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Editorial on the Research Topic 
Interactions between China’s national emissions trading scheme and electricity market: Practices and policies


1 INTRODUCTION
Under the global climate governance and low carbon transition, building a carbon emissions trading market is the core initiative of countries around the world to use market mechanisms to promote greenhouse gas emissions reduction, as well as a prominent deployment to achieve its “Dual Carbon” in China (Chen et al.; Wang et al., 2022). The driving forward of China’s Carbon Emission Trading Scheme (ETS) follows the principle of “walk before you can run”, and the power sector, as the single sector with the most carbon emissions and the most basic and strategic industry in the national economy, has become the breakthrough point for the construction of a national ETS. However, as the market structure of electricity market is not yet perfect, and the construction of the ETS is at the initial exploration stage, whether the two market can each break through the institutional mechanism and optimize the implementation path becomes the basic premise of promoting the construction of ETS. In the meanwhile, both of them have strong correlation, whether the market mechanism and policy instruments between the two can be effectively connected and synergized determines the effectiveness of the construction of the ETS (Chi et al., 2022). Therefore, our Research Topic develops the role and influencing factors of ETS construction and the interaction between ETS and electricity markets, capturing the dynamic interaction and coupling between China’s ETS construction and electricity markets, aiming to provide new empirical insights for a proper understanding of ETS and electricity market construction.
2 THE ROLE AND INFLUENCING FACTORS OF EMISSION TRADING SCHEME
ETS has been endowed with the function of controlling carbon emissions and promoting ecologically sound transformation. Most of the studies that have been conducted on the policy effects of ETS have focused on countries or regions with more developed market mechanisms, such as Europe and the United States. The research on China is mostly focused on the provincial level low carbon or economic growth perspective (Chen et al., 2022), but the scholars in this Research Topic have expanded on the subject matter. Shi et al., 2022 concentrated on the effect of ETS on changes in the generation mix of power producers. Solaymani used data from 1985 to 2019 to explore the impact of ETS on carbon dioxide generated by power plants using coal, oil and natural gas, and predicts the influence of the implementation of the ETS on carbon emissions from power plants between 2020 and 2030 based on the autoregressive distributed lag (ARDL) method, which provides a more micro-level perspective on the reaction of ETS on carbon reduction. Simultaneously, only by taking economic growth and carbon emission reduction into consideration can the transformation goal be fundamentally achieved (Fan et al., 2022), Chen et al. used a carbon trading pilot as a natural quasi-experiment to examine the outcome of ETS on carbon efficiency using data from Chinese prefecture-level cities. Shang and Xu proposed the Environmental Kuznets Hypothesis for Employment based on the Environmental Phillips Curve and Environmental Kuznets Curve, and empirically investigated the “double dividend” of low-carbon transition and employment growth brought about by ETS using the GMM approach.
As a necessary part of the environmental regulatory policy system, Carbon Emission Trading Scheme (ETS), like all environmental regulatory policies, act as a common pathway to reduce carbon emissions by forcing carbon emitters to actively engage in green and carbon-free technology innovation (Zhang et al., 2022a). Our Research Topic has been discussed in depth by scholars. Nie et al. studied the role of voluntary environmental regulation in promoting enterprise ecological innovation, and further explored the working way from three perspectives: government, residents and external enterprise. Chen et al., 2022 started with stakeholders of green and low-carbon technology, constructed a three-way game among enterprises, governments and residents, and simulated the optimal combination of tax, subsidy and publicity guidance. Energy-intensive industries are the next industries to be covered by the ETS. Exploring the benefits of enterprises in green innovation is conducive to a more thorough understanding of the driving force for the implementation of ETS. Xie et al. found that green innovation will inhibit enterprise value in the short term, and the negative impact is not significant in the long term.
As a policy-driven market, ETS is inevitably influenced by social, economic and carbon emission level characteristics. Scholars have conducted studies from multiple perspectives. At the policy level, Fu et al. explored the reaction on carbon emissions and the mechanisms of action from an economic policy uncertainty. Su et al. evaluated the role of state leaders which pay more attention on the green development on carbon intensity in different cities from Political Sensitivity. Huang et al. examined the impact of award and commendation policy of China’s National Civilized City project on carbon emissions. At the societal level, Wu et al. verified the inverted “U-shaped” relationship between urban population spatial balance and carbon emissions. In terms of low carbon development, Xiang et al. assessed the evolution of non-polluting development in Fujian Province adapted to the entropy technique for order preference by similarity to ideal solution(TOPSIS) model in terms of economic, social, energy and environmental aspects. Similarly, Guo et al. explored the dynamic patterns of change in the level of re-electrification and the heterogeneity of regional development levels in China by using functional data analysis method.
3 SYNERGISTIC INTERACTION BETWEEN EMISSIONS TRADING SCHEME AND ELECTRICITY MARKET
Accurately capturing the volatility trend of actual carbon prices and identifying potential risk transmission can ensure the smooth promotion of carbon emission reduction and facilitate green investment stimulation and government regulatory decisions. Chen et al. constructed a risk transmission framework for carbon trading, energy and commodities and find that two major shocks, the stock market crash and COVID-19, exacerbate systemic risk volatility. Du et al. explored the mechanisms influencing carbon prices from the perspectives of economic development, domestic and international markets, and climate change. They used a back propagation (BP) model to forecast Fujian’s carbon prices based on daily frequency data from 9 January 2017 to 25 February 2022. Zhang et al. systematically illustrated the coupling relationship between electricity investment and carbon emissions and the regional heterogeneity, providing a theoretical basis for promoting carbon emission reduction and enterprise green investment.
As a market-based carbon pricing mechanism, the carbon cost will be transmitted to the end users, thus affecting the entire power system and economic cycle. At the macro level, Hu et al. calculated the marginal abatement cost for each country based on technological heterogeneity, using differences in national technology levels, and found that the cost for China is 1440.183 US dollars/ton. Which gives countries along the “Belt and Road” a theoretical foundation for the creation of a regional market for carbon emission trading program. At the micro level, Zhao et al. applied the contingent valuation method to investigate the cost of home without power in the end-use electricity market. From the perspective of system collaboration, Wang et al. employed particle swarm optimization and multi-objective particle swarm optimization approaches based on blockchain theory to simulate and examine the optimization path for the power system to meet both economic and green low-carbon constraints after the introduction of carbon emission constraints.
The ability of ETS to affect new decisions by supply and demand players in the power sector does not depend entirely on the construction of carbon markets itself, but also on the construction of markets such as electricity (Feng et al., 2021) In terms of price perspectives, Wang et al. showed that removing price distortions in coal, oil and diesel promotes carbon emission reductions, with this effect being most pronounced in the coal price sector, while Cai et al. analyzed the impact of industrial and business electricity price changes on macroeconomy, social output and price based on computable general equilibrium (CGE) model. At the market reform level, Long et al. found that the rebound effects on energy demand and carbon emissions from lower electricity prices due to electricity market reforms far outweigh the emission reduction effects from energy efficiency improvements. Liu et al. studied that market segmentation inhibits the efficiency of thermal power generation and that the negative effects can be mitigated by increasing the innovation effect. Liu et al. used the Lerner index to measure grid market power and demonstrated that the abuse of grid market power leads to reduced electricity reliability, which provides a theoretical basis for electricity market reform. In terms of market regulation. Jin et al. firstly constructed a bank performance guarantee model by introducing banks in the role of guarantors with power generators and power sellers, then analyzed the risk prevention mechanism of financial intervention in the power market. Jin et al. also constructed an internal and external monitoring model based on evolutionary game theory, and found that both internal and external monitoring agencies have an incentive to collude. Hence the need for third parties to ensure independence and internal regulators to ensure that rights are locked in a cage.
Our Research Topic’s insights offer a theoretical and empirical foundation for capturing the interaction between the ETS and the power market, turning ETS into a workable and efficient method of decarbonizing the electricity sector, as well as providing new inspiration for countries like China where the development of the electricity and carbon markets is still in its infancy.
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Improving carbon emission efficiency is an important means to achieve pollution reduction and sustainable economic development. Rather than focusing on the implementation of market-incentive environmental policies in developed countries, we study the effect of the implementation of market-incentive environmental policies on the efficiency of carbon emissions in developing countries, which is generally ignored by frontiers researches. Based on panel data of 282 cities at prefecture-level and above in China from 2007 to 2017, we first adopt the non-radial distance function (NDDF) and global DEA model to measure the carbon emission efficiency of China’s cities. Then we take the Chinese carbon emission trading pilot as a quasi-natural experiment and explore the impact of carbon emission trading policy on carbon emission efficiency based on DID method. And the mechanisms are analyzed through the mediation effect model. It is found that the carbon emission rights trading policy can significantly improve the carbon emission efficiency of the pilot cities, and it mainly plays a role through three channels: technological progress effect, green innovation effect and energy consumption structure optimization effect. The heterogeneity test results show that for resource-based cities and cities with a higher degree of marketization, the carbon emission trading policy has a more obvious effect on improving carbon emission efficiency.
Keywords: carbon emission trading policy, carbon emission efficiency, technological progress, green innovation, energy consumption structure
INTRODUCTION
China’s economy has achieved rapid growth in the past four decades based on the traditional factor-driven development mode, which is accompanied by serious environmental pollution and high carbon emissions. In 2013, China’s carbon emissions surpassed the European Union and the United States, making it the world’s largest energy consumer and carbon emitter country. As the international community pays more attention to global climate change, China is under increasing pressure to reduce carbon emissions. China has proposed goal of carbon peak in 2030 and carbon neutralization in 2060, which puts forward higher requirements for carbon emission efficiency. To control carbon emissions as soon as possible, the Chinese government at all levels have carried out a series of environmental regulation policies to promote the carbon emissions over the years, such as developing low-carbon pilot cities and increasing forest carbon sinks. Carbon emission trading is also one of the key policies. Along with the advancement of market-based reform, the National Development and Reform Commission issued the Notice on The Pilot Work of Carbon Emission Trading in 2011. Seven provinces and cities, including Beijing, Tianjin, Shanghai, Chongqing, Hubei, Guangdong and Shenzhen, were selected as pilot cities for carbon emission trading, and all of them started online trading in 2014. This means that China has embarked on a market-oriented environmental policy and make use of the market mechanism to promote the improvement of carbon emission efficiency and achieve green and low-carbon development. The main approach of carbon emission trading is that government agencies estimate the maximum carbon emissions that meet the environmental capacity in a certain region and divide them into several emission shares. The government sells the emission right to carbon emission enterprises in the primary market for compensation, and the carbon emission enterprises can buy and sell the carbon emission right purchased in the secondary market. This paper aims to answer the following questions: whether market-oriented carbon trading policies can effectively improve carbon emission efficiency and achieve low-carbon development, and what are the ways and conditions for improving carbon emission efficiency?
However, the existing literature mainly focuses on the energy conservation and emission reduction effects of command-and-control environmental policies (Blackman and Kildegaard, 2010; Qin et al., 2016; Cheng et al., 2017; Zheng and Shi, 2017; Li and Masui, 2019). There are also some literatures on the effect of market-incentive environmental policies. Different from the command-and-control environmental policy, market-incentive environmental policy is an environmental regulation means based on market transactions such as energy trading and carbon emission trading rather than administrative regulation. However, due to the first implementation of carbon emission trading policies in developed countries with relatively perfect market trading mechanism and rich practical experience, such as Europe and the United States, the research objects of relevant literatures are mainly targeted at these developed countries (Brännlund et al., 1998; Chapple et al., 2013; Clarkson et al., 2015; Brouwers et al., 2016; Pearse, 2016; Schafer, 2019). And the researches on China’s carbon emission trading are mainly based on the provincial level or enterprise level to investigate its emission reduction effect (Shen et al., 2020; Xuan et al., 2020; Li and Wang, 2021; Zhang et al., 2021) or economic effects, such as employment effect (Yang et al., 2020), economic growth effect (Li et al., 2019; Wu and Gong, 2021), the effect of technological innovation (Chen et al., 2020b; Song et al., 2021; Xiao et al., 2021), which lack of analysis on the impact of carbon emission trading on carbon emission efficiency from the level of prefecture-level cities in China. Based on this, the marginal contribution of this paper are as follows: Firstly, we calculated the carbon emission efficiency at the city level based on the balance panel data of 282 cities in China from 2007 to 2017. Secondly, based on the quasi-natural experiment of carbon emission trading pilot project, we investigate the specific impact of market-oriented environmental policy on carbon emission efficiency using DID method, and analyze its impact mechanism and conditions. It is helpful to put forward effective suggestions for China and other developing countries to build a carbon emission trading market on a national scale.
THEORETICAL HYPOTHESES
Direct Effect of Carbon Emissions Trading Policy on Carbon Emission Performance
At present, there are two views on the impact of environmental regulations on pollution reduction among existing literatures. The first view is that environmental regulation damages the economic interests of enterprises by generating pollution control costs and is not conducive to the improvement of carbon emission efficiency (Blackman and Kildegaard, 2010; Tu and Chen, 2015; Zheng and Shi, 2017). The second one is based on the “Porter Hypothesis”, which believes that environmental regulation can force enterprises to carry out innovative activities, improve their productivity to produce innovation compensation effect (Poter and Vanderlinde, 1995), eliminate backward production capacity, optimize resource allocation, and thus improve carbon emission efficiency. Du et al. (2021) verified that green technological innovation and industrial structure upgrading are two effective channels through which environmental regulation facilitate the economy’s green transformation. Enterprises with high pollution control costs and backward production are pushed out of the market because their innovation compensation effect is smaller than the cost effect of pollution control (Xiao et al., 2021), which helps to improve the overall production efficiency of the society, promote the progress effect of green technology (Dong and Wang, 2019), and achieve emission reduction targets. Song et al. (2020) showed that with the increase of environmental regulation, its role in the promotion of green product innovation has gradually emerged. There are also studies showing that command-and-control environmental policies support the first view, while market-oriented environmental policies mainly produce innovation compensation effect (Tang et al., 2020). As a market-oriented environmental policy, carbon emission trading policy allocates carbon emissions as a kind of property right to each enterprise based on Coase (1960), and solves the negative externalities of environmental pollution and improves the efficiency of environmental control by trading emission rights in the market. From the perspective of enterprises, when the trading price of carbon emission right in the market is higher than the marginal cost of enterprise pollution control, enterprises would take the initiative to improve the efficiency of carbon emission based on the goal of profit maximization. At the same time, enterprises can effectively use the carbon emission quota to prevent additional carbon emission cost and sell the excess carbon emission quota by increasing the emission reduction to obtain additional income (Shakil et al., 2019). Based on this, this paper proposes the first theoretical hypothesis:
Hypothesis 1 Carbon emission trading policy can effectively improve the carbon emission efficiency of pilot cities.
Mediation Effect of Carbon Emissions Trading Policy on Carbon Emission Performance
We expect that carbon emission trading policies may affect carbon emission efficiency through three intermediary channels. Firstly, carbon emission trading can affect carbon emission efficiency by changing the technological level and the direction of technological progress in cities. Since carbon emission trading policy limits the carbon emissions of enterprises, it increases the pressure on enterprises to reduce pollution. Faced with the pressure of emission reduction constrained by carbon emission quotas, enterprises mainly achieve emission reduction targets in two ways: one is to reduce output (Caparrós et al., 2013), and the other is to adopt new technologies and carry out green technological innovation to achieve cleaner production. However, the first approach is the most negative response adopted by enterprises to achieve emission reduction targets, which will not only damage their own interests, but also fail to reflect the practical significance of energy conservation and emission reduction. Instead, technological progress, especially green technological innovation, can effectively improve productivity and energy efficiency and reduce carbon emissions, which is an effective way to achieve energy conservation and emission reduction in the long run (Xuan et al., 2020; Cheng and Yao, 2021). On the one hand, enterprises can realize the surplus of carbon quota through their own technological innovation and technological transformation. Enterprises can obtain economic benefits by selling the quota, and thus guide and encourage enterprises to further carry out more emission reduction and technological improvement projects. On the other hand, the product quality brought by the enterprise’s technological innovation will also increase the profit of the enterprise (Zhang et al., 2021) and offset the cost caused by reducing carbon emission. Therefore, under the implementation of carbon emission trading policy, enterprises will increase investment in technology research for long-term development, especially in the development of green and clean technologies to improve carbon emission efficiency, so as to improve the overall technical level of the city.
Secondly, carbon emission trading policy can force enterprises to optimize the energy consumption structure, thus improving the carbon emission efficiency. Energy is an important production input factor. Traditional fossil energy such as coal and oil are the main sources of sulfur dioxide and carbon dioxide emissions. On the one hand, carbon trading internalizes the cost of carbon emissions into a hidden energy price through the carbon price. Even if the energy price in the energy market remains unchanged, the change of carbon price will make the actual energy price faced by enterprises fluctuate. Therefore, in the case of carbon trading, the energy consumption mix decisions made by enterprises based on the principle of profit maximization or cost minimization is different from that without carbon trading. In this new energy consumption mix, enterprises will be more inclined to use clean and low-carbon energy, thus promoting the transformation of the energy consumption structure of the whole industry and the region to green and low-carbon direction, and promoting the transformation and upgrading of the energy consumption structure. On the other hand, with a fixed carbon emission quota, enterprises will gradually get rid of the dependence on traditional non-clean energy (Xuan et al., 2020). Increasing the investment proportion of renewable energy and other clean energy in the production process can reduce carbon emissions by reducing carbon consumption. At the same time, enterprises with slower energy consumption structure transformation will be eliminated, so as to optimize the regional energy structure and improve the carbon emission efficiency. Based on this, this paper proposes the second theoretical hypothesis:
Hypothesis 2 Carbon emission trading policy mainly improves carbon efficiency by improving technological progress, promoting green innovation and optimizing energy consumption structure.
Heterogeneity Effect of Carbon Emissions Trading Policy on Carbon Emission Performance
There is resource endowment heterogeneity in the improvement effect of carbon emission trading policy on carbon emission efficiency. On the one hand, existing studies have shown that there exists a “resource curse” phenomenon between natural resource endowment and sustainable urban development (Zhou and Fang, 2019). The development of a country or city with abundant natural resources tend to over-dependent on resource-intensive industries with low technology add-ons for a long time. With the aggravation of urban environmental pollution, it is also difficult for cities to get rid of the production mode based on traditional non-clean energy, which inhibits the improvement of technological progress and energy efficiency, and makes cities fall into the dilemma of “resource curse”. However, on the other hand, cities with higher resource endowments have more advantages in industrialization. Therefore, under the constraints of environmental regulation policies, resource-based cities can make use of their own industrial development advantages to achieve technological progress and generate higher energy utilization efficiency (Shi and Li, 2020). The carbon trading policy imposes carbon emission constraints on the pilot enterprises. Under the constraints of limited carbon emission quota, the pressure of carbon emission reduction in resource-based cities increases. In order to seek a long-term mechanism for sustainable development, the incumbent enterprises need to carry out independent innovation and transform to cleaner production mode. New entrants also need to have a high level of cleaner production technology and higher carbon emission efficiency to cope with the fierce market competition. Non-resource-based cities have a high cost of using resources and mainly rely on capital-intensive or technology-intensive industries. Even in the face of limited carbon emission quota, they can use the existing production technology and production mode to achieve the emission reduction target, and the improvement of carbon emission efficiency is not obvious. Therefore, this paper speculated that carbon emission trading policy mainly affects the carbon emission efficiency of resource-based cities.
On the other hand, the effective implementation of carbon emission trading policy largely depends on the pilot cities with a high level of marketization (Wang et al., 2021). In the cities with a low level of marketization, the carbon emission trading policy will be greatly restricted and unable to internalize the emission cost (Hou et al., 2019). Besides, the governments of these cities play a more dominant role in resource allocation, which may lead to rent-seeking, corruption and other phenomena. It may also cause some enterprises to purchase and store carbon emission permits far beyond their own quotas to seek monopoly benefits (Shi and Li, 2020), which leads to vicious competition in the market and is not conducive to the effective allocation of resources. While in perfect competition market, enterprises with higher carbon emission efficiency can make additional revenues. Market forces can effectively stimulate enterprises to raise the carbon efficiency, achieve energy conservation and emissions reduction (Zhou and Zhao, 2021). Therefore, we speculate that the actual effect of carbon emission trading policy is subject to the level of urban marketization. Based on the above analysis, the third hypothesis is proposed:
Hypothesis 3 There is urban heterogeneity in the effect of carbon emission trading policy on the improvement of carbon emission efficiency.
Hypothesis 3-a : Carbon emission trading policy has a more obvious effect on the cities with higher resource endowment.
Hypothesis 3-b : Carbon emission trading policy has a more obvious effect on the cities with higher marketization degree.
Figure 1 shows the practical and theoretical framework of this study.
[image: Figure 1]FIGURE 1 | The practical and theoretical framework.
METHODOLOGY AND DATA
Econometric Model
The Difference in Difference (DID) method is a commonly used method for evaluating policy effects. By comparing the impact of policies on the treatment group and the control group, the causal relationship between variables that reflect the actual effects of the policy is identified. We take Chinese carbon emission trading pilot policy as a quasi-natural experiment, taking Beijing, Shanghai, Tianjin, Chongqing, Hubei, Guangdong (including Shenzhen) and their prefecture-level cities as the processing group, other cities as the control group, and 2014 as the year of policy implementation, employing the DID to estimate the effect of the carbon emission trading system on the city’s carbon emission efficiency. Based on the research of Shi and Li (2020), Wang and Lu (2019), the following model was designed:
[image: image]
Where t, i, and j represent the year, prefecture-level city and province, respectively; [image: image] is the dependent variable, which denotes carbon emission efficiency; [image: image] is the city dummy. [image: image] when i belongs to the treatment group. And [image: image] otherwise. [image: image] is time dummy variable. When [image: image], [image: image], and [image: image] otherwise. [image: image] is the control variables that affects the carbon emission efficiency of a city. [image: image] is the time fixed effect and [image: image] is the city fixed effect that does not change with time. [image: image] is the individual time effect of the province, which mainly controls the influence of unobservable factors changing over time of each city on the estimation results. [image: image] is the random interference term. This model fixes the city effect, time effect and province effect, and estimates the specific impact of the carbon emission trading policy on the carbon emission efficiency of the prefecture-level cities by observing the coefficient [image: image].
We use the mediation effect model (Baron and Kenny, 1986) to examine the mediation impact of the carbon emission trading policy on carbon emission efficiency, which is based on the following models:
[image: image]
[image: image]
Where [image: image] represents the mediating variables, including the total factor productivity, green innovation and energy consumption structure of the prefecture-level cities. The significance of the [image: image] in Eq. 1 is used to test whether the carbon emissions trading policy has a significant impact on the carbon emission efficiency. Eq. 2 is used to test the effect of the carbon emission trading scheme on the mediating variables. And then mediating variables and carbon emission trading both incorporated into Eq. 3. Combining these three equations, we can determine whether the intermediary effect exists. If [image: image] is still significant, and [image: image] is not significant or significant but lower than [image: image], the intermediary mechanisms of carbon emission trading system on carbon emission efficiency is improved.
Variables
Dependent Variable
The dependent variable in this article is the carbon emission efficiency (cp) of each prefecture-level city. Some researches use total carbon emission and the ratio of carbon emission to GDP to measure carbon emission efficiency (Zhou et al., 2019; Huang and Chen, 2020). But these indicators only consider the relationship between the input of one kind of production factor and economic output, ignoring the input of capital and labor, which may lead to the one-sided estimates of carbon emission efficiency. Therefore, we mainly refer to the method of Lin and Zhou (2021) to calculate carbon emission efficiency. To be specific, we take capital (K), labor (L) and energy (E) as input variables, actual GDP (Y) as expected output, CO2 emissions (C) as undesired output, and then apply the non-radial distance function (NDDF) and the global DEA model to calculate the carbon emission efficiency by using the overall sample construction technology Frontier.
Capital is calculated by the perpetual inventory method (Liu et al., 2017), and the labor is represented by the number of employees at the end of the year. Due to the lack of energy consumption data of prefecture-level cities, we used the method of Stein and Li Shaolin (2020) to decompose the total energy consumption of each province by using urban night light data to obtain the energy consumption of each prefecture-level city. Using the methods of existing researches (Han and Xie, 2017; Cheng et al., 2019), we calculate CO2 emission by extracting the consumption of natural gas, liquefied petroleum gas and coal power generation in each city. The main calculation formula for CO2 emission is as Eq. 4:
[image: image]
Among them, E represents the consumption of various types of energy. σ represents the average proportion of coal power generation to the total power generation. And [image: image], [image: image], and [image: image] represent the CO2 emission coefficients of natural gas, liquefied petroleum gas and coal power, respectively, (2.1622 kg/m3, 3.1013 kg/kg, 1.3023 kg/kWh) (Han and Xie, 2017).
According to Zhou et al. (2012), Lin and Zhou (2021), the non-radial distance function (NDDF) is defined as follows:
[image: image]
Where [image: image] represents the weight vector of the input and output. ξ represents the direction vector, and χ represents the scale factor vector of the deviation between the actual production activity and the optimal production state. F represents the production framework of input and output. According to Lin and Zhou (2021), it is assumed that input, expected output, and undesired output are equally important, and the weights are all set to 1/3. Therefore, the weights of labor, capital, and energy input are all 1/9, and CO2 emission efficiency (cp) is expressed as follow.
[image: image]
Where [image: image] is the solution to Eq. 5. And the value of cp is between 0 and 1, the larger the value, the higher the carbon emission efficiency. We preliminarily calculate the average level of carbon emission efficiency of Chinese cities. As shown in Figure 2 in Data, the average level of carbon emission efficiency of Chinese cities fluctuated from 2007 to 2017, but with small range.
[image: Figure 2]FIGURE 2 | Average level of carbon emission efficiency of Chinese cities from 2007 to 2017.
Control Variables
We also include control variables that have been used in prior studies (e.g., Du et al., 2021; Xie et al., 2021).
The level of economic development (pgdp). On the one hand, economic development increases carbon emissions. The extensive economic development mode will intensify the dependence on traditional non-clean energy, which is not conducive to the improvement of carbon emission efficiency (Al-Mulali et al., 2015). On the other hand, economic development promotes environment-friendly technological progress (Rajpurohit and Sharma, 2021), thus improving carbon emission efficiency (Webber and Allen, 2010). Therefore, the relationship between economic growth and carbon emissions largely determines the realization of China’s transition to a green and low-carbon development mode. We use GDP per capita of the prefecture-level city to measure the level of economic development.
Infrastructure level (infra). Infrastructure construction is accompanied by a large amount of energy consumption, but the improvement of infrastructure may also improve carbon emission efficiency through the flow of factors between regions. We use the road area per capita to characterize the infrastructure level (Cheng et al., 2019).
Population density (density). Population growth may generate a demographic dividend while bringing about energy consumption and carbon emissions. In addition, the increase in population density can generate a density economy through agglomeration effects, reducing clean energy production costs, and improving carbon emission efficiency (Chen et al., 2020a). We employ the population per unit of land in each administrative region to measure population density.
Industrial structure (indus). Different industrial structures have different effects on carbon efficiency. It is generally believed that the secondary industry consumes more energy and emits more pollution (Xu and Lin, 2015), and accompanied by a large amount of carbon emissions (Sarwar and Alsaggaf, 2021). The share of value-added of secondary industry in GDP is used to measure the industrial structure of each city.
Foreign direct investment (fdi). On the one hand, foreign direct investment can bring advanced production technology and institutional environment, and promote local carbon emission efficiency. On the other hand, based on the hypothesis of “pollution havens”, foreign direct investment may cause local cities to undertake a large number of polluting enterprises, which is not conducive to the improvement of local carbon emission efficiency (Cole et al., 2010). In this paper, the proportion of foreign direct investment in GDP is used as an indicator of foreign direct investment.
Government intervention (gov). Excessive government intervention may reduce the dominant position of the market, which is not conducive to the effective allocation of resources and the reduction of carbon emission efficiency (Shao and Yang, 2014). We use the ratio of fiscal expenditure to GDP to measure the degree of government intervention.
Mediating Variables
Technological progress (tfp). The city’s total factor productivity is used as the indicator of technological progress. We use capital, labor, and energy as input variables, real GDP as the output variable, employing the DEA-Malmquist index to calculate the total factor productivity growth of each city.
Green innovation (gpat). According to Xu et al. (2021), due to the lag in patent grant, it is impossible to effectively measure the current level of green innovation efforts and green innovation levels in various regions. Therefore, this paper uses green patent application data of each prefecture-level city to characterize the green innovation.
Energy consumption structure (cestru). Replacing traditional fossil energy with renewable clean energy is the main way to optimize energy consumption structure. However, there is no clean energy consumption data reported at the city level. Therefore, using the method of Xu et al. (2021) as reference, the proportion of electricity consumption in total energy consumption is used to measure energy consumption structure. Since the carbon emission produced by coal power is the highest among all power generation fuels, this paper uses the proportion of coal power consumption to measure the energy consumption structure.
The detailed description and measurements of all the variables used in this study are provided in Table 1.
TABLE 1 | Variable definitions.
[image: Table 1]Data
After data preprocessing and limited to data availability, we finally obtained the research samples of 282 prefecture-level cities in China from 2007 to 2017, excluding Tibet, Hong Kong, Macao and Taiwan. The data of the dependent variables and the control variables are from the “China City Statistical Yearbook”, “China Statistical Yearbook”, “China Energy Statistical Yearbook”, and “China Electric Power Statistical Yearbook”. The green patent application data comes from the CNRDS database, and the city night light data comes from Harvard Dataverse. The missing data is supplemented by interpolation. All control variables are logarithmically processed to eliminate heteroscedasticity, and the variables with larger standard deviations are winsorized. The descriptive statistics of the original data are shown in Table 2. It can be seen that the carbon emission efficiency of the experimental group is 10.3% higher than that of the treatment group on average, which preliminarily shows that the carbon emission trading pilot has a positive impact on carbon emission efficiency.
TABLE 2 | Descriptive statistics of variables.
[image: Table 2]RESULTS AND DISCUSSION
Baseline Estimation Results
In this section, we use the DID method to estimate Eq. 1, and the results are shown in Table 3. Column (1) is the estimated result of the relationship between the carbon emission trading pilot policy and carbon emission efficiency, and column (2) shows the average treatment effect of China’s carbon emission trading pilot on carbon emission efficiency after the introduction of control variables based on the benchmark regression analysis. We introduce the time trend after the policy implementation year in column (3), showing the dynamic effect of carbon emission trading policy. Column (4), on the basis of column (3), further introduces the time trend for the first three years before policy implementation to test whether the carbon emissions trading policy meets the parallel trend assumption of the DID model. current represents the intersection of treat and the dummy variable in 2014, which is defined as the base year. pre_3 is the intersection of treat and the dummy variable in the third year before the implementation of the policy, that is, the year of 2011. And post_1 is the intersection of treat and the dummy variable in the first year after the implementation of the policy, that is, the year of 2015, and so on. All regressions control the city effect, time effect, and province effect.
TABLE 3 | The baseline results.
[image: Table 3]It can be seen from Table 3 that after adding the control variables, the estimated coefficient of [image: image] is still positive at the significance level of 1%, which indicates that China’s carbon emission trading pilot has a promoting effect on carbon emission efficiency of the prefecture-level city and can effectively promote the achievement of green economy transformation. By observing the dynamic effects of the policy, during the implementation period, the carbon emission efficiency was only increased by 0.0728. As time went on, the carbon emission efficiency increased by 0.1579 and 0.1464 at 1% significance level in the second and third years after the policy was implemented, which indicate that the effect of carbon emissions trading policies has been increasing year by year. According to column (4) and the dynamic effect diagram of parallel trend test in Figure 3, it can be seen that before the implementation of the policy, the time trend coefficients are not significant, and the coefficient value is around 0. After the implementation of the policy, the coefficient rises rapidly, and has conversed from the negative coefficient before the pilot to the positive coefficient, which satisfies the assumption of parallel trends and indicates that there is no significant difference between pilot cities and non-pilot cities before 2014. Therefore, the promotion effect of the carbon emission trading system on the carbon emission efficiency is proved. That is, Hypothesis 1 is confirmed. In addition, by observing the coefficients of the control variables, it is found that economic development and population density increase significantly promote carbon emission performance. The increase in the proportion of the secondary industry in the economy and excessive government intervention are not conducive to the improvement of carbon emission efficiency.
[image: Figure 3]FIGURE 3 | Result of dynamic effect of parallel trend test.
Robustness Check Results
Placebo Test
In the process of estimating the impact of carbon emission trading policy on carbon emission efficiency, other unknown factors may affect the selection of pilot cities. To ensure the robustness of the conclusions obtained in this paper, placebo tests are required. Specifically referring to the method of Stein and Li Shaolin (2020), we sampled 1,000 times in 282 cities, randomly selected 37 virtual experimental groups, and took other cities as the control group for re-regression. The kernel density distribution of the dependent variable is shown in Figure 4. It can be seen that the absolute value of t-values of most sampling estimation coefficients is less than 2, and the p-values are mostly above 0.1, indicating that the carbon emission trading system has no significant effect in 1,000 random samplings, which shows that the promotion effect is caused by the exogenous impact of the carbon emission trading policy, and has little to do with other factors.
[image: Figure 4]FIGURE 4 | Result of Kernel density estimate.
Dynamic Time Window Inspection
Learning from the practice of Shi and Li,. (2020), we change the regression time interval to identify the difference in carbon emission efficiency in different time periods. Specifically, we take 2014 as the middle point, and selecting 1, 2 and 3 years before and after the year of 2014 to perform the regression respectively, and the results are shown in column (1)-column (3) of Table 4. The results show that the coefficients of carbon trading policies are all significantly positive, indicating that changing the policy implementation time window does not change the direction of the carbon emission trading policy’s impact on carbon emission efficiency. The previous conclusions are still supported and our conclusions are robust.
TABLE 4 | The results of robustness test.
[image: Table 4]Counterfactual Test
We artificially set the time point of the pilot carbon emission trading in order to prove that if there is no carbon emission trading policy, the carbon emission efficiency of the experimental group and the control group will not change significantly over time (Hung et al., 2013; Shi and Li, 2020). We set 2012 and 2013 as the year for the implementation of carbon emission trading policy to regress, respectively, and the results are shown in column (4) and column (5) of Table 4. It is shown that the coefficients of the two key interaction terms are not significant, indicating that before 2014, the carbon emission rights trading policy has no significant impact on the carbon emission efficiency of the treatment group and the control group, which indicate that the improvement of urban carbon emission efficiency is indeed brought about by carbon emissions trading policy.
PSM-DID Method
The DID method cannot ensure that the experimental group and the control group have similar individual characteristics before policy implementation. In order to overcome the systematic differences in the changing trends between the pilot cities and other cities, we further use the PSM-DID method to conduct a robustness test. Specifically, the propensity score matching method (PSM) is used to match the cities of the treatment group and the control group with the control variable as the identification feature of the samples. We perform DID regression on the matched samples, and the result is shown in column (6) of Table 4. It can be seen that the coefficient of the carbon emission trading policy is still significantly positive, and the estimated result is not significantly different from the previous article, which further supports our conclusions, indicating that the carbon emission trading policy can effectively improve carbon emission efficiency.
The Impact Mechanism of Carbon Emissions Trading Policy on Carbon Emission Performance
According to the above analysis, China’s carbon emission trading pilot can help improve the efficiency of carbon emissions in prefecture-level cities. But how can this effect be achieved? According to the theoretical analysis part, we discuss the impact mechanism of China’s carbon emission trading system on carbon emission efficiency from three aspects: technological progress, green innovation and energy consumption structure. The results are shown in Table 5. It can be seen from column (1) that the total effect of the carbon emission trading system on the city’s carbon emission efficiency is 0.0452 at 1% significance level. Columns (2), (4), and (6), respectively, give the estimation results of the carbon emission trading system on the city’s total factor productivity, green patent applications, and energy consumption structure. Columns (3), (5), and (7), respectively, show the result of the mediation by incorporating the three intermediary variables and the carbon emission trading system into the regression model. From columns (2), (4), and (6), we can see that the carbon emission trading policy has positive impacts on both the city’s total factor productivity and the number of green patent applications at a significance level of 1%, and has a negative impact on energy consumption structure at the significance level of 1%, indicating that the implementation of carbon emission trading pilots can effectively promote technological progress, achieve green innovation, reduce dependence on non-clean energy, and optimize urban energy consumption structure of prefecture-level cities. In column (3), the regression coefficient of total factor productivity on urban carbon emission efficiency is significantly positive, and the coefficient of carbon trading policy is 0.0271, which is less than 0.0452, indicating that carbon emission trading policies can achieve carbon emission efficiency by improving city’s technological progress. The result of column (5) shows that the coefficient of green patent applications is significantly positive, and the coefficient of carbon trading pilot is positive but not significant, which indicate that the green innovation effect is a completely intermediary variable. It confirms the existence of the “Porter effect” of market-oriented environmental regulations, that is, the market-oriented environmental regulations can improve the efficiency of urban carbon emissions by promoting green innovation. The results of column (7) show that the energy consumption structure has a significant negative impact on carbon emission efficiency. The coefficient of carbon trading policy is still significantly positive but its value is less than 0.0452, indicating that carbon emissions trading policies can produce energy structure optimization effects, and then achieve the improvement impact on the carbon emission efficiency. In summary, Hypothesis 2 is verified.
TABLE 5 | The results of the mediating effect.
[image: Table 5]HETEROGENEITY ANALYSIS
Heterogeneity of Resource Endowment
For all cities, carbon emission rights trading policy can effectively promote the improvement of carbon emission efficiency. However, due to the large differences in the resource endowments of various cities, the economic growth patterns of Chinese cities are different, and the uneven development characteristics are prominent. Based on the overall city sample, the analysis may conceal regional differences to a certain extent. Therefore, in accordance with the notice of the State on Issuing the National Sustainable Development Plan for Resource-Based Cities (2013–2020), we divide the 282 cities into resource-based and non-resource-based cities, and examine the heterogeneous impact of carbon emission trading policy on the carbon emission efficiency by grouping the samples. The results are shown in columns (1) and (2) of Table 6. It can be seen that for resource-based cities, the coefficient of carbon emission trading policy is significantly positive at the 1% level. While for non-resource-based cities, the coefficient of carbon emissions trading policy is positive but not significant, which indicate that the improvement effect of carbon emission trading policy on the carbon emission efficiency mainly reflected in resource-based cities. The possible reason is that resource-based cities mainly focus on resource exploitation and extensive processing, and highly depends on resources. These cities mainly take traditional non-clean energy as the main input factors and is relatively poor in transformation and optimization of energy consumption structure, thus resulting in serious environmental problems. The carbon emission trading policy gives each pilot city a fixed share of carbon emission and puts forward higher requirements on the carbon emission efficiency of resource-based cities, forcing them to carry out technological innovation, invest in cleaner production technologies, and improve the efficiency of carbon emissions in the production process to reduce carbon emissions. The cost of using energy in non-resource-based cities is relatively high. Therefore, companies have enough motivation to invest in energy-saving production technologies based on the goal of profit maximization, and their pressure on environmental protection is relatively small. Therefore, the carbon emission trading policy has a more obvious effect on improving the carbon emission efficiency of resource-based cities.
TABLE 6 | The results of heterogeneity test.
[image: Table 6]Heterogeneity of Marketization Level
The carbon emission trading policy relies on the operation of the market mechanism. By selling carbon emission rights from companies with lower carbon emissions to companies with higher carbon emissions, lower-carbon companies can obtain corresponding benefits, thereby encouraging companies to take the initiative to increase carbon emission efficiency, which in turn promotes the improvement of the carbon emission efficiency of the entire economy. If the market mechanism is not perfect, a small number of companies may purchase and store carbon emission rights that far exceed their own carbon emission quotas to obtain monopoly benefits (Shi and Li, 2020). Therefore, the effect of carbon emission rights trading policies on carbon emission efficiency will be subject to the marketization level of each city. Drawing on the practice of Shi and Li (2020), we measure the marketization level of prefecture-level cities under the jurisdiction of the total marketization index of each province in China. And refering to Zhou et al. (2019), we use the average of the marketization level before the implementation of the policy during the sample period to divide each city into two groups, high and low, and regress them respectively. The results are shown in columns (3) and (4) of Table 6. The carbon emission trading policy has a greater effect on improving the carbon emission efficiency of cities with a higher level of marketization, and the level of significance is higher, indicating that the process of city marketization can effectively promote the carbon emission trading policy to achieve the goal of green and low-carbon development.
CONCLUSION AND POLICY IMPLICATIONS
With the increasingly serious global environmental problems, higher requirements for carbon emission efficiency are put forward. As a major carbon emitter, China, driven by the dual carbon emission control target, urgently needs to improve carbon emission efficiency and transition to low-carbon green development. And cities should be the main players in this carbon neutral campaign. However, there are few studies on the relationship between China’s carbon emission trading policy and carbon emission efficiency at the city level. Based on this, this paper uses panel data of 282 prefecture-level cities in China from 2007 to 2017 to measure urban carbon emission efficiency with the global DEA model. Taking China’s carbon emission trading pilot as the quasi-natural experiment, we then study the impact of China’s carbon emission trading policy on urban carbon emission efficiency based on DID model, and the main conclusions are as follows: 1) A series of robustness test studies show that China’s carbon emission trading policy significantly improved the efficiency of urban carbon emissions, and the policy effect gradually increased over time; 2) The mediation effect model test results show that the carbon emission trading market can significantly improve the efficiency of urban carbon emissions by promoting technological progress, promoting green innovation and optimizing energy consumption structure; 3) Heterogeneity test results show that the improvement effect of China’s carbon emission trading policy on carbon emission efficiency is mainly reflected in resource-based cities. And promoting the market-oriented process will help strengthen the policy effect of the carbon emission trading pilot program, which provide strong support for China to achieve green and low-carbon development through market-oriented environmental policies.
Based on the Above Research Conclusion, the Following Policy Recommendations Are Put Forward. Firstly, in the new stage of dealing with environmental pollution, we should attach great importance to the role of market-oriented environmental policies in improving urban carbon emission efficiency. Specifically, we should accelerate the construction of a national carbon trading market, improve the carbon trading mechanism, provide incentives for enterprises to improve carbon emission efficiency, so as to promote the improvement of carbon emission efficiency of the whole society.
Secondly, the government should encourage enterprises to carry out technological innovation and establish a sound intellectual property protection system to encourage enterprises to increase their investment in green technology research and development. This is conducive to promoting the transformation of regional technological innovation to the green direction, promoting the development of new energy, helping enterprises to get rid of the dependence on traditional non-clean energy and optimizing the energy consumption structure of cities. At the same time, we should give full play to the technological progress effect, green innovation effect and energy consumption structure optimization effect of carbon emission trading policy to achieve the goal of improving carbon efficiency of cities.
Thirdly, we need to take full account of the resource endowment of cities and set up carbon trading schemes tailored to local conditions. We should also make full use of the innovation incentive effect of carbon trading policy on resource-based cities and accelerate the establishment and improvement of carbon trading mechanism in resource-based cities to make enterprises get rid of dependence on resources, thus promoting the transformation of production mode to green and clean direction.
Fourthly, we should strengthen the dominant position of the market and promote market-oriented reform. And the government departments focus on ensuring the sound operation of the free competitive market mechanism to provide sufficient liquidity for carbon emission trading scheme in the market. In turn, we can maximize the efficiency of carbon trading policy implementation and achieve green and low-carbon development of the economy.
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Encouraging enterprises to adopt green and low-carbon technological innovation is an important measure to cope with climate change and achieve low-carbon economic development. As the main stakeholders of green and low-carbon technological innovation of enterprises, what measures should the government and the public take to encourage green and low-carbon technological innovation of enterprises has become one of the focuses of research. This study constructs a tripartite evolutionary game model among the government, the public, and enterprises and then obtains the evolutionary stability strategy by analyzing the replication dynamic equation of each subject. Numerical simulation is made on the evolution path of the game under different enforcement intensities of environmental regulation means. The result shows that pollution tax, low-carbon technology innovation subsidy, and environmental protection publicity and guidance are three environmental regulation means to effectively stimulate enterprises’ green and low-carbon technology innovation. And moderate pollution tax, low-intensity publicity of public environmental protection, and high innovation incentive compensation have the highest incentive efficiency for enterprises’ green and low-carbon technological innovation. Targeted suggestions for promoting green and low-carbon technological innovation of enterprises are put forward in the end.
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INTRODUCTION
The environmental impact caused by the excessive exploitation and utilization of energy, such as climate change, has posed a great challenge to the survival and development of human beings (Gaffney and Steffen, 2017; Tian et al., 2019). In the past 40 years, the frequency and intensity of extreme weather and natural disasters caused by global climate change have increased significantly, posing increasingly severe challenges to human survival and development. It has become a consensus of the international community to reduce emissions and develop a low-carbon economy to cope with global climate change. As the world’s largest emitter of carbon dioxide, China’s emissions status and its commitment to reducing emissions have attracted a lot of attention from the international community (Zhang et al., 2012; Cheng et al., 2021). At the General Debate of the 75th Session of the United Nations General Assembly, President Xi Jinping pledged that China will strive to reach the peak of CO2 emissions by 2030 and strive to be carbon neutral by 2060. Promoting green development through technological innovation is the inevitable choice to achieve the goal of carbon neutrality. To achieve the goal of energy conservation and emission reduction and promote the development of a low-carbon economy, vigorously developing energy technology and carrying out green and low-carbon technological innovation are the fundamental ways (Lutz et al., 2005; Wu et al., 2005; Smulders et al., 2014; Cheng and Yao, 2021). Green and low-carbon technological innovation is conducive to improving the overall utilization efficiency of resources and reducing resource consumption (Jia et al., 2018; Lin and Zhu, 2019). It is a key means to control climate problems, promote the construction of low-carbon cities, and realize low-carbon economy and sustainable development mode (Teixidó et al., 2019; Song et al., 2020a). It is also an effective way to promote China’s transformation from a high-carbon economy characterized by “high energy consumption, high emission, and high pollution” to a low-carbon economy which features “low energy consumption, low emission, and low pollution” (Zhang and Zhang, 2019; Du et al., 2021).
In the composition of China’s carbon emissions, corporate carbon emissions have been high and occupy a large proportion. Therefore, under the vision of “reaching carbon peak by 2030 and being carbon neutral by 2060,” enterprises will gradually become an increasingly important subject of action and responsibility in addressing climate change and achieving low-carbon development. As the main body of innovation, enterprises must be supported by green and low-carbon technology to achieve carbon reduction and pollution reduction and fulfill their social responsibilities. However, high initial investment costs and the dependence of the current technology path are seriously restricting the promotion of low-carbon technology innovation. Moreover, the public’s awareness of low-carbon products is relatively low, and the concept of low-carbon in society is not popular enough, which greatly slows down the process of low-carbon technological innovation of enterprises and reduces enterprises’ enthusiasm for low-carbon technological innovation. Therefore, green and low-carbon technological innovation is difficult to form spontaneously. The lack of enterprises’ motivation for low-carbon technological innovation requires external environmental regulation to provide punishment or incentive mechanisms (Song et al., 2020b). Therefore, reasonable environmental regulation policies can make up for the contrast between the cost and benefit of enterprises’ low-carbon technological innovation and promote the pace of enterprises’ implementation of low-carbon technological innovation (Song et al., 2021). In addition, public consumers are the main demanders in the low-carbon product market, whose preference for low-carbon products directly affects the production decisions of enterprises (Khan et al., 2021). The government’s publicity and guidance for low-carbon technological innovation can effectively stimulate the public’s demand for low-carbon products, thus encouraging enterprises to carry out green and low-carbon technological innovation. With the worsening of environmental pollution, the public’s requirements for enterprises’ green and low-carbon technological innovation have intensified, and the supervision has also been strengthened.
Thus, in the context of low-carbon economy and sustainable development, it is of great significance to explore how government incentives and punishment policies and the public’s consumer supervision behavior affect enterprises’ low-carbon technological innovation, forming a benign interaction between the government, the public, and enterprises to stimulate enterprises’ innovation behavior. However, there are few studies that unify the three in one system to study the common environmental responsibility, interest relationship, and mutual influence of the three parties. Based on this, this study aims to explore how to get rid of traditional non-environmental protection technologies and encourage enterprises to carry out green and low-carbon technological innovation under the participation of the public and the environmental regulation of the government. The marginal contribution of this study is as follows: 1) establish a game model with the government, the public (consumers), and enterprises as the three participants, and study the strategic choices of the three stakeholders; 2) find out the equilibrium point by solving the replicator dynamics equation and analyze its asymptotic stability; and 3) the evolutionary game model is simulated by a MATLAB numerical simulation analysis tool so as to find the path to encourage enterprises to choose the green and low-carbon innovation mode.
The remainder of this study is structured as follows: Literature Review section presents a review of the related literature, followed by the model hypothesis and construction in Model Hypothesis and Construction section. In Model Analysis section, we analyze the stability of the equilibrium point in the evolutionary game. Numerical Simulation Analysis section presents the numerical simulation results of the game model. Conclusions and policy implications are presented in Conclusion section.
LITERATURE REVIEW
With the challenge posed by environmental pollution and global warming, the development of green, low-carbon, and circular economy becomes matters of great concern for the academic community (Lai et al., 2016). The technological progress needed to develop a low-carbon economy is green and low-carbon technological innovation (Li et al., 2021). As an important carrier for the development of low-carbon economy, enterprises are not only the main body of carbon emissions but also the main undertaker of environmental protection and low-carbon emission reduction. Under the strict requirements of ecological environment, green and low-carbon technological innovation, as the strategic direction of enterprises, is the core of enterprise production and operation and is crucial to the improvement of their competitiveness, their ability of market survival, and sustainable development (Bi et al., 2016). Enterprises need to make trade-off between traditional technology and green low-carbon technology innovation. However, due to the large upfront investment cost of green and low-carbon technological innovation and the large uncertainty of the later income, enterprises are not strong in their willingness to take the initiative to conduct green and low-carbon technological innovation (Qu et al., 2019). Based on this, the government needs to take measures to motivate enterprises’ green and low-carbon technological innovation effectively.
At present, there are abundant research studies on government regulation, government intervention, and enterprise innovation. Bi et al. (2016) used DEA and Tobit two-stage method under the framework of the global value chain to analyze the main factors affecting manufacturing enterprises’ low-carbon technological innovation and found that government regulation was the main driving factor. Based on a quasi-natural experiment, Chakraborty and Chatterjee (2017) assessed the impact of environmental regulation policies on green innovation activities of Indian enterprises, finding that environmental regulation indirectly triggered green technology innovation of upstream firms. Using the BarabasiAlbert model, Zhang L. et al. (2019) respectively studied the impact of government environmental regulation measures such as carbon trading, environmental taxation, and innovation subsidies on green technology innovation and diffusion of Chinese manufacturing enterprises. Based on the data of environmental regulation (ER) and green technology innovation (GTI) of 30 provinces in China from 2007 to 2016, Guo et al. (2019) found that environmental regulation has a certain promotion effect on enterprises’ green technology innovation. Lyu et al. (2020) used the DID model to study the impact of carbon emission trading on low-carbon technological innovation of enterprises. Pan et al. (2021) found that the Two Control Zone (TCZ) environmental regulation policy in China had effectively promoted enterprises’ cleaner production technology innovation.
However, there is still no consensus on the direction of the impact of government environmental regulations on green and low-carbon technological innovation of enterprises. Many scholars believe that the adoption of environmental regulation means by the government can effectively encourage enterprises to conduct green and low-carbon technological innovation (Brunnermeier and Cohen, 2003; Lin and Yang, 2011; Dietrich and Chen, 2018; Liang et al., 2019). Some scholars, such as supporters of the Porter Hypothesis, believe that environmental regulation measures have to some extent inhibited enterprises’ green and low-carbon technological innovation behavior (Chintrakarn, 2008). Besides, there are also opinions that the direction of influence between the two is uncertain (Hu et al., 2008). In addition to the government’s environmental regulations, enterprises’ green and low-carbon technological innovation behavior will also be affected by many internal and external driving factors. External factors include the public opinion pressure (Hu et al., 2008), the demand of multinational corporations and consumers for low-carbon products (Kammerer, 2009; Fan and Dong, 2018), consumers’ environmental awareness (Wang and Zheng, 2019), stakeholder pressure (Olusegun et al., 2014; Jiang et al., 2018), and intra- and inter-industry competitive pressure (Cao et al., 2012). Internal factors include the enterprise’s innovation capabilities (Jiang et al., 2018) and the enterprise’s pursuit of economic interests (Klassen and McLaughlin, 1996; Xia et al., 2015).
Many scholars have applied the evolutionary game method to study the relationship between government environmental regulations and enterprises’ green and low-carbon behaviors. For example, with the construction of a mixed-strategy evolutionary game model between the government and enterprises, Wang et al. (2011) believe that the government can encourage enterprises to carry out low-carbon production by adopting the environmental regulation means of dynamic punishment. Wu et al. (2017) constructed an evolutionary game model between the government and enterprises in the context of low-carbon economy and studied the incentive effect of government’s environmental regulation policies on enterprises’ low-carbon production. Fan et al. (2017) constructed an evolutionary game model between the government and enterprises with supervision and without supervision, respectively, and studied the optimal regulatory strategy of the government for enterprises’ low-carbon subsidies as well as the regulatory efficiency and stability. Taking the objective functions of enterprises and governments in three different scenarios into consideration, Mahmoudi and Rasti-Barzoki (2018) established an evolutionary game model between the government and enterprises and analyzed the impact of government environmental regulation policies on enterprises’ low-carbon production, carbon emissions, and competitiveness, respectively.
In addition, the evolutionary game model is often used to study the incentive effect of government environmental regulations on enterprises’ green and low-carbon technological innovation. By establishing a game model between government regulators and enterprises, Krass et al. (2013) found that the two environmental regulation means, cost subsidy and tax punishment, could effectively mobilize enterprises to conduct green and low-carbon technological innovation and choose the low-carbon production mode. Huang et al. (2013) studied the influence of government subsidies and centralized control without subsidies on enterprises’ low-carbon technological innovation, respectively, in a duopoly setting and found that the incentive scheme with the centralized control with no subsidy is more effective in stimulating enterprises’ low-carbon technological innovation. By analyzing the equilibrium solution of the tripartite evolutionary game model of the government, enterprises, and consumers, Xu and Lv (2014) pointed out that the government’s environmental regulation measures effectively stimulated enterprises’ decision-making of green and low-carbon technological innovation. Liu et al. (2017) deduced the equilibrium strategy of the evolutionary game between the government and automobile manufacturers and found that the government’s dynamic tax and static subsidies are effective incentive means. Under the framework of the evolutionary game, Jiao et al. (2017) compared the incentive effects of carbon quota, carbon trading price, and government supervision cost on enterprises’ adoption of green and low-carbon technology innovation. Chen and Hu (2018) obtained the optimal carbon tax and subsidy mechanism by analyzing the stable strategy solution of the evolutionary game between the government and manufacturing enterprises under different conditions. Cheng et al. (2021) found that the government’s compensation method for enterprises’ innovation behaviors, such as transfer payment and tax credit, can effectively encourage enterprises to turn to green and low-carbon technology innovation.
With the application of different methods such as empirical analysis, theoretical research, and simulation model, the aforementioned research studies deeply explore the influence of government environmental regulation means and other factors on enterprises’ green and low-carbon technological innovation. However, most of the existing studies only focus on the mutual influence between the government or public consumers and enterprises, without unifying the three parties into a system to study the common environmental responsibility, interest relationship, and mutual influence of the three. As a public good, the environment connects the interests of the government, enterprises, and public consumers in complex social relations. Therefore, the profit loss of any party will affect the innovation behavior of enterprises’ low-carbon technology. Based on this, this study attempts to construct a tripartite evolutionary game model including the government, enterprises, and public consumers using the evolutionary game method of bounded rationality hypothesis. Through evolutionary game stability analysis and numerical simulation, this article discusses the incentive effect of different regulation means and enforcement intensity on enterprises’ low-carbon technological innovation and strives to provide a useful reference for enterprises’ low-carbon technological innovation decision-making and government’s environmental regulation policy formulation in the context of low carbon.
MODEL HYPOTHESIS AND CONSTRUCTION
Stakeholder Analysis
Under the common vision of “carbon neutrality,” whether an enterprise conducts green and low-carbon technological innovation is not only a strategic issue related to the gain and loss of its own interests but also a common proposition closely related to the interests of the country, the public, and every individual. Therefore, as the main body of green and low-carbon technology innovation, enterprises’ decisions and behaviors are not only driven by their own interests but also subject to the supervision and influence of the public and the government.
From the perspective of economics, the behavior of enterprises conducting the green and low-carbon technological innovation mode has strong positive externalities. Since most of the production and operation activities of enterprises are based on the profit maximization, the problems of “prisoner’s dilemma” and “tragedy of the commons” are common to arise. With the green and low-carbon technological innovation, the natural resources, including traditional fossil energy, consumed by enterprises due to production and operation activities will be greatly reduced, and thus, the environmental pollution caused by enterprise activities will be reduced. Such “energy conservation and environmental protection” results bring much more benefits to the society than enterprises’ own interests, while enterprises need to pay a high cost for their low-carbon innovation behavior. On the contrary, if the enterprise chooses to maintain the traditional technology, instead of conducting green and low-carbon technology innovation, the enterprise will save the corresponding innovation cost while the society will pay more cost for the environmental pollution caused by the production using traditional technology. This is a typical example where the private cost is far less than the social cost (Cheng et al., 2017; Miao et al., 2019).
As a national environmental manager and supervisor, the government’s environmental regulation means will indirectly affect enterprises’ low-carbon innovation behavior (Song et al., 2020a; Ouyang et al., 2020; Zhuge et al., 2020). On the one hand, the higher the consumers’ awareness of green and low-carbon, the greater is their preference for green and low-carbon products (Chen et al., 2018). The government’s vigorous publicity and popularization of green and low-carbon will improve the social view of environmental protection and green consumption and also improve the market acceptance and recognition of green and low-carbon products (Zhu et al., 2013; Jan et al., 2019). It will make the traditional high energy consumption, high pollution, non-environmental protection products gradually phased out by the market, thus forcing enterprises to turn to the green and low-carbon technology innovation mode. At the same time, by the means of propaganda and guidance, the government can encourage the public to actively supervise enterprises’ low-carbon technological innovation behavior (Chen et al., 2018; Fan et al., 2019). On the other hand, measures such as pollution tax or green subsidy adopted by the government will directly affect the final profit of enterprises, which internalizes the external benefits of enterprises’ low-carbon technological innovation and strengthens the motivation of enterprises to conduct green and low-carbon technological innovation (Brav et al., 2018; Song et al., 2020b).
From the perspective of the product market, as the last link of consumer behavior, green consumption can make green production activities make a real difference and achieve sustainable development (Zhang Y. et al., 2019). Public consumers’ satisfaction and acceptance of enterprise products will directly affect the production activities of enterprises. Enterprises are motivated to develop green products that adopt sustainable innovation or materials if environmental sustainability prevails among consumers (Chang and Zhang, 2019). Moreover, if the traditional non-environmental protection production activities of enterprises cause the environmental pollution, consumers, as the victims of pollution, will spontaneously supervise the production behavior of enterprises and adjust their consumption decisions accordingly, which will affect the profits of enterprises (Kammerer, 2009; Lin et al., 2013). Therefore, the public can “vote” for enterprises’ green and low-carbon technological innovation through their consumption behavior.
To sum up, enterprises’ decision on whether to conduct green and low-carbon technological innovation has a great influence on their own profit, production efficiency, energy efficiency, and their social image. And it will also have an impact on the natural environment and then affect the interests of the government and the public, thus causing the government’s regulation and social supervision. Moreover, when making the strategic choice of whether to adopt the green and low-carbon technology innovation mode, enterprises will not only take their needs of interest into account but also the consumption preference of the public, the social consciousness of environmental protection, the social acceptance of innovative products, and the requirements of government policies. Therefore, the interests of the enterprise, the government, and the public are mutually restricted and influenced. To be more intuitive, we use Figure 1 to simply represent the interest relationship between the three.
[image: Figure 1]FIGURE 1 | Relationship between the stakeholders.
Hypothesis
As an important economic analytical tool, the game theory has been widely applied in various fields to explain some social phenomena (Su et al., 2018a; Su et al., 2018b; Ma and Sun, 2018; Xie et al., 2018). The evolutionary game theory studies the changing trend and stability of the proportion of specific strategies adopted by game groups based on the learning ability and bounded rationality of game subjects (Smith, 1976; Friedman, 1998). Different from traditional games that emphasize static equilibrium, evolutionary games emphasize the dynamic process to reach system equilibrium as well as the overall evolution result and stability of the system. The selection process of the green and low-carbon technology innovation mode of enterprises is the result of enterprises’ continuous learning and adjustment of their own strategies in response to the different interest demands of the three parties in the system composed of the government, the public, and the enterprise itself, which is consistent with the evolutionary game theory. Therefore, in order to find the effective ways to encourage enterprises to conduct green and low-carbon technology innovation mode, this study constructs an evolutionary game model that includes the government, the public (consumers), and enterprises. We assume that the strategies of the government are {regulation, no regulation}. The strategies of the public consumers are {Supervision, No supervision}, while the strategies of enterprises are {conduct green and low-carbon technological innovation, adopt traditional techniques}. We first make the following assumptions:
Hypothesis 1: Participating subjects. In this model, the government, the public (consumers), and enterprises are considered a system without considering other constraints. All of them have bounded rationality and certain learning ability. They can form their own strategies and make decisions in response to the actual situation. And they can also adjust their strategies in the process of continuous learning and trial and error to reach an equilibrium state. In the model, [image: image], [image: image], and [image: image] represent the probability that the government chooses an environmental regulation strategy, social consumers choose the supervision strategy, and enterprises choose conducting green and low-carbon technology innovation, respectively, where t presents the time and [image: image].
Hypothesis 2: Regulatory policies. Taxing on pollution, subsidizing and incentivizing green and low-carbon technological innovation (including innovative product price subsidy and innovative cost subsidy), and conducting social propaganda and guidance are the four means for the government to conduct environmental regulation on enterprises. [image: image], [image: image], [image: image], and [image: image] are, respectively, used to represent the cost of these four environmental regulation means, where [image: image] represents the enforcement intensity of emission tax levy; [image: image] and [image: image] represent the proportion of subsidies for low-carbon technology innovation products and for low-carbon technology costs, respectively; and [image: image] represents the implementation intensity of work of environmental propaganda and guidance.
Hypothesis 3: The payoffs of each entity. The profit obtained by the enterprise using traditional technology for production is R. If an enterprise still uses traditional technology to carry out polluting production activities under the supervision of the public, it will lose [image: image] due to the public’s consumption preference. After adopting the green and low-carbon technology innovation mode, enterprises gain incremental benefits [image: image]. Specifically, under the four strategies of (regulation, supervision), (regulation, no supervision), (no regulation, supervision), and (no regulation, no supervision), the incremental benefits of enterprises are [image: image], [image: image], [image: image], and 0, respectively. In addition, the government finds enterprises’ deceptive rent-seeking behavior for the purpose of obtaining innovation subsidies with a certain probability [image: image] and punishes such behavior according to the standard of pollution tax. The cost of enterprises’ green and low-carbon technology innovation is [image: image]. Meanwhile, the environmental benefits brought to the government and the public are [image: image] and [image: image], respectively. On the contrary, if enterprises continue to use traditional production technology, the possibility of pollution discharge will increase, and the government and the public will suffer losses [image: image] and [image: image], respectively, due to the environmental pollution. Besides, if the public has a high degree of preference and demand for enterprises’ green and low-carbon technology innovation products, and “vote” for enterprises’ low-carbon technology innovation by consumption behaviors, then it is considered that public consumers have effectively supervised enterprises’ low-carbon technology innovation behavior. And then, consumers will get extra rewards from the government [image: image]. The cost of public supervision is [image: image]. The corresponding parameters are given in Table 1.
TABLE 1 | Parameter descriptions.
[image: Table 1]Evolutionary Game Model Construction
Based on the aforementioned assumptions that the payoff of the participants is the difference between profit and cost (Hofbauer and Sandholm, 2007), this study constructs an evolutionary game model with the government, the public, and enterprises as the main participants. The payment matrix of the tripartite evolutionary game is given in Table 2.
TABLE 2 | Tripartite evolutionary game payment matrix.
[image: Table 2]MODEL ANALYSIS
The Strategy Stability Analysis of Each Party
Due to the information asymmetry between the government, enterprises, and the public under environmental regulation, the three parties will judge the strategies of other players based on historical experience and adjust their own strategies in the process of continuous learning and trial and error. Therefore, in the process of dynamic adjustment of their own strategies, the government, enterprises, and the public show a dynamic replication process in the evolutionary game. Based on the payment matrix, we calculate the replication dynamic equation of the government, enterprises, and the public, respectively, and analyze the strategic stability of each entity.
Analysis on the Stability of Government’s Strategy
According to the payment matrix, the expected revenue [image: image] when the government chooses the strategy of “regulation,” the expected revenue [image: image] when the government chooses “no regulation,” and the average expected revenue [image: image] are shown, respectively, in Eq. 1:
[image: image]
The replicator dynamic equation of environmental regulation by the government is shown in Eq. 2:
[image: image]
The first derivative of [image: image] and the defined [image: image] are, respectively, shown in Eqs 3, 4:
[image: image]
[image: image]
According to the implicit theorem of differential equations, [image: image] and [image: image] are the stability condition of the government’s adoption of regulation. Since [image: image], [image: image] is a decreasing function of [image: image]. Therefore, when [image: image], [image: image]is derived, so [image: image]and [image: image]. Then the stable state can be achieved at all values of [image: image]. When [image: image], we have [image: image] and [image: image]. The government’s strategy is stable at [image: image]. Otherwise, [image: image] is the evolutionary stable strategy. Thus, the phase diagram of the government’s stability evolution is related to the curve [image: image].
Analysis on the Strategic Stability of the Public
The expected payoff [image: image] when the public adopts the supervision strategy, the expected payoff when the strategy of no supervision is adopted, and the average expected payoff [image: image]are, respectively, shown in Eq. 5:
[image: image]
According to Eq. 5, the replicator dynamic equation of the supervision strategy adopted by the public and its first derivative can be, respectively, written as Eqs 6, 7:
[image: image]
[image: image]
According to the implicit theorem of differential equations, when [image: image] and [image: image], the probability of social public choice of supervision strategy is in a stable state. Therefore, the quantitative relationship between the government’s incentive to the public [image: image]and the cost of public supervision [image: image]determines the strategy evolution of public. To be specific, when [image: image], [image: image], and [image: image]are obtained, the strategy of supervision is in stable state with all the values of [image: image]. When [image: image], we can derive [image: image], then the evolutionary stability strategy is [image: image]. When [image: image], [image: image]is obtained, in which case [image: image] is stable.
Analysis on the Stability of Enterprises’ Strategy
The expected return [image: image]when enterprises choose the strategy of conducting green and low-carbon technology innovation, the expected return [image: image]when enterprises adopt traditional technology, and the average expected return [image: image] are, respectively, shown as follows:
[image: image]
Thus, the replicator dynamic equation of enterprises’ choice of green and low-carbon technology innovation strategy is obtained, as shown in Eq. 9:
[image: image]
Then, the first derivative of [image: image] and defined [image: image] are, respectively, as shown in Eqs 10, 11:
[image: image]
[image: image]
When condition [image: image]and [image: image]are both met, enterprises’ choice of green and low-carbon technology innovation strategy is in a stable state. Therefore, when [image: image], we have [image: image]and [image: image], and all [image: image]’s are in an evolutionarily stable state. When [image: image], we have [image: image], and thus, [image: image]is an evolutionary stable strategy. When [image: image], [image: image] is derived. In this case, [image: image] is the evolutionary stable strategy. Therefore, the evolutionary phase diagram of enterprises’ adoption of green and low-carbon technology innovation is related to the quadratic curve [image: image].
Stability Analysis of Equilibrium Point of Tripartite Evolutionary Game System
In the tripartite game between the government, the public, and enterprises, the replicator dynamics in Eqs 2, 6, 9 describe the dynamic process in which the bounded rational parties learn and adopt regulation strategies, supervision strategies, and green and low-carbon technology innovation strategies, respectively. When all the three parties reach a stable state, it means that all the players have found effective and stable Nash equilibrium solutions through continuous trial and error. In order to seek the equilibrium point of enterprises under environmental regulation, Equation set (12) is established as follows:
[image: image]
All the strategic equilibrium solutions of the evolutionary game model are obtained by solving equation set 12): [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image]. The Jacobian matrix of the tripartite evolutionary game system is given as follows:
[image: image]
According to the Lyapunov equilibrium stability theory, when all eigenvalues of the Jacobian matrix are less than 0, the equilibrium point is asymptotically stable. When all eigenvalues in the Jacobian matrix are greater than 0, the equilibrium point is unstable. When the eigenvalues of the Jacobian matrix are both positive and negative, the equilibrium point is an unstable point. The Lyapunov indirect method was used to analyze the stability of each pure strategy equilibrium point, and the results are given in Table 3.
TABLE 3 | Result of local Stability.
[image: Table 3]As can be seen from Table 3, [image: image], [image: image], and [image: image]are all unstable equilibrium solutions. When [image: image], the system has at least one equilibrium point [image: image]. And if [image: image]and [image: image] are both satisfied, the replication dynamic system has only one stable point [image: image]. It shows that when the supervision cost of the public is greater than the supervision reward, and the pollution tax collected by the government is less than the expenditure on public propaganda and guidance, the government and the public will tend to adopt the strategy combination (no environmental regulation, no supervision). When [image: image], there is at least one equilibrium point [image: image] in the system, that is, when the government and the public, respectively, adopt no regulation and supervision strategy, then enterprises can be effectively mobilized to conduct low-carbon technological innovation in the case that the benefits of conducting green and low-carbon technological innovation are greater than the sum of its possible costs, as can be seen from the stability condition of [image: image]and [image: image]; when enterprises are faced with constraint conditions [image: image] and [image: image], respectively, under the two strategy combinations (regulation, no supervision) and (regulation, supervision), it is a stable strategy for enterprises not to conduct green and low-carbon technology innovation.
NUMERICAL SIMULATION ANALYSIS
The asymptotic stability analysis of the evolutionary game shows that the stability of strategies of the government, the public, and the enterprise are closely related to the benefits and costs of all parties. To visually depict the asymptotic stable operation track of enterprises’ green technology innovation under different executive strengths of pollution tax, subsidies, propaganda, and guidance, respectively, this study uses a MATLAB simulation tool to conduct numerical simulation analysis on the aforementioned evolutionary game model. The initial value of the parameter is set as follows: [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], which met the stability condition of [image: image].
The initial proportion of “regulation,” “supervision,” and “conduct green and low-carbon technology innovation” strategies chosen by the government, the public, and enterprises was set as [image: image]. The number of times that the dynamic equations evolve with time was set as 100. The x, y, and z axes in Figure 2–Figure 5 represent the probability of the government, public, and enterprises choosing environmental regulation, supervision, and conducting green low-carbon technology innovation, respectively.
[image: Figure 2]FIGURE 2 | System evolution trajectory under different tax intensities [image: image].
First, the levy intensity of the pollution tax [image: image] is assigned 0.2, 0.5, and 0.9, respectively, to analyze the impact of different pollution tax intensity on the process and results in evolutionary game. The simulation results are shown in Figure 2. From the evolutionary trajectory of Figure 2, it can be seen that the environmental regulation means of pollution tax on enterprises can effectively mobilize enterprises’ low-carbon and green technological innovation. In the case of pollution tax levied by the government, enterprises will choose green and low-carbon technological innovation after weighing the cost of pollution and technological innovation. The evolution speed of enterprises choosing green and low-carbon technology innovation is faster at a low intensity of pollution tax. Therefore, the levy of pollution tax has a certain incentive effect on enterprises’ green and low-carbon technological innovation. And there may be an optimal value for the intensity of pollution tax. As can be seen from Figure 2, as the probability of the government choosing the environmental regulation strategy decreases, the public gradually plays a major supervisory role. Under the government’s regulatory means of collecting pollution taxes, enterprises will abandon the traditional technology and choose to conduct green and low-carbon technology innovation. When enterprises constantly adjust their strategies, gradually reduce their dependence on the traditional technological innovation, and conduct green and low-carbon technological innovation consciously and spontaneously, the ecological environment will be improved. Then the government tends to cancel pollution tax gradually, where the supervision of the public will play a major role. Besides, with the strengthening of the government’s pollution tax intensity, the public’s supervision on enterprises’ green and low-carbon technology innovation behavior will also be strengthened.
In order to explore the incentive effect of different intensities of innovation subsidies on enterprises’ green and low-carbon technology innovation, we assign 0.2, 0.5, and 0.9 to the implementation intensity [image: image] and [image: image] of subsidies for innovative product price and subsidies for innovation cost, respectively. The evolution path of the system under different intensities of innovation subsidies is shown in Figures 3, 4. With the increase in innovation subsidy intensity, enterprises are stable in green and low-carbon technology innovation strategy much faster, which indicates that subsidy incentive plays a significant role in promoting enterprises’ green and low-carbon technology innovation. And the incentive effect of innovation subsidies on enterprises’ green and low-carbon innovation is most significant at the intensity of 0.9. However, under this intensity, the probability of the government adopting environmental regulation strategy evolves to 0 at the fastest rate. As a kind of cost compensation, low-carbon innovation subsidies reduce the cost of low-carbon technology innovation activities to a certain extent, largely alleviating the economic pressure and constraints faced by enterprises. However, the input of subsidy funds increases the financial burden, which increases the cost and pressure of environmental regulation for the government. And in reality, the government also needs to prevent some enterprises from cheating on subsidies, which also brings some difficulties to the implementation of innovation subsidies. With the incentive of subsidies, enterprises constantly adjust their production and operation activities. With the increasing knowledge and experience of green and low-carbon technology innovation, the cost of innovation will greatly decrease, and enterprises’ willingness of low-carbon technology innovation will gradually strengthen. Thus, the proportion of enterprises adopting green and low-carbon technology innovation strategy will increase as time moving by. With the popularization and wide application of green and low-carbon technology, governments will gradually eliminate the innovation subsidies, so that the supervision of the public will play a leading role. Therefore, the government’s innovation subsidies can effectively mobilize enterprises’ green and low-carbon technological innovation. Moreover, innovation subsidies of high intensity have the most obvious incentive effect on enterprises’ low-carbon technological innovation, as well as the strongest inhibitory effect on government’s environmental regulation.
[image: Figure 3]FIGURE 3 | System evolution trajectory under different subsidy intensities [image: image].
[image: Figure 4]FIGURE 4 | System evolution trajectory under different subsidy intensities [image: image].
Numerical simulation analysis was carried out when the intensity of government’s environmental propaganda and guidance to the public is 0.2, 0.5, and 0.9, respectively. The evolution trajectory of the system is shown in Figure 5. With different intensities of environmental propaganda and guidance, the three parties, respectively, choose “no regulation,” “supervision,” “conduct green and low-carbon technology innovation” as the ultimate strategy, that is, because of the government’s environmental protection, propaganda work successfully improved the public environmental protection consciousness and effectively motivated the social public supervision behavior of low-carbon production activities of the enterprise. The government will gradually loosen environmental regulations and let the public’s supervision play a leading role. This is because the government’s efforts on environmental propaganda and guidance have successfully raised the public’s awareness of environmental protection and effectively encouraged the public to supervise enterprises’ low-carbon production activities. Therefore, the government will gradually relax environmental regulations, making the supervision of the public play a leading role. In addition, it can be seen from Figure 5 that low intensity of public propaganda and guidance has the strongest incentive effect on enterprises’ low-carbon technological innovation, that is, the proportion of enterprises choosing low-carbon technological innovation evolves to 1 at the fastest rate. However, the high-intensity public propaganda and guidance do not significantly accelerate enterprises’ choice of green and low-carbon technology innovation, and the speed of public supervision evolved to a stable state in the high-intensity case is also slow. The government’s environmental propaganda and guidance and the public’s supervision all take costs. Besides, when enterprises conduct green and low-carbon technological innovation and related production activities, the innovation cost will be partially transferred to consumers. Therefore, with the strengthening of government’s propaganda and guidance, the cost of the public and enterprises will be further increased, which will slow down the evolution speed of enterprises’ green and low-carbon technological innovation and the adoption of supervision behavior by the public. In addition, in the case of asymmetric information, excessive environmental publicity may also inhibit the public’s preference for low-carbon products to a certain extent, thus having a negative impact on the enthusiasm of enterprises for green and low-carbon technology innovation.
[image: Figure 5]FIGURE 5 | System evolution trajectory under different propaganda and guidance efforts [image: image].
CONCLUSION
Green and low-carbon technology innovation is the fundamental way to implement energy conservation and environmental protection and achieve low-carbon economy. As an important carrier of economic development, enterprises should undertake the responsibility and mission of developing low-carbon economy and actively conduct green and low-carbon technology innovation. The government and the public, as the main stakeholders of green and low-carbon technological innovation, should create favorable conditions for the low-carbon development of enterprises and help enterprises overcome obstacles such as high cost and technical barriers, thus mobilizing enterprises to conduct green and low-carbon technological innovation. The synergy among the government, the public, and enterprises is the key to the development of low-carbon economy in China.
Therefore, it is of great significance to study how should the government make effective environmental regulation policies to fully mobilize the enthusiasm of the public and enterprises, thus directly or indirectly stimulating enterprises’ green and low-carbon technological innovation. Different from some existing studies, this work not only focuses on the interaction between two of the government, public consumers, and enterprises but also studies the three in a unified system. Specifically, under the assumption of information asymmetry and bounded rationality, this study applies the evolutionary game method to study the incentive mechanism of enterprises’ green and low-carbon technological innovation. Specifically, this study constructs an evolutionary game model that includes the government, the public, and enterprises and obtains the evolutionary stability strategy by analyzing the replication dynamic equations of each subject. And the evolutionary path of the game under different enforcement efforts of environmental regulation means is numerically simulated. The results show that 1) the regulation means of pollution tax, subsidies for low-carbon technology innovation products and innovation costs, and environmental propaganda and guidance are all effective incentives for enterprises’ green low-carbon technology innovation; 2) moderate pollution tax can effectively promote the green and low-carbon technology innovation of enterprises; 3) high innovation subsidies have a significant incentive effect on enterprises’ innovation behavior of low-carbon technology; and 4) the incentive effect of low-intensity environmental propaganda and guidance on enterprises’ green technology innovation is stronger than that of high intensity.
This study also has policy implications. Based on the aforementioned analysis, this study puts forward the following suggestions:
1) As the promoter of green and low-carbon technology innovation and the authority of social and environmental supervision, government’s management means and management intensity will have an impact on enterprises’ green technology innovation. Therefore, the government should reasonably choose the means and intensity of environmental regulation so as to prevent the implementation of excessive regulatory means from hindering the green and low-carbon technological innovation of enterprises, which poses a higher requirement for the government’s incentive mechanism design. First of all, the traditional view of all enterprises as the same type of hybrid mechanism no longer meets the practical requirements. For different types of enterprises, the government should treat them differently according to their actual situation. A relatively fair mechanism can be formed by giving matching incentive intensity according to the different levels of low-carbon technology of enterprises. In this way, the motivation of enterprises to conduct green low-carbon technology innovation can be improved. Second, the government should reasonably determine the subsidy level, evaluate the efficiency of subsidy implementation in time, and dynamically adjust the subsidy level according to the evaluation results. Third, the government should dynamically adjust the level of pollution tax and timely evaluate the efficiency of different tax implementation so as to find the optimal proportion of pollution tax. In addition, the environmental propaganda and guidance of the public should not be neglected. As the main body of the market economy, the consumer’s consumption preference is the production orientation of enterprises. The government can improve consumers’ awareness of green and low-carbon products through low-carbon public service advertisements and other publicity methods and provide appropriate incentives for their green and low-carbon consumption. Last but not least, green-credit policy should also be committed to provide support for enterprises’ green and low-carbon technological innovation. Moreover, the government should improve the certification standards of low-carbon product, establish market access systems, and improve the intellectual property protection laws for low-carbon technology so as to create a good institutional environment for the development of green and low-carbon industries.
2) As the main demand body in goods market, the consumption behavior of the public has a significant impact on the production decision-making of enterprises. Therefore, the public consumers should first improve their awareness of low-carbon environmental protection and then cultivate the concept of low-carbon consumption in their daily life by collecting information about green and low-carbon products and services spontaneously, thus gradually increasing the cognition and demand for low-carbon products and services. Second, the public should be aware of their responsibilities as environmental stakeholders and take the initiative to play the role of the market regulator. In efforts to supervise enterprises’ low-carbon production and operation activities and eliminate non-environmental protection products, the public can contribute a lot to the development of green and low-carbon technology innovation.
3) It has become a global consensus to develop low-carbon economy. And low-carbon technological innovation has also become a worldwide trend. Enterprises should seize the opportunity and take the initiative to implement the strategy of green and low-carbon technology innovation. To be specific, enterprise should first strengthen their awareness of social responsibility and green environmental protection and take the initiative to conduct green and low-carbon technological innovation. Besides, at the same time of increasing innovation investment, enterprises should also constantly improve the quality of their low-carbon products and strength to meet the production capacity and requirement of green and low-carbon technological innovation so as to occupy a favorable competitive position in the low-carbon product market. Second, enterprises should develop a long-term low-carbon innovation strategy and improve their own low-carbon management mechanism, which contributes to reducing the cost of low-carbon production. At the same time, enterprises should also make full use of various incentive policies of the government, with the guidance of the government policy mechanism, promoting the low-carbon technology innovation process with maximum efficiency and achieving great progress and sustainable development of enterprises. Last but not least, enterprises can strengthen the publicity of the performance and long-term environmental advantages of low-carbon products so as to enhance consumers’ cognition and trust on the performance of their products and thus attract more consumers with low-carbon preference.
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Energy intensive industries (EIIs) in China are predominantly reliant on fossil fuels. Consequently, such high fossil fuel dependency has amplified carbon emission levels and blocked the low-carbon transition. It is inappropriate to discuss the solution of the dependency before investigating fossil-fuel price distortion and its impact on the industrial energy consumption. Therefore, this paper built a dynamic trans-log cost function model based on provincial panel data of China’s Ells between 2004 and 2016, to investigate inter-fuel substitution effects caused by own price elasticities and cross price elasticities, and analyzed the impact of fossil-fuel price distortions on low-carbon transition. The level of price distortions in coal, gasoline and diesel was evaluated, based on which the CO2 mitigation potentials in China’s EIIs were estimated. Results show that: 1) in each EII sector, the own price elasticities of all fuels were negative while the cross price elasticities among coal, oil and electricity were positive, suggesting substitution effect exists; 2) the average level of price distortions in coal, gasoline and diesel is 7.48, 11.1 and 32.19%, respectively, which means the prices of coal tend to be more market- oriented than the other two fuels; 3) removing coal price distortions can potentially reduce CO2 emissions in China’s EIIs by 905.78 million tons, while the effects of removing oil price distortions were uncertain, unless the substitution of coal for oil was restrained. Therefore, there is still much room for improvement in China’s fossil-fuel market reform. Possible policies are required to improve the production in EIIs and the low-carbon transition by adopting cleaner energy resources to substitute fossil-fuels.
Keywords: price distortions, low-carbon transition, China’s energy intensive industries, carbon mitigation potential, fossil fuel substitution
HIGHLIGHTS

➢ Focus on the low-carbon transition in China’s energy intensive industries
➢ The degree of fossil-fuel price distortions is estimated
➢ Substitution relationship among energy inputs is analyzed
➢ CO2 mitigation potentials are estimated by removing fossil-fuel price distortions.
1 INTRODUCTION
Energy Intensive Industries (EIIs) in China have maintained high-speed growth for over 3 decades since China’s reform and opening-up. In 2016, the total industrial value of the EIIs reaches 9,849 billion yuan, 42 times of the level in 1985, which represents one third of the total industrial value of all sectors. In the meanwhile, energy consumption from the EIIs has increased almost 9 times from 222 Mtce in 1985–2158 Mtce in 2016, accounting for 70.0% of energy consumption in all sectors (Figure 1). From the perspective of energy input structure, coal-related fossil-fuels are 71.7% of total energy sources, followed by electricity and oil-related fossil-fuels (Figure 2). The high proportion of fossil-fuels has led to serious environmental issues due to CO2 emissions. According to Wang et al. (2019a), CO2 emitted by China’s EIIs takes up 79.7% of total emissions.
[image: Figure 1]FIGURE 1 | Energy consumption and industrial output in China’s EIIs.
[image: Figure 2]FIGURE 2 | Fuel consumption structure in China’s EIIs.
In order to maintain steady economic growth and build a cleaner environment, the policies that aimed at declining the reliance on fossil energy have attracted governments’ attention in recent years. Many studies have focused on the impact of carbon emissions caused by inputting fossil fuels on economic growth. In China, the EIIs, which heavily relies on raw material production and processing, has become one of the key challenges for economic transformation and upgrading. In this context, low-carbon transition of the EIIs is inevitable and of great significance for the sustainable development of China’s economy. On the other hand, environmental issues such as climate warming and frequent haze have forced the industry to make a low-carbon transition. Controlling the fossil-fuel consumption and cutting the pollution emissions of the EIIs have become the key point of China’s industrial low-carbon transition. Chinese government has also put forward a series of goals, such as, controlling the total amount of energy consumption during the 13th 5 years plan, achieving a 15% reduction in energy consumption per unit output value by the end of the 13th 5 years plan, reaching the peak of carbon emissions at around 2030 while striving to reach that peak as early as possible.
However, fossil-fuel price distortions caused by the lag of energy market reform is distorting the relative prices of energy options, leading to excessive use of fossil-fuels and hence hindering the low-carbon transition in China’s EIIs. In China, as energy products are important input factors in the process of China’s economic development, the price of traditional fossil-fuels has been kept at a low level for a very long period (Wang and Tian, 2015; Sun et al., 2016), which has made a large number of outdated capacities that should be phased out still profitable, and thus slowed the low-carbon transition to cleaner energies. The fossil-fuel price distortions will have a negative impact on the low-carbon transition in two ways: firstly, the low cost of fossil-fuels enables the EIIs to gain profits simply by consuming more energy inputs, which inhibits the motivation for long-term profit growth through Research and Development (R&D)and technology investment; Secondly, the low costs of fossil-fuels encourages the EIIs to use more traditional fossil-fuels, which impedes the substitution of clean energies for traditional fuels. Therefore, the distorted fossil-fuel prices have brought about excessive dependence and overuse of traditional energies in China’s EIIs, inhibited the input of other production factors and substitution of clean energies, thus become a barrier to the low-carbon transition.
Therefore, the objectives of the paper are to measure the degree of fossil-fuel price distortions and impact on the low-carbon transition in China’s EIIs. In China, the EIIs are consist of six industries, namely the processing of petroleum, coking and nuclear fuel industry; production and supply of electric and heat power industry; raw chemical materials and chemical products manufacturing industry; non-metallic mineral products manufacturing industry; smelting and pressing of ferrous metals industry; and smelting and pressing of non-ferrous metals industry. The first two industries, both energy industries, are not covered in the paper as they use energy as factor inputs and in the meanwhile produce energy as outputs, and thus the degree of fossil-fuel price distortions which relies on the relationship between the marginal product and price of factor inputs cannot be captured as the price distortions could come from both directions. As a result, this paper focuses on the rest four industries and main contributions include three aspects; 1) The degree of fossil-fuel price distortions is measured; 2) A dynamic economic model is built to study the relationship between energy inputs and the output and analyze fuel substitution effects in China’s EIIs; 3) The impact of fossil-fuel price distortions on carbon emissions and the low-carbon transition is further evaluated.
The structure of this paper is organized as follows: Section 1 introduces energy uses in China’s EIIs and purpose of this study; Section 2 summarizes relevant literature on the topic of energy price distortions and the impact on low-carbon transition; Section 3 presents the methodology adopted and variables and data sources used; Sections 4, 5, elaborate the empirical analysis of China’s EIIs and then conclusions and policy suggestions are made in Section 6.
2 LITERATURE REVIEWS
Energy prices have long been regulated by the government, and thus the marketization degree of energy products remains very low. There are extensive studies that focus on the lagging energy marketization reform and the resulting energy price distortions. Shi and Sun (2017) established a two-sector economic model to demonstrate a negative correlation between price distortions and economic growth caused by China’s energy market regulation. Ouyang et al. (2018) paid attention to regional characteristics of energy market-oriented reforms, and studied the impact of energy price distortions on energy efficiency through analyzing the energy market-oriented reform policies of key cities. Li et al. (2019a) built a model based on the neoclassical growth theory to capture the negative impact of energy price distortions on environmental pollution. Wang et al. (2019b) studied the relationship between oil price distortions and carbon emissions in China’s transport sector. It can be seen from the abovementioned literature that the research on energy price distortions is gradually evolving from national level to industrial and regional level.
From the perspective of quantitative study, most measurements of price distortions in energy market are presented as energy price distortion index. The basic idea of the measurement is first to estimate the marginal output of energy input according to the production function, i.e., evaluate the expected return per unit of energy inputs, and then measure the degree of distortions in energy price by the ratio of the expected return to the actual return per unit of energy inputs. Therefore, the energy price distortion index studied by a large number of literature is, in essence, describing the distortions in the ratio of marginal revenue product (MRP) to energy prices (Shi and Sun, 2017). Besides the energy price distortion index, some others build economic models such as the total cost function and factor share equations to measure the optimal price of factor input, and then compare this optimal price with actual price of energy products to estimate the energy price distortions. For example, Khademvatani and Gordon (2013) used a limited profit function model to measure the shadow price of energy products; Haller and Hyland (2014) and Ouyang and Sun (2015) adopted the translog cost function model to measure the degree of energy price distortions. These measurements reveal the gap between actual price and the optimal price (benchmark price) of energy products.
As fluctuations in energy price have direct impact on the quantity of factor inputs and outputs, the direct prediction of fossil energy consumption was relatively complex and difficult, Manigandan et al. (2021) analyzed the association between many exogenous variables and forecasted the natural gas production and consumption in United States. Many other studies focus on the issue of price elasticity and factor substitution. Berndt and Wood (1975) initially employed energy factor into the trans-log model proposed by Christensen et al. (1973) to estimate the factor substitution effect between energy and capital. Then a large number of literature have studied the factor substitution effect between energy and other input factors, such as Kim and Heo (2013), Haller and Hyland (2014), Adetutu (2014), Sharimakin (2019). As energy inputs are consist of various fuel types, increasing attention has been drawn on discussing both factor substitution (between energy and other input factors) and fuel substitution (between different fuel sources) concurrently, such as Li and Lin (2016), Wang and Lin (2017), Huh et al. (2018), Presley and Lin (2018), Marques et al. (2018), Li et al. (2019b). However, the results obtained by these studies on the relationship between energy and other factors are controversy, with some suggest that energy and capital as well as energy and labor are substitutes, while others argue that both are complements. But when it comes to fuel substitution, most results agree that a substitute relationship exists.
As China’s economy is entering into a “new normal” with a slower growth but increasing focus on the environment, it is critical for the EIIs to shift from an extensive development pattern towards high efficiency and sustainable production. In the aspect of low-carbon transition in the EIIs, existing literature have discussed the influencing factors to a clean development and the potential for energy conservation and emission reduction from different perspectives. For example, from the viewpoint of energy efficiency, Tian and Lin (2018) studied factors influencing energy intensity in China’s EIIs through the index decomposition method (IDA) and production decomposition method (PDA), and their results showed that technology improvement effect is the most important influencing factor to energy intensity; Guo et al. (2018) used data envelopment analysis (DEA) method to measure the total factor energy efficiency of China’s EIIs, and results suggested that strengthening environmental regulation and improving the environmental efficiency of energy consumption are effective ways to achieve sustainable development. With respect to carbon emission performance, Yuan and Zhao (2016) used the input-output decomposition method to analyze the influencing factors of carbon emission in China’s EIIs, and decomposed the changes in carbon emissions into three underlying factors: emission intensity, technology and output demand; Lin and Tan (2017), Du et al. (2018) adopted the logarithmic mean divisia index (LMDI) method and scenario analysis to study influencing factors of carbon emissions and evaluate carbon emission reduction potential in China’s EIIs. In terms of energy conservation and emission reduction management, Li et al. (2014) summarized the economic regulation policies that China’s EIIs are facing; Zha et al. (2017) investigated the energy-saving technologies and the impact of technology guidance policies on energy conservation and emission reduction; Ouyang and Ju (2017) analyzed the management aspect of energy conservation and emission reduction in China’s EIIs.
The above-mentioned literature has studies the clean growth of China’s EIIs from different aspects and stressed the inevitability of a low-carbon transition. However, one of the most important problems faced by the EIIs, which is the distortions in energy prices, has not been discussed sufficiently. Therefore, this paper focuses on how the energy price distortions affect input factors and productivity thus hamper the low-carbon transition in China’s EIIs.
3 METHODOLOGY AND DATA DESCRIPTION
3.1 Methodology
China’s EIIs are characterized by high energy inputs and carbon emissions, partly because of that the prices of fossil-fuels in China have long been regulated at a very low level. In this paper, a production function model is built to reflect the impacts of energy price fluctuations on input-output relationship in the production process. In China’s EIIs, essential input factors are capital, labor and energy sources; while energy inputs are consist of various fuel types, mainly coal-related fuels (co), oil-gas fuels (og) and electricity (el). Therefore, the production function can be expressed as Eq. 1. Where, co refers to coal related fuels including raw coal, cleaned coal and coke; og represents oil fuels including gasoline, diesel and kerosene and natural gas. Similar as Yang et al. (2014) and Li and Sun (2018), natural gas is merged with oil fuels due to its small percentage in total energy inputs. In China’s EIIs, coal-related fuels are the dominant type of energy sources, which account for around 70% of total energy inputs.
[image: image]
In order to analyze the impacts of input factor prices on input-output relationship, we further derive the cost function from the production function, with the assumption that output is exogenous. In order to avoid constant elasticity of substitution, with refer to Berndt and Wood (Chen et al., 2019), Ma et al. (Zheng et al., 2020), and Wang et al. (Niu et al., 2021), a trans-log cost function is adopted to analyze the energy price elasticity.
[image: image]
The cost function Eq. 2 satisfies the assumptions of non-neutral technical progress and non-constant returns to scale. In the meanwhile, it also satisfies the adding up, homogeneous and symmetric restrictive conditions as described in .
[image: image]
Obtained from the Shephard lemma, the factor share function of capital, labor and energy can be written as Eq. 4, Which can reflect the relationship between factor prices and factor inputs. It is noteworthy that the sum of all factor shares is equal to 1, therefore, we have to drop one equation to avoid the singularity when doing the estimation.
[image: image]
Then we turn to consider separating energy inputs into three different types (coal, oil-gas and electricity). With the assumption of constant returns to scale, the total energy price function (in Eq. 5) that derived from the trans-log energy cost function, can reflect the relationship between total energy price ([image: image]) and the price of each energy form.
[image: image]
Based on Eq. 5, the cost share equation for coal, oil-gas and electricity can then be written as.
[image: image]
According to Eq. 6, the cost share for each type of fuel input can be estimated, thus by adding them together the cost share for total energy inputs can be obtained. However, it is worth noting that there could be hysteretic effect in economic variables such as investment and output. Therefore, we further bring the hysteretic variables in the model to reflect actual production process. By adding lagged variables of cost share ([image: image] and [image: image]) and considering random factor, the cost share equations of factor inputs and fuel inputs can be expressed as Eqs 7, 8.
[image: image]
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The above-mentioned equations enable quantitative analysis on the relationship between the relative prices of and the relative quantities of the factor inputs. Then Eq. 9 is used to estimate price elasticities of different inputs.
[image: image]
Where [image: image] is the cross price elasticity of the ith factor and [image: image] is the own price elasticity of the ith factor. To promote a low-carbon transition in China’s EIIs, in this study, the relationship between fossil-fuel input and fossil-fuel price is analyzed, shown as .
[image: image]
Where [image: image] represents the integrated elasticity of each energy input, which has taken into consideration the effect of both factor substitution and fuel substitution.
3.2 Data Description
In this paper, we adopt China’s provincial panel data of 30 provinces (or cities) over 2004–2016 since the data for Xizang is not available. As mentioned in Section 1, data in the four EIIs are taken into account, i.e., 1) raw chemical materials and chemical products manufacturing industry (chemical industry); 2) non-metallic mineral products manufacturing industry (non-metallic industry); 3) smelting and pressing of ferrous metals industry (ferrous metals industry); and 4) smelting and pressing of non-ferrous metals industry (non-ferrous metals industry). Data on industrial output, input and the price of each input factor in the four EIIs are essential for the model built in the paper.
For inputs and outputs, data are obtained from CEIC (2018) database and statistical yearbook of each province. These data are collected sector by sector, and then summed up to represent the EIIs in China.
Data on industrial output of the EIIs can be obtained directly from the statistical yearbooks of these provinces, which are then converted into the 2004 price level by deflating industrial product price index. The variable of “gross industrial value” is used to represent output, as “industrial value added” is not available in China’s EIIs.
With regards to industrial factor inputs, data on EIIs are also available from the statistical yearbook of each province. The indicator of numbers of employees in each EII is used to represent labor input in the industry. As there is no statistical data on capital stock in China, the capital stock of each industrial sector is calculated by the perpetual inventory method (PIM) as [image: image], where [image: image] is the depreciation rate and [image: image] is the fixed investment. Similar to Zhang et al. (Ju et al., 2017), the indicator of the “net value of fixed investment” is used to represent the capital stock in the base year. As energy sources used in the EIIs include coal products, oil-gas products and electricity, total energy consumption is calculated by totaling up each type of fuel consumed by each industrial sector, which are obtained from the provincial statistical yearbooks.
Data on fuel input prices in the provincial EIIs come from the CEIC (2018) database. As coal prices are not available at provincial level, the transaction prices for clean coal in the capital city is regarded as the coal prices for each province. For oil prices, as gasoline and diesel are the main oil inputs, the weighted average prices of gasoline and diesel in the capital city is used to reflect changes in oil prices. For electricity prices, the indicator of “electricity price for industry and commerce” is used. Based on the abovementioned data sources for each type of fuel, the weighted average sum of coal prices, oil prices and electricity prices is calculated, and used to represent the total energy price. For the price of labor input, we adopted the indicator of “average real wages” in each province. The real capital price is represented by the real interest rate, which is calculated as [image: image] , where [image: image] is the nominal interest rate and [image: image] is the inflation rate-both can be obtained from CEIC (2018) database. After multiplying each price data by the corresponding input quantity, the corresponding cost in the cost function can be obtained for subsequent calculation.
4 EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN FUEL PRICE AND FUEL INPUTS
4.1 Estimating the Relationship of Fuel Price and Fuel Inputs
Based on the model built in Section 3, the relationship between fuel price and fuel inputs in the EIIs is analyzed. Coefficients are estimated by the seemingly unrelated regression (SUR). The labor share equation (SL) and coal share equation (Sco) are dropped when conducting the SUR of factor share function and fuel share function, to avoid the singularity as mentioned in Section 3. The model results shown in Table 1 suggest all coefficients are significant. The conventional R2 for the energy share, capital share, oil share and electricity share equations are 94, 90, 97, and 92%, respective, which suggests very small differences between the observed data and the fitted values. In addition, the sign of each regression coefficient (either positive or negative), which shows the direction of the correlation for each variable, can be interpreted very well.
TABLE 1 | The estimating results in factor and fuel share equations in the EIIs.
[image: Table 1]As shown in Table 1, the factor share was positively correlated with its own price and negatively correlated with other factor prices, while the relationship of fossil-fuel input was not obvious, and the hysteretic variable showed a great positive impact on both factor and fossil fuel share. Then, the own price elasticities and cross price elasticities of fuel input can be calculated through Eqs 9, 10, and results show that the cost share for coal products, oil-gas products and electricity is 0.34, 0.26, and 0.39 respectively. The cost share of coal obtained in this study is a bit smaller, compared to 0.47 estimated by Li and Lin (2016) for the manufacturing sectors and 0.55 evaluated by Li and Sun (2018) for all sectors. But the differences in cost share of coal are mainly due to the different industrial sectors analyzed and different study periods chosen. In addition, considering the large share of coal products in total inputs (70% as abovementioned), the cost share of coal is much smaller, due to the fact that coal products are generally much cheaper than oil products and electricity when converting them into the same unit (Mtce).
As shown in Table 2, the substitutability and complementarity between fuel inputs are affected by the price elasticities. Results show that:1) Firstly, the own price elasticities of all fuel inputs are negative, suggesting that whenever the price of a fuel type rises, and demand for that type of fuel decreases. This finding of negative own price elasticities is accordance with the economic theory. For China’s EIIs, the absolute value of own price elasticity of coal (ηco-co = −0.480) is smaller than that of oil-gas (−0.673) and electricity (−0.609), which means that coal shows higher price rigidity than the other two fuel inputs, reflecting the production reality of China’s EIIs. Over the research period, although the overall proportion of coal input is decreasing, the average coal input is still over 50% of total energy inputs. 2) Secondly, the cross price elasticities among coal, oil and electricity are positive, which means that these energy inputs show substitute relationships. The substitute relationships among different fuel inputs have strong policy implications: the pricing mechanism of the fossil-fuels can affect the fuel demands. As China’s EIIs is facing strong pressure for a low-carbon transition, fossil-fuels should be substituted by cleaner energy (such as solar power, hydropower, and nuclear power) to reach the goal of mitigating carbon emissions.
TABLE 2 | The estimating fuel price elasticities in China’s EIIs.
[image: Table 2]4.2 Analyzing the Differences of Fuel Substitution Effects in Each EII Sector
To analyze the relationship between fuel price and fuel demand in specific energy intensive sectors, the fuel substitution elasticities of the four EII sectors are further estimated by SUR method, with results shown in Table 3.
TABLE 3 | The estimating fuel price elasticities in four energy intensive sectors.
[image: Table 3]As can be seen in Table 3, similar to the results for the whole EIIs, the own price elasticities of fuels are all negative, while the cross price elasticities are all positive in each of the EII sectors. However, it is noteworthy that the absolute value of own price elasticities of coal in the ferrous metals industry (η*co-co = −0.253) and the non-metallic industry (η*co-co = −0.404) are relatively small. The reason was directly correlated with the production process of the two sectors. It implies the demands for coal in these two sectors are relatively inelastic, as a result, coal price changes will not affect the demands for coal much in these two sectors. Therefore, rather than focusing on pricing mechanism, other methods such as technical progress and energy conservation management, may be more effective for the controlling of CO2 emissions in these two sectors. In the meanwhile, the cross price elasticities are quite different in these EII sectors. For example, the substitution elasticities between coal and electricity in the chemical sectors are only 0.176 (coal to electricity) and 0.133 (electricity to coal), which might because of that the equipment and technology constraints have limited the potential fuel substitution. For the ferrous metals industry, results show that it will be easier and more sensible to use electricity to substitute oil rather than substitute coal-related fuels. Some literatures have reached similar conclusions, and electricity substitution is a better option (Chen et al., 2019; Zheng et al., 2020; Niu et al., 2021). Therefore, when evaluating the impact of fossil-fuel price distortions, the differences in substitution elasticities in specific EII sectors should also be considered.
5 EMPIRICAL ANALYSIS ON PRICE DISTORTIONS OF FOSSIL-FUELS
5.1 Estimating Fossil-Fuel Price Distortions
As coal-related fuels and oil-related fuels are the main energy inputs in China’s EIIs, we further analyze the price distortions of fossil-fuels, including coal, gasoline and diesel. According to Ju et al. (2017), the level of price distortion is represented by the price distance between the benchmark price and the end-user price in reality, which can be shown as .
[image: image]
Where PDi is the price distortion of the ith type of fossil-fuels (i = coal, gasoline and diesel), EPi is the end-user price in China under government regulation, and RPi is the reference price which reflects the actual supply-demand conditions in the market. In China’s EIIs, data on end-user fossil-fuel prices are obtained directly from the CEIC database. With regards to the benchmark price for coal, similar to Lin and Jiang (2011), it is obtained by adding the coal prices for Free On Board (FOB) at Qinhuangdao port with average shipping cost. And the benchmark price for oil is evaluated by considering international prices for oil products and transportation cost (Li and Sun, 2018). As energy market in the US is considered to be highly market oriented, we adopt the US price of gasoline and diesel as the international price. These data on fossil-fuel prices are collected and summarized in Table 4, which shows in most years (except coal prices in 2013 and gasoline prices in 2016), the end-user prices of fossil fuels in China were lower than the corresponding benchmark prices, suggesting that the domestic prices of fossil-fuels in China have long been distorted and underestimated.
TABLE 4 | The benchmark price and end-user price over 2004–2015 (Yuan/Ton).
[image: Table 4]Based on the price data in Table 4, the level of price distortions in fossil-fuels can be evaluated, and results are shown in Figure 3. For oil price distortions, as the state-controlled pricing mechanism for refined oil in China was experiencing market-oriented reform during the study period, price distortions for both gasoline and diesel saw high volatility. The highest level of price distortions for gasoline and diesel happened in 2012 and 2008, which was 18 and 60.31% respectively. After that, the level of price distortion was diminishing, reflecting that domestic oil prices in China began to be in line with international prices. The fluctuation of coal price distortions was relatively gentle and the average level of price distortions was merely 7.48%. In China’s energy market, the prices of coal tend to be more market oriented, compared to that of oil products. Since 2005, Chinese government started to intervene coal prices. In 2013, the government decided to cancel the double-track coal pricing mechanism and since then coal price was eventually determined by the market. As a result, the price distortions of coal reached its lowest point in 2013 and was almost disappeared.
[image: Figure 3]FIGURE 3 | The price distortion proportion of fossil-fuels.
5.2 Estimating CO2 Mitigation Potential by Removing Price Distortion
China’s EIIs are under great stress to reduce energy consumption and carbon emissions, however, the low-carbon transition is hindered by price distortions in fossil-fuels. The underestimated fossil-fuel prices could encourage the EIIs to use more fossil-fuel inputs and inhabit the market mechanism to be effective. Therefore, removing price distortions in fossil-fuels would be an important approach to promote the low-carbon transition. Based on the abovementioned model results on the level of price distortions and price elasticities for fossil-fuels, we further look into carbon mitigation potential by removing fossil-fuel price distortions.
Assume that the price distortions in fossil-fuels are removed, i.e., the end-user prices are just equal to the benchmark prices, that will promote efforts in controlling carbon emissions through three major approaches. First, the rising fuel prices will have a negative impact on fuel inputs in the production process therefore reduce carbon emissions. Second, increases in fuel prices will encourage substitution effects between energy sources and other input factors, as well as among different fuel forms, depending on their cross-price elasticities. Third, as electricity can be used to substitute fossil-fuels in the EIIs, the accelerated electrification allows renewables to play an important role to further reduce carbon emissions. The total carbon mitigation potential could be calculated by 
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Where CMPi is the carbon mitigation potential by removing the price distortions in the ith fossil-fuel, Ci is the carbon dioxide emission coefficient, and PDi is the level of price distortions. Based on the price elasticities estimated in Section 4, the carbon mitigation potential of removing coal price distortions and oil price distortions can be calculated, with results shown in Tables 5, 6.
TABLE 5 | Carbon mitigation potential by removing coal price distortions (million tons of CO2).
[image: Table 5]TABLE 6 | Carbon mitigation potential by removing oil price distortions (million tons of CO2).
[image: Table 6]As shown in Table 5, the total carbon mitigation effect of removing coal price distortions is significant, except in 2013, suggesting that the removal of coal price distortions can reduce carbon emissions and promote the sustainable transition. The largest carbon reduction potential recorded in 2007–2008, 2010 and 2015- all above million tons of CO2 reduction-mainly due to the high level of price distortions in these years. At the time of 2011–2012, as the level of coal price distortions in coal was very small (see Figure 3), the carbon mitigation potential was also much lower: 9.5 and 2.23 million tons of CO2 reduction, respectively. Over the years between 2004 and 2016, through removing coal price distortions could have reduced CO2 emissions by 905.78 million tons in China’s EIIs.
For the removal of oil price distortions, it would be a bit different. The shares of gasoline and diesel in total energy inputs in China’s EIIs are quite small, but removing oil price distortions could lead to these small shares of oil products being substituted by large input of coal. And as the carbon emission coefficient of coal is much higher than that of oil, the removal of oil price distortions may not reduce carbon emissions. Take the year of 2004 (in Table 6) for example, the level of price distortions in gasoline and diesel was 15.29 and 27.59%, respectively (see Figure 3). Removing the price distortions of gasoline would cause a decrease in gasoline input due to the own price elasticity and an increase in electricity input due to the cross price elasticity and potentially lead to CO2 emission reduction of 0.38 and 9.26 million tons, respectively. However, it could also contribute to a large increase in coal input and thus put on potential CO2 emissions of 52.49 million tons. Therefore, the combined effect of removing gasoline price distortions could end up increasing CO2 emissions instead. This conclusion is in line with a previous study by Li and Sun (2018), and the combined effect of removing price distortions in fossil fuels in different sectors are sometimes controversy. As a result, it is important for policy makers to consider the prices of coal when removing oil price distortions, and prohibit the substitution using coal products as that will lead to more carbon emissions. With reasonable policies in place, in an effort to promote a low-carbon transition in the EIIs, this paper assumes coal will not be used to substitute oil products, and evaluates the carbon mitigation potential (i.e. considering the oil/electricity substitution only) as the last column in Table 6, which suggest the removal of oil price distortions could have reduced CO2 emissions by 785.68 million tons in China’s EIIs. The resulting mitigation potential was approximately consistent with the emission reduction potential calculated in Takayabu (2020) adopting scenario analysis, which could demonstrate the estimating mitigation potential.
6 CONCLUSION AND POLICY PROPOSALS
China is entering into the next stage of its structural reforms, featured with a slower growth rate but increasing focus on environment and sustainability. As major carbon emitters, the EIIs are facing great pressure to accelerate the imperative low-carbon transition. Among various of difficulties and barriers, the long been distorted fossil-fuel prices are with no doubt a major one. Therefore, this paper builds a dynamic fuel substitution model to study the impact of the price distortions in fossil-fuels on the low-carbon transition. Based on provincial panel data between 2004 and 2016, this paper evaluates the level of price distortions in China’s EIIs; analyzes the own price elasticities and cross price elasticities among fossil-fuel inputs to understand the impact of changes in fossil-fuel prices; and investigates the carbon mitigation potential through removing price distortions in fossil-fuels. Some interesting conclusions can be drawn from the above analysis.
1) Despite there are quantitative differences in price elasticities in each EII sector, the own price elasticities of fossil-fuel inputs are all negative, suggesting that energy pricing reform in China is an effective way to restrain demands for fossil-fuels. In the meanwhile, the cross price elasticities of fossil-fuel inputs are all positive, implying that a substitute relationship exists among coal, oil and electricity, thus an increase in prices of one fuel type will increase demands for other fuels.
2) Over the research period, positive price distortions in coal and oil products are observed in China’s EIIs, which means that removing the price distortions would lead to an increase in fuel prices. The average level of price distortions in coal, gasoline and diesel is 7.48, 11.1 and 32.19%, respectively. The overall fluctuation in the level of coal price distortions is relatively flat, while that of oil price distortions is quite significant.
3) If coal price distortions were removed, there could be 905.78 million tons of reduction on CO2 emissions in China’s EIIs over 2004–2016. The removal of coal price distortions can affect CO2 mitigation potential through cutting coal input and substituting coal with cleaner fuels including oil and electricity, due to the existence of the own price and cross price elasticities,. Therefore, removing coal price distortions can promote a low-carbon transition in China’s EIIs.
4) If oil price distortions were removed, the combined effect may not lead to a reduction on CO2 emissions, as the increase in oil prices could encourage enterprises of the EIIs to use a more dirty fuel (coal) to substitute oil products and thus give rise to even more CO2 emissions. However, if only a cleaner energy (electricity) can be used to substitute oil products, it can facilitate the low-carbon transition in China’s EIIs.
Based on these conclusions mentioned above, policy suggestions are given as follows.
Firstly, in China the price distortions in fossil-fuels still exist, as a result, promoting market-oriented price reform is still important for the low-carbon transition in China’s EIIs. The market-oriented price reform will enable the market mechanism to be effective, i.e., fuel demands will be determined by fuel prices and their price elasticities, encourage EIIs to adopt other production factors and cleaner energy sources to substitute fossil-fuels, so as to promote the low-carbon transition.
Secondly, when the market mechanism is effective, the government should also guide the EIIs enterprises to adopt cleaner energy sources to substitute fossil-fuels and limit the use of coal. It is especially helpful in the situation when domestic oil prices fluctuate with the rising international oil prices, the resulting oil prices in China may encourage EIIs enterprises to use more coal to substitute oil products. Therefore, the low-carbon transition in China’s EIIs requires both market price mechanism and the right kinds of policy guidance in place.
Finally, this paper only discussed the impact of fossil-fuel price distortions in EIIs on low-carbon transformation at the national and industrial level. In fact, if sufficient and reliable data can be collected to analyze the topic from the perspective of provincial heterogeneity, the conclusions will be more practical and policy significant.
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The Chinese government has adopted many policies to save energy and electricity in the chemical industry by improving technology and reforming its electricity market. The improved electricity efficiency and the electricity reform may indirectly reduce expected energy and electricity savings by decreasing the effective electricity price and the marginal cost of electricity services. To analyze the above issues, this paper employs the Morishima Elasticity of Substitution of the electricity cost share equation which is estimated by the DOLS method. The results show that: 1) There exists a rebound effect in the Chinese chemical industry, but it is quite large because the electricity price is being controlled by the government; 2) the reform of the electricity market reduces the rebound effect to 73.85%, as electricity price begins to reflect cost information to some extent; 3) there is still a lot of space for the reform to improve, and the rebound effect could be reduced further once the electricity price is adjusted to transfer the market information more correctly. In order to succeed in saving electricity and decreasing the rebound effect in the chemical industry, the policy implications are provided from perspectives of the improved energy efficiency and electricity pricing mechanism.
Keywords: electricity rebound effect, electricity efficiency, electricity price elasticity, chemical industry, the morishima elasticity of substitution
1 INTRODUCTION
The 13th 5-year plan of the chemical industry has accomplished the aim of saving energy, in which energy efficiency would increase by 15% and carbon emissions would decrease by 18%, through researching and developing new technology, such as large epoxy ethane reactor and high purity lithium equipment. The International Energy Agency (IEA) proposes a definition of energy efficiency as a way of managing and restraining the increase in energy usage. The most significant part of energy is electricity, according to Lin and Tian. (2016), over the past 2 decades, the average annual growth rate of electricity demand in our country was about 10% higher than that of any other country in the world, and China is still in the process of developing, so the demand of electricity will continue to grow. Then it is necessary to save electricity and improve electricity efficiency. Electricity efficiency is divided into economic efficiency and physical electricity efficiency. An economic indicator is when a factory provides more products for the same electricity input or the same products for less electricity input. In general, improving electricity efficiency or other energy efficiency means innovating technology for electricity conservation and emissions reduction. Could electricity saving be achieved by improving electricity efficiency in China? The issue has troubled economists for a long time, because empirical studies in the United States suggest that rebound effects (REs) could partially reduce electricity savings. The research on this issue is of great significance to the improvement of China’s national emissions trading scheme, for the size of the rebound effect has a great impact on the effectiveness of the relevant policy, which would greatly affect the rationality of China’s national emissions trading scheme.
Jevons. (1866) first argued that improvements in energy efficiency would result in consuming more energy and he gave an example of iron in Sughra over the period 1830–1863, which is called “Jevons Paradox”. The paradox may to some extent reduce the size of energy conservation. The phenomenon has also been called the “rebound effect”. The importance of the rebound effect attracts more attention for designing an energy policy to reduce emissions. Khazzoom. (1980) further analyzed the rebound effect from a micro level and suggested that as long as energy service was sensitive to its marginal cost, reduction in energy use would not be equal to a decrease in energy consumption for per unit products multiplied by total output. On the macro level, Brookes. (1990), pointed out that technology progress improving electricity efficiency always promoted economic growth, and which led to consuming more energy and the failure of energy saving. In all, Khazzoom and Brookes introduced the theory of the rebound effect from perspectives of the micro and macro level, respectively. The theory was termed the K-B hypothesis by subsequent researchers. Saunders. (1992) confirmed the K-B hypothesis in the application of the neo-classical theory with Cobb-Douglas and with nested CES.
Similarly, Dubin et al. (1986) applied the econometric method and an engineering-thermal load model to analyze the rebound effect of household electricity demand and found that actual saving was equal to 87% of engineering estimates for cooling and 88–92% for heating. Moreover, Haugland. (1996) suggested that the electricity rebound effect in Norway was 40% for households and 10% for commerce. Greene. (1992) measured the rebound effect of vehicle use over the period 1966–1989 and found it was only 5–15% or less. Jones. (1993) adopted the same data as Greene. (1992) and assessed long-term rebound effects.
In practice, methods calculating the value of the rebound effect consist of the direct rebound effect, indirect rebound effect, and economy-wide effect (Greening et al., 2000).
Direct rebound effect: The decrease in effective price of an energy service due to energy efficiency improvements induces the increase in demand, which stops the reduction in energy consumption. In this paper, energy services such as heating and lighting refers to the useful work stemmed from energy conversion devices (Evans and Lester, 2009). For example, a decrease in the effective price of an air conditioner stimulates consumers to buy more or use them longer than before. Bentzen. (2004) estimated the direct rebound effect in United States manufacturing using own-price elasticity of energy and found that it was about 24%. In sum, since the decrease in the marginal cost of a service due to technology progress leads to the change in demand, energy usage relative to the service may be more than before. The direct rebound effect is the gap between them. Liu et al. (2019) developed an improved approach to measure the energy rebound effect via the elasticity of energy service consumption with respect to energy service price, analyzed the panel data of two-digit industrial sectors in China between 1994 and 2015, and worked out that the direct rebound effect for the industry was 37.0%.
Indirect rebound effect: Evans and Lester. (2009) pointed out that the indirect rebound effect has two sources: One is from the production and installment of advanced equipment prior to efficiency improvement and the other is from improvements. The former is usually neglected. Generally speaking, the indirect rebound effect refers to the latter. The lower effective price of an energy service makes users save more money, which increases the demand for other goods, and services. For instance, one may spend the cost savings from more efficient lighting system in foods. Kok et al. (2006) used an input-output energy table to evaluate the environmental load of household consumption in Netherlands. Zhang and Peng. (2017) found that the direct RE was about 68% (55%) in the low (high) income regime, and the increase in GDP per capita may help to reduce the direct RE, based on the panel data of China’s residential electricity consumption under different kinds of regimes during 2000–2013.
Economy-wide effect: Based on the relevance of all sectors, efficiency improvement of one sector would cause the adjustments in the prices and quantities of goods and services, which induces change in energy use. For example, energy efficiency improvements in paint would decrease its price and reduce the costs of manufacturers that use paint. In turn, paint manufacturers can buy the lower price of other intermediate inputs. Grepperud and Rasmussen. (2004) explored the rebound effect from a perspective of a national economy using computable general equilibrium (CGE) and drew the conclusion that manufacturing sectors had the rebound effect and others appeared to be weak.
Although the phenomenon of rebound effect is accepted, its importance is still debated. Some argue that the rebound effect is relatively important (Brookes, 1990; Saunders, 1992), while others support the opposite argument (Schipper and Grubb, 2000).
It is important for energy economics to identify the size of the rebound effect, especially for the Chinese government in the context of the global energy conservation and emissions reduction. China is still a developing country, and development remains its top priority. Meanwhile, China’s advantage in the abundance of coal leads to the present coal-dominated energy structure. And according to Lin et al., the model will not be changed in such a short period. So it is necessary to improve electricity efficiency and consider the rebound effect simultaneously.
Recently, numerous papers have conducted investigations into the Chinese rebound effect in macro and micro levels in recent years. Zhou and Lin (2007) addressed the issue using data that cover the period 1978–2004 from a perspective of the macro level. Further, Liu and Liu (2008) substituted panel data for time series data of Zhou and Lin (2007) and found that there was the largest rebound effect in the western region of China. Lin and Liu (2012) calculated that the technology-based energy rebound effect in China was 53.2% by using the data from 1981 to 2009, which means that China cannot simply rely on technical means to reduce energy consumption and emission. Wang et al. (2016) investigated the panel data of 30 Chinese provinces from 1996 to 2010 and then concluded that the long-term rebound effect of urban residential electricity was 74% while the short-term rebound effect was 72%. In micro levels, studies related to the rebound effect were conducted in different industrial sectors as well as households. Thanks to Lin and Long (2015), who simplified the form of cost function to a translog cost function, many studies were carried out by using this simplification, and then defined the rebound effect by calculating the demand elasticities. Lin and Tian (2016) figured out that the rebound effect of the light industry was approximately 37.7% by using dynamic ordinary least squares and seemingly unrelated regression methods. Lin and Zhao (2015) estimated that the rebound effect in the Chinese textile industry was about 20.99% by adopting the Morishima Elasticity of Substitution (MES) model combined with asymmetric energy prices and other econometric methods. Deng et al. (2018) studied the panel data for seven regions in China during the period 1997 to 2013, used the translog cost function model, measured the electricity rebound effect caused by electricity price, and finally concluded that the annual average rebound effects of Northeast China and South China were 60.39 and 81.47%, respectively. The rebound effect in the northwest region was at least 14.96%. Based on the consensus that technological progress will also cause a rebound effect, Ai et al. (2020) pointed out that there are two ways to achieve technological progress: Independent innovation and technology introduction. Then they discussed the size of the rebound effect of these two different ways in the Chinese electricity sector, using the panel data of the electricity industry in 30 provinces of China from 1997 to 2013, and finally concluded that independent innovation promotes electricity conservation more significantly than technology import. Lin and Zhu (2021) found that the direct rebound effect in Chinese residential electricity consumption was 48% or so by modeling the stochastic energy demand Frontier model, based on panel data from the period 2010–2018. Meng and Li. (2021) collected the data of China’s 30 provinces during the period of 2009–2018 and then used a stochastic Frontier model to estimate the direct electricity rebound effect, finally arguing that 24.79% of the effectiveness of the electricity-saving endeavors was achieved because the rebound effect was 75.21%. Apart from the translog cost function, Xin-gang and Pei-Ling. (2020) argued that the average RE of China’s residential electricity use was 84.94% based on the panel linear model. Under the background of energy subsidies reform, Hong et al. (2013) linked the rebound effect and energy subsidies, used the monetary input–output table, and analyzed the data collected for 2007 in China, finally arguing that without energy subsidies, people would decrease their demand of electricity by 15.82 million tce, complying with the assumption that energy subsidies facilitate the rebound effect. As mentioned above, the rebound effect should be estimated by calculating the elasticity of energy demand, numerous studies measured such an index with respect to energy price and assumed that price does not impact energy efficiency. This is unrealistic, so in the latest research, Li et al. (2019) estimated the elasticity of energy demand with respect to energy efficiency to explore whether China’s market-oriented reform increased the energy rebound effect, using data collected in China’s 30 provinces over the period of 2003–2013. Finally, they concluded that 20.4% of originally expected energy conservation from energy efficiency improvement would be offset by the rebound effect. And the magnitudes were even larger in regions with higher degrees of marketization. The western area showed the smallest rebound effect (8.3%), followed by the central area (18.6%), and the eastern area (33%).
Since the reform and opening up in 1978, the Chinese government has always aimed at promoting the orderly process of market-oriented transformation in various fields, and including the electricity market. No matter which country, the electric power industry has acted as a strong monopoly since its inception due to its characteristics. And according to economics, a monopoly would result in higher prices of products and the inefficiency of producers. So, it is significant to initiate reform in this industry. It is notable that, in 2015, the State Council clearly issued relevant documents to announce its ambition to gradually form an electricity market which is sound, and healthy. And this reform covered all aspects, so the year of 2015 can be seen as a turning point in the electricity market. With the slogan “regulating the middle, opening both ends”, the prices of electricity delivery and distribution were established by the central government, who took into account the cost and modest profit of the generators, and then decided a reasonable price. Apart from prices reform, the ways of reform also included loosening the restrictions of electricity consumption and electricity generation, permitting more kinds of entities to take part in electricity trade by inducing competition, making sure that the government can play a regulatory role in electricity trading services, and reducing the cross subsidies to restore the commodity attributes of electricity. All of these measures were carried out with the intention of making sure that the market can play a decisive role in allocating resources, and thus reduce electricity costs for users and improve the efficiency of the generators. Last year, the reform in the electricity power industry progressed forward with the action of canceling the mechanism of the coal-electricity linkage, and such a policy will benefit enterprise because of cost reduction. Logically, such preferred results will induce the rebound effect, so it encouraged us to carry out our research to figure out whether this reform has an effect on the electricity rebound effect.
All papers seemed to fail to consider the effect caused by reduction in electricity cost because of efficiency improvements, and did not analyze the influence of electricity market reform on the rebound effect. In order to explore whether there is a paradox in China, we choose the Chinese chemical industry, one of six energy-intensive sectors. Only a few chemical products were produced in China in 1949. At present, the Chinese chemical industry has surpassed the United States to become the largest producer in the whole world. Its electricity consumption surged from 49 billion KW h in 1980 to 542.738 billion KW h in 2019 to support the increase in the total value of output of the chemical industry from 32 billion to 1,198 billion between 1980 and 2019, and it is expected that China will account for 50% of the world’s total chemical production by 2030 (China Chemical News-weekly). Currently, as far as chemical production, China is ranked first and in the short term, it is still in the stage of expanding due to the fact that China is a developing country, and so it is meaningful to investigated the rebound effect in China’s chemical industry. In this paper, we only measure the rebound effect of one sector, so we use the same method as Bentzen. (2004).
There are two innovations in this paper. First, it analyzes the direct electricity rebound effect of the Chinese chemical industry for the first time combined with the reform of the electricity market. Second, due to the particularity of China’s actual situation, this paper includes the impact of the 13th Five-Year Plan into the analysis of the rebound effect. A comparative analysis of the rebound effect before and after 2015 is made in this paper for the first time.
The structure of this paper is divided into four sections. Section 1 provides a brief introduction of the rebound effect; section 2 contains a brief and intuitive overview of the model; results are shown and discussed in section 3; and section 4 summarizes the results and conclusions and provides policy implications.
2 METHODS AND VARIABLES
2.1 Translog Production Function and MES
In this study, we briefly introduce the theoretical model used to measure the rebound effect in the chemical sector. First of all, a production function may be established to address an economic issue. In general, capital and labor are placed into the function as input factors. Seeing that we aim at estimation of the rebound effect, energy as an important input factor is put into the function. A function introduced by Jorgenson (1987) including capital (K), labor (L), energy (E), and other inputs (O) is applied as the production function of the Chinese chemical industry as follows:
[image: image]
[image: image]
Where [image: image] represents the output level of China’s chemical industry.
There are many kinds of production functional specifications, such as the Cobb-Douglas (CD) function, and CES function. In this paper, the reason why the translog function is selected is it is easy to estimate and is changed into the CD or CES function by limiting the value of parameters.
If f is a neoclassical production function and the prices of all inputs are given, by the Shepherd duality theorem, and the cost functions are accessed as follows:
[image: image]
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Where [image: image] denotes the total cost of the chemical industry; [image: image] is the jth input price; and [image: image] is a time trend which is conceived of as technological progress.
The factor demands and the price effects of inputs can be acquired by the first derivatives and the second derivatives of the cost function, respectively (Kim 1992). Urga (1999) claimed that technological progress is not neutral. By Shepard’s lemma, the factor demand function can be acquired by differentiating Eq. 2 with respect to input prices, that is: [image: image]
We can access the cost share equations by differentiating [image: image] with respect to [image: image] as follows:
[image: image]
There are three constraints among the parameters as follows (Guo et al., 2010):
The add constraint: [image: image]
The homogeneity constraint: [image: image]; [image: image]
The Symmetry Constraint: [image: image]
Tao et al. (2009) asserted that if the sum of [image: image] was equal to 1, one of equations could be deleted. Thus we use the same method and delete the last equation [image: image] . Bentzen. (2004) claimed that the rest of the equations can be estimated by relative prices which are obtained by adjusting the prices of capital, electricity, and labor based on the other input price. As a result, Eq. 3 is transformed into the following expression:
[image: image]
Since the same method as Bentzen (2004) to calculate the estimation of the rebound effect is used in the literature, we overview the price and substitution elasticities in terms of the estimated coefficients. Uzawa (1962) suggested that the Allen-Uzawa Elasticity of Substitution (AES) (Allen, 1938) can be achieved based on the cost share functions. The substitution may be expressed as:
[image: image]
According to the cost function, we can have
[image: image]
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The own-price elasticity of demand for the ith input factor is
[image: image]
Blackorby and Russell (1989) provided the weakness of AES. For example, it could not measure curvature or ease of substitution and provide information about relative factor shares. In all, AES does not show the substitution rate between two factors. As a result, we replace AES with MES. Morishima (1967) established the MES model to estimate the impacts of changes in price or quantity rations on relative factor shares. Compared to AES, MES removes inconsistent results from time data, and cross sectional data, respectively.
[image: image]
If [image: image], factor [image: image] is a Morishima substitute for factor [image: image]; If [image: image], factor [image: image] is a Morishima complement for factor [image: image].
2.2 The Decomposition of Electricity Price
The improved energy efficiency results in the reduction in demand for energy at the given output for a consumer, while efficiency improvements reduces the price of energy compared to other inputs. Based on the minimizing cost, the consumer would substitute energy for other inputs, and which leads to the increase in energy usage. As a result, energy saving is less than expected. The improvement in energy efficiency causes the decrease in effective price of energy and energy consumption increases due to substitution among factors. That is to say, the rebound effect is closely correlative with energy price, especially with the reduction price (Sorrel and Dimitropoulos,. 2008; Sorrel. 2009).
To accurately evaluate the electricity rebound effect of the chemical industry, the original electricity price is decomposed into three parts, and which is the same as Gately and Huntington (2002). They decomposed the log of electricity price into four components: log of energy price in 1980; the maximum historical price; cumulative reduction in the log of electricity price; and cumulative sub-maximum increases in the log of energy price.
[image: image]
Where [image: image] is the log of price in the starting year, which is 1980, [image: image] is the cumulative increases in the log of maximum historical price, [image: image] is the cumulative decreases in the log of price, and [image: image] is the cumulative sub-maximum increases in the log of price.
Because the data of electricity price in China are inaccessible and unattainable, we construct electricity price according to the marketing price of coal, electricity, and oil in 2011 from the CEIC database and energy structure including coal, electricity, and oil and so on. We convert them into standard coal.
2.3 Variables
2.3.1 Capital Stock
Estimation of capital stock is a difficult and important issue in economic analysis. A method called the perpetual inventory method (PIM) which was proposed by Goldsmith in 1951 is the most popular. There is lots of literature on exploring China’s capital stock of industry (Zhang., 1991; He, 1992; Chow., 1993; Young, 2003; Zhang., 2002; Gong and Xie, 2004 etc.). He (1992) measured productive and non-productive capital in terms of cumulative indicators. Chow (1993) evaluated China’s actual net investment based on national income accounting. Chen (2011) calculated economic indicators of every Chinese industrial sector between 1980 and 2008, including capital stock, the added value, the number of employees, and the total value of output, and so on. In this study, we expand data for the chemical industry in Chen’s paper and choose 1980 as the base year.
Before giving the result, we provide a brief introduction of the perpetual inventory method (PIM) and we assume that the relative efficiency of capital geometrically decreases over time. Based on the assumption, a depreciation rate is equivalent to a replacement rate. The estimation of capital stock is expressed as the following formula:
[image: image]
Where [image: image] and [image: image] denote capital stock; [image: image] represents a depreciation rate; [image: image] denotes a price index of investment; and [image: image] stands for a nominal investment.
(i) Investment: In general, total investment in fixed assets, newly increased fixed assets investment, and or gross fixed capital formation is often chosen as a nominal investment. In the light of the consistency of data, newly increased fixed assets investment is used as a nominal investment, like Chen (2011). The data of nominal investment are calculated by the difference of the original value of fixed assets. The data source of the original value of fixed assets is the China Statistical Yearbook.
(ii) Capital stock at the base year: There are two approaches to estimate capital stock at the base year. One is a hypothesis that the capital-output rate is 3 (Zhang 1991); the other is the value of investment divided by the sum of the growth rate and the depreciation rate to measure capital stock (Hall and Jones, 1999). Young (2003) evaluated China’s capital stock using the same approach as Hall and Jones (1999). We directly employ the capital stock in 2008 from Chen (2011) as the base year and expand it to 2019.
(iii) Depreciation rate: Yongfeng et al. (2002) reviewed and summarized the literature and drew the conclusion that depreciation rates of building, equipment, and others were 6.9, 14.9, and 12.2%, respectively. Zhang et al. (2004) summarized all depreciation rates associated with capital share and found that it should be 9.6% of Chinese industry. The same depreciation rate as Zhang et al. (2004) is chosen in this paper to make the process of calculation easy.
(iv) Price index of fixed-asset investment: These data can be easily derived from the China Statistical Yearbook.
2.3.2 Energy Consumption
We can derive the account of energy consumption from the China Statistical Yearbook and China Energy Statistical Yearbook that cover the period 1980–2019.
2.3.3 The Number of Employees
Data for the number of employees during 1980–2019 stem from the China Labor Statistical Yearbook. Due to the variation of statistical caliber, we combine the sequences of the number of employees before and after the time when the caliber was changed into a complete annual average of employee series. The specific method, which was adopted in Chen. (2011), is too complex to describe briefly. Therefore, it is omitted here.
2.3.4 The Added Value
The added value is not described by the China Statistical Yearbook after 2007. But the Statistical Bulletin of National Economic and Social Development from 2008 to 2019 shows the growth rate of the added value in every sector. As a result, the added value could be accessed. Then we employ the same method as Chen (2011) and conduct the extension.
2.3.5 Price
2.3.5.1 Electricity Price
The final energy consumption in the chemical industry consists of coal, electricity, and oil. What this paper focuses on is the electricity consumption of the Chinese chemical industry, but data for electricity prices in China are not accessible, and attainable. Accordingly, we construct the electricity price based on the electricity price in 2011 using the price index. That is to say, we use the price index based on 1980 and the electricity price in 2011 to calculate the electricity price from 1980 to 2019 according to the variation of the price index.
2.3.5.2 Labor Price
In this paper, we make use of the average wage of employees as labor price, and then adjust it in terms of the price index at the constant price for 1980. Data for labor price come from the China Labor Statistical Yearbook.
2.3.5.3 Capital Price
The price of capital is determined by depreciation rate, tax rate, interest rate, and other factors (Romer, 1999). This article employs the method from Romer to conduct the estimation about capital price of Chinese industry. The specific formula is listed as follows:
[image: image]
Where [image: image] represents the actual price of capital in the chemical industry; [image: image] denotes the market price of capital in t year. [image: image] is the expected change rate of capital market price; [image: image] represents corporation income tax; and [image: image] denotes the loan interest rate of fixed assets.
We assume that the market price of capital is equal to 1, [image: image]. Moreover, because data of corporation income tax are difficult to collect and exert no influence on capital price, we assume that [image: image] is equal to 0. According to rational expectation, the expected change rate of the capital market price is equivalent to the actual inflation rate, [image: image]. As a result, Eq. 8 is changed into the following formula:
[image: image]
The nominal interest rate is the average annual loan interest rate from CEIC and the China Financial Statistical Yearbook. There are many indicators used as the inflation rate, such as consumer price index (CPI), producer price index (PPI), GDP deflator, and index numbers of wholesale prices. We choose GDP deflator as the inflation rate because of the capital price of the industrial sector (Guo et al., 2010).
2.3.5.4 Other Intermediate Input Price
The other intermediate input is intermediate input except energy. Because electricity price has been acquired, can we also use other input price? According to the input-output table, we can obtain the input structure. Unfortunately, we still do not know the comprehensive price of every input sector. Therefore, we assume that the price is always equal to 1.
The total cost of other intermediate input can be obtained in terms of the input-output table and be expressed as:
[image: image]
Where [image: image] is electricity cost.
In sum, the input share can be listed in terms of the above analysis as follows:
[image: image]
According to the above analysis, we can calculate the value of every variable which is summarized and listed in Table 1. The share of labor share is smallest; capital share and electricity share are 0.1879 and 0.2615, respectively, and their standard deviations are 0.0877 and 0.1438, which suggests that the two variables are relatively stable. The mean of the added value is 14,800,000, and the minimum is in 1980 and maximum is in 2019.
TABLE 1 | The value of every variable.
[image: Table 1]3 RESULTS
3.1 Model Analysis
Hall (1986) pointed out that Eq. 4 is not directly estimated, for most variables have no long-run co-integration. When the translog system of equation is used, only few studies consider the problem of non-stationary variables (Christopoulos and Tsionas, 2002; Masih and Masih 1996) Hence, prior to measuring the parameters value of Eq. 4, a unit root test is implemented to examine and inspect whether variables are all stationary. The input price in Table 2 is the relative price. In other words, they are evaluated according to Eq. 4. As seen in Table 2, all variables except lnADD and lnPL are I (1) in terms of the ADF test.
TABLE 2 | Unit root test.
[image: Table 2]Because the order of all variables is not the same, Engel Granger (EG) and Johansen (JJ) co-integrated methods cannot be employed to estimate parameters of Eq. 4. A new approach, called the dynamic OLS procedure (DOLS), was proposed to derive the long-run co-integrated relationship between variables which have different and higher orders of integration (Stock and Watson 1993). Different from the EG approach and JJ approach, DOLS does not demand that all variables have the same orders of integration. By comparison of the three approaches, DOLS is appropriate and applicable. We adopt the DOLS method into Eq. 4 and get the following formula:
[image: image]
Where Δ represents the first difference.
Now we start to estimate parameters using DOLS. The results are presented in Table 3, excluding the coefficients of the leads and lags of the first order due to the number of variables.
TABLE 3 | The results of cost share equations.
[image: Table 3]As seen in Table 3, although the coefficients of lnPE and lnPL in the capital share equation are not significant, the parameters of electricity cost share equation and labor cost share equation are significant at the 5% confidence level. Especially for electricity cost share equation, which is that we care about most, all parameters are of significance at the 0.1% confidence level. That is to say, we may use the model to estimate the own-price elasticity of energy cost.
3.2 Estimation of the Rebound Effect
3.2.1 Results
To get the elasticity of effective price, we should decompose electricity price according to Eq. 6. Decomposition of electricity price is obtained from three decomposed formulas.
Based on the decomposition of electricity price, we substitute four prices into Eq. 10 for electricity price and use DOLS again to estimate the equation. The results are specified in Table 4. Because we focus on the rebound effect, the estimation of electricity cost share is listed. According to the method from Bentzen (2004), we calculate the rebound effect using the self-price elasticity of lnPcut.
TABLE 4 | The results of electricity cost share with decomposed prices.
[image: Table 4]Table 4 describes the main estimated parameters which are significant under the 5% confidence level. The rebound effect of China’s chemical industry is 811.13%, which illustrates that the electricity price is not able to accurately reflect the real cost and the supply and demand of the market under the control of China, so the rebound effect is quite large.
3.2.2 Comparative Analysis
In order to study the differences of the rebound effect in the two periods separated by the time of 2015 when the thirteenth Five-Year Plan and the reform of electricity market began, we construct a dummy variable t2015, adding it to Eq. 10. Before 2015, t2015 equals 0. When year ≥2015, t2015 equals 1. The new results of electricity cost share with decomposed prices are shown in Table 5.
TABLE 5 | The new results of electricity cost share with decomposed prices.
[image: Table 5]It can be seen from Table 5, t2015 is of significance at 0.1%, and its coefficient 0.151 is positive, which means that the cost share of electricity increases after 2015 because a series of punitive policies were adopted against the chemical industry to reduce the emission of carbon. The reform of the electricity market, aiming at improving the electricity pricing mechanism to better transfer market information, and may be another reason why the coefficient of t2015 is positive. However, the coefficient of lnPrec is not significant and lnPcut should be omitted. This may be due to China’s government pricing policy. Chinese electricity price is controlled by the government and could not reflect true costs and the supply and demand of the market. Therefore, lnPrec and lnPcut decomposed from the electricity price with stable growth are fixed values in most years, which cannot really reflect the impact of electricity price on the cost share of electricity. When calculating the rebound effect of China’s chemical industry with the coefficient of lnPcut being 0, the result is 73.85%, which is a sharp weakening compared with the result before. It means that the reform of the electricity market has achieved certain results, for electricity price began to reflect cost information to some extent, and which reduced the rebound effect to 73.85%. However, the rebound effect is still too large. There is still a lot of space for the reform to improve, and the rebound effect could be reduced further once the electricity price is adjusted to transfer market information more correctly by the reform.
The reasons why the rebound effect exists are as follows:
1) External substitution of factors.
Because technological progress decreases energy intensity or increases energy efficiency, the same products are provided with less electricity input. The improvement of energy efficiency decreases actual electricity price. Because of the existence of the substitution effect, the decrease in electricity price stimulates manufacturers to use more electricity and fewer other factor inputs. This partially reduces the electricity saving.
2) Electricity pricing mechanism in China.
The Chinese electricity price is controlled and regulated by the Chinese government and does not reflect market supply and demand. Electricity price only includes internal cost but omits external cost. Electricity price under the control of a visible hand is usually lower than the market price, which encourages consumers to consume more energy. At the same time, low electricity price and the relevant subsidy prevent producers from investing to improve energy efficiency and encourage them to buy electricity-intensive equipment to replace labor with electricity.
4 CONCLUSION AND POLICY IMPLICATIONS
This study analyzes the direct rebound effect of the Chinese chemical industry for the first time in terms of a translog cost function where the DOLS method is employed. The improved energy and electricity efficiency caused by technological progress indirectly decreases the effective electricity price and the marginal cost of energy services which reduces expected energy savings. As a result, the rebound effect is highly correlated with the electricity price elasticity. Bentzen (2004) pointed out that the size of the rebound effect is equal to the electricity-price elasticity obtained from the Morishima Elasticity of Substitution of the electricity cost share equation. The decomposition method of energy price proposed by Gately and Huntington (2002) is adopted and placed into the equation of electricity cost share.
We draw the conclusion that the rebound effect in the chemical industry is 811.13%. However, it would decrease to 73.85% between 2015 and 2019 because the reform of the electricity market was under way from 2015. That is to say, it is hard to reduce emission by improving energy efficiency because the real price of electricity would decrease a lot due to the large rebound effect, which may result in a large increase in electricity consumption. However, considering the strict regulation on the chemical industry to reduce the emission of carbon, it is possible to decrease the rebound effect by improving the reform of the electricity market further.
At present, research on the emissions trading scheme is very popular, and industrial electricity consumption is one of the important factors affecting carbon emissions. By studying the electricity rebound effect of the chemical industry, we know more about the changing relationship between electricity efficiency, electricity price, and electricity consumption, which is of great significance to the improvement of China’s national emissions trading scheme.
Based on the above analysis, we suggest the following policy implications:
1) The value of the rebound effect indicates that China’s policy designed for energy saving and emissions reduction in the chemical sector aims at improving energy efficiency by research and development and introducing the advanced technology of developed countries.
  i The government sets higher standards of energy efficiency for new factories and eliminates backward production capacity, therefore the electricity intensity will be reduced by 10% in 2025.
  ii Chemical enterprises, as the main participants for innovation, should be supported by the Chinese tax policy. Enterprises are stimulated by reducing or remitting taxes to research and develop advanced technology. Specific measures are suggested by learning from foreign experience, for example Japan and the United States.
  iii Risk funds of R&D are established by the ministry of industry and information technology to provide a loan for small and medium chemical enterprises which cannot attain a loan from a bank. Loan period and loan quota are set by the government. When enterprises repay the loan, they should be required to pay interest to the ministry. Because China’s state-owned bank is unwilling to provide loans for small and medium enterprises, the fund plays an important role in their research and development.
  iv Because there are lots of small and medium enterprises and the majority lack technical experts, the ministry actively promotes the cooperation between enterprises and universities. The government may provide financial assistance. For instance, 10–50% of R&D cost is afforded.
  v To reduce the risk of R&D and provide a market for innovative products, the Chinese government and state-owned enterprises are required to buy their products, which contributes to upgrading the chemical industrial structure and promoting technical innovation and product innovation.
2) Electricity price is another effective factor influencing the rebound effect. The improved energy efficiency and market electricity pricing mechanism are the most effective measures to save energy and reduce emissions. Unfortunately, Chinese electricity price does not reflect supply and demand because of the incomplete electricity reform. Lower electricity price encourages enterprises to overuse electricity. Besides, the recent power rationing is highly related to the difficult transmission mechanism of electricity price. Therefore, at present, a transparent and reasonable pricing mechanism needs to build, which would allow the price to go up and down in a certain range. The pricing mechanism reflects not only internal cost, but also the scarcity of resources and environmental cost. What is more, private enterprises are unwilling to enter into the electricity sector, because the electricity price would mean no benefits. A transparent and reasonable pricing mechanism can provide opportunities for them to go into electricity production. Private enterprises can ensure that the supply side of electricity is competitive to help allocate resources.
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In light of China’s Carbon Neutrality Target and facing the fluctuating pressure of power supply brought on by new energy intermittent power generation, it is urgent to mobilize a large number of residential flexible loads that can respond instantaneously to mitigate peak–valley difference. Under a framework of demand-side management (DSM) and utility analysis, we empirically investigate customers’ costs from interrupting typical electrical terminals at the household level. Specifically, by using the contingent valuation method (CVM), we explore the factors that affect households’ Willingness to Accept (WTA) of voluntarily participating in the interruption management during the summer electricity peak and estimate the distribution of households’ WTA values. We find that given the value of WTA, households’ participation rate in the interruption management significantly decreases with the increase in interruption duration and varies with the type of terminal appliance that is on direct interruption management. Moreover, the majority of households are willing to participate in the interruption management even if the compensation amount is low. The factors that determine households’ WTA and the size of their influences vary with the type of electrical terminal. The results imply that differentiating the terminal electricity market and accurately locking on the target terminals by considering the household heterogeneity can reduce the household welfare losses arising from DSM.
Keywords: electricity interruption, household’s WTA, expenditure difference model, electricity market, contingent valuation
INTRODUCTION
To reach peak CO2 emission by 2030 and achieve carbon neutrality by 2060, China has initiated a transition toward a more sustainable energy system based on renewable energies. The average growth rate of investment in the renewable energy industry within the Chinese market has been 16.83% since 2009. China occupies 39% of the world’s renewable energy employment (Wang et al., 2021). With the increasing proportion of intermittent power generation such as wind and solar energy in China’s power grid, the power supply presents significant random fluctuation, bringing new challenges to the balance of power supply and demand and to the stable operation of the power grid. In order to better integrate renewable energies—particularly wind and solar with high variability due to fluctuating weather conditions—and to ensure the stability of the power system, a more flexible frame of residential demand side within the power system is needed through providing balanced power by frequent control and supporting the management of grid congestions in transmission grids.
Constant electricity supply is a fundamental requirement for well-functioning modern societies. Pursuing a balance between improvement in electricity service quality and its impact on customer prices is a challenge for regulators and electricity producers in most countries since improved quality often requires a higher level of energy expenditure. The satisfaction of peak demand plays a very important role in the costs of electricity generation and supply; hence, how peak demand can be effectively controlled has long been a crucial problem in load management.
Demand-side management (DSM) has been widely regarded as an effective solution to curb peak demand and reliability of the electricity system. To minimize customers’ losses from a measure of DSM, such as direct control and interruptions, a sophisticated scheme needs to identify the target groups and terminals. For non-residential sectors, the costs of DSM can be readily estimated by using market prices. However, for residential customers, the composition of costs is more complex since it involves the welfare losses in terms of less leisure, inconvenience, or discomfort which cannot be observed directly in the market. It is widely accepted that interventions to reduce the residential energy gap need to address these welfare losses by monetary compensation or other behavioral factors (Wilson and Dowlatabadi, 2007).
Our study focuses on the residential sector. Residential demand is primarily shaped by a small number of energy-intensive domestic appliances, which implies a large potential of energy saving by improving households’ voluntary participation in DSM. Recent developments of the smart grid allow DSM techniques to be implemented more effectively and permit the use of new strategies (Ramchurn et al., 2012). The smart grid is the next-generation electricity grid that enables bidirectional flows of energy and uses two-way communication to control capabilities, which will lead to an array of new functionalities and applications. These techniques encourage the reduction of the total electricity demand and contribute to smoothing peak load curves (Langendahl et al., 2019). Widespread commercialization of smart metering and mobile application has enabled direct controlling of electrical terminals of households (Corbett et al., 2018; Morrissey et al., 2018). The smart grid and advanced metering infrastructure (AMI) in the household can record customer consumption in real time and provide two-way interaction, enabling active participation by customers on the demand side. Moreover, by installing chips on each home appliance, various management modes are directed to each terminal, such as the air conditioner, TV, and space heating. The new management approach may not only mobilize considerable demand side resources and provide various consumers with a flexible electricity service based on different combinations of electrical characteristics but also offer controllable resources for the power grid.
Load control at the household level will affect households’ utility and comfort. To minimize households’ welfare losses from the control, there is a need to evaluate the utility value of different customer groups from using different electrical terminals during different periods. The point is to know the extent to which customers are willing to accept the welfare losses by gaining certain monetary compensation and to know which terminals are to be controlled.
In China, where the degree of intermittent production has significantly increased as the share of renewables increases, the demand for electricity, particularly the residential demand, is also increasing rapidly; however, research studies on electricity market management of China mainly focus on supply-side costs and benefits (Wang et al., 2014; Fan et al., 2016). We try to fill the gaps in the field of DSM study by exploring the DSM costs of on demand-side.
Under the utility analysis framework, we estimate the distribution of households’ Willingness to Accept (WTA) values of voluntary interruption during the summer electricity peak and explore the factors that affect WTA. We find that given the same WTA value, the proportion of households which agree to participate in interruption management significantly decreases as the interruption duration increases, and the participation rate varies with the type of the terminal appliance that is directly controlled. Moreover, most households would be willing to accept the interruption even if the compensation is low. The factors determining households’ WTA and the size of their influences both vary with the type of electrical terminal that is on interruption management. These findings highlight the importance of differentiating terminal electricity markets and considering households’ heterogeneity in cost-effective DSM designs.
Our study contributes to the literature in two ways. First, the traditional interruption mechanism cuts off the whole power supply of a household, resulting in significant welfare loss to consumers in addition to the low level of demand response. This study proposes an interruption strategy that targets key household appliances to mobilize a flexible load of demand given the smart grid technology and the compensation mechanism based on the heterogeneity in household interruption costs. The empirical results provide evidence on the heterogeneity of interruption costs, which is the foundation of the interruption mechanism in the peak. Second, due to the constraints of technology and data availability, the existing studies on interruption contracts and DSM in China tend to deemphasize the consumer behavior factors, which makes the designs of DSM and the peak load regulation mechanism lack a micro-basis. This study applies the contingent valuation method (CVM) to design the household surveys and uses the first-hand data obtained from surveys to estimate the interruption costs of different electrical appliances with various control modes.
The rest of this article is structured as follows. Literature Review presents a brief review of previous studies on measuring the value of constant electricity supply, particularly the WTA and Willingness to Pay (WTP) methods. In Methodology, the concepts and techniques relevant to the approach developed in this study are specified. In Sample and Data, we outline the sample and empirical data obtained from the survey on urban households of Xi’an City, China. The empirical results are presented in Empirical Results, where we discuss the costs of households’ WTA to give up using specific electrical appliances under different scenarios of electricity interruptions. Finally, we conclude and provide policy implications.
LITERATURE REVIEW
Interruption costs represent the economic consequences of service curtailments to the customer when the demand for electricity temporarily exceeds the available supply capability (Munasinghe, 1988). To empirically measure the costs of DSM, empirical studies have usually segmented consumers into groups, such as residential, industrial, and agricultural. For industrial and commercial sectors, a generally used approach for measuring the outage costs is to estimate “production functions” for customers on the basis of aggregate electricity consumption and added value data by industrial sector. The outage costs of industrial customers can be approximately estimated following such a function (Zachariadis and Poullikkas, 2012). However, for the residential sector, the welfare loss includes not only elements such as consumable goods but also costs derived from less leisure, inconvenience, or discomfort, which cannot be observed in the market (Munasinghe, 1980). Moreover, for residential consumers, the value of each kilowatt-hour can be different since it can be used for different appliances and therefore brings different utilities to the customer (Dubin and McFadden, 1984). Hence, to measure the interruption costs of residential customers, a method that accounts for different electricity needs across households is required.
Given that the value of using appliances at the household level cannot be directly captured through market signals, stated preference techniques such as questionnaires are often used to extract the information on interruption costs (Munasinghe, 1980; Billinton et al., 1987; Billinton and Pandey, 1999). As one of the popular survey-based stated preference techniques, the CVM explores the marginal utility from a change in consumption of specific non-market goods by directly inquiring after households’ WTP or WTA (Venkatachalam, 2004). WTP is the maximum amount of money a household is willing to pay for a marginal decrement of service reliability, while WTA responds to the minimum amount a household would be willing to accept to a marginal increment in service reliability. Either WTP or WTA studies can provide evidence on which aspects of service quality are important to customers and what value customers would place on various service attributes.
The methods of WTP or WTA, by analyzing how respondents trade off attributes against cost, have been generally used to obtain money measures of welfare changes due to changes in the availability of public goods or amenities. There have been wide debates on the apparent empirical anomaly of WTA and WTP compensations. It has been widely agreed that if a good has a value that is small relative to income, the WTP to obtain it should be close to the WTA to give it up (Kolstad and Guzman, 1999). Meanwhile, there is considerable evidence on a divergence between WTA and WTP, with announced WTA significantly in excess of announced WTP, while the difference could be as high as 3–5 times (Hanemann, 1991; Horowitz and McConnell, 2002).
There are two primary theoretical arguments for the divergence between WTA and WTP. One involves the “endowment effect” theory, which suggests that the value of a loss differs from the value of a gain, even if the loss or gain is less than the income (Thaler, 1980). In other words, when the good or service becomes one’s endowment, one would place a higher value on it, and thus, WTA will be larger than WTP. Hanemann (Hanemann, 1991) provided the other explanation for the divergence between WTA and WTP in terms of public goods. He argues that the divergence depends on not only the income effect but also the substitution effect, and the latter would be far more powerful than the former; moreover, because the market substitutes for a public good are not readily available, it is impossible to compensate for its removal, and the WTA is infinite whereas the WTP is finite. If a low-cost market good as the perfect substitute is present, the WTA would be equal to the WTP.
Venkatachalam (Venkatachalam, 2004) concluded that the WTP estimates are more reliable since they are close to the true values. Carson et al. (Carson et al., 2001) argued that Hicksian consumer surplus measures (i.e., the WTA estimates) are the appropriate measure for assessing the CVM results. Carson et al. (Carson et al., 2003) further suggested that whether WTP or WTA estimates are based can be determined by ownership of the goods—WTA is the appropriate measure if respondents believe they possess the property right.
Households’ utility evaluation on constant electricity supply varies with the time of using, since their electricity demand varies with hour, day, and season (Torriti, 2012; Campillo et al., 2016). Therefore, the value of electricity outages may be characterized by inherent attributes and associated scales such as the frequency, duration, or magnitude (such as direct interruption, partial interruption, or voltage disturbance) of interruptions, whether the interruption is at night/on the weekend, and whether there is an advanced notice (Caves et al., 1990; Billinton and Pandey, 1999; Sullivan et al., 2009; Morrissey et al., 2018). Short interruptions such as 1–5 min would incur very low cost so that most households would rather “sit out” the inconvenience (Munasinghe, 1980). Households value different characteristics of power outage and in particular prefer not to change to another power outage profile (Pepermans, 2011). Customers value incurring fewer and shorter outages; if an outage must occur, outages during the day on weekdays are preferred (Hensher et al., 2014).
Empirical evidence shows that households have heterogeneous preferences regarding electricity outage attributes, depending on attitude, perception, experience, socio-demographic characteristics (age, gender, income, family size, educational attainment, and household population composition such as babies and old people), and housing features such as the type, size, and ownership (Billinton and Pandey, 1999; Layton and Moeltner, 2005; Pepermans, 2011; Morrissey et al., 2018). Lack of information on how households heterogeneously value constant electricity supply can lead to sub-optimal investment decisions, which has a disproportional impact on customer groups (Morrissey et al., 2018).
METHODOLOGY
We use a sample obtained from a face-to-face CVM survey on urban households of Xi’an City in China to investigate the customers’ cost of interruption. Our CVM survey instrument was developed over a 10-month period study before the formal interview based on the trial interviews with the focus group and pilot surveys. Key design issues for this study included the valuation scenario, the elicitation method, and payment methods. In this section, we first discuss in detail the specification on the hypothetical program and then establish the model for estimating values of constant electricity supply.
Design of Hypothetical Program
Bid Pattern
In order to reveal the ‘true’ valuation of households on the goods and services being assessed, CVM-based studies typically offer respondents with open-ended or closed-ended questions, either of which involves various payment choices such as the payment card (PC), the single-bounded dichotomous choice (SDC), and the double-bounded dichotomous choice (DDC). The PC pattern means to provide respondents with a series of payment amounts to choose from. The WTP/WTA technique is to directly ask the maximum/minimum amount that respondents would be willing to pay for the program in question. The SDC asks only once to cast a simple “yes” or “no” vote for a predetermined value of payment. A positive response implies that the true WTP is larger than that value, while a negative response means a smaller WTP than that value.
As one of the commonly used CVM techniques, the DDC is developed based on SDC and is increasingly mature (Bishop and Heberlein, 1979; Hanemann et al., 1991). The DDC-based survey asks respondents twice. They are first asked to cast a “yes” or “no” answer for whether they would be willing to accept an initial compensation amount. For the second question, those who have provided a positive response to the first question would be provided with a set of smaller compensation values to choose, while those who have provided a negative response would be provided with a set of larger values to choose. As Carson et al. (Carson et al., 2001) pointed out, the DDC survey is incentive-compatible, since it only asks a simple “yes” or “no” question, and this type of dichotomous choice pattern is very close to respondents’ decision-making behavior in the market. Compared to the PC and open interval bid techniques, the DDC allows the heterogeneous respondents to vote on a fixed amount of compensation, which helps to avoid the estimation bias. Compared with the SDC, the DDC is a typical “take-it-or-leave-it” problem and can more effectively approximate the true WTA, improving the evaluation efficiency (Hanemann et al., 1991). We applied the DDC techniques in the survey.
Target Terminals
Assuming availability of the smart grid technologies that enable point-to-point controlling of electricity terminals at the household level, our empirical study takes household air conditioners (ACs) and electric kettles (EKs) as the typical terminals on interruption management. The reason is that they are representative of different load characteristics and important in shaping the electricity peak. The air-conditioning load has become the main driving force of summer load peaks in the urban areas, accounting for 34% of the peak load in China (Wang et al., 2008). Its load is characterized by long duration, high power, and poor substitution. In particular, the load of ACs often abruptly increases with the temperature increasing, which makes it hard to predict and manage the load in advance.
The kettle is one of the most used appliances in China. According to our survey, more than 60% of Chinese households own a kettle. Although the kettle is a lower electricity consumer than ACs, it is one of the appliances that has the highest wattage and requires the highest current when switched on (McKenna and Thomson, 2016). Murray et al. (Murray et al., 2016) showed that kettle usage patterns are regular at peak times (morning and evening around dinner); due to the spiky nature of its demand, the kettle can significantly influence electricity generation and the power distribution network. Meanwhile, EKs have sound nature of demand response, since their electricity load can be easily adjusted by switching to the substitutes.
Hypothetical Interruption Program
Suppose that households value electricity consumption in peak hours more than that in the off-peak hours. 18:30–23:00pm every day during the period from July to September is the peak of the residential electricity consumption of Xi’an City; therefore, the time slots between 18:30–23:00 during the summer electricity peak were taken as the hypothetical time to conduct interruptions. Households’ utility of using electrical appliances may be associated with the control intensity (Caves et al., 1990; Ozbafli and Jenkins, 2015; Broberg and Persson, 2016). The typical length of control time may be transient (no more than 5 min), medium (30 min or 1 hour), and long (2 h or over). According to the load characteristics of Xi’an City and the requirements of DSM, the direct control scheme was assumed to be an interruption of 30 min (or 60 min), with no more than five interruptions per summer.
Advance Notice and Voluntary Participation
Smart grid technologies can also notify consumers ahead of each arrival of the electricity peak and load control, hence reducing the inconvenience of DSM to households. Caves et al. (Caves et al., 1990) and Mcfadden et al. (Mcfadden et al., 1988) showed that the WTP/WTA estimates with an advance notice would be lower than the estimates in absence of notice. Meanwhile, compared to voluntary participation in a control program, the estimates under a mandatory scenario would be larger (Caves et al., 1990). In order to reduce the negative impact on households, our survey specified the load control pattern to be with advance notice and voluntary participation.
Payment Instruments
To avoid ambiguity, the CVM requires the compensation payment tools of the program in question to be available and familiar to the interviewed households. Typical payment tools include tariff and tax. In CVM studies, an additional fixed amount of fee or a proportion of the electricity bill has been widely used (Munasinghe, 1980; Billinton et al., 1987). The payment term and pattern also matter for households’ WTP/WTA. Compensation by long-term payment brings uncertainty to households in terms of payment commitment, and hence, respondents will discount on future pay-outs (Carson et al., 2003). Carson et al. (Carson et al., 2003) preferred lump-sum payment with fixed amount, as the median value of WTP/WTA to lump-sum payment can be as twice as high as the median of multi-period payment, and long-term payment would lead to re-contracting problems. Our pilot survey shows that over 90% of the respondents were suspicious of the commitment on multi-period payment. In our pilot survey, the compensation was specified to be lump-sum payment with fixed amount which was deducted from the household electricity bill of that summer.
Choice Between WTP and WTA
Our study uses the WTA method. Billinton and Pandey (Billinton and Pandey, 1999) concluded that stable and reliable electricity services have been widely regarded by consumers as one of their social rights. This is confirmed by our field test and pilot surveys which found that the majority of respondents tend to offer a provocative bid against the WTP questions, and 91% of the respondents stated that “the grid is obligated to provide stable services of electricity.”
Based on the pilot surveys, reasonable ranges of AC bids and EK bids were ¥1–100 and ¥1–50, respectively. Our questionnaire provided respondents with eight sets of values for AC interruptions and four sets of values for EK interruptions. Table 1 shows the bid value sets for the study, which is in a typical double-bounded dichotomous choice (DDC) format. The distribution of bids was obtained through pilot studies.
TABLE 1 | WTA bid values (¥, Chinese yuan).
[image: Table 1]For example, in (2,5,1), 2 is the first bid, five is the second-round high bid, and one is the second-round low bid. The respondents were first asked: “Assume a 30 min outage of air conditioning to your household between 18:30–23:00 on certain day in this August, with no other appliances of your household being affected, would you be willing to accept a compensation of ¥2 for the outage?” If the respondents said “yes,” they were asked whether they accepted ¥1 (the second-round low bid): “Would you be willing to accept a compensation of ¥1 for the outage?” In contrast, if the respondents said “no,” they were asked whether they accepted ¥5 (the second-round high bid): “Would you be willing to accept a compensation of ¥5 for the outage?”
If the answer was “yes-no”, the respondent’s WTA of the interviewee was between ¥2 and ¥5. If the answer was “yes-yes,” then the respondent’s WTA was below ¥1. Based on the above, we use the maximum likelihood estimation method (Modelling Value of Constant Supply) to obtain the mean WTA of the interviewees. DDC asked the respondents twice, while the second question was based on the response of the first question. To reduce the initial anchoring effect and systematic bias in the DDC estimation, these sets of bid values were randomly assigned to the questionnaire (Cameron, 1988). That is, for air conditioners, the questionnaires were divided into eight types (according to Table 1), and each had different bid groups (starting points). For example, respondents of type A would answer questions from the group (2,5,1), and those of type B would answer from (5,10,2). Meanwhile, the questionnaires were distributed to each interviewer based on random software during the survey.
Modeling Value of Constant Supply
Two types of models can be used for DDC estimation: the utility difference model (UDM) proposed by Hanemann (Hanemann, 1984) and the expenditure difference model (EDM) proposed by Cameron (Cameron, 1988). Compared to the former, the latter makes more efficient use of the information in dichotomous CVM questions and is easier to estimate (Cameron, 1988). This study employs the EDM. Suppose when other conditions remain unchanged, an individual’s WTA to changes in quality of goods or services is the difference in his expenditure (also called compensation variation), then
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where [image: image] is the expenditure function. [image: image] denotes the service prices, [image: image] is the initial quality of the service, [image: image] is the service quality after the hypothetical program, and [image: image] is the utility level before the hypothetical program. Suppose the indirect utility function is [image: image], where [image: image] represents income. By substituting [image: image] into function (1), the expression of WTA can be rewritten as follows:
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where [image: image] is the indirect compensation function, and [image: image] and [image: image] capture the compensation value under alternative situations for the utility level to be unchanged. Eq. 2 describes the compensation value. The individual’s WTA varies with changes in service quality, which depends on individual characteristics and the measures on service quality. Suppose individual [image: image] has a true WTA value as follows:
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where [image: image] is the vector of determinants of WTA, [image: image] is the coefficient vector, and [image: image] is the error term of normal distribution, representing the influence of unobservable factors. Suppose A is the initial value of the first-round bid, [image: image] is the lower value of the second-round bid, and [image: image] is the higher value of the second-round bid. Let [image: image] denote the cumulative probability function of standard normal distribution. Under the DDC bid mode, there would be four response patterns to the inquiry questions. The probability of individual [image: image] to provide a “Yes-Yes” response can be written as follows:
[image: image]
Similarly, the probability that individual [image: image] provides a response of “Yes-No,” “No-Yes,” or “No-No” is, respectively, as follows:
[image: image]
[image: image]
Function 3) can be estimated using the maximum likelihood (ML) method; the log maximum likelihood function is as follows:
[image: image]
where [image: image], [image: image], [image: image], and [image: image] are all indicative functions, respectively expressed as follows:
[image: image]
With the estimates obtained from Function (6), the sample median WTA can be estimated using Eq. 8, where [image: image] is the vector of average values of the determinant factors and [image: image] are the estimated coefficients (Cameron, 1988).
[image: image]
SAMPLE AND DATA
The formal face-to-face survey on urban households of Xi’an City in China was conducted in August 2020 following the stratified and random sampling method. In each household, a member who was aged 18 and over, able to respond, understood how to use the household’s appliances, and knew the household’s electricity consumption situation was randomly assigned as the respondent. The average visit time for each household was 35 min. By data cleaning, we obtained a sample of 545 observations for the air conditioner control (356 households have electric kettles). The questionnaire was divided into two parts. In the first part, we specified the hypothetical program on the base of focus interviews and pilot surveys. The survey followed the contingent valuation method (CVM) and the survey guideline proposed by Welsh and Poe. (Cameron, 1988; Welsh and Poe, 1998), providing respondents with information about a hypothetical program that would reduce the likelihood of a future adverse environmental event. According to the load characteristics of the Xi’an City grid, the control program was described as an interruption of 30 min (or 60 min) between 18:30–23:00 pm of the summer peak during the period from July to September, with the interruptions per period being no more than five times. The participants would be informed of an interruption in advance. The electricity terminals on direct control include air conditioners (ACs) and electric kettles (EKs). Each respondent only faced the hypothetical program of controlling one of the two terminals. Respondents were asked to provide their WTAs for participation in the program. The compensation for interruption would be a lump-sum deduction from the summer electricity bill. The bid mode of DDC was employed to obtain households’ WTA. The second part of the questionnaire aimed to collect the information of household socio-demographic characteristics and individual energy-saving attitudes.
Households’ WTA in terms of electricity consumption may be affected by economic and demographic factors, housing attributes and location, and individual attitudes (Wilson et al., 2015). Table 2 reports the statistical description of the variables that are proposed to affect households’ WTA.
TABLE 2 | Summary statistics.
[image: Table 2]In terms of electrical appliances, 91.3% of the households had air conditioners, with over 48% having more than two sets. The temperature of air conditioning on average was set to 24.82°C, and the average daily use in summer was only 7.45 h. Only 1% of the households were used to setting the temperature above 28°C, with an average daily use of 1.9 h. 65.32% of the households had electric kettles, with a daily usage of 2.99 times. Estimated number of outages experienced over the past year was 2.67 times.
In terms of demographic characteristics, the average age of respondents was 43.30, and 51.93% had a full-time job. 49% of the respondents are male. The average household size was three members, with one member having attained a university degree. On average, a household had 0.15 babies aged under 3 years old and 0.57 old people aged over 70 years old. The mean of the household income was located around ¥60,000 per year.
81% of the households owned the house, while 27% lived with welfare housing. Welfare housing means that the house is provided by the organization one works for. The organizations that can provide housing are usually government organs or state-owned enterprises, while the purchase prices of welfare housing are generally far below the market prices. On average, the residential buildings in the survey were constructed in the 1990s, and the average size per household was 111.18 square meters. In terms of attitudes and behavior, over 80% of the respondents claimed that the electricity tariffs were acceptable, and most consumers tended to be energy saving.
The survey also investigated households’ daily routines and life styles. Table 3 displays the time distribution of residents staying at home between 18:30–23:00 pm during the period of the summer electricity peak. From 18:30 to 19:00, 31.2% of the households were unoccupied. The proportion of staying at home increased with progression of the day, with a proportion of around 79.1% between 19:30 and 20:00 and over 97.0% after 22:00. On average, during the summer peak hours of electricity, the duration of staying at home was 3.92 h.
TABLE 3 | Time distribution of staying at home in the summer electricity peak hours.
[image: Table 3]EMPIRICAL RESULTS
Influencing Factors of WTA
Table 4 reports the ML estimates of Model (3), respectively, in the case of AC and EK interruptions.
TABLE 4 | Estimation results of Model (3), under different interruption scenarios.
[image: Table 4]On the control of the air-conditioning load, the age of the respondent (Age) has significantly negative correlation with WTA. This implies that the older the members of the household, the lower the household’s reported WTA, which is consistent with Sullivan and Vardel’s conclusion (Sullivan et al., 1996). Gender appears to have no significant effect on the control of the air-conditioning load. Billinton and Pandey (Billinton and Pandey, 1999) provided empirical evidence that gender cannot explain the difference in values of electricity services. That is, there is no gender difference when facing long-time interruption, and the resulted inconvenience from a strong electricity control is tolerable for neither women nor men.
Our findings on the AC interruption reveal that income does not show a significant impact on households’ WTA, except for the high-income group (above ¥300, 000, Income_5) in the case of 60-min AC interruption, which is consistent with the theoretical prediction revealed by Flores and Carson (Flores and Carson, 1997). We find little evidence that family size (Familysize) is associated with households’ WTA of load control, which is consistent with the conclusion of Layton and Moeltner (Layton and Moeltner, 2005). We also find no evidence that education (Education) is related to WTA, which is consistent with the findings of Peters (Peters, 1990) and Ritchie and McDougall (Ritchie and McDougall, 1985) that education does not play a role in energy consumption behavior. As Stern (Stern, 1992) noted, people of a high education level may have strong environment awareness and concept, but transforming attitudes into actions is affected by many factors.
Whether households have special populations has been a hot topic in studies on energy consumption. Many empirical research studies have provided evidence that babies are sensitive to outages (Peters, 1990; Sullivan et al., 1996; Sullivan et al., 2009), which implies that households with babies are more likely to value constant electricity supply. Our findings confirm this statement: in both cases of AC interruption, the number of babies (Baby) significantly increases the WTA values; the effect becomes stronger when interruption duration becomes longer. We find having aged people in families (Old) is not related to WTA values in terms of AC load control. This result can be interpreted by the cultural context and the health concept of elderly Chinese people. Many old people interviewed said that wind from air conditioning is unnatural and not healthy. This type of cognition about air conditioning is close to that of the Japanese old (Yamamoto et al., 2008).
For the remaining socio-demographic factors, there is no significant association between building age (Houseage), dwelling size (Dwellingsize), and welfare housing (W_house) and WTA. The building’s characteristics do not show strong predicting power for WTA. The respondent’s feelings about the electricity price level can negatively affect WTA values in the case of 30-min interruption (Feelp_3). In terms of the behavior of energy saving (Selfscore), we do not find strong evidence of the potential correlation between this factor and WTA.
In terms of the AC use pattern, the number of air conditioner sets (ACnum) is not significant, while the length of using time and temperature setting appear to be powerful predictors for WTA values, since their estimates in either interruption durations is negative at the 1% or 5% significance level. The negative parameters imply that the value of WTA increases as the temperature set of air conditioners (ACtem) decreases. The value of WTA increases as the length of using time (ACusetime) increases. Obviously, the households relying more on cooling service would put a higher value on constant electricity supply. The number of outages experienced over the past year has no significant effect on WTA, which is consistent with the research of Baik et al. (Baik et al., 2020).
The estimation results about EK interruptions are shown in the right-hand panel of Table 4. The frequency of EK use (EKfre) is positively correlated with WTA. The respondent’s age can positively affect WTA values in the case of 30-min interruption and 60-min interruption. Hours staying at home (Hometime) during peak time are also positively related to WTA. The number of old people (Old) is positively correlated with WTA. The respondent’s feelings about the electricity price level can negatively affect WTA values in the case of 60-min interruption (Feelp_2 and Feelp_3).
In summary, as far as supply interruptions to air conditioning are concerned, significant predictors for households’ WTA are age, the number of babies, the length of using time, and the temperature setting of air conditioners, no matter whether the duration of interruption is 30 min or 60 min. For EK interruptions, the powerful predictor is use frequency of EKs, hours staying at home during peak time, and respondent’s age, irrespective of whether the duration of interruption is 30 min or 60 min. The difference in terms of influence factors of WTA or impact size between two types of electrical appliances can be attributed to the differences in load characteristics and the substitution. Because of these differences, it is possible to use smart grid technology to conduct differentiation management on different terminal electricity equipment.
WTA Estimates and Distribution
Median WTA and Aggregate WTA
Using the estimated parameters and observed values of the sample, we estimate the sample average of WTA. Specifically, we substitute the sample average values of influencing factors into Function 8) to calculate the median WTA value under alternative scenarios. The result is depicted in Table 5. In the case of air conditioning, an interruption of 30 min (AC_D30) and 60 min (AC_D60), respectively, generates a median WTA of ¥2.91 and ¥6.75. That is, when control intensity doubles, the WTA estimate would, on average, increase by two times.
TABLE 5 | Median WTA.
[image: Table 5]In contrast, households put a much lower value on constant electricity supply to EKs. For an interruption of either 30 min (EK_D30) or 60 min (EK_D60), the median WTA value stays at around ¥ 0.06. This is quite meaningful, indicating that electric kettles are much suitable as the terminal of direct load control, since its interruption would not incur large welfare loss to consumers. More importantly, while use of electric kettles usually generates large, frequent, and random disturbances to the power grid, it can be easily substituted (for instance, by gas stoves). Hence, taking EKs as the target terminal may also bring grid companies significant benefits in terms of stable operation.
Accumulative Distribution of WTA
In addition to the total welfare losses caused by supply interruption intervention, the distribution of WTAs and the household characteristics that are related to the distribution are equally important for effective load management. We calculate the WTA value of an individual household by using its characteristic information. On the basis of that, we calculate the cumulative distribution of WTA values, as shown in Figure 1.
[image: Figure 1]FIGURE 1 | Cumulative distribution of WTA for interruptions. (A) AC_D30. (B) AC_D60. (C) EK_D30. (D) EK_D60. Notes: (i) the horizontal axis is the WTA values and the vertical axis is the cumulative probabilities. (ii) For AC interruptions, extreme WTA values that are larger than ¥100 have been deleted from the figures, composed of two observations for D30 and 14 observations for D60. (iii) For EK interruptions, extreme WTA values that are larger than ¥5 have been deleted from the figures, composed of two observations for D30 and observations for D60.
Figure 1A and Figure 1B show the cumulative distributions of WTA for the AC interruptions. Given the same WTA value, as the interruption duration increases from 30 to 60 min, the proportion of households would agree to participate in the interruption management significantly decreases. When the interruption duration is 30 min, 91% of the households would participate if the compensation is ¥15; the participation rate slightly increases to 96% if the compensation increases to ¥25. When interruption duration is 60 min, about 70% of households would participate with a compensation of no more than ¥15; the proportion slightly increases to 82% if the compensation increases to ¥25. Most households would be willing to accept an air-conditioning interruption, even when the compensation is low. When compensation is already high (for instance, ¥15 in the case of 30-min interruption), a further increase only generates a minor increase in households’ participation rate, implying the decreasing marginal effect of monetary compensation. The traditional instruments of DSM are usually unified for all households and therefore costly. Our results show that peak electricity consumption of household air conditioning can be effectively reduced at low cost, by directly managing the ACs of demand response–sensitive households.
Figure 1C and Figure 1D are the cumulative distributions of WTA in the case of EK interruptions. Around 93% of households have a WTA value of less than ¥1, no matter whether the interruption duration is 30 min or 60 min; however, to further improve the participation rate to nearly 100%, the WTA value needs to be raised to more than ¥20.
Participation Without Compensation
The factors affecting residential electricity consumption are complex and diverse. It is usually difficult to achieve the given target of peak load regulation by simple economic incentives in a cost-effective manner. The peak consumption of the residential sector typically has the characteristics of congestion, and therefore, its optimal management requires the collective efforts of the market, government, and society. In this context, we explored the possibility of participating in peak-shaving without compensation in response to a “social call.” The questionnaire asked the respondents the willingness of non-paid participation regarding the 30-min and 60-min interruptions. In the case of air conditioning, 80.6% of the respondents, respectively, show that they would be willing to participate in the 30-min interruption program, while 75.2% would be willing to participate in the 60-min program. In the case of electric kettles, the voluntary participation rate is 89.4 and 88.0%, respectively. The results imply the huge potential of improving households’ participation in DSM in the presence of non-economic incentives.
However, voluntary participation motivated by non-market incentives can also be affected by many other factors, such as benefits of non-paid participation. While an individual’s utility may be increased by the collective participation, the benefits would be shared by the society, and the individual has to take on the cost of participation (such as discomfort and inconvenience due to the supply interruption), which means the typical negative externality problem would emerge (O'Hare et al., 1983). Frey et al. (Frey et al., 1996) noted that in the long term, participation which only relies on “moral calling,” propaganda, and education is hard to maintain. Accordingly, even if a large number of households would be “willing to participate without any compensation,” this kind of participation behavior may be unsustainable. To fully mobilize the demand side to participate in load management, the effective combination of economic and social incentives should be considered.
DISCUSSION AND CONCLUSION
The effective measures of power demand control with smart grid DSM technology should target the specific customers. In order to identify the target groups well, the end use of the DSM has to be carefully identified. This article estimated the distribution of households’ WTA for voluntary interruptions and explored the heterogeneous, by taking ACs and EKs as typical electricity terminals.
We come to four conclusions. First, given the same compensation value, as the interruption duration increases from 30 to 60 min, the voluntary participation rate of the interruption management significantly decreases, and the participation rate significantly varies with types of the appliances on control. Second, most households would be willing to accept the supply interruption even if the compensation amount would be low. When the amount of compensation increases to a certain high level, a further increase in compensation could only generate minor increment in participation willingness. Third, influence factors of the WTA and the influence sizes would vary with the type of appliances that are on interruption management. Finally, household characteristics have significant impacts on the WTA. For interruptions to air conditioning, powerful predictors for WTA are age, the number of babies, the length of using time, and the temperature setting of air conditioners. For EK interruptions, the powerful predictors are use frequency of EKs, hours staying at home during peak time, and respondent’s age.
Households’ electricity consumption is determined not only by economic incentives but also the society context and individual characteristics. Traditional grid regulation methods distinguish only between sectors such as industrial and residential customers, calculating the cost and benefit of grid regulation based on the average load of sectors. As Thogersen et al. (Thogersen and Gronhoj, 2010) noted, household customers can be aware of energy saving under the effect of psychological factors. Applying the management measures with the same cost to different customer groups would generate completely opposite effects. The point is to differentiate terminal markets according to households’ characteristics and the WTA distribution on different terminals and accurately lock on the target of load control, hence finding out the most effective means of regulation. Thus, the welfare losses due to load control can be minimized and the demand-side response can be improved.
The value of WTA reflects the welfare level of the household by using electrical appliances and also the cost of DSM (such as load interruption) of the grid. The main advantage of the survey method is in enabling the availability of the dataset that carries the information of the household’s heterogeneity in terms of WTA. Information on the household’s WTA of electricity outages and the heterogeneity at the household level can serve many purposes. For instance, it may help grid companies to design a cost-effective scheme of DSM reducing the welfare loss of the consumers. It can be used to decide on which sectors or customer groups can be cut off with a minimum cost when power shortages occur (Morrissey et al., 2018)). Capturing the heterogeneity makes it possible to conduct differentiation control according to the sensitiveness of demand response.
To conclude, first, our analysis reveals the heterogeneity in consumers’ preference for electrical appliances in the summer peak, providing the justification for intelligent control of electricity load based on the differentiated interruption value. Specifically, the traditional DSM method simply cuts off the household electricity during load peaks, while the intelligent interruption performs the marginal control on those electricity-intensive appliances of a household. In other words, the intelligent interruption based on consumer heterogeneity enables a weaker load control and improved consumer welfare. Second, the differentiated pricing for household electricity is needed for the intelligent interruptible mechanism to be practicable and valid. The electricity industry of China has been strictly regulated for a long time, including the pricing. The pricing mechanism needs to be more flexible to match the future needs of intelligent control of electricity. Third, the intelligent interruption control in our discussion takes the smart and reliable network as the precondition, implying that the electricity network infrastructure needs to improve to enable the intelligent control on household load terminals. This contributes not only to the investment for smart meters and other information-delivering technologies but also to the transformation of electricity management toward a more deregulated and more information-based pattern.
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The transition to a low-carbon power system is among the measures to forge green energy transition and carbon neutrality, where grid firms have a crucial role. In this context, this paper uses the provincial data from 2004 to 2017 to evaluate the impact of market power of grid companies on service quality in China. Panel dynamic ordinary least square (DOLS) and fully modified ordinary least square (FMOLS) models are employed. The findings indicate that higher market power has indeed reduced reliability measured by average outage duration. Renewable energy integration also has negative effects and reduces electricity reliability. Finally, the effects are also heterogeneous across the different regions. The results may also provide useful lessons for other developing countries aiming to improve the electricity supply chain.
Keywords: carbon neutrality, electricity transition, supply reliability, grid market power, electricity market reform
1 INTRODUCTION
China’s electricity sector, the largest in the world, accounts for about 45% of energy-related CO2 emissions and thus the transition to a low-carbon power system is becoming common sense (Abhyankar et al., 2020). Particularly, China promised to have CO2 emissions peak before 2030 and achieve carbon neutrality before 2060, which put forward higher requirements for greening electricity supply chain and especially for grid firms. On one hand, the electricity dispatch, transmission, and distribution by power grids act a vital role in the integration of renewable energy. On the other hand, the grid system is an important link that transmits carbon prices from the production side to the consumption side. In this regard, deepening electricity reform and regulations on grid firms are among the measures to forge green energy transition and carbon neutrality.
Like most countries, China has embarked upon a series of reforms toward a competitive, green, and reliable electricity market. The reform process can be seen as the gradual degradation and unbundling, transforming from an absolute to a relative monopoly (Wang and Chen, 2012). The two most influential policies were implemented in 2002 and 2015 (She et al., 2020). In the unbundling reform implemented in 2002, the State Power Corporation was broken down into many companies, including two grid firms to break the monopoly. As for the latest reform in 2015, more effort is tied to introduce competition into power retail side. The most important request for transmission and distribution sector includes that the business operation and revenue income mode will be changed and they are supposed to shoulder the responsibility of demand side management in the future (Zeng et al., 2016).
In China, currently, the grid firms are state owned and the electricity transmission and distribution are operated at the provincial level. The provincial grid firms, working as an important public utility department, are responsible for reliable power supply and economic benefits, which means that they provide public service and pursue more economic profits simultaneously (Xie et al., 2021). Therefore, service quality is an important benchmark to determine the performance of the power grid. Unfortunately, China’s unique economic system and regulation framework lead to the grid market power, which raises a question of whether grid market power has negative impacts on service quality (Yu and Fu, 2012; Li and Gao, 2014). The possible reason for this is that stated-owned companies may be less efficient due to problems of the political use, as governments do not aim at profit maximization and operational efficiency (Muller and Rego, 2021). Furthermore, if quality is not contractible and included in regulation standards, a monopolist may deliver a lower service quality (Ter-Martirosyan and Kwoka, 2010).
This paper aims to investigate whether market power of grid companies has an effect on service quality. On one hand, as for the power grid sector, the profit pattern will be replaced by the transmission and distribution tariff under the principle of “cost plus reasonable profits”. However, based on the regulatory theory, the firms under a price-cap regime tend to reduce service quality for cost reduction if the service quality and cost are positively related (Spence, 1975; Sheshinski, 1976; Fraser, 1994; Corton et al., 2016). On the other hand, in the context of pursuing net-zero emissions, the power generation that relies heavily on coal will be gradually changed. The development of renewable energy will in turn have a profound effect on sustainability and reliability of the electricity system. In this context, how to improve productive efficiency and regulate the transmission and distribution sector becomes an important issue.
Considering the essential role of power grids in carbon neutrality, the contributions of this paper can be summarized as follows. First, this paper empirically analyzes the impacts of grid market power on service quality and provide some policy recommendations for further improving the transmission and distribution section, as well as achieving the goals of clean electricity transition and carbon neutrality. Second, this research is also an exploration for regulations of China’s grid industry from the perspectives of service quality and performance. Finally, building a sustainable and reliable electricity market is an important foundation for ensuring energy transforms. However, due to the instability of clean energy, there may be conflicts between sustainability and reliability. The findings in our paper may also add some insightful reference to deal with this dilemma.
This paper consists of five sections as follows. Section 2 presents the literature review. Section 3 briefly introduces the model and data. The empirical result analysis is presented in Section 4. Finally, Section 5 concludes.
2 LITERATURE REVIEW
As the world’s largest power market, there is an extensive literature on assessing China’s power market reform (such as Guo et al., 2020) and how the reform could affect various aspects of power system operations, such as the integration of renewable energy (Zhang et al., 2018), electricity generation efficiency (Meng et al., 2016), and supply security (Zheng et al., 2021). However, despite many significant achievements, there are still various practical problems that have not been resolved and market power is one of the main concerns (Mozdawar et al., 2022).
Generally, market power could hamper the competition, technology innovation, and service quality (Asgari and Monsef, 2010). For example, Shukla and Thampy (2011) confirm that market power may be part of the reason for an electricity price increase in India. Browne et al. (2015) find that market power in turn results in inefficient dispatch which is exacerbated with large amounts of wind generation. Amountzias et al. (2017) indicate that the wholesale mark-up is significantly and positively influenced by market power of the Big Six in the United Kingdom wholesale industry in the short run. Rostamnia and Rashid (2019) assess the effects of power extent on pricing in the electricity market. Bigerna et al. (2021) discuss the exercise of market power during the COVID-19 lockdown period and find an increase in market power on both supply and demand in the Italian Power Exchange. However, only a few researchers have paid attention to market power of grid companies in China’s electricity industry. A recent example is Yao et al. (2019), who prove that market power indeed has significant negative effects on power grid efficiency in China.
Electricity plays a dominant role in the manufacturing sector and daily life. Unreliable power supply will hinder enterprise productivity and create significant constraints (Pless and Fell, 2017; Ayaburi et al., 2020). As such, the underlying causes for poor electricity reliability are complex and especially important for the policy makers. Borenstein et al. (2002) show that the market power plays a crucial role in California’s power outages. Fumagalli et al. (2007) suggest that privatization will not lead to quality degradation in the electricity sector. Yu et al. (2009) show that service quality in the distribution networks will be influenced by weather conditions, for example, rain, wind, and temperatures. Pless and Fell (2017) demonstrate that bribes for electricity connection are associated with an increase in electricity reliability. Li and Li (2018) find that the firms tend to reduce the service quality in the utility sector (electricity, water, natural gas, etc.) for consumers when the government cannot cover the deficit caused by subsidizing. Xu et al. (2019) reveals that natural disasters, weak grid power exchange capacity, weak grid support, weak emergency power support, and protection mistakenly moved are the main threats for unsustainable electric power system using Chengdu Electric Bureau as a case. Xie et al. (2021) indicate that the unbundling reform implemented in China has not improved the service quality of the power grid firms. Muller and Rego (2021) prove that private ownership positively influences both quality and financial indicators considering regulatory goals in Brazil.
Although service quality plays an important role in electricity supply, there is only a limited body of literature that has addressed the issue of service quality when studying China’s power industry. Although much evidence shows that abuse of market power will result in higher prices and lower service quality, such as David and Wen (2001), will the grid companies abuse the market power and have the market power really brought about a reduction in the service quality? To fill this gap, this study empirically analyzes the effect of market power of grid companies on service quality in China’s power sector.
3 DATA AND MODEL SPECIFICATION
3.1 Methodology
To discuss the impacts of market power on reliability from the perspectives of grid companies, we will construct a panel data in this research. The basic panel model is shown in Equation (1).
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where subscripts [image: image] and [image: image] represent year and province, respectively, and [image: image] is the error term. In addition, [image: image] represents the explained variable, namely power supply reliability or service quality, measured by the average annual duration of outage. Higher [image: image] always means lower reliability or worse service quality. The power supply reliability indicator for 10 KV user, namely the annual average outage duration of per connected household (AICH1), is utilized (Yu et al., 2009; Hensher et al., 2014). [image: image] represents the market power of grid companies. Theoretically, Herfindahl–Hirschman index (HHI), the Residual Supply index (RSI), together with price cost mark-ups (Lerner index) are the conventional measures of market power (Chernenko, 2015). Referring to Yu and Fu (2012) and Yao et al. (2019), this paper uses the Lerner index ([image: image]) to represent the grid market power.
Accordingly, [image: image] is per capita distribution capability to measure the electricity infrastructure. [image: image] is the proportion of clean power generation to take the renewable energy development into consideration. We employ the capacity factor ([image: image]) to measure electricity scarcity, containing information on electricity generation ([image: image]), and capacity from thermal power plants ([image: image]) following the study of Fisher-Vanden et al. (2015). [image: image] is the domestic electricity consumption per capita to represent the electricity delivered by grid firms.
The stationarity of time series processes determines the selection of the regression models. If the time series processes are non-stationary and the variables are cointegrated, the conventional OLS estimation methods (such as pooled OLS, fixed effect, and dynamic panel models) will produce inconsistent and biased estimates (Liu and Hao, 2018; Lin and Chen, 2019). Thus, this research utilizes a fully modified OLS (FMOLS) and dynamic OLS (DOLS) as estimation techniques after performing the unit root tests and determining the cointegrating relationship. FMOLS proposed by Phillips and Moon (1999) and Pedroni (2004) and DOLS proposed by Kao and Chiang (2001) provides efficient results for cointegrated variables when the sample is small, which can eliminate the problems of endogeneity and variable serial correlation (Song et al., 2008; Merlin and Chen, 2021). Moreover, FMOLS and DOLS techniques have been applied to estimate long-run parameters by many studies, such as Khan et al. (2019), Merlin and Chen (2021), and Cui et al. (2022). Canonical Cointegrating Regression (CCR) estimation is also applied to verify the result robustness of FMOLS and DOLS.
Technically, the estimation procedure includes the following steps. First, the panel unit root tests are applied to examine the stationarity of the variables. Afterward, the panel cointegration test is further utilized to examine the cointegrating relationship. Finally, the long-run parameters are estimated with FMOLS and DOLS models.
3.1.1 Panel Unit Root Tests
The unit root test of time series based on the large sample is basically a progressive analysis without considering the cross-section factor. However, the panel unit root test is developed in recent years, which improves the problem of small samples and test efficiency. There are many unit root tests proposed in the literature, and in this research LLC (Levin et al., 2002), IPS (Im et al., 2003), and Fisher (Maddala and Wu 1999) unit root tests are chosen due to their estimation power, as well as to avoid the bias caused by a single method.
3.1.2 Panel Cointegration Tests
After identifying the integration order of the variables, the next step is to examine the cointegration relationship. There are a number of cointegration tests suggested in the literature, including Kao (1999), Pedroni (1999), Pedroni (2004), and Westerlund (2005) cointegration tests. In this research, we choose the commonly used panel cointegration test proposed by Pedroni (1999) and Pedroni (2004) to examine the long-term equilibrium relationship between the variables and in the most general case, the formula can be expressed as follows.
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where [image: image], and [image: image] refer to the number of time observations and individual members in the panel. [image: image] and [image: image] are individual specific effect and linear trend, respectively. [image: image] denotes the slope coefficients. The null hypothesis suggests the no cointegration and thus the rejection of the null hypothesis indicates the existence of cointegration. Furthermore, we also report the results of Kao (1999)’s panel cointegration test as a robustness check.
3.1.3 Panel Long-Run Parameter Estimates
After confirming the relationship among the variables, the next step is to estimate the parameters. There are a series of estimation methods including ordinary least squares (OLS), panel dynamic ordinary least square (DOLS), and fully modified ordinary least square (FMOLS) models. As Pedroni (2001) suggested, OLS is associated with the problems of serial correlation and second order asymptotic bias. Therefore, when there is a long-term equilibrium relationship between variables, the ordinary OLS model is no longer effective. To overcome these problems, Stock and Watson (1993) proposed DOLS, and FMOLS was proposed by Phillips and Hansen (1990) and perfected by Pedroni (2001). Both panel FMOLS and DOLS can effectively address the problems of small sample bias and series correlation challenges attributed to conventional OLS estimator (Sulaiman et al., 2020). Therefore, we apply panel DOLS and FMOLS models to estimate the long-run relationship and Table 4 shows the baseline regression results.
In the FMOLS model, a non-parametric correction term is used to solve the problems of long-run correlation and endogeneity (Liu and Hao, 2018), and the panel FMOLS estimator and t-statistic can be written as follows.
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Further, since the cointegrating equation with the lead and lagged differences of the regressor are augmented, the panel DOLS model can be built as follows.
[image: image]
The associated panel DOLS estimator and t-statistic can be given in Equations (6) and (7).
[image: image]
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3.2 Data and Measures of Grid Market Power
The panel data studied in this paper cover 27 provinces from 2004 to 2017 in China. Due to availability, Shanghai, Hainan, Xinjiang, Tibet, Hong Kong, Macau, and Taiwan are not part of the sample. Data for measuring control variables are collected from the compilation of statistics of the power industry, as well as the China Electricity Yearbook. The data of power supply reliability come from the compilation of statistics of the power industry, the official website of the China Electricity Council, and the National Energy Administration’s Power Reliability Management Center.
Usually, market power can be defined as the ability to affect market prices. As for grid market power measured by the Lerner index, the difficulties lie in the estimation of price (p) and marginal cost (mc). In Chinese reality, the “Promotion Tournament Game” Pattern is one of the most powerful incentives for economic growth (Que et al., 2019). Under this incentive mechanism, local officials are promoted mainly based on their contribution to local economic development (Jia, 2017). The system of “province as an entity” leads to market segmentation and different power structures. To maintain the competitiveness of local larger industries for improving political performance, local government tends to give relatively lower prices to large industries and acquiesce gird enterprises in charging higher prices by small and medium-sized consumer for compensation. This “win-win exchange” regulation failure can be seen as a sign of grid market power. Thus, the phenomenon of cross-subsidy is very serious, not only industry subsidizing residents, but also small and medium-sized consumer subsidizing large industry (Jiang et al., 2015). To some extent, the electricity retailing price for large enterprises can be taken as marginal cost (mc) and the price for general industrial and commercial users could be taken as the price (p). More theoretical analysis and justification can be found in Yu and Fu (2012).
More specifically, the retailing price is jointly decided by the local government and grid enterprise and then submitted to the central government for approval. Finally, a table of electricity sale price will be publicly issued and the regional grid companies charge an electricity fee according to the table. Particularly, electricity prices differ in provinces in China. Generally speaking, electricity consumers can be divided into resident users, industrial and commercial users, large industrial users, and agricultural users. The catalogue price is set different for different customers. Moreover, as for the same kind category of users, the electricity price will also differ in various voltage levels. With different prices for various voltage levels, this paper utilizes the average value under different voltage levels for calculation. If peak and valley pricing is involved, the price in the flat period is used. The data to estimate market power come from the official website of the Development and Reform Commission, price bureaus, and the official website of the municipal power company of each province. Descriptive statistics of variables are shown in Table 1.
TABLE 1 | Description of variables
[image: Table 1]In addition, Figure 1 also shows the average values of market power of grid companies of different regions, which are basically consistent with the calculation by Yu and Fu (2012). The average value of grid market power in China reaches 0.3176, indicating unbalance among regions. Some economically developed regions, such as Beijing, Guangdong, Fujian, Jiangsu, and Zhejiang, have relatively small grid market power, while Liaoning and Jilin with a high proportion of heavy industry have larger values.
[image: Figure 1]FIGURE 1 | Average values of grid market power.
4 MAIN RESULTS
The panel data are from 2004 to 2017. Before the regression, the stationary test is required. If the data are non-stationary, the ordinary regression method based on stationary panel may lead to the estimation bias, namely the phenomenon of spurious regression.
4.1 Results of Panel Unit Root Tests
As mentioned, to select regression techniques and ensure estimation validity, the unit root tests of LLC, IPS, ADF-Fisher, and PP-Fisher are performed before estimating the parameters. According to the results shown in Table 2, at level, not all the variables are stationary. At the first difference, all the statistics are significant at 1% or 5% level, confirming the stationarity of all the variables. It can draw the conclusion that all the variables are integrated of order 1.
TABLE 2 | Results of unit root test
[image: Table 2]4.2 Panel Co-Integration Estimation Results
Since we have confirmed the stationary of variables, the panel co-integration estimation is conducted. The results can be found in Table 3. The null hypothesis of no co-integration is significantly rejected by both Pedroni test and Kao test, and the co-integration test results confirm the existence of long run effects. Therefore, we conclude that the variables have a long-run relationship.
TABLE 3 | Results of panel co-integration test
[image: Table 3]4.3 Panel Parameter Estimates of the Long-Run Effects
4.3.1 The Effects of Grid Market Power on Power Quality
After confirming the long-term relationship among variables, the next step is to estimate the long-run model. As mentioned, we apply panel DOLS and FMOLS models to estimate the long-run relationship and Table 4 shows the baseline regression results. We can see that the coefficients of the grid market power estimated by DOLS and FMOLS are both significant at 1% level, which indicates higher grid market power will lead to longer duration of outage, or worse service quality. As mentioned, the characteristics of natural and regional monopoly lead to the grid market power, which may be harmful to the public eventually. The power industry is undergoing a profound transformation, where reform in 2015 will have far-reaching impacts on the power industry. However, it is believable that grid enterprises and power generation companies are still the principal participants for retailing in the short run, and the profit pattern of grid companies will remain not changed immediately due to information asymmetry and stickiness. The signal effect of price is rather limited and government control remains strong after the 2015 reform. In reality, various enterprises have taken part in the establishment of electricity sales companies, with few of them actually participating in the operation. Although the direction and intention of the reform are significantly important, what really plays a decisive role is the policies to guarantee the reform in accordance with our expectation.
TABLE 4 | Baseline results
[image: Table 4]The proportion of clean energy yields positive and significant effect on outage. This indicates that an increase in integration of renewable energy will have a negative effect and reduce service quality. The power service quality in China is in its rapid development. However, the marginal cost will increase by this improvement, that is, higher service quality or lower outage duration is accompanied by a higher cost. Subject to global warming and the environment, developing renewable energy becomes the strategic goal of many countries, including China. By increasing the renewable sources, the power grids are facing more complicated problems and challenges than ever. The state-owned grid firms, working as an important public utility department, act a crucial role in renewable energy integration, and regulation measures are required for grid firms to balance the relationship between economic benefits and service efficiency.
The coefficient of per capita domestic electricity consumption is also significantly positive at 1% level, which implies that the power supply becomes more prone to failure with the increase in electricity delivering and consumption. The coefficient of power distribution capacity is significantly negative. That is, higher power distribution capacity helps to reduce the duration time of power outage, resulting in better service quality. Surprisingly, the coefficient of electricity scarcity is not significant. As emphasized by Fisher-Vanden et al. (2015), electricity scarcity will influence the reliability of the power supply and even can be seen as a decent indicator for the potential electric power shortage within the region. The main reason for insignificant coefficient lies in that power shortages are not serious in China with the improvement of the electricity infrastructure.
4.3.2 Heterogeneity Tests
China is a vast country, and the economic and social differences between each district presents out gradually. Therefore, to assess the impact of grid power on service quality based on regional disparity, we divide the sample into eastern and mid-western regions. As shown in Table 5, the grid market power has significant positive impacts on outage time in the eastern region, while the coefficient is not significant in the mid-western regions. In addition, due to the uneven distribution of energy resources, there are significant spatial differences between power production and consumption. This article divides the sample into electricity exporter and electricity importer provinces according to the power flow1. It can be found that the influence of the grid market power in regions of exporting electricity is not significant.
TABLE 5 | Heterogeneity test
[image: Table 5]4.3.3 Robustness Tests
To verify the consistency, this study utilized the Canonical Cointegrating Regression (CCR) model to check the estimation robustness (Merlin and Chen, 2021). The results estimated by the CCR model, which are shown in Table 6, are consistent with the previous estimation by FMOLS and DOLS models. The findings indicate that the results from FMOLS and DOLS are robust.
TABLE 6 | Robustness tests (using the CCR model)
[image: Table 6]To further check the robustness of results, this paper replaced annual average outage time for city users by the indicator of annual average outage time for rural users and all users. The annual average outage time for rural users is represented by [image: image] and the indicator for all users is expressed by [image: image]. As shown in Table 7, we can find that the coefficient of grid market power is still significantly positive, indicating that our regression results are robust.
TABLE 7 | Robustness tests (under changing dependent variable)
[image: Table 7]There were two large-scale power shortages in 2004 and 2011, causing enormous losses. Mandatory power cuts were imposed in many provinces, which may also have a certain impact on the estimation results. In view of this, we delete the data in 2004 and 2011. The sign and significance are basically not changed as shown in Table 8. In 2015, China has begun a new round of electricity reform and the prices for industry and commerce are reduced much after. To avoid the influence by the new electricity reform, we take the regression with the sample from 2004 to 2014. The results show that the grid market power still has significant positive effects on outages. Therefore, it is reasonable to assume that the results are robust, and thus, we have the conclusion that higher market power has indeed reduced supply reliability measured by duration of outage per household.
TABLE 8 | Robustness tests (under considering electricity reform and large-scale power shortages)
[image: Table 8]5 CONCLUSION AND SUGGESTIONS
The transition to a low-carbon power system is among the measures to forge green energy transition and decarbonize the electricity supply, where grid firms act a crucial role. In view of this, we empirically analyze how grid market power influences service quality by applying panel DOLS and FMOLS models with panel data from 2004 to 2017 in China. The empirical results show that there is a long-term cointegration relationship between market power of grid firms and service quality measured by the average duration of outages per connected customer. That is, grid market power indeed has negative effects on service quality. In addition, the improvement in power distribution capacity can significantly reduce the average time of power outages. As expected, renewable energy integration will have a certain negative impact on power service quality. Results are also heterogenous across different regions.
According to the above discussion and conclusion, we further point out the following suggestions.
First, it is essential to deepen the market-oriented electricity price reform. The market-oriented price mechanism will certainly contribute to the weakening of market power of grid firms, thus improving service quality and efficiency. Especially, competitive electricity pricing will also serve the purpose of passing through from carbon price to electricity price, which is beneficial to energy conservation, and pollution reduction from the demand side. Furthermore, as for the monopolistic grid firms, the mechanism for setting transmission and distribution prices should be further improved, so as to substantially reduce the electricity price for customers.
Second, with the deepening of reforms, it is also important to establish explicit reward and punishment mechanisms related to the operational efficiency and service quality of grid firms. As state-owned companies, Southern Power Grid and State Grid are supervised by the State-owned Assets Supervision and Administration Commission of the State Council (SASAC). At present, supervision standards are mainly profit and power consumption. While taking service quality into an incentive regulation system will contribute to encourage grid firms to actively strengthen their business environments and improve their service efficiency.
However, it is also important to consider the limitation of this research, such as the trade-off between power quality and cost. Higher power quality often means higher costs or electricity prices to some extent, and over-pursuing service quality, while ignoring the costs may lead to over construction and lower efficiency.
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FOOTNOTES
1Electricity import regions include Shanxi, Inner Mongolia, Heilongjiang, Anhui, Fujian, Hubei, Sichuan, Guizhou, Shannxi, Gansu, Qinghai, and Xinjaing.
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China’s power industry is in a critical transformation period. The new round of power system reform in 2015 will have a profound impact on China’s power industry. Therefore, it’s necessary to analyze the influencing factors of thermal power generation efficiency. Based on the thermal power generation industry related data in China’s 30 provinces from 2005 to 2017, this paper studies the impacts of market segmentation on thermal power generation efficiency in China. And the empirical result shows that the market segmentation exhibit significant negative effects on the thermal power generation efficiency, that is, the thermal power generation efficiency significantly decrease 1.6799 for each unit increase of market segmentation index of thermal power industry. Besides, by decomposing the dynamic thermal power efficiency index, we find that the “innovation effect” is the primary channel for the market segmentation to make effects on the thermal power generation efficiency. Furthermore, our findings are still robust after considering endogenous problems and eliminating the relevant data. Finally, research conclusions of our study paper provide empirical supports for the efficient development of China’s power market.
Keywords: thermal power generation efficiency, market segmentation, non-radial direction distance function, amazon glacier cost model, innovation effect
1 INTRODUCTION
For a long time, the dominant position of thermal power generation in China has attracted considerable attention. Thermal power generation accounts for more than 70% of the total power generation in China (Cheng et al., 2019), and the installed capacity of thermal power accounts for more than 60% of the total power generation capacity. In recent years, the twin problem of global warming and climate change have raised concerns about thermal power generation (Kwakwa, 2021). And the goal of energy structure optimization has made the proportion of thermal power decrease slightly, as shown in Figure 1. However, due to China’s abundant coal resources and the technical requirement and economic cost of various types of power generation, thermal power generation will still account for a large proportion of China’s power supply in the future.
[image: Figure 1]FIGURE 1 | Proportion of thermal power generation and installed capacity from 2002 to 2018.
The stylized facts of the uneven distribution of natural resources and local imbalances between power demand and supply exist in China’s power industry (Wang et al., 2014; Lin et al., 2021). In order to alleviate power shortages, the Chinese government has begun to establish provincial power markets since 1988, which is of benefit to the local governments of different provinces. The segmentation of the electricity market among different provinces is accompanied by political competition, and local governments only focus on local economic performance (Zhou, 2004). The resulting inter-regional political competition may lead to the imposition of inter-regional trade barriers by local governments (Young, 2000), which is also called the beggar-thy-neighbor strategy (Li and Lin, 2017). As a result, some more efficient but non-local thermal power generation companies could not get the support of the local government.
Figure 2 shows the relationship between standard coal consumption and average utilization hours for 465 Chinese power plants of 6,000 kW and above in 2011.1 In the absence of market segmentation, priority should be given to the generating set with large capacity and low standard coal consumption. That is to say, power plants with high efficiency should prioritize power generation to meet demand-side power consumption regardless of power plants’ location. But from Figure 2 we can find that some power plants (on the bottom left of Figure 2) with low standard coal consumption is not effectively utilized and the average utilization hours are low, while some power plants (on the top right of Figure 2) with high standard coal consumption and low efficiency have higher utilization hours. Therefore, there is no significant positive correlation between the energy efficiency of the generator set and the utilization hours, which has led to the excessive loss of resources and also put greater pressure on energy conservation and emission reduction. How to solve the imbalance between energy efficiency and utilization rate of power plants and improve the overall efficiency of China’s thermal power industry is the most difficult point for the Chinese government to regulate the power industry. Because of the high degree of power market segmentation, some high-efficiency but non-local thermal power generation enterprises can hardly survive in the local market, and thus can’t obtain the benefits of cross-regional cooperation and trade between different provinces. However, not enough attention was paid to this topic. Therefore, based on the above background, we will study the impact of market segmentation on thermal power generation efficiency in China and hope to provide some empirical supports for solving the problems of thermal power generation efficiency and market segmentation in China.
[image: Figure 2]FIGURE 2 | Standard coal consumption and annual average utilization hours for Chinese power plants of 6,000 kW and above in 2011.
Air pollution and climate change are two major challenges faced by all countries around the world (Chen et al., 2022). To protect the environment, China put forward to realize peak carbon dioxide emissions by 2030 and carbon neutrality by 2060. However, a key method to achieve these goals is to reduce carbon dioxide emissions. There are many latest studies focus on carbon emission reduction. Song et al. (2019) evaluated the impact of low-carbon city polit policy on air quality. Li et al. (2022) evaluated the changes of carbon emission reduction in China’s provinces during 2001–2016 from the perspective of commercial building operation. Zhang et al. (2021) took China and the United States as research objects, evaluated the carbon dioxide emission reduction of buildings, which are important departments of carbon emission reduction under different emission scales, and investigated them emission efficiency. Thermal power generation plays a dominant role in China’s total power generation, and it also has an important impact on carbon emission reduction. Therefore, the carbon emissions and power generation efficiency of thermal power generation are the two main points of this paper. We find that studies on this topic mainly focus on two aspects.
The first aspect is about thermal power generation efficiency. High efficiency is a goal that thermal power plants have been pursuing (Wang Z. et al., 2021). Some studies emphasized on the influence of thermal power generation efficiency and they showed that regional economic development level (Wang, 2014), technology innovation (Bai and Song, 2009; Duan et al., 2016) and environmental regulation (Jaraitė and Di Maria, 2012; Li, 2015) could influence the efficiency of thermal power generation. Wang R.-M. et al. (2021) studied the regional differences in thermal power generation efficiency in China’s eastern, central, and western regions, and found that the eastern region has the highest thermal power efficiency. Others discussed the calculation of thermal power generation efficiency. The data envelopment analysis (DEA) method is widely applied in the calculation of power generation efficiency (Sueyoshi and Goto, 2011; Fallahi et al., 2011). And many researchers have studied the efficiency of the power industry in China from different levels of data collection. For example, with the assumption of sole frontier technology, Wang et al. (2019) analyzed the “average” change in coal intensity of each group by production scale and region under a traditional DEA framework. At the national level, Zhou et al. (2012a) proposed a non-radial direction distance function method from the perspective of production efficiency. And there are a lot of studies focus on the thermal power efficiency at the provincial level with the DEA method (Song et al., 2017; Sueyoshi et al., 2018). Some other researchers have used the DEA method to measure the performance of coal-fired power plants in China at the micro-enterprise level (Zhao and Ma, 2013; Wei et al., 2015). In recent years, Metafrontier analysis has also been widely used to study regional heterogeneity of energy efficiency in China (Feng et al., 2017; Long et al., 2018; Long et al., 2019). Eguchi et al. (2021) proposed a metafrontier data envelopment analysis decomposition framework to investigate the sources of inefficiency in power generation, finding that technology gap contributes most to the regional heterogeneity of power generation efficiency.
The second aspect concentrates on the impacts of market segmentation on energy efficiency. On the one hand, there is significant spatial imbalance (Zhu et al., 2019) and regional heterogeneity in provincial energy efficiency (Cheng et al., 2020). On the other hand, market segmentation will weaken market competition mechanism and reduce market vitality, and thus reducing regional energy efficiency (Yi et al., 2021). Li and Lin (2017) studied the influence of market segmentation on carbon emission performance in China, and proved that market segmentation has negative effect on carbon emission performance. Zhang and Lu (2017) obtained the same conclusion that market segmentation has significant negative effect on energy efficiency promotion by using panel data of Chinese provinces. Sun et al. (2020) have proved that market segmentation has significantly negative effect on environmental efficiency of electric power industry. Qi and Zhou (2020) found that market segmentation has a significant inhibitory effect on energy efficiency by distorting technological progress, scale efficiency and allocation efficiency.
Based on above analysis, we find that researches in this field are still insufficient in the following aspects. For one thing, the calculation of market segmentation index in existing paper mainly focuses on multi-integral energy products market and calculations of market segmentation of power industry are still scarce; for another thing, there is a lack of research on the impacts of market segmentation on thermal power generation efficiency. Therefore, the contributions of this paper can be summarized as follows. Firstly, this paper checked the influence of market segmentation on thermal power generation efficiency, and contributes to the literature in the fields of thermal power generation efficiency and market segmentation. Second, in this paper, we explore the impacts of market segmentation on thermal power efficiency from different perspectives, i.e., static efficiency, dynamic efficiency, and the decomposition of dynamic efficiency, which enriches the relevant research content. Third, if a clear understanding of the relationship between market segmentation and thermal power generation efficiency lacks, the central government could not better implement the relevant policies to promote the development of the thermal power industry. This paper provides a new perspective for improving power generation efficiency, which gives some reference for China’s ongoing reform in the field of the electricity market.
The rest of this paper is organized as follows. Measurement of Thermal Power Generation Efficiency and Market Segmentation Index Section is about the relevant literature. In Impacts of Market Segmentation on Thermal Power Generation Efficiency Section, we describe the measurement of thermal power generation efficiency and market segmentation index. In Conclusions and Policy Implications Section, we specifically analyze the impact of market segmentation on thermal power generation efficiency. And Conflict of Interest Section is the conclusion and policy recommendations.
2 MEASUREMENT OF THERMAL POWER GENERATION EFFICIENCY AND MARKET SEGMENTATION INDEX
Thermal Power Generation Efficiency
2.1.1 Methodology
To solve the limitation of the conventional DEA model in the measurement of efficiency (Zhu et al., 2020; Wang M. et al., 2021), Chambers et al. (1996) proposed a directional distance function (DDF), which takes into account the maximization of the desired output and the minimization of the undesired output. The emergence of the DDF model overcomes the limitation that the traditional distance function can only adjust the input or output measurement efficiency, and distinguishes between strong and weak disposability between desirable and undesired outputs. Although DDF has its advantages, its limitation lies in the assumption that the increase of desirable output and the decrease of input and undesirable output are strictly proportional, which may lead to “slack bias” (Fukuyama and Weber, 2009). In view of the flaws of traditional DDF, Zhou et al. (2012a) proposed a non-radial DDF (NDDF) method. Compared with DDF, NDDF further relaxes the assumption of proportional change (Zhang and Choi, 2013; Lin et al., 2018), which can be used to adjust different proportions of input factors, desirable outputs and undesirable outputs (Zhou et al., 2012b).
Therefore, we use the NDDF method to measure the efficiency of thermal power generation in this study. Assuming that there are i = 1,2,., N regions as the basic decision-making unit (DMU), and the time period is t = 1,2, ., T. Each DMU uses capital (K), labor (L), and energy (E) to produce the desired output (Y), and undesired output CO2 emissions (C) during the production process. Referring to the work of Li and Xu (2018), we divide 30 Chinese provinces into three groups based on geographical location: eastern, central, and western regions. And we distinguish three types of technology production set based on the boundaries within the group and global boundary. Assuming that there are H groups and T periods. The production technology set for group h in period t is shown as follows.
[image: image]
The set covers the production technology set for all periods of the group and is expressed as follows.
[image: image]
The global production technology set is the set of production technology sets of all groups in all periods, as shown in Eq. 3.
[image: image]
Then the production function is expressed as:
[image: image]
According to the work of Lin and Du (2015), the following NDDF is constructed, which allows the increase of the desired output and the decrease of the undesired output to change in different ratios, and also effectively prevents the problem of slack deviation.
[image: image]
Where, the slack vector [image: image] is the proportion that each input factors can expand or output factors can reduce. The elements in the vector β could have different values. Compared with DDF, the assumption of expanding desirable output and reducing undesired output in the same ratio is relaxed. The function [image: image] is a diagonalization of the vector [image: image]. [image: image] is a direction vector, which indicates the direction of the expansion of the desired output and the reduction of the input and the undesired output. [image: image] represents the weights assigned to each input or output factor.
Then we could calculate the static efficiency index (UEI). The direction vector is set as g=(-K, -L, -E, Y, -C), and the weight vector w = (1/9, 1/9, 1/9, 1/3, 1/3).
The Eq. 5 can be solved by the following linear optimization process:
[image: image]
s t. 
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After solving the Eq. 6, we can get the optimal solution [image: image]. When region i achieves optimal production at time t, the target values of capital input, labor input, energy input, desirable output and undesirable output are [image: image], [image: image] and [image: image], respectively. If [image: image], the unit has achieved optimal production at time t. If [image: image] is the optimal solution of the above equation, the static efficiency index can be expressed as:
[image: image]
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Where UEI∈[0,1], and the higher value it is, the higher the efficiency level we get. According to the work of Li and Xu (2018) and Li et al. (2018), we further define the dynamic efficiency MMUEI as follows:
[image: image]
In addition, we further decompose the dynamic thermal power generation efficiency MMUEI. Assuming that the number of provinces in each group is [image: image], then the technology set constructed by using the sample in the current group can be expressed as:
[image: image]
During the whole sample period, the technology set constructed by the sample in the different time is the intertemporal group technology, that is: [image: image]. And the union of selectable intertemporal group technology is the global group technology, that is, [image: image]. Therefore, the dynamic thermal efficiency MMUEI can be decomposed as follows (Li et al., 2018; Li and Xu, 2018).
[image: image]
The efficiency change index (EC) measures the change in power generation efficiency within a group between two periods, which describes the change in technical efficiency between the decision unit in the group and the current technological frontier of the group. The Best Practice Gap Change Index (BPC) represents the change in [image: image] relative to [image: image], which measures the change in power generation efficiency gaps between the intertemporal technology and current technology conditions in the group. The technical gap ratio change index (TGC) indicates the change of [image: image] relative to [image: image], which measures the gap between the current group production technology and the global production technology.
2.1.2 Data
Our sample covers the panel data of the thermal power generation industry in China’s 30 provinces from 2005 to 2017.2 The data of capital input, energy input, and desirable output comes from China Electric Power Yearbook, and the data of labor input comes from China Labor Statistical Yearbook. The undesired output is calculated with the energy consumption and corresponding carbon emissions coefficient [image: image] and carbon oxidation rate [image: image], which is shown in Eq. 11.
[image: image]
Where [image: image] represents the CO2 emissions of province i at time t, [image: image] represents the standard coal consumption of fossil fuel j by province i at time t. The relevant coefficients [image: image] and [image: image] come from Liu et al. (2016). The description of our variables is shown in Table 1, and the summary statistics is shown in Table 2.
TABLE 1 | Data description for measuring thermal power generation efficiency.
[image: Table 1]TABLE 2 | Statistics summary for measuring thermal power generation efficiency.
[image: Table 2]2.1.3 The Results of Efficiency Measurement and Decomposition
In this section, we analyze the static and dynamic thermal power generation efficiency, and further decompose the dynamic thermal power generation efficiency into three parts. The range of efficiency calculated in this paper is [0,1]. A larger efficiency value means that the power plant can produce more desirable outputs with fewer inputs and fewer undesired outputs, and vice versa.
The calculation results of the three static efficiency indexes UEIg, UEIi, and UEIc are shown in Figures 3, 4, 5. The primary difference between UEIi and UEIc is the time period. UEIi is a whole cycle index, while UEIc is a specific cycle index. And both UEIi and UEIc are calculated based on the efficiency distance between the decision unit and the group boundary. However, UEIg is calculated based on the efficiency distance between the decision unit and the global boundary. It can be seen from Figure 3 that the UEIg index in the eastern region is significantly higher than that in the central region, and the UEIg index in the western region is the lowest, indicating that there exists a large regional difference. At the same time, the UEIg index is showing a slight upward trend in all regions, which illustrates that the static thermal power efficiency has gradually improved over time. From Figure 4 we can find that the results of UEIi index are similar to UEIg index. However, as shown in Figure 5, the results of UEIc index are different. Specifically, the UEIc index in the central region is higher than that in the eastern region, while the UEIc index in the western region has a large fluctuation.
[image: Figure 3]FIGURE 3 | The average value of UEIg in different regions.
[image: Figure 4]FIGURE 4 | The average value of UEIi in different regions.
[image: Figure 5]FIGURE 5 | The average value of UEIc in different regions.
Compared with the static efficiency indexes, the dynamic efficiency index MMUEI can describe the dynamic change of thermal power generation efficiency. From 2006 to 2017, the average MMUEI value is 1.00057 in China, indicating that on average, the static thermal power generation efficiency is gradually increasing, but the process is slow. As shown in Table 3, the average MMUEI value of 18 provinces is greater than 1, and the average MMUEI value of 12 provinces is less than 1. Furthermore, the three decomposition parts of the dynamic efficiency index MMUEI are shown in Table 4. From Table 4, we can draw the following conclusions: 1) More than half of the provinces are closer to the technological frontier in the current group than in the previous period; 2) The current technology frontier of most provinces is biased towards the intertemporal technology frontier; 3) The gap between intertemporal group technology and global technology is decreasing in most provinces.
TABLE 3 | Calculation results of MMUEI index.
[image: Table 3]TABLE 4 | Decomposition results of MMUEI index.
[image: Table 4]Market Segmentation Index
2.2.1 Methodology
The measurement methods of market segmentation can be divided into five different types (Yu and Liu, 2009). And the detailed introduction is shown in Table 5. Although each method has its own advantages and disadvantages, overall, the index constructed by “price method” can measure the degree of market segmentation more directly. The index is based on strict theory and methods to obtain objective measures of inter-regional market segmentation. Based on the classical literature of Paresley and Wei (1996); Paresley and Wei (2001a); Paresley and Wei (2001b), it has been widely used in similar studies.
TABLE 5 | Measurement of market segmentation index.
[image: Table 5]In our study, a kind of relative price method, Amazon Glacier Cost (Samuelson, 1964), has been widely applied in studies to measure the degree of market segmentation (Li and Lin, 2017; Wei and Zheng, 2017; He et al., 2018). Parsley and Wei (2001b) further developed this method based on the law of one price. Specifically, the larger the price difference between regions, the greater the degree of market segmentation. Therefore, the market segmentation index can be obtained by combining the price information related to various commodities. To better reflect the characteristics of the thermal power industry, this paper uses the ex-factory price index of power, coal and oil industries to measure the market segmentation index. The relevant data comes from China Price Statistical Yearbook. With reference to Li and Lin (2017), the steps to construct the market segmentation index are shown as follows.
Step 1: Build the relative price index. Suppose [image: image] represents the absolute price of energy k of province i at time t, and k∈{[image: image], [image: image], [image: image]}. [image: image] represents the absolute value of the relative price change of energy k in province i and province j at t, where the relative price can be measured by the first-order difference of the logarithm of the ex-factory price:
[image: image]
Step 2: Eliminate the corresponding systematic deviation. Since [image: image] contains the non-accumulation effects caused by the heterogeneity of energy products, we use the de-means method to eliminate the systematic deviation, that is, the average price difference [image: image] between different regions across time t is eliminated.
[image: image]
Step 3: Combine price differences and derive market segmentation index. We calculate 435 pairs () of provincial combinations.
[image: image]
[image: image]
[image: image] represents the difference between the three price indexes between province i and province j in time t; [image: image] represents the degree of market segmentation of province i in time t; N represents the number of paired combinations of each province. Since there are 30 provinces, N = 30–1 = 29.
2.2.2 The Results of Market Segmentation Index
Based on Eqs 12–15, the specific market segmentation index of the thermal power industry in each province can be calculated. Figure 6 shows the time trend of the market segmentation index in the thermal power industry. It can be seen that from 2006 to 2017, the market segmentation index of China’s thermal power industry fluctuated greatly. And three rebounds occurred in 2008, 2015, and 2017, respectively.
[image: Figure 6]FIGURE 6 | Trend of market segmentation index of thermal power industry.
In addition, from Figure 7 we can find that from 2006 to 2012, in general, the market segmentation index of the thermal power industry in most provinces showed a slight downward trend, and the fluctuation range was small, basically between 0 and 0.005. Besides, from 2008 to 2010, the thermal power market segmentation index increases significantly. This finding is consistent with Wei and Zheng (2017). In addition, the market segmentation index fluctuations of most provinces are large between 2015 and 2017. During the entire sample period, the fluctuations in Guizhou, Guangdong, and Tianjin are large, while the fluctuations in Anhui, Hunan, and Inner Mongolia are relatively small and stable, indicating that the price fluctuations of the thermal power industry in different provinces show heterogeneity. We can also see from Figure 7 that the market segmentation index of almost all provinces reached a peak in 2008. This may be due to the widespread impact of the 2008 financial crisis, as local governments tend to increase market intervention to ensure economic stability within the province. Local governments set up barriers for the entry and operation of non-local enterprises to ensure the survival and development of local enterprises, which led to the peak of market segmentation index in most provinces during this period.
[image: Figure 7]FIGURE 7 | Time trend of market segmentation index in different provinces.
3 IMPACTS OF MARKET SEGMENTATION ON THERMAL POWER GENERATION EFFICIENCY
Model and Variables
In order to analyze the impacts of market segmentation on thermal power generation efficiency, we construct the following regression model:
[image: image]
Where MMUEI is the dynamic efficiency index of thermal power generation in province i at time t, and seg is the core explanatory variable, which indicates the degree of market segmentation in the thermal power industry of each province. The control variables are as follows: lnfdbh is the standard coal consumption for power generation, state is the ownership structure, er is the environmental regulation, lncp is the coal price, and ε is the disturbance unrelated to the explanatory variables. [image: image] measures the impacts of changes in market segmentation on thermal power efficiency.
We use the non-radial direction distance function (NDDF) to measure the thermal power generation dynamic efficiency index MMUEI, and the degree of market segmentation is calculated based on the Amazon Glacier Cost model. The data of standard coal consumption for power generation comes from China Electric Power Yearbook. We use the ratio of state capital in total capital in the electricity, heat production and supply industries to represent the ownership structure, and the data comes from China Industry Statistical Yearbook. The intensity of environmental regulation can be measured by the amount of sulfur dioxide emissions. We use the amount of sulfur dioxide emissions per unit of electricity generated to represent the level of environmental regulation, the relevant data comes from China Electric Power Yearbook and China Industry Statistical Yearbook. And the ex-factory price index of coal industrial products is represented as the coal price. The data comes from China Price Statistical Yearbook and is deflated as the 2005 constant price. The summary statistics of the above main indicators are shown in Table 6.
TABLE 6 | Summary statistics of variables in the benchmark regression.
[image: Table 6]Empirical Results
We do the Hausman test and find that the null hypothesis is rejected, which means that unobservable random variables that represented the original heterogeneity are related to all the explanatory variables. Therefore, the fixed effect model is selected and corrected by the heteroscedasticity standard error. The regression results are shown in Table 7.
TABLE 7 | The impacts of market segmentation on thermal power generation efficiency.
[image: Table 7]Through the regression results in Table 7, we find that after adding control variables one by one, the regression coefficient of the market segmentation index on the thermal power generation dynamic efficiency has always been significantly negative, indicating that the larger the degree of market segmentation, the lower the thermal power generation efficiency. Therefore, the existence of market segmentation significantly inhibits the improvement of thermal power generation efficiency. Theoretically, the reasons for this result may be as follows: 1) Market segmentation hinders the effective allocation of resources. The direct result of market segmentation is that resources cannot flow effectively in the region, which leads to the distortion of factor market. In the case of market segmentation, the price signal of power market can only play a local role, and cannot reflect the scarcity of power industry resource factors, which is not conducive to the improvement of thermal power efficiency; 2) Market segmentation may hinder technological innovation. In a segmented market, companies may seek profits from low-cost factor inputs and rental income rather than invest in research and development projects. The factor market distortion caused by market segmentation will restrain regional technological innovation to some extent. And the backward development of innovation will inevitably have a negative impact on thermal power efficiency. 3) Market segmentation hinders regional competition and cooperation. In order to protect and stabilize the local economy, some local governments provide “umbrella”, such as subsidies, to efficient power generation companies, while discouraging more competitive non-local companies from entering. The lack of competition hampers efficiency gains because greater competition leads to increased output and incentivizes companies to adopt technology to improve efficiency. Besides, market segmentation has narrowed the scope of regional cooperation, and some provinces and cities often only communicate and cooperate with their neighbors in their geographical locations.
In addition, the coefficient of standard coal consumption for power generation to thermal power generation efficiency is negative, which is in line with expectations. The coefficient of the ownership structure on thermal power generation efficiency is always significantly negative, indicating that the higher the proportion of state-owned assets, the lower the efficiency of thermal power generation. And the coefficient of environmental regulation is significantly negative, indicating that environmental regulation (the stricter environmental regulation will lead to less SO2 emission per unit of power generation) has a promoting effect on the improvement of thermal power generation efficiency. Besides, the coefficient of coal price is significantly positive, which means that the increase in coal price is conducive to the improvement of the thermal power generation efficiency. If the coal price increases, the power plants will inevitably improve fuel utilization through improving technologies and other energy-saving measures, which can improve the level of thermal power generation efficiency at the same time.
In order to test the robustness of the regression results, we replace the dependent variable MMUEI with the three static efficiency indexes UEIg, UEIi, and UEIc. The regression results are shown in columns 1)–3) in Table 8. It can be seen that the impacts of market segmentation on thermal power generation efficiency are still significantly negative. In addition, we exclude the data in 2006 and conducts an empirical regression with the data from 2007 to 2017. It is found that the market segmentation is still not conducive to help improve the efficiency of thermal power generation (see column 4) in Table 8). In order to solve the endogenous problem, we further use the two-step regression system GMM method and take the lag terms of core independent variable and environmental regulation as the tool variables. Column 5) in Table 8 shows that the sign and significance of the coefficient do not change. Therefore, we claim that the results obtained are robust.
TABLE 8 | Robustness test and endogenous processing results.
[image: Table 8]Analysis of Influencing Path
In order to figure out how does the market segmentation affect the efficiency of thermal power generation, we replace the dependent variable with EC, BPC, and TGC respectively. The regression model is as follows:
[image: image]
Where s can be EC, BPC or TGC, and the key explanatory variable and other control variables remain unchanged.
EC measures the change of intra-group generation efficiency between two periods, so it describes the “catch-up effect” of intra-group decision units on the technological frontier of the current period While TGC describes the “technology leader transfer effect” relative to the global frontier. As can be seen from Table 9, when the dependent variables are EC and TGC, there is no evidence that market segmentation has a significant impact on thermal power efficiency. This indicates that market segmentation does not significantly promote intra-regional technology sharing and development, nor does it significantly hinder inter-regional technology dissemination and sharing. As can be seen from column 3 of Table 9, the effects of market segmentation on thermal power generation efficiency are mainly achieved through BPC. This result has two main implications. Firstly, BPC measures the change of thermal power efficiency gap in the group with intertemporal technology and current technology. An increase in BPC can be seen as a kind of “innovative effect” of technology, which indicates that the gap between the current technological frontier and the inter-period technological frontier is shrinking. Thus, the degree of market segmentation may reduce the incentives for provinces to increase the efficiency of thermal power generation through investment in R&D and technological innovation. Secondly, the market segmentation mainly affects the change of thermal power generation efficiency within the group, so different regions may have unchanged and different power generation technology models due to differences in market segmentation.
TABLE 9 | The influencing path of market segmentation on thermal power efficiency.
[image: Table 9]4 CONCLUSIONS AND POLICY IMPLICATIONS
China’s power industry is in a critical transformation period. The new round of power system reform in 2015 will have a profound impact on China’s power industry. Therefore, it’s necessary to analyze the influencing factors of thermal power generation efficiency. Based on the related data of thermal power industry in 30 provinces of China from 2005 to 2017, this paper mainly studies the influence of market segmentation on thermal power generation efficiency, and also do mechanism analysis and robustness test.
Key Findings

1) different regions have different thermal power efficiency. Among them, the static efficiency index expressed by UEIi and UEIg in the eastern region is significantly higher than that in the central and eastern regions, while the static efficiency index expressed by UEIc in the central region is higher than that in the eastern region. There is a clear gap. For dynamic efficiency, it is found that the average dynamic efficiency of thermal power generation in the eastern region is higher than that in the central region. And the dynamic efficiency of thermal power generation in the western region is the lowest.
2) From 2006 to 2017, the market segmentation index of China’s thermal power industry has changed significantly. The price fluctuation of thermal power industry in different provinces is heterogeneous. Guizhou, Guangdong and Tianjin have larger fluctuations, while Anhui, Hunan and Inner Mongolia have relatively small and stable fluctuations.
3) The market segmentation exhibits a significant negative impact on the efficiency of thermal power generation. And we further find that the impact of market segmentation on thermal power generation efficiency is mainly achieved through BPC. The probably reason is that the power market segmentation prevent the high-efficiency non-local power generation enterprises from surviving in the local market, which leads to the reduction of thermal power generation efficiency nationwide.
Policy Suggestions

1) The government should break down local protection and inter-provincial barriers, integrate power market resources, and strengthen the union of the provincial power generation market. The primary reason for the market segmentation is that under the GDP assessment system in China, local governments have excessively pursued economic development and fiscal revenue. And the local governments have implemented local protection policies to tilt local resources to local enterprises and aimed to promote the development of local enterprises. To break down local protection and inter-provincial barriers, the central government must change the assessment mechanism for local officials, consider other factors such as regional interconnection and cross-regional trade into the assessment mechanism. This can promote the diversification of the assessment mechanism, reduce the interests of local protection, and motivate local governments to reduce direct intervention in the market. Besides, the central government should strengthen the supervision and punishment of market segmentation behaviors of the local governments. At the national level, the central government can do this through real-time monitoring of market prices. For example, using big data to analyze the price index, thereby promptly discovering and preventing market segmentation behaviors. Moreover, the central government should encourage the areas with poor economic development to actively integrate into the domestic market. The long distance between power transmission and distribution makes the cost high, and the gains from power market transactions cannot cover their cost. Therefore, the central government can promote the reasonable allocation of power resources between regions through government subsidies, and accelerate the integration of the power generation market.
2) The government should improve cross-province and cross-region power trading mechanisms and promote the optimal allocation of power resources in a larger area. The government should implement uniform power market trading rules nationwide to prevent some local governments from hindering power market transactions in order to protect their own interests, which reduces the role of market allocation of power resources. And the government should also encourage the western regions to strengthen the construction of power market trading mechanism, further improve the subsidy policy for clean power transmission in the western region on the demand side, and optimize the allocation of national power resources. Besides, the government should allow price signals exist at different times and different regions to more fully reflect the supply and demand of power, realizing the market-oriented adjustment. Under the condition of satisfying the security constrain, the optimal dispatch should be carried out for the generator set, so as to reduce the social cost for the balance of power, and realize the maximum benefit of the entire power generation system. At the same time, the government can explore the establishment of the electricity futures market, which is conducive to the formation of a unified standard in the power market. And the electricity prices will be more transparent, and grid companies can realize reasonable predictions for the electricity price.
3) The government should enhance the incentives of the power industry to improve efficiency with scientific and technological innovation in various regions, and try to realize the replication and popularization of advanced technologies. The existence of market segmentation has also led to the gradual formation and solidification of power generation technology patterns in various regions. Local enterprises lack the motivation to compete under local protection, and lack the motivation for technological innovation. All of these restrict the incentive of the thermal power industry to invest in R&D and improve efficiency, which inhibits the promotion of overall thermal power generation efficiency. In order to improve the efficiency of thermal power generation, the local governments should encourage the innovation of power plants within the region due to the actual conditions, continue to improve the power generation technology, and resolve the contradiction between high energy consumption and low output. Through the establishment of innovative subsidies for invention patents, research projects, and so on to stimulate the enterprises and researchers. And at the same time, the government should realize the sharing mechanism of technology innovation, promote the exchange of advanced experience among power plants. Furthermore, the government should set up efficient and advanced power market pilots, so as to promote the complete replication and reference of advanced technological concepts to improve the overall efficiency of thermal power generation.
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The unspecified impact of green innovation on corporate financial performance has made some enterprises delay green innovation investment plans, and even abandon green innovation. Mitigating the economic concerns faced in the process of green innovation decision-making is of great significance to accelerate the process of enterprises’ green transformation. Using an unbalanced panel data of Chinese heavy pollution listed companies from 2008-2017, this paper investigates the impact of green innovation on firm value. We further test the likely channels through which green innovation can affect firm value, including the financial flexibility channel and analyst coverage channel. The study finds that: 1) increasing the proportion of green patent applications leads to the devaluation of firm value, but this devaluation effect only occurs in the short term; 2) both financial flexibility and analyst coverage partially mediate the impact of green innovation on firm value; 3) heterogeneity analysis indicates that enterprises can reduce the negative impact of green innovation on firm value by increasing the executive equity incentive and the management-employee pay gap. In addition, as economic policy uncertainty increases from low to high, the negative impact becomes smaller. Our research helps to broaden the cognitive boundaries of the economic impact of green innovation, and assists policymakers and researchers to better grasp the characteristics of green innovation behavior of enterprises in emerging economies. Finally, we provide useful enlightenments for policymakers and business managers to stimulate green innovation in enterprises.
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1 INTRODUCTION
Since the industrial revolution, the extensive development mode has promoted economic and social growth, but it has also caused overuse of resources and serious environmental pollution (Wang et al., 2021). In the face of this challenge, the concept of green development has become an important guidance for transforming the developing mode (Abbas and Sagsan, 2019). As the driving force of green development, green innovation is the key to curb the trend of ecological environment deterioration and ensure the sustainable development of corporate economic activities.
The factors driving enterprises to engage in green innovation include, but not limited to, environmental regulations, technological capabilities, managerial environmental concern, competitive pressures, and customer green demand (Cai and Li, 2018; Demirel and Kesidou, 2019; Hojnik and Ruzzier, 2016; Liu et al., 2021). Fundamentally, one of the decisive factors is whether the economic return generated from green innovation can offset the cost while improving environmental benefits. However, the unspecified impact of green innovation on corporate financial performance (CFP) has made some enterprises delay green innovation investment plans, and even abandon green innovation (Duque-Grisales et al., 2020). The empirical research on the impact of green innovation on CFP has not yet reached a consensus (Duque-Grisales et al., 2020; Asni and Agustia, 2021).
Taking manufacturing enterprises as research samples, some studies found that green innovation was positively related to CFP (Huang and Li, 2017; Liao, 2018; Lin et al., 2019; Xie et al., 2019). Using a panel data of 642 industrial enterprises in China, Wang et al. (2021) estimated the impact of green innovation on CFP and found that environmental performance and market competitiveness are two important intermediary variables through which green innovation can improve CFP. Farza et al. (2021), using a German firm dataset, demonstrated that environmental innovation can improve resource allocation efficiency and corporate reputation, leading to stronger competitiveness and better financial performance. However, it takes a certain time for innovation output to be fully applied to an enterprise’s production and operation, so its impact on CFP may also lag (Ernst, 2001; Zhang et al., 2019). Using a panel data of 356 multinational companies, Rezende et al. (2019) found that green patents did not improve CFP in the short term, but there was a significant positive relationship between them in the long term. Using Chinese manufacturing enterprise data, Zhang et al. (2019) also obtained similar findings.
The inherent differences between green innovations lead to differences in their impacts on CFP. Using German data, Ghisetti and Rennings (2014) found that green innovations enhancing energy and resource efficiency significantly improved the profitability of enterprises, but this positive impact only existed in the long term. And green innovations serving to reducing negative externalities would damage corporate profitability in the long run. Enterprises’s profitability can hardly benefit from green innovations if they only improve environmental performance but cannot enhance resource efficiency (Rexhaeuser and Rammer, 2014). On the other hand, the economic returns of green innovation are threatened by some unique peculiarities of emerging economies. Using the data of Chinese manufacturing enterprises, Yao et al. (2019) demonstrated that both eco-product and eco-process innovation negatively related to firm value. They pointed out that the obvious disadvantages, such as weak intellectual property rights protection, inadequate trained and qualified personnel, limited environmental knowledge and smaller customer base of eco-products in developing economies weakened the economic benefits of green innovation. The above mixed research conclusions provide impetus for further investigation on the relationship between green innovation and CFP.
There are still two major limitations in the extant literature. First, previous studies mainly used green R&D investment, green patent counts and quantitative indicators constructed by text information to measure green innovation. These indicators measure green innovation from the perspective of absolute value. However, they cannot provide information about changes in the relative importance of green innovation among enterprise innovation activities and the direction of innovation activities. To make up for this deficiency, this paper uses the ratio of the annual number of green patent applications to the total number of patent applications of enterprises in the same year to measure green innovation. The increase of this ratio directly reflects the increase of green innovation output. Further, it shows that the enterprises’ preference to participate in green innovation activities has been strengthened, which also means more attention is paid to green innovation in innovation decision-making.
Second, previous studies have investigated the impact of eco-innovation on CFP from multiple perspectives such as operating efficiency and cost, market share, profit, and return ratio (He et al., 2018). However, as the impacts of eco-innovation are not immediately apparent, the short-term performance indicators can barely capture their long-term impact (Yao et al., 2019). Besides, these performance indicators do not consider the capital market’s response to corporate green innovation. As an important financing place, capital market has a significant impact on the production and operation of enterprises. It notices firms’ behavior to apply green innovation to business operations (Asni and Agustia, 2021). Nishant et al. (2017) found that shareholders would evaluate the impact of green innovation on corporate economic and environmental performance. They used signal theory to demonstrate that green information technology (IT) announcement is an effective signal transmitted to the capital market by enterprises, and proved that green IT announcement will significantly affect stock prices in empirical research. To address the limitations of short-term performance indicators, this paper used firm value to measure the economic impact of green innovation, and Tobin’s q was used as its proxy indicator. Tobin’s q, which takes into account both company operations and investors’ expectations of future growth, is a comprehensive reflection of corporate accounting data and capital market performance. It not only reflects the long-term business performance of enterprises from past to present, but also reflects its market growth. Moreover, compared with profitability indicators such as ROA and ROE, Tobin’s q is not easily manipulated by business managers.
In addition, more research needs to be conducted on enterprises in heavy pollution industries. It is well known that the negative impact of heavy polluting industries on the ecological environment is far greater than that of other industries. Gennaro et al. (2022) conducted an empirical study on population health in the city of Taranto, which has built the largest steel mill in Europe since the 1960s. They found that compared with the surrounding areas, the urban population mortality rate increased remarkably from 2011 to 2020. Specifically, in the three northern neighborhoods of the city (Paolo VI, Tamburi and Citta Vecchia-Borgo), a total of 1,020 excess deaths were recorded from 2011 to 2019 in both males and females. Facing the urgent need to improve the ecological environment, the green innovation of heavy pollution industry has stronger practical value for ecological sustainable development and future economic development. Most of the conclusions from current research are mainly obtained from comprehensive samples covering multiple industries. However, Liu Z. S et al. (2017) calculated the GML (Global Malmquist-Luenberger) index of green technological innovation of 28 manufacturing industries in China from 2003 to 2014, and found that the average index of pollution industries was the lowest, indicating that it has the poorest green innovation ability. The innovation efficiency of the whole heavy pollution industry in China is generally low (Fang et al., 2020), which may be due to the low technological concentration and limited technological innovation ability of the whole industry. Therefore, we believe that the impact of green innovation on CFP will be affected by industry characteristics, and research on heavy pollution industries needs to be strengthened.
To address these research gaps, taking China’s heavy pollution industry enterprises from 2008 to 2017 as the research samples, this paper estimated the impact of green innovation on firm value. Firstly, we used the ratio of the number of green patent applications to the total number of patent applications to measure green innovation, and firm value was proxied by Tobin’s q. Secondly, we further tested the likely channels through which green innovation can affect firm value, including the financial elasticity channel and analyst coverage channel. Lastly, we analyzed how the pay gap between management and ordinary employees, executive equity incentive, and EPU affect the impact of green innovation on firm value. This study can assist in the design of green innovation policies among heavy pollution enterprises. Furthermore, the findings about the impact of green innovation on firm value are also applicable to firms in emerging economies.
Reviewing the latest research related to this paper, we found that, on the one hand, empirical research using firm data from developed countries mostly concluded that green innovation can improve enterprises’ market performance, such as raising the firm value (Farza et al., 2021), reducing the risk of stock price crash (Zaman et al., 2021) and bringing about excess returns to investors (Szutowski, 2021). On the other hand, findings based on emerging economies differ markedly from the foregoing. Using the data of Chinese listed enterprises, Zhang et al. (2020) empirically demonstrated that green innovation promoted the improvement of medium- and high-level firm value, but such effect was very weak when it comes to enterprises with low value. Duque-Grisales et al. (2020) estimated the impact of green innovation on firm value with the dataset of Latin American listed companies, and found that firm value did not benefit from the increase of green innovation. They pointed out that insufficient pressure from environmental regulation, short-term vision of professional managers and corporate culture that discriminates against green innovation hindered enterprises from adopting green innovation. In addition, these studies do not consider the differences in the impact of green innovation on CFP among different industries.
The inconsistent conclusions and limitations in the above literature suggest that more efforts should be made to promote the green innovation activities of enterprises in emerging economies. The contradiction between the prevailing high-emission development mode in emerging economies and the exigent need for sustainable growth remains acute. Stimulating green innovation in enterprises is an important measure to protect the long-term economic interests of these countries and improve the global ecological environment. Over the past few years, Chinese government has devoted painstaking efforts to shift the economic development model to a green one. In 2006, the National Development and Reform Commission issued “Thousand Firms Energy Saving Program” to encourage energy-saving actions in key energy-consuming industries. Five years later, the “Action Plan for Energy Conservation and Low-Carbon for Ten Thousand Firms” was implemented nationwide to further reduce total energy consumption and energy consumption intensity of medium and high energy consuming enterprises. As one of the most active countries to promote green innovation, it is of great significance to study the impact of green innovation on the firm value of heavily polluting enterprises under this background. On the one hand, the research helps to mitigate the economic concerns faced by enterprises in the process of green innovation decision-making, and brings beneficial inspiration to enterprises that are also experiencing green transformation in other emerging economies. On the other hand, previous studies on the relationship between green innovation and CFP paid insufficient attention to emerging markets (Duque-Grisales et al., 2020). The research on heavy pollution enterprises in China is a suitable supplement to the literature, and assist policymakers and researchers to better grasp the characteristics of green innovation behavior of enterprises in emerging economies.
Compared with the existing literature, the possible contributions of this paper are mainly reflected in three aspects: First, when analyzing the impact of green innovation on firm value, we use the proportion of green patents to measure green innovation. This helps to reveal how firm value react to the change of status of green innovation activities in the overall innovation activities, thus broadening the cognitive boundary of the economic impact of green innovation. Second, this paper is the first study to incorporate green innovation, financial flexibility, analyst coverage and firm value into a unified framework for analysis. It enlightens business managers on how to improve the economic benefits of green innovation from both internal and external perspectives. These mechanisms can also be applied to study the impact of other innovation activities on firm value. Third, to the best of our knowledge, this article is the first to propose and empirically examine how management-employee pay gaps and economic policy uncertainty (EPU) affect the impact of green innovation on firm value. It is a useful supplement to the theory of how green innovation affects enterprise value.
The rest of this paper is organized as follows. The following section is a literature review and theoretical assumptions. Section 3 provides a detailed description of the empirical method, data sources, and construction of the key variables. Section 4 presents the empirical results. Section 5 reports the results of robustness tests. The conclusions and policy recommendations are given in Section 6.
2 LITERATURE REVIEW AND HYPOTHESES
Our study is closely related to three streams of literature. The first is concerned with the strategic innovation motivation of Chinese enterprises and the impact of green innovation on firm value. The other two streams of literature relate to potential influencing mechanisms of green innovation affecting firm value.
2.1 Chinese Enterprises’ Strategic Innovation Motivation
Innovation ability is the source of the core competitiveness of enterprises, and innovation output has become the main driving force to promote enterprises’ rapid development and value growth (Sevilir and Xuan, 2012). Empirical evidence suggests a positive relationship between R&D (research and development) expenditure and firm value (Belderbos et al., 2021; Ehie and Olibe, 2010) and firms with strong innovation have higher long-term stock returns (Cohen et al., 2013). However, some scholars question the accuracy and availability of R&D expenditure data (Grassmann and Griliches, 2021; Popp, 2019). R&D expenditure is not an ideal proxy for innovation as it has return uncertainty and cannot provide information related to innovation output. After investigating the relationship between patents and R&D, scholars believe that patent statistics are effective indicators of technological innovation (Acs and Audretsch, 1989; Hall et al., 1986). A prominent advantage of patent data is that it can reflect rich information, such as applicants’ information, technical details, etc. By investigating the relationship between patents and firm value, many studies found that firm value increases with the number of patents owned by a company (Pakes, 1985; Belenzon and Patacconi, 2013; Chen et al., 2019).
However, these studies assumed that every patent was of equal quality, but the patents held by companies show disparities in quality. Low-quality patents contribute little to firm value (Faleye et al., 2014), and their value is unstable (Belenzon and Patacconi, 2013). Low-quality patent applications are easier and have narrow claims that competitors can use to avoid the scope of protection and develop similar products (Dang and Motohashi, 2015). The central government’s innovation catch-up strategy and patent promotion plan have driven China’s patent incentive policies. These policies have encouraged a large volume of low-quality or low-value patent applications, resulting in a decline in the granting rate (Dang and Motohashi, 2015). At the same time, firms have strong strategic motivation for innovation (Li and Zheng, 2016) for two main reasons. First, all provinces in China have implemented incentive policies to encourage patenting activities. Government subsidies reduce the patent filing and/or examination fee, and applicants are not required to return the subsidies even if the examiners reject the patent applications. Second, the promotion of Chinese government officials is closely related to their political achievements. The central government has upgraded the innovation strategy to a national strategy and implemented industrial policies to support firm innovation, thus compelling the inclusion of regional firm innovation ability and output in the political achievement assessment. The average tenure of Chinese municipal officials is 3–4 years. To improve their performance quickly, local governments prefer to support enterprises that generate higher short-term innovation output.1 To meet the political needs of officials and obtain more fiscal subsidies, firms choose to engage in innovation that can produce results in the short term and avoid high-quality innovations with longer input cycles. Although strategic innovation increases the number of patent applications from firms, it ignores patent quality improvement and crowds out firms’ resources for other innovation activities. Tong et al. (2014) found that after China’s second patent law revision, the number of patent applications from state-owned enterprises’ climbed, but the quality decreased. The output of design patents with less difficulty and requiring less time increased significantly. In comparison, there was no remarkable increase in the output of invention patents with more difficulty and requiring more time.
After analyzing the green patent information of China from 1970 to 2018, Hua et al. (2020) found that 93.48% of green technology patents were never cited, indicating that most of them may be of low value. At the same time, Chinese listed companies pay insufficient attention to green patenting activities, and the output and quality of green innovation are low. Based on the analysis of green patent data of listed companies in China’s Shanghai and Shenzhen stock markets, Qi et al. (2018) found that the sample average of the number of granted green patents each year, divided by the number of all patent applications during the year, was only 0.0148. Some scholars have investigated green innovation in China’s heavily polluting industries. Wang and Zhao (2019) found that the number of green patent applications increased more significantly from 2011-2017 than from 2006-2010. The increase came mainly from utility model patents with low value, and the number of more valuable invention patents declined. Duque-Grisales et al. (2020) demonstrated that firms need to fill the gap between their resources and the ability to implement effective green innovation. The lack of innovation resources induces resource competition among departments and teams within firms, which is detrimental to green innovation. However, the environmental investment of heavily polluting listed companies in China is insufficient (Tang and Li, 2012), and the lack of adequate financial resources could restrict the improvement of green patent quality. Using a set of industry-level data from heavily polluting industries, Fang et al. (2020) examined changes in green innovation efficiency from 2004 to 2016. The results indicate that the overall green innovation efficiency of the industry is generally low in China, showing the characteristics of “effective innovation but not green.” Based on the above analysis, we argue that the average quality of green patents of listed companies in China’s heavy polluting industry is low.
2.2 Green Innovation and Firm Value
In essence, green innovation is an important intangible asset that affects the firm value, helping enterprises transform the environmental sustainability goal into a profitable investment opportunity. Griliches (1990) made a pioneering contribution to linking literature on innovation and market value with economic impacts of green innovation. In this framework, the financial market will assign a value to the bundle of an enterprise’s assets, which is equal to the present discounted value of all future cash flows created by its assets. If intangible assets are expected to affect future cash flow, their value should be reflected in the observed market value of the firm (Colombelli et al., 2020). Consistent with this idea, when green innovation is expected to influence the future cash flows of an enterprise by production, management, marketing, reputation and other aspects, it will affect the financial market in evaluating its value.
How to measure green innovation and capture the economic impact of green innovation are two major issues to be solved in the research. Firstly, green patent data are commonly used as the proxy indicator of green innovation in empirical research (Li et al., 2017; Ma et al., 2021; Scarpellini et al., 2019). Enterprises’ patent data directly reflect the achievements of R&D activities and effectively convey information on their innovation output and R&D capabilities to financial markets (Colombelli et al., 2020). Moreover, the green patent ratio may perform better than green patent counts in terms of measuring green innovation. It can effectively eliminate other unobservable factors that stimulate green innovation (Popp, 2002, 2006), such as an innovation subsidy policy. On the other hand, taking green patent applications as an example, the proportion of green patent applications in relation to total patent applications can reflect not only the change of green innovation output, but also the direction of enterprise innovation activities. Secondly, Tobin’s q has been widely used as a proxy indicator of corporate value in empirical research (Yao et al., 2019). It is a comprehensive reflection of corporate accounting data and capital market performance, which effectively takes into account a company’s operations and future growth. Furthermore, compared with financial indicators such as ROE and ROA, Tobin’s q is not easily influenced by manipulation of the management (Srinivasan and Hanssens, 2009).
At present, the relationship between green innovation and corporate financial performance is still inconclusive (Duque-Grisales et al., 2020; Ghisetti and Rennings, 2014). From the perspective of benefits, engaging in green innovation activities compels enterprises to reduce unnecessary resource waste in the production process, promoting resource utilization efficiency. Fujii et al. (2013) and Porter and Linde (1995) demonstrated that the knowledge and human capital accumulated in pollution reduction activities help firms achieve improved production and operation management. Lee and Min (2015) argued that green innovation enables firms to establish long-term competitive advantages and enhance the sustainability of enterprise development. However, green innovation requires firms to invest a lot of resources and bear significant opportunity costs. Green innovation consumes the resources invested in other value-added activities and makes enterprises fall into a relatively disadvantaged position in the market (Zhang et al., 2020). Specifically, green innovation occupies resources used by daily operations or other investment activities (Grassmann and Griliches, 2021), harming existing production and sales (Chen and Ma, 2021). Resources committed to green innovation activities have long and highly uncertain payback (Ortiz-de-Mandojana and Bansal, 2016). Barnea and Rubin (2010) proposed that managers may engage in social responsibility activities to enhance personal reputation, thus damaging stakeholders’ interests. In addition, innovative knowledge has positive externalities (Romer, 1986), which to some extent reduces the economic benefits of green patents to inventors. Considering the quality of green patents from listed companies in China’s heavy pollution industries and the costs and benefits of green innovation, we believe that low-quality green patents cannot fully realize the benefits mentioned in the above research. The economic value created by these patents is minimal and not enough to compensate for the cost of green innovation. Therefore, we propose our first hypothesis:
Hypothesis 1 (H1): Green innovations are negatively related to the firm value of China’s heavy pollution enterprises.
2.3 Mediating Role of Financial Elasticity
Financial flexibility refers to a firm’s ability to promptly obtain or invoke financial resources (used to prevent uncertain events or seize favorable investment opportunities) to maximize the value of enterprises (DeAngelo and DeAngelo, 2007; Gamba and Triantis, 2008). According to pecking order theory, when facing external financing constraints, greater financial flexibility enables firms to seize favorable investment opportunities to create more value for themselves. Gamba and Triantis (2008) theoretically explained that higher financial flexibility helps avoid financial distress and promptly raises funds for value-creating activities. On the other hand, maintaining greater financial flexibility can enhance a firm’s ability to resist risks and reduce the value loss caused by negative event shocks. Arslan-Ayaydin et al. (2014) found that firms with greater financial flexibility effectively alleviated the negative impact of the financial crisis. The value performance of these enterprises was better than those with poor financial flexibility. Based on the above analysis, we expect that green innovation will occupy considerable financial resources and cause a decline in financial elasticity. This will impair firms’ ability to resist risks and force them to abandon some favorable investment opportunities, which is harmful to firm value creation. Therefore, this paper proposes the second hypothesis:
Hypothesis 2 (H2): Financial flexibility mediates the relationship between green innovation and firm value such that: (a) green innovation negatively affects the financial flexibility, and (b) the decline of financial flexibility will lead to the devaluation of firm value.
2.4 Mediating Role of Analyst Coverage
Analysts act as important information intermediaries in the capital market. They interpret the information of listed companies and transmit it to investors, which brings incremental information for decision-making (Lys and Sohn, 1990; Frankel and Li, 2004). Analysts’ judgment could affect investors’ evaluation of enterprise value. Barber and Loeffler (1993) found that the stock recommended by the “dartboard” column in the Wall Street Journal produced an average abnormal short-term return of 2% per day. Womack (1996) demonstrated that on the day before and after the release of the rating report, the abnormal return rate was 4% for stocks whose ratings were upgraded to buy, and the abnormal return rate was −-3.87% for stocks whose ratings were downgraded to sell. The number of analysts tracking firms correlates positively with firm value, and analysts have strong motivation to track high-quality firms (Chung and Jo, 1996). Analyst coverage can improve investors’ perception of firm value, which helps reduce corporate financing constraints. Some studies show that analysts’ information interpretation activities help companies reduce financing costs and expand financing scale (Bowen et al., 2008; Chang et al., 2006).
On the one hand, analyst coverage can inhibit opportunistic management behaviors (Healy and Palepu, 2001), such as illegal disclosure and earnings management (Dyck et al., 2010; Yu, 2008), which could damage firm’s value. On the other hand, analysts and investors pay attention to the firms’ innovation (Guo et al., 2019). Investors are more likely to trust the information provided by analysts when it comes to innovation activities and other matters prone to agency problems (Amir et al., 2003). Ordinary investors have difficulty understanding specialized activities, such as innovation activities (Kelm et al., 1995). Analysts generally have comparative advantages in dealing with such information, and their interpretation of innovation information could affect the market value of firms. Luo et al. (2014) theoretically and empirically demonstrated that analysts’ information interpretation activities played a significant mediating role in the process of IT investment promoting firm value. Considering the previous analysis of green innovation performance of heavily polluting listed companies, we argue that increasing green innovation will reduce the analyst coverage of relevant firms. This occurs because analysts expect that the increase of low-quality green innovation could damage enterprise value. Further, taking into account the previous analysis of the positive relationship between analyst coverage and firm value, we argue that the decline of analyst coverage will lead to the devaluation of firm value. Therefore, this paper proposes the third hypothesis:
Hypothesis 3 (H3): Analyst coverage mediates the relationship between green innovation and firm value such that: (a) green innovation negatively affects the analyst coverage, and (b) the decline of analyst coverage will lead to the devaluation of firm value.
3 METHODS AND DATA
3.1 Model Specification
Based on the unbalanced panel data of China’s A-share listed firms from heavily polluting industries between 2008 and 2017, this paper uses a two-way fixed effect model to examine the impact of green innovation on firm value. The baseline regression model is as follows:
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The explanatory variable of the model is the firm value of listed enterprises, denoted as [image: image], and the explanatory variable is the green innovation of enterprises, denoted as [image: image]. [image: image] is a set of control variables reflecting typical firm-level characteristics. Firm financial characteristics include leverage ratio, size, return on assets, and sales growth ratio. The firm’s governance structure characteristics include ownership concentration, executive shareholding ratio, and the proportion of independent board members in the board. In addition, we also control for R&D expenditure, firm age, and nature of property rights. [image: image] and [image: image] are individual and year-specific fixed effects, and [image: image] is the unobserved exogenous error term.
3.2 Data Sources
We chose the heavy pollution industry as the research object for the reason that it is the government’s key control object in promoting green development. In this case, it could be of great practical significance to study the green transformation of relevant firms. We set the starting year of the sample data as 2008 and the ending year as 2017 for the following two reasons: first, it is because of the availability of data2; second, on January 1, 2018, China officially abolished the emission fee policy that had been running for 38 years and implemented the single-line tax law: Environmental Protection Tax Law of the People’s Republic of China. The new environmental tax law changes “pollution discharge fee” to “environmental tax” and is more stringent than previous environmental regulations regarding collection measures and collection standards. Because of this and to minimize policy impact, the observation ending year is 2017.
In this paper, we match the heavy pollution industries defined by the Guidelines for Environmental Information Disclosure of Listed Companies with the two-digit industry classification codes provided by Guidelines for the Industry Classification of Listed Companies (2012 Revision), and 12 heavy pollution industries are thus determined.3 According to the demands of the study, we firstly excluded listed companies marked as *ST, S, S* ST, ST, SST. These markers are used to warn investors that companies have serious problems, such as significant financial fraud and losses in successive years. Further, the stock prices of such companies are heavily influenced by human manipulation. Secondly, samples with missing major variables. All green patent data of heavy pollution listed companies came from patent information issued by the China National Intellectual Property Administration (CNIPA). The information sources of China’s provincial EPU indexes are the dataset constructed by (Yu et al., 2021).4 The rest of the data came from the WIND Info database and the CSMAR database. To mitigate the concern of outliers, we winsorized the top and bottom 1% of all the continuous variables from their distributions.
3.3 Variable Constructions
3.3.1 Green Innovation
The explanatory variable of this paper is green innovation. From the existing research, scholars mainly use the following three types of indicators to capture green innovation: 1) green patent counts, or the proportion of green patents in relation to total patents (Aguilera-Caracuel and Ortiz-de-Mandojana, 2013; Du et al., 2019; Rezende et al., 2019; Zhang et al., 2019); 2) green R&D investment (Lee and Min, 2015); and 3) quantitative indicators constructed by text information (Xie et al., 2019; Duque-Grisales et al., 2020). Many researchers stipulate that patent data is an effective indicator to measure technological innovation (Scherer, 1983; Hall et al., 1986; Acs and Audretsch, 1989). Patent statistics can provide a wealth of information on innovation output, and the return of R&D investment has great uncertainty (Popp, 2019). Further, patent application data perform better than granted patent data in reflecting a firm’s innovation output level (Ernst, 2001). Patents possibly impact firm performance in the application process, so patent application data will be more stable, reliable, and timely than patent authorization. However, patent authorization needs to detect and pay annual fees, which is vulnerable to bureaucratic factors (Tan et al., 2014). Finally, compared with the indicator of patent counts, using the proportion of green patents can effectively eliminate some unobservable factors affecting enterprise innovation (Popp, 2002, 2006). For example, it may be an innovation subsidy policy, which may also impact firm value. Meanwhile, the latter indicator can also reflect the importance and trend of green innovation in firms’ innovation activities. Therefore, we use the proportion of annual green patent applications in relation to total patent applications in the same year to measure green innovation. Using Zhang et al. (2019) research method, we match the patent classification number (IPC), published by CNIPA, with the green technology patent classification number, defined by the World Intellectual Property Organization, to identify the green patents of listed companies.
3.3.2 Firm Value
The dependent variable is firm value. At present, scholars usually use Tobin’s Q as a proxy for firm value (Lee and Min, 2015; Kim et al., 2021; Tang et al., 2021), which can reflect the market value of enterprises based on stock prices and is difficult for enterprise management to manipulate (Srinivasan and Hanssens, 2009). Consistent with previous studies, we use Tobin’s Q as the proxy variable for firm value. Referring to Kim et al. (2021), Tobin’s Q is constructed as follows:
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3.3.3 Mediators
The mediating variables in this paper are financial flexibility and analyst coverage. Financial flexibility is the firm’s ability to obtain and invoke internal and external funds through appropriate financial strategy arrangements (Byoun, 2011). Holding cash, maintaining debt financing ability, and equity financing ability are the main ways to obtain financial flexibility (DeAngelo and DeAngelo, 2007). Based on the above definition, we measure firms’ financial flexibility with the net operating cash flow ratio to total liabilities. Because it reflects the enterprise’ ability to use internal financing to supplement cash reserves and repay debts. The larger the ratio is, the solvency of enterprises will be stronger, helping enterprises to acquire more financial resources by undertaking larger debt financing scale. Referring to (Chung and Jo, 1996; Chang et al., 2006; Yu, 2008), the number of analyst teams tracking the target firm in a year is applied as the measurement of analyst coverage.
3.3.4 Control Variables
To alleviate the bias caused by the unobservable heterogeneity of firms, we controlled for firm-level characteristics when examining green innovation’s impact on firm value. First, we constructed four variables to capture firms’ financial characteristics, including leverage ratio, size, return on assets, and sales growth ratio (Kim et al., 2021; Tang et al., 2021; Liu et al., 2021). The leverage ratio was proxied by the ratio of total liabilities to total assets. We used net return divided by total assets to measure firms’ return on assets and the log value of total assets as a proxy for firm size. The sales growth ratio was calculated as the difference between current operating income and previous year’s revenue, divided by the previous year’s revenue. Second, we controlled for firms’ governance structure characteristics (Chen and Ma, 2021), including ownership concentration, executive shareholding ratio, and the proportion of independent board members in the board. We used the sum of the top five investors’ shareholdings divided by the total number of shares to measure ownership concentration; the shares held by all executives divided by the total shares was the measurement of executive shareholding ratio; we divided the number of independent directors by the total number of corporate board of directors to define the proportion of independent directors. Finally, we incorporated R&D intensity, firm age, and nature of property rights into the set of control variables (Xu et al., 2017; Yu et al., 2021). R&D intensity was the ratio of R&D expenditure divided by operating income, and firm age was the log value of the number of operating years since the firm’s establishment. The nature of property rights was a dummy variable, which had four values corresponding to four types of enterprises: state-owned enterprises for 1, private enterprises for 2, public enterprises and collective enterprises for 3, remaining enterprises for 4. All the definitions of key variables are presented in Table 1.
TABLE 1 | Variable definitions.
[image: Table 1]Table 2 reports the descriptive statistical results of the key variables in this paper. The mean and median of [image: image] are 0.05 and 0, demonstrating that green innovation output level of heavy pollution listed companies is generally low. Meanwhile, the mean and median of [image: image] are 0.2 and 0.12, respectively. This result suggests more than half of enterprises have poor financial flexibility. As for analyst coverage, the mean and median of [image: image] are 1.72 and 1.79, respectively, indicating that heavy polluting listed companies receive little attention from analysts in the capital market.
TABLE 2 | Descriptive statistics of primary variables.
[image: Table 2]4 EMPIRICAL RESULTS AND ANALYSIS
4.1 Baseline Results
Table 3 indicates the effect of green innovation on the firm value of heavy pollution listed enterprises. All models control various fixed effects in the regression and cluster standard errors at the two-digit industry level. Model 1 shows the regression result after controlling financial characteristics and governance structure characteristics. This result shows that an increase in the proportion of green patent applications would lead to a decline in firm value. Model 2 is the baseline regression model of this paper, which further controls R&D intensity, firm age, and the nature of property rights based on Model 1. The regression result from Model 2 is consistent with that of Model 1, suggesting that green innovations have a statistically negative effect on firm value ([image: image]); H1 is thus accepted.5 However, the above results only show that green innovation negatively affects firm value in the short term, leading to another issue of concern in this paper; will green innovation also cause damage to firm value in the long run?
TABLE 3 | Effect of green innovation on the firm value of heavy pollution listed enterprises.
[image: Table 3]To analyze the long-term impact of green innovation on firm value, we first use the baseline regression model to simultaneously investigate the effect of the proportion of green patent applications in year t-1 on [image: image] and the impact of [image: image] on firm value in year t+1. The regression results of Model 3 and Model five show that the coefficients of [image: image] and [image: image] are both negative and insignificant, indicating that the increase of the proportion of green patent applications will not damage firm value in the long run. Next, we use Model 4 and Model 6 to test the robustness of this result. Model 4 indicates that when [image: image] is controlled, the impact of [image: image] on [image: image] is still statistically negative. Model 6 suggests that the impact of [image: image] on firm value in year t+2 is negative but not significant. It can be concluded from the regression results of Models 3 to 6 that a negative relationship between the proportion of green patent applications and firm value does not exist in the long run. In consideration of enterprises listed by the government as intensive monitoring units face greater pressure on environmental regulation and risks of being punished, this may deteriorate investors’ expectations of these enterprises’ firm value. In Supplementary Table SA3, we found that all the conclusions above was robust to the regression results obtained from the sample excluding these enterprises.
4.2 Mediating Effects
Stepwise regression test proposed by Baron and Kenny (1986) is commonly used to test mediating effect. A simplified model for analyzing the mediating effect is shown by equations 1) - (c). Among them, X, Y and Z are independent variable, dependent variable, and intermediary variable respectively. The first step is to test the total effect of X on Y. The second step is to test the significance of the product of coefficients (H0: [image: image] = 0) by examining coefficients [image: image] and [image: image] in turn. The third step test is used to distinguish between complete mediation effects and partial mediation effects. If either of [image: image] and [image: image] are not significant, the researcher should suspend mediation effect analysis. Otherwise, coefficients of [image: image] and [image: image] need to be tested further. If both of them are significant, it indicates that partial mediating effect exists. And if either of them is not significant, the researcher should suspend mediating effect analysis. Finally, the researcher can calculate [image: image] to obtain the size of mediating effect. In view of stepwise test method is simpler and easier to understand and explain than other test methods, we used it to carry out the mediating effect analysis.
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Combined with the hypotheses proposed in this paper, the possible explanations for the negative relationship between green innovation and firm value are as follows: first, green innovation will occupy considerable financial resources of enterprises, resulting in declining financial elasticity. This decline will force firms to abandon some profitable production and investment activities, thus falling into a competitive disadvantage compared to other companies not engaging in green innovation. Second, analysts anticipate that the economic value created by heavy pollution enterprises’ green patents is too low to compensate for the corresponding costs. In this case, the increase of green innovation will make analysts downgrade their evaluations of firm value, thus reducing a firm’s analyst coverage. The decrease in analyst coverage will cause a decline in firm value.
Models 1 and two in Table 4 were mainly used to test whether green innovation could affect firm value through the channel of financial flexibility. In Model 1, we found that green innovation had a significant negative effect on financial flexibility ([image: image]). Furthermore, Model 2 indicated that the impact of financial flexibility on heavy pollution enterprises’ firm value was significantly positive ([image: image]). This suggests that financial flexibility is an important mediation to link green innovation and heavy pollution enterprises’ firm value, thus proving H2. The mediation effect of financial flexibility in the total impact of green innovation on firm value accounted for 11.5% (−0.047*0.442/(−0.180)).6 The finding should be discussed in conjunction with the financing situation of China’s heavy-polluting industries. Credit financing is the main way for Chinese companies to obtain external funds, but the green credit policy has significantly raised the financing threshold and cost of heavily polluting industries (Li et al., 2021). Related enterprises engaging in green innovation will bear greater opportunity costs as the financing threshold and cost increase. In this case, green innovation activities will severely weaken their fund support for enlarging production scale, upgrading machine equipment, and investing in innovation activities. Losing the opportunity to expand production capacity and enhance innovation ability could cause the loss of market share and deterioration of investors’ expectations of business stability and profitability, leading to a decline in corporate value. On the other hand, expenditure on green innovation activities may not be at the optimal level. CEOs increase CSR expenditure (such as purchasing environmental equipment, supporting charitable activities, and engaging in green innovation) out of self-interest motives such as improving reputation and seeking for career advancement. This may lead to the over-investment effect in which the economic benefits cannot make up for the explicit and hidden costs accompanied with the consumption of enterprise’s internal and external resources (Zhang et al., 2020).
TABLE 4 | Mediating effect test.
[image: Table 4]Models 3 and 4 in Table 4 were mainly used to test whether the green innovation could pass through the channel of analyst coverage to affect firm value. The models show that the impact of green innovation on firms’ analyst coverage was significantly negative at 5%. Meanwhile, the influence of firms’ analyst coverage on the firm value was significantly positive at 1%. This result suggests that the analyst coverage channel is an essential mediation to link green innovation and heavy pollution enterprises’ firm value, thus proving H3.7 In addition, the mediation effect of analyst coverage is 10.9% (−0.131*0.150/(−0.180)), which is slightly smaller than that of financial flexibility.
4.3 Heterogeneous Effects
The above analysis shows that green innovation will cause damage to firm value in the short term, but it is an important way for heavy pollution firms to achieve green transformation. This analysis leads to the following questions: can firms alleviate the short-term negative impact of green innovation on firm value by improving some internal factors? Is there any external environmental factor influencing the relationship between green innovation and firm value?
We propose that providing executives with equity incentives and setting a significant pay gap between management and ordinary employees will improve corporate green innovation activities, helping green innovation create more value for firms. On the one hand, Morck et al. (1988) theoretically explained that equity incentive makes the interests of executives close to that of shareholders, resulting in the convergence effect of interests. Executive equity incentive stimulates executives to optimize the firm’s investment decisions (Steinbach et al., 2017). Zahra et al. (2000) demonstrated that equity incentives play an important role in raising executives’ enthusiasm to participate in firm innovation activities, generating commitment to long-term firm development. On the other hand, according to tournament theory (Lazear and Rosen, 1981; Rosen, 1986), companies can motivate employees by setting up a hierarchy of compensation. Xu et al. (2017) argue that payment at a given level in the organizational hierarchy induces effort from employees at the same and lower levels; he empirically found that to a certain extent, the pay gap driven by management pay premium leads to more innovation output from enterprises. Therefore, we argue that the pay gap will encourage the company-wide dedication to green innovation activities, which helps to improve potential economic value of green patents. In addition, EPU may affect the impact of green innovation on firm value; EPU brings both risks and opportunities. For enterprises to seize potential development opportunities, they are motivated to increase R&D investment and profit from technological innovation (He et al., 2020). According to the growth option theory, the uncertainty caused by environmental policy changes promotes enterprises’ environmental investment decisions to some extent and induces green innovation behaviors (Bloom, 2009). We propose that heavy polluting enterprises in regions with great EPU have stronger motivation to engage in green innovation activities, which may help to enhance the economic value of green innovation.
Next, we introduce the interaction terms between the above heterogeneous factors and green innovation into the baseline model for testing. Referring to (Xu et al., 2017), we measure the pay gap by the ratio of the average executive salary to the average salary of ordinary employees.8Executives’ shareholding ratio is used as the proxy variable for executive equity incentive. Compared with the previous single national index, the China provincial EPU index constructed by Yu et al. (2021) is more effective in capturing the heterogeneity of each province. In this case, the dataset performs better in capturing the EPU in various regions. We matched the administrative division code of the region where the enterprise is located with the administrative division code in the dataset to obtain the provincial EPU. Table 5 presents the results of the heterogeneity analysis. Model 1 shows that the regression coefficients of [image: image] are significant and positive at the level of 1%, meaning that setting a significant pay gap between management and ordinary employees can mitigate the devaluation effect of green innovation on firm value.
TABLE 5 | Heterogeneous effect test.
[image: Table 5]In Model 2, the coefficients of [image: image] are significant and positive at the level of 10%. This result suggests that providing executives with equity incentives can effectively alleviate the devaluation effect of green innovation on firm value. Further, we have predicted the continuous change of the marginal effect of green innovation on enterprise value when the shareholding ratio of executives increases from low to high. As shown in Supplementary Appendix Figure SA1, when the shareholding ratio of executives increase continuously to a certain level (about 27%), the negative marginal effect of green innovation on corporate value gradually decreases.9 Once it exceeds this level, the marginal effect shifts from negative to positive and increases gradually. The possible explanation is that the higher the executive equity incentive level, the greater the material returns obtained by executives from business management. This has prompted executives to invest more efforts in optimizing green innovation activities, and thus contributing to the enhancement of their ability to create value.
The coefficients of [image: image] in Model 3 are statistically positive at the level of 5%, indicating that green innovation imposes less devaluation pressure on heavy pollution enterprises in regions with great EPU. We use Model 4 to test the robustness of the above heterogeneity analysis results. Model 4 shows that all interaction coefficients appearing in Models 1 to 3 are still significantly positive (p < 0.01; p < 0.1; p < 0.1), indicating the above conclusions drawn from are robust. He et al. (2020) provides reasonable theoretical and empirical evidence for our findings related to heterogenous effects of EPU. Using Chinese data, they demonstrated that the increase of EPU will stimulate enterprise innovation. They proposed that for enterprises, reducing or delaying innovation investment to deal with EPU has serious drawbacks, because it is at the cost of giving up the chance to enhance competitiveness and increase market share. If a competitor chooses to innovate first, the opportunity cost of delaying innovation may exceed the cost of innovation and option value of waiting. Referring to this idea and the fact that the degree of competition in many heavy pollution industries is very high, we believed that enterprises are motivated to enhance green innovation to seize the growth opportunities behind high EPU and increasing environmental regulation pressure.10 Firms that pioneer green innovation can enjoy “first-mover advantages”. Moreover, green innovation can help enterprises establish a green image (Xie et al., 2019), and thus improving consumers’ green satisfaction and green trust (Chen and Chang, 2010). A successful green innovation can bring about the increase of market share and create more economic value for stakeholders (Karimi Takalo et al., 2021).
5 ROBUSTNESS CHECK
5.1 Endogeneity Problem
We conducted a battery of checks to test the robustness of the above regression results. First, considering the mutual causality between green innovation and firm value, we used the instrument variables and the 2-stage least square method to control for endogeneity in the regression test. On the one hand, we used the proportion of green patent applications at the current period, minus the current year’s mean of the proportion of green patent applications of all enterprises in the same city, as the instrumental variable of [image: image]. On the other hand, we used the difference between the current year’s proportion of green patent applications and the current year’s mean of the proportion of green patent applications of all enterprises with the same nature of property right as the instrumental variable of [image: image].The regression results are displayed in Supplementary Table SA2, which shows that green innovation had a significant and positive correlation with both instrument variables and a statistically negative influence on the firm value. These results manifest the robustness of the finding that the increase of green innovation will lead to the short-term devaluation of firm value. Meanwhile, all the F statistics were higher than 10, indicating that the weak instrument variable test was passed. One possible explanation for the positive correlation between green innovation and the two instrumental variables is that the empirical evidence indicated that knowledge spillover affects regional innovation (Maurseth and Verspagen, 2002). Peri (2005) found that R&D acquired from external technology flows has a strong positive effect on innovation activities. The flow of green innovation knowledge within an area helps to reduce R&D costs, thereby promoting green innovation activities of other enterprises in the local area. In addition, the spillover effect between similar enterprises is strong. The closer two enterprises are, the more they will benefit from each other’s R&D (Aiello and Cardamone, 2008), implying that enterprises with the same nature of property rights could promote each other’s green innovation activities.
5.2 Sample Excluding Intensive Monitoring Enterprises
We excluded observations from the sample that the government lists as intensive monitoring enterprises.11 Greater regulatory pressure intensifies the operational risks for enterprises, and a heavier pollution reduction burden is detrimental to enterprises’ normal production and operation, thus deteriorating investors’ expectations of these enterprises’ firm value. Therefore, using samples containing these enterprises in regression analysis could cause estimation errors. The regression results of subsamples are shown in Supplementary Tables SA3–SA5. We found that except for the heterogeneous effect of EPU, the findings are consistent with all the empirical findings mentioned before. The possible explanation for the insignificant heterogeneous effect of EPU is that, with the environmental regulations in China being increasingly stringent in recent years, regional EPU has increased the environmental regulation risks facing heavy pollution enterprises. Additionally, intensive monitoring enterprises face greater risks of administrative penalties, such as fines, temporary shutdown, and revocation of the business licenses. Green innovation helps to increase the survival probability of these enterprises, thereby improving analysts’ and investors’ expectations regarding their green patents. In contrast, other heavily polluting enterprises face less regulatory pressure, and EPU has less impact on such enterprises.
5.3 Alternative Variable Measurements
We alter the measurement of some variables. We calculated Tobin’s Q by the ratio of stock market value to total assets. The regression results in Supplementary Tables SA6–SA8 show that the findings are consistent with the empirical results mentioned before. In addition, we measure financial flexibility by the ratio of net operating cash flow to capital expenditure. It directly reflets that whether enterprise’s internal financing can raise funds for other activities under the premise of meeting investment demand. At the same time, analyst coverage is proxied by the number of analyst reports covering enterprises. Supplementary Tables SA9 shows that the mediating effects of financial flexibility and analyst coverage are robust.
6 CONCLUSIONS AND POLICY RECOMMENDATIONS
6.1 Conclusions
This paper investigated the relationship between green innovation and the firm value of heavy pollution listed enterprises in China. Based on the data of China’s A-share heavy pollution listed enterprises from 2008 to 2017, we examined the impact of the proportion of green patent applications on firm value. Further, we examined the influencing mechanisms of green innovation affecting firm value. And we also analyzed how the pay gap between management and ordinary employees, executive equity incentive, and EPU affect the impact of green innovation on firm value. The results indicate that green innovation leads to the devaluation of firm value, but this devaluation effect only occurs in the short term. Additionally, both financial flexibility and analyst coverage partially mediate the impact of green innovation on firm value. Specifically, the increase of green innovation will reduce a firm’s financial flexibility and analyst coverage, thus causing a decline in firm value. This also indicates that analysts could effectively evaluate the green innovation information of heavy pollution listed companies and that these green patents would create very little value for enterprises. Lastly, both increasing executive equity incentives and management-employee pay gap are helpful to mitigate the negative impact of green innovation on firm value. And especially for heavy pollution enterprises in China, the negative impact of green innovation on firm value is smaller when the regional EPU is large.
6.2 Policy Recommendations
These findings have the following implications for corporate managers and policymakers. First, our research reveals a dark side of strategic innovation behavior, that is, pursuing the strategic green innovation policy of increasing patent counts but ignoring their quality improvement could cause damage to firm value. The speculative behavior of strategically engaging in green innovation activities is inadvisable, and the increase of low-quality green patents may lead to the decline in firm value. This suggests that when formulating green innovation policies, corporate managers are encouraged to focus limited financial resources on improving the quality of green patents.
According to the discussion in the literature review, the low-efficiency patent subsidy policy is one of the important factors contributing to the negative correlation between green innovation and enterprise value. Liu et al. (2020) estimated the impact of government subsidies on green innovation based on the data of listed companies in China’s pharmaceutical industry from 2010 to 2015, and found that government subsidies effectively stimulated non-green innovation but did not promote green innovation. The authors provided two explanations: first, the dual externality of green innovation (knowledge externality and environmental externality) weakens its investment attraction, which makes enterprises driven by the motivation of maximizing short-term interests give priority to non-green innovation activities in terms of subsidy allocation. Second, information asymmetry about innovation activities induces enterprises to abuse government subsidies, leading to ineffective subsidy on green innovation (Wang et al., 2017). Therefore, we propose that policymakers should redesign existing green innovation subsidy schemes, guide enterprises to disclose subsidy utilization plans, and provide preferential policies (such as tax exemption and special fund) to enterprises engaging in expected green innovation behaviors.
Second, enterprises can alleviate the negative impact of green innovation on firm value by optimizing internal governance factors, including providing the executives with equity incentives and increase the share of management pay in a firm’s salary payment distribution.
Third, governments should be more cautious about environmental regulation policies, such as green credit policy, which may impede the green development of heavily polluting industries. Our financial flexibility channel analysis suggests that the increase of external financing constraints will further deteriorate the financial flexibility of enterprises, which will, in all likelihood, deepen the negative impact of green innovation on firm value. Since the China Banking Regulatory Commission issued the “Green Credit Guidelines” in 2012, the green credit policy has significantly increased external financing constraints facing six major highly polluting industries, leading to a decline in total investment in these industries (Liu J. Y et al., 2017).12 The financing constraints imposed by the green credit policy on heavily polluting enterprises might force spending cuts on other production and investment activities to finance green innovation. These cuts could lead some heavy pollution enterprises capable of achieving green transformation into the vicious cycle of “green innovation-investment reduction-performance deterioration.”
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FOOTNOTES
1Considering Shleifer and Vishny’s (1994) analysis of the two-way bribery and rent-seeking activities between officials and entrepreneurs, it can be concluded that in order to improve political achievement, officials have the incentive to require firms within the jurisdiction to improve their innovation output in the short term, and in return, officials provide financial subsidies and tax incentives to firms.
2Before 2008, there were few heavily polluting enterprises applying for green patents. However, the average number of green patent applications by the entire heavy pollution industry has increased rapidly since 2008, with more than 900 between 2008 and 2010.
3The 12 heavy pollution industries are as follows: Mining and washing of coal; Extraction of petroleum and natural gas; Mining and processing of ferrous metal ores (Ferrous Metal Ore Mining); Mining and processing of non-ferrous metal ores (Non-Ferrous Metal Ore Mining); Mining and processing of nonmetal ores (Nonmetal minerals mining); Manufacture of beverages (Beverage Manufacturing); Manufacture of paper and paper products (Paper Making and Paper Products Industry); Processing of petroleum, coking, processing of nuclear fuel; Manufacture of chemical raw materials and chemical products; Manufacture of chemical fibers (Chemical Fiber Manufacturing); Smelting and processing of ferrous metals (Ferrous Metal Smelting and Rolling Processing); and Smelting and processing of non-ferrous metals (Non-Ferrous Metal Rolling Processing Industry).
4(dataset) Yu, J., Shi, X., Guo, D., Yang, L., 2021. Economic policy uncertainty (EPU) and firm carbon emissions: Evidence using a China provincial EPU index. https://doi.org/10.1016/j.eneco.2020.105071.
5Considering that enterprise value may be dynamically changing, we used two-step system GMM estimation method to estimate the impact of green innovation on enterprise value. As shown in Supplementary Table SA1, our findings revealed a significant negative effect of green innovation on firm value. Therefore, the conclusion is robust to the alternative regression model.
6We replaced the proxy indicator of financial elasticity with the ratio of net operating cash flow to capital expenditure. The regression results show that the conclusion is consistent with the previous finding. The details are presented in section 5.3.
7We replaced the proxy indicator of analyst coverage with the number of analyst reports tracking an enterprise. The conclusion is robust to the use of alternative indicator in regression. The details are presented in section 5.3 (Alternative variable measurements).
8[image: image].
9We used Model 2 in Table 5 to conduct the prediction analysis.
10“Guidance on Resolving the Contradictions of Serious Overcapacity” issued by the State Council in 2013 clearly stipulates that overcapacity in steel, cement, electrolytic aluminum and flat glass industries should be actively resolved. In 2014, the Ministry of Industry and Information Technology released a list of industries with severe overcapacity, including ironmaking, steelmaking, coke, ferroalloy, calcium carbide, electrolytic aluminum, copper smelting (containing recycled copper), lead smelting (containing recycled lead), cement (clinker and mill), flat glass, papermaking, leather making, printing and dyeing, chemical fiber, lead battery (plate and assembly) and other industries.
11According to “Measures for self-monitoring and information disclosure of national intensive monitoring enterprises,” after being included in the list of key monitoring enterprises, enterprises need to install an automatic monitoring system. The monitoring station checks the pollution of enterprises every month.
12The six high-pollution industries are thermal power, steel, petrochemical, cement, nonferrous metals, and chemical.
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Estimating the impact of economic policy uncertainty (EPU) on carbon emissions is crucial for formulating emission reduction targets and policies. Using the unbalanced panel data of 325 prefecture-level cities in China from 2001 to 2017 and a two-way fixed-effects model, this paper investigates the impact of economic policy uncertainty on city’s carbon emission intensity. We find that one percentage point increase in economic policy uncertainty will make the city’s carbon emission intensity increase by 4.28 percentage points, and by 0.244 tons per ten thousand yuan at an absolute level. The findings imply that policy makers need to consider the potential threat of economic policy uncertainty on carbon peaking and carbon neutrality in China.
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HIGHLIGHTS

• The impact of economic policy uncertainty on city’s carbon emissions is estimated.
• We use a dataset of 325 Chinese cities from 2001 to 2017.
• We find that economic policy uncertainty will increase carbon emission intensity.
• The above result is stronger for cities in the Eastern and Central regions.
• The above result is more significant for cities with more environmental investment and R&D investment.
1 INTRODUCTION
Estimating the impact of economic policy uncertainty on carbon emissions is crucial for formulating emission reduction targets and policies (Li et al., 2022; Xian et al., 2022). With the continuous improvement of the level of economic development and per capita income, the environmental pollution problems have increased (Chen et al., 2021). And more and more people pay attention to and attach importance to a green and low-carbon life. Currently, the economic growth model of high energy input, high energy consumption, and high emission have gradually been abandoned by countries around the world, and more and more countries and regions have begun to turn to a green and low-carbon development model. Farhad and Ehsan (2020) estimate the energy transition patterns in 45 Asian countries with different incomes. They find that economic growth has a positive relationship with the energy transition, while CO2 emissions negatively influence energy transition. As the world’s largest carbon emitter, the Chinese government has set a design route and timetable for carbon dioxide emission reduction targets, requiring that carbon peaks be reached by 2030 and carbon neutrality be achieved by 2060 (Xian et al., 2022; Zeng et al., 2022). International experience shows that it will take 50–60 years for developed countries in Europe and America to realize the transition from carbon peaking to carbon neutrality. Conversely, the Chinese government has announced to the world that China will achieve the transition within the next 30°years, which also indicates that China will be far more challenging to achieve carbon neutrality than developed countries in Europe and America (Liu et al., 2022). Moreover, China is still in the transition period of rapid urbanization and industrialization, which further exacerbates the difficulty of achieving carbon neutrality. To achieve carbon neutrality as scheduled, an important task for the Chinese government is to clarify the factors that affect urban carbon emissions and to reasonably evaluate the implementation effects of various emission reduction policies.
For a long time, the Ministry of Industry and Information Technology of China has focused on energy consumption standards and enterprise development, the National Development and Reform Commission in charge of carbon emissions and economic growth and the Ministry of Environmental Protection in charge of pollution emissions and ecological environment. The incompatibility between environmental goals and economic goals (Swain, 2018), as well as the interfering economic policies from “multiple departments” are important reasons for the low efficiency of China’s carbon emission management (Yang et al., 2016). Furthermore, the uncertainty of economic policies caused by the interference from “multiple departments” and inconsistent policy timing has greatly reduced the reduction effect of China’s carbon dioxide emissions, greatly weakened the expected results of emission reduction policies, and hindered the realization of the “3060 target” as scheduled (Cui et al., 2021). Aiming to accelerate the green and low-carbon transformation of Chinese cities, this paper mainly analyzes the impact of economic policy uncertainty on China’s urban emission reduction and adopts a two-way fixed effect model to examine the impact of economic policy uncertainty on urban carbon emissions in China. The paper intends to clarify the real impact of economic policy changes on China’s urban carbon emissions and put forward policy recommendations that can accelerate the green and low-carbon transformation of Chinese cities, which has instructive and practical significance for achieving carbon peaking before 2030.
Due to the lack of regional heterogeneity of the economic policy uncertainty index at the national or sectoral level, it cannot truly reveal the impact of economic policy uncertainty on city’s carbon emissions (Yu et al., 2021). The motivation of this paper is to use a regional economic policy uncertainty index in China to estimate its impact on the city’s carbon emissions, rather than a national or sectoral economic policy uncertainty index. The study finds that elevated economic policy uncertainty will hinder the green and low-carbon transformation of cities. If a city’s economic policy uncertainty increases by 1 percentage point, the city’s carbon emission intensity will increase by 0.244 tons per ten thousand yuan in absolute amount, and 4.28 percentage points in relative amount. This is especially evident in the central and eastern cities, cities dominated by the secondary industry, and cities with more investment in environmental pollution control and R&D.
Our study contributes to the literature in the following ways. First, this paper uses a regional economic policy uncertainty index rather than a national or sectoral-level economic policy uncertainty index. The regional economic policy uncertainty index has sufficient regional heterogeneity, which can more accurately estimate the impact of economic policy uncertainty in different cities on carbon emissions. Second, the previous literature usually examines the impact of economic policy uncertainty on carbon emissions from the firm level (Yu et al., 2021), while this paper focuses on the city level and quantitatively measures the magnitude of the impact. Third, the paper examines the impact of economic policy uncertainty on urban carbon emissions from multiple dimensions, such as geographic region, industrial structure, environmental protection investment, and R&D investment, and puts forward targeted policy recommendations to accelerate urban green and low-carbon transformation.
The paper is organized as follows: Section 2 presents the literature review. Section 3 is the methodology, variables selection, and data sources. Section 4 introduces the empirical results, heterogenous analysis, and robustness checks. The final section concludes this paper and provides some policy implications.
2 LITERATURE REVIEW
Historical data demonstrate that more than 70% of global carbon emissions come from cities, and less than 30% come from other regions (Cai et al., 2021). Hence, the urban carbon emission intensity directly determines the carbon emission level of a country or region. To speed up the green and low-carbon transformation of cities, the first condition is to make clear the main sources and influencing factors of urban carbon emissions.
Generally, there are two main sources of urban carbon emissions, one is the industrial sector and the other is the residential sector. The former is closely related to factors such as the stage of economic development, the level of economic development, industrial structure, the level of scientific and technological innovation, and the investment in environmental protection management (Xie et al., 2017; Liu et al., 2021a; Xian et al., 2022). The latter is highly correlated with urban population size, per capita income, residents’ low carbon awareness, and urban geographic distribution (Ribeiro et al., 2019; Cai et al., 2020; Yi et al., 2021). Generally speaking, the relationship between urban economic development and carbon emission intensity satisfies the environmental Kuznets curve (Jiang L et al., 2019). When a city’s economic development level is low, carbon emissions are also at a low level, but with the rapid economic development and the increase of per capita income, both the total amount and intensity of carbon emissions rise rapidly. When the urban economic development reaches a certain level, the continuous increase of per capita income will reduce the urban carbon emission intensity, and thus significantly improve the urban environmental quality. In this type of literature, many scholars also believe that in addition to the industrial sector and the residential sector, another important factor affecting the level of urban carbon emissions is the spatial spillover of carbon emissions between adjacent cities (Liu et al., 2020; Rong et al., 2020; Wang et al., 2020).
Among many influencing factors of urban carbon emissions, economic policy is a very important one. This is because the formulation of economic policies not only directly determines the development direction of a city in the short and medium to long terms and affects the level of the city’s future economic development, but also the environmental and industrial policies derived from economic policies will indirectly change the total amount and intensity of urban carbon emissions. Therefore, attention needs to be paid to the systemic impact of economic policies on urban carbon emissions (Dietz and Venmans, 2019; Danish et al., 2020; Hu et al., 2020; Radmehr et al., 2021).
In recent years, the changing laws of economic policy around the world are increasingly indistinct and the frequency of changes is accelerating. Although the impact of deterministic economic policies on urban carbon emissions is predictable, if the changes in economic policies are unpredictable, it will bring huge risks and challenges to the city’s green and low-carbon transformation. Currently, the focus of the literature is shifting from deterministic to uncertain economic policies, focusing on the impact of economic policy uncertainty on carbon emissions in countries around the world.
The first category of literature conducts research from the national level. For example, Adams et al. (2020) use panel data of 10 resource-rich countries in the world from 1996 to 2017 to study and find that economic policy uncertainty has a significant positive effect on carbon dioxide emissions in the long run. Adedoyin and Zakari (2020) study the United Kingdom data from 1985 to 2017 to conclude that economic policy uncertainty reduces the growth rate of carbon dioxide emissions in the short term, but increases carbon dioxide emissions in the long run. Khan et al. (2022) use historical data of four East Asian countries, China, Japan, South Korea, and Singapore, and conclude that economic policy uncertainty will accelerate carbon dioxide emissions. Based on panel data of the world’s top ten carbon dioxide emitters from 1990 to 2015, Anser et al. (2021) find that when economic policy uncertainty increases by 1%, carbon dioxide emissions increase by 0.11% in the short term and 0.12% in the long term.
The second category of literature conducts research from provincial and industry levels. For example, Liu and Zhang (2022) use data from Chinese provinces to find that the impact of economic policy uncertainty on carbon emissions has regional differences. Based on the United States industry data, Jiang Y et al. (2019) find that economic policy uncertainty will increase carbon dioxide emissions and their growth rates by destabilizing industry production. Wei et al. (2022) point out that the unpredictability of changes in economic and environmental policies will inhibit the rapid development of the photovoltaic power generation industry and the electrolysis hydrogen production industry, thereby hindering the green and low-carbon transformation. Dou et al. (2022) examine the impact of economic policy uncertainty on carbon markets. The results demonstrate that economic policy uncertainty has a long-term negative impact on carbon futures price returns. That is to say, economic policy uncertainty will reduce the enthusiasm of the industries included in carbon trading to participate in carbon trading, which is not conducive to reducing carbon dioxide emissions (Bilgili et al., 2022a) use the SVAR model to investigate the impacts of income, country-level world uncertainty, country-level economic policy uncertainty, and energy price index on electricity retail sales in United States. They find that United States country-level world uncertainty index and United States economic policy index have negative impacts on electricity end-use.
In addition, there are a few pieces of literature that carries out research from the enterprise level. For example, Yu et al. (2021) examine the impact of economic policy uncertainty on enterprise carbon emissions, which is the first at the enterprise level. They find that to avoid the negative impact of economic policy uncertainty, enterprises tend to use high-carbon traditional fossil energy, which would lead to a substantial increase in the carbon emission intensity of enterprises.
To sum up, this paper finds through the literature review that economic policy is an important factor affecting the economic development, energy consumption and carbon emissions of a country or region. Changes in economic policies will not only change people’s expectations for future economic development and industrial restructuring, but also indirectly affect energy efficiency and the green and low-carbon transition. In the existing literature, studies on the impact of economic policy changes on carbon emissions mainly focus on the national, sectoral and firm levels, and most of them use the economic policy uncertainty index at the national and sectoral levels. Due to the lack of volatility and regional heterogeneity of the economic policy uncertainty index at the national and the sectoral level, it cannot truly reveal the impact of economic policy uncertainty on city’s carbon emissions, which is also the most obvious deficiency of the existing literature. This paper uses a regional economic policy uncertainty index in China to study its impact on city’s carbon emissions, which can effectively make up the deficiency of existing research literature. The regional economic policy uncertainty index in China can reflect the economic policy differences and uncertainty levels in different regions of China, which helps to reveal the different responses of different cities’ carbon emissions to economic policies. Currently, China is the largest carbon emitter in the world, with more than 70% of carbon emissions coming from cities. How to accurately and scientifically assess the impact of economic policy uncertainty on city’s carbon emissions is directly related to China’s current and future green and low-carbon transition. In addition, the empirical results of this paper could also provide significant decision-making basis for the Chinese government to achieve the dual carbon goals.
3 METHODOLOGY AND DATA SOURCES
3.1 Methodology
This paper adopts a two-way fixed-effects model, which is a popular approach in the economic literature (Yu et al., 2021; Chen and Zhu, 2022; Xie et al., 2022), to study the impact of economic policy uncertainty on urban carbon emissions. And the specific regression model is set as follows:
[image: image]
here, [image: image] and [image: image] represent the city and year, respectively; [image: image] represents the carbon emission intensity of the city, log_EPU represents the logarithm of the urban economic policy uncertainty, and [image: image] represents the city-level control variable set, including the urban real GDP per capita, the total urban population at the end of the year, the proportion of employees in the primary industry, the proportion of employees in the secondary industry, the number of industrial enterprises above designated size and the actual foreign direct investment. [image: image] is the city fixed effect, [image: image] is the year fixed effect, and [image: image] is the unobservable error term.
3.2 Data Sources and Variables Selection
Unbalanced panel data of 325 prefecture-level cities in China from 2001 to 2017 are obtained from China Urban Statistical Yearbook.1 In the baseline regression, we take the full sample data for regression analysis and use the balanced panel data composed of 312 consecutive prefecture-level cities as a robustness test.
The explained variable in this paper is urban carbon emission intensity. Firstly, we obtain ten energy consumptions of each city from the China Urban Statistical Yearbook, which are raw coal, coke, crude oil, fuel oil, gasoline, kerosene, diesel, liquefied petroleum gas, natural gas, and electricity. Secondly, the total urban carbon emissions can be obtained by multiplying various energy consumptions by their respective carbon dioxide emission conversion coefficients. Among them, the carbon emission conversion coefficients of raw coal, coke, crude oil, fuel oil, gasoline, kerosene, diesel, liquefied petroleum gas, natural gas, and electricity are 1.9003, 2.8604, 3.0202, 3.1705, 2.9251, 3.0179, 3.0959, 3.0103, 2.1622, and 1.0134, respectively. Then, the city’s nominal GDP is converted to real GDP using the GDP deflator (which was 100 in the year 2000) of the province where the city is located. Finally, the total urban carbon emissions are divided by the actual GDP of the city to obtain the urban carbon emission intensity, the unit is tons per ten thousand yuan.
The explanatory variable is the uncertainty of urban economic policy. As the existing literature mainly adopts the method of Baker et al. (2016) to construct the economic policy uncertainty index of various countries in the world, so far there is no literature to construct the economic policy uncertainty index at the Chinese city level. In this case, this paper mainly adopts the economic policy uncertainty index at the provincial level in China from 2000 to 2017 constructed by Yu et al. (2021), 2 and takes the economic policy uncertainty index of the province where the city is located as the economic policy uncertainty index of the city.
According to the research settings of existing literature, we mainly control factors such as urban economic development level, urban population size, urban industrial structure, number of industrial enterprises, and foreign direct investment in the regression (Huang et al., 2020; Chen and Ma, 2021). China’s urban economic development is positively correlated with energy consumption and carbon emissions (Chen and Zhu, 2022). In this paper, the urban economic development level is expressed by the city’s real GDP per capita. We convert nominal GDP per capita into real values using the GDP deflator (which was 100 in the year 2000) for the province where the city is located and take the logarithm. Fragkias et al. (2013) point out that carbon emissions scale proportionally with urban population size in the United States. Urban areas consume more than 66% of the world’s energy and generate more than 70% of global greenhouse gas emissions. Therefore, it is necessary to control the urban population size in the regression. The urban population size is expressed as the logarithm of the total population at the end of the year. Dong et al. (2020) and Chen and Zhu (2022) argue that industrial structure and scale of manufacturing enterprises are important factors affecting regional energy consumption and carbon emissions. Therefore, this paper introduces the urban industrial structure and the number of manufacturing enterprises in the baseline regression. The urban industrial structure is represented by the proportions of employees in the primary industry and the secondary industry. The number of manufacturing enterprises is represented by the logarithm of the number of industrial enterprises above designated size in cities. China is one of the largest emitters of global greenhouse gas emissions and the impact of foreign direct investment (FDI) on China’s carbon emissions is crucial (Liu et al., 2021b) find that FDI positively affects China’s carbon emissions. Foreign direct investment is expressed as the logarithm of the actual foreign direct investment in the whole city. We use the fixed asset investment price index (which was 100 in the year 2000) of the province where the city is located to convert the nominal investment into real value. It should be noted that the GDP deflator and fixed asset investment price index of each province in China are taken from the National Bureau of Statistics of China.
In further discussion, we introduce a total of four groups of heterogeneity discussions. First, the whole sample is divided into the eastern region, central region, western region, and northeastern region. Second, according to the median investment of urban environmental pollution control, the whole sample is divided into high and low groups. Third, according to the median proportion of urban secondary industry employment, the whole sample is divided into high and low groups. Fourth, the full sample is divided into high and low groups according to the median of urban science and technology expenditure.
Table 1 is the descriptive statistics of the relevant variables in this paper. It can be seen from Table 1 that from 2001 to 2017, the average carbon emission intensity of 325 prefecture-level cities in China was 5.699 tons per ten thousand yuan, the minimum value was 1, and the maximum value was 46. This result shows that different cities in China experience huge changes in carbon emission intensity in different years. In reality, the Chinese government’s increasing emphasis on environmental protection and the formulation of carbon peaking and carbon neutrality goals are all significant reasons for the continuous decline of carbon emission intensity in Chinese cities. Compared with the drastic changes in the carbon emission intensity of Chinese cities, the volatility of economic policy uncertainty in Chinese cities is relatively weak, with a standard deviation of only one-tenth of the former. On average, employees in the primary industry account for 3.4%, employees in the secondary industry about 42%, and employees in the tertiary industry account for 54.6%. The number of industrial enterprises above the designated size is 2,026, the actual foreign direct investment is 969.41 million United States dollars, the expenditure on science and technology is 4,119.31 million yuan, and the investment in environmental pollution control is 1,105.27 million yuan.
TABLE 1 | Descriptive statistics.
[image: Table 1]4 EMPIRICAL RESULTS AND ANALYSIS
4.1 Basic Results
Table 2 is the baseline regression results. Column (1) does not add any control variables, only the city fixed effect and the year fixed effect are controlled. The results demonstrate that the estimated coefficient of laglog_epu is 0.160 and is significantly positive, manifesting that the greater the uncertainty of urban economic policy, the higher the carbon emission intensity of the city. Columns (2) and (3) add multiple control variables such as urban economic development, urban economic scale, and industrial structure based on column (1), and the regression standard error of column (3) is clustering in the province level. The results show that the estimated coefficient of laglog_epu is 0.244 and is significantly positive, indicating that when the uncertainty of urban economic policy increases by 1 percentage point, the city’s carbon emission intensity will increase by 0.244 tons per 10,000 yuan, which is an increase of 4.28 percentage points compared to the average carbon emission intensity of the city (0.244/5.699 = 0.0428). This result is consistent with Wang et al. (2022). Using the cross-country data for 137 countries from 1970 to 2018, they investigate the impact of economic policy uncertainty on CO2 emissions and find that EPU would increase CO2 emissions. However, Abbasi and Adedoyin (2021) argue that a national economic policy uncertainty index has a statistically insignificant effect on China’s CO2 emissions from 1970 to 2018.
TABLE 2 | The baseline results.
[image: Table 2]The above baseline results raise an intriguing question as to why elevated urban economic policy uncertainty leads to higher urban carbon intensity. We believe there are two main reasons for this: First, economic development is closely related to energy consumption and carbon dioxide emissions. For a long time, China’s economic development has been driven by energy consumption. If the economic policy lacks sufficient stability and continuity, it is bound to cause great harm to the urban low-carbon transformation. In this case, it will inevitably lead to an increase in the intensity of urban carbon emissions. This situation also exists in the world’s major developed countries (Anser et al., 2021). Second, the production and energy consumption behaviors of enterprises are closely related to the stability of regional economic policies. For example, Yu et al. (2021) analyze the enterprise survey data in the Chinese tax survey data and conclude that if the economic policy stability of the province where the enterprise is located is worse and the degree of economic policy uncertainty is higher, the enterprise in the region is more inclined to use high-carbon-density fossil energy rather than low-carbon-density power resources during the normal production. Over time, this will lead to an increase in both the total carbon emissions and the carbon emissions intensity of enterprises in the region and ultimately lead to an increase in the urban carbon emissions intensity. Currently, a growing body of literature suggests that elevated economic policy uncertainty is detrimental to both urban low-carbon transformation and enterprise emissions reduction (Jiang L et al., 2019; Adams et al., 2020; Yu et al., 2021). To smoothly achieve China’s “3060 target” as scheduled, it is necessary to be cautious about the substantial adjustment of economic policies and reduce the negative impact caused by changes in economic policies (Amin and Dogan, 2021).
The regression results of control variables are also in line with expectations. First, the estimated coefficient of log_realGDP is significantly negative, manifesting that the higher the level of economic development, the lower the urban carbon emission intensity. This is because the higher the level of economic development, the more willing the city is to pursue high-quality development, and the more capable it is to accelerate the green and low-carbon transformation. Wang et al. (2022) find that a higher level of economic development would reduce the environmental adverse effect of EPU. Second, the more industrial enterprises above the designated size, the higher the urban carbon emission intensity. Third, the regression coefficients of the proportion of employees in the primary industry and the secondary industry are both significantly negative, and the coefficient of the former is four times that of the latter. Fourth, urban population size has an insignificantly positive effect on carbon emissions. Ribeiro et al. (2019) argue that urbanization leads to increasing carbon emissions is controversial in the literature. They find that there is a coupled role between population and density on carbon emissions. In addition, foreign direct investment on urban carbon emission intensity is positive, but not significant. However, for Japan, South Korea, and Singapore, foreign direct investment can boost the quality of the environment and reduce carbon emissions covering the period of 1997–2020 (Khan et al., 2022).
4.2 Heterogenous Analysis
Many studies have shown that the mechanisms through which policy uncertainty affects carbon emissions include regional economic development, industrial structure, environmental protection emphasis, and green innovation (Cheng et al., 2019; Bilgili et al., 2021; Gu et al., 2021; Li et al., 2021; Wen and Zhang, 2022; Xie et al., 2022). Economic policy uncertainty is a relatively macroscopic factor, which can not only affect carbon emissions by changing the regional economic development and industrial structure, but also change carbon emissions by affecting the environmental protection emphasis and the green innovation. Therefore, the heterogeneity analysis in this paper focuses on these four dimensions to provide evidence for the transmission mechanisms of economic policy uncertainty affecting city’s carbon emissions. The four dimensions are the city’s geographic region (a proxy variable of regional economic development), industrial structure, investment in environmental protection, and R&D investment.
China has a vast territory, and the level of economic development presents the basic pattern of “strong east and weak west” and “strong south and weak north.” Therefore, the whole sample is divided into four sub-samples: eastern region, central region, western region, and northeastern region, and based on this, the impact of economic policy uncertainty in different regions on urban carbon emissions is investigated. The regression results are shown in Table 3. Columns (1) to (4) of Table 3 represent the estimation results for the eastern, central, western, and northeastern regions in turn. We find that the estimated coefficients of laglog_epu are significantly positive in both the eastern and central regions, which is consistent with the baseline regression results in Table 2. In the eastern and central regions of China, the worse the economic policy stability and the higher the uncertainty, the higher the urban carbon emission intensity. In the western region, although the estimated coefficient of laglog_epu is positive, it is not significant, indicating that changes in urban economic policy uncertainty cannot significantly change urban carbon emission intensity. In the northeastern region, the estimated coefficient of laglog_epu is negative and insignificant. Overall, compared with the western and northeastern regions, the higher the level of economic development in the eastern and central regions, the more significant the impact of economic policy uncertainty on the intensity of urban carbon emissions. It can be inferred that the level of regional economic development is an important factor affecting the response of urban carbon emissions to economic policy uncertainty.
TABLE 3 | Results for the baseline regression with regional differences.
[image: Table 3]Table 4 demonstrates the differentiated performance of urban carbon emission intensity in the face of economic policy uncertainty and fluctuations between cities with high and low investment in environmental pollution control. Column (1) of Table 4 corresponds to cities with high investment in environmental pollution control, and column (2) corresponds to cities with low investment in environmental pollution control. The results show that the estimated coefficient of laglog_epu is significantly positive in column (1), which is consistent with the baseline regression results. However, in column (2), the estimated coefficient of laglog_epu is not significant, manifesting that in cities with low investment in environmental pollution control, the urban carbon emission intensity is not significantly affected by economic policy uncertainty. It can be seen that when a city attaches importance to environmental pollution control, the stability and continuity of its economic policies are crucial to accelerating the green and low-carbon transformation. Contrarily, if a city does not pay much attention to environmental protection and invests less in environmental pollution control, even if the economic policy stability is worse, it will not have a significant impact on the city’s carbon emission intensity.
TABLE 4 | Results for the heterogeneity of investment in environmental pollution control.
[image: Table 4]Generally speaking, the secondary industry is the main energy consumer of a country or region and the main source of carbon emissions (An et al., 2021; Xian et al., 2022). To this end, we divide cities into high and low groups according to the proportion of employees in the secondary industry in each city. In Table 5, column (1) is the city group with a high proportion of secondary industry employees, and column (2) is the city group with a low proportion of secondary industry employees. It is found that the estimated coefficient of laglog_epu in column (1) of Table 5 is significantly positive, while that in column (2) is not significant. The results demonstrate that in cities with a high proportion of secondary industry employees, urban carbon emission intensity is more susceptible to economic policy uncertainty. Conversely, cities with a low proportion of employees in the secondary industry, especially those dominated by the service industry, are not significantly affected by economic policy uncertainty in their carbon emission intensity. Important revelation can be drawn that for cities dominated by the secondary industry, special attention must be paid to the continuity and stability of the implementation of economic policies in years before and after, and the negative impact of policy fluctuations on urban green and low-carbon transformation should be avoided as far as possible.
TABLE 5 | Results for the proportion heterogeneity of employees in the industrial sector.
[image: Table 5]Currently, more and more studies have shown that the level of urban innovation is one of the important factors affecting urban carbon emissions (Chen and Ma, 2021; Cheng et al., 2021; Xu et al., 2021). Therefore, according to the science and technology expenditure of each city, all cities are divided into two groups with high and low investment in science and technology expenditure. The regression results of the two are demonstrated in columns (1) and (2) in Table 6. The results show that the estimated coefficient of laglog_epu in column (1) is significantly positive, while that in column (2) is insignificant. It suggests that the greater the investment in urban innovation, the more significant the impact of economic policy changes on the urban carbon emission intensity. Conversely, if the city’s innovation investment is less, the city’s carbon emission intensity will be less sensitive to the economic policy uncertainty. From this, it can be inferred that urban innovation investment is also one of the important factors affecting the response of urban carbon emissions to economic policy uncertainty. Moreover, cities with more investment in innovation need local governments to maintain consistency and stability of economic policies to reduce the negative impact of economic policy uncertainty on urban green and low-carbon transformation.
TABLE 6 | Results for the heterogeneity of science and technology expenditure.
[image: Table 6]4.3 Robustness Checks
In this paper, three methods are adopted to carry out the robustness test. The first is regression using balanced panel data. The second is to change the way the explained variables are represented, that is, to replace the carbon emission intensity with the total amount of urban carbon emissions. The third method is to use instrumental variables to address endogeneity and missing variables.
In the full sample, there are 312 prefecture-level cities that existed continuously from 2001 to 2017, which constitute a balanced panel dataset with a total of 5,304 observations. Column (1) in Table 7 is the regression result of the balanced panel data. It can be found that excluding the influence of unbalanced panel data, the estimated coefficient of laglog_epu is 0.246 and significantly positive, which is almost consistent with the estimated coefficient of the baseline regression (0.244), indicating that our empirical results are robust. Column (2) in Table 7 replaces the explained variable with the logarithm of the city’s total carbon emissions (log_carbon). The estimated coefficient of laglog_epu is 0.004 and is significantly positive, showing that the increase of urban economic policy uncertainty will increase the total carbon emissions of the city, that is, frequent fluctuations in economic policies are not conducive to green and low-carbon transformation.
TABLE 7 | Results for the robustness checks.
[image: Table 7]Column (3) in Table 7 is the estimation result by using instrumental variables. Although we find that the increase of urban economic policy uncertainty will lead to the increase of urban carbon emission intensity, the baseline regression results cannot eliminate the impact of missing variables and potential reverse causality. Namely, the bias caused by endogeneity to the regression results cannot be excluded (Bilgili et al., 2022b) argue that there is a certain correlation between the policy uncertainty indices of different countries in the context of globalization. In this regard, this paper chooses the United States economic policy uncertainty index as the instrumental variable of China’s urban economic policy uncertainty index. As is known to all that instrumental variables need to satisfy two conditions at the same time, namely correlation and exogeneity. On the one hand, many studies have found that changes in the domestic economic policies of the United States, as a leader in the world economy, will not only directly affect the United States economic growth and transmit to the global economy, but also indirectly affect China’s domestic economic policies. Therefore, there is a certain correlation between the economic policy uncertainty index between China and the United States. On the other hand, we believe that it is difficult for the United States economic policy uncertainty index to directly affect the carbon emission intensity of Chinese cities, so the United States economic policy uncertainty index, as an instrumental variable of the Chinese urban economic policy uncertainty index, satisfies the exogenous condition. Consequently, this paper obtains the economic policy uncertainty index in the United States from 2001 to 2017 from Baker’s homepage (https://www.policyuncertainty.com/). Subsequently, we use the proportion of the total import and export volume of China’s 31 provinces (municipalities and autonomous regions) from 2001 to 2017 to the national total import and export volume as the weight, and then multiply it by the United States economic policy uncertainty index from 2001 to 2017, to obtain the instrumental variables of economic policy uncertainty in 31 provinces (municipalities and autonomous regions) in China. Finally, the economic policy uncertainty index of the province where each city is located is taken as the urban economic policy uncertainty index, and the logarithm is taken. The estimation results of instrumental variables in column (3) of Table 7 demonstrate that the estimated coefficient of laglog_epu is 3.945 and is significantly positive, and the regression coefficients of the remaining control variables are generally consistent with the baseline regression. The statistic value of F is 67.42, manifesting that the instrumental variable has passed the weak instrumental variable test, which means that the empirical results of this paper are reliable and robust.
5 CONCLUSION AND IMPLICATION
Meeting the net-zero target in the next three to four decades is challenging considering the fact that the global energy supply mix has not changed significantly over the last 50 years. Studies on economic policy uncertainty have mainly been on the national and sectoral levels, but until now, the impact of regional economic policy uncertainty on city’s carbon emissions in China has not been examined, which is crucial for formulating China’s carbon emission reduction targets and policies. Using the unbalanced panel data of 325 prefecture-level cities in China from 2001 to 2017 and the Chinese provincial economic policy uncertainty index constructed by Yu et al. (2021), this paper fills the gap by estimating whether regional economic policy uncertainty may affect city’s carbon emission intensity. The main findings of this article are fourfold.
Firstly, our empirical results show that with one percentage point increase in the city’s economic policy uncertainty, the city’s carbon emission intensity will increase by 4.28 percentage points, and by 0.244 tons per ten thousand yuan at an absolute level. It can be seen that economic policy uncertainty is one of the factors that cannot be ignored that affects carbon emissions.
Secondly, in regions with higher levels of economic development, the impact of economic policy uncertainty on city’s carbon emission intensity is more significant. The more cities invest in environmental pollution control, the more sensitive the city’s carbon emission intensity is to changes in economic policy uncertainty, and the higher the economic policy uncertainty, the higher the carbon emission intensity.
Thirdly, compared with other types of cities, cities dominated by the secondary industry have a more sensitive carbon emission intensity to changes in economic policy uncertainty, and increased economic policy uncertainty will significantly increase the city’s carbon emission intensity, which is not obvious in other types of cities.
Finally, the carbon emission intensity of cities with more investment in innovation is more sensitive to changes in economic policy uncertainty. Besides, the regression results of balanced panel data, the replacement of explained variables, and instrumental variables all show that the empirical results of this paper are robust and reliable.
The empirical results of this paper provide three very important policy implications for Chinese cities to accelerate the green and low-carbon transformation and achieve the “3060 target” as scheduled:
The first one is that policy makers need to be aware of the negative effect of economic policy uncertainty on carbon emissions reduction. A good solution is that top designers should maintain the stability and continuity of economic policy, which is not only useful for China, but also crucial for other developing countries. The higher the stability and continuity of the economic policy, the more helpful it is to promote the green and low-carbon transformation and gradually reduce the intensity of carbon emissions.
The second one is that governments need to notice the greater negative impact of economic policy uncertainty on the cities with the higher the level of economic development and the higher the proportion of employees in the secondary industry. For cities that are more affected, policy makers should establish a complete evaluation mechanism to reasonably evaluate the economic and social costs brought about by changes in economic policies. Among them, the environmental damage (such as increased carbon emission intensity) caused by the increase of economic policy uncertainty must be taken into account.
The third one is the implications, which drawn from the cities’ study in China, are applicable to other high emissions countries (e.g., India and United States). Particularly, Economic policy uncertainty will not only bring negative impact on macroeconomic operation, but also on the ecological environment.
The shortcoming of this paper is that it does not consider the spillover effects of economic policy changes in neighboring cities between different regions, but chooses to focus on the impact of economic policy changes in Chinese provinces on the carbon emission intensity of cities within the provinces. In the future, we intend to study the spillover effects of economic policy changes across provinces and investigate the spillover effects of economic policy uncertainty on urban carbon emissions across different provinces through spatial econometric models.
DATA AVAILABILITY STATEMENT
The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.
AUTHOR CONTRIBUTIONS
LF: Data curation; Writing- Original draft preparation; Visualization; Writing- Reviewing and Editing; YC: Funding acquisition; Writing- Reviewing and Editing; QX: Conceptualization; Methodology; Software; Writing- Reviewing and Editing; JM: Data curation; Visualization; Formal analysis.
FUNDING
This work was supported by National Natural Science Foundation of China (No. 72174180, No. 71673250); Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (LR18G030001); Major Projects of the Key Research Base of Humanities Under the Ministry of Education (No. 14JJD790019); and Zhejiang Provincial Philosophy and Social Science Planning Project (No. 22QNYC13ZD, No. 21NDYD097Z).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
FOOTNOTES
1The minimum value of the number of cities in the 2001–2017 China Urban Statistical Yearbook is 314, and the maximum is 325. Therefore, we can obtain the unbalanced panel data of 325 prefecture-level cities.
2The provincial economic policy uncertainty index in China is constructed by Yu et al. (2021), and the time period is covering 2001–2017. Therefore, we use the same time period to do the empirical research.
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The reduction of general industrial and commercial prices is an important measure to further improve the business environment and stimulate market vitality. It is of great significance to study the impact of general industrial and commercial electricity price adjustment on the economy for promoting electricity price reform. Based on the policy of adjusting the general industrial and commercial electricity price issued by relevant national departments and provincial governments, this study takes Fujian province as an example and uses the provincial CGE model to analyze the impact of the reduction of the general industrial and commercial electricity price on the macro economy, the output and producer price of various industries, and the electricity consumption. The simulation results show that the reduction of general industrial and commercial electricity prices has a positive impact on the economy. A 25% cut in electricity prices increases GDP by about 0.0935%. The reduction in electricity prices promoted the growth of output and producer prices of most industries. In addition, the reduction of electricity price has a positive effect on the total social electricity consumption, among which the tertiary industry saw the biggest increase in electricity consumption. Based on the simulation results, the policy suggestions are put forward.
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1 INTRODUCTION
The power industry is an important basic industry in the national economy. Electricity is an important factor input of the national economy. In the modern economic system, electric energy, as the basic energy input, will have a far-reaching impact on various industries. Therefore, the electricity price has long been fixed and strictly controlled by the government in China, contributing to a stable level of overall prices and the steady growth of the economy (He et al., 2010). In recent years, the energy consumption per unit GDP has constantly been increasing with the rapid development of China’s economy and society. The demand for electricity is also increasing, which proposes a higher requirement for the development of the electric power industry. With China’s economy entering a new normal and the deterioration of the external environment, the economic growth rate has declined. In order to reduce the production and operation costs of enterprises and help the development of the real economy, China’s general industrial and commercial electricity prices have experienced several rounds of downward adjustment in recent years.
The “Report of the State Council on 2018” puts forward the goal of “reducing power grid link charges and transmission and distribution prices, and reducing the average industrial and commercial electricity price by 10%.” Subsequently, the National Development and Reform Commission issued several documents to reduce the general industrial and commercial electricity prices. Various provinces (autonomous regions and municipalities directly under the Central Government) successively lowered the general industrial and commercial electricity price. In the “Report of the State Council on 2019,” Premier Li Keqiang further proposed to promote the reduction of enterprise-related charges through reform, deepen the reform of electricity marketization, clean up the additional charges of electricity prices, reduce the electricity cost of manufacturing industry, and reduce the average electricity price of general industry and commerce by 10%. In order to coordinate epidemic prevention and control with economic development, the government has adopted policies to encourage enterprises to resume work and production and tide over the difficulties together. In 2020, the National Development and Reform Commission (NDRC) proposed that power grid enterprises should uniformly charge the electricity fee of power users (except users in high-energy-consuming industries) who use general industrial and commercial prices, other prices, and large industrial prices for price settlement at 95% of the original price. In 2021, the National Development and Reform Commission proposed to promote industrial and commercial users to enter the market and encourage local governments to implement phased preferential policies for electricity consumption by small and micro enterprises and individual industrial and commercial households.
The downward adjustment of electricity prices in 2018–2020 has reduced the pressure on the real economy to a certain extent. However, the electricity sales revenue reduced by electricity price adjustment needs to be borne by a certain subject eventually. According to the current policy, the cost of reducing the general industrial and commercial electricity price is mainly borne by the government, the power grid side, and the power generation side (Moerenhout et al., 2019; Ohler et al., 2020).
In 2018, after introducing the policy of reducing electricity prices, the VAT rate of the power industry was adjusted from 17% to 16%, and the national collection standard for major water conservancy project construction funds was reduced by 25%. In 2019, in order to meet the goal of further reducing the general industrial and commercial electricity price by 10%, the National Development and Reform Commission proposed in the Notice on Adjusting the VAT Rate of Power Grid Enterprises to Reduce the General Industrial and Commercial Electricity Price that after the VAT rate of power grid enterprises is adjusted from 16% to 13%, the space for reducing the tax-included transmission and distribution price of provincial power grid enterprises will be used to reduce the general industrial and commercial electricity price. Synchronized with the price reduction, the policies related to the grid side mainly include promoting the reform of the transmission price of regional power grids and special projects across provinces and regions, further standardizing and reducing the grid link charges, temporarily reducing the transmission and distribution price, and so forth. In essence, these policies reduce the income of power grid enterprises and realize the downward adjustment of electricity prices. In addition, with the deepening of the new round of electricity market reform, the proportion of direct electricity trading is expanding, which also forces power generation enterprises to lower their prices and provide space for lowering the general industrial and commercial electricity prices. In addition, with the deepening of the new round of electricity market reform, the market-based pricing mechanism of “base electricity price + floating mechanism” enables the on-grid electricity price formed by market transactions to reflect the real price of electric energy in a timely manner, which reduces the revenue of electricity generation to a certain extent.
As the basic price of the national economy, the change of electricity price will affect not only the power generation, transmission, distribution, and electricity sale departments but also the production, operation, and investment decisions of the upstream and downstream industrial sectors related to the power industry; the total price level; and then the inflation of a country. In addition, for the government, the reduction in electricity sales revenue caused by lowering general industrial and commercial electricity prices should ultimately be borne by the government. Therefore, lower electricity prices will lead to reduced government revenue, which will also have a negative impact on government consumption. For people’s livelihood, the fluctuation of electricity prices will also affect the consumption level of residents (Du et al., 2015; Wang and Lin, 2017a; Sun et al., 2017). Therefore, studying the impact of price changes on the above aspects and analyzing their impact intensity is an important guarantee for the smooth implementation of price reform. It can also provide an important reference for decision-making departments to adjust the price, which is the original intention of this study.
By constructing a computable general equilibrium model, this study analyzes the influence of several price reduction policies. The relevant research conclusions have certain implications for the evaluation of electricity price reduction policies and the design of future electricity price policies. The remainder of this study is structured as follows. Section 2 presents a review of the related literature, followed by the methodology and model construction in Section 3. In Section 4, we describe the simulation results and analyze the impact of general industrial and commercial electricity price increases on the macro economy, output, and producer prices of various industries and electricity consumption. The conclusions and policy implications are presented in Section 5.
2 LITERATURE REVIEW
Electricity price fluctuation belongs to the category of energy price fluctuation. The impact of energy price changes has been of great concern to the international community. As the lifeblood of the national economy, oil is the most important input in the production process of an economy. Therefore, most early research studies focused on oil price shocks or fluctuations. By using the VAR method to test the data of oil price, GNP, and unemployment after World War II, Hamilton (1983) found that oil prices led every economic recession after World War II except for the one in 1960. Following the work by Hamilton (2003), Jiménez-Rodríguez and Sánchez (2005), Zhang (2008) and Rafiq et al. (2009) adopted different methods to investigate the connection between oil price shock and economic growth and found that oil price shocks have a negative impact on the economy. The study of Rehman (2018) indicated that the economic policy uncertainty of developed and developing countries responds to the global oil price shock. Zhu et al. (2021) examined the time-varying impacts of oil prices on China’s nonferrous metals industry, finding that the impact is positive in the short term but diverse in the long term. Fan et al. (2021) found that the impact of oil price uncertainty on the corporate leverage of Chinese listed companies had been enhanced with the advancement of market-oriented reform of refined oil pricing.
In recent years, the impact of electricity price adjustment has also aroused great concern, and many studies have been carried out at home and abroad. Dale (2004) estimated the impact of electricity price changes on water supply mode and cost in urban areas of Southern California and found that high electricity prices contributed to residents’ preference for water-saving and electricity-saving equipment. Kumar (2005) analyzed the response of Indian residents to electricity price changes and pointed out that reasonable electricity price adjustment would help improve energy efficiency. Nguyen (2008) took Vietnam’s electricity price as an example to study its impact on the marginal cost of other products. The results indicated that when the price was equal to long-term marginal cost, the price of all other goods would also increase, but the overall price level did not rise significantly. Silva et al. (2009) analyzed the social and environmental impacts of the electricity price increase in Montenegro, which would impose heavier burdens on poor residents and have a negative impact on the environment. Moerenhout et al. (2019) investigated commercial and industrial consumers’ perspectives on electricity pricing reform in India and found that the increment in electricity price was likely to induce a decrease in the output and the overall labor and machine productivity. Based on the micro data of manufacturing enterprises in Hunan province, Yang et al. (2021) studied the economic effect of differential electricity price (DEP) policy using the difference method and the discrete-time risk model. They found that the DEP policy reduced employment but had little influence on fixed assets and the probability of exiting the market. With a micro model, Wang and Lin (2021) estimated the changes of welfare and redistribution under different scenarios to explore an electricity price scheme that is effective in welfare redistribution and subsidy reduction.
As a powerful policy simulation tool, computable general equilibrium (CGE) models are widely and extensively applied in policy evaluation of the electric industry, including the standard CGE model and extended CGE model. Based on CGE models, He et al. (2010) analyzed the impact of coal price adjustment on the power industry and the impact of electricity price adjustment on China’s macro economy, respectively. They found that the increment in electricity price has adverse effects on the Gross Domestic Product (GDP) and the Consumer Price Index (CPI), as well as a contractionary effect on economic development. He et al. (2011) simulated the impact of electricity price adjustment on electricity demand under the framework of the CGE model and obtained the electricity price elasticities of different categories of electricity users. With the CGE model including environment and energy, Zhang (2014) assessed the realistic impact of step tariff policy on the macroeconomic from the perspective of commodity price, economic growth, and import and export trade. Bhattacharayya and Ganguly (2017) used the CGE model to evaluate the impact of reducing cross-subsidies from industry to agricultural electricity on the Indian economy. The results indicated that the removal of cross-subsidies would lead to a decline in rural household income, whereas replacing cross-subsidies with progressive tax rates would only make up a small part of the negative impact of income decline. Wang et al. (2019) established a dynamic recursive computable general equilibrium (CGE) model to evaluate the impact of different electricity production taxes on the economy, energy, and environment of China, finding that the output of the coal industry is the most sensitive to electricity tax, and increasing electricity tax will directly increase electricity price. Wang et al. (2020) analyzed the impact of electricity price subsidies on economic development, energy consumption, and carbon emission reduction by simulating the increase of biomass price electricity price subsidies with CGE models. Zhang et al. (2021) used the CGE model to explore how China can deregulate electricity prices in two stages in the context of the implementation of carbon pricing in the power sector. With the deepening of our country’s power system reform, reducing general industrial and commercial electricity prices has become a realistic path to solve the problem of cross-subsidization of electricity prices and promote economic growth. Wang and Lin (2017b) adopted a price-gap approach to estimate the scale of electricity subsidy with or without external costs in China, indicating that the current subsidy is substantial. They believed that the sound electricity tariff subsidy and initiate subsidy-reducing strategies should be designed to improve efficiency and equality. Moreover, the price reduction space generated by the reform of the electricity market should be used to reduce large-scale industrial and general industrial and commercial electricity prices. Lin et al. (2021) simulated the effect of an electricity price decline by constructing a general equilibrium model. The results show that the decline in electricity price will reduce product prices in other sectors to varying degrees, increase sectoral output, and increase income to residents and enterprises level. Therefore, reducing the electricity price of industrial and commercial enterprises through the reform of transmission and distribution prices and market-oriented transactions not only responds to the requirements of supply-side structural reform to reduce costs but also drives the economic growth of various regions.
As can be seen from the research review, domestic and foreign scholars have conducted abundant studies on the relationship between energy prices, including electricity price, and the economy. However, due to the differences in the system and structural framework between the power sector and other economic sectors, as well as the energy endowments and economic conditions of different countries, there are differences in the policy implementation and research methods of different countries, and the research conclusions of the literature cannot be unified. Existing research on the impact of electricity price adjustment mostly focuses on the impact of electricity price rise on the macro economy, environment, and industrial structure. In contrast, rare studies focus on the economic effect brought by electricity price reduction. Therefore, this study takes Fujian province as an example to study the economic impact of general industrial and commercial electricity price reduction policies, in order to provide a reference for future design of electricity price policies.
3 METHODOLOGY
3.1 Computable General Equilibrium Model
By constructing a computable general equilibrium model, this study simulates the economic impact of electricity price policy adjustment in Fujian province. The computable general equilibrium model is also the core content in the process of project design. The computable general equilibrium model (CGE) is based on the general equilibrium theory, which can be widely used in the fields of resources and environment, finance and taxation, international trade, energy, and climate change, and has become one of the mainstream analysis tools in the field of policy research. The price change of output in one market usually affects other markets, which in turn affects the whole economy. It even affects the price-quantity equilibrium in the original market to some extent. In order to explain this complex relationship in the economy, it is necessary to go beyond local equilibrium analysis and establish a model that can consider multiple markets at the same time. The general equilibrium model is an analytical framework for analyzing the relationships among different markets, industries, resources, and institutions. In the past, due to the insufficiency of data and the limitation of computing power, the application range of general equilibrium analysis methods was limited. However, with the rapid development of computer computing capability, the general equilibrium model develops toward computability.
Combined with the characteristics of the provincial economy, the provincial CGE model is constructed, and its structure is shown in Figure 1. The production department is the main body of production activities, which buys intermediate inputs from commodity markets and obtains capital and labor inputs from factor markets. The output of the production department flows into the commodity market in the form of production in the province, while the factor reward it receives is distributed to the factor market.
[image: Figure 1]FIGURE 1 | Provincial CGE model structure.
In the commodity market, besides the products produced in the province, there are also import and export trade and inter-provincial trade with domestic and foreign markets. The output of the commodity market finally supplies consumption, investment, net exports, and inter-provincial net outflow.
In the factor market, factor rewards are paid to various subjects of national accounts, including resident accounts, government accounts, enterprise accounts, external accounts, and domestic and provincial accounts. There are also various payments between accounts. Each account meets the principle of balance between income and expenditure.
The demand for commodities in each account constitutes the total demand. According to the total demand and structure, it constitutes the final use demand. In this way, the CGE model is closed macroscopically.
3.2 Production Function
The production activities of the production department are described by the production function. The production function structure of the CGE model is shown in Figure 2. This project refers to the setting of the mainstream CGE model and adopts the setting of the six-level production function. Among them, in the output function, energy input is separated from intermediate input, and energy is combined with capital and labor input requirements. In the first-level nesting, the inputs in the CES function include “factor-energy” and “non-energy intermediate inputs.” “Factor-energy” is composed of “labor” and “capital-energy.” Non-energy intermediate inputs are calculated according to the Leontief function according to the proportion of different intermediate inputs. “Energy-capital” is composed of “capital” input and “energy” input.
[image: Figure 2]FIGURE 2 | Production function structure.
With regard to energy input, the models adopted in this study are divided into non-electric energy input and electric power input. Non-electric energy input includes primary fossil energy input and refined oil input. Different energy varieties within non-electric energy sources are generally difficult to replace. For example, refined oil products are mainly used in transportation fields or used as raw materials for chemical production, which cannot be replaced by other energy sources in a short time. Because the price of refined oil is much higher than that of coal, the demand for coal in industrial fields (such as power generation) is generally not replaced by other fossil energy sources. Therefore, the production function of non-electric energy input is set as a Leontief type.
In order to meet the needs of electricity price policy determination, the CGE model structure is designed with reference to different power input structures in the GTAP database, and the power sector is split. The split power supply consists of intermediate inputs of power generation and transmission and distribution. Because the input of power transmission and distribution is indispensable from power generation enterprises to end users, the production function of power supply is a Leontief type; that is, for every unit of power supplied to the terminal, the ratio of input to power generation and transmission and distribution is constant. The power generation sector is also divided into six kinds of power: coal power, gas power, hydropower, nuclear power, wind power, and photovoltaic. Because the power supply structure will not change greatly in the short term, in the static model, it is assumed that the structural proportions of the six power supplies are unchanged. If the power supply structure changes in the future, it can also be updated by adjusting the structural coefficient of the Leontief function in the power sector.
By taking the total output production function as an example, the CES function's form is shown in Eq. 1. Among them, [image: image] is an efficiency factor or a scale factor, and the higher the value, the higher the output capacity under a certain input. [image: image] is contribution share coefficient for different inputs. Parameters [image: image] are related to substitution elasticity and can be calculated according to [image: image]. [image: image] represents the number of output products, [image: image] represents elements and energy composite input, and [image: image] represents intermediate input:
[image: image]
According to the properties of the CES function, each variable has the following relationship, where [image: image] represents the composite price of elements and energy inputs, [image: image] is the price of other intermediate inputs, and [image: image] is the price of products:
[image: image]
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The forms of CES functions at all levels in the production function are similar to the above formula and will not be introduced here. In addition, for intermediate input, its function form is Leontief type, and its function structure is shown in the following formula, where [image: image] represents the total amount of intermediate input of the [image: image] department, [image: image] is the share coefficient of intermediate input structure, which indicates the proportion of [image: image] department products in the intermediate inputs of the [image: image] department of each unit, and [image: image] is the price for the intermediate input:
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In the CGE model, the correction of related parameters is an important work. Generally, the calibration work is based on the initial data of the SAM table, and each parameter value can be obtained by combining with substitution elasticity. The alternative elasticity of this study refers to the methods adopted in the current mainstream research, mainly from the relevant calculation of Qi et al. (2014) and Antoszewski (2019).
3.3 Trade Module
The trade module of the provincial CGE model is more complex than that of the national CGE model. There are two main reasons: first, for the national CGE model, the trade module only needs to consider import and export. For a certain province, besides foreign trade, there is also a large-scale inter-provincial trade, which needs to be considered. Secondly, the traditional CGE model generally divides domestic production into domestic supply and export. For a certain province, there may be much transit trade. For example, the export volume is far greater than the production volume. This may lead to negative domestic supply, which cannot be calculated by the CGE model. Therefore, it is necessary to adjust the trade module.
The trade module of this project is set as shown in Figure 3. Among them, the net outflow of domestic trade is equal to the outflow of domestic provinces minus the outflow of domestic provinces. After deducting the net outflow of domestic trade from the total output of the province, the domestic production supply is obtained. Among these variables, the total output in the province is calculated according to the production function of each department, and the domestic inter-provincial trade is set as an exogenous variable according to the original data of the input-output table. The domestic production supply is distributed to the provincial supply and export using the Armington function. Supply and import in the province are combined into consumption in the province.
[image: Figure 3]FIGURE 3 | Trade module structure.
3.4 Flow of National Accounts
The account of the CGE model constructed in this project corresponds to the SAM table. Besides the commodity and activity account describing commodity production flow and the labor and capital account describing factor supply, there are also six accounts of residents, enterprises, government, foreign countries, other parts of China, and investment. The relationship of each account is shown in Figure 4.
[image: Figure 4]FIGURE 4 | Flow direction of each account.
Labor remuneration, as wage remuneration, is totally distributed to residents. The capital reward is distributed to residents, enterprises, and foreign countries according to the nature of owners. Residents’ income is used to pay income tax, household consumption, and household savings. Enterprise income is used to pay income tax and dividends to the government and distribute them to residents. The rest of the enterprise income is used for investment. After deducting government consumption, government revenue is mainly transferred to residents and other parts of China, and the rest is used for investment. The external account is used to purchase export commodities in the province, and the rest includes investment in other parts of the country.
In the final demand, the investment function is calculated according to the Leontief function; that is, the internal structure of the investment product remains unchanged. The consumption function adopts a linear expenditure system function. In the case of maximizing consumer utility, it satisfies the following formula:
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After obtaining the first-order optimization conditions of the above formula, the consumption function can be deduced as follows: [image: image] represents the basic survival consumption of a commodity for every commodity has a lower limit of consumption. [image: image] denotes the marginal budget share spent on a commodity. The basic idea of a linear expenditure system is that after consumers meet the basic living consumption, the surplus consumption is used to purchase other consumer goods:
[image: image]
4 SIMULATION RESULT AND DISCUSSION
4.1 Scenario Simulation Settings
Under the background of lowering the general industrial and commercial electricity price, Fujian province has adjusted the electricity price many times in recent years. As early as 2017, Fujian Provincial Price Bureau issued the Notice on Reasonable Adjustment of Electricity Price Structure [Minjiashang (2017) No. 177], which adjusted the general industrial electricity price. After that, in 2018, the Fujian Provincial Price Bureau issued the Notice on the Relevant Matters Concerning the Adjustment of VAT Rate in Power Industry to Reduce Electricity Price of General Industry and Commerce [Minjiashang (2018) No. 115], proposing to appropriately reduce the sales price of general industry and commerce and other electricity consumption catalogs and the transmission and distribution price of general industry and commerce and other electricity consumption in our province. In 2019, the Fujian Provincial Development and Reform Commission further proposed to reduce the sales price of general industrial and commercial and other electricity consumption catalogs in the “Notice on Continued Reduction of General Industrial and Commercial Electricity Prices” [Yufa Change Business Price (2019) No. 318]. Moreover, transmission and distribution prices continue to promote the parallel pricing of industrial and commercial electricity, as well as the adjustment of on-grid tariff including tax for some enterprises due to the reduction of VAT rate. In 2020, the National Development and Reform Commission issued the Notice on Phased Reduction of Enterprise Electricity Costs to Support Enterprises to Resume Work and Resume Production [Development and Reform Price (2020) No. 258] and the Notice on Extending the Policy of Phased Reduction of Enterprise Electricity Costs [Development and Reform Price (2020) No. 994]. The documents stipulate that the users using general industrial and commercial tariffs will be charged 95% of the original price from February 1 to December 31, 2020. After many downward adjustments, the general industrial and commercial electricity prices in 2020 are reduced by 25% compared with those in 2017. In 2021, Fujian province issued a policy to appropriately reduce the “two-part transmission and distribution price for industrial, commercial, and other electricity consumption” and “appropriately reduce the two-part system for industrial, commercial, and other electricity consumption, and the sales price of agricultural electricity catalog.”
Regarding industries with lower electricity prices, the general industrial and commercial electricity price adjustment mainly involves industries with lower voltage levels, such as the light and tertiary industries. Specifically, it includes food and tobacco, cotton, chemical fiber textile, printing and dyeing finished products, other textiles, textiles and clothing, shoes, hats, leather, down and their products, wood processed products and furniture, paper printing, cultural and educational sporting goods, transportation, warehousing and postal services, information transmission, software and information technology services, commerce, accommodation and catering, finance, real estate, business and residential services, public utilities, and residential organizations.
The input-output table is the key to constructing the CGE model. At present, the latest one of Fujian province is the 2017 Input-Output Table of Fujian Province compiled in 2020, with 142 departments. In order to facilitate the construction of the model, the input-output table was merged and split in this study, and the production and supply departments were divided into transmission and distribution departments and six power generation departments. The other departments were merged according to the characteristics of the industry, and the input-output tables of 30 departments were finally obtained, as shown in Table 1. The social accounting matrix (SAM) table is compiled based on the data from China Statistical Yearbook, China Financial Yearbook Fujian Financial Yearbook, and Fujian Statistical Yearbook. Among them, the energy consumption data of each department in Fujian province come from the China Statistical Yearbook. Furthermore, the emission data of the industrial sector come from the China Environmental Statistics Yearbook. In the input-output table of Fujian, the power sector is taken as a whole. To characterize the power sector, we further split the power sector, which first needs to determine the proportion of transmission and distribution costs in the total cost and the cost composition of different types of power sources. In this study, the proportion of transmission and distribution costs in the total cost is obtained by dividing the price of electricity transmission and distribution by the retail electricity price in the “2017 National Electricity Price Regulatory Bulletin” issued by the National Energy Administration. For the cost proportion of different types of power sources, we first calculated the on-grid costs of different power sources using the on-grid tariffs and on-grid rate of different power sources published in the 2018 China Power Yearbook and then calculated the ratio of the on-grid costs of different power sources to the terminal power cost.
TABLE 1 | The settings of 30 sectors in SAM.
[image: Table 1]4.2 Simulation Results and Analysis
The variation in macroeconomic variables at different reduction ratios of general industrial and commercial electricity prices is shown in Table 2. In the GDP calculated by the income method, the income of factors accounts for a large proportion. The reduction of electricity price reduces the cost of the department, increases the profit margin, and improves the return rate of production factors. Therefore, the reduction of general industrial and commercial electricity prices will lead to the growth in GDP. The higher the proportion of electricity price reduction, the greater the economic growth. When the general industrial and commercial electricity price is reduced by 25%, the GDP will increase by about 0.0935%. From the perspective of income and consumption, affected by the reduction of electricity price, residents’ income and consumption will rise accordingly. When the electricity price is reduced by 25%, the residents’ income will increase by 0.9006%, and their consumption will increase by 0.4562%. In our model, the residents’ physical consumption of various commodities depends on the changes in residents’ income and the prices of corresponding commodities. Under the influence of lowering electricity prices and the reduction of factor income of the power industry, other factor income, such as the return of labor, has increased, resulting in an increase in residents’ total income and a consequent impact on consumption. Similarly, the return on capital increases with the decrease in electricity prices, which leads to an increase in enterprises’ income. Specifically, when the electricity price is reduced by 25%, the enterprises’ revenue increases by 1.2293%. Because the part of electricity sales revenue reduced by the reduction of general industrial and commercial electricity price should be ultimately borne by the government according to the current policy, the reduction of electricity price will lead to the decline of government revenue, which will also have a negative impact on government consumption. Specifically, when the general industrial and commercial electricity price decreases by 25%, the government income decreases by 0.0194%, and then the government consumption decreases by 0.4583%. As can be seen from Table 2, when the electricity price is reduced by 25%, the total net export increases by 0.1083%, which is mainly related to the output level changes of various sectors and the relative changes of domestic commodity prices. Besides, the reduction in general industrial and commercial electricity prices also has a positive impact on foreign income and investment.
TABLE 2 | Impact of general industrial and commercial electricity price reduction on macroeconomy (%).
[image: Table 2]The following is an analysis of the impact of the adjustment of general industrial and commercial electricity prices on the change of commodity output (supply) of various departments. In our model, electricity is involved in the production process as a basic input. Therefore, reducing the electricity price of general industry and commerce will produce two effects at the same time. One effect is the substitution effect, which is using electricity to replace other inputs in the production process, such as the substitution of energy for labor and capital, and the substitution between energy. The second one is called the output effect, which indicates that the substitution adjustment between inputs will have a positive impact on the output level. When the substitution elasticity between inputs is 0 (i.e., the production function is in the form of Leontief), the output increases with the increase in input electricity. In this case, there is only an output effect and no substitution effect. The other extreme case is the complete substitution between inputs (i.e., the linear production function form is adopted); then, there is only a substitution effect and no output effect. In our model, the elasticity of substitution between capital, electricity, and labor is set between the above two extreme cases, so the electricity price reduction will cause the commodity demand curve to shift outward in most sectors. When the price of electricity as an input falls, the cost of production falls, so most industries will appropriately expand their production scale and thus increase output.
As can be seen from Table 3, except for the sectors of petroleum, coking products and nuclear fuel products, general and special purpose equipment, and the sector of building, the output levels of other departments have increased. In addition to PTD (power transmission and distribution) (4.3918%), the mining industry (0.4001%) and other manufacturing industries (0.3811%) are the most prominent ones in output increase, which belong to the secondary industry. In the tertiary industry, the sectors of information transmission, software, and information technology services (0.3804%) and commercial, communication, and catering industry (0.3285%) increased significantly in output. The smallest increase in output is the sector of wood products and furniture, with an increase of 0.0244%, which belongs to the industrial category.
TABLE 3 | Impact of general industrial and commercial electricity price reduction on the output and producer price of sectors (%).
[image: Table 3]As electricity is essential to the activities of all economic sectors, lower electricity prices will have a direct impact on the cost of goods and services in each sector, which in turn will drive changes in the relative output prices of these goods or services, which is called the direct impact of the reduction of electricity prices on the producer prices of products or services in various sectors. Because the change of electricity price will also promote the change of the price of other production inputs, it will also indirectly promote the change of the relative price of the output of products or services in various sectors. Column 2 of Table 4 shows the final change in the relative output prices of goods (or services) by sector. It can be seen from Table 4 that although the price changes of products (or services) in different sectors are different, the output price of all other sectors except for textile has increased. The producer prices of products in the sector of production and supply of gas and water increased by 0.4820%. The five sectors with the highest relative producer price increase were electrical and electronic equipment manufacturing (0.6804%), traffic and transportation equipment (0.6730%), mining industry (0.6558%), general and special purpose equipment (0.6542%), and metal smiling and rolling products (0.6511%), all of which belong to the secondary industry. In addition to the industrial sector, agriculture; sector of financial, real estate, business, and residential services; and sector of transportation, warehousing, and postal services also showed a large increase, with 0.6371%, 0.5900%, and 0.5240%, respectively.
TABLE 4 | Impact of general industrial and commercial electricity price reduction on the electricity consumption of sectors (%).
[image: Table 4]As the above analysis shows, due to the rise of labor wages, residents’ income and disposable income have increased, and coupled with the reduction of electricity prices, residents’ electricity consumption has increased. In addition, the electricity price reduction reduces the cost of electric power relative to other fossil energy, so some enterprises that do not necessarily use fossil energy will use electric power to replace part of fossil energy as an intermediate input, reflecting the substitution effect of electric power. Therefore, electricity consumption in most sectors will rise. In this study, 30 sectors are divided into three categories: agriculture, industry, and tertiary industry, and the changes in electricity consumption of these three sectors are simulated respectively under different general industrial and commercial electricity price reduction ratios. As is shown in Table 4, the reduction of electricity price has led to the increase in electricity consumption in the whole society, among which the electricity consumption of tertiary industry has increased significantly, followed by that of secondary industry, and the increase in electricity consumption of primary industry has been the smallest. When the electricity price was reduced by 25%, the electricity consumption of primary industry, secondary industry, tertiary industry, and total electricity consumption increased by 0.3499%, 4.2234%, 13.9872%, and 5.1378%, respectively.
5 CONCLUSION AND POLICY IMPLICATIONS
Electricity price is related to the production and operation costs of enterprises. General industrial and commercial electricity prices mainly involve small and medium-sized enterprises with a very wide range and high degree of social concern. Since 2018, the Chinese government has repeatedly issued relevant policies to reduce the electricity price of general industry and commerce to improve the business environment of enterprises and stimulate market vitality. Therefore, studying the impact of general industrial and commercial electricity price adjustment on the economy has become a key issue in the electricity price reform. However, at present, there are few studies about the influence of general industrial and commercial electricity price reduction. Most of the existing studies focus on the impact of residential electricity price adjustment and electricity price reform. This study fills the research gap to some extent. Taking Fujian province as an example, this study uses the provincial CGE model to study the impact of general industrial and commercial electricity price reduction on the macro economy, output, producer price, electricity consumption of various sectors, and the whole society’s electricity consumption. The relevant research conclusions have certain implications for evaluating general industrial and commercial electricity price reduction policies and the design of future electricity price policies. Through simulation, this study draws the following conclusions.
1) The reduction of general industrial and commercial electricity prices has a positive effect on the economy. According to a series of related policies issued by the National Development and Reform Commission and Fujian province, the electricity price of general industrial and commercial enterprises has been reduced by 25% compared with that of 2017, resulting in an increase of about 0.0935% in GDP. Residents’ income and consumption have also risen with the reduction in electricity prices. However, the reduced electricity sales revenue due to the reduction in electricity prices ultimately needs to be partly borne by the government, so government revenues will decrease with the reduction in electricity prices. 
2) With the reduction of electricity prices, except for sectors of petroleum, coking products and nuclear fuel products, and general and special purpose equipment and building, the output levels of other sectors have risen, among which the increment of the sectors of PTD (power transmission and distribution) (4.3918%) is prominent. Apart from textile, producer prices of other sectors have increased with the reduction of general industrial and commercial electricity prices. Among them, the producer price of the industrial sector increased most significantly.
3) The reduction of general industrial and commercial electricity prices has posed a positive effect on the total electricity consumption of society. Electricity consumption in primary, secondary, and tertiary industries has increased with the reduction in electricity prices, with the tertiary industry rising the most, which shows that the reduction of general industrial and commercial electricity prices has effectively stimulated the development of the service industry.
In short, the reduction of general industrial and commercial electricity prices has a significant impact on the economy, which is conducive to promoting the operation and development of major industrial and commercial sectors. Reducing the electricity price of general industry and commerce is an important measure of the government to improve the business environment, which reflects the attention and support of the government to the circulation of commerce and trade. Based on the above discussion and conclusion, the following suggestions are proposed.
1) As is seen from the impact of the general industrial and commercial electricity price reduction on various sectors, in addition to the service industry, the high-consumption industries in some economic systems are greatly affected by the electricity price. However, in 2021, the added value of the six high-energy-consuming industries in Fujian province increases by 7.1%, accounting for 26.3% of the added value of industries above the designated size, which is higher than the national average in the same period. From the perspective of optimizing industrial structure, the government can further implement differential electricity prices, as well as different electricity prices for different industrial sectors, to regulate the development of high-energy consuming industries.
2) At present, the national unified carbon market and carbon-neutral targets provide policy support for the high proportion of renewable energy in the total electricity. Fujian province is the first national ecological civilization pilot zone and has a variety of clean energy sources such as wind, light, water, gas, and nuclear. Therefore, the government can seize the favorable opportunity to ease the contradiction between power supply and demand and appropriately increase the proportion of clean energy power generation such as hydropower and wind power. With the technological progress and the decline of clean energy power generation cost in the future, the average power consumption cost of users is expected to continue to decline, which can provide sustainable support for the policy of general industrial and commercial electricity price reduction.
3) In terms of policy implementation, in the first half of 2021, the energy consumption intensity of Fujian province increased rather than decreased year on year, and it is of great significance to guide the province to do its work in a solid, effective, and orderly manner. Therefore, relevant departments should strengthen supervision and inspection to ensure that all communities and commercial complexes implement national and provincial policies and prevent the phenomenon that the electricity charge standard is still higher than the electricity price standard stipulated by the state. At the same time, it is necessary to take effective measures to strengthen publicity and ensure that all end users are aware of the price reduction policy and implement it.
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Can voluntary environmental regulation play a major role in the transformation of traditional environmental regulation; undertake the task of improving the flexibility, autonomy, and effectiveness of environmental regulation; and promote green technology innovation of enterprises? This study uses the propensity score matching and difference-in-differences (PSM-DID) model to analyze the net effect and heterogeneity of voluntary environmental regulation on green technology innovation, and further explores the impact mechanism of voluntary environmental regulation on green technology innovation from three perspectives: government subsidies, public support, and external enterprise cooperation. The results show that voluntary environmental regulation has a significant positive effect on green technology innovation regardless of time, industry, and regional factors. The implementation of voluntary environmental regulation promotes the green patent authorization of enterprises by 15.12–17.59%. In addition, voluntary environmental regulation also shows industry heterogeneity, scale heterogeneity, and ownership heterogeneity for green technology innovation, and it emphasizes the promotion effect on enterprises in mild pollution industries, large-scale enterprises, and private enterprises. Furthermore, the implementation of voluntary environmental regulation will have a positive impact on green technology innovation by curbing public support and expanding cooperation with external enterprises.
Keywords: voluntary environmental regulation, green technology innovation, government subsidies, public support, enterprise cooperation
1 INTRODUCTION
Environmental problems have consistently been the main obstacles to achieving high-quality economic development and improving people’s quality of life. Recently, China has devoted increasing attention to ecological environmental protection (Wu et al., 2021). In addition, the successive promulgation and implementation of the Environmental Protection Law (2015), the Environmental Protection Tax Law (2018), and the Cleaner Production Promotion Law of the People’s Republic of China (2019) have further strengthened the attention of enterprises to environmental protection. The 14th Five-Year Plan in 2021 also points out that enterprises should be encouraged to increase investment in research and development, increase the disclosure of environmental protection information, and guide social organizations and the public to participate in environmental governance. As the main force to create economy, enterprises serve as the main body of environmental pollution and assume responsibility for protecting the environment (Wu et al., 2022). Voluntary environmental regulation, as a way for enterprises to fulfill their corporate social responsibility, differs from the traditional environmental regulation, which gives enterprises autonomy and can stimulate enterprises to innovate from inside to outside (Qin and Sun., 2020). However, relatively few studies have explored voluntary environmental regulation. As an important pillar of the national economy, the traditional economic development in the manufacturing industry is dominated by extensive scale expansion and has brought huge resource and environmental constraints to China, and the weak originality and high imitation of its technology have also caused problems such as large energy consumption and low energy utilization. By the end of 2020, the ratio of manufacturing energy consumption to China’s total energy consumption is 55.1%, while the proportion of manufacturing industry to GDP is only 26.18%. With the increasingly fierce conflict between economic development, energy consumption, and environmental pollution, it is necessary to pay attention to the green technology innovation of the manufacturing industry.
In summary, an in-depth discussion of the paths and mechanisms for voluntary environmental regulations to affect the green innovation of enterprises will help guide enterprises to fulfill their social responsibilities, give full play to the subjective initiative of enterprises, stimulate enterprises to implement green innovation from the internal, and achieve high-quality economic development. Therefore, this paper needs to answer two questions: 1) whether voluntary environmental regulations have an effect on the green technology innovation of manufacturing enterprises; 2) if the effect exists, how it works at micro-level. This paper uses the propensity score matching and difference-in-differences (PSM-DID) model to analyze the impact of voluntary environmental regulation on the green technology innovation of Chinese manufacturing enterprises and further classifies the manufacturing enterprises in order to examine the industry heterogeneity effect, scale heterogeneity effect, and ownership heterogeneity effect of voluntary environmental regulation on the green technology innovation of manufacturing enterprises. Finally, the mechanism analysis model is constructed to analyze the mediating effect of voluntary environmental regulation on the green technology innovation of enterprises by the government, the public, and external enterprises.
The marginal contribution of this study is mainly manifest in three aspects. Firstly, we obtained data on green technology innovation patents for the listed enterprises based on the comparison between the Green List of the International Patent Classification launched by WIPO (World Intellectual Property Organization) with those of the State Intellectual Property Office, which compensated for the limitation of using utility model patents solely as a measure of the level of green technology innovation of enterprises. Secondly, this paper further examines the heterogeneous response of green technology innovation to voluntary environmental regulation using three aspects: industry heterogeneity, scale heterogeneity, and ownership heterogeneity. Finally, based on the relationship between enterprises and the government, the public, and external enterprises, we further discuss the government subsidy effect mechanism, public support effect mechanism, and enterprise cooperation effect mechanism of implementing voluntary environmental regulation on enterprise green technology innovation and provide a new explanation for enterprise green technology innovation.
The structure of this study is as follows. Section 2 summarizes the existing research advances and their limitations. Section 3 introduces the construction of the PSM-DID model and the mechanism analysis model. Section 4 examines the industry heterogeneity effect, scale heterogeneity effect, ownership heterogeneity effect, and intermediary effect of voluntary environmental regulation on the green technology innovation of manufacturing enterprises. Section 5 draws conclusions and policy implications based on research findings.
2 LITERATURE REVIEW AND THEORETICAL HYPOTHESES
2.1 The Effect of Voluntary Environmental Regulation on Green Technology Innovation
Environmental regulation tools are mainly divided into three types: mandatory, market-based, and voluntary (Ren et al., 2018a). Previous empirical literature presents different conclusions about whether environmental regulation can induce green technology innovation, and some scholars believe that environmental regulation will have an inhibitory effect on the technological innovation of enterprises (Greenstone et al., 2012). Some scholars believe that well-designed environmental regulations can effectively promote green technology innovation (Ley et al., 2016; Qiu et al., 2020). Others argue that environmental regulation does not significantly promote the technological progress of enterprises (Eiadat et al., 2008), but existing studies have paid less attention to voluntary environmental regulation.
Voluntary environmental regulation is an agreement, commitment, or plan aimed at protecting the environment. It is based on the voluntary participation of enterprises, advocated by industry associations, enterprises themselves, or third-party certification bodies without specific mandatory binding (Qin and Sun, 2020). Unlike command-and-control environmental regulation, the core idea of voluntary environmental regulation is to create incentives for enterprises to spontaneously provide environmental public goods (Pan et al., 2020). Most studies within the available literature have validated a positive correlation between voluntary environmental regulation and corporate innovation (Lim and Prakash, 2014; Ren et al., 2018b; He and Shen, 2019; Bu et al., 2020). Some studies also suggest that voluntary environmental regulation can boost the profits of large companies but has no significant impact on corporate innovation (Long and Wan, 2017). In addition, existing studies mostly use R&D expenditures, the number of patent applications, the number of invention patent applications, and the construction of knowledge stock indicators to measure green technology innovation (Du and Li, 2019; Ouyang et al., 2020; Sun et al., 2021). However, the number of green patents obtained by enterprises, as an indicator of green technology innovation output, can better reflect the level of green innovation of enterprises.
At present, the voluntary environmental regulations that are widely practiced in China only are the ISO14001 environmental management system and the “responsible care” system of the chemical industry. By the end of 2020, only 636 chemical companies in China had signed the Responsible Care Global Charter. In addition, most of the enterprises that have joined the Charter of Care for Responsibilities do not fully follow the normative requirements of the Guidelines for the Implementation of Care for Responsibilities to formulate target plans, implement self-assessments, and enforce improvement measures (Pan et al., 2020). To address this situation, this study selects ISO14001 environmental management system certification data to measure the voluntary environmental regulation behavior of enterprises and proposes hypothesis 1.
H1: The implementation of voluntary environmental regulations can help promote green technology innovation in enterprises.
2.2 The Impact Mechanism of Voluntary Environmental Regulation on Green Technology Innovation
So how can voluntary environmental regulations promote green technology innovation in enterprises? Research has discussed the relationship between government, public, external enterprise behavior, and enterprise innovation (Shi et al., 2020; Fang et al., 2021; Jiang et al., 2021). From a government perspective, the implementation of voluntary environmental regulations will help enterprises labelled as approved by the government, giving them the opportunity to receive support from relevant government policies, which will further incentivize companies to innovate with green technology. Since green technology innovation has the negative externality of environmental resource utilization and the positive externality of technological innovation, the negative externality of environmental resource utilization requires environmental regulation to play a corrective role, and the positive externality of technological innovation requires the guidance and support of the government through financial policies (Liu et al., 2020). Hille et al. (2020) find that, while the importance of policy instruments varies from technology to technology, their impact on innovation is very similar. A more comprehensive renewable energy support policy portfolio increases the patent applications for solar and wind-related technologies. From the perspective of the public, the increase in public environmental awareness will cause certain pressure on the reputation of enterprises and the sale of products, affecting the technological innovation of manufacturing enterprises (Czarnitzki et al., 2020). Jiang et al. (2021) found that companies tend to use public relations to respond to the public’s demand for environmental protection. In the case of limited resources, public relations expenditure will squeeze enterprises’ investment in green technology innovation. The enhancement of environmental awareness has prompted the public’s consumption demand to gradually shift to environmentally friendly products, and it has also increased its requirements for the practical legitimacy of corporate products (Zhu et al., 2013). This may further lead enterprises to implement voluntary environmental regulation in order to obtain public identity; that is, they will carry out ISO14001 certification in order to obtain the recognition of practical legitimacy of products, rather than truly green technology innovation. Pan et al. (2020) argues that some companies are under pressure from downstream multinational green supply chains to send environmentally friendly signals to consumers through voluntary environmental regulation compliance. From the perspective of cooperation with external enterprises, enterprises implementing voluntary environmental regulation will send signals of environmental commitment to external partners so as to obtain abundant resources for green innovation. Communication and cooperation with external enterprises can help enterprises obtain complementary resources that they do not have and help enterprises integrate internal and external resources for innovation (Zhou et al., 2018). Synergies with organizations in different fields help to accelerate technological breakthroughs, eliminate technological bottlenecks in the enterprise innovation ecosystem, and accelerate the pace of enterprise innovation (Masucci et al., 2020). In addition, sharing risks and costs with partner enterprises reduces the risk and cost of responding to environmental regulation by shortening the innovation cycle and reducing innovation risks (Aigbavboa and Mbohwa, 2020).
To sum up, government policies, public awareness of environmental protection, and external cooperation of enterprises have not only created the demand for voluntary environmental regulation, but also further promoted the positive relationship between voluntary environmental regulation of enterprises and green technology innovation. However, existing studies have mostly studied the impact of environmental regulation on technological innovation from the level of stakeholders such as government and consumers, and the level of partners (Ouyang et al., 2020; Sun et al., 2021; Yuan and Cao, 2022). This paper is more targeted to study the impact of government policies, public awareness of environmental protection, and external cooperation of enterprises on the impact of voluntary environmental regulation on enterprise green technology innovation. Based on this, the following three theoretical hypotheses are proposed (Figure 1).
[image: Figure 1]FIGURE 1 | Theoretical model framework.
H2: The introduction of government incentive policy will effectively guide the direction of green technology innovation and encourage enterprises to carry out green technology innovation.
H3: Increased public awareness of environmental protection will lead to the implementation of voluntary environmental regulation for enterprises to establish an environmentally friendly image and hinder enterprises’ investment in green technology innovation.
H4: The expansion of cooperation with external enterprises will help enterprises obtain complementary resources and promote green technology innovation.
3 MATERIALS AND METHODS
3.1 Identification Model and Strategy
3.1.1 Baseline Model Setting
First of all, enterprises with a high level of green innovation can be more inclined to carry out ISO14001 standard certification. Therefore, it is a self-selection issue whether enterprises implement voluntary environmental regulation. This paper overcomes the possible interference of this problem by performing Propensity Score Matching (PSM). The return on assets (ROA), board independence (Independence), enterprise age (Age), and quality management system (ISO9000) are selected as matching variables. The empirical test object of this paper is the sample obtained after PSM. Since the sample enterprises in the treatment group and the control group have no significant differences in age, profitability, and governance level except for the difference in the implementation of voluntary environmental regulation, the difference-in-differences (DID) test adopted later is more effective and reliable. Secondly, the implementation of voluntary environmental regulation is in different years, which means that the same company can be both a treatment group (after the implementation of voluntary environmental regulation) and a control group (before the implementation of voluntary environmental regulation), which can alleviate the endogenous problems caused by sample selection errors to some extent. In summary, PSM can solve the problem of sample selectivity deviation, but it cannot overcome the endogenous problem. The double-difference method has some complementarity. Although it cannot solve the problem of sample deviation, it can effectively overcome the endogenous problem. Therefore, this paper refers to the research of Quan et al. (2020), constructs two virtual variables voluntary participation in environmental regulation (VER) and POST, and establishes the following PSM-DID model to test the impact of voluntary environmental regulation on green technology innovation.
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3.1.2 Identification Model for Effect Mechanism
Theoretical research shows that the influence path of voluntary environmental regulation on enterprise green innovation differs, which means that the government, the public, and external enterprises have different degrees of influence on the relationship between voluntary environmental regulation and enterprise green innovation. As such, this study constructs the following analysis model to test the moderating effect of government subsidies, public support, and external enterprise cooperation between the two. The details are as follows:
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In the formula, i represents the enterprise; t represents year; Lnpat represents green technology innovation; VER represents enterprises to implement voluntary environmental regulation; and Subsidy, Public, and Cooperation represent government subsidies, public support, and external cooperation, respectively. Control is the control variable; coefficient [image: image] represents intercept term; [image: image] represents the impact of voluntary environmental regulation on green innovation, [image: image] represents the estimated coefficient of each control variable; and [image: image] is a random disturbance.
3.2 Variable Description and Data Source
In order to explore the relationship between voluntary environmental regulation and enterprise green technology innovation, this paper takes Shanghai and Shenzhen A-share manufacturing listed companies from 2015 to 2018 as research samples.
The dependent variable is green technology innovation, which is represented by Green Patent (Lnpat1/Lnpat2). According to the comparison between the international patent classification green list launched by WIPO and the State Intellectual Property Office, the patent data of green technology innovation of listed companies are obtained, which makes up for the limitation of using utility model patents as a measure of the level of green technology innovation of enterprises. In addition, due to the large lag of enterprise patent licensing, the number of green patent licensing with a lag of 1 year is adopted; that is, the logarithm of the number of green patent licensing in the t+first year plus one is taken.
The independent variable is VER. According to the ISO14001 environmental management system certification data, this year through the ISO14001 certification enterprise assignment is one and is 0 otherwise. POST is the virtual variable after the implementation of voluntary environmental regulation, and the year after the implementation of voluntary environmental regulation (including the year) is assigned to 1, otherwise 0.
The moderating variables include government support (Government), public environmental awareness (Public), and external cooperation (Cooperation). Government support is expressed by government environmental protection subsidies, drawing on Tang and Li (2013), the classification of environmental investment content to determine the amount of government environmental subsidies listed companies currently received, and logarithmic processing. The public’s environmental awareness is expressed by the growth rate of sales and the public votes with purchasing power, showing recognition of the practical legitimacy of products. The higher the public support of enterprises and the steady growth of sales, the easier it is for enterprises to borrow funds from third parties to increase their capital, and the more likely it is to increase investment in green technology innovation and open up the market (Darya and Maesaroh, 2016). With reference to the method of Laursen and Salter (2014), the external cooperation of enterprises is measured by the number of partners jointly applying for patents. The greater the number of partners, the greater the degree of cooperation.
This paper selects Return on Assets (ROA), Z index (Z), Ratio of Independent Director (Independence), Cash Ratio (Cash), Enterprise Scale (Scale), Age, State-owned enterprises (SOE), Debt-to-Asset Ratio (Debt), Operating Income (Income) and Period expense ratio (Expense) as control variables. ROA is expressed by the ratio of net profit to average total assets to measure the profitability of the company. Z is expressed by the ratio of the largest shareholder to the second largest shareholder to measure the degree of equity balance. Independent is the proportion of independent directors in all directors, which is used to measure the level of corporate governance. Cash is represented by the ratio of total current assets to total current liabilities, which is used to measure the ability of current assets of enterprises to become cash for debt repayment before the short-term debt expires. Scale represents company size, which is measured by the total assets of the year. Age represents the age of the company. For measures of SOE, the non-state-owned enterprises are assigned 0 and the state-owned enterprises are assigned 1. Debt is expressed by the ratio of total corporate liabilities to total assets to measure the asset-liability ratio. Income is the year’s operating income. Expense is the ratio of management, sales, and financial management costs to operating income in the year.
The research objects of this paper are Shanghai and Shenzhen A-share manufacturing listed companies from 2012 to20181. In order to ensure the effectiveness and operability of the data, a series of screenings are carried out: ST, *ST, and PT2 enterprises; the sample with missing variable data participated in regression. After the above processing, the initial sample of this paper comprised 7,336 samples, a total of 1,048 listed companies, including the implementation of voluntary environmental regulation of listed companies, the total was 588. The government environmental protection subsidies data in this paper are from the annual report of enterprises and the corporate social responsibility report, and the rest of the data are from CSMAR (http://cndata1.csmar.com). The statistic description of treatment groups and control groups are detailed in Supplementary Appendix Table S2.
4 RESULTS AND DISCUSSION
4.1 Propensity Score Matching
4.1.1 PSM Result
In general, return on assets (ROA), board independence (Independence), enterprise age (Age), and quality management system (ISO9000) will affect the impact of ISO14001 standard certification on the green innovation performance of enterprises (Bourke and Roper, 2017; Li et al., 2017; Bouncken et al., 2021; Sun et al., 2021). The investment cycle of green innovation is long. Enterprises with better financial performance often have more human, material, and financial resources, and they can invest in green innovation for an extended period. The higher the return on assets of enterprises, the more likely green innovation is. The stronger the independence of the board of directors, the stronger the social responsibility orientation toward proactive green technology innovation. Mature enterprises have rich production and management experience and good R&D foundation, which helps enterprises to carry out green technology innovation, and enterprises with ISO9000 certification are more likely to apply for ISO14001 certification. Therefore, the four indicators are selected as observable variables, and the propensity score is calculated by logit regression. Then the PSM is carried out, and the treatment group and the control group in the sample are matched reasonably. Finally, the ATT value is calculated according to the matched sample.
According to the four matching variables, logit regression is carried out on the grouping variables to determine whether to implement voluntary environmental regulation. The control group is selected and matched by one-to-four matching method in the caliper, and the annual observation value of 7,323 enterprises is finally obtained. Table 1 reports the treatment effect of ISO14001 certification enterprises. Whether before or after matching, the average green innovation performance of enterprises certified by ISO14001 standard is higher than that of enterprises not certified by the ISO14001 standard. From the matching results, the average green innovation performance of enterprises certified by ISO14001 is 0.48, enterprises not certified by ISO14001 is 0.31, and the ATT value is 0.18. The statistics of t-test of those values are all greater than 2.58, which shows that voluntary environmental regulation can promote green innovation of enterprises.
TABLE 1 | Tendency score matching results.
[image: Table 1]4.1.2 Balanced Test
The balance test examines whether the choice of observable variables and methods is appropriate. Table 2 is the result of matching balance test. Before matching, except for LnAge, the treatment group and control group showed significant difference (p < 0.01). After matching, the absolute values of standard deviation of variables are not more than 2%, and the results of t test are not obvious, indicating that there is no significant systematic difference between the treatment group and the control group, and the selection of observable variables and methods is appropriate. In addition to whether the ISO14001 standard is certified, the matched treatment group and the control group have similar characteristics. If there are differences in green technology innovation between them, it must be caused by the implementation of voluntary environmental regulation. In addition, this paper also examines the pseudo-R2 and joint statistical significance of covariate propensity score. As Table 3 shows, before matching, the pseudo-R2 value is 0.095, and the p-value of LR test is close to 0. After matching, the pseudo-R2 value is close to 0, and the p-value of LR test is 0.594. This indicates that the matching has successfully eliminated the observable system differences between the treatment group and the control group. The above statistical test proves the validity of the matching results. It can be considered that the matching variables and methods used in this paper are suitable. The samples obtained after matching conform to the random principle of sample processing to some extent, which improves the reliability of the empirical results in this paper.
TABLE 2 | PSM Equilibrium Test (1).
[image: Table 2]TABLE 3 | PSM equilibrium test (2).
[image: Table 3]4.2 Baseline Regression
The double-difference regression between voluntary environmental regulation and green technology innovation is carried out with 7,323 observations obtained by PSM. Table 4 reports the results of DID regression. Models 1) and 2) control the time, industry, and regional factors, while models 3) and 4) are not controlled. According to the empirical test results, the VER × POST coefficient is significantly positive at the 5% level. Combined with descriptive statistics, under the control of time, industry, and regional factors, the green patent authorization (Lnpat1) increased by 17.59% after the implementation of voluntary environmental regulation, and the green patent authorization (Lnpat2) increased by 16.64% in the delayed phase. Without control, lnpat1 and lnpat2 increased by 16.26 and 15.12%, respectively. This shows that, under the control of other influencing factors, regardless of whether or not the time, industry, and regional factors are controlled, the green innovation output of enterprises implementing voluntary environmental regulation is higher, and the implementation of voluntary environmental regulation by enterprises helps to improve their green technology innovation ability. Therefore, H1 of this study is verified3.
TABLE 4 | Baseline regression results.
[image: Table 4]4.3 Heterogeneity Analysis
4.3.1 Industry Heterogeneity
Different industries with different pollution intensity have different sensitivity to environmental regulation, resulting in different incentive effects from environmental regulation on enterprise technological innovation (Ren et al., 2016; Feng and Chen, 2018). In order to further examine the industry heterogeneity effect of voluntary environmental regulation on enterprise green technology innovation, this paper refers to the classification method of Fu and Li (2010) and Ren et al. (2016) and divides 30 sub-industries of China’s manufacturing industry, which covered in the samples, into severe pollution, moderate pollution, and mild pollution according to the pollution emission intensity (the classification results are shown in Supplementary Appendix Table S1)4. Specific classification methods are as follows:
(1) Calculation of pollutant emissions per unit output value of various industries:
[image: image]
Where i represents industry, t is the year, j is the pollutant category, [image: image] is the emissions of wastewater, waste gas, and solid waste respectively, [image: image] is the emissions of the j pollutant in industry i in year t, [image: image] is the total industrial output value of industry i in year t.
(2) Dimensionless individual indicators:
[image: image]
Where [image: image] and [image: image] are the maximum and minimum emissions of pollutants j per unit output value in all manufacturing industries in the current year, respectively.
(3) Calculation of pollution emission intensity index in different industries over the Year:
[image: image]
(4) The pollution emission intensity index of each industry from 2012 to 2018 was averaged to obtain the final pollution emission intensity of each industry:
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Where [image: image] and [image: image] in all manufacturing industries, and the maximum and minimum emissions of pollutants j per unit output value are standardized values.
(5) The pollution emission index per unit output value of each industry is summarized by equal weight addition and average method, and the industry pollution intensity index is finally obtained [image: image]:
[image: image]
Figure 2 reports the impact of voluntary environmental regulation on green technology innovation of enterprises in mild, moderate, and severe pollution industries. Among them, the sample group of enterprises in mild pollution industries is significantly positive at the 1% level, regardless of whether they control the time and region and whether they use the green patent authorization of the postponed period, and the marginal effect is 0.14–0.16. The sample group of enterprises in other pollution industries is not significantly, that is, only when enterprises in mild pollution industries implement voluntary environmental regulation can they promote green technology innovation. Compared with enterprises in mild-polluting industries, enterprises in heavy polluting industries need higher intensity of environmental regulation to promote product innovation (Fang et al., 2021). Although the intensity of voluntary environmental regulation is not sufficient to promote green technology innovation in heavy polluting enterprises, it still has a positive impact on enterprises in mild-polluting industries, which further verifies H1.
[image: Figure 2]FIGURE 2 | Industry heterogeneity regression results.
4.3.2. Enterprise Scale Heterogeneity
Enterprise scale is the key internal factor to determine the technological innovation of enterprises (Lee and Xia, 2006). There is a certain difference in technological innovation ability between enterprises with different scales. Large-scale enterprises have more resources and a higher investment ability in technological innovation, which will influence the effect of voluntary environmental regulation on green technology innovation to a certain extent. The technological innovation ability of large-scale enterprises is generally relatively higher (Li et al., 2019). In order to further investigate the scale heterogeneity effect of voluntary environmental regulation on enterprises green technology innovation, this paper divides enterprises into large enterprises, medium enterprises, and small enterprises according to the Small and Medium-sized Enterprise Planning Standard, promulgated in20115.
Figure 3 reports the impact of voluntary environmental regulation on green technology innovation of small, medium, and large enterprises. Although the number of samples of large, medium, and small enterprises is inconsistent, the proportion of voluntary environmental regulation is relatively close, which is 17, 22, and 30% respectively. Among them, the sample group of large enterprises was significantly positive at the 1 and 5% levels, and its marginal impact was 0.0805–0.0820, while the sample group of small- and medium-sized enterprises was not. That is, the implementation of voluntary environmental regulation by large-scale enterprises is conducive to promoting green technology innovation. In general, the larger the enterprise scale, the more intensive the enterprise innovation activities are (Shi et al., 2018; Tang et al., 2020). Compared with small- and medium-sized enterprises, large enterprises have stronger financial strength and more innovation resources, so they have stronger advantages and better conditions for green technology innovation.
[image: Figure 3]FIGURE 3 | Enterprise scale heterogeneity regression results.
4.3.3 Ownership Heterogeneity
Because innovation has a spillover effect and state-owned enterprises can alleviate market failure caused by an incomplete monopoly of knowledge production through their own or government intervention, it is generally considered that state-owned enterprises are more likely to innovate (Bai et al., 2019; Wang and Jiang, 2021). Therefore, this paper divides enterprises into state-owned enterprises and non-state-owned enterprises, and further examines the ownership heterogeneity effect of voluntary environmental regulation on enterprise green technology innovation.
Figure 4 reports the impact of voluntary environmental regulation on green technology innovation of state-owned and non-state-owned enterprises. Different from the existing research, the sample groups of non-state-owned enterprises are significantly at the 1 and 5% levels. No matter whether the green patent authorization is delayed for one period, the marginal effects are not significantly different. When the time, industry, and region are controlled, the marginal effects are 0.09, and when the time, industry, and region are not controlled, the marginal effects are 0.08. However, the sample groups of state-owned enterprises are not significantly; that is, the implementation of voluntary environmental regulation by private enterprises is more conducive to promoting their green technological innovation process. This may be because, compared with private enterprises, executives of state-owned enterprises are less stressed by innovation from market stakeholders, and their professional goals are generally political promotion rather than corporate performance. At the same time, because they cannot legally own corporate ownership, they are more likely to produce innovation inertia, so even if voluntary environmental regulation is implemented, there will be no excessive investment in green technology innovation. Private enterprises pay more attention to the maximization of enterprise profit and enterprise value. Their goal orientation is basically consistent with R&D innovation activities, and they are more willing to continue to invest in green technology innovation.
[image: Figure 4]FIGURE 4 | Ownership heterogeneity regression results.
4.4 Mechanism Analysis
4.4.1 Government Subsidy Effect
Theoretical research shows that the positive impact of voluntary environmental regulation on government subsidies further influences its green technology innovation effect. Because green technology innovation has the characteristics of positive externalities of innovation knowledge and negative externalities of environment, enterprises cannot obtain enough innovation benefits, so government subsidies are an important vehicle to make up for the double externalities of green technology innovation and promote enterprises to carry out green technology innovation (Bai et al., 2019). Government subsidies entice enterprises to increase R and D investment and promote green technology innovation (Becker, 2015).
In order to verify the positive impact of voluntary environmental regulation on government subsidy support, we use the mediating effect model to empirically test the government subsidy effect of voluntary environmental regulation on green technological innovation. In the benchmark regression equation, we verify a significant positive correlation between government subsidies and green technology innovation (Columns 1-2 and seven to eight in Table 5). Whether or not the time, industry, and region are controlled and whether or not the amount of green patent grants that are postponed for one period is used, government subsidies promote green technology innovation of enterprises to a certain extent. Therefore, according to the identification logic of the mediating effect model, as long as it is confirmed that voluntary environmental regulation has a significant positive effect on government subsidies, it can be confirmed that voluntary environmental regulation will affect the green technological innovation of enterprises through the effect of government subsidies. Columns 1) and 4) in Table 6 reported the net impact of voluntary environmental regulation on government subsidies under control and non-control of time, industry, and regional factors, which were 0.13, respectively, but not significant. It can be seen that the implementation of voluntary environmental regulation does not help enterprises obtain government subsidies, which is inconsistent with the assumption of H2 that enterprises implementing voluntary environmental regulation do not promote their green technology innovation process by obtaining government subsidies.
TABLE 5 | Test of action mechanism (1).
[image: Table 5]TABLE 6 | Test of action mechanism (2).
[image: Table 6]4.4.2 Public Support Effect
Theoretical research shows that the negative impact of voluntary environmental regulation on public support will further affect its green technology innovation effect (Demirel and Danisman, 2019; Globocnik and Faullant, 2021). On the one hand, the improvement of public awareness of environmental protection enhances the public’s demand for environmentally friendly products, and on the other hand, it improves the practical legitimacy of enterprise products, which may lead to enterprises under the pressure of the downstream supply chain, sending environmentally friendly signals to consumers through voluntary environmental regulation compliance while reducing investment in green technology innovation, but it is not actually green technology innovation. In order to verify the negative effect of voluntary environmental regulation on public support, we use the mediating effect model to empirically test the public support effect of voluntary environmental regulation on green technology innovation.
In the benchmark regression equation, we verify that there is a significant negative correlation between public support and green technology innovation (Table 5, Columns 3-4 and 9–10). Whether or not controlling for time and area, and whether or not using the green patent authorization of the delayed phase, the strengthening of public purchasing power has inhibited the green technology innovation of enterprises to varying degrees. Therefore, according to the identification logic of the mediating effect model, as long as it is confirmed that voluntary environmental regulation has a significant negative effect on public support, it can be confirmed that voluntary environmental regulation will promote green technological innovation of enterprises through public support effect. Columns 2) and 5) in Table 6 reported the net effect of voluntary environmental regulation on public support. It can be seen that, whether or not the time, industry, and regional factors are controlled, the implementation of voluntary environmental regulation reduces the public support of enterprises, and the marginal coefficients are -0.09, which is consistent with H3. It is further speculated that greenwash has become a common phenomenon. With the enhancement of public awareness of environmental protection, the public realizes that enterprises implement voluntary environmental regulation in order to obtain identity and regard the implementation of voluntary environmental regulation as a green behavior of enterprises. This is intended to reduce the purchase of products labeled as green, increase the demand for “real green” products, and promote enterprises to carry out green technology innovation.
4.4.3 Enterprise Cooperation Effect
Theoretical research shows that the positive impact of voluntary environmental regulation on enterprise cooperation will further affect its green technology innovation effect. Through open innovation and cooperation with external partners, enterprises can share risks with partners and improve their motivation for green technology innovation (West and Gallagher, 2010). In addition, complementary resources that they do not have can be used to enhance the ability to solve problems, improve learning efficiency, and promote green technology innovation (Sakibara and Branstetter, 2003; Duysters and Lokshin, 2011; Di Minin et al., 2016).
In order to verify the positive impact of voluntary environmental regulation on corporate cooperation support, we use the mediating effect model to empirically test the corporate cooperation effect of voluntary environmental regulation on green technology innovation. In the benchmark regression equation, we verify a significant positive correlation between external cooperation of enterprises and green technological innovation (Columns 5-6 and 11-12 in Table 5). Whether or not controlling for time and area, and whether or not using the green patent authorization of the delayed phase, the strengthened external cooperation has, to some extent, contributed to the green technology innovation of enterprises. Therefore, according to the identification logic of the mediating effect model, as long as it is confirmed that voluntary environmental regulation has a significant positive effect on enterprise cooperation, it can be confirmed that voluntary environmental regulation will affect enterprise green technology innovation through the enterprise cooperation effect. Columns 3) and 6) in Table 6 reported the net effect of voluntary environmental regulation on enterprise cooperation. It can be seen that whether or not the time, industry, and regional factors are controlled, the implementation of voluntary environmental regulation promotes the cooperation between enterprises and external enterprises, and the marginal coefficients are 2.31 and 2.23, respectively, which is consistent with Hypothesis H4. That is, the implementation of voluntary environmental regulation helps enterprises expand cooperation with external enterprises and promote their green technological innovation.
5 CONCLUSION AND IMPLICATIONS
This study uses the PSM-DID model to analyze the net effect and heterogeneity of voluntary environmental regulation on green technological innovation of enterprises and further discusses the influencing mechanism of voluntary environmental regulation on green technological innovation. The main conclusions are as follows. Firstly, regardless of whether the time, industry, and regional factors are controlled, voluntary environmental regulation has a significant positive effect on enterprises’ green technology innovation, and its marginal effect is 15.05–18.98%. Secondly, compared with enterprises in other industries with pollution emission levels, voluntary environmental regulation only has a significant positive effect on green technology innovation of enterprises in mild pollution industries. Thirdly, compared with small- and medium-sized enterprises, the implementation of voluntary environmental regulation by large-scale enterprises can better promote their green technological innovation. Fourthly, compared with state-owned enterprises, voluntary environmental regulation plays a more prominent role in promoting green technological innovation of private enterprises. Fifthly, the implementation of voluntary environmental regulation will not help enterprises to promote their green technological innovation process by obtaining government subsidies but will have a positive impact on their green technological innovation by inhibiting enterprises to obtain public support and expanding cooperation with external enterprises.
As an environmental regulation with flexibility and autonomy, voluntary environmental regulation can indeed promote the process of green technological innovation of enterprises. For manufacturing enterprises, it might be feasible to explore the future path of green innovation development, realize green development and efficiency growth, and implement voluntary environmental regulation. As far as the government is concerned, innovation subsidies can indeed promote the output of green technology innovation of enterprises. In order to reduce the mismatch of resources and truly promote the process of green technology innovation, the government should introduce subsidy policies for the heterogeneous effects of green technology innovation of enterprises, subsidize enterprises with subsidy needs to implement voluntary environmental regulation, and improve the incentive effect of subsidies. For the public, firms can improve environmental awareness, learn environmental knowledge, enhance the ability to identify environmental products, and reduce the purchase of products labeled as green so as to reverse-promote green technology innovation from the consumer side. For external enterprises, the cooperation and sharing experience among enterprises can promote the green technological innovation effect of voluntary environmental regulation. Therefore, we can jointly establish technological innovation cooperation alliance, build the inter-enterprise cooperation platform, expand inter-enterprise cooperation, enhance the stability of enterprise cooperation, and provide a stable external environment for the green technological innovation of enterprises. In short, the promotion of green technology innovation effect of voluntary environmental regulation cannot be attributed to government policy forces, but should rely on the common efforts of the public, enterprises and other market players. For the public, we should rationally reduce the purchase of products labeled as green so as to curb the motivation of enterprises to implement voluntary environmental regulation, and guide enterprises to carry out green technology innovation independently from the consumer side. For enterprises, the green technology innovation effect of voluntary environmental regulation should be strengthened by establishing cooperative alliance.
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FOOTNOTES
1The reason the sample data from 2012 to 2018 are selected is that the green technology innovation data are only updated to 2019, and the number of green patent authorizations that lag 1 year is used.
2Stocks with “ST” or “*ST” are traded on risk alert board. Stocks carrying “ST” (special treatment) tag suffer losses for two consecutive years or more. Stocks carrying “*ST” tag enter delisting procedures. With “PT” (Particular Transfer), stocks suffer losses for 3 years or more, and are halted the listing.
318.98, 18.08, 16.36 and 15.05% are obtained by dividing the coefficients of PDRC×POST in Table 4 by the descriptive statistical mean of explained variables lnPat1 and lnPat2 by 0.4156 and 0.4326, respectively.
4Among them, chemical oxygen demand and ammonia nitrogen emissions are used as indicators for wastewater discharge; emissions of industrial sulfur dioxide, industrial nitrogen oxides, and industrial particulate matter are used as indicators of emissions; solid waste emissions use the production of general industrial solid waste and hazardous waste as indicators, and data are from the ' China Environmental Statistics Yearbook.
5We define enterprises with more than 1,000 employees or an operating income of more than 400 million yuan as large enterprises; enterprises with more than 300 employees or an operating income of more than 200 million yuan as medium-sized enterprises; enterprises with more than 20 employees or an operating income of more than three million yuan as small enterprises.
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China’s electricity market is currently in the development stage, and the related system is not comprehensive enough. Therefore, it is a key issue to standardize the trading behavior of the market entities and improve the operation efficiency of the electricity market. To solve this problem, this paper takes advantage of Cournot duopoly model to find Nash equilibrium on the electricity supply side and constructs a bank performance guarantee model based on the profit function on the electricity sales side. This study also sorts out the function of performance guarantee, its mechanism for risk prevention, and the feasibility of promoting the performance guarantee mechanism and other supporting systems. Finally, the conclusion is drawn that the performance guarantee mechanism can effectively prevent the risks in the electricity market, and it can be promoted with other supporting systems.
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1 INTRODUCTION
In recent years, with the continuous optimization of the power structure and the gradual standardization of power industry, China’s power market is gradually improving. After 2013, the market reform of China’s electricity industry entered the fourth stage, the system reform has entered a new normal, with market-oriented reform accelerating. Relevant supporting policies continued to be introduced, which shifted from macro control to micro guidance. With the improvement of marketization, the way of resource allocation continuously optimized, which can improve the efficiency of electricity consumption and accelerate the improvement of both the sales side and the generation side market. In addition, the electricity industry and other industries reinforce each other for mutual benefit and win-win cooperation.
However, as the marketization of the electricity market continues to advance, many problems stood out under the new normal, among which the most prominent ones are the adverse selection, and ethical risks due to information asymmetry. Electricity retailing companies would release positive signals to the market through information disclosure, thus attracting more social investment. However, some electricity retailing enterprises with relatively poor qualifications would conceal or even lie to the market and establish a positive corporate image to gain more market share during this process. When those enterprises got more market shares, they may face problems such as insufficient cash flow, a broken capital chain, to name a few, which would lead to debt problems and affect the capital flow of power plants, and increase the risk of power plants, which will lead to unstable operation of the electricity market, resulting in a certain degree of price fluctuation and increase the risk of the electricity market.
To solve this problem, the United States established the PJM information disclosure system and the United Kingdom established the ELEXON and National Grid information disclosure systems to maintain the market operation from the system design and practice. In China, electricity market has a relatively weak foundation, which makes it difficult to form a high-quality evaluation system in a short time, so many provinces have successively issued measures for the management of letters of guarantee for performance of electricity sales companies in the power market, aiming to strengthen the credit supervision of the power industry, and accelerate the construction of a new market supervision mechanism with credit as the core. So how does the bank performance guarantee system affect the behavior of various electricity market players? What is the working mechanism of the performance guarantee system? This is important for improving the transaction settlement efficiency between electricity generators and electricity retailing companies, ensuring efficient capital circulation through debt arrears so that the steady advancement of China’s electricity market can be guaranteed.
Based on the above discussion, this paper takes power generators, electricity sellers and banks in the electricity market as the research objects, and takes advantage of Cournot duopoly model to investigate the behavior choice of each subject under the performance guarantee system, in order to identify the mechanism of the performance guarantee system, so as to provide conducive suggestions for the government to effectively introduce and establish a risk prevention system in the power market. The remainder of this paper is organized as follows. Section 2 reviews previous studies’ findings on credit evaluation of the electricity market, the role of bank guarantees in the electricity market and the application of game theory in electricity market; Section 3 carries out theoretical analysis, which is analyzed from three dimensions: electricity generators, electricity retailing companies and banks; Section 4 presents the mechanism of performance guarantee from different angles; Section 5 provides policy suggestions based on the conclusion.
2 LITERATURE REVIEW
At present, China’s electricity market is still in the stage of development and exploration with an incomplete relevant credit system for electricity retailing companies. In contrast, in countries where the electricity market developed earlier, the supporting credit system is relatively mature and has strong practicability. At the same time, a number of studies have expounded on electricity market credit evaluation.
The deepening of electricity market reform provides favorable conditions for the increase of electricity retailing companies. But there are greater credit risks in the electricity market due to different qualification levels among companies and a lack of necessary monitoring mechanisms. Therefore, the credit evaluation of electricity market can avoid credit risk, debt default, and non-repayment to some extent (Chen et al., 2018). A corresponding credit rating mechanism is required to avoid credit risk. Specifically, except credit rating, market access and exit mechanism, margin mechanism, value-added service deprivation mechanism and priority contracting mechanism can be designed (Bai et al., 2017). Among all electricity markets, the American electricity market has developed for a relatively long time and is basically mature. For example, in Texas, United States, market operators and state-level regulator jointly supervise the information disclosure of electricity retailing companies (Xu et al., 2020) to avoid potential information asymmetry risks. PJM electricity market has clear requirements for capital of the electricity retailing companies entering the market and conducts credit rating and credit line estimation through mature methods (Monitoring Analytics, 2015). Meanwhile, TPS test is used to screen the participants in the electricity market, thus ensuring the sound development of the electricity market and reasonable electricity price. However, due to the short development time and weak foundation of China’s electricity market, it is difficult to form a mature electricity market similar to that of the United States in a short time, which is mainly manifested in the lack of financial and assets credit evaluation mechanism, and relatively simple evaluation methods and limited coverage (Ye and Chen, 2020).
The smooth operation of China’s electricity market requires a stable consumption relationship established among electricity generators, electricity retailing companies and electricity users. In the process of the influx of electricity retailing companies, it was difficult for the electricity market to quickly identify the qualification of companies, resulting in delayed transaction settlement between electricity generators and electricity retailing companies, which would slow down the development of China’s electricity market. Setting market access conditions for new entrants are of great significance for market development (Cho and Honorati, 2014; Grimm and Paffhausen, 2015), which also confirmed the necessity of regulating the entry of electricity retailing companies in China’s electricity market. Insurance guarantee can be used as one of the necessary criteria for electricity retailing companies to enter the market because it can effectively reduce market risks (Dankiewicz, 2017), and enterprises with guarantee can quickly gain the trust of the market and other upstream and downstream enterprises through third-party certification. In addition, enterprises with guarantee would in turn paid more attention to fulfilling their due obligations in time. For example, enterprises with bank guarantees can gain more trust by regulating their own obligations (Soltani and Ramezaniehad, 2018). Non-manufacturing businesses with bank guarantee would make more investment and improve the sales rate of enterprises (Gropp et al., 2020). Moreover, enterprises with guarantee qualifications would not increase the risk of default (Cowan et al., 2015), which could increase the credibility of enterprises with guarantee qualifications. Therefore, enterprises with guarantee qualification could improve their credibility in the market and reduce the potential risks faced by the market.
Game theory is a key analytical tool in the relevant analysis of electricity market participants, which has been applied several times in the research of electricity market (Pilz and Al-Fagih, 2017). For example, in the electricity supply market, the non-cooperative game model represented by Stackelberg game approach was used to analyze the transaction and management of multi-micro grids (Ma et al., 2016; Liu et al., 2017; Liu et al., 2020). In addition, some scholars have studied the coordinated promotion of multi-microgrid and distribution networks from the perspective of revenue (Wang et al., 2014). Electricity generators could predict the market price and acquire more information for themselves by using game method, which can help them choose better strategies and maximize benefits (Yi, 2019). In this case, taking advantage of historical information during the evolutionary game can better fit the reality. At the same time, the non-cooperative game can not only apply to the two-participants game, but also can be used for the three-participant game, such as the electricity generators, electricity retailing companies, and end users in the electricity market (Marzband et al., 2018). In addition to non-cooperative game, cooperative game is also commonly used in electricity market research. For example, in the electricity market, end users can get extra benefits by cooperative game (Zhang et al., 2015), while non-cooperative game was based on the established benefit distribution, so users are unable to receive extra benefits (Chen and Zhu, 2017; Liang and Su, 2018). Therefore, many problems in the electricity market can be analyzed concerning game-theoretic methods, and this paradigm has been relatively mature.
Through the above analysis, it can be found that the efficient operation of the electricity market requires necessary credit evaluation schemes which call for a long time to construct. Current China’s electricity market is undergoing the development stage with a relatively weak foundation, which makes it difficult to form a high-quality and full-coverage evaluation system in a short time. As an effective monitoring mechanism to reduce market risks, credit guarantee can make a difference quickly, and reduce the information asymmetry between electricity generators and electricity retailing companies, so that the efficient operation of China’s electricity market is ensured. In addition, the game theory related methods are often more applicable for solving problems in the electricity market. Through reasonable assumptions, the game model can better fit the reality, making the theory and research questions more consistent. Therefore, this study aims to apply the relevant methods of game theory as the theoretical framework and introduce the performance guarantee mechanism to ensure the in-depth, efficient and sustainable development of China’s electricity market.
3 THEORETICAL ANALYSIS
In general, electricity generators sell electricity to electricity retailing companies, and then electricity retailing companies sell to the consumers. This paper focuses more on the market relationship between electricity generators and electricity retailing companies. In addition, when the performance guarantee mechanism is introduced, banks need to assume the guarantee role in the transaction between electricity generators and electricity retailing companies. Therefore, this paper aims to investigate the relationship among electricity generators, electricity retailing companies, and banks by applying game-theoretic methodologies.
3.1 Analysis of Cournot Duopoly Model of Electricity Generators
Based on the actual situation, this paper uses Cournot duopoly model to simulate. Assume there are [image: image] electricity generators in the market with no difference in electricity generation capacity. The market inverse demand function be:
[image: image]
[image: image]
Where a and b are parameter, [image: image] is the electricity generation of electricity generator [image: image], [image: image] refers to the electricity generation of all electricity generators. Considering that the electricity generators have a large share of upfront investment and the nonlinear relationship between electricity generation and cost, quadratic function is used to fit the relationship between generating capacity and cost. Therefore, cost function for any electricity generators is [image: image]:
[image: image]
Where [image: image], [image: image], [image: image] are the cost coefficients corresponding to each item of the cost function of the electricity generators. And [image: image], [image: image], [image: image]。
At this time, the profit function [image: image] of the electricity generator [image: image] is:
[image: image]
To solve the first-order condition of profit maximization: [image: image] (5), the equilibrium electricity generation of electricity generators can be obtained;
[image: image]
The equilibrium price [image: image] can be obtained by plugging the equilibrium electricity generation [image: image] into formula 1 and formula 2:
[image: image]
According to the above results, the total electricity generation [image: image] of electricity generators can be obtained by applying formulas 1 and 7, or formulas 2 and 6.
3.2 Segment Profit Analysis of Electricity Retailing Companies
We assume that the market is cleared between the electricity generators and the electricity retailing companies, and all electricity retailing companies purchase electricity [image: image] at a price [image: image]. According to the relevant management requirements of China’s electricity industry, the minimum annual market sales [image: image] is stipulated. Generally, the minimum sales stipulated by the market is less than the total production, so [image: image]. According to the market guidance and national regulation, electricity retailing companies set the price of electricity [image: image] sold to consumers, which can be expressed as follows:
[image: image]
Among them, [image: image], and, the values of [image: image] vary for different consumer groups of consumers. At the same time, different levels of electricity prices can be set according to [image: image] for specific consumer groups in accordance with the difference in electricity consumption and consumption period.
Assuming there are [image: image] companies in the sales side, the market share is increasing with the expansion of the scale of the electricity retailing companies and a linear relationship is identified. Without considering the fixed cost, the cost of electricity retailing companies is only related to the purchase amount. The purchase amount of any electricity retailing company [image: image] is [image: image], and [image: image] stands for its market share:
[image: image]
[image: image]
Assume that the minimum annual sales stipulated by the sales side are distributed according to the market share of electricity retailing companies, so the minimum annual sales that the electricity retailing company [image: image] should bear is [image: image]. When the electricity retailing companies fail to complete the minimum sales, they will be additionally punished at [image: image]. Meanwhile, if the [image: image] indicates the sales of all electricity retailing companies, the sales of electricity retailing company [image: image] is [image: image], and [image: image].The cost function of any electricity retailing company [image: image] is:
[image: image]
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The profit function [image: image] of the electricity retailing companies [image: image] is:
[image: image]
[image: image]
[image: image]
Therefore, the cost that electricity retailing companies [image: image] needs to settle with the electricity generator is [image: image].
3.3 Bank Performance Guarantee Model
In order to promote the development of China’s electricity market, this paper introduces the performance guarantee, that is, the bank provides credit bond for electricity retailing companies to the electricity generators in the form of performance guarantee. When electricity retailing companies fail to settle the transaction in time, the bank will pay for the settlement to the electricity generators to ensure the efficient operation of the electricity market.
According to the analysis in the previous section, the profit function of the electricity retailing companies [image: image] is [image: image]. In order to ensure the timely settlement of electricity retailing companies, the amount of the bank performance guarantee [image: image] is:
[image: image]
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where [image: image] indicates the guarantee coefficient of the performance guarantee, and [image: image].
In actual situation, the requirements [image: image] can be relaxed for electricity retailing companies in the electricity market, and companies with different credit levels can be guaranteed by adjusting the guarantee coefficient [image: image]. Taking Shanxi Electric Power’s medium and long-term trading rules as an example, the credit rating of power sales companies is assessed annually, and the credit rating is divided into seven grades: AAA, AA, A, BB, B, C, and D. The first four grades is named of low risk, and the coefficients for submitting the performance guarantee letter are: AAA 0.1, AA 0.3, A 0.6, BB grade, and no rating 1.0; the last three grades correspond to minor, middle and major risks, respectively, and the coefficients are: general risk 1.0, middle risk 1.5 and major risk 2.0. So we assume [image: image], and electricity retailing companies with bank performance guarantee are evaluated through the bank survey or the credit evaluation results of third parties. For those electricity retailing companies with low credit rating, let [image: image], the guarantee amount is increased, thereby regulating their market behavior. When the credit level of those companies with low credit rating is improved, the guarantee coefficient [image: image] can be reduced according to the standard. For electricity retailing companies with high credit rating, let [image: image], meaning that the guarantee amount is reduced moderately, enabling those companies to attract more funds for investment and development. When [image: image], it indicates that the performance guarantee may not be issued for electricity retailing companies with high credit level and complete trust of the electricity generators.
3.4 Summary
This section mainly focuses on the transaction process between electricity generators and electricity retailing companies in the electricity market. With regard to electricity generators, Cournot duopoly model is applied based on corresponding assumptions, and equilibrium electricity price [image: image] between electricity generators and electricity retailing companies and the optimal generation capacity of electricity generators [image: image] are obtained. Under the market conditions of equilibrium electricity price [image: image] and optimal generation capacity [image: image], the electricity generator [image: image] can obtain maximum profits. The results show that the equilibrium electricity price [image: image] is related to the set value of both the counter-demand function and cost function of each electricity generator in the electricity market. The equilibrium electricity price [image: image] contains the relevant information of each electricity generator, indicating that electricity generators need to comprehensively consider the actual situation of each participating generator in the current pricing process. We can understand [image: image] from two perspectives, according to [image: image], the optimal electricity generation [image: image] of electricity generators [image: image] is related to the total electricity generation [image: image], and a negative correlation between them has been identified, meaning that the greater the total electricity generation, the smaller the optimal electricity generation of electricity generators. Considering [image: image], there is a positive relationship between the optimal electricity generation [image: image] and price [image: image], which shows the optimal electricity generation of the generator will grow with the price rises. Therefore, this set of results [image: image] , [image: image] also shows that there is a simple linear relationship between the optimal power generation [image: image] and the total electricity generation [image: image] or price [image: image], which confirms that under certain parameters, the optimal electricity generation [image: image] and equilibrium electricity price [image: image] of the electricity generation [image: image] are unique.
For electricity retailing company [image: image], under the basic assumption of market clearing, all electricity retailing companies will purchase total production electricity [image: image]. However, under the constraints of relevant policies and management measures, companies need to achieve a minimum sales amount [image: image]. Penalty will be implemented if they fail to sell this share. Therefore, the cost function and profit function of electricity retailing companies vary according to the value range of the electricity sales [image: image]. There will be two kinds of impact on electricity retailing companies when the minimum sales [image: image] and penalty [image: image] are introduced. First, it will improve the enthusiasm of electricity selling enterprises and have a certain impact on the price of electricity selling market; Second, it will play a guiding role in the development of electricity retailing companies. This study assumes that the greater the market share of electricity retailing companies, the more the minimum sales they need to bear. Because of the existence of penalty [image: image], electricity retailing companies need to predict the future sales based on their own development status. Pessimistic prediction can help companies avoid penalty by reducing the scale or exiting the sales side market. This also shows that the existence of minimum sales and penalty will raise the entry threshold of the sales side of the electricity industry, and the entry threshold will increase accordingly with the increase of the minimum sales [image: image] and penalty [image: image], which can not only prevent some low-quality enterprises with speculative mentality from entering the market, but also eliminate the enterprises with behavior of dishonesty, thus ensuring the high quality of the electricity retailing companies from the sales side.
As the third party between electricity generators and electricity retailing companies, banks act as guarantee in the transaction process of both parties, so as to reduce the transaction risk of both parties. This paper introduces the performance guarantee mechanism to regulate the transaction settlement of electricity retailing companies, which mainly depends on the guarantee coefficient [image: image] in the performance guarantee mechanism. According to the current situation of China’s electricity market, China’s electricity market is in a stage of development, and lacking a mature management scheme. Therefore, the performance guarantee mechanism can play a crucial role in China’s electricity market monitoring mechanism in the near future. At the same time, the establishment of credit evaluation system in China’s electricity market can be advanced with the performance guarantee mechanism simultaneously, and the monitoring results of electricity-selling enterprises in the electricity market can be used as an important basis for credit evaluation. For electricity retailing companies with different credit ratings, banks can make differentiated guarantees by adjusting the guarantee coefficient, that is, a lower guarantee coefficient can be applied for enterprises with higher credit ratings, while performance guarantee can be exempted for those companies with excellent credit ratings. Therefore, the introduction of the performance guarantee mechanism in the electricity market can not only significantly reduce the transaction risk between the electricity generators and electricity retailing companies, but also are aligned with the current monitoring system and credit rating system. Additionally, the performance guarantee mechanism can also improve the entry threshold of the electricity sales side of the market to some extent, prevent some companies with a poor qualification from entering the market, and eliminate companies with a low qualification in the market, thus ensuring the stable and sound development of the whole electricity industry.
4 PERFORMANCE GUARANTEE MECHANISM
Performance guarantee mechanism is mainly used for electricity retailing companies, whose main function is to prevent risks in electricity market. In addition to risk prevention, this mechanism can also work with other mechanisms to make joint efforts to promote the sound development of the electricity market. To be specific, if collaborating with market monitoring organizations, performance guarantee system can improve the monitoring quality of the electricity market through information exchanges; If cooperating with the “blacklist” system, electricity retailing companies with low credit ratings can be better identified so that the trustworthiness of the electricity market can be improved; If collaborating with power market rules, performance guarantee system can make the power market system dynamically perfect; If collaborating with end users, performance guarantee system can provide reference to set important parameters of the electricity market, thus guiding the sound development of the electricity market. Details are as follows:
4.1 Reduce the Risk of Electricity Market Transactions
The introduction of the bank performance guarantee mechanism into the electricity market can significantly reduce the transaction risk in the electricity market, which is mainly manifested in the following two aspects. First, the introduction of performance guarantee mechanism requires electricity retailing companies to carry out certain qualification mortgage, which can prevent some speculative enterprises from entering the power market. The qualification mortgage can also reflect their own strength to a certain extent. Second, the introduction of the performance guarantee mechanism has raised the entry threshold for electricity retailing companies in the electricity market, and made those companies with poor qualifications withdraw from the market. Therefore, this mechanism will standardize the trading behavior of electricity retailing companies and improve their endogenous driving force. At the same time, the adjustment of guarantee coefficient can encourage the electricity retailing companies to continue to regulate their own trading behavior so as to realize the effective regulation of the electricity market. Additionally, the performance guarantee mechanism avoids the risk of delayed transaction settlement in the transaction process, ensures smooth capital circulation of electricity generators, and avoids the hidden risk caused by enterprise capital chain fracture. Therefore, the system can reduce the potential risks of transactions between the two parties, and strengthen the transaction links between generators and electricity retailing companies, thus promoting the stable development of the electricity market. Considering that China’s electricity market is still in the development stage, a stable and close trading relationship within the electricity market can promote the sound development of the electricity market.
4.2 Collaborate With the Supervision to Improve the Quality of Market Monitoring
The current market monitoring and supervision of China’s electricity market is still in the process of exploration, and has not yet transitioned to a mature stage. Therefore, the current power market monitoring has not fully played its role. At this stage, the introduction of the performance guarantee mechanism can cooperate with the supervision departments to improve the monitoring of the electricity market. On the one hand, the implementation of bank performance guarantee requires the necessary qualification examination of electricity retailing companies, so the independent examination of banks will force companies to disclose real corporation information. At the same time, the supervision departments monitor the electricity retailing companies according to regulations, which will form dual monitoring. High-intensity and high-density monitoring will increase the cost of concealing information and reduce the possibility of speculation, thus promoting the sound development of electricity retailing companies, and improving the monitoring of China’s electricity market. On the other hand, the collaboration between bank monitoring and electricity market supervision departments can enable banks to update companies’ evaluations in a timely manner, thus greatly reducing the possibility of false reporting and concealing of companies, and avoiding information asymmetry in the electricity market to a certain extent. Meanwhile, the financial information that the bank focuses on monitoring can make the supervision departments quickly understand the financial status of each electricity retailing company and the electricity sales side, and then timely promote the implementation of relevant policies.
4.3 Collaborate With the “Blacklist” to Improve Trustworthiness of the Electricity Market
The introduction of supporting policies of performance guarantee and “blacklist” of market entities in the electricity market can effectively improve the trustworthiness of the electricity market. The “blacklist” can provide a reference for the promotion of the performance guarantee mechanism. In order to maintain the stable development of the electricity market, relevant departments in China have put forward the “blacklist” against the problem of dishonesty. For enterprises that violate regulations, disciplines and laws in the electricity market, there will be constraints of credit; for those who are extremely serious, they should withdraw from the market; for those enterprises whose credit is corrected, they can be removed from the “blacklist”. Therefore, during the implementation of the “blacklist” scheme, all enterprises in the market will be examined in an all-round way, and then the information of companies can be obtained comprehensively. This information can provide the bank with other important information except financial information to handle performance guarantee business for a particular enterprise, so that the bank can have a comprehensive understanding of the enterprise and avoid potential business risks. On the other hand, the implementation of performance guarantee mechanism can provide a useful reference for “blacklist” management. The “blacklist” not only monitors the financial information of enterprises in the electricity market, but also takes into account other factors, such as whether market manipulation is abused or whether there is market discrimination. Therefore, from the perspective of financial information, the monitoring degree of “blacklist” is slightly lower than that of bank monitoring. Banks can provide monitoring results to “blacklist” supervision departments, which can improve their monitoring quality. The collaboration between performance guarantee and the “blacklist” system can more accurately identify low-credit enterprises and impose penalties, thus improving the overall trustworthiness of the electricity market credit.
4.4 Revision of Market Rules and Dynamically Improve the Electricity Market System
Electricity market rules are regulations to maintain the sound and stable development of electricity market, which are used to regulate market behaviors of market entities, so as to promote the effective allocation of resources in the electricity market. Generally speaking, the formulation and revision of electricity market rules mainly depend on the monitoring results of the electricity market, and the rules are revised based on the monitoring results. The introduction of the performance guarantee mechanism can also provide necessary information for the revision of electricity market rules. In the process of handling the performance guarantee business, although the bank will examine the qualification of the electricity retailing companies, and there will still be mistakes. For the bank’s failed business, we can collect relevant information and report it to the market rules management departments to provide more reference information, thus promoting the continuous improvement of the power market rules, which can indirectly improve the monitoring quality of the electricity market. When the performance guarantee mechanism gradually becomes part of the electricity market monitoring mechanism, the electricity market rules can also provide necessary legal protection for the promotion of performance guarantee and reduce potential risks faced by banks. At the same time, the guarantee coefficient in the performance guarantee can be used as a quantitative reference for the advancement and retreat rules of the electricity market. By adjusting the guarantee coefficient, the entry threshold of the sales side market can be quantitatively and dynamically adjusted. Therefore, the two-way linkage between the performance guarantee system and the revision of the power market can dynamically improve the power market system, and realize the efficiency of the electricity industry and maximize the benefits of the whole society by establishing and maintaining a competitive electricity market.
4.5 Cooperate With the End Users to Guide the Development of the Electricity Market
The previous analysis shows that, in the expression of performance guarantee, the penalty of electricity retailing companies [image: image] mainly depends on the sales volume [image: image] of companies and the annual minimum sales [image: image] of companies. Reasonable setting of annual minimum sales is of great significance to ensure efficient operation of power market. After the bank performance guarantee mechanism is steadily promoted, the banking sector can work with relevant electricity departments to focus more on the changing trend of electricity bills business, and analyze the electricity consumption of the consumer. In addition, heterogeneity analysis is necessary. For example, it is necessary to analyze residential electricity consumption and industrial electricity consumption separately, and to analyze the changes of tiered electricity consumption, and then predict the future trend of consumers in a rational way and share the information of the annual minimum sales volume in real time with the department so as to set the parameters suitable for the stable and sound development of the electricity market. At the same time, reasonable setting of annual minimum sales volume [image: image] and penalty [image: image] can provide a useful reference for electricity retailing companies. For the sales side of the electricity market, reasonable parameters also provide an invisible threshold for entering the industry, avoiding the entry of enterprises with low qualifications. Meanwhile, companies can rationally adjust their own development scale and speed according to the parameters. For enterprises with better development, they can consider expanding investment and their scale. For enterprises with poor development situations, they can try to adjust their development strategies, or reduce their scale, or even withdraw from the market, and stop losses in time.
5 CONCLUSION AND POLICY RECOMMENDATIONS
China’s electricity market is currently in the development stage, and the introduction of performance guarantee system in the transactions of the electricity market can effectively promote the further advancement of China’s electricity market. Through model building and mechanism explanation, this study discusses the performance guarantee system in the electricity market, and draws the following research conclusions and policy suggestions:
First, the performance guarantee system can effectively avoid the risks in the electricity market, which should be gradually introduced into the transaction process between the supply side and the sales side of the electricity market. In the model of bank performance guarantee, by adjusting the guarantee coefficient, the electricity retailing companies can be evaluated to a certain extent, which indirectly improves the entry threshold of the sales side of the electricity industry, prevents some companies with a speculative mentality from entering the market, and greatly improves the quality of electricity retailing companies in the market.
Second, the performance guarantee system and other systems can work together in multiple directions to promote the sound development of the electricity market. Therefore, the way for the performance guarantee system to collaborate with other systems should be improved. The performance guarantee system collaborating with the electricity market supervision department can realize information exchange and improve the information disclosure level of electricity retailing companies; The performance guarantee system collaborating with the “blacklist” system can better identify the electricity retailing companies with low credit ratings; The performance guarantee system collaborating with the electricity market rules and can make the power market system dynamically improved; The performance guarantee system collaborating with end users can reasonably set important parameters of the electricity market, thus reasonably guiding the sound development of the electricity market.
Third, the introduction of the performance guarantee system can avoid the information asymmetry between the supply side and the sales side of the electricity market to a large extent, and strengthen the transaction links between the two sides. The transaction behavior of banks, electricity generators and electricity retailing companies should be process-oriented, standardized and concise. Through the model analysis, it can be found that when the bank introduces a suitable guarantee coefficient, the electricity retailing companies will actively regulate their own transaction settlement behavior, so as to improve their own credit evaluation, and obtain the qualification to use a smaller guarantee coefficient. Under the guarantee of the bank, the transaction speed between the power generator and the electricity retailing companies will be greatly raised, and then the operation efficiency of the electricity retailing companies will be improved. With the increase in the number of transactions, the transaction relationship between electricity generators and electricity retailing companies gradually tends to be stable.
Based on the results of this study, we mainly summarize the following policy recommendations.
1) The market monitoring organizations should exchange monitoring information with banks in a timely manner, so that both sides can grasp the quality of enterprises in the market, and gradually standardize the trading behavior of electricity retailing companies. Banks should make full use of existing enterprise credit evaluation information, reasonably adjust the guarantee coefficient, and combine it with the credit evaluation of electricity retailing companies, so as to form a quantifiable guarantee coefficient system, which will be released to the companies and provide information reference for new companies, provide incentives for enterprises in the sales side.
2) The relevant departments should work together with banks to find cooperation areas for supporting the promotion of the system, so as to improve the efficiency of the joint system. At the same time, the relevant departments of the power market should build a communication platform with banks to exchange information in time, accurately grasp the development trends of electricity retailing companies in the electricity market, timely correct deviations, and gradually revise market management rules according to the interactive information, so as to accelerate the maturity of China’s electricity market.
3) In the early stage of the performance guarantee system, banks should consider how to simplify the process and reduce the participation cost of electricity retailing companies and electricity generators while standardizing the performance guarantee business. In the later stage of the performance guarantee system, based on the guarantee coefficient stipulated by banks, they can attempt to allow electricity generators and electricity retailing companies to adjust the guarantee coefficient together in the form of contracts, thus promoting the long-term development of the power market.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
LJ: Propose innovative points and be responsible for model building. QL: Responsible for variable selection and literature review writing. JY: Responsible for data collection. MW: Responsible for data processing and text content writing. WW: Responsible for proofreading and literature arrangement.
FUNDING
This work is supported by Research on Zhejiang Electric Power Market Operation Monitoring Mechanism under Spot Market Environment (Grant Nos. 2020FD02).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Bai, S., Yang, J., Liu, D., and He, Q., (2017). Design of Credit Rating Service System in Electricity Market[C]//2017 6th International Conference on Energy and Environmental Protection (ICEEP 2017). Atlantis Press , 695–700. doi:10.2991/iceep-17.2017.123
 Chen, J., and Zhu, Q. (2017). A Stackelberg Game Approach for Two-Level Distributed Energy Management in Smart Grids[J]. IEEE Trans. Smart Grid 9 (6), 6554–6565. doi:10.1109/TSG.2017.2715663
 Chen, X., Tian, L., and Gan, B., (2018). Appraisal Mechanism Analysis on Credit Limit Quantification of Wholesale Electricity Markets in the United States[J]. Automation Electr. Power Syst. 42 (19), 98–105. doi:10.7500/AEPS20171221002
 Cho, Y., and Honorati, M. (2014). Entrepreneurship Programs in Developing Countries: A Meta Regression Analysis. Labour Econ. 28, 110–130. doi:10.1016/j.labeco.2014.03.011
 Cowan, K., Drexler, A., and Yañez, Á. (2015). The Effect of Credit Guarantees on Credit Availability and Delinquency Rates. J. Bank. Finance 59, 98–110. doi:10.1016/j.jbankfin.2015.04.024
 Dankiewicz, R. (2017). Insurance Guarantees as a Tool to Support Risk Management Procedures in an Enterprise. Financ. Sci. 4 (33), 51–61. doi:10.15611/nof.2017.4.04
 Grimm, M., and Paffhausen, A. L. (2015). Do interventions Targeted at Micro-entrepreneurs and Small and Medium-Sized Firms Create Jobs? A Systematic Review of the Evidence for Low and Middle Income Countries. Labour Econ. 32, 67–85. doi:10.1016/j.labeco.2015.01.003
 Gropp, R., Guettler, A., and Saadi, V. (2020). Public Bank Guarantees and Allocative Efficiency. J. Monetary Econ. 116, 53–69. doi:10.1016/j.jmoneco.2019.09.006
 Liang, Z., and Su, W. (2018). Game Theory Based Bidding Strategy for Prosumers in a Distribution System with a Retail Electricity Market. IET Smart Grid 1 (3), 104–111. doi:10.1049/iet-stg.2018.0048
 Liu, N., Yu, X., Wang, C., and Wang, J. (2017). Energy Sharing Management for Microgrids with PV Prosumers: A Stackelberg Game Approach. IEEE Trans. Ind. Inf. 13 (3), 1088–1098. doi:10.1109/tii.2017.2654302
 Liu, Z., Gao, J., Yu, H., and Wang, X. (2020). Operation Mechanism and Strategies for Transactive Electricity Market with Multi-Microgrid in Grid-Connected Mode. IEEE Access 8, 79594–79603. doi:10.1109/access.2020.2990297
 Ma, L., Liu, N., Zhang, J., Tushar, W., and Yuen, C. (2016). Energy Management for Joint Operation of CHP and PV Prosumers inside a Grid-Connected Microgrid: A Game Theoretic Approach. IEEE Trans. Ind. Inf. 12 (5), 1930–1942. doi:10.1109/tii.2016.2578184
 Marzband, M., Javadi, M., Pourmousavi, S. A., and Lightbody, G. (2018). An Advanced Retail Electricity Market for Active Distribution Systems and Home Microgrid Interoperability Based on Game Theory. Electr. Power Syst. Res. 157, 187–199. doi:10.1016/j.epsr.2017.12.024
 Monitoring Analytics, L. L. C. (2015). State of the Market Report for PJM. Norristown, PA, USA. Available at: http://www.monitoringanalytics.com/report/PJM_State_of_the_Market/2015/2015-som-pjm-volume2-sec1.pdf.
 Pilz, M., and Al-Fagih, L. (2017). Recent Advances in Local Energy Trading in the Smart Grid Based on Game-Theoretic Approaches[J]. IEEE Trans. Smart Grid 10 (2), 1363–1371. doi:10.1109/TSG.2017.2764275
 Soltani, M., and Ramezanineahd, S. (2018). Effects of Economic Sanctions on Payment of Bank Guarantees[J]. Iran. J. Trade Stud. 22 (87), 163–186. 
 Wang, Z., Chen, B., Wang, J., Begovic, M. M, and chen, C (2014). Coordinated Energy Management of Networked Microgrids in Distribution Systems[J]. IEEE Trans. Smart Grid 6 (1), 45–53. doi:10.1109/TSG.2014.2329846
 Xu, C., Wen, F., and Palu, I. (2020). Electricity Market Regulation: Global Status, Development Trend, and Prospect in China[J]. Energy Conversion and Economics , 1(3):151-170. doi:10.1049/enc2.12020
 Ye, H., and Chen, X. (2020). Logical Analysis and Enlightenment of Credit Management System Design in Electricity Market[C]//International Conference on Intelligent Computing. Cham: Springer, 597–608. 
 Yi, M. (2019). The Application of Data Mining Technology Base on BP Neural Network for Forecasting the Share Price[J]. Front. Educ. Res. 2 (12). doi:10.25236/FER.2019.021206
 Zhang, N., Yan, Y., and Su, W. (2015). A Game-Theoretic Economic Operation of Residential Distribution System with High Participation of Distributed Electricity Prosumers. Appl. energy 154, 471–479. doi:10.1016/j.apenergy.2015.05.011
Conflict of Interest: LJ and QL are employed by Zhejiang Power Exchange Center Co., Ltd. JY, MW, and WW are employed by Zhejiang Huayun Information Technology Co., Ltd.
Copyright © 2022 Jin, Liu, Yu, Wang and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 15 June 2022
doi: 10.3389/fenrg.2022.906033


[image: image2]
Can Carbon Emissions Trading Scheme Make Power Plants Greener? Firm-Level Evidence From China
Mingxia Shi, Tingting Zou, Jingxuan Xu and Jie Wang*
Department of Public Finance, School of Economics, Beijing Technology and Business University, Beijing, China
Edited by:
Jian Yu, Central University of Finance and Economics, China
Reviewed by:
Huaping Sun, Jiangsu University, China
Jiasha Fu, Southwestern University of Finance and Economics, China
* Correspondence: Jie Wang, wangjie8912@btbu.edu.cn
Specialty section: This article was submitted to Sustainable Energy Systems and Policies, a section of the journal Frontiers in Energy Research
Received: 28 March 2022
Accepted: 29 April 2022
Published: 15 June 2022
Citation: Shi M, Zou T, Xu J and Wang J (2022) Can Carbon Emissions Trading Scheme Make Power Plants Greener? Firm-Level Evidence From China. Front. Energy Res. 10:906033. doi: 10.3389/fenrg.2022.906033

The green energy structure transition is an effective means to achieve carbon emission reduction and sustainable energy development in the long term. Whether the carbon emissions trading scheme, a typical market-oriented environmental regulation, can realize a green energy structure transition has attracted widespread attention. Rather than focusing on the macro-effects of the carbon emissions trading scheme, this paper explores its effect on green energy structural transition in the power sector, which is a major carbon emitter by consuming non-renewable energy. With the multi-period difference-in-differences method, this study manually collects a panel data set of 103 listed power plants from 2011 to 2020 for a total of 1,030 samples and investigates the effect of the carbon emissions trading scheme on the proportion of clean energy power generation. The corresponding mechanism and heterogeneous effects are also examined. The results reveal: 1) The carbon emissions trading scheme increases the proportion of clean energy power generation significantly. This improvement is achieved by increasing clean energy power generation and decreasing thermal power generation. 2) Power companies to which power plants belong are private-owned and have lower debt-to-asset ratios and higher fixed asset ratios, or in regions with a high development level or strong environmental law enforcement, they are found to be more responsive to carbon emissions trading schemes. 3) Green technological innovation is the primary path for transitioning to a green energy structure, but it is not the only path.
Keywords: the carbon emissions trading scheme, green energy structure transition, power plants, green technological innovation, heterogeneous effects
1 INTRODUCTION
Climate change (Weizsacker, 1990) and energy security (Ning et al., 2021) have emerged as the most critical issues facing sustainable development. Carbon dioxide emissions from the burning of fossil fuels are the primary cause of both problems. BP Statistical Review of World Energy (2021) reports that global greenhouse gas emissions reached 34.36 billion tons in 2019, of which over one-third was attributed to the burning of fossil fuels in the power sector. Therefore, the transformation of the energy structure in the power sector is not only conducive to reducing air pollution but also ensures long-term energy security. To control carbon emissions as soon as possible, countries expect to introduce environmental regulation policies that would result in the transformation of energy structures for power plants.
The carbon emissions trading scheme (ETS) is one of the main measures for achieving emission reduction targets. It has had positive results in many countries (Liang et al., 2014; Tang et al., 2015; Chang et al., 2020; Qi and Choi, 2020; Rickels et al., 2021). However, some studies conclude that it is inefficient (Borrego et al., 2005; María José et al., 2021). In addition to carbon emissions, the carbon ETS can also have an impact on the energy sector, such as improving energy efficiency (Smith and Sorrell, 2001; Zhao et al., 2018; Zhang et al., 2021; Chen et al., 2021), and enhancing the performance of energy companies (Choi et al., 2017). Moreover, the global carbon emissions trading market demonstrated resilience during the COVID-19 and control periods (ICAP, 2021). Thus, more evidence is needed to determine whether the carbon ETS is an effective policy that benefits climate and energy issues.
In contrast to the carbon ETS, the transition to a green energy structure has been widely viewed as a long-term effective strategy to address the two problems (Sun et al., 2020; IEA, 2021; State Council of China Guiding, 2021). Green energy structure transformation refers to the transformation of the main energy maintaining the operation of the national economy from fossil fuel to clean energy. As quickly as possible, countries are formulating policies to promote the transition to green energy infrastructure. Although carbon ETS is one of the most significant market-oriented environmental policies, its effects on the transition to a green energy structure have not been systematically assessed, and many countries have not even considered carbon ETS. With the largest carbon market (Nogrady, 2021) and clean energy output (BP Statistical Review of World Energy, 2021), China’s transition to a green energy structure through the carbon market has great advantages. Its successful transition contributes not only to the “net zero-emission” of the world but also offers valuable policy experience. China’s power sector is essential to its success in converting to a green energy structure since it accounts for a large share of the country’s carbon emissions and fossil fuel consumption (Ma et al., 2021; Zou et al., 2021). Moreover, because electricity consumption is widely distributed, and the demand is huge, plan-driven policies to regulate it can easily cause distortions in resource allocation. Therefore, with respect to carbon ETS as a proven potential market-oriented policy, this study uses the example of Chinese power plants to examine the policy effects of carbon ETS from the perspective of green energy structure transition.
Based on the manually collected panel data and using the multi-period difference-in-differences (MDID) model, this article empirically analyzes the effects of carbon ETS on the proportion of clean energy power generation, clean energy power generation, and thermal power generation. The results show that the carbon ETS significantly increases the proportion of clean energy power generation by promoting clean energy power generation and the limitating thermal power generation. Results of the heterogeneity analysis show that both internal and external characteristics of power firms can affect the green effects of the carbon ETS. The fixed asset ratio, the level of local economic development, and environmental law enforcement have a positive moderating effect, whereas the debt-to-asset ratio has the opposite effect, and privately-owned enterprises are more successful. Furthermore, the mechanism test determined that green technological innovation is one of the primary intermediary factors required for the carbon ETS to be effective.
The main contributions of this paper are summarized in three aspects: firstly, this paper studies the green effects of carbon ETS from the perspective of power generation and fills the gaps in previous studies and provides green empirical evidence regarding ETS’s effects on the environment and energy. As a second issue, the mainstream assessment result provides support for the nationwide implementation of the carbon ETS policy, and the described trends in the proportion of clean electricity and thermal power in recent years are helpful for China to understand the current state of the power generation market. Thirdly, the article examines the influencing factors and influence paths of the carbon ETS’s green effect, aiming to provide effective recommendations for carbon-free countries seeking to develop a national carbon market.
The following is an outline of the remainder of this article. The second section provides background information on carbon ETS policy and a literature review. Section 3 discusses data and methodology. Section 4 presents and analyzes the empirical results. The final section concludes and suggests policy implications.
2 BACKGROUND AND LITERATURE REVIEW
2.1 Background of Carbon ETS Policy
2.1.1 Policy Implementation Background
To accelerate the achievement of carbon emission reduction targets, China has successfully implemented carbon trading pilot schemes in nine provinces and cities over the past few years. Shenzhen served as the first pilot province, followed by Shanghai, Beijing, and Guangdong, all of which set up carbon trading markets in 2013, and Tianjin, Chongqing, and Hubei, which implemented carbon ETS in 2014. Fujian and Sichuan are unofficial pilot provinces that have established carbon markets in 2016. Furthermore, the power sector is the only industry participating in the initial carbon pilot transaction. It contributes a considerable portion of the country’s carbon emissions, which originate primarily from the production of electricity. From Figure 1, it can be seen that national thermal and clean energy power generation has been on the rise from 2011 to 2020. Thermal power has always been the primary power source in China, but it is notable that the proportion of clean energy power has increased from less than 20% in 2011 to about 30% by 2020, as shown in Figure 2.
[image: Figure 1]FIGURE 1 | The power generation trends.
[image: Figure 2]FIGURE 2 | The proportion of power generation trend.
2.1.2 Policy Implementation Process
Under China’s Carbon ETS, a cap-and-trade system is implemented, which is a trading market based on total carbon emissions. As a means of limiting corporate carbon emissions, government agencies use carbon emission allowances1 to contract with companies listed in the ETS. Normally, if a firm’s carbon emissions exceed the government’s set carbon emission allowances, it must either purchase the carbon emission allowances through the carbon trading market or obtain Chinese Certified Emission Reduction (CCER) to replace part of the carbon emission allowances and keep the promise. Figure 3 describes the carbon ETS compliance process in more detail. At the beginning of the trading year, government authorities evaluate the maximum quantity of pollutants that can be discharged in order to meet environmental standards in a pilot province, which is called the “carbon emission cap” in this paper. Based on some calculation principles, it is divided into several shares and distributed to the member companies in both free and paid forms. The first form accounts for a relatively large proportion of China’s initial carbon pilot schemes, which are referred to as “free carbon emission allowances” in this paper. Member companies trade carbon emission allowances according to their carbon emissions requirements. And they should submit carbon emission allowances to offset the total carbon emissions resulting from the trading period at the end of the transaction period. If the carbon emissions are completely offset, the company has achieved “compliance”, otherwise it is considered “default”.
[image: Figure 3]FIGURE 3 | The carbon ETS compliance process.
2.2 Literature Review
2.2.1 The Direct Green Effect of the Carbon ETS
Currently, available literature describes the policy effects of carbon ETS primarily at the macro-level of a country as well as the micro-level of an enterprise. Some disagreements as to whether this market-oriented environmental regulation could, from the macro-level of a country’s perspective, actually contribute to sustainable development in terms of the environment and energy. The carbon ETS could reduce carbon dioxide emissions and improve the efficiency of carbon emission reductions during the dispatching of power (Wang and Li, 2021). Furthermore, carbon ETS not only decreased the emission of air pollutants, but it was also shown to alter the distribution of these pollutants, resulting in unintended environmental health damage in some areas (Cao et al., 2019; Zhang and Zhang, 2020). Energy companies also tend to be subject to the carbon ETS. Fang et al. (2020) and Zhang et al. (2020) proposed that a mature carbon trading market effectively controlled energy intensity and promoted the development of new energy sources. At the micro-level of the enterprise, Luo et al. (2021) empirically found that carbon ETS improved the green competitiveness and cost competitiveness of power companies. When only one environmental regulation policy was allowed, power companies gained more low-carbon profit, and carbon ETS tended to perform better than pollution right trading (Ge et al., 2019). In addition to the electric power sector, carbon emissions from energy companies have decreased since the opening of the carbon market, and the costs of energy companies’ carbon dioxide emissions were not shifted excessively to energy consumers. There was no distortion between supply and demand for energy consumption (Yu et al., 2022). Carbon ETS in general might play a positive role in the energy saving and emission reduction targets, whether at the macro or micro level.
2.2.2 The Heterogeneity Green Effect of Carbon ETS
Similar to the European Union (Borrego et al., 2005), China’s early carbon ETS had little impact on reducing carbon emissions, but with the improvement in the transaction mechanism, it became effective (Zhao et al., 2017). Therefore, research focused on the moderating factors affect the green effect of carbon ETS. The existing literature mainly discussed these moderating factors from the outside and the inside of power firms, with the latter having a greater prevalence. As for the external influence, Galán-Valdivieso et al. (2018) argued that the reduction in economic activity reduced the low-carbon effect of the carbon ETS from the point of view of pricing stability. The study by Zheng et al. (2021) concluded that the carbon emission performance of listed companies had improved significantly in eastern coastal pilot areas but had not improved in central or western pilot areas, while Zhou and Zhou (2021) proposed the opposite effect distribution. Different policies implemented by different regions had different effects on the efficiency of the carbon trading market (Zhou et al., 2019), and market-oriented regions performed better (Chen et al., 2021). Furthermore, resource-based cities had a higher carbon emission efficiency (Chen et al., 2021). At the enterprise level, cross-border cooperation might improve carbon trading market efficiency to a certain extent (Zhou et al., 2019). Environmental regulations that were more stringent could help improve the performance of the low-carbon sector of the economy (Xiong and Shen, 2020). Liu et al. (2021) noted that non-state-owned enterprises reduced carbon emissions more than state-owned enterprises in the face of economic policy uncertainty. In addition to the above two aspects, moderators from the carbon emission trading mechanism themselves also had significant impacts, such as the liquidity of the carbon trading market (Zhou et al., 2019) and the allocation principle of carbon emission rights (Zhao and Yang, 2021). In general, the level of regional economic development, regional industrial structure, environmental law enforcement, cross-enterprise cooperation, nature of property rights, and factors from carbon ETS itself might moderate the policy effect of carbon ETS.
2.2.3 The Mediating Green Effect of Carbon ETS
The paper discussed the potential mechanisms of carbon ETS on the green effect for power plants from the functional mechanism of carbon ETS as well as the realization mechanism of energy savings and emissions reduction since there were few studies on the transition to green energy sources. The carbon ETS could contribute to the sustainable development of the environment in a variety of ways. Of these, green technology innovation was the most frequently mentioned. As noted by Chen et al. (2021) and Rickels et al. (2021), carbon ETS significantly enhanced carbon emission efficiency through technological progress effects, energy consumption structure optimization effects, and green innovation effects. Zheng et al. (2021) empirically concluded that carbon ETS stimulated the innovation capability of listed companies, improving the carbon emission performance of listed companies. Luo et al. (2021) concurred and added that green competitiveness might also be a functional mechanism. On the other hand, the marginal abatement cost of CO2 emissions was found to be of great importance for the achievement of emission reduction targets (Xian et al., 2022). The higher the marginal emission reduction cost, the slower the cumulative emission reduction activity growth rate and the emission reduction growth rate of manufacturing enterprises (An et al., 2021). Apart from that, the share of fossil fuels in total energy consumption and energy intensity was also one of the factors affecting carbon emission intensity, whereas corporate innovation failed (Yu et al., 2021). Therefore, it was controversial whether carbon ETS could realize the green promotion of enterprises through technological innovation.
3 DATA AND METHODOLOGY
3.1 Data
This study manually collects and finally obtains research data on 103 listed power firms from 2011 to 2020, a total of 1,030 samples. Among these 103 listed power firms, 96 are on the A-share mainboard, and the remaining seven are from the Hong Kong stock mainboard. Power companies in China are the companies that operate on the grid and own a single or several power plants. We manually collect the clean energy power generation and revenue, thermal power generation and revenue, and the total power generation and revenue from the annual reports disclosed by power companies. As far as we know, this sample data is the most detailed and comprehensive database available publicly at present. Our sample annual power generation can account for 43.83% of the national power generation in 2020, and the trend of the proportion of clean energy power generation is consistent with the national trend according to our statistics from 2011 to 2020. Moreover, 29/34 regions of China are covered by our research database (the rest five are Jiangxi, Qinghai, Taiwan, Tibet Autonomous Region, and Macau Special Administrative Region). During the data collection process, about 124 listed power companies were available, but we ended up retaining only 103 companies. This is mainly because we remove the following two types of power firms: a large number of missing values due to their late establishment; and the lack of data on power generation and power revenue from different sources in their annual reports, making it difficult to determine whether the company has a power generation business. Finally, after subtracting thermal power generation and revenue (clean energy power generation and revenue) from total power generation and revenue to fill in the missing values, this study divides the clean energy power generation by the total power generation to obtain the proportion of green power generation.
This study also manually collects and collates the carbon ETS policy data. As per the pilot provinces selected by China, we download the annually updated lists of companies participating in the carbon ETS from the development and reform commissions of each pilot province. Supplement the policy implementation time data of sample power companies with these lists. The control variables and mediating variables, most of them, are separately collected from the CSMAR and CNRDS databases2. Data on power firms listed on Hong Kong Exchanges and Clearing Limited is primarily collected by their annual reports. As two heterogeneity factors to be detected at the regional level, the regional economic development level is collected from the National Bureau of Statistics of China, and the environmental law enforcement data is from the “China Environmental Statistical Yearbook” and “China Tax Statistical Yearbook.”
3.2 Methodology
3.2.1 MDID Model
According to Yu et al. (2022), this paper applied the multiple-period difference-in-differences (MDID) model, which is widely used to evaluate policy effects with multiple policy time coexistences. This study divides all samples into two groups according to the MDID model. The power companies are put into the experiment group, which consists of not only pilot areas but also members of the carbon ETS, and the other firms are placed in the control group. Using the basic regression of Eq. 1, we observed the function of carbon ETS on the green degree by comparing the changes in the proportion of clean energy power generation, clean energy power generation, and thermal power generation between the experiment group and the control group before and after joining carbon ETS.
[image: image]
Here t and i separately represent the year and listed power firm. The [image: image] is the dependent variable, which denotes the green degree. [image: image] is the firm dummy variable, [image: image] = 1 means that firm i belongs to the experimental group and has participated in the carbon ETS pilot. Otherwise, [image: image] = 0. C is the control variable that affects the green degree of carbon ETS policy for power firms. [image: image] is the time fixed effect and [image: image] is the firm fixed effect. [image: image] is the random disturbance term. By observing the coefficient of the time fixed effect and firm fixed effect, this model estimates the specific impact of carbon ETS policy on the green degree of power plants by observing the coefficient of [image: image].
3.2.2 Variables
The “green degree” is a traditional measure of corporate performance in green transition. Some studies use green competitiveness and low-carbon profit to measure the green degree of enterprises (Ge et al., 2019; Luo et al., 2021). Nevertheless, these indicators only measure the green effect on the economy, ignoring the environmental green effect, which can lead to one-sided estimates of the green degree influenced by carbon ETS policy. For this reason, this paper originally selects the proportion of power generation and power generation to represent the green degree of power plants. Specifically, we use the proportion of clean energy power generation as the main indicator of the green degree of a power plant. The higher the proportion of clean energy power generation, the greater the green degree of the plant. In this paper, clean energy power generation and thermal power generation are examined to assess the carbon ETS policy’s environmental effects, and the increase in clean energy power generation and the decrease in thermal power generation indicate that power plants have become more environmentally friendly. In addition, listed power companies are chosen by this paper since they have more power plants and their power generation represents a significant percentage of China’s power generation.
To control for factors that may explain the change in the green degree of power plants, this study controls three aspects of firm-level characteristics: assets, finances, and capabilities. Company size (size) and asset value (CETA) constitute the asset-level variables, financial risk (DTA) and financial structure stability (FA) constitute the financial-level variables, and capability-level is composed of management capacity (PR), solvency (CA), and profitability (ROA) (Xiong and Shen, 2020; Jing et al., 2021; Zheng et al., 2021; Zheng and Zhang, 2021; Feng et al., 2022). As a measure of green technological innovation, Zhang et al. (2021) analyzed the number of patents as an intermediary variable. One improvement is proposed in this paper. Green technology innovation is measured by the number of green patent inventions. The level of economic development is measured using GDP per capita as one of the heterogeneity factors. Accordingly, the intensity of environmental law enforcement is measured by the proportion of sewage charges or environmental protection taxes to regional GDP. Detailed signs and measurements of all variables involved in this study are provided in Table 1.
TABLE 1 | The signs and measurements of total variables.
[image: Table 1]3.3 Descriptive Statistics
Table 2 presents descriptive statistics for the main variables in Eq. 1. Considering the incomplete disclosure of information in annual reports, this study was able to obtain 896 samples of data regarding the proportion of clean energy power generation. As indicated by the mean proportion of clean energy power generation of 0.477, thermal power generation remains the dominant force in China’s power generation structure. We can see from the standard deviation of clean energy power generation and thermal power generation that there is a significant difference between listed power firms from 2011 to 2020. The same is true for green power revenues and thermal power revenues. Carbon ETS has a mean value of 0.238, which indicates that the control group has 785 samples while the experiment group has 245 samples. Based on the average value of property rights, most of the power plants investigated in this study are owned by the government, which is consistent with the reality in China. The minimum value of the logarithm of green technology innovation is zero (GTI = 0) and the maximum value is 6.750 (GTI = 853), indicating that the number of green patent inventions of different power companies is quite varied. For the moderating variables, the standard deviation of the local economic development level is smaller than that of green technology innovation, but there are significant differences in the sewage charges per capita between the provinces.
TABLE 2 | The descriptive statistics of main variables.
[image: Table 2]4 EMPIRICAL RESULTS
4.1 The Impact of Carbon ETS on Power Plant Green Degree
4.1.1 The Impact of Carbon ETS on the Proportion of Clean Energy Power Generation
This study reflects the impact of carbon ETS on the power plants’ green degree, mainly by analyzing the influence of energy structure on power generation. The MDID model is used to estimate Eq. 1, and the results are presented in Table 3. In column (1), we show the estimated relationship between carbon ETS policy and green power generation structure, characterized by the percentage of clean energy power generation under the firm effect and time effect. Columns (2) and (3) contain the results of tests of the asset and financial characteristics of firms that have been gradually added. As a final control variable, the capability-level variables are added to the regression result in column (4), and the model is also our benchmark model. As we add control variables, the R2 value gets higher and higher, indicating that our regression model is fitting more and more accurately.
TABLE 3 | The regression results of the proportion of clean energy power generation.
[image: Table 3]In Table 3, it can be seen that the estimated coefficient of ETS is statistically significant only with firm and time-fixed effects. The coefficients of ETS remain significant after the addition of total control variables, and their signs do not change. This suggests that the estimated results are reasonably robust. According to the test results, China’s carbon ETS pilot program has a positive influence on the production of clean energy power and can effectively promote the transition to a green energy structure for power plants. All asset-level characteristics are significant as control variables in this study. The total assets (size) and capital expenditure ratio (asset value) of the power company to which the plant belongs can also contribute to the promotion of green transformation. The fixed asset ratio (financial structure stability) has a positive effect among financial-level control variables, whereas the assets and liabilities ratio (financial risk) does not pass the significance level test. In terms of capability-level characteristics, the coefficient of PR is negative, and this suggests that private power companies have greater advantages in achieving green transformation. Cash ratios also perform negatively, which is because when power companies set aside too much cash from their net profits, they do not have enough funds to support the installation of green transformation equipment. Unlike the two abilities, the return on assets ratio (profitability) has no significant influence. Our results show that characteristics involving assets and capital are more likely to affect the green degree of power plants.
4.1.2 The Impact of Carbon ETS on Power Generation
To help test the relationship between the carbon ETS policy and the green degree for power plants, this study examines the impact on clean energy power generation and thermal power generation. Using clean energy power generation and thermal power generation to symbolize the green degree of power plants and estimate Eq. 1, this paper obtained Table 4’s results. Columns (1) and (2) report the test results with and without the control variables when the explained variable is clean energy power generation. Columns (3) and (4) separately present the results for thermal power generation as the dependent variable.
TABLE 4 | The regression results of clean and thermal power generation.
[image: Table 4]Column (1) indicates that the coefficient of ETS is significantly positive at the 5% level, and the significance increases when the control variables in column (2) are included. The regression results suggest that the carbon ETS pilot has a positive effect on clean energy power generation and contributes significantly to green development for power plants. The coefficients of ETS are negative from column (3) to column (4), indicating that the carbon ETS pilot significantly decreases thermal power generation. The above two tests further confirm the main test conclusion that carbon emissions trading policies improve the proportion of clean energy power generation by increasing clean energy power generation and decreasing thermal power generation. From this, we can also conclude that the carbon ETS policy limits thermal power generation at the output end of business activities and positively impacts clean energy usage at the input end of economic activities, thereby promoting the transformation of the clean energy structure within power plants. Improving green degree relies on energy policy to directly adjust the energy structure and energy market. It requires the end of the corresponding management measures to force the input energy to be green and of high quality.
There are two reasons for this. On the one hand, the carbon trading market’s member power companies must control their carbon emissions by reducing the thermal power business of owning power plants, thereby completing their compliance target. Additionally, they desire to keep the company operating and growing, so they strive to minimize the reduction in total power generation as much as possible. In line with the future trend of green development in China, clean energy has been chosen as the main source of electricity generation. Therefore, the increasing effects of clean energy power generation and the decreasing effects of thermal power generation work together to increase the proportion of clean energy power generation and improve the green degree of power plants. On the other hand, as the carbon emissions trading system is improving, the “carbon emission cap” and “free carbon emission allowance” set by governments are gradually tightening. Therefore, member power firms must intensify their efforts and accelerate the pace of the transition to green energy sources.
4.2 Robustness Check
4.2.1 Parallel Trend Analysis
As with other types of DID models, one of the premises of MDID is to satisfy the parallel trend assumption (Bertrand et al., 2001). For the experiment group and control group, the trend of green degrees should be consistent both before and after policy implementation. This study utilizes the “Event Research” method to empirically test the dynamic effects of carbon ETS policy. Test (Eq. 2) is as follows:
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In Eq. 2, M and N separately represent the number of periods before and after the policy time point. [image: image] is a dummy variable, if power firm i implements a carbon trading market during t + j, the value of it is 1, otherwise it is 0. For example, when j = −2, the dummy variable [image: image] indicates that power firm i participates in carbon ETS during the period t-2, and it examines the effect of carbon ETS on the green degree for power plants under the assumption that the policy implementation year is 2 years before the actual implementation year. Therefore, [image: image] measures the carbon ETS effect of the current period, [image: image] to [image: image] measure the carbon ETS effect of periods 1 to M before really participating in the carbon ETS, and [image: image] to [image: image] represents the ETS’s effects from period 1 to N after a realistic implementation year. Finally, if [image: image] to [image: image] are not significant with the benchmark group of the M = 1 period, it indicates that there is a common trend between the experiment group and the control group before the implementation of the carbon emissions trading pilot.
Figures 4‐6 show the estimated range of the interaction term coefficient of [image: image] under the 95% confidence interval. If the estimated range contained 0, [image: image] is not significant. Otherwise, it is significant. It can be seen that the interaction term coefficients of these three figures are all insignificant before the real implementation year for this policy, indicating that there is no significant difference between the experiment group and the control group before the participating carbon emissions trading market. Therefore, our sample meets the parallel trend test.
[image: Figure 4]FIGURE 4 | Parallel trend test result of the proportion of clean power generation.
[image: Figure 5]FIGURE 5 | Parallel trend test result of clean power generation.
[image: Figure 6]FIGURE 6 | Parallel trend test result of thermal power generation.
4.2.2 Placebo Test
In the process of estimating the impact of carbon ETS policy on power plants’ green degree, other unknown factors may affect the selection of pilot provinces. To further test whether the results are driven by such unobserved factors, a placebo test is required by randomly assigning pilot provinces (Chen et al., 2018). Specifically, this study samples 500 times in 103 listed power firms, randomly selects 34 virtual experimental groups as many as the real situation, and takes plants belonging to other power firms as the control group for re-regression. If the results are significant and around the true coefficient values, it indicates that the previous test results are biased. Figures 7‐9 report the distribution of ETS coefficients and the corresponding significance after 500 random allocations. In each figure, the red vertical dashed lines represent the true coefficient value of ETS and the red horizontal dashed lines represent the p-value = 10%. It can be seen that most virtual coefficients of ETS, are all far from the actual value and most of them are not significant at the 10% significance level, which shows that the green effect is caused by the exogenous impact of the carbon ETS policy and has little to do with other factors.
[image: Figure 7]FIGURE 7 | Placebo test result of the proportion of clean power generation.
[image: Figure 8]FIGURE 8 | Placebo trend test result of clean power generation.
[image: Figure 9]FIGURE 9 | Placebo trend test result of thermal power generation.
4.2.3 Other Tests
To further ensure the reliability of the test results, other three robust methods are used in this study. Firstly, add control variables and shorten the sample time period to eliminate the interference of other environmental policies from 2011 to 2020. According to the research of Wang et al. (2022), Liu et al. (2022), and Cheng et al. (2022), the main environmental protection policies in China from 2010 to 2020 are the “Environmental Protection Law of the People’s Republic of China” implemented in 2015, the “Environmental Protection Tax Law of the People’s Republic of China” implemented in 2018, and the “Carbon Peaking and Carbon Neutrality3” goals announced in 2020. Based on the results of the parallel trend test presented in this paper, we can exclude the interference of policies implemented before 2016, including the “Environmental Protection Law of the People’s Republic of China” in 2015. To limit the interference of the “Environmental Protection Tax Law of the People’s Republic of China” policy, we further control regional environmental laws, as measured by sewage charges and environmental taxes, and the results are shown in Panel (A) of Supplementary Table S6. The re-estimated results are still all significant and the signs do not seem to have changed. For other policies in 2017 and later, we delete the data from 2017–2020 to re-regress, and obtain the regression results reported in the Panel (B) of Supplementary Table S7. The conclusion is consistent with our mainstream analysis results. That is, carbon ETS not only significantly increases the proportion of clean energy power generation and clean energy power generation but also significantly decreases thermal power generation for power plants.
Second, change the dependent variables to exclude the bias from the dependent variable, and the results are shown in Panel (C) of Supplementary Table S8. This study replaces the power revenue with the power generation, which is also collected manually. The re-estimated results of the proportion of clean power revenue, clean energy revenue, and thermal power revenue are all significant, and the signs are the same as the previous results. Third, reduce the sample size to eliminate bias from the sample. After removing the extreme values at the 1% level and 99% level, all coefficients of ETS are still significant and have the same signs as the mainstream regression results, which can be seen from Panel (D) of Supplementary Table S9. The results of these three robustness tests show that the carbon ETS policy can increase the green degree of power plants by promoting the use of clean energy and limiting the use of thermal power, and this finding is not a result of factors other than the variables and samples used in this study. As of the length of the article, the regression results are not presented as a table in the main text (due to the limited number of figures, the tables in this section are provided as the Supplementary Material).
4.3 The Heterogeneous Factors of Carbon Emissions Trading on Power Plant Green Degree
According to the above analysis, China’s carbon emission trading pilot program can enhance the green degree of its power plants. Despite this, the resource endowment of the various provinces differs considerably, causing the economic growth patterns to differ, as well as the uneven development characteristics, especially for power firms. As a result, this study examines the potential influence of factors both inside and outside of the company on the green effect of the carbon ETS. Based on the company-level sample highly coinciding with the proportion of national clean electricity generation, the analysis may conceal regional differences to a certain extent. Therefore, Eq. 3 is developed.
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Here [image: image] is the net effect of carbon ETS policy implementation. X n represents the possible moderators within the power firms, including debt to asset ratio, fixed asset ratio, and property rights nature, and the local economic development and environmental law enforcement are chosen as the external possible moderators, which are separately described by the local GDP per capita (LGDP) and local sewage fee or sewage tax per local GDP (ELE). [image: image] is the interactive term of carbon ETS policy and the moderators to be detected. Under the premise of the significant ETS coefficient, if the coefficient of [image: image] is significantly positive, it means that this moderator n helps carbon ETS policy achieve the green improvement for power plants. Conversely, if the coefficient of ETSi,t × Xn is significantly negative, the moderator n hinders the achievement of green improvement in power plants. The moderator n has no moderative effect when the coefficient of [image: image] is insignificant.
The heterogeneity analysis results are shown in Table 5. Column (1), column (2), and column (3) report the examined results of the firm-level moderators. The coefficient of ETS*FA is significantly positive while the coefficients of ETS*DTA and ETS*PR are significantly negative. This result suggests that the fixed asset ratio can improve the green efficiency of the carbon ETS policy and accelerate the green transition for power plants. However, the debt to asset ratio weakens the green efficiency of the carbon ETS policy and slows down the process of green energy structure transition. Moreover, compared to the state-owned companies, the private ones have a greener effect on carbon ETS pilots. Column (4) reports the examined result of regional economic development, and the result of environmental law enforcement is shown in column (5). Both the coefficient of ETS*InLGDP and the coefficient of ETS*ELE are significantly positive, which indicates that carbon ETS policies in provinces with higher levels of economic development and more expensive environmental pollution costs have better green effects on power plants. In general, a total of four moderating factors are found in this study, among them, the higher fixed asset ratio and economic development level, the stricter environmental enforcement, and the presence of privately-owned power plants tend to improve the green efficiency of carbon ETS policy.
TABLE 5 | The heterogeneity test results.
[image: Table 5]In the ratio of debt to assets, the financial leverage is reflected, which indicates the financial risk of the company in which the power plant is located. The greater the financial risk, the less likely the company is to obtain financing from a bank or other financial institution. If power companies need a great deal of financial support to achieve green transformation, a lower asset-liability ratio is more beneficial for the carbon ETS policy to have a green effect on power plants. The fixed asset ratio reflects, in part, the green power generation equipment owned by power companies that converts clean energy into electricity. As power companies increasingly possess more and more efficient green power generation equipment, driven by the carbon ETS policy, it becomes easier for them to realize the plan of replacing thermal power with green electricity and improve the efficiency of green power generation equipment to accelerate their green transformation. As a result, the higher the fixed asset ratio, the more the power company invests in green power generation equipment, and the more effective the carbon ETS policy is for power plants owned by power companies. Another important firm-level moderator for the carbon ETS is the power company’s property rights. Green policies such as carbon ETS may promote corporate social responsibility to a certain extent, thereby improving the green performance of power companies (Ang et al., 2022). This improvement in efficiency is commonly seen in private-owned power companies, so the carbon ETS policy results in greener power plants (Ang et al., 2022; Fan et al., 2022).
From the perspective of the power company, regions with high economic development levels often consume more electricity, which increases the demand for green electricity in the context of energy constraints and carbon emission reduction policies and thus promotes the green transition of power plants. Additionally, regional environmental law enforcement also plays a positive role in the carbon ETS policy’s effect. For those power companies with strict environmental enforcement in their locations, carbon ETS’s “compliance” mechanism further increases their carbon emission cost burden based on high pollution charges and environmental protection taxes, so it doubles the role of forcing power companies to make green transitions.
4.4 The Impact Mechanism of Carbon Emissions Trading on Power Plant Green Degree
Carbon emission trading can effectively promote green improvements for power plants in pilot provinces. How can this improvement be accomplished? Based on the literature review and theoretic analysis, the study examines the impact mechanism of China’s carbon emission trading system on power plants’ green improvements by examining green technological innovation as the mediator. Referring to the research of Baron and Kenny (1986), the following Eq. 4 and Eq. 5 are designed as follows:
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Here [image: image] represents the mediating variable, that is, the level of green technology innovation of the power firm to which the power plant belongs. It is described by the cumulative number of inventions in green patents. The significance of [image: image] in Eq. 1 is used to test whether the carbon ETS policy has a significant impact on the green degree. Eq. 4 is used to examine the effect of carbon ETS policy on the mediating variable. Then incorporate the mediating variable into the benchmark model and Eq. 5 is acquired. The significance of [image: image] indicates whether carbon ETS policy still has a green effect after controlling the mediating variable. Combining these three equations, the existence of a mediating effect can be determined. Under the precondition of the significant [image: image], if [image: image] is significant, and [image: image] is not significant or significant but lower than [image: image], there is a complete mediation effect or partial mediation effect respectively. Otherwise, this factor has no intermediary effect.
The results are shown in Table 6. It can be seen from column (1) that the total effect of carbon ETS pilots on the power plants’ green degree is 0.122 at a 1% significance level. Column (2) reports the estimated result of carbon ETS policy on green technology innovation, and column (3) shows the result of the mediation by incorporating the green technology innovation into the benchmark model. From column (2), we can see that the carbon ETS policy has a positive impact on the number of green patent inventions at a significance level of 1%, indicating that the implementation of the carbon ETS pilots can effectively promote green technological progress, achieve green innovation, and reduce dependence on fossil energy. In column (3), the regression coefficient of the carbon ETS policy is significantly positive, and the value of it is 0.121, which is less than 0.122, indicating that the carbon ETS policy can achieve a green effect by promoting power firms’ green technological progress. Green technological innovation is a partial intermediary variable.
TABLE 6 | The results of the mechanical test.
[image: Table 6]This may be explained as follows. Having previously mentioned, with the gradual tightening of the “carbon emission cap” and “free carbon emission allowances”, members of the carbon ETS have decided to replace fossil fuel with clean energy to produce electricity. However, their current power generation equipment and technologies are only suitable for thermal power generation. Therefore, technological innovation is essential to successfully achieving the green transformation of thermal power plants. Similarly, to achieve carbon compliance goals, both thermal power plants and clean power plants are also working to develop more advanced technologies to reduce carbon emissions beyond the power generation process, such as transmission, transformation, and distribution.
5 CONCLUSION AND POLICY IMPLICATION
Environmental and energy problems have become increasingly serious, which has led to higher standards for green development. China, one of the main drivers of global economic growth, underpinned by the green energy structure transition target, must urgently improve policies’ efficiency and achieve a low-carbon development that is cost-efficient. However, there are few studies evaluating the effect of China’s carbon ETS policy on the green transition for the power sector, which is the key executor determining the success of this “carbon peaking and carbon neutrality” campaign. Based on this, this study manually collects a panel data set, comprising 1,030 observations from 103 listed power companies from 2011 to 2020, to investigate the impact of the carbon ETS on power plants’ green degree using a multiple-period difference-in-differences model. We conclude that: 1) A series of robustness test methods show that China’s carbon ETS significantly enhances the green degree, and this green transformation is achieved by increasing clean power generation and decreasing thermal power generation. 2) Heterogeneity test results demonstrate that the carbon ETS’s green effect is enhanced in private power plants. Further, decreasing the debt to asset ratio and increasing the fixed asset ratio of power companies to which the power plants belong as well as improving the level of economic development and penalties for environmental pollution can help strengthen the green effect of the carbon ETS pilot program. 3)The mechanism test result shows that the carbon emissions trading market can significantly increase the green degree by promoting green technological innovation, but it is not the only factor. These conclusions provide guidance for China to achieve the green energy structure transition and provide examples for green development for other countries through the application of market-oriented policies.
The following policy recommendations are derived from the above research conclusions. First, China should broaden the scope of the carbon ETS policy implementation and accelerate the establishment of the unified national carbon emissions trading system in the new stage of the green energy structure transition. The first national carbon market could take the form of a carbon ETS pilot, in which the power sector serves as the sole member sector and a “compliance” mechanism would be used to limit the power sector’s carbon emissions. In addition, the “carbon emission cap” and the “free carbon emission allowances” could be moderately tightened according to our findings. In promoting the green transition for and beyond the power sector, countries should place greater emphasis on market-oriented environmental policies. Second, China should formulate provincial balanced development strategies to prevent the disparities among power companies caused by imbalanced development and increase enforcement of environmental laws in provinces with a low amount of environmental protection taxes to improve the carbon ETS policy’s efficiency. Countries with similar conditions to China could refer to China’s experience when implementing carbon ETS policies. In the initial stages of carbon trading, the principle of allocating carbon emission rights could be based on free-form allocation, which gradually increases the proportion of paid carbon emission rights. A targeted principle considering different power companies and regions with significant moderating characteristics should also be incorporated into the final principle of carbon emission rights allocation. Third, China needs to create an environment that encourages green technology innovation through fiscal subsidies and tax incentives, and it needs to encourage power enterprises to actively explore new green technologies. The interaction and cooperation between environmental policies and other industrial policies should be given more attention by countries as a possible way to create the conditions for the green mediation effect. Finally, the power industry should increase its awareness of environmental responsibility and convert its power distribution systems voluntarily. It can be achieved by increasing environmental protection publicity and education activities for power companies and encouraging them to implement green development initiatives within their companies. Also, integrating carbon taxes into market mechanisms for carbon markets can increase the cost of carbon emissions for power companies, forcing them to make a voluntary green transition. There is a need for both China and other countries to continue developing clean energy vigorously, supplement the discovery of other influencing factors and mechanisms that affect the green transformation of the power sector, and explore measures that are more conducive to converting the power sector to a green energy structure.
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FOOTNOTES
1Carbon emission allowance represents carbon emission right. One carbon emission allowance is equal to one carbon emission right.
2China Stock Market Accounting Research (CSMAR) and Chinese Research Data Services (CNRDS) databases are research-based accurate databases in the economic and financial fields developed by China in accordance with China’s actual national conditions. They have been widely used by Chinese researchers.
3“Carbon Peaking and Carbon Neutrality” is China’s emission reduction target committed to the world. It means that carbon dioxide emissions will no longer increase before 2030 and will gradually decrease after reaching a peak. Before 2060, all carbon dioxide emissions will be offset by various methods such as tree planting, energy conservation, emission reduction, and carbon neutrality.
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The carbon market is a vital tool to achieve carbon neutrality. This paper uses daily closing price data of Shenzhen carbon trading market, energy, commodity and financial markets from 18 October 2018 to 19 August 2021, examining the transmission of risk/information from the perspective of market volatility spillover and tail risk transmission based on quantile spillover. The stock market crash and COVID-19 have increased the volatility of the system substantially. Next, the increase in trading frequency is accompanied by an increase in total volatility connectivity, and the carbon market transforms into a recipient of systemic shocks. Finally, the results of tail risk transmission reveal that the net effect of carbon reception increases significantly. These findings have implications for policymakers to improve the carbon market and provide important insights for investors to trade in turbulent periods.
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1 INTRODUCTION
In the past 40 decades, China’s reform and opening-up level of high-speed development have made it leap to the second-largest energy economy in the world, while industries and enterprises also burn and utilize fossil fuels in large quantities without restraint, emitting considerable amounts of greenhouse gases (An et al., 2021; Chen and Zhu, 2022; Xian et al., 2022). To strengthen ecological protection and promote sustainable development, the issue of carbon emission management from an economic perspective has been considered by the government (Liu et al., 2021; Yu et al., 2021). China’s first carbon emissions trading market was officially launched in Shenzhen on 18 June 2013. It has gradually formed the most complete legal institutional framework for carbon trading in China, laying a good foundation for the smooth operation of China’s overall carbon market construction (Jiang et al., 2014; Cong and Lo, 2017). In the context of low-carbon environmental protection, the operation of the carbon trading market has greatly supported the financial instruments to achieve China’s “double carbon” goal. However, the current development of China’s carbon emissions trading market is still immature and investors do not choose carbon as their investment and financial management tool, which makes it difficult for the carbon market, a market-based environmental regulation policy, to be effective.
The energy market is closely related to the carbon emission trading market. Looking at the current situation of energy consumption and carbon emissions in China, the energy structure of China is still dominated by fossil energy under the constraint of resource endowment. In 2019, China’s coal consumption accounted for 57.5%, oil consumption for 18.9%, and natural gas consumption for 8.1%, with a total fossil energy consumption share of nearly 85%1. Energy markets are vulnerable to various uncertainties and volatility (Maneejuk et al., 2021). In turn, the energy market is used as a medium to transmit this volatility to the carbon trading market. Therefore, identifying the spillover effects of energy shocks on the carbon market is of great relevance. In addition, it is crucial to analyze the volatility between some high carbon product markets and carbon trading markets. As basic consumables for industrial raw materials, fluctuations in copper and iron ore prices have severely affected the economy as well as other markets (Guo et al., 2020; Chen and Yang, 2021). With the trend of financialization in the metals market, precious metals have become a popular hedge asset for investors. To achieve effective development of the carbon market, there is a real need to consider the relationship of risk transfer between the precious metals and the carbon market in the future (Adekoya et al., 2021). In addition, there is a linkage between the stock market and the carbon market, both at the overall and industry level (Wen et al., 2020). Given this, we will construct a system of the markets as mentioned above to analyze the volatility spillover relationship between the markets, with the carbon market as the main object of study.
In recent years, scholars have extensively discussed the risk contagion of carbon markets (Balc et al., 2020; Yuan and Yang, 2020; Zhu et al., 2020; Xu, 2021), analyzing the spillover effects of carbon markets with energy, commodity and financial markets (Ji et al., 2018; Wang and Guo, 2018; Gong et al., 2021; Ma and Wang, 2021; Jiang and Chen, 2022). Nonetheless, most studies on risk contagion in previous generations lack a systematic framework. In addition, the impact of tail risk is often neglected in existing studies on the spillover effects of the system.
To fill the gap in previous studies, this paper analyzes the volatility spillover relationship between carbon market and energy, commodity and financial markets by time-varying, time-frequency and quantile spillover methods, taking the Shenzhen carbon emission trading market as the main research object. In today’s financial world, modeling analysis of information/risk spillover from one market to another is important for asset pricing, investment decisions, leverage decisions, portfolio allocation in international markets, and macroeconomic strategy formulation by government policymakers. This study aims to present empirical methods to identify the volatility risk transmission from carbon markets with energy, commodity and financial markets to reduce the risk of related market transactions. It not only facilitates carbon trading investors to choose reasonable investment instruments but also provides a strong scientific basis for carbon market policymakers to regulate the development of the carbon market more ideally by formulating appropriate carbon finance plans.
The main contributions are as follows. Firstly, a wavelet decomposition approach is used to process the signal into four time-lengths to describe the volatility spillover constructs within the system. This approach enriches the perspective of investors by classifying them by trading duration. Previous related literature also demonstrates that carbon has a different structure from other markets in terms of spillovers at different frequencies (Adekoya et al., 2021). Second, the spillover of the bull, as well as bear market systems, are explored to obtain more scientific and comprehensive results. The occurrence of tail quantile-extreme events is also a part of greater interest to investors and governments. In the Chinese carbon trading market, the transmission of market risk is exacerbated by extreme events and the market suffers severe shocks (Zhu et al., 2021; Jiang and Chen, 2022; Zhao and Wen, 2022). Third, this paper also presents novel information/risk transmission findings in the carbon market with energy, commodities and financial markets. The impact of the stock market crash and COVID-19 has exacerbated risk transmission within the system. As the frequency of trading increases, the carbon market turns into a net recipient. Under extreme conditions, the negative spillover effect of the carbon market intensifies. The identification of volatility risk transmission in the Shenzhen carbon market helps provide a relevant theoretical basis for other carbon markets in China to implement efficient operations in the future.
The structure of this article is as follows. The relevant literature review is described in Section 2. The methods and data are present in Sections 3 and 4. Section 5 is the analysis of empirical results. Finally, the conclusions and policy implications are reported in Section 6.
2 LITERATURE REVIEW
In this section, we summarize relevant recent research examining the linkages between carbon markets and other markets. Energy and carbon prices are interconnected and are relatively complex systems. There are significant spillovers between carbon and fossil energy markets, with the strongest volatility spillover between coal and carbon markets (Zhang and Sun, 2016; Wu et al., 2020; Gong et al., 2021). Evidence of synchronization between the China carbon and coal markets has also been found (Yin et al., 2021). Oil prices influence carbon prices in terms of risk and volatility (Ji et al., 2018). Xu (2021) used the conditional volatility of Daqing crude oil returns to measure the risk spillover effect of energy market uncertainty on the China carbon market, which yielded significant risk spillover effects. However, this is contrary to earlier research findings (Reboredo, 2014). In studies of electricity markets, there is a strong information spillover relationship between European carbon prices and electricity markets (Ji et al., 2019). Yang (2022) and Zhu et al. (2020) examined the relationship between the EU-ETS and the electricity market. The results of the idiosyncratic spillover indicate that carbon is a net recipient of systemic risk, and the level of this risk spillover has different architectures in frequencies. It is clear that changes in energy market prices have an impact on carbon emissions and influence the development of carbon markets.
Carbon emissions are essential in the production process of high-carbon companies. There are few studies related to high-carbon products and carbon markets in the existing literature. Most scholars have selected steel, iron ore, and aluminum as the subjects of research on the relationship with carbon spillovers (Ma and Wang, 2021; Jiang and Chen, 2022). Jiang and Chen (2022) include steel and aluminum in the materials market, and the results after COVID-19 indicate an increase in spillovers in the materials market. The carbon market in China is still evolving and remains sensitive to other markets. Using a combination of the DY spillover index and Copula framework Ma and Wang (2021), found that iron ore has the highest degree of spillover in the system, and carbon emission prices have a relatively low degree of spillover. The stock market is often applied as a barometer of macroeconomic and financial markets. Most previous studies have measured the relationship between stocks in specific sectors and the carbon market (Yuan and Yang, 2020; Dai et al., 2022; Tiwari et al., 2022). It has some limitations that do not provide a complete interpretation of the stock market as a whole.
The studies mentioned above mainly respond to the correlation between energy and high carbon products due to the production of carbon emissions, ignoring the fact that the carbon emissions trading market can be used as a channel for the investment market. In addition, the European carbon trading market is better developed, and previous studies have mainly explored this market for the analysis of the relationship with other markets. Since there are still some gaps in China’s carbon trading market, we choose the earliest ETS market in Shenzhen as the main object of this paper and analyze the spillover relationship with the energy market, high carbon products market, precious metals market and financial market. Precious metals (gold and silver) and high-carbon products (copper) are considered, as precious metals are of great significance to investors, while copper as a high-carbon product is often overlooked.
Although much of the literature has been tested to prove that there is indeed some spillover relationship between carbon and one of the markets mentioned above, a systematic examination is still lacking. Regarding the methodological models, most scholars generally adopt a construct based on Diebold and Yilmaz’s (2012) spillover index to explore the spillover relationship (Ji et al., 2018; Wang and Guo, 2018). Another part of scholars use models such as GARCH, Copula and causality to consider inter-market dependence (Zhang and Sun, 2016; Yuan and Yang, 2020). Nevertheless, these methods are not quantified and the case of multiple groups of markets is difficult to deal with. Therefore, this paper extends the market price information/risk spillover (DY index) framework to consider the degree of system integration and the direction and magnitude of information/risk transmission within the system, which is more convincing than the traditional tests. Especially, the methodology combines the maximum overlapping wavelet decomposition (Percival and Walden, 2000), quantile spillover (Ando et al., 2022) integrated to measure the variation of intra-system spillover for investors with different trading frequencies and when extreme events occur. The inclusion of the quantile element overcomes the drawback that the average estimate is too homogeneous to provide a complete assessment of the tail process. Overall, in this paper, we decided to use a wavelet decomposition and quantile architecture connectivity approach to measure the selected indicator system's spillover.
3 METHODOLOGY
3.1 The Wavelet Decomposition Framework
Many methods of signal time and frequency processing are available at this stage. For instance, EMD, Fourier transform and BK index decomposition have been widely used in processing financial time series data (Zhu et al., 2020; Luo et al., 2021; Liu et al., 2022). In particular, wavelet transform has a wide range of applications as time-frequency analysis in various research fields, and it is suitable for decomposing some non-stationary time series signals. Compared to the Fourier transform, the wavelet transform has a good interpretation advantage for time and frequency.
3.1.1 Continuous Wavelet Transform
The continuous wavelet transform for measuring a given signal [image: image] can be expressed in the following form:
[image: image]
Where [image: image] is the wavelet coefficient of signal [image: image]; [image: image] is scale parameter, b is translation parameter; [image: image] is the subwavelet obtained by translating and telescoping the mother wavelet [image: image].
3.1.2 Discrete Wavelet Transform
The discrete wavelet transform differs from the continuous wavelet transform described above in that there are special requirements for the setting of the a and b parameters. Both a and b need to be a multiple of an integer, typically requires [image: image]; [image: image]; [image: image]. Where [image: image] represents the level (number of layers) of the discrete decomposition, [image: image] is constant term.
Next, different filters divide the wavelet function into a mother wavelet and a father wavelet function. The mother wavelet is defined for data at low scale and high frequency and the father wavelet presents data at high scale and low frequency. The following equation can represent the output after two frequency filters:
The smoothing coefficients of the father wavelet—Approximation coefficients (CA) are representative of the high scale and low frequency:
[image: image]
The detail coefficients of the mother wavelet—Detail coefficients (CD) present data of low scale and high frequency:
[image: image]
However, DWT requires that the sample size be an integer power of 2, which is difficult to satisfy in practice. This study introduces the maximum overlap discrete wavelet transform (MODWT) to overcome this drawback. The highly redundant transformation of the coefficients is expressed as:
[image: image]
[image: image]
Here, J = 4 is set according to the sample size. The wavelet decomposition is performed using a Daubechies minimum asymmetric wavelet filter of length 10, i.e., LA (10).
3.1.3 Time-Varying Vector Autoregression
To explore the mechanism of information/risk transmission in time-varying situations, this paper constructs a TVP-VAR model based on the maximum discrete wavelet transform according to Antonakakis et al. (2020). The main advantage of the TVP-VAR method is that there is no need to pick a specific window size when building the connectivity model in the next step, which avoids some errors caused by subjective window selection. The following equation describes the TVP-VAR model:
[image: image]
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Where [image: image] , [image: image] and error terms [image: image] , [image: image] are the vectors of [image: image] dimensions; [image: image] and [image: image] are the matrix of N×N; [image: image] represents the vectorized form of [image: image] with dimension [image: image]. Eq. 8 presents the VMA form of the TVP-VAR, which is the basic step in the construction of the connectivity index.
3.2 The Quantile Framework
According to the theory of linear quantile regression first proposed by Koenker and Bassett (1978), in linear conditions, given the dependent variables [image: image], the quantile [image: image] of [image: image] is:
[image: image]
[image: image] is represented in different quantile functions; the quantile [image: image] between 0 and 1; [image: image] is the vector that explains the variable; [image: image] is called the quantile regression coefficient. So, this paper defines the estimators of different quantile coefficient [image: image] by the following minimization problem:
[image: image]
The quantile structure is next constructed into the VAR model as follows:
[image: image]
[image: image] represents the intercept term in the quantile [image: image]; [image: image] represents the N-dimensional residual vector at the quantile [image: image]; [image: image] shows the coefficient matrix at different quantiles. To estimate the values of two variables [image: image] and [image: image], this paper assumes that the residuals satisfy the population quantile restrictions, [image: image]; [image: image] represents the information set at time [image: image]. The population [image: image] conditional quantile of [image: image] is:
[image: image]
First, we estimate a quantile vector autoregression (MA), which can be depicted as follows:
[image: image]
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Where [image: image] is given by the sum of the residuals [image: image]; [image: image] and [image: image] are [image: image] coefficients vectors.
3.3 The DY Spillover Framework
Then, for building the generalized error variance decomposition framework based on the two regression conditions described in the previous section. For the forecast range H, the generalized forecast error variance decomposition (GFEVD) of variables caused by shocks of different variables:
[image: image]
The [image: image] is the contribution of the [image: image] variable to the variance of forecast error of the variable [image: image] at horizon H; ∑is the variance matrix of the vector of errors, The diagonal components of the matrix are represented by [image: image], and [image: image] is a vector with a value of 1 for the [image: image] element and 0 otherwise.
Since the above framework does not query the orthogonalization of shocks, the sum of elements of each row of the matrix is not equal to 1: [image: image]. Therefore, this paper needs to normalize the matrix with elements:
[image: image]
Finally, this paper constructs connectedness measures based on the spillover index framework of Diebold and Yilmaz (2012), which is formulated by using generalized forecast error variance decomposition. The total spillover index, net spillover index, and net pairwise spillover index are expressed in the following formulations:
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In particular, to reflect the dynamics of the time-varying spillover on the quantile-connected framework, this paper uses the rolling window estimation, which is based on lag with SIC = 1 and forecast error variance decomposition of 10 steps in advance.
4 DATA DESCRIPTION
Considering the liquidity of the transaction and the range of carbon allowance prices recorded, the empirical analysis selects Shenzhen carbon trading market's daily closing price data as the carbon price benchmark. Shenzhen carbon trading market is the earliest and relatively well-developed carbon trading pilot in China (Cong and Lo, 2017). The other data is in four major categories: energy prices, product prices, precious metal prices and financial markets. Energy prices have always been closely linked to carbon markets. In addition to traditional fossil energy (oil and power coal), the Electric Power index is also included. Copper and iron ore are collected as product prices, and their production process is accompanied by significant carbon consumption and emissions. In the precious metals market, gold and silver are often important tools for investors to hedge their bets. Finally, the CSI 300 index is used as to represent the financial market. The sample period is from 18 October 2013, to 19 August 2021. The sources are listed in Table 1 and the data are from Wind. Meanwhile, since the data are all from China, the influence of currency exchange rate on the time series modeling of closing price is negligible.
TABLE 1 | Indicator selection and data sources.
[image: Table 1]The descriptive statistics and the unconditional correlation matrix of returns for the whole period are provided in Table 2. As the main decarbonization instrument currently in China, the carbon market has negative average returns and the largest variance, suggesting that the China carbon market may not be a good financial instrument for investors. Significant negative returns and relatively large variance are also found in oil and iron ore. As important strategic resources, they are subject to high volatility mainly due to uncertainties such as geopolitical factors. Almost all other markets have positive returns, and the volatility is not particularly pronounced. In particular, the minimum variance gold price still maintains a stable trend, which also verifies the safe-haven value of gold from another perspective. In terms of the distribution characteristics of the series, all markets except carbon, gold and copper show a negative bias. Both left-skewed and right-skewed results are found. Without exception, all samples are above the benchmark criterion of 3 and there is a significant excess kurtosis. To further demonstrate the statistical properties of the series, another more advanced test is performed in this paper. Without any disappointment, the JB statistic rejects the original hypothesis of a normal distribution. Therefore, it seems reasonable to use the quantile framework model structure below to measure the results of this non-normal distribution. Finally, their production process the ERS unit root test results show that all returns remain stationary at the 1% significance level.
TABLE 2 | Summary statistics and unconditional correlations.
[image: Table 2]In the results of the unconditional correlation matrix, all returns exhibit different levels of correlation. Among them, gold and silver, both precious metal commodities, present the strongest positive correlation in the system with over 80%. The unexpected result occurs between gold and the CSI 300 index, which possess only a 0.7% correlation degree.
5 EMPIRICAL RESULTS
As mentioned in the introduction, this part takes carbon prices as the main object of analysis, firstly exploring the time-varying spillover effect of the system. The spillover for different frequencies based on the results of wavelet decomposition is analyzed in Section 5.2. Furthermore, in Section 5.3, this paper investigates what happens to the system under the influence of bull and bear markets in extreme cases.
5.1 Time-Varying Analysis of Spillover
To study the volatility transmission of the system, this section first analyzes the time-varying characteristics of the system volatility using absolute returns based on the TVP-DY spillover index method proposed by Antonakakis et al. (2020). Here, this paper estimates the dynamic total and net spillover indices (see Figures 1, 2). Figure 1 indicates the total dynamic spillover across the system. Overall, the system has high volatility with the total spillover indices ranging from 20% to 45%. Combining the occurrence of the relevant events, it is significant to find that the volatility connectivity changes abruptly in 2015 and 2019. These two points in time correspond precisely to the stock market crash and the COVID-19. The stock market crisis was triggered by the market's large number of highly leveraged placements. After the bubble occurred, it exacerbated the panic fall in the stock markets, which transmitted this damaging information to other capital markets, creating a situation where the risk of systemic volatility was abnormally high. Interestingly, this paper finds a much higher risk of volatility from health crises than the results due to stock market crash. As the epidemic improves, the systems volatility transmission risk decreases.
[image: Figure 1]FIGURE 1 | Time-varying total spillover.
[image: Figure 2]FIGURE 2 | Time-varying net directional spillover.
Figure 2 reviews the directional information to understand the estimated net directional spillover. With the exception of energy and commodities, almost all assets provide historical evidence of mixed patterns. During the incipient phase of the carbon market, it became the largest transmitter. For the Shenzhen carbon market—the first carbon trading pilot in China, although the development system has been a leader in the country, the low liquidity of carbon trading has resulted in “A bid but no volume dilemma” and “large exposure to risk” (Fan et al., 2019; Li et al., 2021a). It is the opposite of the European carbon trading market, which was developed earlier and is relatively mature (Adekoya et al., 2021). On the contrary, oil, power coal, iron ore, and copper are net recipients of volatility spillovers. Analyzed from another perspective, these commodities cannot be burned and processed without carbon emissions, and the corresponding assets are closely linked to carbon trading. Investors can focus on carbon to form portfolio assets with oil, power coal, etc. to face bad volatility spillovers from various uncertainties and geopolitical factors (Chen et al., 2019). 2016–2020 belongs to the accelerated development phase of the Shenzhen carbon market, in which positive and negative alternating roles are found. Although there are still many externalities disturbing still transmitting or receiving risks during this period, the Chinese government is also improving the top-level design to reasonably avoid risks. With the improvement of the carbon market trading mechanism, the spillover started to diminish in 2020, and the contribution to systemic shocks tends to be close to 0. It may be due to the reduction of carbon emissions by firms driven by the carbon peaking and carbon neutrality targets, which reduces the carbon price volatility (Zhou et al., 2022).
Among the other markets, the stock market crash has had the most pronounced impact on financial markets. The high volatility spillover of these two indices validates that the stock market is a barometer that reacts to the macroeconomy, and that the stock market is constantly transmitting and channeling signals/risks (Sadorsky, 1999). While gold and silver continuously transmit shocks to the system in 2018–2020, no significant spillover effects arise at other times. Due to their hedging role in uncertain events such as geopolitics, many investors choose precious metals as an effective hedge in turbulent times (Li et al., 2021b; Salisu et al., 2021; Wang and Lee, 2021).
5.2 Time-Frequency Analysis of Spillover
To get a comprehensive understanding of the linkages between carbon and other markets, this section quantifies the volatility spillover effects of different frequency cycles. Table 32 reflects the time-frequency spillover effects at different frequencies of absolute returns derived by wavelet frequency decomposition. The trading frequencies are divided into four frequency bands: 2–4 days, 4–8 days, 8–16 days, and 16–32 days, which correspond to short term trading, short-medium term trading, medium term trading, and long term trading, respectively (Mensi et al., 2021a; Miao et al., 2022). The construct of the total spillover changes significantly as they correspond to 28.35, 29.71, 34.87, and 42.88%. Keynes (1936) argued that rational investors are primarily concerned with short term price changes of assets and tend to disregard the prediction of long-term price changes. “Investor short-sightedness” leads to a tendency for many investors to trade on suitable assets with high short term liquidity in markets with asymmetric information (Adekoya et al., 2021). A few cases are contrary to the results of the previous analysis, for example, Shah and Dar (2021) reached the opposite conclusion in exploring commodities and financial markets, they pointed out that the overall premium index gradually decreases with increasing holding time, although the individual investor’s preference for risk plays a major part.
TABLE 3 | Frequency spillover results based on the wavelet decomposition. Frequency 2: The spillover for 4–8 days. Frequency 3: The spillover for 8–16 days.
[image: Table 3]Further findings in Table 3 show that the oil (coal) market and the iron ore (copper) market are net recipients of shocks in the system in the short-medium term. It should be recalled that these markets also exhibit similar results under the time-domain spillover results. On the one hand, due to the various uncertainties in the market, health crises and economic events occupy the main dimensions (Adekoya et al., 2021; Jiang and Chen, 2022). Volatility in energy and commodities markets increased and investor panic flooded the trading system. On the other hand, commodities are highly sensitive to their demand and supply factors, which exacerbates volatility risk. (Guo et al., 2020; Chen and Yang, 2021).
The shift of volatility spillover effects in the system is presented in the 8–16 days frequency. In short, the carbon emissions, gold and electricity index markets begin to experience negative net volatility spillovers. From the combination of the different frequency results, a similar effect may exist for the Shenzhen ETS carbon market and the electric power index. Yang (2021) argued that clean electricity plays an important role in decarbonization. It is mainly because the renewable energy transition of power companies cannot be achieved overnight, and the strong demand for carbon credits drives up the price of carbon. At the same time, power companies pass on the rising cost of purchasing carbon allowances to consumers, driving up the price of electricity.
Especially, copper has been the focus of attention for heavy metal manufacturing commodities. Throughout the copper smelting system, each process requires electricity or fuel consumption. In addition, energy sources such as coke powder, heavy oil, natural gas, methane and liquid ammonia are consumed as raw materials in the anode furnace refining process, so each production stage has a certain amount of carbon emissions. As it happens, a remarkable result is observed for copper. Regardless of the frequency and duration of the transactions, the spillover trends in the copper and carbon markets are reversed. In the future, some considerations could be given to carbon-copper contract pairs to balance the spillover effects of inter-system risk fluctuations.
5.3 Extreme Quantile Analysis of Spillover
The occurrence of extreme events can affect the level of information/risk contagion in the system (Bouri et al., 2021; Saeed et al., 2021). In the sample period selected for this paper, many extreme events also occurred, such as the stock market crash in 2015 and COVID-19 in 2020. To study information/risk spillovers under extreme events, this section uses the quantile DY spillover index framework proposed by Ando et al. (2022) to analyze the average spillover relationship of the considered variables by estimating the spillover network graph for the whole sample period. Unlike the median connectivity approach, the tails can reveal more hidden architectures (Naeem, Billah, et al., 2021). The 5th and 95th quantiles are employed to capture the volatility spillover of the whole system during the bull and bear phases, respectively. Figure 3 provides a visual representation of the results obtained, identifying assets as network transmitters or receivers of spillover effects. The thickness of the arrows and the shade of color indicate the size and intensity of the dynamic average spillover between assets. The size and color of the nodes report the magnitude and direction of the net spillover (red for “+” and blue for “-”).
[image: Figure 3]FIGURE 3 | Pairwise directional spillover among different quantiles. (A) NPCI Based on 0.50 quantile. (B) NPCI Based on 0.05 quantile. (C) NPCI Based on 0.95 quantile.
Combined with Supplementary Table SA1, this paper finds significant differences in the structure of the systems estimated based on the upper, middle, and lower quantiles. There is a remarkable increase in the degree of dependence compared to the median, with nearly 80% of the volatility spillover results occurring in the tail estimates. Similar findings exist for the international stock market, cryptocurrency, and the Asia-Pacific currency market (Su, 2020; Bouri et al., 2020; Bouri et al., 2021). The different architectures in the system are presented in Figure 3. Many previous studies have demonstrated that the spillover effect of such extreme events remains asymmetric. The impact of the lower quantile is much larger than the upper quantile (Bouri et al., 2021). For power coal, the degree of spillover from its net reception in bear markets does not diminish, but rather increases over normal periods, an aspect that investors should be aware of. Evidence of shifting roles played by assets in bull and bear markets is found in gold and silver, iron ore and power indices. Despite having a small spillover level, the power index is no longer receiving shocks on the market in the tail risk. As the financialization of the Chinese electricity market is currently low, stock indices are still less useful in the market than spot and futures, which enable better price discovery (Gürbüz and Şahbaz, 2021). The establishment of future electricity futures markets may better offset the shocks with other markets. In addition, gold and silver are strongly correlated during the upper quartile, and 9Mensi et al., 2021b) demonstrate that silver-gold pairs' negative short-term correlation exists during bull markets. However, the two show a different picture due to the occurrence of extreme events, in short, gold is gradually changing from a spill recipient to an information/risk sender and the link between the two is weakening.
In contrast to risk measures in other markets, carbon markets require special attention to upside and downside risk spillovers (Feng et al., 2012). During normal trading periods, carbon is a net recipient of volatility spillovers (−1.84%). Under extreme conditions, which increase the spillover effects received by carbon, a large amount of volatility spillover effects are bound to generate risk. Similar findings to the previous frequency structure are revealed in the copper analysis. The increased positive spillover effect of copper continuously transmits information/risk to the market. It further strengthens the results derived in the previous section that carbon-preferring investors can still pick up copper futures contracts for risk hedging in response to extreme contingencies.
6 CONCLUSION AND POLICY IMPLICATIONS
The carbon emission trading market is essential in constructing ecological civilization in China. This study takes the Shenzhen carbon trading market as the main research object, focusing on the volatile connectivity of carbon markets, energy, high-carbon products and financial markets. Previous studies have mainly used mean-connected models, which may lead to neglecting different trading frequency constructs and inaccurate estimation of some extreme events based on mean regression. Therefore, in this paper, wavelet analysis and quantile-based spillover measures are used to comprehensively consider spillover for different transaction frequencies as well as for the upper, middle and lower quantile connection networks. The main results are summarized as follows: 1) Initially, carbon is the primary market volatility risk/information transmitter. With the continuous improvement of the carbon market system, the spillover of the carbon market diminished. 2) The volatility spillover increases gradually with the frequency period, and the frequency period of the asset held is proportional to the volatility risk. 3) Frequency spillover constructs show different results. All markets are net recipients of shocks in terms of long-term frequency, except for copper and the CSI 300 index market. In particular, it should be noted that the carbon market transforms into the most pronounced net receiver of shocks effect. 4) The overall connectivity of the results in different market states is heterogeneous, with the carbon market increasing the receiving effect of shocks.
Investment and policy recommendations are given in the following discussion. From investors' perspective, investors need to recognize the strength of inter-systemic spillovers and build new diversified portfolio solutions when forecasting market risk in commodity asset portfolios. In short-term trading, investors with net receiving positions in energy markets and high-carbon product markets can consider hedging with carbon markets to offset their risks. As frequency cycles increase, investors who hold carbon assets for the long term no longer have an advantage. Our results suggest that copper can effectively hedge the risk in both markets over the long term and under extreme conditions. Investors need to be more aware of changes in the market during periods of extreme events, where risk contagion is exacerbated in the tail.
At the same time, the results of this paper lead to some policy considerations. The government’s macro-regulation is crucial to the development of the carbon market. From the perspective of carbon market development, it should clarify the systematic information transmission mechanism and focus on the enterprises with high energy consumption. Secondly, we should improve the risk prevention mechanism related to the carbon market, prevent the risk of carbon price plunge caused by the risk spillover effect and take appropriate price stabilization mechanism to intervene in the carbon price. Finally, promoting the development of a multi-level carbon market system, including the carbon derivatives market, is important to meet multiple entities' individualized investment and financing needs. It can also effectively enhance market liquidity and reduce transaction costs to promote the orderly development of the carbon market.
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The internal and external monitoring mechanism is a beneficial monitoring mode which is in line with the current national condition, the situation of the power grid, and the construction progress of the power spot market. However, the independence of third-party monitoring agencies cannot be completely guaranteed because of the incomplete management system of China’s electricity market at present. Therefore, the market is prone to power rent-seeking in which third-party monitoring agencies conspire with the market internal monitoring organization. Based on the evolutionary game theory, this study constructed a coordination game model between third-party monitoring agencies and the market internal monitoring organization, as well as an asymmetric coordination game model between the interest group composed of internal and external monitoring agencies and government regulatory authorities. By analyzing the evolutionarily stable strategy of each game participant, the study identified the underlying factors that affect the strategic choices made by internal and external monitoring agencies and government regulatory authorities and then put forward some reasonable suggestions for reducing the probability of third-party monitoring agencies colluding with internal monitoring organizations so that the efficiency of internal and external monitoring mechanisms can be improved.
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1 INTRODUCTION
With the continuous development of China’s electric power system reform and the establishment of the electricity spot market, power market supervision has drawn more and more attention (Streimikienė et al., 2016; Strielkowski et al., 2017; Kumar and France, 2022). The electricity market is often extremely complicated in design because of the economic and social demand on its supply–demand balance and a reliable electric power system. In addition, the electricity load has a small demand elasticity, which means it cannot respond to the market’s real-time price immediately, so this enables power generators to have an opportunity to adjust load and manipulate prices (Song and Cui, 2016; Maekawa and Shimada, 2019). Due to these characteristics, in the process of China’s electric power market reform, there are not only behaviors that disrupt the fair and effective market competition but also speculative behaviors that take the advantage of electricity market rules’ loopholes, which greatly affect the operation efficiency of the electricity market. So establishing a powerful market monitoring mechanism is an efficient way to solve these problems. Through monitoring, simulation, and analysis, the monitoring agencies propose the constructive advice for the power dispatching and trading center, the behavior of all market participants, market rules, and scheduling procedures’ defects so as to ensure the smooth and orderly operation of the electricity market (Dzikevičius and Šaranda, 2016; Jin et al., 2021). The most fundamental vitality of the electricity market comes from the market itself, which is embodied in efficiency. Therefore, building a comprehensive electric power monitoring mechanism can minimize the impact of market external factors on efficiency so that the long-term vitality of the power market can be guaranteed.
The objective of market monitoring includes not only the violations in the ordinary sense but also the behaviors that conform to market rules but violate the original intention of market design. Moreover, monitoring agencies have obligations to discover rules and loopholes and propose corresponding solutions timely before the market participants find and abuse them for personal gain. For example, the monitoring agency should be able to effectively identify the abuse of market power and market manipulation that hinder market efficiency, playing a role in correcting market failures. In the meantime, they can provide evaluation and beneficial suggestions for market performance and judge whether the market rules have created incentives for market participants, thereby enabling the electric power market to operate efficiently. The market monitoring agencies supervise all market participants; therefore, a high-quality monitoring result is the source and guarantee of market participants’ confidence in the market. This requires that the monitoring agencies must release genuine and transparent monitoring results. For example, the monitoring agency should have no interest relationship with the monitoring results and should regularly release their market evaluation reports to the public. Consequently, the monitoring agencies play an indispensable role in the electricity power market reform and construction.
So who should be responsible for monitoring the market? At present, the international power monitoring mode can be roughly divided into three categories: government monitoring, internal monitoring, and independent third-party monitoring. However, neither the government nor the power trading and dispatching agencies are eligible to supervise due to their role and function. Government authorities, on the one hand, cannot attract professional monitoring talents with an economics background because of the wages and staffing issues. On the other hand, the government’s work on employment, environmental protection, and taxation may not coincide with or even contradict the goals required by the electricity market. So the government’s impartiality in market monitoring will be doubted. As the rule makers and operators of power dispatching, trading and dispatching agencies may intentionally or unintentionally uphold existing regulations and are sensitive to criticisms and accusations, which may lead to the failure of internal market monitoring. An independent third party has three characteristics: the budget of the monitoring department is independent, the monitoring personnel is independent, and the monitoring agency has independent decision-making power. Market monitoring is carried out by independent “third parties” in mature markets such as Europe and the United States, such as PJM and FERC. Therefore, as the electric power reform deepens, market participants’ calls for third-party monitoring are strengthening.
The independent third-party monitoring is new to China’s electricity market design. At present, China continuously introduces third-party monitoring agencies. The basic rules for intermediate and long-term electricity transactions jointly issued by the National Development and Reform Commission and the National Energy Administration in 2020 encourage regions which met standards to introduce third-party monitoring. Guangdong province has taken the lead in introducing third-party market business audit institutions, and the electric power spot market rules in Zhejiang province have also determined to introduce third-party monitoring agencies. After the introduction of third-party detection, what is the behavioral decision of each subject under the dual detection mechanism? How to improve the efficiency of electricity market monitoring? How to prevent conspiracy between third-party monitoring agencies and internal stakeholders? These questions need to be settled properly, and enough attention should be paid to the design and construction of the power spot market so that the legitimate rights and interests of market participants can be protected, and a good market order can be maintained.
Based on the earlier discussion, this study takes the internal and external monitoring mechanism of the electricity market in the spot market as the research object and takes advantage of the evolutionary game model to investigate the behavior selection of government regulatory authorities, third-party monitoring agencies, and electric power market internal monitoring organizations under the circumstance of information asymmetry and limited rationality, in order to identify the problems and obstacles that exist in the actual operation of the internal and external monitoring mechanism in the power spot market so as to provide conducive suggestions for the government to effectively introduce and establish a truly independent third-party monitoring. The remainder of this study is structured as follows. Section 2 presents a review of the related literature works, followed by the model hypothesis, model building, and analysis in Section 3. Conclusion and policy suggestions are presented in Section 4.
2 LITERATURE REVIEW
Electricity market monitoring plays a key role under the conditions of free electricity market. (Chen et al., 2018; Xu et al., 2021). The core purpose of electric power monitoring is to ensure the efficient, fair, open, and impartial operation of the electric power market, meanwhile maximizing market efficiency and social benefits without damaging the power reliability and stability (Pinczynski and Kasperowicz, 2016; Du et al., 2021; Halkos and Nomikos, 2021). Power market operation monitoring can master the situation of the power market in real time by closely tracking the adjustment or addition of trading varieties, trading rules, trading parameters, and changes in related policies, thus identifying potential problems and risks in advance and then providing the reference for establishing the market simulation mechanism.
Therefore, the issues in the monitoring of the electricity market and prevention of incorrect electric usage behavior have attracted worldwide attention in the research field of the competitive electricity market (Lisin et al., 2016; Cheng and Yao, 2021), which has been fully embedded in sustainable energy development strategies. Many scholars have carried out research studies on the construction of the market monitoring index system and the measurement and monitoring of market power in the electric power market. In the research field of the measurement index of the electric market, (Lin et al., (2002) based on the market structure design, the concentration ratio (CR) has been proposed. Gan and Bourcier (2002a) and Gan and Bourcier (2002b) put forward the must-run ratio (MRR) index based on market supply and demand. Ding et al. (2003) put forward market price controllable (MPC). The Lerner index (LI) is presented by Zhao et al. (2003) based on the market efficiency design. In addition, Patton (2003) brings forward the Residual Supply Index (RSI), and Bataille et al. (2019) proposed the “Return on Withholding Capacity Index” (RWC) as a complementary index to the RSI. Amanibeni (2021) proposes a comprehensive approach for market power detection based on a centrality concept in social network analysis (SNA), and the obtained results show that SNA can be used as an effective tool for monitoring the market power in future smart grids with a plenty of players and complexity. These indexes, respectively, provided ideas and methods for the measurement and evaluation of the sellers’ market power in the electricity market from different perspectives, reflecting the size and changing rules of the market power and providing a lot of valuable information for the electricity market monitoring. After an overview of various indicators, Yu et al. (2022) analyzed and summed up the United States, Nordic, and Singapore electricity market monitoring indicator system design. Finally, the theoretical characteristics of each index and its advantages and disadvantages in the application are summarized, which has an enlightening effect on the countermeasures of multiple transaction entities in China’s electricity market.
In discussing the research on the establishment of monitoring institutions in the electricity market, Patton (2003) provided a brief overview of the positioning of electricity market monitoring agencies and recommended specific solutions to monitor the market power and market operation. Rahimi and Sheffrin (2003) summarized an effective market design and the key elements required to implement the market monitoring system, and then pointed out that the effectiveness of the electricity market is ensured by monitoring market inefficiencies, the possibility of market power abuse, and market power issues. By studying the monitoring experience of the electric power market in Britain, California, New Zealand, Spain, and other countries, Wolak (2005) expounded on the procedures of market monitoring and the independence of market monitoring procedures. Garcia and Reitzes (2007) elaborated on the reasons for the emergence of market power in the electricity market and the necessity of setting up an independent market monitoring agency for the electricity market. They also described some commonly used methods for monitoring the electricity market and weakening market power and finally drew conclusions about the approaches in practice and the reasons behind policy differences. Zhao et al. (2008) built a monitoring system for helping the regulator make decisions on the market policy and predicting the future market scenarios, which consists of a price forecast mechanism and market simulator. With the system theory of electricity market monitoring as its basis and by using principal component analysis, the study conducts empirical analysis on the operation of the electric power market in California from 2000 to 2007, which proved the practicality and importance of the electricity market monitoring and early warning function. Gao et al. (2008), Michaels (2008) took RTO and market monitoring institutions (MMI) as examples to study the important role which market monitoring agencies play in power market monitoring, such as supervising the electricity market competition to ensure that the electricity transaction will not be manipulated by the market power of the generator. Yang et al. (2021) investigated the development status of the power spot market in Gansu from the perspectives of power structure and transaction mode and also expounded the necessity and path for establishing the market monitoring mechanism.
From the previous literature, it can be discovered that most of the existing literature works focus on the monitoring of the power market from the perspective of monitoring methods and the evaluation of monitoring results, and little attention is paid to who should take the monitoring role, which means that the monitoring mechanism is not known. Currently, there are three main monitoring modes, namely, the government supervision, internal monitoring, and independent third-party monitoring. In Australia, New Zealand, and Europe, the government takes the role of monitoring, while PJM in the United States belongs to third-party monitoring. Due to their functions and complex interest relationships, the government and internal monitoring organizations cannot be well qualified for power market monitoring. However, it is very difficult to ensure the complete independence of China’s electric power market monitoring if the European and American monitoring models are replicated. Therefore, introducing third-party monitoring agencies to form an internal and external monitoring mechanism which suits China’s national conditions has become an important step for China’s electric power market reform and design. This was also the aim of this study. Under the theoretical framework of evolutionary game, this study constructed two models: one is the coordinated and balanced game model between third-party monitoring agencies and internal monitoring organization, and the other is the asymmetry evolutionary game model between interest groups, which consist of third-party monitoring agencies and internal monitoring organization, and government regulatory agencies, aiming to investigate how to guarantee the independence of third-party monitoring and the reliability and effectiveness of monitoring results to the maximum content under the internal and external monitoring mechanism.
3 MODEL CONSTRUCTION
As a crucial economic analysis tool, game theory has been widely used in various fields to explain some social phenomena (Su et al., 2018a; Su et al., 2018b; Ma and Sun, 2018; Xie et al., 2018). Based on the bounded rationality and incomplete information of the participants, evolutionary game theory breaks through the condition of complete rationality of traditional games, which has greatly developed game theory, making it more applicable (Smith, 1976).The operation efficiency of the dual-monitoring mechanism in the electricity market is the result of the continuous study of the respective interests of the system composed of government regulatory authorities, internal monitoring organizations, and third-party monitoring agencies and then adjusting its strategy accordingly, which is consistent with the evolutionary game theory. Therefore, by adopting the evolutionary game theory as the analysis tool and researching the evolution of participants’ strategies, this article finds out the underlying factors that propel government regulatory authorities, third-party monitoring agencies, and internal monitoring organizations to falsify supervision results and affect their strategic choices under evolutionary stability and equilibrium and then put forward some suggestions so that the monitoring efficiency of the power spot market can be improved.
3.1 Model Hypothesis and Building
The dual-monitoring mechanism of the electricity market refers to internal market monitoring organizations and third-party monitoring agencies complementing each other. Monitoring agencies are in a favorable position compared with the electricity market participants as a result of information asymmetry. Market internal monitoring organizations have potential interest relationships with power generators, while nowadays the independence of third-party monitoring agencies cannot be guaranteed, so the public must resort to government authorities to supervise in order to defend their own interests. Internal market monitoring organizations and third-party monitoring agencies are all for the purpose of making profits, while government supervision is mandatory and aims to ensure the effective operation of the market. Therefore, according to the purpose and status of each monitoring subject, we defined the market internal monitoring organization and third-party monitoring agencies as interest group 1 and government regulatory authorities as interest group 2, to investigate the game equilibrium results between the two interest groups. At the same time, there is also a game within the interest group 1, and the result of the game will directly exert influence on the government’s regulatory strategy. In particular, this section will construct two evolutionary game models for market internal monitoring organizations, third-party monitoring agencies, and government regulatory agencies: (1) the equilibrium game model between the third-party monitoring agencies and the internal market monitoring agencies within the interest group 1; (2) the asymmetric evolutionary game model between interest group 1 and interest group 2. The game relationships between the three stakeholders are shown in Figure 1.
[image: Figure 1]FIGURE 1 | Game relationship between the three stakeholders.
3.2 Game Between Third-Party Monitoring Agencies and Internal Market Monitoring Organizations
3.2.1 Basic Assumptions and Model Analysis
Under the internal and external monitoring mechanism, market monitoring is mainly conducted by the internal monitoring organizations of the electricity market trading and dispatching agencies and independent third-party monitoring agencies. On the one hand, because the monitoring reports and recommendations are made by third-party monitoring agencies and internal monitoring organizations, other power market participants have no access to know their authenticity due to information asymmetry. Therefore, third-party agencies and internal monitoring organizations are susceptible to power rent-seeking. On the other hand, it is not easy for third-party monitoring agencies to become truly independent. Even in the North American power market where the third-party monitoring model has been more mature, there are many contradictions and obstacles for independent third-party monitoring agencies, such as the tangible or intangible intervention from the monitored market participants’ management level, or third-party monitoring agencies’ budgets being actually controlled by some monitored participants. Moreover, China’s current electricity management system cannot provide a sound independent environment for third-party monitoring agencies, so it is hard for third-party monitoring agencies to publish unconstrained reports. In order to prevent power rent-seeking, supervision from government authorities plays an indispensable role in the internal and external monitoring mode. However, the supervision from government authorities has limitations, so third-party monitoring agencies and market internal monitoring organizations may conspire with each other to jointly conceal the true monitoring information or selectively publish reports that are beneficial to power generators. In addition, one of them may resort to power rent-seeking, too. Based on the aforementioned analysis, the hypotheses are proposed as follows:
Hypothesis 1:. the strategy set of the third-party monitoring agencies and the internal market monitoring organizations is {conspiracy, non-conspiracy}. [image: image] represents the probability of third-party monitoring agencies and the internal market monitoring organizations choosing a strategy of conspiracy, where [image: image] refers to the time, [image: image].
Hypothesis 2:. the probability of the conspiracy being exposed by the government regulatory department is [image: image], while the probability of not being exposed is [image: image] .When only one party chooses power rent-seeking, the probability of being investigated by the government regulatory authorities is [image: image] , and the probability of successfully avoiding supervision is [image: image] . Normally, conspiracy is easier to get away with the supervision of government regulatory authorities, so this article assumes [image: image] , which means the possibility of one-party power rent-seeking being exposed is greater.
Hypothesis 3:. when the conspiracy is discovered and punished by government regulators, both parties will be fined [image: image]. In the meantime, they will suffer losses [image: image] due to their bad reputation and the decline of credibility among the public. If it is not found, both parties will be benefitted [image: image] . When one of them resorts to power rent-seeking and is discovered by the government regulatory authorities, it will be fined [image: image] , and at the same time suffer losses [image: image] due to the worsening of their social reputation and credibility. Otherwise, the monitoring agency gets a positive return [image: image].We assumed a medium risk for third-party monitoring agencies and the internal market monitoring organizations, and the payoff matrix is shown in Table 1.
TABLE 1 | Payoff matrix between the third-party monitoring agency and the internal monitoring organization.
[image: Table 1]3.2.2 Game Equilibrium Analysis
Under government supervision, there is information asymmetry between government departments, third-party monitoring agencies, and market internal monitoring organizations that will make the game participant judge the strategies of other game participants based on historical experience, and they will continuously learn and adjust their own strategy in trials. Consequently, the dynamic adjustment of third-party monitoring agencies and internal market monitoring organizations’ strategies can be reflected by the replication dynamic process in the evolutionary game. Based on the payoff matrix in Table 1, this study computed the replicator dynamics equations of third-party monitoring agencies and internal market monitoring organizations and conducted analysis of the stability of their strategies, respectively.
[image: image] stands for the expected return when a third-party monitoring agency chooses to conspire, and [image: image] indicates the expected return when it chooses not to conspire and the average expected return is [image: image]; the equations are as follows:
[image: image]
[image: image]
[image: image]
Likewise, [image: image] denotes the expected return when a market internal monitoring agency chooses to conspire, [image: image] is the expected return when it chooses not, and [image: image] represents the average expected return; the equations are, respectively, as follows:
[image: image]
[image: image]
[image: image]
Since the game is a symmetrical game, the replicator dynamics equations of third-party monitoring agencies and market internal monitoring organizations selecting conspiracy strategy are the same, which are shown in Eq. 7.
[image: image]
Three equilibrium solutions are derived from [image: image], which are [image: image] , [image: image] and [image: image]
It should be denoted that [image: image] and [image: image] which, respectively, indicate the expected utility of colluding by two parties and colluding by one party alone. When [image: image], [image: image].When [image: image], [image: image]. In order to investigate the violations of third-party monitoring agencies and internal monitoring organizations, this study only focused on [image: image]. Similarly, when [image: image], we have [image: image]. When [image: image], [image: image] is obtained. If the government supervision authorities do not fully fulfill their responsibility of supervising, the conspiracy between third-party monitoring agencies and the market internal monitoring organizations is unlikely to be found. If they are exposed soon after the conspiracy, they will not suffer serious economic penalties and that means [image: image] is small. In this case, we have [image: image] . When [image: image] and [image: image], we have [image: image], [image: image], and [image: image]. It can be obtained from the stability theorem of the differential equation that [image: image] and [image: image] are the two stable equilibria of the game model, and the dynamic phase diagram of the game model is shown in Figure 2.
[image: Figure 2]FIGURE 2 | Phase diagram of the evolutionary game.
As shown in Figure 2, (conspiracy, conspiracy) and (non-conspiracy, non-conspiracy) may be the stable equilibrium strategy solution of the evolutionary game system. The final convergence point of the long-term evolution of the system will finally converge depending on the value of parameters [image: image] and the setting of the initial state of the game. In particular, if the initial value of [image: image] falls in the interval [image: image], the evolution model will finally stabilize at [image: image]. If the initial value of [image: image] falls in the interval [image: image], the evolution model will finally stabilize at [image: image]. The larger the [image: image], the more conducive it is for the evolutionary game system to converge to the equilibrium point (non-conspiracy, non-conspiracy).
3.3 Game Between Government Regulators and Interest Group 1
3.3.1 Basic Assumptions and Model Building
We defined violations as rent-seeking unilaterally or colludingly by third-party monitoring agencies and internal agencies, so we assumed that the behavioral strategy set of the interest group 1 comprising third-party monitoring agencies and internal market monitoring organizations is {violation, non-violation}.The behavioral strategy set of interest group 2, namely, the government regulatory authorities that represent the appeal of the public interest, is {supervision, non-supervision}.In this model, [image: image] stands for the probability of interest group 1 choosing violation and interest group 2 choosing supervision, while [image: image] is time and [image: image]. [image: image] indicates the probability of the violation of interest group 1 successfully being discovered when the government regulatory authorities choose to supervise. Similarly, [image: image] represents the probability of interest group 1’s violations being discovered and punished when interest group 2 chooses not to supervise, and [image: image] .When the violation of interest group 1 is exposed by the government regulatory authorities, the penalty it received is [image: image], and [image: image] denotes the gain when its violation is not discovered. When the electricity market monitoring works well (including the exposure of violations by interest group 1 and interest group 1 choosing non-violation), the positive effect acquired by interest group 2 is also [image: image]. In addition, the supervision cost of interest group 2 is [image: image]. Assuming that interest group 1 and interest group 2 are risk-neutral, the payoff matrix of this game model is shown in Table 2.
TABLE 2 | Payment matrix between interest group 1 and interest group 2.
[image: Table 2]3.3.2 Game Equilibrium Analysis
From Table 2, [image: image] stands for the expected return when interest group 1 chooses violation, and [image: image] represents the expected return when the non-violation is selected, and the average expected return is [image: image], so the equations are as follows:
[image: image]
[image: image]
[image: image]
Therefore, the replicator dynamics equation of interest group 1 choosing violation is as follows:
[image: image]
Similarly, [image: image] is the expected return when the interest group 2 chooses supervision, and [image: image] denotes the expected return when it chooses non-supervision, and the average expected return is [image: image], and the equations are as follows:
[image: image]
[image: image]
[image: image]
Therefore, the replicator dynamics equation of interest group 2 choosing violation is as follows:
[image: image]
Simultaneous Equations 11 and 15 and Eq. 16 can be obtained.
[image: image]
By solving Eq. 16, all the strategic equilibrium solutions of the evolutionary game model can be obtained, which are[image: image], [image: image], [image: image], [image: image], and [image: image].
The Jacobian matrix is shown as Eq. 17.
[image: image]
According to Lyapunov stability theory, when the trace of the Jacobian matrix is less than 0 and the determinant is bigger than 0, the equilibrium point is the stability point. Based on the theory, an analysis of the stability of each local equilibrium point is conducted, and the results are shown in Table 3.
TABLE 3 | Analysis of the local equilibrium.
[image: Table 3]It is easy to obtain from the aforementioned analysis that [image: image] represents the relative net payment of the government regulatory authorities choosing non-supervision and interest group 1 choosing violation. [image: image] is the relative net payment of interest group 1 when government regulatory authorities choose supervision while interest group 1 chooses violation. [image: image] stands for the relative net payment of interest group 1 choosing violation, and then, the government regulatory authorities choose supervision.
This study assumes that [image: image] and [image: image], and [image: image], [image: image]. Since the parameters are different, this study carries out an analysis on four cases.
Case 1:. if the government authorities do not fully fulfill their regulatory responsibilities and [image: image], [image: image] tends to zero, the game system will converge to [image: image] .In this case, for interest group 1, no matter which strategy the government regulators choose, the relative net payment of interest group 1 always remains positive, so interest group 1 tends to violate the rules. As for the government regulators, whether the interest group 1 violates or not, the relative net payment of government regulators is always positive when they do not supervise, so they are prone to not to supervise, and the game system is ultimately stable at (violation, non-supervision).
Case 2:. if the government authorities do not fully fulfill their regulatory responsibilities and [image: image] tends to zero, [image: image] and [image: image], the game system will converge to [image: image]. Under this circumstance, whether the government regulators choose to supervise or not, the relative net payment of interest group 1 always stays positive; therefore, interest group 1 is inclined to violate the rules. As for the government regulators, whether interest group 1 violates the rules or not, the relative net payment that the regulatory department chooses to regulate is always positive; hence, the regulators tend to supervise. Also, the game system is finally stable at (violation, supervision).
Case 3:. if the government authorities do not fully fulfill their regulatory responsibilities and [image: image] tends to 0, [image: image], [image: image], neither interest group 1 nor government regulatory authorities would gain benefit. Consequently, there is no stable local equilibrium.Situation 4: when the government authorities fully fulfill their regulatory responsibilities, [image: image] and [image: image], the game system will converge to [image: image]. In this context, whether the government regulatory authorities supervise or not, the relative net payment of interest group 1 for non-violation is always positive, so interest group 1 tends not to violate. For the government regulators, whether the interest group 1 violates the rules or not, the relative net payment that it chooses not to regulate is always positive; thus, the regulators tend not to supervise. Therefore, the game system is ultimately stable at (non-violation, non-supervision).Combined with the reality of the electricity market operation, currently government regulatory authorities do not fully fulfill the regulatory duty and the cost of supervision is too high, given that the only incentive for them is their wages. In addition, it is also difficult for other market entities in the power market to supervise interest group 1; hence, the game system satisfies the conditions in case 1, converging to (violation, non-supervision), which is unsatisfying. In the game between interest group 1 and interest group 2, points [image: image] and [image: image] are superior to points [image: image], among which [image: image] is the optimal strategic point. If the game is to stabilize at the local equilibrium point [image: image], the penalty should be reduced to satisfy the condition of [image: image], and the supervision cost [image: image] should be reduced to make [image: image]. If the game system is finally stable at [image: image], the supervision should be strengthened, which means [image: image] should be increased, and penalty [image: image] should be increased too so that [image: image] will change from positive to negative.
4 SIMULATION ANALYSIS
4.1 Simulation Study on the Game Between Third-Party Monitoring Agencies and Internal Market Monitoring Organizations
To analyze the impacts of different parameters on the evolutionary process specifically, we further used the MATLAB simulation tool to conduct the sensitivity analysis of the evolutionary game model proposed in Section 3.2. First, in order to explore the impact of government department supervision intensity on the strategic choice of internal market monitoring organizations and third-party monitoring agencies, this study carried out the numerical simulations of evolutionary game paths under different p-values. The initial values of parameters are set as [image: image], [image: image], [image: image], [image: image] , [image: image], [image: image], [image: image], and [image: image] is set as 0.6, 0.8, and 1.0, respectively. The simulation results are shown in Figure 3. The horizontal axis represents the evolution time, and the vertical axis represents the proportion of third-party monitoring agencies and internal market monitoring organizations that chose the “conspire” strategy. As can be seen from Figure 3, as the collusion probability between third-party monitoring agencies and internal market monitoring organizations being detected by government regulatory departments increases gradually, both parties will turn to the strategy of “not conspire” more quickly under different initial probabilities of collusion, and finally, the game equilibrium converges to [image: image]. In other words, the increase of P significantly accelerates the game evolution convergence. With the increase in iteration steps, the third-party and the market monitoring agency finally choose not to collude. In addition, as the third-party monitoring agency and internal market monitoring organizations know that their behaviors will be strictly supervised by the government regulatory department, the probability of choosing the strategy “not conspire” for them will be higher.
[image: Figure 3]FIGURE 3 | Dynamic phase diagram of the evolutionary game under different [image: image] values. (A) P = 0.6, (B) P = 0.8, and (C) P = 1.0.
The asymptotic stability analysis of the evolutionary game in Section 3.2 shows that the game equilibrium between the third-party monitoring agencies and the internal market monitoring organizations is closely related to the cost and benefit under different strategic choices. In order to describe more intuitively the evolution trajectory of the game between third-party monitoring institutions and market monitoring institutions under different collusive benefits and different levels of punishment from government and public, respectively, we, then, further made the sensitivity analysis for each model parameter. In particular, we simulated the evolution path of game system equilibrium under different value combinations of [image: image] and [image: image], [image: image], and [image: image], [image: image], and [image: image], respectively. The p-value was set as 0.8. In the following analysis, except for the parameters under study, the values of other parameters were consistent with those previously set. The simulation results are shown in Figures 4–6. Still, the horizontal axis represents the evolution time, and the vertical axis represents the proportion of third-party monitoring agencies and internal market monitoring organizations that chose the “conspire” strategy. As can be seen from Figure 4, the higher the potential penalty faced by third-party monitoring institutions and internal market monitoring institutions, the higher the probability of both parties choosing the “not conspire” strategy, and the faster the game equilibrium converges to the point [image: image]. In other words, higher financial penalties may force the monitoring agencies to make decisions that comply with relevant laws and regulations. Therefore, the government should consider increasing the financial penalty for the rent-seeking behavior of monitoring institutions so as to increase the potential economic cost of collusion between third-party monitoring agencies and internal market monitoring institutions and prevent their rent-seeking behavior.
[image: Figure 4]FIGURE 4 | Dynamic phase diagram of the evolutionary game under different values of [image: image] and [image: image]. (A) F′ = 15, T′ = 25; (B) F′ = 45, T′ = 45; and (C) F′ = 75, T' = 65.
When third-party monitoring agencies and internal market monitoring organizations choose not to implement effective inspection and tend to collude, they will suffer certain losses due to their bad reputation and reduced credibility among the public once their rent-seeking behavior is disclosed. It can be seen from Figure 5 that when the value of the losses due to the adverse social influence increases, the evolution speed of both third-party monitoring agencies and internal market monitoring organizations in choosing “not conspire” will increase, which leads to the persistent choice of “not conspire” of both parties. In addition, as the monitoring agencies know that their behavior will be subjected to strict public supervision and the rent-seeking behavior will have a serious negative impact on their reputation, the probability that they choose the “not conspire” strategy will be higher. Therefore, the government can strengthen the information disclosure of non-compliant power monitoring agencies so as to give full play to the effective supervision role of the society. In addition, it is necessary to reduce the public’s tolerance for the illegal rent-seeking behavior of monitoring agencies so that the monitoring agencies will generate greater social pressure when they choose a “collusion” strategy. This will more effectively prevent the collusion between third-party monitoring agencies and internal market monitoring organizations.
[image: Figure 5]FIGURE 5 | Dynamic phase diagram of the evolutionary game under different values of [image: image] and [image: image]. (A) S' = 35, S = 35; (B) S' = 65, S = 65; and (C) S' = 80, S = 80.
The impact of the benefit gained by the monitoring agencies for rent-seeking behaviors on the two stakeholders’ strategy selection process is shown in Figure 6. We can find that when the profit that both third-party monitoring agencies and internal market monitoring organizations may get from their collusion behavior is lower, the probability of the two stakeholders choosing the strategy “not conspire” will approach 1 more quickly in the long run. This illustrates that the lower potential benefits of collusion by the monitoring agencies are conducive to better realizing the functions of both third-party monitoring agencies and internal market monitoring agencies, thus conducting effective and fair monitoring of the operation of the electricity market.
[image: Figure 6]FIGURE 6 | Dynamic phase diagram of the evolutionary game under different values of [image: image] and [image: image]. (A) F = 200, T = 100; (B) F = 160, T = 80; and (C) F = 120, T = 60.
4.2 Simulation Study on the Game Between Government Regulators and Interest Group 1
Figure 7 shows the simulation results of equilibrium point [image: image] of the game between government regulators and interest group 1. The initial values of each parameter are set as [image: image], [image: image], [image: image], [image: image], and [image: image]. It can be seen that as the number of iterations increases, the proportion of interest group 1 choosing not to violate regulations keeps on increasing, while the proportion of government regulatory departments choosing to regulate keeps on decreasing. We can also find that the probability of the two stakeholders choosing strategies “Non-Violation” and “Non-Supervision” will approach 1 more quickly in the long run. In Figure 8, we described the influence of the parameter [image: image] on the evolutionary process of the two stakeholders’ strategies under the same parameter setting. It can be seen that as the probability of the violation of interest group 1 successfully being discovered when the government regulatory authorities choose to supervise gradually increases, the proportion of interest group 1 formed by third-party monitoring agencies and internal market monitoring agencies choosing not to violate regulations gradually increases. Also, the increase in [image: image] significantly accelerates the convergence process of game equilibrium toward [image: image]. Faced with stricter government supervision measures, the power monitoring agencies know that their collusive behaviors are more likely to be detected and will suffer certain losses. Then, they will tend to choose not to violate. Therefore, the severe crackdown on violations by the government regulatory authorities can play a certain deterrent effect on power monitoring agencies so that the psychological expectations of power monitoring agencies for their violations to successfully escape government supervision continue to decrease. As the behavior of power monitoring agencies becomes more standardized and the proportion of violations continues to decrease, the government is more inclined to not supervise, and the system equilibrium will tend to be stable at the point (0, 0).
[image: Figure 7]FIGURE 7 | Simulation result of the point [image: image].
[image: Figure 8]FIGURE 8 | Convergence phase diagram of the game system with different Q values. (A) Q = 0.1; (B) Q = 0.5; and (C) Q = 0.9.
5 CONCLUSIONS AND SUGGESTIONS
At present, China’s electricity spot market is still in its initial stage, and the market rules need to be further improved. Some unavoidable deficiencies or loopholes in the market rules give market participants the opportunity to manipulate the market. Therefore, only by closely monitoring the operation of the power market can the construction of the power market be further promoted. A set of the comprehensive regional power market monitoring system can make a difference in ensuring the effective operation of the electric power market, avoiding uneconomic incentives resulting in market design and making sure that laws and regulations are well obeyed during market operation. Currently, among all mainstream monitoring modes, the internal and external monitoring mechanism is a monitoring mode that is adapted to China’s current national situation, the power grid situation, and the progress of the power spot market. However, restricted by China’s power management system, the independence of third-party monitoring agencies cannot be guaranteed. Consequently, third-party agencies may yield to the temptation of profit or to the pressure exerted by stakeholders and conspire with internal monitoring organizations, resulting in power rent-seeking. Based on this fact, this study constructed the evolutionary game models between the third-party monitoring agency and the internal monitoring organization of the power market, as well as between the interest groups constituted by internal and external monitoring agencies and the government regulatory authorities, respectively. Through the analysis of the evolution of participants’ strategies, the following conclusions have been drawn:
(1) Third-party monitoring agencies and market internal monitoring organizations are more inclined to conspire with each other to seek profit, with the main reason being a relatively high profit can be obtained through conspiracy and power rent-seeking. Therefore, in order to prevent the conspiracy, it is necessary to reduce the profits they can get through conspiracy. , In particular, the greater the probability that the government regulatory department finds the collusion of monitoring institutions and the economic penalty for the collusion, the greater is the negative social impact that monitoring institutions suffer from the disclosure of the violation, which is conducive to the evolution of the game system to the ideal state.
(2) Third-party monitoring agencies tend to choose violation strategies because it is profitable to fabricate results or take the path of power rent-seeking with pollutant discharging enterprises. But the fundamental reason is that the independence of the third-party monitoring agencies cannot be guaranteed. For example, an interest relationship may be found between the staff of the third-party monitoring agencies and the monitored entities. Therefore, the key point of lowering third-party violation is to cut off such interest links and reduce the benefits obtained by third-party monitoring agencies obtained from illegal practices.
(3) The cost of long-term supervision by government regulatory authorities is relatively high, and there are no additional rewards for them. So it is inevitable that there is no regulatory motivation, and long-term effective supervision cannot be conducted. For government regulators, although negligence will be punished, if the net income for fulfilling their duty of supervising is less than the penalty for negligence, then, non-supervision will be a better choice. Therefore, raising the cost of penalties for regulator failure can motivate the supervisors to perform their duties.
The key element for the effectiveness of the electricity market’s internal and external monitoring mechanism lies in the independence of third-party monitoring agencies, and government monitoring can be carried out cost-effectively and effectively. Combined with the conclusions of this study, the following policy suggestions are put forward:
(1) Continuously to improving relevant laws and regulations and continuously promoting the improvement of electricity market supervision laws and regulations; at the same time, efforts should be made to implement the requirements and penalties for the violations of various laws and regulations.
(2) Local government can employ several part-time but professional and authoritative people to form a monitoring team. The team members are only responsible for reporting the monitoring results to the government regulators and are authorized to publish monitoring reports in fixed terms. At the same time, the trading center must guarantee the independence of internal monitoring personnel and cannot interfere with its work or review the monitoring result. In this way, the independence of monitoring agencies is guaranteed without paying too much cost.
(3) Third-party monitoring agencies should be authorized by government regulatory authorities and publish monitoring reports regularly. Market trading and dispatching institutions have no right to neither intervene in “third party” monitoring nor review the monitoring report in advance. The trading center should charge the “market monitoring fee” to all market participants to offset the operation cost of “third-party” monitoring agencies and ensure their financial independence.
Based on the earlier research, subsequent research can explore the impact of the evolutionary stability strategies of each game subject on the market efficiency from the perspective of the electricity market. It is also advisable to explore the impact of the evolutionary stability strategy of each game player on social welfare.
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While there is extensive literature assessing the impact of command-and-control and market-incentive environmental regulation on carbon emissions, it overlooks the fact that command-and-control environmental regulation and market-incentive environmental regulation are the embodiment of the national concept of green development. When a national leader with a green development philosophy is in power, local governments (due to the competition among them) adjust the economic development strategies and targets in their jurisdictions according to the leaders’ philosophy, resulting in differences in urban carbon emissions. Based on Chinese urban panel data from 2010 to 2016, this study uses a difference-in-differences approach to assess the impact of a national leader with a green development philosophy in power on carbon emissions in cities with different political sensitivities and the mechanisms of the impact. Our study finds that after the change in national leadership, the carbon intensity of high politically sensitive cities decreases significantly compared to low politically sensitive cities. We further find that increasing urban green areas and limiting the development of high-polluting industries are two ways to reduce carbon emission intensity in highly politically sensitive cities. A heterogeneity test demonstrates that the higher the level of economic development of the region where the city is located, the fewer the number of industrial enterprises in the city, the lower the total industrial output value of the city, and the more domestic enterprises in the city, proving that the change of national leaders more significantly impacts the city’s carbon emission. Our study suggests that policymakers should pay careful attention to the system of appraisal of officials, urban greening and development of highly polluting industries, and differentiated environmental policies.
Keywords: leadership change, green development concept, political sensitivity, urban carbon intensity, high-pollution industries, urban greening
INTRODUCTION
Since China’s reform and opening up in 1978, the Chinese economy has created a remarkable “Chinese miracle.” The rapid economic growth has been accompanied by a significant increase in energy consumption and greenhouse gas (GHG) emissions (An et al., 2021). Since 2006, China has become the world’s largest emitter of carbon dioxide (Zhao et al., 2020), and the issue of GHG emission reduction has become a growing concern. Considering the deteriorating environment and the consequential international pressure, the Chinese government has developed an ambitious GHG reduction plan (Cheong et al., 2016). In the November 2014 US-China Joint Statement on Climate Change, China set a national autonomous contribution target to peak CO2 emissions around 2030. In the general debate of the 75th session of the UN General Assembly in 2020, China further proposed the goal of achieving carbon neutrality by 2060, in addition to the goal of achieving carbon peaking by 2030 (Xian et al., 2022). Reducing CO2 emissions and achieving peak carbon and carbon neutrality have produced a broad and profound social change in China’s economic development.
Economic development goals and policies reflect the central government’s development philosophy. The formulation of the carbon peaking and carbon neutrality goals indicates that green development is an important direction for China’s economic development at this stage and implies that the current central government has a strong green development philosophy. The 18th National Congress of the Communist Party of China, held in November 2012, elected a new central leadership with Xi Jinping as the core; the 12th National People’s Congress, held in March 2013, formally established a new national leadership with Xi Jinping as the president. During his administration, General Secretary Xi Jinping has proposed strong green development concepts, such as: “A good ecological environment is the fairest public product and the most universally beneficial welfare of people’s livelihood,” “Building an ecological civilization is related to people’s welfare and the future of the nation,” and “clean waters and green mountains are gold and silver mountains.” This green development philosophy was evident as early as when he was in power in the local government. In August 2005, when Xi Jinping was the Party Secretary of Zhejiang Province, he first proposed the scientific assertion that “clean waters and green mountains are gold and silver mountains” during an inspection in Anji, Huzhou, and Zhejiang Province. To manage the environmental damage in Zhejiang Province in the course of rapid economic development, Xi Jinping proposed a series of environmental pollution remediation measures during his administration.
This study has remarkable political and institutional context, it is certain that the Chinese government plays an active role in promoting economic development (An et al., 2016; Niu and Zhou, 2022). However, it is important to note that the concept of green development does not act directly on the ecological environment or GHG emissions and that municipal governments play an important role in this process (Shen et al., 2015; Xu et al., 2016). Municipal governments are the main subjects of implementing national macroeconomic policies at the micro-level. Municipal governments have a large, huge, and flexible discretion on whether and how national policies are implemented, which is an important requirement for “politics out of Zhongnanhai” (Xu, 2011). In China, under the system of “political decentralization” and “fiscal decentralization,” local governments often control a series of important resources such as land and credit within their jurisdiction. Under the promotion appraisal mechanism, which uses GDP as the appraisal indicator, local governments constantly seek to maximize regional GDP (Li and Zhou, 2005), hoping to stand out in the competition among local governments. With the changing relationship between the state and society and the adjustment of central government policies, the competitive landscape of local governments is gradually changing, and the space for local governments to derive economic benefits from GDP competition is shrinking (Sun et al., 2021). With the increasing public outcry for environmental protection, the central government adjusted its evaluation criteria for local governments and gradually included the quality of environmental protection in the promotion criteria for local government officials (Pu and Fu, 2018). Performance in environmental protection will positively impact the promotion of local officials (You et al., 2019). This is an important reason why changes in the central government’s green development concept affect urban carbon emissions, and it is also an important theoretical basis for this study.
When local governments have high political sensitivity, they usually adjust local economic policies in time to cope with the economic development trend of the new stage, while local governments with low political sensitivity will adjust economic policies less. Thus, when national leaders with a distinctive green development philosophy are in power, local governments with different political sensitivities adjust their local economic policies, which has a strong political impact on local enterprises, resulting in differences in urban carbon emissions. Subsequently, quantifying the political sensitivity of cities will be an important aspect of analyzing the impact of the change in national leaders on the change in urban carbon emissions. The literature typically measures political uncertainty using synthetic indices or important local leadership changes and lacks a quantification of the degree of political uncertainty at the city level. Therefore, we use economic policy uncertainty in cities as a proxy for political sensitivity to examine the impact of governing by national leaders with a strong green development philosophy on urban carbon emissions.
Economic policy uncertainty is used to portray the frequency of economic policy changes and adjustments in a country, region, or city, and aims to effectively capture the sensitivity of a country, region, or city to changes in national policy. The more frequently and timely a city’s economic policies are adjusted when the country’s leaders change, the higher the uncertainty of the city’s economic policies while reflecting the city’s higher political sensitivity. On the contrary, if certain cities are less likely to adjust their economic policies before and after a change in the country’s leadership, economic policy uncertainty is lower in these cities while reflecting their lower political sensitivity. Thus, economic policy uncertainty is an excellent proxy variable for quantifying political sensitivity in cities. Therefore, this study uses the economic policy uncertainty index at the city level in China constructed by Yu et al. (2021) as a proxy variable for political sensitivity in Chinese cities. We divide cities into high and low political sensitivity groups using the median of economic policy uncertainty for the full sample and analyze the changes in carbon emissions in cities with different political sensitivities when the country leader changes.
This study proceeds as follows. First, based on a panel data of Chinese cities from 2010 to 2016, we use the election of General Secretary Xi Jinping as the national leader as the time of policy occurrence, and cities with higher political sensitivity as the treatment group and cities with lower political sensitivity as the control group. Thereafter, using a difference-in-differences (DID) approach, we assess the impact of a national leader with a green development philosophy in power on urban carbon emissions. Second, this study considers two influence mechanisms, the development of highly polluting industries and urban greening, and analyses whether local governments achieve carbon reduction through these two influence mechanisms after the change of top national leaders. Third, this study considers the impact of city characteristics—such as the location of the city, the number of industrial enterprises in the city, the output value of industrial enterprises, and the number of enterprises of different nature—to evaluate the effect of the governance of national leaders with distinct green development concept on urban carbon emission reduction more comprehensively.
Our main contributions of this study are the following. In the existing literature, synthetic indices or political events are usually used to measure policy sensitivity. For example, Baker et al. (2016) constructed a policy uncertainty index for the Chinese economy. An et al. (2016), Cheng et al. (2021), and Xu et al. (2016) measured policy uncertainty using the change of municipal party secretaries and mayors. The shortcomings of such measures are that they do not consider the regional heterogeneity of economic policy changes in China (Shi et al., 2020) and the lack of the quantification of the degree of political sensitivity in different regions. Moreover, the uncertainty of urban economic policy reflects the city’s political sensitivity, and the frequency and speed of the adjustment of the economic policy system depend on the level of political sensitivity. This study measures urban political sensitivity using an index of economic policy uncertainty at the city level in China constructed by Yu et al. (2021), fully considering economic policies’ regional heterogeneity.
Second, this study examines the impact of governing by leaders with a green development philosophy on urban carbon emissions. The existing literature has adequately assessed the policy effects of environmental regulation in recent years, ignoring the fact that environmental regulation originates from central government decisions. For example, Cui et al. (2021) and Zhu et al. (2022) elevated the policy effect of China’s carbon emission trading. Liu et al. (2021) analyzed the carbon emission reduction effect of sustainable development goals. Chen and Wang (2022) explored the impact of low-carbon city pilot. In essence, environmental regulation reflects the development philosophy of the country’s leaders. Moreover, due to the institutional background of “political decentralization” and “fiscal decentralization” in China and the promotion assessment mechanism focusing on relative performance, the political sensitivity of local governments is an important factor affecting the effect of central policies.
Third, this study analyzes how the leadership with the green development concept affects carbon emission levels in different politically sensitive cities. Since local governments in China have strong control and influence over the local economy, we mainly consider the development of high-pollution industries and urban greening as two influencing mechanisms. Through these two mechanisms, we explore the carbon reduction mechanisms in cities with different political sensitivities when leaders with a green development philosophy are in power.
LITERATURE REVIEW
This study mainly involves two types of research literature. The first type is related to the policy effect assessment of environmental regulation. In recent years, the Chinese government has implemented a series of environmental regulations to meet carbon neutrality and carbon peaking goals. Environmental regulation is the most important factor affecting energy saving and emission reduction (Shuai et al., 2017; Acheampong et al., 2019; Ouyang et al., 2020), including command-and-control environmental regulation and market incentive environmental regulation. These environmental regulations have effectively reduced energy consumption in numerous countries (Laplante and Rilstone, 1996; Omer, 2008; Zhou and Huang, 2016; Shahsavari and Akbari, 2018; Pei et al., 2019). According to existing studies, in terms of command-and-control environmental regulation, the Chinese government has issued a series of policies, such as the “Thousand Enterprises” energy-saving policy (Ma and Liang, 2018), the carbon emission target as a binding indicator in the “Eleventh Five-Year Plan” (Liu et al., 2021), the national fiscal policy on energy saving and emission reduction (Lin and Zhu, 2019), and low-carbon city construction (Song et al., 2020). These command-and-control environmental regulations have led to significant reductions in energy intensity and improvements in energy efficiency in all provinces during the Eleventh Five-Year Plan period (Pan et al., 2019). In terms of market-driven environmental regulation, China has conducted pilot policies, such as sulfur dioxide emission trading (Hou et al., 2020), carbon dioxide emission trading (Wang et al., 2019; Yu et al., 2021; Zhang and Wang, 2021; Yu et al., 2022), and energy consumption permit trading (Zhang et al., 2021). Implementing market-incentivized environmental regulation has significantly reduced pollutant emissions and promoted energy efficiency through technological innovation (Pei et al., 2019), essentially achieving the win-win situation for environmental benefits and efficiency advocated by the Porter hypothesis (Wang et al., 2019). This is not only beneficial for China’s coordinated regional development and green, low-carbon transition but also for sustainable social development (Jiang et al., 2016; Wang et al., 2019).
The second type of literature is related to policy uncertainty, which, as a part of market risk, has an important impact on the economy’s stability and development. There are two main types of measures of policy uncertainty. The first measure is based on a composite index (Shah et al., 2021; Tran and Houston, 2021), and the research related to economic policy uncertainty mainly adopts the Economic Policy Uncertainty Index constructed by Baker et al. (2016), which measures economic policy uncertainty based on the index of newspaper text, and applies this construction method to different countries and regions. Similar to this method, Li et al. (2020) constructed China’s monthly EPU index based on three national newspapers, and Huang and Luk (2020) constructed China’s daily EPU index based on ten local newspapers (Deng et al., 2019; Dong et al., 2022; Huang, 2022; Niu and Zhou, 2022). Julio and Yook (2012) discuss the impact of policy uncertainty on investment in the context of national elections in 48 countries between 1980 and 2005, using the election of national leaders as a proxy variable for policy uncertainty. An et al. (2016), Cheng et al. (2021), and Xu et al. (2016) used municipal secretary or mayoral turnover as a proxy variable for policy uncertainty. Francis et al. (2021) constructed a weighted policy uncertainty index using Google political election news, a tax expiration index, a CPI forecast spread, and a federal procurement forecast spread.
From the available literature, the assessment of the policy effects of environmental regulations implemented in China in recent years has ignored the particular political-institutional context of China, which has a hierarchical tradition; the “leader-will” in the political ecology leads to the widespread “supremacy” thinking of lower-level officials, which is the main reason for effective environmental regulation. Moreover, the central government has absolute authority over the personnel appointments of local officials, and in addition to the Party Congress, the central government adjusts local personnel appointments through promotion, demotion, retirement, exchange, and other institutional provisions. Thus, environmental regulation is essentially a reflection of the development philosophy of the country’s leaders, and leaders who govern with a green development philosophy will naturally enact a range of environmental regulations. When the local officials appointed by the central government have high political sensitivity, the local government will adjust economic policies in time to complete the development goals and tasks in the new stage. On the contrary, when the local officials have low political sensitivity, the local government will adjust economic policies less. Therefore, the economic policy uncertainty of local governments reflects the political sensitivity of local governments. In terms of quantitative policy uncertainty, the uncertainty of China’s economic policy constructed by Baker et al. (2016) ignores regional heterogeneity and fails to account for the differences in policy uncertainty across regions. Consequently, as a proxy variable for policy uncertainty, the local official turnover lacks a quantification of the degree of policy uncertainty.
Based on the above analysis, we choose the economic policy uncertainty index constructed by Yu et al. (2021) at the Chinese city level to reflect the political sensitivity of each city. Yu et al. (2021) improved the Chinese economic policy uncertainty index constructed by Baker et al. (2016) by considering the contextual differences between the Chinese and English expressions, and took 460 newspapers in the CNKI newspaper database as the data source for text analysis and, for the first time, extended the economic policy uncertainty index from China’s national level to China’s provinces and cities.
METHOD AND DATA
Econometric Model
As mentioned above, in November 2012, the 18th National Congress held in China elected a new central leadership with General Secretary Xi Jinping as the core, and the following year Xi Jinping was formally elected President of the 12th National People’s Congress. New leaders often come to power with new governing philosophies, and such changes may alter the economic policies of local governments, while the political sensitivities of local governments may influence the strength of the policy effects. Secretary Xi Jinping is a leader with a distinct concept of green development. After he took office, he successfully proposed several green development concepts, such as “clean waters and green mountains are gold and silver mountains” and “man and nature coexist in harmony.” Thus, a change in national leaders may lead to significant differences in carbon emission levels in cities with different political sensitivities. The event of the election of General Secretary Xi Jinping as president provides an excellent quasi-natural experiment to assess the relationship between political sensitivity and urban carbon emissions.
We use a DID approach to explore the effect of political sensitivity on urban carbon emissions and the city-level economic policy uncertainty index constructed by Yu et al. (2021) to capture the political sensitivity of cities in China. The index counts the proportion of articles containing economic policy and keywords indicating uncertainty to the total number of articles containing the keyword “economy” in each city’s news daily and uses this value to quantify economic policy uncertainty in each city. We divide the full sample into two groups of high and low political sensitivity using the median of the economic policy uncertainty index for each city and define cities with high political sensitivity as the treatment group and cities with low political sensitivity as the control group. By distinguishing the treatment group and the control group, we obtain the influence of different political sensitivities on the difference in urban carbon emissions. The specific model is as follows:
[image: image]
where the explanatory variable [image: image] is the carbon emissions intensity; [image: image] is a dummy variable, indicating the change of national leaders; [image: image] indicates the period from 2013 to 2016; [image: image] indicates the period from 2010 to 2012; [image: image] indicates a dummy variable for the urban treatment group; [image: image] is the treatment group, indicating cities with political sensitivity above the median level of all cities; [image: image] is the control group, indicating cities with political sensitivity below the median level of all cities; and [image: image] is the core coefficient of this paper. If the coefficient is significantly negative, it indicates that cities with high political sensitivity can timely and effectively change environmental protection policies and reduce urban carbon emission intensity after national leaders with a distinct concept of green development take office. [image: image] denotes the set of control variables at the city level that may affect the carbon intensity of a city, including the level of economic development ([image: image]) and its squared term ([image: image]), foreign direct investment ([image: image]), the level of technological development ([image: image]), and government input ([image: image]). [image: image] represents the individual fixed effect; [image: image] indicates the time fixed effect, and [image: image] is the random disturbance term.
Variables and Data
The carbon intensity of cities ([image: image]) is this study’s core explanatory variable. The selection of carbon emission intensity instead of total carbon emission in this study is mainly based on the following considerations. First, as the world’s largest developing country, China is in the stage of rapid urbanization and industrialization, and its economy and energy consumption are both growing rapidly; hence, the increase in total carbon emissions is an inevitable result. Therefore, focusing on the carbon intensity of cities makes sense because the same economic goals will be achieved with lower total carbon emissions. Second, numerous environmental regulation policies formulated by the Chinese government mainly aim at carbon emission intensity; hence, we chose carbon emission intensity rather than total carbon emission as the explanatory variable. Third, reducing the intensity of carbon emissions is an important goal that China is pursuing until it achieves peak carbon by 2030 and carbon neutrality by 2060. For developing countries, emission reduction does not necessarily mean the reduction of total carbon emissions but also reducing carbon emissions per unit of GDP. The carbon emission intensity in this study is equal to the total carbon emission divided by the total urban GDP, in which the total carbon emission is equal to the physical consumption of electricity, coal, and oil multiplied by their respective carbon emission factors. In the regression analysis, the intensity of carbon emissions in cities takes the form of a natural logarithm.
To control for factors that may affect the intensity of urban carbon emissions, we include a set of city-level control variables in the regressions. First, we use the natural logarithm of urban per capita GDP to measure urban economic development and incorporate its square term into the regression equation to test the possible non-linear relationship between urban economic development level and carbon emission intensity. Second, we use urban public finance expenditures divided by public finance revenues to measure government inputs ([image: image]). Government input is an important factor affecting the level of urban carbon emissions. On the one hand, local governments may over-invest in the secondary sector to pursue higher fiscal revenues, leading to higher levels of urban carbon emissions. On the other hand, local government spending on environmental protection reduces the level of urban carbon emissions. Third, we use city science and technology expenditure to measure the level of technological development of a city. The technological level of a city’s industrial sector represents the level of urban scientific research, which is an important variable affecting the level of urban carbon emissions. Fourth, we measure foreign direct investment (FDI) using total foreign real capital. The impact of FDI on carbon emissions is uncertain, and according to PHH (Eskeland and Harrison, 2003; Cole, 2004), multinational companies often move pollution-intensive enterprises to developing countries with relatively low environmental standards, leading to higher regional carbon emission levels. However, the advanced technology of foreign-owned enterprises may reduce carbon emission levels.
The development of highly polluting industries and the green area of cities are two channels used to analyze the impact of a leader with a distinct green development philosophy in power on the carbon emissions in cities. We use the number of mining employees (MII) and the number of manufacturing employees (MAI) to measure the development of highly polluting industries. Moreover, we use public green space area (PGS), garden green space area (GGS), and built-up area green coverage area (GCA) to measure urban greening. The five variables in the mechanism test are taken to their natural logarithmic values.
All data are from the National Bureau of Statistics and China Urban Statistical Yearbook. The data covers all prefecture-level cities in China’s 30 provinces, municipalities, and autonomous regions (excluding Hong Kong, Macao, Taiwan, and Tibet). The period is from 2010 to 2016, and all nominal data are adjusted for real values based on the 2010 price index. For a few cities with slight data loss, a linear interpolation method is used to supplement the data, but some cities are removed due to serious data loss. To mitigate the effects of outliers, we winsorize the top and bottom 1% of all the continuous variables from their distributions.
Table 1 presents the results of descriptive statistics for all the main variables. In terms of mean values, the carbon emission intensity of the treatment group is 0.436, which is much lower than that of the control group, which is 0.495. The treatment group has higher GDP per capita, government input, level of technological development, and FDI than the control group. This result indicates that the treatment group emits less CO2 levels for the same GDP output compared to the control group of cities. In other words, the cities in the treatment group are more efficient in their energy use.
TABLE 1 | Descriptive statistics.
[image: Table 1]EMPIRICAL RESULTS AND ANALYSIS
We use the full-sample and a DID approach to estimate the difference in carbon emission intensity between the treatment group (high politically sensitive city) and the control group (low politically sensitive city) before and after the leaders with distinct green development concepts took office. Based on the baseline regression results, we test two mechanisms of urban green area and the development of highly polluting industries. Further, we divide the whole sample into different sub-samples to investigate the carbon emission reduction effect of cities with different characteristics. Finally, we perform a series of robustness tests.
Baseline Results
Table 2 reports the estimation results of the baseline regression Eq. 1. Column (1) reports estimation results without any control variables, and Column (2) reports estimation results with a series of city-level characteristic variables included. In both columns of the regression results, the coefficient of [image: image] is significantly negative at the 1% level, indicating that after the change of national leaders, carbon emission intensity in the treatment group decreases significantly than that in the control group, and the policy effect is significant. In Column (3), we further control for individual and year fixed effects, and the coefficient of interaction term [image: image] is still significantly negative. Specifically, Column (3) illustrates that the marginal effect is −0.029, indicating that the carbon emission intensity of the treatment group decreases by about 2.9% compared with the control group ([image: image]).
TABLE 2 | Baseline regression results.
[image: Table 2]The baseline regression results indicate that cities with different political sensitivities have significant differences in carbon emission reduction after the change in national leaders. In other words, governing by leaders with a green development philosophy helps cities with higher political sensitivity reduce their carbon intensity. One possible mechanism is that when a new national leader with green development philosophy takes office, local governments will refer to the economic development philosophy and development strategy of the leader when they were in local government. In other words, by restricting the development of high-polluting industries and improving the level of urban greening, urban carbon emission intensity can be reduced. To verify this conjecture, we conduct corresponding empirical tests on this view in the mechanism analysis section.
In the part of control variables, we find that the level of economic development and its squared term significantly affect the carbon emission intensity of cities. That is, the economic development level has a U-shaped relationship with carbon intensity. Combined with the level of GDP of each city, Chinese cities are at a stage where the intensity of carbon emissions decreases with GDP growth. The effect of government inputs on the intensity of urban carbon emissions is significantly positive, which indicates that the incremental GDP generated by government spending is less than the incremental CO2 emitted. The higher the level of the city’s technological development, the lower the carbon emission intensity. The higher the FDI, the lower the carbon emission intensity of the city, which indicates that the advanced technology of foreign enterprises contributes to the reduction of the carbon emission level of the city. Subsequently, the regression results of control variables are consistent with the existing literature and conform to our expectations.
Mechanism Analysis
Based on the basic regression results, we further examine the mechanism of the impact of the change of national leaders with distinct green development concepts on urban carbon emission intensity. The main channels we consider include changes in high-pollution industries and urban greening. The reason for considering these two aspects is that when a national leader with a distinctive green development philosophy is in power, local governments with higher political sensitivity will consider the development policies of the leader when they were in power at the local level, anticipate thereafter the future development philosophy of the country, and finally adjust the local development strategy in advance. Xi Jinping was the leader of Zhejiang Province before he assumed his post in the central government, and at this stage, he first proposed the scientific assertion that “clean waters and green mountains are gold and silver mountains.” In the subsequent development process, Zhejiang province implemented a series of environmental protection policies, including “Five Water Treatment”, “Three Reform and One Demolition”, “Four Areas and Three Renovations”, and “811” environmental pollution control action. In consideration of the relevant policies that may affect the evaluation of the policy effect in this study, the “811” environmental pollution remediation action is mainly aimed at heavy pollution industries, and the “Four areas and Three Renovations” is mainly aimed at urban greening. For the development of high-pollution industries, we use the number of people employed in the mining industry (MII) and the number of people employed in the manufacturing industry (MAI). For urban greening, we mainly use the urban public green space area (PGS), garden green space area (GGS), and built-up green coverage area (GCA).
We use the number of people employed in the mining industry and manufacturing industry as proxy variables for the development of high-polluting industries for the following reasons. First, high-polluting industries are mainly concentrated in the secondary industry. In the “promotion tournament” of officials with GDP as the assessment index, local governments are unlikely to give up the political incentives brought by the GDP of secondary industries because of leaders with green development concepts in power. Therefore, making significant changes in the total amount or growth rate of GDP is difficult in the secondary industry. Second, the adjustment of industrial structure is usually slow; hence, significant changes in the GDP ratio of the secondary industry are unlikely. Third, the change in the number of employees is usually a leading indicator of industrial structure adjustment, and the change in the number of employees in high-pollution industries reasonably reflects the advanced adjustment of high-pollution industries. Therefore, we choose to measure the development of highly polluting industries by the number of people employed in mining and manufacturing.
We use public green area, garden green area, and green coverage area of built-up areas to measure urban greening because land, as a scarce resource, is the basic production factor of economic development. Under China’s land transfer system, the central and provincial governments do not directly control land, and the prefecture-level city governments monopolize the primary land supply market. The prefecture-level municipal governments are both operators and managers. The government expropriates land and then transfers the right to use it, which is an indispensable production factor for attracting investment and developing the economy of the jurisdiction. Clearly, using land for greening is not the optimal choice for local officials to maximize their own interests under the existing promotion incentive system. When the local government uses the land for urban greening, the land for industrial enterprises is restricted, further limiting the expansion of the production scale of urban industrial enterprises and reducing urban carbon emissions.
In Columns (1) and (2) of Table 3, we test the impact of a national leader with a strong green development philosophy in power on highly polluting industries. The coefficients of [image: image] are −0.140 and −0.104, and are significant at the 5% and 1% levels, respectively. This demonstrates that the number of people employed in the mining and manufacturing industries in highly politically sensitive cities decreases significantly compared to low politically sensitive cities by 13.1% and 9.9%. In columns (3) to (5), we test the impact of governing national leaders with a distinct green development philosophy on urban greening. The coefficients of [image: image] are significantly positive, with values of 0.176, 0.144, and 0.137, respectively. This means that compared with low-politically sensitive cities, the area of public green space, the area of green garden space, and the green coverage area of high-politically sensitive cities have increased significantly to varying degrees after the leader with green development concepts came to power.
TABLE 3 | Mechanism tests.
[image: Table 3]The findings suggest that limiting the development of highly polluting industries and enhancing urban green areas are effective ways to reduce urban carbon emissions intensity in cities with high political sensitivity. When the national leader with a distinct concept of green development takes office, local governments will refer to the economic development philosophy and development strategy of the leader when they were in local government. Local governments aim to reduce urban carbon emissions by limiting the development of highly polluting industries, restricting land use for industrial enterprises, and increasing the green area of cities.
Heterogeneity Effects
The previous analysis demonstrates that leaders with strong green development concepts in power can significantly reduce the carbon emission intensity of cities with high political sensitivity. Then for cities with different characteristics, are there differences in carbon emission reduction effects? If so, what are the differences? We mainly consider the carbon reduction effect of the characteristics of the city’s location, the number of industrial enterprises in the city, the total industrial output value of the city, and the number of enterprises of different nature for cities with different political sensitivity. By grouping and regression the samples according to the characteristics of cities, we explore the heterogeneity effect of the ruling of national leaders with strong green development concepts on urban carbon emission reduction. The results of the tests are illustrated in Tables 4, 5.
TABLE 4 | Heterogeneity effects of city location.
[image: Table 4]TABLE 5 | Heterogeneity effects of the number of industrial enterprises and total industrial output.
[image: Table 5]In columns (1) to (4) of Table 4, we divide cities into eastern, central, western, and northeastern regions according to their location and run sub-sample regressions. For eastern and central cities, the [image: image] coefficients are significantly negative, with values of −0.022 and −0.048, respectively. For western and northeastern cities, the [image: image] coefficient is not significant. The results indicate that in the eastern and central cities, the carbon emission intensity of the cities with higher political sensitivity decreases by about 2.2% and 4.7%, respectively, compared with the cities with lower political sensitivity, after the leader with green development philosophy come to power. This indicates that from the perspective of regional heterogeneity of carbon emission reduction, the decline of carbon emission intensity mainly comes from eastern and central cities, and the decline in central cities is greater.
We believe that the main reason for this phenomenon is that the eastern and central regions have higher levels of economic development and are more capable of implementing aggressive environmental and energy conservation policies to reduce local carbon emission levels when leaders with a distinct green development philosophy come to power. For the western and central regions, the lower level of economic development makes it difficult to develop the economy while considering environmental issues. For example, the Northeast region is highly dependent on the development of secondary industries, and the local government’s promotion of secondary industries to achieve higher GDP levels will lead to an increase in carbon emission levels instead of a decrease.
In columns (1) and (2) of Table 5, we group cities by the number of industrial enterprises and run subsample regressions. If the number of industrial enterprises in a city exceeds the full sample median level, it is a high industrial enterprise city; otherwise, it is a low industrial enterprise city. For the cities with a large number of industrial enterprises, the [image: image] coefficient is not significant, but for the enterprises with a small number of industrial enterprises, the [image: image] coefficient is −0.069 and significant at the 1% level. For cities with fewer industrial enterprises, the carbon emission intensity of cities with high political sensitivity decreases by about 6.7% compared with cities with low political sensitivity.
In columns (3) and (4) of Table 5, we group cities by the gross industrial output and run subsample regressions. If the gross industrial output of a city is higher than the full sample median level, it is a city with a high gross industrial output value; otherwise, it is a city with a low gross industrial output value. For cities with high gross industrial output, the [image: image] coefficient is not significant, while for cities with low gross industrial output, the [image: image] coefficient is −0.045 and significant at the 1% level. That is, the carbon emission intensity of cities with high gross industrial output decreases by about 4.4% in high politically sensitive cities compared to low politically sensitive cities.
The regression results demonstrate that the decrease in carbon emission intensity mainly comes from the highly politically sensitive cities with a small number of industrial enterprises and a low industrial output value, while the carbon emission intensity of cities with a large number of industrial enterprises and a high industrial output value does not change significantly after the change of national leaders. We believe that the reason for this phenomenon is that the economic development of cities with a large number of industrial enterprises or a high total industrial output value depends on industrial enterprises, and reducing their carbon emission intensity by restricting the entry or development of industrial enterprises is difficult for cities, which are in a dilemma between economic development and environmental protection. In contrast, the development of cities with a low number of industrial enterprises or total industrial output value does not depend on industrial enterprises. When faced with the choice of environmental and economic development, it is easier for them to achieve green urban development by restricting high-polluting industrial enterprises.
The relationship between enterprise nature and policy effect is complex. For domestic enterprises, the relationship between the government and domestic enterprises is closer. Good political connections may protect domestic enterprises from strict administrative restrictions or penalties, and they may become more indifferent to administrative orders or energy-saving policies. However, domestic companies that want to be successful must have the public relations skills to deal with government departments and officials, in addition to being highly sensitive to market opportunities. This places companies in a disadvantaged position likely to be more responsive to government administrative orders or energy efficiency policies. Hong Kong, Macao, Taiwan, or foreign-funded enterprises may move pollution-intensive enterprises to developing countries or regions with relatively lower environmental standards, resulting in higher levels of urban carbon emissions. However, they usually have advanced technology and lower carbon emission intensity than domestic enterprises.
In Table 6, we group cities by the nature of business and run subsample regressions. If the number of domestic-funded enterprises in a city exceeds the full sample median level, the city is a high domestic-funded enterprise city; otherwise, it is a low domestic-funded enterprise city. For Hong Kong, Macao, Taiwan, and foreign-funded enterprise cities, the grouping standards are the same as those for domestic enterprises. In Columns (1) and (2) of Table 6, we group cities by the number of domestic enterprises; in Columns (3) and (4) by the number of Hong Kong, Macao, and Taiwan enterprises; and in Columns (5) and (6) by the number of foreign enterprises. The regression results demonstrate that in the subgroup of cities with a relatively high number of domestic enterprises and a relatively low number of Hong Kong, Macao, Taiwan, and foreign enterprises, the high politically sensitive cities have a significant decrease in carbon emission intensity relative to the low politically sensitive cities before and after the change of top national leaders. This indicates that in the full sample regression, the decline of carbon emission intensity of cities with high political sensitivity mainly comes from cities with a high number of domestic enterprises. Instead of ignoring administrative orders and energy-saving policies due to political ties, domestic enterprises actively respond to local government policies and reduce carbon emissions to gain better political connections.
TABLE 6 | Heterogeneity effects of different enterprises.
[image: Table 6]ROBUSTNESS TESTS
Parallel Trend Test
When the treatment and control groups meet the parallel trend hypothesis, the estimation results of DID attain the consistency. In other words, in the absence of policy intervention, the trend of carbon emission intensity between the treatment and control groups is consistent. We refer to the research framework of Borusyak et al. (2021) to test the parallel trend hypothesis and analyze the dynamic policy effects by the event analysis method. The specific model is as follows:
[image: image]
where [image: image] represents the dummy variable of whether the time between the city and policy impact is [image: image] years. We use the policy shock period (2013) as the base period. Other settings are consistent with Eq. 1.
As illustrated in Figure 1, the [image: image] coefficient is not significant before the policy implementation, indicating that the carbon emission intensity of cities with different political sensitivities has no significant difference before the change of national leaders, which satisfies the hypothesis of parallel trend in advance. Although there is no statistically significant difference in carbon emissions before the leadership change, it has begun to demonstrate a carbon emission reduction. This means that cities with high political sensitivity have certain “anticipated policy effects.” In anticipation of the coming of leaders with green development concepts and implementation of environmental protection policies, cities with high political sensitivity may advance the implementation of environmental protection policies, resulting in the early reduction of local carbon emission intensity. The [image: image] coefficients are all significantly negative after the second year of leadership change. The carbon emission intensity of cities decreases significantly, and the degree of decrease gradually increases with time.
[image: Figure 1]FIGURE 1 | Parallel trend test.
Placebo Test
Considering possible estimation bias due to the omission of city-time level variables, we refer to studies such as Ferrara et al. (2012), Cai et al. (2016) and others to conduct placebo tests on the main results by randomly selecting cities from the sample as the treatment group sample. We first construct a placebo test dummy variable [image: image] by randomly selecting half of all cities, setting them as the “pseudo” treatment group, setting the remaining cities as the control group, and constructing a placebo test cross-sectional term [image: image]. Since the “pseudo” treatment group is randomly generated, the cross-term [image: image] in the placebo test should not significantly affect the dependent variable. That is, if there is no significant omission bias, the regression coefficients of [image: image] in the placebo test will not deviate significantly from zero. At the same time, to avoid the interference of other low-probability events on the estimated results, we repeat the above process 1,000 times for regression analysis. Figure 2 reports the kernel density of the estimated coefficients and the distribution of the corresponding p-values for 1,000 times randomly generated treatment groups. As illustrated in Figure 2, the mean value of regression coefficients is close to 0 (the coefficient is −0.0017), and most p values are greater than 0.1. Meanwhile, the actual estimated coefficient represented by the vertical line in Figure 2 is clearly an outlier in the placebo test. Therefore, we believe that there is no serious bias in the estimation result due to the omission of variables.
[image: Figure 2]FIGURE 2 | Placebo test.
Variable Replacement, Sample Selection, and Model Setting
We divide the total carbon emissions by the total urban GDP, add 1, and take the natural logarithm as a proxy variable for carbon emissions intensity. The regression results are illustrated in Column (1) of Table 7. The [image: image] coefficient is negative and significant at the 5% level, indicating that the baseline regression results are robust. In Column (3) of Table 7, we regress Eq. 1 using balanced panel data considering the continuity of the sample, and the [image: image] coefficient is also negative and significant at the 5% level. In Column (4) of Table 7, we further consider provincial time trend fixed effects to exclude possible heterogeneity effects due to unobserved factors. The interaction term of province dummy variable and year time is used as the fixed effect of provincial time trend; that is, each province is allowed to have a different linear annual time trend to eliminate the bias caused by provincial time trend on the estimation of policy effect. The regression results demonstrate that the [image: image] coefficient is −0.019 and significant at the 1% level. The regression results through different variable substitutions, sample selection, and model settings indicate that the findings of this paper are very robust.
TABLE 7 | Variable replacement, sample selection, and model setting.
[image: Table 7]Synergistic Effect of Carbon Reduction and Pollution Reduction
This study’s baseline regression results demonstrate that national leaders with distinct green development concepts coming into power promote the reduction of carbon emission intensity in cities with high political sensitivity. This raises the following question: What is the impact on the emission of other pollutants? Is there a synergistic effect between carbon reduction and pollution reduction? We mainly consider industrial wastewater emission intensity (IWW), industrial sulfur dioxide emission intensity (ISD), and industrial fume emission intensity (IF)1, and take them as explanatory variables of Eq. 1 for a regression. The regression results are illustrated in Table 8 and demonstrate that the coefficients of [image: image] are insignificant in all three columns, indicating no significant difference in the intensity of other pollutant emissions for cities with different political sensitivities by the top national leaders in power. In other words, there is no synergistic effect between carbon reduction and pollution reduction.
TABLE 8 | Regression results from the synergistic effect of carbon reduction and pollution reduction.
[image: Table 8]Exclude the Influence of Other Policies
In October 2011, the National Development and Reform Commission issued the Notice on Carbon Emissions Trading Pilot Work, and China launched a carbon emissions trading pilot in seven provinces, including Beijing, Tianjin, Shanghai, Chongqing, Hubei, Guangdong, and Shenzhen. This policy is close to the timing of the change of national leaders and may significantly impact the assessment of carbon reduction policy effects in this study. Therefore, we regress Eq. 1 after excluding the seven pilot provinces of carbon emission trading, and the regression results are illustrated in Table 9 and demonstrate that after excluding the seven pilot provinces of carbon emission trading, the carbon emission intensity of different politically sensitive cities still has significant differences after the change in national leaders. The coefficient of the [image: image] term in Column (3) has a decrease in the carbon intensity of about 2.1% (the decrease in carbon intensity in the baseline regression is about 2.9%). This suggests that the difference in carbon intensity in cities with different political sensitivities is caused by the fact that national leaders with a distinct green development philosophy are in power.
TABLE 9 | Regression results excluding the influence of other policies.
[image: Table 9]CONCLUSION AND POLICY RECOMMENDATIONS
Over the past 40 years, China’s economy has achieved rapid growth under the traditional factor-driven development model, accompanied by severe environmental pollution and high carbon emissions. Since 2013, China’s carbon dioxide emissions have grown at an average annual rate of 1.2%, well below the 5.8% average annual growth rate between 1978 and 2012. This is likely the result of the new Chinese government. The 18th Party Congress held in 2012 elected a new central leadership with General Secretary Xi Jinping as the core, and the 12th National People’s Congress held in 2013 established a new national leadership with Xi Jinping as the President. The new central government has proposed a series of carbon emission reduction targets and specific measures as a reflection of the fact that green development has been a part of Xi Jinping’s governing career, and Xi Jinping is a national leader with a distinctive green development philosophy.
Using a quasi-natural experiment of the election of General Secretary Xi Jinping as the top national leader, this study assesses the impact of a national leader with a distinct green development philosophy in power on carbon emissions in cities with different political sensitivities using a DID approach based on a panel dataset of Chinese cities from 2010 to 2016. This study’s main findings are as follows. First, the carbon emission intensity of cities with higher political sensitivity declined significantly after the new government with Xi Jinping as the core took office in 2013. Compared with cities with lower political sensitivity, the carbon emission intensity of cities with higher political sensitivity decreased by about 2.9%. Second, urban greening and the development of high-polluting industries are important tools for high politically sensitive cities to adjust their carbon emissions. When national leaders with a green development philosophy are in power, highly politically sensitive cities will reduce urban carbon emission levels by increasing urban green areas and limiting the development of highly polluting industries. Third, if the regional economic development level of the city is higher, the number of industrial enterprises in the city is lower, the total output value is lower, and the number of domestic enterprises in the city is higher, the enthusiasm for carbon emission reduction is higher. Fourth, the carbon emission reduction effect of cities with high political sensitivity gradually increases over time and is not affected by other carbon emission reduction policies.
Based on the above findings, we propose the following policy recommendations. First, China should improve the political sensitivity of local officials by establishing a multi-level assessment system for local officials. GDP should no longer be used as a single performance indicator, while environmental protection will be taken as an important factor in performance appraisal. Through the adjustment of promotion mechanism, the central government will improve the political sensitivity of local officials, which will help to improve the implementation effect of national policies.
Second, China should strengthen the support and guidance of urban greening and high pollution industries. Urban greening and high pollution industries are two important means for local governments to regulate carbon emissions. The state should support urban greening and relevant scientific research institutions to carry out technological innovation through financial funds, guides technological innovation in high pollution industries, and promotes green transformation and upgrading of enterprises in highly polluting industries.
Third, the state should formulate differentiated environmental protection policies. In the process of formulating command-and-control environmental regulation or market-incentive environmental regulation, the state should fully consider the political sensitivity of the city, the region of the city, the number and output value of industrial enterprises, and the number of enterprises with different property rights in different cities. The government should set different environmental rules according to the characteristics of different cities, and promote different cities to find optimal solutions between economic development and environmental protection to facilitate the achievement of carbon peaking and carbon neutrality goals.
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FOOTNOTES
1Industrial wastewater emission intensity (IWW) is equal to the total industrial wastewater emission divided by the total GDP and take the natural logarithm. Industrial sulfur dioxide emission intensity (ISD) is equal to the total industrial wastewater emission divided by the total GDP and take the natural logarithm. Industrial fume emission intensity (IF) is equal to the total industrial fume emission divided by the total GDP and take the natural logarithm.
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To achieve carbon peak and carbon neutrality targets, it has become a common choice for all countries to introduce the carbon emissions trading market to foster low carbon sustainable development. The construction of national carbon emissions trading market in China is still in its initial stage. However, the carbon market in Fujian province has already accumulated certain experience, and its unique energy mix of “higher share of the clean energy and low share of fossil fuels consumption” can provide guidance to China’s future development. Therefore, an accurate forecast of the carbon price in Fujian province not only provides conducive suggestions for the further optimization of the carbon market in Fujian province, but also offers a significant reference for the development of China’s carbon trading market. By adopting the effective daily data from 2017.01 to 2022.02, this paper predicts the carbon emissions trading price in Fujian province based on the BP neural network model and analyzes the mechanism of different influencing factors on carbon price from six dimensions. The results show that the BP neural network model works well in predicting carbon price in Fujian province and in the impact mechanism analysis. This paper also puts forward corresponding policy recommendations, which provide theoretical support for the sound development of the carbon market in Fujian province.
Keywords: carbon market, carbon emissions trading price, mechanism analysis, BP neural network model, price forecast
1 INTRODUCTION
With rapid economic growth and the surge in energy consumption, climate change caused by excessive emissions of greenhouse gases has become a global concern. Since 2020, the Chinese government has put forward “dual carbon” goals of “peaking its carbon emissions before 2030 and achieving carbon neutrality by 2060” to ease the pressure on global carbon emissions. As one of the largest economies on the southeast coast of China, Fujian province actively promotes the implementation of the country’s “dual carbon” goals. The province makes joint efforts from both the government control and the market regulation, it not only accelerates the green-oriented transition of energy, but also vigorously develops the Fujian carbon emissions trading market.
In terms of the evolution of the energy system in Fujian province, the energy mix of Fujian province has a distinctive feature of “limited coal reserves, no oil and gas”. However, as a major coastal province, Fujian province is abundant in clean energy, such as wind energy, hydro energy, and solar energy, to name a few. With the increasing pressure on greenhouse gas emissions reduction, the country exercises greater regulation in carbon emissions reduction. In response to the call for energy conservation and emission reduction and based on its actual conditions, Fujian province optimized the energy mix by implementing measures including cutting coal overcapacity, closing inefficient coal mines, and actively developing clean energy like nuclear power and wind power to ensure energy supply. From the perspective of energy production, before 2011, the proportion of coal production in Fujian province was basically higher than 50%. After long-term governance, in 2019, the proportion of coal production was only 14.8%. and the clean energy production represented by hydropower, wind power and nuclear power accounted for 78.6%, which shows that Fujian province has made remarkable achievements in optimizing the energy production structure. At the same time, in order to further consolidate the achievements of green development, the provincial government issued the “Implementation Plan for Accelerating the Establishment and Improvement of a Green, Low-Carbon and Circular Development Economic System in Fujian Province” in 2021, indicating that the government encourages green and low-carbon transformation of the energy system, vigorously promotes the development of nuclear power, wind power, photovoltaic and other projects, promotes the deep integration of distributed energy technology, smart grid technology, energy storage technology, etc., and improves the ability to clean energy consumption and regulation. It can be noticed that under the guidance of the government, the energy mix of Fujian province is gradually transforming to a green and low-carbon direction, which will reduce the carbon emissions and carbon emissions intensity.
From the perspective of the development of the carbon emissions trading market in Fujian province, Fujian province, as one of the eight provincial-level pilot programs of China’s carbon market, has accumulated experience. Since 2013, the eight major carbon markets in China began operating one after another. The Fujian carbon market officially went into operation at the end of 2016, and operated in parallel with the national carbon market in 2021. The launching of the Fujian carbon market introduces market forces to reduce carbon emissions. To achieve emission reduction, the market measures the cost of carbon emissions in real time through changes in the carbon price, and turns emissions into a production factor that can be bought or sold.
Although there is a gap in the launching and experience between China’s and developed countries’ carbon markets, and the current coverage of carbon emissions in China’s carbon market is slightly lower than that of the EU carbon trading system, China’s carbon market and the eight pilot carbon markets have covered the majority of regions including the East, Mid and West regions. Taking the carbon market in Fujian Province as an example, the carbon market in Fujian Province has the characteristics of wide coverage and complete trading varieties. Since the formal trading in january 2017, the trading volume of the carbon emission right market in Fujian Province has been increasing year by year. By February 2022, the cumulative trading volume has reached 12.4935 million tons, which indicates that the carbon trading market in Fujian has been expanding and has played a role in controlling the total amount of carbon emission reduction. The increase of carbon trading volume is bound to reflect the carbon price. The average monthly trading price is shown in Figure 1.
[image: Figure 1]FIGURE 1 | Average monthly carbon price in China.
As shown in Figure 1, the average monthly carbon price of Fujian province shows a significant downward trend of fluctuation, from 38.02 yuan/ton in January 2017 to 12.57/ton yuan in February 2022, indicating that the carbon cost of Fujian province has decreased and the economic structure, industrial structure and energy mix of the Province is steadily shifting to green and low-carbon; Comparing the carbon price of Fujian Province with that of other provinces, it can be found that the cost of carbon emission in Fujian Province was second only to Beijing in the early stage. With the passage of time, the carbon price of Fujian Province showed a downward trend, ranking last among the pilot provinces and cities from March 2019. In terms of the comparison between Fujian province and the national monthly average carbon price, as the national carbon market was officially launched in 2021, compared with the average monthly carbon price of Fujian province and the national market in 2021 and onwards, the national average monthly carbon price fluctuates in the range from 40.78 yuan/ton to 57.72 yuan/ton, which is significantly higher than the average monthly carbon price in Fujian province. In addition, the lowest national average monthly carbon price is still higher than the highest average monthly carbon price in Fujian province, showing that the carbon emission cost in Fujian province is much lower than that of the whole country. Therefore, Fujian province has laid a solid foundation in green and low-carbon transformation, and the changes in the carbon price can effectively evaluate its carbon emissions process in real time.
According to the above analysis, the promotion of energy transformation and the efficient operation of the carbon market in Fujian province can both provide sufficient impetus for the realization of the “carbon peaking and carbon neutrality goals”. It should be noted that although the energy mix of Fujian province has been optimized to a certain extent, there are still some practical problems that are difficult to solve in the short term. Take nuclear power as an example, despite the fact that the installed capacity of nuclear power has increased rapidly in the short run, overcapacity will become an issue that needs to be addressed due to the constraints of current nuclear power storage technology and the limited actual increase in power demand. So the optimization of energy mix in Fujian province plays an important role in realizing the “dual carbon” goals. But due to practical and technical constraints, it is difficult to achieve the goal of substantial emission reduction in the short term only by relying on the optimization of the energy mix. Therefore, the key to realizing the “dual carbon” goals as scheduled is to depend on the Fujian carbon market to adjust carbon costs in real time, thereby improving the efficiency of market resource allocation so as to minimize carbon emissions on the basis of ensuring economic development.
As a key parameter of the carbon market, carbon price volatility will have a direct impact on market changes. Considering that China’s carbon market has just been launched with price fluctuations, which is not conducive for investors and market regulators to make reasonable predictions, thereby reducing the effectiveness of the carbon market and affecting investment and regulatory decision-making, this paper will first sort out the key factors that affect the carbon price, and then make a reasonable prediction of the carbon price, and finally determine an effective prediction model to provide theoretical support for the further optimization of the carbon market in Fujian province.
2 LITERATURE REVIEW
As a key parameter in the carbon market, effective forecasting of carbon price can improve the operating efficiency of the carbon market. Since the operation of the carbon market, the related research on the carbon emissions trading price has always attracted the attention of domestic and foreign scholars with rich results. The literature review will focus on three parts: the status quo of China’s carbon market, the influencing factors of the carbon price, and carbon price prediction, which will provide a solid theoretical foundation for this study.
First, the status quo of China’s carbon market. After several years of development, China’s carbon market has achieved remarkable results and accumulated lots of experience (Zhang et al., 2014; Karplus and Zhang, 2017; Surendra and Rajesh, 2020), but it still faced serious problems. Xu and Salem (2021) pointed out that although China’s allowance market and certified emission reductions (CERs) laid a certain foundation for development, practical problems such as the low proportion of auction quota and uncertainty of CERs would reduce the effectiveness of the carbon market; Wang et al. (2021) showed that as China’s carbon market development was still in the initial stage, combined by the pressure of achieving “dual carbon” goals, the emission reduction in the short term would face greater pressure and higher cost. At the same time, the impediments including inadequate technical guarantee, imperfect mechanism construction and unbalanced regional development also restricted the development of the market. From the perspective of external influencing factors, Wu et al. (2022) also indicated that the current legal system of China’s carbon market was incomplete, making it difficult to integrate with the international carbon market. In addition, Jia et al. (2021) focused on the impact of COVID-19 on China’s carbon market, and believed that the epidemic would widen the gap between regional development and affected the international carbon price, and the global economic downturn would also have a certain impact on China’s carbon market. Generally speaking, the current problems faced by China’s carbon market have been in line with the law in the early stages of development (Munnings et al., 2016; Pang and Duan, 2015; Du et al., 2021). Zhu et al. (2021) stated that it was still an effective way to reduce emissions despite problems existing in the market. Zhao et al. (2016) demonstrated that a staged carbon market should be launched with continuous improvement, which should be refined according to the actual situation in different periods. For example, during the “14th Five Year Plan” period, the carbon market should cover energy-intensive as well as emission-intensive industries, and determine the emission benchmark. During the “15th Five Year Plan” period, the allowance distribution of competitive auction and fixed price sale can be gradually expanded to achieve “stability reducing emissions”. Atsalakis (2016) showed that forecasting the carbon price in the short term can improve the market function and forced other areas to optimize. Therefore, predicting the carbon price plays an important role in the optimization of the carbon market.
Second, the research on the influencing factors of carbon price. The carbon market is an important way to introduce a market mechanism in carbon emissions trading (Wang et al., 2022), and carbon price is an effective indicator that can effectively measure the changes in supply and demand in the carbon market (Fleschutz et al., 2021). Therefore, it is of great significance to investigate the influencing factors of carbon price for the efficient operation of carbon market. Jiao et al. (2018) showed that the carbon market has financial characteristics, which closely related to the macroeconomic situation. Batten et al. (2021) believed that energy prices were the factor affecting carbon price. The carbon market is vulnerable to climate impacts, mostly manifested in extreme weather, that is, when the temperature exceeds or falls below a certain threshold, energy demand will increase, thereby increasing carbon emissions. With the deepening of study, the study on energy prices has been refined to specific fossil energy prices. Ding et al. (2020) found that coal price was the best predictor of carbon price. Wang and Guo (2018) stated that oil market changes should have a stronger influence on carbon markets than other types of energy markets. Han et al. (2019) argued that the carbon emissions generated by natural gas were much lower than other types of fossil fuels. Chu et al. (2020) found that natural gas prices have a stronger effect on carbon prices as quantiles increased in the Beijing and Hubei ETS pilots. With regard to the research on China’s carbon market, Zhou and Li (2019) discovered that energy prices and macroeconomic indicators had an important impact on the carbon price like other foreign carbon markets. Kim and Bae (2022) found that in addition to conventional factors, the industrial production had an important impact on carbon prices. Pan et al. (2020) believed that China’s carbon market prices are affected by foreign economies such as exchange rates and foreign carbon market prices.
Third, the study on carbon price forecast. From the perspective of prediction methods, Fu (2018) predicted the thermal coal price of Qinhuangdao port based on the quadratic exponential smoothing method, showing that it is applicable to use the prediction model with an accuracy of over 90%. Zhao et al. (2021) used multi-factor integrated model to simulate the evolution of carbon prices. The study discovered that the mechanism conversion model provides more effective forecasting. In order to improve the prediction accuracy, Zou and Li (2022) used the Monte Carlo method to test the fitting of multiple coal price models under the background of carbon peaks, indicating that the prediction results of the geometric Brown model and the MR model in the short term were consistent while showing differences for medium and long-term forecasts. In order to improve the prediction accuracy, Naser (2016) introduced time-varying characteristics into the factors affecting oil price based on the dynamic model averaging theory and predicted the pork price. It is found that the oil price prediction model based on the dynamic model averaging can effectively improve the prediction accuracy. Although the above prediction methods can effectively fit the linear changes in the price, they cannot capture the nonlinear components in the price changes. To compare the prediction difference between the linear and nonlinear models, Matyjaszek et al. (2019) used the ARIMA model and the generalized regression neural network model to predict the coking coal price, and found that the prediction model of the generalized regression neural network was better than the linear ARIMA model. Some scholars applied linear research methods to domestic carbon price forecasts. For example, use ARCH model clusters to investigate the characteristics of carbon price fluctuations while most scholars adopted machine learning models to investigate carbon prices.
Based on the above analysis, it can be seen that the carbon market in Fujian Province, as an important starting point to promote the “double carbon” goal, is in the early stage of development and faces many challenges, but the carbon price, as a means of “marketization” to solve environmental problems, is an important battlefield to help reduce emissions. Transmitting a reasonable carbon price to enterprises and society will promote the flow of social capital to low-carbon fields and provide impetus for cultivating and innovating low-carbon economy. Therefore, the reasonable prediction of carbon price can promote the gradual optimization of carbon market in Fujian Province and force the development of relevant fields. Moreover, the carbon price is affected by multiple factors. In the process of carbon price prediction, it is necessary to take into account the multi-dimensional factors such as energy price, macroeconomic impact, industrial structure, climate change, foreign carbon price and international financial market. At the same time, the prediction accuracy of machine learning model is better than that of linear model. Based on this, this paper will use BP neural network model to predict the carbon price in Fujian Province, so as to improve the prediction accuracy.
The remainder of this paper is organized as follows. Section 3 is mechanism analysis and model description, mainly explaining the mechanism of influencing factors and introducing the BP neural network model; Section 4 presents data description and simulation prediction, which introduces the indicators and data sources, and simulation prediction analysis is carried out; Section 5 concludes with some policy suggestions.
3 MECHANISM ANALYSIS AND MODEL DESCRIPTION
In forecasting analysis, the multi-factor factor analytic approach that takes into account different dimensions is more accurate than the single factor analytic approach. Therefore, this section first describes the mechanism of each influencing factor on carbon price based on different dimensions, then briefly explains the BP neural network model.
3.1 Description of the Influence Mechanism of Carbon Price
Combined with the above analysis, this paper will investigate the influence mechanism of the carbon price from six dimensions: fossil fuels price, macroeconomic development, industrial structure, climate change, foreign carbon price, and international financial market. Details are as follows:
3.1.1 Prices of Fossil Fuels
Changes in fossil fuel prices have a direct impact on carbon prices. Overall, fossil fuel consumption produces a large amount of carbon dioxide, which is also the main source of carbon emissions. When the price of fossil fuels is relatively high, energy consumption will decrease to a certain extent, which will lead to a decrease in the overall carbon emissions level. The reduction in carbon emissions level will reduce the demand for carbon emissions allowances, which will in turn reduce carbon price. On the contrary, when the price of fossil fuels is relatively low, the price of carbon will show an upward trend. From the perspective of price changes of different types of fossil fuels, the carbon dioxide emissions of coal and oil consumption are much higher than that of natural gas, and all kinds of fossil fuels are equal to each other. For industries that can use all types of fossil fuels, under the premise of generating the same energy, when the price of natural gas is lower than the price of other fossil fuels, the use of natural gas can reduce carbon emissions and the demand for carbon emissions allowances, thereby reducing carbon price. It also demonstrates that increasing the proportion of cleaner energy use can reduce carbon prices. Therefore, an increase in the price of fossil fuels can reduce the carbon price, and a decrease in the relative price of natural gas can also lead to a decrease in the price of carbon.
3.1.2 Macroeconomic Environment
Macro-environment has a profound impact on the carbon market. The macroeconomic structure will have a direct impact on carbon price. The energy-intensive and emission-intensive industries will greatly impact the energy efficiency and generate a large amount of carbon dioxide, thereby increasing the demand for carbon emissions allowances and carbon price. The low-carbon, green and intensive economic structure will improve energy efficiency, and significantly reduce carbon emissions, thus reducing the demand for carbon emissions allowances and driving down the carbon price. Macroeconomic development is a dynamic process. Under the current requirements of the “dual carbon” goals, the transformation of the economic structure to a green, low-carbon, and intensive type is an inevitable trend. However, considering that the macroeconomic transformation presents fluctuating changes instead of a simple linear process, the carbon emissions generated in this process will also fluctuate, resulting in volatile carbon prices. In addition, in the process of macroeconomic development, along with technological upgrades and production changes, more advanced production technologies will greatly improve the efficiency of production factors, thereby reducing energy consumption and reducing carbon emissions, leading to lower carbon prices. Therefore, the macroeconomic dynamics will have a direct impact on carbon prices.
3.1.3 Industrial Structure
The impact of industrial structure on carbon price is reflected at the industrial level and enterprise level. As for the industrial level, different industrial structures mean different levels of development. Regional development will inevitably go through the process of industrialization. The period of rapid industrial development, especially the rapid development of heavy industry, must be accompanied by a large amount of energy consumption and a large number of emissions. Industrial pollution is the culprit behind environmental degradation and climate issues. Large industrial emissions will increase the demand for carbon emissions allowances and increase the carbon price. Therefore, to reduce industrial pollution, speeding up the adjustment of industrial structure and the development of the tertiary industry can be introduced in Fujian province. From the enterprise level, compared with other enterprises, the impact of the carbon price on industrial enterprises is the most obvious. The energy consumption and carbon emissions of industrial enterprises are much higher than other enterprises. The high carbon price will directly increase the production costs of industrial enterprises and reduce the profit of industrial enterprises. Therefore, an increase in the carbon price will force industrial enterprises to choose clean energy, and prompt enterprises to accelerate the development of green and efficient production technologies, thereby reducing carbon emissions and reducing the demand for carbon allowances, which will lead to a decline in carbon prices. So the industrial structure, especially the level of industrial development, will have an important impact on the carbon price.
3.1.4 Climate Change
Climate change will affect human production and lifestyle, which will further lead to carbon price change. Specifically, from the perspective of residents’ lifestyles, as greenhouse gases emit excessively, the extreme weather issues caused by rising temperature have become increasingly prominent. When the temperature is too high or too low, residents will use devices for cooling or heating, which will result in a short-term surge in energy consumption and carbon dioxide emissions, thereby increasing the demand for carbon emissions allowances and carbon price. Generally speaking, compared with spring and autumn, the impact of extreme weather on carbon price mostly occurs in summer and winter. Meanwhile, the residential electricity consumption in summer and winter is also higher than the annual average, which is a main manifestation of the increase in energy consumption. From the perspective of production, some equipment requires certain temperature when producing. Therefore, if extreme weather occurs, enterprises need to pay extra energy costs to support the operation of equipment, which will add additional carbon emissions, thereby increasing the demand for carbon emissions allowances and the carbon price. So climate change, especially when extreme weather occurs, will increase the carbon price.
3.1.5 Impact of Foreign Carbon Prices
Foreign carbon prices have some influence on China’s carbon price. On the one hand, the development of China’s national carbon market is in the initial stage. However, foreign carbon markets have developed for a long time and have relatively mature market. Moreover, carbon emissions is a global concern. Consequently, when setting carbon emissions allowances and carbon price, China’s carbon market will refer to foreign carbon markets to some extent. On the other hand, the gap between China’s economic development and other countries’ will lead to pricing differences in carbon market. If the carbon price in China’s carbon market is lower, some multinational companies will speculate and purchase a large amount of carbon emissions allowances in China’s carbon market, therefore increasing the demand for carbon emissions allowances in the China’s market and prompting an increase in China’s carbon price until it is on a par with the international carbon price. At present, China’s carbon market has not yet integrated with the international carbon market, so the number of speculators is relatively small. But when the China’s carbon market is fully developed and integrated with the international carbon market, the problem of speculation will become more serious. Therefore, foreign carbon prices will not only provide a reference for the setting of China’s carbon price, but also increase China’s carbon price due to speculation.
3.1.6 International Financial Markets
The international financial market will affect China’s carbon price through exchange rate changes. As countries deepen their economic ties, the import and export of energy has become the basis for the economic development of every country. For energy import enterprises, when the exchange rate rises, the relative price of foreign energy will decrease, so will the energy cost of the enterprises. So enterprises will expand their production and increase energy consumption, resulting in excessive carbon dioxide emissions and increased demand for carbon emissions allowances, causing carbon price to rise. When the exchange rate falls, the carbon price will also decrease. For energy export enterprises, when the exchange rate rises, the price of exporting energy will increase, which will in turn reduce the sales of products, resulting in a slowdown in the production rate of related enterprises and reduction in CO2 emissions and carbon emissions allowances, leading to carbon price decrease. It can be discovered that an increase in the exchange rate will promote the production of energy imported enterprises, leading to an increase in carbon price, also it can lower the carbon price by reducing the production of energy export enterprises. Therefore, the impact of exchange rate on carbon price depends on the net effect of energy import enterprises and energy export enterprises.
3.2 Model Description
BP (Back Propagation) neural network model is a representative of the machine learning models, and it is the most mature and widely used machine learning model. The core idea of this model is to take the square of the network error as the objective function, and use gradient descent to calculate the minimum value of the objective function. The algorithm of this model is mainly divided into signal forward propagation and error back propagation, and it does not consider the mapping equation between input and output, but explores the potential learning rules through continuously training the data itself. Therefore, the algorithm can discover the linear and nonlinear characteristics between input and output. At the same time, the BP neural network model is highly adaptive, which can effectively improve prediction accuracy. The algorithm of the BP neural network model is mainly divided into the following steps:
Step 1. Network initialization, determine the number of nodes at each layer of the network and the weights of connections, and initialize the threshold of the hidden layer and the output layer, and set the learning rate and the neuron excitation function;
Step 2. Computing hidden layer output, and by utilizing the input vector, the weights of connections and the hidden layer threshold to calculate the hidden layer output;
Step 3. Computing output layer output, by using weights of connections, output layer threshold and hidden layer output to calculate the output layer output;
Step 4. Using the output layer output and the expected output to conduct error calculation, weight update and threshold update successively.
Step 5. If the iteration is not over, go back to Step 2; otherwise, end the calculation.
4 DATA DESCRIPTION AND SIMULATION ANALYSIS
Based on the mechanism analysis of carbon price and the introduction of the BP model in the previous section, this section first describes the indicators and data, and then a simulation analysis is conducted to predict the carbon price in Fujian province.
4.1 Data Description
Since the establishment of carbon market in Fujian province was relatively late, with the carbon price first disclosed on 9 January 2017, the sample period of in this paper ranges from 9 January 2017 to 25 February 2022. Among them, 640 days’ data is collected. The data adopted in this paper are all obtained from the Wind database and CSMAR database.
For forecasting data, this paper selects the average daily strike price of carbon price in the carbon emissions trading market in Fujian province. From the perspective of influencing factors, combined with the previous analysis, this paper selects fossil fuel prices, macroeconomic development, industrial structure, climate change, foreign carbon prices, and international financial markets as indicators. Given the influence of different fossil fuel prices on carbon price, coal price, oil price, and natural gas price are used to represent the price of fossil fuel prices. Because Fujian province lacks coal resources and most of the coal are imported from other provinces, the coal price is represented by the National Thermal Coal Futures Closing Price, the retail price of No. 0 diesel in Fujian province is the oil price, and the market price of Fuzhou industrial pipeline gas refers to the natural gas price. In order to effectively measure the development level and market level of macroeconomic, the CSI 300 index is adopted to represent the macroeconomic development level, and the 1-year treasury bond interest rate is utilized to represent the macroeconomic market level. As for the industrial structure, the above analysis points out that industrial development plays a key role in affecting carbon emissions, and the manufacturing industry is an important component of the industry, so this paper uses the Shenzhen Stock Exchange Manufacturing Index Closing Price to represent the industrial structure. Considering that different degrees of climate change have different impacts on carbon price, therefore the absolute value between daily average temperature and the suitable temperature denotes climate change, of which the suitable temperature is 25°C. Considering that the EU has the most mature carbon market, the EUA futures settlement price is selected to represent the impact of foreign carbon prices. In regard to the impact of the international financial market, this paper selects the exchange rate of RMB against the US dollar and the exchange rate of RMB against the euro respectively to reveal the influence of the international financial market. The details are shown in Table 1.
TABLE 1 | Indexes description.
[image: Table 1]It can be discovered from the above table that there is a large gap between each indicator and the dimension. In order to avoid the influence, the min-max standardization method is adopted to normalize each index, so that the value range of each index is mapped between [0,1]. For any index X, the specific formula is as follows:
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[image: image] is the standardized data, [image: image] refers to the maximum value of index [image: image], and [image: image] denotes the minimum value of index [image: image].
4.2 Simulation Analysis
Among the 640 samples, this paper uses 619 samples (about 97%) from 2017 to 2021 as the training data set, and 21 samples (about 3%) in 2022 as the test data set for prediction. Matlab 2017bis used to conduct simulation analysis. In order to avoid overfitting, newff function is selected, and the calculation formula for the number of neurons is [image: image]. [image: image] is the number of samples in the training data set, and [image: image], [image: image], the training algorithm is the LM method, the training times is 1,000, the learning rate is 0.01 and the minimum error of the training target is 0.00001. The fitting results of this training are shown in Figure 2.
[image: Figure 2]FIGURE 2 | Description of carbon price prediction fitting in Fujian province.
From Figure 2, the goodness of fit of all the samples is 0.9237, while the goodness of fit of the training data set is 0.9270, and the goodness of fit of the validation data set is 0.9301, the goodness of fit of the test data set is 0.8974. Moreover, the average goodness of fit is basically around 0.9, demonstrating a sound fitting effect. In addition, the mean square error (MSE) of this prediction is 7.7569, and the root mean square error (RMSE) is 2.7851, which also shows that the prediction effect is relatively good.
From Figure 3, it can be discovered that the predicted value of carbon price is obviously lower than the real value in the early stage of prediction. However, as time prolongs, the gap between the real value and the predicted value gradually decreases until it is basically fitted. This indicates that the BP neural network model has a good effect on the prediction of carbon price in Fujian province.
[image: Figure 3]FIGURE 3 | Comparison between the true value and the predicted value of the carbon price in Fujian province.
It can be seen from Table 2 that in the early stage of the forecast, the predicted value of carbon price is 8.57 lower than the real value. But in the fourth forecast period (i.e., 6 January 2022), the forecast error is controlled within 2, and the error of some forecast periods is within 1.5, which shows a sound prediction effect of the BP neural network model on carbon price in Fujian province, and also proves that the influencing factors selected in this paper have a significant impact on the carbon price.
TABLE 2 | Carbon price prediction results in Fujian province.
[image: Table 2]5 CONCLUSION AND POLICY RECOMMENDATIONS
Based on the BP neural network model, this paper uses the available daily data from January 2017 to February 2022 to predict the carbon emission trading price in Fujian province and analyze the mechanism of different influencing factors on carbon prices. It can be discovered that the BP neural network model works well in predicting the carbon price in Fujian province, which indicates that in the era of big data, a machine learning model with nonlinear and non-parametric characteristics is applicable for high-dimensional system prediction. At the same time, the good prediction effect also shows that the mechanism analysis of carbon price influencing factors in this paper is effective. The optimization of the carbon market in Fujian province can be carried out from six dimensions: fossil fuel prices, macroeconomic development, industrial structure, climate change, foreign carbon prices, and international financial markets. Based on the above conclusions, the policy recommendations are as follows:
Firstly, machine learning models represented by the BP neural network model should be used more widely in economic forecasting. With the advent of the big data era, it is difficult for linear models represented by the time series model to accurately predict the current economy. The setting limit of the linear equation cannot present the nonlinear components in economic development, but the coordinated development of multi-domain markets in the context of the market economy means that the uncertainty and nonlinear components in economic development will increase. Therefore, using a machine learning model with nonlinear and non-parametric features can discover the hidden relationships by training data itself, thereby predicting the economic development accurately.
Secondly, from the perspective of domestic influencing factors, the development of the carbon market in Fujian province needs to focus on fossil fuel prices, macroeconomic development, industrial structure and climate change. Specifically, the development of clean energy in Fujian province enjoys a solid foundation, so it should continue to enhance the development of clean energy, reduce the use of fossil fuel and the demand for carbon emissions allowances. Ensuring the stable economic development of Fujian province so as to provide an enabling business environment for the carbon market operation. Fujian needs to comprehensively upgrade its traditional industries, accelerate the development of the three leading industries, promote the large-scale development of strategic emerging industries, promote the industry to move towards the middle and high end, and build a large advanced manufacturing province. To overcome challenges of the climate change, response mechanisms should be designed to reduce the impact of extreme weather on the surge in carbon emissions. In conclusion, Fujian province should take carbon price as the reference standard to vigorously develop green economy so that the dual carbon goals can be achieved.
Thirdly, from the perspective of foreign influencing factors, the stable development of Fujian province’s carbon market needs to attach importance to foreign carbon prices and international financial markets. Although Fujian province’s carbon market has not yet integrated with the international carbon markets, the speculation caused by the carbon price gap still exists. For Fujian province, China’s carbon price is already lower than the international carbon price and the carbon price in Fujian province is about 30% of the price in China’s carbon market. The huge arbitrage space will bring unfavorable factors into Fujian province’s carbon market. So, the market should establish a system to avoid the adverse impact. Meanwhile, as a major energy importer, the exchange rate between different countries will also exert great impact on Fujian province’s carbon market. This indicates that Fujian province should predict its energy demand accurately and vigorously develop clean energy storage projects to reduce reliance on importing energy, thereby reducing the impact of the international financial market on the carbon market in Fujian province.
The effective prediction of carbon price is conducive to the optimal development of carbon market in Fujian Province. Therefore, in the future, we can further explore the prediction methods of medium - and long-term carbon prices.
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Based on the theory of “Non-Economic Promotion Championship,” this paper takes Appraisal-And-Commendation (AAC) policy of National Civilised City (NCC) program in China as the research object, and analyses the influence and mechanism of the NCC on carbon emissions from the perspective of energy demand. We find that NCC reduces carbon emissions significantly, and this reduction effect continues to expand over time. Furthermore, the NCC reduces carbon emissions through two mechanisms: First, the NCC reduces carbon emissions by slowing urbanisation. This mechanism mainly functions in big cities, megacities, and super cities, and does not function in small and medium cities. Second, the NCC reduces carbon emissions by promoting industrial restructuring from secondary industry to tertiary industry. This carbon reduction effect is a pure structural adjustment effect, regardless of any effects on technological level and productivity. Moreover, there are regional differences in the reduction of carbon emissions by NCC through industrial restructuring in two dimensions: In the first dimension, compared with the western region and the northeast region, the eastern and central regions are more able and willing to reduce carbon emissions through industrial restructuring. In the second dimension, compared with the northern region, the southern region is more likely to reduce carbon emissions through industrial restructuring.
Keywords: national civilised city, carbon emissions, urbanisation, industrial restructuring, non-economic promotion championship
1 INTRODUCTION
In recent years, with the increasing impacts of global heating, such as rising sea levels and increasing frequency of extreme weather, on economic and social life, emissions of greenhouse gases including carbon dioxide and methane, have received unprecedented attention. In response to the negative impact of global heating caused by excessive emissions of these gases, countries have issued emission reduction plans, in particular since the Paris Agreement. To date, more than 70 countries have set net-zero emissions targets, covering about 76% of global emissions.1 As one of the world’s largest carbon emitters, China similarly announced in 2020 the “dual carbon” goals of striving to ensure its carbon dioxide emissions peak by 2030 and to achieve carbon neutrality by 2060.
Achieving carbon emission reduction targets requires relevant policy tools. To sum up, the existing literature focuses on traditional command-and-control (CAC) policies such as air and water environmental quality standards, pollutant discharge standards, and sustainable development goals (Greenstone and Hanna, 2014; Harrison et al., 2015; Singhal, 2018; Liu et al., 2021; Yu et al., 2021), as well as price incentive (PI) policies2 such as carbon taxes, resource taxes, emission trading schemes, and marginal abatement costs (Pearce, 1991; Wang and Qi, 2016; Jia and Lin, 2020; An et al., 2021; Xian et al., 2022). However, a new type of policy tool, which is different from CAC policy and PI policy but popularly used in China, so-called “appraisal and commendation” (AAC) policy, have not yet received effective attention.
Appraisal and commendation refers to the system design of an appraisal conducted by the higher-level government of the behaviour and effectiveness of lower-level government according to certain standards (Liu, 2019). This policy adheres to the principle of voluntary participation. Local governments that do not participate will not be punished, and local governments that participate will not receive any direct economic benefits, but the winning cities can receive corresponding commendation and honour. This is the most important difference between the AAC policy and the traditional CAC and PI policies. As it is quite different from the other two traditional policies, we may wonder, can the AAC policy better reduce carbon emissions? If yes, what is the influencing mechanism of AAC policy on carbon emissions? This paper focus on the National Civilised City (NCC) program, the most typical of AAC policy in China, and tries to give theoretical answers to these questions at the city level. The reason why the NCC program was selected is that the NCC program is the most influential AAC policy in China and is regarded as the “golden signboard” of the winning cities (Liu, 2019; Lin, 2022). On the one hand, this paper can help China improve relevant policy design, achieve its “double carbon” targets as soon as possible, and make due contributions to the world’s response to global heating; on the other hand, the AAC policy such as NCC program can provide a reference for the carbon reduction policies of other countries in the world. In summary, the issues discussed in this paper are not only of theoretical importance but also of great practical significance.
Based on the theory of the “Non-Economic Promotion Championship,” this study analyses and tests the influence and mechanism of the NCC on carbon emissions from the perspective of energy demand. The analysis results indicate that:
First, the NCC can reduce carbon emissions effectively. Moreover, the reduction effect of the NCC on carbon emissions has been expanding over time, indicating that the NCC is a far-reaching policy. Once awarded, the NCC can generate a steady stream of endogenous power and reduce carbon emissions continuously.
Second, the NCC reduces carbon emissions by slowing urbanisation. Since China’s urbanisation is mainly composed of population flow from small and medium to big cities, especially super cities, the mechanism of reducing carbon emissions by slowing urbanisation mainly functions in big cities, megacities, and super cities, and not in small and medium cities.3
Third, the NCC also reduces carbon emissions by promoting industrial restructuring from secondary to tertiary industry. This reduction effect is a pure structural adjustment effect, regardless of any effects on technological level and productivity. Moreover, there are regional differences in the reduction of carbon emissions by the NCC through industrial restructuring in two dimensions: In the first dimension, compared with the western region and the northeast region of China, the eastern and central regions, with a higher level of economic development, especially the eastern region, are more capable and willing to commend this opportunity to reduce carbon emissions through industrial restructuring. In the second dimension, compared with the northern region, the southern region, which has a more market-oriented economic system, is more likely to reduce carbon emissions through industrial restructuring.
The main contributions of this paper are threefold. First, the NCC program is selected for the evaluation of the carbon emission reduction effect of AAC policy, which is a important supplement to the research on traditional CAC policy and PI policy. Second, based on the theory of the “Non-Economic Promotion Championship,” the influence of the NCC on carbon emissions is analysed and tested, in an extension of the existing NCC program evaluation literature (Lu et al., 2020; Xu, 2020; Li et al., 2021; Shen et al., 2021; Zhang et al., 2021). Finally, the influence mechanism of the NCC on carbon emissions through urbanisation and industrial restructuring is examined from the perspective of energy demand, which provides a new perspective for the evaluation of the NCC policies.
The rest of this article is arranged as follows: the second part is the literature review, the third part is theoretical analysis, the fourth part introduces the econometric model and data, the fifth part is the empirical test results, and the sixth part is the conclusions and policy recommendations.
2 LITERATURE REVIEW
To sum up, the existing literature focuses on the policy effects of traditional CAC policies and PI policies; in contrast, new policy tools popularly used in China so-called “appraisal and commendation” (AAC) policies have not yet received effective attention. The three policy tools mentioned here are introduced below.
2.1 CAC policy and its effects
CAC policy generally refers to a policy of setting environmental goals or standards for target subjects such as enterprises, residents, and local governments, under which those who violate environmental goals or standards will be punished accordingly, in a relatively straightforward regulatory approach (Singhal, 2018). Compared with PI policy and AAC policy, CAC policy is older, traceable back to the “Alkali Works Regulation Act” introduced in 1906 by the United Kingdom, which directly limits pollutant discharge from highly polluting industries such as the heavy chemical industry (Longhurst et al., 2009). The “Clean Air Act” introduced in the United States in 1970 are a typical CAC policy, which control the emission of air pollutants and improve air quality by clarifying the responsibilities of state governments. Relevant studies have shown that the “Clean Air Act” effectively control and reduce the emission of related pollutants and greatly improve air quality (Henderson, 1996; Becker and Henderson, 2000; Chay and Greenstone, 2003; Greenstone, 2004). CAC policies implemented by developing countries such as India and China have gradually attracted the attention of scholars; these include the “Supreme Court Action Plans” and the “Mandated Catalytic Converters” in India (Greenstone and Hanna, 2014; Harrison et al., 2015), and the “Two Control Zone” (Tanaka et al., 2014; Sun et al., 2019), the “Atmosphere Ten Articles” (Li, 2021) and the “Sustainable Development Goals” (Liu et al., 2021) in China. Although PI policies are increasingly favoured by economists due to their low economic costs, governments still make extensive use of traditional CAC policy tools, which have the advantages of short policy effect cycles and clear policy goals (Singhal, 2018).
2.2 PI policy and its effects
Price incentive policy refers to the provision of economic incentives for target entities such as enterprises and residents through policy design, thereby achieving the purpose of reducing pollution emissions and improving environmental quality, which is a relatively indirect regulatory method (Singhal, 2018). From the perspective of economic theory, PI policy can not only achieve emission reduction targets at a lower economic cost but also incentivise target subjects to adopt more advanced technologies (Porter and Linde, 1995), and improve overall economic efficiency, in the so-called “double dividend” (Pearce, 1991). Overall, existing research generally indicates that PI policy tools such as carbon taxes, resource taxes, emissions trading schemes, and marginal abatement costs can effectively reduce emissions (Andersson, 2019; Lin and Jia., 2019; Dorsey-Palmateer and Niu, 2020; Liu et al., 2020; An et al., 2021; Xian et al., 2022). The focus of the debate is on which price incentive tool has the lowest cost and/or best emission reduction effect (Strand, 2013; Wang and Qi, 2016; Barragán-Beaud et al., 2018; Hu et al., 2021). Due to the vast differences in political systems, cultural systems, levels of economic development, industrial and market structures, and policy objectives among various countries, it is impossible to have a single optimal policy tool (Goulder and parry, 2008). Thus, the combined use of multiple policy tools such as the PI tool and the CAC tool will be a major direction for future policy design (Singhal, 2018).
2.3 The NCC program and its effects
Appraisal and commendation policy refers to the system design of an appraisal of the behaviour and effectiveness of lower levels of government conducted by higher-level government according to certain standards (Liu, 2019). AAC policy adheres to the principle of voluntary participation, with neither direct economic incentives nor relevant penalties; instead the winning cities can receive corresponding recognition and honour. The National Civilised City program is the most typical of AAC policy in China. Scholars have studied the environmental effects of this policy from the macro (city) and micro (enterprise) levels. At the macro (city) level, Lu et al. (2020) were the first to discover that the NCC can effectively promote technological innovation and industrial structure upgrading, thereby significantly reducing PM2.5 concentration, industrial sulphur dioxide emissions, industrial soot emissions, and industrial wastewater emissions. Xu (2020) believes that the NCC has significantly reduced industrial sewage and industrial carbon dioxide emission intensity in given cities and their neighbouring cities by increasing investment in environmental pollution control and environmental infrastructure as well as by attracting public participation, which is also found by Li et al. (2021). At the micro (enterprise) level, Zhang et al. (2021) find that the NCC promotes the environmental performance of listed companies. Shen et al. (2021) also find that the NCC has reduced the chemical oxygen demand (COD) emissions of industrial enterprises by strengthening source control, improving clean production technology, and attracting high-quality green enterprises. It can be seen that whether it is at the macro (city) or micro (enterprise) level, the NCC can effectively reduce pollution emissions and improve the ecological environment.
The existing literature focuses on traditional CAC policies such as air and water environmental quality standards and pollutant emission standards, as well as PI policies such as carbon tax, resource tax, and emissions trading. As a third type of policy tool that is different from the CAC policy and PI policy, new policy tools popularly used in China so-called AAC policy are currently receiving less attention. A small amount of literature (Lu et al., 2020; Xu, 2020; Li et al., 2021; Shen et al., 2021; Zhang et al., 2021) has studied the environmental effects of the NCC program, a typical policy of AAC policy. However, only the impacts of the NCC on air pollution and water pollution, such as PM2.5, industrial sulphur dioxide emissions, industrial soot emissions, and industrial wastewater emissions, were investigated; no literature specifically examines the carbon emission reduction effect of the NCC, especially the mechanism of its influence on carbon emissions, which leaves the decision on what role the AAC policy should play in the process of carbon emission reduction lacking a theoretical basis. This study attempts to remedy this deficiency.
3 THEORETICAL ANALYSIS
3.1 Background
The NCC program originated from the “Five lectures, four beauties, and three loves”4 of the 1980s (Li et al., 2021). In 2003, the Central Commission for Guiding Cultural and Ethical Progress (referred to as the “Central Civilisation Commission,”5 CCC), directly under the Central Committee of the Communist Party of China (CCCPC), issued the “Interim Measures for Appraising and Commending National Civilised Cities, Civilized Villages or Towns, and Civilized Units” officially opening this influential and comprehensive appraisal program of cities. At the first appraisal in 2005, a total of nine civilised cities and three civilised urban areas within municipalities have been selected. Since 2005, six appraisals have been held so far, to a total of 146 national civilised cities (including 25 provincial capital cities and sub-provincial cities, and 121 prefecture-level cities), 163 national civilised urban areas and counties (including 29 municipal urban areas, 134 county-level cities and counties) have been selected, with an increase in the number of commendations year over year (Figure 1).
[image: Figure 1]FIGURE 1 | The number of national civilized cities commended over the years.
The NCC is carried out every 3 years following the procedure of “voluntary declaration, level-by-level recommendation, advance publicity, and merit-based selection.”6 The specific selection process is as follows. First, the Central Civilisation Commission assigns the quotas of national civilised cities to the provinces. Second, according to the voluntary principle, city apply to the provincial civilisation committee to become a National Civilised City. Ordinary city apply to become the Advanced Civilised City earlier on, after become the Advanced Civilised City, the Advanced Civilised City apply to become the National Civilised City. In other words, only the Advanced Civilised City is eligible to apply for National Civilised City. A “one-vote veto” mechanism is set up in this regard. If there is a serious violation of discipline or crime by the top party committee or government leaders in the 12 months before the application for the evaluation, or occurrence of major or catastrophic environmental events, eligibility to participate in the evaluation will be directly revoked. Third, the provincial civilisation committee reviews and evaluates each city according to the “National Civilised City Appraisal System” (referred to as the “Appraisal System,” AS), and selects the best cities to recommend to the Central Civilisation Commission. Finally, after confirming the list of participants, the Central Civilisation Commission commissions a professional consultancy and assigns staff of the Central Civilisation Commission to evaluate the participating cities, and selected the best ones in strict accordance with their scores. Once selected, the title of the National Civilised City would be awarded. For cities that entered the evaluation but had not been awarded the title of the National Civilised City, the title of the Advanced Civilised City will be awarded, and qualification for the next evaluation will be automatic. Cities that have been awarded the title of the National Civilised City need to be reviewed in each subsequent evaluation. If they fail to pass the re-examination, the title will be cancelled. The basic process of selection can be seen in Figure 2.
[image: Figure 2]FIGURE 2 | The basic process of the national civilized city selection.
As has been stated above, the key to get the title of the National Civilised City is the score in the Appraisal System, which covers economic construction, political construction, cultural construction, social construction, ecological civilisation construction, party construction, and other aspects of urban governance. However, there is not much evaluation content related to the economic field, and much of it is related to the ecological environment. Take the 2015 edition of the “National Civilised City (Above the Prefecture Level) Appraisal System” as an example: it contains 3 modules, 12 indicators, 90 subindicators, and 188 criteria. Among them, in the 9th indicators “comfortable and convenient living environment,” the subindicator of “energy consumption per unit of GDP” is set, and three criteria are set up to be “lower than the provincial (regional) annual control target,” “equal to the provincial (regional) annual control target,” and “higher than the provincial (regional) annual control target.” The greater the degree to which the energy consumption per unit of GDP is lower than the annual control target of the province (region), the higher the score, and the closer the city is to being rated a National Civilised City. The 11th indicator of the 2015 edition of the “Appraisal System” is “ecological environment for sustainable development,” which sets nine green and low-carbon subindicators such as “urban air quality,” “urban water environment quality,” and “public participation,” accounting for 10% of the 90 subindicators. In addition, the Appraisal System conducts a “one-vote veto” for the occurrence of major and extraordinary environmental events. Once major and extraordinary environmental events occurred, the city will be disqualified from participating if those events occurred within 12 months before the application for the appraisal.
3.2 Hypotheses
As an appraisal and commendation policy, the NCC has neither direct economic incentives nor corresponding punishment measures. Why then are local governments always enthusiastic about participating in the NCC, and why do they wish to mobilise all possible resources to obtain the title of “national civilised city”? Liu (2019) finds that from half to all of mayors or municipal party committee secretaries have been promoted at their next transfer to new position after receiving the title of the National Civilised City. In other words, the NCC is a “Non-Economic Promotion Championship” (Huang and Zhou, 2020). Different from the traditional “Economic Promotion Championship” (Zhou, 2007), which emphasizes the promotions based on economic performance, whoever can gain the NCC certification will have a higher probability of promotion. Empirical studies by Zhang and Wang (2020), Li et al. (2021), and Zhang et al. (2021) have confirmed this theory.
It can be seen that although there is no public incentive in the NCC program, the personal incentive for mayors and municipal party secretaries is enough to attract local governments to compete fiercely and even set off a campaign so-called “creating NCC in the whole city” (Liu, 2019).
As the ecological environment occupies the key position in the NCC program, if local governments want to win the title of NCC, they must strive to build a good ecological environment and achieve the ecological environment goals required by the Appraisal System. Existing literature has also confirmed that whether at the macro (city) level or the micro (enterprise) level, the NCC can effectively reduce pollution emissions and improve the ecological environment (Lu et al., 2020; Xu, 2020; Shen et al., 2021; Zhang et al., 2021). Whether it is the goal of “energy consumption per unit of GDP” or the other green and low-carbon goals of “urban air quality,” “urban water environment quality,” and “public participation,” they are all closely related to carbon emission reduction. To achieve the various ecological environment goals in the Appraisal System, local governments will inevitably need to directly or indirectly carry out substantial carbon emission reductions. From this, the first research hypothesis of this paper is obtained:
HYPOTHESIS 1. The NCC can induce local governments’ incentives for carbon emissions reductions, then reduce carbon emissions.If the NCC can induce local governments’ incentives for carbon emissions reductions, how can local governments achieve their carbon emission reduction goals? This paper analyses this issue from the perspective of energy demand. At present, the analysis of low-carbon transition policies such as the CAC policies and PI policies mainly focuses on supply and less on demand. The ultimate purpose of production is consumption, and the fundamental source of carbon emissions is also consumption. Therefore, changes in demand can largely determine the future carbon peak value (Lin, 2022). Electricity demand is mainly composed of residential electricity, commercial electricity, and industrial electricity. In 2019, China’s residential and commercial electricity consumption accounted for about 30% of the total, while industrial electricity consumption accounted for about 70% (Lin, 2022). Hence, the most intuitive approach for local governments is to limit demand across these sectors, in most cases with a focus on industry.In China, the main source of current demand for residential and commercial electricity is urbanisation. Due to the huge difference in lifestyles between rural and urban areas, urban residents consume much more energy and generate much more carbon emissions than rural residents. Urban lighting, heating and cooling, and large shopping malls for urban residents will generate a lot of energy consumption. In other words, urbanisation will lead to a significant increase in electricity demand and energy consumption of residents and businesses. Therefore, to limit the substantial increase in carbon emissions brought about by residential and commercial electricity demand, a feasible method for local governments is to limit the transfer of rural population to urban areas, that is, to achieve carbon emission reduction by slowing down the urbanisation of the population.Furthermore, in order to limit the carbon emissions of commercial and industrial electricity, local governments will inevitably increase the intensity of regulation, which will undoubtedly in turn increase the production cost of electricity companies, reducing their profits (Zheng and Zhang, 2016), inhibit economic growth (Huang and Zhou, 2020; Li et al., 2021), and reduce jobs. All of these will further slow urbanisation, which in turn will slow the growth of carbon emissions. Since cities and towns will lack jobs that can provide higher incomes, there will be less need for the rural population to move to cities and towns.Besides, in the process of urbanisation in China, the population mainly flows from small cities to big cities, especially super cities, for big and super cities can provide more job opportunities and higher income. Hence, if the mechanism that local governments achieve the goal of reducing carbon emissions by suppressing the urbanisation during the NCC program is true, then this reduction effect would be grater in big and super cities than in small cities. Therefore, the second research hypothesis of this paper is as follows:
HYPOTHESIS 2. The NCC promotes the reduction of carbon emissions by slowing urbanisation, furthermore, the reduction effect that the NCC upon carbon emissions would be greater in big and super cities than in small cities.The most important source of carbon emission demand is electricity consumption in secondary industry, especially in heavy chemical industries such as chemical raw material manufacturing and steel smelting. To achieve the goal of emission reduction, local governments will inevitably increase the intensity of regulation of high-carbon emission enterprises in secondary industry, such as by restricting new investment and expansion of high-carbon emission enterprises, setting carbon emission limits, etc., and at the same time increase investment in environmental pollution control and environmental infrastructure (Xu, 2020). In this way, it will push up the production costs of high-carbon-emitting enterprises, reduce the profits of these enterprises (Zheng and Zhang, 2016), and slow down the growth of secondary industry. To cope with this drag on overall economic growth, a feasible way is to vigorously develop tertiary industry, such as tourism, etc., which has relatively low carbon emissions, and to guide resources released by secondary industry to tertiary industry. Correspondingly, studies have found that the NCC has contributed to the growth of tourism (Chen and Mao, 2021). In other words, under the NCC, carbon emission reduction targets are achieved by promoting industrial restructuring from secondary to tertiary industry.However, local governments’ development goals are sometimes in conflict, such as developing the economy and protecting the environment. Theoretically, in local governance in China, the non-economic promotion race may have a higher threshold compared to the economic promotion race, and only those cities that are relatively economically developed will be more environment-oriented in carbon emission reduction.Compared with the western and north-eastern regions, cities in the eastern and central regions7 have higher levels of economic development in China. Cities in the eastern and central regions have achieved industrialisation after more than 40 years of rapid economic development since the “Reform and Opening-Up” in 1980s. In particular, the eastern region, which has entered the post-industrial era, is vigorously developing tertiary industry such as producer services. Cities in the western and northeast regions, in contrast, has a relatively low level of economic development. Their industries are dominated by primary and secondary industries, and industrialisation has not yet been completed. Most cities in the western and northern regions have a high proportion of heavy industry and energy industry such as petroleum, natural gas, and especially coal. It would be difficult for the cities in the western and northern regions to promote industrial restructuring to meet the target of carbon emissions reduction set up by the NCC. To sum up, compared with cities in the western and north-eastern regions, cities in the eastern and central regions, especially the eastern region, are more capable and willing to take the NCC program as an opportunity to reduce carbon emissions through industrial restructuring.Hence, the third research hypothesis of this paper is as follows:
HYPOTHESIS 3. The NCC promotes the reduction of carbon emissions by industrial restructuring, moreover, the reduction effect that the NCC upon carbon emissions would be greater in the cities of eastern and central regions than in the cities of western and north-eastern regions.
4 RESEARCH DESIGN
4.1 Model settings
To test the impact of the NCC on carbon emissions (Hypothesis 1), the asymptotic double-difference method, that is, time-varying difference-in-differences (DID), is used, and the following benchmark model is set for causal identification:
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Here, the explanatory variable [image: image] represents carbon emissions for the ith city in the year [image: image]. The explanatory variable [image: image] is a dummy variable, representing whether the city has become a national civilised city, and the award year and subsequent years are assigned as 1 (treatment group); otherwise, years are assigned 0 (control group). Next, [image: image] is a control variable, including the economic development level ([image: image]), foreign direct investment ([image: image]), science and technology level ([image: image]), total population ([image: image]), and per capita consumption level ([image: image]). Then, [image: image] is the city fixed effect, [image: image] is the year fixed effect, and [image: image] is the random error term. The parameter to be estimated, [image: image], represents the impact of the NCC on carbon emissions. When [image: image] is significantly positive, it means that the NCC promotes carbon emissions; when [image: image] is significantly negative, it means that the NCC restrains carbon emissions.
To ensure the correctness of the model (1) settings, Beck et al. (2010) are referred to in setting the following model for the parallel trend test:
[image: image]
where [image: image] is the dummy variable for the nth year obtaining the national civilised city designation; when it is the nth year, it is assigned a value of 1; otherwise, 0. In order to prevent the time span from being too long, samples that were more than 10 years before or after the acquisition of the national civilised city designation were merged into the 10th year. If [image: image], [image: image] is not significantly different from 0, it means that the assumption of a parallel trend is satisfied, and the setting of the model (1) is correct; otherwise, the setting is wrong.
In order to test the influence mechanism of the NCC on carbon emissions through urbanisation and industrial restructuring respectively (Hypotheses 2 and Hypotheses 3), based on model (1) and referring to Wen et al. (2004), the following mediation effect model is set:
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[image: image]
where [image: image] is the intermediary variable, including urbanisation ([image: image]) and industrial restructuring ([image: image]), and [image: image] is the control variable. If the coefficients [image: image] and [image: image] are significant, and the value of the coefficient [image: image] in the model (4) is smaller than the coefficient [image: image] in model (1), then there is a mediating effect of the NCC affecting carbon emissions through an intermediary variable.
4.2 Data description
The sample used is the 19-years unbalanced panel data of 287 cities in China, from 1999 to 2017. The data indicators used for the respective variables are as follows:
4.2.1 Explained variable
The explained variable [image: image] is measured by the carbon emission per unit of GDP, that is, the carbon emission intensity. The consumption of energy, such as coal, oil, natural gas, and hydroelectricity, is multiplied by their respective carbon emission coefficients, and then the carbon emission values are obtained by adding up the results.
4.2.2 Explanatory variable
The data for the explanatory variable [image: image] comes from the lists of five national civilised cities (districts) released by the Central Civilisation Commission from 2005 to 2017. As of 2017, a total of 104 provincial capitals, sub-provincial cities, and prefecture-level cities and 4 municipalities8 directly under the Central Government, including Beijing, Shanghai, Tianjin, and Chongqing, have been rated as national civilised cities. A total of 108 cities are in the treatment group, and the rest are in the control group.
4.2.3 Mediating variable
Urbanisation is measured by the proportion of the non-agricultural population in the total population at the end of the year, and the industrial structure is measured by the ratio of the output value of tertiary industry to that of secondary industry.
4.2.4 Control variable
Economic development level is represented by per capita GDP, foreign direct investment is measured by the proportion of actual foreign investment in GDP (converted using exchange rates), science and technology level is represented by per capita financial expenditure in science and technology, total population is measured by the total population at the end of the year, and the per capita consumption level is the per capita retail sales of social consumer goods.
All nominal data are deflated by the provincial consumer price index (CPI) based on 1999, and the non-proportional data are in logarithmic form. Exchange rate data and provincial CPI data are from the “China Statistical Yearbook” (2000–2018), and the rest of the data are from the “China Urban Statistical Yearbook” (2000–2018). Descriptive statistics of variables are shown in Table 1.
TABLE 1 | Descriptive statistics of variables.
[image: Table 1]5 EMPIRICAL RESULTS
5.1 The benchmark model
To test the influence of the NCC on carbon emissions, the benchmark model (1) is estimated; the estimated results are shown in Table 2. Among them, columns (1) and (2) do not add the control variable, while columns (3) and (4) do; columns (1) and (3) are the results without clustering robust standard errors, while columns (2) and column (4) are the results further adopting clustering for the city-level robust standard errors.9 As seen in the table, no matter whether the control variable is added or not or whether the clustering robust standard error is used, the estimated coefficients of the variable NCC are highly significantly negative, indicating that the NCC can significantly reduce carbon emission intensity. Hypothesis 1 is verified.
TABLE 2 | The estimated results of the benchmark model.
[image: Table 2]5.2 Robustness tests
5.2.1 Parallel trend test
This article refers to Beck et al. (2010) and uses model (2) to test for parallel trends. The estimated results of model (2) are shown in Figure 3, and the confidence interval is set to 90%. Figure 3A is the estimated result without the control variable, while Figure 3B is the result with the control variable. It can be seen that no matter whether with or without the control variable, the 90% confidence interval of the estimated coefficients of the dummy variable [image: image] in the nth year before obtaining the national civilised city contains 0, that is, there is no significant difference in carbon emission intensity between the control group and the treatment group before being rated as a national civilised city. This suggests that model (1) satisfies the parallel trend assumption, the setting of model (1) is correct, and the estimated results in Table 1 are robust.
[image: Figure 3]FIGURE 3 | Parallel trend test. (A) Without control variables, (B) With control variables.
Figure 3 also provides the dynamic influence of the NCC on carbon emissions. In Figure 3A, the current period and the first period where the city is rated as a national civilised city do not show a significant impact on carbon emissions; the policy effect begins to appear from the second period. These show that there may be a time lag in the impact of the NCC on carbon emissions, that is, it will take some time for the implementation of the policy to achieve real results. In Figures 3A,B the influence of NCC on carbon emissions is constantly expanding, and even in the 10th year after certification as a national civilised city, the policy effect still shows no sign of weakening. This shows that the NCC is a far-reaching policy, and that once awarded, the designation can generate a steady stream of endogenous power and continuously reduce carbon emissions.
5.2.2 PSM-DID
To avoid systematic variation trend differences between the treatment group and the control group due to selection bias, and thus prevent failure to meet the parallel trend assumption, this paper further uses the PSM-DID method for robustness testing (Lu et al., 2020). Specifically, the control variable is used to represent the covariate variable, and the dummy variable [image: image] of national civilised cities is used to perform logit estimation on the control variable to obtain a propensity score; the cities with the closest propensity scores are matched. When doing propensity score matching, there are different matching methods. This study adopts the k-nearest neighbour matching and selects “one-to-four matching” (k = 4) to minimize the mean square error (Abadie et al., 2004). Since the data in this study are panel data, the method of year-by-year matching is adopted.
Table 3 shows the results of the balance test for the matched data in 2017. It can be seen that before matching, except for the variable of scientific and technical level (Tech), the covariates are significantly different between the treatment group and the control group. The t-statistics of all covariates after matching are not significant, that is, there is no systematically significant difference between the treatment group and the control group after matching. In the meantime, the absolute value of the standard deviation of most covariates after matching is less than 10%, indicating that the matching process is valid.
TABLE 3 | The results of the PSM balance test (2017).
[image: Table 3]The above matching data exclude the systematic variation trend differences between the treatment group and the control group due to selectivity bias. In other words, these data satisfy the parallel trend assumption. Based on the above matching data, model (1) is estimated again; the estimated results are shown in Table 4. As seen, the estimated coefficients of the NCC are highly significantly negative in all results, which is consistent with the results in Table 1, although the estimated coefficients are smaller than those in Table 1. This again illustrates the robustness of the estimated results in Table 1.
TABLE 4 | The results of PSM-DID.
[image: Table 4]5.3 Mechanism analysis
The estimated results of the benchmark model in Section 5.1 and the robustness test in Section 5.2 above verify the reduction effect of the NCC on carbon emissions. Given these results, what is the mechanism behind the carbon emissions reduction? Hypothesis 2 and Hypothesis 3 in the theoretical mechanism analysis in Section 3.2 above show that in the process of the NCC program, local governments are very likely to reduce carbon emissions by inhibiting urbanisation and promoting industrial restructuring. This section will empirically test and Hypothesis 2 and Hypothesis 3 through a mediating effect model.
5.3.1 Mechanism analysis based on urbanisation
When using urbanisation as the mediating variable, the estimated results of model (3) and model (4) are shown in Table 5. As seen in columns (2) and (5), the estimated coefficients of the NCC variable are significantly negative, indicating that the NCC has indeed slowed down urbanisation. In columns (3) and (6), the estimated coefficients of urbanisation are significantly positive, indicating that urbanisation will increase carbon emissions. Meanwhile, the estimated coefficients of the NCC variable are still significantly negative, and the values are lower than those in columns (1) and (4). The above-estimated results show that urbanisation plays a partial mediating effect in the NCC’s effect on carbon emissions and that the NCC does effectively reduce carbon emissions by slowing urbanisation. Hypothesis 2 is thus partial verified.
TABLE 5 | Mechanism analysis based on urbanisation.
[image: Table 5]5.3.2 Mechanism analysis based on industrial restructuring
When using industrial structure as the mediating variable, the estimated results of model (3) and model (4) are shown in Table 6. As seen in columns (2) and (5), the estimated coefficients of the NCC variable are significantly positive, indicating that the NCC has indeed promoted industrial restructuring from secondary to tertiary industry. In columns (3) and (6), the estimated coefficients of industrial structure are significantly negative, suggesting that the industrial restructuring from the secondary industry to the tertiary industry can reduce carbon emissions. Meantime, the estimated coefficients of the NCC variable are still significantly negative, and their values are lower than those in columns (1) and (4). The above-estimated results thus show that the industrial restructuring plays a partial mediating effect in the NCC’s effect on carbon emissions. The NCC has indeed effectively reduced carbon emissions by promoting industrial restructuring from the secondary industry to the tertiary industry, and Hypothesis 3 is verified.
TABLE 6 | Mechanism analysis based on industrial restructuring.
[image: Table 6]Liu and Liu (2021) discover that the NCC mainly promotes the upgrading of industrial structure by promoting urban technological innovation and green total factor productivity (TFP). Combined with the conclusion above that “the NCC has effectively reduced carbon emissions through industrial restructuring,” a question worthy of further exploration is: during the NCC’s reduction of carbon emissions through industrial restructuring, have the city’s technological level and productivity improved? Or is this carbon reduction effect of the NCC just a pure industrial restructuring effect, regardless of any effects on technological level and productivity? To answer these questions, models (3) and (4) are re-estimated with total factor productivity (TFP) as the mediating variable, and the estimated results are shown in Table 7.
TABLE 7 | Mechanism analysis based on TFP.
[image: Table 7]Clearly, in columns (2) and (5), the estimated coefficients of the NCC variable are significantly positive, indicating that the NCC does promote the productivity of urban. However, in columns (3) and (6), the estimated coefficients of the TFP variable are positive and that in column (6) is not significant, indicating that although the NCC has effectively improved urban productivity, it has not produced further carbon reduction effect. This also means that the carbon emission reduction effect of the NCC through industrial restructuring is only a pure industrial restructuring effect, regardless of any effects on technological level and productivity.
5.4 Heterogeneity analysis
The baseline model results in Section 5.1 show that, on average, the NCC can effectively curb carbon emissions. The parallel trend test in Section 5.2.1 manifests that the inhibitory effect of the NCC on carbon emissions expands over time, which suggests that there is heterogeneity in the effect of the NCC on carbon emissions in different periods. As the country with the largest population and the third-largest land area in the world, China shows enormous variation in terms of its cities’ population size and geographical location (Liu and Liu, 2021). So, does the NCC’s impact on carbon emissions also show heterogeneity with these differences across cities? In response to this question, the section combines the two influencing mechanisms of urbanisation and industrial restructuring to examine the heterogeneous impact of the NCC on carbon emissions from the perspectives of urban population size and geographical location (respectively).
5.4.1 Heterogeneity of urban population size
The “notice on adjusting the criteria for dividing urban size” issued by the State Council of the People’s Republic of China in 2014 divides cities into five categories based on the permanent population of urban areas. Cities with a permanent population of less than 500,000 in urban areas are defined small cities; cities with a permanent population of more than 500,000 but less than 1 million in urban areas are medium cities; cities with a permanent population of more than one million but less than five million in urban areas are big cities; cities with a permanent population of more than five million but less than 10 million in urban areas are megacities; cities with a permanent population of more than 10 million in urban areas are super cities. Since the sample size for small cities and medium cities is small (75 and 163, accounting for 1.4% and 3.0% respectively), they are pooled, resulting in four groups of city samples with different population sizes. The four groups of samples are estimated, and the estimated results are shown in Table 8.
TABLE 8 | Heterogeneity of urban population size.
[image: Table 8]It can be seen that in the small and medium city group in column (1), the estimated coefficient of the NCC variable is not significant, while in the large city group in column (2), the megacity group of column (3), and the super-city group of column (4), the estimated coefficients of the NCC variable are significantly negative. These results show that the inhibitory effect of the NCC on carbon emissions mainly exists in large cities, megacities, and super cities, and is faint or absent in small and medium cities.
The mechanism analysis based on urbanisation in the above Section 5.3.1 shows that local governments achieve the goal of reducing carbon emissions by suppressing the urbanisation during the NCC program. In the process of urbanisation in China, the population mainly flows from small and medium cities to big cities, megacities, and especially super cities, for big cities, megacities, and super cities can provide more job opportunities and higher income. Hence, the logic under which local governments achieve carbon emission reduction targets by inhibiting urbanisation only holds in large cities, megacities, and super cities. The estimated results in Table 8 also show that compared with columns (2) and (3), the estimated coefficient of the NCC variable in column (4) is the largest, indicating that the NCC has the greatest reduction effect on carbon emissions in the super city group.
In order to test the different reduction effects between the super cities and the other cities, we pooled the small and medium city group, the large city group and the megacity group, and conducted a SUR (Seemingly Unrelated Regression) test between the super city group and the pooled group. The result shows that the p value is 0.0057 [Chi2(1) = 7.63]. This result reject the null hypothesis that the reduction effects between the super city group and the pooled group are the same, which means the reduction effect in the super city group is greater. Thus, Hypotheses 2 is completely verified.
5.4.2 Heterogeneity of geography
In the newsletter “National Real Estate Development Investment Increased by 0.7% in January–March 2022”10 released by the National Bureau of Statistics of China on 18 April 2022, China is divided into four regions: eastern, central, western, and north-eastern.11 The eastern region includes 10 provinces (including province-level cities): the cities of Beijing, Tianjin, and Shanghai, and the provinces of Hebei, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan; the central region includes the six provinces of Shanxi, Anhui, Jiangxi, Henan, Hubei, and Hunan; the western region includes Inner Mongolia Autonomous Region, Guangxi Zhuang Autonomous Region, the city of Chongqing, Sichuan, Guizhou, Yunnan, Tibet Autonomous Region, Shaanxi, Gansu, Qinghai, Ningxia Hui Autonomous Region, and Xinjiang Uygur Autonomous Region, a total of twelve provinces (cities and autonomous regions); the northeast region includes three provinces: Liaoning, Jilin, and Heilongjiang. Based on this division standard, the four groups of city samples in different regions are estimated, and the estimated results are shown in columns (1)–(4) in Table 9.
TABLE 9 | Heterogeneity of city location.
[image: Table 9]The estimated coefficients of the NCC variable are significantly negative in the eastern region city group of column (1) and the central region city group of column (2); the estimated coefficients of the NCC variable are not significant in the western region city group of column (3) and the northeast region city group of column (4). These show that the reduction effect of the NCC on carbon emissions mainly exists in the eastern and central cities, and not in the western and north-eastern cities.
The mechanism analysis based on the industrial restructuring in Section 5.3.2 above shows that local governments achieve the goal of reducing carbon emissions via industrial restructuring during the NCC program. Specifically, local governments achieve the goal of reducing carbon emissions by increasing the proportion of tertiary industry, with lower carbon emission intensity, and decreasing the proportion of secondary industry, with higher carbon emission intensity. The eastern and central regions are regions with higher levels of economic development in China. After more than 40 years of rapid development under the “Reform and Opening-Up” policy, they have achieved industrialisation and are moving towards a higher stage of development. In particular, the eastern region, which has entered the post-industrial era, is vigorously developing producer services. The western region, in contrast, has a relatively low level of economic development. Its industries are dominated by primary and secondary industries, and industrialisation has not yet been completed. The northeast region is China’s traditional heavy industry base, and secondary industry accounts for an especially high proportion here. In recent years, the northeast region has faced the problems of stagnant economic growth and massive population outflow caused by the difficulty of industrial transformation and upgrading. To sum up, compared with the western and north-eastern regions, the eastern and central regions, especially the eastern region, are more capable and willing to take the NCC program as an opportunity to reduce carbon emissions through industrial restructuring. The estimated results in Table 9 also show that the estimated coefficient of the NCC variable in column (1) is the largest, indicating that the NCC has the greatest reduction effect on carbon emissions in the eastern region.
Besides, we pooled the eastern and central regions, then pooled the western and north-eastern regions. The result of SUR test shows that the p value is 0.0271 [Chi2(1) = 4.88]. This result means the reduction effect in the eastern and central regions is greater than in the western and north-eastern regions.
In addition to the traditional regional division of the eastern, central, western, and north-eastern regions, the gap between the northern and southern regions of China has increasingly become a new concern in recent years (Xu et al., 2021). On one hand, the difficult of economic transition in the northern region, insufficient innovation ability, and the obvious downward trend of human capital have led to a widening gap in the economic between the northern and the southern regions year over year. On the other hand, the wide gap between air, water, and soil quality in the northern and southern regions has led to a high disparity in the ecological environment. To address this difference, this paper further explores the heterogeneity of the northern and southern regions. According to Xu et al. (2021), the southern region includes Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Hainan, Chongqing, Sichuan, Guizhou, Yunnan, and Tibet, while the northern region includes Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shandong, Henan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang Uygur. Following this division, this paper divides all city samples into two groups, the southern and northern groups, and estimates them respectively. The estimated results are shown in columns (5) and (6) of Table 9.
The estimated coefficient of the NCC variable is significantly negative in the southern region city group in column (6), while that in the northern region city group in column (5) is not significant, which suggests that the reduction effect of the NCC on carbon emissions mainly exists in southern cities, not in northern cities.
Most cities in the northern region have a high proportion of heavy industry and energy industry such as petroleum, natural gas, and especially coal (Xu et al., 2021), resulting in relatively high carbon emissions. Therefore, it is difficult for northern cities to reduce carbon emissions through industrial restructuring. Most cities in the southern region have successfully achieved industrialisation, meaning it is less difficult to further reduce carbon emissions through industrial restructuring. In addition, compared with physical-capital-intensive secondary industry, human-capital-intensive tertiary industry is more prominent, which requires construction of a more market-oriented system. The market-oriented transformation in the southern region thus occurred earlier, and its economic system is more market-oriented, which is conducive to the development of tertiary industry. The more market-oriented system in the southern region is helpful in promoting industrial restructuring, thereby reducing carbon emissions. The result of SUR test also shows that the reduction effect in the southern region is different from that in the northern region [p = 0.0009, Chi2(1) = 11.06].
6 CONCLUSION
The “Appraisal-and-Commendation” policy is a new type of policy with Chinese characteristics, which is different from traditional CAC policy and PI policy. How the AAC policy affects carbon emissions is an important question to be investigated. This paper takes the National Civilised City program, a typical AAC policy, as the research object, and adopts the unbalanced panel data and asymptotic double-difference method of 287 cities in China from 1999 to 2017. Based on the theoretical basis of the “Non-Economic Promotion Championship,” the influence and mechanism of the NCC on carbon emissions are deeply analysed from the perspective of energy demand. The following conclusions are drawn:
First, the NCC can reduce carbon emissions effectively. Moreover, the reduction effect of the NCC on carbon emissions has been expanding over time, indicating that the NCC is a far-reaching policy. Once awarded, the NCC can generate a steady stream of endogenous power and reduce carbon emissions continuously.
Second, the NCC reduces carbon emissions by slowing urbanisation. Since China’s urbanisation is mainly composed of population flow from small and medium to big cities, especially super cities, the mechanism of reducing carbon emissions by slowing urbanisation mainly functions in big cities, megacities, and super cities, and not in small and medium cities.
Third, the NCC also reduces carbon emissions by promoting industrial restructuring from secondary to tertiary industry. This reduction effect is a pure structural adjustment effect, regardless of any effects on technological level and productivity. Moreover, there are regional differences in the reduction of carbon emissions by the NCC through industrial restructuring in two dimensions: In the first dimension, compared with the western region and the northeast region of China, the eastern and central regions, with a higher level of economic development, especially the eastern region, are more capable and willing to commend this opportunity to reduce carbon emissions through industrial restructuring. In the second dimension, compared with the northern region, the southern region, which has a more market-oriented economic system, is more likely to reduce carbon emissions through industrial restructuring.
Based on the above conclusions, this paper puts forward the following policy recommendations:
First, actively use AAC policies such as the NCC to help achieve the “dual carbon” goals of carbon peaking and carbon neutrality. The conclusions of this paper indicate that the NCC policy can effectively reduce carbon emissions and that this reduction effect continues to expand over time. Therefore, when achieving the “double carbon” targets of carbon peaking and carbon neutrality, countries can make full use of AAC policies such as the NCC to build the endogenous driving force for continuous carbon reduction.
Second, in designing and refining policies such as the NCC, the opportunity cost of policy effects should be considered. The conclusions of the paper show that although the NCC policy can effectively reduce carbon emissions, it will also slow down urbanisation; although the NCC can reduce carbon emissions by promoting industrial restructuring from the secondary industry to the tertiary industry, the carbon emission reduction effect is a pure structural adjustment effect, which is not related to the improvement of technological level and productivity. Therefore, in addition to paying attention to policy effects, the opportunity cost caused by policies should be minimised in the process of designing and improving policies.
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FOOTNOTES
1UN Climate Action website: https://www.un.org/zh/climatechange/net-zero-coalition.
2This is also known as economic incentive policy or market-based instrument (Singhal, 2018).
3According to the definition by State Council of the People’s Republic of China in 2014, cities with a permanent population of less than 500,000 in urban areas are defined small cities; cities with a permanent population of more than 500,000 but less than one million in urban areas are medium cities; cities with a permanent population of more than one million but less than five million in urban areas are big cities; cities with a permanent population of more than five million but less than 10 million in urban areas are megacities; cities with a permanent population of more than 10 million in urban areas are super cities.
4Five emphases: “emphases on civilization, courtesy, hygiene, order, and morality;” four beauties: “spiritualbeauty, language beauty, behavior beauty, and environment beauty;” three loves: “love the motherland, lovesocialism, and love the Communist Party of China”.
5The Central Civilisation Commission is a consultative body set up by the CCCPC to guide the country’s cultural and ethical progress. The director of the CCC is usually a member of the Standing Committee of the Political Bureau of the CCCPC, which is the highest-ranking official in China.
6For the detailed selection process, see Liu (2019) and Li et al. (2021).
7See the detail division in “5.4.2 Heterogeneity of Geography”.
8Once an urban area of a municipality is rated as a civilised urban area, the municipality will be classified into the treatment group.
9The estimated results clustered to the provincial level are also consistent with the above and will not be listed due to space limitations.
10URL: http://www.stats.gov.cn/tjsj/zxfb/202204/t20220418_1829680.html.
11The analysis in this article does not cover Hong Kong, Macau, or Taiwan, and the same below.
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The Phillips curve of environment (EPC) and the environmental Kuznets curve of employment (EKCE) both indicate that the low-carbon economic transition can promote employment growth. Based on Chinese provincial dynamic panel data from 2005 to 2019, the GMM method is used to evaluate these two hypotheses. The results show that there is a remarkable U-shaped relationship between carbon emission regulation and employment, which means the EKCE is better than EPC to match the situation in China. So, a dual target of low carbon and employment can be achieved with the strengthening of environmental regulations. However, because of the difference in economic development, industrial structure, human capital, economic openness, wage of employees, and marketization, the significance level of the relationship between them varies substantially across regions. For the eastern and central regions, it can be characterized by EKCE, and for the western region, the EPC is more significant. Therefore, in order to realize the double dividend more effectively, it is necessary to accelerate the market-oriented reform of carbon emission while implementing differentiated carbon regulation policies and promoting the synergistic effect of administrative intervention mechanism and market mechanism.
Keywords: carbon emission regulation, Phillips curve of environment, environmental Kuznets curve, employment, China
INTRODUCTION
Since the reform and opening-up, China’s economy has developed rapidly. However, the traditional extensive mode of growth consumes resources excessively, and economic development hinders the bottleneck of the ecosystem. According to BP World Energy Statistical Yearbook, China’s CO2 emissions in 2020 were 9.899 billion tons, accounting for 30.7% of the world’s total emissions. In order to solve the contradiction between China’s economic development and the ecological environment, the Chinese government set binding targets for energy conservation and emission reduction in its 11th Five-Year-Plan in 2005, then the 18th National Congress of the Communist Party of China (CPC) put forward the concept of ecological progress, and the 19th CPC stressed that ecological progress is a major project that bears on the well-being of the people. In order to realize the transformation from industrial civilization to ecological civilization, we must attach great importance to environmental problems and ecological construction while developing the economy. In 2020, Chinese President Xi Jinping announced at the 75th Session of the United Nations General Assembly that China will adopt strong policies and measures to strive to peak carbon dioxide emissions by 2030 and achieve carbon neutrality by 2060. The Chinese government actively adopts both direct government intervention and gradually introduces market-oriented environmental regulation means in this low-carbon campaign. In 2011, pilot carbon emission trading schemes were launched in seven provinces and cities, including Beijing. In 2017, power generation became the first industry to trade carbon emissions across the country. The carbon emission trading policy has become an important measure to achieve energy conservation and emission reduction by market means in China. In 2021, China’s national carbon emission trading market was officially launched. In its first implementation cycle, including 2,162 key emitters in the power generation industry, it covered more than 4.5 billion tons of carbon emissions annually, making it the largest carbon market covering greenhouse gas emissions in the world. From 2005 to 2020, China’s carbon emission intensity had been 18.8 percent lower than that of 2015 and 48.4 percent lower than that of 2005.
How to achieve the dual carbon goal more effectively? According to the literature on environmental economics, economic growth and energy consumption are the main causes of high carbon dioxide emissions. In the process of industrialization and urbanization, China faces a “growth-carbon reduction” dilemma. On the one hand, high growth has led to the use of more carbon energy, such as crude oil, coal, and natural gas resources, and industrial production has emitted a large amount of carbon dioxide emissions. At the same time, consumers consume carbon-intensive goods, further driving higher levels of carbon emissions. In light of this dilemma, slowing carbon dioxide emissions could affect economic growth. Therefore, other determinants of CO2 emissions need to be explored in order to reduce carbon emissions without affecting economic growth. Existing literature suggests drivers of carbon emissions, such as stages of economic growth (Grossman and Krueger, 1995), energy efficiency (Wolde-Rufael and Weldemeskel, 2020), energy prices (Anser et al., 2021a), natural resources (Wolde-Rufael and Weldemeskel, 2020), industrial structure (Yan et al., 2019), urbanization (Ali et al., 2019), technological progress (Xu Bin, 2018), financial development (Shoaib et al., 2020), trade (Haug and Ucal, 2019), demographics (Hashmi and Alam 2019), and globalization (Zaidi et al., 2019). The above-cited literature attempts to give paths of carbon emission reduction from different perspectives and proposes decarbonized economic growth. However, they focus more on low carbon and economic growth, while literature on the relationship between full employment and CO2 emissions is still lacking.
How to realize the double dividend of “employment and low-carbon”? Related scholars started from the perspective of adjustment of public and fiscal policies. For example, the dual distribution hypothesis (DDH) holds that whether the implementation of environmental tax can improve environmental quality and increase employment depends on the industry or stage of environmental tax collection (Degirmenci and Aydin, 2021). In fact, striking a balance between unemployment and carbon reduction requires special attention from all stakeholders. Therefore, to achieve greater employment in a low-carbon transition, appropriate policies or reforms must be implemented. Kashem and Rahman (2020) proposed the environmental Phillips curve (EPC) hypothesis for the first time by using panel data of OECD countries, arguing that there is a negative correlation between unemployment and carbon emissions. The validity is also demonstrated by Anser et al. (2021a) using BRICS data. EPC believes that high unemployment will lead to a decrease in willingness to improve environmental quality, and carbon emissions are expected to increase; that is, unemployment may degrade the quality of the environment, particularly in the context of the ongoing pandemic and increased uncertainties in the global economic environment, such as the war between Russia and Ukraine, there is an inherent tendency to undermine the SDGs in order to stabilize employment. Bhowmik et al. (2022) used a dynamic ARDL model to study the impact of monetary policy uncertainty (MU), fiscal policy uncertainty (FU), and trade policy uncertainty (TU) on carbon dioxide emissions and further explored the validity of the EPC hypothesis in the United States. Therefore, in the policy-making of carbon emission regulation, it is inevitable to empirically explore the specific relationship between employment and carbon emissions.
For China, the low-carbon transition will certainly have an impact on industrial structure, mode of production, and way of life, and then impact on employment goals. With the development of the carbon emission trading market, its impact on employment should not be underestimated. Employment concerns people’s lives and the stability of the country. Employment has always been the top priority for the Chinese government to solve. The policy of prioritizing employment was further strengthened in the 14th Five-Year-Plan proposal. However, the “New Normal” has become a classic expression to describe the development stage of China’s economy, namely the “New Normal” of economic growth rate, structural adjustment, and development momentum. In the future, China’s economy will be in the “L-shaped” stage of the “New Normal” mode for a long time. In the stage of the “new normal” economy, a primary problem caused by multiple constraints such as the slowdown of economic growth is increasingly prominent employment problems. The problem of total employment still exists, but structural problems have become the main problem. In China’s uncertain new normal, what is the impact of environmental regulation on employment, and what is the impact mechanism? Will the pursuit of low-carbon necessarily cost jobs? In the context of the proposed dual carbon target, can the “double dividend” hypothesis proposed by Pearce (1991) be realized? The “double dividend” hypothesis was first proposed by Pearce, which refers to more social employment and continuous growth of GDP formed when a carbon tax is levied, so that the first dividend of the carbon tax is to reduce carbon emissions and improve environmental quality, the second dividend is to reduce the distortion of the tax system, including increasing output and employment. The related research on the “double dividend debate” shows that employment increases when certain conditions are met while the environment improves (Schneider, 1997). As McEvoy et al. (2000) proposed that employment growth is the most likely outcome of emission reduction measures in the process of transition to the low-carbon economy when policy changes follow the economic cycle, which will lead to more jobs. On this basis, the 2009 World Labor Report proposed the “double dividend hypothesis” of employment, and Kahn and Mansur (2013) discussed the possible realization path of this hypothesis. Furthermore, CuiLizhi, ChangJifa (2018), Kashem and Rahman (2020), Bhowmik et al. (2022) and Anser, Apergis, Syed, and Alola (2021a) use the hypothesis of the environmental Phillips curve to describe “double dividend”. Therefore, it is of great theoretical and practical significance to discuss the employment effect and its mechanism of economic low-carbon transition in China.
Based on the environmental Phillips curve hypothesis proposed by Kashem and Rahman (2020), this article discusses the validity of the EPC hypothesis in China and proposes a more advanced expression of EPC, which is the EKCE hypothesis, to carry out an empirical analysis on whether carbon regulation and policy achieve a dual low carbon and employment target. The marginal contribution of this study may be shown in three aspects. First, it is the first time to explore the validity of the EPC hypothesis in China by using Chinese provincial panel data. Second, due to the multi-tiered regional development in China, this article puts forward the ECKE hypothesis, which can better fit the carbon emission reduction and employment in the process of low-carbon transition in China. Third, different from the random effects panel adopted by Kashem and Rahman (2020), the PMG-ARDL model proposed by Anser et al. (2021A), and the ADRL proposed by Bhowmik et al. (2022), this study adopted a dynamic panel GMM analysis method. Due to a large number of influencing factors of low-carbon driving force and the large endogeneity among each factor, the GMM method can deal with the endogeneity problem, especially for the sample data set of “short time-long cross-section” in China, this method can present more reliable, efficient, and robust results.
LITERATURE REVIEW
Since the double dividend hypothesis was put forward by Pearce (1991), the academic circle has begun to re-examine the dilemma of “growth and environment”. As for whether the goals of full employment and carbon emission reduction can be achieved at the same time, more and more scholars have discussed the constraints and possible paths. In some cases, the positive effect of regulations adopted by a low-carbon economy on employment may be greater than the negative effect. In this article, the basic literature on the relationship between low carbon and employment involves the employment effects of policies such as environmental regulation, low-carbon industrial development, renewable energy development and utilization, and low-carbon technological innovation.
Studies on Carbon Regulation Impact on Employment
Studies on the relationship between low carbonization and employment involve the impacts of environmental regulation, clean energy development and utilization, low-carbon technological innovation, and government environmental investment on employment or unemployment. Due to different research perspectives, conclusions are different. In the 1970s, with the increase of environmental regulation types and the strengthening of environmental regulation, many scholars turned to the employment effect of environmental regulation policies. As for the impact of environmental regulation on employment, the academic circle draws different conclusions due to different research methods and samples.
The first view is that environmental regulation can have a positive impact on employment. Kondoh (2012) investigated the relationship between emission tax and unemployment rate and concluded that environmental regulation promoted an increase in the employment rate. Shao (2017) used the GMM method to study the dual impact effect of China’s industrial environmental regulation intensity and found that environmental regulation is conducive to realizing the double dividend of pollution reduction and labor demand, and there is significant dynamic continuity. Hafstead et al. (2018) pointed out that the government’s pollution tax significantly increased the number of jobs in low-level pollution-intensive industries. Sun W. Y. and Xia F. (2019) verified that environmental regulation can optimize regional employment structure by using a spatial econometric model. Kashem MA and Rahman MM (2020) came up with a hypothesis of the environmental Phillips curve, which is supported by US data. Anser MK, Apergis N, Syed QR, and Alola AA (2021a) also proved this with the data of BRICS countries, which support EPC.
The second view is that environmental regulation has a negative impact on employment. Gray (2014) used the general equilibrium framework to construct the DID model and concluded that the Clean Act of the United States had a negative effect on employment. The inhibiting effect of carbon emission reduction policies on the employment market; Li Yuanlong (2011) used the CGE model to study the impact of energy and environment tax policies on employment, and his research results showed that the implementation of energy and environment tax policies inhibited the growth of employment. Zhang et al. (2017) and Yan et al. (2019) argue that the implementation of environmental policies has a significant negative impact on the employment scale of enterprises with high pollution emissions, thus reducing the overall employment level of the society.
The third view holds that there is a non-linear relationship between environmental regulation and employment. For example, Walker (2011) believes that the impact of environmental regulation on employment varies from industry to industry, and the influence coefficient between the two varies greatly with industry. Yan et al. (2012) believed that the positive effect of environmental regulation on employment exists as a threshold phenomenon. When environmental regulation is less than the threshold value, it promotes employment; when environmental regulation is greater than the threshold value, it restrains employment. Li (2016) found that employment in industries with heavy and moderate pollution was greatly affected by environmental regulations, while employment in industries with mild pollution was not significantly affected. Cui and Chang (2018) found a “U-shaped” relationship between environmental regulation policies and employment in high-pollution industries. Abbasi and Adedoyin (2021) believe that uncertainty makes the relationship between carbon reduction and employment non-linear.
Research on Employment Effect of Green Technology Innovation
Low-carbon transformation requires technological innovation, and the improvement of technological level will crowd out the labor force, which is not conducive to employment, while the development of a low-carbon economy will give birth to emerging industries and create new jobs. Among them, the employment effect of clean energy and renewable energy is an important research direction. Wei et al. (2010) used the employment creation model to predict the net employment effect of clean energy programs in the United States. Mirasgedis et al. (2014) used an input–output approach to estimate the direct, indirect and resulting employment effects in the Greek electricity sector related to renewable energy technologies. Lehr (2012) used the economy–energy–environment model PANTA RHEI to analyze the impact of large-scale investment in renewable energy on the labor market in Germany and evaluate the impact of total employment and net employment under different scenarios. Markaki et al. (2013) used the input–output analysis method to measure the direct, indirect, and induced output effect and employment effect caused by measures such as the promotion of renewable energy in Greece. Malik et al. (2014) studied the important role of bio-energy in mitigating climate change and creating employment. Simas and Pacca (2014) estimated the jobs created by the wind industry. Markandya et al. (2016) and Allan et al. (2020) studied the impact of renewable energy on regional employment.
Studies on Employment Effects of Energy and Environmental Policies
Some scholars have discussed the impact of low-carbon development on employment from the perspective of energy and environmental policies. Bosello et al. (2001) studied the impact of the energy tax on labor employment. Yong-sheng (2010) quantitatively analyzed the impact of different low-carbon development modes of the three industries on employment from the perspectives of increasing carbon sinks and improving energy efficiency. The Ilo and the Research team of the Institute of Urban and Environmental Studies of the Chinese Academy of Social Sciences (2010) adopted the methods of model analysis and industry survey to analyze the impact of energy conservation and emission reduction policies on employment in industrial sectors, and calculated the direct and indirect employment effects of some industries. Cai and Cai (2011) investigated the relationship between a low-carbon economy and employment and proposed that employment costs should be considered in the implementation of emission reduction to avoid impact on the labor market. Yi (2013) used employment data to investigate whether state and local climate and clean energy policies in the United States affected the distribution pattern of green jobs in metropolitan areas. Lu (2011) studied the impact of green policies on emission reduction and employment from the perspective of double dividend.
Research on Employment Effect of Low-Carbon of Industrial Structure
Some researchers have discussed how to guarantee full employment while adjusting industrial structure. Xiaodi (2014) adopted the multi-objective optimization model to study the industrial structure adjustment scheme under the multiple constraints of low carbon, economic growth, and employment. Yu et al. (2018) proposed a new optimization multi-objective model, taking employment as one of the objective functions of industrial structure optimization and studied the path of industrial structure adjustment to achieve peak carbon emissions in China. Wang H. J. and Chen X. K. (2014) Quantified the impact of industrial structure changes in different energy consumption sectors on non-agricultural employment in China by using the input-occupancy output model. Sun Wei et al. (2016) calculated the optimization degree of China’s industrial structure under the constraints of energy conservation and employment based on the linear programming function and multi-region input-output model, providing a scientific basis for structural adjustment. Zhu and Li (2019) used a social accounting matrix (SAM) to measure the total employment effect of unit output changes and quantified the impact of low-carbon industrial structure transformation on employment by constructing a sacrifice coefficient index.
Research on Double Dividend Hypothesis
Bezdek et al. (2008), Marx (2010), and other studies indicated that a win–win situation could be achieved between employment and the environment. Krause et al. (2003) proposed the comprehensive lowest cost policy measures for the United States to implement the Kyoto Protocol, including a carbon tax of 50 dollars per ton and creating tens of thousands of jobs for the United States. Low carbon economic policies and measures can cause income effect, price effect, and then affect international competitiveness, product demand, and compensatory tax cuts. Environmental protection policies and measures will have a negative impact on GDP, disposable income, and employment. Holstet al. (2009) believe that integrated energy and climate policies and carbon emission reduction policies can promote market efficiency in energy demand, development of alternative and renewable energy technologies in energy supply, economic growth, and job creation. Their results show that by 2020, the United States could create between 918,000 and 19 million jobs through comprehensive energy and climate policies. They argue that the tougher the federal government’s climate policies, the greater the economic rewards. Kondoh and Yabuuchi (2003) believe that the impact of environmental policy on employment is reflected in the substitution effect, circular effect, and multiplier effect, and whether the dual dividend of environment and employment can be realized depends on the following factors: environmental expenditure levels and consistency, and the overall economic environment, the unemployment rate and the type of unemployment, human resources, environmental policy direction, the nature of the implementation of the measures, spending type, investment and technology, the kinds of financing channels and the influence on lending and tax, import leakage degree, environmental policy influence scope, and industry competitiveness. Kashem and Rahman (2020), Bhowmik et al. (2022), and Anser, Apergis, Syed, and Alola (2021a) use the hypothesis of the environmental Phillips curve to describe the “double dividend”.
In general, the abovementioned researches provide a reference for further analysis of the standard, but there are several problems. First, studies on employment effects of environmental policies in existing literature mainly focus on developed countries, such as the EU and the US, and pay insufficient attention to developing countries, especially China, which is a big carbon emitter. Second, literature on the employment effect of carbon trading mechanism usually uses industry or industry panel data, lacking observation at the regional level. Third, the methods used in the abovementioned studies on employment effects can be summarized into two categories. The first category is research based on survey and analysis, which is generally measured by changes in the number of jobs, usually directly created jobs, such as discussing the direct impact of specific technology or energy and environment policies on industrial employment. The second is to use input–output technology to analyze the comprehensive impact of the change of unit final demand on the employment of the whole economy from the perspective of final demand. There are few literatures discussing the statistical relationship between them from the whole level. Finally, the research on the impact of low-carbon on employment is still in its infancy in China. Its impact on employment mainly focuses on the impact of low-carbon economic efficiency or restrictive incentive low-carbon policies on employment and is mainly discussed at the national level. This article uses provincial data to analyze the impact mechanism of low-carbon transition on employment and tries to explain the employment effect of low-carbon transition in a more comprehensive and in-depth way. In particular, there is a lack of empirical literature based on the “double dividend” hypothesis of low-carbon and employment targets at the provincial level in China.
THEORETICAL BACKGROUND AND MODEL DESIGN
EPC and EKCE
The environmental Kuznitz curve (EKC) (Grossman and Krueger, 1995) has been used to observe the relationship between carbon emissions and economic growth, and has been extensively studied on how to promote “growth and carbon decoupling”. Although the form of EKC varies in different countries, it has been confirmed that it exists significantly under certain conditions. However, when employment becomes the primary goal, can the “double welfare” of low-carbon economic transformation and employment be achieved at the same time? In this regard, Kashem and Rahman (2020) proposed the environmental Phillips curve (EPC) hypothesis, describing the negative correlation between unemployment and environmental degradation. Low-carbon transformation can be achieved through five aspects of input and output dimensions. The input dimension is reflected in the intensity of environmental regulation, popularization of the low-carbon concept, and improvement of the green rate. The output dimension reflects the advanced industrial structure and low carbon production capacity. The abovementioned five aspects of low-carbon transition are not independent of each other, but intrinsically related. The intensity of environmental regulation and the greening reflect the low carbon input from the end and the source, respectively. Environmental regulation can promote a reduction of carbon source, while greening can provide an increase in carbon sink. The popularization of the low-carbon concept is the synthesis of the two so that low carbon permeates into all aspects of production and life. In the process of low-carbon, the industrial structure is gradually changing. The development of the low-carbon industry inevitably needs the support of low-carbon technology. The increase in green investment and the development of advanced technology improve the low-carbon productivity constantly, and the development is guaranteed to be sustainable. These factors act together, cause and effect each other, and have direct or indirect effects on the employment scale and employment structure. The following is a detailed explanation of the impact mechanism of low-carbon economic transition on employment from these five aspects.
First, as the implementation of low carbon policy, stricter environmental regulations could lead to higher costs to the enterprise, highly polluting enterprises transfer or close to reduce employment, environmental regulation potter effect, which, on the other hand, may make enterprises to carry out technical innovation, can increase the income of the enterprise carbon emissions, increase the profit of the enterprise so as to increase employment; At the same time, it also helps to develop new products and win market advantages. In order to meet market demand, it can increase the employment of the labor force, and it also helps to promote the division of specialization so as to generate more new jobs and improve the employment level. In a word, low-carbon environmental regulation can have different impacts on employment through industrial structure upgrading and technological innovation. Second, low carbon concept spread of low carbon life, low carbon society with low carbon idea thorough popular feeling, which changes the original concept of consumption and economic and social values, to effectively motivate people preference to the products of low carbon consumption, promote the growing demand for low carbon markets, bring new green technology innovation and the development of emerging green industries, thus creating new jobs. Third, the improvement of the greening rate is one of the most effective ways to achieve “carbon neutrality”. The expansion of investment in public environment construction can effectively increase carbon sink. In order to effectively improve the greening rate, it is necessary to strengthen desertification control, forest coverage, road construction, river regulation, and afforestation in urban construction. In addition, from the planning and design of green space construction, greening management, and supervision to the treatment of domestic waste, all have generated the resulting demand for greening work. Fourth, the adjustment of industrial structure is the result of low carbon, and in turn, the upgrading of industrial structure will promote the realization of low carbon goals. As one aspect of high-quality development required by low-carbon economy, the upgrading path of industrial structure will be gradually upgraded to the pattern of “three two one”. The tertiary industry is considered to have a high elasticity coefficient of employment (Dong Zhiqing et al., 2019), so the upgrading of industrial structure means the improvement of economic employment absorption capacity. Fifth, low-carbon production capacity reflects the carbon emission efficiency of low-carbon regions. The improvement of low-carbon production capacity is reflected in the gradual adjustment of more traditional energy sources with high carbon emissions to new energy sources, that is, the adjustment of the ecological industrial structure of high-carbon industries. This change has a direct impact on employment in related industries; Meanwhile, as the reason for the improvement of low-carbon production capacity, the innovation of low-carbon technology and the increase of various green investments will indirectly promote the increase of employment demand.
Therefore, based on the environmental Kuznitz curve (EKC) and environmental Phillips curve (EPC), this article further proposes the environmental Kuznets of employment hypothesis (EKCE), which can explicate carbon emission regulation can achieve the “double welfare” of low-carbon economic transition and employment growth, that is, with the tightening of carbon emission regulation, there is a “U-shaped” relationship between carbon emission reduction and employment.
Description of Models and Variables
Arellano and Bond (1991) respectively, proposed the idea of generalized moment SYS-GMM estimation. Based on the assumption that the random error term is not correlated with a set of instrumental variables, SYS-GMM selects the parameter estimator whose correlation between the random error term and the set of instrumental variables is 0 as far as possible, and the correlation moment estimator is the so-called criterion function. This function can make GMM estimation robust even in the case of autocorrelation and unknown heteroscedasticity by selecting an appropriate weighting matrix. In this regard, the basic model of panel estimation is established as follows: 
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where I = 1...,N; T = 1,... T; [image: image] is the explanatory variable vector, [image: image] is the explanatory variable matrix, and [image: image] is the T* 1-dimensional disturbance vector. Dynamic factor is added to the basic model of Eq. 1, that is, an autoregressive expression, [image: image] , is added, as shown in Eq. 2:
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where [image: image] is the endogenous variable, [image: image] is the exogenous control variable, [image: image] is the dummy variable, and [image: image] is the random disturbance term. When performing GMM estimation, the dimension of parameter vector to be estimated should be at most the same as the number of selected tool variable Z. However, when the model has overidentification problem, that is, when the dimension of parameter vector is smaller than the number of sample moment conditions, the following moment conditions can be obtained:
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Eq. 3 cannot satisfy all parameter estimates; Arellano and Bover (1991) believed that the theoretical moment estimation condition could be replaced by the sample moment estimation condition, which could be processed by constructing the following criterion function to minimize:
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Eq. 4 can be used to measure the distance between the sample moment and the extent to which it approaches 0. Here, B is a weighted matrix. If B is positive definite, the estimation of parameters [image: image] is consistent with this method. The core idea of SYS-GMM estimation is to obtain the corresponding moment condition estimation equation by means of instrumental variables. Then, the dynamic SYS-GMM model of the relationship between carbon emissions and employment can be constructed based on the EPC model, Okun’s Law, and ECK effect model.
Based on the EPC model proposed by Kashem and Rahman (2020), the equation of the relationship between low carbonization and employment can be expressed as follows:
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where U is the unemployment rate, CO2 is carbon emission, Y is per capita GDP, and Y2 measures the ECK effect. By reviewing existing literature and sorting out the theoretical mechanism of the impact of low-carbon transition on employment, the employment effect of carbon emission regulation may show a linear positive correlation or U-shaped relationship between low-carbon and employment. Therefore, combining Okun’s Law (Okun, 1995) and ECK effect model (Kacprzyk and Kuchta, 2020), Okun’s law can transform unemployment into employment, and ECK indicates the inverted U relationship of carbon emissions in the economic growth. In combination with Eq. 2, the dynamic panel should be considered with exogenous variables, and the following basic model can be constructed by econometric empirical study:
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where employment is the explained variable, indicating the regional employment level; Er represents the intensity of carbon emission regulation, while ε is a random disturbance term with independent homo distribution and finite variance. It is worth noting that the relevant factors with low impact on employment may be omitted, and the estimation bias caused by insufficient information on the proxy index for carbon regulation measurement. Endogeneity is a problem that the above-given regression model may not be able to avoid. Exogenous instrumental variables are difficult to deal with due to the consistency of the samples’ environment, macroeconomic policies, and institutions. Therefore, in accordance with the ideas of Brown and Petersen (2011), the employment variable was regarded as an endogenous variable, and the system-generalized moment method (SYS-GMM) was used to estimate the parameters. The corresponding lag term is selected as the instrumental variable of the difference equation.
The first concern is the lag of the explained variable, which introduces dynamics into the estimate, which is regarded as the initial state of the employment level. Second, low carbon regulation or the coefficient of this variable is what we are most interested in. To observe whether it is significantly positive is used to observe the Phillips effect of the environment. The square term of low-carbon regulation is used to determine whether there is a U-shape phenomenon of Kuznets effect of environmental employment between employment and low-carbon regulation and is expressed as follows:
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The abovementioned formula is the judgment formula of whether the environmental Phillips effect (EPC) and the environmental Kuznets effect (EKCE) of employment are established. Regarding the relationship between carbon regulation and low carbon, we need further clarification. According to the existing literature, the reciprocal of carbon emission intensity had been used to measure carbon emission regulation (Zhao et al., 2017 and Bhowmik et al., 2022). In this article, we also used the reciprocal of carbon emission intensity to measure carbon emission regulation. The carbon emission intensity is expressed by carbon dioxide emission per unit of GDP. Therefore, there is a negative correlation between carbon regulation and employment, which means that employment growth is accompanied by carbon emission reduction. So, a dual target of low carbon and employment can achieve if the EPC and ECKE assumptions hold.
In addition, vectors containing a list of variables are called instrumental variables. Following the example of Kashem and Rahman (2020), Bhowmik et al. (2022), and Anser, Apergis, Syed, and Alola (2021a), we resorted to some other control variables like income following Rahman (2017), Kashem and Rahman (2019); income following Rahman (2020), Islam and Shahbaz (2012); and InOpen following Hossain (2012) and Rahman et al. (2017). lnWage following (Wang, 2013), lnZF following (Lu Y, 2011), lnModern following (Kacprzyk and Kuchta, 2020), lnHuman following (Shao Shuai, Yang Zhenbing, 2017), and lnPRC following (Zhao Liange et al., 2016). Some other variables were also used by the researchers for carbon-emission analysis. However, we did not include them, as they were not significant for this study. Our control variables were selected by trial-and-error method to finalize the model. And the related variables involved in the model and their interpretations are shown in Table 1.
TABLE 1 | Variables involved in the model and their interpretation.
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Data Sources
This article selects the data composition analysis sample of China’s provincial administrative regions from 2005 to 2019. Why did this study choose 2005 as the starting point? is the turning point of China’s carbon reduction. For the first time, the Chinese government set binding targets for energy conservation and emission reduction in its 11th Five-Year-Plan and set a target of reducing energy consumption per unit of GDP by 20% in 2010 from 2005 levels. Since then, this binding target has become a regular guiding principle for all provinces and cities. Due to data availability and comparability, this study includes 30 provinces, which are as follows: Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan, Chongqing, Sichuan, Guizhou, Xizang, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang. In this article, the data are from the China labor statistical yearbook, China’s population and employment statistics yearbook and China statistical yearbook, China energy statistical yearbook and statistical yearbook, various provinces and cities each of the variables in the estimate is obtained by the abovementioned provinces and index on the basis of the data processing and statistical description of the variables shown in Table 2.
TABLE 2 | Statistical characteristics of variables.
[image: Table 2]Table 2 below shows the statistical description of each variable. Among them, the average value of labor employment in 30 provinces and cities is 7.622, the maximum value is 8.322, and the minimum value is 5.124. The average value of environmental regulation intensity is 1.296, the maximum value is 2.811, and the minimum value is 0.812. It can be found that during the sample study period, the dispersion degree of each variable is relatively high, indicating that there are certain differences in environmental regulation and employment among provinces and cities in China. From the perspective of JB statistics, the p values of all variables are greater than 0.35. Therefore, it can be considered that all samples of variables are from the normal distribution population.
RESULTS
Table 3 is the GMM estimation of the dynamic panel Model of the employment effect of carbon emission regulation. Model-1 and Model-2 are respectively the test of EPC without control variables and with control variables; Model-3 and Model-4 are, respectively, the tests of EKCE without control variables and with control variables. Due to the focus on EPC and EKCE coefficients, the estimated results for related control variables are not listed. Table 3 shows that the Wald test rejects the null hypothesis that the coefficient of each explanatory variable is zero at the significance level of 1%, indicating that the model is robust on the whole. AR (1) statistics show that it accepts the assumption that the residual term of the original sequence has autocorrelation, but AR (2) indicates that it rejects the assumption that the residual of the first-order difference equation has second-order autocorrelation, which meets the requirements of the GMM estimation. Sargan test statistics cannot reject the null hypothesis that there is no overidentification, indicating that instrumental variables are valid.
TABLE 3 | GMM estimation of the employment effect of carbon emission regulation. (Explained variable: lnEmploy; SYS-GMM, estimation).
[image: Table 3]The estimation results show that: no matter whether control variables are added or not, the estimation coefficient of EPC is not significant, indicating that the linear relationship between low-carbon regulation and employment in China is not obvious. However, the EKCE coefficient shows that with the enhancement of low-carbon regulations, the two are negatively correlated at the beginning, and then turn into a positive correlation after reaching a certain stage, that is, there is a u-shaped curve between carbon emissions and employment. In general, EKCE can better describe the dynamic relationship between carbon emission reduction and employment under China’s dual carbon targets. The main reasons may be as follows: First, in order to achieve the carbon emission target, the local competition mechanism makes local governments adopt the carbon emission regulation policy of campaign, which makes employment suffer a great negative impact in the short term. Second, after 2007, China adopted supply-side structural reform. In the process of economic transformation, enterprises with high emissions were eliminated or actively transformed, which further squeezed employment. However, in the long run, with the continuous improvement of low-carbon regulation intensity, especially after the implementation of the carbon emission trading system in 2011, the prices of production factors such as raw materials of enterprises rise, while the relative prices of labor factors decline, thus, increasing the demand for labor and improving the employment level.
L. Lemploy coefficient is significantly positive, indicating that the lag period of employment has a significant impact on the current employment, indicating that there is inertia in employment. As Sun et al., 2020 believe that employment indicators have a strong positive cyclical nature. The level of economic development represented by LNY is significantly positive, indicating that economic development in a region promotes employment in the region. The Openness coefficient is significant, indicating that import and export trade is an important driving force to promote employment growth in China’s export-oriented economy. The coefficient of human capital (lnHuman) is significantly positive, indicating that the accumulation of human capital as measured by educational development contributes to the increase of local employment. The coefficient of lnWage is significantly positive, indicating that the increase in wage level will increase employment in this region. The conclusion that economic development, openness to the outside world, marketization, and human capital can effectively promote employment is consistent with existing literature. The marketization degree coefficient represented by lnZF is significantly negative, and the proportion of fiscal expenditure to GDP reflects the market intervention of local governments. Therefore, the smaller the coefficient is, the higher the local marketization will be, and the more conducive to the development of small and medium-sized enterprises and the promotion of employment. The employment effect of lnModern industrial structure is significantly negative, indicating that service of industrial structure squeezes out employment. The coefficient of fixed asset investment (lnPRC) is significantly negative, which is caused by the increasing trend of capital replacing labor with China’s technological progress and industrial structure upgrading, which makes it difficult for new investment to play an effective role in driving employment.
Further, to analyze the impact of environmental regulations on employment in different regions or income levels, this study divides 30 provincial administrative regions into three groups: eastern region, central region, and western region, as shown in Table 4. The results show that the environmental regulation in the western region improves employment level, the environmental regulation in the income region in the middle region has no significant impact on employment, and the environmental regulation in the eastern region has a u-shaped impact on employment. In other words, the eastern region conforms to the EKCE curve hypothesis, while the western region conforms to the EPC hypothesis. The low-carbon transition in the eastern and western regions has achieved a win-win situation of carbon emission reduction and employment. From the comparison of the significance and sensitivity of the estimated coefficients of control variables in the eastern and western regions, it can be seen that the impact of human capital and openness on employment decreases from the eastern to the western regions, while the marketization has a significant impact on employment in the eastern regions, which is only significant at the level of 10% in the eastern and western regions. The reason why the relationship between carbon emission reduction and employment shows different characteristics across regions. The main reason is that the strengthening of environmental regulations in the eastern region will promote enterprises to major in the central and western regions, which will reduce employment in the short term. After the “dual transfer strategy", which is also named vacating cage to change bird, is a strategic measure in the process of economic development in China. It is to transfer the existing traditional manufacturing industry out of the industrial base and then transfer the “advanced productivity” so as to achieve the goal of economic transformation and industrial upgrading. After the relocation in the eastern region, the economic development conditions become better and better, like the quality of human resources and the degree of marketization is higher. The low-carbon regulations can promote the upgrading of industrial structure, accelerate technological innovation, and, thus, promote the increase in employment. On the one hand, the central region has advantages in labor costs, and on the other hand, it has taken over the transfer of polluting industries from high-level regions. In the face of the increase in low-carbon regulation intensity, the cost of enterprises will rise and the scale of enterprises will be reduced, so the overall net effect is not significant. In the western region, due to the relatively backward economic development, the labor cost presents an absolute advantage, prompting enterprises to use more labor to replace other factors of production, thus increasing employment.
TABLE 4 | Analysis of state heterogeneity of employment effect of carbon emission regulation (Explained variable: lnEmploy; SYS-GMM estimation).
[image: Table 4]ROBUSTNESS CHECKS
Since China’s carbon emission trading policy was officially implemented at the end of 2012, as a market-oriented policy in carbon regulation, this policy has a great impact on carbon emissions and employment targets. The low-carbon region pilot policy includes two batches of low-carbon provinces and cities. The first batch of pilot programs was based on the circular on pilot programs of low-carbon provinces and cities issued by the National Development and Reform Commission in October 2010, and the second batch of pilot programs was based on the circular on pilot programs of low-carbon provinces and regions and low-carbon cities issued by the National Development and Reform Commission in December 2012. In order to further illustrate the reliability of the regression results of the above model, this section conducts two robustness tests based on the benchmark model. First, the regression of the benchmark model is based on the data from 2005 to 2019, and the sample period is changed to two phases from 2005 to 2012 and from 2013 to 2019. Second, the sample is divided into pilot areas (Tianjin, Beijing, Shanghai, Guangdong, Hubei, Chongqing, and Hainan) and non-pilot areas according to whether they are pilot or not. The results of the robustness test are shown in Table 5. The regression results show that the pilot policy does not change the conclusion that China complies with EKCE as a whole. In contrast, the implementation of a carbon emission trading policy greatly improves the coefficient of EKCE, indicating that a low-carbon policy can more effectively promote the realization of the “double dividend” of low-carbon and employment growth goals.
TABLE 5 | Robustness test of employment effect of carbon emission regulation (Explained variable: lnEmploy; SYS-GMM).
[image: Table 5]CONCLUSION AND POLICY RECOMMENDATIONS
Ecological economic development has become a global consensus. China’s economic development has entered the stage of low-carbon transition, and the intensity of national low-carbon regulation has been constantly improving, including input and output. In order to investigate the employment effect of low-carbon transition and whether the dual benefits of “low carbon” and “employment” can be achieved, this study verifies the adaptability of the environmental Phillips curve (EPC) and the environmental Kuznets curve of employment (EKCE) in China and makes an empirical analysis using Chinese provincial panel data from 2005 to 2019. The results show that in the long run, China’s low-carbon environmental regulations promote the improvement of employment. In terms of the dynamic relationship between carbon emission reduction and employment growth, there is a significant u-shaped characteristic, and the EKCE effect of employment is more obvious than EPC. However, the validity of the hypothesis depends on the degree of regional marketization, human capital and industrial structure. The EKCE can be observed more in regions with rapid market-oriented reform, abundant human capital, and more advanced industrial structure, that is, the employment effect of low-carbon economic transition is greater. Due to the difference in development, EKCE is more significant in the eastern and central regions. The characteristics of EPC in western China are more significant. Therefore, in order to realize the double dividend more effectively, it is necessary to promote the accumulation of human capital and accelerate the market-oriented reform of carbon emission right trading while implementing differentiated low-carbon rules and policies so as to form the synergistic effect between government intervention mechanism and market mechanism of carbon regulation.
In this regard, the enlightenment and suggestions obtained in this article are as follows. First, this article concludes that there is a statistically significant U-shaped relationship between China’s carbon emission regulation and employment growth, which plays an important guiding role for the Chinese government to adhere to the low-carbon economic transformation strategy of dual carbon targets in the new normal economic growth stage under the dilemma of weak employment growth. Furthermore, it can strengthen the confidence that the double dividend of employment can be realized, which will help all regions accelerate the process of economic low-carbon and play a better demonstration effect for global carbon emission reduction.
Second, the research shows that low carbon and employment goals are not mutually exclusive, but to form the synergy of goals, differentiated carbon regulation policies should be implemented according to the economic growth characteristics of each region. For the eastern region, it has already passed the U-shaped inflection point, and it is suitable to adopt the market-based carbon emission trading mode. In the west, more carbon taxes are needed.
Third, In the high-income eastern region, measures such as further opening up, modernizing the industrial structure and investing in human capital have actively promoted the development of emerging strategic industries and modern service industries. Middle-income central regions should step up low-carbon regulation gradually to prevent excessive low-carbon regulation from “slowing down” the local economy. Through fiscal and tax policies, enterprises are encouraged to purchase and use environmental protection equipment to help them transform and upgrade. Low-income western regions should prevent local governments from introducing high-emission and high-pollution industries in pursuit of economic growth, and explore clean and efficient leading industries according to local resource endowment and social characteristics. In the process of industrial transformation, create more jobs.
Of course, there are two main limitations of this study. First, from the perspective of the time span of the research data, the time span of this study is relatively short because China’s carbon emission target policy was put forward late. Second, although this article studies the relationship between carbon regulation policies and employment at the provincial level, it fails to evaluate the effect value of the policies on the industry level and individual enterprises. Third, from the choice of variables, this article only measures the employment level by the number of employment in each province without further analyzing the employment structure of each province. Fourth is the lack of specific quantitative analysis of the impact of carbon trading policies on employment. All these are areas for further research and improvement in the future.
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With the introduction of “dual carbon” goals of “peaking its carbon emissions before 2030 and achieving carbon neutrality by 2060" and the gradual promotion of the carbon trading market, it is the main trend to achieve low-carbon and clean development in the future. It is of great practical significance to effectively measure the low-carbon development level and conduct obstacle degree analysis. Based on this, this article aims to investigate the low-carbon development level index of Fujian province from 2006 to 2019 by using the entropy weight TOPSIS model. Then, the key influencing factors are explored by using the obstacle degree model. The results show that the low-carbon development level index of Fujian province shows a fluctuating upward trend, rising from 0.164 in 2006 to 0.803 in 2019. The environmental system has always been an important factor affecting the low-carbon development in Fujian province, with an average annual obstacle degree of 46.52%, but the impact of the other three subsystems is also gradually increasing. Green innovation, energy conservation, air pollution, economic development, and environmental governance are the top five indexes with the highest annual obstacles. Based on the previous results, this article puts forward corresponding policy recommendations, which provide theoretical support for the low-carbon development of Fujian province.
Keywords: carbon peaking and carbon neutrality goals, low-carbon development level, entropy weight TOPSIS, obstacle factor, carbon market
1 INTRODUCTION
With the deepening of economic globalization and increasing demand for energy, the extensive consumption of fossil fuels far exceeds Earth’s absorptive capacity, resulting in excessive carbon emissions (Cheng and Yao, 2021). This problem has become an important issue of common concern to all countries in the world (Murshed et al., 2022). In order to alleviate the pressure of global carbon emissions, China has pledged to achieve “dual carbon” goals of “peaking its carbon emissions before 2030 and achieving carbon neutrality by 2060." The “dual carbon” goals also mean that China will accelerate the process of carbon market development, energy system transformation, and other related fields.
Before the “dual carbon” goals were introduced, China had had a corresponding policy system for carbon emissions. On the one hand, top-level design has made remarkable achievements in promoting China’s environmental protection. The implementation of “The 12th Five-Year Plan for Energy Saving and Emission Reduction” and “The 13th Five-Year Comprehensive Energy Conservation and Emission Reduction Work Plan” not only strengthens China’s efforts to reduce carbon emissions but also charters a clear path for low-carbon development in the future. The policies all indicate that we need to pay close attention to the development of low-carbon technologies and carbon emissions control in key areas (Lin et al., 2021). On the other hand, the market-oriented incentive policy has also played an important role (Pan et al., 2022). The relevant policies regulated by the government guide the green development of China’s economy, manifested in using fiscal means to provide financial support to energy-saving and emission-reduction related industries and purchasing energy-saving and environmental-friendly products. In addition, to promote the overall low-carbon transition of the industrial structure, high taxes are imposed on energy-intensive and emission-intensive industries, while subsidies are given to industries with low emission and low-energy consumption through tax subsidies and other means. Most importantly, the operation of China’s national carbon market has also effectively regulated China’s carbon emissions through market regulation. In 2013, China’s carbon emission trading was officially launched in eight pilot projects including Beijing, Shanghai, Guangdong province, and Fujian province. After 7 years of trials, China launched its national carbon emissions trading market in 2021. Therefore, China has completed the market construction of using market forces to regulate carbon emissions (Gu et al., 2022).
Among the pilot provinces and cities, Fujian province, as an important node of “the Belt and Road Initiative,” vigorously builds the pilot zone of the 21st Century Maritime Silk Road and pilot free trade zone, which promotes rapid economic development with its GDP growth rate far exceeding the national average level. More importantly, as one of the first batch of pilot provinces of China’s carbon market, Fujian province has already laid a solid foundation for development and has formed a relatively complete system of energy conservation and emissions reduction. In addition, from the energy structure of Fujian province, the fossil energy storage in Fujian province is deficient, and the self-sufficiency rate of primary energy is only 30%, but the clean energy available for development is relatively sufficient. By the end of 2020, the installed capacity of clean energy in the province has reached 36.25 million KW, accounting for 55.87% of the installed capacity of electricity in the province. The proportion of clean energy in primary energy consumption continued to increase. The consumption of fewer fossil fuels and more clean energy in this province is basically in line with the direction of China’s future energy mix adjustment. Therefore, the low-carbon development in Fujian province can, to a certain extent, provide references for China’s future emissions reduction policies and market target formulation. Based on this, combined with the unique energy mix and carbon emissions structure of Fujian province, this article will focus on the low-carbon development level of Fujian province, so as to provide useful references for China’s future low-carbon development and the goals that China’s carbon emission trading market intends to achieve.
2 LITERATURE REVIEW
Low-carbon development measurement can reflect the low-carbon development level of the target area. For different low-carbon development levels, the government can support low-carbon development by providing a heterogeneous policy system, which can also provide useful references for carbon emission allowances, the carbon emission price, and carbon emission trading in the national carbon market. Therefore, it is of great practical significance to evaluate the low-carbon development level of target areas. Considering that China’s carbon market has been launched and operating at present, which will play a greater role in carbon emission in the future, the literature review will focus on the practical significance of low-carbon development level measurement, the key influencing factors, and measurement methods of low-carbon development level measurement.
First, the practical significance of low-carbon development level measurement. At present, the research on regional low-carbon development level measurement is mainly divided into two aspects. First, the effectiveness of the low-carbon policy. For example, the low-carbon city policy can improve the residents’ green lifestyle (Cheng et al., 2020) and can rely on technological innovation (Song et al., 2020; Du et al., 2021) to improve the total factor production efficiency of cities with a positive spillover effect (Chen and Wang, 2022). The specific strategy is to optimize the industrial structure by accelerating the development of green technology (Cheng et al., 2019). Second, the low-carbon development level of a specific region is quantitatively measured. At present, previous studies have expounded on the measurement of low-carbon development level (Jia et al., 2012; Duan et al., 2016; Wang et al., 2021) and provided corresponding suggestions for further improvement. Therefore, measuring the low-carbon development level can not only study the effectiveness of the corresponding policies but also objectively quantify the low-carbon development level in the target area, thus putting forward targeted advice for further improvement, which is beneficial to further improving the low-carbon development level.
Second, the key influencing factors of low-carbon development level measurement. The measurement of low-carbon development level in the target area needs to be carried out in multi-dimensions, and the basic characteristics of the evaluation area should also be paid attention to. Taking low-carbon cities as an example, in the process of investigating low-carbon cities, attention should be paid to the economy, security, systematicness, dynamics, and regionality of low-carbon cities (Du et al., 2022). The current study on the evaluation system mainly included the economic system, social system, environmental system, science and technology system, etc. (Tamanini, 2012; Wang et al., 2021). However, the analysis should be tailored to local conditions instead of directly applying the existing system without consideration. Specifically, Chen and Zhuang (2018) measured the effect of temperature control and carbon emissions in China’s low-carbon pilot cities by dividing the index system into six parts, namely, macro-domain, low-carbon energy, low-carbon industry, low-carbon life, low-carbon policy and innovation, resources, and environment. Yang et al. (2018) take the 36 cities from China’s low-carbon pilot project as the research object and use the carbon emission per capita and GDP per capita to categorize the 36 cities into four types to reveal their low-carbon development status; these four types are leading cities, developing cities, latecomer cities, and exploring cities. It can be found that different researchers will adopt different index systems to analyze the low-carbon development level of Chinese cities, which once again resonates with the view that the specific evaluation needs to be combined with the actual index system.
Third, the method of low-carbon development level measurement. At present, there are many methods to measure the low-carbon development level, some of which follow a subjective approach. For example, Sugsaisakon and Kittipongvises (2021) evaluated and assessed the sustainability feasibility of implementing climate change mitigation policies in Chiang Mai based on AHP and conducted a series of studies. Pan et al. (2020) comprehensively evaluate the numerical value of low-carbon economic development of China’s 30 regions from 2000 to 2015 by using the AHP method. Afterward, some scholars tried to combine the subjective analysis method with objective analysis. For example, Na and Zhao (2021) used both the AHP and the entropy weight method to form a fuzzy evaluation method and evaluated the low-carbon development level of evaluated college campuses. Most of the recent studies have applied an objective evaluation approach in order to avoid the errors caused by subjective evaluation methods. Qu and Liu (2017) used the entropy method to calculate the weight of each indicator and used the comprehensive approach of the Technique for Order Preference by Similarity to an Ideal Solution to measure the low-carbon development levels. Tang et al. (2020)investigated the carbon emission level of China’s Yangtze River Economic Belt based on the entropy weight TOPSIS model; Peng et al. (2022) evaluated the development level of low-carbon transportation in Guiyang based on the DPSIR model. Based on the previous analysis, it can be seen that the subjective evaluation method will result in a certain degree of errors, so the objective evaluation method can effectively improve the evaluation accuracy.
In general, it can be seen that the evaluation of the low-carbon development level is not only beneficial to the self-evaluation of the target area but can also provide references for the policy formulation and the effective operation of the carbon market. At the same time, it should be noted that in the process of measuring the low-carbon development level, the evaluation system should be established based on the basic evaluation principles and combined with the local conditions of the evaluation area. In addition, objective evaluation methods should be selected to improve the evaluation accuracy. Therefore, the marginal contribution of this article is divided into the following two aspects. First, the entropy weight TOPSIS model is used to evaluate the development of low-carbon level in Fujian province, which can truly reflect the original information of low-carbon evaluation indicators, minimize the index weight error, and improve the accuracy and precision of the final evaluation results. Second, the barrier factor model is used to analyze the main barrier factors affecting the low-carbon level in Fujian, which is conducive to formulating and adjusting low-carbon development policies.
The remainder of this article is organized as follows. Section 3 presents the model description, introducing the entropy weight TOPSIS model and obstacle degree model; Section 4 shows data description and system construction, explaining the selected indexes and data in this article and constructing the evaluation system needed in this article. Section 5 is the empirical analysis, which effectively evaluates the low-carbon development level in Fujian province, inspecting its evolution trend year by year and further exploring the shortcomings of low-carbon development in Fujian province at different times to ensure that the analysis results are comprehensive and specific. Section 6 puts forward corresponding policy suggestions based on the research conclusions.
3 MODEL DESCRIPTION
Based on the previous analysis, this article will use the entropy TOPSIS model to measure the low-carbon development level of Fujian province and get the low-carbon development level index of Fujian province. Based on the calculation results, in order to study the key influencing factors and improve the low-carbon development level of Fujian province, this article will use the obstacle degree model to investigate the main restricting factors of the low-carbon development index. Corresponding revision suggestions will also be put forward so as to accelerate the high-quality development of the low-carbon process in Fujian province. In this study, the entropy weight TOPSIS model and obstacle degree model will be explained, respectively.
3.1 Entropy weight TOPSIS model
In the conventional TOPSIS method, the weight of each index is the same by default. However, there is a big gap between this assumption and reality. The entropy weight TOPSIS first quantifies the weights of different indexes through correlation calculation and then analyzes them by the TOPSIS method, making the results fitter for reality. The specific steps of this method are as follows:
1)Assuming that there are m evaluation objects and each object has n evaluation indexes, then establish a judgment matrix and standardize it.
[image: image]
2) Calculate information entropy [image: image] and determine weigh [image: image]:
[image: image]
[image: image]
3) The weighting matrix calculates and determines the optimal solution [image: image] and the worst solution [image: image] :
[image: image]
[image: image]
4) The Euclidean distance between different items and the optimal solution and the worst solution:
[image: image]
5) Calculate the comprehensive evaluation index [image: image]. The greater the value of the index, the greater the project advantage:
[image: image]
3.2 Model description
The process of index evaluation will be affected by constituent indicators. Theoretically, there is an optimal allocation in the constituent indicator system, but it is often difficult to achieve in reality. Therefore, the “short-board” index in index formation is the obstacle factor. Therefore, identifying the obstacle factors and correcting them will help to improve the index level. The idea of building the obstacle degree model is as follows.
Assuming that there are [image: image] index evaluation indexes, three basic variables are set: factor contribution degree [image: image], index deviation degree [image: image], and obstacle degree [image: image]. Among them, [image: image] measures the contribution of the [image: image]th index to index, which is generally expressed by index weight [image: image]; [image: image] is used to measure the difference between the actual value of the index and the optimal value of the [image: image]th index in the [image: image]th sample and is generally expressed by [image: image], where [image: image] is the value after the standardization of the index; [image: image] is used to measure the influence of the [image: image]th index on the [image: image]th sample. The specific calculation equation [image: image] is as follows:
[image: image]
At the same time, [image: image] refers to the obstacle degree of the [image: image]th system in the [image: image]th sample, where [image: image] is the index number of the [image: image]th system. The specific calculation equation is
[image: image]
4 DATA DESCRIPTION AND INDEX SYSTEM
Located on the southeast coast of China, Fujian province has few fossil fuel reserves, but it is abundant in clean energy like wind energy, solar energy, and tidal energy. Under the background of “dual carbon” goals, it has become an inevitable trend for Fujian province to promote energy transformation and optimize its energy mix to be clean and efficient. In 2021, the Fujian Provincial Government issued the “Plan for Accelerating the Establishment and Improvement of a Green Low-carbon Circular Economic System in Fujian province,” which emphasizes the need to promote the green low-carbon transformation of the energy system, accelerate the green transformation of the industrial structure in Fujian province, and improve the urban and rural environment. This shows that the establishment of a low-carbon economic system in Fujian province will accelerate the process of green transformation in various industries and fields. On this basis, combined with the existing research results, this article will build the evaluation system of low-carbon level in Fujian province and divide it into four dimensions: economy, society, energy, and environment. The sample period of the data used in this article is from 2006 to 2019, and the data mainly come from China Statistical Yearbook, Wind Database, EPS Database, and CEIC China Economic Database.
Under the principles of systematicness, safety, feasibility, and scientificity and based on the idea of layer-by-layer decomposition, the index system of this article is gradually refined into three layers from top to bottom: target layer, criterion layer, and index layer. Among them, the target layer is the low-carbon development level index, and the criterion layer refers to the economy, society, energy, and environment. The indicator layer is the representative index under the refinement of each criterion layer: ①From the economic level, this article selects per capita GDP to represent the level of economic development, the proportion of the added value of the secondary industry to represent the industrial structure, and the GDP growth rate stands for economic growth, the unemployment rate is the level of labor force, and the urbanization rate (urban population/total population) denotes urbanization level; ②From the social level, in this article, the per capita urban road area represents the level of social urban construction facilities, the public transport vehicles owned by every ten thousand people refers to the social public construction, the green coverage rate of built-up areas is the level of social greening, the amount of domestic waste clearance stands for the levels of social pollution discharge, and the investment in environmental pollution control represents social-environmental governance. ③From the aspect of energy, the per capita electricity consumption represents energy security, the energy consumption per unit of GDP denotes energy intensity, energy consumption represents energy consumption level, the reduction rate of energy consumption per unit in industrial added value represents energy conservation, and the proportion of renewable energy represents energy structure. ④From the aspect of the environment, carbon dioxide emissions represent carbon emissions, forest coverage represents carbon sink level, emissions per unit of GDP represent the cost of carbon emission, sulfur dioxide emissions represent air pollution, and green patent applications represent green innovation level. The specific index system is shown in Table 1.
TABLE 1 | Evaluation system of low-carbon development level in Fujian province.
[image: Table 1]5 EMPIRICAL RESULTS AND ANALYSIS
This section elaborates on the empirical results. First, this article adopts the entropy weight TOPSIS model to analyze the evolution of the low-carbon development level index in Fujian province, and then combines it with the obstacle degree diagnosis to investigate the impact on the low-carbon development level index from the perspectives of system and indicators.
5.1 Description of the Fujian low-carbon development index
In the actual computing process, we not only measure the low-carbon development level index of Fujian province but also explore the development level index of four subsystems, namely, economic, social, energy, and environmental systems. It should be noted that the low-carbon development level index of Fujian province and the development level index of each system are relative approach degrees, and the value range is [0, 1], which means the closer the value is to 1, the better the exponential effect. The results are shown in Figure 1.
[image: Figure 1]FIGURE 1 | Low-carbon development level index and development level index of each subsystem of Fujian province.
It can be seen from the figure that the economic system shows an obvious upward trend on the whole, except for the figures from 2007 to 2009 which show a downward trend. The indexes from 2009 to 2011 register fast growth, while a relatively slow growth from 2011 to 2018 is identified, and the growth after 2018 is strong. In numerical terms, the economic system index of Fujian province has risen from 0.14 in 2006 to 0.931 in 2019, which is a significant improvement. This is because, in the past 20 years, the economic development of Fujian province has registered high-speed growth. With the rise of industry and the continuous development of various industries featuring better technologies and industrial upgrading, the economic development of Fujian province has always enjoyed a strong momentum. At the same time, thanks to its unique topography, tourism in some cities has developed rapidly and plays an important part in Fujian’s economy. In addition, due to the advent of the 5G era and comprehensive infrastructure, the new development model of the digital economy has gradually launched and shown obvious development advantages. The sound development of the digital economy provides a driving force for the scale promotion of investment, consumption, export, and other fields, which will become an effective channel for Fujian province to boost consumption while remaining open to international trade and investment. Based on the previous analysis, the economic development of Fujian province still has much potential, and the economic structure can be gradually optimized.
There is an obvious, fluctuating upward trend for the social system on the whole. From 2006 to 2013, the social system development index maintains an upward trend, with a relatively slow growth from 2006 to 2009 and a relatively fast growth onwards. From 2013 to 2017, an obvious and large fluctuation has been identified. After 2017, it appears to be a relatively stable upward trend. However, in 2019, it drops. In terms of value, Fujian province’s social development has achieved significant progress, especially after 2011, the development index is always higher than 0.5. With regard to the ranking, from 2017 to 2019, it ranks first, second, and fourth, respectively, which indicates that remarkable and stable progress has been made in the social development of Fujian province in the early stage. In reality, Fujian province has made strong headway in social infrastructure construction, comprehensive transportation construction, and sustainable development investment and has also made remarkable progress in environmental protection and people’s welfare. Based on the previous analysis, the social system of Fujian province has been greatly improved, and it is still moving forward. Sound social development lays a solid foundation for development in other fields.
An upward trend has been identified in the energy system on the whole, and there is a large fluctuation in the process. From 2006 to 2010, there is a large fluctuation, and the peak appears during this period. The years 2011–2015 witnessed two large fluctuations, and there is a significant decline in 2013. The years 2016–2019 see a large fluctuation, and in 2017, it drops significantly. After that, the system develops stably. As for the value, although the development of Fujian’s energy system fluctuates greatly, it still witnesses a significant increase, which increased from 0.268 in 2006 to 0.736 in 2019, and the index in 2019 ranks second. The reason is that Fujian province built an LNG receiving station in 2008, so the use of natural gas has increased significantly, which has a significant impact on the energy mix of Fujian province. Meanwhile, Fujian province reserves little fossil fuel, but the reserves of clean energy such as wind and solar energy are relatively high. Because clean energy is difficult to preserve, this will have a negative impact on the stability of the energy system. In addition, as the “dual carbon” goals are put forward, the energy system of Fujian province will continue to optimize. The previous analysis shows that the energy system of Fujian province is still in the process of optimization, and the development level of the energy system is constantly improving in spite of fluctuation.
It can be seen from the figure that there is an obvious upward trend on the whole for the environmental system, except for a slight decline in 2019. To be specific, the environmental system index has a low growth rate from 2006 to 2014, and from 2014 to 2018, the growth rate increases significantly. In terms of value, the environmental system index increased from 0.025 in 2006 to 0.869 in 2019, showing an obvious increase. Moreover, in 2018, the value reaches its peak, which is 0.974, demonstrating huge potential for development. As for the reason, Fujian province is devoted to enhancing environmental governance for a long time, and the relevant policy is relatively mature and is well implemented. At the same time, Fujian province has a high green innovation level. From the entropy results, green innovation has the greatest impact on the low-carbon development level, so the continuous improvement of the environmental system index in Fujian province in recent years is largely due to the continuous advancement and the popularization of green technology. In addition, environmental pollution is also one of the important factors that affect the environmental system. The steady improvement of the environmental system index also indicates that the air pollution in Fujian province has been effectively alleviated. Based on the previous analysis, the development of environmental system in Fujian province has a good prospect, and a good foundation has been laid for the development of green technology.
The overall low-carbon development level shows a fluctuating upward trend, and the fluctuation is relatively large in some years. From 2006 to 2016, the fluctuation of the overall low-carbon development level is similar to that of the energy system, but the fluctuation is relatively small. After 2016, although the low-carbon development level still fluctuates, it shows an obvious upward trend. As for the value, it increases from 0.164 in 2006 to 0.803 in 2019, and 0.051 in 2008 and 0.819 in 2018 are the minimum and maximum values in the sample period, respectively. This shows that the overall low-carbon development level in Fujian province has made remarkable progress in the last decade and has remained at a relatively high level in recent years. Combining with other systems, although the fluctuation of each subsystem is different, they all show a rising trend on the whole, which serves as the basis for the improvement of the overall low-carbon development level. In the meantime, the clean energy in Fujian province develops better, and large-scale installation of wind and solar energy and large-scale use of nuclear power plants are all effective paths for low-carbon development. In addition, the promotion and application of green technology also show that the economic development of Fujian province is gradually transforming into intensive green development, which means the low-carbon development level of Fujian province can stabilize at a high level for a long time.
5.2 Diagnostic analysis of obstacle degree
In order to further investigate the impact of different subsystems and indicators on the low-carbon development level index of Fujian province, this section will conduct an obstacle degree diagnostic analysis based on the obstacle degree model and analyze the obstacle degrees of each subsystem and indicator year by year. Given the large number of indicators in this article, for indicator layer research, this article only lists the first five indicators for ranking analysis.
It can be seen from Table 2 that the impact of each subsystem on the low-carbon development level index of Fujian province is different, but the ranking of the influence of different subsystems is the same each year. The effect of the economic system is the lowest, with the average obstacle degree being 10.29%. The influence of the social system is relatively low, and the average obstacle degree is 12.92%. The impact of the energy system is relatively high, with a 30.27% of average obstacle degree. The environmental system has the biggest impact, with an average obstacle degree being 46.52%. In terms of the annual change of each subsystem, the obstacle degree of economic, social, and energy systems all show a slightly fluctuating upward trend. Also, there is a certain degree of fluctuating downward trend for the obstacle degree of the environmental system. In general, the behavior of the environmental system will directly affect the performance of the low-carbon development level, and the highest obstacle degree of the environmental system proves this statement. Although after more than 10 years of development, the ranking of each subsystem has not changed, and the changes in values show that the influence of each subsystem on the low-carbon development level index of Fujian province has changed. The increase in the obstacle degree of the economic system and the social system indicates that the optimization of the economic structure and the adjustment of sustainable social development need to be strengthened, and the economic production mode and people’s lifestyle need to be further changed, so as to reduce their obstacles to the low-carbon level index. The increase in the obstacle degree of the energy system indicates that the effect of the upgrading of the energy structure is not obvious, and it is necessary to effectively improve the energy consumption mode and reduce the proportion of fossil energy to solve the problem of carbon emission from the root. Based on the previous analysis, the environmental system is still an important factor affecting the low-carbon level index of Fujian province and has been effectively improved. However, the hindrance of other subsystems to the low-carbon level index is gradually increasing, which indicates that the low-carbon path of Fujian province needs to gradually shift from “making up afterward” to “avoiding in advance."
TABLE 2 | Subsystem obstacle degree of low-carbon development level index in Fujian province (%).
[image: Table 2]From Table 3, it can be discovered that from 2006 to 2019, the five indicators that exert the greatest impact on the low-carbon development level index of Fujian province are exactly the same as in the previous analysis, where only the ranking of some years is different. Moreover, the obstacle degree of green innovation, energy conservation, and air pollution rank in the top three, while economic development and environmental governance rank in the last two. Based on the frequency of obstacle degree of indexes in more than 10 years and the ranking of influence, the ranking is green innovation, followed by energy conservation, air pollution, economic development, and environmental governance, with the average obstacle degree being 29.94, 20.07, 11.82, 6.87, and 6.13%, respectively. This indicates that the major measures to improve the low-carbon development level index in Fujian province are as follows: first, advancing the existing technology, increasing the investment in green technology, and promoting the landing of green technology so as to further improve green production and green life and promote the low-carbon development level of Fujian province fundamentally. Second, broadening ways for energy conservation holds the key to improving the level of low-carbon development, which needs to accelerate the energy mix restructuring, energy costs reduction, and clean energy proportion increasing. Third, the optimization of the industrial structure needs to be accelerated and gradually promote de-industrialization thereby reducing carbon emissions. Fourth, controlling air pollution can directly alleviate the pressure of carbon emissions, and accelerating the development of desulfurization and denitrification technology can reduce polluting gas emissions, which can effectively improve the level of low-carbon development. Promoting high-quality economic development, accelerating domestic-international dual circulation, and guiding the economic structure to become advanced and green are important starting points to improve the level of low-carbon development and the quality of people’s lives. Fifth, strengthening environmental governance, formulating a supporting and efficient policy system, and increasing financial support for environmental governance are joint measures to control environmental pollution from government and enterprises to help improve the level of low-carbon development. Based on the previous analysis, the improvement of the low-carbon development level in Fujian province needs to be promoted from many dimensions, such as advancing green technology, promoting the process of de-industrialization, optimizing the economic structure and industrial structure, and increasing investment in environmental protection.
TABLE 3 | Analysis of obstacle degree of indicator layer of low-carbon development level index in Fujian province (%).
[image: Table 3]6 CONCLUSION AND POLICY RECOMMENDATIONS
By adopting the entropy weight TOPSIS model, this article computes the low-carbon development level index of Fujian province from 2006 to 2019, and the obstacle factor analysis is conducted to investigate the key factors that influence the low-carbon development level of Fujian province. This article discovers that the low-carbon development level index of Fujian province shows a fluctuating upward trend, rising from 0.164 in 2006 to 0.803 in 2019, which indicates that the low-carbon development level in Fujian province has achieved remarkable results. As for the subsystems, the environmental system remains an important factor for the low-carbon development level in Fujian province, with an average annual obstacle degree being 46.52%, but the influence of the other three subsystems is gradually increasing. In terms of indicator layer, green innovation, energy conservation, air pollution, economic development, and environmental governance are the five indicators with the highest annual obstacle degree, which paves the path for the improvement of the low-carbon development level. Based on the conclusions, the suggestions are as follows:
To begin with, speeding up the research and development of green technology and promoting its application. Green technology innovation can fundamentally change the mode of production and people’s lifestyle, thereby reducing carbon emissions and pollution. Fujian can make full use of the rich advantages of clean energy, promote the research and development of wind energy and solar energy storage technology, effectively avoid energy waste and achieve a stable supply of clean energy. Orderly promote the green and high-quality development of new infrastructure represented by data center and 5G give play to its role of “one industry leads all industries” and help Fujian province achieve the goal of carbon peak and carbon neutrality.
Second, strengthen energy conservation and carbon reduction. It is required to resolutely curb the blind development of “two high” projects, do a solid foundation in the transformation and upgrading of energy conservation and carbon reduction in key areas of Fujian province, and drive the green and low-carbon transformation of the whole industry. With the theme of “green, low-carbon, and energy-saving first,” we can organize energy-saving publicity and training activities, collect and promote energy-saving technology products, introduce energy-saving diagnosis into enterprises, popularize energy-saving policies and regulations, promote the application of advanced energy-saving technologies, deeply tap the energy-saving potential of enterprises, and comprehensively improve the energy efficiency level of industrial enterprises.
Third, energy transformation should be promoted and the construction of a “safe, efficient, clean, and low-carbon” energy system should be accelerated. Energy use is the main source of carbon emissions. Therefore, the energy structure should be adjusted, which is to increase the proportion of clean energy, accelerate the construction of wind power and photovoltaic infrastructure, and improve the efficiency of nuclear power, so that carbon emissions can be reduced from the root. Improving efficiency in the use of fossil fuels and the coupling of different clean energy applications should be encouraged. In light of the great potential for developing clean energy in Fujian province, it should promote the development of clean energy and increase the proportion of clean electricity and clean energy, so that carbon emissions and pollution can be effectively reduced.
Moreover, promoting the optimization of the economic structure and accelerating the process of de-industrialization. The economic development goals should be well planned and take into consideration both economic growth and its quality, and the economy should gradually shift from high-speed growth to high-quality development. Promoting the advancement of economic structure and gradually transforming to green development, so that the normal life and production are more environmental-friendly, and the low-carbon development level of Fujian province can be increased. In addition, speed up the effort to reconstruct the industrial structure and promote the process of de-industrialization. Promoting the upgrading of industrial structure, which means gradually increasing the proportion of tertiary industry and reducing the proportion of the industry, constructing an advanced and green industrial structure, and then reducing the energy cost and carbon emission of various products, so as to improve the low-carbon development level of Fujian province.
Last but not least, environmental governance should be strengthened, and formulate supporting policies to facilitate the promotion and application of the carbon market. Environmental governance is the direct way to improve the low-carbon development level. From the government’s perspective, building and implementing an effective policy system can effectively alleviate the problem of carbon emissions and pollution. At the same time, the government should increase financial support and set up transfer funds to facilitate Fujian’s low-carbon development. In addition, accelerating the popularization and application of the carbon market and using market forces to effectively allocate resources can also control carbon pollution. Based on this, promoting the integration between policy guidance and the carbon market, coordinating government behavior with market behavior, and using market control and market regulation tools can further promote the low-carbon development level in Fujian province.
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Electrification is currently the most mature technological path to carbon neutrality. However, the traditional measurement methods of the electrification levels cannot meet the development requirements of China’s electrification under the dual-carbon strategy. Thus, this study incorporated carbon constraints into the re-electrification-level evaluation system and evaluated the re-electrification level of 30 provinces in China from 2007 to 2019 using the entropy weight method. Then, the functional data analysis method was employed to further explore the dynamic variation rule of the regional re-electrification level. The evaluation results show that the top three provinces in the mean value of the re-electrification index are Guangdong (0.628), Jiangsu (0.617), and Zhejiang (0.573). The clustering results show that there are great spatial differences in the development of electrification in China. According to the fitted function curve, China’s electrification development can be roughly divided into the following four stages: uptrend, brief decline, sharp uptrend, and slight and steady decline. At present, China’s electrification is entering a new stage. To implement re-electrification further, the government and the power grid enterprises need to find the priority and breakthroughs under carbon emissions and environmental constraints. Our research results provide reference for the improvement of regional re-electrification levels in China.
Keywords: China’s re-electrification level, “dual carbon” strategy, dynamic assessment, functional data analysis, cluster analysis
1 INTRODUCTION
With the increasing environmental pollution and deepening energy crisis in China, the implementation of electric energy substitution and the improvement of electrification level are of great significance for the implementation of the national energy strategy and the promotion of clean energy development (Chang et al., 2019; Cai et al., 2020). On the one hand, in the face of changes in the international energy pattern and global energy transformation, comprehensively improving the level of electrification is an important way for China to effectively promote the energy revolution to solve problems such as energy security and environmental pollution (Chen et al., 2019; Cheng and Yao, 2021). On the other hand, serious environmental problems such as air pollution have posed great challenges to China’s sustainable development (Lin et al., 2021). The improvement of the electrification level of end-user energy sector will directly lower the consumption of fossil energy such as oil and coal, thus reducing pollutants and carbon emissions (Dennis, 2015; Dennis et al., 2016), thus contributing to the goal of carbon neutrality.
China is a major consumer of primary energy, and it still relies heavily on fossil energy (Du et al., 2021). Thus in 2020, China’s electricity consumption accounted for approximately 27% of total energy consumption, but China’s coal consumption still accounted for a large proportion of primary energy consumption, reaching 57.5%, which is higher than the international average level (Data Source: National Energy Administration). There is still much room for improvement in China’s electrification level, and electric energy substitution needs to be promoted in an systematic manner. Therefore, dynamically evaluating the electrification level of each region and formulating corresponding propulsion strategies have become one of the urgent problems.
There are two main ways to measure the electrification level of a country or region. One is represented by the proportion of power generation energy in primary energy consumption, reflecting the position of electricity in the whole energy supply system. The second one is represented by the proportion of electric energy consumption in terminal energy consumption, which reflects the dependence of economic and social development on electricity (Dong et al., 2017; Liu et al., 2020). With the proposal of carbon peak and neutrality targets, energy supply reform policies such as carbon emission trading, green power certificates trading, and renewable energy quota have been gradually implemented in different regions (Li et al., 2020; Zhang et al., 2020). However, the indicator system of the traditional evaluation method is rather one-sided and does not take into account the practical factors such as carbon emission constraints, which is difficult to reflect the real situation of China’s electrification under the dual-carbon targets. From the perspective of the region under evaluation, although the comprehensive evaluation method combining subjective and objective approaches has been adopted in the current evaluation process, the spatial difference in the electrification level was not considered well. Because of the uneven distribution of natural resources in China, the energy structure in different regions is quite different, so as the regional marketization level of electric power transaction. Differences in the regional power structure, energy supply structure, and economic and social environment lead to significant differences in the regional electrification level (He et al., 2018; Niu et al., 2021). Therefore, it is necessary to dynamically evaluate the electrification levels of different regions in China to explore the regional dynamic trends of electrification levels and the differences of electrification levels among regions. This is conducive to finding out the factors that restrict the development of regional electrification and making targeted improvements.
This study constructed a comprehensive evaluation index of provincial electrification level. Electrification under dual-carbon targets is characterized by clean low-carbon and a strong power grid. Therefore, in view of the limitations of the current evaluation of the electrification level, this study includes the low-carbon development, power grid quality, and technology-driven factors into the index system. Based on this, the entropy weight method was used to determine the weight coefficient of each index, and then the evaluation value of the electrification level of each province was determined. Then, this study used the spline basis function to transform the discrete comprehensive evaluation index of electrification into a function and systematically explored the electrification development level of different regions. By analyzing the function, growth rate, and acceleration curves of the comprehensive level of electrification, the dynamic change law of the comprehensive level of regional electrification is further explored. In conclusion, according to the obtained electrification level function curve, the comprehensive electrification level of each province was reasonably classified, which is helpful to improve the regional electrification level in China.
The innovation and main contributions of this paper are mainly reflected in the following aspects. First, different from the previous measurement method that simply uses the proportion of electric energy consumption to terminal energy consumption to represent the electrification level, our study constructed a multi-dimensional comprehensive evaluation index system of regional electrification by considering factors such as carbon emission constraints and power grid quality, and it used the entropy weight method to measure the electrification level of 30 provinces in China from 2007 to 2019, so as to reasonably and objectively reflect the real level of electrification development under the dual-carbon goal. Second, there are few studies on dynamic evaluation of electrification level at present, especially for provincial electrification level evaluation in China. In this study, the discrete electrification level index is functionalized by functional data analysis (FDA). Through the analysis of function, velocity, and acceleration curves, we can better capture the dynamic development trend of the electrification level in various regions. In conclusion, because of the differences in resource endowment, energy supply structure, and power grid construction among regions, the electrification levels of provinces may also vary significantly. Therefore, how to classify the provinces with similar electrification level into one category for horizontal analysis is crucial. Based on the function hierarchical clustering method, this paper makes systematic clustering based on the electrification level fitting function and its first derivative (growth rate), respectively, which enables a more objective and reasonable horizontal comparison and analysis of the electrification level among regions.
The rest of this article is organized as follows. Section 2 provides the literature review on the development and assessment of the electrification level; Section 3 outlines the identification methods, data, and the sample. Section 4 provides the empirical results and discussions. In conclusion, Section 5 is the concluding section.
2 LITERATURE REVIEW
Electric energy is clean, convenient, and efficient secondary energy (Aklin et al., 2018; Pu et al., 2019). Its efficiency of creating economic value in the terminal field is 3.2 times that of oil and 17.3 times that of coal (Wang et al., 2019). To access electricity is essential for improving the quality of life of the population and accelerating economic and social development. Therefore, accelerating the development process of electrification has been the grand goal pursued by countries and regions since modern times, of which rural electrification is a typical representative. The United States began the process of rural electrification in the last century (Liu et., 2020). The Chinese government officially launched a national electrification plan in 1991, starting with a rural electrification pilot (He, 2018). An extensive assessment on rural electrification level and the sustainability of specific electrification projects were conducted (Brent and Rogers, 2010; López-González et al., 2019). Amid the lack of a standardized assessment method, five aspects stand out as commonalities among many research frameworks: technological level, institutional factors, economic impact, and social and environmental impact (Ilskog, 2008; Brent, and Rogers, 2010; Hong and Abe, 2012; Lozano and Taboada, 2021; Wassie and Adaramola, 2021). Adusah-Poku and Takeuchi (2019) investigated the dynamics of rural electrification in Ghana and the impact of community electrification project on community welfare. Based on the mixed-integer linear programming model, Juanpera et al. (2022) constructed a user satisfaction index from three levels of technology, social system, and environmental standards to systematically evaluate the rural electrification level in Nigeria.
At present, there is a growing body of literature on the evaluation of the electrification level and the prediction of electric energy substitution potential. Some studies have comprehensively evaluated the electrification level from the perspective of sustainable development, such as Dauenhauer and Frame (2016), Banerjee et al. (2017), and Feron (2016). Ilskog (2008) proposed an assessment method for electrification development based on sustainability goals, which consists of 39 indicators covering five dimensions of sustainability, namely technological sustainability, economic sustainability, social/ethical sustainability, environmental sustainability, and institutional sustainability. Likewise, Bhandari et al. (2018) proposed an assessment framework of electrification sustainability level composed of social, economic, environmental, and technical dimensions. The index system covers 54 relevant indicators, which is helpful for the systematic ranking of the rural electrification level. Namaganda-Kiyimba and Mutale (2018) proposed an easy-to-use sustainability assessment toolkit. Based on the risk assessment method, the toolkit assesses the impact of various risk factors on the sustainability of rural electrification photovoltaic system and the possibility of these risk factors, to obtain the sustainability risk of electrification projects. From the perspective of the specific implementation path of electrification, some studies have constructed a multi-dimensional index evaluation system for the comprehensive benefits of electric energy substitution (Dong et al., 2017). Taking the factors that may affect the regional electric energy substitution potential into account, Li and Chen (2018) used the improved TOPSIS evaluation model to evaluate the regional electric energy substitution potential. Niu et al. (2021) measured the electrification efficiency of 30 provinces in China in 2017 using the three-stage data envelopment analysis model. The results indicated that the electrification efficiency among regions showed a pattern of “high in the east and low in the west.”
In addition, to predict the potential of electric power substitution, some studies use advanced models to analyze and predict the future level of electric power substitution in China (Tan et al., 2012; Li and Chen, 2018; Wu et al., 2019; Geng et al., 2022). Liu et al. (2018) forecast the total terminal energy consumption and the proportion of electric energy consumption in terminal energy consumption based on the logistic model, which supplements the medium and long-term load forecasting method. Li et al. (2018) combined the grey model and the BP neural network model with the time-varying weight method to establish a composite prediction model to predict the potential of electric energy to replace oil and natural gas. Liu et al. (2019) predicted the electrification level of China from 2025 to 2030 based on logistic curve fitting and improved BP neural network algorithm. Wang et al. (2020) combined the Salp swarm algorithm and least squares support vector machine to predict the future electrification potential of the Beijing–Tianjin–Hebei region. Long range energy alter the natives planning system (LEAP) model is a widely used bottom-up energy–economy–environment accounting tool based on scenario analysis (McPherson and karney, 2014; Perwez et al., 2015bib_Perwez_et_al_2015). Cao and Qian (2020) divided the parameters in LEAP model into general parameters and scenario parameters according to their uncertainty, and respectively applied the Grey Prediction model and Monte Carlo model to determine the values of these two kinds of parameters, thus improving the accuracy of LEAP model in predicting China's future electric energy substitution potential.
As indicated by the research above, scholars have evaluated and predicted the development level, specific benefits, and development potential of electrification from different dimensions with different methods, which has certain practical and theoretical significance. Under the dual-carbon strategy, the low-carbon and clean power system should be an important feature of China’s re-electrification process. However, at present, few studies have incorporated carbon constraint into the comprehensive evaluation of the electrification level. In addition, the existing evaluation methods for the electrification level are mostly static, and it is difficult to tap the potential change law of the electrification level in different regions. Thus, this study comprehensively evaluated the development level of regional electrification by considering factors such as cleanliness and low-carbon of energy consumption terminals and power grid quality, and it effectively excavated the dynamic changes law of regional electrification level by using the functional method data analysis. FDA is used to explore the laws contained in static data from a functional perspective. It was first proposed by Ramsay in 1982. Ramsay and Dalzell (1991) projected infinite dimensional functions into finite dimensional space and summarized the FDA methods, followed by an upsurge of research on FDA methods in the field of theory and application. At present, the FDA methods have been widely used in various fields, such as environmental science (Ignaccolo et al., 2013; Shaadan et al., 2015), finance (Cerovecki et al., 2019) and energy economics (Wang and Gong, 2020; Gong et al., 2021). Using this method, this study was able to describe the dynamic change of regional electrification level more accurately and then put forward targeted improvement suggestions according to the evaluation results, which can provide reference for the development of energy transformation, low-carbon development, and pollution prevention and control in different regions.
3 METHODOLOGY AND DATA
This study constructed a comprehensive evaluation index system of China’s electrification level under the dual-carbon goal from three dimensions: energy, electric power, and social environment systems. We determined the weight of each sub-indicator in the index system using the entropy weight method and then the comprehensive evaluation method to obtain the re-electrification level for each province in China. We further convert the discrete re-electrification level index into a function using the FDA method. By examining the velocity, acceleration, and mean value curves of the electrification level function, we conducted an in-depth analysis of the dynamic change laws of the electrification level in various provinces of China. Further, we clustered the comprehensive indicators of the electrification level of 30 provinces in China by using functional data clustering analysis method. The specific methods and data of this paper are as follows.
3.1 Entropy weight method
Entropy weight method is an objective weighting method, which determines the weight of each index by using the amount of information contained in the entropy value of each index. It can fully mine the inherent change law and information of data, which is widely used in the research fields of economy and finance (Ye, 2010; Liu and Lin, 2019). Using the entropy weight method to copy each index in the comprehensive evaluation system of the electrification level can avoid the influence of artificial factors of subjective evaluation, thus making the evaluation result scientific and objective. The specific steps are as follows.
First, to remove the influence of dimensions so that different data can be compared in the same dimension, it is necessary to standardize the indicators according to Eq. 1 (for positive indicators) and Eq. 2 (for negative indicators).
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where [image: image] stands for the region, [image: image]; t represents the time, and the period of this study is from 2007 to 2019; [image: image] and [image: image] represent the maximum and minimum values of the index in the sample period, respectively, [image: image].
We then calculate the proportion of the [image: image] index of the [image: image] region of year t by Eq. 3:
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Then, the information entropy of the [image: image] indicator in year [image: image] is
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Furthermore, the weight of the [image: image] index in year [image: image] is
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If we normalize the index weight of each year, the weight of the [image: image] index obtained is as follows:
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3.2 Functional data analysis
The development of regional electrification is a continuous and dynamic process. Different from the traditional static research methods, the FDA method can effectively capture the dynamic characteristics of the research object changing with time. Therefore, this study used the functional analysis method to functionalize the comprehensive evaluation index of electrification level of each province.
Considering that the re-electrification level index we obtained does not include conventional data and that it has aperiodic characteristics, this study used the B-spline-basis function to convert the discrete electrification level index into a function, as shown in Equation 7:
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where is the basis function coefficient, and [image: image] represents the selected spline basis function. The functionalization of discrete data should not only make discrete data fit well, but also avoid the problem of overfitting. If the curve-fitting effect is too smooth, the original data will fluctuate greatly, and the influence of interference factors will also be amplified. Therefore, this paper introduces the roughness penalty into the smoothing process of spline basis function to prevent overfitting, as shown in Equation 8:
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where [image: image] is the second derivative function of the curve. [image: image] is a parameter that balances the fitting accuracy and the fluctuation of the function, and its optimal value was determined by the generalized cross-validation principle:
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where [image: image] is the sum of squares of fitting errors, and [image: image] is the degree of freedom.
3.3 Cluster analysis
In general, the traditional clustering method involves cross-sectional data processing. The rough division of regions may ignore the differences caused by the endowment conditions and development status of each province. Therefore, to better reflect the similarity of electrification levels and potential change trends among provinces, this study used the functional data clustering method to classify the re-electrification levels of provinces in China.
Due its excellent mathematical properties, the Euclidean distance has become the most commonly used index to measure the similarity of functions (Abraham et al., 2003; Tarpey and Kinateder, 2003). We used Euclidean distance to cluster coefficient vectors. Its expression is
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where [image: image] is the coefficient of basis function, [image: image] represents the selected spline basis function, and [image: image] is the fitting function.
3.4 Index system construction and data description
Power supply involves multiple systems such as energy, electricity, and social environment. At present, the research mainly uses the proportion of electric energy consumption in terminal energy consumption to evaluate the electrification level. With the new round of electric power reform, the construction of new electric power system has brought great impact on China’s energy structure, and the evaluation index under the traditional electric power operation integration mode is no longer applicable. Moreover, the traditional electrification evaluation method does not consider the realistic factors such as carbon emission constraints, so it fails to reflect the realistic objectives of China’s re-electrification under the dual-carbon goals. Therefore, this paper selects 22 indicators from the three dimensions of energy system, power system, and social environment system to construct a comprehensive evaluation index system of China’s electrification level under the “dual carbon” goals, as shown in Table 1. Then, we further calculate the re-electrification level of 30 identities in China from 2007 to 2019. Because of data limitations, Hong Kong, Macau, Taiwan, and Tibet were not included. The research data of this paper mainly come from the Wind database, CEIC database, EPS database, and Provincial Statistical Yearbook.
TABLE 1 | China’s re-electrification index.
[image: Table 1]3.4.1 Energy systems
The essence of electrification development is to promote the substitution of electric power for other primary energy at the energy consumption terminal. Therefore, the energy system, including energy efficiency, consumption, and structure, has an important impact on the provincial electrification development. The more energy consumed per unit of gross domestic product (GDP), the greater the dependence of economic development on energy, and the lower the energy efficiency, which indicates that there is still much room to improve the electrification level in the region. Electric energy substitution mainly refers to the substitution of electric energy for fossil energy such as coal. Therefore, the lower the coal consumption and electric energy consumption in a region, the lower the electrification development level.
3.4.2 Power system
As an important energy commodity, electric power goes through the operation process of source–grid–load–storage from production to consumption. The advancement of electrification needs the support of a power system, which includes the coordination of power supply and demand-side and the strength and reliability of power grid. Thus, this study investigated the power system from two dimensions of power supply and demand and power grid quality. Coal has played a dominant role in China’s energy and power development for a long time. The proportion of thermal power generation can directly reflect the current regional power generation terminal dependence on coal, and other traditional energy, which reflects the cleanliness of electrification development. The amount of energy available for local consumption reflects the regional power supply capacity, which indicates the regional electric energy substitution potential. Per capita electricity consumption, power supply, and the proportion of domestic electricity consumption and industrial electricity terminal consumption directly reflect the advancement of electrification from the perspective of electric energy terminals. In addition, the construction of power grid infrastructure is the fundamental guarantee of power transmission and supply. Reliable power grid facilities are the strong backing of regional electrification development. Therefore, in this paper, six indicators, such as power generation equipment capacity, loop length of transmission line, and average utilization hours of power generation equipment, are adopted to reflect the stability and reliability of power grid operation.
3.4.3 Social and environmental system
In the context of dual-carbon goals, energy supply reform policies such as carbon emission and green power certificates trading have imposed certain pressure on the electricity market for carbon emission reduction and environmental protection (Zhang et al., 2020). The impact of electrification on the social environment system cannot be ignored. Thus, this study first refines the environmental benefits of electrification from two aspects of low-carbon development and environmental quality, which intuitively reflects the advantages of implementing electric energy substitution for emission reduction. In particular, the low-carbon development dimension includes two indicators: carbon dioxide emission intensity (carbon dioxide emission per unit of GDP) and energy carbon intensity (carbon dioxide emission per unit of energy consumption), which reflects the carbon emission reduction attribute and new target of the electrification process under the dual-carbon background. In this paper, the emission of sulfur dioxide and the annual average concentration of PM2.5 in the air are used to characterize the environmental pressure caused by the electrification process. In addition, technological development is an important driving force for the construction of new power system, which can improve the efficiency of power production, transmission, and consumption, and effectively promote the electrification process. Therefore, in this paper, the number of green invention patents and the output rate of invention patents (the ratio of the number of patents authorized to R&D personnel) are included in the evaluation system to reflect the development potential of regional electrification level.
4 EMPIRICAL RESULTS
4.1 Assessment of the re-electrification level
Using the method proposed in Section 3.1, this study first measured the electrification indexes of 30 provinces in China from 2007 to 2019, and ranked the provinces according to the mean value. The results are presented in Table 2. As indicated, the top three provinces with average electrification index are Guangdong (0.628), Jiangsu (0.617), and Zhejiang (0.573). The three provinces with the lowest ranking are Hainan (0.267), Heilongjiang (0.266), and Jilin (0.240). If the provinces are ranked according to the value of electrification index in 2007, the top three provinces are Guangdong (0.653) and Zhejiang (0.579), Jiangsu (0.543), Shanghai, (0.482), and Sichuan (0.443). The last five provinces are Anhui (0.256), Jilin (0.255), Jiangxi (0.254), Shaanxi (0.248), and Xinjiang (0.242), which is quite different from the previous results and verifies the spatial heterogeneity of electrification development level. In addition, from the results of average ranking, the average electrification index of the top 10 provinces is 0.482, while the average electrification index of the last 10 provinces is only 0.294, which shows the provincial difference of re-electrification development. It is worth noting that most of the top 10 provinces are in the eastern seaboard or economically developed regions, which started electrification earlier. The economic development level in these provinces is higher than that in other areas, and their fossil energy reserves are small, and energy resources are insufficient. Compared with the heavy industry, the service industry, light industry, and some new information-based industries are the main driving forces for the economic development of these provinces, which are also the new driving forces for the growth of electricity consumption, thus greatly enhancing the electrification of these provinces. The bottom-ranked provinces are mostly the central, western, and northeastern provinces that are rich in natural resources. Abundant fossil energy reserves and low prices make the final production and living activities in these regions highly dependent on fossil energy such as coal, and the level of electric energy substitution is low. Therefore, there is still room for improvement of the electrification level in these provinces.
TABLE 2 | 2007–2019 electrification index of provinces.
[image: Table 2]4.2 Dynamic analysis of regional re-electrification level
To effectively excavate the dynamic change information of electrification level in each region, this study used the FDA method to functionalize the re-electrification index of each province obtained in Section 4.1.
The obtained function fitting curve is shown in Figure 1. As indicated, there are significant differences in the electrification levels in different provinces. The electrification index of most provinces ranges between 0.3 and 0.5. There is a big difference between the province with the highest level of electrification and the province with the lowest level, with the former being approximately 2.5 times that of the latter. This gap may be mainly caused by the differences of resource endowment, energy supply structure, power market development level, and economic and social environment among regions. From the changing trend of the curve, it is not difficult to see that the electrification of each province has gone through multiple development stages. Except for a few provinces showing a downward trend, the re-electrification index of most provinces is gradually rising with small fluctuations.
[image: Figure 1]FIGURE 1 | Function curve of the re-electrification index.
Figure 2 represents the velocity curve of re-electrification index. The growth rate of the electrification level in most provinces experienced three to five changes from 2007 to 2019. The change trend of the electrification level growth rate in most provinces is relatively uniform. It is worth noting that after 2018, the growth rate of the re-electrification level in more than half of provinces dropped to a negative value. The possible reason for this is that with the implementation of the 13th Five-Year Plan electric energy substitution strategy vigorously promoting the electrification process in most provinces of China, some regions have entered a weakening state after the implementation of a series of electric energy substitution policies. The promotion of electrification has encountered bottlenecks, and it is necessary to find new incentives and driving forces. In addition, some provinces may ignore the comprehensive social and environmental benefits of electric energy substitution to complete the assigned task of electric energy substitution, which directly leads to the decline of the comprehensive level of electrification and slowdown the velocity. The acceleration curve of electrification level function and its changing trend can reflect the dynamic characteristics of regional electrification level development. As can be seen from Figure 3, the function of electrification level in most provinces shows a downward trend after 2017. At present, China’s electric energy substitution strategy has entered a deepening stage. Compared with 2007, China’s electrification level has been significantly improved and maintained at a high level. Moreover, the development of China’s electrification has just entered a new stage in the context of dual carbon, and the further deepening of electric energy substitution requires the reform and promotion of energy system, power system, and green technology. Therefore, it is normal that the velocity and acceleration of the current electrification level decrease. In addition, with the dual-carbon strategy, the construction of a flexible low-carbon power supply has been greatly promoted through the coupling effect of electricity market and carbon market. The coordinated development of the power market and carbon market makes it possible for the linkage between carbon price and green power premium (Fan et al., 2014). Therefore, we expect that the perfect electricity price marketization mechanism and the construction of flexible and low-carbon power sources will greatly promote the process of China’s re-electrification, and the electrification level will show an upward trend in the future.
[image: Figure 2]FIGURE 2 | Velocity curve of the re-electrification index.
[image: Figure 3]FIGURE 3 | Acceleration curve of the re-electrification index.
Figure 4, Figure 5, Figure 6 are the mean function curves of China’s electrification index and its velocity and acceleration curves, respectively. Figure 4 generally reflects the general trend of China’s re-electrification level. It can be seen that from 2007 to 2019, China’s electrification development can be roughly divided into four stages. The first stage is from 2007 to 2009. In this stage, the national West-to-East Power Transmission Project and the West-to-East Gas Transmission Project gradually achieved outstanding results, greatly alleviating the power shortage in the western region, and improving the overall electrification level in China. In addition, at this stage, China’s provinces vigorously promote rural electrification, strengthen the construction of rural power facilities, and encourage the use of electricity to replace fossil energy such as loose coal and fuel oil. Therefore, in this area, the average electrification level in China has improved significantly. From 2009 to 2010, China’s electrification level declined briefly. Affected by the financial crisis in 2008, the price of crude oil was at a high level, which directly affected China’s energy supply. At that time, China’s power system was still largely dependent on traditional fossil energy, so the electrification process was inevitably affected. The third stage of China’s electrification development is from 2010 to 2016. In accordance with the deployment and requirements of the central government and the State Council, the power industry has intensified its efforts to further implement the extension of power grids in areas without electricity and the construction of renewable energy power supply projects. In 2015, the power consumption problems of the last 200,000 people without electricity were solved. At the same time, the growth rate of electricity consumption in the whole society and the per capita domestic electricity consumption increased rapidly. The electric energy substitution strategy has entered a deepening stage. After 2016, China’s electrification level entered a stage of slow decline. In recent years, the increasingly serious environmental problems have attracted attention. The cleanliness of power generation energy has become the focus of the electrification process. Therefore, the further deepening of power substitution requires the transformation and upgrading of the energy system, power system, and green technology. With the development of electrification in China entering a new stage, it is normal for the electrification level to decline slightly and the growth rate to slow down in the exploration process. The above analysis is consistent with the change of the velocity (see Figure 5) and acceleration curve (see Figure 6) of the mean value of electrification.
[image: Figure 4]FIGURE 4 | Function curve of the re-electrification index mean value.
[image: Figure 5]FIGURE 5 | Velocity curve of the re-electrification index mean value.
[image: Figure 6]FIGURE 6 | Acceleration curve of the re-electrification index mean value.
4.3 Regional cluster analysis
Figure 7 represents the cluster dendrogram of provincial re-electrification index. Table 3 shows the results of cluster analysis. As indicated by Figure 7, the clustering results of functional data are very different from those of traditional clustering based on geographical region division. Based on the similarity of the re-electrification level, we divided 30 provinces into the following three groups: backward areas and medium areas and leading areas ( Table 3). The leading areas include Zhengjiang, Guangdong, and Jiangsu provinces, and their average re-electrification level is 0.606, which is approximately twice that of the backward areas (0.311). Furthermore, there are great spatial differences in the development of electrification in China. Zhejiang, Guangdong, and Jiangsu are all economically developed provinces, which are in the post-industrialization stage. These provinces completed the upgrading of industrial structure earlier. High-end manufacturing, service, and high-tech industries have become their main economic growth points, resulting in strong demand for electric energy, and the electrification level has been improved rapidly and at a high level in these provinces.
[image: Figure 7]FIGURE 7 | Cluster dendrogram of the re-electrification index.
TABLE 3 | Clustering results.
[image: Table 3]The average level of re-electrification in the medium areas is 0.424, and the bottom three provinces in the group are Inner Mongolian, Guangxi, and Ningxia. It is not difficult to see that the medium areas are mostly provinces in the early stage of regional industrial structure upgrading, which economic growth is relatively dependent on fossil energy, and the electricity consumption is not significant compared to the total increase in energy consumption. For provinces rich in hydropower resources, such as Yunnan and Guangxi, industries with high pollution and high energy consumption tend to shift from economically developed provinces to these provinces, which in turn leads to an increase in energy consumption intensity and a decrease in the level of re-electrification.
There are 16 provinces in the backward area, and the average value of electrification level is 0.311. The lowest value of electrification level in the group is 0.218, and the maximum value is 0.410, which has a large intra-group gap. It is not difficult to find that some provinces in backward areas, such as Jilin, Heilongjiang, Liaoning, and Shanxi, have large fossil energy reserves. The high dependence on abundant natural resources leads to the backward industrial structure and slow industrial upgrading process in these provinces. Even though China has been emphasizing strict control over the total amount and intensity of energy consumption in recent years, the long-term developed energy consumption structure and industrial structure in turn make it difficult for these provinces to get rid of their dependence on fossil energy. Therefore, for these provinces, there is still a risk that the carbon emission intensity will increase with the increase of electrification level, which results in the low re-electrification level.
Figure 8 shows the phase diagram of the average function of the electrification level in leading areas, medium areas, and backward areas, successively. The horizontal axis represents velocity, and the vertical axis represents acceleration. It is not difficult to see from Figure 8 that for the leading areas, the growth rate of the electrification level was small, and the electrification development was relatively stable from 2007 to 2009. From 2013 to 2017, the level of electrification began to grow rapidly, and the phase diagram curve was located in the upper-right area. The growth rate and the acceleration of electrification level were both >0. After 2017, the re-electrification level of leading areas entered a relatively stable stage, and the growth rate declined slightly. This shows that under the goal of dual controls over energy intensity and gross energy consumption, the electrification of the leading area needs to step into a new stage further deepening of re-electrification requires the government to look for a new starting point and breakthrough under the realistic needs of comprehensive consideration of carbon emissions and environmental protection constraints. The level of electrification in the medium areas increased gradually between 2014 and 2016, but the acceleration was decreasing until it turned negative in 2016. From 2017 to 2019, the level of electrification in the medium areas showed a trend of first increasing and then decreasing, and the acceleration was decreasing. The third image in Figure 8 is the phase diagram of the mean function of the re-electrification index in backward areas. It is not difficult to find that the phase diagram of the backward areas consists of a large circle and a small circle, which shows that from 2007 to 2015, the acceleration and velocity of the mean function of the electrification index in the backward area have large fluctuations, while the electrification index was relatively stable from 2016 to 2019, with small fluctuations in speed and acceleration. Moreover, from the perspective of the values of velocity and acceleration, the mean value of the re-electrification index in the backward areas showed a slow downward trend from 2017 to 2019, and the acceleration showed an inverted U-shaped distribution. A possible explanation for it is that the industrial structure of the provinces in the backward areas is still in the process of upgrading the industrial structure. Relying on high-energy-consuming and high-polluting industries to drive economic growth is still the main way of its development, so the progress of electrification is relatively slow.
[image: Figure 8]FIGURE 8 | Phase diagram of the mean function of the re-electrification index of three groups.
5 CONCLUSION
Electrification is currently the most mature technology path to achieve carbon neutrality. With the dual-carbon strategy, the advancement of electrification is more low-carbon, clean, and environmentally oriented than before. To reflect the new features and new mission of electrification development in the context of dual carbon, this study constructed a comprehensive index of China’s re-electrification level from the three dimensions of the energy system, power system, and social environment system. Then, we used the FDA method to explore the dynamic change law of the electrification level in different regions. Furthermore, we cluster the comprehensive indicators of the electrification level of 30 provinces in China by using the functional data clustering analysis method. The following are the main conclusions of this study.
First, from the comprehensive evaluation results of the electrification level, there were big differences among the electrification development levels of each province. The top three provinces in the mean value of re-electrification index were Guangdong (0.628), Jiangsu (0.617), and Zhejiang (0.573), while the bottom provinces were mostly the central, western, and northeast provinces with rich natural resources. Second, according to the mean curve, velocity curve, and acceleration curve of China’s electrification obtained by the functional data method, from 2007 to 2019, the development of China’s electrification from 2007 to 2019 can be roughly divided into rising, short-term decline, sharp rise and slim and steady decline. At present, China’s electrification is entering a new stage, and the further deepening of electrification requires the government to look for new starting points and breakthroughs by taking carbon emissions and environmental constraints into consideration. In the end, the clustering results show that there are great spatial differences in the development of electrification in China. The average re-electrification level of leading areas is 0.606, which is approximately twice that of the backward areas (0.311).
Based on the above research conclusions, the following suggestions to improve China’s re-electrification level are proposed. With the guidance of carbon peaking and carbon neutrality, the development of electrification must break the constraints of technology, economy, mechanism, promote the change with technological progress, and continuously promote the high-quality replacement of electric energy. First, technological progress is the fundamental force driving the substitution of electric energy. All provinces should strengthen the research and development of electric energy substitution technology to promote rapid iteration and cost reduction of electric energy substitution technology. In particular, for the backward electrification regions whose economic development still largely depends on high energy consumption and high pollution industries, technological progress is the fundamental way to promote the upgrading of industrial structure and clean transformation of energy structure, and then promote the electrification process. Second, provinces should formulate electric energy substitution plans scientifically in accordance with the principle of differentiation, optimize the time sequence of electric energy substitution, and implement electric energy substitution projects and distribution network construction. Third, all provinces should improve the system and mechanism reform and optimize the electrification implementation path. All regions should speed up the construction of a diversified clean power supply system; further promote the substitution of electric energy in industry, construction, and transportation; implement power conservation throughout the whole process and all fields of economic and social development; and improve the power demand response capacity. Moreover, all provinces should accelerate the promotion of scientific and technological innovation activities of green and low-carbon power, improve the electricity price formation mechanism, study and construct the transmission mechanism of new energy utilization cost, improve the fiscal and taxation investment and financing policies for green and low-carbon power development, and promote the coordinated development of electricity market, carbon emission trading market, and energy use trading market.
In addition, empowering the power system with digitalization, building a new power system that meets the needs of large-scale and high-proportion new energy grid connection and diversified interactive power consumption are new requirements for the development of the power system under the background of carbon neutrality. In addition, it is also a great boost for the improvement of the level of re-electrification. In terms of power supply, all provinces should accelerate the construction of smart power plants to realize automatic collection, intelligent analysis, and flexible control of various power sources, and realize intelligent power generation and friendly grid connection of large-scale new energy sources. In terms of power grid, power grid companies should accelerate breakthroughs in advanced power transmission and smart-grid technologies, such as high-voltage grade flexible power transmission, DC power grid, large-capacity submarine cable, and superconducting power transmission, so as to greatly improve power grid resource allocation capabilities, flexible adjustment capabilities, and security and stability control ability. On the load side, power grid companies should vigorously promote smart meters, smart power consumption systems, contract energy management, demand-side response, and other technologies and modes to improve terminal power utilization efficiency.
Because of limited data, some indicators such as the proportion of clean energy power generation, the proportion of terminal energy consumption, and the reliability of power grid, are not included. They may have certain impact on the electrification index constructed in this study. In future research, if these data can be obtained, we will construct a more comprehensive re-electrification index. Moreover, we will continue to explore if there are better methods to analyze the dynamic development of regional re-electrification level in China. In addition, in recent years, some energy reform policies have been put forward to promote energy consumption and help achieve carbon neutrality. With the implementation of China’s renewable energy portfolio standard, the integration of carbon emission trading, green power certificates trading, and renewable energy quota has become an effective way to expand the scale of new energy utilization and improve the consumption capacity of new energy, which may also greatly accelerate China’s re-electrification process. Therefore, it is a potential future research direction to study the impact of energy supply reform policies such as carbon emission trading policy, green power certificates trading policy, and renewable energy quota policy on China’s re-electrification level. However, due limited data, this work has not yet been carried out, and it is hoped that this research gap can be filled in the future.
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As China cannot achieve its emission reduction target without cooperating with other countries, the international carbon trading market has become a part of China’s carbon trading market system. The Belt and Road Initiative (BRI) has brought many development opportunities to countries participating, but critics have also voiced concerns about the environmental and climate degradation it might bring. Thus China is making a great effort towards building a green and low-carbon BRI, part of which is a joint effort with other countries to cut greenhouse gas emission and achieve the 2,030 sustainable development goals. The estimation of abatement costs is the basis of regional carbon emission reduction cooperation and a prerequisite for establishing a regional carbon trading market. Taking into account the technological heterogeneity, this paper uses linear programming to estimate inefficiency level for China and BRI countries, and further calculates the marginal abatement cost (MAC) of carbon dioxide for each country. The results show that after considering technological heterogeneity, the average inefficiency level for China and BRI countries is 2.410%, which is about 26.526% lower than the traditional geographic grouping approach, indicating that the technological heterogeneity among BRI countries is significant and cannot be ignored. Most countries have a low inefficiency level, some countries show a clear trend. China has an average marginal abatement cost of 1440.183 USD/ton. As the marginal abatement cost varies greatly among countries, a large amount of abatement cost could be saved for China and BRI countries if the cost difference is exploited.
Keywords: CO2 abatement cost, Belt and Road Initiative, technological heterogeneity, marginal abatement cost, economic proximity
1 INTRODUCTION
Economic development has always inevitably brought about environmental and climate degradation. The Fifth Assessment Report published by the United Nations Intergovernmental Panel on Climate Change (IPCC) states that almost every region of the world has experienced an increase in temperature, and that the increase in carbon dioxide emissions is the most important cause of this phenomenon (IPCC, 2014). To control the deterioration of the environment, countries around the world have taken various measures. In December 2015, the Paris Agreement was adopted at the Paris Climate Change Conference. The long-term goal of the Paris agreement is to limit the increase in global average temperature to 2°C compared to the pre-industrial period, and to try to limit the temperature increase to 1.5°C. According to a report released by the IPCC, the world’s CO2 emissions would need to be reduced by at least 20 percent of 2010 emissions in 2030 to meet the Paris agreement’s target (Rogelj et al., 2018). As one of the world’s major CO2 emitters (Sun et al., 2019), China has also introduced many policies to encourage the reduction of CO2 emissions, such as limiting the output of heavily polluting enterprises and even closing them (Wang et al., 2021b). In 2020, China first proposed that carbon dioxide emissions should peak by 2030 and work toward carbon neutrality by 2060. In the 2021 session of the National People’s Congress, “carbon peaking” and “carbon neutrality” were also included in the government work report for the first time, reflecting China’s determination to save energy and reduce emissions. As the core policy tool to achieve “carbon peaking” and “carbon neutrality”, China’s carbon emission trading market was launched on 16 July 2021.
However, China cannot achieve its emission reduction target without cooperating with other countries, it requires a joint effort by all countries to achieve the long-term goal set by the Paris Agreement. The international carbon trading market is a part of China’s carbon trading market system. Recently, China set up Hainan International Carbon Emission Trading Center, which will become China’s first carbon market characterized by internationalization and the intersection of domestic and foreign carbon markets. China has issued a variety of policies to promote carbon emission reduction, of which the carbon emission reduction cooperation with the Belt and Road countries is the most important. The Belt and Road Initiative (BRI) formed by the concept of “Silk Road Economic Belt” and “Maritime Silk Road” in 2013 provides an important channel for participating countries to help each other to jointly achieve energy saving and emission reduction goals. Today, China has made significant progress in facilities construction and trade cooperation with the countries covered by the Belt and Road Initiative. However, some critics have point out that the construction of the Belt and Road will on the one hand lead to economic development of the countries involved, but on the other hand, it will also result in greenhouse gas emissions, especially carbon dioxide emissions, being on the rise, which will lead to environmental degradation (Ascensão et al., 2018). Therefore, how to control greenhouse gas emissions while enabling countries along the Belt and Road to achieve their development goals, build a green Belt and Road, and jointly achieve the 2030 sustainable development goals has become an important issue in the process of building the Belt and Road.
Most of the countries covered by the BRI are low to middle-income countries. Figure 1 shows the changes in the share of GDP and energy consumption of the Belt and Road countries from 2006 to 2018. As can be seen in the graph, BRI countries only contribute about 30%–40% of world GDP, but use up to 60% of energy. Both percentages have been rising during this period, but energy consumption rises faster than GDP. This shows that most of the countries involved in the Belt and Road Initiative are still in the stage of rough growth, characterized by high energy use but low output due to inefficient energy use. Most of the countries are trading the environment for their economic growth. Improving the energy efficiency of the Belt and Road countries will make a vital contribution to achieving international environmental protection goals. China, as the initiator of the Belt and Road Initiative, has proposed to support countries to improve energy efficiency and the environment by strengthening communication on ecological and environmental policies and enhancing environmental cooperation mechanisms and platforms. However, improving efficiency and reducing CO2 emissions has a cost, as the technological advances needed to improve efficiency will require investment. And without estimating abatement costs, cooperation in emission reduction among BRI countries would not be possible. The estimation of abatement costs is the basis of regional carbon emission reduction cooperation and a prerequisite for establishing a regional carbon trading market, as it will identify the proper emission target for each country and allow them to trade in the market to minimize their total emission reduction costs.
[image: Figure 1]FIGURE 1 | BRI countries’ GDP and energy consumption shares.
One important aspect that needs to be taken into account when estimating abatement costs is the economic and technological development levels of the countries in the BRI. The Belt and Road Initiative covers developing countries as well as developed countries, and naturally the economic and technological development levels will be different. Ignoring this difference would be to assume that countries with underdeveloped technologies can reach the production frontier of more developed countries by simply improving efficiency, which is not realistic. If the unbridgeable technological gap is ignored, it will result in an overestimation of inefficiency levels and abatement costs for underdeveloped countries. And therefore, to more accurately estimate abatement costs, it is crucial to consider the technological heterogeneity among BRI countries.
In this context, both for China’s goal of “carbon peaking” and “carbon neutrality,” and for other countries’ goal of sustainable development, it is better to promote inter-regional cooperation in carbon emission reduction than to reduce emissions independently by individual countries. A cross-regional carbon trading market can take advantage of the differences in emission reduction costs among countries along the Belt and Road, thus reducing the costs of emission reduction in each country and enabling each country to achieve sustainable development goals with minimal costs. This paper calculates the marginal abatement cost of each country by taking into account the difference in technological level of each country, and proposes some policy recommendations based on this.
The rest of the paper is organized as follows: Section 2 reviews the literature related to this paper, Section 3 focuses on the methods used in this paper, Section 4 presents the data characteristics, Section 5 discusses the results as well as the implications, and Section 6 concludes with policy recommendations.
2 LITERATURE REVIEW
Many methods have been proposed for the measurement of marginal abatement cost, including cost function, model-based methods, distance function and so on. Among them, the distance function method requires only input and output data, which is less demanding than other methods, and therefore has become a more widely used method in recent years [(Zhou et al., 2014; Lee and Zhou, 2015)]. The estimation of marginal abatement costs using distance functions first requires the establishment of a representative energy output function, and the two most commonly used functions are the Shepard distance function and the directional distance function (DDF). The corresponding estimation methods include parametric and non-parametric methods. The non-parametric method, which mainly refers to the data envelopment analysis (DEA) method proposed by Charnes and Cooper (Charnes et al., 1978), does not require the assumption of a specific form of production function, but rather creates a segmented frontier to estimate the production frontier based on the data. Many papers thus choose to combine DDF and DEA to estimate marginal abatement costs [(Boyd et al., 1996), (Battese GE, 2002), (Lee et al., 2002)]. Parametric methods, on the other hand, include two main types: deterministic methods and stochastic frontier analysis (Zhou et al., 2014). For deterministic methods, the linear programming method proposed by Aigner and Chu, 1968 can be used to estimate the parameters in the production function, but the deterministic method does not take into account the random errors in the data. The stochastic frontier analysis method does take into account the random errors, but the production function it yields sometimes fails to satisfy the monotonicity assumption (Zhou et al., 2014). Despite the drawbacks of both methods, they are still very widely used in practice [(Du et al., 2016), (Tang et al., 2016), (Wang et al., 2020)].
However, all the above approaches assume that for all decision-making units (DMU), their optimal production technology is the same, i.e., all decision-making units face the same production frontier. In practice, however, due to differences in infrastructure, education levels, etc. there are often insurmountable technological differences between different decision-making units, which do not decrease over time. The Malmquist-Luenberger productivity index proposed by Oh (Oh, 2010) takes into account the heterogeneity among individuals. Further, Zhang and Choi, 2013 proposed the Meta-frontier Non-radial Malmquist Carbon index (MNMCPI). The above-mentioned applications that take into account heterogeneity are mostly in productivity measurement, and this consideration of heterogeneity is mostly based on geographical location. However, if only geographical location is used as a measure of heterogeneity, it may lead to biased results. Therefore, in Wang et al. (Wang et al., 2021c), three indicators related to the level of economic development were used as the measure of heterogeneity instead of simply grouping by geography, and a program was used to group the DMUs to avoid the possible bias of manual grouping.
As The Belt and Road Initiative rapidly expands in recent years, the amount of literature on energy efficiency and carbon emissions in countries involved in the initiative has gradually increased. Sun et al. (2020) used stochastic frontier method to estimate the persistent and transient energy efficiency of 48 countries along the Belt and Road and found that in general, the persistent energy efficiency of these countries is lower than the transient energy efficiency, indicating that the energy problems of the countries along the Belt and Road are more structural in nature. Qi et al. (2019) measured the total factor energy efficiency (TFEE) of countries along the Belt and Road to examine whether inefficient countries are catching up with efficient countries, and they found that in general, the gap between inefficient countries and efficient countries is closing, and high-income countries are catching up with efficient countries faster. Some literature also explores factors affecting carbon emission amount of BRI countries. Fan et al. (2019) analyzed the changes in CO2 emissions and the drivers behind the changes in 46 countries along the Belt and Road. They found that economic development and potential carbon emissions associated with energy consumption were the most important factors influencing the growth of CO2 emissions, while changes in emission reduction technology and potential emissions were the two most important inhibiting factors. You et al. (2022) analyzed the interaction effects of income inequality and democracy on CO2 emissions, and found that there is an inverted “U” shaped relationship between income equality and CO2 emissions, and that the degree of democracy facilitates this relationship between income equality and CO2 emissions, with high income inequality combined with poor democracy leading to higher CO2 emissions in a country when all else is equal. Muhammad et al. (2020) explored the relationship between urbanization and international trade on CO2 emissions in the BRI countries. The empirical results show that urbanization has an inverted “U” relationship with CO2 emissions only in high-income countries. In addition, FDI increases CO2 emissions, which supports the “pollution paradise” hypothesis.
However, most of the aforementioned literature does not consider the heterogeneity among countries. Therefore, the contribution of this paper can be summarized as follows: first of all, this paper introduces factors measuring national economic environment differences into the calculation of efficiency, mainly foreign direct investment (FDI), trade openness, government expenditure, and institutional quality. FDI can improve the technological level of the host country by bringing advanced technology and skilled workers into the country (Fassio et al., 2019). Meanwhile, the inflow of foreign investment can ease the financial constraints of innovative activities in the host country, ultimately leading to the improvement of technology (Chen et al., 2017). The higher trade openness is, the bigger the market is for enterprises, thus the more incentive there is for the enterprises to innovate (GM Grossman, 1994). Government expenditure could act as an important driver in managing pollution levels (Li et al., 2021). Besides, government expenditure spent on science and technology could encourage the advancement of technology, which ultimately could lead to improvement in efficiency and decrease in emissions (Iqbal et al., 2021). And finally, higher institutional quality leads to better interaction between authorities and firms, resulting in less risk of technological expropriation and other undesired outcomes for firms, and ultimately encourages innovation (Egan, 2013). Adding factors measuring national economic environment differences will make the estimation of production frontier more accurate, and the estimated efficiency will be more accurate compared to models not considering the differences. Moreover, few previous literatures have calculated marginal abatement cost on the country level, and this paper further calculates the marginal abatement cost for each country based on the estimated efficiency, thus providing some reference for BRI countries on how to mitigate total abatement cost while maintaining the amount of emission reduction. This paper has a new contribution in method. Previous literatures used discrete variables to classify production technologies, such as geographic location, whether it is an environmentally friendly city, etc., but did not use continuous variables to classify production technologies. In addition, the method in this paper is different from the clustering method. The clustering method can only group the production technology level according to the Euclidean distance (or other distance function) between the exogenous technical variables, and cannot use the directional distance function and the exogenous technology at the same time. The information about the variable is grouped.
3 MODELS
3.1 Production technology
All the models in this paper are based on the models proposed in Wang et al. (2021c). First is the modelling of production technologies. Assume that there are K producers in the economy, producer k (k = 1,2,…,K) uses [image: image] amount of input (n = 1,2,…,N) to produce [image: image] units of desirable output and J types of undesirable outputs, [image: image] units of each type is produced. Production technology can be represented using the output set [image: image]: [image: image], k means that each producer has its own production technology.
The output set must satisfy the following assumptions:
[image: image]
[image: image]
The null-jointness assumption ensures the inevitability of undesirable outputs in the production process, no production activities can be carried out without producing undesirable outputs. And weak disposability suggests that when the amount of the desirable output is constant or increasing, the amount of the undesirable output cannot be reduced, meaning that there is a cost to reducing the undesirable output.
Production technology is modeled using the output DDF in this paper. Setting [image: image], where the directional vector [image: image], then the output DDF can be defined as:
[image: image]
Where [image: image] represents the inefficiency of production. When [image: image],then producer k is on the production frontier, the higher [image: image] is, the lower the energy environmental efficiency is. The output DDF should satisfy the following properties:
[image: image]
[image: image]
[image: image]
3.2 Estimating energy environmental efficiency and CO2 marginal abatement cost
After satisfying the above assumptions, this paper follows Färe et al. (2005), and uses the linear programming method proposed by Aigner and Chu, 1968 to estimate the parameters of the DDF.
Assume that every country uses three inputs: capital ([image: image]), labor ([image: image]), and energy ([image: image]) to produce two outputs: desirable output and undesirable output, with the desirable output being GDP(y) and undesirable output being CO2([image: image]). The DDF of the kth country can be written as:
[image: image]
Where [image: image] are parameters to be estimated, n and n′ = 1,2,3. Setting [image: image], the linear programming method can be applied to estimate the parameters in Eq. 2 [(Aigner and Chu, 1968); (Färe et al., 2005)]:
[image: image]
[image: image]
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The objective of this linear programming is to minimize the distance between each DMU observation and its production frontier subject to the production technology constraint of Eq. 2. Constraint 1) ensures that each observation is within boundary. Constraints 2) and 3) ensure the non-increasing property of desirable output and the non-decreasing property of undesirable output. The parameter restriction in constraint 4) assigns the translation property to the directional vector. And constraint 5) limits the symmetry property of the model. Eq. 5 can be used to estimate the energy environment inefficiency of each country.
Based on the estimated energy environment inefficiency, CO2 MAC of each country can be calculated using the following equation:
[image: image]
where p is the market price of desirable output, and [image: image] is the shadow price of CO2. The shadow price is used as an approximation of MAC in this paper, as the economic implication of the shadow price is the value of the desirable output that must be reduced when the DMU is operating at the production frontier and reduces a unit of undesirable output.
3.3 Modeling with economic proximity
And finally, this paper incorporates the economic environment of each country into the production technology to solve the heterogeneity problem. The effect of the environment is determined through multidimensional variables representing economic proximity. This paper selects four representative variables to measure economic proximity, which are FDI, trade openness, government expenditure, and institutional quality. These variables are represented by [image: image].
The first step is to determine the nearest neighbors of each country. The nearest neighbors are defined as the η provinces with the smallest square of Euclidean distance from the reference province calculated according to environmental variables. The larger the year, the greater the weight given. Therefore, the weighted Euclidean distance square of each country k with respect to other countries m during the sample period can be calculated as:
[image: image]
Where t = 1, 2, …, T represents the sample year.
After ranking the nearest neighbors for each country, the following criteria is used to determine the optimal number of nearest neighbors for country k (represented by [image: image]):
First of all, the optimal number of nearest neighbors should satisfy the null-jointness hypothesis. Specifically, for each country in each period of observation, null-jointness hypothesis is satisfied when [image: image] (Färe et al., 2005). The share of observation that satisfies the null-jointness hypothesis is denoted as [image: image], where [image: image] is the optimal number of nearest neighbors selected, T is the sample time span. [image: image] if [image: image], otherwise [image: image].
Second, shadow prices are generally considered to be non-negative, thus samples with negative estimated shadow prices are often removed [(Färe et al., 2005); (Ji and Zhou, 2020)]. As can be seen in Eq. 6, shadow price is connected to the monotonicity of both desirable and undesirable outputs, therefore, samples with negative shadow prices do not fit the production technology defined before. The share of non-negative shadow prices is denoted as [image: image]. [image: image] if [image: image], otherwise [image: image].
Combining the above two constraints, the optimal number of nearest neighbors of reference country k is defined as the [image: image] that will maximize [image: image]. The method used in this paper defines the production technology in line with its own economic environment for each country, incorporating the heterogeneity created by different economic environment in different country, thus a more accurate MAC of CO2 can be obtained compared to traditional methods, and more accurate information can be provided to policy makers.
4 DATA
The paper uses data of 115 countries along the BRI, including China, from 2006 to 2018. The majority of previous researches select 50 to 60 countries to study. However, as the BRI expands, the number of countries participating is increasing, thus a more accurate production frontier can be estimated by using data of more countries, in turn the estimation of MAC will be more accurate. In addition, since developed countries such as Germany and UK opened the China Railway Express with China after 2011, and the China Railway Express is an important part of the BRI, we will also include the countries that have opened the China Railway Express in the sample. Some researchers have pointed out that the development of BRI countries vary greatly, for example Zhang et al. (2020) divided BRI countries into 5 groups, and discovered significant differences of CO2 emissions and GDP among groups. Thus, for comparison purposes, the countries are divided into 5 groups according to the continent they are in. Countries used and the groups are shown in Table 1.
TABLE 1 | BRI Country lists.
[image: Table 1]Three inputs are considered in this paper: capital, labor, and energy. Capital and labor are generally considered to be essential inputs of production, and the addition of energy is because the usage of energy during production is the main reason of the production of undesirable outputs. Capital stock of each country as well as labor data come from the Penn World Table, and the consumption of energy of each country comes from the U.S. Energy Information Administration (EIA).
Two kinds of outputs from production activities are considered. One is desirable output, which is the product that the enterprise wants to produce by engaging in production activities, measured by GDP. The other one is undesirable output, which is environmentally harmful outputs that are inevitable when a company produces desirable output, which is CO2. GDP data comes from the Penn World Table, while CO2 emission data comes from EDGAR (Emissions Database for Global Atmospheric Research).
And finally, as mentioned before, this paper covers 115 countries from 5 different continents who have varying levels of development, and in turn varying levels of production technology. Thus indicators are needed when determining production frontier of each country to identify countries with similar level of development to the reference country, allowing for a more accurate estimation of the production frontier than traditional methods. This paper chooses four indicators: foreign direct investment, total imports and exports, total government spending, and a composite measure of institutional quality. FDI reflects a country’s attractiveness to foreign investment. FDI inflows can directly promote technological progress in the host country through technology spillover effects, while FDI inflows can also increase the capital available to enterprises and indirectly promote technological progress in the host country. Total imports and exports is used as a proxy of a country’s openness (Wang et al., 2021a), the more open a country is, the bigger the market is, and the greater the incentive for firms to innovate. Government expenditure spent on science and technology could promote innovation. Finally, institutional quality is measured from six aspects: voice and accountability, political stability and absence of violence/terrorism, government effectiveness, regulatory quality, rule of law, and control of corruption. Generally speaking, the higher a country’s institutional quality is, the more the government promotes development of the private sector, and the better the protection of intellectual property is, resulting in more incentive for enterprises to innovate. Data on FDI, import and export, and government expenditure comes from the World Development Index, score of institutional quality comes from WGI (The Worldwide Governance Indicators), which covers six aspects as outlined before, with a score between –2.5 and 2.5 for each aspect. This paper takes the average of the scores as a composite measure of institutional quality. Table 2 details the statistical characteristics of the variables, and the statistical characteristics based on geographical subdivisions is shown in Supplementary Datasheet S1.
TABLE 2 | Summary statistics of the variables.
[image: Table 2]As can be spotted from the statistical characteristics, variables such as GDP and capital stock vary greatly among regions. Oceania possesses the lowest average of capital stock, labor, and energy use, with the averages being 7.656%, 2.720%, and 8.215% of the highest averages respectively. Asia possesses the highest average in labor and energy use. As most Asian countries are developing countries, production technology is relatively underdeveloped, thus they tend to use more energy when producing. The regional differences in the three inputs are considerably big and therefore cannot be ignored in the calculation of marginal abatement costs. The two outputs are similar to the inputs. Oceania possesses the lowest average GDP, which is 10.622% of the highest average possessed by Asia. CO2 emissions exhibit a similar pattern, with a vast difference between the lowest average and the highest. It follows that there is a gap in production technology between regions, and that this gap does not decrease over time. If the efficiency is estimated using the normal DDF without taking into account the technology gap, the efficiency of the less developed countries will be lower than the real value because it includes the technology gap that cannot be eliminated. Therefore, it is necessary to include variables that measure the economic environment of different countries to ensure the accuracy of the estimates of efficiency and shadow prices.
5 EMPIRICAL RESULTS
5.1 Nearest neighbors
Table 3 shows the number of nearest neighbors for all countries. Due to the number of countries involved, the paper will not give a detailed list of all the nearest neighbors selected for each reference country. The nearest neighbors chosen for every country differ significantly from the results from geographic division. For example, among the nearest neighbors of Azerbaijan there are many countries that are not in Asia but have a similar level of development, such as Fiji, Togo, etc. For European countries such as Poland, other countries in Europe are mostly chosen as nearest neighbors, but among its nearest neighbors there are also countries that are not in Europe but are also more developed, such as Qatar. It can also be noted that only one country has a number of nearest neighbors equal to the number of countries remaining after removing it, which is 114. This result also confirms the previous hypothesis that there are differences in the technological levels of countries at different levels of development, and this gap is significant for most countries. If this unbridgeable gap is not taken into account, then the final measured efficiency levels and marginal abatement costs of countries will also be biased.
TABLE 3 | The number of nearest neighbors.
[image: Table 3]5.2 Estimation of environmental inefficiency
After determining nearest neighbors of each country, this paper proceeds to estimate the environmental inefficiency of every country using Eqs 4, 5. The estimated energy environmental inefficiency for each country is presented in Supplementary Datasheet S1, the time trend for each country is shown in Figure 2, and the time trend of average inefficiency level is shown in Figure 3. Several conclusions can be drawn from the result: first of all, the average inefficiency of the whole sample is 2.410%, which indicates an efficiency loss of 2.410% for BRI countries. The average efficiency loss remained below or slightly higher than the average except for 2006, 2009, and 2018. Second, among the 115 countries, Russia displays a significant downward trend of inefficiency. After hitting a peak in 2009, Russia has been improving its energy efficiency since. Russia’s economy is one of the most energy-intensive ones among the industrialized countries, fuel and energy sector is one of the biggest sectors in the country (Lobova et al., 2019). Russia was identified by the International Energy Agency (IEA) in 2011 as having very high energy saving potential, as is evident in our result since Russia reached an inefficiency level of more than 50% in 2009. Since then, several state policies have been introduced to increase efficiency, such as the “energy efficiency and energy development” program, technological regulations, etc. (Lobova et al., 2019) The implementation of relevant policies has seen some result, but in 2018 the inefficiency level of Russia was still at 16.697%, significantly higher than the majority of countries covered, meaning that existing mechanisms do not fully exploit the energy saving potential that Russia has, consistent with existing literature [(Lobova et al., 2019), (Strielkowski et al., 2021)]. Thus more work still needs to be done by Russian authorities to reach full energy saving potential.
[image: Figure 2]FIGURE 2 | Time trend of inefficiency for each BRI country.
[image: Figure 3]FIGURE 3 | Average inefficiency level of China and BRI countries.
The majority of countries’ inefficiency averages are below the total sample mean, the lowest of which is Maldives with an average inefficiency of only 0.063%. It can also be seen from the estimation results that the inefficiency value of Maldives has basically remained around 0 during the sample time period, which shows that Maldives has basically been producing on its production frontier. There are 42 countries above the mean value of the total sample, the highest of which is Nigeria with 20.517%. The inefficiency level of Nigeria has fluctuated significantly during the sample period, but remained at around 30% for most of the sample period. This implies that the authority needs to do more to achieve sustainable development, and they have to ensure that the policies implemented have a consistent effect on the energy efficiency.
Finally, we divided the sample countries into 5 groups according to the continent on which the country is located (Table 1). Assume that these countries have the same technological frontier and use Eq. 4 to calculate the inefficiency. Figure 4 gives a comparison of inefficiency estimates from two approaches: the proposed approach in this paper and the approach with geographic grouping. The average inefficiency level of geographic grouping approach is 3.280%, whereas the average inefficiency level of the proposed approach is only 2.410%. As can be seen in the graph, estimates with geographic grouping is consistently higher than estimates in this paper, proving again that the technological heterogeneity among BRI countries cannot be measured simply by geographic location, and ignoring it will result in overestimation of inefficiency levels.
[image: Figure 4]FIGURE 4 | Inefficiency levels calculated by different approaches.
5.3 Estimation the marginal abatement cost of CO2
Finally, based on the above estimated inefficiency level, this paper estimates the CO2 MAC of each country using Eq. 6. The average MAC of each country is shown in Supplementary Datasheet S1, units are in USD per ton. The average MAC of the entire sample is 6,274.722 USD/ton. As can be seen in the result, Ethiopia possesses the highest average MAC of 4,9401.200 USD/ton. The average MAC of only 27 countries is above 10,000 USD/ton, and the country with the lowest average MAC is South Africa, with an average of only 224.127 USD/ton. It can be seen from the result that the cost of emission reduction varies greatly from country to country, so if carbon trading can be achieved between countries, it will be possible to minimize the total cost while maximizing the amount of emission reduction. Figure 5 illustrates the average marginal abatement cost and its growth rate for each year from 2006 to 2018. As can be seen in the graph, the growth rate has remained relatively close to 0 during the sample period except for 2009 and 2010.
[image: Figure 5]FIGURE 5 | Average marginal abatement cost and growth rate.
Among the 115 countries, China ranks 53, with an average MAC of 1440.183 USD/ton. Many countries whose average MAC are lower are underdeveloped countries, such as Pakistan, Moldova, Costa Rica, etc. On average, the MAC in these countries is 342.040 USD/ton lower than in China. If China-BRI international trade market can be set up, a large saving in abatement costs could be achieved.
6 CONCLUSION
As China cannot achieve its emission reduction target without cooperating with other countries, the international carbon trading market is a part of China’s carbon trading market system. The estimation of abatement costs is the basis of regional carbon emission reduction cooperation and a prerequisite for establishing a regional carbon emission market. Most of the previous literature does not take into account the heterogeneity of production technologies when measuring the environmental efficiency for China and BRI countries. Therefore, this paper estimates the energy efficiency and the marginal abatement cost of CO2 in China and BRI countries while considering the heterogeneity of production technologies.
The conclusions are as follows: First, FDI, trade openness, government expenditure, and institutional quality are selected to measure economic proximity. And, the selection of nearest neighbors shows that there are indeed unbridgeable technological differences between countries, and such unbridgeable differences should be excluded from the efficiency measurement. Second, the average inefficiency of the countries along the Belt and Road is 2.410%. Although the inefficiency of most countries is low and does not change significantly during the sample time, some countries show a clear trend. The average inefficiency level of the proposed approach is about 26.526% lower than the traditional geographic grouping approach, indicating that the technological heterogeneity among BRI countries is significant and cannot be ignored. Finally, the marginal abatement costs of the countries along the Belt and Road show a large difference. China ranks 53, with an average MAC of 1440.183 USD/ton. If China- BRI international trade market can be set up, a large saving in abatement costs could be achieved.
One of the goals of the Belt and Road Initiative is to construct a green BRI and jointly achieve the 2030 Sustainable Development Goals. But emissions reduction, a hot topic that has been mentioned repeatedly in recent years, is not the same for every country. Therefore, China, as the initiator of the Belt and Road Initiative, should not only lead by example, but also help other countries to achieve the goal of energy saving and emission reduction. The analysis in this paper can, on the one hand, help the Chinese government identify the countries most in need of help, and thus help solve their problems through policy assistance, facility construction, etc. On the other hand, it can also identify the differences in the difficulty of emission reduction among countries, so as to help them achieve their own emission reduction goals within their capacity, and to minimize the total cost of emission reduction while maximizing the amount of emission reduction. The analysis in this paper includes only carbon dioxide due to data limitations, but the greenhouse gases produced by energy use include not only carbon dioxide, but also sulfur dioxide, nitrogen oxides, and so on. The reduction of carbon dioxide emissions often affects the emissions of other pollutants as well. Therefore, if other pollutants are also taken into account, the marginal abatement cost of carbon dioxide can be estimated more accurately.
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In the context of double carbon, it is an inevitable requirement for the low-carbon power industry to take economic efficiency and low carbon into consideration. This article introduces the carbon emission constraint into the economic dispatching of the power system. Then, combined with the blockchain theories, the methods of particle swarm optimization and multi-objective particle swarm optimization (MOPSO) are employed to simulate the economic and environmental scheduling of a power generation system based on six thermal power units. Research shows that the constraint processing approach is practical and effective, and it can firmly adhere to equality requirements, which is superior to other algorithms’ constraint processing methods; the algorithm is stable, and the global optimal solution can be determined under different initial solutions. In the process of multi-objective optimization, the solutions of POF obtained by using the slope method are evenly distributed.
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1 INTRODUCTION
The energy crisis in the 1970s made all countries realize the importance of new energy development. Under the background of the global energy transition, it is the general trend to promote the diversified development of efficient and clean energy. On 22 September 2020, at the general debate of the 75th session of the United Nations General Assembly, Chinese President Xi Jinping officially stated that China aims to achieve a peak in carbon dioxide emissions by 2030 and achieve carbon neutrality by 2060. Since then, President Xi Jinping has stressed the significance of achieving carbon peak and carbon neutrality (referred to as the dual-carbon target) in many important speeches and held a series of important discussions on the principles and path for China to achieve the dual-carbon target. Achieving carbon peak and carbon neutrality is a broad and profound economic and social transformation. It is a necessary requirement for ecological progress and an urgent need for building a community with a shared future for mankind. The energy industry is the largest source of carbon emissions. To achieve the dual-carbon goal, policy forces are needed to guide the energy industry to steadily achieve low-carbon transformation. The carbon emission trading market, also known as the carbon market, is an important policy tool to achieve carbon emission reduction targets. Since October 2011, China has carried out local pilot projects for carbon emission trading in Beijing, Tianjin, Shanghai, Chongqing, Hubei, Guangdong, Shenzhen, and Fujian. On 16 July 2021, the national carbon market officially launched trading, and the power generation industry became the first industry to be included in the national carbon market. A total of 2,162 key emitters in the power generation industry were included in the first implementation cycle, covering annual CO2 emissions of more than 4.5 billion tons. China’s carbon market has become the world’s largest in terms of greenhouse gas emissions. Global experience shows that carbon markets can promote energy sector optimization and carbon reduction.
Developing a low-carbon economy, accelerating the adjustment of energy structure, and realizing the cleanness, high efficiency, and low carbon of energy system have become the consensus of all countries in the world (Lin et al., 2021). Of the whole energy activities, the carbon emission of the power industry accounts for about 41%. As the main force of energy transformation and the pioneer of realizing the dual-carbon goal, the power system is facing huge pressure of emission reduction (Du et al., 2021). China’s coal-dominated energy structure leads to pollutant emissions accounting for more than 80% of the country’s total emissions. The coal-dominated power structure of the power industry leads to its CO2 emissions accounting for 49.1% of China’s carbon emissions and 32.1% of the world’s carbon emissions (Musa et al., 2018). Facing the severe pressure of carbon emission reduction, realizing the green development of the power sector is crucial to the green transformation of the whole energy sector.
The premise of economic dispatching of power systems is to meet the safety operation of the power grid and provide high-quality electric energy for users. On this premise, energy and power generation equipment can be rationally utilized, and the system operation economy is considered, that is, continuous power supply for users at the lowest power generation cost Vansia and Dhodiya, (2021). Power system economic scheduling is a multi-constrained, nonlinear, non-convex, and multi-dimensional hybrid optimization problem. The traditional economic dispatching of a power system needs to consider the expected output power and constraints of the power system and use the optimal dispatching strategy to allocate the output power of the generator set with the goal of minimizing the generation cost or fuel cost. Due to the particularity of the electric power system, electric energy production will cause environmental problems, which in turn bring new challenges to economic dispatching. Therefore, in the process of power system operation, both energy and environmental issues should be considered. It is an important challenge for economic dispatching to effectively ensure environmental quality while satisfying economic dispatching, that is, to take environmental index and economic cost as the dual objectives of optimal dispatching. How to establish an effective model for the dynamic nature of environmental economic dispatching, adopt a reasonable algorithm to solve the model, improve the convergence speed and operation efficiency of the algorithm, and get better scheduling optimization results are the key points of innovation and improvement of dynamic environmental economic dispatching in power system. The essence of the power system environmental economic scheduling problem is to optimize a multi-objective optimization problem that includes both equality and inequality constraints. In the case of a new energy grid connection, the optimal environmental economic scheduling problem becomes more complex, which is manifested as a multi-objective optimization problem in multi-dimensional space and multi-variables. It is difficult to obtain the global optimal solution of a multi-objective optimization model in the process of optimizing an objective function.
A blockchain, as the name implies, is a chain consisting of many partitions. Different partitions store different amounts of information and form a chain according to the chronological order of information generation. All the servers available in the system contain all the information in this chain, and for the blockchain to be secure, just one server in the entire system needs to be able to function properly. In the blockchain system, these servers are also called nodes, and their role is to provide enough memory and computing power to support the entire blockchain system run. Two prerequisites must be met to modify the information contained in the blockchain. First, there should be more than half of the nodes agreeing to the modification operation. Second, this modification must also overwrite the same information in all nodes to maintain consistency. However, these nodes are generally controlled and held by different subjects, so it is not an easy task to tamper with the information in the blockchain. Two core features of blockchain, namely, that data are not easily tampered with and that they are decentralized, set it apart from traditional networks. The information recorded by blockchain is more reliable, helping to solve the problem of trust in human interaction.
The main structure of this article is as follows:
(1) Section 3 sets the problem formulation of the environmental and economic dispatching and introduces the Pareto optimal solution of multi-objective optimization.
(2) Section 4 shows the particle swarm algorithm, namely, the basic particle swarm optimization and multi-objective particle swarm optimization.
(3) Section 5 uses simulation data to perform economic and environmental scheduling for the system; the single-objective PSO and the multi-objective particle swarm optimization algorithms are utilized, and the Pareto optimum frontier boundary solutions are obtained, namely, the solution with the lowest fuel cost and the lowest pollutant gas emissions.
2 LITERATURE REVIEW
It is the key to the sustainable development of the power industry that how to reasonably consider the constraints of carbon emission in power generation dispatching and realize low carbon on the basis of taking into account the economy, and it is also an important starting point for China to achieve carbon peak and carbon neutralization (Kwakwa, 2021). Therefore, in the case of electric energy system scheduling, the economic cost and environmental impact should be considered at the same time from the single target economy to the multi-target environment economy scheduling change.
Environmental and economic dispatching (EED) optimization problem is a non-convex, nonlinear, high-dimensional, and multi-objective optimization problem with multiple constraints (Liu et al., 2018; Cheng and Yao, 2021). Traditional mathematical methods are slow and prone to infeasible solutions. On the contrary, an intelligent optimization algorithm has certain advantages in multi-objective, nonlinear, and high-dimensional optimization problems (Farag et al., 1995; Kennedy, 2003) and is widely used in environmental/economic scheduling problems (Sinha et al., 2003). Singh et al. (2018) proposed a chaotic differential evolutionary and Powell’s pattern search (CDEPS) algorithm to solve the multi-objective thermal power load dispatch (MTPLD) problem.
The information security risk of power system economic dispatching is very serious, and its data security under network attack is also very important. In order to ensure the data security of distributed economic scheduling under network attack, blockchain technology is one of the research directions. Blockchain is the core supporting technology of digital cryptocurrency (Liu and Chen, 2021), with five characteristics of decentralized storage, immutable, traceable, secure, and programmable (Bao et al., 2020), which contributes to the establishment of a data protection framework for the communication network of the power system (Liang et al., 2019). As an emerging technology, scholars have carried out relevant studies on various aspects of power systems based on the characteristics of blockchain technology, such as power transaction blocking (Su et al., 2022), control of distributed energy under demand response (Claudia et al., 2018), distributed energy storage control (Baza et al., 2019), energy management of virtual power plants, consumer point-to-point transaction (Paudel et al., 2019), and electric vehicle energy transaction (Wang et al., 2019). It can be seen that the application of blockchain technology in power systems mainly focuses on power transactions, and the application of blockchain technology in power system economic dispatching data security has not caused enough attention. However, it is worth noting that with the rapid development of distributed control systems, network attacks lead to frequent physical information accidents. As a distributed, safe, and reliable database, blockchain technology has better practical significance for the safe and stable operation of smart grids in the future. Liang et al. (2019) proposed a management framework that uses the elliptic curve encryption algorithm in blockchain technology to ensure the reliability of energy dispatch data, so as to strengthen the information security of the power system. Claudia et al. (2018) studied the application of blockchain in distributed energy consumption for demand response in smart grids. A distributed ledger based on blockchain collects energy consumption information from smart devices in a way that is difficult to tamper with and balances energy demand through smart contracts. The results show that the distributed demand-side management system based on blockchain has high tracking precision for demand response signals. Qu et al. (2021) designed a data protection framework based on an alliance chain, which uses distributed storage, traceability, and hard-to-tamper characteristics of blockchain technology to solve the problem that artificial intelligence is vulnerable to network attacks and privacy disclosure, thus increasing the security and credibility of data. Many practical problems often have multiple nonlinear objective functions. In the process of objective optimization, these objective functions need to be processed at the same time, that is, the solution should satisfy multiple objective functions at the same time. However, these objective functions are often in conflict with each other. This kind of problem is called a multi-objective optimization problem. Multi-objective optimization problems can be solved by different algorithms. Vansia and Dhodiya (2021) presented an evolutionary approach-based solution to solve the multi-objective transportation-p-facility location problem by using a genetic algorithm (GA), non-dominated sorting genetic algorithm (NSGA-II and NSGA-III), and modified self-adaptive multi-population elitism Jaya algorithm (SAMPE JA). Xu et al. (2021) use a multi-objective learning backtracking search algorithm (MOLBSA) to solve the environmental/economic dispatch (EED) problem.
Particle swarm optimization (PSO) algorithm has been used in reactive power optimization, photoelectric grid connection, load prediction, and other fields due to its advantages of fewer parameter settings, fast convergence, and simple implementation (Kennedy J., 2003; Zhang et al., 2019). On this basis, a cross-particle swarm algorithm is proposed, which improves the crossover probability of parameter adaptive control, and its convergence speed is better than other algorithms (Zhou et al., 2020). Goudarzi et al. (2020) proposed a hybrid algorithm grounded on an improved genetic algorithm and an improved PSO algorithm to solve the optimization problem.
Abido (2009) and Niknam and Doagou-Mojarrad (2012) applied the MOPSO algorithm to schedule power system environmental and economic elements. The MOPSO method must redefine the population’s global optimal solution and individual ideal solution. Different literature studies have given different definition methods, but there is no unified definition method at present. Many practical application problems can be attributed to multi-objective optimization problems. At present, the research on the algorithm for this kind of problem is mainly divided into Pareto dominance relation, decomposition strategy (Liu et al., 2014; Li and Zhang, 2015; Li et al., 2018a), performance evaluation index (Schutze et al., 2012; Brockhoff et al., 2015; Díaz-Manríquez et al., 2016; Li et al., 2018b), reference point (Deb and Jain, 2014; Cheng et al., 2016; Figueiredo et al., 2016; Liu et al., 2017), reduction of the number of targets (Bandyopadhyay and Mukherjee, 2015; Guo et al., 2016; Yuan et al., 2018), and coevolution strategy (Zhan et al., 2013; Chen et al., 2019; Zhou et al., 2020). The high-dimensional multi-objective optimization algorithm based on the Pareto dominance relation can reduce the Pareto frontier area by combining preference information in the search process (Li et al., 2018c; Qi et al., 2018). The selection pressure of the algorithm can be enhanced through the relaxed Pareto dominance relation so that the advantages and disadvantages of some non-dominant individuals can be compared and the search ability of the algorithm can be enhanced, such as [image: image]-domination (Singh et al., 2018), [image: image]-domination (Hernandez-Diaz et al., 2007), [image: image]-domination (Yuan et al., 2016), fuzzy domination (He et al., 2014), and lattice domination (Yang et al., 2013).
According to the connotation of a low-carbon energy system, the carbon constraint based on particle swarm optimization is introduced into the economic dispatching of the power system in this article, so as to fully explore how to give consideration to the economy and low carbon of power systems under the dual-carbon goal and promote the low-carbon development of energy system. Based on this model, the power generation system of six thermal power units is simulated. When solving with the multi-objective algorithm, the balance between the two objectives is coordinated to make all objective functions as optimal as possible, and the slope algorithm is used to find the optimal POF.
3 PROBLEM FORMULATION AND THE PARETO OPTIMAL SOLUTION
The economic dispatching of power system is to solve the dispatching scheme to minimize the cost of power generation or fuel under the condition of satisfying the balance of power supply and demand and the upper and lower limits of unit output.
However, in the process of power generation, the thermal power unit inevitably emits pollution gases such as sulfur oxide, nitrogen oxide, dioxygen, and carbureted carbon into the atmosphere. With the enhancement of people’s awareness of environmental protection, it has become an important goal of the power system to limit the emission of polluting gases. Power system from the original single objective economic dispatching to multi-objective environment/economic dispatching. Compared with other mitigation measures, EED is favored by researchers because of its low investment and quick results. Environmental and economic dispatching is a scheduling technique that concurrently optimizes the two objective functions of fuel cost and pollutant gas emission while maintaining power supply and demand balance and the unit output limit. The mathematical expression of environmental/economic dispatching is as follows.
3.1 The objective function
3.1.1 Economic dispatch function
Fuel cost is the objective function of the economic dispatching model. The fuel cost curve for each generator set is often described as a polynomial function, and the system’s overall fuel cost can be expressed as follows:
[image: image]
where [image: image] indicates the quantity of thermal power unit and [image: image], [image: image], and [image: image] denote a set of thermal power unit i’s cost coefficients. Also, the actual total output of the thermal power unit [image: image] is denoted as [image: image], and [image: image] denotes the active output vector of the system thermal power unit, which can be expressed as follows:
[image: image]
3.1.2 Environment dispatch function
The objective function of the environmental scheduling function is the emission of pollutant gas. Consider power generation units, which produce a variety of polluting gases throughout the power generation process, and each polluting gas’s emission may be individually created to have a functional relationship with the thermal power unit’s active power output. However, for the convenience of calculation, we adopted the comprehensive emission model of pollutant gases, and the total emission of pollutant gases in the system is as follows (Peng and Sun, 2009; Said et al., 2010):
[image: image]
where [image: image], [image: image], [image: image], [image: image], and [image: image] are a set of polluting-gas-emission coefficients of the thermal power unit [image: image].
3.2 The constraint function
3.2.1 Output constraint of thermal power unit

[image: image]
where [image: image] and [image: image] represent the lowest and highest active output levels of the thermal power unit i, respectively.
3.2.2 Power balance constraint

[image: image]
Where [image: image] denotes the system’s total load requirements.
3.3 Pareto optimal solution of multi-objective optimization
Since multi-objective optimization is a multi-objective optimization problem, the objectives are prone to collision, making the solution non-unique, that is, no solution can satisfy all constraints and allow all objectives to reach their optimal values at the same time. Therefore, in multi-objective optimization problems, only non-inferior solutions are generally solved. The efficient or Pareto optimal solution of a multi-objective optimization problem is also known as the Pareto optimal solution, and the set containing all Pareto optimal solutions is called a Pareto optimal boundary (POF).
4 PARTICLE SWARM ALGORITHM
4.1 Basic particle swarm optimization
The particle swarm optimization (PSO) algorithm is a stochastic optimization algorithm based on cluster intelligence, which was first proposed by Kennedy and Eberhart in the 1990s. Particle swarm optimization (PSO) is a heuristic method that mimics bird foraging behavior. It leverages particle collaboration and competition for intelligent guiding optimization. The idea is that each solution to the basic optimization problem is called a particle. A fit function is defined to measure the superiority of each particle solution. Each particle travels in groups according to the “flight experience” of itself and other particles, thus achieving the purpose of searching for the optimal solution from the whole space. The particle swarm optimization algorithm is a new evolutionary technology based on swarm intelligence that shows strong advantages in solving non-continuous, non-differentiable, nonlinear, ill-conditioned optimization problems and combinatorial optimization problems that are difficult to solve by classical optimization algorithms, resulting in widespread attention from the international academic and engineering communities.
Assume there are m particles in a population, each with an n-dimensional variable, accordingly, the location and movement speed of the particle [image: image] in the iteration [image: image] are [image: image] and [image: image]. By calculating the optimum value of the objective function, the best position of each particle is determined to be [image: image], and the optimal location of the population is [image: image]. the velocity and position of the particle [image: image] in the next iteration will be determined as follows:
[image: image]
where [image: image] and [image: image] are random numbers that obey uniform distribution in the interval [0,1]. Both [image: image] and [image: image] are learning parameters and are constants. The inertial weight, [image: image], is employed to find a balance between the particle’s global and local optimization capabilities.
The value of [image: image] is calculated as follows:
[image: image]
where [image: image] is the maximum number of iterations and [image: image] is the current iteration number.
The velocity of the particle [image: image] in all dimensions should satisfy [image: image], and [image: image] is the maximum flight speed of the particle [image: image] in dimension space [image: image]. Generally, [image: image] takes 10%–20% of the [image: image]-dimensional variable search space (Goldberg, 1989; Hemamalini and Simon, 2008).
One of the most important aspects of using the PSO algorithm to address constraint optimization problems is how to cope with the constraints. The PSO algorithm’s approaches for coping with restrictions can be classified into two categories, namely, the penalty function method and design-specific constraint correction factors (Zhang et al., 2019; Zhang and Lu, 2019; Xin-gang et al., 2020).
4.2 Multi-objective particle swarm optimization
4.2.1 Basic principle of multi-objective particle swarm optimization
The multi-objective particle swarm optimization algorithm can solve the problem of multiple conflicting objectives of granularity distribution, and then obtain a set of Pareto optimal solutions. In order to continuously update the Pareto optimal solutions generated in the iteration, this study uses archiving technology to set the previous Pareto optimum solution and the global Pareto optimal solution set in the iteration process. Pareto solutions that are globally optimal are supposed to contain all Pareto optimal solutions created during the current iteration.
4.2.2 Main algorithm
The following is the MOPSO algorithm.
1 Set up the population [image: image]:
(a) for [image: image] to [image: image] ([image: image] represent the number of particles*)
(b) initialize [image: image].
2 Set each particle’s initial speed:
(a) for [image: image] to [image: image]
(b) [image: image].
3 Calculate the value of each particle in [image: image].
4 Keep track of where non-dominant vector particles are in the repository [image: image].
5 Create hypercubes from the previously searched search space and arrange the particles into coordinate systems, with each particle’s coordinates defined by the goal function’s value.
6 Initialize the memory of each particle:
(a) for [image: image] to [image: image]
(b) [image: image].
7 While the maximum number of cycles has not yet been attained, we take the following steps.
(a)Calculate the speed of each particle:
[image: image]
where W equals 0.4; [image: image] and [image: image] are random numbers from 0 to 1; [image: image] is a value retrieved from the repository; [image: image] represents the particle [image: image]'s optimal position; [image: image] is a value retrieved from the repository. The index [image: image] is chosen based on the following: we give hypercubes with more than one particle a fitness, which is obtained by dividing any number [image: image] by the number of particles they contain. We then use these fitness values to apply a roulette wheel selection to select the corresponding particle for the hypercube. Then, a random hypercube particle after selecting the hypercube. [image: image] is the current value of the particle [image: image].
(b) Calculate the new particle positions by adding the speed from the previous step:
[image: image]
(c) Keep particles within the search space and prevent them from escaping (avoid generating solution space that is not based on a valid search). When a decision variable exceeds its bounds, we force it to take its corresponding value bounds (upper or lower bounds) and velocity times (−1) in the other direction.
(d) Count each particle in [image: image].
(e) In terms of particle positions in the hypercube, update the contents of [image: image]. All current non-dominant locations will be inserted into the repository as part of this release. In this process, every dominant position in the repository is eliminated. Because the memory’s size is limited, we use a previously prepared second criterion. Since the size of memory is finite, when memory is filled, we use the second rule we have prepared previously, that is, particles in the target space’s less populous areas take precedence over particles in the more inhabited places (Coello et al., 2004).
(f) When the particle’s current location is better than the one stored in memory, the particle’s location is updated.
[image: image]
Pareto dominance is applied to formulate the standard, which determines what position to keep from memory. This means that if the current location is controlled by a location in memory, that location will remain in memory. Otherwise, the present location takes the place of the memory location. Also, if any two of them are unaffected by each other, we will pick one at random.
(g) Increment cycle counter.
8 End while.
5 CASE ANALYSIS
The simulation is done in MATLAB, and network loss in the electric energy balancing constraint is not taken into account. There are six generating sets. The system’s overall load is 284 MW. Table 1 provides the power maximum and lower limitations, fuel cost coefficient, and pollutant emission coefficient for each generator set.
TABLE 1 | Data of the six generators.
[image: Table 1]5.1 Single-objective optimization
In order to carry out economic and environmental scheduling of the system, the single-objective PSO algorithm was adopted to obtain two Pareto optimal boundary solutions, namely, the solution with the lowest fuel cost and the solution with the lowest pollution gas emissions, so as to judge whether the MOPSO algorithm has excellent distribution characteristics for POF solutions (Zhang et al., 2019).
The population [image: image] is set to 60 in the single-objective PSO, and the learning elements c1 and c2 are both equal to 2. The maximum number of iterations is 100. Table 2 shows the best solution.
TABLE 2 | Economic and environmental scheduling results with single-objective PSO algorithm.
[image: Table 2]By comparing the economic and environmental scheduling results in Table 2, there is little difference between the optimal fuel cost and pollutant emissions, and there is almost no network damage, which proves that the algorithm proposed in this article has good global search ability.
5.2 Multi-objective optimal scheduling
The multi-objective optimization uses 60 particles per generation, 1,000 iterations, and 30 solutions on the Pareto optimal front. The case was optimized with MOPSO to obtain 30 populations. The slope method is used to obtain the boundary solution of POF as shown in Table 3. The two boundary points of POF correspond to the optimal values of economic and environmental scheduling, respectively.
TABLE 3 | Boundary solution of POF.
[image: Table 3]By comparing the results in Table 3 with the single-objective optimization results in Table 2, it can be seen that there is little difference, indicating that the multi-objective algorithm proposed in this article can find better boundary solutions under various conditions, and the obtained POF has a wide distribution range.
6 CONCLUSION
This article introduces multi-objective particle swarm optimization and applies it to environmental economic power system scheduling. Using MATLAB software, the MOPSO algorithm was used to simulate the economic and environmental scheduling difficulties of a thermal power system, and the following results were obtained.
(1) The constraint processing approach is practicable and effective, and it can adhere to stringent equality restrictions, which is superior to other constraint processing methods.
(2) The method has good stability and can identify the global optimal solution under a certain range of start-up conditions. In the process of multi-objective optimization, the POF solutions generated by the slope method are evenly distributed.
(3) The Pareto optimal frontier can be quantitatively analyzed, and the algorithm can be applied to solve a series of complex grid-connected power system environmental and economic scheduling problems.
(4) By comparing the economic and environmental scheduling results, there is little difference in the optimal fuel costs and the pollutant emission, and there is almost no network damage, which shows the good global search capability of the algorithm proposed in this article.
In the process of power system dispatching, there may be some practical combination problems such as standby load and unit maintenance, which will greatly increase the difficulty of solving the model. Therefore, exploring a more effective and accurate algorithm is an important problem that needs to be solved further. In addition, another measure to achieve energy conservation and emission reduction is to vigorously develop clean energy. In view of this, the dynamic emission economic dispatch model considering the grid connection of renewable energy such as hydropower, wind power, and solar power is also a potential important research direction in the future.
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Seeking a scientific and reasonable population structure is the key to realizing low-carbon and green development of urban agglomerations. Based on the coupled coordination degree model and exploratory spatial data analysis (ESDA), this paper studied the spatiotemporal differences of population spatial equilibrium in Changsha-Zhuzhou-Xiangtan urban agglomeration, and constructed a nonlinear dynamic panel econometric model and quantile regression model to empirically test the carbon emission reduction effect and its heterogeneity of the population spatial equilibrium. The research conclusions are as follows: First, the population spatial equilibrium index of Changsha-Zhuzhou-Xiangtan urban agglomeration shows an upward trend in time, but the overall level is not high and the internal gap is obvious. In space, it presents a situation of concentration in the central urban area of Changsha. Second, the carbon emissions of Changsha-Zhuzhou-Xiangtan urban agglomeration have obvious dynamic inertia and path-dependent characteristics. That is, the carbon emissions of the previous period will significantly promote the carbon emissions of the current period. Third, the carbon emission reduction effect of population spatial equilibrium has the characteristics of an inverted “U” shape, and the population spatial equilibrium index in most areas is too low to achieve carbon emission reduction. Fourth, the legal environment helps to promote the spatial balance of population, thereby reducing the regional total carbon emissions, per capita carbon emissions and carbon emissions per unit area. Last, Changsha-Zhuzhou-Xiangtan urban agglomeration needs to improve the level of economic development and government expenditure to realize the carbon emission reduction effect. In general, Changsha-Zhuzhou-Xiangtan urban agglomeration should take into account the development of economy and environment in the process of improving the level of population space balance, so as to achieve a win-win situation for economy and environment.
Keywords: population spatial equilibrium, carbon emission reduction effect, heterogeneity effect, spatiotemporal differences, Changsha-Zhuzhou-Xiangtan urban agglomeration
1 INTRODUCTION
Population is a key determinant of the sustainable development of urban agglomerations. The spatial distribution of population elements is the core issue of the spatial structure of urban agglomerations. It is a comprehensive reflection of development factors such as population, economy, resources, and environment, and can characterize the geographic and spatial distribution of population in urban agglomerations (Zhang et al., 2015). As an important part of the structural evolution of urban agglomerations, the spatial distribution of population is affected by physical and geographical environmental factors and socio-economic factors in a specific area on the one hand, and it is also counteracted by the economic and social development and evolution of urban agglomerations (Wang, 2022). In developing countries, with the rapid development of urbanization, the spatial distribution of population is unbalanced, the peri-urbanization of large cities and the risk of ebb tide intensify, indicating that the nature of the population problem has changed from the “oppressive type of quantitative growth” in the past to the “imbalance of structure and distribution constraints” type”, and has long plagued the sustainable economic and social development of urban agglomerations and government policy formulation (Fang et al., 2019; Goel and Vishnoi, 2022). Seeking a spatially balanced pattern of population distribution and the coordinated development of economy, society, resources and environment has become a concrete manifestation of the sustainable development of urban agglomerations in the spatial distribution of population (Lee et al., 2021; Wang et al., 2022; Wu et al., 2022; Yang et al., 2022). It is of great practical significance to promote the healthy development of urban agglomerations, build a spatial pattern of urbanization with coordinated development of large, medium and small cities, and realize the effective use of urban agglomeration space and the overall improvement of economic efficiency under the existing resource and environmental carrying capacity.
Existing research lacks direct discussion on urban population spatial balance and carbon emissions (Li et al., 2022), and mostly focuses on the impact of urban population structure and spatial structure on carbon emissions (Liu et al., 2020; Xia et al., 2020; Yu et al., 2022). Among them, in terms of population structure research, the existing literature mainly decomposes the population structure into population age structure, population employment structure, and population consumption structure, and specifically examines the impact of different types of population structures on carbon emissions. For example, Wang and Wang (2020) examined the nonlinear effects of population age structure and urbanization level on carbon emissions based on panel data of 137 countries and a threshold effect model. Fan et al. (2021) established a new analytical framework and explored the impact of population aging on the carbon emissions of Chinese urban and rural households using panel data from 30 provinces in China from 1997 to 2017. In addition, regarding the impact of population consumption structure on carbon emissions, researchers mainly used the input-output model to conduct empirical tests (Kim, 2002), and found that the increase in the proportion of fossil fuel consumption in household consumption expenditure will have a significant positive effect on carbon emissions effect (Park and Hao, 2007; Soytas et al., 2007; Soytas and Sari, 2009). Regarding the impact of urban spatial structure on carbon emissions, existing studies have mainly discussed the impact of urban population agglomeration and changes in urban spatial structure on carbon emissions. For example, Glaeser and Kahn (2010), based on data from 66 large cities in the United States, found that the more densely populated urban areas, the lower the per capita carbon emissions. And suburban cities with lower population density have higher carbon emissions per capita. Wang et al. (2021) constructed an urban agglomeration spatial structure index and used the GTWR model to empirically test the impact of the spatial structure of six major urban agglomerations in China on carbon emissions. The effect of emission reduction, on the contrary, promotes carbon emissions.
The spatial balance of population in urban agglomerations is a complex system involving population, economic and social issues, and itself is a long-term, dynamic adjustment and optimization process (Wei and Liu, 2022). The realization of the balanced distribution of population-industry-housing in urban agglomerations is consistent with the requirements of “accelerating the formation of industrial structures, production methods, lifestyles and spatial patterns that save resources and protect the environment” under the “dual carbon” goal. Therefore, the existing research only starts from a certain dimension of this complex system to explore the static impact of population structure or population spatial distribution structure changes on carbon emissions, and its logical setting has certain defects. Therefore, this paper takes Changsha-Zhuzhou-Xiangtan urban agglomeration in China as an example, aims to expand the research framework of population spatial equilibrium, and further explore the spatial and temporal differentiation characteristics of population distribution equilibrium and its carbon emission reduction effect in Changsha-Zhuzhou-Xiangtan urban agglomeration. Specifically, based on the coupling coordination model, a population spatial equilibrium index is constructed that comprehensively covers population, industry, residence, etc., and a nonlinear dynamic econometric model is constructed to empirically test the effect of urban agglomeration spatial equilibrium on carbon emissions and its mechanism. This paper not only expands the theoretical framework of existing research, but also reveals the objective law that the spatial balance of population in urban agglomerations affects carbon emissions, providing an important basis for exploring the optimization policy of population spatial distribution for carbon emission reduction in urban agglomerations. The logical framework of this study is shown in Figure 1
[image: Figure 1]FIGURE 1 | The logical framework for this study.
2 MATERIAL AND METHODS
2.1 Case
The Changsha-Zhuzhou-Xiangtan urban agglomeration is located in the central and eastern part of Hunan Province, China. It is an important part of the urban agglomeration in the middle reaches of the Yangtze River, including the three cities of Changsha, Zhuzhou and Xiangtan. It is the core growth pole of the economic development of Hunan Province. Changsha-Zhuzhou-Xiangtan urban agglomeration was approved in 2007 as a national comprehensive reform pilot zone for building a resource-saving and environment-friendly society. Since then, Changsha-Zhuzhou -Xiangtan urban agglomeration has officially launched the same transportation network, energy integration, information sharing, ecological construction, and environmental governance. It has become the first case in China to consciously conduct regional economic integration experiments. As a national pilot area for comprehensive reform of the “two-oriented society”, Changsha-Zhuzhou-Xiangtan urban agglomeration is a pioneer in the construction of urban agglomerations in the six provinces of central region. It is the first experimental case in the country to consciously conduct regional economic integration (Xiong et al., 2021). Integrated construction provides an exemplary role. Figure 2 shows the scope of the study area.
[image: Figure 2]FIGURE 2 | The location and scope of Changsha-Zhuzhou-Xiangtan urban agglomeration.
In recent years, the rapid economic and social development of Changsha-Zhuzhou-Xiangtan urban agglomeration has also spawned an imbalance in the spatial distribution of the population: first, population agglomeration lags behind economic agglomeration, resulting in an imbalance between population and economic space, and the emergence of spatial job-housing separation (Hu and Hu, 2019). The distance between the workplace and the housing determines the time and cost of commuting. Long-term commuting reduces the productivity of employees. Long-distance commuting requires transportation, which brings a lot of carbon emissions. Second, the development of the core urban areas of Changsha-Zhuzhou-Xiangtan urban agglomeration faces a strong “ceiling” of limited land space and the demand pressure of continuous population inflow (Wu et al., 2020; Ouyang et al., 2022). The third is that the central urban area faces the “ceiling” of the largest carrying capacity of the population, and most of the population is concentrated in the central urban area, which makes the “urban disease” aggravated due to the excessively high population density in the central urban area, and the public service software and hardware facilities are facing huge pressure and challenges (Li et al., 2021). Therefore, Changsha-Zhuzhou-Xiangtan urban agglomeration urgently needs to achieve the goal of restricted land use, rational and efficient allocation of resources and carbon emission reduction through the optimization and adjustment of the population spatial structure within the city within the carrying range of resources and environment.
2.2 Identification of population spatial equilibrium
Population spatial equilibrium refers to the balanced development of population and economic, social, environmental and other systems. Coupling coordination degree can measure the situation of connection and action between systems (Liang et al., 2022). In order to grasp the temporal and spatial evolution law of population spatial distribution equilibrium, this paper constructs a coupling coordination degree model to measure the coupling coordination degree index of Population-Industry-Household to measure the level of population spatial distribution equilibrium. The identification method of Population Spatial Equilibrium Index is:
[image: image]
Where, C represents the coupling degree of the population-industry-housing system, and F represents the comprehensive development level of the population-industry-housing system. The calculation method is shown in Eqs 2, 3:
[image: image]
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Where, [image: image], [image: image] respectively represent the comprehensive development level of population subsystem, industrial subsystem and housing subsystem; and are undetermined coefficients. In the development process of population spatial distribution, the three systems complement each other. Therefore, this paper considers that the weights of subsystems are the same, [image: image].
In order to measure the comprehensive development level of the subsystem, this paper constructs the comprehensive evaluation index system of Population-Industry-Household nexus according to the scientific connotation of Population-Industry-Household nexus and referring to relevant literature. The comprehensive evaluation index system includes 3 subsystems and 9 specific indicators (Table 1).
TABLE 1 | Population-industry-housing coupling coordination degree evaluation index system.
[image: Table 1]In terms of population development, this paper selects three indicators: the number of permanent residents at the end of the year, the urbanization rate and the population density to measure the development of the population subsystem. As the main body of economic activities, people are closely related to industry and housing subsystems. The number of permanent residents and population density at the end of the year reflect the population size and spatial distribution characteristics of districts and counties, and the urbanization rate reflects the level of urbanization. In terms of industrial development, this paper selects four indicators of regional per capita GDP, total industrial output value, secondary industry output value and tertiary industry output value to measure the development of industrial subsystems. GDP per capita is the most direct indicator to reflect the development level of urban industries. Gross industrial output value can reflect the scale of urban industrial entities, and the output value of secondary and tertiary industries reflects the economic quality of urban industries. In the aspect of housing development, this paper selects the real estate development fixed investment and the completed residential area as the evaluation indicators of the housing subsystem, which reflect the urban real estate development scale and urban real estate development quality respectively.
The nine indicators included in the above three subsystems together constitute the Population-Industry-Household nexus evaluation index system. The calculation method of the development level of each subsystem is as follows:
[image: image]
In the formula, the weight Wit is obtained by the entropy weight method. First, the sample data needs to be standardized, and then the index entropy [image: image] and index weight [image: image] are calculated based on formulas 5, 6. Among them, m represents the number of evaluation objects.
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2.3 Model specification
Existing studies have shown that there is a certain theoretical relationship between urban agglomeration spatial balance and carbon emissions, and the relationship between the two is not linear (Wang and Wang, 2020). Furthermore, the spatial equilibrium of population in urban agglomerations is also a long-term and dynamic adjustment process, and traditional static panel data models cannot capture this dynamic inertial feature (Chen et al., 2022). Therefore, in order to systematically explore the nonlinear and dynamic effects of urban agglomeration spatial equilibrium on carbon emissions, this paper constructs a benchmark regression model that includes the quadratic term of the population spatial equilibrium index and the lag term of carbon emissions (Eq. 7). In addition, according to the theory of sustainable development, whether the optimization of the spatial distribution of population in urban agglomerations can achieve high-quality economic development while promoting carbon emission reduction is the key to seeking dual “Pareto improvement” of the environment and economy under the strategic goal of high-quality economic development point. To this end, in addition to empirically examining the carbon emission effect of urban agglomeration population spatial equilibrium, this paper also constructs a nonlinear dynamic panel econometric model to further test the productivity effect of urban agglomeration population spatial equilibrium (Eq. 8).
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Where, [image: image] represents the districts or counties, [image: image] is time. [image: image] represents the carbon emission of Changsha-Zhuzhou-Xiangtan urban agglomeration. [image: image] is the natural logarithm of the productivity. In order to verify the robustness of the estimated results, this paper will also conduct robustness analysis of carbon emissions per unit of GDP ([image: image]), carbon emissions per capita ([image: image]), and carbon emissions per unit area ([image: image]) to replace carbon emissions. [image: image] indicates the urban agglomeration population spatial equilibrium index, [image: image] is the quadratic term of the population spatial equilibrium index of the urban agglomeration. It is used to control other factors affecting the carbon emissions and labor productivity variables of urban agglomerations, including variables such as the level of economic development ([image: image]), the quadratic term of the level of economic development ([image: image])1, the industrial structure ([image: image]), and the level of government spending ([image: image]). The coefficient [image: image] represents the dynamic inertia of carbon emissions or productivity in urban agglomerations2; the coefficient [image: image] is used to measure the nonlinear impact of urban agglomeration population spatial equilibrium index on carbon emissions; [image: image] represents the estimated coefficient of each control variable. [image: image] is a random disturbance term.
Statistics show that the districts and counties of the Changsha-Zhuzhou-Xiangtan urban agglomeration show heterogeneity in terms of population size, population density and economic development level. This means that there may be differences in the impact of population spatial balance on carbon emissions in the central and non-central areas of the Changsha-Zhuzhou-Xiangtan urban agglomeration. To verify this inference, this paper constructs a quantile regression model to test the differential responses of carbon emission levels at different quantiles of the Changsha-Zhuzhou-Xiangtan urban agglomeration to the population spatial equilibrium index. At the same time, the research samples were also grouped according to the urban population size and population density, thereby revealing the heterogeneity of population spatial equilibrium on carbon emissions. The quantile regression model is set as follows:
[image: image]
2.4 Variables and data
The dependent variables of this study are the carbon emissions and labor productivity of the Changsha-Zhuzhou-Xiangtan urban agglomeration. Among them, the measurement of labor productivity refers to the practice of Liu and Deng (2018), which is measured by the ratio of the GDP of each district and county in Changsha-Zhuzhou-Xiangtan urban agglomeration to the number of employees at the end of the year. The independent variable of this study is the population spatial equilibrium index of Changsha-Zhuzhou-Xiangtan urban agglomeration. For the specific calculation method, please refer to Section 2.2. The control variables in this paper are economic development level, the quadratic term of the level of economic development, industrial structure, and government expenditure. Among them, GDP is used to measure the level of economic development; the ratio of output value of secondary and tertiary industries is used to measure the industrial structure; government expenditure is used to measure government expenditure.
Based on the panel data of 23 districts and counties in Changsha-Zhuzhou-Xiangtan urban agglomeration from 2005 to 2019, this paper conducts an empirical analysis. The dependent variable carbon emissions data in this paper come from CEADs (China Emission Accounts and Datasets). The CEADs study uses a particle swarm optimization-backpropagation (PSO-BP) algorithm to unify the scale of DMSP/OLS and NPP/VIIRS satellite imagery to estimate CO2 emissions from 2,735 counties in China from 1997 to 2017. Based on the above method, this research team extended the carbon emission data of 23 districts and counties in the Changsha-Zhuzhou-Xiangtan urban agglomeration to 2019. In addition, the dependent variable labor productivity, independent variable population spatial equilibrium index, and the original data of each control variable are from the EPS (Economy Prediction System) global statistical data analysis platform, and Hunan Statistical Yearbook. The missing data is supplemented by the Statistical Bulletin of National Economic and Social Development published by the local government or by using the linear fitting method (interpolation method).
3 RESULTS
3.1 Spatiotemporal differences of population spatial equilibrium
3.1.1 Time evolution trend of population spatial equilibrium
As shown in the Figure 3, it is a trend chart of the population spatial equilibrium over time from 2005 to 2019 in Changsha, Zhuzhou and Xiangtan. The development of the population spatial equilibrium index in Changsha is on the rise and higher than that in Zhuzhou and Xiangtan, with a slight decline in 2014 and 2015. The difference is that the population spatial equilibrium grows slowly. The population spatial equilibrium index in 2005 was 0.329, and grew to 0.608 in 2019 with the growth rate was 84.8%. The population spatial equilibrium in Xiangtan has grown rapidly. In 2019, the population spatial equilibrium was 0.398, a year-on-year increase of 117.96% compared with 2005, and surpassed that of Zhuzhou in 2009. From 2013 to 2016, the population spatial equilibrium index in Xiangtan continued to decline. The population spatial equilibrium index in Zhuzhou in 2019 was 0.369, a year-on-year increase of 76.21% compared with 2005, and the growth rate was small.
[image: Figure 3]FIGURE 3 | Time evolution trend of population spatial equilibrium.
3.1.2 Spatial evolution trend of population spatial equilibrium
Figure 4 shows the spatial evolution characteristics of the population spatial equilibrium index in Changsha-Zhuzhou-Xiangtan urban agglomeration in 2005, 2010, 2015, and 2019. From 2005 to 2019, the population-industry-housing development situation in most districts and counties are improved, especially Yuelu District, Kaifu District, Yuhua District and Changsha County, and Lukou District, Chaling, Yanling and Youxian County has the least improvement. As for 2019, among the 23 districts and counties in the Changsha-Zhuzhou -Xiangtan urban agglomeration, seven districts and counties is mild to moderate unbalance, 11 districts and counties is barely equilibrium, and five districts and counties is mild to moderate equilibrium.
[image: Figure 4]FIGURE 4 | Spatial evolution trend of population spatial equilibrium.
In 2005, the data of Shaoshan was missing, only Furong District was barely in equilibrium with population-industry-housing coupling, Lukou District, Chaling City, Liling City and You County showed serious unbalance, and the population spatial equilibrium index in other areas was mild to moderate equilibrium. In 2010, Yuelu District, Tianxin District, Furong District, Yuhua District, Kaifu District and Changsha County barely equilibrium the population-industry-housing development situation, while the population-industry-housing development situation in Shaoshan and Yanling showed serious unbalance. The remaining areas are mild to moderate unbalance. In 2015, the population-industry-housing development situation of the Changsha-Zhuzhou-Xiangtan urban agglomeration has been greatly improved. Yuhua District has become the first primary and intermediate equilibrium area. The number of barely equilibrium areas is 10, the number of mild to moderate imbalanced areas is 12, and there are no severely deranged areas. In 2019, the population-industry-housing development situation of the Changsha-Zhuzhou-Xiangtan urban agglomeration was further improved. Yuelu District, Furong District, Kaifu District, Yuhua District and Changsha County performed at the primary and intermediate levels of equilibrium. The number of unbalanced areas is 7.
3.2 The net effect of population spatial equilibrium on carbon emission
Based on the econometric model (7), we estimated the effect of the population spatial equilibrium index of Changsha-Zhuzhou-Xiangtan urban agglomeration on carbon emissions, carbon emissions per unit of GDP, carbon emissions per capita, and carbon emissions per unit area (Table 2). In regression Eq. 1, the estimated coefficient of the lag 2 carbon emission variable is 0.84, which is significant at the 1% level. It shows that there is an obvious dynamic inertia effect in the carbon emissions of the Changsha-Zhuzhou-Xiangtan urban agglomeration. That is, the previous carbon emissions will have a positive effect on the current one. Judging from the estimated coefficients of the population spatial equilibrium index variable, the estimated coefficients of its primary and secondary terms are 6.52 and -5.28, which are significant at the 5% and 10% levels. It means that the carbon emission effect of the population spatial equilibrium of the Changsha-Zhuzhou-Xiangtan urban agglomeration shows an obvious inverted “U" shape. Among them, the inflection point value of the inverted “U" shape is 0.62, and the only regional samples located on the right side of it are Yuhua District, Yuelu District, Furong District, Kaifu District, and Changsha County in Changsha. It shows that the balanced development of population space in the regions mentioned above has entered the stage of carbon emission reduction effect, while other regions, except the core area of Changsha, have not yet entered the stage of carbon emission reduction, due to the low level of population space equilibrium.
TABLE 2 | Baseline regression estimation results.
[image: Table 2]Judging from the estimated coefficients of the variables of the economic development level, the estimated coefficients of the primary and quadratic terms are 0.12 and -0.004, respectively, and both are significant at the 10% level. It shows that there is an inverted “U"-shaped relationship between the carbon emissions of the Changsha-Zhuzhou-Xiangtan urban agglomeration and the economic development level. However, since the inflection point value is much larger than the maximum value of the economic development level, it can be shown that the inflection point of the Environmental Kuznets Curve of the Changsha-Zhuzhou-Xiangtan urban agglomeration has not yet come. Therefore, it is possible to promote the Changsha-Zhuzhou-Xiangtan urban agglomeration to cross the inflection point (carbon peak) of the environmental Kuznets curve by continuously advancing the economic development level of each region. The estimated coefficient of the industrial structure variable is 0.15 but not significant, which means that the change in the proportion of the secondary and tertiary industries has no significant net impact on the carbon emissions of the Changsha-Zhuzhou-Xiangtan urban agglomeration. The estimated coefficient of the government spending variable is -0.22 and is significant at the 5% level, indicating that strengthening government spending can help reduce carbon emissions in the Changsha-Zhuzhou-Xiangtan urban agglomeration. From the results of the significance test of the model, the R2 value of the estimated equation is 0.98, indicating that the econometric model can effectively explain about 98% of the information between the dependent variable and the independent variable. The F-statistic value is 283.51 and is significant at the 1% level, which proves that the econometric model is well set.
In regression Eqs 2–4, this paper replaces the total carbon emissions in regression Eq. 1 with carbon emissions per unit of GDP, carbon emissions per capital, and carbon emissions per unit of area. Further, the effect of the population spatial equilibrium index of the Changsha-Zhuzhou-Xiangtan urban agglomeration on the carbon emissions per unit of GDP, per capita carbon emissions, and carbon emissions per unit area is estimated. The results show that in the above three regression equations, the estimated coefficients of carbon emissions per unit of GDP, per capita carbon emissions, and carbon emissions per unit area of the two lag periods are 0.36, 0.66, and 0.70, respectively, and they are all significant at the 1% level. .It proves that the carbon emissions per unit GDP, per capital carbon emissions, and carbon emissions per unit area of Changsha-Zhuzhou-Xiangtan urban agglomeration also have dynamic inertia effects. In addition, judging from the estimated coefficients of the variables of the population spatial equilibrium index, the estimated coefficients of the primary term of the population spatial equilibrium index of the three regression equations are all significantly positive, and the estimated coefficients of the quadratic term are all significantly negative. It is proved that the effect of the population spatial equilibrium index of Changsha-Zhuzhou-Xiangtan urban agglomeration on the carbon emissions per unit of GDP, per capital carbon emissions, and carbon emissions per unit area is characterized by an inverted “U" trend. Among them, the inflection point values of the population spatial equilibrium index variables of regression Eqs 2, 4 are 1.79 and 1.06, respectively, which are both greater than the maximum value of the population spatial equilibrium index. It shows that the net effect of the Changsha-Zhuzhou-Xiangtan urban agglomeration spatial equilibrium index on carbon emissions per unit of GDP and carbon emissions per unit area is still on the left side of the inverted “U" shape. That is, the carbon emission reduction effect per unit of GDP and the carbon emission reduction effect per unit area have not yet arrived, and there is a long way to go to balance the population space. In the regression Eq. 3, the inflection point value of the population spatial equilibrium index variable is 0.566. It shows that the samples from other regions except Yuhua District, Yuelu District, Furong District, Kaifu District, Tianxin District, and Changsha County are all located on the left side of the inflection point value. That is to say, for most areas except the core area of Changsha City, the carbon reduction effect stage of per capita GDP has not yet arrived. To sum up, the population spatial equilibrium level of the Chang-Zhu-Tan urban agglomeration is still low, and most areas have not yet reached the stage of carbon emission reduction per unit GDP, per capita GDP carbon emission reduction effect, and carbon emission reduction effect per unit area. Because the other control variables have the same estimation results as regression Eq. 1, they will not be repeated here.
Now that when the population spatial equilibrium index of the Changsha-Zhuzhou-Xiangtan urban agglomeration reaches a certain level, there is a significant carbon emission reduction effect. So, can the spatial equilibrium of population seek the dual goals of environmental effect and economic effect? In response to this question, this paper also estimates the effect of the population spatial equilibrium index on labor productivity based on the econometric model (8) regression. From the estimation results of regression Eq. 5, the estimated coefficient of the labor productivity variable with lag 2 is 0.53 and is significant at the 1% level. It shows that the labor productivity of the Changsha-Zhuzhou-Xiangtan urban agglomeration also exhibits a dynamic inertia effect, that is, the higher the labor productivity level in the previous period, the higher the labor productivity level in the current period. From the estimation results of the population spatial equilibrium index variable, the estimated coefficients of the primary and secondary terms are 6.85 and −9.43, respectively, and both are significant at 10%.It means that there is also an inverted “U”-shaped relationship between the population spatial equilibrium index and labor productivity of the Changsha-Zhuzhou-Xiangtanurban urban agglomeration. Moreover, for the vast majority of regional samples, improving the population spatial equilibrium index will help to promote the level of labor productivity.
3.3 The heterogeneity effect of population spatial equilibrium on carbon emission
Statistics show that the existence of regional heterogeneity makes the carbon emissions respond differently to the population spatial equilibrium index in different regions of the Changsha-Zhuzhou -Xiangtan urban agglomeration. In order to verify this inference, we use Quantile Regression Model (QRM) to further investigate the differentiated effect of population spatial equilibrium on carbon emission at different quantiles. Table 3 reports the response of carbon emissions per capital ([image: image]) to population spatial equilibrium in Changsha-Zhuzhou -Xiangtan urban agglomeration at the 10th, 25th, 50th, 75th, 90th quantile3.
TABLE 3 | Quantile regression estimation results.
[image: Table 3]The estimation results in Table 3 show that the estimated coefficients of per capita carbon emissions variables are significantly positive in the five groups of estimation equations, and the impact coefficients show a trend of increasing with the increase of quantiles. This shows that regions with higher per capita carbon emissions have greater dynamic inertia effects. That is to say, for regions with high per capita carbon emissions, the current per capita carbon emissions are more affected by the per capitl carbon emissions in the previous period. Judging from the estimated coefficients of the population spatial equilibrium index variable, the estimated coefficients of the primary terms in the five groups of estimation equations are all significantly positive, and the estimated coefficients of the quadratic terms are all significantly negative. It means that the inverted “U”-shaped relationship between the population spatial equilibrium index and per capital carbon emissions still exists significantly. Moreover, the inflection point values of the population spatial equilibrium index variables are 0.61, 0.60, 0.55, 0.57, and 0.53, respectively, showing a trend of gradually decreasing as the quantile increases. This shows that at high quantiles, there are more samples in areas with emission reduction effects.
3.4 The moderating effect of legal environment
The research of Adger et al. (2021) shows that the spatial distribution of population is significantly related to its perception of local environmental risks and insecurity. This means that the local legal environment will have a certain impact on the spatial distribution and its evolution of population, and then act on carbon emission reduction. To verify this inference, we refer to Wu et al. (2020) and introduce the interaction term between legal environment variable and population spatial equilibrium index into the benchmark estimation equation, and then explore whether the carbon emission reduction effect of population spatial equilibrium will be regulated by legal environment. In order to identify the above effects, we constructed a moderating effect recognition mechanism model in formula 10.
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Where, the variable [image: image] represents the legal environment. We take the reciprocal of the per capita public security expenditure in each region as the proxy indicator. In other words, the higher the inverse value of the per capita public security expenditure in a region, the better the legal environment in that region.
According to the estimation results of the moderating effect model reported in Table 4, after introducing the interaction term between the population spatial equilibrium index and the legal environment variables, the estimation results of the lag term of the dependent variables and the explanatory variables in each estimation equation are basically consistent with the benchmark regression estimation results. However, from the estimation results of interactive terms, the legal environment has a significant moderating effect on only one term of the population spatial equilibrium index, and is limited to the estimation equation of carbon emissions, per capita carbon emissions, and carbon emissions per unit area. The legal environment has no significant regulatory effect on the quadratic term of population spatial equilibrium index. It shows that the legal environment can indeed have a moderating effect between population spatial equilibrium and carbon emissions, that is, by acting on population spatial equilibrium to reduce carbon emissions, per capita carbon emissions, carbon emissions per unit area.
TABLE 4 | Moderating effect estimation results.
[image: Table 4]4 CONCLUSION AND POLICY IMPLICATIONS
Low-carbon green development is the only way for high-quality economic and social development of future urban agglomerations. And the key to realizing the low-carbon and green development of urban agglomerations is to seek a scientific and reasonable spatially balanced population structure. Based on the coupled coordination degree model, this paper constructs a population spatial equilibrium index including population, industry and housing, and uses exploratory spatial data analysis (ESDA) to analyze the temporal trend characteristics and spatial differentiation characteristics of population spatial equilibrium in the Changsha-Zhuzhou -Xiangtan urban agglomeration. Finally, a nonlinear dynamic panel econometric model and a quantile regression model were constructed to empirically investigate the net effect of the Changsha-Zhuzhou-Xiangtan urban agglomeration population spatial equilibrium index on carbon emissions, carbon emissions per unit of GDP, carbon emissions per capita, and carbon emissions per unit area and its heterogeneity. The following were research findings: (1)Although the population spatial equilibrium index of the Changsha-Zhuzhou-Xiangtan urban agglomeration is on the rise, the overall level is not high and the internal gap is obvious. Zhuzhou and Xiangtan are significantly behind Changsha. From the perspective of the spatial evolution pattern, the population spatial equilibrium index shows a trend of concentration in the central urban area of Changsha. (2)The total carbon emissions, carbon emissions per unit GDP, per capita carbon emissions, and carbon emissions per unit area of the Changsha-Zhuzhou-Xiangtan urban agglomeration all have obvious dynamic inertia effects and pathway dependence characteristics. That is, the carbon emissions of the previous period will significantly promote the carbon emissions of the current period. (3)The net effects of population spatial equilibrium on total emissions, carbon emissions per unit of GDP, carbon emissions per capita, and carbon emissions per unit area all show an inverted “U"-shaped characteristic of rising first and then falling, and the samples located on the right side of the inflection point are fewer. This shows that for most areas of the Changsha-Zhuzhou-Xiangtan urban agglomeration, the spatial equilibrium level of population is too low to achieve carbon emission reduction. Therefore, it is more urgent to improve the spatial equilibrium level of the population and make it pass the critical point. (4) The net effect of regional economic development level on carbon emissions is still on the left side of the environmental Kuznets curve. It shows that the Changsha-Zhuzhou-Xiangtan urban agglomeration urgently needs to improve the level of economic development and realize the carbon emission reduction effect. In addition, increasing government spending will help improve the carbon reduction efficiency of various regions. (5) For most regions, improving the spatial balance of population will not only help to promote carbon emission reduction effects, but also improve local labor productivity and facilitate high-quality economic development. (6) The legal environment helps to promote the spatial balance of population, thereby reducing the regional total carbon emissions, per capita carbon emissions and carbon emissions per unit area.
The low-carbon development of China’s population urbanization is inseparable from a better balanced population space structure. In order to optimize the population space structure of urban agglomerations, help reduce carbon emissions, and achieve high-quality economic and social development, our findings have some policy implications: Firstly, improve the spatial balance of population, industry and housing. According to the changes in the spatial structure of the population, we will further improve the urban transportation infrastructure, build a reasonable transportation structure, and improve the “separation of work and housing” within the city, so as to reduce the carbon emissions of residents’ commuting and travel, and improve labor productivity. However, it is necessary to avoid excessive coordination in pursuit of population space balance, so as not to lead to waste of public resources. Secondly, continue to promote the level of economic development in various regions. Optimize the industrial structure, formulate corresponding economic development policies according to the industrial structure characteristics of Changsha, Zhuzhou and Xiangtan, and improve the level of division of labor within the urban agglomeration; cultivate emerging pillar industries such as new generation information technology, green and low-carbon manufacturing, achieve high-quality development, and promote The Changsha-Zhuzhou-Xiangtan urban agglomeration has crossed the inflection point of the environmental Kuznets curve, that is, the carbon peak point, thus entering the stage of urban carbon emission reduction and achieving a win-win situation for the economy and the environment. Finally, strengthen government financial support. On the one hand, improve the effectiveness and accuracy of government spending. Use government spending to support the transformation of industrial enterprises, develop innovative green technologies, establish a sound carbon emissions trading market and other fields, and vigorously develop advanced manufacturing, modern agriculture and high-end service industries. On the other hand, the balance of population spatial structure is a long-term and dynamic process of adjustment and optimization. The government should make long-term budget planning, give financial subsidies to areas with low population spatial balance index, and strengthen overall coordination.
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FOOTNOTES
1The reason for controlling the quadratic term of the variable of economic development level is to verify the existence of the Environmental Kuznets Inverted “U” Curve of the Changsha-Zhuzhou-Xiangtan urban agglomeration.
2Referring to the general practice of the existing literature, the article takes the lag value of 2 periods for the dependent variable. Generally speaking, it is difficult to capture the dynamic effect when the value lags behind for 1 period, and too much lag will reduce the number of samples and degrees of freedom.
3Here we only discuss the quantile regression results of the population spatial equilibrium index of the Changsha-Zhuzhou-Xiangtan urban agglomeration on per capita carbon emissions. There are two main reasons for this.First, it has been confirmed in the previous article that the effects of population spatial equilibrium on carbon emissions, carbon emissions per unit of GDP, per capita carbon emissions, and carbon emissions per unit area are similar. Second, this paper focuses more on the carbon emission reduction effect of the population dimension, so it is more practical to examine the heterogeneity of the population spatial equilibrium index on per capita carbon emissions.
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One of the government policies that can reduce CO2 emissions is the Emissions Trading Scheme (ETS), which was implemented in the Chinese economy on 16 July 2021. It is the largest ETS in the world, covering 12% of global CO2 emissions. Since this policy has not been experienced in China, it is necessary to predict its impact on CO2 emissions in this country. Furthermore, electricity and heat production is the major contributor to total CO2 emissions from fuel combustion. Therefore, this study attempts to predict the impact of the emissions trading scheme on CO2 emissions from the combustion of coal, oil and natural gas in electricity generation using annual data from 1985 to 2019. For this purpose, this study first predicts CO2 emissions from the combustion of coal, oil and natural gas for electricity generation in power plants using ARIMA and structural Vector Autoregression (SVAR) techniques over the 2020–2030 period. It then estimates the short- and long-run impact of the ETS policy on CO2 emissions from the combustion of coal, oil and natural gas in power plants over the projected period (2020–2030) by employing the ARDL methodology. The results suggest that the ETS policy is effective in reducing the CO2 emissions from the combustion of all fuels in electricity generation over the long-run. This is because of the increase in CO2 emissions from the combustion of these fuels in power plants in the long run, which exceed the threshold value. But in the short-run, it has a negative and statistically significant impact only on CO2 emissions from the natural gas power plants. These results suggest that improving the efficiency of all fuels can significantly reduce CO2 emissions in electricity generation from coal, oil and natural gas in the short- and long-run. They also enable China’s energy policymakers to update the ETS policy in its next phases.
Keywords: emissions trading scheme, CO2 emissions, electricity production, power plants, ARIMA methodology, structural VAR, ARDL model
1 INTRODUCTION
Environmental degradation due to human activities since industrialization has increased concerns about reducing the negative impacts of this issue on daily life and the speed of degradation. This issue results in externalities or side effects meaning that the activity of economic units affects household consumption and the production of other activities and the benefits of those activities are only for them and do not come into account. Many ways can help to bring externalities into account, such as environmental taxes, direct control, the emissions trading scheme (ETS) and so on. These policies apply to combat climate change, particularly the ETS is the key tool to cost-effectively reduce greenhouse gas emissions. The emissions trading scheme in a country allows firms to sell their excess emission units to firms that are over their targets.
The European emissions trading scheme, as a major pillar of European energy policy, was the first large greenhouse gas emissions trading that was launched in 2005. This policy may lead to three interdependent issues: the allocation approach, the absence of a credible commitment to pursue beyond 2012, and concerns about its impact on the international competitiveness of key sectors (Grubb and Neuhoff, 2010). It has reduced CO2 emissions by 40–80 million tonnes per year on average (Laing et al., 2014).
Many studies have investigated the various aspects of ETS in China. Some of them have applied difference-in-difference methodology. For example, Peng et al. (2021) showed that this policy reduces carbon emission in those industries that receive allowance. Tang et al. (2021) revealed that the ETS policy through the adjustment of industrial structure and technological innovation decreases carbon emissions. Liu and Sun (2021) showed that the pilot ETS policy has different impact on carbon emissions of provinces in China. Similarly, Ma et al. (2022), using difference-in-difference methodology, demonstrated that this policy beside reducing carbon emissions improves economic performance of enterprises. Other studies employed various methodology to investigate the impacts of ETS policy. Xiao et al. (2021) showed that ETS policy improves total factor productivity in pilot regions in commission with non-pilot regions. Oliveira et al. (2021) using the Economic Projection and Policy Analysis (EPPA) model showed that linking Brazilian ETS policy with China’s ETS is less costly because of lower strict targets. Chen et al. (2020) showed that low carbon price in ETS policy provide gain for most of provinces, while those energy rich provinces loss from this policy. This policy may also have an impact on energy efficiency as a result of technological innovation and industrial structure (Liu et al., 2020).
China is one of the top CO2 emitter countries worldwide. These emissions have resulted from strong economic growth and population growth. China’s average annual economic and population growth over the last decade (2010–2021) was 6.95 and 0.50%, respectively. In 2019, the level of CO2 emissions in this country was 9,919.1 million tonnes of which 53.11% comes from electricity and heat production, 28% from manufacturing, industries and construction, 9.17% from the transport sector and 3.53% from other energy industries own use. Therefore, the Chinese government has attempted to reduce the level of CO2 emissions through certain environmental policies. For example, the government has committed to reducing carbon intensity by 40–45% during 2005–2020 at the 2009 Copenhagen Summit. To achieve the target in a cost-effective manner, China is signaling strong intentions to establish an emissions trading scheme that in 2013 established pilot studies in seven provinces (Cui et al., 2014). Since the electricity sector is the main contributor to CO2 emissions in China Jotzo and Löschel (2014) believe that Chinese policymakers need to pay specific attention to the operation of emissions trading in a heavily regulated electricity sector. Dai et al. (2018) found that when the emissions trading scheme policy is implemented in the Chinese economy, the electricity and aviation sectors will be the main buyers of the carbon credits, whereas other sectors will be the main sellers.
China with an annual growth rate of 7% in electricity generation between 2010 and 2018, is one of the top electricity generation countries globally (about 27% of global electricity generation) (IEA, 2021). The growth of electricity consumption also is greater than the global average (about 60-7-0% by 2040) with the majority coming from coal (about 66%) followed by hydropower (about 17%) (IEA, 2021). Therefore, 98% of the emissions from electricity generation came from coal-fired power plants. This means that coal consumption resulted in 4.4 Gt of CO2 emissions, corresponding to 13% of global CO2 emissions and 46% of China’s emissions from fossil fuel combustion (IEA, 2021). In 2017, China announced the launch of the ETS by the end of 2020 (ICAP, 2020) and operated it by mid-2021 (Verde et al., 2021). Around 2020, the program was expected to be fully operational in the electricity sector and then gradually expand to other industries (Jotzo et al., 2018). Therefore, due to the high contribution of the electricity industry to CO2 emissions in China (53.11% of total CO2 emissions), the government has implemented the ETS policy in the electricity industry to reduce CO2 emissions and to achieve the Copenhagen target in 2021. This policy is a market-based environmental policy aiming at reducing carbon emissions. Therefore, the government and policy makers must pay more attention to its positive impacts. How this policy affects the electricity sector and achieves its target is of great concern for policy makers and potential investors.
Therefore, this study, using different econometric methods, first predicts CO2 emissions from combustion of coal, natural gas and oil in electricity generation over the next 11 years (2020–2030). It then attempts to investigate the impact of the emissions trading scheme policy on CO2 emissions from fuel combustion in three types of power plants (i.e., coal, natural gas and oil) in China during 2020–2030. It also estimates the relationship between CO2 emissions from the combustion of different fuels in power plants and GDP, population and energy efficiency in China. The main contribution of this study is that it is the first study that predicts CO2 emissions from China’s power plants for the next decade. This is because the majority of studies on emission trading scheme policy investigated the impact of pilot policy the selected regions and industries. Another contribution is investigating the impact of the emissions trading scheme at the sectoral level, particularly at the level of three types of power plants for a period which the ETS policy will be implemented in the electricity sector.
This study is organized in the following manner. The next section looks at an overview of the literature on the global and local emissions trading scheme. Methodology and data are outlined in Section 3. Section 4 analyzes the findings of the study and Section 5 deals with the model of the study. Section 6 provides a discussion on results and section 7 presents a conclusion and some policy recommendations.
2 LITERATURE REVIEW
In 2011, China, the world’s leading carbon emitter, implemented the ETS pilot policy to reduce carbon emissions in seven provinces. Many studies showed that the pilot study is effective in reducing CO2 emissions in these regions. For example, Wen et al. (2021) showed that overall CO2 emissions decreased by about 1,165.72 Mt between 2011 and 2015, representing 12.78% of total industrial CO2 emissions from pilot regions. Zheng et al. (2021) also showed that the ETS pilot policy has played a governance role in China and improved carbon emissions performance.
Chang et al. (2018) found, through co-integration techniques, various impacts of ETS pilot projects in China’s provinces, particularly their impacts in the short- and long-run. For example, using the panel data for provinces and industries, Zhang et al. (2019) showed that the ETS has a significant impact on carbon emission intensity in Guangdong and Beijing, while it is not significant in Shanghai, Tianjin, Hubei, and Chongqing. This policy also decreased China’s GDP and increased the price of electricity, as indicated by a dynamic recursive Computable General Equilibrium model conducted by Lin and Jia (2019). Similarly, Li et al. (2018) and Zhang et al. (2018) using the CGE methodology found that the ETS policy reduces China’s GDP and CO2 emissions and leads to clean electricity production. Based on the theories and models of equilibrium and system dynamics, Feng et al. (2018) showed that tradable green certificates and carbon emissions trading decline CO2 emissions in the electric power industry. The emissions trading scheme in the electricity industry will cover around 3 Gt of CO2 emissions annually, representing about 8% of global CO2 emissions (Jotzo et al., 2018). Based on non-parametric optimization models Liu et al. (2018) found that the maximum potential gains can be obtained when CO2-SO2 emissions trading are combined.
Lu et al. (2021) demonstrated that the carbon trading policy, which has led to additional costs, has less impact on the industrial competitiveness. Zeng et al. (2020) also reported that the emissions trading scheme reduces CO2 emissions from power plants and can reduce the total abatement costs from 0.37 to 41.5% in China. Tan et al. (2019) using an optimization model found similar results for thermal power generation. Ma et al. (2018) found that both TGC planning and the carbon emissions scheme can jointly adjust the structure of power industries.
The carbon emission trading also affects other sectors. For example, Liu et al. (2021) found that it effectively improves the total asset-liability ratio of enterprises, but decreases the value of the current capital market. Zhang et al. (2022) also showed that carbon emission trading system has a crowding-out effect on R&D investment. However, Liu and Sun (2021) indicated that this policy promotes low-carbon technological innovation.
The review of the above literature shows that many studies have investigated the impact of the pilot study in seven Chinese provinces. They are also focusing on other sectors rather than the electricity sector. No specific studies have predicted the impact of this policy on the CO2 emissions in electricity production after its implementation. Therefore, this study fills these gaps by predicting the CO2 emissions from the combustion of coal, oil and natural gas in electricity production and then investigates the impact of the ETS policy on it.
3 METHODOLOGY AND DATA
One of the main goals in estimating a regression model is to be able to predict the changes of the endogenous variable with a certain quantity of the exogenous variable. Prediction is the process through which an objective or subjective model can be used to estimate a variable for the past or future. To predict a variable, one must first predict the variable inside the sample, then select the best method. It can then predict the variable based on the best model for the future.
Forecasting is mainly divided into two categories: in-sample forecasting and out-of-sample forecasting. In the in-sample prediction, the variable can be estimated based on a mathematical or qualitative model, then compared with the actual variable. This measures the strength of forecasting models. But the out-of-sample forecast estimates the variable for future or past periods (out of the sample). Mathematical and statistical models are generally used to perform the process of predicting economic variables, that is, the approximate estimation of an economic variable in the future. In other words, the objective method requires the construction of a model.
The quantitative (objective) method is performed using either the econometric or structural method and the time series or non-structural method. In the first method, an econometric model is initially estimated as follows:
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Where Y is a dependent variable and X is a vector of independent variables. After the formation of the functions and having the X variables, the Y variable can be estimated or predicted. This is mainly done to predict a variable using changes in other variables.
In the second method, known as the non-structural method, one variable can be predicted based on its own past developments, and does not require another variable. In this method, the most important task is to identify the time series behavior according to its past values. It should be noted that the best way to predict a variable is to use all methods. After forecasting, the two methods will be compared with forecasting scales and the best method will be selected and used for prediction. The two forecasting methods used in this study are described in the following sub-section.
3.1 Vector Autoregression (VAR) model
The VAR methodology is very similar to the simultaneous equation models. But in this method, we are dealing with several endogenous variables and each endogenous variable is explained using its past values and the lagged values of all other endogenous variables of the model. The model generally does not include any exogenous variables. In addition, the VAR model determines the short-term behavior of variables with other variables and the lagged values of the variable itself. The general form of the auto-regression process is as follows:
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Where ɛi is the stochastic term, which in VAR methodology is known as a reaction or stochastic shock.
As noted above, one of the most common time series forecasting methods is the use of the VAR model. Accordingly, in this study, CO2 emissions from the combustion of coal, oil and natural gas in power plants are estimated within the framework of a structural VAR (SVAR) model, which combines the VAR model and structural regression. In these models, the prediction of a variable, for example Y, is related not only to its previous values, but also to the current and past values of the variables affecting this variable.
Before introducing the primary functional form of the study model, we need to provide some evidence. Mikayilov et al. (2018) and Solaymani (2020) found a positive relationship between CO2 emissions and gross domestic product (GDP). At the sectoral level, an increase in transport value added stimulates CO2 emissions from the transport sector (Solaymani, 2022). Evidence has also demonstrated that population is responsible for CO2 emissions in the economy (Zhang G et al., 2018; Rahman et al., 2020). de Souza Mendonça et al. (2020) argued that an increase of 1% in population increases CO2 emissions by more than 1%. On the impact of energy efficiency, Razzaq et al. (2021) argued that an improvement of 1% in energy efficiency mitigates CO2 emissions by less than 0.30% in the short- and long-run. Similarly, Akram et al. (2020) highlighted that energy efficiency reduces carbon emissions in developing economies.
In SVAR models, influential variables can be considered endogenous or exogenous in the model. In this model, based on the above evidence, CO2 emissions from each power plant are considered as a function of real GDP, population and energy efficiency. Accordingly, the following model is specified:
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Where C O 2 is CO2 emissions in millions of tonnes, GDP in billion dollars (at constant 2015 prices) and population (POP) in millions.
3.2 ARIMA model
The autoregressive integrated moving average (ARIMA) process for the variable Y can be represented as the following relationship:
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Where L is the lag operator. In the ARIMA (p, d, q) process, p, d, and q represent the number of autoregressive lags, the order of differentiation, and the number of moving average sentences, respectively. If d is equal to zero, the ARIMA process becomes the ARMA process. The Box-Jenkins methodology is usually used to estimate the ARIMA and ARMA models, which has three stages of identification, estimation and accurate measurement.
The number of autoregressive sentences and the number of moving average sentences is generally calculated using the autocorrelation and the partial autocorrelation functions based on the Box-Jenkins steps.
3.3 Criteria for measuring the power of predictions
Different criteria were used to compare the forecast power and select the best forecasting method. These criteria include the mean absolute error (MAE), mean squared error (MSE) and mean absolute percentage error (MAPE). These criteria can be formulated as follows.
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In these relations n is the number of predictions, ei is the prediction error obtained from the difference between the predicted values and the actual values, and yi are the actual values. These criteria will be used to measure predictive power in this study.
In this study, the annual time series from 1985 to 2019 are used to predict CO2 emissions at each of the power plants. The variables in the study include carbon dioxide (CO2) emissions from burning coal, natural gas and oil in power plants, real gross domestic product (GDP), Chinese population (POP), and energy efficiency (EEF) for each power plant. The data are collected from the World Bank (World Development Indicators) and the U.S. Energy Information Administration.
3.4 Autoregressive distributed lag (ARDL) model
This study uses an econometric method introduced by Pesaran et al. (2001), known as the ARDL model, to estimate the effect of the emissions trading scheme policy on the CO2 emissions from the combustion of coal, natural gas and oil in China’s power plants. This method is preferable to other traditional methods because it is not necessary that each variable be in its first order. This method is also more efficient for small samples. Under the ARDL method, the maximum level of stationary for all variables must be I (1). Therefore, we use Dickey-Fuller and Phillips-Peron tests to test the stationary of variables in the models. After examining the stationarity of the variables, we need to estimate the relationship between the variables using the following equation.
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In this equation, the natural logarithmic form is used for the exogenous variables, and Δ shows that the variable is in the first-order difference. CO2 is the carbon dioxide obtained from electricity generation and is measured in million tonnes of CO2. GDP is the real gross domestic product (2015 constant prices $US). The EEF indicates the energy efficiency of each power plant. POP is the population (million people), and the DUM is the dummy variable that can be used to examine the impact of the emissions trading scheme policy during the predicted period (2020–2030). t refers to the period 1985–2019 and ut is the error term.
Before estimating the models, it is necessary to identify the co-integration relationship among variables using the bounds test, to find a high level of confidence in the coefficients of the lagged variables. Simultaneously, this test relies on an F-test consisting of two parts, the upper bound and the lower bound. If the value of F is higher than the upper limit, it is proved that there is a co-integration relation between the variables, and if the value of F is less than the lower limit, the null hypothesis cannot be rejected. If the F-statistic falls between the two limits, the results will not be clear. This test consists of two hypotheses. The H0 hypotheses shows that all coefficients are zero and the H1 hypotheses indicates that at least one of the coefficients is not zero. For the F test, we use the critical value developed by Narayan and Smyth, (2005) for small samples. After detecting the establishment of the co-integration relationship, the long-run ARDL model (Equation 9) for calculating the long-run dynamics is estimated as follows:
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In Equation 9, the optimal lag length structure is selected using the Schwartz information criterion. The coefficients measure the long-run effect of each variable of the models on CO2 emissions. After estimating Equation 9, the residuals will be used as the error correction model (ECM). This model shows how variables quickly return to long-run equilibrium after a shock. The ECM must have a statistical coefficient with a negative sign equal to or less than one. The error correction model of Equation 8 is formulated in the form of Equation 10.
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For a better understanding of the study methodology, a conceptual framework is presented in the Figure 1.
[image: Figure 1]FIGURE 1 | Conceptual framework of the study.
4 MODEL ESTIMATION
4.1 Determining the optimal lags length
After determining the variable for each model, in the next step, we examine the stationary state of the variables. In this study, the Augmented Dickey-Fuller and the Phillips-Perron tests were used to examine the stationary of variables. The results of these tests are reported in Table 1.
TABLE 1 | Result for the unit root test.
[image: Table 1]Table 2 shows that among the study variables, only the population (POP) is stationary at its level and the other variables are not stationary at their level, but they have been stationary in their first differences. To determine the optimal lag length, we can use the criteria of the likelihood ratio (LR), Akaike (AIC), Schwartz (SC) and Hannan-Quinn (HQ) tests. The results of these tests are reported in Table 2.
TABLE 2 | Results for the optimal lag length for each model.
[image: Table 2]According to Table 2, the Schwartz criterion shows one lag for the coal model, three lags for the gas model and one lag for the oil model.
4.2 Co-integration test
The purpose of estimating the VAR model is to determine the number of long-run relationships between the model variables. Since the model consists of three variables, it is possible to have at least two long-run relationships between them. To test this problem using the Johansen’s method, the maximum eigenvalue and the trace statistics were used. The results of these statistics for each one of the models are presented in Table 3. As can be seen in this table, both the trace statistic and the maximum eigenvalue confirm the existence of at least one long-run relationship between the variables of each one of the models at the 95% confidence level. Therefore, we have estimated a long-run relationship under the Johansen model.
TABLE 3 | Results for selection the order of co-integration.
[image: Table 3]4.3 Johansen model estimation
The Johansen model shows the long-run relationships and is helpful for policymaking. In addition, according to Table 4, the long-run relationships for each model is one, which is stated below. In addition, all variables are considered independent in this regard.
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TABLE 4 | Results for the Johansen model.
[image: Table 4]The results show that in the long run, real GDP has a negative and significant relationship with CO2 emissions for each model. These results also show that, in the long run, there is a significant relationship between population and the CO2 emissions. This model shows a significant relationship between the energy efficiency of each energy and CO2 emissions from the combustion of each fuel. This means that their coefficients are reliable at the 1% level of significance, except for the real GDP in the natural gas model.
4.4 ARIMA model’s estimation
Another methodology used in this study is the autoregressive integrated moving average (ARIMA) model. The estimation of ARIMA models involves four main steps. The first step is the model’s identification. The identification step in estimating ARIMA models is made using the autocorrelation function (ACF) and the partial autocorrelation function (PACF). One of the prerequisites for the ARIMA model is the nonstationary condition of the variable under consideration. The third step in the ARIMA method is the model’s evaluation. Normally, at this stage, estimates with higher degrees are made and the best model is selected from them according to Akaike and Schwartz criteria as well as the white noise of the residual terms. The Akaike and Schwartz criteria were used to select the appropriate model, upon which the ARIMA (1,1,4) model, ARIMA (4,1,1) and ARIMA (6,1,10) were selected for coal, natural gas and oil models, respectively. However, since the main purpose of estimating these patterns is prediction, the amount of prediction error is more important in selecting the model. Detailed results of the ARIMA estimates are presented in Table 5.
TABLE 5 | Results for the ARIMA model.
[image: Table 5]In Table 5, for the coal model, the first-order, AR (1), and the fourth order of the autoregressive sentence, AR (4), are statistically significant. For the natural gas model, the fourth order, AR (4), and the first order, MA (1), are statistically significant and for the oil model, the sixth order, AR (6), and the 10th order, MA (10), are statistically significant.
4.5 Comparing the prediction power of VAR and ARIMA models
In the previous sections, CO2 emissions from burning coal, natural gas and oil in power plants were estimated using the VAR and ARIMA methods. Based on these methods, the forecasted values of CO2 emissions and their actual values for each model during 2010–2019 are presented in Tables 6 and 7. In this section, we compare the dual estimates of each model and check which one of them has greater predictive power. To do this, three criteria were used: the sum of squares error (MSE), the mean absolute value of error (MAE) and the mean absolute percentage error (MAPE).
TABLE 6 | Actual and residual values of the VAR model.
[image: Table 6]TABLE 7 | Actual and residual values of the ARIMA model.
[image: Table 7]We now turn to the question of which of the two forecasting methods for each model has the least error? To answer this question, we compare the actual data and the predicted values of these two methods over the last 10 years (2010–2019), and determine the one with the least error. Meanwhile, the longer the forecast period, the greater the prediction error because the prediction of each period also contains the sum of the prediction error of the past. To determine the small amount of prediction errors, as mentioned above, the MSE, MAE and MAPE measures were used. The results of these measures are reported in Table 8.
TABLE 8 | Comparing the power of both ARIMA and VAR model in predicting CO2 emissions.
[image: Table 8]The evaluation of the predictive power of the VAR model and its comparison with the ARIMA model indicates the difference in the accuracy of this model compared to another model. As shown in Table 8, the VAR model has the least error in predicting CO2 emissions in the oil and natural gas models. However, in the prediction of CO2 emissions from the coal power plant, the ARIMA model has the least prediction error.
4.6 CO2 emissions forecast
For oil and natural gas models, the prediction criterion is the VAR model and for the coal model, the prediction criterion is the ARIMA model. Therefore, using these methods, we have predicted CO2 emissions from combustion of coal, oil and natural gas over the 2020–2030 period. The results of these forecasts are presented in Figure 2, which shows that CO2 emissions have increased over the relevant years.
[image: Figure 2]FIGURE 2 | Predicted trends of CO2 emissions created by different power plants during 2020–2030.
As Figure 2 shows, CO2 emissions are increasing for all power plants, but from 2025 the rate of the increase in the coal-fired power plant will be slower. In 2029 and 2030, the gap between CO2 emissions will be at a minimum, and this could be a promise to reduce CO2 emissions from power generation in China’s coal-fired power plants, which make a very large share of coal-fired electricity generation.
5 MAIN RESULTS OF THE STUDY
Before estimating the models, we need to find out the long-run relationship between the variables of each model using the bounds test. The value of the F-statistic of this test is compared to the criteria of the Narayan and Smyth (2005) study. If it is above the upper limit of the Narayan and Smyth (2005) criteria, it shows the long-run co-integration relationship between the variables. However, if it falls below the lower limit of the criterion, it does not show any long-run co-integration relationship. Finally, if it falls between the lower and upper limits, the value of the F-statistic will not be definitive. The results of the bounds test of all models in Table 9 show that there exists a long-run co-integration relationship between variables in each model.
TABLE 9 | Results for the bounds tests of all three models.
[image: Table 9]After finding a long-run co-integration relationship between the variables within each model, we estimate the short- and long-run impacts of each variable on CO2 emissions. Table 10 shows the short and long-run results for the coal power plant. The results show that GDP has a positive and significant impact on CO2 emissions from coal power plants in the short- and long-run. It shows that if real GDP increases by 1%, CO2 emissions from coal power plants increase by 0.98 and 0.99% respectively in the short- and long-run. The population also has a positive impact on the coal power plant in both the short- and long-run, while its coefficient is not statistically significant. The coefficient of the energy efficiency in the coal power plants shows a negative and statistically significant impact on CO2 emissions from coal power plants in the short and long run. This means that with an increase of 1% in energy efficiency, CO2 emissions from coal power plants decline by 0.34 and 0.36% respectively in the short- and long-run. The coefficient of the dummy variable has a negative sign and is statistically significant only in the long run. It shows that the emissions trading scheme can reduce the CO2 emissions from the coal power plant in the long run.
TABLE 10 | ARDL results for the Coal power plant (dependent variable = CO2_C).
[image: Table 10]Table 11 reports the short- and long-run results for the natural gas power plants. The results show that GDP has a positive and statistically significant impact on the CO2 emissions from the combustion of natural gas in power plants in the short- and long-run. It shows that if real GDP increases by 1%, CO2 emissions from natural gas power plants increase by 1.53 and 0.76% in the short- and long-run, respectively. The coefficient of the population has a negative impact on natural gas power plants in the short- and long-run, but it is not statistically significant. The coefficient of the energy efficiency in the natural gas power plants shows a negative and statistically significant impact on the CO2 emissions of natural gas power plants in the short- and long-run. This means that with an increase of 1% in energy efficiency, CO2 emissions of natural gas power plants decline by 0.003% in the short- and long-run. The coefficient of the dummy variable has a negative sign and is statistically significant in the short and long run. It shows that the emissions trading scheme can reduce the CO2 emissions from natural power plants in the short and long run.
TABLE 11 | ARDL results for the Gas power plant (dependent variable = CO2_G).
[image: Table 11]Table 12 provides the short- and long-run results for the oil power plants. The results show that GDP has a positive and statistically significant impact on the CO2 emissions from the combustion of oil in power plants in the short- and long-run. It shows that if real GDP increases by 1%, CO2 emissions from oil power plants will increase by 1.56 and 1.29% in the short- and long-run, respectively. The coefficient of the population has a negative and statistically significant impact on oil power plants in both the short- and long-run. It shows that if the population increases by 1%, CO2 emissions from oil power plants declines by 9.80 and 4.27% in the short- and long-run, respectively. This may occur due to the increase in the use of more clean energies like natural gas in the combined oil and natural gas power plants. The coefficient of the energy efficiency in the oil power plants shows a negative and statistically significant impact on CO2 emissions from oil power plants in the short- and long-run. This means that with an increase of 1% in energy efficiency, CO2 emissions from oil power plants decline by 0.01% in the short- and long-run. The coefficient of the dummy variable has a negative sign and is statistically significant only in the long run. It shows that the emissions trading scheme can only reduce the CO2 emissions from the oil power plants in the long-run.
TABLE 12 | ARDL results for the Oil power plant (dependent variable = CO2_O).
[image: Table 12]6 DISCUSSION
The level of energy consumption cannot be significantly reduced through the increase in energy prices due to the low elasticity of demand for energy. Therefore, economic and population growth are the main contributors to high demand for energy and electricity (Solaymani et al., 2015). Therefore, other policies and motivation methods aimed at increasing energy efficiency and the use of renewable energy sources can help to use fossil fuel power plants in China and other countries.
One of the China’s most important sources of CO2 emissions is its GDP. The results show that GDP positively and significantly increases CO2 emissions in the short- and long-run. This means that economic growth and its components, such as trade, due to more use of fossil fuels increase CO2 and other pollutants in the environment. This is consistent with the study conducted by Solaymani (2020), Mohsin et al. (2022) and Solaymani and Shokrinia (2016). The population has a negative impact on CO2 emissions from natural gas power plants. This is because more use of natural gas instead of other fossil fuels in the economy, particularly by households, reduces the level of CO2 emissions. This is not consistent with the overall finding of studies that have shown that the population increases CO2 emissions in the overall economy, such as Li and Solaymani (2021). Improving energy efficiency in all power plants reduces CO2 emissions from the combustion of coal, oil and natural gas in related power plants. Ponce and Khan, (2021) and Mahi et al. (2021) showed that energy efficiency reduces CO2 emissions significantly. Peng et al. (2021) also showed that energy efficiency improvement reduces CO2 emissions. Evidence also showed that the emissions trading scheme has a significant and negative impact on CO2 emissions from the combustion of coal, oil and natural gas in relevant power plants. This finding supports the results of the study conducted by Huang et al. (2021) argued that this policy can reduce CO2 emissions while it may have a negative impact on the economic performance of China. Mo (2021) also showed that the emission trading scheme (ETS) has been promoted as a cost-effective market-based reduction tool.
7 CONCLUSION AND POLICY IMPLICATIONS
This purpose of this study was to predict the impact of the emissions trading scheme on CO2 emissions from the combustion of coal, oil and natural gas in electricity generation in power plants using annual data from 1985 to 2019. For this purpose, this study first chooses the best technique between ARIMA and structural Vector Autoregression (SVAR) techniques to predict CO2 emissions, electricity generation from coal, oil and natural gas, efficiencies of coal, oil and natural gas and other relevant variables over the 2020–2030 period. Then by employing the ARDL methodology and using the predicted values of the study variables, we estimated the short- and long-run impacts of the policy on CO2 emissions from the combustion of coal, oil and natural gas in electricity generation over the projected period (2020–2030). To estimate the impact of the policy on CO2 emissions, we used a dummy variable for the forecast period, which is multiplied by the average threshold value of the policy.
The results of this study showed that real GDP has a significant and positive impact on CO2 emissions from the combustion of all fuels (coal, oil and natural gas) in the short- and long-run. Energy efficiency also has a negative and significant impact on CO2 emissions from all power plants in the short- and long-run. The results also suggest that the ETS policy is effective in reducing the CO2 emissions from the combustion of all fuels in electricity production in the long-run. These results suggest that improving the efficiency of all fuels can significantly reduce the level of CO2 emissions from coal, oil and natural gas in electricity generation in the short- and long-run. This is because of the increase in the level of CO2 emissions from these power plants in the long-run, which exceed the threshold value. But it has a negative and statistically significant impact only on the CO2 emissions from the natural gas power plants in the short-run. The results of the study enable Chinese energy policymakers to update the ETS policy in its next phases.
It is recommended that the China’s ETS policy needs to be expand to the majority of industries, particularly those with high carbon emissions. Since China has other environmental policies and regulations, a master plan for all need to be prepared and combined. The government’s programs for environmental protection must stimulate clean and high-tech industries. The government needs to pay more attention to the differences between industries and regions and prepare effective and appropriate policies and programs for each. The main limitation of the emission trading scheme investigation is the availability of microdata on the amount of emission of major carbon emitting industries and their economic performance. Improvements in the availability of microdata are also recommended.
For future studies, we recommend the use of more appropriate and relevant variables in the modeling to predict the impact of the ETS policy on CO2 emissions. the use of other econometric methods, such as panel data, is also recommended to predict the impact of the ETS policy on different region or industry.
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Promoting the low-carbon development of the electricity market is the key to controlling CO2 emissions and achieving carbon neutrality in China. It requires the coordinated development between investment and carbon emissions in the electricity industry. Based on the panel data on electricity investment and carbon emissions from 2000 to 2019, this study systematically explains the coupling coordination mechanism between electricity investment and carbon emissions. We use the coupling coordination model to calculate the coupling coordination degree of each province. Then, the research uses the GM (1, 1) model to predict the coupling coordination development from 2020 to 2030. The study finds that the development of China’s electricity industry is in good shape. Although the coupling coordination degree has entered barely or primary coordination in most provinces, there are certain fluctuations in recent years; there are spatial differences in coupling and coordinated development among regions: the central region has a high coupling coordination degree, while the eastern and northeastern regions are relatively lagging behind. In the next 10 years, the coupling coordination degree will continue to grow, and all regions will reach the primary coordination. Among them, the central region will reach the intermediate coordination.
Keywords: electricity industry, carbon emission (CE), spatiotemporal evolution characteristic, coupling coordination degree, gray system analysis
INTRODUCTION
As the proportion of electricity in global terminal energy consumption rises, electricity is gradually replacing other non-renewable energy sources. It gradually becomes the core leading the low-carbon transformation of the energy system. Due to an over-reliance on fossil fuels for electricity production, the share of the electricity industry in global CO2 emissions has increased year by year. It has already surpassed all other sources of CO2 emissions from energy activities. According to Global Energy and CO2 Status Report 2018 released by the International Energy Agency (IEA), the global electricity industry emits 13 billion tons of CO2, accounting for 38% of the total energy-related CO2 emissions. Nearly two-thirds of the increase in energy-related CO2 emissions comes from the contribution of the electricity industry. Under the trend of electrification of the global economy, the use of carbon is flowing across industries, resulting in an increase in carbon emissions in the electricity industry. From a global perspective, the electricity industry is an important source of carbon emissions in the carbon trading market. Thus, strengthening investment, promoting clean energy transformation, and accelerating the expansion of renewable energy power generation have become effective ways to achieve carbon emission reduction in the electricity industry (IEA, 2018).
According to an IEA report, China’s power and thermal energy sector generated 4.747 billion tons of CO2 in 2018, accounting for 49.6% of the country’s total CO2 emissions. Faced with severe environmental pollution, China has been actively optimizing the investment structure of the electricity industry, contributing significantly to the promotion of green and low-carbon development. Affected by global COVID-19, China’s electricity industry has undergone major changes in recent years. Electricity investment has declined and continues to show a downward trend (IEA, 2020). At the moment, China’s electricity market is still in its initial stages, and its carbon emission reduction potential is not fully stimulated. In this context, exploring the relationship between China’s electricity investment and carbon plays a positive role in promoting the construction of the electricity industry. It is beneficial to the overall development of China’s electricity enterprises, reduces carbon emissions, and steers electricity investment on a more environmentally friendly path.
There is a close relationship between investment and carbon emissions in the electricity industry. However, the coupling coordination between them has not been systematically studied. Therefore, based on the coupling perspective, this study studies their interaction mechanism and discusses the differences in the coupling coordination degree from the inter-provincial level. In order to better understand future development, we also forecast the coupling coordination degree. It can provide a scientific basis for the construction of the electricity industry and the coordinated development of the system so as to promote the coupling and coordinated development of the electricity market at different levels and scales.
LITERATURE REVIEW
The increasing environmental concerns have led the world to rethink alternative and innovative ways to harness clean energy. Technology and infrastructure, economy and finance, politics and system, culture and behavior, meteorology, and other factors are all factors that hinder its development (Irfan et al., 2022). As traditional non-renewable energy sources such as coal, oil, and natural gas produce a large amount of greenhouse gases, there is unprecedented interest in the increasing supply of renewable energy sources (Kok et al., 2018). With the growth of the economy, the energy problem and the environment deteriorate. The problem of energy consumption structure becomes more and more serious. The generation of renewable energy is crucial for achieving sustainable development (Wei et al., 2022). The amount of investment in renewable and non-renewable energy should be determined by the electricity market. Renewable energy generation technology has a high generation investment cost (Aflaki and Netessine, 2017). Although lowering the investment cost of renewable power generation technology is a key factor to promote the low-carbon transformation, the traditional nonrenewable energy investment is still important. The low investment cost of these energy sources can provide a more reliable electricity supply than renewable energy sources while requiring fuel expenditure and carbon emission costs (Kis et al., 2018).
The use of fossil fuels can be reduced by technological innovation in the electricity industry. In the production process, clean technologies replace the original polluting technologies. In the long run, it will significantly improve the operation efficiency and contribute to low-carbon development (Lee, 2013; Daniel-Gromke et al., 2018). In addition, Internet development and entrepreneurship also help improve the efficiency of green innovation (Fan g et al., 2022). However, in view of natural uncertainties (e.g., climate sensitivity) (Fuss et al., 2012; Turner et al., 2017; Wang et al., 2021), market uncertainty (e.g., energy price fluctuation) (Pahle et al., 2013; Hirth, 2018), technical uncertainty (e.g., the feasibility of new technology) (Gnansounou et al., 2004; Castillo and Linn, 2011), socioeconomic uncertainty (e.g., COVID-19 epidemic impact) (Zhong et al., 2020; Haxhimusa and Liebensteiner, 2021; Iqbal et al., 2021), and policy uncertainty (e.g., hedging strategy, investment tax credit, cash subsidy, etc.) (Morris et al., 2018; Braungardt et al., 2021), it is difficult to evaluate the importance of different technologies in achieving a steady investment to reduce carbon emissions. A key issue for policymakers is how to allocate limited funding across multiple technologies, balancing R&D investment to drive innovation in emerging low-carbon technologies (Santen et al., 2017).
The essence of both the electricity market and carbon market is to achieve low-cost, clean, and low-carbon development. Electricity investment and carbon emissions influence each other through the interaction. Investment in the electricity industry has dual effects on carbon emissions: on the one hand, with the increase in investment, the economic scale of the electricity industry expands unceasingly. Under the condition that the technological level, industrial structure, and emission coefficient remain unchanged, a large amount of energy consumption leads to an increase in carbon emissions (Zhao et al., 2016; Peng et al., 2018); on the other hand, investment can affect carbon emissions through the efficiency path. Technological investment improves the efficiency of energy processing, thereby reducing carbon emissions in production (Jin et al., 2017). On the premise of ensuring energy supply, reasonable investment is conducive to optimizing the electricity market structure, improving energy utilization efficiency, and controlling and reducing carbon emissions (Ma and Liu, 2018).
At the same time, the carbon market information will also be fed back to the investment of the electricity industry. The carbon market will increase the economic burden of low-efficiency and high-carbon electricity enterprises, while the high-efficiency and low-carbon electricity enterprises can obtain economic benefits through the carbon market. A large amount of money is used to create new renewable technologies to reduce its dependence on fossil fuels (Xia et al., 2020). Energy prices should provide real costs associated with the growing problem of environmental pollution (Li et al., 2021). As the main body of regional emission reduction, enterprises are most concerned about their own profits. Emission reduction requires a lot of human, material, and financial resources, which will reduce its output to a certain extent. Therefore, the enthusiasm of enterprises to reduce emissions is not high.
To promote corporate emission reductions, governments around the world have implemented various low-carbon policies. As one of the common carbon emission reduction policies, the carbon cap and trade mechanism imposes carbon quotas on companies that rely on carbon emissions, thereby forcing companies to engage in research and development of emission reduction technologies (Sun et al., 2020). When carbon emissions are too high, the government needs to adjust regulatory incentives to encourage enterprises to increase their investment in low-carbon electricity technologies and give appropriate subsidies and tax exemptions to low-carbon enterprises (Schafer, 2019; Chen et al., 2021). Additionally, the carbon emission trading system and carbon emission quota allocation rules have an impact on how the electricity industry invests, under the carbon emission trading system. When an enterprise’s carbon emissions exceed those set by the government, it will increase investment in renewable energy technologies to lower the cost of the carbon trading market’s quotas (Zhou et al., 2010).
COUPLING COORDINATION MECHANISM
There is a potential trade-off between carbon emission reduction and investment. Reducing carbon dioxide emissions will bring huge economic losses to China. Controlling greenhouse gases can only be achieved by reducing the energy use, adjusting the energy structure, and controlling population growth. Mitigation measures should focus on industrial structure transformation (Jin et al., 2020). At the same time, carbon emissions also have social costs, and the price of carbon dioxide to reduce emissions to the optimal level for the society must be carefully assessed (Bressler, 2021). Under the emissions trading scheme, there is a coupling relationship between investment and carbon in the electricity industry, and they interact and restrict each other.
According to Grossman and Krueger, (1995), carbon emissions are mainly affected by the scale effect, technology effect, and composition effect of electricity investment. The three factors are complementary to each other to a certain extent. On the one hand, the economic scale and industrial structure can influence the direction of technological progress on carbon emissions. With the upgrading of industrial structures and the expansion of the economic scale, technological progress promotes carbon emissions more than inhibiting them, which eventually leads to an increase in CO2 emissions. On the other hand, technological progress will also strengthen the relationship between the economic scale, industrial structure, and carbon emissions. The three effects are as follows:
(1) The scale effect refers to the influence of investment in the electricity industry on carbon emissions by expanding economic activities. With the continuous increase of electricity output, the electricity industry needs more factor inputs. The electricity investment improves the industrial benefits, but it has also brought about an increase in carbon emissions at the same time (Shahbaz et al., 2022).
(2) The technology effect refers to that electricity investment can affect carbon emissions through the efficiency path. Electricity investment can promote innovation in the electricity industry, and technological progress can improve the utilization efficiency of non-renewable energy sources and reduce carbon emissions (Li and Li, 2020).
(3) The composition effect refers to the impact of electricity investment on carbon emissions by affecting the energy structure. As we all know, due to the characteristics of various energy varieties, different energy sources release different carbon emissions (Burnham et al., 2012). The investment plays a role in guiding and regulating the allocation of resources and directly affects the structure of energy production. If limited funds are invested in the production of high-pollution and high-emission energy projects, it will lead to an increase in carbon emissions. If the funds are invested in the production of clean energy projects with low pollution and low emission, it will be beneficial to reduce carbon emissions by improving the energy structure (Li and Qi., 2011).
The scale effect can be offset by the technology effect and the composition effect. When the scale effect dominates, the environmental pollution will increase. When the technology effect and composition effect of clean energy dominate, the environmental quality will be improved. In general, the scale effect and technology effect typically necessitate some degree of economic development. The nation and enterprises can make significant investments and realize independent technological innovation. At the same time, the carbon market will also backfire on electricity investment. The government will introduce policies to intervene in order to meet existing emission reduction targets. Carbon pricing is an effective policy tool to regulate the investment structure of the electricity industry. It can provide more opportunities for electricity enterprises to invest in clean resources. Once carbon pricing is in place, the non-renewable energy sources will be abandoned. The resource portfolio will become cleaner, leading to greater emissions reductions (Oggioni and Smeers, 2012; Fan et al., 2014; Petitet et al., 2016).
The degree of market development for carbon emissions has an important impact on carbon pricing investment. Initially, because of the reasonable setting of the actual emission cap of enterprises, the carbon market did not generate significant costs. Instead, the carbon market system started out modestly. With the continuous improvement of carbon emissions, the price of carbon will increase. This will encourage enterprises to actively step up their efforts to reduce emissions and invest more in renewable energy sources (Aflaki and Netessine, 2017). When investments increase and carbon emissions continue to decline, the electricity market and the carbon market will achieve good coupling coordination. The coupling coordination mechanism is shown in Figure 1:
[image: Figure 1]FIGURE 1 | Coupling coordination mechanism of investment and carbon emission.
MEASUREMENT OF THE COUPLING COORDINATION DEGREE
Coupling coordination model
Based on the coupling coordination mechanism, we further use the coupling coordination model to quantify it. The term “coupling” originally belongs to the concept of physics, which refers to the phenomenon that two or more systems interact with each other and have mutual influence. It is often used in the field of economics to judge whether the development of variables is orderly. Compared with other methods, the coupling coordination model has a strong advantage in studying the interaction and coordinated development of subsystems. It is intuitive and easy to explain. Coupling contributes to the development of the joint forces among the systems, which not only promotes the self-development of each subsystem but also strengthens the coordination of each subsystem. The model does not need to select too many control variables. If there are too many control variables, too many systems will interfere with the final result. Since the level of the coupling degree value cannot accurately reflect the coordinated development level, this study establishes a coupling coordination model. The specific steps are as follows:
Normalize the data by min-max, and remove the unit limitation to the data. Also then, convert it into a dimensionless pure value so that indicators of different units or magnitudes can be compared. For the positive indicator of electricity investment, the normalization formula is as follows:
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For the reverse indicator of carbon emission, the normalization formula is as follows:
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[image: image] is the original data on the ith province in the tth year, [image: image] represents the standardized result of the ith province in the tth year, and max [image: image] and min [image: image] are the maximum and minimum values of the indicator, respectively. According to the coupling coordination model, the coupling degree is calculated through the standardized [image: image], and the formula is as follows:
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A represents the coupling degree between investment and carbon emissions in the electricity industry, [image: image] represents the investment level, and [image: image] represents the carbon emission level. The value ranges from 0 to 1. The larger the value, the higher the coupling degree is. When A = 1, it represents the optimal coupling state between the two markets. Since the coupling degree can only reflect the coupling degree between systems, the coupling coordination model is further introduced:
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F represents the comprehensive coordination index; [image: image] and [image: image] represent the weight coefficients. Assuming that they have the same importance to the system as a whole, both [image: image] and [image: image] are set to 0.5. Referring to empirical research practices (Chen et al., 2019; Cui et al., 2019; Zhou et al., 2020), the coupling coordination degree is divided into ten grades. The classification standards are shown in Table 1.
TABLE 1 | Classification of the coupling coordination degree.
[image: Table 1]Data source
This study mainly analyzes the coupling coordination degree of investment and carbon emissions in China’s provincial electricity industry from 2000 to 2019. The investment data on the electricity industry come from the National Bureau of Statistics of China and the China Energy Statistics Yearbook. In view of the lack of official data on carbon emission of the electricity industry in each province, this study adopts the carbon emission data on China’s electricity industry calculated by Carbon Emission Accounts and Datasets (CEAD), by referring to relevant international data recommended by the Intergovernmental Panel on Climate Change (IPCC). These data are based on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, and the carbon emission intensity of China’s electricity industry is measured by the energy balance table, which has been widely used in related fields. From the perspective of data availability, 30 provinces in China were selected as the research objects. Because CEAD has not released the carbon emission data on Tibet, Hong Kong, Macau, and Taiwan, these regions are not included in the calculation.
Result analysis
Although the carbon emissions of all provinces have increased in recent years, the size is different (Table 2). From the perspective of the average carbon emissions in the electricity industry, Shandong, Jiangsu, Inner Mongolia, and other provinces have relatively high carbon emissions with an annual average of more than 300 Mt. The average annual carbon emissions of Hebei, Shanxi, Henan, and Guangdong also exceed 200 Mt, while the carbon emissions of first-tier developed provinces such as Beijing and Shanghai are relatively low. The standard deviation in Inner Mongolia and Shandong is large, while that in Hainan, Qinghai, Beijing, and Shanghai is small. At the same time, there is a strong positive correlation between investment and carbon emissions. Provinces with high carbon emissions also have larger investments. Hebei, Inner Mongolia, and Shandong have maintained high investment; their investment is much higher than that of low carbon emission areas.
TABLE 2 | Descriptive statistical results.
[image: Table 2]Figures 2, 3, respectively, show the mean value and growth rate of investment and carbon emissions in the electricity industry in China’s provinces from 2000 to 2019. During the investigation period, carbon emissions increased year by year, and the growth rate of carbon emissions decreased significantly since 2010. Although there has also been a significant increase in electricity investment, the growth has been sluggish in recent years. In 2018, there was negative growth. There is great room for improvement.
[image: Figure 2]FIGURE 2 | Carbon emissions of China’s provinces from 2000 to 2019.
[image: Figure 3]FIGURE 3 | Electricity investment of China’s provinces from 2000 to 2019.
According to Eqs 1–5, the coupling coordination degree of investment and carbon emissions of 30 provinces in China each year can be calculated (Table 3). Due to space limitations, only the calculation results of 2000, 2010, and 2019 are shown to investigate the changing trend of the coupling coordination degree with time. From 2000 to 2019, the coupling coordination degree has increased significantly in all provinces. At the beginning of the new century, except for a few provinces and regions such as Zhejiang and Hubei, most provinces were facing a disorder state. There is an imbalance between electricity investment and carbon emissions. The provinces in the state of mild imbalance and on the verge of imbalance account for 40%, respectively, while some provinces such as Hainan were still in a state of severe imbalance.
TABLE 3 | Results of coupling coordination.
[image: Table 3]As time goes on, the coupling coordination degree in each province has improved significantly. In 2010, most provinces have gotten rid of the maladjustment state. They entered the stage of reluctant coordination and primary coordination. Among them, Sichuan has even entered the stage of intermediate coordination. Although Hainan is still in the stage of mild imbalance, it still has a significant increase. Beijing, Shanghai, and other developed provinces are still on the verge of imbalance, and the coupling and coordinated development are not satisfactory. In 2019, the coupling coordination degree has achieved a further leap in some provinces. Henan has made the most obvious progress. However, some provinces have not increased. The coupling coordination degree is facing a state of imbalance again, showing an “inverted U-shaped” trend of change.
In order to further analyze the coupling and coordinated development of investment and carbon emission in different regions, this study divides 30 provinces into four parts, according to the geographical location: eastern, central, western and northeastern. Among them, the eastern region includes 10 provinces, namely, Beijing, Fujian, Guangdong, Hainan, Hebei, Jiangsu, Shandong, Shanghai, Tianjin, and Zhejiang; the central region includes 6 provinces, namely, Anhui, Henan, Hubei, Hunan, Jiangxi, and Shanxi; the western region includes 11 provinces, namely, Chongqing, Gansu, Guangxi, Guizhou, Inner Mongolia, Ningxia, Qinghai, Shaanxi, Sichuan, Xinjiang, and Yunnan; and the northeastern region includes three provinces, namely, Heilongjiang, Jilin, and Liaoning.
Among the four major regions, the coupling coordination degree of the central and western regions shows a better development state than the other two regions. After 2014, the average value of coupling coordination in the central region basically reached the primary coordination level and dropped slightly in 2018–2019. The western region has a low degree of coupling coordination at first, but the growth trend is good and it has basically reached the primary coordination state in recent years. Since 2010, the coupling coordination degree of the eastern and northeastern regions has shown an “inverted U-shaped” change. With the weak investment and the increase in carbon emissions in the electricity industry, the coupling coordination degree has shown a downward trend, especially in the northeastern region. The coupling coordination degree dropped from 0.62 in 2010 to 0.55 in 2019, falling from primary coordination to barely coordination again. The same development trend also existed in the eastern and western regions (Table 4).
TABLE 4 | Coupling coordination degree of four regions.
[image: Table 4]COUPLING COORDINATION DEGREE PREDICTION
Based on the investment and carbon emission data from 2000 to 2019, this study further uses the GM (1, 1) model to predict the coupling coordination degree of each province from 2020 to 2030. Due to the limited sample size, the whole coupling coordination degree trend cannot be predicted by ordinary linear or nonlinear models with high uncertainty. In the gray system theory, the GM (1, 1) model is the most widely used coupling coordination degree prediction (Xing et al., 2019; Cheng et al., 2019; Wang et al., 2020). Under fewer data samples, the GM (1, 1) model makes full use of time-series data information for analysis and prediction. Compared with simulation prediction methods such as Markov chains and cellular automata, this method is more convenient to calculate and has higher prediction accuracy (Liu et al., 2018; Ye et al., 2022).
Suppose there are n observations and the original data time series of each province is [image: image], accumulate [image: image] to obtain a new time series [image: image]. Construct matrix [image: image], and the differential equation corresponding to the GM (1, 1) model is as follows:
[image: image]
a is the development gray level, u is the endogenous control gray number, and [image: image] is the parameter vector to be estimated. Using the OLS method to solve [image: image], we can get [image: image]; solve the differential equation to get the GM (1, 1) prediction model:
[image: image]
By substituting the existing data into the GM (1,1) model, the predicted value of the coupling coordination degree can be obtained from Eq. 7. Figure 4 shows the predicted value of the coupling coordination degree in the four regions from 2020 to 2030. The coupling coordination degree in the central region shows the best performance. After 2025, the degree of coupling coordination reached the intermediate level, showing a rising trend. The coupling coordination degree in the western region has also increased steadily, but the growth rate is slightly lower than that in the central region, and it will continue to remain in the primary coordination stage in the next 10 years. In contrast, the development of the coupling coordination between the eastern and northeastern regions is relatively slow. After 2028, the coupling coordination degree of the two has achieved convergence, but there is still a certain gap in intermediate coordination.
[image: Figure 4]FIGURE 4 | Prediction of the coupling coordination degree from 2020 to 2030.
Overall, the coupling coordination degree has been developing in a better direction, but the rising rate still needs to be further improved. Favorable policies and measures are needed to promote the high-quality coupling coordination development between electricity investment and carbon emissions across the country and in various provinces.
CONCLUSION AND POLICY IMPLICATIONS
Conclusion
China’s electricity industry is in a critical transition period. The coordinated development of investment and carbon emissions will have a profound impact. Based on the investment-carbon emission system theoretical mechanism, this study calculates the coupling coordination degree and uses GM (1, 1) to predict them from 2020 to 2030. The conclusions are as follows:
(1) The coupling coordination degree of investment-carbon emissions in China’s electricity industry is increasing steadily, and most provinces and regions have entered the stage of barely coordination and primary coordination.
(2) There are differences in the coupling and coordinated development of the electricity industry in different regions. The coupling coordination degree in the central region has the best development, while the coupling coordination degree in the eastern and northeastern regions is relatively backward. Although the coupling coordination degree of each region has shown good development, it has declined to a certain extent in recent years.
(3) According to the forecast results of the GM (1, 1) model, China’s electricity industry will still show a good coupling and coordinated development trend in the next 10 years. The coupling coordination degree in the central region can reach the intermediate level, while the coupling coordination degree in the eastern and northeastern regions rises slowly, which still needs to be focused on.
This study provides a new perspective for research on the relationship between investment and carbon emissions in the electricity industry, which makes up for the current lack of paying attention to investment and carbon emission reduction in isolation. It theoretically reveals the mechanism of action between electricity investment and carbon emissions, discusses the spatiotemporal evolution trend of the degree of coupling and coordination between the two, and enriches the relevant research on carbon emissions in the electricity industry. The research methods and framework also have a certain reference value for other industries with the same characteristics. The prediction of the coupling coordination degree provides a reference for China’s electricity industry to formulate technological innovation and energy policies. It will help to better achieve the emission reduction goals under the low-carbon background of the “carbon peak” in 2030 and “carbon neutrality” in 2060.
Policy implications
The mismatch between investment and carbon emissions will hinder the development of the electricity industry. Provinces with different coupling coordination degree types need to formulate different strategies. For the provinces with high carbon emissions but low coupling coordination, their electricity industry relies too much on energy consumption in the development process. They lack sufficient technical support in the optimization of resources and the environment, which leads to the uncoordinated electricity investment and carbon emission system in these provinces. For these provinces, it plays an important role in promoting R&D and innovation of electric power technology; for provinces with low carbon emissions and a high coupling coordination degree, these places have developed economies, low dependence on carbon emissions, and relatively coordinated performance in dealing with the relationship between electricity investment and low-carbon development. Therefore, the electricity industry should pay attention to the improvement of existing emission reduction technologies and the development of new technologies.
In the future, it can be seen that there will still be differences in the coordination degree of investment-carbon emission coupling of the electricity industry in different regions. Further research is needed to realize the coordinated development of the two systems. The eastern, central, western, and northeastern regions should strengthen international technical exchanges, cooperation, and sharing and promote the rational utilization and optimal allocation of nationwide electricity investment. They should promote the coupling and coordinated development of the eastern and northeastern regions on the basis of consolidating the good achievements of the central and western regions, narrowing the difference of coupling and coordination between different regions, learn from the excellent regional development experience to form a demonstration effect, and jointly promote the energy conservation and emission reduction in the electricity industry.
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, ™%, and *indlcate significant levels at 1, 5, and 10%, respectively. The standard
error is reported in the parentheses.
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Energy system Energy efficiency Energy consumption per unit of GDP Tce/10,000 yuan -
Energy consumption Energy consumption Mitce -
Energy structure Coal consumption proportion % =
Proportion of electric energy consumption % +
Electric power system Power supply and demand  Per capita electricity consumption KWh/Person +
Proportion of thermal power generation % _
Per capita power supply KWh/Person +
Consumption proportion of domestic electric terminals % +
Proportion of consumption of industrial power terminals % +
Amount of energy available for local consumption Terawatt-hours +
Power grids quality Reduction rate of industrial added value power consumption % +
Power generation capacity Megawatt +
Transmission line loop length Kilometer %
Transformer capacity One thousand Kilo VA +
Capacity of generating equipment in 6,000 kW and above power plants  Ten thousand kilowatts  +
Average utilization hours of power generation equipment hour +
Social environment Low carbon development  Carbon dioxide emission intensity Tons/ten thousand -
system yuan
Energy intensity Mitce/million tons -
Environment quality Sulfur dioxide emissions Ten thousand tons -
Average annual air PM2.5 concentration wgm3 -
Technology drive Output rate of invention patents % +
Green invention patent applications piece +
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Model

LnCO2_C = f (LnGDP, LnPOP, EEF_C)
LnCO2_G = f (LnGDP, LnPOP, EEF_G)

LnCO2_O = f (LnGDP, LnPOP,
EEF_O)

Critical value bounds
Level of significant
10%

5%

1%

F-value

30.456
16.635
5.032

Lower limit (1(0))
2922
3.559
5064

Result

Cointegration
Cointegration

Cointegration

Upper limit (1(1))
4.061
4.841
6.659
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Variable Coetficient Std. Error t-Statistic p-value

Long-run
c -0.852 9472 -0.090 0929
LnGDP 0981° 0127 7.705 0.000
LnPOP 0.134 1464 0.091 0.928
LnEEF_C -0338* 0.119 -2.833 0.008
DUM'(COALF'10°) -239 x 107 538 x 107 -4432 0.000
Short-run

D (LnGDP) 0993 0019 51907 0.000
D (LnPOP) 0011 0124 0.091 0.928
D (LnEEF_C) -0.363 0016 -22703 0.000
DUM(COALF'10°) ~3.08 x 107 326 x 107 -0.094 0925
ECT,.; -0.085* 0.006 -14426 0.000
Diagnostic tests

Test Statistic Value Prob

Normality Jarque-Bera 2924 0232

Serial Correlation Chi-square (1) 0.008 0.928

Heteroskedasticity Chi-square (25) 41.649 0172

Functional form Chi-square (1) 0555 0457

CUSUM test Stable

CUSUM of square test Stable

*denotes level of significance at 1% level.
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Coal model Gas model Oil model

Year Actual value Predicted value Actual value Predicted value Actual value Predicted value
2010 3298286 3098.594 312631 2621613 59.69654 62.16665

2011 3738.643 3289.894 44.90924 29.14733 59.03182 6541825

2012 3755838 3403.149 4552839 309542 68.11364 716497

2013 4026316 3548.166 48.04628 3329499 83.47544 7653861

2014 3996.477 3681.818 55.02207 36.18054 9371664 8468916

2015 3942563 3810925 68.8911 39.09573 108.4021 89.34158

2016 3991116 3938.214 77.72435 4146349 123.5707 97.6763

2017 4226292 4064.777 83.8746 4409121 120.7689 105,614

2018 4534499 4191.048 88.95166 4698417 128.4015 108.4819

2019 4606.215 4317.204 95.96873 49.89155 143.417 114.8871
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Model RMSE MAE MAPE Smape Theil Theil Selected
U1 02 model
co, ARIMA 129.7897 5627165 1451,081 1,508,488 0.026986 0360476 ARIMA
e VAR 133.7077 5581578 1451521 1,513,455 0.027796 0371,787
CO, gas ARIMA 15.79207 7.510291 10.87788 13.68461 0.266,092 0352,678 VAR
VAR 1,516,784 0.752,196 1296965 1294572 0.020509 0046997
CO; oil ARIMA 8.723,121 3.911,894 3.559,546 3.804,302 0.065435 0544,169 VAR
VAR 5.148,574 2291,167 282309 2.667,351 0.037203 0.486,747
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Coal model Gas model Oil model

Year Actual value Predicted value Actual value Predicted value Actual value Predicted value
2010 3298286 3081626 312631 3297048 59.69654 7073683
2011 3738.643 3260.812 44.90924 41.97803 59.03182 7548626
2012 3755838 3437.098 4552839 4692644 68.11364 80.94506
2013 4026316 3610376 48.04628 5168831 83.47544 87.02337
2014 3996.477 3780.464 55.02207 58.13641 9371664 93.69099
2015 3942563 3947.14 68.8911 6536717 108.4021 100.9305
2016 3991116 4110.158 77.72435 7316031 123.5707 108.7325
2017 4226292 4269.263 83.8746 8155672 120.7689 117.0932
2018 4534499 4424.203 88.95166 899754 128.4015 1260138

2019 4606.215 4574.732 95.96873 98.07298 143.417 135.499
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Variable Coetficient Std. Error t-Statistic p-value
Long-run
c 4601 11671 0394 0.696
LnGDP 15310 0159 9.615 0.000
LnPOP -1992 1.808 -1102 0278
LnEEF_G -0.003* 0.000 -10749 0.000
DUM*(GASF*10°) ~229 x 107 342 % 107 ~6.692 0.000
Short-run
D (LnGDP) 0.758° 0200 3791 0.001
D (LnPOP) ~0.986 0993 ~0.994 0327
D (LnEEF_G) -0.003* 0.000 -28.307 0.000
DUM#(GASF*10°) ~113 x 1072 230 x 10 -4933 0.000
ECT,, -0.495" 0.047 -10628 0.000
Diagnostic tests
Test Statistic Value Prob
Normality Jarque-Bera 2924 0.101
Serial Correlation Chi-square (1) 2634 0.105
Heteroskedasticity Chi-square (27) 30990 0272
Functional form Chi-square (1) 261 % 10° 0.996

CUSUM test
CUSUM of square test

Stable
Stable

“denotes level of significance at 1% level.
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Variable Coetficient Std. Error t-Statistic p-value
Long-run
G 62,102 8385 7.407 0.000
GDP 1558 0.105 14768 0.000
POP -9.802* 1287 -7615 0.000
EE_O -0011* 0001 -9.564 0.000
DUM*(OILEF*10%) -239 x 107 538 x 107 ~4431 0415
Short-run
D (GDP) 1201 0131 9.862 0.000
D (POP) -4265 1401 ~3.044 0.004
D (EE_O) -0012* 0001 -20.187 0.000
DUM*(OILF*10%) 194 x 107 235 x 10 0825 0415
ECT,, ~0.085" 0.006 ~14426 0.000
Diagnostic tests
Test Statistic Value Prob
Normality Jarque-Bera 4547 0.103
Serial Correlation Chi-square (1) 0441 0506
Heteroskedasticity Chi-square (19) 23185 0229
Functional form Chi-square (1) 0908 0341

CUSUM test
CUSUM of square test

Stable
Stable

“denotes level of significance at 1% level.
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Independent variables
seg

infdoh

state

er

incp

constant

EC

25075
(1.5226)
00357
(0.0541)
-0.0109
(0.0090)
0.0456
(0.0929)
-0.0066
(0.0074)
08276
(0.3169)

Note: The standard deviations in parentheses,

1%, 5% and 10%, respectively.

BPC

-3.1248"
(1.5630)
-0.1036
(0.0636)

-0.0232"
(0.0088)
-0.1862
(0.1124)
0.0171*
(0.0079)
1.5873
(0.3722)

TGC

-1.0568
©0.7510)
-0.0065
0.0133)
-0.0018
(0.0075)
-0.0233
0.0212)
0.0028
(0.0046)
10283
(0.0826)

and * are significant at the levels of
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Independent variable
seg

infdoh

state

er

Incp

constant

Note: The standard deviations in parentheses,

Regression (1)

-24717"
(0.9036)
-0.2016"
(0.0888)
-0.0146
0.0163)
-0.2610"
(0.1388)
0.0043
0.0147)
20473
(0.5466)

Regression (2)

-1.7518"
0.7377)
-0.1470*
(0.0723)
-0.0072
0.0148)
-0.2130"
0.1011)
00102
(0.0140)
1.7183"
(0.4501)

Regression (3)

-2.6295"
(1.4279)
-00742
(0.0953)
-0.0287*
(0.0164)
-0.2206
(©0.2118)
0.0062
(0.5531)
05270
(0.5531)

and * are significant at the levels of 1%, 5% and 10%, respectiely.

Regression (4)

-1.8815"
(0.7943)
-0.0263
(0.0184)

-0.0205*
(0.0079)

-0.0512"
(0.0431)
-0.0052
(0.0076)

0.8962"*"
(0.1149)

Regression (5)

~1.5704*
(0.9129)
-0.0307
(0.0416)

-0.0412*
(0.0169)
0.0423
(0.0528)
0.0070
(0.0093)

1.1629"*
(0.2587)
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Independent variable
seg

infdoh

state

er

Incp

constant

Note: The standard deviations in parentheses,

Regression (1)

-2.2388"

(0.7609)
-0.1128*

(0.0434)

1.6509"
(0.2492)

Regression (2)

-1.6074*
(0.7366)
-0.1436"

(0.0503)
-0.0384*
(0.0108)

1.8450"
(0.2921)

and * are significant at the levels of 1%, 5% and 10%, respectiely.

Regression (3)

-1.6799"
(0.7370)
-0.0692
(0.0492)

-0.0400"
(0.0105)

-02112"
(0.0569)

1.4342"
(0.2836)

Regression (4

-1.6878"
(0.7401)
-0.0633
(0.0459)
-0.0362*
(0.0107)
-0.1760"
(0 .0564)
0.0146"*
(0.0081)
1.3241*
(0.2681)
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Variable

MMUE!
seg
Infdbh
state
or

Incp.

Obs

360
360
360
360
360
360

Mean

1.0010
0.0014
5.7369
0.4929
0.0679
4.9357

0.0325
0.0013
0.0811
0.1861
0.0502
02092

0.7437
0.0002
5.3181
0.0389
0.0033
4.3667

Max

1.1163
0.0101
6.0621
0.9796
0.3371
5.4282
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Methods

production method

Trade flow method

Relative price
method
Business cycle
method
Questionnaire
method

Sources

Young, 2000; Bai et al., 2004; Zheng and Li, 2003; Hu and
Zhang, 2005

Naughton (2000); Poncet (2003); Xu et al. (2007); Fan and Lin
(2011); Hu and Zhang (2005)

Parsley and Wei (2001b); Fan and Wei (2006); Lu and Chen
(2009); Wei and Zheng (2017)

Tang (1998); Xu (2002)

Li and Hou (2008)

Introduction

The degree of market segmentation is measured by analyzing the differences in
indlustrial structure, manufacturing output structure, production efficiency, degree
of specialization, and marginal capital output of important products between
regions.

Based on the gravity model and border effect model, the trade flow, trade intensity
and trade structure of various regions are analyzed to examine market
segmentation

“The market segmentation is examined through the differences in commaodity prices
between regions.

The market segmentation is measured by calculating the correlation of the business
cycle in each region,

Obtain first-hand information and relevant data about local situation directly through
questionnaires.
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Region

Beijng
Fujian
Guangdong
Hainan
Hebei
Jiangsu
Lizoning
Shandong
Shanghai
Tianjin
Znejiang
Anhi
Henan
Heiongjiang
Hubei
Hunan

Jiin

Jiangxi
inner Mongolia
Shanxi
Guangxi
Gansu
Guizhou
Ningxia
Qinghai
Shaanxi
Sichuan
Xinjiang
Yunnan
Chongaing
Average

EC

1.0101
0.9952
1.0000
1.0030
1.0004
1.0000
1.0000
1.0026
0.9983
0.9997
0.9998
1.0102
1.0063
1.0064
0.9954
1.0007
1.0034
1.0093
1.0080
0.9996
1.0070
0.9964
0.9927
1.0124
0.9838
1.0021
0.9852
1.0145
09853
1.0011
1.0009

BPC

0.9886
0.9957
0.9968
1.0002
1.0011
1.0030
1.0007
0.9988
1.0022
0.9990
1.0023
0.9989
0.9969
0.9956
0.9957
0.9956
0.9956
0.9957
1.0000
1.0057
0.9895
0.9996
1.0060
0.9992
0.9997
1.0059
1.0022
0.9990
1.0013
0.9987
0.9990

TGC

1.0087
1.0077
1.0016
1.0015
1.0067
1.0000
1.0050
0.9989
1.0000
1.0048
1.0000
1.0034
1.0022
0.9991
0.9960
0.9980
0.9983
1.0067
0.9945
1.0023
0.9974
0.9981
1.0006
1.0016
0.9954
1.0051
0.9958
1.0033
0.9961
0.9990
1.0007
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Region 2006

Total sample
Mean 0956
Max 1.062
Min 0.744

Eastern region

Mean 0.980
Max 1.006
Min 0912

Central region

Mean 0.973
Max 1.062
Min 0.832

Western region

Mean 0915
Max 1.004
Min 0.744

2007

1.014
1.067
0.994

1.018
1.050
1.004

1.007
1.015
0.999

1.017
1.067
0.994

1.002
1.071
0.974

1.002
1.063
0.974

1.010
1.071
0.982

0.996
1.025
0.976

1.007
1.076
0.977

1.007
1.076
0.990

1.008
1.029
0.992

1.008
1.036
0977

2010

1.018
1.101
0.953

1.013
1.101
0.953

1.014
1.024
0.995

1.026
1.075
0.995

2011

1.013
1.116
0.965

1.021
1.116
0.978

1.001
1.020
0.965

1.015
1.086
0.987

2012

1.000
1.098
0.956

0.997
1.082
0.956

0.998
1.036
0.975

1.004
1.008
0.969

2013

1.005
1.032
0.981

1.005
1.082
0.981

1.008
1.023
0.983

1.007
1.025
0.986

2014

0.997
1.067
0916

0.998
1.054
0.962

1.001
1.050
0.969

0.991
1.067
0916

2015

0.994
1.036
0.953

0.995
1.028
0.953

0.998
1.032
0.974

0.990
1.036
0.963

2016

1.008
1118
0.977

1.009
1118
0.977

1.008
1.073
0.997

1.006
1.043
0.985

2017

0.999
1.039
0.896

0.990
1.010
0.896

1.007
1.039
0.989

1.002
1.012
0.986
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Variable Group Obs Mean Sd Min Max

K Eastern China 143 3281.83 2440.47 163.11 10334.9
Central China 17 2896.42 1860.88 590.72 8170.29
Western China 130 1398.33 871.69 88.92 5126
L Easten China 143 91338.96 58196.54 12426 253007
Central China 17 105721 35436.25 59739 206920
Western China 130 71660.97 41098.98 10346 224200
E Eastemn China 143 4602.44 3479.35 201 13332
Central China 17 3909.31 2586.09 1070 11381
Western China 130 1713.95 952.43 215 4435
Y Eastern China 143 1676.2 1194.81 82.19 4671
Central China 17 1318.04 855.71 347 3736
Western China 130 636.44 415.35 73 2349
C Eastern China 143 12760.27 9646.5 557.27 36963
Central China 17 10838.56 7169.93 2966.57 31553.8

Western China 130 4751.93 2640.62 596.09 12296
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Variable

Capital ()

Labor (1)

Energy (E)

Power generation (Y)
CO, emissions (C)

Description

The power generation capacity of power plants of 6,000 KW and above
Number of laborers in power and heat production and supply industries
The amount of fossi fuels consumed in power generation

The amount of thermal power generation

The amount of CO; emissions

Unit

10,000 KW
People
10,000 tons of standard coal
100 million KWh
kg
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Type

Leading areas
Medium areas

Backward areas

Province

Zhejiang, Guangdong, Jiangsu
Yunan, Fujian, Shandong, Qinghai, Sichuan, Shanghai, Beijing, Hubei, Inner Mongolian, Guangxi, Ningxia

Jinlin, Shanxi, Jiangxi, Shaanxi, Hainan, Heilongjiang, Hunan, Liaoning, Guizhou, Gansu, Hebei, Henan, Anhui, Xinjiang,
“Tianjin, Chongging

Mean

0.606
0424
0311

Max  Min

0.670 0543
0539 0338
0410 0218





OPS/images/fenrg-10-951140/inline_1.gif





OPS/images/fenrg-10-951140/fenrg-10-951140-t002.jpg
Year 2007 2010 2013 2016 2019 Mean Rank

Guangdong 0.653 0638 0.586 0.624 0.659 0.628 1
Jiangsu 0.543 0623 0.637 0.633 0599 0617 2
Zhejiang 0.579 0562 0.555 0591 0568 0573 3
Qinghai 0.432 0491 0517 0481 0505 0.487 4
Sichuan 0.443 0433 0.496 0536 0.469 0.481 5
Yunnan 0.374 0405 0.468 0492 0454 0447 6
Fujian 0.410 0425 0.419 0481 0.448 0437 7
Shandong 0.417 0398 0.431 0480 0476 0434 8
Hubei 0.408 0405 0.409 0432 0393 0417 9
Beijing 0.426 0431 0.394 0.406 0397 0414 10
Shanghai 0.482 0442 0.380 0379 0358 0.406 1
Inner Mongolia 0.338 0352 0.399 0453 0478 0397 12
Guangxi 0.353 0343 0.359 0420 0357 0375 13
Ningxia 0.350 0357 0.379 0.391 0382 0372 14
Gansu 0.347 0350 0.360 0.366 0390 0359 15
Hunan 0.359 0351 0.346 0.364 0319 0349 16
Hebei 0.329 0339 0.331 0350 0364 0343 17
Liaoning 0.350 0346 0.357 0347 0319 0343 18
Guizhou 0.302 0.300 0.337 0.364 0376 0342 19
Henan 0.301 0321 0.327 0355 0356 0339 20
Anhui 0.256 0297 0.323 0383 0365 0330 21
Xinjiang 0.242 0.260 0.342 0368 0410 0321 z
Chongqing 0.288 0285 0.314 0338 0.290 0312 23
Tianjin 0314 0315 0.285 0.301 0317 0305 24
Jiangxi 0.254 0259 0.275 0322 0.306 0286 25
Shanxi 0.286 0273 0.284 0293 0298 0286 26
Shaanxi 0.248 0265 0.274 0323 0296 0283 27
Hainan 0.263 0.246 0.252 0291 0.286 0267 28
Heilongjiang 0.259 0259 0.283 0.269 0233 0266 29

Jilin 0.255 0246 0.243 0243 0218 0240 30
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Criterion layer Indicator layer Unit Indicator ‘Weight
direction

Economy GDP per capita Yuan + 00728
Proportion of added value of secondary industry % % 00003
GDP growth rate % + 0032
Urbanization rate % + 00032
Unemployment rate % - 0.0006

Society Green coverage rate of the built-up area % + 00014
Per capita urban road area Square meters + 0018
Public transport vehicles per 10,000 people Standard table + 00116
Domestic garbage volume Ten thousand tons + 00417
Investment in environmental pollution control Million yuan + 00646

Energy Electricity consumption per capita Kilowatt hour - 00278
Energy consumption per unit of GDP Kg standard coal/yuan - 00347
Energy consumption Ten thousand tons of standard coal ~ - 00173
Reduction rate of energy consumption per unit in industrial added value % + 01701
Proportion of renewable energy % + 00283

Environment Carbon dioxide emissions Kiloton - 00214
Forest coverage % + 0.0002
Emissions per unit of GDP Kg/yuan - 00289
Sulfur dioxide emissions Kiloton - 0123
Number of green patent applications Pieces + 03021
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Year Economy Society Energy Environment

2006 9.99 13.00 29.12 47.89
2007 953 1274 2993 47.81
2008 935 12.13 32.84 45.68
2009 10.60 1351 2532 50.57
2010 10.69 14.10 20.77 5443
2011 9.17 1150 3233 47.00
2012 10.45 1229 2587 5139
2013 937 1042 34.50 45.71
2014 10.46 1271 2603 50.80
2015 10.46 1225 29.70 47.59
2016 10.62 1337 3112 44.89
2017 10.47 1275 39.07 37.71
2018 1238 15.13 3451 37.98

2019 10.57 15.00 32,67 4177
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Variable LnCO,_C LnCO,_G LnCO,_ O
Coefficient (std. t-stat Coefficient (std. t-stat Coefficient (std. t-stat
err.) err.) err.)
LnGDP ~1.038 (0.004) 259500 ~0314 (0.185) 1697 ~1.921 (0.066) 29.106
LnPOP 0793 (0.083) 9.554 ~26.329 (3.363) 7.829 15748 (1255) 12548
EF_C/G/O 0384 (0.004) 96.000 004 (0.0003) 13333 0.010 (0.001) 10.000
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Model Variable Coefficient Std. Error t-Statistic p-value
Coal model c 126078 17752 2640 0.013
AR (1) 0.400 0.153 2619 0.014
MA (4) 0245 0135 1818 0.079
Gas model ¢ 2,900 1830 1584 0124
AR (4) 0487 0.158 3.091 0.004
MA (1) 0428 0.168 2547 0.016
Oil model (o] 3557 2954 1204 0.238
AR (6) 0331 0.130 2539 0.017
MaA (10) 0.564 0286 1976 0.057
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Lag LoglL FPE AlC
Coal model
0 -630.524 NA 7.06E+12 40.93704 4112207 4099735
1 ~312.644 5332176 2485423 2146092 2238608 217625
2 -289.754 3248905 16,876.32 2101641 2268168 2155925
3 -266.853 26.59520" 1258271 2057115 2297655 2135525°
4 ~254.863 1082948 22,468.01 2082988 239754 2185524
Gas model
0 -73259 NA S.11E+15 47.52192 47.70695 47.58224
1 ~453.047 4689106 213E+08 3051916 3144431 3082073
2 -427.877 3572493 125E+08 29.92755 3159283 3047039
3 -395.993 37.02712° 52,256,486 28.90275 31.30815" 29.68685
4 -369.327 24.08505 36,201,720° 2821465 3136017 29.24001°
Oil model
0 ~657.94 NA 4.14E+13 42.70583 42.89086 4276614
1 -389.682 4499818 358E+06 26.43109 27.35624* 2673267
2 -367.738 3114635 258E+06 26.04761 27.71288 2659044
3 345,501 2582342 2,011,024* 25.64523 28.05063 26.42933"
4 ~327.991 158158 2,514,936 25.54779* 28.69331 2657315

"Denotes lag order selected at the 5% level.
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Hypothesis H, Hypothesis H, Trace statistic 5% Critical Max-Eigen statistic 5% Critical
value value

Coal model

r=0 64.04463* 47.85613 37.9527* 27.58434

rz1 2609193 2979707 1469912 2113162

rz2 1139281 1549471 9.793,107 14.2646

r23 15997 3.841,465 15997 3.841,465
Gas model

r20 6401293 4785613 39.56543 27.58434

rz1 2444751 2979707 19.58731 2113162

rz2 4860201 1549471 4615254 14.2646

r>3 0244,946 38414465 0244946 3,841,465
Oil model

rz0 55.68548° 4785613 3452404 27.58434

rz1 2116145 2979707 10.90198 2113162

rz2 1025947 15.49471 7.89001 14.2646

r23 2.369,458 3841465 2.369.458 3.841465

v T Boranibosts: polisct:ab 06 dowd;
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Variables

LnGDP
LnPop
InC02.C
InC02.G
InC02.0
EEF_C
EEF_G
EEF_O

Augmented dickey fuller

Level

0.807
-2.146
1.897
3.896
1618
~0.050
-0.773
-1.397

First difference

-4014°
-2283

~3593"
-3.002"
~4.649"
-4305*
~7.441°
-4826"

Phillips - perron
Level

0548
~12.470°
1.330
8713
1618
-0.730
-2344
-1417

First difference

-4034°
~0.641

-3593"
-3.070"
~4.661"
-4282°
-8927°
-4778

* denotes the variable is significant at 1%
> denotes the variable is significant at 5%

Not¢

G 0 adiee: e waratbe e Coil G il O vicver: plait, Sapctialy.
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Dependent variable: carbon_pop

10points 25 points 50 points 75 points 90points

(1) @) 3) 4) (5)
carbon_pop,-» 0.0479*** (0.0144) 0.1460*** (0.0219) 0.2457*** (0.0171) 0.2895*** (0.0466) 0.5330°** (0.0338)
equilibrium 0.3024*** (0.1076) 02513* (0.1630) 0.2500** (0.1278) 03010+ (0.1473) 1.1604** (0.2521)
equilibrium’ ~0.2471* (0.1125)----- -0.2107* (0.1305)---—- ~0.2255* (0.1336)—--—— ~0.2637"* (0.0631)-—--- ~1.0887*** (0.2636)
control YES YES YES YES YES
Pseudo R* 0.1760 02037 02882 02940 03701

Obs. 297 297 297 297 297
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carbon

1)

carbon_gdp

2

carbon_pop

3)

carbon_area

)

carbon,_
carbon_gdp;-»
carbon_pop;-»

carbon_area,

equilibrium
equilibrium®
equilibrium x legal
equilibrium® x legal
control

R

F stat.

Obs.

0.8308*** (0.0329)——

49472° (2.9202)—————
~1.5619 (3.1074)

=20.5343* (11.6384)-———~
~127.3417 (124.4948)——
YES

09791

225617
297

0.3578** (0.0277)~————

0.9189°** (0.1635)-————
~0.2636* (0.1565)~———~
~0.4984 (2.9075)
114125 (6.9767)—
YES

08798

215517
297

0.6804*** (0.0334)---—~

0.1056* (0.0532)—~
~0.0058 (0.0564)~——-~
~3.3447*** (0.9238)——-——
3.0031 (2.2188)-—-—~
YES

09347

10586
297

0.7026*** (0.0331)—---~
00186 (0.0096)————~
~0.0081 (0.0105)~—-—~
~0.0999% (0.0512)--
~0.4833 (0.4095)
YES

09907

11730
297

Note: The above regression equations have controlled the level of economic development, the quadratic term of the level of economic development, the industrial structure, and the level of
government spending. (2) There may be multicollinearity between variable legal and interaction term equilibrium x legal as well as equilibrium’ x legal, Therefore, variable legal in the
ot SR Ao b R el
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Var

LinEmploy
InEr
LnEr2
Iny
InOpen
InWage
InZF
InPRC
inModern
inHuman
_cons

Wald test
AR (1)

AR (2)
Sargan test
Observations

Note:

* and **

Model-5 (Eastern region)

05254 (0.2215)
~0.0413"* (00112)
0.0645"** (0.0088)
03112 (0.1011)
0.0388"** (0.0155)
02152 (0.0882)
~0.0125™ (0.0061)
~0.1157** (0.0589)
-0.0859"** (0.0355)
0.0202"** (0.0095)
-0.3746"" (0.0625)

0.0003
0.0000
0.6432
0.9633
165

represent significance at the level of 1, 5, and 10%, respectively: The values in brackets represent the standard deviation.

Model-6 (Central region)

06118 (0.1568)
-0.02874 (0.0254)
001818 (0.0156)
0.3349"* (0.161)
00311** (0.0160)
0.3624"* (0.0756)
-0.0156" (0.0792)
0.2241"** (0.0674)
-0.128"* (0.0482)
00113 (0.0072)
-0.3284"* (0.0468)

0.0001
0.0001
0.4394
0.9062
150

Model-7 (Western region)

0.6745"" (0.1252)
00581 (0.0305)
001553 (0.0175)
04225 (0.161)
0.0285" (0.0149)
0.3882"" (0.0465)
-0.0198" (0.0098)

0.2878"" (0.0764)
-0.225"* (0.0667)

0.0124* (0.0048)

-0.3753"* (0.0657)

0.0002
0.0022
0.5052
0.8502
135





OPS/images/fenrg-10-985359/fenrg-10-985359-t001.jpg
Target layer Indicator layer Calculation method Indicator character

Population subsystem permanent residents (ten thousand) Get statistics directly positive
urbanization rate (%) Get statistics directly positive
population density (human/km?) Get statistics directly positive

Industrial subsystem GDP per capita (ten thousand yuan) Gt statistics directly positive
gross industrial output value (ten thousand yuan) Get statistics directly positive
Secondary industry output value (ten thousand yuan) Get statistics directly positive
Output value of the tertiary industry (ten thousand yuan) Get statistics directly positive

Housing subsystem Fixed investment in real estate development (ten thousand yuan) Get statistics directly positive

Completed residential area (km?) Get statistics directly positive
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Var Model-8 (2005-2012)

LinEmploy 05568 (0.1812)
InEr -0.0205"* (00108)
LnEr2 00325 (0.0085)
cv yes

Wald test 0.000

AR (1) 0.000

AR (2) 06835
Sargan test 09055
Obsenvations 240

Model-9 (2013-2019)

0.5604"** (0.2065)

-0.0226" (0.0088)

0.03815"* (0.0174)
yes

0.000
0.000
0.5687
09012
210

Model-10 (Pilot area)

0.4985"* (0.1546)

-0,0201** (0.0115)

0.03708"* (0.0105)
ves

0.000
0.001
0.6504
0.8810
106

06255 (0.2850)

-0.0276" (0.0148)

0.03813"* (0.0115)
yes

0.000
0.001
0.6212
0.8950
345

Note: *, **, and ** represent significance at the level of 1, 5, and 10%, respectively; The values in brackets represent the standard deviation. Pit areas, inclucing Tianji, Bejing, Shanghai,
Guangdong, Hubei, Chongaing, and Hainan, where carbon ernission trading policy was implermentsd at the end of 2012,
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carbon

(1)

carbon_gdp

)

carbon_pop

3)

carbon_area

)

productivity

(5)

carbon,
carbon_gdp.-»
carbon_pop. 2
carbon_area,
productivity;_,

equilibrium

equilibrius
In gdp

In gdp?
industry
In fisical
_cons

R

F stat.
Obs.

0.83627** (0.0325)

6.5214* (2.8844)
~5.2801* (2.8029)
0.1231* (0.0683)
~0.0044* (0.0025)
0.1474 (0.4694)
~02156** (0.1095)
1.5778 (1.0547)
09822

283,51

297

0.3608*** (0.0280)

0.9924*** (0.1613)
-0.2765" (0.1575)
0.1455*** (0.0170)
~0.0068** (0.0025)
0.0306 (0.0273)
~0.0397* (0.0064)
0.0681 (0.0596)
0.8761

269.76*

297

0.6635*** (0.0341)

0.1090"* (0.0541)
~0.0963" (0.0526)
0.0400*** (0.0049)
~0.0041%** (0.0008)
0.0096 (0.0087)
~0.0024 (0.0020)
0.0146 (0.0201)
09447

122200

297

0.7001*** (0.0332)

0.0154* (0.0095)
-0.0072* (0.0044)
0.0019*** (0.0009)
-0.0002** (0.0001)
0.0011 (0.0016)
~0.0007* (0.0004)
0.0049 (0.0035)
09889

14443

297

05276 (0.0494)
6.8486* (3.7182)
-9.4338" (3.6076)
~0.1143** (0.0443)
0.0992* (0.0569)
0.7234 (0.6076)
04592+ (0.1411)
~2.2712* (1.3361)
08106

16327+

297

Kiose: "2 < 001, #2005, *p: < 0.1 Tobust standard ecrars

paecutheny it e ekl
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Variables

Mean
Median
Maximum
Minimum
Std. Dev
Skewness
Kurtosis
Jarque-Bera
Probability
Obs

InEmployment

7.622
0.820
5124
7.965
8.322
2.156
10.335
1.541
0.501
450

InEr

1.296
0.725
0.812
2.021
2811
0.154
1.943
1.010
0.562
450

Iny

10.083
0.755
8.284
10.2156
12152
-0.365
2.824
1.871
0.453
450

InOpen

16.123
1.671
11.752
14.661
18.610
-0.107
2.684
1518
0.568
450

InWage

10.352
0.533
9.237
10.423
1714
0.095
1.964
1.508
0.503
450

InzF

1.483
0.285
0.675
1.306
2019
0.248
2.767
1.104
0.610
450

InModern

0.445

0.235

0.386

0.468

0.668
-0.107
2.684

1.918

0.368

450

InHuman

2325
0.184
1.782
2101
2629
-0.365
2.824
0.871
0.653
450

InPRC

0.436
0.172
0.216
1.623
2.415
-0.106
1.943
1.807
0.392
450
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Var Model-1 Model-2 Model-3 Model-4

LinEmploy 0.7251"* (0.0122) 05101 (0.0142) 06536 (0.0112) 06036 (0.0153)
InEr 0.0417 (0.0353) 0.0328 (0.0258) -0.0207" (0.0152) -0.0272"* (0.0118)
LnEr2 0.0432"** (0.0189) 00318 (0.0125)
iny 03291 (0.1612) 03172 (0.1124)
inOpen 0.0327* 0.0361"
0.0171) (0.0194)
InWage 0.3328"* (0.0562) 0.3024'** (0.0685)
InzF -0.0168" (0.0882) -0.0151** (0.0533)
InPRC -02172" (00748) -0.2256"" (0.0821)
inModem -0.1692"* (0.0528) -0.1255"* (0.0512)
inHuman 0.0164* (0.0077) 00184 (0.0089)
_cons -0.37468" (0.121) -0.43284* (0.0298) -0.37757 (0.1556) -0.33753"" (0.0255)
Wald test 00000 0.0000
AR (1) 0.0021 00019
AR (2) 05053 05290
Sargan test 08502 08865
Observations 450 450 450 450

Note: *, *", and *** represent the significance at the level of 1, 5, and 10% respectively; Wald test, AR (1), AR (2) and Sargan test give corresponding p values of statistics, respectively; The
values in brackets represent the standard deviation.
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treat'post
treat'post2012
treat'post2013
Inpgdp

hninfra
indlensity
iindus

infol

ingov

cons

City effect
Time effect

Province effect

N
R

Note: the values in brackets are standard erors:

Dynamic time window inspection Counterfactual test PSM-DID
) @ @®) @ ©®) ©)
1year 2years 3years 2012 2013 PSM-DID
0.1087* 0.0578" 00738 00758
(0.0446) (0.0309) (0.0084) (0.0148)
00052
(0.0055)
00416
(0.0309)
0.4605" 02700 00268 -0.0203 0.4559" 00709
(0.2215) (0.1886) 0.0234) (0.0232) (0.2663) (0.0268)
-00120 -0.0060 -0.0041 00219 00112* -0.0049
(0.0089) (0.0070) (0.0068) (0.0076) (0.0061) (0.0088)
00299 00148 00281 -0.0287 00152 0.0649"
(0.0209) 0.0176) 00152) 00184 (0.0163) (0.0309)
-0.1161 -0.1234 00687 -0.0532 -0.2166 -0.0989"
(0.0746) (0.0947) (0.0351) (0.0924) (0.1430) (0.0408)
00012 00036 0.0001 -0.0015 00077 -0.0007
(0.0031) (0.0025) (0.0020) (0.0026) (0.0036) (0.0013)
-0.0168 -0.0193 -0.0479"* -0.0252 -0.0156 -0.0246"
(0.0099) (0.0130) 00118) (0.0166) (0.0155) 0.0107)
-4.6433" 25005 -0.1581 07100 -4.4671 -0.7722"
(2.3561) (2.0233) (0.2825) (0.2944) (2.8223) (0.4308)
Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes
846 1,410 1974 846 846 3080
0425 0313 0272 0.302 0350 0.198

and * indicate significance at the 1, 5, and 10% levels, respectively.
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() @ ® “@ 6 © ()

P tp op gpat °p cestru cp

treat'post 0.045"" 0.144" 0.027° 245.369"" 0.016 -0.017"" 0.087"

(0.010) (0.009) (0.009) (77.643) 0.014) (0.004) 0.010)
o 0.074"

(0.041)
goat 0.000013"
(0.000)
cestru -0.450"
0.120)

inpgdp 0.077" 0.058" 0.066" -110.583 0.079™ -0.008 0.074™

(0.028) (0.032) (0.024) (72.763) 0.029) (0.009) (0.025)
ninfra -0.006 0017* -0.007 -42.143 -0.005 -0.008" -0.010

(0.009) (0.009) (0.007) 87.731) (0.009) (0.004) (0.008)
indensity 0.072" 0.039 0.063" 1216 0.071° -0.006 0.069"

(0.035) (0.029) (0.031) (63.073) (0.035) (0.009) (0.032)
inindlus -0.103" -0.006 -0.116" -384.884 -0.098" -0.017 -0.110"

(0.041) (0.070) (0.047) (174.778) 0.042) (0.026) (0.037)
infol -0.0005 -0002 0.0007 26783 ~0.0009 0.0006 -0.0002

(0.001) (0.003) (0.002) ©.970) (0.001) (0.0006) (0.001)
ingov -0.026" -0004 -0.031""* -120.1"* -0.025™ 0.010™ -0022°

(©.011) (©.011) ©011) (35.810) 0011) (0.003) ©0.011)
cons -0.906" 0218 -0.832" -296.778 -0.899" 0.227° -0804°

(0.478) (0.488) (0.457) (907.308) (0.484) (0.125) (0.428)
ity effect YES YES YES YES YES YES YES
Time effect YES YES YES YES YES YES YES
Province effect YES YES YES YES YES YES YES
N 3102 2820 2820 3102 3102 3102 3102
R 0.195 0.307 0215 0443 0.197 0.416 0230

Note: the values in brackets are standard errors: ***, **, and * indicate significance at the 1, 5, and 10% levels, respectively.
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() @ ® @

resource-based cities non-resource-based cities high-marketization cities low-marketization cities
treat"post 00831 0.1058 0.0845™ 00244
00196) (0.0661) (0.0375) 0.0211)
npgclo 0.0698 00902 00636 0.1444""
(0.0485) (0.0674) (0.0533) (0.0454)
Ininfra -0.0149 -0.0025 -0.0018 -0.0072
00147) (0.0007) (0.0127) (0.0077)
indensity 00563 00883 00675 01164
(0.0484) (0.0644) (0.0548) (0.0405)
Inindlus -0.0224 -0.1446" -0.1927"" -0.0644"
(0.0596) (0.0568) (0.0721) (0.0854)
e -0.0023 00011 -0.0030 0.0001
(0.0034) (0.0026) (0.0034) (0.0021)
ingov ~0,0295™" -0.0308™" -0.0342"" -0.0201"
(0.0094) (0.0109) (0.0115) (0.0086)
cons -0.5999 -1.1821 -0.7816 —1.6488""
(0.6962) (1.0504) (0.8784) (0.6195)
City effect Yes Yes Yes Yes
Time effect Yes Yes Yes Yes
Province effect Yes Yes Yes Yes
N 1243 1859 1,629 1573
R? 0375 0208 0151 0277

Note: the values in brackets are standard errors:

dicate significance at the 1, 5, and 10% levels, reepectivel.
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Variable

co
pacp
infra

density

foli
gov

gpat
cestru

Obs.

3,102
3,102
3,102
3,102
3,102
3,102
3,102
2,820
3,102
3,102

The full sample

Mean

0.417
33,433
11.737

456

0.489

0.032

0.084

1.014
196.277

0.072

Std.Dev.

0.148
31,852
8.466
654.962
0.108
0.120
0.071
0.125
544593
0.061

407
407
407
407
407
407
407
370
407
407

The treatment group

Mean Std.Dev.
0.506 0.183
52,161 54,800
12.796 11.483
770 1,295.876
0.473 0.086
0.034 0.077
0.090 0.064
1.012 0.119
485.103 991.663
0.098 0.063

Obs.

2,695
2,695
2,695
2,695
2,695
2,695
2,695
2,450
2,695
2,695

The control group

Mean

0.403
30,604
11.577
408
0.492
0.032
0.083
1.014
151.508
0.068

Std.Dev.

0.137
25,578
7.901
472.723
0.110
0.126
0.073
0.125
422.586
0.061
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post_1
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City effect
Time effect

Province effect

N
R

Dependent variable: cp

[0}

0.0622"""

(0.0000)

0.3858"*
(0.0000)

YES
YES
YES

3102
0.160

@

0.0452"
(0.0101)

0.0773™
(0.0284)
-0.0058

(0.0086)
0.0715™
(0.0346)
-0.1028"
(0.0409)
-0.0005
(0.0013)
-0.0261"
(0.0113)
-0.9059"
(0.4781)

YES
YES
YES

3102
0.195

@

0.0728""
0.0123)
0.1119™*
0.0141)
0.1579"
(0.0144)
0.1464"
(0.0139)
00773
(0.0284)
-0.0058
(0.0086)
00715™
(0.0346)
-0.1028"
(0.0409)
~0.0005
(0.0013)
-0.0261"
0.0113)
-0.8788"
(0.4762)

YES
YES
YES

3102
0.195

@

-0.0081
(0.0131)
00004
(0.0142)
-0.0002
(0.0143)
0.0359
(0.0264)
0.0384"
(0.0209)
0.0222
(0.0251)
01010
(0.0257)
00778"
(0.0284)
-0.0058
(0.0086)
0.0715™
(0.0346)
-0.1028"
(0.0409)
-0.0005
(0.0013)
-0.0261°"
(0.0113)
-0.9034
(0.4736)

YES
YES
YES

3102
0.195

Note: the values in brackets are standard errors; ***, **, and * indicate significance at the
1, 5, and 10% levels, respectively.
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Description Variable Category Measurements

city dummyvariable treate  Independent treat, = Twhen / belongs to the treatment group; otherwise, treaty = O
variable

time dummy variable post, wihen 2014 <t <2017, post, = 1, otherwise, post; = 0

Carbon emission efficiency » Dependent variable  Wemainly refer to the method of Lin and Zhou (2021), taking capital (K), abor (L) and energy (E) as input

variables, actual GDP (Y) as expected output, CO2 emissions (C) as undesired output, and applying the
non-radial distance function (NDDF), adopting the global DEA mode to calculate

The level of economic pgdp GOP per capita
development

Infrastructure level infra Control Variables  Road area per capita

Population density density Population per unit of land

Industrial structure indus The share of value-added of secondary industry in GDP
Foreign direct investment fali “The proportion of foreign direct investment in GDP
Government intervention gov The ratio of fiscal expenditure to GDP

Technological progress o Total factor productivity

Green innovation gpat Mediating Variables  Number of patent applications

Energy consumption structure  cestru The proportion of electricity consumption in total energy consumption
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Stakeholder

Government

Consumers

Enterprises

ARy

ARy

AR;

C

Descriptions

The probabiity that the govemment chooses an environmental regulation strategy

‘The environmental benefits brought to the goverment if enterprises conduct green and low-carbon technology innovation
The losses that governments will suffer if companies choose to use traditional technologies

Tax on polution, where « represents the enforcement intensity of emission tax levy

Subsidies for low-carbon technology innovation products, where § represent the proportion of subsidies for low-carbon
technology innovation products

Subsidies for low-carbon technology costs, where  represent the proportion of subsidies for low-carbon technology costs
Costs for conducting social propaganda and guidance, where 1 represents the implementation intensity of work of
environmental propaganda and guidance

The probabilty that the goverment finds enterprises’ deceptive rent-seeking behaviors for the purpose of obtaining
innovation subsidies

The environmental benefits brought to the consumers if enterprises conduct green and low-carbon technology innovation
“The losses that consumers will suffer if companies choose to use traditional technologies

The extra rewards from the government ifthe public has a high degree of preference and demand for enterprises’ green and
low-carbon technology innovation products

The cost of public supervision

The profit obtained by the enterprise using traditional technology for production

The losses that the enterprise willsuffer i tradiional technology s used to carry out polluting production activities under the
supenvision of the public

The incremental benefits of enterprises after adopting the green and low-carbon technology innovation mode under the
strategy profile of (regulation, supervision)

The incremental benefits of enterprises after adopting the green and low-carbon technology innovation mode under the
strategy profle of (regulation, no supenvision)

The incremental benefits of enterprises after adopting the green and low-carbon technology innovation mode under the
strategy profle of (no reguiation, supervision)

The cost of enterprises’ green and low-carbon technology
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Regulation (x)

Supervision (y) No supervision (1-y)
Conduct green and low-carbon technological innovation (2) Ro +AaE - P —yT =K -1 Rg + Ak - P = yT =K
R +1-Cs 3
R+AR, -Gy +fP +yT - AaE R+ AR, - Ci + P +yT = haf
Adopt traditional techniques (1 -2) aE-1K-1-Ls aE 1K -Lg
I-Cs-Ls -Ls
R-aE-CL R-aE

No regulation (1 -x)

Supervision (y) No supervision (1-y)
Conduct green and low-carbon technological innovation (2) Ra-1 Rs
Rs +1-Cs Rs
R+AR; -Gy R-C
Adopt traditional techniques (1 -2) ~Lo-1 Lo
I-Ls-Cs -Ls
R=CL R

Note: From the top fo bottor ame the payoffe of govemment. the public

and enterprises, respectively.
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Equilibrium

E1(0,0,0)

E>(0,1,0)

E3(0,1,1)

E4(0,0,1)

Es(1,0,1)

Es(1,0,0)

E7(1,1,0)

Es(1,1,1)

Jacobian eigenvalue

A =1-Cs

af - 1K

-Ci<0

Cs -1

af - 1K

AR3-CL-C

G-l

CL+Ci- ARy

~ (K + P +yT + AaE) <0
C>0

_c,

— (K + P +yT + AaE) <0

Ci~ ARy ~pP—yT + (14 NaE
-Gy

1K —af

ARy =G+ BP+yT = (14 NaE.
Cs-1

Ao =K —oE

ARy =Gy =Cp+BP+yT — (1 + NaE
=Cs-1

K + BP+ T + AaE >0

Ci+Cp =R = fP=yT + (1 + Dok

Stability

asymptotc stable when af <K, Cy >/
asymptotic stable when af <K, Cy +C; > ARs, C; </
asymptotic stable when G, + C; < ARs,Cs </

unstable

unstable

asymptotic stable when C, >, aE > jKand ﬁf{’( ‘C’ng -
asymptotic stable when Cq </,a > ykand fR‘ Gi-C.+pP

YT - (1+ NaE<0

unstable
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(1) ww (2) IsD @ IF

post treat 0018 0004 0047
(0.034) 0.028) 0.058)
InoGDP -2.037" 1.060 -2.564"
(0831) (0676) (1.420)
oGP 0079 -0.060" 0.103
(0.038) (0.031) 0.064)
Gov 0.004 0.021* 0035
(0.004) (0.003) (0.006)
nTC 0,091 -0091" -0.134%
(0.034) (0.028) 0.058)
InFDI -0.029" -0.061*** -0.067"
0017) 0013) (0.028)
Constant 19.753" 5046 24.920™
(4.580) 8728) (7.827)
Year-fixed effect Yes Yes Yes
City-fixed effect Yes Yes Yes
Observations 1,152 1,152 1,147
Adjusted R-squared 0843 0936 0828

Notes: Fixed effects included individual- and year-fixed effects. Standard errors are in
parentheses. *p < 0.10, *p < 0.05, ***p < 0.01.
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(1) Incarbon_intensity1 (2) Incarbon_intensity (3) Incarbon_intensity (4) Incarbon_intensity

post'treat -0012 -0.029" 0,039 -0.019"*
(0.006) (0.014) (0.009) (0.006)
InoGDP -1.006"* -0.799 -0.724 ~1.195"
(0.134) (0.549) (0216) (0.168)
IoGDP* 0041+ 0022 0021+ 0044
(0.006) (0.026) 0010) (0.008)
Gov 0002+ 0004 0005 0001
(0.001) (0.002) (0.001) (0.001)
nTC 0,036 -0080"* -0.088"* -0.020"*
(0.008) (0.012) 0010) (0.007)
InFDI -0.012* -0016" -0.018"* 0.003
(0.003) (0.008) (0.005) (0.003)
Constant 8.513" 7.499" 68T 8.448™
(0.741) (2.929) (1.197) (0.944)
Year-fixed effect Yes Yes Yes Yes
City-fixed effect Yes Yes Yes Yes
Year*prov-fixed effect No No Yes Yes
City-cluster No Yes No No
Observations 1,159 1,159 973 1,111
Adjusted R-squared 0978 0979 0980 0991

Notes: Fixed effects included individual- and year-fixed effects. Standard errors are in parentheses. "p < 0.10, *'p < 0.05, *p < 0.01.





OPS/images/fenrg-10-871681/crossmark.jpg
©

|





OPS/images/fenrg-10-922808/inline_17.gif





OPS/images/fenrg-10-935550/fenrg-10-935550-t006.jpg
(1) High-domestic ~ (2) Low-domestic  (3) High-HMTaiwan  (4) Low-HMTaiwan  (5) High-foreign  (6) Low-foreign

enterprises enterprises enterprises enterprises enterprises enterprises
post treat -0.035"* -0.014 -0.017 -0029" -0.005 -0.035"*
0.010) 0.014) 0.012) 0.012) 0.013) ©.010)
noGDP -0.985"* -0.183 -0.249 -1.027* 0522 -0.739"
(0.344) (0.373) (0312) 0.414) (0.391) (0:352)
noGDP* 0022 0.001 0.004 0.025 0015 0.008
(0.017) (0.016) (0.014) (0.020) 0.017) 0.017)
Gov 0005 -0.001 0.001 0006 -0.001 0005
(0.001) (0.003) (0.003) (0.001) (0.003) (0.001)
nTC 0,083 -0.057"* -0.046"* 0,068 -0.079"* 0,050
(0.012) (0.013) (0.012) (0.014) 0.013 ©.011)
InFDI -0.004 -0.088" 0,044t -0011* -0.043" -0.008
(0.005) (0.008) (0.008) (0.006) (0.007) (0.005)
Constant 9,204 3531 3542 9398 5.567" 8034
(1.786) (2.126) (1.769) (@.149) (2.250) (1.821)
Year-fixed effect Yes Yes Yes Yes Yes Yes
City-fixed effect Yes Yes Yes Yes Yes Yes
Observations 555 558 555 553 559 555
Adjusted R-squared 0984 0975 0979 0977 0978 0983

Notes: Fixed effects included individual- and year-fixed effects. Standard errors are in parentheses. "p < 0.10, *'p < 0.05, **p < 0.01.
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post‘treat
noGDP
noGDP*

Gov

nTC

InFDI

Constant
Year-Fixed Effect
City-Fixed Effect

Observations
Adjusted R-squared

Notes: Fixed effects included individual- and year-fixed effects. Standard errors are in parentheses. "p < 0.10, *'p < 0.05,

(1) High-industrial enterprises

-0.010
0.010)
-0.884"
(0.322)
0.026"
©0.015)
0.004*
(0.002)
~0.066""
©.011)
-0012*
(0.005)
bt g
(1.773)
Yes
Yes
576
0983

(2) Low- industrial (3) High-industrial output (4) Low-industrial output
enterprises
-0.069"* -0013 -0045"
(0.015) (©.011) 0.012)
-0.698* -1.319% -0316
(0.203) (0.350) (0.414)
0021 0.050" -0012
(0.013) (0.015) (0.020)
0.004** -0.000 0.004"
(0.001) (0.003) (0.001)
-0.074 -0.070"* -0.052**
0.014) (0.012) 0.012)
-0.009 -0.017** -0.002
(0.006) (0.008) (0.008)
6.441 9610 5.766""
(1.639) (2.020) (2.140)
Yes Yes Yes
Yes Yes Yes
562 570 568
0.981 0.979 0.976

< 0.01.
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post treat
InoGDP
InpGDP?

Gov

nTC

InFDI

Constant
Year-fixed effect
City-fixed effect

Observations
Adjusted R-squared

(1) East

0022
0.010)
-0.770""
(0.286)
0.029"
(0.012)
-0.001
(0.002)
-0.032"
0013)
-0.001
(0.009)
5507
(1.666)
Yes
Yes
427
0983

(2) West

0.006
©0.017)
-1.653™
(0.443)
0050
(0.021)
-0.000
(0.001)
-0.044"*
(0.014)
0.002
(0.005)
11,779
(2.329)
Yes
Yes
268
0984

(3) Central

~0.048"
©.012)
0.824"
(0.379)
-0.053"
©0.018)
0017
(0.004)
-0.064"*
0.013)
-0018"
(0.008)
-1.366
(2.012)
Yes
Yes
358
0989

(4) Northeast

-0.044
(0.030)
0.339
(1.201)
-0.058
(0.057)
0004
(0.002)
-0.027
(0.025)
-0.019*
(0012)
4.162
(6.338)
Yes
Yes
149
0.956

Notes: Fixed effects included individual- and year-fixed effects. Standard errors are in
parentheses. *p < 0.10, *p < 0.05, ***p < 0.01.
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post'treat
InoGDP
InoGDP*

Gov

nTC

InFDI

Constant
Year-fixed effect
City-fixed effect

Observations
Adjusted R-squared

Notes: Fixed effects included individual- and year-fixed effects. Standard errors are in parentheses. *p < 0.10, *'p < 0.05, **p < 0.01.

(1) M

-0.140"
(0.066)
4.006"
(1.618)

-0.186™
(©.073)
-0.002
(0.007)
0.156™
(0.064)

0,001
(0.031)

-20.701**

(8.908)
Yes
Yes

1,074
0983

(2) MAI

0108
(0.028)
2129
(0.675)
-0.089"*
(0.031)
-0.006*
(0.003)
0029
(0.028)
-0010
0.013)
-6322"
@719
Yes
Yes
1,158
0998

(3) PGS

0476
(0.040)
1878
(0.820)

-0.079"
(0.038)
0.008
(0.005)

0510
(0.026)

0.144*
©0017)

-10.886"
(4.428)

Yes
Yes
1,149
0768

(4) GGS

01441
(0.044)
1.233
(0.902)
-0.042
0.042)
0018
(0.006)
0483
(0.028)
0137
(©.019)
-6.543
(@.871)
Yes
Yes
1,146
0.754

(5) GCA

0137
(0.037)
3103
(0.745)
-0.185"*
(0.034)
0019
(0.005)
0471
(0.023)
0.146™*
0.016)
-15.947*
(4.026)
Yes
Yes
1,145
0.774
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(1) Incarbon_intensity (2) Incarbon_intensity (3) Incarbon _intensity

post'treat -0.224"" -0.139" -0.021*
(0.032) 0.027) (0.009)
InoGDP -0.237 -0.008
(0.685) (0.257)
InoGDP* 0.007 -0.020
(0.032) 0012)
Gov -0.001 0004
(0.004) (0.001)
nTC —221 -0.086"*
©0.018) (0.009)
InFDI 0020 -0.016"*
©0.011) (0.004)
Constant 0575 4.338 3900
(©.018) (3.680) (1377
Year-fixed effect No No Yes
City-fixed effect No No Yes
Observations 1,082 1,082 1,032
Adjusted R-squared 0.045 0334 0978

Notes: Fixed effects included individual- and year-fixed effects. Standard errors are in parentheses. *p < 0.10, *'p < 0.05, **p < 0.01.
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Variables

PGPG
InGPG
InTPG
PGPR
InGPR
InTPR

InSize
CETA
DTA

FA

PR

CA

ROA
In(GTI+1)
InLGDP
ELE

Obs

896
1,016
1,016

913
1,015

995
1,030

977

909

977

916

985

910

950

906
1,030

932

Mean

0477
6.477
6.304
0.392
11.209
13.197
0.238
23.362
0.065
0.583
0.467
0.769
0.103
0.030
1.838
11.121
2291

sD

0.449
6.067
6.920
0.435
10.196
10.802
0.426
1.670
0.049
0.231
0.215
0.422
0.099
0.104
1.789
0.712
2.257

0.001
-1.303

9.691
0.180

Max

17.667
17.549

40.260
25.880

29.102
0.351
3518
0.954

0963
0.920
6.750
13.186
17.037
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Variables

GR.inno;

Pay gap:

Pay gap x GR.inno;
ESR x GR.innoy
EPU

EPU x GR.inno;
ROA

Lev,

Firm sizey

Sales growth
Owncon;

ESR,

PID
RD.intensity,
NPR;

Firm age;

Fixed effects
Clustering SE
Constant

N
AdiR?

Firm_value,

Model 1 Model 2  Model3  Model 4
-0.178™  -0.180"  -0182'*  -0.182"
(0.044) (0.026) (0.028) (0.036)
0.032" - - 0.032"
0.015) - - (0.014)
0.159" - - 0.152+
0.042) - - 0.047)

- 0.668* - 1.050*
- (0.341) = (0.531)
- - ~0.000 ~0.000
- - (0.000) (0.000)
- - 0.001* 0.001"
- - (0.001) (0.001)
6.134"" 6.223" 6214 6.119"
0.793) ©.773) (0.763) (©0.781)
0.262 0225 0219 0.256
(0.340) 0.333) (0.343) (0.347)
-0889™  -0837""  -0839™  -0894"
(0.125) ©0.114) ©0.113) (0.126)
0.151 0.148" 0.149" 0.151*
0.078) 0.075) (0.075) (0.078)
-0.404 -0.185 -0.142 -0.348
(0.300) (0.320) (0.326) (0.305)
-0671" -0.749" -0.739" -0.6652"
(0.289) (0.269) (0.284) (0.293)
1,507 1.649" 1.705" 1552+
(0.662) (0.644) (0.651) 0.673)
2529 3.400 3.465 2713
(2.431) (2.434) (2.476) (2.479)
-0.034 -0013 -0011 -0.032
(0.156) 0.152) 0.152) (0.155)
-0.465 -0.376 -0.360 -0.420
0.508) (0.594) (0.573) 0.511)
YES YES YES YES
YES YES YES YES
22737 21234 21218 22,600
(2.180) (1.964) (1.930) (2.163)
3,197 3,235 3,161 3,123
0732 0728 0.728 0731

Fixed effects included indlvidual-, year-, industry- and province-fixed effects. We
clustered standard errors at the two-digit industry level when indicated. Standard errors
are in parenthesis. **p < 0.01, **p < 0.05, *p < O.1.
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Variables Sign Measurement and unites

Green degree PGPG The proportion of clean energy power generation (%)
INGPG  The logarithm value of clean energy power generation (10,000 KWh)
InTPG The logarithm value of thermal power generation (10,000 kWh)
INPGPR  The proportion of clean energy power revenue (%)
INGPR  The logarithm value of clean energy power revenue (yuar)
InTPR The logarithm value of thermal power revenue (yuan)
Carbon ETS policy ETS 0: Non-participating carbon trading market, 1: Participating carbon trading market
Company size InSize The logarithm value of the total asset (yuan)
Asset value CETA The capital expenditure to asset ratio (%)
Financial risk DTA Debt to asset ratio (%)
Financial structure stability FA Fixed assets ratio (%)
Management capacity PR Property rights. 0: Non-state-owned fim, 1: State-owned firm
Solvency [ The closing balance of cash and cash equivalents/current liabilties (%)
Profitabilty ROA Return on asses rafio (%)
Green technological imovation  In(GTI+1)  Annual cumulative number of green patent inventions during 2011-2020 (PCS). Then add 1 to it and do the logarithmic
processing
Local economic development  ILGDP The logarithm value of local GDP per capita (yuan/person)
Environment law enforcement  ELE ‘The number of sewage charges (before 2018) or environmental protection tax (after 2017) in each province or city divided by

local GDP
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Variables Finan_flex;  Firm_value;  Analyst.cov;  Firm_value

Model 1 Model 2 Model 3 Model 4
GR.imno, 0,047 0158 -0.181* -0.160"*
(0.016) (0.025) (0.050) (0.028)
Finan_flex; = 0.442 - -
- 0078) - -
Analyst.cov, - - - 0150
- - - (0.024)
ROA: 1.531" 5508 3994 5630
(0.328) (0674) (0.665) (0.666)
Leve -0.382* 0.403 -0.507* 0302
(0.096) (0.353) (0.146) (0.338)
Firm size, -0.046" -0.812" 0481 -0.908"
0.016) (0.108) (0.041) (0.120)
Salesgrowth, ~ -0.002 0.145* -0.042 0.155"
(0.028) (0.072) (0.056) (0.073)
Owncon, -0.088 -0.158 -0478 -0.119
0.071) (0332) 0317) (0.296)
ESR, 0042 -0.765" 0593 -0.837"
(0.082) (0274) 0.174) (0.290)
PID; 0.109 1597" -0.919" 1.788"
(0.141) (0.683) (0:392) 0.702)
RD.intensity. -0573 3556 2732 2.949
©0772) (2:302) (2.129) (2.429)
NPR, -0.051* 0010 0017 -0016
(0.015) (0.154) (0.037) (0.150)
Fim age: 0.167 -0.445 -0.636" -0.290
(0.102) (0572) (0.293) (0.614)
Fixed effects YES YES YES YES
Clustering SE YES YES YES YES
Constant 0972" 20701 6,654 22,238
0512) (1.960) (1292) @.127)
N 3,231 3231 3235 3235
AG-R? 0511 0733 0683 0732

Fixed effects included indlvidual-, year-, industry- and province-fixed effects. We
clustered standard errors at the two-digit industry level when indicated. Standard errors
are in parenthesis. *"'p < 0.01, *'p < 0.05, "p < O.1.
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Variables

GR.inno,
GR.inno.¢
ROA

Lev:

Firm size;
Sales growth;
Owncony
ESR.

PID,
RD.intensity;
NPR,

Firm age;
Fixed effects
Clustering SE
Constant

N
Adj-R*

Firm_value, Firm_value, .1 Firm_valuey .-
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
0,182 -0.180 - -0.1024 -0.006 -0.043
(0.026) 0.027) - (0.053) (0.085) (0.080)
- - -0.046 -0.050 - -
- - (0.053) (0.050) - -
6231 6.228" 6.665" 6659 3807 0631
©.781) ©0.775) (0.825) (0.826) 0.910) (1.367)
0203 0226 0.690" 0693 0823 1.014°
(0.329) (0.334) ©0271) 0271 (0.253) (0.195)
-0.842" -0.836"" -0.894" -0895™* 0,956 -0.934"
(0.105) ©0.113) ©.111) ©.111) (0.130) (0.136)
0137 0.149" 0.107 0.109 0361 0476
(0.078) (0.075) (0.084) (0.085) 0.070) (0.086)
-0.170 -0.191 -0.158 -0.156 -0013 0203
(0.279) 0319 (0.374) 0377 (0.437) 0.418)
-0.725" -0.748" -0674 0679 -0.306 -0.738"
(0.250) (©0:272) (0.391) (0.392) (0.299) (0:326)
1585 1,650 1533 1,584+ 0523 0629
(0.664) (0.644) (0.525) (0522) (0.682) (0.799)
- 3.358 3818 3819 -0.221 -2.897
- 2.419) (2.302) (2.305) (2.944) (3634)
e -0.013 -0.077 -0.076 -0.202* -0.267*
- (0.152) (©0.161) (0.161) (0.052) (0.068)
- -0386 -0508 -0.501 -0368 -0.185
- (0.585) (0.831) (0.831) ©0611) (0851)
YES YES YES YES YES YES
YES YES YES YES YES YES
20,373 21,242 22,812 22,834 24207 23,002
(2.064) (1.967) (2.935) (2.925) (2.827) (2.690)
3235 3235 2,701 2,701 2,608 2278
0728 0728 0722 0722 0698 0689

Fixed effects included individual-, year-, industry- and province-fixed effects. We clustered standard errors at the two-dligit indlustry level when indicated. Standard errors are in parenthes’s.
< 0.01, *p < 0.05, "p < O.1.
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Symbol

Firm_value
GR.ino
Finan_flex
Analyst.cov
ROA

Lev

Firm size
Sales growth
Owncon
ESR

PD
RD.intensity
NPR

Firm age

Observations

3,368
3,368
3,364
3,368
3368
3,356
3,368
3,368
3,368
3,368
3,308
3368
3,368
3,368

Mean

2.340
0.050
0.200
1.720
0.030
0.450
22.340
0.130
0.550
0.050
0.370
0.020
1.540
2770

S.D.

1.450
0.160
0.330
1.110
0.060
0.210
1.360
0.280
0.160
0.120
0.060
0.020
0.640
0.300

Min

0.830
0
-0.480
0
-0.160
0.050
19.890
-0.430
0.190
0
0.330
0
1
1.950

Median

1.870
0
0.120
1.790
0.030
0.460
22130
0.090
0.550
0
0.330
0.010
1
2.770

Max

8030
0990
1.760
3780
0220
0900

26.240
1.240
0930
0560
0560
0080

4
3530
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Year

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

Gasoline Diesel
Gasoline-Gasoline ~ Gasoline-coal ~ Gasoline-electricity ~Diesel-diesel ~Diesel-coal Diesel-electricity
-038 52.49 -926 367 94.69 1801
-022 30.87 -7.30 -5.41 157.13 -31.00
-0.14 22.54 -4.78 -4.92 143.80 -32.89
-0.34 57.01 -13.62 -5.94 176.97 -45.28
-0.30 49.57 -11.356 -10.12 273.35 -67.44
027 48.96 -11.78 231 71.46 -18.53
-0.24 4423 -12.49 -3.58 104.80 -31.89
-039 93.30 -25.40 -5.18 22858 -67.06
-040 95.56 -27.33 -4.85 212.28 -65.40
-0.35 81.67 -26.90 -3.75 152.75 -54.21
-0.18 46.83 -16.00 -2.88 119.05 -43.83
-020 5331 -19.39 -4.02 168.87 -66.17
006 -16.14 695 -0.29 10.93 -5.07

Sum of oil/electricity substitution

-31.32
-43.93
-42.73
-65.17
-89.20
-32.90
-48.20
-98.03
-97.97
-85.21
-62.90
-89.78
1.66
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Symbol

Firm__value
GR.inno
Finan.flex
Analyst_cov
ROA

Lev

Firm size
Sales growth
Owncon
ESR

PID

RD.intensity
NPR

Fim age

Variables

Tobin's Q

Green innovation

Financial flexibility

Analyst coverage

Return on assets

Leverage ratio

Firm size

Sales growth ratio

Ownership concentration
Executive sharenolding ratio
The proportion of independent
directors

Research and development intensity
Nature of property rights

Firm age

Definitions

Tobin's Q: (aggregate value of fisted stock + book value of total debt)/book value of total assets

The proportion of green patents: annual green patent applications/total patent applications in the same year
Cash to liabilty ratio: (net operating cash flow)/total liabilties)

Analyst coverage: the log value of the number of analyst teams tracking the target firm in a year

Return on assets: (net profty/total assets)

Leverage ratio: (total liabities)/(total assets)

Firm size: the log value of total assets

‘Sales growth ratio: (current operating income- previous year's operating income)/(previous year s operating income)
Ownership concentration: the sum of the shareholding ratio of the top five shareholders

Executive shareholding ratio: (the shares held by all executives)/(the total shares)

The proportion of independent directors: (the number of independent directors)/(the total number of corporate
board of directors)

R&D intensity: (R&D expenditure)/(operating income)

Nature of property rights was a dummy variable: 1 for state-owned enterprises, 2 for private enterprises, 3 for public
enterprises, and 4 for the remaining enterprises

Firm age: the log value of operating years since the firn's establishment
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Variables SE p value

IPK -0.0216™" 0,000
InPL. 0.405*** 0,000
InP, 0375 0,000
0P ma 0.128"* 0000
NPrec -0.505"* 0000
NPt ~1.928" 0,000
INADD -0.0383" 0026
t 00255 0000
R-squared 0995

Note: *p < 0.05, *'p < 0.01, and **'p < 0.001.
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InPK
InPE
InPL.

t
INADD

R-squared
Mean share

SK

0.0182*
-0.00702
-0.0211
0.0138™*
-0.169"*

0.991
0.1879

Note: *p < 0.05, *p < 0.01, and ***p < 0.001.

p value

0.000
0.520
0.428
0.000
0.000

SE

-0.0102**
0.310™
-0.330*
0.0293*
-0.283**

0.958
0.2615

p value

0.000
0.000
0.000
0.000
0.000

SL

0.000644*
-0.0256"*
0.0796**
0.00123
-0.0511**

0.988
0.0659

p value

0.045
0.000
0.000
0.159
0.000
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Variable

SK
dSK

SE
dSE

SL
dSL

INADD
dinADD
ddinADD

InPK
dinPK

InPE
dinPE

InPL.
dinPL
ddinPL

Note: *p < 0.1, **p < 0.05,

z()

-1.219
-5.96"*

-1.566
-2.972"

-0.747
4,607

-1993
-2.05
518"

-0.666
—-6.909"*

-1.68
-7.662**

-1.198
-1.112
-5.102"

and **p < 0.01.

Result
SK~1(1)
SE~1(1)
SL~1(1)

INADD ~ | (2
InPK ~ 1 (1)
IPE ~ 1 (1)
InPL~1(2)
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Variable

Obs

Std. dev.
Min
Max

PK

40
12.0716
3.5093
2.8035
19.1992

PE

40
4016.6060
2176.7080

982.3068
6523.0850

PL

40
3136.5050
1478.6500

882.3394
5401.7310

‘Added value

40
14,800,000
17,300,000

1,290,896
55,700,000

SK

40
0.1879
0.0877
0.0564
0.3558

SE

40
0.2615
0.0895
0.1438
0.4154

SsL

40
0.0659
0.0382
0.0144
0.1440
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(-0.127)
ROA 00403
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(-0.0239) (-0.385) (-0.382) (-0.376)
Firm effect YES YES YES YES
Time effect YES YES YES YES
Obs 896 823 823 816
R 0.179 0202 0.249 0295
Note: standard errors in parentheses, **, **, and * represent p < 0.01, p < 0.05, and p <

0.1 respectively. Same as the tables below.
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Indicator type

Explanatory variables:

In Employ,,
Carbon-emission
Regulation: InEr

Control variableCV;;

N
6it

Indicator description

“The total number of employed persons at the end of each province is used to represent the
employment level

In previous literatures, it has been used as a reciprocal of carbon emission intensity to
measure carbon emission reguiation. In this study, the reciprocal of carbon emission
intensity is also used to measure carbon emission regulation. Among them, carbon emission
intensity is expressed by carbon dioxide emission per unit of GDP. Carbon emissions are
calculated by referring to the measurement method of Zhao et al., 2017 and Bhowmik et al.
(2022)

Fixed asset investment/GDP (InPRC): proxy variable reflecting the investment status of the
real economy; Total import and export trade/GDP (inOpen): reflects the degree of local
economic openness; Government expenditure/GDP (InZF): reflects the degree of
govemnment interference to the economy, as a substitute indicator to reflect the degree of
marketization; Human capital (inHuman): reflects the differences of Human capital between
regions, represented by average years of education; Third industry added value/GDP
(InModern): Show the economic structure of each province and its degree of modernization;
Iny: represents the per capitaincome level; nWage is the average real wage of employees in
urban units as a measure of human cost

Non-observable fixed effect variables in each province

Random error

Data source

China Labor Statistics Yearbook

China Energy Statistical Yearbook

China Statistical Yearbook and provincial
statistical yearbook
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Variables
laglog_epu
l0g_realGDP
log_population
share_agri
share_indus
num_firm
log_FDI
constant

City FE

Year FE

Observations
R-squared

(1) Eastern region

(2) Central region

carbon_inten

0479
0.058)
-9.949"
(1.089)
-0.049
0118
-3.199
@.762)
-0.981
(0.900)
1775
(0:336)
0.128"
0.053)
148,193
(15.018)
YES
YES
1,056
0883

carbon_inten

0320
(0.086)
~14.990"*
(0.992)
0322+
0.159)
-2.467
(2.830)
1.432
(1.574)
0.094
(0.174)
-0.038
(0.064)
228,607
(15.129)
YES
YES
1,011
0918

(3) Western region

(4) Northeastern region

carbon_inten

0.265
(0.305)
-9.806™
(1.275)
6.696"
(2.308)
-18.284"*
(6.555)
-0438
(1.853)
1.232™
(0.491)
-0.081
(0.058)
105.804"*
(15.589)
YES
YES
737
0876

Notes: Standard errors are in parenthesis, *** denotes p < 0.01, ** denotes p < 0.05, * denotes p < 0.1. FE is the fixed effect.
The boid values ame infendied to highlight and guide the readevs, so that they can quickly and disarly find the corresponding cosiiicients combined with the empiical analysis of thie paper.

carbon_inten

-0.009
(0.235)
~16.760"
(1.650)
25467
(9.364)
2661
(1.861)
2.980
(2.922)
0683
(0.662)
0.153
(0.094)
377.829""
(49.507)
YES
YES
418
0927
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Variables
laglog_epu
l0g_realGDP
log_population
share_agri
share_indus
num_firm
log_FDI
constant

City FE

Year FE
Clustering SE

Observations
R-squared

Q)] @ ®
carbon_inten carbon_inten carbon_inten
0.160" 0.244 0.244"
(0.068) (0.043) (0.109)
—12752" —12.752
(0.637) (0.943)
0.072 0.072
(0.145) (0.185)
-8.593"" -8.593"
(2.377) (2.442)
2,287 -2.237"
(0.886) (1.290)
0.841" 0.841**
(0.209) (0.262)
0033 0.038
(0.038) (0.049)
5005 194609 194,609
(0.298) (9.725) (14.710)
YES YES YES
YES YES YES
NO NO YES
3,650 3,409 3,409
0711 0883 0.883

Notes: Standard errors are in parenthesis, *** denotes p < 0.01, ** denotes p < 0.05, *
denotes p < 0.1. FE is the fixed effect. Clustering SE means that the standard errors are

clustered at the provincial level when inolcated

The bold values are intended to highlight and guide the readers, so that they can quickly
and clearly find the corresponding coefficients combined with the empirical analysis of

this paper.
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Variables

carbon_inten
laglog_epu
l0g_realGDP
log_population
share_agri
share_indus
num_firm
log_FDI
log_envirinput
log_tech

Definition

Urban carbon emissions intensity

The logarithm of urban economic policy uncertainty in the previous year
The logarithm of urban real GDP per capita

The logarithm of the total urban population at the end of the year

The proportion of employees in the primary industry

The proportion of employees in the secondary industry

The logarithm of the number of industrial enterprises above designated size
The logarithm of actual foreign direct investment

The logarithm of the investment in environmental poliution control

The logarithm of science and technology expenditure

Observations

3,691
5,046
3,833
5,268
5213
5,240
4,039
4,994
1,796
2,432

Mean

5.6990
4.4941
15313
5.9984
0.0344
0.4198
6.6243
9.6343
9.9144
10.954

S.D.

51473
05371
1.0184
09324
00672
01533
1.2930
20869
1.9625
1.1544

1.0016
1.4106
12.989
3.4203
0.0002
0.0346
3.2189
3.5835
2.8904
7.2377

Median

4.2552
4.4943
15.192
5.9423
0.0123
0.4234
6.4998
9.6436
9.9363
10.738

Max

46.568
5.7946
18.567
9.1230
0.5013
0.8058
10.631
14515
16.374
15.181





OPS/images/fenrg-09-814888/inline_21.gif
In Ppax s





OPS/images/fenrg-10-866217/crossmark.jpg
©

|





OPS/images/fenrg-09-814888/inline_20.gif





OPS/images/fenrg-09-806926/math_qu2.gif
obing, = “E8ICBAIC V0 Of TALEC SO [eNC terin). 1 200% Ve of tol O
5 L





OPS/images/fenrg-09-814888/inline_2.gif





OPS/images/fenrg-09-806926/math_qu1.gif
Firm.value,, = Constant + p, x Green.innoj; +y x Controly,
& ey





OPS/images/fenrg-09-814888/inline_19.gif





OPS/images/fenrg-09-806926/math_c.gif





OPS/images/fenrg-09-814888/inline_18.gif





OPS/images/fenrg-09-806926/math_b.gif





OPS/images/fenrg-09-806926/math_a.gif





OPS/images/fenrg-09-806926/inline_89.gif
Pay gap x GR_inno





OPS/images/fenrg-10-939602/inline_1.gif





OPS/images/fenrg-10-953873/inline_29.gif
1





OPS/images/fenrg-10-939602/inline_2.gif





OPS/images/fenrg-10-953873/inline_3.gif





OPS/images/fenrg-10-953873/inline_27.gif
I





OPS/images/fenrg-10-939602/fenrg-10-939602-t002.jpg
Date

2022-01-06
2022-01-06
2022-01-10
2022-01-12
2022-01-13
2022-01-14
2022-01-17
2022-01-18
2022-01-19
2022-01-20
2022-01-21

True value

23.04
20.74
18.67
16.80
15.12
13.80
12.42
11.64
11.10
1221
13.00

Predicted Value

14.47
14.49
14.43
14.96
14.01
14.14
13.63
1331
12.88
13.24
13.09

Error

-857
-6.25
—424
-184
-141
0.34
1.21
167
1.78
103
0.09

Date

2022-01-24
2022-01-25
2022-01-26
2022-01-27
2022-02-08
2022-02-11
2022-02-15
2022-02-18
2022-02-24
2022-02-25

True value

12.30
11.09
1220
18.42
12.08
10.87
10.87
11.96
13.16
13.00

Predicted Value

13.15
12.79
1297
1264
12.84
12.31
12.35
nn
10.60
11.26

Error

0.85
1.70
077
-0.78
076
144
1.48
-0.25
-2.56
-1.74
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Variables

InPK
InPL.
InP;
NP
INProc
NPt
INADD

teots
t

R-squared

SE

-0.0216**
0.405**
-0.411**
0.140*
-0.46
0
-0.0263
0151
-0.0282***

0.996

Note: *p < 0.05, *'p < 0.01, and **p < 0.001.

p value

0.000
0.000
0.000
0.000

0.445
0.000
0.000
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Dimension

Carbon emission trading price
Fossi fule prices

Fossil energy prices

Fossi energy prices
Macroeconomic development
Macroeconomic development
Industrial structure

Climate change

Foreign carbon prices
National financial market
International financial market

Variable

Carbon emission trading price
Coal price

Oil price

Natural gas price
Development level
Market level

Industrial structure
Temperature difference
Foreign carbon prices
Exchange rate 1
Exchange rate 2

Average day strike price

Definition

National Thermal Coal Futures Closing Price

No. 0 diesel in Fujian province

Fuzhou Pipeline Gas Market Price (Industrial)

The CSI 300 index

Interest rate of 1-year Treasury bonds

Shenzhen Stock Exchange manufacturing index closing price
The absolute value between the average temperature and the sitable temperature

EUA futures settlement price
RMB to Euro exchange rate
RMB to USD exchange rate

Unit

Yuan/ton
Yuan/ton
Yuan/liter
Yuan/cubic meter
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NCC

Constant

Controls
City cluster
City fixed
Year fixed

(1) East

0124
(-3.949)
6,602+
(9.186)
Yes

Yes

Yes

Yes
0925
72370
1,553

(2) Central

~0074*
(~1.874)
12267
(11.118)
Yes

Yes

Yes

Yes

0.966
167190
1,413

(3) West

~0031
(-0.557)
117614
(13.937)
Yes

Yes

Yes

Yes
0963
62,661
1229

(4) North-East

0.005
(0338)
153501
(21.217)
Yes

Yes

Yes

Yes

0990
333,886
601

(5) North

0011
(-0.328)
8129
(12.981)
Yes

Yes

Yes

Yes

0961
191214+
2,100

(6) South

01520
(-5.619)
7,887
(12.281)
Yes

Yes

Yes

Yes

0934
77318
2,696

in parentheses, *p < 0.1, **p < 0.05, ***p < 0.01.





OPS/images/fenrg-10-955910/inline_1.gif





OPS/images/fenrg-10-955910/fenrg-10-955910-t007.jpg
(1) Carbon (2) TFP (3) Carbon (4) Carbon (5) TFR (6) Carbon

NCC 0083+ 0035+ 0084+ 0,035+ 0083 0084+
(-9.968) (4.604) (~10.066) (3.866) (-3.899) (~3.946)

TFP 0035 0035

(1.995) (1.281)

Constant 6481 ~0.168 6493 -0.168 6481 6493+
(39.320) (-1.636) (39.383) (~1.008) (13.471) (13.452)

Controls Yes Yes Yes Yes Yes Yes

City cluster No No No Yes Yes Yes

City fixed Yes Yes Yes Yes Yes Yes

Year fixed Yes Yes Yes Yes Yes Yes

R 0963 0226 0.963 0226 0.963 0963

F 3153440 9.404*% 271,070+ 6144 34,6234 29936

Obs 4,188 4188 4,188 4,188 4,188 4,188

Note: t statistics in parentheses, *p < 0.1, **p < 0.05, ***p < 0.01.
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NCC

Constant

Controls
City cluster
City fixed
Year fixed

(1) Medium-small city

0082
(-0.321)
11676
(8.395)
Yes

Yes

Yes

Yes
0975
15639
166

(2) Big city

0095+
(-2.682)
100254+
(13.061)
Yes

Yes

Yes

Yes

0957
132420
2,952

(3) Mega city

0064
(-2.632)
8.899*
(10.883)
Yes

Yes

Yes

Yes
0965
86232+
1,452

(4) Super city

0306+
(-3.550)
7.021
(1.274)
Yes

Yes

Yes

Yes
0.959
69,052
169

in parentheses, *p < 0.1, **p < 0.05, ***p < 0.01.
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(1) Carbon (2) Indus (3) Carbon (4) Carbon (5) Indus (6) Carbon
NCC ~0.101% 0,105 0098 0101 0,105 0098+
(-11.749) (5.481) (-11.374) (-4.422) (2673) (~4.400)
Indus ~0.036"** -0.036*
(-5.454) (-1.959)
Constant 8445+ 2845 8505 8445+ 2845+ 8505
(49.549) (10.712) (49.955) (21.136) (5.899) (21.013)
Controls Yes Yes Yes Yes Yes Yes
City cluster No No No Yes Yes Yes
City fixed Yes Yes Yes Yes Yes Yes
Year fixed Yes Yes Yes Yes Yes Yes
R 0.954 0.746 0954 0954 0746 0954
F 955,139+ 40910 828190 158.944% 114954 137325+
Obs 4789 4789 4,789 4789 4789 4789

in parentheses, *p < 0.1, **p < 0.05, ***p < 0.01.
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(1) Balanced panel (2) Carbon emissions (3) IV estimation

Variables carbon_inten log_carbon carbon_inten
laglog_epu 0246 0.004" 3945
(0.043) (0.002) (0.646)
log_realGDP -12.764** 0.073* -12.482*
(0.640) 0.014) (0.292)
log_population 0072 0.005 -0.369
(0.145) (0.006) (0.286)
share_agri 8578 -0.183" ~10.568"
(2.380) (0.101) (2.129)
share_indus -2.235" 0.067" -6.834"
(0.886) (0.031) (1.174)
num_firm 0844 0062 0722
(0.209) (0.008) (0.225)
l0g_FDI 0.037 -0.005"* 0.033
(0.039) (0.002) (0.049)
constant 194.786™ 1.444™
(9.754) (0.206)
City FE YES YES YES
Year FE YES YES YES
Cragg-Donald Wald F statistic 67.42
Anderson-Rubin Wald test Chi-sq (1) = 82.02"
Sargan statistic 0.000
Observations 3,391 3,409 2,872
R-squared 0883 0991 0.190

Notes: Standard errors are in parenthesis, *** denotes p < 0.01, * denotes p < 0.05, * denotes p < 0.1. FE is the fixed effect.
The boid values am intended to highlight and guide the readers, so that they can quickly and disarly find the corresponding cosfiicients combined with the empiical analysis of this paper.
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Variables
laglog_epu
log_realGDP
log_population
share_agri
share_indus
num_firm
log_FDI
constant
City FE

Year FE

Observations
R-squared

(1) High (2) Low
carbon_inten carbon_inten
0.208" -0.027
(0.048) (0.100)
-9.581"" 17417
(0.808) (0.928)
0.268 0.030
(0.189) (0.214)
_3.903" -5.755"
(1.548) (3.124)
-1.226 -4.995™
(0.767) (2.208)
1427 1,066
(0.184) (0.452)
0070 -0017
(0.034) (0.082)
143.373** 261.008"*
(12.056) (13.611)
YES YES
YES YES
2,352 1,028
0.886 0.922

Notes: Standard errors are in parenthesis, *** denotes p < 0.01, ** denotes p < 0.05, *
denotes p < 0.1. FE is the fixed effect.
The bold values are intended to highiight and guide the readers, so that they can quickly
and clearly find the corresponding coefiicients combined with the empirical analysis of

this paper.
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Variables
laglog_epu
l0g_realGDP
log_population
share_agri
share_indus
num_firm
log_FDI
constant

City FE

Year FE

Observations.
R-squared

(1) High (2) Low
carbon_inten carbon_inten
0243 0.153
(0.053) (0.097)
—11.475" —13.422
(0.828) (0.887)
0136 -0.138
(0.126) (0.355)
—12.124" —7.161"
(3.934) (4.240)
-0.036 -3.820
(0.890) (2.064)
0901 0.482
(0.220) (0.362)
0077 -0.016
(0.040) (0.061)
174790 206.425"
(12.014) (13.788)
YES YES
YES YES
1,878 1,511
0.903 0897

Notes: Standard errors are in parenthesis, *** denotes p < 0.01, ** denotes p < 0.05, *
denotes p < 0.1. FE is the fixed effect.
The bold values are intended to highight and guide the readers, so that they can quickly
and clearly find the corresponding coefiicients combined with the empirical analysis of

this paper.
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Variables
laglog_epu
l0g_realGDP
log_population
share_agri
share_indus
num_firm
log_FDI
constant

City FE

Year FE

Observations.
R-squared

(1) High (2) Low
carbon_inten carbon_inten
0.238" 0.026
(0.042) (0.063)
-13.264" -2612"
(0.646) (0.608)
0.069 0.403
(0.138) (0.975)
-6.954" 0.198
(2.576) (0.435)
-1.967" 0.258
(0.894) (0.598)
0.857"* 0.144
(0.231) ©0:213)
0.024 0053
(0.038) (0.027)
203.058"* 38.882"
(9.921) (10.848)
YES YES
YES YES
3,104 217
0.892 0.997

Notes: Standard errors are in parenthesis, *** denotes p < 0.01, ** denotes p < 0.05, *
denotes p < 0.1. FE is the fixed effect.
The bold values are intended to highight and guide the readers, so that they can quickly
and clearly find the corresponding coefiicients combined with the empirical analysis of

this paper.
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NCC

Constant

Controls
City cluster
City fixed
Year fixed

(1) Carbon

~0.055**
(-3.517)
1.036%%*
(251.535)
No

No

Yes

Yes
0.896
12,368
3,062

(2) Carbon

~0.055*
(~1.700)
1036
(268.985)
No

Yes

Yes

Yes
0.896
2891
3,062

(3) Carbon

0046
(-4.384)
9350
(33.589)
Yes

No

Yes

Yes
0957
597.142
2,771

(4) Carbon

-0.046*
(-2.087)
9350
(14390)
Yes

Yes

Yes

Yes
0957
123321
2,771

in parentheses, *p < 0.1, **p < 0.05, ***p < 0.01.
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(1) Carbon (2) Urban (3) Carbon (4) Carbon (5) Urban (6) Carbon
NCC ~0.098°** ~0.076* 0,076 ~0.098°** 0076 ~0.076**
(~10.868) (-10.577) (-8.613) (~4.079) (-4.987) (=3.005)
Urban 0291+ 029174
(15.593) (4539)
Constant 6890+ ~0271+ 70110 6.890°* ~0271 7011
(40.428) (-3.055) (42.269) (13.697) (-1247) (13.444)
Controls Yes Yes Yes Yes Yes Yes
City cluster No No No Yes Yes Yes
City fixed Yes Yes Yes Yes Yes Yes
Year fixed Yes Yes Yes Yes Yes Yes
R 0956 0934 0958 0956 0.934 0958
F 358700+ 118602+ 360002 46141 22,670 41015
Obs 4,487 4,487 4,487 4,487 4,487 4,487

in parentheses, *p < 0.1, **p < 0.05, ***p < 0.01.
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NCC

Constant

Controls
City cluster
City fixed
Year fixed

(1) Carbon

0108
(-8.398)
1068
(350.181)
No

No

Yes

Yes
0891
70,524+
5,287

(2) Carbon

0108+
(-3552)
1068
(349.097)
No

Yes

Yes

Yes
0891
12619
5,287

(3) Carbon

~0.101%+*
(-11.753)
8447+
(49.616)
Yes

No

Yes

Yes

0954
957.384%
4,796

(4) Carbon

~0.101%**
(-4.420)
8447+
(21.142)
Yes

Yes

Yes

Yes

0954
159.144%+
4796

in parentheses,*p < 0.1, **p < 0.05, ***p < 0.01.
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Variable Unmatched ¢ Unmatched p Matched t Matched p Matched bias
(%)

GDPit 831 0,000 -0.52 0,605 -82

FDI,, 280 0,005 031 0754 46

Tech, 003 0975 076 0449 142

Popi 372 0,000 053 0599 94

Consume;, 965 0,000 ~0.40 0693 -57

Obs 286 286 214 214 214
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Variable Obs Mean Std.Dev. Min Max
Dependent variable Carbon;, 5287 1057 0590 -1513 4510
Independent variable NCCy 5424 0099 0298 0 1
Mediator variables Urban,, 4967 0635 0.360 0.074 3594
Indus, 5278 0981 0570 0.0791 5340
TEP, 4416 00119 0.105 -1463 1192
Control variables GDPit 5286 9.658 0841 4357 1281
DI, 5069 0030 0096 0 2645
Techy, 5017 6538 2,652 -3.164 10350
Popi 5293 5846 0703 2678 9315
Consume; 5030 8841 1.009 ~0940 11.890
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Variable

Gender
Age
Famiysize
Education
Baby

Old

Work
Dwelingsize
Owner
W_house
Hometime
ACnum
ACusetime
ACtem
EKfre
EKnum
Out-time
Seffscore
Income

Houseage
Feelp

Description Mean
Respondent's gender (male = 1; female = 0) 0.49
Respondent's age (year) 43.30
Family size (person) 347
Number of famiy members with undergraduate education or above (person) 1.09
Number of babies under 3 years of age (person) 0.15
Number of people over the age of 60 (person) 0.57
Whether having full-ime job (yes = 1; no = 0) 052
Dweling size (m?) 111.18
Whether owning the house (yes = 1; no = 0) 0.81
Whether living with welfare housing (yes = 1; no = 0) 027
Hours of staying at home between 18:30 and 23:00 pm per typical weekday (hours) 392
Number of ACs per household (set) 0.82
Hours of using AC per day in summer (hours) 745
Temperature setting on AC in summer (‘C) 24.82
Frequency of using EKs (times per day) 299
Number of EKs (sef) 096
Estimated number of outages experienced over the past year (times) 267
Self-valuation of energy-saving behavior (010, from the lowest score to the highest) 7.72

Household's annual income category (¥0-30,000 = 1; ¥30,000-60,000 = 2; ¥60,000-100,000 = 3; ¥100,000-200,000=4; ~ 2.68
¥200,000-300,000 = 5; ¥300,000+ = 6)

Construction year of the house buiding (before 1970 = 1; 1980s = 2; 1990s = 3; after 2000 = 4) 381
Feeling about electricity price level (expensive = 1; relative expensive = 2; relative cheap = 3; very cheap = 4) 277

Standard deviation

0.50
15.62
1.74
1.19
0.42
08
05
65.22
0.39
0.45
0.97
0.52
5.09
236
263
0.60
2.32
1.89
1.15

1.13
06
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Number AC EK

1 @51 @.51)
2 (6,10, 2) (6,10,2)

3 (10, 20, 5) (10, 20, 5)
4 (20, 40, 10) (20, 50, 10)
5 (30, 50, 15)

6 (40, 60, 20)

7 (50, 80, 25)

8 (60, 100, 30)

Note: Figures in parentheses are the first bid, the second-round high bid, and the
second-round low bid. Similarly hereinafter.
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Time slot

18:30-19:00
19:00-19:30
19:30-20:00
20:00-20:30
20:30-21:00

Proportion of staying
at home (%)

68.8
76.9
791
856.7
88.4

Time slot

21:00-21:30
21:30-22:00
22:00-22:30
22:30-23:00

Proportion of staying
at home (%)

93.9
95.4
97.8
98.0
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Thermal power unit

Economic dispatch

Environmental dispatch

1
2
3
4
5
6

Fuel costs

Pollutant emission

111649
30.2682
520618
101.7981
532231
354839
2,687.25
1.110992

411786
464108
534319
38.6051
48.4839
50.9397
2,879.261
097101
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Thermal power
unit

1
2
3
4
5
6

Summation

Economic dispatch

Environmental dispatch

Q*

10.88
29.77
52.28
102.04
52.79
36.24
284.00

Fuel cost

124.72
286.45
545.18
832.56
550.85
347.47
2,687.23

Pollutant emission

0.18
0.07
0.14
034
0.14
024
L1

Q

4051
45.70
53.67
3873
54.09
5129
283.99

Fuel cost

497.15
478.06
560.64
248.65
565.32
526.21
2,876.03

Pollutant emission

015
0.06
0.14
0.24
0.14
023
0.97
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Scenario Median WTA (¥)

AC_D30 291
AC_D60 6.75
EK_D30 0.05

EK_D60 0.08
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Variables

Constant
Gender

Age
Familysize
Education
Baby

Old

Work
Dwelingsize
Owner
W_house
Hometime
Out-time
Income_2
Income_3
Income_4
Income_5
Houseage_2
Houseage 3
Houseage_4
Houseage 5
AChum
ACusetime
ACtem
EKfre
EKnum
Selfscore
Feelp_2
Feelp_3
Feelp_4
Sigma

Log likelihood
Sample size

EK

D30

6.377*
(2.534)
0.276
(0.362)

-0.047**

0.017)
-0.026
(0.161)
-0.015
(0.166)
0663
(0.280)
0415
(0510)
0.125
(0.398)
0.001
(0.003)
0.032
(0.488)
0.306
(0.465)
0.088
(0.189)
0.008
(0.075)
0.142
(0.564)
0755
(0.551)
0717
(0.684)
-0.542
(0.871)
1.307
(1.032)
-0.376
(0.962)
-0.015
(0.929)
0257
(0.930)
0.190
(0.416)

0.106"*

(0.037)

0471

0.078)

-0.048
(0.101)
-0.739
(0:810)
-1.250"
(0.678)
-1.304
(1.296)

3.159™

(0.268)

-5651.913

545

D60

9.778"

(2.487)
0.007
0.343)

-0.058"*

0.017)
0073
0.155)
0.094
0.155)

0.726"

0271)
0449
(0.496)
0018
0.381)
-0.002
0.003)
0264
(0.466)
0.133
0.441)
0.092
0179
0.001

0.074)
-0.382
0.526)
-0.024
0511)
0.135
0642)

-1.783"

0.826)
1.198
(0.985)
0.179
0913)
0241

0.891)
0984
0.892)
0334
0.399)

0118

(0.035)

-0.248"

0.076)

0071
(0.095)
-0.665
0.798)
-1.045

(0.680)
-0.730
(1.213)

3.082"

0.256)

-583.135

545

D30

2187
(2.908)
0579
(0.642)
-0.0400

(0.0292)

-0.407
(0259
0372
(0.363)
0476
(0.887)
1.300"
(0.557)
0682
0.758)

0.727*
(0.420)
0081

(0.164)
-1.629
(1.007)
-1.079
(1.016)
0341

(1.175)
2788
(1.768)

0378
0.150)
0232
(0.625)
-0.160
©0.175)
-1.942
(1.741)
-1.838
(1.546)
2715
(2.635)

3711

(0.600)

-198.675

356

D60

2634
(3.064)
0.750
(0.668)
-0.0236
(0.0304)
0284
(0.248)
0.257
(0.376)
0608
(0.903)
117"
(0.580)
0682
©.778)

0819"
(0.439)
0052
©0.179)
-0875
(1.126)
-0323
(1.078)
0.771

(1.278)
2925
(1.932)

0382
(©.161)
0351
(0.663)
-0.173
(0.186)
3,937
(1.917)
-2.786"
(1.652)
-4.768
(2.901)
4.071*
(0.643)
224.932
356

Notes: *, **, and *** is the significance levels of 10, 5, and 1%, with standard errors in
parentheses. Each regression includes a constant term, and the estimated resuts are

omitted in the table.
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Thermal power

it A max
unit
1 005 10 10 150 5
2 0.06 7.5 10 150 5
3 002 9 20 150 5
4 003 5 10 150 5
5 002 9 20 150 5
6 005 75 10 150 5
Thermal power unit  d; o f, & r.
1 0003245 -0.2777 20455 0.001 0.02857
2 0002819 -0.30235 12715  0.0025 0.03333
3 0002293 -0.2547 2129 0000005  0.08
4 0.00169 =0.1775 26.63 0.01 0.02
5 0002293 -0.2547 2129 0000005  0.08
6 0002576 -0.27775  30.655 000005  0.06667
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