Ibáñez et al., 2017): (i) For
intercellular invasion, bacteria cross the epidermal layer between
neighboring root hair cells or root hair and epidermal cells or
through cracks/fissures, and spread through the cortex between

cell walls or intercellular air spaces or by a progressive collapse
of the invaded cells; (ii) In the model legume plants (Medicago
truncatula and Lotus japonicus), as well as in most crop plants
(such as soybean, bean, and pea), rhizobia invade roots through
the transcellular infection threads (ITs), tubular structures that
guide bacteria into the inner tissues of the nodule. In this latter
mode, NF production by attached rhizobia induces continuous
re-orientation of the root hair growth resulting in a shepherd’s
crook-like curled root hair, which forms a so-called infection
pocket and surrounds bacteria that establish a microcolony
(Gage, 2004). In the infection pocket, the IT is initiated by cell
wall degradation and invagination of the root hair membrane
(Murray, 2011), and then, it extends by polar growth toward the
base of the root hair cell, enters the cortical cell layers until it
reaches the new cells produced by the nodule primordium. The
IT polar growth requires the coordinated and dynamic action
of several proteins that determine membrane domains, polarity,
or involvement in the rearrangement of the cytoskeleton or the
regulation of NF levels (Tsyganova et al., 2021). On the rhizobial
side, the initiation and growth of ITs required from the rhizobia,
which are topologically in the extracellular space and multiply
in the growing ITs, the adaptation to the specific osmotic, pH,
and ionic environment of ITs (Dylan et al., 1990; Putnoky et al.,
1998), the regulation of NF levels (Malolepszy et al., 2018)
and correct production of surface polysaccharides (López-Baena
et al., 2016), such as extracellular polysaccharide (EPS), K-antigen
capsular polysaccharide (KPS), or lipopolysaccharide (LPS). In
L. japonicus, a receptor structurally similar to the NF receptors
monitors, whether the EPS of the symbiotic bacteria has the
correct structure, i.e., it prevents bacterial entry if Mesorhizobium
loti produces truncated EPS, but it allows infection of bacteria
that produce wild-type or no EPS (Kawaharada et al., 2015). In
contrast, the Sinorhizobium meliloti strains that are defective in
the production of the succinoglycan EPS are not able to infect
Medicago roots (Leigh et al., 1985), unless they produce a second
exopolysaccharide (galactoglycan EPS II) or KPS (Glazebrook
and Walker, 1989; Putnoky et al., 1990; Pellock et al., 2000). In
other legumes, such as Glycine or Phaseolus species, the correct
structure of LPS is required for the successful infection program
(Carlson et al., 1987; Stacey et al., 1991; Margaret et al., 2013).

In the newly formed differentiating nodule cells, individual
bacteria are released from the ITs through an endocytosis-like
process (Figure 2) and become surrounded by a membrane
of host origin called peribacteroid or symbiosome membrane
(Roth and Stacey, 1989). These organelle-like structures, called
symbiosomes, divide to fill the cytoplasm of the nodule cells
and the rhizobia, thus, differentiating into their nitrogen-
fixing form called bacteroids (Vasse et al., 1990). The parallel
differentiation of bacteria and plant cells is accompanied by
drastic physiological, metabolic, and gene expression changes.
The new cells formed by the nodule meristem and being infected
by rhizobia complete multiple cycles of endoreduplication
resulting in enlargement of nuclear and cell volumes (Foucher
and Kondorosi, 2000), change their expression profile in multiple
waves (Maunoury et al., 2010) and adjust their metabolism and
the cellular environment for nitrogen fixation (Udvardi and
Poole, 2013). To protect the oxygen-sensitive nitrogenase enzyme
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FIGURE 1 | Natural variations affecting early nodule development and infection. (A) Nodule formation and intercellular infection in the absence of Nod factors and NF
recognition/perception requires either an unknown mechanism or the activity of Type III secretion systems for the translocation of effector proteins in bradyrhizobia as
well as the common symbiosis signaling pathway and other unknown proteins in Aeschynomene species and in soybean plants. (B) Nod Factor production of
rhizobia and NF recognition/perception are required for the early symbiotic events such as root hair curling. (C) Initiation and progression of bacterial invasion through
ITs are strictly controlled. The structure and amount of NFs determine whether NF receptors allow the initiation of IT development. Similarly, the presence of surface
polysaccharides with correct structure is checked by the plants with help of receptors and unknown mechanisms. Unknown mechanisms and stress from the plants
also might inhibit infection unless bacteria can deal with them, for example, by expressing the TypA stress protein. Bacterial effector molecules (Nops) resembling
pathogen virulence factors transported into the plant cells and Effector Triggered Immunity often led to the restriction of infection, however, there are cases, when
they have a positive effect on nodulation. Those bacterial macromolecules, whose lack or incorrect structure led to the arrest of the interaction with certain partners,
and those plant proteins, which restrict the bacterial mutants or whose lack can be overturned, are shown in red. Plant molecules, as well as bacterial
proteins/molecules, whose lack or presence (in parenthesis), that are able to overturn these defects, are shown in green. Those bacterial and corresponding plant
proteins, that are responsible for incompatibility and a defect in either of them leads to compatibility, are shown in blue. If the compatibility needs both the plant and
bacterial factors, the proteins are shown in brown. (??) denotes that the given factor has not been identified yet.
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FIGURE 2 | Natural variations affecting bacteroid development, persistence, and functioning. After the release of rhizobia from the ITs, bacteria differentiate into
nitrogen-fixing bacteroids of unmodified (U), elongated (E), or spherical (S) morphotypes. The NCR peptides affecting bacterial membrane and intracellular functions
are delivered into bacteria by peptide transporters and contribute to the terminal differentiation of E and U morphotype bacteroids. Bacterial outer membrane
composition, peptidases and independently evolved transporters affect the success of bacteroid development. The NCR peptides are also involved in strain
discrimination. The level of stress and the available carbon sources in the plants affect how bacteria with mutations in stress related genes or carbon metabolism
perform. Bacteria also might induce and endure plant defense reactions and sense signals from certain plants that affect gene expression. Colors are the same as in
Figure 1.

and at the same time, to support bacterial respiration energizing
nitrogen fixation, the free oxygen concentration is kept at a very
low but constant level within the infected nodule cells. The low
free oxygen concentration is achieved by a physical barrier in

the outer cortical layer of the nodule and massive production
of the oxygen-binding leghemoglobin protein (Rutten and Poole,
2019). This low oxygen concentration regulates the production of
bacterial proteins that are involved in the reduction of nitrogen,
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in the metabolism and transport of the fixed nitrogen, as well as in
the exchange of metabolites between the bacterial and plant cells
(Terpolilli et al., 2012; Udvardi and Poole, 2013).

After reaching its peak, the nitrogen fixation in the nodule
cells declines, and this is accompanied by the decrease
of leghemoglobin concentration and nitrogenase activity by
morphological changes of the cells, or lifestyle of the rhizobial
population present. This complex and programmed process
called nodule senescence is a normal stage of the symbiosis,
however, it can also be induced by the transition from vegetative
to the reproductive stage of plant development or by adverse
environmental and physiological conditions (Zhou et al., 2021).

Based on their development and morphology that is
determined by the plant, both the nodules and the bacteroids
can be divided into two major types (Ferguson et al., 2010;
Alunni and Gourion, 2016). Indeterminate nodules on the roots
of, for example, the Medicago, Pisum, Coronilla, Leucaena, and
Amorpha species have a cylindrical shape resulting from the
activity of a persistent meristem, which continuously produces
new cells. These new cells become infected with bacteria
and develop into nitrogen fixation tissue. As a consequence,
indeterminate nodules keep increasing in size and have a gradient
of developmental stages recognized as meristematic (Zone I),
infection (Zone II), differentiation (Interzone II-III), nitrogen
fixation (Zone III), and in older nodules, the senescence (Zone
IV) zones. In contrast, determinate nodules that form on
legume species from, for example, the Lotus, Glycine, Phaseolus,
Aeschynomene, or Arachys genera are spherical and the cell
population in the inner tissues is relatively homogenous and does
not form a developmental gradient. During the formation of
determinate nodules, the meristem is not persistent, it ceases to
divide at an early stage, and further nodule development takes
place more-or-less synchronously.

Independently from the nodule morphology, the
differentiation and the fate of bacteria also depend on the
plant host (Mergaert et al., 2006): Bacteroids in the nodules
of Lotus, Glycine, Phaseolus or Leucaena are similar to the
free-living cells in shape, size, DNA content and retain
their cell division capacity. In contrast, bacteroids in the
nodule cells of Medicago, Pisum, Aeschynomene or Arachys
species have increased size, membrane permeability and DNA
content, different—spherical or elongated-(branched)—shape
compared to their free-living siblings. These nodule bacteria
also lost their cell division capacity, thus, they are considered
terminally differentiated bacteroids (Alunni and Gourion,
2016). The ability to impose terminal bacteroid differentiation
on the bacterial partner appeared at least five times during
the evolution of the Papilionoideae legumes indicating a
possible fitness benefit for the plant (Oono et al., 2010). Using
bacteria, which can establish symbiosis with plant’s hosts
governing different bacteroid fates, it was shown that terminally
differentiated bacteroids have increased symbiotic efficiency
as compared to unmodified bacteroids (Oono and Denison,
2010). Moreover, even the level of terminal differentiation
correlates with nitrogen fixation efficiency, as in nodules of
different Aeschynomene species, highly polyploid spherical
bacteroids are more efficient than the elongated ones with lower

ploidy level (Lamouche et al., 2018, 2019). Terminal bacteroid
differentiation is induced by plant-derived molecules, termed
as nodule-specific cysteine-rich (NCR and NCR-like) peptides
(Mergaert et al., 2003; Van de Velde et al., 2010; Czernic et al.,
2015), which are produced almost exclusively in the infected cells
of nodules (Guefrachi et al., 2014) solely by those plants, which
impose terminal bacteroid differentiation on their symbiont.
The number and type of NCR peptides in the Inverted Repeat
Lacking Clade (IRLC) of Papilionoideae legumes are highly
variable and correlate with the morphotype of the bacteroids
in the nodules of these species (Montiel et al., 2016, 2017). The
NCR peptides were shown to interact with several bacterial
proteins in M. truncatula, thus, affecting, for example, the
transcription, translation, and cell cycle regulation (Tiricz et al.,
2013; Farkas et al., 2014; Penterman et al., 2014). Despite their
high number (over 700 genes in Medicago) and putatively
redundant functions, individual NCR peptides were proven to
be required for bacteroid development and persistence (Horváth
et al., 2015; Kim et al., 2015).

NATURAL VARIATIONS SUPERIMPOSED
ON GENERAL NODULE
DEVELOPMENTAL PATHWAYS

In general, if the symbionts possess the above-reviewed tool kits,
they can establish symbiosis with the partners in their cross-
inoculation group to reduce atmospheric nitrogen and to support
plant growth. However, it was recognized by early investigations
performed mainly on crop plants that there exist symbiotic
incompatibilities (i.e., no nodule formation or no nitrogen
fixation) among symbionts that form effective interactions with
other cultivars, or strains of the partner species (Bergersen and
Nutman, 1957; Caldwell, 1966; Melino et al., 2012). It was
also shown that when compatible interactions lead to nitrogen
fixation, their efficiency, i.e., the plant benefit derived from
the symbiosis is highly variable (Snyman and Srijdom, 1980;
Terpolilli et al., 2008; Kazmierczak et al., 2017). To further
complicate the picture, mutations may have different effects
on the interaction depending on the partners investigated [for
example (Wilson et al., 1987; Osteras et al., 1991; Rodpothong
et al., 2009)].

Natural Variation in the Stringency
Requirements of Nodulation Factor
Induced Processes
Nodulation Factor Recognition in Medicago
It was recognized early after the discovery of NFs that the
induction of root hair deformation and cortical cell division
does not require the full and proper decoration of these signal
molecules in contrast to root hair curling, as well as the initiation
and growth of ITs (Ardourel et al., 1994). IT development in
alfalfa root hairs was strongly inhibited by the nodL and nodEF
mutants of Sinorhizobium meliloti lacking the O-acetylation and
N-acylation with specific fatty acids, respectively, at the non-
reducing end of NFs that was more pronounced with the double
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mutant. These observations led to the hypothesis that different
receptor forms, i.e., less stringent signaling receptors for the
initiation of root hair deformation and cortical cell division, and
the entry receptors with more rigorous requirements for bacterial
infection regulate the nodulation process.

Similar to M. sativa, most M. truncatula accessions form no
nodule with the nodF/nodL double mutant S. meliloti strains, but
M. truncatula ssp. tricycla R108 establishes an effective nitrogen-
fixing symbiosis with the mutant as with the wild-type strain
(Luu et al., Under review1). As the NF receptor proteins NFP
and LYK3 (Arrighi et al., 2006; Smit et al., 2007) in ecotype
Jemalong, and the NFP protein in R108 (Feng et al., 2019) were
shown to be essential for NF perception and nodulation, the
genomic sequence of R108 around the LYK3 gene was analyzed
in more detail. Between LYK2 and LYK3, an additional gene
designated as LYK2bis, which is a chimera of the two neighboring
genes, was identified in R108 that could not be found in any
other M. truncatula accessions with a sequenced genome. Using
loss-of-function (lyk2bis mutant in R108) and gain-of-function
(transforming LYK2bis into Jemalong) approaches, it was proven
that the LYK2bis protein enables R108 to be nodulated and
infected by the nodF/nodL mutant.

Variations in the Rhizobium leguminosarum
Nodulation Factor Structure Requirements
The nodE gene of Rhizobium leguminosarum was also shown
to be a determinant of host specificity of the biovars and
mutations in this gene’s generally decreased nodulation on pea
(Surin and Downie, 1989). Interestingly, the nodE mutation in
R. leguminosarum bv. viciae almost blocked the nodulation on
certain pea lines but affected less severely the other accessions.
Genetic analysis revealed that nodE-dependent nodulation is
associated with a haplotype (Li et al., 2011) of the PsSym37 gene
coding for a LysM-type receptor kinase, which is closely related
to the LjNFR1/MtLYK3 Nod Factor receptors, and is essential
for infection-thread initiation in pea (Zhukov et al., 2008).
Wild isolates—commonly referred to as Afghan peas—from the
Middle East (Afghanistan, Iran, Turkey, Israel, Uzbekistan, and
Tajikistan) and known as the center of origin for peas, cannot
be nodulated by rhizobia collected in Europe, but only by strains
isolated from soils from the same region (Lie, 1984). In Afghan
peas, cortical cell divisions are initiated upon induction by
European R. leguminosarum bv. viciae strains but IT formation
and bacterial invasion are blocked. This inhibition can be
overcame either by growing the plants at elevated temperature
(Kozik et al., 1995) or by the production of the NodX protein
in rhizobia that adds an O-acetyl group to the C6 carbon
of N-acetylglucosamine residue at the reducing end of the
pentameric NF (Götz et al., 1985; Firmin et al., 1993). Genetic
analysis of the locus called sym2, which is responsible for the
incompatibility of Afghan peas, added a level of complexity. The
sym2A allele of Afghan peas is dominant over the sym2C alleles
of cultivated peas when R. leguminosarum bv. viciae strain PRE
is used as inoculum, however, the dominance is changed when
1 Luu, T., Ourt, A., Pouzet, C., Pauly, N., and Cullimore, J. (2022). A Newly-Evolved
Chimeric Lysin Motif Receptor-Like Kinase in Medicago truncatula spp. Tricycla
R108 Extends Its Rhizobia Symbiotic Partnership.

strains 248 or PF2, producing higher amount of Nfs, are applied
(Kozik et al., 1995). Despite the long history of research on the
specificity of Afghan peas, no direct evidence, such as changing
the specificity of a cultivated line by transformation, about
responsible for the strict partner selection has emerged. However,
several genetic and bioinformatics data indicates that another
LysM-type receptor kinase, termed PsLykX (for P. sativum
LysM kinase eXclusive), probably interacting with the pea NFR1
(PsSym10) receptor may determine the trait (Sulima et al., 2017,
2019; Solovev et al., 2021). Interestingly, the nodO gene coding
for a secreted protein, which was shown to form ion channels
in membranes (Sutton et al., 1994), can compensate both for
the nodE mutation (Walker and Downie, 2000) and partially or
fully for the absence of the nodX gene in strain 248 on plants
carrying the sym2A allele in homozygous or heterozygous forms,
respectively (Geurts et al., 1997). The non-nodulating phenotype
of the nodO mutant of strain 248 on the heterozygous plants,
as compared to nodule formation by wild-type bacteria, might
explain the strain-specific differences regarding the dominance
of the sym2 alleles. It is possible that the genome of strain PRE
does not code for a functional NodO protein for compensation.
It is hypothesized that NodO might function either to bypass the
NF receptor activity or to amplify a weak signal originating from
the interaction of the not fully compatible NFs and receptors.

Similar variability in NF recognition and sensitivity might
exist in Trifolium species. R. leguminosarum bv. trifolii strain
TA is not able to nodulate T. subterraneum cv. Woogenellup
at 22◦C because of the arrest of IT development but forms an
effective symbiosis with this cultivar at 28◦C (Lewis-Henderson
and Djordjevic, 1991a). This trait is determined by the recessive
alleles of a gene named rwtl (resistance of Woogenellup
to strain TA1). The nodulation deficiency of strain TA1 is
overcome by mutations in genes that affect the structure (nodE
and nodX), the amount (nodD, nodM, nodN, and probably,
the negatively acting csn-1 (for cultivar-specific nodulation) of
unknown identity and function), or transport (nodT) of Nod
Factors (Lewis-Henderson and Djordjevic, 1991b).

Nodulation Factor Recognition in Lotus Species
The most numerous and most detailed investigations of NF
recognition and perception have been performed in Lotus species,
mostly in L. japonicus, serving as a model for determinate
nodule development, in symbiosis with Mesorhizobium loti. This
rhizobium produces mainly pentameric NFs with an acetylated
fucosyl residue at the C6 carbon of the reducing sugar, a
carbamoyl group, and a N-methylated 18:1 acyl chain at the
C4 and C2 carbons, respectively, of the non-reducing sugar
(López-Lara et al., 1995). The symbiotic capability of M. loti R7A
mutants that fail to synthetize acetyl-fucosylated NFs depends on
the Lotus species serving as partner (Rodpothong et al., 2009).
Nodule formation by a nolL mutants failing to add the acetyl
modification to the fucosyl moiety is delayed on all four Lotus
species (L. japonicus, L. corniculatus, L. filicaulis, and L. burttii)
tested. Moreover, IT formation in L. filicaulis is also arrested.
Defects in the synthesis (in the nolK and noeL mutants) and
transfer to the NF backbone (in the nodZ mutant) of the fucosyl
residue prevent infection not only in L. filicaulis but also in
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L. corniculatus, revealing different stringency requirements in the
Lotus-Mesorhizobium cross-inoculation group. An engineered
symbiont of Lotus called strain DZL and was created by
expressing an inducer-independent NodD protein, as well as
the NodZ fucosyl-transferase and the NolL acetyltransferase in
R. leguminosarum bv. viciae (Pacios Bras et al., 2000), produces
NFs that only differ from those of M. loti in the decorations of
the non-reducing sugar, i.e., the acyl chain on the C2 carbon
is not methylated, the C6 carbon is not carbamoylated but
the C5 carbon is acetylated. This strain effectively nodulated
L. japonicus but failed to infect L. filicaulis. It was shown by
domain and amino acid swaps between the Nfr receptors of the
two species that a single amino acid difference in the M2 domain
of Nfr5 is responsible for the differential recognition of NFs
(Radutoiu et al., 2007).

Summary
Legumes rigorously choose their rhizobial partners by
recognizing the chemical structure of the first signal molecules,
the Nod Factors, via the activity of the NF receptors. Structural
variations and extension of the NF receptor repertoire might
both strengthen (NodX requirement by SYM2) or weaken
(LYS2bis) the stringency of the identification process, which is
also affected by the amount of NFs and temperature.

Natural Variation in Surface
Polysaccharide Requirements for
Infection
In the indeterminate nodule forming rhizobia, an efficient
infection (thread development) requires the production of
exopolysaccharides (EPSs), the lack of EPS resulting in no IT
formation or in ITs aborted in the root hairs (Skorupska et al.,
2006). In S. meliloti strain Rm41, however, EPS-deficient (exoB
mutant) bacteria induce the formation of infected, nitrogen-
fixing nodules on alfalfa and this phenotype is associated with its
ability to produce a strain-specific K-antigen (KPS), a polymer
of a disaccharide repeating units composed of glucuronic
acid and N5-β-hydroxybutyryl-N7-acetyl-5,7-diamino-3,5,7,9-
tetradeoxynonulosonic acid (pseudaminic acid) on the surface
(Putnoky et al., 1990; Kereszt et al., 1998; Reuhs et al., 1998).
Interestingly, if the lpsZ (rkpZ) gene, found in the Rm41 strain-
specific rkp-3 gene cluster (Kiss et al., 2001), responsible for
the synthesis of the pseudaminic acid precursor, as well as
for the export of the KPS, is introduced into an EPS-deficient
mutant of strain 1,021 producing a structurally different KPS, the
transconjugant forms effective symbiosis with alfalfa (Williams
et al., 1990). The LpsZ protein determines (decreases) the
polymerization level of the KPS in both strains and enables the
formation of the symbiotically efficient molecular weight form
(Reuhs et al., 1995). The KPS of strain Rm41 can complement
for the absence of EPS, not only on alfalfa (M. sativa), but also on
other Medicago (M. media and M. varia) and Melilotus (M. albus
and M. officinalis) species tested (Putnoky et al., 1990), however,
not on M. truncatula (Hozbor et al., 2004; Liu et al., 2014). In
S. meliloti strain 1,021, a third polysaccharide, the galactoglucan
EPS II with a disaccharide repeating unit of a β-(1-3)-linked

acetylated glucose and succinylated galactose can contribute
to the infection process by replacing the succinoglycan EPS I
during nodulation of M. sativa (Glazebrook and Walker, 1989).
However, EPS II cannot function in place of EPS I on other
investigated hosts such as M. coerulea, M. truncatula, Melilotus
albus, and Trigonella foenum-graecum.

Determinate nodule formation and infection require the
correct structure of LPS on the bacterial surface, while the
production of exopolysaccharides by rhizobia infecting these
nodules seems to be not important. In Lotus corniculatus and
L. japonicus Gifu, however, bacteria, which do not produce
EPS, can establish as effective symbiosis as the wild-type strain,
whereas mutants affected in mid or late biosynthetic steps
(e.g., exoU) and produce truncated form of the polysaccharide
induced uninfected nodule primordia (Kelly et al., 2013). In
contrast, L. japonicus MG20 is less stringent in its selection
because it forms nitrogen-fixing nodules with mesorhizobia that
are both producing no or truncated EPS. The incompatibility
in L. japonicus Gifu is mediated by the LysM-type receptor
EPR3 (Kawaharada et al., 2015), recognizing the diffusible
octasaccharide monomer of EPS, not only from M. loti, but
also from R. leguminosarum and S. meliloti (Wong et al., 2020).
The PXY leucine-rich repeat receptor-like kinase in L. japonicus
MG20, which also regulates stem vascular development, was
identified by quantitative trait locus sequencing (QTL-seq) as
a casual component of the differential and less stringent exoU
response (Kawaharada et al., 2021).

The S. fredii strain HH103 establishes symbiosis with
a wide variety of legumes forming indeterminate and
determinate nodules (Margaret et al., 2011). Infection of
the determinate nodules of soybean and pigeon pea (Cajanus
cajan) by this bacterium necessitates the production of the
5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-L-
glycero-L-manno-nonulosonic acid homopolymer K-antigen,
however, KPS-deficient mutants of HH103 induce infected and
nitrogen-fixing determinate nodules on cowpea (Parada et al.,
2006; Hidalgo et al., 2010).

Summary
The presence of certain polysaccharides on the bacterial surface
is essential for the infection process monitored by a currently
unknown mechanism in the plants. Certain bacteria are able
to produce alternative polysaccharides to compensate for the
absence of the generally used ones, however, this compensation
might not be effective on all hosts. Moreover, not only the
presence, but the correct structure, for example, of the EPS is
checked by another mechanism.

Other Natural Variations Affecting
Bacterial Infection
Large collections of legume hosts and bacteria isolated from
nodules developed on plants in natural habitats have allowed the
establishment of cross-inoculation groups and investigation of
natural variations within cross-inoculation groups and species.
Investigations, for example, with the model legumes L. japonicus
and M. truncatula and/or species closely related to them,
revealed large variations in symbiotic compatibility and efficiency

Frontiers in Plant Science | www.frontiersin.org 7 April 2022 | Volume 13 | Article 85618792

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-856187 April 5, 2022 Time: 15:49 # 8

Wang et al. Exploring Natural Variations in Symbiosis

(Snyman and Srijdom, 1980; Crook et al., 2012; Gossmann et al.,
2012; Granada et al., 2014; Liu et al., 2014; Lorite et al., 2018). For
example, experiments using a number of Medicago species and
M. truncatula accessions in combination with different S. meliloti
isolates revealed tremendous variation in nodulation capacity
and nitrogen fixation specificity between different genotype-
rhizobial combinations, 40–50% of all host-strain pairs resulted
in an ineffective symbiosis (Crook et al., 2012; Liu et al., 2014).
Detailed characterization accompanied with the identification
of the genes and alleles determining these symbiotic variations
beyond soybeans’ incompatibility (see later) has been very rare.

Liu et al. (2014) reported that S. meliloti strain Rm41 induced
root hair curling and nodule primordium formation but failed
to infect the roots of M. truncatula ecotype F83005.5, although
both partners have the genetic capacity for nitrogen fixation. The
infection process is arrested at the microcolony stage, either no or
occasionally, aberrant ITs not entering the cortex can be observed
on the roots. This phenotype is similar to the ones induced
by EPS-deficient mutants of S. meliloti or by M. loti producing
truncated EPS or by rhizobia incompatible with certain genotypes
of soybean. This dominant trait in M. truncatula, however, must
be independent of these bacterial effectors. EPS recognition can
be ruled out because the strain produces wild-type EPS and
its EPS-deficient derivatives cannot establish effective symbiosis
with other ecotypes of the plant either. The possibility of
effector-triggered immunity (ETI) responsible for the soybean
incompatibilities (see later) can also be excluded because the
genome of strain Rm41 does not code for any Type III, Type IV,
and Type VI secretion systems implicated in ETI.

An R. leguminosarum strain (termed Norway) isolated from
L. corniculatus nodules shows host-genotype specific differences
when inoculated on wild-type plants of Lotus species and pea
cultivars. It induced no nodules on L. japonicus Gifu and
L. filicaulis, L. japonicus MG20 formed bumps and occasionally,
very small and infected nodules, while L. japonicus Nepal
showed broadened elongated infection zones. On L. glaber, the
strains provoked the development of swellings and tumor-like
structures, while L. burtii developed normal-sized and infected
but inefficient nodules. The strain-induced ITs on Pisum sativum
cv. Sparkle without the formation of nodule(-like) structures,
whereas pea cultivar Little Marvel and Latyrus sativus plants had
ineffective nodules (Gossmann et al., 2012; Liang et al., 2019).
In Lotus species, the strain induced early and strong induction
of a symbiosis-specific gene but no ITs, and rather intercellular
accumulation of the bacteria through epidermal cracks could
be observed. The strain could invade intact nodule cells where
it formed symbiosomes, however, these infected cells exhibited
the signs of early senescence (Liang et al., 2019). As the strain
seems to possess all the genetic repertoire required for and still
fails in the establishment of an effective sysmbiosis (Liang et al.,
2018), it will be interesting to find one or more compatible hosts
and determine which factors in the bacteria and plants cause the
incompatibilities.

Summary
The incompatible interactions arrested at the infection stage
indicate the presence of additional checkpoints beyond NF and
polysaccharide recognition.

Bacterial Effector Molecules and Plant
Immunity Affecting Compatibility
Bacteria secrete proteins and other (macro)molecules to
modulate their interactions with the environments, especially
when they are interacting with eukaryotic host organisms. In the
case of Gram-negative bacteria, secretion requires translocation
across both the inner and the outer membranes, and several
different molecular machines have been elaborated for this
purpose. Many proteins secreted by pathogens and symbionts
are aimed to enter the host cells to modify the physiology of the
partner, and, thus, several secretion systems include an apparatus
to translocate proteins across the plasma membrane of the host
also (Tseng et al., 2009). In this context, it is not surprising
that rhizobia are also equipped with certain or all types of
effector delivery machinery that may have special roles in their
interactions with different legume partners.

Microbe-Associated Molecular Patterns and
Effector-Triggered Immunity, Type III Secretion
System Effectors, and Symbiotic Compatibility
Plants developed a multilayered defense system against microbes
that acts both locally and systematically (Ngou et al., 2021)
and its elements are also important during the interaction
of legumes and rhizobia (Cao et al., 2017). The first line
of defense detects the presence of microorganisms via the
activity of receptors recognizing microbe/pathogen-associated
molecular patterns (MAMPs/PAMPs), which are conserved
motifs present on essential components of a microbe/pathogen.
The binding of MAMPs by these pattern recognition receptors
(PRRs) induces rapid changes in the cell—as can be observed
upon the recognition of NFs—and leads to MAMP/PAMP-
triggered immunity (MTI/PTI). Interestingly, rhizobial MAMPs
investigated, so far, such as flagellin or LPS, differ from, for
example, those of plant pathogenic or enteric bacteria and do
not induce MTI (Tellström et al., 2007; Lopez-Gomez et al.,
2012). The legume hosts also evolved recognition mechanisms to
distinguish beneficial and harmful microorganisms. L. japonicus
and M. truncatula have LysM pattern-recognition receptors that
are related to the NF receptors to separate the perception of
chitin oligomeric microbe-associated molecular patterns from
the perception of NFs by the NFR1/NFR5 receptor complex
(Bozsóki et al., 2017). Another LysM receptor in L. japonicus,
EPR3 distinguishes M. loti cells producing no or normal EPS from
those that produce a truncated one with a pentasaccharide repeat
instead of an octasaccharide repeat (Kawaharada et al., 2015).
Although MTI/PTI at the cell surface is very effective, microbes
evolved virulence factors and apparatus for their delivery to the
host cells to modify or attenuate the original immune responses.
The type III secretion system (T3SS) of Gram-negative bacteria
including pathogens and symbionts is a complex multiprotein
secretion apparatus that actively exports effector proteins (T3
effectors) with diverse biochemical activities (Schreiber et al.,
2021) through the lumen of these tubular structures and directly
into the eukaryotic host cells. In rhizobia, proteins that are
either extracellular components of or secreted by the T3SS
apparatus are termed as Nops, nodulation outer proteins, and
are produced upon NF induction (Staehelin and Krishnan, 2015).
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The T3 effector proteins can be detected by intracellular receptors
of the plant immune system that are usually highly specific
in the effectors they recognize, an observation that led to
the gene-for-gene hypothesis (Flor, 1971). The recognition of
the effector results in a very robust immune response called
Effector Triggered Immunity (ETI), which is often culminated in
programmed cell death called hypersensitive response to halt the
spread of the pathogen.

Classical Resistance and Defense Proteins Determine
Symbiotic Incompatibility in Soybeans
The incompatibilities between soybean cultivars and specific
rhizobium strains that have been studied and described as gene-
for-gene interactions for a long time (Hayashi et al., 2012)
seem true to be determined by ETI. Four dominant genes of
soybean, Rj2 (Caldwell, 1966), Rj3 (Vest, 1970), Rj4 (Vest and
Caldwell, 1972), and Rfg1 (Trese, 1985) were described to prevent
nodulation with certain soybean-nodulating strains belonging
to the Bradyrhizobium and Sinorhizobium genera. The block of
these interactions takes place just after the first initial steps. Root
hair deformation and/or curling and cortical cell division can
be observed although in a lower number than in compatible
interactions, but ITs and nodule meristems are not formed
(Sadowsky et al., 1995; Yasuda et al., 2016). Analyses of rhizobial
mutants have revealed the important role of T3 effectors in the
determination of incompatibility with all the Rj2, Rj3, Rj4, and
Rfg1 soybeans because mutants defective in the T3SS, or the
production of certain effectors, could form functional nodules
on the roots of their incompatible hosts (Meinhardt et al., 1993;
Tsukui et al., 2013; Faruque et al., 2015; Tsurumaru et al., 2015;
Shobudani et al., 2020; Ratu et al., 2021a).

The Rj2, Rj4, and Rfg1 genes of soybean were identified by
map-based cloning with surprising results. The Rj4 gene codes for
a thaumatin-like protein (TLP), which belongs to the PR-5 family
of pathogenesis-related proteins (Tang et al., 2016), considered
as effectors to biotic (for example, fungal attack) and abiotic (for
example, osmotic shock) stresses. It was most probably evolved
by recent local gene duplication and diversification because both
Rj4 and rj4 plants harbor a gene coding for another thaumatin-
like protein, which is highly similar to Rj4 (only 13 amino acid
differences between the two proteins of 296 residues) but does
not cause incompatibility with B. elkanii strain USDA61, while
the second gene causing the incompatibility is present only in the
Rj4 plants. The fact that the Rj4 protein is not a classical receptor
protein is surprising and it will be intriguing to understand
how this thaumatin-like protein is involved in ETI to regulate
bacterial infection.

Another surprising and interesting result was that the
allelic variants of the same gene, Glyma16g33780 coding for
a toll-interleukin receptor/nucleotide-binding site/leucine-rich
repeat (TIR-NBS-LRR) resistance (R) protein are responsible for
the Rj2 and Rfg1 incompatibilities (Yang et al., 2010). It was
shown that a single amino acid difference, isoleucine versus
arginine at amino acid position 490 after the NBS domain
in the Rj2 and rj2 alleles, respectively, determines symbiotic
(in)compatibility (Sugawara et al., 2019). Polymorphism at five
amino acids in and after the sixth LRR domain of this R protein

differentiates the Rfg1 and rfg1 alleles (Yang et al., 2010), however,
systematic investigation of these differences to reveal the role
of the individual residues has not been conducted yet. All four
possible alleles (rj2/rfg1, Rj2/rfg1, rj2/Rfg1, and Rj2/Rfg1) of the
gene were constructed and shown to determine the expected
compatibility profile when transformed into a non-restrictive
(rj2/rfg1) soybean (Fan et al., 2017). A genome-wide association
study (GWAS) to identify natural variants in key loci that
regulate the compatibility between soybean and rhizobia, using
Chinese landraces and improved cultivars and B. diazoefficiens
strain USDA110 as inoculant, pinpointed and confirmed the
Glyma.02G076900 gene termed G. max Nodule Number Locus 1
(GmNNL1) coding for another TIR–NBS–LRR receptor protein
and carrying a SINE transposon in the compatible plants as the
determinant of the incompatibility (Zhang et al., 2021).

Role of the Type III Secretion System and Nodulation Outer
Proteins in Symbiotic Incompatibility With Soybeans
As for the bacterial side, the T3 effector NopP protein of strains
USDA122 and USDA110 were shown to be responsible for
the incompatibility with Rj2 and GmNNL1-positive soybeans,
respectively. Interestingly, if only three amino acids of USDA122
NopP are replaced by those of the compatible strain USDA110,
the compatibility with Rj2 cultivars is restored (Sugawara et al.,
2018). Such specificity has not been identified between the
Rfg1 allele-encoded protein and any of the T3 effectors in
strain USDA257. Lack of synthesis and/or secretion of the
T3 effectors leads to compatibility with soybeans carrying the
Rfg1 allele (Meinhardt et al., 1993) indicating that classical
ETI affects compatibility. Moreover, mutations disrupting the
gcvTHP operon coding for the elements of the glycine cleavage
system enables strain USDA257 to form nitrogen-fixing nodules
on Rfg1 soybeans (Lorio et al., 2010). The glycine cleavage
system is involved in the generation of C1 units in the form
of N5, N10-methylene tetrahydrofolate, that is used in a variety
of biochemical reactions, including the synthesis of purines,
histidine, thymine, and methionine as well as the formylation
of tRNAfMet already loaded with methionine. The gcvTHP
mutations do not affect the synthesis and secretion of the Nop
proteins in general, thus, further studies are required to elucidate
whether a putative decrease in the C1 pool has a direct or
indirect role. This putative decrease might affect, for example, the
T3SS/T3 effectors or decrease the amount of the innate immune
system activating formyl-methionine containing oligopeptides
released by damaged bacteria as described in mammalian systems
(Zhang et al., 2010).

The incompatibilities of B. elkanii strain USDA61 and
B. japonicum strain Is-34 with Rj4 soybeans are also dependent
on the T3SS because these hosts form an effective symbiosis with
the strains if their T3SS systems are non-functional (Faruque
et al., 2015; Tsurumaru et al., 2015). Moreover, mutations in four
genes coding for proteins (the RelA ppGpp synthetase; a cytosine
deaminase; a TerB family tellurite resistance protein; a substrate-
binding protein of an ABC transporter) that are not T3E effectors
but might affect T3SS synthesis and/or function also restored
compatibility (Nguyen et al., 2017). Indeed, it was recently shown
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that ppGpp synthetase deficient bradyrhizobia are not able to
activate the T3SS (Pérez-Giménez et al., 2021).

Type III Secretion System and Nodulation Outer Proteins
Can Both Restrict and Extend the Host-Range
The Nop proteins are indeed “double-edged swords” of rhizobia
(Staehelin and Krishnan, 2015) because they can restrict
nodulation on one host, while promoting interaction with
another plant. At present, it is not known why bacteria are
equipped with these effectors that can restrict their symbiotic
interactions. One possible explanation, which would be worth
investigating, is that these molecules facilitate the interactions
of the given strain with legumes of the natural flora where the
strain evolved, and their incompatibilities can be observed with
plants with different spatial origin. The B. elkanii strain USDA61
is incompatible not only with Rj4 soybeans but also with Vigna
radiata cultivar KPS1 and different Lotus accessions. As with
Rj4 soybean plants, these hosts form effective symbiosis with
USDA61 if its T3SS system and the above-mentioned four genes
are non-functional. This similarity suggests that the proteins
participate in a common mechanism contributing to nodulation
restriction in these legumes. Intriguingly, the lack of another
T3E Nop effector identified in the same screen as the four non-
Nops, a protein of unknown function termed InnB restored the
compatibility of the strain with Vigna radiata cultivar KPS1 but
not with Rj4 soybean, meaning that different effector proteins
might be recognized by the R proteins of the two plant species.
To further complicate the picture, the InnB deficient strain
proved to be less efficient than the wild-type bacterium when
the host was V. mungo (Nguyen et al., 2018). Similarly, the
T3SS had a positive impact on the symbiotic efficiency of the
B. vignae strain ORS3257 in V. unguiculata and V. mungo, but
it blocked symbiosis with V. radiata (Songwattana et al., 2021).
In line with the observations on the host-dependent effect of
InnB effector, T3SS-based incompatibility of strain USDA61, with
the diverse Lotus accessions, arrests the interaction at different
developmental stages. The L. japonicus Gifu inhibited infection
while L. burttii inhibited nodule maturation at the post-infection
stage, whereas both in L. burttii and L. japonicus MG-20, a nodule
early senescence-like response can be observed (Kusakabe et al.,
2020). It was shown that NopF and NopM were the effector
proteins that triggered the inhibition of infection and the nodule
early senescence–like response, respectively.

In general, the T3SS of a rhizobium strain may play both
positive and negative role or can be indifferent during nodulation
depending on the plant partner and, thus, may determine
(in)compatibility and host-range (Marie et al., 2001; Nelson and
Sadowsky, 2015; Songwattana et al., 2017). For example, in the
case of S. fredii strain NGR234 with extreme broad host range
(Pueppke and Broughton, 1999), abolition of the T3SS has no
effect on nodulation of V. unguiculata, but increased nodule
number on Pachyrhizus tuberosus and allowed to form effective
symbiosis instead of empty pseudo-nodules on Crotalaria juncea,
while the mutant strains formed fewer nodules on Tephrosia
vogeli, Lablab purpureus, and Flemingia congesta roots (Viprey
et al., 1998; Marie et al., 2003). Similarly, it was shown that the
NopC effector protein of S. fredii strain HH103 is beneficial for

the symbiosis with Glycine max and V. unguiculata (Jiménez-
Guerrero et al., 2015), but blocks nodulation with L. japonicus
(Jiménez-Guerrero et al., 2020). The T3SS of Mesorhizobium
loti strain MAFF303099 inhibits the interaction with Leucaena
leucocephala (Sánchez et al., 2009) and three Lotus species
(L. peregrinus var. carmeli, L. subbiflorus, and L. halophilus), while
having positive effect on the nodulation of L. corniculatus subsp.
frondosus and L. filicaulis (Okazaki et al., 2010). In addition, the
competitiveness of the T3SS mutants against the wild-type strain
also depends on the host. L. tenuis cultivars INTA Pampa and
Esmeralda have contrasting, while L. japonicus MG20 has no
strain preference (Sánchez et al., 2012).

Influence of Other Translocation Systems (T4SS and
T6SS) on Symbiotic Performance
Besides T3SS, only Type IV (T4SS) and Type VI (T6SS) Secretion
Systems have the ability to deliver effector proteins from bacteria
into the cytosol of eukaryotic cells and, thus, to affect their
interactions. Compared to T3SS, a relatively very low information
is available about the potential influence of T4SS and T6SS of
rhizobia on symbiotic performance and compatibility.

Most M. loti strains including R7A lack the genes coding for
the elements and effectors of T3SS, but contain genes coding for
a type 4 secretion system (T4SS) that can also deliver effectors
into target cells. Interestingly, as reported on the T3SS mutants
of M. loti strain MAFF303099, strain R7A T4SS mutants formed
large and bacteroid-containing effective nodules on Leucaena
leucocephala in contrast to the wild-type strain that could not
infect the plant, were delayed in nodulation, and less competitive
than the wild-type bacteria on L. corniculatus (Hubber et al.,
2004). Based on this similarity in the phenotypes, the authors
concluded that the type IV and type III system are inter-
changeable and over the course of evolution, rhizobia can adopt
either type. Among sinorhizobia nodulating, only Medicago,
Trigonella and Melilotus species, the presence of T4SS is quite
widespread, while T3SS have been detected in a small number of
S. meliloti strains and no T6SS coding genes have been shown to
be present in the S. meliloti and S. medicae genomes (Sugawara
et al., 2013). Abolition of T4SS function in one strain of both
species revealed no, as well as positive and negative, effects on
the symbiosis depending on host inoculated.

The pRL1JI (pRle248a) symbiotic plasmid carries the
nodulation and nitrogen fixation genes of R. leguminosarum bv.
viciae strain 248, a symbiotic partner of Pisum, Vicia, and Lens
species. Introduction of pRL1JI into R. leguminosarum bv. trifolii
strain RCR5, from which its symbiotic plasmid had been cured,
resulted in a strain, which could form effective symbiosis with
Vicia sativa but failed to infect V. hirsuta and pea (Roest et al.,
1997). A transposon insertion mutant that is able to establish
nitrogen-fixing symbiosis with the two incompatible hosts led
to the identification of a gene cluster that later turned out to
code for the T6SS of R. leguminosarum bv. trifolii strain RCR5
(Bladergroen et al., 2003). In contrast to pea, the Type VI
Secretion Systems of Rhizobium etli Mim1 (Salinero-Lanzarote
et al., 2019) and Bradyrhizobium sp. LmicA16 (Tighilt et al., 2021)
have a positive and essential role in developing effective symbiosis
with Phaseolus and Lupinus species, respectively.
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Effectors to Promote Symbiosis in the Absence of
Nodulation Factors and Nodulation Factors
Perception
In the majority of cases, nodule development in legume plants
is initiated by the bacterial NFs that are recognized by plasma
membrane receptors of the plant. It was, however, shown that
certain photosynthetic bradyrhizobia, such as Bradyrhizobium
sp. BTAi1 and ORS278, do not produce NFs because they have
no nodABC genes, but they are able to still form nodules on
the stem of certain Aeschynomene species, such as A. indica,
A. evenia, and A. sensitive, which are exclusively nodulated
by photosynthetic bradyrhizobia (Giraud et al., 2007). This
surprising discovery was conformed when a nodB mutant of
Bradyrhizobium sp. ORS285 could form nodules on these plants,
while it could not establish symbiosis with other host species
(for example, A. afraspera) that are stem-nodulated by both
non-photosynthetic and photosynthetic strains. Searching for
the genetic determinants required to induce nodule formation
in the absence of NFs by transposon insertion mutagenesis
has not revealed any essential genes indicating the likely
redundancy of currently unknown functions involved in nodule
induction (Bonaldi et al., 2010). Despite the NF independent
nodule formation, nodulation of A. evenia requires the activity
of the common symbiosis signaling pathway because if the
genes coding for the Symbiosis Receptor Kinase (SYMRK), the
Ca2+/calmodulin-dependent kinase (DMI3) or the cytokinin
receptor histidine kinase (LH1/CRE1) were silenced, nodule
formation was inhibited (Fabre et al., 2015).

Even NF-dependent hosts can be nodulated in the absence
of NFs and NF perception. NFR1-deficient mutants of soybean
varieties Enrei and Clark formed nodules when inoculated with
B. elkanii strain USDA61 even if its NF production was abolished
by a mutation in the nodC gene, providing the T3SS was
functional (Okazaki et al., 2013). Root-hair curling and ITs were
not observed in the roots and nodules formed on the NF receptor
mutants, indicating that T3SS is involved in crack entry or
intercellular infection. Similarly, USDA61 could form (though
ineffective) nodules on NF-independent Aeschynomene species
in a T3SS-dependent manner, however, not all the species or all
ecotypes of A. evenia were nodulated by USDA61. These results
prompted an investigation to determine whether other non-
photosynthetic bradyrhizobia are able to induce nodules on these
Aeschynomene plants, and whether such nodulation depends
on the T3SS (Okazaki et al., 2016). The authors observed a
whole spectrum of responses from no nodule formation through
uninfected and infected ineffective nodules to nitrogen-fixing
interactions. while the invasion of nodules happened through
both intercellular and root hair infection.

The efficiency of the more intimate interaction between strain
ORS3257 and NF-independent Aeschynomene accessions showed
plant-determined natural variations (such as disturbed bacteroid
differentiation and nitrogen fixation) and the nodule formation
also depended on T3SS activity. In contrast, the genome of most
photosynthetic bradyrhizobia does not contain genes coding
for the T3SS and T3Es, and if it contains, as the case with
strain ORS285, this translocation system is not required for
NF-independent symbiosis, meaning that two mechanisms to

induce nodules exists; one depends on T3SS, while the other
uses a so far unknown activity. The T3SS of ORS285, however,
contributes to the NF-dependent nodulation although it affects
the efficiency, but not equally in all plants. The T3SS mutation
had no consequences on certain NF-dependent hosts, but had
positive (more nodules) or negative (less nodules) effect on
others. To determine which T3Es of strains ORS3257 and
USDA61 are responsible for the induction of NF-independent
nodule formation on Aeschynomene species and the nfr1 mutant
soybean, respectively, mutants deficient in genes coding for
the T3Es were inoculated on the corresponding partners. The
ORS3257 mutants showed a wide variety of phenotypes (Teulet
et al., 2019). One mutation increased both nodulation and
nitrogen fixation, two mutations led to reduced number of
nodules, some of which displayed large necrotic zones, and the
nodules induced by two other mutants contained no bacteria.
A strain with mutation in an effector gene termed ernA
for “effector required for nodulation-A” and widely conserved
among bradyrhizobia lost the capacity for nodule formation, not
only in ORS3257 but also in strain USDA61. Introduction of the
ernA gene into a Bradyrhizobium strain, which does not have an
ernA gene and is unable to nodulate Aeschynomene species in
an NF-independent manner, despite the presence of a functional
T3SS, enabled the transconjugant to form nodules. Moreover,
the nucleus targeted ErnA protein, if ectopically produced in
A. indica roots, activated organogenesis of root- and nodule-
like structures.

The Bel2-5 effector of strain USDA61 that resembles the
XopD effector of the plant pathogen Xanthomonas campestris was
shown by both loss-of-function and gain-of-function approaches
to enable the nfr1 mutant of soybean cultivar Enrei to form
nodules (Ratu et al., 2021b). The same effector causes restriction
of nodulation on soybeans carrying the Rj4 allele, and it
was shown by mutational analysis that most of its predicted
domains were essential for both NF-independent nodulation and
nodulation restriction (Ratu et al., 2021a).

Summary
As pathogenic bacteria, some rhizobia equipped themselves with
effector molecules that can modify the functioning of plant cells
and with the delivery machinery to translocate these effectors into
the partners’ cells. These effector molecules sometimes facilitate
more efficient interaction with certain plants and, thus, extend
host-range or overcome the lack of NFs/NF recognition, but
in other interactions, they trigger plant defenses, which arrest
the interaction.

Natural Variations Affecting Bacteroid
Development, Persistence, and Function
Does Outer Membrane Composition Affect
Nodule-Specific Cysteine-Rich Peptide-Induced
Terminal Bacteroid Differentiation?
Legumes in the dalbergioid and inverted repeat-lacking clades
of the Papilionoideae subfamily produce NCR and NCR-like
peptides to impose terminal bacteroid differentiation on their
bacterial partners (Figure 2). In the IRLC species, there was a
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positive correlation between the degree of bacteroid elongation
and the number of the expressed NCRs, but the process can
be affected by the inoculant. When the basal IRLC legume
Glycyrrhiza uralensis producing seven NCR peptides is inoculated
with Mesorhizobium tianshanense HAMBI3372, bacteroids show
the signs of terminal bacteroid differentiation, such as increased
cell size and decreased cell division capacity (Montiel et al.,
2016), but the bacteroids of S. fredii strain HH103 are not
terminally differentiated in the nodules of this plant (Crespo-
Rivas et al., 2016). Interestingly, the electrophoretic profile of
the LPSs, especially in the O-antigen containing S(mooth)-LPS
region, was markedly different from that of cultured cells when
the bacteroids were isolated from G. uralensis nodules, whereas
it was indistinguishable when bacteroids were isolated from
soybean or pigeon pea. Whether this LPS modification or/and
the observed decreased sensitivity toward the antimicrobial
activity of cationic NCR peptides are responsible for the lack
of terminal bacteroid differentiation remains to be elucidated
(Crespo-Rivas et al., 2016).

Co-evolution of the BacA Peptide Transporters With
Host Peptides
The bacA gene coding for a peptide transporter plays an essential
role in bacteroid development and survival in those rhizobia
that form nodules on NCR peptide producing IRLC legumes,
such as pea and alfalfa. In contrast, the orthologous sequence
is dispensable when plants such as Lotus not having NCRs
are infected (Kereszt et al., 2011). Although the BacA proteins
of different rhizobia play the same role during the terminal
differentiation of bacteroids, it turned out that bacA genes from
S. fredii or R. leguminosarum bv. Viciae 3841 failed to restore
the Fix+ phenotype of an S. meliloti bacA mutant on M. sativa,
however, they allowed for further developmental progression
before a loss of viability (diCenzo et al., 2017). Interestingly, the
same genes could complement the mutant when Melilotus albus
was the host and the S. meliloti bacA gene could complement
the symbiotic defect of the R. leguminosarum bv. Viciae mutants
during nodule development on pea roots. The authors showed
that the S. meliloti BacA has rapidly diverged from the other
rhizobial proteins and suggested that it most probably has
evolved toward a specific interaction with Medicago (NCR
peptides). This suggestion is in agreement with the observation
that, although NCR peptides have a single origin, their evolution
has followed different routes in individual IRLC legume lineages
(Montiel et al., 2017).

Differential Role of the BclA Peptide Transporter of
Bradyrhizobia
As described in a previous chapter, the Dalbergoid clade
contains Aeschynomene species with either NF-dependent or NF-
independent nodulation ability. A comparative study using the
Bradyrhizobium strain ORS285, which can nodulate both types of
plants, revealed that bacteria enter plant tissues via intercellular
infection mechanism, and the division and development of
infected founder cells give rise to the nodule tissues, where
bacteria go through a terminal differentiation program (Bonaldi
et al., 2011). Later it was shown that NCR-like peptides govern

the terminal bacteroid differentiation in these species too, which
is completed as spherical morphotype in the NF-independent
species and as elongated bacteroids in NF-dependent species
(Czernic et al., 2015). The differentiation of both S and E
morphotype bacteroids requires the activity of the peptide
transporter BclA, a homolog of S. meliloti BacA, both implicated
in the transport of the NCR(-like) peptides, although it is required
for the survival of bacteria only in the NF-independent plants
(Guefrachi et al., 2015). Interestingly, B. diazoefficiens strain
USDA110, the soybean model symbiont can nodulate the NF-
dependent Aeschynomene species, however, the nodulation is
associated with atypical bacteroid differentiation showing the
signs of both the terminal and non-terminal developments
and with suboptimal symbiotic efficiency (Barrière et al., 2017;
Nicoud et al., 2021). The size and DNA content of the bacteroids
in the Aeschynomene nodules and the requirement, more
precisely, the indifference of the BclA protein during bacteroid
differentiation were the same as in the soybean nodules, while the
membrane permeability of the bacteroids is more similar to that
of the ORS285 bacteroids.

Strain Discrimination With Nodule-Specific
Cysteine-Rich Peptides
The S. meliloti strains A145 and Rm41 form ineffective symbiosis
with M. truncatula cv. Jemalong (Tirichine et al., 2000; Liu
et al., 2014), while their interactions with other ecotypes, such
as DZA315.16 or A20, is normal. Jemalong nodules are invaded
by these strains, even bacteroid differentiation and nif gene
induction takes place at 7 days post-inoculation (dpi), but
the elongated bacteroids are eliminated (14 dpi), and only
saprophytic bacteria remain in the older nodules at 21 dpi
(Wang et al., 2017). Surprisingly, dominant allelic variants of
two genes termed NFS1 and NFS2 (nitrogen fixation specificity)
coding for NCR peptides function as a negative regulator of
symbiotic persistence (Wang et al., 2017, 2018; Yang et al., 2017).
The NCRs were shown not only to be positive regulators of
bacteroid development and persistence (Van de Velde et al.,
2010; Horváth et al., 2015; Kim et al., 2015), but the cationic
peptides also have antimicrobial activity (Van de Velde et al.,
2010; Tiricz et al., 2013). Although the NCR variants from
the incompatible host possess stronger antimicrobial activity
than those from the compatible plants, the differences in the
bactericidal activity do not correlate with and are not responsible
for the in planta function because the responses of a compatible
strain are similar. The bacterial targets of the peptides and
the genetic determinants of the incompatibility in the bacteria,
however, remain to be identified.

A Peptidase, Which Can Cleave Nodule-Specific
Cysteine-Rich Peptides, Causes Incompatibility
Crook et al. (2012) described several accessory plasmids that
restrict nodule development, cause impaired symbiotic nitrogen
fixation, and enhance host invasion. One of these plasmids was
reported to encode the HrrP metallopeptidase that is responsible
for the symbiotic incompatibility with some host plants (Price
et al., 2015). This enzyme was shown to cleave NCR peptides
in vitro, although with different efficiency, suggesting some
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level of NCR peptide substrate selectivity. Bacteroids in the
nodules—that are much smaller than normal, most probably
because of the loss of meristem persistence—on the incompatible
host plant develop normally and express the nif genes but
in older cells, they appear to fragment and to degenerate. In
addition, the saprophytic rhizobial population in both compatible
and incompatible nodules is significantly larger. One possible
explanation for these phenotypes is that the peptidase cleaves
NCR peptides/peptide variants, both those that are required for
bacteroid persistence and those that have antibacterial activity.
This cleavage activity might be more efficient on the peptides
of the incompatible ecotypes leading to bacteroid senescence. On
the other hand, cleaving the cationic peptides that would restrict
the cheaters might increase the saprophytic population.

Host-Specific Regulation of Nitrogen Fixation Genes
in Clovers
Strains of R. leguminosarum bv. trifolii (such as ICC105), able
to form effective nodules on Trifolium ambiguum (Caucasian
clover), form bacteroid containing but ineffective nodules on
T. repens (white clover), whereas strains (for example, NZP514)
that form effective nodules on white clover usually do not
nodulate Caucasian clover. It was shown (Miller et al., 2007)
that the nifHDKEN, fixABCX, and, probably, the NifBfdxNfixU
operons of strain ICC105 are not induced in the white clover
nodules that were not caused by the lack of nifA expression or
NifA function. Rather, it is supposed that the intergenic region
between the nifH and fixA genes might be bound not only by
the canonical transcription factors NifA and RpoN, but also
by additional host-specific regulatory elements. This proposed
protein might bind upstream of the NifA binding sites either in
response to or in the absence of a host-specific signal and interacts
with NifA to prevent it from activating the expression of the
nif/fix operons.

Summary
Certain host plants impose terminal bacteroid differentiation on
their rhizobial partners with the help of NCR(-like) peptides
produced in the infected nodule cells. The NCRs are required not
only for bacteroid differentiation, persistence, and functioning,
but are also used for strain discrimination and elimination.
Bacteria might counteract the effects of NCRs by producing a
modified outer membrane or a peptidase cleaving the peptides.
Some of these peptides possess antibacterial activity, which is
attenuated by the BacA/BclA peptide transporters to a different
extent in different hosts that show only limited interchangeability
between bacteria infecting legumes with diverse peptide profiles.
It is not known whether NCRs or other factors are responsible
for the host-specific activation of the nitrogen-fixation genes in
nodules of clovers.

PARTNER-DEPENDENT
MANIFESTATION OF MUTATIONS

The majority of the genes required for the development and
function of nitrogen-fixing nodules were identified by forward

genetics studies when the failure of the mutants in establishing
effective symbiosis indicated their essentiality in the interaction.
Intriguingly, there are cases, apart from bacterial T3SS effectors
and ETI elements, when a mutation manifested in the arrest
of the interaction at a certain developmental stage with one
partner, whereas in no disturbance or halt in another stage with
another partner(s).

Host Plants Put Different Levels of Stress
on Their Partners
The production of NFs and exopolysaccharides are controlled
by complex regulatory networks including the stringent
response, which induces a physiological change in response
to adverse growth conditions/stress and can also control
bacterial development, virulence using guanosine tetra- and
penta-phosphate (ppGpp) as effector molecules (Wells and Long,
2002). The relA-deletion mutant of S. meliloti incapable of ppGpp
synthesis fails to nodulate M. sativa because of the early arrest
in IT development and meristem formation, but successfully
infects M. truncatula although bacteroids have disorganized
positioning within nodule cells and reduced nitrogen-fixation
capacity in this host (Wippel and Long, 2019). The mutant seems
to produce NFs and EPS in a higher amount than the wild-type
cells and these elevated levels might be inhibitory for alfalfa
and neutral or even stimulant in barrel medic. Transcriptomic
changes in the mutant upon luteolin induction also pointed
to other stress regulatory processes, such as osmoregulation,
that might also affect the infection process. In the nodules of
M. truncatula, the number of differentially expressed bacterial
genes are rather low, however, the upregulation of numerous
transcripts related to metabolism and transcriptional regulation
depends on RelA, indicating that full metabolic adaptation to the
nodule environment and, as a direct or indirect consequence,
the normal bacteroid organization and nitrogen fixation might
require RelA function.

Mutation in another stress-related gene of S. meliloti, typA,
coding for a ribosome-binding GTPase acting at the level of
protein synthesis, was shown to be involved not only in stress
adaptation, but to be required for the establishment of nitrogen-
fixing symbiosis on certain Medicago hosts (Kiss et al., 2004).
The mutant formed efficient nodules on different M. sativa
cultivars, with only ∼20% decrease in shoot dry weight of some
lines and with M. truncatula ecotype DZA315.16. In contrast,
it formed Fix− nodules on ecotypes Jemalong and F83005,
however, the nodules on the former were small and devoid of
bacteroids, while no obvious differences in nodule occupancy
between the wild-type and mutant bacteria-induced F83005
nodules could be observed. The TypA and related proteins in
other bacteria are required for the adaptation to several stresses
under different conditions. Rhizobia must adapt to ever-changing
physiological conditions such as pH, ion composition, osmotic
concentration, oxidative stress, or plant defense reactions during
nodule invasion and bacteroid differentiation. These conditions,
which are most probably different in each host plant, may explain
why TypA is not required equally on the investigated hosts.
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The Severity of a Carbon Metabolism
Defect Depends on the Host Plant
Energy and carbon sources for bacteria in the nodule cells
are provided in the forms of the TCA-cycle intermediary
C4-dicarboxylates, succinate, fumarate, and malate that
necessitate the activity of gluconeogenesis to generate
intermediates for growth and metabolism. The first step of
gluconeogenesis, the decarboxylation and phosphorylation of
the TCA-cycle intermediate oxaloacetate is catalyzed by the
phosphoenolpyruvate carboxykinase (PEPCK) enzyme. The
effect of a mutation in the pck gene coding for PEPCK in S. fredii
strain NGR234 on nodule development and nitrogen fixation
was shown to depend on the host inoculated with the mutant
(Osteras et al., 1991). The determinate nodule-forming plants,
Macroptilium atropurpureum and V. unguiculata formed fewer
nodules when inoculated with the mutant as compared to the
wild-type that provided very low or no gain in plant biomass
attributable to the symbiosis. On Leucaena leucocephala forming
indeterminate nodules, the mutant induced an excess number
of nodules that had 60% of wild-type efficiency of symbiotic
nitrogen fixation. In all nodules harboring the mutant, the
number of infected cells was lower compared to that observed
in NGR234 induced nodules. One possible explanation for
the variability of symbiotic efficiency is that different carbon
source availability might be provided by a given plant during
the invasion, bacteroid development, and nitrogen-fixation
that would determine the relative importance of the bacterial
gluconeogenesis pathway.

Plant Mutations Cause Bacteroid
Senescence Only for Certain Strains
The forward genetic screen of M. truncatula Tnt1 insertion
mutants using S. meliloti strain 1021, as inoculant identified
the npd1-1 mutant (line NF4608), which formed Fix− nodules,
arrested at an early developmental phase, just after bacteria
are released from the ITs (Pislariu et al., 2019). The released
rhizobia start to elongate but fail to differentiate into functional,
nitrogen-fixing bacteroids, rather, they go through a degradative
senescence process most probably caused by the activation
of plant defense responses. Interestingly, strain Rm41 induces
functional, nitrogen-fixing nodules that can support plant growth
as in wild-type plants. The mutation abolishes the function of
a symbiotically expressed gene termed NPD1 (Nodule-specific
PLAT Domain) coding for a small protein localized in the
endoplasmatic reticulum (ER) and symbiosomes, but not co-
localized with Golgi. It is supposed that NPD1 with other ER-
localized proteins suppresses rhizobium induced plant defense
reactions. How and why the hosts discriminate against bacterial
strains remains to be elucidated.

The L. japonicus apn1 (sym104) mutants, when inoculated
with Mesorhiozobium loti strain TONO, display severe nitrogen
deficiency symptoms and form small white nodules, in which
the early senescence of nodule cells and the bacteroids
therein can be observed (Yamaya-Ito et al., 2018). This
senescence was manifested in a decrease in bacteroid density,

abnormal enlargement, and irregular shapes of symbiosomes,
the presence of lytic vacuoles, and disintegration of infected
cells. Interestingly, not all the M. loti strains induce Fix−
nodules on the mutant plants; out of the nine strains tested
five bacteria, including strain MAFF303099, formed effective
pink nodules. The mutations in Lotus disrupt a symbiosis-
specific late nodulin gene coding for a secreted aspartic
peptidase enzyme termed ASPARTIC PEPTIDASE NODULE-
INDUCED 1 (APN1). Random mutagenesis of strain TONO
identified the causal gene termed DCA1 (Determinant of nitrogen
fixation Compatibility of APN1) causing the incompatibility
that encodes an active autotransporter, one of the proteins
also known as the Type V protein secretion system found
in Gram-negative bacteria (Shimoda et al., 2020). The protein
contains an N-terminal secretion signal peptide, a C-terminal
autotransporter β-domain, and 43 divergent glycine-rich repeats
of 44–53 amino acids. Autotransporters cleave a part of their
protein known as the passenger domain and transport it
through the outer membrane to the outside of the cell and
the whole length of this passenger domain with all glycine-
rich repeats is required for its activity. It was shown that the
APN1 protein can degrade the DCA1 protein under the acidic
conditions required for the activity of aspartic peptidases. The
phenotypic dissimilarity caused by the different strains producing
orthologous, basically identical autotransporter is determined by
the expression differences of the gene in the bacteria, i.e., DCA1
promoter-GUS activity in wild-type and apn1 mutant nodules
was negligible in strain MAFF303099 and high in strain TONO.
It is proposed that strain TONO produces a higher amount
of the effector protein than MAFF303099 that is degraded by
the APN1 aspartic peptidase in the wild-type plant. In the
mutant plants, however, the effector is not degraded and is able
to induce the expression of cysteine protease genes leading to
suppression of nodule maturation and initiation of senescence,
while the amount of DCA1 from MAFF303099 is not enough
for the induction.

Summary
Bacteria face diverse levels of stresses and defense responses, as
well as metabolite availability and composition, in different wild-
type and mutant plants. The ability of wild-type and mutant
bacteria to respond and adapt to those conditions is not the
same in different strains, and that is manifested in phenotypic
variations. These phenotypic variations will allow us to reveal
what causes the differences.

CONCLUSION AND PERSPECTIVES

Exploring natural variations has already facilitated the
recognition of important determinants of symbiotic nodule
initiation, development, and function, such as the identification
of the LysM2 domain of NFR5 as a potential binding site for the
bacterial NFs or recognition of the role of T3SS, Type3 effectors,
and ETI in partner selection or revealing that NCR peptides,
not only direct the terminal differentiation and persistence
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of bacteroids, but also participate in partner discrimination
and selection. These examples as well as the results with
mutants showing multiple phenotypes depending on the hosts
suggest that it is worth to reinvestigate the already existing
mutants with other symbiotic partners and identify the genetic
determinants behind the phenotypic differences in both wild-
type and mutant interactions. The agricultural productivity of
legume crops depends on their interaction, i.e., (in)compatibility
with the rhizobia resident or introduced as inoculum in the
soils that is also affected by the competition of the different
strains. Similarly, engineering nitrogen-fixing non-legume crops
in the future, as well as their cultivation on the field, requires
the knowledge of the details and fine-regulation of the symbiotic
process. The results of studies on natural variations will identify
the determinants of symbiotic (in)compatibility and reveal the
fine details that exist in the regulation of the interaction,
thus, may contribute to the implementation and realization
of the plans aiming at the development of novel crops for
sustainable agriculture.
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Plant cell differentiation is based on rearrangements of the tubulin cytoskeleton; this is
also true for symbiotic nodules. Nevertheless, although for indeterminate nodules (with a
long-lasting meristem) the organization of microtubules during nodule development has
been studied for various species, for determinate ones (with limited meristem activity)
such studies are rare. Here, we investigated bacteroid morphology and dynamics
of the tubulin cytoskeleton in determinate nodules of four legume species: Glycine
max, Glycine soja, Phaseolus vulgaris, and Lotus japonicus. The most pronounced
differentiation of bacteroids was observed in G. soja nodules. In meristematic cells
in incipient nodules of all analyzed species, the organization of both cortical and
endoplasmic microtubules was similar to that described for meristematic cells of
indeterminate nodules. In young infected cells in developing nodules of all four species,
cortical microtubules formed irregular patterns (microtubules were criss-crossed) and
endoplasmic ones were associated with infection threads and infection droplets.
Surprisingly, in uninfected cells the patterns of cortical microtubules differed in nodules
of G. max and G. soja on the one hand, and P. vulgaris and L. japonicus on the other.
The first two species exhibited irregular patterns, while the remaining two exhibited
regular ones (microtubules were oriented transversely to the longitudinal axis of cell) that
are typical for uninfected cells of indeterminate nodules. In contrast to indeterminate
nodules, in mature determinate nodules of all four studied species, cortical microtubules
formed a regular pattern in infected cells. Thus, our analysis revealed common patterns
of tubulin cytoskeleton in the determinate nodules of four legume species, and species-
specific differences were associated with the organization of cortical microtubules in
uninfected cells. When compared with indeterminate nodules, the most pronounced
differences were associated with the organization of cortical microtubules in nitrogen-
fixing infected cells. The revealed differences indicated a possible transition during
evolution of infected cells from anisotropic growth in determinate nodules to isodiametric
growth in indeterminate nodules. It can be assumed that this transition provided an
evolutionary advantage to those legume species with indeterminate nodules, enabling
them to host symbiosomes in their infected cells more efficiently.

Keywords: legume–rhizobial symbiosis, microtubules, symbiosome, bacteroid, determinate nodules, Glycine
spp., Phaseolus vulgaris, Lotus japonicus
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INTRODUCTION

Legumes have a symbiotic relationship with rhizobia through
the formation of nitrogen-fixing nodules. Nodule formation
involves different molecular-genetic and cellular mechanisms,
one of which is cytoskeleton reorganization. In plants, the tubulin
cytoskeleton is involved in various processes of cell development
and function (Kost et al., 1999). Endoplasmic microtubules are
involved in cell division (Li et al., 2015), organelle movement,
and intracellular transport (Peña and Heinlein, 2013). At
the same time, cortical microtubules (underlying the plasma
membrane) are involved in cell wall formation and determine
the shape of the cell (Wasteneys, 2004; Paradez et al., 2006;
Bashline et al., 2014).

It has been clearly demonstrated that active cytoskeleton
rearrangements are required at different stages of nodule
development (Timmers, 2008; Genre and Timmers, 2019;
Tsyganov et al., 2019). Symbiotic nodules can be subdivided into
two main types: indeterminate and determinate (Hirsch, 1992).
The nodules of the first type are characterized by a prolonged
functioning of the meristem, while in nodules of the second
type, the meristem activity is transient. Differences in the activity
of meristems lead to differences in the structure of nodules.
Histological zonation is characteristic of indeterminate nodules,
while it is absent in determinate ones (Guinel, 2009). As a result,
indeterminate nodules are characterized by an elongated shape,
while determinate nodules are spherical.

The mechanisms of organogenesis of determinate and
indeterminate nodules also differ. Thus, in indeterminate
nodules, the infection thread reaches the cells of the nodule
primordium, which is formed as a result of the induction
of cell division in the pericycle and inner cortex (Timmers
et al., 1999). In determinate nodules, the infection thread
reaches the outer (in Glycine max nodules) or middle (in
Lotus japonicus nodules) cortex, which is located in the
vicinity of the infected root hairs (van Spronsen et al., 2001).
Involvement of the tubulin cytoskeleton during the early
stages of infection thread growth has been demonstrated for
nodules of both types (Timmers et al., 1999, 2007; Sieberer
et al., 2005; Vassileva et al., 2005; Perrine-Walker et al., 2014).
For Medicago sativa and M. truncatula nodules, reorientation
of microtubules in cells of the inner cortex during nodule
primordium formation has been described (Timmers et al., 1999).
In mature indeterminate nodules, the important role of tubulin
(Kitaeva et al., 2016) and actin cytoskeletons (Zhang et al., 2019)
in infection thread and infection droplet development has been
clearly demonstrated.

After being released from infection droplets into the
cytoplasm of the plant cell, bacteria differentiate into bacteroids,
while they are separated from the cytoplasm by the symbiosome
membrane, forming organelle-like symbiosomes (Coba de la
Peña et al., 2018; Tsyganova et al., 2018). In many legume species
indeterminate nodules are characterized by strong morphological
differentiation of bacteroids, which may even be terminal
(Mergaert, 2020). At the same time, differentiation of bacteroids
in determinate nodules is less morphologically pronounced.
For example, bacteroids of L. japonicus strongly resemble

free-living bacteria (Szczyglowski et al., 1998). A striking
feature of bacteroids in determinate nodules is their ability
to divide, which leads to the formation of symbiosomes
containing several bacteroids. It has been shown for G. max
that the juvenile symbiosome contains one bacteroid, while
the mature symbiosome contains 2–4 bacteroids (Fedorova
et al., 1999). Symbiosomes containing several bacteroids
are also described for Phaseolus vulgaris (Cermola et al.,
2000), L. japonicus (Szczyglowski et al., 1998), and G. soja
(Temprano-Vera et al., 2018).

In both types of nodules, the number of symbiosomes in
infected cells is crucially increased. The hosting of symbiosomes
in infected cells recruits both tubulin (Kitaeva et al., 2016,
2021; Tsyganova et al., 2021) and actin cytoskeletons (Gavrin
et al., 2015; Zhang et al., 2019). The detailed analysis of tubulin
organization in the nodules of six different legume species
forming indeterminate nodules revealed that endoplasmic
microtubules are spread between symbiosomes and are organized
in two main patterns: regular and irregular ones, corresponding
to ordered or disordered distribution of symbiosomes (Kitaeva
et al., 2016, 2021; Tsyganova et al., 2021). The regular pattern
is common for infected cells in M. truncatula and Galega
orientalis nodules, whereas the irregular one is a prerequisite
for Cicer arietinum and Pisum sativum infected cells; finally,
an intermediate pattern is characteristic of Vicia sativa and
Glycyrrhiza uralensis infected cells. It has been suggested that the
pattern of endoplasmic microtubules correlates with bacteroid
size and shape (Kitaeva et al., 2021).

The accommodation of thousands of symbiosomes in
the infected cell requires plant cell differentiation that is
accompanied by a significant increase in cell volume in both
determinate and indeterminate nodules (Tsyganova et al.,
2018). It is known that the cortical tubulin cytoskeleton
is involved in the determination of type of cell growth.
Cortical microtubules that are oriented transverse to the cell
growth axis determine anisotropic cell growth, whereas irregular
orientation of cortical microtubules leads to isodiametric cell
growth (Crowell et al., 2010; Hamada, 2014). In indeterminate
nodules of six legume species the transverse orientation
of cortical microtubules is a prerequisite for anisotropic
growth of uninfected cells and colonized cells (with infection
threads and droplets but without bacterial release). However,
bacterial release leads to irregular orientation of cortical
microtubules, which provides a possibility for isodiametric cell
growth that allows a notable increase in cell size for the
hosting of numerous symbiosomes (Kitaeva et al., 2016, 2021;
Tsyganova et al., 2021).

It is necessary to note that involvement of the cytoskeleton,
specifically microtubules, is poorly studied in determinate
nodules; there is just one description of microtubular
organization in G. max nodules (Whitehead et al., 1998).
The aim of this study was to compare the organization of
the tubulin cytoskeleton in four legume species that form
determinate nodules, in order to compare the identified patterns
with those in indeterminate nodules. Such an analysis should
make it possible to reveal both general patterns and typical
differences in the development of nodules of the two types.
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MATERIALS AND METHODS

Plant Material and Bacterial Strains
Seeds of Glycine max (L.) Merrill accession K-5892 Fiskeby V
and Glycine soja Siebold & Zucc. accession K-11570 from the
collection of the Federal Research Center N. I. Vavilov All-
Russian Institute of Plant Genetic Resources (VIR) were kindly
provided by Dr. Margarita Vishnyakova. Seeds of Lotus japonicus
(Regel) K. Larsen accession B-129 “Gifu” (Jiang and Gresshoff,
1997) were kindly provided by Prof. Jens Stougaard, Aarhus
University, Denmark. For Phaseolus vulgaris L. cv “Supernano”
commercial seeds were used.

Seeds were sterilized in concentrated sulfuric acid for
5 min (G. max, G. soja, P. vulgaris) or 1 min (L. japonicus).
After sterilization, the seeds were washed with sterile water
10 times and germinated at 28◦C. Seeds of G. soja were
scarified with a scalpel (Pueppke, 1983), prior to leaving for
germination. Seeds of L. japonicus were germinated under full-
light conditions. For inoculation, the following strains from the
Russian Collection of Agricultural Microorganisms (All-Russia
Research Institute for Agricultural Microbiology) were used:
Bradyrhizobium liaoningense RCAM04656 (G. max and G. soja),
Rhizobium leguminosarum bv. phaseoli RCAM2624 (P. vulgaris),
and Mesorhizobium loti RCAM1804 (L. japonicus). Seedlings
were inoculated with the corresponding rhizobia strain, using
1 ml of an aqueous suspension containing 107–108 cells per seed.

Plants were grown in sterile vermiculite wetted with
nitrogen-free nutrient solution (Fåhraeus, 1957), in an
MLR-352H growth chamber (Sanyo Electric Co., Ltd.,
Moriguchi, Japan) under controlled conditions: day/night,
16/8 h; temperature 21◦C; humidity 75%; and illumination
280 µmol photons m−2 s−1). The nodules were harvested at
days 10, 14, and 21 after inoculation.

Microscopy
Electron Microscopy
The nodules for electron microscopy were harvested at day
21 after inoculation. The electron microscopy protocol was
as previously described (Serova et al., 2018). Samples were
embedded in Epon (Honeywell FlukaTM, Fisher Scientific,
Loughborough, United Kingdom). For transmission electron
microscopy, ultrathin sections were cut on a Leica EM UC7
ultramicrotome (Leica Microsystems, Vienne, Austria). The
nodule tissues were examined and photographed under a JEM-
1400 transmission electron microscope (JEOL Corporation,
Tokyo, Japan) at 80 kV.

For scanning electron microscopy, nodules were prepared as
previously described (Tsyganova et al., 2021). The samples were
observed in a Tescan MIRA3 LMU scanning electron microscope
(Tescan, Brno, Czech Republic) at 9 kV.

Immunolocalization and Laser Scanning Confocal
Microscopy
Visualization of microtubules was performed as previously
described (Kitaeva et al., 2016). Some modifications that
are necessary according to the specificity of every species

(Kitaeva et al., 2018) were made. For each species, an optimally
composed fixing solution was selected and used. Nodules of
G. max, G. soja, and P. vulgaris were fixed in 1/5 microtubule
stabilizing buffer (MTSB) (50 mM PIPES, 5 mM MgSO4·7H2O,
5 mM EGTA, pH 6.9) containing 3% formaldehyde, 0.25%
glutaraldehyde, 0.3% Tween-20, 0.3% Triton X-100; L. japonicus
nodules were fixed in 1/10 MTSB containing 3% formaldehyde,
0.25% glutaraldehyde, 0.3% Tween-20, 0.3% Triton X-100,
10% dimethyl sulfoxide. Nodule longitudinal sections were
made using a microtome with a vibrating blade HM650V
(Microm, Walldorf, Germany). Immunolocalization of the
tubulin cytoskeleton, infection droplets, infection threads, and
staining of nuclei and bacteria were performed as previously
described (Kitaeva et al., 2021). Prior to staining with
propidium iodide, sections of G. soja and P. vulgaris were
incubated in RNAse A solution (Thermo Fisher Scientific,
Waltham, MA, United States) at a dilution of 1:10 for
30 min at 28◦C. Microtubule pattern analysis in nodule cells
was performed using an LSM 780 laser scanning confocal
microscope and ZEN 2012 software (Zeiss, Oberkochen,
Germany). AlexaFluor 488 was excited at 488 nm, and
fluorescence emitted between 499 to 543 nm was collected; Alexa
Fluor 546 was excited at 561 nm, and emitted fluorescence
between 568 and 572 nm was collected; propidium iodide
was excited at 561, and emitted fluorescence between 606 and
677 nm was collected.

Bacteroid Isolation
Bacteroids were isolated as previously described (Tsyganova et al.,
2021). Briefly, 3-week-old nodules (five nodules for each species)
were cut into pieces, digested by cellulase, and stained with
propidium iodide. The length of 50 bacteroids of each species
(165 bacteroids for G. soja due to the high variation in bacteroid
length) was determined. Pairwise comparisons were conducted
using Tukey’s range test.

Free-Living Bacteria Visualization
Bacteria were visualized according to Tsyganova et al. (2021).
Bacteria were heat-treated at 70◦C and stained with propidium
iodide. The length of 25 bacteria was determined. Pairwise
comparisons were conducted using Tukey’s range test.

Quantitative Analysis
For determining microtubule orientations in nodule cells
of studied species a previously described method was used
(Tsyganova et al., 2021). This involved converting confocal
images to maximum intensity projections, their thresholding,
and the use of MicroFilament Analyzer software (Jacques
et al., 2013). Obtained frequencies of microtubule angles were
classified relative to the longitudinal axis of the cell as axial
(0–30, 150–180), oblique (30–60, 120–150), or transverse (60–
120). Isolation and analysis of endoplasmic microtubules from
z-stack confocal images were performed as described previously
(Kitaeva et al., 2021; Tsyganova et al., 2021). Statistically
significant differences in angle frequencies between the cell
types were determined using Kruskal–Wallis test and Dunn’s
post hoc test.
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FIGURE 1 | Morphology of bacteria, bacteroids, and infected cells in G. max (A,E,I,M,Q), G. soja (B,F,J,N,R), P. vulgaris (C,G,K,O,S), and L. japonicus (D,H,L,P,T)
nodules. ic, infected cell; uic, uninfected cell; n, nucleus; ba, bacteroid; arrows indicate bacteria, triangles indicate bacteroids. (A–D) Bacteria. (E–H) Bacteroids.
(I–L) Symbiosome arrangement in infected cells of the nitrogen fixation zone. (M–P) Ultrastructure of an infected cell. (Q–T) Scanning electron microscopy of
infected cells. (A–L) Merged images of differential interference contrast and red channel (DNA staining with propidium iodide (nuclei and bacteria)). Scale bar
(A–H) = 5 µm, (I–L) = 10 µm, (M–P) = 1 µm, (Q–T) = 2 µm.
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RESULTS

Bacteroid and Symbiosome Morphology
Free-living bacteria of B. liaoningense RCAM04656,
R. leguminosarum bv. phaseoli RCAM2624, and M. loti
RCAM1804 were characterized by a similar shape (Figures 1A–
D) and length of around 1 µm (Figure 2). At the same time,
bacteroids in nodules of studied species had a different shape
(Figures 1E–H, M–T) and size (Figure 2). In L. japonicus
nodules, bacteroids were rod-shaped (Figures 1H,P,T), and were
double the size of free-living bacteria (Figure 2). Bacteroids in
nodules of P. vulgaris and G. max were bigger than the bacteroids
of L. japonicus (Figure 2). In both P. vulgaris (Figures 1G,O,S)
and G. max nodules (Figures 1E,M,Q), bacteroids exhibited a
rod-shape. However, some bacteroids in G. max nodules were
elongated (Supplementary Figure 1A) or elongated-branched
(Supplementary Figures 1B,C). The most striking increase in
bacteroid size was observed in G. soja nodules, which were about
5-fold longer than bacteria (some of them reached about 17 µm)
(Figure 2) and had an elongated or elongated-branched shape
(Figures 1F,N,R and Supplementary Figure 1F).

In the nodules of all studied species, both symbiosomes
containing a single bacteroid and symbiosomes containing
several bacteroids (multibacteroid symbiosomes) were found in
infected cells (Figures 1M,O,P and Supplementary Figure 1E).
The multibacteroid symbiosomes were formed as a result of the
division of bacteroids (Supplementary Figure 1D).

The symbiosomes in infected cells in nodules of the studied
species were randomly distributed. Symbiosomes in infected cells
of P. vulgaris and L. japonicus nodules were more densely packed
(Figures 1K,L) compared with symbiosomes of the infected cells

of G. max (Figure 1I) and G. soja nodules (Figure 1J and
Supplementary Video 1).

Microtubule Organization in
Meristematic Cells
Determinate nodules are characterized by the absence of
persistent meristems. In all analyzed species meristematic cells
were visible in incipient 10-day-old nodules only (Figure 3). The
infection threads reached these cells. Endoplasmic microtubules
in meristematic cells were involved in the formation of mitotic
spindles (Figure 3) and preprophase bands (Figures 3G,H).
A dense network of randomly organized cortical microtubules
formed irregular patterns (Figure 3). Perinuclear microtubules
were randomly arranged around the nucleus and formed a dense
network (Supplementary Video 2).

In developing 14-day-old nodules, some cells continued to
divide among infected cells. In G. max nodules, cell division
occurred in the center (Supplementary Figures 2A,B) as well as
at the periphery of the nodule among maturating infected cells
and parenchymal cells (Supplementary Figure 2C). In nodules of
G. soja, mitoses were spread throughout the nodule, likely among
uninfected cells (Supplementary Figures 3A,B). In nodules of
P. vulgaris, mitoses were observed at the periphery of the nodule
(Supplementary Figures 3C,D). In nodules of L. japonicus,
dividing cells were observed only in incipient nodules.

Microtubule Organization in Young
Infected Cells
In incipient nodules after active cell division, cells began
to be infected with released bacteria. In these infected cells

FIGURE 2 | Length of free-living bacteria and bacteroids in nitrogen-fixing cells of G. max, G. soja, P. vulgaris, and L. japonicus nodules. Pairwise comparisons were
conducted using Tukey’s range test. NS indicates not significant differences (p > 0.05); n = 50 (for G. soja n = 165 due to the high variation of bacteroid length).
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FIGURE 3 | Microtubule organization in meristematic cells of G. max (A,B),
G. soja (C,D), P. vulgaris (E,F), and L. japonicus (G,H) nodules. n, nucleus;
triangles indicate mitotic figures, arrows indicate infection threads. Confocal
laser scanning microscopy of (A–F) 50 µm and (G,H) 35 µm longitudinal
vibratome sections. Immunolocalization of tubulin (microtubules), green
channel; DNA staining with propidium iodide (nuclei and bacteria), red
channel. (A,C,E,G) Merged images of a single optical section of differential
interference contrast and green and red channels. (B,D,F,H) Maximum
intensity projections of 30 optical sections in green and red channels. Scale
bar = 10 µm.

the organization of cortical and endoplasmic microtubules
was similar in nodules of all studied species (Figure 4).
Cortical microtubules were oriented at different angles and
formed an irregular pattern. Endoplasmic microtubules passed

FIGURE 4 | Cortical and endoplasmic microtubule organization in infected
cells of infection zone in G. max (A,B), G. soja (C,D), P. vulgaris (E,F), and
L. japonicus (G,H) nodules. n, nucleus; triangles indicate infection droplets;
arrows indicate infection threads. Confocal laser scanning microscopy of
(A–F) 50 µm and (G,H) 35 µm longitudinal vibratome sections.
Immunolocalization of tubulin (microtubules), green channel; DNA staining with
propidium iodide (nuclei and bacteria), red channel and (A–F)
immunolocalization of MAC265 (infection droplets), yellow channel. (A,C,E)
Merged images of a single optical section of differential interference contrast
and green, red, and yellow channels. (G) Merged images of a single optical
section of differential interference contrast and green, and red channels.
(B,D,F) Maximum intensity projections of (B,D) 40 and (F) 30 optical sections
in green, red, and yellow channels. (H) Maximum intensity projections of 40
optical sections in green and red channels. Scale bar = 10 µm.

along infection threads and formed a dense network around
infection droplets.
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Microtubule Organization in Uninfected
Cells
In developing and mature (21-day-old) nodules of all four
species, uninfected cells formed clusters (data not shown). In

FIGURE 5 | Cortical microtubule organization in uninfected cells of G. max
(A,B), G. soja (C,D), P. vulgaris (E,F), and L. japonicus (G,H) nodules. ic,
infected cell; uic, uninfected cell; n, nucleus. Confocal laser scanning
microscopy of (A–F) 50 µm and (G,H) 35 µm longitudinal vibratome sections.
Immunolocalization of tubulin (microtubules), green channel; DNA staining with
propidium iodide (nuclei and bacteria), red channel. (A,C,E,G) Merged images
of a single optical section of differential interference contrast and maximum
intensity projection of optical sections in the green channel. (B,D,F,H)
Maximum intensity projections of (B) 45, (D) 55, and (F,H) 50 optical sections
in green and red channels. Scale bar = 10 µm.

G. max nodules, uninfected cells were spherical (Figures 5A,B)
and in G. soja nodules they were more or less spherical
(Figures 5C,D), whereas in L. japonicus and P. vulgaris nodules,
uninfected cells were elongated (Figures 5E–H). In uninfected
cells only cortical microtubules were observed (Figure 5). In
nodules of G. max and G. soja, cortical microtubules were
organized at different angles and formed an irregular pattern
(Figures 5A–D). Quantitative analysis revealed a roughly equal
distribution of axial, oblique, and transverse microtubules in
uninfected cells of G. max (Figure 6A and Supplementary
Figure 4A). Uninfected cells of G. soja had fewer axial
microtubules compared with G. max cells (Figure 6B and
Supplementary Figure 4A). In uninfected cells of L. japonicus
and P. vulgaris nodules, cortical microtubules formed a regular
pattern (Figures 5E–H). The portions of axial and oblique
microtubules in these nodules were lower than in G. max and
G. soja nodules (Figures 6C,D and Supplementary Figure 4A);
on the contrary, the portion of transverse microtubules was
greater than 50% (Supplementary Figure 4A).

Microtubule Organization in
Nitrogen-Fixing Cells
In mature nodules of all studied species, nitrogen-fixing cells
were elongated (Figure 7). Both cortical and endoplasmic
microtubules were distinguished. Cortical microtubules were
arranged parallel to each other and perpendicular to the
longitudinal axis, forming a regular pattern in all studied
species (Figure 7). However quantitative analysis showed
that the studied species varied in the number of different
types of microtubules. The smallest number of transverse
microtubules (and the largest axial) was in G. max (Figure 8A
and Supplementary Figure 4B), and the largest number
of transverse microtubules (and the smallest axial) was in
L. japonicus (Figure 8D and Supplementary Figure 4B). In
G. soja and P. vulgaris, the number of transverse and axial
microtubules occupied an intermediate value (Figures 8B,C and
Supplementary Figure 4B).

In nodules of all four legume species, endoplasmic
microtubules formed networks located among symbiosomes
in infected cells (Figure 9). Thick long bundles were barely
branched and passed from the center part of the cell to
the periphery (Supplementary Video 3). The density of
endoplasmic microtubules in nitrogen-fixing cells of nodules
G. max (Figures 9A,B) and P. vulgaris (Figures 9E,F) and
in cells of nodules G. soja (Figures 9C,D) and L. japonicus
(Figures 9G,H) looked similar.

Quantitative Analysis of Endoplasmic
Microtubules in Nitrogen-Fixing Cells
Quantitative analysis revealed similarities in the mean number
of branches per cell (Figure 10A), and total length of branches
(Figure 10B) between endoplasmic microtubules in nitrogen-
fixing cells of G. max and P. vulgaris nodules. The nitrogen-
fixing cells of G. soja and L. japonicus nodules had a similar
number of junctions per cell (Figure 10D) and mean number
of junctions per skeleton (Figure 10F). The degree of branching
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FIGURE 6 | Quantitative analysis of cortical microtubule orientation in uninfected cells of G. max (A), G. soja (B), P. vulgaris (C), and L. japonicus (D) nodules. Color
indicates the class of angles of the microtubules relative to the longitudinal axis of the cell: red, axial (0–30◦, 150–180◦); green, oblique (30–60◦, 120–150◦); blue,
transverse (60–120◦).

was similar for all four species. However, there were statistical
differences between G. max and G. soja and between P. vulgaris
and G. soja (Figure 10E). These results demonstrated that the
density of endoplasmic microtubules in nitrogen-fixing cells of
nodules of G. max and P. vulgaris and in cells of nodules of
G. soja and L. japonicus were similar. Endoplasmic microtubules
in nitrogen-fixing cells of G. max were characterized by the
highest mean straightness compared with the other three species
(Figure 10C). At the same time cells of G. soja and L. japonicus
were characterized by a similar mean number of junctions per
skeleton (Figure 10F).

DISCUSSION

Bacteroid Morphology
The shape and size of bacteroids are controlled by the host
plant (Terpolilli et al., 2012). Generally, elongated and branched
bacteroids are characteristic of indeterminate nodules, and rod-
shaped ones of determinate nodules (Oono et al., 2010; Montiel
et al., 2017). However, in C. arietinum and Glycyrrhiza uralensis
indeterminate nodules, bacteroids are spherical and swollen,
respectively (Montiel et al., 2016; Kitaeva et al., 2021; Tsyganova
et al., 2021). In the current study in L. japonicus nodules,

bacteroids were similar to free-living bacteria by shape, but
their size showed a twofold increase (Figures 1D,H,P,T, 2). It
is important to note, that originally only a 20% increase in
size in comparison with free-living bacteria was described for
bacteroids in L. japonicus nodules (Szczyglowski et al., 1998).
However, more latterly, a significant increase in bacteroid size
in L. japonicus nodules has been shown (Suganuma et al.,
2003). The rod-shaped form of bacteroids in infected cells of
L. japonucus nodules has been previously described (Pankhurst
et al., 1979; Imaizumi-Anraku et al., 1997; Szczyglowski et al.,
1998; Suganuma et al., 2003; Regus et al., 2017). However, upon
inoculation of L. angustissimus L., L. pedunculatus Car., and
L. tenuis Waldst. Et Kit. with different rhizobia species, bacteria
differentiated into spherical, swollen, or rod-shaped bacteroids
(Craig and Williamson, 1972; Craig et al., 1973). Moreover,
when L. japonicus was inoculated with the R. etli strain CE3, a
significant part of symbiosomes contained a single bacteroid with
an elongated and even branching shape (Banba et al., 2001).

On the contrary, upon inoculation of P. vulgaris and G. max
plants with various species and strains of rhizobia, differentiated
bacteroids were uniformly rod-shaped (Werner and Mörschel,
1978; Studer et al., 1992; Cermola et al., 1994; Moris et al.,
2005; Arthikala et al., 2014), which has been confirmed by
studies using scanning electron microscopy (Tu, 1975, 1977).
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FIGURE 7 | Cortical microtubule organization within infected cells of the
nitrogen fixation zone in G. max (A,B), G. soja (C,D), P. vulgaris (E,F), and
L. japonicus (G,H) nodules. ic, infected cell; uic, uninfected cell; n, nucleus.
Confocal laser scanning microscopy of (A–F) 50 µm and (G,H) 35 µm
longitudinal vibratome sections. Immunolocalization of tubulin (microtubules),
green channel; DNA staining with propidium iodide (nuclei and bacteria), red
channel. (A,C,E,G) Merged images of a single optical section of differential
interference contrast and maximum intensity projection of optical sections in
the green channel. (B,D,F,H) Maximum intensity projections of (B,D) 50, (F)
20 and (H) 55 optical sections in green and red channels. Scale bar = 10 µm.

According to our data, the bacteroids in nodules of these species
were morphologically similar upon inoculation of P. vulgaris
with the R. leguminosarum bv. phaseoli RCAM2624 and G. max
with B. liaoningense RCAM04656 (Figures 1E,G,M,O,Q,S).
Measurements of the length of the bacteroids in nodules of these

species showed them to be similar and equal to approximately
3.3 µm and 3.5 µm (Figure 2) for nodules of P. vulgaris and
G. max, respectively. In previous studies, the length of bacteroids
in P. vulgaris nodules upon inoculation with R. etli was 1.79 µm
(Moris et al., 2005), while the length of bacteroids in G. max
nodules upon inoculation with B. japonicum was different in
various studies: 3–5 µm (Bergersen and Briggs, 1958) and about
2.5 µm (Montiel et al., 2016). The observed variation of bacteroid
length can be explained by the difference in the rhizobia species
infecting the nodules.

It was especially striking that bacteroids in the symbiosis
between G. soja and B. liaoningense RCAM04656 significantly
increased in size, reaching 5.5 µm (some of them reached
about 17 µm) (Figures 1F,N,R, 2). Unfortunately, studies of
G. soja bacteroid morphology are limited. For example, in G. soja
nodules infected with S. fredii, bacteroids were spherical, swollen,
and rod-shaped (Temprano-Vera et al., 2018), while upon
inoculation with B. diazoefficiens sp. nov. USDA110 they were
rod-shaped or elongated (Muñoz et al., 2016). These differences
can be explained by the fact that different species of rhizobia were
used for plant inoculation.

Symbiosomes
In this study, in the nodules of all studied species, both
symbiosomes with a single bacteroid and multibacteroid
symbiosomes were presented in infected cells (Figures 1M–P
and Supplementary Figure 1E). Previously it was shown that
in mature determinate nodules, symbiosomes usually contain
two or more bacteroids (Lodwig et al., 2005; Oono et al.,
2010) and their number depends on the conditional stage of
development (early, intermediate, or late), and all three stages
can be present simultaneously in nodules. For example, in young
infected cells of P. vulgaris (Bal et al., 1982; Cermola et al., 2000)
and G. max (Bergersen and Briggs, 1958; Werner and Mörschel,
1978; Reagan et al., 2017) nodules, symbiosomes contain a single
bacteroid, which was confirmed by focused ion beam-scanning
electron microscopy and 3D reconstruction (Reagan et al., 2017).
With age, after several rounds of division of bacteroids, their
number can be increased up to 20 (Muñoz et al., 2016). The
increase in bacteroid number in mature symbiosomes can be
also caused by the fusion of symbiosomes containing a single
bacteroid (Fedorova et al., 1999; Cermola et al., 2000). In 2–
3-week-old nodules (nodules of this age were analyzed in this
study) both single and multibacteroid symbiosomes can be
observed (Studer et al., 1992; Imaizumi-Anraku et al., 1997;
Cermola et al., 2000; Ott et al., 2009; Arthikala et al., 2014;
Temprano-Vera et al., 2018).

Microtubular Organization
In the current study, we performed a comparative analysis of the
organization of the tubulin cytoskeleton in determinate nodules
of four legume species (Table 1), which should complement
our previous studies of the organization of microtubules in
indeterminate nodules of six legume species (Kitaeva et al., 2016,
2021; Tsyganova et al., 2021). The study included nodules of
various ages, which made it possible to observe the dynamics
of changes in the organization of the tubulin cytoskeleton. At
the same time, both the patterns of cortical microtubules and
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FIGURE 8 | Quantitative analysis of cortical microtubule orientation in infected cells of the nitrogen fixation zone of G. max (A), G. soja (B), P. vulgaris (C), and
L. japonicus (D) nodules. Color indicates the class of angles of the microtubules relative to the longitudinal axis of the cell: red, axial (0–30◦, 150–180◦); green,
oblique (30–60◦, 120–150◦); blue, transverse (60–120◦).

endoplasmic ones were analyzed. When analyzing endoplasmic
microtubules, special attention was paid to their interaction with
infection structures in the cell.

Despite the transient character of meristem functioning in
determinate nodules, in incipient (10-day-old) nodules of all
analyzed legume species, numerous meristematic cells were
observed (Figure 3). Endoplasmic microtubules were involved
in the formation of mitotic spindles and preprophase bands
whereas cortical microtubules formed irregular patterns (Table 1
and Supplementary Video 2). The organization of both cortical
and endoplasmic microtubules was similar to that described for
meristematic cells of indeterminate nodules (Kitaeva et al., 2016,
2021; Tsyganova et al., 2021) and root meristem cells (Baluška
et al., 1992; Adamakis et al., 2010). In developing nodules, in
G. max, G. soja, and P. vulgaris, some mitoses were still visible
(Supplementary Figures 2, 3). In G. soja mitotic activity was
observed among uninfected cells that likely led to the formation
of clusters of uninfected cells (see below).

In young, infected cells of all studied legume species, cortical
microtubules formed irregular patterns and endoplasmic ones
were associated with infection threads and infection droplets
(Figure 4 and Table 1). These patterns were similar to those
observed in indeterminate nodules (Kitaeva et al., 2016, 2021;

Tsyganova et al., 2021). This indicates that the development
of infection in nodules shares common mechanisms in both
determinate and indeterminate nodules.

Analysis of the orientation of cortical microtubules in
uninfected cells revealed striking differences between G. max and
G. soja nodules on the one hand, and P. vulgaris and L. japonicus
nodules, on the other. Uninfected cells in G. max (Figures 5A,B
and Table 1) and G. soja (Figures 5C,D and Table 1) nodules
were characterized by an irregular pattern, while uninfected
cells in P. vulgaris (Figures 5E,F and Table 1) and L. japonicus
(Figures 5G,H and Table 1) nodules were characterized by
a regular pattern. The observed differences were confirmed
by quantitative analysis that revealed predominant transverse
orientation of microtubules in uninfected cells of P. vulgaris
and L. japonicus (Figures 6C,D). The observed differences in
the patterns of cortical microtubules suggest that they lead to
various types of growth (isodiametric and anisotropic), which is
reflected in the form of uninfected cells. In G. max and G. soja,
they are spherical, and in P. vulgaris and L. japonicus, they are
elongated. Early investigation revealed similar irregular patterns
of cortical microtubules in uninfected cells in nodules of different
age in G. max (Whitehead et al., 1998). In indeterminate nodules,
it was previously demonstrated that the cortical microtubules
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FIGURE 9 | Endoplasmic microtubule organization in infected cells of the
nitrogen fixation zone in G. max (A,B), G. soja (C,D), P. vulgaris (E,F), and
L. japonicus (G,H) nodules. ic, infected cell; uic, uninfected cell; n, nucleus.
Confocal laser scanning microscopy of (A–F) 50 µm and (G,H) 35 µm
longitudinal vibratome sections. Immunolocalization of tubulin (microtubules),
green channel; DNA staining with propidium iodide (nuclei and bacteria), red
channel. (A,C,E,G) Merged images of a single optical section of differential
interference contrast and maximum intensity projection of optical sections in
the green channel. (B,D,F,H) Maximum intensity projections of (B,D) 30, (F)
40, and (H) 30 optical sections in green and red channels. Scale bar = 10 µm.

of uninfected cells changed from an irregular pattern in the
infection zone to a regular one in the nitrogen fixation zone
(Kitaeva et al., 2016, 2021; Tsyganova et al., 2021). Thus, the
pattern of uninfected cells formed by cortical microtubules in
nodules of G. max and G. soja seems to be unique for the Glycine
genus and is not linked to nodule type.

It should be noted that, in all four species, uninfected cells
were grouped into clusters. The formation of uninfected cells in
groups and rows was previously described for G. max nodules
(Selker and Newcomb, 1985). It is likely that such an arrangement
will ensure contact of small, uninfected cells with large, infected
cells and facilitate the transfer of ammonia into them. On the
other hand, it is possible that the formation of clusters of
uninfected cells is associated with the production and transport
of ureids, which are the product of nitrogen assimilation in
determinate nodules (Pate et al., 1980; Newcomb and Tandon,
1981; Newcomb et al., 1985).

In mature nodules of all four legume species, the cortical
microtubules in infected cells formed well pronounced regular
patterns (Figure 7 and Table 1) that were confirmed by
quantitative analysis (Figure 8). Nevertheless, some variation
in the number of microtubules of different orientations was
observed between species (Supplementary Figure 4B). A regular
pattern has been previously observed in developing (15-day-
old) G. max nodules; in mature nodules (42–49-day-old), which
were significantly older than the mature nodules analyzed
in this study (21-day-old); the regular pattern was retained
only in certain regions of the cell (Whitehead et al., 1998).
The observed regular pattern of cortical microtubules in
infected cells in determinate nodules is strikingly different from
the irregular pattern characteristic of indeterminate nodules
(Kitaeva et al., 2016, 2021; Tsyganova et al., 2021). The
revealed differences mean that infected cells in determinate
nodules use anisotropic growth to increase the cell volume
and accommodate symbiosomes, while isodiametric growth is
used for these purposes in indeterminate nodules. The reason
for the identified differences is fascinating, but is currently
unclear. It is unlikely to be associated with the morphology
of bacteroids, since although in G. max, P. vulgaris, and
L. japonicus bacteroids are less differentiated than bacteroids
in indeterminate nodules, in G. soja there was a significant
increase in the size of bacteroids compared to bacteria, while
infected cells of G. soja were also characterized by anisotropic
growth. Taking into consideration the fact that determinate
nodules within the Papilionoideae subfamily appeared at an
earlier stage of evolution than indeterminate nodules (Ren,
2018), it can be assumed that the transition of infected
cells to isodiametric growth was an adaptation providing an
evolutionary advantage of indeterminate nodules. It is possible
that, topologically, the distribution of symbiosomes in an
infected cell in the form of a sphere, which is created by
isodiametric growth, is facilitated in comparison with cylindrical
infected cells resulting from anisotropic growth. It is also
important to note that, in infected cells, the central vacuole
is absent in determinate nodules, while in indeterminate
nodules a large vacuole occupies a central position in the
cell (Newcomb, 1976). Nevertheless, in order to confirm the
universality of the identified patterns of cortical microtubules
for infected cells in determinate and indeterminate nodules,
it is necessary to analyze the organization of the tubulin
cytoskeleton in a greater number of legume species. To date,
of the six legume species forming indeterminate nodules,
for which the analysis of the organization of the tubulin
cytoskeleton was carried out, five belong to the same Vicioid clade
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FIGURE 10 | Quantitative analysis of tubulin microtubule organization in nitrogen-fixing cells of G. max (n = 21), G. soja (n = 56), P. vulgaris (n = 48), and L. japonicus
(n = 31) nodules. (A) Total number of branches per cell, number of all detected microtubules. (B) Total length of branches per cell, the total length of all detected
microtubules per cell. (C) Mean straightness index of detected microtubules per cell, the Euclidian distance between the starting and ending point of each branch
divided by its full length. (D) Total number of junctions per cell. (E) Degree of branching per cell, number of skeletons (sets of branches, connected together) with
more than one branch divided by the total number of skeletons in the image. (F) Mean number of junctions per skeleton, average number of branching points across
all skeletons in the cell. Dots indicate analyzed images of individual cells. Pairwise comparisons were conducted using Tukey’s range test, NS indicates not significant
differences (p > 0.05), otherwise differences are significant (p < 0.05).

TABLE 1 | Comparative analysis of microtubular patterns in determinate nodules of G. max, G. soja, P. vulgaris, L. japonicus, and indeterminate nodules.

Cell type Type of
microtubules

Glycine max Glycine soja Phaseolus
vulgaris

Lotus
japonicus*

Indeterminate nodules**

Meristematic Cortical Irregular Irregular

Endoplasmic Mitotic spindles, preprophase bands, perinuclear Mitotic spindles, preprophase bands,
perinuclear

Young infected Cortical Irregular Irregular

Endoplasmic A network around infection threads and droplets A network around infection threads and
droplets

Uninfected Cortical Irregular*** Regular Regular

Endoplasmic Unidentified Unidentified

Nitrogen-fixing Cortical Regular Irregular

Endoplasmic A network among symbiosomes; irregular A network among symbiosomes;
irregular, regular, and intermediate

*The current study.
**Based on Kitaeva et al., 2016, 2021; Tsyganova et al., 2021.
***Differences observed between microtubular patterns in determinate and indeterminate nodules are shown in bold.
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(Wojciechowski et al., 2004). Future analyses should include
species representing different clades of legumes.

In the infected cells in the nodules of all four studied species,
a well-developed network of endoplasmic microtubules, forming
an irregular pattern and located between chaotically distributed
symbiosomes, was observed (Figure 9 and Table 1). However,
surprisingly, the visual network of endoplasmic microtubules was
observed to be denser in G. max and P. vulgaris infected cells
than in G. soja and L. japonicus cells. The observed differences
were confirmed by quantitative analysis (Figure 10). Previously,
we observed an irregular and regular pattern of endoplasmic
microtubules in infected cells of various legume species, which
coincided with an ordered or disordered arrangement of
symbiosomes, respectively (Kitaeva et al., 2016, 2021; Tsyganova
et al., 2021). Nevertheless, in mature determinate nodules,
symbiosomes containing several bacteroids are present and,
accordingly, their size is significantly larger than the size of
the bacteroids themselves, as assessed in this study (Figure 2).
It would be interesting to evaluate the size and shape of
symbiosomes in determinate nodules and relate them to the
pattern of endoplasmic microtubules.

CONCLUSION

Thus, the similarity of the organization of endoplasmic
microtubules involved in the development of infection threads
and infection droplets in the cells of indeterminate and
determinate nodules revealed the commonality of the role of
tubulin cytoskeleton in the development of infection structures
in nodules of both types. Notable differences were revealed
in the organization of cortical microtubules in infected cells
between indeterminate and mature determinate nodules, which
were manifested in the isodiametric growth of infected cells
in an indeterminate nodule and anisotropic growth in a
determinate nodule. The fact that within the Papilionoideae
subfamily determinate nodules appeared in evolution earlier than
indeterminate ones raises an intriguing question regarding the
possible advantage of isodiametric growth of infected cells over
anisotropic for their accommodation of numerous symbiosomes.
Further research should address this question. However, it is
necessary to analyze the organization of the tubulin cytoskeleton
in a larger number of legume species in order to confirm the
revealed patterns of cortical microtubule organization in infected
cells of determinate and indeterminate nodules.
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Arbuscular mycorrhizal fungi (AMF) infect plant roots and are hypothesized to improve

plant growth. Recently, AMF is now available for axenic culture. Therefore, AMF is

expected to be used as a microbial fertilizer. To evaluate the usefulness of AMF as

a microbial fertilizer, we need to investigate the relationship between the degree of

root colonization of AMF and plant growth. The method popularly used for calculation

of the degree of root colonization, termed the magnified intersections method, is

performed manually and is too labor-intensive to enable an extensive survey to be

undertaken. Therefore, we automated the magnified intersections method by developing

an application named “Tool for Analyzing root images to calculate the Infection rate of

arbuscular Mycorrhizal fungi: TAIM.” TAIM is a web-based application that calculates the

degree of AMF colonization from images using automated computer vision and pattern

recognition techniques. Experimental results showed that TAIM correctly detected

sampling areas for calculation of the degree of infection and classified the sampling areas

with 87.4% accuracy. TAIM is publicly accessible at http://taim.imlab.jp/.

Keywords: arbuscular mycorrhizal fungi, magnified intersections method, computer vision, pattern recognition,

deep convolutional neural networks, system development

1. INTRODUCTION

Arbuscular mycorrhizal fungi (AMF) infect plant roots and are considered to improve plant
growth (Treseder, 2013). Recent research (Kameoka et al., 2019) has succeeded in the axenic
culture of AMF. Therefore, AMF may be mass-produced in the future and are predicted to be
used as a microbial fertilizer. To evaluate the usefulness of AMF as a microbial fertilizer, we need to
investigate the relationship between the degree of root colonization of AMF and plant growth.

The most commonly studied effect of AMF infections on plant roots is the absorption of
phosphorus. However, some studies have shown that injecting mycorrhizal fungi was one of the
causes of promoting phosphorus absorption (Van Der Heijden et al., 1998; Smith and Read,
2010; Richardson et al., 2011; Yang et al., 2012), while others have ruled it out (Smith et al.,
2004). Therefore, as the results are still controversial, further research on the relationship between
phosphorus and AMF is needed. To promote the research, objective evaluation of experiments
conducted by different observers under different conditions is indispensable. Therefore, calculating
a reliable AMF colonization degree is essential for the research.

121

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.881382
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.881382&domain=pdf&date_stamp=2022-05-03
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yuzuko@omu.ac.jp
https://doi.org/10.3389/fpls.2022.881382
https://www.frontiersin.org/articles/10.3389/fpls.2022.881382/full
http://taim.imlab.jp/


Muta et al. TAIM

In general, the degree of AMF colonization is calculated
using the magnified intersections (MI) method (McGonigle et al.,
1990). All steps of the MI method are performed manually and
thus the method is extremely labor-intensive. Moreover, given
that the colonization degree is assessed manually, the decision
criterion and results will vary among observers. For these
reasons, conducting a comprehensive survey with this method
is difficult, and the relationship between AMF colonization and
plant growth remains unclear. Clarification of this relationship
requires a fixed criterion for estimation of AMF colonization and
automation of estimation of colonization degree.

In this article we propose a method for automation of the
MI method for estimation of AMF infection degree. Based
on the proposed method, we developed an application system
named “Tool for Analyzing root images to calculate the Infection
rate of arbuscular Mycorrhizal fungi” (TAIM) (Muta et al.,
2020). TAIM is a web-based application that automatically
calculates the AMF colonization degree frommicroscopic images
with 40x magnification prepared for an AMF infection rate
measurement method. Using a machine-learning-based classifier,
TAIM calculates the AMF infection rate objectively, unlike
manual calculation. Moreover, TAIM has two functions that
allow the user to be incorporated to boost its estimation accuracy.
One is to upload their own data, which increases training data
for TAIM. The other is to correct wrong estimation results,
which improves the quality of training data. By retraining TAIM
using the updated training data, the estimation accuracy of TAIM
can be boosted. Experiments to evaluate the performance of
the proposed method demonstrated that the sampling areas for
calculation of the infection rate were detected correctly and the
degree of infection was determined with 87.7% accuracy.

2. RELATED WORK

As microscopic images are captured under stable lighting, the
images are especially suitable for image processing. Therefore,
many processing methods have been proposed.

The most popular target for processing of microscopic images
is a cell. In many cases, images include too many cells for
manual observation. Therefore, image processing methods for
cell image analysis have been proposed as an alternative to human
observation. To date, procedures for detection (Al-Kofahi et al.,
2010; Buggenthin et al., 2013; Schmidt et al., 2018; Weigert
et al., 2020), tracking (Debeir et al., 2005; Chen et al., 2006;
Dzyubachyk et al., 2010), and cell counting (Lempitsky and
Zisserman, 2010) have been proposed. Given the stable lighting
used for observation of microscopic images, many methods
previously proved to be relatively accurate even before the
emergence of deep neural networks (DNNs). Subsequent to the
advent of DNNs, the accuracy of detection and tracking has
drastically improved (Xie et al., 2018; Korfhage et al., 2020;
Kushwaha et al., 2020; Nishimura et al., 2020; Liu et al., 2021). In
addition, methods for performing more challenging tasks, such
as detection of mitosis (Su et al., 2017), three-dimensional cell
segmentation (Weigert et al., 2020), nuclei (Xing et al., 2019), and
chromosomes (Sharma et al., 2017) have been published.

Image processing is also used for microscopic medical images.
It is practical to use microscopic images to diagnose a disease
caused by abnormal cell growth, such as cancer. Many methods
have been developed to detect cancer (Yu et al., 2016; Vu et al.,
2019) and diagnose cancer from microscopic images (Song et al.,
2017; Huttunen et al., 2018; Kurmi et al., 2020). Microscopic
images are also helpful to detect infectious diseases. Malaria
is an infectious disease for which image processing is the
most widely used detection method, and various methods have
been proposed for its detection and diagnosis (Ave et al.,
2017; Muthu and Angeline Kirubha, 2020). In addition, virus
detection methods (Devan et al., 2019; Xiao et al., 2021) have
been proposed. For medical applications other than disease
diagnosis, methods such as blood cell identification have been
developed (Razzak and Naz, 2017).

A typical example of microscopic image analysis in
plants is the analysis of pollen. As pollen grains are small,
microscopic observation is essential. For example, pollen
detection and recognition methods from air samples have
been proposed (Rodrìuez-Damián et al., 2006; Landsmeer
et al., 2009). Recently, a method applying DNNs has been
developed (Gallardo-Caballero et al., 2019). Pollen is also an
object of study in paleontology as well as in botany. Pollen
analysis, or palynology, involves the study of pollen grains in
fossil-bearing matrices or sediments for consideration of the
history of plants and climatic changes, for example. As pollen
classification requires a broad range of knowledge and is labor-
intensive, methods for automated pollen classification (Battiato
et al., 2020; Bourel et al., 2020; Romero et al., 2020) have been
proposed to replace manual observation.

Recently, Evangelisti et al. (2021) developed AMFinder to
analyze plant roots using deep learning-based image processing.
This tool can detect AMF and visualize the degree of AMF
colonization. These authors’ motivation and methodology were
similar to our own. The main differences between AMFinder
and TAIM are as follows. TAIM is based on the MI
method (McGonigle et al., 1990), which uses the intersections
of grid lines to quantify AMF colonization of roots, whereas
AMFinder divides an image into squares of a user-defined size.
TAIM is designed to be a web-based application accessible to
all users who can use a web browser, whereas AMFinder is a
standalone application consisting of a command-line tool and
a graphical interface that requires installation on a computer
equipped with graphics processing units (GPUs) and users must
set up the environment themselves.

3. MATERIALS AND METHODS

3.1. Materials
The roots used for the dataset were from soybean. The
soybean plants were grown in a glasshouse under an average
temperature of 30.9◦C in the experimental field of Osaka
Prefecture University. Each plant was grown in a pot in sterilized
soil and was subsequently inoculated with AMF (Rhizophagus
irregularis MAFF520059). Therefore, AMF were the only fungi
present in the soil of the pots. Table 1 lists the cultivar, place of
origin, and number of days growth for the soybeans.
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TABLE 1 | Details of the soybean root dataset used in the experiment.

Genotypes Place of origin Growing days

M 581 India 48

OUDU Korea 36

JAVA 7 Indonesia 52

U 1290-1 Nepal 54

KARASUMAME Taiwan 44

KADI BHATTO Nepal 59

The plants were removed from the pots and the roots
were washed with water. The roots were softened using 10%
potassium hydroxide to aid decolorization. We used 0.5%
hydrogen peroxide aqueous solution to clear the softened roots
and hydrochloric acid to neutralize. The roots were stained using
0.05% trypan blue to stain the AMF blue. The stained root sample
is placed on a glass microscope slide with 0.25-mm-wide grid
lines at 1.00 mm intervals. We use the glass microscope slide to
make observation more efficient.

The prepared slides were observed under a 40x objective
with an optical microscope (OLYMPUS BH-2) and images were
captured with a digital camera (OLYMPUS PEN E-PLI). The
resolution of the images was 4,032× 3,024 pixels.

3.2. AMF Infection Rate Measurement
Method
We automate a method to measure the infection rate of AMF
based on the MI method (McGonigle et al., 1990), which is a
popular and accuratemethod for estimation of AMF colonization
degree (Sun and Tang, 2012). The MI method is an improved
version of the grid-line intersect (GLI) method (Giovannetti and
Mosse, 1980). The GLI method uses a dissecting microscope
and measures the colonization degree as the ratio of colonized
sampling areas. The MI method uses a light microscope, which
provides higher resolution and therefore MI can measure the
colonization degree more accurately.

The method we automated uses roots prepared as described in
Section 3.1. An observer categorizes the roots at the intersections
of the grid lines into four categories. In the MI method
categorizes the sampling areas into four categories: negative,
arbuscules, vesicles, and hyphae only. While the proposed
method and MI method essentially perform the same procedure,
there is one difference in the categorization of sampling areas
between the methods: the MI method excludes the sampling
areas that do not include roots in advance, whereas the proposed
method does not. Therefore, we added a new class, “no root,” for
the intersections that do not include roots, to enable the proposed
method to classify the root-less sampling areas.

In addition, in our experiments, we integrated the “hyphae
only” class into the “arbuscules” class to reflect the experimental
environment. In our experiments, we sterilized the soil and
then inoculated it with AMF. To avoid mixing the other
microorganisms with the unsterilized soils in the pots, the plants
were placed in a separate area from the unsterilized potted

plants and treated to prevent soil contamination by watering.
Hence, all the hyphae in the soil originate from AMF. In
summary, we added a new class named “no root” and treated
“hyphae only” as “arbuscules.” Therefore, in our experiments,
we classified the sampling area into four categories: “vesicles,”
“arbuscules,” “no root,” and “negative.” The original MI method
uses a magnification of 200x, but this paper uses a 40x image.
The reason for this is that 40x was sufficient for classifying in this
study. Figure 1 shows a sample of each class.

After classifying the intersections, the proportions of
arbuscular colonization (AC), vesicular colonization (VC) are
calculated as

AC =

Na

Ns − Nnr
, VC =

Nv

Ns − Nnr
, (1)

where Na, Nv, Nn, and Nnr are the numbers of intersections
categorized into arbuscules, vesicles, and no root, respectively,
and Ns is the total number of intersections.

3.3. Software Design
We propose TAIM, a web-based application system to automate
calculation of the degree of AMF colonization. In this section,
we explain the system architecture of TAIM in Section 3.3.1, the
method by which TAIM automatically calculates the infection
rate of AMF in Section 3.3.2. We also explain a dataset we used
for constructing TAIM in Section 3.3.3, and functions of TAIM
in Section 3.3.4.

3.3.1. Overview of TAIM
Figure 2 presents an overview of TAIM. TAIM consists of client
and server systems. The client system runs on a web platform,
receives images from users, and shows the calculation results.
We use a web platform because it is independent of an OS
environment and thus users can use TAIM on any device that
can run a web browser. The server receives images from the
client, calculates the AMF colonization degree, and transmits the
results to the user. The server calculates the AMF colonization
degree by detecting the sampling area using computer vision
techniques and categorizing the sampling areas as colonized
or not using machine-learning techniques. We use HTML5,
CSS3, and JavaScript for client development and Django, which
is a web application framework implemented by Python, for
server development.

3.3.2. Calculation of the AMF Colonization Degree
In this section, we explain the method for calculating the AMF
colonization degree in detail. TAIM automates the method
described in Section 3.2. Server part of Figure 2 shows an
overview of the procedure for calculating the AMF colonization
degree. The inputs are images captured from a microscope
slide prepared for the MI method (Figure 2A). TAIM detects
intersections of the grid lines as sampling areas for calculating
the colonization degree. Examples of the intersections are shown
as green rectangles in Figure 2B. TAIM then categorizes the
sampling areas into four categories (Figure 1). Finally, TAIM
calculates the AMF colonization degrees using Equation (1).
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FIGURE 1 | Target classes for the categorization. TAIM categorizes the sampling areas into four classes: (A) vesicles (class 0), (B) arbuscules (class 1), (C) negative

(class 2), and (D) no root (class 3). Note that the four classes are not identical to those used in the MI method and the magnification of the slide images was 40x.

FIGURE 2 | A system overview of TAIM. The system consists of a client and a server. The client, implemented on a web browser, receives the microscope slide

images with the grid filter from users and shows the calculation results of the AMF colonization degree. The server receives images, calculates the AMF colonization

degree, and returns the calculation results to the web client. The process for calculating the AMF colonization degree by the server are following; (A) The input image is

a microscope slide image with a grid filter for calculating AMF colonization. (B) The intersections denoted by green rectangles are detected. They are used as sampling

areas for calculating the AMF colonization degree. (C) Categorization results are visualized with different colors. The magnification of the slide images was 40x.

Note that these four categories recognized by TAIM differ from
the four categories of the MI method. Details are provided in
Section 3.3.2.2.

3.3.2.1. Intersection Detection
For intersection detection, we use a simple computer vision
technique, namely edge detection using projection profile. The
overall intersection detection process is shown in Figure 4A. The
orange grid lines in the image are almost orthogonal (Figure 4A)
If the lines are oriented in the horizontal or vertical direction
of the image, the horizontal and vertical lines are expressed
as the horizontal and vertical lines and are easily detected.
Therefore, before intersection detection, we rotate the image
so that the orange lines are oriented in the horizontal and
vertical directions of the image. We term this process image
rotation normalization.

Figure 3 shows the process of image rotation normalization.
To execute image normalization, we estimate the angle of
rotation. We use a histogram of the gradient directions of
an input image to determine the angles. First, we apply a
derivative filter, i.e., Sobel filter, horizontally and vertically to
the input image to calculate the image gradients. We then
calculate the gradient direction in each pixel and make a

histogram of the gradient directions. As the orange lines are
orthogonal, the histogram ideally has four peaks in every 90◦.
Therefore, the image should be rotated around the image center
by the minimum angle that ensures the peaks are oriented
in the horizontal and vertical directions. The image rotation
normalization is applied to all input images.

As shown in Figure 4, the intersections of the grid lines are
detected on the normalized images in the following manner.
We begin by applying the Sobel filter horizontally and vertically
to the normalized image to calculate the gradient of each pixel
(Figure 4B). We then detect the edges of the grid lines by
detecting the peaks of the projection profiles of the gradients
shown in Figure 4C. A projection profile is a sum of pixel values
along an axis. Given that the grid lines in the normalized image
are oriented in the horizontal and vertical directions, the edges of
the lines appear as peaks of the horizontal and vertical projection
profiles. As a result of the projection profile, we detect the edges
of the grid lines, denoted in green in Figure 4D. The width of
the grid lines is narrower than the distance between the lines
(Figure 4A). Therefore, we regard a pair of green lines as a grid
line if two green lines are at a close distance. Finally, we detect
the intersections; the crossings of the grid lines are detected as
intersections (Figure 4E).
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FIGURE 3 | Image rotation normalization. First, the dominant angles in the original image are calculated to estimate the directions of the grid lines. The input image is

then rotated. The magnification of the slide images was 40x. The blue arrow mark and blue circle dot are rotation direction of image normalization and image center,

respectively.

FIGURE 4 | An overview of the intersection detection process. (A) Input image. The normalized image generated in Figure 3 is used as the input. (B) Edge detection.

The x- and y-gradients are calculated by applying the Sobel filters horizontally and vertically, respectively. (C) Peak detection using projection profiles. The detected

edges in (B) are projected horizontally and vertically, and the peaks are detected. (D) Grid line detection. Based on the peaks obtained in (C), the horizontal and

vertical grid lines, denoted in green and yellow, respectively, are detected. (E) Intersection detection. The intersections, denoted by green rectangles, are finally

detected. The magnification of the slide images was 40x.

3.3.2.2. Categorization of the Sampling Areas
We categorize the sampling areas (i.e., the intersections of grid
lines) according to the degree of colonization using a pattern
recognition technique. An overview of the categorization process
is shown in Figure 5. We extract a feature vector from the
input image (i.e., sampling area) and categorize it into four
classes. In the feature extraction, we use convolutional neural
networks (CNNs) because classifiers using CNNs have previously
performed well in image classification tasks (Russakovsky et al.,
2015; Krizhevsky et al., 2017). As good classification accuracy
is expected when the feature is extracted by CNNs, we employ
CNNs for feature extraction. We used CNN models pretrained
on ImageNet (Deng et al., 2009), which consisted of more than
10 million images of 1,000 categories. After connecting a fully

FIGURE 5 | An overview of the classification process of the TAIM method. The

magnification of the slide images was 40x.

connected (FC) layer to the end of the pretrained CNN model,
we fine-tuned the model in the task of categorizing the training
images into four classes.
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We used two kinds of classifiers in the categorization process:
FC layer and support vector machine (SVM). In the former case,
we used the FC layer that was used for pretraining. In the latter
case, we used the SVM. To be more precise, we used the SVM
for classification and the CNN model (without the FC layer)
for feature extraction. In the training, the SVM was trained on
the features extracted by the CNN model. Note that the SVM
is a supervised learning model that shows good classification
accuracy in biological image recognition (Noble, 2006). By
using maximum-margin classifiers, the SVM achieves high
recognition accuracy. Moreover, the SVM can cope with non-
linear classification problems by introducing non-linear kernels.

The colonization degree is calculated as AC and VC in
Equation (1) with at least 200 sampling areas.

3.3.3. Dataset
We constructed an original dataset to construct TAIM and
conduct experiments. The dataset consisted of 896 microscopic
slide images prepared for as described in Section 3.1 (Figure 2A).
We reduced the images to 1, 008 × 756 pixels for efficient
detection and categorization of intersections. One of the
authors manually classified the 5,002 intersection areas into four
classes, which were mentioned in Section 3.2. We regarded the
classification results as the ground truth (correct answers) of the
data and used them to train and evaluate deep neural networks
and SVM classifiers. Each intersection area was about 150 ×

150 pixels.

3.3.4. Functions
In addition to calculating AMF colonization degree, TAIM
has two other functions: modifying the classification results
by users and adding new data to improve the classification
accuracy. These two functions are implemented to improve the
classification accuracy and the objectivity of AMF colonization.

When viewing the classification results, as shown in
Figure 2C), the modification function allows users to correct
erroneous classification results. In pattern recognition, classifiers
sometimes makemistakes depending on the lighting and changes
in appearance because of the limitations of the training data. It is
also true for the classifiers of TAIM. Therefore, we implemented
the modification function to fix incorrect classification results.

TAIM also has a function to register new data, which is
expected to improve the classification accuracy. Currently, the
classifiers of TAIM are trained on only our dataset, which consists
of soybean roots grown in the field and labeled by us. Therefore,
the classifiers are expected to perform well on our data and on
data with similar properties, but are under-learned for those with
different properties. For the classifiers to be robust, a diverse
dataset is essential. This is because root data grown in diverse
locations are expected to help the classifiers of TAIM to acquire a
strongly robust recognition capability. Hence, we implemented
the function of TAIM that allows users to register new data
that are used for additional training. Adding new data through
the functions of TAIM, which stores the data and modifies the
categorization results, is also expected to improve the objectivity
of the categorization of colonization degree by TAIM. The
initial TAIM classifiers for the colonization categorization are

trained with the data labeled by one of the authors. That is,
the trained classifiers of TAIM reflect the criteria of a single
observer. The modified categorization results can reflect the
criteria of other observers. Therefore, if the number of users
involved in the labeling process increases, the classifiers reflect the
criteria of multiple observers, leading to the classifiers becoming
more objective.

4. RESULTS

We conducted experiments to evaluate the detection and
classification performance of TAIM using the dataset we created.
This section presents details on the dataset as well as the detection
and classification results.

4.1. Evaluation of Intersection Detection
We evaluated the intersection detection performance using the
soybean root dataset. An overview of the proposed intersection
detection method is presented in Section 3.3.2.1; here, we
describe its implementation in more detail. We used the 3 × 3
Sobel filter as a derivative filter to calculate the gradient and
direction of an image. From the image gradient direction, we
estimated the rotation angle for normalization and normalized
the image as described in Section 3.3.2.1. The projection profile
used for line edge detection was calculated based on the gradient
images. In the peak detection, we adopted a public domain code
written in Python1. We set the distance parameter to 50 and used
the default values for the other parameters to execute the code.

For evaluation of detection performance, we adopted the
intersection over union (IoU) score. The IoU is a criterion of
how accurately a method detects the areas of target objects.
The IoU is calculated as the ratio of the overlapping area
(intersection) between the ground truth and predicted area over
their union (Figure 6A). Therefore, the larger the IoU score,
the more accurately the sampling areas are detected. We used
896 images of the soybean root dataset for the experiment to
calculate the IoU scores. The mean IoU score of TAIM was 0.86.
If we considered successful detection in the IoU score as more
than 0.75, the detection precision of TAIM was 0.95. Therefore,
TAIM achieved a satisfactory detection performance. Based on
the distribution of the IoU scores (Figure 6B), most sampling
areas were detected correctly; the IoU score of most sampling
areas was >0.75. However, detection of a few sampling areas
failed, as indicated by an IoU score close to zero.

To clarify the reason for the failure in detection, we
compared examples of successful and failed detection.
Supplementary Figure 1 shows examples of the detection
experiments. The left column is an example of successful
detection, and the central and right columns are examples of
failed detection. In the detection results (the second row of
Supplementary Figure 1), blue rectangles represent the ground
truth and green rectangles the detection results. The IoU score of
each detected area is shown in white text. In the peak detection
results (the fifth and sixth rows of Supplementary Figure 1),
detected peaks are indicated by red and green circles. In the left

1https://gist.github.com/endolith/250860
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FIGURE 6 | (A) Definition of the IoU. The IoU is calculated as the ratio of the intersection between the ground truth and predicted area, denoted in orange, over their

union, denoted in gray. (B) Distribution of IoU scores in intersection detection.

column, as the edges of the orange lines were clear, the edges
were easily detected by peak detection. In contrast, in the central
column, the edges of the orange lines were jagged. As a result,
some sampling areas failed to be detected. In the right column,
the input image contained bubbles, whereas the edges were clear.
The bubble edges were incorrectly detected as a peak because the
intensity of the gradient of the bubble edges was large.

4.2. Evaluation of Classification Accuracy
We conducted experiments to evaluate the classification accuracy
of the proposed method. We used the cropped sampling areas
from the soybean root dataset. We applied intersection detection,
as described in Section 3.3.2.1, to the dataset and used the
areas for which the IoU score was >0.5. The number of
cropped sampling images was 5,002 and annotated manually.
The images were cropped to be squares and normalized to
224 × 224 pixels using bilinear interpolation. The CNN models
used for feature extraction were AlexNet (Krizhevsky et al.,
2012), VGG-19 (Simonyan and Zisserman, 2015), and ResNet-
18 (He et al., 2016). These models were pretrained on ImageNet
and fine-tuned on the cropped sampling areas. The number
of epochs, batch size, and initial learning coefficient were set
to 20, 32, and 10e-4, respectively, and the learning rate was
reduced by half every five epochs. For optimization, we used
Adam with weight decay of 1e-5. For classification, we used
the SVM with a radial basis function (RBF) kernel. The cost
parameters of the SVM and RBF kernels were set to 1.0 and 0.25,
respectively. The output from the network was compared with
the annotation, and if they matched, the output was considered
correct, and if they did not match, the output was considered
incorrect. The percentage of correct outputs was considered
to be the classification accuracy. We used five-fold cross-
validation to evaluate the classification accuracy. We divided
the cropped image samples into five subsamples. We fine-tuned
the CNN models and trained classifiers with four subsamples
and evaluated the remaining subsamples. We repeated the
procedure five times so that all subsamples were evaluated, and
the overall accuracy was averaged. Regardless of the combination
of feature extractor and classifier, the classification accuracy was

TABLE 2 | Results of the classification experiment.

Feature extractor (CNN) Classifier Accuracy (%)

AlexNet FC 84.1

VGG-19 FC 87.7

ResNet-18 FC 84.6

AlexNet SVM 84.0

VGG-19 SVM 86.9

ResNet-18 SVM 84.9

>84% (Table 2). The hightest classification accuracy (87.7%) was
achieved when using VGG-19 as the feature extractor and FC as
the classifier.

To clarify which class was misrecognized, a confusion matrix
when VGG-19 and FC were used for feature extraction and
classification was generated. TAIM tended to confuse class
0 (vesicles) with class 1 (arbuscules) and class 2 (negative)
with class 1 (Figure 7). There are two possible reasons for
misclassification. First, the appearance of the respective classes
was similar. Classes 0 (vesicles) and 1 (arbuscules) were similar,
and classes 2 (negative) and 1 were also similar (Figure 1).
Therefore, such similarity in appearance may have caused
misclassification. The second possible reason is the imbalance
of the training data. The number of training data for the four
classes was 423, 1,351, 628, and 2,600, respectively. As classes with
fewer training data tend to be treated as less important, samples
belonging to classes 0 and 2 were more frequently misclassified
compared with the other classes.

We generated a class activationmap (CAM) (Zhou et al., 2016)
of the fine-tuned ResNet-18 to visualize how the CNN classified
the sample. The CAM visualizes as a heat map the importance of
regions for classification of the sample. In other words, important
regions for classification of a class are considered to contain
class-specific features for the class. Figure 8 shows three original
images and the corresponding CAM; blue regions are more
important and red are less important. Figure 8A is an example
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of an image that was classified as class 1 correctly. The CAM of
this image showed that classification was based on the hyphae in
the lower right corner. Figures 8B,C are examples of images that
weremisclassified; B was class 1 but classified as class 0, and Cwas
class 1 but classified as class 2. The CAM of Figure 8B revealed
that the only hyphae were located in the class-specific region.
Therefore, the appearance of the original image in the region was
similar to that of class 1. This appearance similarity led to the
misclassification as the arbuscules class. In the original image of
Figure 8C, hyphae were located at the top but only close to the
edge of the image. Hence, this is a difficult sample to correctly
classify. In the CAM, a class-specific area existed in the top right
corner, which may exacerbate the misclassification.

As TAIM has a function that collects data from users, it is
possible to increase the training data while TAIM is running. To
clarify the effect of increasing the training data, we increased the
number of images using augmentation techniques and observed
the change in accuracy. We reflected images horizontally and
vertically, cropped them randomly, and resized them to 224×224
pixels. The total dataset was increased to 300,012 images. The

FIGURE 7 | Confusion matrix when using VGG-19 as the convolutional neural

network and the fully connected layer as the classifier.

images were divided into training, validation, and test samples
in the ratio of 3:1:1. We used the same feature extractors and
classifiers as in Figure 2. We trained the networks while changing
the training data from 1% of the total training data to 100%.
We used the same hyperparameter setting for the networks
as the previous classification experiment. We used validation
data to evaluate the training accuracy of the networks and
choose the parameter of the SVM. The training data were used
for evaluation of the classification accuracy. Figure 9 shows
the relation between the number of training data and the
classification accuracy. The figure shows that all combinations
between the networks and classifiers tended to increase the
accuracy. In addition, the accuracy is expected to be further
improved using more training data because the accuracy still
showed an increasing trend when 100% data were used for
training. Therefore, it is expected that the classification accuracy
of TAIM will improve with increase in the amount of data used
for training.

5. DISCUSSION

In the experiments, we evaluated TAIM on soybean and one
AMF. Further evaluation with other plants and AMFs should be
conducted to demonstrate the usefulness of the proposed system.

FIGURE 9 | Classification accuracy with increase in percentage of training

data.

FIGURE 8 | Original sampling area (left) and importance of sampling areas indicated by CAM (right). CAM visualizes the importance for classifying images. The more

red the pixel values are, the more important for classification, and the more blue, the less important. The magnification of the slide images was 40x. (A) Classified an

image of class 1 correctly. (B) Misclassified an image of class 1 as class 0. (C) Misclassified an image of class 1 as class 2.
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AMFinder (Evangelisti et al., 2021), introduced in Section
2, is a method that shares a similar motivation with TAIM.
The most significant difference of AMFinder from TAIM is the
presence or absence of grids in the input microscope images.
TAIM used microscope slide images with the grids, whereas
AMFinder used those without the grids. Regarding the difference,
we mention two points from the technical perspective. The
first is that the classification algorithm for TAM and AMFinder
is not inseparable but can be plug in. It means that when a
better algorithm is developed in the future, we can improve the
classification performance by plugging in to the methods. The
second is that it is even easier to use slide images without grids
than with grids. The images with grids can be treated as follows.
Training data can be created by randomly cropping original
slide images from images without grids and annotating them.
Using the training data, the network can be trained to classify
the cropped images without grids into the categories of AMF
infection. Moreover, it is possible to identify which part of the
image is infected even without grids using a sliding window
approach, which crops images by sliding a rectangle of a fixed size
on an image and classifying each cropped image. In our future
work, we would like to extend TAIM so that infection rates can
be calculated regardless of the presence or absence of grids in
slide images.

Although TAIM can potentially distinguish hyphae and
arbuscles following the MI method, due to the annotation effort
and data limitations, we were unable to perform an experiment
that distinguishes hyphae and arbuscles. In the future, when
we obtain the appropriate data, we would be able to perform
such an experiment. Similarly, the difference in the number
of classes classified in TAIM and AMFinder comes from the
difference in the data used in the experiments. TAIM classified
infected roots into two classes (Arbuscules and Vesicles) in
our experiments, whereas AMFinder did into four classes
(Arbuscules, Vesicles, Hyphopodia, and Intraradical hyphae).
This difference does not mean superiority or inferiority of the
classifiers themselves but the difference in the data used in
the experiments. Therefore, if we can collect the appropriate
training data, of which class labels are the same as those of
AMFinder, TAIM would be able to identify infected roots in the
same detail.

Since annotation is done manually, errors are inevitable, and
the error affects the classification accuracy. For example, apart
from plat science, there is a well-used handwritten digit image
dataset in the computer vision field, called MNIST dataset2.
The test data of the MNIST dataset, which consists of 10,000
handwritten digit images, has 0.15% of labels that are expected
to be wrong (Northcutt et al., 2021). Our dataset consists of
a smaller number of images and fewer classes than MNIST.
However, the annotation task of our dataset is harder than that
of the MNIST dataset. Hence, it is difficult to expect the number
of annotation errors in our dataset. However, even if there are
errors, it would not seriously affect the classification accuracy
insofar as the errors occur randomly. Actually, there are two types

2http://yann.lecun.com/exdb/mnist/

of errors that should be considered. One is annotation errors
that occur randomly due to human error, which is argued above.
The other is a bias that occurs depending on annotators, which
is caused by having different criteria. The effect of the latter is
more critical when fewer annotators are involved. Since TAIM
is currently trained on data annotated by one of the authors,
it is expected that the dataset is biased. However, when the
number of annotators increases, it is expected that the bias will
decrease. TAIM proves the function that decreases bias because
TAIM can be used by multiple users and the users can upload
their own data, as described in Section 3.3.4. Therefore, when
the number of users increases, TAIM is expected to provide
better classification results than those manually annotated by a
single person.

6. CONCLUSION

This article describes a web-based application called TAIM,
which calculates the colonization degree of AMF automatically
from microscopic images. As AMF is now available for axenic
culture, AMF is expected to be used a microbial fertilizer. To
evaluate of the effectiveness of the AMF as a microbial fertilizer,
colonization degree of AMF is required. One impediment to
such research is that estimation of the colonization degree
of AMF is still presently conducted manually. Therefore, we
developed TAIM to automate calculation of the extent of AMF
colonization. Because TAIM is a web-based application, it can
be used via a web browser and does not require users to set
up a calculation environment. TAIM also has a function to
collect new training data from users and retrains the classifier
of colonization. This function will contribute to reduction in
variation of the decision criteria by observers by combining data
annotated by multiple observers. We evaluated the detection and
classification accuracy of TAIM with an experimental soybean
root dataset comprising cropped 5,002 intersection areas. The
experimental results showed that TAIM detected the intersection
regions with a mean IoU score of 0.86. If an area with an IoU
score of 0.75 is considered to represent successful detection,
TAIM can detect the intersection regions with 95% accuracy.
TAIM classified the detected regions into four classes with 87.7%
accuracy. The classification accuracy improved with increase
in number of training data. Therefore, the estimation accuracy
of AMF colonization degree is predicted to improve by using
the data collection function. TAIM is expected to contribute
to an improved understanding of the effect of AMF as a
microbial fertilizer.
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Banana (Musa spp.) is an important fruit crop cultivated in most tropical countries.
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race
4 (Foc TR4) is the most destructive fungal disease. Biocontrol using endophytic
microorganisms is considered as a safety and sustainable strategy. Actinomycetes
have a potential for the production of diverse metabolites. Isolation of endophytic
actinomycetes with high efficiency and broad-spectrum antagonism is key for exploring
biocontrol agents. Our previous study showed that a total of 144 endophytic
actinomycetes were isolated from different tissues of medicinal plants in Hainan,
China. Especially, strain 8ZJF-21 exhibited a broad-spectrum antifungal activity. Its
morphological, physiological, and biochemical characteristics were consistent with the
genus Streptomyces. The phylogenetic tree demonstrated that strain 8ZJF-21 formed
a distinct clade with Streptomyces malaysiensis. Average nucleotide identity (ANI)
was 98.49% above the threshold of novel species. The pot experiment revealed that
endophytic Streptomyces malaysiensis 8ZJF-21 could improve the plant resistance
to Foc TR4 by enhancing the expression levels of defense-related and antioxidant
enzyme genes. It also promoted the plant growth by producing several extracellular
enzymes and metabolites. Antifungal mechanism assays showed that S. malaysiensis
8ZJF-21 extract inhibited mycelial growth and spore germination of Foc TR4
in vitro. Pathogenic cells occurred cytoplasmic heterogeneity, disappeared organelles,
and ruptured ultrastructure. Sequencing and annotation of genome suggested that
S. malaysiensis 8ZJF-21 had a potential of producing novel metabolites. Nineteen
volatile organic compounds were obtained from the extract by Gas Chromatography-
Mass Spectrometry (GC-MS). Hence, endophytic Streptomyces strains will become
essential biocontrol agents of modern agricultural practice.

Keywords: endophytic Streptomyces, biocontrol, banana Fusarium wilt, genome sequencing, antifungal
mechanism
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INTRODUCTION

Bananas (including plantains and other cooking bananas) are the
world’s most important fruit with a global production of 113.9
million tons (Nansamba et al., 2020). They are also a staple food
for millions of people throughout the developing world (Kema
et al., 2020). In Africa, over 70 million people derive 25% of
their dietary energy from bananas and plantains (Nansamba et al.,
2020). Vegetative propagation of commercial cultivars results
in a narrow genetic background, making plants susceptible to
various pathogens, especially banana Fusarium wilt caused by
Fusarium oxysporum f. sp. cubense (Foc) (Wang et al., 2012). The
pathogen contains at least four races based on the pathogenicity
to host cultivars. Foc tropical race 4 (Foc TR4) is the most
destructive fungal disease. It can infect Cavendish banana and
all cultivars that are sensitive to the other three races (Ploetz,
2015). Chemical control using fungicides is minimally effective
(Jing et al., 2020; Wei et al., 2020). The intensive use results
in the pathogenic resistance to fungicides and an increase in
environmental contamination (Dita et al., 2018). No commercial
varieties display an effective resistance against Foc TR4 until now
(Dale et al., 2017; Wang et al., 2021). The presence of any resistant
cultivars would not exclude the use of other disease control
approaches that could contribute to maintaining the resistance to
pathogens over time. Biological control is an eco-friendly strategy
to manage soil-borne phytopathogens. Disease-suppressive soil
provides the best example of microbe-associated defense against
the invasion of Foc TR4 (Zhou et al., 2019). Therefore, the
establishment of an effective way to stimulate the accumulation
of beneficial microorganisms and decrease the abundances of
pathogenic Fusarium is critical for the successful management of
banana Fusarium wilt.

Beneficial microorganisms are an important source of
agricultural biocontrol agents. Recently, endophytes have
received considerable attention for their potential to control
fungal phytopathogens (De Silva et al., 2019). They colonize
mainly the root system and the xylem tissues of host plants,
developing a mutualistic relationship to induce plant defense
response toward various pathogens and promote plant
growth. Among these endophytic microorganisms, the phylum
Actinobacteria are reported as an important portion (Palaniyandi
et al., 2013; Dinesh et al., 2017). Most endophytic actinomycetes
isolated to date mainly belong to the genus Streptomyces
(Golinska et al., 2015; Vurukonda et al., 2018). Previous
studies reported the role of Streptomyces in the biocontrol
of soil-borne phytopathogens such as Foc TR4 (Yun et al.,
2021), Glomerella cingulata (Marian et al., 2020), Sclerotium
rolfsii (Singh and Gaur, 2016), Botrytis cinerea (El-Shatoury
et al., 2020), and Alternaria brassicicola (Hassan et al., 2017).
The success of Streptomyces as a potential biocontrol agent
encourages research into new microbial agents as alternatives to
chemical fungicides (Dhanasekaran et al., 2005; Jing et al., 2020;
Zhang et al., 2021).

Indeed, the antagonistic activity of Streptomyces spp. against
phytopathogens is related to the production of antimicrobial
compounds including antibiotics, enzymes, and alkaloids (Lacey
and Rutledge, 2022). Among approximately 23,000 of the

identified bioactive metabolites produced by microorganisms,
about 7,600 compounds were found from the genus Streptomyces
(Olanrewaju and Babalola, 2019). About 80% of the bioactive
compounds for agricultural and medical use originate from the
genus Streptomyces (Ferraiuolo et al., 2021). To discover novel
biocontrol candidates, some researchers attempted to isolate
endophytic actinomycetes from various medicinal plants (Passari
et al., 2015; Ayswaria et al., 2020; Li et al., 2020; Musa et al.,
2020; Yun et al., 2021). For example, 12 out of 68 endophytic
actinomycetes isolated from six medicinal plants reduced the
infection of collar rot caused by Sclerotium rolfsii in chickpea
(Singh and Gaur, 2016). Five endophytic Streptomyces in the
traditional medicinal plant Arnica montana produced a huge
variety of bioactive secondary metabolites (Wardecki et al.,
2015). Twenty-two endophytic actinomycetes recovered from
medicinal plants exhibited inhibitory activity against at least one
pathogen (Passari et al., 2015). Recent study showed that precious
bioactive compounds produced by medicinal plants contribute
to the natural regeneration of endophytes to cope with stressful
conditions (Wu et al., 2021). The genomic evolution is beneficial
for endophytes to produce novel bioactive compounds. Thus,
endophytic Streptomyces from medicinal plants may have great
potential as biocontrol agents.

In our previous study, 144 endophytic actinomycetes were
isolated from different tissues of 23 medicinal plants. The
antagonistic experiment showed that strain 8ZJF-21 had strong
antifungal activity against Foc TR4. Here, our study’s aim was to
investigate the properties of the endophytic strain 8ZJF-2 from
the roots of Curculigo capitulata. We first identified the species
and genus of strain 8ZJF-2 and determined its broad-spectrum
antifungal activity in vitro. Biocontrol efficiency and antifungal
mechanism against Foc TR4 were further evaluated. To assay the
potential ability to produce the antifungal metabolites, genomic
sequencing and Gas Chromatography-Mass Spectrometry (GC-
MS) were performed. Our results will provide a promising
endophyte for controlling banana Fusarium wilt.

MATERIALS AND METHODS

Antifungal Bioassay of Endophytic
Actinomycete Strain 8ZJF-2 Against Foc
TR4
A total of 144 endophytic actinomycetes were isolated previously
from different tissues of 23 medicinal plants in “Wuzhishan”
Nature Reserve, Hainan, China the related data will be published
in Phytopathology, but the publication period is a little long.
Antagonistic activity was evaluated against Foc TR4 (ATCC
76255) in vitro as previously described (Jing et al., 2020). Foc
TR4 was cultured on the potato dextrose agar (PDA) medium
at 28◦C for 7 days. An agar disc (5 mm in diameter) with
Foc TR4 was placed on the center of Petri dishes 6 cm away
from an endophytic actinomycete. Plates without endophytic
actinomycetes were served as a control. After inoculation at
28◦C for 10 days, the inhibition percentage was calculated as
described by Wei et al. (2020). All experiments were performed
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in triplicate. The endophytic strain 8ZJF-2 isolated from the roots
of C. capitulata exhibited strong antifungal activity.

Assaying a Broad-Spectrum Antifungal
Activity of Strain 8ZJF-2
To further analyze whether strain 8ZJF-2 owned a broad-
spectrum antifungal activity, the antagonistic activities were
investigated against ten phytopathogenic fungi, including
Curvularia lunata (ATCC 42011) from banana, Colletotrichum
fragariae (ATCC 58718) from strawberry, Fusarium oxysporum
f. sp. cucumerinum (ATCC 36332) from cucumber, Fusarium
graminearum Sehw (ATCC 11696) from wheat, Fusarium
oxysporum f. sp. cubense race 1 (ACCC 31271) from banana,
Colletotrichum gloeosporioides (Penz) Penz and Sacc 1884
(ACCC 36351) from mango, Pyricularia oryzae (ATCC 52083)
from rice, Alternaria tenuissima (ATCC 58124) from cotton,
Colletotrichum acutatum (ATCC 56815) from loquat, and
Colletotrichum gloeosporioides (ATCC 16330) from mango.
Antifungal activity of strain 8ZJF-2 was detected as the above-
mentioned method. The inhibition zones were measured in
millimeters (Zhang et al., 2021).

Morphological, Physiological, and
Biochemical Characteristics of Strain
8ZJF-2
The strain 8ZJF-21 was inoculated in various types of growth
media including PDA and different International Streptomyces
Project media (ISP2, ISP3, ISP4, ISP5, ISP6, and ISP7) for
7 days at 28◦C under dark conditions (Yun et al., 2021;
Zhang et al., 2021). Cultural characteristics such as colonial
morphology and diffusible pigment production were detected in
the different media according to Shirling and Gottlieb (1966).
Based on Bergey’s manual of systematic bacteriology, strain 8ZJF-
21 was classified by observing the color of aerial and substrate
mycelia (Brinley-Morgan and McCullough, 1974). Phenotypic
profile of strain 8ZJF-2 spore chain was observed by scanning
electron microscopy (SEM, model S-4800, Hitachi Limited,
Japan). Utilization of nitrogen and carbon sources was studied
according to Qi et al. (2019). The capability of strain 8ZJF-21 to
produce important enzymes (proteases, lipases, celluloses, nitrate
reductases, pectinases, gelatinases, and ureases), indoleacetic acid
(IAA), siderophores, and H2S were determined (Jing et al., 2020;
Wei et al., 2020; Zhang et al., 2021). Physiological tests were
performed by inoculating strain 8ZJF-21 on the selected medium
(ISP2) at different temperatures (20◦C–50◦C), pH (3.0–11.0), and
NaCl (0–20% w/v).

Genomic Sequencing and Functional
Annotation of Strain 8ZJF-21
Strain 8ZJF-21 was cultured in the ISP2 liquid medium at
200 rpm and 28◦C for 4 days. Total genomic DNA was
extracted using a Rapid Bacterial Genomic DNA Isolation Kit
(Biotake corporation, Beijing, China). The sequencing libraries
were generated using the Illumina TruSeqTM RNA Sample
Preparation Kit (Illumina, San Diego, CA, United States). The
complete genome was sequenced in the Illumina Hiseq × Ten

platform (Illumina, San Diego, CA, United States) by the
Shanghai Majorbio Bio-pharm Technology Co. Ltd. Sequencing
data were analyzed using an online platform of the Majorbio
Cloud1 and was deposited in GenBank with accession number
JAJQWY000000000. The open reading frames (ORFs) were
predicted by the Rapid Annotation using Subsystem Technology
(Brettin et al., 2015). Functional annotation was performed using
the Clusters of Orthologous Group (COG), the Gene Ontology
(GO), and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Ogata et al., 1999; Tatusov et al., 2000). Biosynthetic
gene clusters (BGCs) were identified by the online antiSMASH
v4.0.2 software (Weber et al., 2015).

Construction of Phylogenetic Trees
The 16S rDNA sequence was extracted from the sequenced
genome of strain 8ZJF-21. Sequence alignment was performed
against the EzTaxon-e database.2 The phylogenetic trees were
constructed using a neighbor-joining (NJ) method of MEGA
7.0 (Kumar et al., 2016). Evolutionary distance was calculated
using the maximum-parsimony algorithm. The confidence level
was calculated using the bootstrap analysis on 1,000 replicates.
Average nucleotide identity (ANI) was obtained by comparing
genomes of the type strain and strain 8ZJF-21 using the
online OrthoANI (Yoon et al., 2017). The closest homolog was
considered as the type strain according to the phylogenetic tree.
Its genome sequence was downloaded from the database of
EzBioCloud.3

Extraction of Strain 8ZJF-21 Metabolites
Strain 8ZJF-21 was cultured in 100 ml of a soybean liquid
medium (SLM, 15 g of corn flour, 10 g of glucose, 0.5 g of
K2HPO4, 0.5 g of NaCl, 0.5 g of MgSO4, 3 g of beef extract, 10 g of
yeast extract, 10 g of soluble starch, 2g of CaCO3, pH 7.2-7.4) with
shaking at 180 rpm for 7 days at 28◦C. The fermentation broth
was filtered through a Whatman No.1 filter. After centrifugation
at 10,000 rpm for 15 min, the supernatant was extracted twice in
the ratio of 1:1 (culture supernatant: different gradient methanol).
To remove the impurities, the suspension went through a
silica-gel chromatography column (5.5 cm × 80 cm, inner
diameter× length). The elution with gradient methanol solutions
was filtered through a 0.22 µm sterile filter (Millipore, Bedford,
MA, United States) (Li et al., 2021). The organic solvent was
concentrated using a rotary vacuum evaporator (N-1300, EYELA,
Ailang Instrument Co., Ltd., Shanghai, China). The obtained
extract was redissolved in 10% (v/v) of dimethyl sulfoxide
(DMSO) with a final concentration of 20 mg ml−1.

Antifungal Activity of Extract Against Foc
TR4
Sterilized PDA agar media containing final extract concentrations
(1.563, 3.125, 6.25, 12.50, 25, 50, or 100 mg L−1) were prepared
by a serial dilution method (Yun et al., 2021). Ten percent (v/v)
of DMSO was used as a control. A 5-mm-diameter disc of Foc

1www.majorbio.com
2http://www.ezbiocloud.net/eztaxon/identify
3https://www.ezbiocloud.net/search?tn=Nocardioides
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TR4 was placed on the center of the plate. The growth diameter
of Foc TR4 was recorded until the mycelia reaching the plate edge
in the control group. The half-maximal effective concentration
(EC50) of the extract against Foc TR4 was calculated according to
Hoekstra and Van Ewijk (1993). All experiments were repeated
with three biological replicates.

Biocontrol Evaluation and Plant-Growth
Promoting of Strain 8ZJF-21
To investigate the potentiality of strain 8ZJF-21 to control Foc
TR4 and promote plant-growth traits, a pot experiment was
carried out in a completely randomized design. Foc TR4-GFP
strain overexpressing a green fluorescent protein (GFP) gene
was selected to detect the infection in banana roots (Yun et al.,
2021). Foc TR4-GFP was prepared by incubation in PDB (potato
dextrose broth) in a rotary shaker (180 rpm) for 5 days at
28◦C. The liquid culture was then filtered through four layers
of sterile gauze. The spores were enumerated by hemocytometer
under a light microscope (Axio Scope A1, Carl ZEISS, Germany)
and were then diluted to 1.0 × 105 cfu/mL with sterile water.
Strain 8ZJF-21 was inoculated in one liter of an Erlenmeyer flask
containing 300 ml of sterilized SLM at 200 rpm and 28◦C for
7 days. The suspension was diluted to the final concentration
of 1 × 105 cfu/ml. Spore suspension of Foc TR4-GFP (100 ml)
and strain 8ZJF-21 (100 ml) was completely mixed with 10 g
of autoclaved soil. The banana seedlings (Musa AAA group,
Cavendish cv. Brazil) with four to five leaves were transferred to
the pots (12 cm in diameter). These banana seedlings were kept in
a glasshouse under natural light at 28◦C± 2◦C. Three experiment
groups were set including sterilized SLM + Foc TR4-GFP
(1 × 106 spores/g soil) (G1), fermentation broth of strain 8ZJF-
21 (1× 106 spores/g soil)+ Foc TR4-GFP (1× 106 spores/g soil)
(G2), and sterilized SLM (G3). All experiments were performed
in triplicates. Each group contained 60 pots with three replicates.
After 0.5, 1, 2, 3, 4, and 5 days post inoculation (dpi), the
root samples of banana seedlings were collected for determining
the expression levels of defense-related and antioxidant enzyme
genes. The chlorotic symptom of banana leaves was monitored
at 30 dpi. The disease indexes were recorded according to Li
et al. (2021). Foc TR4-GFP infection in banana roots was detected
by a confocal microscope (FV1000-IX81, Olympus, Japan). The
physiological parameters of banana seedlings were measured
at 30 dpi, including stem diameter, chlorophyll content, leaf
area, dry weight, fresh weight, plant height, and leaf thickness
(Zhang et al., 2021).

Measurement of H2O2 and
Malondialdehyde in Roots of Banana
Seedlings
As above mentioned, roots treated with strain 8ZJF-21 and/or
Foc TR4 were collected at 0.5, 1, 2, 3, 4, and 5 dpi. H2O2 was
measured according to Ferguson et al. (1983). One gram of
frozen sample was ground in 5 ml of pre-cooled acetone. After
centrifugation at 10,000 rpm for 20 min at 4◦C, the supernatant
was mixed with 0.5 ml of TiCl4 (20% v/v TiCl4 in concentrated
HCl). And then, 3.5 ml of NH4OH was added dropwise with

thorough mixing. Following centrifugation, the precipitates were
redissolved in 25 ml of H2SO4 (2 mol/L). The absorbance was
recorded at 415 nm. A blank without the addition of sample
was made through the same procedure. The standards ranging
from 0.15 to 0.75 mol L−1 H2O2 were also reacted with TiC14.
Malondialdehyde (MDA) was determined using the reaction
method of thiobarbituric acid. Four grams of frozen samples
were ground in 15 ml of trichloroacetic acid (5%, w/v). After
centrifugation at 6,000 rpm for 10 min, 1.5 ml of the supernatant
were mixed with 2.5 ml of thiobarbituric acid (0.5%, w/v) in
15% of trichloroacetic acid. The mixture was incubated at 100◦C
for 20 min. Absorbance of the supernatant was recorded at
532 nm and corrected using non-specific turbidity by subtracting
the absorbance at 600 nm. The content of MDA was calculated
according to Pongprasert et al. (2011) and expressed as mol
g−1 FW.

Expression Analysis of Defense-Related
Genes by Quantitative Real-Time
Polymerase Chain Reaction
The total RNA of banana roots was extracted using the method
of Trizol (Wang et al., 2014). The quality and quantity of RNA
were measured by Nanodrop (Thermo Scientific, United States).
The first-strand cDNA was synthesized using the Prime ScriptTM

RT Reagent Kit with gDNA Eraser (Takara, Dalian, China).
Quantitative real-time polymerase chain reaction (qRT-PCR) was
performed in a LightCycler R© 480 System (Roche Diagnostics,
Mannheim, Germany) with the SYBR Premix Ex Taq II kit
(Takara, Dalian, Liaoning, China). Four defense-related marker
genes such as β-1,3-glucanase (Maβ-1,3-Glu, GenBank ID:
AF001523), mitogen-activated protein kinase 1 (MaMAPK1,
GenBank ID: XM018826311), phenylalanine ammonia lyase
(MaPAL, GenBank ID: XM009403673), and pathogen-related
protein 1 (MaPR-1, GenBank ID: XM009388962) were selected.
The primer sequences were listed in Supplementary Table 1.
The reaction system of qRT-PCR was described in our previous
study (Zhang et al., 2019). The house-keeping gene of 18S rRNA
(GenBank ID: U42083) was used as a reference gene to normalize
the expression levels of target genes using the 2−11Ct method
(Wang et al., 2014). All experiments were repeated in triplicates
with at least three biological replicates of each sample.

Effect of Extract on Spore Germination
of Foc TR4
Foc TR4 was cultured in the potato dextrose broth (PBD) at
200 rpm for 7 days at 28◦C. After filtration through six layers
of gauze to remove hyphae, spores were collected at 1,000 rpm
for 10 min and washed using sterile water four times. The spore
suspension (1 × 106 spores/mL) of Foc TR4 was prepared using
sterile water (Wang et al., 2012). The effect of the extract on
spore germination of Foc TR4 was evaluated according to Wei
et al. (2020). Briefly, different concentration extracts (1 × EC50,
2 × EC50, 4 × EC50 and 8 × EC50) of strain 8ZJF-21 and Foc
TR4 (1 × 106 spores/mL) were mixed completely and added to
the concavity of slide. Foc TR4 spores treated with 10% (v/v)
of DMSO were used as a control. After 16 h of incubation at
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25◦C, the spore germinated of Foc TR4 conidia were counted
using a light microscope (Axio Scope A1, Carl ZEISS, Germany).
Conidia were considered as germinated when germ tube began to
appear. Five replicates were used in each treatment and at least
200 conidia were measured per replicate.

Effect of Extract on Mycelial Morphology
and Ultrastructure of Foc TR4
Foc TR4 was grown on the PDA medium with 4 × EC50 of
extract at 28◦C for 5 days. The collected mycelia were fixed
with 2.5% (v/v) of glutaraldehyde overnight at 4◦C. DMSO (10%,
v/v) treatment was used as a control. Agar plugs (5 mm in
diameter) with Foc TR4 were cut from the edge of a 3-day-old
fungal medium. The mycelial sections were prepared according
to Jing et al. (2020). Morphological characteristics of Foc TR4
mycelia were detected using SEM. The effect of strain 8ZJF-21
extract on the cellular ultrastructure of Foc TR4 was observed
by a transmission electron microscope (TEM, JEM-1400 Flash,
Hitachi Limited, Tokyo, Japan) according to Wei et al. (2020).
Four replicates were used per treatment and each experiment was
repeated three times.

Component Identification of Strain
8Zjf-21 Extract by Gas
Chromatography-Mass Spectrometry
The volatile organic compounds in strain 8ZJF-21 extract were
identified using GC-MS as our previous description (Li et al.,
2021). Extract of strain 8ZJF-21 was first dissolved in the
chromatographic grade methanol and was filtered through a
0.2-µm filter. The solution was injected into a gas capillary
column (DB-FFAP, 30 m × 0.25 mm × 0.25 µm) of a gas

chromatograph (5973 Inert XL MSD, Agilent, United States).
Helium was used as a carrier gas with a flow rate of 1 ml
min−1. The column temperatures were set as follows: initial
column temperature at 70◦C for 3 min, followed by an increment
of 5◦C/min up to 100◦C and 10◦C/min up to 250◦C. The
final temperature was kept at 300◦C for 5 min. The mass
spectrometer was operated in the electron ionization mode at
70 eV with a continuous scan from 50 to 800 m/z (Jing et al.,
2020). The peaks were identified by matching the mass spectra
with the National Institute of Standards and Technology (NIST,
United States) library.

Statistical Analysis
All the experiments were implemented using a completely
randomized design. Data were obtained from at least three
biological replicates and were expressed as the mean ± standard
deviation (SD). Data processing and statistical analysis were
performed with the SPSS statistical software package (SPSS Inc.,
Cary, NC, United States, v.22). The significance was determined
by Duncan’s multiple range tests (P < 0.05).

RESULTS

Morphological, Biochemical, and
Physiological Characteristics of Strain
8ZJF-21
Antifungal activity of the selected endophytic actinomycetes
was further tested against Foc TR4. Strain 8ZJF-21 isolated
from the roots of medicinal plant C. capitulata exhibited a
strong antagonistic activity (Figure 1A). Strain 8ZJF-21 can

FIGURE 1 | Antifungal activity and identification of strain 8ZJF-21. (A) Antifungal activity of strain 8ZJF-21 on mycelial growth of Foc TR4. (B) Morphology of strain
8ZJF-21. (C) Phylogenetic tree of strain 8ZJF-21 using 16 rDNA sequences. The tree was constructed using the NJ method in the MEGA software. The level of
bootstrap support (1,000 repetitions) was indicated at all nodes.
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grow well on PDA and various ISP media (ISP2-ISP7). Different
morphological characteristics of the colony were displayed in
Supplementary Table 2. The strain can develop the branched
substrate and aerial mycelia. Cream aerial mycelia and milky-
white substrate hyphae were observed on all the selected ISP
media. The grayish-white color of aerial and substrate mycelia
was displayed on PDA. Diffusible pigment was not detected on
the selected media except for ISP7, which was a typical profile
of melanin pigment produced by Streptomyces (Shirling and
Gottlieb, 1966). The spiral spore chains with rough surface were
finally generated (Figure 1B).

In comparison with different culture conditions in the ISP2
medium, strain 8ZJF-21 can grow well at temperatures from
20 to 40◦C (optimum at 30◦C), NaCl up to 3% (w/v, optimal
concentration 1%) and pH from 6.0 to 9.0 (optimum pH 7.0).
It could produce extracellular enzymes such as amylase, cellulase,
protease, and urease as well as reduce nitrate. It had no capacity
to produce H2S and respond to gelatin degradation. In addition,
strain 8ZJF-21 was able to utilize all the tested sugars as sole
carbon source and most of nitrogen source except for NH4NO3,
arginine, and glutamic acid (Table 1). Compared with the
reference Streptomyces strains (Qi et al., 2019; Jing et al., 2020;
Wei et al., 2020), strain 8ZJF-21 was considered as a member of
the genus Streptomyces.

TABLE 1 | Determination of physiological and biochemical properties of
S. malaysiensis 8ZJF-21.

Result Characteristics Result

Biochemical test Carbon source

Tween-20 − Raffinose +

Tween-40 − D-Trehalose anhydrous +

Tween-80 − α-Lactose +

Gelatin Liquefaction − Inositol +

Starch hydrolysis + D(+)-Cellobiose +

IAA production + D-Fructose +

Cellulase + D-Melezitose +

Urease + L-Arabinose +

Protease + Ribose +

Lipase + D-Galactose +

H2S production − D-Glucose +

Nitrate reduction +

Siderophores +

pH tolerance test 6–9 (optimal pH 7.0)

Temperature
tolerance test

20◦C–40◦C (optimum
at 30◦C)

NaCl tolerance
test(%)

< 3 (optimal NaCl
concentration 1%)

Nitrogen source

NH4Cl + Histidine +

(NH4)2SO4 + Tyrosine +

NH4NO3 − Methionine +

Arginine − Glutamic acid −

Glycine + Hydroxyproline +

Phenylalanine +

“+” positive result; “−” negative result.

Identification of Strain 8ZJF-21
To further identify strain 8ZJF-21, the whole genome was
sequenced. A 1,639 bp-length sequence of 16S rDNA was
extracted from the genome sequences. One-hundred percent of
nucleotide similarity was found with 16S rDNA of S. malaysiensis
DSM 4137 (GenBank ID: NZ_CP023992). The phylogenetic tree
showed that strain 8ZJF-21 was located in a well-delineated
subclade with S. malaysiensis (Figure 1C). Compared with the
genomes of strain 8ZJF-21 to the typal genome of S. malaysiensis
DSM 4137 (Supplementary Figure 1), the calculated ANI value
was 98.49 above the threshold value of 95-96% for species
delineation (Richter and Rosselló-Móra, 2009). Therefore, strain
8ZJF-21 was identified as S. malaysiensis.

Detection of a Broad-Spectrum
Antifungal Activity of Streptomyces
malaysiensis 8ZJF-21 Against
Phytopathogenic Fungi
The antifungal assay showed that S. malaysiensis 8ZJF-21
significantly inhibited the mycelial growth of all tested fungi
(Figure 2). The inhibition rates ranged from 40.15 to 77.83%.
The strongest antifungal activity was detected against the causal
agent of strawberry anthracnose (C. fragariae, 77.83 ± 2.68),
followed by F. oxysporum f. sp. cucumerinum (67.48 ± 1.32),
C. gloeosporioides (63.96 ± 2.01), and F. graminearum Sehw
(60.86 ± 1.32). In addition, strain 8ZJF-21 had also strong
inhibition activities against A. tenuissima (59.73± 3.2), C. lunata
(42.37 ± 2.31), F. oxysporum f. sp. cubense race 1 (42.88 ± 1.58),
C. gloeosporioides (Penz) Penz and Sacc 1884 (43.33 ± 2.18),
P. oryzae (48.51 ± 2.01), and C. acutatum (40.15 ± 1.32). It
suggested that S. malaysiensis 8ZJF-21 had a broad-spectrum
antifungal activity.

Biocontrol of Foc TR4 and Plant-Growth
Promoting in the Pot Experiment
Streptomyces malaysiensis 8ZJF-21 inhibited the growth of
different phytopathogenic fungi in vitro. It promoted us to
evaluate its biocontrol efficiency against Foc TR4 using the pot
experiment. The disease symptoms on banana seedlings were
detected at 30 dpi. In the treatment group of Foc TR4 (G1),
banana seedlings showed an obvious chlorotic symptom at the
bottom of the leaves (Figure 3A). Compared with the control
group, no obvious disease symptom was detected in the group
of S. malaysiensis 8ZJF-21 + Foc TR4 (G2), suggesting that
the protective treatment with S. malaysiensis 8ZJF-21 effectively
prevented the infection of Foc TR4. The results were supported
by the lack of obvious black symptoms in the split corms of
banana seedlings treated with S. malaysiensis 8ZJF-21 (G2).
We also evaluated Foc TR4-GFP infection in the roots of
banana seedlings. The colony-forming units of Foc TR4-GFP in
S. malaysiensis 8ZJF-21-treated roots were much lower than that
in Foc TR4-GFP-treated roots (Figure 3B). The disease index was
65.37% in the G1 group, while only 18.07% were recorded in the
G2 group (Figure 3C).

Compared to different agronomic traits of banana seedlings
in different treatment groups (Figures 3D–J), Foc TR4 infection
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FIGURE 2 | Measurement of a broad-spectrum antifungal activity of S. malaysiensis 8ZJF-21 against the selected fungal phytopathogens. (A) Antagonistic assay of
S. malaysiensis 8ZJF-21 against different phytopathogens. (B) Quantitative analysis of antifungal activity of S. malaysiensis 8ZJF-21 against different
phytopathogens.

inhibited the growth of banana seedlings. Although no
obvious difference of stem diameter was observed among the
three treatment groups (Figure 3D), S. malaysiensis 8ZJF-21
significantly increased (p = 0.0036) the plant height and reached
46.73 ± 2.01 cm at 30 dpi (Figure 3E). Compared to the
agronomic indicators in the G1 group, a significant increase was
detected in the leaf area, leaf thickness, dry weight, and fresh
weight in the G2 and G3 groups (Figures 3F–I). Chlorophyll
content was sharply decreased in the Foc TR4-treated leaves due
to chlorotic symptom (Figure 3I). Hence, S. malaysiensis 8ZJF-21
not only reduced the disease symptoms, but also promoted the
growth of banana seedlings.

Effect of Extract on the Antioxidant
System of Banana Seedlings
Biotic and abiotic stresses induce accumulation of reactive
oxygen species in plant cells, thereby causing oxidative damage
(Li et al., 2015). The oxidative damage expressed as the form of
H2O2 was first determined in banana roots of different groups.
Foc TR4 infection resulted in a rapid increase of H2O2 and
reached a peak at 3 dpi (Figure 4A). S. malaysiensis 8ZJF-21
reduced the accumulation of H2O2 in Foc TR4-infected roots.
It was supported by the changes of MDA contents in the G2
group, a marker for monitoring lipid peroxidation caused by
oxidative damage (Figure 4B). The MDA contents in Foc TR4-
inoculated roots dramatically increased from 0.5 dpi and reached
the highest value at 4 dpi, which was four-fold higher than that
in the G3 group. However, the increase of MDA contents in roots
treated with S. malaysiensis 8ZJF-21 was obviously inhibited. The
maximum was detected at 4dpi with the decrease of 69.04% in
comparison with the G1 group.

To assay whether S. malaysiensis 8ZJF-21 could induce
activities of antioxidant enzymes (such as CAT, SOD, PPO, and
POD), the expression levels of these genes were investigated. The
transcripts of MaCAT in banana roots treated with S. malaysiensis
8ZJF-21 increased gradually until 5 dpi (Figure 4C). In Foc TR4-
treated roots, the expression peak was detected at 4 dpi. No
obvious increase (P < 0.01) among different time points except
for 2 dpi was detected in the G3 group. Similarly, S. malaysiensis
8ZJF-21 upregulated significantly (P < 0.05) the expression
levels of MaSOD and MaPOD. Their transcripts reached the
maximum at 4 dpi with two-fold higher than those in the G1
group (Figures 4D,E). Although Foc TR4 induced obviously
the transcript accumulation of MaPPO, the expression levels
were higher in the G2 group and increased by 21% at 3 dpi in
comparison with Foc TR4-treated roots (Figure 4F).

Expression Levels of Defense-Related
Genes in Banana Roots Treated With
Streptomyces malaysiensis 8ZJF-21
To determine whether the defensive system was activated in
response to S. malaysiensis 8ZJF-21 and/or Foc TR4, four defense-
related genes (Mab-1,3-Glu, MaPAL, MaMAPK1, and MaPR1)
were selected. By contrast, S. malaysiensis 8ZJF-21 and/or Foc
TR4 significantly increased the transcripts of four defense-related
genes with varying patterns (Figure 5). The transcript level of
MaPR1 in roots treated with S. malaysiensis 8ZJF-21 increased
significantly at 0.5 dpi and reached the highest peak at 2 dpi,
which was 1.3-fold and 7.0-fold higher than that in the G1
and G3 groups, respectively (Figure 5A). The transcript level
of MaPAL was also upregulated by S. malaysiensis 8ZJF-21 and
the expression peak was detected at 2 dpi with 1.6-fold higher
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FIGURE 3 | Assay of Fusarium wilt disease control and plant-growth promoting after treatment with S. malaysiensis 8ZJF-21. (A) Chlorotic symptom of leaves in
different treatment groups at 30 dpi. (B) Detection of Foc TR4 infection in the corm and root of banana seedlings at 30 dpi. (C) Quantitative analysis of disease index
of banana seedlings at 30 dpi. Determination of physiological indicators including stem diameter (D), plant height (E), leaf area (F), leaf thickness (G), dry weight (H),
fresh weight (I), and chlorophyll content (J) in different treatment groups at 30 dpi. Error bars indicate standard errors of the means from three repeated experiments.
Different letters indicate a significant difference according to Duncan’s multiple range test (P < 0.05).
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FIGURE 4 | Effects of S. malaysiensis 8ZJF-21 on the activation of antioxidant system. G1: Foc TR4-GFP treatment; G2: S. malaysiensis 8ZJF-21 + Foc TR4-GFP
treatment; G3: medium treatment. (A) Measurement of H2O2 content in the roots of banana seedlings after treatment at different time points. (B) Measurement of
MDA content in the roots of banana seedlings after treatment at different time points. The expression levels of antioxidant enzyme genes were determined by
qRT-PCR, including MaCAT (C), MaSOD (D), MaPOD (E), and MaPPO (F). Error bars indicate standard errors of the means from three repeated experiments.
Different letters indicate a significant difference according to Duncan’s multiple range test (P < 0.05).

than that in the G1 group (Figure 5B). A similar expression
pattern of Maβ-1,3-Glu was observed in the treated roots of
S. malaysiensis 8ZJF-21. The transcripts of Maβ-1,3-Glu in the
G2 group showed an increase of 1.64-fold at 1 dpi and 1.35-fold
at 2 dpi in comparison with that in the G1 group (Figure 5C).
The expression levels of MaMAPK1 reached their maximum
values at 2 dpi in the G1 group and at 1 dpi in the G2 group.
High transcripts were maintained by S. malaysiensis 8ZJF-21
until 4 dpi (Figure 5D). It suggested that S. malaysiensis 8ZJF-
21 could improve the plant resistance to Foc TR4 by activating
the MAPK-mediated signaling pathway of defense response.

Effect of Extract on the Growth of Foc
TR4
Foc TR4 was inoculated on the PDA plate containing different
concentration extracts of S. malaysiensis 8ZJF-21. The inhibition
of mycelial growth was measured, until hypha reached the
edge of the plate in the control group (10% of DMSO
treatment). The mycelial growth of Foc TR4 was inhibited
dramatically along with the increase of extract concentration.
More than 12.50 µg/ml of extract almost completely restricted
the mycelial growth of Foc TR4 (Figure 6A). The EC50 value
was 6.11 µg/ml (Supplementary Figure 2). Similarly, the extracts

significantly reduced the germination rate of conidia and the
length reduction of germ tubes (Figures 6B,C). All spore
germination was almost completely inhibited by 4 × EC50 of
extract. No obvious inhibition of Foc TR4 growth and spore
germination was observed in the control group. In addition, the
extract-treated hyphae became deformed, shrunk, ruptured, and
swollen (Figure 6D). The normal hyphae with a smooth surface
appeared to be uniform in thickness. For cellular ultrastructure
of Foc TR4, 4 × EC50 of the extract caused vacuolization and
organelle degradation. Mitochondria and cell nucleus gradually
disappeared. High dense components were formed in treated
cells (Figure 6E).

Genome Sequencing and Annotation of
Streptomyces malaysiensis 8ZJF-21
After sequencing and assembly, the genome of S. malaysiensis
8ZJF-21 consisted of 11,434,537 bp and had 71.09% of GC
content. The genome contained 8 rRNA genes, 63 tRNA genes,
and 9,787 coding sequences (Figure 7A). By annotation, 34.24,
48.33, and 75.44% of genes were assigned to three categories of
KEGG, GO, and COG, respectively. In KEGG annotation, 2,491
of genes participated into the regulation of cellular processes
(193), metabolism (2,008), human diseases (142), genetic
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FIGURE 5 | Expression analysis of defense-related marker genes in banana roots. qRT-PCR determined the transcript levels of MaPR1 (A), MaPAL (B), Mab-1,3-Glu
(C), and MaMAPK1 (D) in banana roots after treatment with S. malaysiensis 8ZJF-21 at different time points. G1-G3 represented different treatment groups as
described in Figure 4. Error bars indicate standard errors of the means from three repeated experiments. Different letters indicate a significant difference according
to Duncan’s multiple range test (P < 0.05).

information processing (216), environmental information
processing (298), and organismal systems (44) (Supplementary
Figure 3). For COG annotation, the top five categories contained
transcription (833), nucleotide transport and metabolism
(584), carbohydrate transport and metabolism (575), energy
production and conversion (484) as well as inorganic ion
transport and metabolism (400). Notably, 2,342 of genes were
clustered into unknown function category (Figure 7B). A total
of 4,730 genes were annotated into biological process (1,728),
cellular component (1,657), and molecular function (3,950)
using the GO database (Supplementary Figure 4).

Moreover, several BGCs in the genome of S. malaysiensis
8ZJF-21 were involved in secondary metabolism. By alignment
with antiSMASH, the predicted 52 BGCs included NRPS
(non-ribosomal peptide synthetase), PKS (polyketide synthase)
type 1 and 2, siderophore, terpene, indole, butyrolactone, and
betalactone (Supplementary Table 3). Fourteen BGCs exhibited
more than 70% of similarity with the submitted BGCs in the
database. Seven BGCs showed more than 100% of similarity
with coelichelin, ectoine, nigericin B, ectoine, desferrioxamin B,
echoside A/B, geosmin, and pristinol (Figure 7C). Six BGCs
participated in the biosynthesis of antimicrobial compounds
such as hopene, elaiophylin, coelichelin, ectoine, nigericin, and
geldanamycin. Two BGCs probably regulated the biosynthesis

of anticancer agent (hygrocin A/B and azalomycin F3a). Two
siderophore molecules were encoded by cluster 21 and cluster
39. Gene clusters 67 and 78 were responsible for the biosynthesis
of terpene. Clusters 66 and 71 were involved in the production
of pigment. Notably, a high portion of unknown BGCs suggests
that several novel secondary metabolites could be produced by
S. malaysiensis 8ZJF-21.

Component Identification of Strain
8ZJF-21 Extract by Gas
Chromatography-Mass Spectrometry
Gas Chromatography-Mass Spectrometry (GC-MS) was
used to identify the bioactive compounds in S. malaysiensis
8ZJF-21 extract. Compared to mass spectra with the NIST
library, 19 volatile organic compounds were obtained
according to retention time and molecular weight (Table 2).
They contained acetophenone (1), chloroacetic acid, 3-
tetradecyl ester (2), 2,4-furandicarboxylic acid, dimethyl
ester (3), formic acid, trans-4-methylcyclohexyl ester (4),
5-hydroxymethylfurfural (5), cyclohexane (6), pyrazoline
(7), pentacosanoic acid, methyl ester (8), hexadecanoic acid,
ethyl ester (9), borneol, dimethyl(pentafluorophenyl)silyl
ether (10), pentacosanoic acid, methyl ester (11),
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FIGURE 6 | Antifungal mechanism of S. malaysiensis 8ZJF-21 extract on Foc TR4 in vitro. (A) Inhibition ability assay of different dose extracts on the hyphal growth
of Foc TR4. (B) Inhibition efficiency of different dose extracts on spore germination of Foc TR4. Bar = 10 µm. (C) Quantitative analysis of spore germination of Foc
TR4 after treatment with different dose extracts. Different letters indicate a significant difference according to Duncan’s multiple range test (P < 0.05).
(D) Characteristics of hyphal morphology of Foc TR4 after treatment with 4 × EC50 extract. Bar = 1 µm. (E) Ultrastructural characteristics of Foc TR4 after treatment
with 4 × EC50 extract. Bar = 0.5 µm.

1,2-benzenedicarboxylic acid, butyl 2-methylpropyl ester
(12), 4-(3-methyl-2-butenyl)-1H-indole (13), 1,2-bis(p-(cis-
styryl)phenyl)-trans-ethylene (14), colchiceinamide (15),
1,2-Bis(p-(cis-styryl)phenyl)-trans-ethylene (16), voaluteine
(17), 4’-(3-(6-Methyl-3-pyridyl)-1-(p-tolyl)-2-pyrazolin-5-
yl)acetanilide (18), and bufotalin (19). The peak area represented
the relative proportion. Benzenedicarboxylic acid and 1H-
Indole, 4-(3-methyl-2-butenyl) were two dominant components
in S. malaysiensis 8ZJF-21 extract.

DISCUSSION

Actinobacteria are an important component of soil microbial
communities, accounting for around 10% of the total soil
microbiome (van Bergeijk et al., 2020). Some of them can
enter directly into plant tissues and establish an endophytic
lifestyle (Dinesh et al., 2017). Endophytic actinomycetes from
medicinal plants were reported as major sources of antifungal
agents (Golinska et al., 2015). However, there is still a lack
of knowledge on their properties and application in the field.
It prompted us to explore endophytic Streptomyces from

medicinal plants as biocontrol agents. Our previous study
demonstrated that 144 endophytic Actinomycete strains
were isolated from different tissues of traditional medicinal
plants. Especially, Streptomyces sp. strain 8ZJF-21 isolated
from the roots of C. capitulata exhibited a strong antifungal
activity against Foc TR4. Accumulated evidence indicated
that secondary metabolites of medicinal plants promoted the
development of microbial traits by mediating cross-talk between
endophytes and their hosts (Granér et al., 2003). During the
long-term interaction, endophytes gained some new genetic
information and produced specific bioactive compounds
(Chithra et al., 2014). Some rare actinomycetes isolated from the
medicinal plant Vochysia divergens produced a wide diversity
of antibacterial secondary metabolites (Gos et al., 2017). Our
present results also showed that an endophytic Streptomyces
sp. strain 8ZJF-21 exhibited strong antagonistic activities
against Fusarium spp., Curvularia spp., Alternaria spp., and
Pyricularia spp. (Figure 2). Similarly, 12 out of 65 endophytic
actinomycetes isolated from medicinal plants Artemisia argyi,
Paeonia lactiflora, Radix platycodi, and Achyranthes bidentata
effectively suppressed penicillin-resistant Staphylococcus
aureus, and majority of them belonged to Streptomyces
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FIGURE 7 | Genome annotation of S. malaysiensis 8ZJF-21 and BGC prediction. (A) Circular map of strain 8ZJF-21 genome. From outside to center, ring 1 and ring
4 represented CDS in forward strand and reverse strand, respectively. Different colors indicate the functional category of COG. Rings 2 and 3 showed the CDS,
tRNA, and rRNA in forward strand and reverse strand, respectively. Ring 5 and ring 6 show the G + C content and G + C skew, respectively. (B) COG functional
annotation of S. malaysiensis 8ZJF-21 genome. (C) Genomic information and chemical structure of BGCs with 100% similarity with the known BGCs.

TABLE 2 | Identification of compound components in S. malaysiensis 8ZJF-21 extract by GC-MS.

No. Retention
time (min)

Peak area
(Ab*s)

Baseline
height (Ab)

Absolute
height (Ab)

Peak width
50% (min)

Compounds Molecular
weight (amu)

1 13.12 70692 10852 19633 0.201 Acetophenone 120.058

2 14.294 18901 6915 14847 0.101 Chloroacetic acid 290.201

3 23.144 225670 46063 61558 0.268 2,4-Furandicarboxylic acid 184.037

4 24.679 249440 63347 86147 0.176 Formic acid 142.099

5 25.183 439371 113658 138820 0.159 5-Hydroxymethylfurfural 126.032

6 25.384 90802 21662 53877 0.159 Cyclohexane 112.125

7 25.594 1735455 503739 535781 0.201 Pyrazoline 112.100

8 26.802 88591 19037 55004 0.151 Pentacosanoic acid 396.397

9 28.085 152797 32432 77364 0.168 Hexadecanoic acid 284.272

10 29.377 83552 29050 90809 0.109 Dimethyl(pentafluorophenyl)
silyl ether

378.144

11 30.971 342717 70703 162678 0.185 Hexadecanoic acid 284.272

12 37.782 2562283 756038 1177089 0.151 Benzenedicarboxylic acid 278.152

13 38.093 2371047 670528 1123216 0.185 4-(3-methyl-2-butenyl)-1H-
indole

185.12

14 38.948 205896 48409 565497 0.143 1,2-Bis(p-(cis-styryl)phenyl)-
trans-ethylene

384.188

15 40.551 474633 71382 760234 0.243 Colchiceinamide 384.169

16 40.836 524589 86333 811105 0.294 1,2-Bis(p-(cis-styryl)phenyl)-
trans-ethylene

384.188

17 42.337 893803 104279 1086622 0.428 Voaluteine 384.205

18 43.31 901704 45557 1234395 0.738 4′-(3-(6-Methyl-3-pyridyl)-
1-(p-tolyl)-2-pyrazolin-5-

yl)acetanilide

384.195

19 43.956 542604 79901 1440011 0.252 Bufotalin 444.251

(Zhang et al., 2012). Therefore, endophytic actinomycetes
from medicinal plants could be exploited as a novel source of
biocontrol agents.

Until now, a number of endophytic Streptomyces species were
isolated from different plant tissues, but many of which were
poorly defined. In our study, the morphological, physiological,
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and biochemical characteristics of strain 8ZJF-21 were consistent
with the properties of the genus Streptomyces. The phylogenetic
tree of 16S rDNA showed that the strain clustered into the same
subgroup with S. malaysiensis DSM 4137. Sharma and Manhas
(2020) reported that an obvious difference of morphological
characteristics was found among the nearest phylogenetic relative
strains. Hence, 16S rDNA did not provide a sufficient resolution
for the species-level identification. Although the traditional
method of DNA-DNA hybridization allowed the classification for
prokaryote, serious shortcomings limited its application such as a
time-consuming procedure, operational feasibility, and standard
stain obtaining (Gevers et al., 2005). Based on the sequencing
genomes, ANI provided an efficient method to identify the level
of species (Gevers et al., 2005). It was supported by an ANI value
of 98.49% that was calculated by the genomic alignment of strain
8ZJF-21 with the typal strain S. malaysiensis DSM 4137, which
was above the threshold value of 95–96% for species delineation
(Richter and Rosselló-Móra, 2009).

To further evaluate the biocontrol efficiency of S. malaysiensis
8ZJF-21, the pot experiment was carried out in this study. Strain
8ZJF-21 improved the system resistance of banana seedlings and
inhibited the infection of Foc TR4. The previous reports also
showed that the plant immune system could be triggered after
the inoculation with pathogen or beneficial microbes (Zhang
et al., 2019). In an early response, H2O2 is a key signaling
molecule in early plant immune responses (Li et al., 2015).
Foc TR4 induced H2O2 outbreak and MDA accumulation in
banana roots. Lower levels of H2O2 were detected in roots
treated with S. malaysiensis 8ZJF-21, suggesting that the strain
alleviated the oxidative stress caused by Foc TR4. Moreover, S.
malaysiensis 8ZJF-21 induced the higher and lasting expression
levels of antioxidant enzyme genes (MaPPO, MaPOD, MaCAT,
and MaSOD) and defense-related genes (MaPAL, MaPR-1,
MaMAPK1, and Maβ-1,3 glu). PPO could oxidize phenol and
transform phytoalexins to enhance plant resistance to pathogens
(Richter et al., 2012). PAL degraded phenylalanine to trans-
cinnamic acid, activating the biosynthesis of salicylic acid (SA) to
induce the defense response (Shine et al., 2016). Hence, the SA-
dependent signaling pathway might participate in the resistance
activation of S. malaysiensis 8ZJF-21. Similarly, Pseudomonas
putida and Pseudomonas syringae stimulated a systemic response
against Alternaria solani by increasing the activities of PAL, POD,
and PPO (Ahmed et al., 2011). Streptomyces goshikiensis triggered
defense response against Fusarium oxysporum f. sp. niveum by
enhancing activities of PPO, SOD, and β-1,3 glucanases (Faheem
et al., 2015). Our previous studies also revealed that Streptomyces
can activate defensive enzyme activities and inhibit the infection
of Foc TR4 in banana roots (Zhang et al., 2021). Therefore, the
expression of defense-related and defensive enzyme genes was
associated with the priming of antagonistic microbes on host
plants as an early and rapid response to pathogens.

Additionally, the metabolites of S. malaysiensis 8ZJF-21
exhibited strong antifungal activity against Foc TR4. The
extract directly attacked fungal pathogens, resulting in abnormal
morphology like sporulation inhibition, swollen and distorted
mycelia, vacuolation, and organelle disappearance. Moreover,
endophytic actinomycetes produced a large set of metabolic

compounds to stimulate the expression of specific genes involved
in resistance to pathogens (Taechowisan et al., 2005; Kenneth
et al., 2019; van Bergeijk et al., 2020). These metabolites also
had a strong influence on the rhizosphere colonization of
endophytic actinomycetes (Zhang et al., 2021). Competition of
nutrient availability and niche was an essential for biocontrol
among pathogenic and non-pathogenic microbes (Heydari and
Pessarakli, 2010). Our previous study reported that competitive
colonization of Streptomyces sp. BITDG-11 reduced fungal
population of Foc TR4 in banana roots (Zhang et al., 2021). The
biocontrol agents depleted rapidly the limited nutrient making
it unavailable to meet the growth of pathogens. It is noteworthy
that S. malaysiensis 8ZJF-21 can also promote the growth
of banana seedlings. Its production ability of siderophores,
cellulose, and IAA supported the physiological characteristics
of plant-growth promoting. Similar results were reported that
endophytes promoted plant growth by producing siderophores,
decomposing organic materials by cellulose or lignocellulose and
also producing growth promoters such as IAA and gibberellic
acid (Taechowisan et al., 2005). They formed a symbiotic
relationship with the host plants, facilitating plant to uptake
nutrients from the soil (Rosenblueth and Martínez-Romero,
2006). The nutrient cycling capacity made them ideal candidates
for natural fertilizers. Therefore, the endophytic actinomycetes
will be potential biocontrol agents against plant diseases caused
by soil-borne pathogens and plant growth promoters.

To identify fully the biosynthetic potential of secondary
metabolites, the genome of S. malaysiensis 8ZJF-21 was
sequenced and annotated. Fifty-two BGCs were predicted for
producing known or unknown secondary metabolites, including
terpenes, PKS type I or type II, NRPS, siderophores, and ectoines.
PKS and NRPS were mainly responsible for the synthesis of most
biologically active polyketide and peptide compounds (Janso and
Carter, 2010; Qi et al., 2019). Especially, BGCs of desferrioxamin
B, coelichelin, ectoine, nigericin, echoside A, geosmin, and
pristinal showed 100% similarity with known structures.
Desferrioxamines B and coelichelin belonged to different types
siderophores. Siderophore produced by Streptomyces spp. played
a crucial role in suppressing Fusarium wilt disease by depleting
iron (Vurukonda et al., 2018; Zeng et al., 2018; Zhang et al., 2021).
Other siderophore-producing rhizobacteria were also reported as
biocontrol agents including Pseudomonas koreensis, Burkholderia
cepacian, Rahnella aquatilis, and Bacillus subtilis (Carmona-
Hernandez et al., 2019; Ghazy and El-Nahrawy, 2021). Ectoine
could interact with biomolecules such as lipids, proteins, and
DNA to protect itself from environmental stresses (Fenizia et al.,
2020; Wittmar et al., 2020). Nigericin produced by endophytic
S. endus OsiSh-2 exhibited remarkable antagonistic activity
against rice blast disease (Xu et al., 2017). Echoside A from
Streptomyces sp. GMR22 had a high potential as an antiviral
agent (Melinda et al., 2021). Pristinol was also identified as a
sesquiterpene alcohol from S. pristinaespiralis (Klapschinski et al.,
2016). In addition, the predicted cluster 11 containing 38 genes
showed 96% of similarity with BGCs of hygrocin A/hygrocin B.
Hygrocins belonging to a type of naphthoquinone ansamycins
had antitumor and antimicrobial activities (Wang et al., 2018).
Cluster 19 exhibited 95% of similarity with BGC of azalomycin
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F3a. Azalomycin F and its analogs from different Streptomyces
strains had broad-spectrum antimicrobial activities (Yuan et al.,
2013). Notably, much more unknown BGCs were identified,
suggesting that S. malaysiensis 8ZJF-21 had a great potential for
producing novel secondary metabolites. It was supported that
33.9% of coding genes clustered into the unknown function
category in the COG annotation (Figure 7B). How a number of
PKS and NRPS gene clusters regulate the biosynthesis of bioactive
metabolites still needs to be further investigated.

Gas chromatography-mass spectrometry was used to
further identify the antifungal compounds of S. malaysiensis
8ZJF-21 extract in our study. A large number of acid
compounds such as chloroacetic acid, furandicarboxylic acid,
formic acid, pentacosanoic acid, hexadecanoic acid, and
benzenedicarboxylic acid were a main type of antifungal
production. Benzenedicarboxylic acid possessing high peak area
is a main metabolite of S. cuspidosporus with high antagonistic
activity against pathogenic bacteria, fungi, and nematode
(Sholkamy et al., 2020). Chloroacetic acid and hexadecanoic acid
had the potential for controlling Colletotrichum gloeosporioides
(Rajaofera et al., 2019). In addition, 1H-Indole, 4-(3-methyl-
2-butenyl) was the other main component in S. malaysiensis
8ZJF-21 extract. The compound produced by Aeromonas
hydrophila was highly effective to suppress the growth of
Aspergillus flavus (Mannaa and Kim, 2018). Thus, these
compounds could altogether contribute to the broad-spectrum
antifungal activity of S. malaysiensis 8ZJF-21. Interestingly, BGCs
of these compounds were not found in its genome. It might be
because of the different identification methods and alignment
databases (Wei et al., 2020).

CONCLUSION

In the study, an endophytic strain 8ZJF-21 with strong antifungal
activity was identified from the roots of a medicinal plant.
Based on the morphological, physiological, and biochemical
characteristics, the strain was defined as the genus Streptomyces.
The phylogenetic tree and ANI calculation were further used to
identify strain 8ZJF-21 as S. malaysiensis. The pot experiment
demonstrated that S. malaysiensis 8ZJF-21 improved plant
resistance against Foc TR4 and promoted the growth of banana
seedlings. The antifungal mechanism showed that S. malaysiensis
8ZJF-21 extract could inhibit the spore germination and mycelial

growth of Foc TR4, and damage the ultrastructure of pathogenic
cells. Genome annotation and GC-MS analysis revealed that
strain 8ZJF-21 has a great potential for producing bioactive
metabolites, suggesting that it will become an essential biocontrol
agent against Foc TR4.
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Soil Inoculation With Beneficial 
Microbes Buffers Negative Drought 
Effects on Biomass, Nutrients, and 
Water Relations of Common Myrtle
Soghra Azizi 1,2, Masoud Tabari 1*, Ali Reza Fallah Nosrat Abad 3, Christian Ammer 4, 
Lucia Guidi 5 and Martin K.-F. Bader 6*

1 Faculty of Natural Resources, Tarbiat Modares University, Tehran, Iran, 2 Department of Forestry, Faculty of Natural 
Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran, 3 Soil and Water Research Institute, Agricultural 
Research Education and Extension Organization (AREEO), Karaj, Iran, 4 Silviculture and Forest Ecology of the Temperate 
Zones, Georg-August-Universität Göttingen, Göttingen, Germany, 5 Department of Agriculture, Food and Environment, 
University of Pisa, Pisa, Italy, 6 Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden

Common myrtle (Myrtus communis L.) occurs in (semi-)arid areas of the Palearctic region 
where climate change, over-exploitation, and habitat destruction imperil its existence. The 
evergreen shrub is of great economic and ecological importance due to its pharmaceutical 
value, ornamental use, and its role in urban greening and habitat restoration initiatives. 
Under greenhouse conditions, we investigated the effect of soil inoculation with arbuscular 
mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on biomass 
allocation, water relations, and nutritional status of drought-stressed myrtle seedlings. 
Single and dual AMF (Funneliformis mosseae and Rhizophagus irregularis) and PGPR 
(Pseudomonas fluorescens and P. putida) soil inoculations were applied to myrtle seedlings 
growing under different soil water regimes (100, 60, and 30% of field capacity) for 6 months 
using a full factorial, completely randomized design. AMF and PGPR treatments, especially 
dual inoculations, alleviated negative drought effects on biomass and morpho-physiological 
traits, except for water-use efficiency, which peaked under severe drought conditions. 
Under the greatest soil water deficit, dual inoculations promoted leaf biomass (104%–
108%), root biomass (56%–73%), mesophyll conductance (58%), and relative water 
content (1.4-fold) compared to non-inoculated controls. Particularly, dual AMF and PGPR 
inoculations stimulated nutrient dynamics in roots (N: 138%–151%, P: 176%–181%, K: 
112%–114%, Ca: 124%–136%, and Mg: 130%–140%) and leaves (N: 101%–107%, P: 
143%–149%, K: 83%–84%, Ca: 98%–107%, and Mg: 102%–106%). Our findings highlight 
soil inoculations with beneficial microbes as a cost-effective way to produce highly drought 
resistant seedling stock which is vital for restoring natural myrtle habitats and for future-
proofing myrtle crop systems.

Keywords: arbuscular mycorrhizal fungi, plant growth-promoting rhizobacteria, water deficit stress, Myrtus 
communis, drought
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INTRODUCTION

Drought is one of the most important environmental stresses 
limiting growth and metabolic processes in plants (Trenberth 
et al., 2014). Plant responses to drought depend on the severity 
and duration of the drought period and on the stage of plant 
development. Severe drought stress impairs physiological 
processes, inhibits growth, and may eventually lead to plant 
death (Anjum et  al., 2011). Drought-related reductions in root 
water uptake hamper tissue hydration thereby increasing osmotic 
stress (Aroca et  al., 2008) and decreasing leaf water potential, 
foliage quantity, and dry mass so that at each developmental 
stage nutrient uptake and transfer are reduced (Anjum et  al., 
2011). As a result of the drought-induced deterioration of 
plant water status, membrane permeability and transport 
processes decline and the reduced mass flow of nutrients affects 
root uptake and nutrient allocation in turn (Sardans et al., 2008).

Soil inoculation with arbuscular mycorrhizal fungi (AMF) and 
plant growth-promoting rhizobacteria (PGPR) is currently being 
widely explored as a new approach to alleviate detrimental drought 
effects and to enhance crop drought resistance in agriculture and 
horticulture in arid and semi-arid regions. However, its potential 
for sustainable arboriculture and restoration remains virtually 
unexplored. As keystone soil engineers, AMF can partially offset 
the negative effects of drought stress on plants by increasing root 
water and nutrient uptake (especially recalcitrant nutrients, such 
as P, Zn, and Cu), photosynthetic activity, the production of 
antioxidant enzymes, and not least because of their beneficial 
effects on the rhizosphere environment including the 
rhizomicrobiome (Kung’u et  al., 2008; Bárzana et  al., 2015; Yin 
et  al., 2016). In particular, AMF improve soil structural quality 
through the formation of stable soil aggregates supported by 
hyphal exudates and the enmeshment of particles in mycelial 
networks resulting in enhanced nutrient and water availability as 
well as reduced soil erosion (Curaqueo et  al., 2010; Mardhiah 
et  al., 2016). The widespread AMF species Funneliformis mosseae 
and Rhizophagus irregularis occur in various habitats and have 
a vast host range making them prime candidates for crop yield 
and quality improvements under drought (Ortiz et al., 2015; Zhang 
et al., 2019). The genus Pseudomonas contains the most important 
growth-promoting bacteria that regulate the amount of ethylene 
through production of siderophores, plant hormones, synthesis 
of antibiotics, phosphorus absorption, nitrogen fixation, and synthesis 
of enzymes (Henry et  al., 2008).

Investigations on the drought mitigation potential of soil 
microorganisms often show improvements in growth, 
physiological, and biochemical traits along with a higher uptake 
of water and mineral elements in inoculated plants (e.g., Ortiz 
et  al., 2015; Ullah et  al., 2016). The literature is heavily crop-
dominated but the few studies on woody plants (mainly 
horticultural species) also suggest better water supply evidenced 
by favourabale plant water relations, enhanced macro- and 
micronutrient uptake, greater growth, larger osmoregulant pools, 
and an upregulation of the antioxidant defence in AMF- and/
or PGPR-inoculated individuals under drought (Abbaspour 
et  al., 2012; Danielsen and Polle, 2014; Zarik et  al., 2016; 
Zhang et  al., 2019).

The medicinal plant Myrtus communis L. is an evergreen 
shrub (<3 m tall) of the Myrtaceae family. It is native to southern 
Europe and western Asia and grows well in sub-Mediterranean 
climates (Sumbul et  al., 2011) including some provinces of 
Iran. Myrtus communis has many pharmacological properties 
and contains active components, including essential oils such 
as depantine or myrtenol, and is therefore of economic interest 
to the pharmaceutical industry (Moghrani and Maachi, 2008). 
Habitat destruction and over-exploitation have pushed 
M. communis to the brink of extinction in its natural habitats 
in Iran and other regions of the world, where it used to form 
dense, extensive stands in the past (Amiri et al., 2015; González-
Varo et  al., 2015). Besides its widespread cultivation for 
ornamental and medicinal reasons, myrtle is well-suited for 
the rehabilitation of degraded lands and the development of 
parks and (sub-)urban green spaces in arid areas (Azizi 
et  al., 2021).

To better manage current and future shortages of water 
resources projected under climate change scenarios, research 
aimed at improving myrtle drought resistance is urgently needed.

The present study is part of a larger, overarching project 
on myrtle responses to drought. In a complementary trial, 
using the same experimental setup, we  previously investigated 
mycorrhizal colonization, seedling survival, growth, and leaf 
gas-exchange along with oxidative damage and antioxidant 
defense (Azizi et  al., 2021). AMF and PGPR soil inoculation 
treatments increased seedling survival under drought. Especially 
the dual AMF and PGPR inoculations had a positive impact 
on foliar physiology and led to a substantial decrease in oxidative 
damage as evidenced by reduced levels of oxidative stress 
markers, less electrolyte leakage, and fewer pigment losses in 
drought-exposed seedlings. Soil microbial-driven increases in 
the pool size of enzymatic and non-enzymatic antioxidants, 
including essential oils, indicated an upregulation of the 
antioxidant defense system of the seedlings subjected to drought 
(Azizi et  al., 2021).

In the present study, we  tested whether soil inoculation 
with beneficial microorganisms provides a viable option for 
adaptive management of myrtle propagation for cultivation and 
reforestation. We  investigated the potential of single and dual 
AMF and PGPR inoculation for mitigating drought effects on 
biomass, leaf water relations as well as root and foliar nutrient 
content of common myrtle. We  hypothesized that AMF and 
PGPR inoculation will improve biomass production, water 
relations and nutrient status in leaves and roots of M. communis 
seedlings under drought. We  further anticipated a stronger 
efficacy of dual vs. single microbial inoculations in terms of 
mitigating the detrimental effects of drought on productivity 
and physiological functioning.

MATERIALS AND METHODS

Experimental Design
In early July 2017, 2-year-old potted seedlings (6 ± 1 mm in 
root collar diameter, 37 ± 3 cm in shoot length) of M. communis 
(originated from seed) raised in the greenhouse of Faculty of 
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Agriculture, Tarbiat Modares University, Iran (35°44′ N, 51°10′ 
E, and 1,215 m a. s. l.), were transferred to 5-L plastic pots 
containing a mixed soil (agricultural soil, green 
manure + sand + coco peat in a ratio of 1: 1: 1: 2) with physico-
chemical properties indicated in Table  1. The green manure 
consisted of decomposed plant litter originating from various 
local forest trees, mainly oak and hawthorn species (Quercus 
spp., Crataegus spp.) and pistachio (Pistacia vera).

The experiment was carried out as a 3 × 7 factorial (water 
regime × microorganism inoculation) in a completely randomized 
design with three replicates each comprising four seedlings. 
The following microorganism inoculation treatments were 
applied: (1) control (no inoculation), (2) AMF-inoculation with 
Funneliformis mosseae, (3) AMF-inoculation with Rhizophagus 
irregularis, (4) combined inoculation of F. mosseae + R. irregularis, 
(5) PGPR-inoculation with Pseudomonas fluorescens, (6) PGPR-
inoculation with Pseudomonas putida, and (7) combined 
inoculation of P. fluorescens + P. putida. For mycorrhizal fungi 
40 g of inoculum (100 propagules g−1 of carrier material) and 
for Pseudomonas bacteria 15 ml of inoculum containing 107 ml−1 
live bacterial cell were used. For the dual AMF inoculation, 
40 g of each fungus was used and for the dual PGPR treatment, 
15 ml of each bacterium were applied. Inocula were prepared 
from the Microbial Bank of the Microbiology Department of 
the Soil and Water Research Institute of Tehran, Iran. Water 
deficit stress included 100% field capacity (FC100, no stress), 
60% FC (FC60, mild stress), and 30% FC (FC30, severe stress). 
Drought stress was applied via the watering regime following 
Zarik et  al. (2016) for 180 days.

Root Mycorrhizal Colonization
The percentage of AMF-colonized roots was assessed in a 
complementary study (Azizi et  al., 2021). Mycorrhizal 
colonization in control plants was highest in the FC100 
treatment (9.4%) and dropped by nearly 80% under FC30 
conditions. By contrast, mycorrhization in singly and dually 
inoculated plants ranged from 51 to 72.7% under FC100 
conditions and only halved in response to increasing 
water limitation.

Biomass Allocation
For biomass determination, one seedling of each replicate was 
removed from the soil and after rinsing off the soil attached 
to the roots, seedlings were separated into their main organs 
and dried at 70°C for 48 h. Then, a digital scale with an 
accuracy of 0.0001 g, was used to measure leaf biomass (LB), 
stem biomass (SB), and root biomass (RB).

Water Relations and Gas Exchange 
Parameters
At the end of the experiment, the intracellular CO2 concentration 
(Ci) was measured using a portable gas exchange device LI-6400 
(LiCor Inc., Lincoln, NE, United  States). For this purpose, 
four fully developed, healthy leaves were selected from the 
top of the crown from each of three seedlings per treatment. 
Measurements were taken between 9 and 12  am  on a sunny 
day with a light intensity of 1,400 μmol m−2  s−1 (Dong et  al., 
2017). To measure the relative water content (RWC), three 
healthy, fully developed leaves from the top of the crown from 
each of three seedlings per treatment were sampled. After 
determination of fresh weight (FW), the leaf samples were 
placed in distilled water in the dark for 24 h to maximize 
absorption for turgor weight (TW) determination. Then turgid 
leaves were placed in an oven at 70°C for 48 h. Leaf weight 
was measured after drying (DW) and RWC was calculated 
according to Equation (1) (Yang et  al., 2007).

 RWC FW DW TW DW= −( ) −( )  ×/ 100  (1)

Following the results of photosynthesis and transpiration  
in our previous study (Azizi et al., 2021), mesophyll conductance 
(gm) and water use efficiency (WUE) were determined according 
to Equations (2, 3) (Moradi-ghahderijani et  al., 2017; Biswas 
et  al., 2019).

 
m

A
=

i
g

C  (2)

 
WUE

A

E
=

 (3)

where, A = photosynthesis, Ci = intracellular CO2 concentration, 
and E = transpiration.

Root and Leaf Nutrients
At the end of the experiment, a representative seedling per 
replicate (average height and diameter) was chosen and its 
root and leaves were washed and placed in an oven (at 70°C) 
for 48 h until dry weight was reached. For root and foliar 
nitrogen determination by the Kjeldahl method, 0.5 g powdered 
sample was weighed and transferred to digestion tubes. One 
catalyst tablet was added with 10 ml of concentrated sulfuric 

TABLE 1 | Physico-chemical properties of the soil used for growing Myrtus communis seedlings.

Texture Sand (%) Clay (%) Silt (%) Bulk density (g cm−3) FC (m3 m−3) PWP (m3 m−3) EC (dS m−1) pH

Clay-loam 33 29 38 1.59 0.34 0.13 1.61 7.9

N (%) P (mg kg−1) K (mg kg−1) OC (%) OM (%) Fe (mg kg−1) Zn (mg kg−1) Mn (mg kg−1)
0.18 5.6 458 1.77 3.06 9.7 3.36 10

PWP, permanent wilting point; EC, electrical conductivity; OC, organic carbon content; and OM, organic matter content.
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TABLE 2 | Results of a two-way ANOVA testing the effect of microorganism inoculation on biomass allocation, water relations, and elemental concentration of M. 
communis seedlings under three different water regimes (100, 60, and 30% of field capacity).

Water regime Inoculation Water regime × inoculation

Traits df F value df F value df F value

Leaf biomass 2 150.05*** 6 19.87*** 12 2.05*
Stem biomass 2 92.32*** 6 10.73*** 12 0.585ns

Root biomass 2 365.78*** 6 30.29*** 12 3.33**
Intracellular CO2 concentration 2 618.80*** 6 18.21*** 12 0.446ns

Mesophyll conductance 2 815.02*** 6 33.34*** 12 6.44**
Water use efficiency 2 4.84* 6 0.316ns 12 0.176ns

Relative water content 2 456.07*** 6 14.21*** 12 2.19*
N root 2 733.15*** 6 25.28*** 12 0.189ns

P root 2 1578.17*** 6 35.15*** 12 2.06*
K root 2 1403.53*** 6 27.88*** 12 0.837ns

Ca root 2 409.95*** 6 11.75*** 12 0.655ns

Mg root 2 698.02*** 6 15.03*** 12 0.823ns

N leaf 2 671.28*** 6 19.59*** 12 1.39ns

P leaf 2 2642.19*** 6 51.48*** 12 1.38ns

K leaf 2 2126.72*** 6 60.42*** 12 1.47ns

Ca leaf 2 597.77*** 6 16.55*** 12 0.26ns

Mg leaf 2 504.173*** 6 16.70*** 12 2.34*

nsNo significant difference.
*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.

acid. The tubes were placed in a digestion furnace for 3–4 h 
at 40°C (until the color of the samples turned blue). After 
cooling, 10 ml of distilled water was added to each of the 
tubes prior to titration (Chapman and Pratt, 1962).

To measure phosphorus content a calorimetric method 
(yellow color of molybdate and vanadate) was utilized. After 
digestion of 1 g of powdered leaf and root sample, 5 ml of 
extract was poured into a 25 ml balloon and 5 ml of ammonium 
molybdate vanadate solution was added. Then, absorbance at 
480 nm was read using a spectrophotometer (Lambda 45-UV/
Visible, PerkinElmer, Waltham, MA, United  States; Chapman 
and Pratt, 1962).

To measure the concentration of K, Ca, and Mg of roots and 
leaves, the samples were dried in an oven at 48°C for 48 h (Ribeiro 
et  al., 2002). Then, 1 g of dried and powdered sample material 
was mixed with 10 ml of concentrated nitric acid and after staying 
under the hood for 12 h, it was exposed to 80°C for 2 h. The 
prepared solution after mixing with 3 ml of concentrated perchloric 
acid was kept at 160°C for 5 h. After cooling, the prepared samples 
were smoothed with filter paper and reached the 25 ml volume. 
Then, the content of the above elements was assessed using an 
atomic absorption spectrometer (Ribeiro et  al., 2002).

Statistical Analysis
The data were analyzed using SPSS statistical software version 
23 (SPSS Inc., Chicago, IL, United States), and graphs were drawn 
in Excel software version 2016 (Microsoft Office, 2016). 
Kolmogorov–Smirnov and Levene tests were used to evaluate 
the normality and variance homogeneity of the data, respectively. 
Two-way ANOVA was used to determine the overall significance 
of the treatments, and Duncan’s new multiple range test was 
used as a post hoc test to compare differences between group means.

RESULTS

The two-way ANOVA revealed a significant water 
regime × microbial inoculation effect on organ-specific biomass, 
mesophyll conductance, relative water content, and root P 
and leaf Mg contents. All variables that remained unaffected 
by the two-way interaction were significantly influenced by 
the two main effects, apart from water use efficiency, which 
only showed a significant response to the water regime 
(Table  2).

Biomass Allocation
The detrimental effects of drought were evident in dry mass 
of all organs (Table  2). However, single AMF and PGPR 
inoculations (partly) compensated and dual inoculations sometimes 
even overcompensated the negative effects of drought stress 
compared to the well-watered, non-inoculated control 
(Figures  1A–C). For instance, in the FC60 treatment, dual 
inoculation almost always resulted in significantly larger biomass 
accrual than both the FC60 and the FC100 non-inoculated 
control. The strongest inoculation effects occurred in the FC30 
treatment of leaf biomass, where dual AMF and PGPR more 
than doubled the values seen in the control (Figure  1A). The 
stimulation under severe drought was less pronounced in roots, 
where dual AMF inoculation produced 73% higher biomass 
than the control, but this was not statistically different from 
the magnitude seen in single AMF inoculations. Similarly, the 
dual PGPR inoculation stimulated root biomass significantly by 
56%, but this was not significantly different from the increase 
related to single PGPR inoculations (Figure  1B). Under severe 
drought, only the single R. irregularis inoculation, the dual AMF 
and the dual PGPR inoculation caused significant increases in 
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stem biomass compared to the control. The stem biomass values 
linked to the remaining inoculation treatments were in between 
the values of the control and the three effective inoculation 
treatments and therefore did not differ significantly from either 
(Figure  1C).

Water Relations
There was neither a statistically significant two-way interaction 
nor a microbial inoculation effect on seedling WUE (Table  2; 
Figure  2A). However, the severe drought treatment (FC30) 
produced significantly higher WUE compared to the remaining 
watering regimes, which showed similar values (Figure  2A). 
We  did not detect a significant water regime × microbial 
inoculation interaction but both main effects were statistically 
significant (Table  2). Irrespective of the inoculation treatment, 
the intracellular CO2 concentration (Ci) increased significantly 
with increasing drought stress (Figure  2B). Regardless of the 
water regime, the dual AMF inoculation induced significantly 
lower Ci values than the control and single inoculations 

(Figure  2B). In the FC30 treatment, the dual AMF treatment 
caused an 11% decrease in Ci compared to non-inoculated 
control seedlings (Figure  2B). A similar pattern was seen for 
the dual PGPR inoculation treatment across drought conditions, 
except for the FC30 group, where seedlings dually inoculated 
with PGPR showed Ci values that were significantly lower than 
the control but similar to all singly inoculated seedlings 
(Figure  2B).

Mesophyll conductance (gm) declined with increasing soil 
water deficit, but this effect varied with inoculation treatment 
resulting in a significant two-way interaction (Table  2; 
Figure  3A). Dual AMF and PGPR inoculation caused the 
highest gm values in well-irrigated (+86% relative to the control) 
and mildly drought-stressed seedlings (+63%–66% relative to 
the control; Figure  3A). Under severe water deficit, dual AMF 
and PGPR inoculation increased gm by 64 and 57%, respectively, 
compared to the non-inoculated control (Figure  3A).

Water regime and microbial inoculation also had a 
significant interactive effect on RWC (Table  2). Dual AMF 

A

B

C

FIGURE 1 | Effect of water regime and soil microbial inoculation on the biomass allocation of Myrtus communis seedlings. For leaf biomass and root biomass there 
was a significant water regime × inoculation treatment interaction (Table 2), hence different lower-case letters indicate statistically significant differences across the 21 
treatment combinations. For stem biomass, only the main effects of water regime and inoculation treatment were significant (Table 2), thus upper-case letters 
indicate a significant difference between different levels of drought stress and lower-case letters indicate a significant difference between different inoculation 
treatments within a water regime (Duncan’s new multiple range test, α = 0.05).
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A

B

FIGURE 2 | Effect of water regime and soil microbial inoculation on the water use efficiency (WUE; A) and intracellular CO2 concentration (Ci; B) of M. communis 
seedlings. For both variables, only the main effects of water regime and inoculation treatment were significant (Table 2). Different upper-case letters indicate 
significant differences between water regimes. Different lower-case letters indicate significant differences between microbial inoculation treatments within each water 
regime (Duncan’s new multiple range test, α = 0.05).

A

B

FIGURE 3 | The interaction effect of water regime and soil microbial inoculation on the mesophyll conductance (gm; A) and relative water content (RWC; B) of M. 
communis seedlings. For both variables, there was a significant water regime × inoculation treatment interaction. Different lower-case letters thus indicate significant 
differences between microbial inoculation treatments across water regimes (Duncan’s new multiple range test, α = 0.05).

and PGPR inoculation significantly promoted leaf RWC in 
well-irrigated seedlings while single inoculations had no 

effect (Figure  3B). Under FC60 conditions, all AMF 
inoculations equally improved RWC relative to the control 
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(>20%) and a similar increase was seen in the dual PGPR 
treatment (Figure  3B). The effects of the single PGPR 
inoculations were slightly less pronounced but still represented 
a significant improvement compared to the control 
(Figure  3B). Under severe drought (FC30), all microbial 
inoculations significantly increased foliar RWC between 30 
and 43% without significant differences among inoculation 
treatments (Figure  3B).

Root Nutrient Concentration
Except for P, there was no significant interaction between water 
regime and microbial inoculation for any of the tested root 
nutrients but both main effects were statistically significant 
(Table  2). With increasing drought stress, root N, P, K, Ca, 
and Mg content decreased, but the addition of AMF and PGPR, 
especially the dual inoculations, significantly improved the 
nutrient status of seedling roots (Figures  4A–E). Across 

A

B

C

D

E

FIGURE 4 | Effect of water regime and soil microbial inoculation on the root N (A), P (B), K (C), Ca (D), and Mg (E) of M. communis seedlings (expressed on a dry 
weight basis). A significant water regime × inoculation treatment interaction only occurred for root P, while for all other root nutrients only the main effects were 
statistically significant. Accordingly, different lower-case letters indicate significant differences between microbial inoculation treatments across levels of water deficit 
for root P but only within water regimes in the remaining root nutrients (Duncan’s new multiple range test, α = 0.05). Different upper-case letters indicate significant 
differences between water regimes (Duncan’s new multiple range test, α = 0.05).
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inoculation treatments, root N declined by 32% in mildly 
drought-stressed seedlings and by 72% under severe drought 
compared to well-watered control conditions (Figure  4A). 
Across water regimes, we observed the same inoculation-induced 
stimulatory pattern: all single AMF and PGPR inoculations 
caused similar increases in root N relative to the non-inoculated 
control (FC100: ca. 16%, FC60: ca. 30%, and FC30: ca. 45%), 
and the dual inoculations had even larger effects of equal 
magnitude among AMF and PGPR (FC100: ca. 34%, FC60: 
ca. 62%, and FC30: ca. 145%; Figure  4A).

Root P also showed a general decline with increasing drought 
intensity, but remarkably, single AMF and PGPR inoculations 
failed to improve root P status over the non-inoculated control 
in the FC100 and FC30 treatments (Figure  4B). Only under 
mild drought stress (FC60), single microbial inoculations 
significantly promoted root P uptake by a similar magnitude 
in comparison to the control. However, across water regimes, 
dual inoculations resulted in the largest increase in root P, 
significantly exceeding values seen in singly inoculated and 
control seedlings (Figure  4B). Root K, Ca, and Mg decreased 
by more than half with increasing drought intensity 
(Figures  4C–E). Within water regimes, single AMF and PGPR 
inoculations mostly stimulated K, Ca, and Mg content 
significantly, but the dual AMF and PGPR inoculations always 
had a far greater effect of equal magnitude (Figures  4C–E).

In the most severe drought regime (FC30), the dual AMF 
or PGPR inoculation increased root N by 151%–138%, P by 
176%–181%, K by 114%–112%, Ca by 126%–136%, and Mg 
by 130%–140% compared to non-inoculated seedlings (Figure 4).

Foliar Nutrient Concentration
We found no evidence of a statistically significant interaction 
between water regime and microbial inoculation for any of 
the measured leaf nutrients apart from Mg (Table 2). However, 
as main effects, both water regime and microbial inoculation 
had a significant influence on foliar nutrient concentration. 
Regardless of the inoculation treatment, increasing water deficit 
reduced foliar N, P, K Ca, and Mg by at least about 50% 
(Figures 5A–E). In most cases, single AMF or PGPR inoculation 
caused a significant increase of similar magnitude in foliar 
nutrient status compared to non-inoculated controls 
(Figures  5A–E). However, peak foliar nutrient concentrations 
were invariably associated with dual AMF and PGPR inoculations 
(both with the same effect size) and the differences to singly 
inoculated seedlings and the non-inoculated control were almost 
always statistically significant (except for leaf N in the FC60 
treatment and Mg in the FC100 treatment; Figures  5A–E). 
In the FC30 treatment, dual AMF and PGPR inoculations 
promoted N concentration by 102%–107%, P by 143%–149%, 
K by 83%–84%, Ca by 10%–98%, and Mg by 102%–106% 
compared to the non-inoculated control (Figures  5A–E).

DISCUSSION

Myrtus communis is an ecologically important species in its 
natural range and economically significant in (semi-)arid growing 

areas around the world. However, the rapidly changing climate 
complicates cultivation and, together with land use change and 
rampant illegal harvesting, imperils natural habitats (Amiri et al., 
2015). In this study, we  therefore tested whether AMF and 
PGPR inoculation may enhance the drought resistance of common 
myrtle to support habitat restoration programs in its native range 
and promote sustainable cultivation practices across the globe.

Biomass Allocation
Foliage, stem, and root biomass decreased with increasing drought 
stress, but the inoculation with microorganisms, especially the 
dual AMF and PGPR inoculations fully or at least partially 
compensated for the negative effects of drought stress when 
compared to the uninoculated, well-watered control (Figure  1). 
A reduction in leaf area and thus leaf biomass provides an 
effective means to curtail water use and is a common adaptation 
to drought in many plant species (Larcher, 2003). Our companion 
study showed drought-induced reductions in foliar gas-exchange 
of the myrtle seedlings that were fully or partially compensated 
by dual AMF or PGPR inoculation in the FC60 and FC30 
treatments, respectively (Azizi et  al., 2021). Growth processes 
have been shown to respond more sensitively to abiotic stresses 
(such as drought) than photosynthesis and it is therefore likely 
that the growth reductions seen in the stems and roots of our 
myrtle seedlings are due to carbon sink limitation rather than 
a limited supply of photo-assimilates (Palacio et al., 2013). Moreover, 
lack of soil water at any plant growth stage reduces the absorption, 
transport, and metabolization of nutrients, impairing carbon 
storage and dry matter (Hu and Schmidhalter, 2005). A disruption 
of the root-soil interface, which can already occur under mild 
drought stress, results in substantial losses in root conductivity 
triggering stomatal closure prior to the onset of cavitation (Kumar 
et al., 2010; Rodriguez-Dominguez and Brodribb, 2020). However, 
AMF-induced changes in root morphology and the vast hyphal-
driven expansion of the root system strongly increase root uptake 
and nutrient transport (Orfanoudakis et  al., 2010). PGPR also 
effectively improve seed germination, accelerate growth in the 
early stages, induce root formation, and increase the number of 
root hairs (Heinonsalo et  al., 2004). Some rhizobacteria contain 
the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase 
that reduces the production of ethylene, which in turn regulates 
auxin synthesis and allocation, ultimately leading to stimulation 
of root growth (Xie et  al., 1996; Růžička et  al., 2007). Both 
Pseudomonas species used in our study have been shown to 
produce ACC (Saravanakumar and Samiyappan, 2007; Gamalero 
et al., 2008) suggesting that the increase in root growth observed 
in our myrtle seedlings is related to ACC activity. Increasing 
biomass and growth of various crops (e.g., rice, foxtail millet, 
and peppermint) resulting from AMF and PGPR soil inoculation 
during drought conditions have also been reported in agreement 
with our findings (Ruíz-Sánchez et  al., 2011; Gong et  al., 2015; 
Chiappero et  al., 2019).

Water Relations
In line with the results reported for Juglans regia and Eucaplytus 
camaldulensis, WUE remained unaffected by soil microbial 
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inoculation (Liu et al., 2019; Mateus et al., 2021), but increased 
with increasing drought intensity in our myrtle seedlings 
(Figure 2). Water deficit affects photosynthesis and transpiration 
to different degrees, resulting in significant differences in WUE 
(El Hafid et al., 1998). WUE usually rises under drought stress, 
but this increase is not associated with enhanced production 
because the increase is driven by reduced transpiration rather 
than an increase in photosynthetic carbon assimilation (Blum, 
2009). In the present study, gm decreased with increasing water 

deficit stress, probably linked to reduced leaf water status and 
thus tissue hydration (Azizi et  al., 2021; Figure  3). Lower 
rates of photosynthetic CO2 assimilation in the presence of 
higher levels of Ci indicate low gm and impaired carbon 
metabolism of mesophyll cells (Ratnayaka and Kincaid, 2005). 
Microbial soil inoculation, particularly dual AMF and PGPR 
applications, mitigated drought-related reductions in gm, which 
was mirrored by lower Ci values indicating greater utilization 
of absorbed CO2. Similar findings in terms of Ci and gm were 

A

B

C

D

E

FIGURE 5 | Effect of water regime and soil microbial inoculation on leaf N (A), P (B), K (C), Ca (D), and Mg (E) of M. communis seedlings (expressed on a dry 
weight basis). Water regime and inoculation treatment had significant main effects on all shown leaf nutrients but a water regime × inoculation treatment interaction 
only occurred for leaf Mg (Table 2). Therefore, different lower-case letters indicate significant differences between microbial inoculation treatments across water 
regimes for leaf Mg but only within water regimes in the remaining root nutrients (Duncan’s new multiple range test, α = 0.05). Different upper-case letters indicate 
significant differences between water regimes (Duncan’s new multiple range test, α = 0.05).
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obtained with Azospirillum brasilense and Bacillus sp. in seedlings 
of the tropical canopy tree Cariniana estrellensis (Tiepo et  al., 
2018), and with Rhizophagus irregularis in seedlings of Robinia 
pseudoacacia (He et  al., 2016) under drought conditions.

The RWC of M. communis seedlings decreased with increasing 
drought stress, but soil inoculation with AMF or PGPR (especially 
the dual inoculations) largely or fully compensated for these 
declines in the FC60 treatment (also compared to the well-watered 
and uninoculated control) and still had a positive, albeit less 
pronounced, effect in the FC30 treatment (Figure  3). A similar 
pattern was observed for leaf water potential of these myrtle 
seedlings published recently as part of the overarching study (Azizi 
et  al., 2021). Cupressus atlantica and tropical tree seedlings also 
showed increases in leaf RWC in response to AMF or PGPR 
treatments (Zarik et  al., 2016; Tiepo et  al., 2018). AMF hyphal 
networks greatly expand the root surface thus giving plants access 
to a larger soil volume and because of their small diameter they 
can grow into the smallest pores and crevices that fine roots 
could not reach. The symbiosis with AMF allows plants to take 
up more water and thus maintain favorable water relations over 
a wider range of environmental conditions and under drought, 
AMF have been shown to be  able to increase hyphal moisture 
uptake (Augé et  al., 2015). PGPR have been demonstrated to 
improve the water relations of seedlings by producing 
phytohormones that favorably affect plant water relations such 
as abscisic acid and auxin (Kothari et al., 1990; Boiero et al., 2007).

Root and Leaf Nutrient Concentration
Root and leaf N concentration decreased under water deficit 
conditions, but the soil inoculation treatments (especially dual 
AMF or PGPR inoculations) partially offset the negative drought 
effects on plant nutrient dynamics compared the non-inoculated 
control seedlings (Figure  5). These results are consistent with the 
studies of Abbaspour et  al. (2012) on Pistacia vera seedlings and 
with those of Armada et  al. (2015) on Zea mays. Rhizosphere 
bacteria increase the rate of nitrate translocation from root to 
shoot by increasing the amount of cytokinin in the host plant 
(Flores et  al., 2005).

Mycorrhizal fungi also activate glutamine synthetase, arginase, 
and urease by affecting root physiology and thus increase the 
N uptake and utilization efficiency of host plants. Arginase 
and urease are key enzymes in the transfer of N from the 
mycelium to the roots of the host plant. Several ammonium 
and nitrate transporters have been identified in the mycelium 
of AMF (Tisserant et  al., 2012) enabling mycelial N uptake 
in the form of nitrate or ammonium and subsequent conversion 
to organic compounds by glutamine synthetase (Bago et al., 2001).

In agreement with the findings of Zhang et  al. (2019) and 
Ortiz et al. (2015), root and leaf P content in our myrtle seedlings 
decreased with increasing drought stress but AMF and PGPR 
inoculation mitigated this effect (Figure  5). While both single 
and dual inoculations produced significant positive effects in leaf 
P, root P responded more strongly to the dual inoculation 
treatments. This finding implies that multiple AMF or PGPR 
acting in concert are required to significantly increase P availability 
and subsequent root uptake while the activity of single AMF 
or PGPR species seems to be sufficient to steer allocation toward 

increased P supply to the leaves. Phosphorous plays an important 
role in many plant physiological processes linked to energy storage 
and transfer, photosynthesis, regulation of enzyme activity, and 
carbohydrate transport and it also affects plant water relations 
(Waraich et al., 2011). Numerous studies have shown that following 
AMF inoculation, P uptake in plants increases under stress 
conditions (Garg and Manchanda, 2008; Bowles et  al., 2016), 
which has been attributed to the secretion of organic acids and 
phosphatase enzymes solubilizing inorganic P from soil minerals 
and mineralizing organic P sources (Subramanian et  al., 2006).

Water deficit stress negatively affected root and leaf K of 
M. communis seedlings, but the inoculation treatments, especially 
the dual AMF and PGPR inoculations increased K uptake in 
both organs (Figure  5). Potassium is crucial for turgor control 
and thus for cell expansion during growth and guard cell 
osmoregulation (stomatal control), not to mention its key role 
in maintaining plasma membrane potential. The amount of 
plant-available K depends on the K content in the soil solution 
and the level of exchangeable K (Haby et  al., 1990). Both K 
sources may increase in the presence of AMF and PGPR 
through organic acid-mediated silicate weathering and mineral 
dissolution causing the release of K thus allowing plants to 
increase their uptake (Campanelli et  al., 2013).

Calcium plays a vital role in the regulation of many physiological 
processes in plants, thereby affecting growth processes and responses 
to environmental stresses. For example, the movement of water 
and dissolved mineral salts is affected by Ca through its influence 
on membrane structure and stomatal function, cell division, and cell 
wall construction (Hu and Schmidhalter, 2005). However, under 
water deficit stress, reduced water uptake and curtailed transpiration 
result in a decrease in leaf Ca content (Maksimović et  al., 2003). 
In line with the findings of Dominguez-Nuñez et  al. (2014) on 
Pinus halepensis and Meddich et al. (2015) on Phoenix dactylifera, 
we  observed AMF- and PGPR-induced increases in root and 
foliar Ca contents of myrtle seedlings (Figure  5). Apart from 
increases in Ca availability resulting from the exploitation of a 
larger soil volume through AMF hyphae and accelerated mineral 
weathering linked to PGPR secretions, the positive inoculation 
effect on Ca levels in myrtle seedlings may in part be  due to 
increases in stomatal conductance and transpiration given the 
role of xylem sap flow in Ca mobility (Ruiz-Lozano et  al., 1995; 
Wu and Xia, 2006; Garg and Bhandari, 2016; Azizi et  al., 2021).

A very similar pattern of drought-induced decrease was 
observed for Mg contents in roots and leaves of Myrtus seedlings 
exposed to drought (Figure 5). Under water deficit stress, single 
and dual inoculations with AMF or PGPR increased the Mg 
content in seedling roots and foliage which is consistent with 
the results of Danielsen and Polle (2014) on Populus × canescens 
and Armada et  al. (2015) on Zea mays. The increase in Mg 
uptake is probably due to the hyphal expansion of the root 
system and consequently enhanced uptake of this element by 
the plant in the case of AMF and likely results from microbial 
solubilization of Mg-bearing carbonates and minerals in the 
PGPR treatments (Smith and Read, 2008; Evelin et  al., 2012).

Our study revealed that, depending on drought intensity, 
AMF or PGPR inoculation can largely or at least partially 
offset the detrimental effects of drought on biomass production, 
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water relations, and nutrient dynamics of M. communis seedlings. 
Especially the dual inoculations proved to be  very potent 
suggesting even greater benefits from inoculations including 
multiple AMF and PGPR species. These findings motivate 
further research testing the effects of combined AMF and 
PGPR inoculations and linked to this, determining the 
composition of the microbial consortium that optimally supports 
myrtle health and performance. Most importantly though, our 
results highlight soil inoculations with beneficial microorganisms 
as a cost-effective, easy-to-use tool to promote drought resistance 
of myrtle. Such readily applicable approaches are urgently 
needed in support of conservation initiatives geared toward 
restoring natural myrtle populations and habitats. At the same 
time, such methods can be  used to refine operational nursery 
practices to help future-proof myrtle cultivation.
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Establishment of the root-nodule symbiosis in legumes involves rhizobial infection of 
nodule primordia in the root cortex that is dependent on rhizobia crossing the root 
epidermal barrier. Two mechanisms have been described: either through root hair infection 
threads or through the intercellular passage of bacteria. Among the legume genera 
investigated, around 75% use root hair entry and around 25% the intercellular entry mode. 
Root-hair infection thread-mediated infection has been extensively studied in the model 
legumes Medicago truncatula and Lotus japonicus. In contrast, the molecular circuit 
recruited during intercellular infection, which is presumably an ancient and simpler pathway, 
remains poorly known. In recent years, important discoveries have been made to better 
understand the transcriptome response and the genetic components involved in legumes 
with obligate (Aeschynomene and Arachis spp.) and conditional (Lotus and Sesbania 
spp.) intercellular rhizobial infections. This review addresses these novel findings and 
briefly considers possible future research to shed light on the molecular players that 
orchestrate intercellular infection in legumes.

Keywords: intercellular symbiosis, legumes, nodule, Lotus, Aeschynomene, Arachis, Sesbania

INTRODUCTION

The root nodule symbiosis (RNS) has been widely studied in the model legumes Lotus japonicus 
and Medicago truncatula. In these species, rhizobia infect the roots via a root-hair infection 
thread (IT), after a chemical recognition that occurs in the rhizosphere. The molecular dialog 
involves the secretion of flavonoid root exudates that are perceived by the rhizobial partner. 
In response, the microsymbiont synthesizes and releases lipochito-oligosaccharides known as 
nodulation factors (NF), which are recognized by the NF receptors located at the root hair 
plasma membrane. This complex signal exchange leads to the formation of the nodule primordia 
by reactivation of cortical cell division. This structure gives rise to the root nodule, where 
the bacteria are released from the ITs into the nodule cells to become bacteroids, carrying 
out the conversion of atmospheric nitrogen into ammonia (Roy et  al., 2020). Among the six 
subfamilies of the Fabaceae (Koenen et  al., 2020), only the Caesalpinioideae (+Mimosoid clade) 
and Papilionoideae are considered to harbor nodulating genera and it is estimated that about 
one quarter of all legume genera employ a rhizobial invasion programme called intercellular 
infection (Sprent et  al., 2017). This infection process is presumed to be  a simpler mechanism 
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than root-hair IT-mediated infection that involves many biological 
functions (Roy et  al., 2020). Furthermore, since intercellular 
infection is found in different legume subfamilies (Sprent et al., 
2017; Koenen et  al., 2020), and beyond the legume family in 
the Parasponia-Bradyrhizobium symbiosis and in certain 
actinorhizal plants (Figure  1A), it is likely to be  an ancient 
and fundamental mechanism (Huisman and Geurts, 2020). 
Intercellular infection comprises different modalities that have 
been described through histological analyses in several species 
(James et al., 1992; Subba-Rao et al., 1995; Ibañez et al., 2017). 
These modalities need to be  characterized at a molecular level. 
Here, we review emerging knowledge of the molecular genetics 
of nodulation by intercellular infection, and discuss why exploring 
these mechanisms in legumes, where this process is either 
obligate or conditional, is complementary.

CONDITIONAL INTERCELLULAR 
INFECTION

Certain legume species are remarkable because although they 
usually employ root hair ITs infection they can in certain 
conditions switch to the intercellular infection process. Such 
plasticity in the infection mode has repeatedly (although not 
exclusively) been observed within the robinoid subclade, in 
Sesbania spp. and Lotus spp. (Figure  1A; Ndoye et  al., 1994; 
Cummings et  al., 2009; Acosta-Jurado et  al., 2016; Mitra et  al., 
2016; Liang et al., 2019). In these species, intercellular colonization 
either takes place under specific growth conditions or is observed 
with specific rhizobial partners (Ranga Rao, 1977; Karas et  al., 
2005). In the semi-aquatic legume Sesbania rostrata, root hair 
ITs are readily observed in aeroponic conditions, while lateral 
root base (LRB) nodulation is observed under flooded conditions, 
via a crack-entry mechanism in which Azorhizobium caulinodans 
enters through epidermal fissures of emerging adventitious 
roots (Capoen et  al., 2010b). Similarly to S. rostrata, under 
flooded conditions the robinoid Lotus uliginosus is intercellularly 
colonized by M. loti, culminating in the formation of nitrogen-
fixing nodules (James and Sprent, 1999). Another Lotus species, 
L. burttii, is an interesting model for studying rhizobial infection, 
since it can be  nodulated by a large diversity of rhizobial 
species (Zarrabian et al., 2021). The evidence collected indicates 
that some of these associations occur intercellularly; for instance, 
the interactions with Sinorhizobium fredii HH103 (Acosta-Jurado 
et  al., 2016) and Rhizobium leguminosarum biovar Norway 
(Liang et  al., 2019), the latter leading to ineffective nodules. 
In the model legume L. japonicus, infection takes place via 
root hair ITs with its cognate symbiont M. loti, but plasticity 
in the infection mode was first revealed in different plant 
mutants: the root-hair less 1 and NF-receptor mutants, where 
intercellular infection was detected at a low frequency (Karas 
et  al., 2005; Madsen et  al., 2010). More recently, functional 
nodules were found to be  induced by IRBG74 invading 
L. japonicus, intercellularly. The IRBG74 strain has been isolated 
from Sesbania cannabina nodules and after sequencing assigned 
as an Agrobacterium pusense strain that possesses a symbiotic 
plasmid. It can infect Sesbania spp. either under flooded or 

non-flooded conditions (Cummings et  al., 2009; Mitra et  al., 
2016). In L. japonicus inoculated with IRBG74, the cortical 
cells are invaded via peg-mediated entry from the apoplast 
into the symbiosome of the infected cells (Figure  1C; Montiel 
et al., 2021). All these cases of conditional intercellular infection 
are valuable because they provide the opportunity for direct 
comparison of the two invasion routes in the same host plants, 
thus identifying mechanistic commonalities and differences 
(Goormachtig et al., 2004). Despite this advantage, the molecular 
components of this mechanism have only been investigated 
in S. rostrata and L. japonicus, as described below.

During the S. rostrata-A. caulinodans symbiosis, axillary 
root-hairs are induced by the presence of the bacteria at the 
emergence of lateral roots and the intercellular infection process 
take place at the LRB. The progression of bacteria in the root 
is followed by a cell death programme in cortical cells that 
give rise to the formation of an infection pocket (IP; Capoen 
et  al., 2010a). From these structures, rhizobia migrate into 
inner root cell layers through transcellular ITs or intercellularly. 
This symbiotic association served as precursor to understanding 
the molecular components involved in intercellular infection 
in legumes. One of the first discoveries was to demonstrate 
that IP formation is a NF-dependent process, since the 
A. caulinodans nodA mutant, disrupted in NF production, is 
unable to colonize the legume roots (D'haeze et  al., 1998). 
Likewise, in this initial stage, gibberellins, reactive oxygen 
species and ethylene are produced, playing a positive role 
(D'haeze et  al., 2003; Lievens et  al., 2005). Interestingly, 
intercellular cortical infection was not affected in S. rostrata 
transgenic roots downregulated in the leucine-rich repeat (LRR) 
receptor-like kinase (SymRK) by RNAi (Capoen et  al., 2005). 
Similarly, RNAi-mediated silencing of the calcium- and 
calmodulin-dependent protein kinase (CCaMK) did not interfere 
with the intercellular infection (Capoen et  al., 2009). These 
two players (SrSymRK and SrCCaMK), crucial for root-hair 
IT colonization. However, based on the RNAi results they 
seem not to be  necessary for intercellular infection, although 
they are still required in subsequent stages of the nodulation 
process (Figure  2). A transcriptomic study on S. rostrata roots 
evidenced 627 differentially-expressed gene tags that are induced 
during root hair curling and crack-entry rhizobial infection. 
However, the number of tags was considerably lower during 
intercellular infection (Capoen et  al., 2007). The milder 
transcriptomic response during intercellular infection indicates 
that a reduced gene machinery is required in this mechanism. 
This notion is supported by the less stringent NF recognition 
in the intercellular symbiotic program compared to the root-
hair infection process (Goormachtig et  al., 2004).

Similarly, in the L. japonicus-IRBG74 association, an IP is 
formed in the cortical cells after intercellular infection, which 
follows an inter/intracellular pathway towards the nodule cells 
(Figure 1C). With the abundant genetic resources in L. japonicus, 
a robust compendium of symbiotic mutants was tested in the 
interaction with the IRBG74 strain. This approach allowed a 
core of symbiotic genes involved in the nodulation program 
to be  delimited by the type of rhizobial infection and grouped 
as preferentially recruited for the intracellular or intercellular 
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A

B

C

FIGURE 1 | (A) Phylogenetic relationship of the nitrogen-fixing clade (based on Sun et al., 2016; Shen and Bisseling, 2020) with special emphasis in the Fabaceae 
family (modified from Sprent et al., 2017). The red and blue circles highlight the genera where intercellular colonization by Frankia or Rhizobia occurs, respectively. 
The four species discussed in this review are marked in green (B). Intercellular infection mechanism in Aeschynomene evenia: the bradyrhizobium ORS278 
intensively colonizes the axillary root hairs at the lateral root base and progresses between cells (1) to reach the cortex (2) where they could induce cell-collapse (3), 
before bacteria are finally internalized (4) and induce cell division (5). (C) Intercellular infection mechanism in Lotus japonicus: IRBG74 induce massive root hair 
curling and twisting, followed by intercellular infection of the root epidermis (1). In the cortical cells, IRBG74 is accumulated in infection pockets (2) and from these 
structures migrates to the nodule cells intercellularly (3) or through transcellular infection threads (4). The bacteria are released into the nodule cells from transcellular 
infection threads (5) or intercellular infection peg structures (6).
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colonization in L. japonicus (Figure  2). For instance, nfr5, 
symrk, ccamk, nin-2, nsp1, and nsp2 mutants altered in NF 
perception and the Nod signaling pathway, were unable to 
induce nodule development in L. japonicus after IRBG74 
inoculation. Although these findings are relevant, it is still 
unclear whether intercellular infection occurs in the roots of 
these mutants, considering the evidence recorded in S. rostrata, 
where intercellular cortical colonization was not prevented in 
the SymRK-RNAi and CCaMK-RNAi lines (Capoen et al., 2005, 
2009). Unexpectedly, mutants affected in cytokinin-related genes 
such as lhk1, cyp753a, and ipt4 had a more severe negative 
impact in the intercellular symbiosis with IRBG74. The most 
prominent difference was the performance of the lhk1 mutant, 
since it was unable to form any nodule structure with IRBG74 
(Montiel et  al., 2021). On the other hand, mutants affected 
in the infection genes CYCLOPS, CBS, EPR3, or VPY1 showed 
comparable symbiotic phenotypes during intra–intercellular 
interactions (Montiel et al., 2021). However, a milder symbiotic 
perturbance was observed in the rbohE, rbohG, RPG, RPG-
Like, RINRK1, ERN1, and VPY2 infection gene mutants in 
the intercellular interaction with IRBG74, compared to the 
phenotype observed with M. loti as the inoculum. These results 
suggest that an intercellular symbiotic process employs a different, 

and apparently reduced, repertoire of molecular players compared 
to intracellular colonization via root-hair ITs (Figure  2). This 
hypothesis is further supported by the remarkable contrast in 
number of differentially expressed genes (DEGs) in the susceptible 
zone of roots exposed to M. loti or IRBG74; 473 vs. 250, 
respectively. Interestingly, a large proportion (67%) of the DEGs 
by M. loti were not differentially expressed with IRBG74. 
Nonetheless, a core of relevant symbiotic genes was upregulated 
to comparable levels with both symbionts (Montiel et al., 2021).

CONSTITUTIVE INTERCELLULAR 
INFECTION PROCESS

The constitutive intercellular infection process has been reported 
in certain species of the Mimosoidae-Caesalpinea-Cassieae clade 
but it is best described in two Papilionoid subclades using 
different modalities: Genistoids (Direct Entry) and Dalbergioids 
(Crack Entry; Ibañez et al., 2017). Recently, two legume species 
from the Dalbergioid subclade, Arachis hypogaea (peanut) and 
Aeschynomene evenia, emerged for the study of nodulation 
(Figure  1A). Since they are phylogenetically related, their 
comparative analysis is predicted to facilitate the finding of 

A

B

C

FIGURE 2 | Table comparing data on symbiotic genes involved in different nodulation steps in Arachis hypogaea, Aeschynomene evenia, Lotus japonicus, and 
Sesbania rostrata according to their symbionts. (A) Comparison of the presence (dark grey), absence (white), or unknown status (light grey) of symbiotic genes in 
the genome of A. hypogaea, A. evenia, L. japonicus, and S. rostrata. (B) Comparison of symbiotic genes that are induced (green), not induced (white) or of 
unknown status (grey) during nodulation in the four species. For L. japonicus this comparison includes the symbiont making intercellular infection (IRBG74) and 
intracellular infection (M. loti). (C) Comparison of the phenotypes with different genetic approaches (mutant or RNAi) in the four species and L. japonicus with the 
two symbionts. Red indicates absence of nodules (Nod-), orange indicates an intermediate strong phenotype (Nod+/−−), yellow indicates an intermediate weak 
phenotype (Nod+/−), and grey indicates the absence of data. For the Lotus-IRBG74 interaction, only transcriptome data of early time points is available (3, 5, and 
10 dpi).
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common features related to crack entry. However, A. evenia 
uses a Nod-independent process by interacting with Bradyrhizobia 
lacking the Nod-factors’ nodulation (nod) genes. Therefore, 
studying this singular genetic system is also expected to reveal 
the minimal set of genes that are required for intercellular 
infection without the additional components linked to the 
classic perception of rhizobia. In these two legume species, 
tufts of multicellular axillary root hairs are present at the base 
of lateral roots that represent the infection sites. In A. hypogaea, 
the bradyrhizobia pass through the middle lamella between 
two root-hair cells at the LRB and spread into the cortex via 
the middle lamella. Uptake into the susceptible cell occurs 
through a structurally-altered cell wall. The Nod factors are 
not required for colonization of the peanut root surface but 
are required for the induction of cortical cell division of the 
first infected cell that will form the nodule primordia, when 
interacting with its natural symbionts (Ibañez and Fabra, 2011). 
However, very recent occurrences of Nod-independent nodulation 
have been reported in Arachis when inoculated with non-cognate 
symbionts, but the underlying mechanisms are not yet 
documented (Guha et  al., 2022). Within the Aeschynomene 
genus, some species nodulate in a NF-dependent fashion and 
their root infection by bradyrhizobia occurs in a way that is 
comparable to A. hypogaea (Giraud et  al., 2007). In contrast, 
other species such as A. evenia nodulate in a Nod-independent 
way and their root infection is distinctive in that the bradyrhizobia 
first intensely colonize the axillary root-hairs and then penetrate 
into the root between axillary root-hair cells or via a crack 
at the lateral root basis (Figure  1B). Another notable feature 
is that when bacteria progress into the root in the intercellular 
space, they induce cell collapse among the first-invaded cortical 
cells, after which they are internalized in an inner susceptible 
cortical cell by invagination of the cell wall, and the infected 
cell initiates successive divisions that give birth to the nodule 
primordia (Bonaldi et  al., 2011).

Recent genome sequencing projects and transcriptomic 
studies have enabled investigation into the presence and 
expression of symbiotic genes in A. hypogeae and A. evenia. 
Almost all the determinants characterized in the model legumes 
M. truncatula and L. japonicus are also present in their 
genome, notably the Nod-factor perception genes NFP/NFR5 
and LYK3/NFR1, symbiotic signaling genes SYMRK, POLLUX, 
CCAMK, CYCLOPS, NIN, NSP2, and CRE1/LHK1, and 
infection-related genes RINRK1, VPY, NPL, ERN1, and CBS1 
(Roy et  al., 2020; Krönuer and Radutoiu, 2021; Figure  2). 
In contrast, the RPG gene, coding for a coiled-coil protein 
and linked to infection in M. truncatula (Arrighi et al., 2008), 
is absent from the genome in both of these species (Chaintreuil 
et  al., 2016; Peng et  al., 2017; Gully et  al., 2018; Karmakar 
et al., 2019). This suggests that RPG is specific to IT-mediated 
infection and is not involved in intercellular infection. In 
A. evenia, some specificities are also observed with the 
non-expression of LYK3 and the absence of the infection-
related genes EPR3 and FLOTs in the genome (Quilbe et  al., 
2021). In A. hypogeae, known symbiotic genes acting in the 
common IT mediated nodulation (125 peanut orthologs) are 
also expressed during symbiosis (Figure  2). The majority of 

DEGs are observed during nodule functioning, then nodule 
organogenesis and finally infection (Raul et  al., 2022). 
Transcriptomic analyses of a time-course experiment in 
A. evenia allowed the identification of DEGs at early and 
late stages of the symbiotic interaction. A small number of 
DEGs at early stages, corresponding to the colonization of 
the roots by bradyrhizobia, are linked to responses to stress 
and abiotic stimuli. In general, the number of DEGs decrease 
as the nodulation process progresses (Chaintreuil et  al., 2016; 
Peng et  al., 2017; Gully et  al., 2018; Karmakar et  al., 2019). 
Other gene expression analyses in A. evenia have revealed 
that determinants such as VPY, LIN, and EXO70H4, required 
for polar growth of infection threads and subsequent 
intracellular accommodation of symbionts in M. truncatula, 
show a symbiotic expression pattern. However, it is not yet 
known whether they are involved in intercellular infection 
and/or only in the latter stages of the symbiotic process 
(Quilbe et  al., 2021).

Genetic analyses have been conducted on these two 
Dalbergioid species to determine which genes are important 
for nodulation by intercellular infection (Figure  2). In 
A. hypogeae, a reverse genetic approach based on CRISPR/
Cas9 in hairy roots showed that the mutants edited in AhNFR5 
are unable to produce nodules (Shu et  al., 2020). In addition, 
the silencing of three symbiotic genes with RNAi experiments 
led to the discovery that CCaMK, CYCLOPS and LHK1 are 
involved in the nodulation process (Sinharoy and DasGupta, 
2009; Kundu and DasGupta, 2018; Das et  al., 2019). More 
recently, thanks to map-based cloning and QTL-seq approaches, 
Peng et  al. have shown that the two homoeologs of the NSP2 
gene control nodulation in A. hypogeae (Peng et  al., 2021). 
Similarly, in A. evenia, some RNAi studies have shown that 
SYMRK, CCAMK, and LHK1 are required for nodulation, 
although the role of these genes in intercellular infection has 
not been investigated (Fabre et  al., 2015). More recently, in 
A. evenia, a forward genetic approach led to the selection of 
hundreds of EMS nodulation mutants, among which some 
Nod− mutants allowed for the identification of AePOLLUX, 
AeCCAMK, AeCYCLOPS, AeNIN, and AeNSP2 as essential 
determinants for the establishment of Nod-independent 
symbiosis. Among all the mutants screened, none of them 
showed mutations in any LysM-RLK genes, to which NF receptor 
genes belong. Furthermore, this screen led to the discovery 
of a novel symbiotic gene, AeCRK, coding a Cystein-rich 
Receptor Kinase that is required to trigger nodulation. The 
nodule-less phenotype of the crk mutants and the expression 
profile of AeCRK suggest a function in both early and later 
stages of symbiosis. In plants, CRK functions are not clearly 
established but they are often linked to immunity and the 
authors suggested that in A. evenia this receptor could be involved 
in ROS signaling during Nod-independent symbiosis (Quilbe 
et  al., 2021). Interestingly, this particular gene is also found 
in other Papilionoid legumes using intercellular infection, like 
Lupin and Arachis spp., but not in those using an IT-mediated 
infection process, such as M. truncatula or L. japonicus. Therefore, 
investigating the role of AeCRK could reveal a novel important 
function for intercellular infection.
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CONCLUSION AND FUTURE 
DIRECTIONS

The evolution of nodulation in legumes and their infection 
processes has been recently reviewed and explored (Fonseca 
et  al., 2012; Sprent et  al., 2017; De Faria et  al., 2022), however, 
since intracellular and intercellular infection occurs in nodulating 
legume subfamilies that originated nearly simultaneously in 
evolution (Koenen et  al., 2020), it is complicated to determine 
the ancestral colonization mechanism. Consequently, a more 
complete understanding of the molecular mechanisms underlying 
intercellular rhizobial infection in legumes becomes more relevant. 
Getting a general view is difficult because there are different 
patterns of intercellular infection and the available molecular 
data are still fragmented. However, one clear outcome from 
these studies, the most extensive in L. japonicus, is that NF 
perception and symbiotic signaling are important for intercellular 
infection (Montiel et  al., 2021). A. evenia is likely an exception, 
since there are no indications of any NF receptor involvement 
in the Nod-independent symbiosis (Quilbe et  al., 2021). The 
next main challenge will be  to understand the molecular 
mechanisms that underpin the passage through the epidermis, 
the accommodation of bacteria within the apoplast, cell collapse 
or peg formation, and the entry by cell wall invagination during 
intercellular infection (Figure 1). They remain largely unknown 
since they have not been identified with the studies based on 
knowledge from the IT-mediated infection process.

These mechanisms could be  elucidated by screening plant 
mutants and performing careful microscopic phenotyping for 
alterations in infection. To perform such an investigation, 
L. japonicus and A. evenia appear to be  appropriate study 
models because genetic resources are available for both legumes. 
The Lotus collection of LORE1 insertion mutants has been 
mined for genes important for IT-mediated nodulation (Montiel 
et al., 2021). It can also serve to directly screen mutants involved 

in intercellular infection. Similarly, the genetic work initiated 
in A. evenia, and that enabled the recent identification of 
AeCRK, can be extended to available infection mutants (Quilbe 
et al., 2021). Since L. japonicus and A. evenia belong to distant 
Papilionoid lineages and make use of different intercellular 
infection programs, we  anticipate that their concomitant study 
will be  complementary to identify novel infection genes. 
Extending these studies with comparative phylogenomics and 
transcriptomics studies comparing root-hair IT and intercellular 
infected legume species would also help define the genetic 
specificities of intercellular infection. Such knowledge will enrich 
our understanding of rhizobial infection in legumes. It may 
also offer new engineering strategies to achieve biological 
nitrogen fixation in non-legume crops such as cereals.

AUTHOR CONTRIBUTIONS

JQ and JM drafted the article and figures. JM, JQ, and JS 
contributed to conception and design of the work. J-FA and 
JS contributed to critical revision of the article. All authors 
contributed to the article and approved the submitted version.

FUNDING

This work was supported by the grant Engineering the Nitrogen 
Symbiosis for Africa made to the University of Cambridge by 
the Bill & Melinda Gates Foundation (ENSA; OPP11772165), 
the European Research Council (ERC) under the European 
Union’s Horizon 2020 research and innovation programme 
(grant agreement no. 834221), and the project Molecular 
Mechanisms and Dynamics of Plant-microbe interactions at 
the Root-Soil Interface (InRoot), supported by the Novo Nordisk 
Foundation grant no. NNF19SA0059362.

 

REFERENCES

Acosta-Jurado, S., Rodriguez-Navarro, D. N., Kawaharada, Y., Perea, J. F., 
Gil-Serrano, A., Jin, H., et al. (2016). Sinorhizobium fredii HH103 invades 
Lotus burttii by crack entry in a nod factor-and surface polysaccharide-
dependent manner. Mol. Plant Microbe Interact. 29, 925–937. doi: 10.1094/
MPMI-09-16-0195-R

Arrighi, J. F., Godfroy, O., De Billy, F., Saurat, O., Jauneau, A., and Gough, C. 
(2008). The RPG gene of Medicago truncatula controls Rhizobium-directed 
polar growth during infection. Proc. Natl. Acad. Sci. U. S. A. 105, 9817–9822. 
doi: 10.1073/pnas.0710273105

Bonaldi, K., Gargani, D., Prin, Y., Fardoux, J., Gully, D., Nouwen, N., et al. 
(2011). Nodulation of Aeschynomene afraspera and A. indica by photosynthetic 
Bradyrhizobium Sp. strain ORS285: the nod-dependent versus the nod-
independent symbiotic interaction. Mol. Plant Microbe Interact. 24, 1359–1371. 
doi: 10.1094/MPMI-04-11-0093

Capoen, W., Den Herder, J., Rombauts, S., De Gussem, J., De Keyser, A., 
Holsters, M., et al. (2007). Comparative transcriptome analysis reveals common 
and specific tags for root hair and crack-entry invasion in Sesbania rostrata. 
Plant Physiol. 144, 1878–1889. doi: 10.1104/pp.107.102178

Capoen, W., Den Herder, J., Sun, J., Verplancke, C., De Keyser, A., De Rycke, R., 
et al. (2009). Calcium spiking patterns and the role of the calcium/calmodulin-

dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata. 
Plant Cell 21, 1526–1540. doi: 10.1105/tpc.109.066233

Capoen, W., Goormachtig, S., De Rycke, R., Schroeyers, K., and Holsters, M. 
(2005). SrSymRK, a plant receptor essential for symbiosome formation. Proc. 
Natl. Acad. Sci. U. S. A. 102, 10369–10374. doi: 10.1073/pnas.0504250102

Capoen, W., Goormachtig, S., and Holsters, M. (2010a). Water-tolerant legume 
nodulation. J. Exp. Bot. 61, 1251–1255. doi: 10.1093/jxb/erp326

Capoen, W., Oldroyd, G., Goormachtig, S., and Holsters, M. (2010b). Sesbania 
rostrata: a case study of natural variation in legume nodulation. New Phytol. 
186, 340–345. doi: 10.1111/j.1469-8137.2009.03124.x

Chaintreuil, C., Rivallan, R., Bertioli, D. J., Klopp, C., Gouzy, J., Courtois, B., 
et al. (2016). A gene-based map of the nod factor-independent Aeschynomene 
evenia sheds new light on the evolution of nodulation and legume genomes. 
DNA Res. 23, 365–376. doi: 10.1093/dnares/dsw020

Cummings, S. P., Gyaneshwar, P., Vinuesa, P., Farruggia, F. T., Andrews, M., 
Humphry, D., et al. (2009). Nodulation of Sesbania species by Rhizobium 
(Agrobacterium) strain IRBG74 and other rhizobia. Environ. Microbiol. 11, 
2510–2525. doi: 10.1111/j.1462-2920.2009.01975.x

Das, D. R., Horvath, B., Kundu, A., Kalo, P., and Dasgupta, M. (2019). Functional 
conservation of CYCLOPS in crack entry legume Arachis hypogaea. Plant 
Sci. 281, 232–241. doi: 10.1016/j.plantsci.2018.12.003

De Faria, S., Ringelberg, J. J., Gross, E., Koenen, E. J. M., Cardoso, D., 
Ametsisi, G. K. D., et al. (2022). The innovation of the symbiosome has 

166

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1094/MPMI-09-16-0195-R
https://doi.org/10.1094/MPMI-09-16-0195-R
https://doi.org/10.1073/pnas.0710273105
https://doi.org/10.1094/MPMI-04-11-0093
https://doi.org/10.1104/pp.107.102178
https://doi.org/10.1105/tpc.109.066233
https://doi.org/10.1073/pnas.0504250102
https://doi.org/10.1093/jxb/erp326
https://doi.org/10.1111/j.1469-8137.2009.03124.x
https://doi.org/10.1093/dnares/dsw020
https://doi.org/10.1111/j.1462-2920.2009.01975.x
https://doi.org/10.1016/j.plantsci.2018.12.003


Quilbé et al. Intercellular Nodulation in Legumes

Frontiers in Plant Science | www.frontiersin.org 7 June 2022 | Volume 13 | Article 922982

enhanced the evolutionary stability of nitrogen fixation in legumes. bioRxiv 
[Preprint].

D'haeze, W., De Rycke, R., Mathis, R., Goormachtig, S., Pagnotta, S., Verplancke, C., 
et al. (2003). Reactive oxygen species and ethylene play a positive role in 
lateral root base nodulation of a semiaquatic legume. Proc. Natl. Acad. Sci. 
U. S. A. 100, 11789–11794. doi: 10.1073/pnas.1333899100

D'haeze, W., Gao, M. S., De Rycke, R., Van Montagu, M., Engler, G., and 
Holsters, M. (1998). Roles for azorhizobial nod factors and surface 
polysaccharides in intercellular invasion and nodule penetration, respectively. 
Mol. Plant Microbe Interact. 11, 999–1008. doi: 10.1094/MPMI.1998.11. 
10.999

Fabre, S., Gully, D., Poitout, A., Patrel, D., Arrighi, J. F., Giraud, E., et al. 
(2015). Nod factor-independent nodulation in Aeschynomene evenia required 
the common plant-microbe symbiotic toolkit. Plant Physiol. 169, 2654–2664. 
doi: 10.1104/pp.15.01134

Fonseca, M. B., Peix, A., De Faria, S. M., Mateos, P. F., Rivera, L. P., 
Simoes-Araujo, J. L., et al. (2012). Nodulation in Dimorphandra wilsonii 
Rizz. (Caesalpinioideae), a threatened species native to the Brazilian Cerrado. 
PLoS One 7:e49520. doi: 10.1371/journal.pone.0049520

Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J. C., et al. 
(2007). Legumes symbioses: absence of nod genes in photosynthetic 
bradyrhizobia. Science 316, 1307–1312. doi: 10.1126/science.1139548

Goormachtig, S., Capoen, W., James, E. K., and Holsters, M. (2004). Switch 
from intracellular to intercellular invasion during water stress-tolerant legume 
nodulation. Proc. Natl. Acad. Sci. U. S. A. 101, 6303–6308. doi: 10.1073/
pnas.0401540101

Guha, S., Molla, F., Sarkar, M., Ibanez, F., Fabra, A., and Dasgupta, M. (2022). 
Nod factor-independent 'crack-entry' symbiosis in dalbergoid legume Arachis 
hypogaea. Environ. Microbiol. 1462–2912. doi: 10.1111/1462-2920.15888

Gully, D., Czernic, P., Cruveiller, S., Mahe, F., Longin, C., Vallenet, D., et al. 
(2018). Transcriptome profiles of nod factor-independent Symbiosis in the 
tropical legume Aeschynomene evenia. Sci. Rep. 8:10934. doi: 10.1038/
s41598-018-29301-0

Huisman, R., and Geurts, R. (2020). A roadmap toward engineered nitrogen-
fixing nodule Symbiosis. Plant Commun. 1:100019. doi: 10.1016/j.xplc.2019. 
100019

Ibañez, F., and Fabra, A. (2011). Rhizobial nod factors are required for cortical 
cell division in the nodule morphogenetic programme of the Aeschynomeneae 
legume Arachis. Plant Biol. (Stuttg.) 13, 794–800. doi: 10.1111/j.1438-8677. 
2010.00439.x

Ibañez, F., Wall, L., and Fabra, A. (2017). Starting points in plant-bacteria 
nitrogen-fixing symbioses: intercellular invasion of the roots. J. Exp. Bot. 
68, 1905–1918. doi: 10.1093/jxb/erw387

James, E. K., and Sprent, J. I. (1999). Development of N2-fixing nodules on 
the wetland legume Lotus uliginosus exposed to conditions of flooding. New 
Phytol. 142, 219–231. doi: 10.1046/j.1469-8137.1999.00394.x

James, E. K., Sprent, J. I., Sutherland, J. M., Mcinroy, S. G., and Minchin, F. R. 
(1992). The structure of nitrogen fixing root nodules on the aquatic Mimosoid 
legume Neptunia plena. Ann. Bot. 69, 173–180. doi: 10.1093/oxfordjournals.
aob.a088323

Karas, B., Murray, J., Gorzelak, M., Smith, A., Sato, S., Tabata, S., et al. (2005). 
Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti involves 
the nodulation factor-dependent induction of root hairs. Plant Physiol. 137, 
1331–1344. doi: 10.1104/pp.104.057513

Karmakar, K., Kundu, A., Rizvi, A. Z., Dubois, E., Severac, D., Czernic, P., 
et al. (2019). Transcriptomic analysis With the Progress of Symbiosis in 
'Crack-Entry' legume Arachis hypogaea highlights its contrast With 'Infection 
Thread' adapted legumes. Mol. Plant Microbe Interact. 32, 271–285. doi: 
10.1094/MPMI-06-18-0174-R

Koenen, E. J. M., Ojeda, D. I., Steeves, R., Migliore, J., Bakker, F. T., Wieringa, J. J., 
et al. (2020). Large-scale genomic sequence data resolve the deepest divergences 
in the legume phylogeny and support a near-simultaneous evolutionary 
origin of all six subfamilies. New Phytol. 225, 1355–1369. doi: 10.1111/
nph.16290

Krönuer, C., and Radutoiu, S. (2021). Understanding nod factor signalling 
paves the way for targeted engineering in legumes and non-legumes. Curr. 
Opin. Plant Biol. 62:102026. doi: 10.1016/j.pbi.2021.102026

Kundu, A., and Dasgupta, M. (2018). Silencing of putative cytokinin receptor 
Histidine Kinase1 inhibits Both inception and differentiation of root nodules 

in Arachis hypogaea. Mol. Plant Microbe Interact. 31, 187–199. doi: 10.1094/
MPMI-06-17-0144-R

Liang, J., Klingl, A., Lin, Y. Y., Boul, E., Thomas-Oates, J., and Marin, M. 
(2019). A subcompatible rhizobium strain reveals infection duality in Lotus. 
J. Exp. Bot. 70, 1903–1913. doi: 10.1093/jxb/erz057

Lievens, S., Goormachtig, S., Den Herder, J., Capoen, W., Mathis, R., Hedden, P., 
et al. (2005). Gibberellins are involved in nodulation of Sesbania rostrata. 
Plant Physiol. 139, 1366–1379. doi: 10.1104/pp.105.066944

Madsen, L. H., Tirichine, L., Jurkiewicz, A., Sullivan, J. T., Heckmann, A. B., 
Bek, A. S., et al. (2010). The molecular network governing nodule organogenesis 
and infection in the model legume Lotus japonicus. Nat. Commun. 1:10. 
doi: 10.1038/ncomms1009

Mitra, S., Mukherjee, A., Wiley-Kalil, A., Das, S., Owen, H., Reddy, P. M., 
et al. (2016). A rhamnose-deficient lipopolysaccharide mutant of Rhizobium 
sp. IRBG74 is defective in root colonization and beneficial interactions with 
its flooding-tolerant hosts Sesbania cannabina and wetland rice. J. Exp. Bot. 
67, 5869–5884. doi: 10.1093/jxb/erw354

Montiel, J., Reid, D., Gronbaek, T. H., Benfeldt, C. M., James, E. K., Ott, T., 
et al. (2021). Distinct signaling routes mediate intercellular and intracellular 
rhizobial infection in Lotus japonicus. Plant Physiol. 185, 1131–1147. doi: 
10.1093/plphys/kiaa049

Ndoye, I., De Billy, F., Vasse, J., Dreyfus, B., and Truchet, G. (1994). Root 
nodulation of Sesbania rostrata. J. Bacteriol. 176, 1060–1068. doi: 10.1128/
jb.176.4.1060-1068.1994

Peng, Z., Chen, H. Q., Tan, L. B., Shu, H. M., Varshney, R. K., Zhou, Z. K., 
et al. (2021). Natural polymorphisms in a pair of NSP2 homoeologs can 
cause loss of nodulation in peanut. J. Exp. Bot. 72, 1104–1118. doi: 10.1093/
jxb/eraa505

Peng, Z., Liu, F., Wang, L., Zhou, H., Paudel, D., Tan, L., et al. (2017). 
Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea 
L.) nodulation. Sci. Rep. 7:40066. doi: 10.1038/srep40066

Quilbe, J., Lamy, L., Brottier, L., Leleux, P., Fardoux, J., Rivallan, R., et al. 
(2021). Genetics of nodulation in Aeschynomene evenia uncovers mechanisms 
of the rhizobium-legume symbiosis. Nat. Commun. 12:829. doi: 10.1038/
s41467-021-21094-7

Ranga Rao, V. (1977). Effect of root temperature on the infection processes 
and nodulation in Lotus and Stylosanthes. J. Exp. Bot. 28, 241–259. doi: 
10.1093/jxb/28.2.241

Raul, B., Bhattacharjee, O., Ghosh, A., Upadhyay, P., Tembhare, K., Singh, A., 
et al. (2022). Microscopic and transcriptomic analyses of Dalbergoid 
legume peanut reveal a divergent evolution leading to nod-factor-dependent 
epidermal crack-entry and terminal bacteroid differentiation. Mol.  
Plant Microbe Interact. 35, 131–145. doi: 10.1094/MPMI-05-21- 
0122-R

Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., et al. 
(2020). Celebrating 20 years of genetic discoveries in legume nodulation 
and symbiotic nitrogen fixation([OPEN]). Plant Cell 32, 15–41. doi: 10.1105/
tpc.19.00279

Shen, D., and Bisseling, T. (2020). The evolutionary aspects of legume nitrogen-
fixing nodule Symbiosis. Results Probl. Cell Differ. 69, 387–408. doi: 
10.1007/978-3-030-51849-3_14

Shu, H., Luo, Z., Peng, Z., and Wang, J. (2020). The application of CRISPR/
Cas9  in hairy roots to explore the functions of AhNFR1 and AhNFR5 
genes during peanut nodulation. BMC Plant Biol. 20:417. doi: 10.1186/
s12870-020-02614-x

Sinharoy, S., and Dasgupta, M. (2009). RNA interference highlights the role 
of CCaMK in dissemination of Endosymbionts in the Aeschynomeneae 
legume Arachis. Mol. Plant Microbe Interact. 22, 1466–1475. doi: 10.1094/
MPMI-22-11-1466

Sprent, J. I., Ardley, J., and James, E. K. (2017). Biogeography of nodulated 
legumes and their nitrogen-fixing symbionts. New Phytol. 215, 40–56. doi: 
10.1111/nph.14474

Subba-Rao, N. S., Mateos, P. F., Baker, D., Pankratz, H. S., Palma, J., Dazzo, B., 
et al. (1995). The unique root-nodule symbiosis between Rhizobium and 
the aquatic legume, Neptunia natans (L. f.) Druce. Planta 196, 311–320. 
doi: 10.1007/BF00201390

Sun, M., Naeem, R., Su, J. X., Cao, Z. Y., Burleigh, J. G., Soltis, P. S., et al. 
(2016). Phylogeny of the Rosidae: A dense taxon sampling analysis. J. Syst. 
Evol. 54, 363–391. doi: 10.1111/jse.12211

167

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1073/pnas.1333899100
https://doi.org/10.1094/MPMI.1998.11.10.999
https://doi.org/10.1094/MPMI.1998.11.10.999
https://doi.org/10.1104/pp.15.01134
https://doi.org/10.1371/journal.pone.0049520
https://doi.org/10.1126/science.1139548
https://doi.org/10.1073/pnas.0401540101
https://doi.org/10.1073/pnas.0401540101
https://doi.org/10.1111/1462-2920.15888
https://doi.org/10.1038/s41598-018-29301-0
https://doi.org/10.1038/s41598-018-29301-0
https://doi.org/10.1016/j.xplc.2019.100019
https://doi.org/10.1016/j.xplc.2019.100019
https://doi.org/10.1111/j.1438-8677.2010.00439.x
https://doi.org/10.1111/j.1438-8677.2010.00439.x
https://doi.org/10.1093/jxb/erw387
https://doi.org/10.1046/j.1469-8137.1999.00394.x
https://doi.org/10.1093/oxfordjournals.aob.a088323
https://doi.org/10.1093/oxfordjournals.aob.a088323
https://doi.org/10.1104/pp.104.057513
https://doi.org/10.1094/MPMI-06-18-0174-R
https://doi.org/10.1111/nph.16290
https://doi.org/10.1111/nph.16290
https://doi.org/10.1016/j.pbi.2021.102026
https://doi.org/10.1094/MPMI-06-17-0144-R
https://doi.org/10.1094/MPMI-06-17-0144-R
https://doi.org/10.1093/jxb/erz057
https://doi.org/10.1104/pp.105.066944
https://doi.org/10.1038/ncomms1009
https://doi.org/10.1093/jxb/erw354
https://doi.org/10.1093/plphys/kiaa049
https://doi.org/10.1128/jb.176.4.1060-1068.1994
https://doi.org/10.1128/jb.176.4.1060-1068.1994
https://doi.org/10.1093/jxb/eraa505
https://doi.org/10.1093/jxb/eraa505
https://doi.org/10.1038/srep40066
https://doi.org/10.1038/s41467-021-21094-7
https://doi.org/10.1038/s41467-021-21094-7
https://doi.org/10.1093/jxb/28.2.241
https://doi.org/10.1094/MPMI-05-21-0122-R
https://doi.org/10.1094/MPMI-05-21-0122-R
https://doi.org/10.1105/tpc.19.00279
https://doi.org/10.1105/tpc.19.00279
https://doi.org/10.1007/978-3-030-51849-3_14
https://doi.org/10.1186/s12870-020-02614-x
https://doi.org/10.1186/s12870-020-02614-x
https://doi.org/10.1094/MPMI-22-11-1466
https://doi.org/10.1094/MPMI-22-11-1466
https://doi.org/10.1111/nph.14474
https://doi.org/10.1007/BF00201390
https://doi.org/10.1111/jse.12211


Quilbé et al. Intercellular Nodulation in Legumes

Frontiers in Plant Science | www.frontiersin.org 8 June 2022 | Volume 13 | Article 922982

Zarrabian, M., Montiel, J., Sandal, N., Jin, H., Lin, Y.Y., Klingl, V., et al. (2021). 
A promiscuity locus confers Lotus burttii nodulation with rhizobia from 
five different genera. bioRxiv [Preprint].

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 

or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2022 Quilbé, Montiel, Arrighi and Stougaard. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. 
No use, distribution or reproduction is permitted which does not comply with these terms.

168

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Frontiers in Plant Science | www.frontiersin.org 1 June 2022 | Volume 13 | Article 900231

REVIEW
published: 30 June 2022

doi: 10.3389/fpls.2022.900231

Edited by: 
Sabine Dagmar Zimmermann,  

Délégation Languedoc Roussillon 
(CNRS), France

Reviewed by: 
Joske Ruytinx,  

Vrije University Brussel, Belgium
 Raffaella Balestrini,  

Institute for Sustainable Plant 
Protection (CNR), Italy

 Roland Mrmeisse,  
UMR7205 Institut de Systématique, 

Evolution, Biodiversité (ISYEB), 
France

*Correspondence: 
Franck Richard  

franck.richard@cefe.cnrs.fr

Specialty section: 
This article was submitted to  
Plant Symbiotic Interactions,  

a section of the journal  
Frontiers in Plant Science

Received: 20 March 2022
Accepted: 30 May 2022

Published: 30 June 2022

Citation:
Authier L, Violle C and 

Richard F (2022) Ectomycorrhizal 
Networks in the Anthropocene: 

From Natural Ecosystems to 
Urban Planning.

Front. Plant Sci. 13:900231.
doi: 10.3389/fpls.2022.900231
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1 CEFE, Univ Montpellier - CNRS - EPHE - IRD, Montpellier, France, 2 Ilex Paysage + Urbanisme, Lyon, France

Trees acquire hydric and mineral soil resources through root mutualistic associations. In 
most boreal, temperate and Mediterranean forests, these functions are realized by a 
chimeric structure called ectomycorrhizae. Ectomycorrhizal (ECM) fungi are highly 
diversified and vary widely in their specificity toward plant hosts. Reciprocally, association 
patterns of ECM plants range from highly specialist to generalist. As a consequence, ECM 
symbiosis creates interaction networks, which also mediate plant–plant nutrient interactions 
among different individuals and drive plant community dynamics. Our knowledge of ECM 
networks essentially relies on a corpus acquired in temperate ecosystems, whereas the 
below-ground facets of both anthropogenic ECM forests and inter-tropical forests remain 
poorly investigated. Here, we successively (1) review the current knowledge of ECM 
networks, (2) examine the content of early literature produced in ECM cultivated forests, 
(3) analyze the recent progress that has been made in understanding the place of ECM 
networks in urban soils, and (4) provide directions for future research based on the 
identification of knowledge gaps. From the examined corpus of knowledge, we reach 
three main conclusions. First, the emergence of metabarcoding tools has propelled a 
resurgence of interest in applying network theory to ECM symbiosis. These methods 
revealed an unexpected interconnection between mutualistic plants with arbuscular 
mycorrhizal (AM) herbaceous plants, embedding ECM mycelia through root-endophytic 
interactions. This affinity of ECM fungi to bind VA and ECM plants, raises questions on 
the nature of the associated functions. Second, despite the central place of ECM trees 
in cultivated forests, little attention has been paid to these man-made landscapes and 
in-depth research on this topic is lacking. Third, we report a lag in applying the ECM 
network theory to urban soils, despite management initiatives striving to interconnect 
motile organisms through ecological corridors, and the highly challenging task of 
interconnecting fixed organisms in urban greenspaces is discussed. In particular, 
we observe a pauperized nature of resident ECM inoculum and a spatial conflict between 
belowground human pipelines and ECM networks. Finally, we identify the main directions 
of future research to make the needed link between the current picture of plant functioning 
and the understanding of belowground ECM networks.

Keywords: plant-fungal interactions, ectomycorrhizal symbiosis, endophytic fungi, anthropogenic soils, forest 
soils, ecological succession, sylvigenetic cycle
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INTRODUCTION

In most boreal, temperate and Mediterranean ecosystems, as 
in a part of tropical and sub-tropical forests, the canopies of 
few ectomycorrhizal (ECM) tree species dominate multi-layered 
communities of arbuscular mycorrhizal (AM) plants (Smith 
and Read, 2010; Tedersoo and Nara, 2010; Liang et  al., 2020). 
ECM symbiosis shapes a wide variety of landscapes worldwide, 
from highly-preserved old-growth forests of the northern 
hemisphere (Smith et al., 2002; Spake et al., 2016), to emblematic 
oak savannas in Mediterranean biodiversity hotspots (Kennedy 
et  al., 2012; Baptista et  al., 2015), to highly artificialized tree 
plantations (Giachini et  al., 2000) and orchards (Belfiori 
et  al., 2012).

Belowground, ECM assist plant mineral nutrition by 
hydrolyzing natural polymeric compounds contained in litter 
and forest organic debris (Pritsch et  al., 2011; Martin et  al., 
2016), and mobilizing soil water through absorptive hyphae 
(Lehto and Zwiazek, 2011). Based on their ability to densely 
colonize tree root systems, ECM mycelia establish hundreds 
of thousands of connections per square meter through short 
roots (Dahlberg et al., 1997; Taylor, 2002), from which thousands 
of kilometers of extrametrical mycelia are annually produced 
exploring soil for water, nutrients and new apices to colonize 
(Leake et  al., 2004; Hagenbo et  al., 2016), or provide physical 
support to plant–plant interactions in the soil.

Taxonomically, ECM mutualism is highly asymmetric, with 
a high diversity of some 20,000 species of Ascomycetes and 
Basidiomycetes linking only 6,000 species of Angiosperms and 
Gymnosperms within very few families (van der Heijden et al., 
2015). In the ECM symbiosis, both the host and symbiotic 
species highly vary in their degree of specificity with their 
partners, from highly specialized (e.g., species in the 
Basidiomycete genera Alnicola and Alpova are strict associates 
of Alnus spp), to broad-host range species (e.g., the Ascomycete 
Cenoccocum geophilum associated with a wide range of 
Angiosperms and Gymnosperms; Bruns et  al., 2002; Barham 
et  al., 2014). These patterns underly the ability of ECM fungal 
diversity to interconnect ECM hosts through compatible dispersed 
inoculum across landscapes (Taudiere et  al., 2015).

In multi-layered forests, the co-occurrence of plants from 
various mycorrhizal guilds constitutes the support for the 
establishment of common mycorrhizal networks (CMNs) linking 
canopies to the undergrowth through belowground mycelia. 
While AM networks interconnect roots from similar or different 
AM  species of trees to shrubs and herbaceous plants (Wipf 
et  al., 2019), fully autotrophs ECM trees exchange nutrients 
among each other (Klein et  al., 2016) and with mixotrophic 
and mycoheterotrophic orchids (e.g., Li et al., 2021 for orchids) 
and ericaceous forest plants (Suetsugu et  al., 2021).

Based on its ability to establish dense networks of hyphal 
connections among roots, ECM symbiosis strongly influences 
plant community composition and dynamics (Richard et  al., 
2009; van der Heijden et  al., 2015; Nagati et  al., 2019). Broad-
host range species of fungi drive interspecific plant–plant 
interactions through shared mycelia (Beiler et al., 2010), which 
are then interconnected into CMNs. Reciprocally, hub species 

of ECM plants typically accumulate hyper-diverse communities 
of ECM fungi that co-occur on the local scale by their root 
systems (Tedersoo et  al., 2012; Courty et  al., 2016). In forest 
soils, these mycelial-mediated physical links among roots are 
involved in an underground carbon trade among co-occurring 
plant individuals (Simard et  al., 2003; Klein et  al., 2016). They 
constitute the below-ground facet of mycohetero- and mixo-
trophic plant evolutionary lineages, whose species become 
established and survive along with ECM trees (Bidartondo, 
2005; Selosse et  al., 2006). From a phytocentric perspective, 
these interaction networks mediate positive soil feedbacks among 
co-occurring plants and drive ecological successions (Bever, 
2002; Kennedy et  al., 2012).

One of the best markers of the Anthropocene lies on the 
dramatic degradation of physical, chemical, and biological 
signatures of the pedosphere, and the rapid extension of human-
made soil profiles in most parts of the world (e.g., Anthrosols 
and Technosols; Certini and Scalenghe, 2011). As organisms 
are highly dependent on soil physico-chemical conditions, ECM 
fungal communities are critical components of soil history by 
responding to short-term as well as long-term human impacts 
(Dupouey et al., 2002). Inevitably, the composition and dynamics 
of ECM community are profoundly influenced by forest 
management (Tomao et  al., 2020) and anthropic disturbance 
derived from agronomic practices in man-made ecosystems 
(Olivera et  al., 2014; Taschen et  al., 2015), with cascading 
effects on the underlying interaction networks (Correia 
et  al., 2021).

Since the early 2000s and the first evidence of the pivotal 
role of ECM CMNs in the dynamics of temperate plant 
communities during both primary (Nara, 2006a) and secondary 
successions (Simard et  al., 1997), the ecological significance 
of ECM fungal-mediated interactions among plants has been 
a matter of ongoing debate (Bever et  al., 2010; Birch et  al., 
2020). As a consequence, our understanding of the physical 
nature, functional boundaries, and trophic influence of ECM 
CMNs has considerably increased for the last decade, propelled 
by both the emergence of powerful metabarcoding tools and 
the deployment of a variety of experimental approaches in 
order to decipher underground ECM-based processes.

In this review, we  provide an overview of major advances 
of our understanding of the ECM CMNs, focusing on the 
spatial extent, associated functions and effects of anthropic 
practices on mycelium sharing among plants. We  evaluate the 
published literature and identify research gaps to determine 
promising research avenues along a gradient of anthropic 
footprint, extending from forests driven by spontaneous processes 
on one hand, to cultivated forests (see Glossary) and highly 
artificial urban ecosystems on the other. First, we  provide a 
diachronic perspective on the role of ECM CMNs in natural 
ecosystems along ecological successions, with a focus on the 
sylvigenetic cycle (i.e., the ontogenetic cycle of the forest sensu 
Oldeman, 2012). Second, we  mobilize the state-of-the-art 
concerning ECM network-based research in cultivated forests, 
including agroforests, to discuss the unexpected diversity of 
ecological guilds involved in ECM networks, and the 
consequences of our understanding of forest functioning. Third, 
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we  assemble current knowledge concerning ECM diversity 
patterns in urban soils, and discuss the challenge of conciliating 
ECM network-based services in cities and the development 
of human networks. Last, we  propose a framework for future 
research across the gradient of ecosystems explored in the 
first three sections of the review.

ECTOMYCORRHIZAL NETWORKS DRIVE 
PLANT COMMUNITY DYNAMICS ALONG 
ECOLOGICAL SUCCESSION

During ecological successions in temperate, Mediterranean, and 
boreal ecosystems, two dependent processes concomitantly 
unfold after disturbance. While aboveground communities of 
pioneer herbs and shrubs are progressively enriched by tree 
species, a microbiological switchover occurs belowground, from 
primarily arbuscular mycorrhizae associations (AM) on roots 
of early vegetation stages to their replacement by ectomycorrhizal 
association patterns on tree root systems (van der Heijden 
et  al., 2015). In these ecosystems, the main tree families (i.e., 
Fagaceae, Betulaceae, Pinaceae, and Salicaceae; Taudiere et  al., 
2015) have the ability to associate with ECM fungi. Contrastingly, 
only two families of shrubs (i.e., Cistaceae and Ericaceae pro 
parte; Comandini et  al., 2006; Richard et  al., 2009) are 
ectomycorrhizal. In this section, we  successively discuss (1) 
the networking role of these ecologically pivotal shrub species 
that endure the transition between VA and ECM plant 
communities and (2) our knowledge of the role of ECM CMNs 
during the sylvigenetic cycle, from seedling establishment to 
the senescence of forest trees.

ECM Networks Mediate Plant–Plant 
Interactions in Early Successional Stages
Our knowledge of the ecological significance of ECM networks 
along succession almost entirely relies on data accumulated 
in boreal and temperate ecosystems of the Nearctic and palearctic 
regions (but see Ramanankierana et  al., 2007 for a tropical 
perspective). In this documented area, and using a combination 
of in situ measurements, soil bioassays, and seedling 
transplantation, a consistent pattern of CMN-mediated nurse 
effect by shrubs on ECM late successional tree species has 
been reported in northern America (Arbutus menziesii vs. 
Pseudotsuga menziesii; Molina et  al., 1997; Horton et  al., 1999; 
Kennedy et  al., 2012); Helianthemum bicknellii vs. Quercus spp; 
(Dickie et  al., 2004), southern Europe (Arbutus unedo vs. 
Quercus ilex; Richard et  al., 2009) and eastern Asia (Salix 
reinii vs. Betula ermanii and Larix kaempferi; Nara and Hogetsu, 
2004; Nara, 2006b).

In the different investigated case studies, the highlighted 
CMNs-based facilitation process similarly lies on two 
complementary characteristics regarding the ecology of the 
nurse shrub species. First, ECM nurses have the ability to 
hold a prominent place in early stages of ecological succession, 
by either surviving after disturbance (Nara and Hogetsu, 2004) 
or establishing as a pioneer ECM species in a plant matrix 

exclusively composed of VA species (Dickie et al., 2004; Richard 
et  al., 2009; Kennedy et  al., 2012). Second, beyond this role 
of ecological hinge, ECM nurses act as inoculum relays for 
late successional tree species by accumulating diversified 
communities of ECM fungal partners on their roots, including 
generalist species which increase the potential for connection 
into common mycorrhizal networks. In previous research, the 
efficiency of CMNs in early vegetation stages has been evaluated 
by measuring the ability of these hub species to sustain the 
mycorrhization of the benefactor species (e.g., Kennedy et  al., 
2012) and by evaluating the subsequent gain on their growth, 
nutrient uptake and survival (e.g., Nara and Hogetsu, 2004).

Understanding the drivers of tree seedling establishment 
and survival is a central question in forest ecology, and a 
major challenge for forest and land managers. As a consequence, 
most research has been focused on the understanding of the 
role of ECM CMNs at the end of a shrub-dominated stage, 
when ECM tree species spontaneously establish in matrices 
of ECM nurse shrubs. These works overlook the major part 
of the chronological sequence since disturbance (Figure  1A). 
In particular, we  still know little about the early ecological 
bases of early ECM networks, i.e., upon ECM shrub establishment 
in VA plant communities (Figure 1A). Interconnections among 
roots of VA and ECM plants through ECM-based mycelia 
may occur, as suggested by recent studies showing a possible 
dual [ECM + endophytic; see Glossary] niche for species of 
various lineages of ECM fungi in both asco- (e.g., Tuber 
melanosporum and Tuber aestivum; Schneider-Maunoury et al., 
2018, 2020) and basidiomycetes (e.g., Rhizopogon spp.; Toju 
et al., 2018). The functional role of such plant–plant interactions 
is not clearly understood, and may include nutrient transfer 
from VA to ECM plants (see Taschen et  al., 2020 for Tuber 
melanosporum), with possible consequences on the establishment 
and survival of ECM shrubs in stressful environments. Identifying 
both ECM fungal and VA plant hubs involved in these tripartite 
interaction networks may provide insights into the biotic 
dimension of both ECM plant and fungal fundamental niches, 
and offer promising perspective on restoration ecology, similarly 
to nurse-based processes of restoration developed on post-
mining degraded ecosystems (Demenois et  al., 2017).

Furthermore, the belowground facet of the functioning of 
highly resilient shrub populations is still poorly known in the 
later succession stages (Figure  1A). In particular, the role of 
mycelium sharing among conspecific ECM shrubs, as a possible 
mechanism underlying the drought tolerance and adaptation 
of these communities to disturbance remains poorly addressed. 
This is the case for Cistaceae, an emblematic family of evergreen 
shrubs dominating Mediterranean-type landscapes at low 
elevation (Guzmán and Vargas, 2009). Based on fruitbody 
surveys, there is evidence to suggest that Cistaceae host highly 
diversified and species-rich ECM fungal communities (Comandini 
et  al., 2006; Loizides, 2016; Leonardi et  al., 2020), yet little is 
known of their belowground patterns and functioning. Exploring 
the topology (see Glossary) of the corresponding CMNs, and 
their response to drought and disturbance in widely distributed 
monospecific stands, may contribute to a systemic understanding 
of the belowground adaptation processes of Mediterranean plants.
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ECM Networks Sustain Nutrient Exchange 
Among Trees Along the Sylvigenetic Cycle
As forests age, two highly dependent community dynamics 
concomitantly occur. Thus, the progressive replacement of 
short-lived early-stage ECM trees (e.g., Betulaceae, Salicaceae, 

and Pinaceae pro parte) by long-lived shade-tolerant dryads 
aboveground (e.g., Fagaceae and Pinaceae pro parte) is 
accompanied by a marked shift in the composition of associated 
belowground communities (Bruns et  al., 2002; Taudiere et  al., 
2015). On tree roots, while early-stage trees host poor ECM 

A

C

B

FIGURE 1 | Schematic representation of ectomycorrhizal-based networks (A) across early ecological succession and (B) during sylvigenetic cycle. Dashed lines 
indicate plant–plant interactions through ECM CMNs. Blue arrows indicate nutrient transfers through ECM CMNs. (C) Summary of ECM network-related effects 
documented along the chronosequence.
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fungal communities, dryads associate with multiple fungal 
species, and progressively accumulate species on their roots 
(e.g., Smith et al., 2002; Richard et al., 2005), with specialization 
degree of fungal partners increasing with tree aging (Bruns 
et al., 2002; Barham et al., 2014; Taudiere et al., 2015). Meanwhile, 
the underground composition of early-stage ECM fungal 
communities reciprocally drives the recruitment of late-stage 
plants. On roots of pioneer trees, broad host range fungal 
hubs transfer nutrients to late-stage trees through CMNs (Teste 
and Simard, 2008; Nagati et  al., 2019), increasing their 
establishment success through soil feedbacks (Liang et al., 2020), 
most notably in arid environments (Bingham and Simard, 2012; 
Montesinos-Navarro et  al., 2019).

Simard’s pioneer work (Simard et  al., 1997) propelled 
intensive research on the understanding of the role of ECM 
CMNs along forest sylvigenetic cycle. In particular, the ability 
of CMNs to mediate the recruitment of late-stage tree seedlings 
under the canopies of pioneer species has been largely 
explored. Interplant nutrient transferring through ECM CMNs 
is now considered as one of the most fascinating mechanisms 
involved in shade tolerance of late-stage tree species, which 
establish during forest ontogeny (Figure 1B; Teste and Simard, 
2008; Simard et al., 2012), and partially and fully heterotrophic 
plant lineages living in the undergrowth (Figure 1B; Li et al., 
2021). However, we  still know little about the ecological 
significance of these trophic interactions among neighboring 
trees at the forest ecosystem level. Consistent evidence suggests 
that plant–plant interactions through shared ECM mycelia 
may play a central role in the performance of tree seedlings 
in mature forests in boreal (Nagati et  al., 2019), temperate 
(Teste and Simard, 2008), Mediterranean (Egerton-Warburton 
et  al., 2007), and tropical climates (Liang et  al., 2020). The 
consequences of these interactions on the long-term ecosystem 
dynamics still need to be  tested. For instance, community 
patterns and dynamics suggest that CMNs may drive soil-
mediated positive feedback loops (Bever et  al., 2010), which 
in turn may shape directional succession induced by climate 
change in boreal ecosystems (Deslippe and Simard, 2011; 
Nagati et  al., 2019). In natural forests, the role of CMNs-
based, long-term process in forest dynamics still need to 
be  evaluated. For instance, in Mediterranean old-growth 
forests, shade-tolerant Q. ilex seedlings survive in light-
restricted conditions for decades, until the senescent phase 
and the advent of canopy openings (Panaiotis et  al., 1997). 
In gaps, these pre-established individuals avail of these 
conditions to emerge from the shrubby matrix and renew 
tree populations (Panaïotis et al., 1998). In the soil of senescent 
Q. ilex forest patches, seedlings and old Q. ilex individuals 
share high diversity of ECM symbionts on their roots (Richard 
et  al., 2005). Along this well-described sylvigenetic cycle, 
quantifying nutrient transfers among conspecific individuals 
during mature and senescent phases, may advance our 
knowledge of the efficiency of CMNs-based interaction in 
forest regeneration.

The mechanisms underlying CMNs effect on forest dynamics 
are not fully understood. In particular, our knowledge of the 
nature and the ecological importance of transferred resource 

among co-occurring hosts remains partial. However, CMNs 
undoubtedly drive carbon transfer along reversible source-sink 
avenues at the local scale (Teste et  al., 2009; Song et  al., 2015; 
Cahanovitc et  al., 2022). One of the most spectacular 
demonstration of this mechanism consists of carbon transfers 
among adult trees in temperate mixed conifer-hardwood forests 
(Klein et al., 2016). This finding is the first to reveal bidirectional 
nutrient exchanges among co-occurring ECM mature trees, 
with a significant amount of the carbon accumulated on roots 
of adult trees being transferred from neighboring donors. These 
transfers may be mainly based on fungal genera which typically 
dominate in mature forest stands (i.e., Russula, Cortinarius, 
Lactarius, and Tricholoma; Courty et  al., 2005; Richard et  al., 
2005). Contrastingly, the influence of ECM CMNs on nitrogen 
and phosphorus sharing among co-occurring individuals remains 
less obvious (Figure  1C). However, ECM network-mediated 
nitrogen fluxes have been evidenced between co-occurring 
ECM tree species with contrasted nitrogen-acquisition strategies 
(He et  al., 2006; Teste et  al., 2015). The importance of these 
nutrient transfers on forest functioning is still under debate. 
Nevertheless, recent data suggest that they may drive feedback 
loops which promote tree population dynamics in monospecific 
tropical forests (Corrales et  al., 2016). More generally, nutrient 
transfers through ECM CMNs are highly suspected to shape 
soil feedbacks and drive either cyclic or directional succession 
in the corresponding plant communities, from the tropics to 
arctic ecosystems (Deslippe and Simard, 2011; Kadowaki et al., 
2018; Montesinos-Navarro et  al., 2019; Liang et  al., 2020). The 
knowledge accumulated during the last decade revealed an 
unexpectedly large biogeographical range and functional 
significance of ECM network-based ecosystem processes along 
forest ontogeny. However, research gaps still persist on both 
descriptive and functional facets of ECM networks in forest 
ecosystems. In particular, the role of ECM CMNs at the end 
of the sylvigenetic cycle, and particularly in natural canopy 
gaps, still need to explored (Figure  1C).

The belowground architecture of root systems of ECM 
trees, and the spatial distribution of the associated ECM 
fungal symbionts are poorly predicted by the vertical projection 
of the corresponding canopies (Lian et  al., 2006; Taschen 
et  al., 2015). Likewise, documenting the spatial patterns of 
plant–plant physical links through CMNs provide apparently 
counter-intuitive connections among highly spatially-distant 
individuals and determine unexpected hub individuals among 
populations (Teste et  al., 2009), with consequences on forest 
management when tree individuals sustain production of 
associated resources (e.g., Lian et  al., 2006 for Matsutake 
forests). At the local scale, we  still know little about the 
distribution of links between plant and fungal individuals. 
However, first evidence from temperate P. menziesii uneven 
forests strikingly revealed the ability of ECM CMN to 
interconnect most co-occurring plant individuals with each-
other (Beiler et  al., 2010). In those ecosystems, and based 
on the use of multi-locus, microsatellite DNA markers, Beiler 
et  al. (2015) revealed the nested topology of Rhizopogon ssp.-
based ECM networks, suggesting a potential role in the 
resilience of tree population through the prevention of cascading 
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effect following tree death. To the best of our knowledge, 
most ECM ecosystems still await for similar systemic (i.e., 
network-based) assessments of their belowground functioning, 
despite the promising potential of networks-derived metrics 
for forest management and conservation (Taudiere et al., 2015).

IN CULTIVATED ECOSYSTEMS, 
ANTHROPIC PRACTICES AFFECT 
ECTOMYCORRHIZAL NETWORKS

Only 2% of vascular plant species are ectomycorrhizal (van 
der Heijden et  al., 2015; Brundrett and Tedersoo, 2020). The 
majority of timber, softwood lumber and construction wood 
traded worldwide derives from this low percentage of vascular 
plants (Smith and Read, 2010). Most emblematic agro-sylvo-
pastoral landscapes in the northern hemisphere are shaped by 
these plant species (e.g., Conedera et al., 2016 for an illustration 
with the domesticated ECM tree Castanea sativa). As a 
consequence, the effect of sylvicultural practices on ECM fungal 
communities, and the nature of adapted forest management 
practices to maintain diverse ECM communities has been 
intensively debated (see Tomao et al., 2020 for a review). Here, 
we  successively discuss the current knowledge of the effect of 
human practices on ECM fungal networks in two main contexts. 
We  first consider cultivated ecosystems as a wide variety of 
ECM forest types cultivated for timber production (see Glossary). 
Second, we  review the state of the art in agroforests, i.e., in 
ECM socio-ecosystems where timber production is associated 
with a wide variety of human services, including crop and 
fruit productions (e.g., Dehesas, Montados, and planted orchards; 
Grove and Rackham, 2001).

Anthropic Disturbances Shape ECM 
Communities and Networks in Cultivated 
Forests
In cultivated ECM forests, sylvicultural practices generally consist 
of interrupting the sylvigenetic cycle at the maturity phase, truncating 
the end of both aboveground and belowground ecological 
successions. In most documented ecosystems dominated by either 
angiosperms or gymnosperms, both selective tree logging and 
clearcutting have been reported to induce marked compositional 
change in ECM fungal communities. The higher the intensity of 
practices, the higher are the deleterious effects on ECM diversity 
(Sterkenburg et  al., 2019). Specifically, it has been shown that 
ECM community diversity positively responds to tree diversity, 
basal area and canopy cover in cultivated forest systems (Tomao 
et  al., 2020; but see Craig et  al., 2016; Spake et  al., 2016 for case 
study-dependant contrasted responses). As a practical consequence, 
the retention of forest patches (Kranabetter et  al., 2013; Varenius, 
2017), green trees (Sterkenburg et al., 2019), and to a lesser extent 
coarse woody debris (Walker et  al., 2012) at harvest time have 
been reported as efficient compensatory measures to maintain 
ECM fungal diversity in cultivated ecosystems. If direct effect of 
tree removal are widely documented, indirect effect deleterious 
of forest logging have been also reported, including environmental 

change (Varenius, 2017), soil compaction (Hartmann et al., 2014), 
and soil amendment (Olivera et  al., 2014; Almeida et  al., 2018).

The effect of forest management practices on ECM CMNs 
have been poorly investigated so far. However, the accumulated 
knowledge during the last decade in forest ecosystems gives 
a theoretical framework to analyze the response of plant-fungi 
bipartite networks to forest practices. From a plant-centered 
perspective, the reported pauperization effect of forest 
exploitation on ECM communities may alter the topology 
of ECM networks. Early evidence of age influence on network 
topology already exists: using high-throughput sequencing of 
soils, Correia et  al. (2021) reported contrasted ECM network 
topologies along a chronosequence of Fagus sylvatica forest 
establishment, plant nodes in long-established forests presenting 
higher numbers of connection links than in recent patches. 
From a fungal perspective, silvicultural practices tend to 
reduce the number and diversity of available plant nodes for 
fungal genets. As a consequence, tree logging may decrease 
the linkage density of ECM CMNs in cultivated stands. When 
considering the highly saturated and nested nature of ECM 
CMNs (Beiler et  al., 2010; Taudiere et  al., 2015), one may 
suggest consequences of tree logging on ECM network-mediated 
processes in forest ecosystems, including affected tree 
regeneration dynamics (Pec et  al., 2020). On the basis of 
scarce preliminary works, further research is needed to 
illuminate the relationships between the complexity and the 
stability of ECM CMNs. Cultivated forests are also ideal 
candidate systems to study the links between the stability of 
ECM CMNs and the resilience of forest ecosystems.

ECM Fungi Shape Complex Interaction 
Networks in Tree Savannas
Ectomycorrhizal trees dominate millions of hectares of 
anthropogenic landscapes in temperate and Mediterranean 
ecoregions, where trees, pastures, and croplands amalgamate 
in complex and species-rich mosaics called tree savannas (Grove 
and Rackham, 2001; Moreno and Pulido, 2009; see Glossary). 
Most ECM tree species contribute to the current highly diversified 
physiognomy of these systems, but the most emblematic ones 
are dominated by various species of oaks (e.g., from Quercus 
velutina dominating north America oak openings and typical 
Quercus suber dehesas, which cover one-eighth of Spain), sweet 
chestnut (e.g., C. sativa montados currently covering one-sixth 
of the area of Portugal), or larches and pines, which dominate 
multifunctional transitional landscapes between subalpine forests 
and alpine shrublands across Europe.

Because tree savannas play important ecological, social, and 
economic roles for societies (e.g., Conedera et  al., 2016), 
understanding their functioning and analyzing their biodiversity 
patterns has been subject of much attention (Bugalho et  al., 
2011). Within their soils, these ecosystems concentrate some 
of the richest ECM communities described so far (Tedersoo 
et  al., 2006; Morris et  al., 2008; Baptista et  al., 2015; Reis 
et  al., 2018) and harbor highly specific fungal assemblies 
dominated by ascomycetes, in response to a unique combination 
of environmental and anthropic drivers (Dickie et  al., 2009). 
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Despite the primary importance of tree savannas for conservation, 
very little is known about their belowground functioning, and 
ECM-mediated plant–plant interactions remain poorly explored 
in most of them.

Within this panorama, spontaneous oak savannas and planted 
orchards for the production of the emblematic black truffle 
(Tuber melanosporum) are an exception. Indeed, during the last 
decade, very few ECM communities received as much attention 
as T. melanosporum truffle grounds. In these transient ecosystems, 
a set of practices by truffle growers shape species-rich ECM 
communities, typically dominated by lineages of ascomycetes 
(e.g., Pyrenomataceae, Tuberaceae, and Helvellaceae) and early-
stage lineages of basidiomycetes (e.g., Thelephoraceae) in both 
spontaneous and planted truffle grounds (e.g., Belfiori et  al., 
2012; Taschen et al., 2015). In these communities, T. melanosporum 
and few species in the early-stage lineages of basidio- (i.e., 
Thelephoraceae, Sebacinaceae, Inocybe spp., and Scleroderma spp.) 
and ascomycetes (i.e., Cenoccocum geophilum and Pyronemataceae), 
simultaneously associate as mutualists with their host through 
ECM root tips, and interact as fungal endophytes on the roots 
of most VA plant species established under host canopies 
(Schneider-Maunoury et  al., 2018, 2020; Figure  2A). In these 
systems, the topology of the below-ground fungal interaction 
networks remains undescribed (Figure 2A). Similarly, the ecological 
consequences of the “beyond forest edge” spatial extent of ECM 
CMNs remains poorly addressed (Taschen et  al., 2020). In 
particular, the ability of ECM fungi to transcend their host 
range and to establish as endophytes in the tissues of AM plants 
(Taschen et al., 2020) still need to be examined under a functional 
perspective. These remarkable findings pave the way for pursuing 
the exploration of ECM-VA plant interaction mediated by shared 
ECM fungal hubs (Figure  2B), to provide systemic views of 
forest functioning.

ECM COMMON MYCORRHIZAL 
NETWORKS IN URBAN SOILS: 
HEADACHE IN A SATURATED 
BELOW-GROUND

In anthropogenic urban ecosystems, a few ECM trees and 
shrubs (e.g., Tilia, Pinus, Quercus, and Cistus) hold a prominent 
place among a wide range of plant species adapted to the 
environmental conditions and physical constraints of cities 
(Bainard et  al., 2011; Williams et  al., 2015; Jenerette et  al., 
2016). In urban green spaces, the selection of plant species 
by urban land managers is in priority driven by socioeconomic 
constrains (Hope et al., 2003). In particular, a panel of aesthetical 
traits, including blooming intensity, flower size and color, shape 
patterns of urban tree diversity in cities (Kendal et  al., 2012; 
Conway and Vander Vecht, 2015; Jenerette et al., 2016; Goodness, 
2018). To a lesser extent, ecophysiological traits of species also 
matter, in particular plant tolerance to drought or freeze 
(Jenerette et  al., 2016; McPherson et  al., 2018). On the other 
hand, plant-related extended phenotype functions (Dawkins, 
2016), such as fungal-mediated adaptation to drought through 
mycorrhizal symbionts, or nutrient uptake based on connection 
with neighboring individuals through ECM CMNs, still struggle 
to be  included in selection processes among plant candidates.

Urban Soils Host Pauperized ECM Fungal 
Communities
The composition of soil fungal communities in urban soils remains 
largely unexplored (Delgado-Baquerizo et  al., 2021). Published 
research consistently shows eroded patterns of ECM diversity in 
cities, as compared to forest ecosystems (Bainard et  al., 2011; 
Karpati et  al., 2011; Martinová et  al., 2016). In particular, a low 

A B

FIGURE 2 | Schematic representation of ectomycorrhizal-based multipartite networks in Tuber ssp. temperate agroforests, from Schneider-Maunoury et al. (2018) 
modified. (A) Species of co-occurring ectomycorrhizal and arbuscular mycorrhizal plants are represented by dark and clear green dots, respectively. The different 
taxa of ECM fungi are represented by squares. Interaction hubs are indicated by thickened outlines (here, Quercus ilex and Tuber melanosposrum). Solid lines 
indicate plant-fungi ECM interaction links. Dotted lines indicate interaction links between ECM fungal tava and VA plants. (B) Schematic representation of the 
corresponding projected VA-ECM plant network.
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ECM species richness has been observed at the local scale, on 
roots of planted trees in city parks (Bainard et  al., 2011; Karpati 
et  al., 2011), streetscapes (Bainard et  al., 2011), and private 
residential properties (Bainard et  al., 2011), with an unusual 
dominance of hypogeous fungi (e.g., species in the Tuberaceae) 
and an underrepresentation of ECM families which typically 
dominate in forest soils (i.e., Russulaceae, Inocybaceae, and 
Cortinariaceae; Martinová et  al., 2016; Hui et  al., 2017; Van Geel 
et  al., 2018). Interestingly, these pauperized communities show a 
high ability to colonize root systems, with similar ECM colonization 
rates on roots in urban soils as comparted to forests (Timonen 
and Kauppinen, 2008; Bainard et  al., 2011; Tonn and Ibáñez, 
2017). This pauperized nature of ECM communities in urban 
soils and subsequent homogenization of ECM fungal communities 
among cities on a continental scale (Schmidt et al., 2017; Delgado-
Baquerizo et  al., 2021), question about the mechanisms driving 
the observed compositional change and the consequences of species 
shift on urban ecosystem functioning. Three main mechanisms 
may concomitantly drive the observed patterns.

First, a deleterious effect of urban environment on both 
the dispersion (by physical barriers among poorly connected 
and highly fragmented habitats) and establishment (by unsuitable 
physico-chemical conditions in anthrosols; Figure 3A) are likely 
to act as filters on the potential communities of airborne and 
biotically dispersed ECM inoculum (Kasprzyk and Worek, 2006; 
Koide et  al., 2011). In particular, sealing of urban soil surface 
may impact ECM dispersion from adjacent forests to city 
streets, with negative effects on ECM richness and diversity 
in urban soils (Martinová et  al., 2016; Figure  3A).

Moreover, the low alpha diversity of ECM communities in 
cities may reflect the specific physicochemical properties of urban 
soils (Newbound et al., 2012; Lüttge and Buckeridge, 2020). Thus, 
the role of soil chemical signature as one of the main drivers 
of the composition, diversity, temporal dynamics and spatial 
patterns of ECM fungal communities has been widely documented 
in forest ecosystems (e.g., Lilleskov et  al., 2011 for a review; 
Courty et al., 2016 for a functional perspective). Unsurprinsingly, 
in urban as in forest soils, the vegetative development (Olchowik 
et  al., 2021), and the species richness (Newbound et  al., 2012; 
Martinová et al., 2016; Van Geel et al., 2018) of ECM communities 
are negatively affected by soil alkalinity, and positively respond 
to organic matter and moisture content (Van Geel et  al., 2018). 
The consistent pattern of ECM richness decrease and the 
composition drift observed in urban soils have then to be considered 
in light of (1) currently widespread practices along city roads, 
including deicing salts contributing to the alkalization of urban 
soils (Czerniawska-Kusza et  al., 2004) and (2) the critically low 
organic matter content in city soils, in particular in sealed contexts 
(Scharenbroch et al., 2005; Alzetta et al., 2012), and its deleterious 
consequences on the establishment of species with affinities for 
organic soils (e.g., Genney et  al., 2006; Kranabetter et  al., 2009).

Last, the simplification of ECM communities in urbanized 
contexts may be  a consequence of anthrosol assembling process 
in urban green spaces. This highly artificial growth matrix generally 
consists of a unique soil horizon intercalated between a deeper 
layer of mineral anthropogenic substrate, and a cover of impermeable 
materials (Rodríguez-Espinosa et al., 2021; Figure 3A). The specific 

physical soil properties of anthrosols (Lorenz and Lal, 2009) 
combined with surface sealing, drastically affects biological processes 
(Lu and Weng, 2006; Martinová et  al., 2016; Salvati et  al., 2016; 
Hui et  al., 2017) limiting the differentiation of soil profile into 
distinct horizons during pedogenesis (Hui et al., 2017; Figures 3A,B). 
As a consequence, anthrosols remain unsuitable habitats for the 
vertical stratification of ECM diversity from organic surface to 
the underlying mineral horizons (Rosling et  al., 2003; Genney 
et  al., 2006), by penalizing hyper diverse ECM sub-communities 
with affinities for surface organic layers (Richard et  al., 2011).

Traffic Jam in Urban Soils
During the last decade, restoring ecological networks in urban 
areas (Ignatieva et  al., 2011) has become a priority for urban 
landscape planners, in order to provide suitable habitats for 
organisms and re-establish connectivity among fragmented 
meta-populations (Peng et al., 2017). The development of urban 
green corridors connecting habitat patches has been successfully 
developed in cities worldwide, as an efficient strategy to maintain 
high levels of alpha diversity (see Glossary), in particular for 
motile organisms (Beninde et  al., 2015).

Contrastingly, fixed organisms such as plants and their fungal 
root associates still await to benefit from an adequate declination 
of network-based strategy for the conservation of dedicated 
belowground mutualistic interactions and their underlying 
functions. In particular, the topology of pauperized ECM CMNs 
in urban soils remains poorly described, the network-based 
signature of plant adaptation to urban environment still need 
to be  explored, and the role of ECM CMNs for plant species 
coexistence in cities still need to be  understood.

Yet, in urban areas as in natural ecosystems, there is strong 
evidence for a pivotal role of ECM colonization and diversity 
for promoting nutrient uptake (Newbound et  al., 2010), 
acclimatation to hydric stress (Fini et  al., 2011), tolerance to 
salt exposition (Zwiazek et  al., 2019), and survival of ECM 
plants (Tonn and Ibáñez, 2017). Despite this pivotal role of 
ECM symbiosis, planning practices fail at integrating plant–plant 
ECM interconnexion through CMNs in urban design. At the 
individual level first, urbanization imposes to belowground 
counterparts of trees undersized dedicated soil volumes in 
compartmentalized planting pits (Day et  al., 2010; Figure  3A). 
At the plant population/community level, the organization of 
cities constrains root development patterns along green linearities 
bordering transport networks (Levinson, 2012), anthropic 
pipelines (e.g., electrical, water, internet; Galle et  al., 2019), 
and carriageway stabilizing materials (Randrup et  al., 2001). 
Moreover, from a temporal perspective, high turnover of land-use 
of volatile urban landscapes hampers belowground mycelial 
dynamics by inducing severe soil disturbance regime (Moore, 
2008; Lüttge and Buckeridge, 2020).

All in all, and further considering the temptation to consider 
urban underground space as an opportunity to compact city 
development (Cui et  al., 2021), there is clear evidence that 
the establishment of functional ECM CMNs in cities may 
collide with the current geographical conceptualization of urban 
underground in the cities of the Anthropocene (Qihu, 2016; 
Connor and McNeill, 2022).
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PERSPECTIVES AND CONCLUSIONS

The understanding of ectomycorrhizal interaction networks 
is a growing body of research. Their deterioration by human 
impacts is an overlooked marker of the anthropogenic 
footprint on terrestrial ecosystems. The pedosphere is 

particularly impacted by the rise to dominance of anthropic 
disturbances (Certini and Scalenghe, 2011). Here, we   
aimed at providing a comprehensive overview of the recent 
advances on our understanding of ECM CMNs in a 
wide range of ecosystems differing in the intensity of 
anthropic influence, in order to draw up a framework of 

A

B

FIGURE 3 | (A) Schematic representation of pedogenic conditions for the development of ectomycorrhizal plants in urban and forest soil conditions and 
(B) schematic representation of ECM network-based mechanisms and anthropic filters in urban and forest soils conditions.
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timely research avenues. From this analysis, three issues 
should be  primarily addressed.

Knowledge Gaps in Natural Gaps
During the last decade, the development of metabarcoding 
tools propelled an unprecedented level of knowledge of 
belowground fungal patterns in forest soils, and enlarge 
perspectives on fungal assembly at both local (e.g., Baptista 
et  al., 2015) and global (Tedersoo et  al., 2014, 2020) scales. 
Despite significant progress been made, several gray areas 
persist. First, the topology of CMNs at the establishment 
time of pivotal ECM shrubs (Figure  1A) and the affinity of 
ECM fungi toward AM  plant hosts, remain fascinating and 
poorly documented issues in ecology. Second, studies 
investigating network-based dynamics in soils of natural 
canopy gaps are surprisingly lacking. Yet, understanding the 
remobilization of late-stage trees inoculum heritage in soil 
by pioneer species to initiate a new sylvigenetic cycle 
(Figure  1B) is a central question for forest ecologists and 
managers. Last, there is urgent need to assess the effect of 
forest management practices on the topology of ECM 
networks since forest ecosystems face dramatic change through 
the combined effects of local impactful disturbance and 
global change.

Taxonomic Limits and Spatial Patterns of 
ECM CMNs
One major recent advance in our knowledge of ECM symbiosis 
is the ability of various ECM fungal lineages to interconnect 
between their hosts and VA plants, in both forests (Toju et  al., 
2018) and tree savannas (Schneider-Maunoury et  al., 2020). 
This unexpected porosity among ecological guilds of plants 
raises the questions of (1) the spatial limits of ECM CMNs 
through physical links among involved plant individuals and 
(2) the taxonomic basis of these interactions in multi-layered 
plant communities. Moreover, the role of these mixed 
(ectomycorrhizal-endophytic) connections by polyvalent fungal 
species for forest community dynamics necessitates more effort 
to be  fully understood (Taschen et  al., 2020). This finding 
suggests to re-examine, from a biotic and below-ground 
perspective, the mechanisms involved in the particularly 
widespread nursing effect of VA plants for ECM trees.

Toward Soil Corridors for Underground 
Cities
Our synthesis reveals that patterns and functions of ECM 
CMNs in urban soils are poorly understood. However, given 
the rate of soil artificialization in cities worldwide (Scalenghe 
and Ajmone-Marsan, 2009; Just et  al., 2018), there is crucial 
need to consider urban soils and their living organisms as a 
valuable resource for citizens in the Anthropocene. From a 
landscape management perspective, cities may be ideal candidates 
for the establishment of ECM network-based plant synergies 
in artificial green spaces, by designing interconnected planted 
pits along soil continuums, to maintain functional and multi-
scaled ECM CMNs within beige corridors.

In such corridors, mimicking ECM networks established 
in natural ecosystems may be  a promising avenue for urban 
planners to design functionally efficient artificial green spaces. 
First, in the cities of the Anthropocene, the composition 
of plant communities may (1) favor species with high number 
of associated ECM fungal species (i.e., interaction hub species 
such as Fagaceae; Taudiere et  al., 2015) to increase the 
alpha diversity of ECM fungal inoculum, (2) associate nurse 
plants and late-stage benefactor species in multi-layered 
designs (Figure  1), and (3) promote synergies between 
AM  and ECM plant guilds through endophytic interaction 
(see Glossary; Figure  2). In these artificial ecosystems, tree 
populations may be uneven-aged, to increase the complexity 
of ECM networks by promoting the emergence of 
interaction-hub tree individuals (i.e., aged individuals with 
high number of linked fungal individuals; Beiler et al., 2010), 
and subsequently favor the ecological stability within nested 
network patterns (Montoya et  al., 2006).

Second, from a belowground perspective, the conception 
of anthrosols within beige corridors may be  rethought to reach 
suitable soil properties (i.e., biotic and abiotic conditions, 
including chemical and physical properties) for the establishment 
and the expansion of physical ECM links among plants. 
Accommodations may encompass a reduction of soil sealing 
area, the use of permeable sealing materials, the edification 
of stratified and organic-enriched pedological profiles, and 
controlled ECM inoculation by native fungi (Figure 3). Ultimately, 
combining above- and belowground facets of beige corridors 
may be  in line with the rewilding projects that gain popularity 
in landscape planning.
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GLOSSARY

Alpha-diversity Diversity of co-occurring organisms at local scale. Species richness is a widely used measurement of alpha diversity as a 
taxonomical facet of biodiversity. Contrastingly, the beta-diversity of metacommunities characterizes the level of composition 
differences between communities.

Anthropogenic Refers to processes, assemblies and ecosystem compartments driven by, or resulting from human activity. Anthropogenic 
landscapes typically consist of vegetation mosaics induced by long-term human activity (forestry, pastoralism, fire regime, etc.). 
Anthropogenic soils include pedological profiles that are physico-chemically altered by long-term anthropic pressures as well as 
matrices of artificial materials from urban/industrial origin (Anthrosols).

Cultivated forest Consists of highly diversified physiognomies of vegetation dominated by trees, originated from either natural process 
(spontaneous establishment of seedlings) of plantations, where human practices drive the structure, the composition and the 
dynamics of tree populations. Cultivated forests encompass forestry-based managed forests and agroforests, including planted 
orchards and multifunctional tree savannas.

Endophytic lifeforms Micro-organisms, including bacteria and filamentous fungi, leaving inside plant tissues (roots, seeds, leaves, bark, etc.) where 
they accomplish a part or their entire biological cycle. Recent research shows the ability of ectomycorrhizal fungi (e.g., Tuber 
melanosporum) to colonize root tissues of AM host as endophytes.

Network topology Set of properties characterizing an interaction network, used to infer ecological/evolutionary hypotheses, and based on the 
analysis of the distribution of links between the objects (nodes) constituting the network.

Sealed soils Soils that have sequestered in the mid-term by a cover of impermeable materials (e.g., tar) hindering pedogenesis.
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A variable gene family encoding
nodule-specific cysteine-rich
peptides in pea
(Pisum sativum L.)
Evgeny A. Zorin1, Marina S. Kliukova1, Alexey M. Afonin1,
Emma S. Gribchenko1, Mikhail L. Gordon1, Anton S. Sulima1,
Aleksandr I. Zhernakov1, Olga A. Kulaeva1,
Daria A. Romanyuk1, Pyotr G. Kusakin1, Anna V. Tsyganova1,
Viktor E. Tsyganov1, Igor A. Tikhonovich1,2 and
Vladimir A. Zhukov1*
1All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia, 2Department
of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Saint
Petersburg, Russia

Various legume plants form root nodules in which symbiotic bacteria

(rhizobia) fix atmospheric nitrogen after differentiation into a symbiotic form

named bacteroids. In some legume species, bacteroid differentiation is

promoted by defensin-like nodule-specific cysteine-rich (NCR) peptides. NCR

peptides have best been studied in the model legume Medicago truncatula

Gaertn., while in many other legumes relevant information is still fragmentary.

Here, we characterize the NCR gene family in pea (Pisum sativum L.) using

genomic and transcriptomic data. We found 360 genes encoding NCR

peptides that are expressed in nodules. The sequences of pea NCR genes

and putative peptides are highly variable and differ significantly from NCR

sequences of M. truncatula. Indeed, only one pair of orthologs (PsNCR47–

MtNCR312) has been identified. The NCR genes in the pea genome are

located in clusters, and the expression patterns of NCR genes from one

cluster tend to be similar. These data support the idea of independent

evolution of NCR genes by duplication and diversification in related legume

species. We also described spatiotemporal expression profiles of NCRs and

identified specific transcription factor (TF) binding sites in promoters of

“early” and “late” NCR genes. Further, we studied the expression of NCR

genes in nodules of Fix− mutants and predicted potential regulators of
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NCR gene expression, one among them being the TF ERN1 involved in the

early steps of nodule organogenesis. In general, this study contributes to

understanding the functions of NCRs in legume nodules and contributes

to understanding the diversity and potential antibiotic properties of pea

nodule-specific antimicrobial molecules.

KEYWORDS

Pisum sativum L., nitrogen-fixing symbiosis, root nodules, NCR peptides,
transcriptomics, spatiotemporal expression pattern, prediction of antimicrobial
properties

Introduction

Legumes (family Fabaceae) form a unique group among
plants owing to their ability to fix atmospheric nitrogen in
symbiosis with nodule bacteria (rhizobia). Most legume plants
develop specialized root organs, called root nodules, where
rhizobia perform biological nitrogen fixation while hosted
within plant cells in special compartments (symbiosomes)
(Sprent, 2001; Tsyganova et al., 2018). In legumes belonging
to the inverted repeat-lacking clade (IRLC) and Dalbergoids,
rhizobia undergo terminal (i.e., irreversible) differentiation
into symbiotic forms called bacteroids. This process prompts
an increase in cell size, endoreduplication of the genome,
and nitrogen-fixing capabilities (Mergaert et al., 2006; Alunni
and Gourion, 2016). In other legumes, the differentiation of
bacteroids is reversible and their changes from the free-living
state are not so pronounced (Sprent et al., 1987; Denison, 2000;
Kereszt et al., 2011). It is considered that terminal bacteroid
differentiation (TBD) is more beneficial for the macrosymbiont
(i.e., the host plant) since it is associated with better nitrogen
fixation efficiency and higher plant-to-nodule mass ratio (Oono
and Denison, 2010). It should be noted that the process of
TBD is gradual, as was shown using a series of pea mutants
blocked at various stages of nodule development (Tsyganov
et al., 2003).

The TBD is governed by short defensin-like peptide
molecules named nodule-specific cysteine-rich (NCR) peptides
that are produced in nodule cells and stimulate rhizobia to
terminal differentiation (Mergaert et al., 2003; Pan and Wang,
2017). NCR peptides are transported to symbiosomes and
(at least several of them) are able to permeate into bacterial
cells, thus promoting TBD (Durgo et al., 2015; Durán et al.,
2021). The signal peptidase DNF1 guides the NCR peptides to
symbiosomes, while a lack in its activity leads to the complete
absence of NCRs in symbiosomes and, consequently, to the
absence of TBD. This, in turn, results in undifferentiated
bacteroids in the dnf1 mutant (Van de Velde et al., 2010;
Wang et al., 2010). The crucial role of NCR peptides for
TBD is also supported by the fact that no gene coding for

protein/peptide similar to NCRs could be found in nodule EST
and genomic sequences of Glycine max (L.) Merr. and Lotus
japonicus (Regel) K. Larsen that form nodules in which the
bacteroids have unmodified morphotype (Mergaert et al., 2003;
Graham et al., 2004; Downie and Kondorosi, 2021), nor were
NCR genes found in the genome of L. japonicus (Alunni et al.,
2007).

The NCR peptide family is best studied in the genome of
the model legume Medicago truncatula Gaertn. where more
than 700 NCR genes were predicted and over 600 were found
expressed in nodules (Mergaert et al., 2003; Montiel et al.,
2017). In general, NCR peptides are small (20–50 amino acids
long) molecules having highly variable sequences containing
four or six cysteines in conserved positions. These potentially
form two or three disulfide bridges, whereas other amino acids
can vary between different members of this protein family
(recently reviewed in Roy et al., 2020). Like evolutionarily
related defensins, NCR genes are translated into non-functional
pro-peptides from which signal peptides are cut off, resulting
in the production of mature NCR peptides. The mechanism
by which NCR peptides switch the bacterial lifecycle to the
terminal state is still not completely understood; however, it
is suggested that this involves the interaction of NCRs with
bacterial membranes and intracellular targets (much like the
antibiotic effects of defensins) (Mikuláss et al., 2016). However,
a detailed analysis of the structure and antimicrobial activity
was performed only for some NCR peptides of M. truncatula—
MtNCR247, MtNCR335, and MtNCR169 (hereinafter Mt and
Ps refers to M. truncatula and P. sativum gene and/or protein,
respectively) (Tiricz et al., 2013; Farkas et al., 2014, 2017;
Mikuláss et al., 2016; Isozumi et al., 2021). Based on the
isoelectric point of the mature peptide, NCRs can be divided
into groups of cationic, anionic, and neutral peptides, of
which cationic NCRs usually have strong antimicrobial activity
in vitro, whereas anionic and neutral NCR peptides are soft
antibiotics and, at least against rhizobia, do not exhibit high
toxicity (Lima et al., 2020; Downie and Kondorosi, 2021).
This fact indicates that anionic and neutral NCRs in nodules
may not serve to kill bacterial cells, as do cationic NCRs,
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but perform some other purpose. One hypothesis is that
anionic and neutral NCRs may bind to cationic NCRs to
attenuate their antibacterial effect (Montiel et al., 2017; Roy
et al., 2020). This might explain the interesting and somewhat
paradoxical situation where mutations in two NCR-encoding
genes (DNF4 = MtNCR211 and DNF7 = MtNCR169) lead
to preliminary senescence of nodules and death of bacteria
inside nodules (Horváth et al., 2015; Kim et al., 2015). NCR
peptides are also predicted to be able to bind to proteins and
be ranked according to the so-called Boman index that reflects
their protein-binding potential [for instance, MtNCR247 with
the highest Boman index, 1.7 kcal/mol, can bind to multiple
proteins in bacteroids. This is associated with inhibiting
transcription, translation, and cell division (Farkas et al.,
2014)].

Rhizobia can resist the NCR peptide attack with the help of
specific proteins. One of them, BacA in Sinorhizobium meliloti
or BclA in Bradyrhizobium spp., is a membrane transporter
critical for symbiosis because it can import NCR peptides into
the cytosol, thus removing them from the cell surface (Haag
et al., 2013; Guefrachi et al., 2015). Another example is an M16A
family zinc metallopeptidase (host range restriction peptidase,
hrrP) that can degrade NCRs. This protein contributes to
an increase in bacterial proliferation inside the nodules and
participates in the control of host–symbiont specificity since
its presence can lead to the formation of non-functional
nodules without differentiated bacteroids dependent on the
M. truncatula genotype (Price et al., 2015).

NCR genes are expressed almost exclusively in nodules in
successive waves (with maximum expression either in younger
or older nodules), which also may be indicative of their different
functions and roles in TBD (Maunoury et al., 2010; Nallu et al.,
2013; Guefrachi et al., 2014). Also, more detailed studies of
gene expression with the use of microdissection showed that the
expression level of NCR genes reaches the maximum in different
zones of nodules (predominantly, in the interzone where TBD is
taking place), but there is still a diversity in expression patterns
(Roux et al., 2014). Apparently, specific transcription factors
(TFs) control NCR gene expression, and some of them were
computationally predicted for M. truncatula (Nallu et al., 2013).
The detailed information on NCR gene expression patterns is
lacking for other legumes.

Although NCRs have a single origin, their evolution has
followed different routes in individual legume lineages (Montiel
et al., 2017). This is confirmed by the fact that no orthologs
of the essential MtNCR169 of M. truncatula were recognized
in the genomic and/or transcriptomic data of other legumes,
including pea (Horváth et al., 2015). Hence, the study of
members of this gene family in different lineages of different
legumes should enrich the knowledge of the evolution of plant
antimicrobial peptides and their particular features in particular
legume species.

Garden pea is an important legume plant, often classified
as an orphan crop due to poor knowledge of its genomics
and transcriptomics (Smýkal et al., 2012; Pandey et al., 2021).
However, the pea has seen considerable progress of late,
enabling the characterization of the genes and gene families
over the whole-genomic level (Kreplak et al., 2019). Also, a
large collection of well-characterized mutants that are defective
in nodule development has been made available for the pea,
a development facilitating studies of nodule-related genes
(Tsyganov and Tsyganova, 2020). The aim of the present
study was to describe the NCR gene family in the pea
based on a new genome assembly (NCBI accession number:
JANEYU000000000) and study its spatiotemporal expression
profiles along with other features. Here, we also confirm the
fact of clustering the NCR genes in the pea genome and prove
that the expression patterns of closely located NCR genes are
more similar than those of the remote ones. Finally, we built the
co-expression modules that contain sets of NCR genes together
with other symbiotic genes and predicated the TFs that may
regulate the expression of pea NCR genes.

Materials and methods

Plant material, bacterial strain, and
growth conditions

Pea (Pisum sativum L.) wild-type line SGE (Kosterin and
Rozov, 1993) and the corresponding symbiotically ineffective
mutant lines SGEFix−-1 (sym40-1) and SGEFix−-2 (sym33-3)
(Tsyganov et al., 1998) were used.

Seeds were surface-sterilized in concentrated sulfuric acid
for 10 min, rinsed in distilled water five times, and germinated
on Petri dishes with humidified sterile vermiculite (3 days
at 28◦C). Five seedlings of each sample were planted into
2-L metal pots filled with sieved and heat-sterilized (200◦C,
2 h) quartz sand.

Rhizobium leguminosarum bv. viciae strain RCAM1026
(Afonin et al., 2017) grown on solid TY medium for 3 days at
28◦C was used for inoculation [resuspended in distilled water
to a concentration of 107 colony-forming units (CFUs) per
liter]. Inoculation was carried out with 250 ml of Rhizobium
suspension per pot. At the same time, a mineral nutrition
solution without ammonium nitrate (250 ml per pot) was added
to trigger the symbiotic phenotype under conditions of nitrogen
starvation (Sulima et al., 2019). The plants were cultivated in a
VB 1014 (Vötsch Industrietechnik, Germany) growth chamber
under the following climatic conditions: day/night: 16/8 h, the
temperature of 21± 1◦C, relative humidity of 75%, illumination
600 µmol photons m−2 s−1. The plants were watered with
distilled H2O as needed.
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Microscopy

Three-week-old nodules were fixed and processed using the
low-temperature embedding procedure as previously described
(Tsyganova et al., 2009). For light microscopy, 0.5-µm-thick,
resin-embedded sections were cut with a glass knife and
collected on slides. Specimens were stained in 5% Toluidine blue
in 0.1 mM sodium borate. Sections were examined on a Nikon
Eclipse 800 with a Nikon Coolpix 995 digital camera (Nikon
Corp., Tokyo, Japan). For transmission electron microscopy,
90–100-nm-thick ultrathin sections were collected on copper
grids with 4% pyroxylin and carbon. The grids with sections
were counterstained in 2% aqueous uranyl acetate for 1 h
followed by lead citrate for 1 min. The sections of nodules
were examined and photographed in a JEM-1200 EM (JEOL
Corp., Tokyo, Japan) transmission electron microscope at 80
kV.

Identification of genes encoding
nodule-specific cysteine-rich peptides
and computational prediction of
physicochemical properties of the
peptides

The genes encoding NCR peptides were identified in
the new assembly of pea cv. Frisson (NCBI accession
number: JANEYU000000000; Afonin et al., unpublished) using
the searching algorithm Small Peptide Alignment Discovery
Application (SPADA) for the discovery of short peptides (Zhou
et al., 2013). Peptide sequences shorter than 30 amino acids in
length and peptides not containing cysteine were removed by
a custom python script.1 The sequences of NCR peptides were
analyzed using the Antimicrobial Peptide Database with APD3
algorithm: Antimicrobial Peptide Calculator and Predictor
(Wang et al., 2016) to predict its physicochemical properties.
The IPC 2.0 (Kozlowski, 2021) tool was used to calculate the
isoelectric point (pI) for mature NCR peptides (without a signal
peptide). A peptide was recognized as cationic at a value of pI
above 8.5 and anionic at a value below 6.5; peptides with an
intermediate pI value were defined as neutral. The boundary of
the signal and mature part of the peptides was predicted using
SignalP 6.0 (Teufel et al., 2022).

Nodulation experiment and
sequencing library preparation

At 12, 21, 28, and 42 days postinoculation, the plants
of the SGE line were extracted from pots, root systems

1 https://github.com/kjokkjok/NCRs_filter/

were rinsed with cold tap water, and the visually pink
mature nodules were separated from roots with sterile
forceps and snap-frozen in liquid nitrogen. The mutants
SGEFix−-1 (sym40-1) and SGEFix−-2 (sym33-3) forming
white nodules were analyzed at 21 dpi only. Five plants
from each pot constituted one biological replicate; three
biological replicates were used for subsequent procedures.
Total RNA from each replicate was isolated using TRIzol
(Thermo Fisher Scientific, Waltham, MA, United States)
according to the manufacturer’s instruction, RNA quality was
evaluated using gel electrophoresis in 1.5% agarose gel, and
the concentration of RNA was measured on a Shimadzu
UV mini-1240 spectrophotometer (Shimadzu, Japan). The
3′ MACE sequencing libraries were prepared from RNA
samples using a 3′ MACE kit (GenXPro GmbH, Frankfurt
am Main, Germany) and sequenced on Illumina HiSeq 2500
at GenXPro GmbH (Frankfurt am Main, Germany). The raw
data are deposited in the NCBI SRA database under accession
number PRJNA812957.

Gene expression analysis

For each library, all reads were processed to filter out
adaptor sequences and low-quality sequences. Then, all of
the clean reads were mapped to the reference P. sativum
cv. Frisson genome assembly (NCBI accession number:
JANEYU000000000) using STAR (ver. 2.7.6a). 1) (Dobin and
Gingeras, 2015). In total, from 4 to 13 million clean reads
per sample were mapped to the genome. Using the principal
component method, it was shown that all samples have a high
degree of grouping according to replicates (Supplementary
Figure 1).

Differential expression analysis was conducted using
DESeq2 (ver. 1.34.0) package (Michael Love, 2017) in R
programming environment (ver. 4.1.2). The differentially
expressed genes were considered to be significant at the level of
the adjusted p-value of < 0.05.

The heatmap showing gene expression patterns was
based on a 1-Pearson correlation matrix calculated on
normalized per million and logarithmic (log2) expression
values transformed into a z-score (which gives the number
of standard deviations that a value is away from the mean
of all the values in the same gene) using edgeR (ver. 3.20.9)
(Robinson et al., 2010) and pheatmap function in R. The
expression values of the three biological replicates for a
particular stage of symbiosis were averaged. All genes with
very low expression (less than 10 reads per sample) were
discarded.

In order to identify gene expression clusters, Pearson
correlation values were calculated. The final dendrogram for
analysis by heatmap was built on the basis of the correlation
matrix by the complete linkage method.
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Phylogenetic tree construction

All the phylogenetic trees were built using phangorn
(ver. 2.4.0) (Schliep, 2011) and ggtree (ver. 1.10.5) (Yu
et al., 2017) packages in R on the basis of the alignment
of mature peptides of NCR genes obtained by MAFFT
program (ver. 37.90) (Katoh, 2002) with G-INS-i option.
The maximum likelihood method was used to construct all
phylogenetic trees. The phylogenetic trees were evaluated
using bootstrap analysis with 1,000 replicates. Each terminal
node was colored according to one of the physicochemical
properties, namely, the total net charge and the Boman
index.

dN/dS substitution analysis

To evaluate the rates of dS and dnS substitutions, the
coding sequences of NCR genes were split into the signal
peptide and the mature peptide section. The total set of
sequences was divided into clusters according to the percent
of identity: each cluster consists of a group of NCR genes
with identity from 65 to 95% (all sequences with < 65
and > 95% identity were discarded). The sequences were
aligned using ClustalW. The dS and dnS substitution values
were calculated in the PAML software package (ver. 4.9j) (Yang,
2007) by the Nei-Gojobori method (Jukes-Cantor correction),
which, by counting the number of dN and dnS substitutions,
takes into account multiple potential substitutions at the
same site. Gaps were removed in pal2nal (Suyama et al.,
2006).

Single nucleotide polymorphism
analysis

An analysis of single nucleotide polymorphism (SNP) sites
was conducted with the following procedure. First, nodule
transcriptome sequencing raw reads of SGE (Zhukov et al.,
2015) and cv. Caméor (Alves-Carvalho et al., 2015; Kreplak
et al., 2019) pea lines were obtained from NCBI (NCBI SRA
accession number: PRJNA267198). Removing low-quality reads
and adapter trimming was performed using the BBDuk tool
from the BBMap toolkit.2 Clean reads were then mapped
to the reference genome of cv. Frisson with bowtie2 (ver.
2.3.4.1) (Langmead and Salzberg, 2012). For the analysis of
the obtained SNPs, BCFtools (Danecek et al., 2021) and
VCFtools (Danecek et al., 2011) were used. SNPs specific to
NCR genes were obtained using bedtools (Quinlan and Hall,
2010).

2 https://sourceforge.net/projects/bbmap/

Localization of nodule-specific
cysteine-rich (NCR) genes in the
genome and their similarity within and
between clusters

Genome-wide localization of NCR genes was visualized in
chromoMap (ver. 0.3) (Anand and Rodriguez Lopez, 2022). The
percentage of average similarity for the alignment of NCR genes
within and between genomic clusters was obtained using the
EMBOSS Needle tool (Madeira et al., 2019).

Construction of co-expression
modules, transcription factor
prediction, and promoter sequence
detection

The co-expression modules of differentially expressed genes
were built using CEMiTool (ver. 4.1) (Russo et al., 2018). TFs
and their potential targets were identified in co-expression
modules using the GENIE3 tool (ver. 4.1) (Huynh-Thu et al.,
2010). Potential promoter sequences were searched for in
regions with a length of 200 and 1,000 nucleotides at 5′ end of
NCR genes by the MEME program (Bailey et al., 2009). The
relationships between TF and NCR genes were analyzed and
visualized in Cytoscape (ver. 3.9.1) (Shannon et al., 2003).

Results

Nodule-specific cysteine-rich (NCR)
genes discovery in pea cv. Frisson
genome assembly

The search for NCR genes in the pea genome (NCBI
accession number: JANEYU000000000) was performed using
the SPADA—a specific algorithm for the discovery of short
peptides. The known NCR peptides of M. truncatula and, in
the following iterations, P. sativum were loaded in SPADA as a
training dataset. A total of 653 sequences were identified after
three iterations, and sequences less than 30 aa were filtered
out along with sequences that contain less than four or six
conservative cysteines and/or lack signal peptides. This left 360
remaining sequences. Of them, 206 were also found in the
dataset of Montiel et al. (2017) (sequences with an identity
of > 95% at the putative protein level were considered alleles
of the same NCR genes), and 154 sequences were novel. For
a number of peptides of sufficient length and with four or
six cysteines in their sequence, the SignalP algorithms did not
predict the cleavage sites of a signal peptide. These peptides were
labeled in the dataset as NCR-like peptides (Supplementary
Table 1) and were not included in further analysis. As for the
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nomenclature of the NCR genes and peptides, we kept the names
of PsNCR1-PsNCR353 for the sequences from Montiel et al.
(2017) and continued numeration for our novel sequences up
to PsNCR507.

All 360 NCR genes were found to be expressed in nodules
in our experiment (see below); thus, we consider them the
core members of the NCR gene family in P. sativum cv.
Frisson. Similar to M. truncatula, NCR peptides encoded by
the identified genes of pea can be divided into two groups:
group A (97 sequences) and group B (263 sequences), having
four and six cysteines in conservative positions, respectively
(Supplementary Table 1).

Most of the identified NCR genes, such as that of
M. truncatula, were composed of two exons separated by an
intron (Figure 1A). The first exon, in most cases, encodes the
signal peptide, and the second encodes the mature peptide. The
length of the first exon varies from 45 to 138 bp, the second exon
from 63 to 396 bp, and the intron from 29 to 4,672 bp. Seven
percent of NCR genes contain an additional (second) intron
with the third exon encoding the last few amino acids of the
peptide. The shortest gene was 141 bp, and the longest was 4,880
bp.

The putative NCR peptides deduced from the gene
sequences were 46–156 amino acids in length. Some NCRs differ
from others by only one amino acid change. In the list of the
discovered NCRs, we found peptides translated from previously
known genes of P. sativum such as PsENOD3 (Scheres et al.,
1990) (PsNCR34, according to our naming scheme), PsENOD14
(Scheres et al., 1990) (PsNCR66), and PsN466 (PsNCR110) (Kato
et al., 2002).

Extreme variability of pea
nodule-specific cysteine-rich (NCR)
genes

The NCR gene sequences from the pea genome were
found to be highly variable and greatly different from the
corresponding sequences of M. truncatula. Pairwise comparison
of putative amino acid sequences of NCR peptides showed
a low similarity between the sequence sets from P. sativum
and M. truncatula (Table 1 and Figure 1B), as well as within
P. sativum set (Supplementary Figure 2). Alignment of all
sequences of NCR peptides of P. sativum against that of
M. truncatula using a blastp allowed us to establish that
the maximal identity on protein level recorded for pea—M.
truncatula sequence pairs (PsNCR47–MtNCR312) was 70.9%
(Table 1). Only this pair of NCR genes can be considered
orthologs since they are located in syntenic regions of P. sativum
and M. truncatula genomes, a fact which is not the case for the
other sequences which are the most similar (Table 1). However,
no sequences similar to PsNCR47–MtNCR312 were found in
genomes of Cicer arietinum L., Trifolium pratense L., and Vicia

faba L. Moreover, in the genomic and transcriptomic data of C.
arietinum, T. pratense, and V. faba, we did not find orthologs for
any NCR genes of pea. Likewise, no orthologs were found in the
pea genome for the well-studied M. truncatula NCR genes such
as MtNCR169 (Isozumi et al., 2021) and MtNCR211 (Kim et al.,
2015) (which are indispensable for symbiosis), MtNFS1 and
MtNFS2 (which encode peptides that eliminate some rhizobial
strains such as Rm41 and A145 from nodules of cv. Jemalong)
(Wang et al., 2017, 2018; Yang et al., 2017), or MtNCR335 and
MtNCR247 (encoding peptides with unique physicochemical
properties) (Tiricz et al., 2013). This observation confirms that
members of the NCR gene family in related legume species
underwent independent evolution (Montiel et al., 2017; Downie
and Kondorosi, 2021).

The putative amino acid sequences of the signal peptide
were, in general, better conserved than those of the mature
peptide, as has been recorded for M. truncatula (Alunni et al.,
2007). In order to compare the selection pressure on signal
and mature peptide parts, we calculated their dN/dS statistics
separately. Analysis indicated that the number of synonymous
and non-synonymous substitutions is comparable within the
mature peptide section. This means that the mature NCR
peptides are evolving according to a neutral evolutionary model
(Figure 2A). In contrast, within the region encoding the signal
peptide, synonymous substitutions prevail against the non-
synonymous ones, indicating that this part of NCR genes is
undergoing stabilizing selection (Figure 2B).

In order to estimate the allelic polymorphism of NCR genes,
cleaned paired-end reads from the pea nodule transcriptome
sequencing projects [cv. SGE (NCBI SRA accession number:
PRJNA773870) and cv. Caméor (NCBI SRA accession number:
PRJNA267198)] were mapped to the genome of cv. Frisson. The
single nucleotide variant (SNV) analysis revealed a large number
of allelic variants in NCR genes, and NCR genes of SGE line
had a greater number of SNVs in the gene coding sequence
(Table 2) in comparison to that of cv. Caméor. Thus, NCR genes
of the SGE line were more distinct from those of cv. Frisson
and cv. Caméor. The pattern of distribution of SNVs by gene
region exhibits no significant differences between genotypes
(Supplementary Figure 3).

Physicochemical properties of pea
nodule-specific cysteine-rich peptides

The physicochemical properties of pea NCR peptides such
as the Boman index and the total net charge were inferred
from the putative protein sequences. We noticed that the ratio
of cationic, anionic, and neutral peptides in our data differed
from that described in Montiel et al. (2017), probably because
we used a later-version IPC-2.0 tool built on machine learning
algorithms. For adequate comparison, we also recalculated the
values of isoelectric points for NCR peptides of M. truncatula
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FIGURE 1

(A) Generalized scheme of NCR gene structure. (B) Alignment of the top 5 most identical NCR peptides in P. sativum and M. truncatula
(conservative sites are highlighted in blue, and conservative cysteines are highlighted in red).

TABLE 1 List of five P. sativum NCRs that are most similar to M. truncatula peptides.

P. sativum
ID

P. sativum
chromosome location

M. truncatula
ID

M. truncatula
chromosome location

%
identity

Length
alignment

E-value
score

PsNCR47 chr7LG7 Medtr4g060650 chr4 70.909 55 1.35e-27

PsNCR165 chr6LG2 Medtr5g058510 chr5 59.375 64 2.9e-27

PsNCR23 chr5LG3 Medtr7g051065 chr7 63.793 58 2.49e-26

PsNCR379 chr1LG6 Medtr1g072095 chr1 63.158 57 1.22e-25

PsNCR157 chr6LG2 Medtr4g052650 chr4 62.264 53 1.8e-23

and P. sativum cv. Caméor. Similar to the M. truncatula NCRs,
anionic peptides prevail among NCR peptides of P. sativum
cv. Frisson: 126 cationic (34%), 156 anionic (43%), and 83
neutral (23%) (Table 3). The isoelectric pI of pea NCRs
ranged from 2.8 to 10.2, and the Boman index varied between
−1.09 and 3.88. The distribution of pI and Boman index
within the NCR family in all three pea genotypes analyzed
was similar to that in M. truncatula. Probably due to a
large number of amino acid substitutions, the distribution
of isoelectric points of mature NCR peptides exhibits slight
differences in SGE and Caméor in comparison with Frisson
(Table 3).

The physicochemical parameters of pea NCR peptides were
represented on phylogenetic trees constructed separately for
peptides of group A (four cysteines) and group B (six cysteines).
Each terminal node was colored according to either the total
net charge or Boman index (Figure 3). As expected, NCRs
with similar physicochemical parameter values were grouped
within clades (branches) of phylogenetic trees (i.e., they possibly
originate from a relatively recent duplication event); however,
many remote clades were characterized with nearly the same
physicochemical parameter values (Figure 3), that may indicate
convergent evolution of diverse clades of NCR peptides, or
may simply be a consequence of the extreme variability of
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FIGURE 2

(A) dN/dS ratios for mature part of NCR peptides. (B) dN/dS ratios for signal part of NCR peptides.
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TABLE 2 Analysis of SNVs in SGE and Caméor NCR genes as compared to Frisson.

Total SNV in genes Total genes with SNVs No synonymous SNVs No non-synonymous SNVs

SGE 1,435 247 440 995

Caméor 963 158 251 712

NCR peptide sequences and the high degree of dependence of
physicochemical properties on the amino acid composition.

Localization of pea nodule-specific
cysteine-rich (NCR) genes in the
genome

Mapping NCR gene sequences to the genome allowed
us to reveal a cluster pattern of genomic organization in
this gene family in P. sativum (Figure 4A). The maximum
number of NCR genes (129) is localized on LG1chr2. In order
to confirm that the evolution of NCR genes was based on
duplication events, we calculated the average percentage of
sequence similarity between and within genomic clusters. The
boxplots (Figure 4B) clearly demonstrate that the similarity of
sequences within clusters on the genome is higher than between
clusters. In addition, by analyzing the gene expression data
(that is described in detail below) we observed that NCR genes
within genomic clusters have a similar level of expression, which
supports the hypothesis that a set of genes in a genomic cluster is
regulated uniformly (Figure 4C). The expression level in some
clusters has a high level of variance, which may be an artifactual
result of combining some small clusters of NCR genes into one
because of their proximity to each other. Together, these data
support the idea that recent duplication events leading to the
emerging number of NCR genes played an important role in the
evolution of the NCR gene family in pea.

Expression profiles of the
nodule-specific cysteine-rich (NCR)
genes

For all identified NCR genes, the analysis of spatiotemporal
expression profiles was carried out using data of 3′ MACE
sequencing of P. sativum wild-type nodules (SGE line) at
12, 21, 28, and 42 dpi and data of RNAseq obtained from
microdissected nodules (early zone II, late zone II, and zone III)
of the same SGE line at 11 dpi (for a description of methods, see
Kusakin et al., 2021).

NCR genes were divided into five clusters in accordance
with their temporal expression pattern (Figure 5A). The most
numerous cluster includes NCR genes, for which the expression
level reached its maximum at 12 dpi and gradually decreased
to 28 dpi. Large clusters of genes with maximal expression

levels at 21 and 28 dpi were also identified. Clusterization data
show that the majority of NCR genes are activated prior to
12 dpi. Thus, NCR genes begin to express at various stages
of symbiosis. The three main clusters were identified with a
maximal expression level at 12, 21, and 28 dpi (corresponding to
bacteroid differentiation, nodule maintenance/nitrogen fixation,
and initiation of senescence, respectively). Two of them were
referred to as “early” and “late” NCR genes with the maximum
at 12 and 28 dpi, respectively (Figure 5A). Such a coordinated
expression of NCR genes implies that they are regulated by a
limited number of TFs.

For analysis of the spatial expression patterns of NCR
genes, RNA sequencing data from the nodule microdissection
experiment were used (Kusakin et al., 2021). Based on NCR
gene expression levels in the early infection zone (zone early
II), late infection zone (zone late II), and nitrogen fixation zone
(zone III) of the nodule, two main clusters were revealed—
a maximum of expression in late II zone and a maximum
in zone III (Figure 5B). A small group of NCR genes were
also identified whose expression was induced in early II zone,
reached a maximum in late II zone, and then was repressed in
zone III (Figure 5B).

Data from the two experiments match since NCR genes
with maximal expression at 12 dpi are expressed in late II and
III zones (Figure 6A), while the vast majority of genes with a
maximum of expression at 28 dpi are expressed only in nodules’
zone III (Figure 6B). As expected, the “late” NCR genes are
active mainly in the nitrogen fixation zone (zone III), while the
“early” ones are expressed mostly in the late II zone.

NCR genes encoding anionic, neutral, and cationic peptides
are expressed relatively uniformly at all studied time points, with
maximal number of expressed sequences at 28 dpi (Figure 7A).
Cationic peptides were active mainly in the early II zone of
the nodule (Figure 7B). Interestingly, two groups of anionic
peptides can be distinguished: with pI 4.9–5.4 (the maximal
number of which stands at 28 dpi) and with pI 5.4–5.9 (the
maximal number of which stands at 12 dpi).

Expression of nodule-specific
cysteine-rich (NCR) genes in nodules
of SGEFix−-1 (sym40-1) and SGEFix−-2
(sym33-3) mutants

Pea symbiotic mutants SGEFix−-1 and SGEFix−-2 carry
mutations in TF genes Sym40 = PsEFD and Sym33 = PsIPD3,
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TABLE 3 Distribution of isoelectric points of NCR peptides in M. truncatula and P. sativum.

Percent of NCR peptides in
M. truncatula (cv. A17)

Percent of NCR peptides in
P. sativum (cv. Frisson)

Percent of NCR peptides
in P. sativum (cv. SGE)

Percent of NCR peptides in
P. sativum (cv. Caméor)

Cationic 38% 34% 32% 38%

Anionic 41% 43% 47% 36%

Neutral 21% 23% 21% 26%

FIGURE 3

Phylogenetic trees built for groups A and B of NCR genes. Each terminal node was colored according to one of the physicochemical properties.
(A) Phylogenetic tree for group A colored according to the total net charge values. (B) Phylogenetic tree for group A colored according to the
Boman index values. (C) Phylogenetic tree for group B colored according to the total net charge values. (D) Phylogenetic tree for group B
colored according to the Boman index values.

respectively (Tsyganov et al., 1998; Ovchinnikova et al.,
2011). Thus, these lines are suitable models for studying
the potential link between the activity of TFs EFD and
IPD3 and the expression of NCR genes in pea. The mutant
SGEFix−-1 (sym40-1) forms numerous white nodules that,
in contrast to wild-type pleomorphic bacteroids (Figure 8A),
contain abnormal bacteroids (Figure 8B) and multibacteroid
symbiosomes (Figure 8C; Tsyganov et al., 1998). Occasionally,
pink nodules with a normal ultrastructural organization are
formed. The mutant SGEFix−-2 is able to form two types of
nodules: white with “locked” infection threads (Figure 8D) and

pinkish with rod-shaped bacteroids surrounded by the common
symbiosome membrane (Tsyganov et al., 1998). However, the
white nodules of some cells form infection droplets prompting
the release of bacteria (Figure 8E) that leads to the formation of
multibacteroid symbiosomes (Figure 8F; Tsyganov et al., 1998,
2011). In this study, both mutants formed only white nodules.

Transcriptomic analysis was performed for mutant and
wild-type nodules harvested at 21 dpi. In nodules of SGEFix−-2
(sym33-3) with no signs of TBD, severe suppression of almost all
NCR genes (323 out of 360) was detected, which is in agreement
with the phenotype (Figures 9B,D). In nodules of SGEFix−-1
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FIGURE 4

(A) Localization of NCR genes in P. sativum genome. Green dashes indicate NCR genes. (B) Comparison of the average percentage similarity of
NCR genes within and between clusters in the genome using boxplots. Each comparison group contains the results of a pairwise alignment of
NCR peptides with each other in the form of % similarity of their sequences. The group “within clusters” contains the results of the alignment of
peptides among themselves within the same cluster in the genome. The “between clusters” group contains the results of the alignment of
peptides belonging to different clusters with each other. (C) Evaluation of the NCR gene expression at 12 dpi within and between clusters in the
genome. The level of NCR gene expression in clusters is represented by the transformation of log2(CPM) into a z-score. Chromosomes with a
more pronounced effect are selected for visualization.

(sym40-1), in turn, 150 NCRs genes were differentially expressed
(downregulated), as compared to SGE nodules. Most of the
downregulated NCR genes in SGEFix−-1 nodules are assigned
to the “late” group (maximal expression at 28 dpi in wild-type
nodules), whereas all the genes with no differential expression
are from the “early” group (maximal expression at 12 dpi in
wild-type nodules) (Figure 9A). At the same time, among the
differentially expressed genes in SGEFix−-1, the genes encoding
cationic, anionic, and neutral peptides are distributed almost
equally (Figure 9C).

Co-expression analysis

In order to get an insight into the potential mechanisms
behind the regulation of the NCR gene expression, we
conducted a search for gene co-expression modules in MACE
sequencing data for time series 12, 21, and 28 dpi. Using
CEMiTool, three modules of genes with a high degree of co-
expression were detected (Figure 9A). Modules M1 and M3
were enriched with NCR genes with maximal expression at 12
dpi (“early”), while module M2 was enriched with NCR genes
with maximal expression at 28 dpi (“late”). The gene ontology

analysis showed that modules 1 and 3 were characterized by
early activation of biological processes associated with resistance
reactions, response to biotic stimuli, ethanol, cytokinins, and
response to fungi (Figure 10A). The last two groups may include
various symbiotic genes common to both mycorrhizal and
nodule symbioses. Module 2 is characterized by overexpression
of genes at late stages of symbiosis and is associated with the
response to abscisic acid, phosphate starvation, response to
chitin, and stimulation of root growth (Figure 10A).

The list of genes co-expressed with NCR genes in these
modules was scanned for the presence of TFs genes using the
GENIE3 tool. Five TFs potentially regulating the expression of
NCR genes were identified: WRKY40, NAC969, RITF1, PTI5,
and ERF053 (Figure 10B). Interestingly, NAC969 was found to
regulate the expression of “early” NCR genes, while other TFs
tended to regulate mainly “late” genes (Figure 9B).

The data of misexpression of NCR genes in the nodules of
mutants SGEFix−-1 and SGEFix−-2 were also subjected to co-
expression analysis. With respect to these, the putative TFs that
can regulate the expression of NCR genes and thus influence
the manifestation of the mutant phenotype in SGEFix−-1 and
SGEFix−-2 were predicted. The list of the TFs identified in our
data as potential regulators of NCR gene expression includes
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FIGURE 5

(A) Cluster analysis of P. sativum NCR genes on the basis of the expression pattern change at the different stages of symbiosis. MACE
sequencing data of wild-type line SGE at 12, 21, and 28 dpi. (B) Cluster analysis of P. sativum NCR genes on the basis of the expression pattern
change at the different stages of nodule development. RNA sequencing data of wild-type line SGE in early II nodule zone and late II and III
nodule zones. All log2(CPM) expression values were transformed into z-score to build heatmaps.

FIGURE 6

Intersection of NCR genes with expression maximum at different dpi and different nodule zones. (A) Intersection of NCRs with maximum
expression at 12 dpi and with maximum expression in late II and III zones. (B) Intersection of NCRs with maximum expression at 28 dpi and with
maximum expression in late II and III zones.

Frontiers in Plant Science 12 frontiersin.org

195

https://doi.org/10.3389/fpls.2022.884726
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-884726 September 8, 2022 Time: 15:59 # 13

Zorin et al. 10.3389/fpls.2022.884726

FIGURE 7

(A) Isoelectric point profiles of NCR peptides and the relative expression of NCRs with different Pl across days after inoculation (dpi).
(B) Isoelectric point profiles of NCR peptides and the relative expression of NCRs with different Pl in different zones of P. sativum nodules.
% NCR expression is % CPM normalized values of different isoelectric point categories to whole-nodule NCR expression.

ERN1 involved in the early steps of nodule organogenesis
and other TFs related to nodule development and functioning,
namely ERF.C.3, ERF34, and BBM1 (Figure 9E).

Co-expression modules containing NCR genes were also
analyzed for enrichment by biological processes in GO terms.
Thus, such biological processes as cellular response to phosphate

starvation, response to external biotic stimuli, auxin-activated
signaling pathway, reaction to ethanol, and regulation of auxin
polar transport are suppressed in the nodules of mutants
SGEFix−-1 and SGEFix−-2. It is worth noting that such
biological processes as the defense response to bacteria, the
regulation of defense reactions, the response to wounding,
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FIGURE 8

Phenotypes of pea (Pisum sativum L.) nodules. (A) Wild-type bacteroids. (B,C) Bacteroids of mutant SGEFix−-1 (sym40-1): (B) abnormal
bacteroids; (C) multibacteroid symbiosomes. (D–F) Phenotype of nodules of mutant SGEFix−-2 (sym33-3): (D) nodule with “locked” infection
threads and no release of bacteria; (E) nodule with occasionally released bacteria; (F) multibacteroid symbiosomes in the nodule with released
bacteria. ic, infected cell; cc, colonized cell; id, infection droplet; n, nucleus; cw, cell wall; ba, bacteroid; *multibacteroid symbiosome. Arrows
indicate infection threads. Scale bars = 1 µm (A–C,F) and = 20 µm (D,E).

and the response to karrikins are increased in mutants
compared to the wild type. At the same time, the nodules of
SGEFix−-1 converge with nodules of SGE by such biological
processes as those involved in symbiotic interaction, cellular
response to auxin stimuli, cellular response to oxidative stress,
starch metabolism, and plant-type hypersensitive response
(Supplementary Figure 4).

Additionally, to search for conserved motifs present in
promoters of “early” and “late” NCR genes, the 1,000 bp
upstream from the translational start site were scanned using
the MEME tool. The analysis revealed nine conservative motifs
in promoters of NCR genes (Table 4). To identify putative TF
binding sites in the promoter regions of NCR genes, we scanned
these regions using the SEA program and found different
putative TF binding sites for “early” and “late” NCR genes
(Table 5). Interestingly, we identified the same conservative
motifs in promoter regions of some genes co-expressed with
NCR genes [namely, the genes encoding nodulin-13, subunit
NF-YB1, gibberellin signaling DELLA protein LA, nodulin-26-
like intrinsic protein (NIP), Early nodulin-5, and receptor-like
protein CLAVATA2].

Discussion

Recent success in the development of high-throughput
sequencing technologies enables the construction of high-
quality genome assemblies for several plant species with
large and complex genomes, such as garden pea (Kreplak
et al., 2019). These genome assemblies become an invaluable
source for deep analysis of gene families encoding small
peptides that have usually been overlooked during the
analysis of the previous genome and transcriptome assemblies.
Indeed, the analysis of Montiel et al. (2017), identified
only 353 expressed genes encoding NCR peptides in pea
(and 469 in Medicago sativa L. and 639 in M. truncatula).
In our work, the number of detected NCR genes in pea
turned out to be essentially the same (360 genes), but
among them, we found 154 novel genes. The incomplete
intersection of the NCR gene/peptide datasets identified by
Montiel et al. (2017) and us can be due to consideration
of the allelic variations characteristic for cv. Caméor and
cv. Frisson as different genes at our threshold of > 95%
protein identity [i.e., many of our novel sequences could be
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FIGURE 9

(A) Volcano plot showing the distribution of “early” and “late” NCRs among differentially expressed NCR genes in mutant SGEFix−-1 (sym40-1).
(B) Volcano plot showing the distribution of “early” and “late” NCRs among differentially expressed NCR genes in mutant SGEFix−-2 (sym33-3).
(C) Volcano plot showing the distribution of cationic/anionic/neutral NCR peptides among differentially expressed NCR genes in mutant
SGEFix−-1 (sym40-1). (D) Volcano plot showing the distribution of cationic/anionic/neutral NCR peptides among differentially expressed NCR
genes in mutant SGEFix−-2 (sym33-3). (E) NCR gene regulatory network based on gene expression data of wild-type and mutants SGEFix−-1
and SGEFix−-2. NCR genes with a maximum expression at 12 dpi are colored green. NCR genes with a maximum expression at 21 dpi are
colored yellow. NCR genes with a maximum expression at 28 and 42 dpi are colored red.

alleles of genes previously described by Montiel et al. (2017)].
Alternatively, the sets of expressed and non-expressed NCR
genes could also be different in different pea genotypes and
cultivars.

It is also possible that the number of NCR genes in pea
and other legume genomes is underestimated [this, however,
gives no reason to doubt the conclusion of Montiel et al. (2017)
that the degree of TBD correlated with the number of NCR
genes]. Moreover, the search algorithms used in our work did
not permit us to identify several genes encoding cysteine-rich
nodule proteins (namely, PsN1, PsN6, PsN314, and PsN335) that
were previously described for pea cv. Sparkle (Kato et al., 2002).
Therefore, the actual number of NCR genes in the genome of cv.
Frisson may be even higher. Apparently, analysis of genomes of
other pea accessions and cultivars, including the wild ones such
as cv. Afghanistan and Pisum fulvum Sm. forms, may result in
the discovery of other members of the NCR gene family that will
lead to a better understanding of its variability and evolution.

The NCR genes in pea are extremely polymorphic, which
is true for comparisons of its sequences either within the one
genotype or between unrelated genotypes (however, PsNCR47,
for which the orthologous gene was identified in M. truncatula,
is not polymorphic at the peptide level in Frisson/Caméor/SGE
genotypes). The presence of polymorphism enables estimation
of selection pressure using the dN/dS method, and it is clearly
seen that the parts of NCR genes undergo different modes of

selection pressure [which is also the case for M. truncatula
nodule-specific NCR and GRP genes (Alunni et al., 2007)].
The parts that encode signal peptides undergo stabilizing
(purifying) selection, which is logical given that the peptides
must be correctly targeted to specific cell compartments. In
turn, the parts encoding mature peptides in pea are evolving
neutrally, which, probably, reflects the superposition of some
acts of stabilizing selection with respect to some crucial NCR
genes and crucial amino acids, i.e., the cysteines, and acts of
diversifying selection that leads to an increase in the diversity
of NCRs (a factor which is believed to be beneficial for plants).
Diversifying (or disruptive) selection is also clearly observed
when comparing NCR gene sequences between pea cultivars
where the number of non-synonimic changes is much higher
than that of the synonymic. In general, this fact, together
with the extremely low percentage of similarity between NCR
peptides of P. sativum and M. truncatula (and the absence of
orthologous sequences apart for the PsNCR47–MtNCR312 pair)
confirms that the evolutionary trajectories of this family are
independent in each of the IRLC species. The lack of orthology,
which is unusual for symbiotic genes (that are often quite
conservative in different legumes), is, however, consistent with
the concept that defense proteins of any organism evolve at
faster rates than structural or regulatory ones where a minor
change in sequence may lead to the serious disturbance of cell
function or that of the whole organism.
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FIGURE 10

(A) Co-expression gene modules and their expression pattern identified using CEMiTool at 12, 21, and 28 dpi and biological process GO
enrichment of the differentially expressed genes in detected co-expression modules. (B) NCR gene regulatory network based on gene
expression data. NCR genes with a maximum expression at 12 dpi are colored green. NCR genes with a maximum expression at 21 dpi are
colored yellow. NCR genes with a maximum expression at 28 and 42 dpi are colored red.

Like those of M. truncatula, pea NCR genes are located
in clusters, a fact consistent with the accepted mode of their
evolution by duplication and diversification, and they have an
uneven distribution between chromosomes: 101 and 129 NCR
genes in chromosomes LG5chr3 and LG1chr2, respectively,
with fewer on other chromosomes. The NCR gene clusters
contain many repetitive sequences and transposons, and many
of the surrounding genes in the current pea genome annotation
encode short peptides with unknown functions. Apparently, the
presence of repeats facilitates unequal recombination events that
lead to duplications of NCR genes.

In general, the closer the NCR genes are located to each
other the more similar their expression patterns are. This is
also a consequence of the recent duplication events that involve
promoter sequences along with coding parts of NCR genes.
However, diversification and specialization are characteristics
not only for coding parts of NCR genes but also for its
promoters. The detection of expression waves of NCR genes
indicates that some features in promoter regions of different

NCR genes have independently evolved for matching different
TFs. Indeed, we found different motifs in promoters of late and
early NCR genes and identified some TFs that are co-expressed
with early or late NCR genes. Although other methods like
ChIP-Seq are needed to detect the direct interaction of particular
TFs with NCR gene promoters, the TFs identified in our analysis
seem relevant in light of the nature of the data. The TF
WRKY40 regulates the expression of genes related to response to
bacteria and refers to such GO biological processes as “defense
response to bacteria” and as “defense response to fungus”
(Chakraborty et al., 2018). Similarly, PTI5 is a TF regulating
the expression of pathogen resistance genes (He et al., 2001; Gu
et al., 2002). NAC969 is a negative transcriptional regulator of
nodule senescence and regulates nodule premature senescence
and abiotic stress tolerance in M. truncatula. Experiments using
RNAi have shown that suppression of NAC969 expression
leads to premature nodule senescence, which may be directly
connected with the absence of early NCR gene expression (de
Zélicourt et al., 2012).
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TABLE 4 (A) The conserved motifs found in the upstream regions of “early” NCR genes using the MEME tool. (B) The conserved motifs found in the
upstream regions of “late” NCR genes using the MEME tool.

(A)

Motif consensus E-value Sites Length

1.2e–302 108 50

2.0e–179 85 50

9.4e–105 44 49

1.4e–102 60 50

1.2e–070 52 41

(B)

6.2e–140 18 50

4.6e–088 16 50

6.5e–053 20 50

1.1e–050 14 50

4.5e–039 6 50

The promoters of NCR genes in pea have putative binding
sites for the TF NLP7, a member of the NIN-like protein
family, which is accumulated in the nucleus in response to
nitrate and directly regulates the production of CLE-RS2, a

root-derived mobile peptide that acts as a negative regulator of
nodule number (Nishida et al., 2018). The results obtained in
our work suggest that NLP7 may also regulate the expression
of “early” NCR genes. Other binding sites in promoters of
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TABLE 5 (A) Putative TF binding sites in “early” NCR promoter regions predicted by the SEA tool. (B) Putative TF binding sites in “late” NCR
promoter regions predicted by the SEA tool.

(A)

ID ALT_ID Consensus

RWPRK_tnt.NLP7_col_a_m1 NLP7 WWWTGVCYYTTSRDD

AP2EREBP_tnt.AT1G71450_col_a_m1 AT1G71450 CDCCRCCRCCDCCRCCGYCR

LOBAS2_tnt.AS2_col_a_m1 AS2 YCDCCGCCGYHDYYKCCGCCG

BBRBPC_tnt.BPC6_col_a_m1 BPC6 CTCTCTCTCTCTCTCTCTCTC

ARF_tnt.ARF2_col_v31_m1 ARF2 WDSMGACAWR

C2C2gata_tnt.ZML1_col_a_m1 ZML1 TCATCATCATCATCA

(B)

C2H2_tnt.STZ_col_m1 STZ CACTNHCACTN

C2C2gata_tnt.GATA20_colamp_a_m1 GATA20 TNGATCNGATYND

Orphan_tnt.BBX31_col_a_m1 BBX31 AAAAAGTAAAAARDW

C2H2_tnt.TF3A_col_a_m1 TF3A CYTCCTCCTCCTCCTCCTC

ND_tnt.FRS9_col_a_m1 FRS9 CTCTCTCTCTCTCTCTCTCTC

MYB_tnt.MYB55_colamp_a_m1 MYB55 WGGTWGGTRRRNNDD

NCR genes can be targets of auxin-response TF ARF2. It is
known that ARF2 (together with ARF3 and ARF4) is involved
in nodule organogenesis and rhizobia infection during nitrogen-
fixing symbiosis in M. truncatula, regulating auxin-mediated
developmental programs. Nallu et al. (2013) also identified
ARF elements in the upstream region of NCR genes. Still,
the question of whether ARF2 is the key regulator of NCR
gene expression needs further investigation with the use of
direct methods. Interestingly, promoters of genes that are
co-expressed with NCR genes contain the same conservative
motifs as promoters of NCR genes (Table 4). Since some of
these co-expressed genes are related to hormonal signaling
(nodulin-13 and gibberellin signaling DELLA protein LA)
and autoregulation of nodulation (AON) (receptor-like protein
CLAVATA2), this similarity of promoter regions may be the
molecular genetic base of the possible link between long-
distance signaling during nodulation and the expression of NCR
genes.

The majority of NCR genes are expressed at 12 and 21 dpi,
which coincides with the time of differentiation of free-living
bacteria into bacteroids. However, a significant part of NCR
genes has higher expression at 28 dpi and, especially, at 42
dpi (when the bacteroid differentiation is already completed).
Obviously, the roles played by these late NCRs are different from
those of early NCRs; for example, they could be involved in
stricter control over the metabolic exchange between symbionts,
or in the processes of senescence of symbiosomes. Interestingly,
the spatial expression profiles indicate that the NCRs with
pI 7.9–8.4 constitute the majority of NCR genes expressed in
the early II zone (Figure 7B). A similar pattern was detected
for NCR genes in M. trunacatula nodule microdissection as

well (Montiel et al., 2017). Regarding the temporal expression
profiles, at 28 dpi all groups of peptides (anionic, neutral, and
cationic) are expressed at a high level, while for anionic peptides
(pI < 6.5) two subgroups can be distinguished: those with (i)
pI 4.4–5.4, with a maximal expression at 28 dpi and (ii) pI 5.4–
5.9, with a maximal expression at 12 dpi. The specific roles of
anionic NCR peptides pI 5.4–5.9 were at an early stage of nodule
development and could be connected with its possible ability to
neutralize the activity of cationic peptides for the precise tuning
of TBD.

White nodules of SGEFix−-1 are characterized by abnormal
morphological differentiation of bacteroids and premature
degradation of nodule symbiotic structures (Tsyganov et al.,
1998). Some of the “early” genes encoding NCR peptides whose
expression in SGEFix−-1 does not differ from the wild type may
be associated with the initiation of the terminal differentiation
of bacteroids, while the “late” genes, whose expression is
downregulated in SGEFix−-1, may be involved in completion of
the TBD process, in nitrogen fixation, and in initiation (and/or
suppression) of senescence of nodules.

The sym33-3 allele is a weak allele that leads to the
synthesis of truncated protein (Ovchinnikova et al., 2011).
As a result, the SGEFix−-2 mutant is characterized by a
leaky phenotype. In white nodules, most nodule cells are
colonized cells containing infection threads without bacterial
release. However, in some white nodules, bacterial release
may occur and such cells become infected. Nonetheless, the
bacteroids remain undifferentiated rod-shaped and gather in
multibacteroid symbiosomes. This means that IPD3/CYCLOPS
TF is a prerequisite for NCR peptide synthesis since its
disruption leads to total downregulation of the expression
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of genes encoding NCR peptides in SGEFix−-2 nodules.
Interestingly, the nodule phenotype of the M. truncatula mutant
in the ERN1 gene (Cerri et al., 2016) resembles, to an extent, the
mutant phenotype of the SGEFix−-2 mutant. The co-expression
and regulatory relationships identified between the ERN1 gene
and the genes encoding NCR peptides may indicate that sym33-3
helps determine the expression of NCR genes through a change
in ERN1 gene expression.

The gene expression analysis demonstrated that in mutants,
in comparison with wild-type nodules, the upregulated
biological process terms comprised the defense response to
bacteria and the regulation of defense reactions. Previously,
an activation of strong defense responses in SGEFix−-1 and
SGEFix−-2 mutant nodules was observed (Ivanova et al., 2015;
Tsyganova et al., 2019). These responses included activation of
defense response genes, suberinization, increased unesterified
pectin deposition in infection threads walls, and enhanced cell
wall material deposition around the vacuole. Further studies
are needed to clarify the potential link between NCR gene
expression and suppression of defense reactions in nodules.

A co-expression analysis using the data of wild-type
and mutant nodule transcriptomes revealed several potential
regulators of the NCR gene expression. However, the set of the
identified TFs does not overlap with the set of TFs obtained
on the data of gene expression in the wild-type SGE nodules
at different time points. This can be explained by the fact that,
in the wild-type nodules, the change in gene expression over
time (from 12 to 28 dpi) is less pronounced as compared to
the difference between wild-type and mutant nodules where
the development of symbiotic structures is aborted. Possibly,
transcriptomic studies involving other pea Fix− mutants and
younger wild-type nodules will contribute to identifying more
potential regulators of NCR gene expression.

The number of known pea accessions in germplasm
collections exceeds 70,000 (Smýkal et al., 2013). Apparently,
further analysis of the NCR gene expression and polymorphism
in a large set of pea accessions is needed to fully describe the role
of this gene family in symbiosis, as single amino acid changes
in some cultivars and genotypes may significantly change the
physicochemical properties of NCR peptides and its effect on
TBD and their viability in nodules.

Conclusion

The gene family encoding NCR peptides in the pea, as
in other IRLC legumes, is highly variable, and this variability
leads to the production of a strong cocktail of defensin-like
molecules in nodule cells. Although the antibiotic activity
of a single NCR peptide may be minor, the toxicity of a
peptide cocktail including molecules with different properties
and modes of action against bacteria is much higher so that
only compatible nodule bacteria could resist treatment with

NCR peptides within nodules (Lima et al., 2020). The study
of this antibiotic activity may help advance the formulation
of new generations of antibiotics, an important effort in the
light of increased pathogenic antibiotic-resistant bacteria. As
it is known that NCR peptides penetrate bacterial cells and
interfere with their vital functions, an antibiotic cocktail made
of several NCR peptides may be formulated on the basis of
calculated predictions related to the functions of relevant NCR
peptides. Moreover, modification of the NCR gene and peptide
sequences may result in stronger antibiotics, which may be
useful in medicine and agricultural practices as well.

From the fundamental point of view, it is still not known
whether mutations in NCR genes of pea might result in the
Fix− phenotype. Although no mutations in NCR genes in pea
are known to date, the number of described and not sequenced
genes still exceeds 10 (Tsyganov and Tsyganova, 2020). The
mapping-based approach, which has recently demonstrated its
feasibility (Zhernakov et al., 2019), may likely help identify such
mutations in the near future and thus contribute to a more
complete description of the NCR gene family in the pea.
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