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Imaging techniques to predict outcomes in renal cancers
Introduction

In the year 2020, GLOBOCAN data reported a global total of 431,288 new

instances of kidney cancer, establishing it as the 14th most prevalent cancer on a

worldwide scale. It ranks as the ninth most prevalent cancer in men and the 14th most

common among women. Renal cell carcinoma (RCC) makes up the majority (90%) of

these cases, with clear cell RCC at 70%, papillary RCC at 10–15%, and chromophobe

RCC at 5%. Other subtypes are rare, constituting ≤1% of cases (1). The increased

incidence of RCCs can be attributed in part to the rise in cross-sectional imaging in

recent decades, leading to more incidentally detected renal masses. Despite rising

incidence, kidney cancer has seen a mortality decline of about 2% per year from 2016 to

2020, underlining the impact of improved treatment (2).

Imaging plays a crucial role in the diagnosis and staging of RCC, guiding

treatment, and posttreatment evaluation. Computed Tomography (CT) or Magnetic

Resonance Imaging (MRI) are ideal imaging tools for the characterization of

indeterminate renal lesions. The American Joint Commission on Cancer (AJCC)

TNM system is most commonly used system for staging kidney cancer. Clinical

staging, which includes physical examination, biopsy, and imaging findings, can pre-

surgically determine the T stage, abnormal lymph nodes, venous invasion, and distant

metastases. Imaging findings guide management decisions, including intervention

choice and surgical approach (3).

Minimally invasive image-guided interventional radiology procedures are

applicable in both localized and advanced diseases. Renal mass biopsy is indicated

when a kidney lesion is suspected to be hematologic or metastatic. Percutaneous

ablation is a potentially curative treatment option for T1a tumors (4). Clear cell RCC’s

hypervascular nature makes Transarterial Embolization (TAE) a viable adjunctive

technique or stand-alone therapy.

The 5-year survival rate among kidney cancer patients has steadily increased due to

early tumor detection and more effective systemic therapy for advanced disease.
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However, one-third of patients are diagnosed with regional or

distant metastases, and approximately one-fourth of those treated

surgically with curative intent experience relapse with distant

metastases (5). Targeted agents and immunotherapy have

improved overall survival and prognosis, but responses vary

among patients. Imaging biomarkers and response evaluation

criteria have been developed to predict their efficacy.

This Research Topic, led by Dr. Mahajan and team, explores

novel imaging techniques for predicting outcomes in renal cancers.

The Research Topic includes nine manuscripts, comprising seven

original research articles, one meta-analysis, and one review article.

The following is a summary of each manuscript:

Diffusion Weighted Imaging (DWI) based diffusion kurtosis

imaging (DKI) and Intravoxel incoherent motion (IVIM) models

have evolved over recent years. In their original research, Cheng

et al. studied the ability of DKI and IVIM to differentiate histologic

grades and clinical stages of clear cell RCC.

The field of modern imaging has taken a giant leap with

radiomics, now widely utilized in the diagnosis, prognostication,

and post-treatment follow-up in tumor imaging. Radiomics

involves extracting quantitative features from radiographic

images, analyzing the heterogeneity of tumors throughout their

volume, and developing predictive models that link imaging

features with genomic patterns and clinical outcomes. This

Research Topic includes four manuscripts specifically focused on

the application of radiomics in renal cell carcinoma (RCC).

Xing et al. have applied contrast-enhanced CT-based radiomics

to predict overall survival (OS) in RCC patients. Yin et al. have used

radiomics features based on the differential network feature

selection (FS) method to determine the feasibility of predicting

WHO/ISUP grade and progression-free survival (PFS) of clear cell

RCC. There is considerable overlap in the imaging appearance of

Renal angiomyolipoma without visible fat and clear cell RCC which

poses a challenge to radiologists. In their radiomics-based study,

Wang et al. have created a scoring system to distinguish the two

using CT imaging by establishing a model using logistic regression

and weighted to be a scoring system.

In their original research, Huang et al. established an integrative

nomogram model using contrast-enhanced CT features and

underlying genomics patterns to predict the overall survival (OS)

of clear cell RCC patients.

Liu et al. have explored the feasibility of utilizing urine

metabolites for early clinical diagnosis of RCC by demonstrating
Frontiers in Oncology 025
different urine metabolic profiles in RCC patients, healthy and

benign controls.

Kode et al. retrospectively analysed standard uptake values

(SUVs) in patients with and without renal failure, finding that

renal failure patients do not require a protocol adjustment for 2-

deoxy-2-[18F]fluoro-d-glucose Positron Emission Tomography/

Computed Tomography (PET/CT).

Pan et al. conducted a meta-analysis exploring the value of

contrast-enhanced ultrasound (CEUS) in the diagnosis of

renal cancer.

Liu has reviewed the usefulness of 18F-fluorodeoxyglucose FDG

PET/CT in RCC, emphasizing its efficacy in postoperative

surveillance and restaging when conventional imaging

is inconclusive.

In conclusion, the editors express gratitude to all the

contributors for their valuable input in this Research Topic,

which aims to inspire future and novel research approaches in the

field of imaging in renal cancers.
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The Place of FDG PeT/CT in Renal 
Cell Carcinoma: value and Limitations
Yiyan Liu*

Nuclear Medicine Service, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA

Unlike for most other malignancies, application of FDG PET/CT is limited for renal cell 
carcinoma (RCC), mainly due to physiological excretion of 18F-fluoro-2-deoxy-2-d-
glucose (FDG) from the kidneys, which decreases contrast between renal lesions and 
normal tissue, and may obscure or mask the lesions of the kidneys. Published clinical 
observations were discordant regarding the role of FDG PET/CT in diagnosing and 
staging RCC, and FDG PET/CT is not recommended for this purpose based on current 
national and international guidelines. However, quantitative FDG PET/CT imaging may 
facilitate the prediction of the degree of tumor differentiation and allows for prognosis 
of the disease. FDG PET/CT has potency as an imaging biomarker to provide useful 
information about patient’s survival. FDG PET/CT can be effectively used for postoper-
ative surveillance and restaging with high sensitivity, specificity, and accuracy, as early 
diagnosis of recurrent/metastatic disease can drastically affect therapeutic decision and 
alter outcome of patients. FDG uptake is helpful for differentiating benign or bland emboli 
from tumor thrombosis in RCC patients. FDG PET/CT also has higher sensitivity and 
accuracy when compared with bone scan to detect RCC metastasis to the bone. FDG 
PET/CT can play a strong clinical role in the management of recurrent and metastatic 
RCC. In monitoring the efficacy of new target therapy such as tyrosine kinase inhibitors 
(TKIs) treatment for advanced RCC, FDG PET/CT has been increasingly used to assess 
the therapeutic efficacy, and change in FDG uptake is a strong indicator of biological 
response to TKI.

Keywords: renal cell carcinoma, FDG PeT/CT, staging, restaging, tyrosine kinase inhibitors

iNTRODUCTiON

Renal cell carcinoma (RCC) is the most common solid tumor of the kidneys, accounting for 3% of all 
malignancies and representing the seventh leading cause of cancer. The most common histological 
subtype of RCC is clear cell RCC, followed by papillary carcinoma. Standard imaging evaluation 
for the characterization of primary renal tumor includes ultrasound, CT, and MRI. Cross-sectional 
imaging, especially contrast CT, is a primary imaging modality for tumor detection and diagnosis, 
and its increasing use has led to an increased diagnosis of RCC. Surgical resection through either 
partial or radical nephrectomy remains the mainstay of treatment for the localized disease.

Positron emission tomography (PET) has emerged as one of the most important imaging modality 
in staging, restaging, detecting recurrence and/or metastasis, and monitoring therapeutic response 
in most malignant diseases (1, 2). In PET, a trace amount of a radioactive compound is adminis-
tered, and the resultant images are obtained from three-dimensional spatial reconstructions. The 
intensity of the imaging signal is proportional to the amount of tracer and, therefore, is potentially 
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semiquantitative (3). Whereas conventional imaging techniques 
can provide information on anatomic abnormalities, PET imag-
ing relies on both molecular biology and in  vivo imaging to 
provide information about the preceding changes in metabolism 
and function, including glucose metabolism, cell proliferation, 
cell membrane metabolism, or receptor expression. Furthermore, 
integrated PET/CT units allow correct co-registration and fused 
imaging of anatomical and functional data. The integration of 
CT imaging with PET has been demonstrated to significantly 
decrease false positive results and improve accuracy of the PET 
study (4–6).

18F-fluoro-2-deoxy-2-d-glucose (FDG), a non-physiological 
radiotracer with a chemical structure similar to that of naturally 
occurring glucose, is most commonly used in PET imaging. FDG 
enters cells through the same membrane glucose transporter 
proteins utilized by glucose, which are commonly overexpressed 
in cancer cells (7, 8). FDG imaging relies upon Warburg’s obser-
vation that increased glycolysis generated adenosine triphosphate 
is required to meet the metabolic demands of rapidly dividing 
tumor cells. Membrane glucose transporters, mainly GLUT-1, 
actively transport FDG into the cell, where hexokinase then 
converts it into FDG-6-phosphate. As FDG-6-phosphate is not 
a substrate for further steps in glycolysis, it is trapped in the cell 
and accumulates correspondingly to the cell’s glucose metabolic 
activity. FDG accumulation rate is semiquantitatively measured 
by the standardized uptake value (SUV). Malignant cells exhibit 
increased FDG accumulation due to increased membrane trans-
porters, increased intracellular hexokinase, and low glucose-
6-phosphatase (8).

Unlike for most other malignancies, application of FDG PET/
CT is limited for RCC, mainly due to physiological excretion of 
FDG from the kidneys, which decreases contrast between renal 
lesions and normal tissue, and may obscure or mask the lesions 
of the kidneys. However, published clinical observations were 
discordant. In the era of PET/CT in oncology, clarification and 
validation of FDG PET/CT for RCC is of great significance for 
urologists, oncologists, and radiologists. This review presents the 
studies regarding the FDG PET/CT for RCC. The role of FDG 
PET/CT is discussed based on the critical, non-structured review 
of the literature.

FDG PeT/CT FOR PRiMARY RCC

Many early clinical observations showed unfavorable results 
about the role of FDG PET/CT for detection and characterization 
of lesions of the kidney, with pooled sensitivity of 50–60% (9). 
Even forced diuresis coupled with parenteral hydration could not 
improve the sensitivity (10). In Miyakita’s study (11), 19 consecu-
tive patients with RCC were imaged using FDG PET preopera-
tively, the results of which were then compared with the histology 
obtained after radical surgery. Increased FDG uptake was found in 
only in 6 out of the 19 patients (31.5%) while immunohistochem-
istry of GLUT-1 in RCC produced varying results; there was no 
correlation of GLUT-1 immunoreactivity and FDG PET positiv-
ity. Aide et al. prospectively compared the efficiency of FDG PET 
with diagnostic CT in the characterization and primary staging 
of 35 suspicious renal masses (12). A high rate of false negative 

results was reported with FDG PET, leading to 47% sensitivity, 
80% specificity, and 51% accuracy; all lower than those of CT. The 
author concluded that, in the characterization of renal masses, 
FDG PET imaging does not offer any additional advantages com-
pared with CT. In another retrospective study of 66 patients with 
known RCC by Kang et al. (13), the accuracies of FDG PET and 
conventional imaging modalities were also compared. FDG PET 
exhibited a sensitivity of 60% and specificity of 100% for primary 
RCC tumors, while abdominal CT demonstrated 91.7% sensitiv-
ity and 100% specificity. Ozulker et al. evaluated the efficacy of 
FDG PET/CT in the detection of RCC in patients with indeter-
minate renal masses detected by conventional imaging from 18 
patients (14). All patients underwent nephrectomy or surgical 
resection of the renal mass, and the final diagnoses were based on 
histopathology. Fifteen patients had RCC, and three renal tumors 
were benign. FDG PET/CT accurately detected seven malignant 
lesions and false negative results in eight patients. FDG PET/
CT yielded true negatives in two cases of renal cortical cyst and 
false positive in one case with oncocytoma. For primary RCC 
tumors, PET showed 46.6% sensitivity, 66.6% specificity, and 50% 
accuracy. The median size of visualized tumors was greater than 
that of non-visualized tumors, and the average Fuhrman grade 
of the patients with FDG-positive malignant lesions were higher 
than that of the patients with FDG-negative lesions. There was no 
significant change in average and maximum SUVs between early 
and delayed imaging for malignant tumors.

However, some clinical observations demonstrated favorable 
results regarding the role FDG PET/CT in RCC and showed high 
FDG avidity in the majority of RCC lesions. In a study by Kumar 
et  al. (15), FDG PET was performed in 28 solid renal masses 
visualized by CT/MRI. Of the lesions, FDG PET was accurately 
able to depict 23 out of 27 (85%) malignant renal masses. Of 
the 10 primary renal tumors (9 malignant, 1 benign), FDG PET 
yielded 8 out of 9 true positive results (89%), 1 true negative, and 
1 false negative. In addition to characterization of the lesions, 
FDG PET also contributed to primary staging, altering manage-
ment in 3 out of 10 patients (30%). Of metastatic renal tumors, 
FDG PET was positive in 15 out of 18 (83%). There was no 
significant difference in SUVs between primary and metastatic 
renal masses. Nakhoda et  al. evaluated the sensitivity of FDG 
PET/CT to detect different renal lesions (16). Fifteen out of 18 
RCC were detectable by PET, whereas all renal lymphomas and 
metastases were detectable. None of the metabolic parameters 
were statistically significant between RCC and renal lymphoma. 
However, all metabolic parameters were statistically and sig-
nificantly greater for renal metastases compared with RCC and 
renal lymphoma, and for clear cell RCC compared with papillary 
RCC. In addition to a sensitivity of 88% for detection of solid 
malignant renal lesions in patients with known renal malignancy, 
FDG PET/CT also reveals differences in metabolic activity based 
on histopathological type.

Recently, Takahashi et al. retrospectively analyzed FDG PET/
CT findings in 98 lesions from 93 patients who had partial or 
radical nephrectomy after imaging (17). The SUVs of high-grade 
clear cell RCC were significantly higher when compared with that 
of the control benign lesions and low-grade tumors. An optimal 
SUV cutoff value of 3.0 had 89% sensitivity and 87% specificity 
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in differentiating between high-grade and low-grade clear cell 
RCCs. Multiple regression analysis demonstrated that a high-
grade clear cell RCC was the most significant predictor of SUV.

Overall, the results were heterogeneous. Although FDG 
PET/CT may be helpful in the characterization and detection 
of primary renal tumors, it has low negative predictive value. In 
addition, it seems that FDG PET/CT does not have significant 
advantage in diagnosis and staging of RCC compared with the 
diagnostic CT.

PReDiCTive ROLe OF FDG  
PeT/CT iN PROGNOSiS

Metabolic quantitation by SUV measurement on FDG PET/CT 
may play a role in the evaluation of biological behavior of lesion 
and prediction of patient’s prognosis. Namura et al. evaluated the 
impact of the maximum SUV (SUVmax) from FDG PET/CT on 
survival in 26 patients with advanced RCC (18). High SUVmax in 
patients with RCC correlated with poor prognosis, as there was a 
statistically significant difference in the survival between patients 
with SUVmax equal or greater than the mean of SUVmax, 8.8 and 
patients with SUVmax less than 8.8. The authors revealed that the 
SUVmax might have a role as a novel biomarker in prognosticating 
the survival time of patients with advanced RCC by multivari-
ate analyses with standard risk factors or risk classifications. In 
another study by Ferda et al. (19), 60 RCC patients had follow-ups 
for development of the disease 12 months after FDG PET/CT. The 
highest FDG accumulation was seen in the tumor of the highest 
grade, and the highest mortality was found for tumors exceeding 
SUVmax of 10. Lee et  al. investigated the relationship between 
the SUVmax of primary RCC with and without metastatic lesions 
in 23 patients (20). The median SUVmax of primary RCC of the 
16 patients without metastasis was 2.6 (range of 1.1–5.6) while 
that of the patients with metastasis was 5.0 (range of 2.9–7.6). 
The SUVmax of the primary RCC with metastasis (5.3 ± 1.7) was 
significantly higher than those without metastasis (2.9  ±  1.0). 
Thus, one of the roles of FDG PET/CT in the initial evaluation 
of a patient with RCC may be in predicting extrarenal disease, as 
patients who have primary RCC with high SUVmax are suggested 
to have a likelihood of metastasis.

Based on the limited data, quantitative FDG PET/CT imaging 
may facilitate the prediction of the degree of tumor differentiation 
and allow for prognosis of the disease. FDG PET/CT may be an 
effective imaging biomarker to provide useful information about 
patient’s survival. However, more studies are needed to justify 
these preliminary findings.

FDG PeT/CT FOR ReSTAGiNG RCC

Metastatic RCC is one of the most lethal urologic cancers. Up to 
one-third of patients with newly diagnosed RCC have metastatic 
diseases (21). Even after nephrectomy of a locally confined 
disease, more than 30% of the patients develop metastases, most 
commonly to the lung, bone, skin, liver, and brain (21). Effective 
staging of RCC, therefore, is crucial for the management of 
patients.

Although the role of FDG PET/CT in diagnosing RCC is con-
flicting, it has been more effective in the detection of metastatic 
disease, thus affecting therapeutic decisions. Obviously, size of 
the lesions has been shown to be a significant factor affecting 
sensitivity of PET/CT. Majhail et al. evaluated the performance 
of FDG PET in detecting metastatic lesions in 24 patients with 
histologically proven RCC and suspected distant metastases 
based on conventional anatomic imaging (22). Histologically 
documented distant metastases were present in 33 sites. Overall 
sensitivity, specificity, and positive predictive value of FDG PET 
for the detection of distant metastases from RCC was 63.6% (21 
out of 33), 100% (3 out of 3), and 100% (21 out of 21), respectively. 
The mean size of distant metastases in patients with true positive 
FDG PET was 2.2 cm (95% CI, 1.7–2.6 cm) compared with 1.0 cm 
in patients with false negative FDG PET.

18F-fluoro-2-deoxy-2-d-glucose (FDG) PET seems useful for 
postoperative surveillance in patients with RCC. It can detect 
recurrence in the surgical site. Nakatani et al. evaluated the surveil-
lance role of FDG PET in 23 postoperative patients with RCC (23). 
Histological final diagnosis of at least 6 months clinical follow-up 
was used to confirm diagnostic accuracy of visually interpreted 
PET. FDG PET was demonstrated to have 81% sensitivity, 71% 
specificity, and 79% diagnostic accuracy. PET was able to accurately 
detect local recurrence and metastases to the peritoneum, bone, 
muscle, and adrenal gland in all cases. In six cases (21%), addi-
tional information was obtained from scans, ultimately affecting 
the course of therapeutic management in three cases (11%). The 
cumulative survival rate over 5 years in the PET-positive was 46%, 
whereas that of the PET-negative group was 83%. Kumar et al. 
assessed 103 FDG PET/CT scans of 63 patients with suspected 
recurrent RCC after nephrectomy, confirmed with histological 
examination and/or clinical follow-up and conventional imaging 
modalities (24). The results of the 103 FDG PET/CT scans were 
63 true positive studies, 30 true negative studies, 7 false negative 
studies, and 3 false positive studies. 109 lesions were detected by 
FDG PET/CT in the 63 true positive scans. FDG PET/CT was 
demonstrated to have 90% sensitivity, 91% specificity, and 90% 
accuracy in the study. Bertagna et al. retrospectively evaluated 68 
patients with renal carcinoma who had postoperative FDG PET/
CT following partial or radical nephrectomy (25). FDG PET/
CT was reported to have 82% sensitivity, 100% specificity, 100% 
positive predictive value, 66.7% negative predictive value, and 
86.6% accuracy. In another study reported by Fuccio et al., the 
usefulness of FDG PET/CT was assessed in the restaging of 69 
RCC patients with clinical or radiological suspicion of metastases 
after nephrectomy (26). Validation of FDG PET/CT results was 
established by biopsy, other imaging modalities, and/or clinical 
and radiological follow-up of 12 months. Forty patients had true 
positive, 2 patients false positive, 23 patients true negative, and 4 
patients false negative. Sensitivity, specificity, accuracy, positive 
predictive value, and negative predictive value were 90, 92, 91, 95, 
and 85%, respectively. On a lesion basis, FDG PET/CT detected 
114 areas of abnormal uptake in 42 positive patients of which 112 
resulted to be true positive.

In another large series study, Win and Aparici retrospec-
tively reviewed the FDG PET/CT studies in 315 RCC patients 
with biopsy results (27). FDG PET/CT studies exhibited 100% 
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FiGURe 1 | Demonstration of primary RCC and tumor thrombosis on 
FDG PeT/CT. A 53-year-old man had a large left renal mass seen on the CT. 
FDG PET/CT showed increased, heterogeneous uptake of the mass in the 
left kidney. There was also tumor thrombosis in the renal vein, evidenced by 
FDG avid intraluminal lesion.

FiGURe 2 | Demonstration of RCC recurrence on FDG PeT/CT. 
A 66-year-old woman had right partial nephrectomy for RCC. Two years later, 
a diagnostic CT showed a new mass in the anterior midpole of the right 
kidney, which was FDG avid on PET imaging. Subsequent nephrectomy 
confirmed recurrence of RCC.

FiGURe 3 | Demonstration of RCC recurrence on FDG PeT/CT. 
A 68-year-old man had right radical nephrectomy for RCC. FDG PET/CT was 
obtained for surveillance 5 years later, which showed a 2.0 cm density with 
moderate uptake in the surgical bed and was suspicious for recurrence. 
Surgical pathology revealed recurrent malignancy.
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sensitivity and 100% specificity in detecting all metastatic lesions 
of RCC, the smallest of which detected was a 7 mm lymph node. 
Therefore, the authors recommended the use of FDG PET/CT in 
routine standard protocols for RCC.

18F-fluoro-2-deoxy-2-d-glucose (FDG) PET/CT is a valuable 
tool both in guiding management and treatment in patients with 
RCC, as well as in predicting survival and progression. A more 
recent study confirmed the clinical role of FDG PET/CT in the 
restaging of RCC in a large group of patients (28). For recurrent 
and/or metastatic lesions in 104 patients, FDG PET/CT dem-
onstrated sensitivity and specificity of 74 and 80%, respectively. 
FDG PET/CT findings affected management therapies in 45/104 
cases (43%). In looking at overall survival (OS), positive FDG 
PET/CT associated with lower cumulative survival rates cover 
a 5-year period compared with that of negative FDG PET/CT. 
Likewise, a positive FDG PET/CT was associated with a lower 
3-year progression-free survival (PFS) rate and was associated 
with high risk of progression, alone or in combination with 
disease stage or nuclear grading.

In patients with underlying primary malignancy, there is a 
high incidence of thrombosis, which can develop from venous 
thromboembolism (VTE) or more rarely, tumor thrombus. VTE 
is a common occurrence in cancer, managed with anticoagulant 
therapy, while tumor thrombosis requires aggressive multimo-
dality therapeutics. Tumor thrombosis most commonly develops 
in solid tumors, such as RCC and hepatocellular carcinoma, 
adjacent to large veins as an extension of the malignancy and/or 
tumor infiltration (29). Sharma et al. conducted a retrospective 
review of FDG PET/CT scans in patients who had FDG-avid 
thrombosis (30). FDG PET/CT results were confirmed with 
clinical follow-up, structural imaging, and histopathology when 
available. On the basis of structural imaging and clinical follow-
up, 10 patients had benign and 14 patients had tumor thrombosis. 
The most common site of thrombosis was the inferior vena cava. 
The mean SUVmax was 3.2 in the benign thrombosis group and 
6.0 in the tumor thrombosis group. The difference in SUVmax was 
significant. In Ravina’s series (31), out of 21 tumor thrombosis 
cases incidentally detected by FDG PET/CT, 6 were from RCCs. 
Ferda et al. also reported that FDG PET/CT successfully detected 
all 7 cases with tumor invasion into the inferior vena cava of 60 
patients with RCC (19). The results showed that SUV and the 
pattern of FDG uptake are helpful for differentiating benign or 
bland emboli from tumor thrombosis in RCC patients, which is 
essential for management of patients (Figure 1).

Bone lesions associated with RCC are typically osteolytic. 
Traditional bone scintigraphy with Tc-99m methylene diphos-
phonate has limited sensitivity compared with FDG PET/CT, 
which has a higher sensitivity and a better accuracy in detecting 
bone metastases in patients with RCC. Wu et al. compared FDG 
PET with bone scan in 18 patients with biopsy-proven RCC 
and suspected bone metastases confirmed by histopathology or 
clinical follow-up of at least 1 year and conventional imaging or 
FDG PET/bone scans (32). Fifty-two bone lesions, 40 metastatic, 
and 12 benign, were found on either FDG-PET or bone scan. 
FDG PET accurately diagnosed all 40 metastatic and 12 benign 
bone lesions. In comparison, only 31 metastatic bone lesions were 
accurately detected by bone scan. FDG PET had 100% diagnostic 

sensitivity and 100% accuracy while that of bone scan were 77.5 
and 59.6%, respectively.

18F-fluoro-2-deoxy-2-d-glucose (FDG) PET/CT can provide 
useful information and has a strong clinical role in the man-
agement of recurrent and metastatic RCC (Figures  2–4). In a 
58-patient series reported by Rodriguez Martinez de Llano et al. 
(33), FDG PET/CT had the clinical impact in 25 cases (43%) and 
no impact in only 10 studies (17.2%). In more recently reported 
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FiGURe 4 | Demonstration of metastatic lymph node on FDG PeT/CT. 
A 57-year-old man had the left nephrectomy for RCC 5 years ago. 
A restaging FDG PET/CT showed a 1.5 cm left para-aortic node with 
moderate uptake. Subsequent node dissection confirmed metastasis.
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large series by Alongi et  al. (28), FDG PET/CT findings influ-
enced therapeutic management in 45/104 cases (43%), treatment 
was switched from palliative to salvage in 12 patients, and new 
chemotherapy or immunotherapy was initiated in 24 patients.

Compared to conventional imaging modalities, FDG PET/
CT has the advantage in detection of early metastatic disease and 
identification of musculoskeletal metastases, which are difficult to 
assess on CT and MRI. Bertagna et al. reported that histologically 
confirmed bone metastases were revealed at FDG PET/CT in the 
presence of negative diagnostic CT in 3 out of 27 cases (25). Park 
et al. compared FDG PET/CT to conventional imaging modalities 
for restaging 63 patients with RCC who have a high risk of local 
recurrence or distant metastasis (34). FDG PET/CT accurately 
classified the presence of a recurrence or metastasis in 56 (89%) 
patients. FDG PET/CT had 89.5% sensitivity, 83.3% specificity, 
77.3% positive predictive value, 92.6% negative predictive value, 
and 85.7% accuracy in detecting recurrence or metastasis, which 
were similar to the results with conventional methods. Since 
FDG PET/CT is versatile and examines all organ systems with 

high accuracy in one procedure, and with no need for contrast 
agents, it might replace conventional methods for restaging RCC. 
Additionally, FDG PET/CT has a unique value in the prediction 
of survival and risk of progression in patients with recurrent or 
metastatic RCC (28).

However, FDG is not specific for malignant neoplasm. 
Increased uptake can be seen in many benign tumors and non-
neoplastic processes. On FDG PET/CT for RCC, the false positive 
results are often due to concomitant inflammatory/infectious 
disease (9, 28), postoperative scar (26), postradiation inflamma-
tion, etc. The most common reason of a false negative FDG PET/
CT finding is the small size of lesion and limited spatial resolution 
of PET scanner (26, 28). In RCC, another potential source of false 
negative result may be due to close proximity of the lesion to the 
urinary tract where there is physiologic urine activity (26).

FDG PeT/CT FOR MONiTORiNG 
THeRAPeUTiC ReSPONSe TO 
TYROSiNe KiNASe iNHiBiTOR

Adjuvant therapy remains a poor treatment alternative for 
advanced RCC. RCC is resistant to both conventional cytotoxic 
chemotherapy and radiation therapy, which carry a significant 
toxicity burden. However, a variety of targeted therapies including 
tyrosine kinase inhibitors (TKIs) have showed promising efficacy 
in advanced or metastatic RCC, with satisfactory results on PFS 
and quality of life (35, 36). TKIs, such as sunitinib and sorafenib, 
are antiangiogenic and can effectively inhibit tumor proliferation.

Although tumor size measurements with the response evalua-
tion criteria in solid tumors (RECIST) criteria have been used for 
monitoring response to chemotherapy, there is often little change 
in size of the lesions, and some metastases even increase in size 
while the drug is prolonging survival (37). In the recent years, 
FDG PET/CT has been increasingly used to assess the therapeutic 
efficacy of TKIs in patients with metastatic RCC. According to 
Caldarella’s systematic review of seven published studies, a 
good correlation was found between partial metabolic response 
and PFS and/or OS, with the highest survival rates in patients 
showing the greatest post-therapeutic reduction in SUVmax (38). 
In contrary, increase on FDG uptake was associated with lower 
OS (39). Pooled studies showed that FDG PET/CT had a high 
predictive value in the evaluation of response to SKI treatment in 
both skeletal and soft tissue lesions of metastatic RCC although 
there was heterogeneity of available data (38).

Some studies compared the values of FDG PET/CT and 
RECIST in predicting PFS and OS of patients treated with SKIs 
for metastatic RCC. Lyrdal et al. reported that FDG PET/CT was 
more useful than RECIST criteria, especially for the evaluation 
of skeletal lesions (40), as RECIST is limited to soft tissue lesions.

Kakizoe et al. reported that the decreased ratio of FDG accu-
mulation of RCC lesions, as assessed 1 month following initiation 
of TKI treatment by FDG PET/CT, was not influenced by the site 
of RCC metastasis (41). The study suggests that TKIs can be used 
in the treatment of advanced RCC regardless of the metastatic 
site, and that FDG PET/CT is a useful method of surveillance to 
monitor therapeutic response in all lesions.
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CONCLUSiON

Although the usefulness of FDG PET/CT in primary RCC 
remains unclear, and FDG PET/CT is not currently recom-
mended for the diagnosis and staging of RCC based on updated 
national and international guidelines (42–44), it can effectively be 
used for postoperative surveillance and restaging as an adjunct 
when conventional imaging is not conclusive, as early diagnosis 
of recurrent/metastatic disease can drastically affect therapeutic 
decision and alter outcomes of patients (45). FDG uptake is help-
ful for differentiating benign or bland emboli from tumor throm-
bosis in RCC patients. FDG PET/CT has a higher sensitivity and 
accuracy in detecting bone metastases in patients with RCC than 
that of bone scan. Pretreatment SUVmax assessed by FDG PET/

CT can provide helpful information for clinical decision-making 
as it can serve as a useful prognostic marker for patients with 
advanced RCC. High SUVmax in patients with primary RCC is 
suggested with correlate with a high likelihood of metastasis, and 
FDG accumulation may be useful in estimating patient’s survival. 
In monitoring the efficacy of TKI treatment for advanced RCC, 
FDG PET/CT has been increasingly used to assess the therapeutic 
efficacy, and change of FDG uptake is a powerful index for evalu-
ating the biological response to TKI.
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Objective: The current guidelines for 2-deoxy-2-[18F]fluoro-d-glucose PET/CT scanning 
do not address potential inaccuracies that may arise due to patients with renal failure. 
We report a retrospective analysis of standard uptake values (SUVs) in patients with and 
without renal failure in order to warrant a protocol adjustment.

Methods: Patients were matched based on age, gender, and BMI all of which are 
potential effectors on observed SUV. Thirty patients were selected with clinically diag-
nosed renal failure, of which 12 were on dialysis. All 30 patients had age, gender, and 
BMI control matches. Blood urea nitrogen and creatinine levels were measured within 
1  month of the scan to assess renal failure. PET/CT scans for both the renal failure 
patients and controls were performed 60 min after FDG injection. SUVs were measured 
by placing circular regions of interest in the right hepatic lobe (LSUV) and left psoas 
muscle (PSUV).

results: For the 30 renal failure patients, the mean LSUV was 2.77 (SD = 0.57) and 
PSUV was 1.43 (SD = 0.30) while the controls had mean LSUV 2.74 (SD = 0.50) and 
PSUV 1.42 (SD  =  0.37). The SUVs from both the liver and psoas muscle were not 
significantly different between the renal failure patients and the normal controls with  
p values >0.05. In addition, dialysis and gender also had no effect on SUVs.

conclusion: Our data suggest that renal failure patients do not require an adjustment  
in protocol and the standard protocol times should remain.

Keywords: PeT/cT, renal failure, esrD, FDg, PeT

inTrODUcTiOn

According to the Center for Disease Control, the ninth leading cause of death in the United States 
is kidney disease with more than 47,000 deaths each year (1). Kidney disease is a prevalent and 
growing problem in the United States with over 26 million American adults afflicted (2). The two 
leading causes of kidney disease are high blood pressure and diabetes, both of which are rising (3). 
In addition to kidney disease, many of these patients have various other co-morbidities such as 
cancer. Consequently, there is a large overlap in these patient populations. In 2015, an estimated 
1.7 million FDG PET/CT scans were performed while over 1.6 million cancer cases were newly 
diagnosed (4, 5). Therefore, it is important to evaluate the effects of renal failure on the biodistribu-
tion of FDG in FDG PET/CT scans.
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Renal failure is defined as an 85–90% loss of kidney function 
with a glomerular filtration rate less than 15  ml/min/1.73m2. 
Treatments for renal failure include kidney transplants, 
hemodialysis, and peritoneal dialysis (6). It is hypothesized 
that patients with renal failure may require a greater uptake 
time during an FDG PET/CT exam than patients with normal 
kidney function due to the impaired distribution and clearance 
of FDG. Other nuclear medicine studies such as bone scanning 
have addressed the altered biodistribution caused by renal 
failure and recommend additional delayed imaging to allow for 
an improved target to background ratio (7). However, neither 
the US nor the European guidelines addresses the impact of 
kidney disease on PET/CT scanning and whether there should 
be an adjustment to the protocol (8, 9). The standard uptake 
time for most malignancies is 60 min after the injection of FDG 
(10). While this is standard for a patient with normal kidney 
function, it is believed that a patient with renal failure may need 
a longer uptake time to improve the target to background ratio 
as in bone scanning.

Currently, information regarding FDG clearance time in 
patients with renal failure is limited. However, it has been 
hypothesized that a patient with renal failure might need a greater 
uptake time to improve diagnostic accuracy (11). Currently, the 
only exceptions to the 60-min uptake time are breast, hepatocel-
lular, prostate, and pancreatic cancers, which require a 90 min 
uptake. However, a study has been performed on patients with 
high creatinine and found that the FDG accumulated in the blood 
of these patients (12).

In this study, we hypothesized higher standard uptake values 
(SUVs) in the internal reference points in patients with renal 
failure compared to the age and gender matched controls which 
could imply a need for a change in protocol.

MaTerials anD MeThODs

Patient selection
Our Institutional Review Board approved this single institution, 
retrospective study, and the requirement to obtain informed 
consent was waived. We retrospectively reviewed 1,095 [18F]
fluoro-d-glucose PET/CT scans of known cancer patients. The 
majority of patients were scanned from the vertex of the skull to 
the toes, as it is the standard of care in our institution. A log was 
kept for patients with clinically diagnosed renal failure. Exclusion 
criteria included patients with renal transplant, patients with 
primary liver or metastatic cancer in the liver, patients who did 
not have blood urea nitrogen or creatinine levels within 1 month 
of the scan and patients who were given a 90 min uptake time 
instead of the standard 60  min uptake. Thirty patients were 
selected with 12 of these patients on dialysis. However, this was 
not considered as a parameter for exclusion.

In order to minimize variance between a control group and 
the renal failure patients, we selected 30 controls with normal 
kidney function that matched each renal failure patient in BMI, 
age, and gender. In addition, BUN and creatinine levels were 
measured within 1 month of the scan. The BUN levels for the 
control group fell within the acceptable 7–26 mL/dL limit and the 
creatinine levels fell within the acceptable 0.6–1.2 mL/dL limit.

PeT/cT scan
FDG PET/CT scans were acquired using PET/CT scanner 
(Gemini TF; Philips Medical Systems) with an axial co-scan range 
of 193 cm. Per institutional protocol, all patients were instructed 
to fast at least 4  h prior to receiving the radiopharmaceutical 
injection. Blood glucose level was <200  mg/dL in all patients. 
On the day of the exam, intravenous injection of 5.18 MBq/kg 
(0.14 mCi/kg) of FDG was administrated. Patients sat in a quiet 
room without talking for 60 min during the uptake phase prior 
to imaging.

cT scanning
The CT component of the PET/CT scanner has 64 multidetec-
tor helical CT with a gantry port of 70  cm. The parameters of 
CT detectors were set as follow for 20–21 bed acquisitions: 
120–140 kV and 33–100 mAs (based on body mass index), 0.5 s 
per CT rotation, pitch of 0.9 and 512  ×  512 matrix data were 
used for image fusion and the generation of the CT transmission 
map. The CT images were obtained without oral or IV contrast 
administration according to the standard PET/CT protocol at our 
institution.

PeT scanning and image Processing
The PET component of the PET/CT scanner is composed of 
lutetium-yttrium oxyorthosilicate-based crystal. Emission scans 
were acquired at 1–2 min per bed position. The FOV was from 
the top-of-head to the bottom of feet in the vast majority of 
patients. The three-dimensional (3D) whole-body (WB) acqui-
sition parameters were 128 × 128 matrix and 18 cm FOV with 
a 50% overlap. Processing used the 3D Row Action Maximum 
Likelihood Algorithm method. Total scan time per patient was 
approximately 20–45 min.

Data analysis
PET/CT images were retrospectively evaluated on the Gemini 
TF extended brilliance workstation by board certified nuclear 
medicine physicians. Quantitative analysis of the data was done 
using SUV, standardized maximum uptake values. A 30 mm cir-
cular region of interest was used to record the liver SUV (LSUV) 
from the right hepatic lobe and psoas SUV (pSUV) from the left 
psoas muscle.

The median SUVs for both the control group and the renal 
failure group were compared using a Mann–Whitney U test.  
In addition, Mann–Whitney U test comparison was also done 
for the dialysis and non-dialysis patients using the same metho-
dology. Statistics were completed using IBM SPSS Statistics, 
version 23. Statistical significance was set at p < 0.05.

resUlTs

The participant characteristics are presented in Table  1. For 
the 30 renal failure patients, the median LSUV 2.90 (min–
max = 1.60–3.90) and PSUV 1.30 (min–max = 1.10–2.50) while 
the controls had median LSUV was 2.60 (min–max = 1.80–3.90) 
and PSUV was 1.35 (min–max = 0.90–2.80). The median SUVs 
from both the liver (p = 0.62) and psoas muscle (p = 0.57) were 
not significantly different between the renal failure patients and 
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FigUre 1 | In a typical patient, the PET/CT will show an accumulation of  
the F18-FDG marker in areas that consume the most glucose, as well as  
the renal system in the body. As a result, areas of accumulation appear in  
the brain, kidneys, and bladder. The brain consumes much of the glucose 
and the kidneys filter the marker to the bladder. In the patient with renal 
failure, due to the slower filtration rate of blood, the areas of uptake seem  
to be increased within the soft tissue.

Table 3 | Median (min–max) liver and psoas muscle standard uptake values 
(SUVs) for renal failure patients on dialysis and control patients.

Dialysis (n = 12) non-dialysis (n = 18) p-Value

Liver SUVmax 2.95 (2.00–3.80) 2.75 (1.60–3.90) 0.20
Psoas muscle SUVmax 1.30 (1.10–3.50) 1.30 (1.10–2.50) 0.54

Table 2 | Median (min–max) liver and psoas muscle standard uptake values 
(SUVs) for renal failure and control patients.

renal failure (n = 30) Matched controls (n = 30) p-Value

Liver SUVmax 2.90 (1.60–3.90) 2.60 (1.80–3.90) 0.62
Psoas muscle 
SUVmax

1.30 (1.10–2.50) 1.35 (0.90–2.80) 0.57

Table 1 | Patient characteristics.

Overall  
(n = 60)

renal failure 
(n = 30)

Matched  
controls (n = 30)

p-Value

Age, mean (SD) 68.93 (12.63) 68.17 (12.66) 69.14 (12.81) 0.90
Gender, n (%) 1.00

Male 42 (70.0) 21 (70.0) 21 (70.0)
Female 18 (30.0) 9 (30.0) 9 (30.0)

BMI, mean (SD) 26.66 (5.86) 26.82 (5.55) 26.50 (6.24) 0.84

FigUre 2 | 30 mm circular regions of interest (blue) were placed. The first  
in the right hepatic lobe and second in the left psoas muscle. In addition, the 
figure shows the mean standard uptake values (SUVs) between the controls 
and the renal failure patients.
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the normal controls (Table 2). In addition, the dialysis patients 
demonstrated median LSUV was 2.95 (min–max =  2.00–3.80) 
and mean PSUV was 1.30 (min–max  =  1.01–1.90) and the 
non-dialysis patients had LSUV 2.75 (min–max  =  1.60–3.90) 
and PSUV 1.30 (min–max  =  1.10–2.50), differences between 
them were not significant (Table 3). Figure 1 illustrates the FDG 
distribution in a typical renal failure patient and control. Figure 2 
demonstrates the circular region of interest on the liver and left 
psoas muscle.

DiscUssiOn

The basics of pharmacokinetics state that drugs which are 
cleared primarily by the kidneys will have altered biodistribu-
tion and will require dose adjustment with compromised renal 
function (13). It has been established that renal clearance is 
integral for FDG metabolism and with the increased rates of 
renal failure in America, it is essential the effects of renal failure 
on FDG uptake are studied. However, there is limited informa-
tion in the US and European guidelines as well as the literature 
to assess impaired renal function on FDG PET/CT scans. We 
hypothesized that patients with renal failure would have slower 
clearance of FDG and would require a longer time for the tracer 
to be metabolized. Consequently, patients with renal failure and 
in need of an FDG PET/CT scan could require an altered uptake 
time that may be different from the uptake times of patients 
without renal failure.

In this study, we compared the SUVs of internal reference 
points of patients with renal failure to age, gender, and BMI-
matched controls. We found the SUVs for these patients are not 
statistically different from the non-renal failure patients. The data 

to support this come from the p-value for renal failure patients 
and the control group for both liver and psoas muscle were >0.05. 
In addition, we also compared renal failure patients on dialysis to 
normal controls who were not on dialysis and they too had no 
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significant difference in their SUVs. This was also indicated by a 
p-value >0.05. Therefore, we can conclude that the uptake time in 
patients with renal failure does not need to change to compensate 
for any altered biodistribution.

Our study is not without limitations. The retrospective nature 
of the study is a potential limitation. Also, imaging at different 
time intervals could give further verification if an increased 
uptake time would be statistically significant. A study of this 
nature was performed by Akers et al. (14) who investigated the 
effects of various degrees of compromised renal function on 
FDG uptake and clearance at multiple time points in normal 
tissues. They too concluded that compromised renal function 
did not affect clearance of background activity. However, some 
limitations of their study were their lack of controls, which were 
present in our study. Nevertheless, they also concluded that 
there is no need to alter standard uptake times for patients with 
renal failure.

The sample size of our study was relatively small with only 30 
renal failure patients. Some models have shown an association 
between the severity of the renal failure and the inaccuracy of the 
SUVs (15). A larger sample size would allow for various stages 
and severities of renal failure. The severity could be an important 
factor due to the urine excretion rate. Since urine production has 
such a drastic impact on the amount of dosage excreted, it can 

be associated with the rates of delayed urine production between 
severe and mild renal failure. Lastly, there was no standardization 
for hydration status in our study before the PET/CT scanning.

With the limited information on the topic of renal failure affect-
ing the uptake time for FDG, it is important that further studies 
are done to fully comprehend any affects that it may have on PET/
CT scans. As the rates of renal failure increase and the increased 
utility of PET/CT, it is imperative that any factor affecting image 
quality be addressed to avoid inaccurate interpretations.

cOnclUsiOn

Renal disease has not been found to have a significant impact 
on the FDG biodistribution in FDG PET/CT studies. Therefore, 
patients with renal failure do not require an adjustment to the 
protocol.
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Renal cell carcinoma (RCC) is the second most lethal urinary cancer. RCC is frequently

asymptomatic and it is already metastatic at diagnosis. There is an urgent necessity

for RCC specific biomarkers selection for diagnostic and prognostic purposes. In

present study, we applied liquid chromatography—mass spectrometry (LC-MS) based

metabolomics to analyze urine samples of 100 RCC, 34 benign kidney tumors and 129

healthy controls. Differential metabolites were analyzed to investigate if urine metabolites

could differentiate RCC from non-RCC. A panel consisting of 9 metabolites showed the

best predictive ability for RCC from the health controls with an area under the curve (AUC)

values of 0.905 for the training dataset and 0.885 for the validation dataset. Separation

was observed between the RCC and benign samples with an AUC of 0.816. RCC clinical

stages (T1 and T2 vs. T3 and T4) could be separated using a panel of urine metabolites

with an AUC of 0.813. One metabolite, N-formylkynurenine, was discovered to have

potential value for RCC diagnosis from non-RCC subjects with an AUC of 0.808. Pathway

enrichment analysis indicated that tryptophan metabolism was an important pathway in

RCC. Our data concluded that urine metabolomics could be used for RCC diagnosis

and would provide candidates for further targeted metabolomics analysis of RCC.

Keywords: renal cell carcinoma, metabolomics, benign tumors, biomarker, tryptophan metabolism

INTRODUCTION

Renal cell carcinoma (RCC) is the second most lethal urinary cancer and accounts for 5% of
all adult malignancies (1). Clinically, dynamic contrast-enhanced computed tomography (CT)
provides an accurate diagnosis of RCC in most cases. However, some small carcinomas are difficult
to confirm. Furthermore, differentiating benign kidney tumors from RCC still remains a clinical
challenge, even when images are re-examined by experienced radiologists. Final confirmation of
RCC requires pathological examination of puncture or surgical resection. Approximately 20–30%
of small renal masses that are surgically removed are found to be benign (2). Thus, the development
of new, accurate, non-invasive diagnostic methods will have an important impact in RCC clinical
management in its earliest stage and could reduce unnecessary treatment for benign tumors and
increase the chance of nephron-sparing treatment.
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RCC as a metabolic disease is well-suited to metabolomic
analysis. Understanding and measuring metabolic status
variations accompanying disease progression would be a useful
strategy for potential new diagnostic biomarker discovery.
Metabolomic analysis of urine, which is obviously closely related
to RCC status, is an ideal non-invasive means to explore RCC (3).
In 2011, Kim et al. performed a metabolomic analysis of urine
from 29 RCC patients using LC-MS and GC-MS and found that
quinolinate, 4-hydroxybenzoate, and gentisate are differentially
expressed (4). In 2012, Ganti et al. utilized metabolomics to
evaluate compounds appearing in the urine of kidney cancer
patients (29 subjects) and control patients (33 subjects). Several
acylcarnitines were discovered as a function of both cancer status
and kidney cancer grade, with most of the acylcarnitine levels
showing an increase in the urine of cancer patients (5). In 2016,
Monteiro et al. analyzed the urine metabolome of RCC patients
(n= 42) and controls (n= 49) using nuclear magnetic resonance
(NMR) spectroscopy. A 32-metabolite/resonance signature,
including 2-KG, N-methyl-2-pyridone-5-carboxamide (2-Py),
bile acids, galactose, hypoxanthine, isoleucine, pyruvate, and
succinate, could successfully distinguish RCC patients from
controls (6).

The research described above applied urine metabolomics for
RCC diagnosis from healthy controls based on a small sample
size, and more samples are necessary to discover and validate
RCC biomarkers. In addition, to our knowledge, there are still
no studies that present urine metabolome differences between
RCC and benign tumors. In the present work, we applied LC-
MS-based metabolomics to analyse 263 urine samples from
Chinese subjects, including 100 RCCs, 34 benign controls and
129 healthy controls, to investigate whether metabolic profiles
could differentiate RCC from non-RCC samples (including
healthy and benign controls). Furthermore, a study was also
performed to distinguish RCC stages (T1 and T2 vs. T3 and
T4) using urine metabolomics. This study will provide new
insights into the diagnosis of RCC and possible clues for a
metabolic mechanism.

MATERIALS AND METHODS

Sample Collection
First morning urine (midstream) samples were collected from
∼07:00 to 09:00 a.m. on an empty stomach from two cohorts:
the training set includes 67 RCC patients, 34 benign tumor
patients and 96 healthy human adults, while the test set
includes 33 RCC patients, 7 benign tumor patients and 33
healthy controls. All cases were from Beijing Union Hospital.
These groups did not include subjects suffering from any
acute conditions or taking any medications in the latest 3
months. The glomerular filtration rate (GFR) and urine protein
content of RCC patients were within normal ranges. The

Abbreviations: AUC, area under the curve; BMI, body mass index; CT,

computed tomography; IDO, indoleamine-2,3-dioxygenase; KP, kynurenine

pathway; LC-MS, liquid chromatography—mass spectrometry; NMR, nuclear

magnetic resonance; OPLS-DA, orthogonal partial least squares discriminant

analysis; PCA, principal component analysis; QC, quality control; RCC, renal

cell carcinoma.

healthy control subjects were enrolled with matched genders
and ages with the RCC patients to reduce interference from
physiological factors. Both informed verbal and written consent
were obtained from the subjects before participating in this
study. RCC was diagnosed by a pathological investigation
and graded according to the Union for International Cancer
Control (UICC) tumor node-metastasis (TNM) staging system.
RCC without metastases (T1–2, limited to the kidney) was
categorized as early stage and RCC with metastases (T3–4) as
late stage. The detailed demographics are shown in Table 1

and Table S1.

Sample Preparation
Urine sample preparation was performed based on previous
methods (7). In brief, acetonitrile (200 µl) was added to each
urine sample (200 µl), then the mixture was vortexed for 30 s
and centrifuged at 14,000 × g for 10min. The supernatant
was dried under vacuum and then reconstituted with 200 µl
of 2% acetonitrile. Urinary metabolites were further separated
from larger molecules using 10 kDa molecular weight cut-off
ultracentrifugation filters (Millipore Amicon Ultra, MA) before
being transferred to the autosamplers. The quality control (QC)
sample was a pooled urine sample prepared by mixing aliquots of
fifty representative samples across different groups to be analyzed
and was therefore globally representative of the whole sample set.
The QC samples were injected every 10 samples throughout the
analytical run to provide a set of data fromwhichmethod stability
and repeatability can be assessed.

LC-MS Analysis
Ultra-performance LC-MS analyses of samples were conducted
using a Waters ACQUITY H-class LC system coupled with
an LTQ-Orbitrap Velos pro mass spectrometer (Thermo Fisher
Scientific, MA. USA). Detailed parameters are listed in the
Supplementary Methods.

TABLE 1 | Subjects information.

Cohort 1 (training set)

RCC (F/M) Healthy control (F/M) Benign (F/M)

# of subjects 67 (19/48) 96 (35/61) 34 (20/14)

Age 53.5 ± 14.7 54.8 ± 11.5 46.4 ± 11.5

BMI 24.7 ± 3.7 22.7 ± 1.8 24.8 ± 3.6

eGFR (ml/min/1.7312) 98.2 ± 13.8 102.9 ± 10.5 98.1 ± 12.3

Cohort 2 (validation set)

# of subjects 33 (4/29) 33 (6/27) 7 (2/5)

Age 50.0 ± 14.3 51.5 ± 16.4 49.1 ± 8.7

BMI 25.6 ± 3.2 22.8 ± 2.4 24.5 ± 1.8

eGFR (ml/min/1.7312) 102.4 ± 10.3 105.6 ± 10.4 99.8 ± 11.7

RCC Staging (Combination of cohort 1 and 2)

Early (T1 and T2) 86 (18/68)

Late (T3 and T4) 14 (5/9)
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Statistical Data Analysis
Raw data files were processed by Progenesis QI (Version
2.0, Nonlinear Dynamics) software. The detailed processing
parameters are provided in the Supplementary Methods file.
The raw data file exported from QI was further processed
by MetaboAnalyst 3.0 (http://www.metaboanalyst.ca), including
missing value estimation, log2 transformation and Pareto scaling.
Variables missed in 50% or greater of all samples were removed
from further statistical analysis. Pattern recognition analysis
(principal component analysis, PCA; orthogonal partial least
squares discriminant analysis, OPLS-DA) was performed based
on a training set using SIMCA 14.0 (Umetrics, Sweden) software.
One hundred permutation validations were performed to
evaluate the fitting of the OPLS-DA model. Variable importance
for the projection (VIP) values obtained from the OPLS-DAwere
used for differential metabolite selection. Non-parametric tests
(Wilcoxon rank-sum test) were used to evaluate the significance
of the variables. False discovery rate (FDR) correction was
used to estimate the chance of false positives and correct for
multiple hypothesis testing. Differential metabolites were selected
from the training set according to the criteria: (1) VIP value
above 1; and (2) adjusted p-value below 0.05. These metabolites
were further validated in the validation set. Features showing
significant differences in both training and validation sets were
considered as disease-related. An ROC curve was constructed
based on differential metabolites selected from the training set
using logistic regression algorithm. For RCC vs. healthy controls
and RCC vs. non-RCCs, an external validation set was used to
validate the accuracy of the potential biomarker panels. However,
for RCC vs. benign and RCC early stage vs. late stage, 10-
fold cross-validation was performed in the training set. These
model constructions and validation were carried out based on
MetaboAnalyst 3.0 platforms.

Metabolite Annotation and Pathway
Analysis
Metabolic pathways and predicted metabolites in the
pathways were analyzed using the “Mummichog” algorithm
based on the MetaboAnalyst 3.0 platform. The detailed
parameters for the Mummichog analysis were provided in the
Supplementary Methods. Metabolite annotation was further
determined from the exact mass composition, from the goodness
of isotopic fit for the predicted molecular formula and from
MS/MS fragmentation comparing hits with databases (HMDB
http://www.hmdb.ca/), thus qualifying for annotation at MSI
level II using Progenesis QI. For endogenous metabolites lacking
a chemical formula, the accurate molecular mass was given based
on the calculated isotopic features and ion adducts. Detailed
methods were listed in the Supplementary Methods.

RESULTS

The major objective of our study was to discover potential
biomarkers to distinguish RCC not only from healthy controls
but also from subjects with benign tumors. The experimental
strategy is shown in Figure 1. Metabolite variation and pathway

regulation associated with RCC were explored based on analysis
of metabolic profile differences between RCC and healthy and
benign controls. Potential biomarkers for RCC were further
explored based on differential metabolites and were validated
using 10-fold cross validation or external validation.

Quality Control
This cohort of samples was analyzed randomly, which took
almost a week. Tight clustering of QC samples (Figure S1)
demonstrated the quality of the QC data and essential
repeatability and stability throughout the analytical run.

Distinguishing RCC From Healthy Controls
by Urine Metabolomics
LC-MS-based urine samples from RCC and controls yielded
2,500 spectral features after QC filtering. Apparent differences
between the metabolic profiles of RCC and the healthy
controls were observed from the PCA score plot (Figure 2A).
Furthermore, the OPLS-DA model achieved better separation
(Figure 2B). Permutation tests were performed to confirm the
stability and robustness of the supervised models presented in
this study (Figure S2). In total, 455 differential metabolites were
assigned, contributing to group separation, among which, 145
metabolites were also significantly changed in the validation set.
These metabolites were further submitted for pathway analysis
and prediction model construction.

Pathway enrichment analysis using the Mummichog
algorithm showed significant enrichment (p < 0.05) of several
pathways in the RCC group compared with those in healthy
controls, including galactose metabolism, linoleate metabolism,
leukotrienemetabolism, tryptophanmetabolism, etc. (Figure 2C;
Table S2). The predicted activity network is shown in Figure S3.
Mutual regulation of these disturbed pathways contributes to
metabolic disorder in RCC.

Annotation of the top discriminatory features followed by
MS/MS evaluation showed 65 metabolites were significantly
differentially detected between RCC and healthy control
samples (Table S3). Metabolites with higher levels in RCC
included steroids such as androstenedione, alpha-CEHC,
and 19-nor-5-androstenediol, dipeptides such as aspartyl-
phenylalanine and glutamyl-threonine, bile acid metabolites
such as 7-alpha-hydroxy-3-oxochol-4-en-24-oic acid and
lithocholyltaurine, and exogenous sulfate metabolites. On the
other hand, metabolites with lower levels included steroid
glucuronidation metabolites such as tetrahydroaldosterone-3-
glucuronide and cortolone-3-glucuronide, indicating a potential
roles for glucuronidation in RCC development. Moreover, a
caffeine metabolite (methylxanthine) was found to be decreased
in RCC patients, which pinpoints aberrations in xenobiotic
metabolism. A free fatty acid (11-dodecenoic acid) showed
higher levels in RCC, and the oxidation intermediate 2,6-
dimethylheptanoyl carnitine showed lower levels, indicating a
high energy requirement in RCC.

The diagnostic accuracy of the identified differential
metabolites for RCC vs. healthy controls was further evaluated. A
total of 45 metabolites had a potentially useful diagnostic value,
with an AUC above 0.7, and 10 metabolites had a good diagnostic
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FIGURE 1 | Study design for RCC distinction from control and benign subjects.

value, with an AUC above 0.8 (Table S4). A multivariate ROC
curve-based exploratory analysis was performed to achieve
a better predictive model (http://www.metaboanalyst.ca/
faces/Secure/upload/RocUploadView.xhtml) using a logistic
regression algorithm. As a result, a metabolite panel consisting
of 9 metabolites as shown in Table S5 showed the best predictive
ability. The 10-fold cross validation for the training set achieved
an AUC of 0.905 (Figure 2D). The sensitivity and specificity were
0.871 and 0.902, respectively. Further external validation using
an independent sample set was performed and achieved good
performance with values for AUC, sensitivity and specificity of
0.885, 0.851 and 0.875, respectively, correctly predicting 26 out
of 33 RCC patients in the validation set (Figure 2E).

Distinguishing RCC From Benign Kidney
Tumors by Urine Metabolomics
Distinguishing RCC from benign kidney tumors was further
performed to explore metabolic differences between the two
groups. PCA analysis showed slight discrimination of RCC
from benign tumors (Figure S4). Furthermore, an OPLS-DA
model achieved significant separation (p < 0.05) (Figure 3A),
with 694 features contributing to group separation (VIP
value > 1). However, only 39 features showed a significant
p-value below 0.05, indicating larger inter-individual variations.
Differential features were submitted to perform pathway
enrichment analysis using the Mummichog algorithm. Several
pathways, including folate metabolism, tryptophan metabolism
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FIGURE 2 | Analysis of urine metabolomic of RCC and health control. (A) Score plot of unsupervised PCA overview of urinary metabolic profiling of RCC and control

in training set. (B) OPLS-DA model based on human urine for classification of RCC and control in training set. (C) Shifted metabolic pathways in RCC, when

compared with the healthy controls. These pathways were enriched by using Mummichog algorithm. The smaller the p-value is, the higher confidence the pathway

have. (D) ROC plot with 10-fold cross-validation in training set for distinction of RCC and control based on metabolite panel in Table S5. (E) Prediction accuracy of

RCC prediction model established by a metabolite panel in Table S4 in validation cohort.

and biopterin metabolism, were significantly enriched in RCC
compared to the benign group (Figure 3B; Table S6).

Further annotation of the top discriminatory features

determined by MS/MS evaluation identified 22 significantly
differentially detected metabolites (Table S7). ROC analysis

showed that all 22 metabolites have a good diagnostic value for

RCC and benign controls with AUC values above 0.70 (Table S8).
Using a logistic regression algorithm, a metabolite panel
consisting of L-3-hydroxykynurenine, 1,7-dimethylguanosine,
and tetrahydroaldosterone-3-glucuronide was used to establish
a robust model for distinguishing between RCC and benign

samples. The AUC was 0.834 for the training dataset and 0.816
for 10-fold cross-validation (Figure 3C). The sensitivity and
specificity were 0.741 and 0.794, respectively, for the training set
and 0.746 and 0.800, respectively, for cross-validation.

N-formylkynurenine as a Potential
Biomarker for the Differential Diagnosis of
RCC vs. Non-RCC
According to the above analysis, urine metabolites could
distinguish RCC from healthy and benign controls with

Frontiers in Oncology | www.frontiersin.org 5 July 2019 | Volume 9 | Article 66321

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Renal Cell Carcinoma Diagnosis

FIGURE 3 | Analysis of urine metabolomic variation between RCC and benign. (A) OPLS-DA model based on human urine for classification of RCC and benign in the

training set. (B) Top five shifted metabolic pathways in RCC compared with benign group. (C) ROC plot with 10-fold cross-validation in the training set for distinction

of RCC and benign based on metabolites panel of L-3-Hydroxykynurenine, 1,7-Dimethylguanosine, and Tetrahydroaldosterone-3-glucuronide. (D) Relative intensity of

N-formylkynurenine in RCC, benign and control groups in the training set. (E) ROC plot of N-Formylkynurenine for distinction of RCC and non-RCC in the

validation group.

high accuracy. Perhaps the common differential metabolites
of the two comparisons could be used to diagnose RCC
from both healthy and benign controls (non-RCCs). The
present results found one common differential metabolite,
N’-formylkynurenine, which could discriminate RCC not
only from healthy controls but also from benign controls.
The relative content of N-formylkynurenine in the RCC
group and non-RCC group was plotted in Figure 3D,
showing higher levels of N-formylkynurenine in the RCC
group compared with the non-RCC group. The relative
content of N-formylkynurenine showed a 1.67-fold increase
compared to the healthy control group and showed a 2.07-
fold increase compared to the benign control group. These
results suggest that accumulation of N-formylkynurenine in
RCC patients’ urine may be used as a potential biomarker
for RCC diagnosis.

As a potential biomarker for RCC diagnosis compared
to non-RCC cases, we further validated the predictive
ability of N-formylkynurenine using the validation group
consisting of 33 RCC subjects, 33 healthy controls, and 7
benign controls. The AUC value of the ROC curve was
0.808 (Figure 3E). The sensitivity and specificity were
0.848 and 0.838, respectively. These results suggest that
N-formylkynurenine could be significant as a potentially
useful metabolite for RCC distinction from healthy controls
and benign controls.

Distinguishing RCC Stages by Urine
Metabolomics
Due to RCC sample size limitations, we combined RCC samples
of the training set and the validation set. Overall, 84 patients were
diagnosed as the pT1 stage, 2 as the pT2 stage, 10 as the pT3
stage, and 4 as the pT4 stage according to pathologic evaluation.
T1 and T2 are designated as early stage RCC because the tumor
lesion is inside the kidney. T3 and T4 are designated as late stage
RCC because the tumor has spread to other organs. Herein, the
samples from pT3 and pT4 were relatively few in number, and
we performed a pilot comparison of metabolic profiling between
early stage and late stage RCC. A PCA score plot showed overlap
between early and late stages (Figure S5A). Furthermore, OPLS-
DA showed improved separation with R2Y= 0.71 and Q2= 0.33
(Figure S5B), with 156 features contributing to stage separation.
A total of 24 differential metabolites were identified (Table S9),
and 12 of them have potential diagnostic value with an AUC
above 0.70 (Table S10). A panel consisting of thymidine, cholic
acid glucuronide, alanyl-proline, isoleucyl-hydroxyproline, and
myristic acid was used for predictive model construction using
logistic regression. The AUC value was 0.881 for the testing
dataset and 0.813 for the 10-fold cross-validation (Figure S5C).
The sensitivity and specificity were 0.921 and 0.756, respectively,
for the testing set and 0.857 and 0.721, respectively, for the cross-
validation. These results indicate acceptable performance of RCC
staging using urine metabolomics.
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DISCUSSION

Our results suggest that the urine metabolome could differentiate
RCC patients from healthy controls and from benign kidney
tumor patients. Potential biomarkers for RCC and RCC stages
were explored and discovered tentatively, which provide new
insights into RCC diagnosis. This is the first attempt at applying
urine metabolomics for differential diagnosis of RCC vs. benign
kidney tumors.

Metabolite Regulation in RCC Compared
With Healthy Controls
Androstenedione, 7-alpha-hydroxy-3-oxochol-4-en-24-oic acid
and lithocholyltaurine are the most significantly differentially
detected metabolites that have good prediction accuracy between
RCC and healthy controls, likely playing important roles
during RCC occurrence. Androstendione occurs naturally in the
body and is a direct precursor to the hormone testosterone.
The conversion of androstendione to testosterone via 17-
beta-hydroxysteroid dehydrogenase occurs in the kidney (8).
Androstendione levels could be affected by the kidney function
status, showing inverse linear associations with renal function
(9). Increased secretion levels of androstenedione could result
from glomerular filtration function disorder in RCC patients.
Lithocholyltaurine and 7-alpha-hydroxy-3-oxochol-4-en-24-oic
acid are bile acid conjugation molecules. It has been reported that
renal bile acid excretion is a cause of neoplastic lesions (10) and
could cause partially reversible renal tubular damage (11). We

also noted increases in some dipeptides that may be produced
through protein degradation/reutilization processes, such as
lysosomal degradation, phagocytosis, endocytosis, pinocytosis,
and autophagy (12).

Metabolite Regulation in RCC Compared
With That in Benign Controls
In the clinic, some small renal carcinomas are still difficult
to distinguish from benign kidney tumors, and some benign
tumors, such as angiomyolipoma, are easily misdiagnosed as
malignant tumors. Early and accurate distinction of benign
tumors from RCC could reduce the unnecessary treatment
for benign tumors. Biopterin metabolism and tryptophan
metabolism were found to be disturbed in RCC compared
with benign tumors. Disorders of biopterin metabolism in RCC
may be accompanied with impaired functioning of tyrosine
and tryptophan hydroxylases and the resultant deficiency of
tyrosine- and tryptophan-derivedmonoamine neurotransmitters
(13), which is supported by the disturbed tryptophanmetabolism
suggested by our results. N-formylkynurenine, an intermediate
in tryptophan catabolism, was found to be increased in RCC
compared with that in benign controls. Accumulation of
serum N-formylkynurenine has been reported in patients and
experimental animals with renal diseases (14–17). Moreover,
patients with chronic kidney disease are permanently exposed
to uremic toxins from the kynurenine pathway, which could be
mediated by activation of transcription factor aryl hydrocarbon
receptor (AhR) (18). These previous results were consistent with

FIGURE 4 | Metabolites interaction in tryptophan metabolism. Tryptophan pathway was significantly changed in RCC. Tryptophan is metabolized through two

pathways: tryptophan-kynurenine pathway and tryptophan—neurotransmitters pathway. Metabolites annotation with Mummichog and MS/MS validation are located

in colored boxes; Metabolites annotation only with “Mummichog” algorithm are located in blank boxes. The bar figures around each metabolite represents the fold

change of metabolite in RCC compared with health control (x-coordinate:1) and the benigns (x-coordinate: 2). Direction of bars represent up-regulated (above X-aixs)

or down-regulated (below X-axis).
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our results in the present work, which suggest a significant
accumulation of N-formylkynurenine in RCC urine.

Distinguishing RCC From Non-RCC:
Tryptophan Metabolism as a Target
Pathway
Tryptophan-kynurenine pathway (KP) metabolites,
N-formylkynurenine, kynurenine and 3-hydroxy-L-
kynurenine were found to be disturbed in RCC (Figure 4),
indicating a potential role of tryptophan metabolism
during RCC development. Tryptophan-KP metabolism in
cancer has increasingly been recognized as an important
microenvironmental factor that suppresses antitumor
immune responses (19–21). Depletion of tryptophan induces
signaling events in T cells, leading to anergy, apoptosis, and
active immunomodulation by accumulating tryptophan-KP
metabolites (22). During RCC development, tryptophan-KP
metabolism has been found to be highly represented in tissues,
which is associated with immune suppression (23). Indoleamine-
2,3-dioxygenase (IDO) can possibly catalyze an early step in
tryptophan metabolism, regulating the conversion of tryptophan
to immunosuppressive metabolites that could work to the
tumor’s advantage (24). The same has occurred in RCC patient
serum and urine (3, 25), which is consistent with our results.

In humans, >95% of tryptophan is metabolized through
the kynurenine pathway, and other tryptophan is converted
into the key neurotransmitters serotonin and tryptamine
(26). Herein, apart from tryptophan-KP metabolite variations,
we also observed increase of tryptophan-neurotransmitter
metabolites, such as 5-hydroxy-L-tryptophan, serotonin, and
tryptamine, in RCC (Figure 4), indicating neuroendocrine
involvement of tryptophan metabolism in human RCC (27).
Neuroendocrine markers have been reported in RCC serum,
including chromogranin (Cg) A and B, pancreastatin and
serotonin (28). These results indicate the potential value of
tryptophan metabolism for designing new targets of RCC.

CONCLUSIONS

In conclusion, we have applied urine metabolomic approach
to dissect metabolic features of RCC not only compared with
healthy controls but also compared with benign controls.
These results showed markedly different metabolic profiles
between RCC and healthy controls or benign controls, which
suggests the feasibility of utilizing urine metabolites for
early clinical diagnosis. Potential biomarkers for RCC were
tentatively explored. The changes in tryptophan metabolism
have profound implications for designing new targets for
RCC. Moreover, N-formylkynurenine was discovered to
have potential value for RCC distinction from healthy
and benign controls. However, in our present study, the

influence of diet on urine metabolomics might not be
completely eliminated, though all subjects were from the
same region. For future validation analysis, the influence of diet
would be systematically analyzed and evaluated using a diet
standardization design.
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Background: Contrast-enhanced ultrasound (CEUS) is an examination mode for
detecting blood vessels in tissues, and it has been gradually used in the diagnosis of
kidney cancer in recent years. This study explores the value of contrast-enhanced
ultrasound in the clinical diagnosis of renal cancer, and provides an accurate and
effective method for clinical diagnosis of renal cancer.

Methods: CEUS and RCC were selected as the keywords. Searching the PubMed and
Embase from 2007 to 2020, the original data were abstracted and performed
heterogeneity test with the Meta-Disc software. The weighted sensitivity, specificity,
positive likelihood ratio and negative likelihood ratio were calculated, as well as the
summary receiver operating characteristic (SROC) curve. Further estimated the diagnostic
value of CEUS in the research of renal cancer by calculating the area under the curve
(AUC). The quality of evidence in researches was evaluated by QUADAS items. Meta-disc,
Review Manager 5.3, and STATA 13 were used.

Results: A total of 20 studies were adopted for Meta-analysis. The weighted sensitivity,
specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio
were 0.97, 0.86, 6.8, 0.04 and 171, respectively; and AUC was 0.97. The results showed
that there was high heterogeneity.

Conclusion: CEUS technology has a good diagnostic value for RCC.

Keywords: renal cancer, contrast-enhanced ultrasound, diagnosis, meta-analysis, tumor imaging
INTRODUCTION

Renal cancer (RCC) is the most common primary malignant tumor of the kidney, accounting for
80% to 90% of primary malignant tumors of the kidney (1). In recent years, the incidence of kidney
cancer and the number of deaths has increased significantly (2). Most patients with kidney cancer
lack typical clinical symptoms and signs at an early stage (3). One third of RCC cases were reported
Abbreviations: RCC, renal cell carcioma; CEUS, contrast-enhanced ultrasound; AUC, area under the curve.
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with metastasis by the time of diagnosis (4). Therefore, there is
stil l a need for an effective kidney cancer imaging
diagnosis method.

RCC usually presents as a large mass on CT, mostly with soft
tissue density; papillary RCC is less malignant than RCC and has
less blood supply than its blood supply. Therefore, enhanced CT
scan show either uneven or relatively uniform mild to moderate
enhancement. CT examination is considered to be a gold
standard for the diagnosis of kidney tumors, but CT can easily
confuse cystic kidney cancer with renal abscess and
hydronephrosis. MRI is usually used as a diagnostic tool for
kidney tumors that cannot be characterized by CT, and is mainly
used for typical lesions in CT. MRI is also often used in patients
who cannot undergo CT enhancement due to impaired renal
function. The limitation of MRI is that the acquisition time is
long and people with metal implants such as pacemakers cannot
be examined. Its availability and timeliness are not as good as CT.

The current clinical diagnosis methods for RCC are mainly
imaging examinations such as ultrasound, contrast-enhanced CT,
contrast-enhanced MR, non-contrast CT, non-contrast MR among
which ultrasound has become themainmethod due to its simplicity
and non-invasiveness, but the accuracy of conventional ultrasound
for qualitative diagnosis of tumors is limited. Non-contrast CT/MR
can only observe a specific section at a specific time, and the display
rate of necrotic lesions is not as good as that of contrast enhanced
ultrasound (CEUS), and it may be misdiagnosed due to missing the
peak period of tumor enhancement and making the contrast
enhancement characteristics unclear.

Contrast-enhanced CT and MR contrast agents can cause
certain damage to the physiological functions of the liver and
kidneys, and can also cause allergic reactions.

Contrast-enhanced ultrasound is a new detection method
developed in ultrasound contrast agent and contrast imaging
technology. It can observe blood perfusion in tumor in real time,
continuously and dynamically, which further improves the
accuracy of clinical diagnosis (5–7). CEUS can effectively
display the low blood perfusion state and ischemic necrosis of
tumor lesions with a diameter of less than 1 cm, thereby
providing more information for the diagnosis of renal cancer,
and at the same time eliminates the disadvantages of enhanced
CT and MRI examinations (8, 9). CT/MR can only observe a
specific section at a specific time. In addition, CEUS can display
small blood vessels more sensitively than CT/MR, so as to more
accurately observe blood perfusion of new tumors, which can
evaluate the angiogenesis of renal cancer before surgery. CEUS
cannot observe the surrounding and distant metastasis of the
tumor, and cannot provide information on the clinical staging of
renal cancer.

This study explores the value of contrast-enhanced
ultrasound in the clinical diagnosis of renal cancer. The
contrast-enhanced ultrasound examination method has high
efficiency in diagnosing kidney cancer, nonradioactive and has
very few contrast agents to cause allergic reactions. Compared
with MRI, the examination time is short, therefore, it has higher
clinical promotion value. With improvement of functions and
performance of Doppler ultrasound equipment, the development
Frontiers in Oncology | www.frontiersin.org 227
of safer, cheaper, and better imaging performance contrast
agents, contrast-enhanced ultrasound may become the first
choice for renal cancer in the near future.
METHODS

Search Strategy
Computer searches include PubMed, Embase to collect relevant
literature on the diagnosis of kidney cancer by contrast-enhanced
ultrasound. Search period: 2007 to 2020. Subject terms include
contrast-enhanced ultrasound, kidney tumor, kidney cancer, renal
cancer and renal tumor, and the search method is adjusted
according to the specific database, and the search strategy is
determined after multiple pre-searches. Using a combination of
database retrieval and manual retrieval, two evaluators
independently retrieve and re-search the references of the
included literature. Another reviewer Xu Bin and Ke-Hao Pan are
both medically-trained urologists in China with certain clinical and
imaging experience. Xu Bin is the deputy chief physician of Chinese
Urology. The deviation between the two reviewers is relatively small.
The language is limited to Chinese or English.

Study Selection
The exclusion criteria for the systematic review were: (a) articles
not within the field of interest; (b) editorials or letters, review
articles, comments, conference proceedings; and (c) case reports.

Literature Screening
Literature was independently screened by 2 reviewers based on
the inclusion criteria, first reading the title and abstract. Then
read the full text of the documents that may meet the inclusion
criteria. After cross-checking the results, data were extracted
from cohort studies. The basic characteristics of the included
literature are shown in Table 1.

Quality Assessment
Two reviewers individually evaluated the quality of the included
literature, and discussed when they disagree. This meta-analysis
was carried out according to the QUADAS (Quality Assessment
of Diagnostic Accuracy Studies) standard, which can be divided
into three situations: “yes,” “no,” and “unclear.” “Yes”means that
the criteria for this item are met, “no”means that the criteria are
not met, and “unclear”means that the standards are partially met
or sufficient information cannot be obtained from the
document (30).

Statistical Analysis
The weighted sensitivity, specificity, positive likelihood ratio and
negative likelihood ratio were calculated, as well as the summary
receiver operating characteristic (SROC) curve. The larger the
area under the curve and the closer the SROC curve is to the
upper left corner, the higher the value of the diagnostic test.
Between-study statistical heterogeneity was assessed using I2 and
the Cochrane Q test. The meta-regression and subgroup analysis
of CEUS are shown in Figure 1, divided into five sub-groups
November 2020 | Volume 10 | Article 586949
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according to whether the article publication year is beyond 2015,
whether the case was greater than 100, whether lesion was greater
than 100, whether the study was retrospective or prospective, and
whether the age of patients above 60. The number of articles
published before and after 2015 is close.
RESULTS

Literature Search
279 documents were first detected. 79 duplicated publications
were excluded through literature manager software. And after
the abstracts were screened, 140 records were excluded. 40
publications were excluded due to inadequate outcome because
they lack information about the true positive rate, true negative
rate, false negative rate and false positive rate of CEUS diagnosis.
Finally, a total of 20 articles were included (10–29). The flow
chart is shown in Figure 2.

Twenty studies including 2197 patients and 1791 lesions were
selected for the meta-analysis. The basic characteristics of the
included literature are shown in Table 1.

Inclusion criteria: 1 Pathological diagnosis should be adopted
as “gold standard” for all adopted literature; 2 The research
object is the literature using contrast-enhanced ultrasound to
diagnose RCC; 3 The interval between ultrasound examination
and pathological examination should not exceed 1 month; 4 Each
study can be successfully extracted to TP, FP, TN, and FN.

Exclusion criteria: 1 Excluded documents that did not use
contrast enhancement technology. 2 Excluded secondary
literature and conference papers such as experience exchange,
abstracts, lectures and reviews.

Histopathological Results
The histopathological results of included studies are shown
in Table 2. Most of the included articles are RCC, Papillary
Frontiers in Oncology | www.frontiersin.org 328
RCC and so on. CEUS is effective in diagnosing these
kidney cancers.

Qualitative Analysis
The quality of the articles included was satisfactory. The research
quality evaluation is shown in Figure 3. In patient selection, one
article is high risk. On Index Test, there is no high risk, however,
TABLE 1 | Study and patient characteristics.

Studies Year Size Age Lesions Study Type Lesion size TP FP FN TN

Li et al. (10) 2008 71 53.6 72 Prospective 1.3–5 26 18 0 28
Xu et al. (11) 2010 119 42.9 126 Retrospective 1.5–11.7 82 11 1 32
Lgnee et al. (12) 2010 135 66 127 Prospective NA 114 11 3 9
Zhou et al. (13) 2011 51 37 51 Prospective 1.5–6 20 14 2 15
Lu et al. (14) 2012 122 41.3 123 Retrospective 1–11.5 105 0 3 15
Li et al. (15) 2013 91 62.0 100 Retrospective 0.9–9.7 83 1 2 14
Oh et al. (16) 2014 49 61 49 Retrospective <4 33 4 5 7
Barr et al. (17) 2014 721 70 306 Retrospective 0.2–16.1 139 8 0 159
Nicolau et al. (18) 2015 72 64.9 83 Prospective 5–6.5 31 2 2 48
Lu et al. (19) 2015 174 40.3 174 Retrospective 1.0–7.5 136 10 6 22
Chen et al. (20) 2015 99 56.6 102 Prospective 1–3 73 4 17 17
Rubnthaler et al. (21) 2016 36 NA 36 Retrospective NA 27 0 1 8
Yong et al. (22) 2016 63 48.7 76 Retrospective 0.4–7.9 21 3 1 49
Wei et al. (23) 2017 128 53.6 118 Retrospective 1–3.9 87 8 6 17
Zarzour et al. (24) 2017 41 NA 41 Retrospective NA 20 3 0 18
Clevert et al. (25) 2008 32 56 37 Retrospective NA 12 5 0 20
Ascenti et al. (26) 2007 40 48 44 Retrospective NA 5 0 6 33
Quaia et al. (27) 2008 40 62 40 Retrospective 2–8 18 4 3 15
Guillaume et al. (28) 2017 47 64.7 19 Prospective 1.8–5.8 14 1 0 32
Sanz et al. (29) 2016 66 67.8 67 Prospective 3.8 66 12 0 54
Nove
mber 2020 |
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 | Article 586
FIGURE 1 | Meta-regression and subgroup analyses of studies.
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one article on Reference Standard is high risk. The overall quality
of the article is high.

Meta Analysis
Twenty studies including 2197 patients and 1791 lesions were
selected for the meta-analysis. Results of the meta-analysis are
presented in Figure 4. The SROC curve and the forest map of
CEUS are shown in Figures 5 and 6, respectively. Pooled Sen,
Spe, LR+, LR-, DOR were 0.97, 0.86, 6.8, 0.04, and 171,
respectively. In Figure 5, the areas under the SROC curve are
0.97 (95% CI, 0.96–0.98).

Heterogeneity Analysis
As shown in Figure 6, CEUS has heterogeneity in the sensitivity
and specificity of the diagnosis of kidney cancer (Q value, P
value, I2 value are 134.94, < 0.01, 85.92% and 115.84, <0.01,
83.60%, respectively). A randomed-effects model was used. The
Spearman correlation coefficients of the sensitivity logarithm and
(1-specificity) logarithm of CEUS diagnosis of renal cancer were
−0.190 (P>0.05), indicating that there is no threshold effect. To
further explore the potential sources of heterogeneity, a subgroup
analysis and meta-regression was performed. It showed that no
definite variable was the source of heterogeneity in the current
meta-analysis (Figure 1).

Sensitivity Analysis
Sensitivity analysis is shown in Figure 7. The results showed that
the meta-analysis results are stable.

Clinical Application Analysis
Fagan diagram was constructed for clinical application analysis
as shown in Figure 8. The post-test probability of CEUS was 87%
and is higher than the pre-test probability (50%), indicating that
CEUS is effective in the diagnosis of renal cancer. As can be seen
from Figure 9, the combined negative likelihood ratios for the
diagnosis of renal cancer were >0.1 and the positive likelihood
ratio was <10.

Publication Bias
The Deeks’ funnel chart shows asymmetry in scattered points,
suggesting that there is publication bias (P<0.05). It is shown in
Figure 10. However, the sensitivity analysis showed that our
results are stable. Despite there is publication bias, our sensitivity
test found that the article is stable, indicating that our results
are reliable.
DISCUSSION

CEUS is a new type of ultrasound diagnosis technology that uses
contrast enhancers and corresponding analysis software to
display the state of tissue blood perfusion on the basis of
conventional ultrasound. CEUS uses high-intensity nonlinear
harmonic signals generated by contrast agents to increase the
contrast between normal tissues and lesions. Kidney cancer has
the characteristics of infinite growth of microvessels in malignant
FIGURE 2 | Flowchart.
TABLE 2 | Histopathological results of the included studies.

Author Histopathological results

Li et al. (10) RCC
Xu et al. (11) RCC+Papillary RCC
Lgnee et al. (12) ccRCC
Zhou et al. (13) Small Papillary RCC
Lu et al. (14) RCC
Li et al. (15) Small Cystic RCC
Oh et al. (16) Small RCC
Barr et al. (17) Cystic RCC
Nicolau et al. (18) RCC+Papillary RCC
Lu et al. (19) RCC
Chen et al. (20) RCC
Rubnthaler et al. (21) Cystic RCC
Yong et al. (22) RCC
Wei et al. (23) Papillary RCC
Zarzour et al. (24) Cystic RCC
Clevert et al. (25) Small RCC
Ascenti et al. (26) Papillary RCC
Quaia et al. (27) RCC+Papillary RCC
Guillaume et al. (28) Cystic RCC
Sanz et al. (29) RCC
November 2020 | Volume 10 | Article 586949
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tumors. Most malignant tumors have a large number of
aggressive capillary formations around and inside the tumor.
CEUS can enhance the display of blood perfusion of kidney and
tumor microvessels. During the examination, the contrast agent
is injected into the blood circulation through the peripheral vein,
and the microbubbles are in full contact with the red blood cells
FIGURE 3 | Summary of risk of bias and applicability concerns.
FIGURE 4 | The combined statistics.
FIGURE 5 | SROC curves of CEUS for diagnosis of renal cancer.
FIGURE 8 | The Fagan map.
November 2020 | Volume 10 | Article 586949
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FIGURE 6 | Forest map of CEUS for diagnosis of renal cancer.
FIGURE 7 | Sensitivity analysis of studies.
Frontiers in Oncology | www.frontiersin.org November 2020 | Volume 10 | Article 586949631

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pan et al. Diagnosis of CEUS
in the capillaries, forming many blood bubble interfaces, thereby
changing the basic function between the ultrasound and the basic
tissues, enhancing the ultrasound signal of the whole body blood
pool, and improving the signal-to-noise ratio of echo, thereby
improving the display of tumors. In addition, CEUS can also
improve the sensitivity of detecting small tumors or slow blood
vessels. The results of this study show that the weighted
Frontiers in Oncology | www.frontiersin.org 732
sensitivity, specificity, positive likelihood ratio, negative
likelihood ratio, and diagnostic odds ratio were 0.97, 0.86, 6.8,
0.04 and 171, respectively; and AUC is 0.97. This suggests that
CEUS could be used as a diagnostic tool for RCC.

CEUS features of renal cancers are that the cortical phase
contrast agent can quickly fill the lesion tissue, and the
enhancement degree of CEUS is equal to or significantly higher
FIGURE 9 | Likelihood ratio dot plot.
FIGURE 10 | Deeks’ test.
November 2020 | Volume 10 | Article 586949
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than that of the renal parenchyma, and in the late medulla and
delayed phase, the contrast agent quickly exits the lesion
organization, mainly manifested as low enhanced performance.
CEUS shows the enhancement feature of fast forward and fast out.

CEUS provides a new method for diagnosing kidney tumors.
The application of TIC can make the diagnosis of RCC more
objective by analyzing the AT, TP, and DPI values of the tumor and
surrounding renal cortex. Most renal cancers have pseudo-capsules.
The display rate of pseudo-capsules after contrast is higher than
that of conventional ultrasound, and the enhancement time is long
and obvious. In CEUS, the hemorrhagic and necrotic foci in the
tumor are in sharp contrast with the enhanced foci, and the display
rate of the necrotic foci is higher than that of conventional
ultrasound. Although CT and MRI have high diagnostic rates,
contrast agents can cause certain damage to the physiological
functions of the liver and kidneys. At the same time, the patient’s
body can also be damaged by radiation. CT/MR can only observe a
specific section at a specific time, and the display rate of necrotic
lesions is not as good as that of CEUS, and it may be misdiagnosed
by missing the peak period of tumor enhancement and making the
contrast enhancement characteristics unclear. In addition, CEUS
can display small blood vessels more sensitively than CT/MR, so
more accurate to observe the blood perfusion of new tumors, which
can used to evaluate the angiogenesis of renal cancer before surgery.
CEUS cannot observe the surrounding and distant metastasis of the
tumor, and it has no guidance on the clinical staging of renal cancer.

The heterogeneity of this study is high. According to the results
of the subgroup and meta-regression analysis, the five subgroups
are not sources of heterogeneity and a comprehensive analysis
requires more subgroup data. First, the characteristics of
ultrasonography determine that factors such as the experience
and skills of the diagnostician, as well as the subjective evaluation of
the imaging results, have a great influence on the diagnosis. In
Rubnthaler (21) article, all CEUS examinations were performed
and interpreted by a single radiologist with more than 15 years of
experience in CEUS. In Lu (19) article, a sonologist with 10 years’
experience with CEUS did diagnosis. Obviously, different
experiences of the two sonologists will lead to different diagnosis
of kidney cancer. Then, although each study uses the same contrast
agent, the ultrasound equipment and probe models used are
different, and even the same study uses different ultrasound
equipment and probes. In Wei (23) article, CEUS examinations
were performed using a Sequoia 512ultrasound system (Siemens,
Mountain View, CA, USA). In Quaia (27) article, CEUS
examinations were performed using Sequoia, Acuson-Siemens.
These factors may affect the diagnosis rate and cause
heterogeneity. These may be the reason for the heterogeneity.
Frontiers in Oncology | www.frontiersin.org 833
This research still has some limitations. First, the number of
documents is limited and retrospective studies account for a large
amount, so can cause selection bias; second, due to the different
publication time of the literature, the CEUS diagnostic standards
in some literatures have certain differences, which may affect the
results; third, There are poor quality research in these documents,
which leads to the bias of the publication of this article.
CONCLUSION

Contrast enhanced ultrasound technology has a good diagnostic
clinical value for RCC.
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Background: Clear cell renal cell carcinoma (ccRCC) is one of the most common
malignancies in urinary system, and radiomics has been adopted in tumor staging and
prognostic evaluation in renal carcinomas. This study aimed to integrate image features of
contrast-enhanced CT and underlying genomics features to predict the overall survival
(OS) of ccRCC patients.

Method: We extracted 107 radiomics features out of 205 patients with available CT
images obtained from TCIA database and corresponding clinical and genetic information
from TCGA database. LASSO-COX and SVM-RFE were employed independently as
machine-learning algorithms to select prognosis-related imaging features (PRIF).
Afterwards, we identified prognosis-related gene signature through WGCNA. The
random forest (RF) algorithm was then applied to integrate PRIF and the genes into a
combined imaging-genomics prognostic factors (IGPF) model. Furthermore, we
constructed a nomogram incorporating IGPF and clinical predictors as the integrative
prognostic model for ccRCC patients.

Results: A total of four PRIF and four genes were identified as IGPF and were represented
by corresponding risk score in RF model. The integrative IGPF model presented a better
prediction performance than the PRIF model alone (average AUCs for 1-, 3-, and 5-year
were 0.814 vs. 0.837, 0.74 vs. 0.806, and 0.689 vs. 0.751 in test set). Clinical
characteristics including gender, TNM stage and IGPF were independent risk factors.
The nomogram integrating clinical predictors and IGPF provided the best net benefit
among the three models.

Conclusion: In this study we established an integrative prognosis-related nomogram
model incorporating imaging-genomic features and clinical indicators. The results
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indicated that IGPF may contribute to a comprehensive prognosis assessment for
ccRCC patients.
Keywords: clear cell renal cell carcinoma, radiomics, genomics, machine learning, prognosis
INTRODUCTION

Renal cell carcinoma (RCC) is a common heterogeneous
malignancy originated from renal tubular epithelial cells, with
clear cell renal cell carcinoma (ccRCC) comprising about 80% of
RCC cases (1, 2). Owing to the insufficient clinical symptoms and
reliable diagnostic biomarkers at the early stage, about 30% of
ccRCC patients had metastasis at the time of diagnosis, and
about one-fifth of patients may experience metastasis or
recurrence after radical treatment (3, 4). Imageological
examinations such as conventional ultrasound, contrast-
enhanced ultrasound, CT, contrast-enhanced CT and MRI
have been applied to assess the overall profile of the tumor as
noninvasive methods. However, there are limitations in these
conventional imaging tests for differential diagnosis,
preoperative pathological grading and prognosis of ccRCC,
which also lack quantitative criteria.

Radiomics was first proposed by Lambin et al. (5) in 2012,
which exploits high-throughput feature extraction algorithms to
extract quantitative image features from standard medical
images. Radiomics managed to perform the conversion from
images into mineable data, which could then be applied to
clinical decision support systems to achieve precise prediction,
diagnosis, and prognostic evaluation of cancers (6, 7). A number
of studies have reported that radiomics has been successfully
applied in renal tumors researches, including Fuhrman staging of
ccRCC (8–10), assessment of cancer phenotype and tumor
microenvironment (11), differentiation of RCC and benign
renal tumors (12, 13) and efficacy and prognosis evaluation
(14, 15).

However, most studies regarding radiomics were primarily
focused on the selection of image features and the quantitative
analysis of tumors at the macroscopic level, and there has been
little research into the mechanisms of deeper molecular biology.
Combined with machine learning algorithms, we can further
correlate the imaging data that reflects the quantitative
phenotype of the disease with the genotype feature data which
reveals the molecular activity. Correlation analysis between gene
mutation, expression and imaging characteristics has been
proved effective in the research of liver cancer (16), lung
cancer (16–18), glioblastoma (19, 20) and Alzheimer’s disease
(21). Therefore, it is of vital importance to analyze the correlation
and integration between imaging and genomic features of
ccRCC, so as to understand the biological mechanism and
furthermore obtain biomarkers for prognosis prediction, which
will be more rewarding in personalized precision therapy.

Previous studies have proven that certain molecules and the
activation of a series of signaling pathways are in close relation
with the tumorigenesis and progression in ccRCC. For instance,
the overexpression of vascular endothelial growth factor (VEGF)
236
and platelet derived growth factor (PDGF) receptor tyrosine
kinases are of great significance in promoting tumor
angiogenesis and cell division. In addition, PI3K/AKT/mTOR
pathway also results in affecting tumor cell growth and
metabolism. Nevertheless, the associated gene expression
profiles have not been thoroughly studied.

Standard treatments for ccRCC patients encompass surgery,
radiotherapy and chemotherapy, and specific treatments
including targeted therapy in combination with immune
checkpoint inhibitors have shown efficacy in improving the
overall survival (OS) of ccRCC patients (22, 23). However, the
response of personalized therapy does vary and the prognosis is
not as satisfactory. So far no routine genetic tests have been
conducted, and these molecules concerning the mechanism of
ccRCC development may provide opportunities to investigate
potential biomarkers for diagnosis and prognosis. Therefore, it’s
essential to establish an effective model that conduce to risk
stratification, treatment strategy support and prognostic
prediction for patients with ccRCC.

In this study we concentrate on analyzing the radiomics
features of contrast-enhanced CT and their association with
genomics profiles of ccRCC samples, which has not been
extensively researched. In order to select the imaging features
significantly correlated to the prognosis of ccRCC, we applied
several machine learning algorithms. Through machine-learning
algorithms, we further estimated the correlation between
prognosis-related image features (PRIF) and expressed genes
profiles. Furthermore, the integration of radiomics and gene
features was conducted to enhance the accuracy of prognostic
evaluation. Eventually, we conducted validation of the imaging-
genomic prognostic factors (IGPF) model, and the results
suggested that these features may be of help in the prediction
of prognosis in ccRCC patients. The potential connection and
integration of macroscopic radiomics and genetic characteristics
at the microscopic level needs further exploration.
MATERIALS AND METHODS

Data Source and Processing
The overall structure of our study was demonstrated in Figure 1.
The detailed information of each section will be interpreted as
follows. We downloaded the available enhanced CT images from
the Cancer Imaging Archive (TCIA) portal (http://www.
cancerimagingarchive.net/) and the information containing
clinical features and mRNA sequencing data of corresponding
ccRCC samples from the Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov). In total 205 available
samples were gathered. For data normalization, we firstly
acquired the raw count data of the ccRCC patients from the
March 2021 | Volume 11 | Article 640881
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FIGURE 1 | The overall framework of data analysis and model integration. 1) The segmentation of tumor region of interest (ROI) of contrast-enhanced CT images
was performed by 3D slicer. Radiomics features of the ROIs were then extracted. 2) The selection of prognosis -related radiomics features was implemented by
LASSO-COX Regression and SVM-RFE machine learning methods. The identification of prognostic gene modules was carried out by co-expression gene network
analysis through WGCNA, and gene pathway analysis was subsequently performed. 3) The integration and assessment of prognosis-related radiomics features and
gene signature was conducted by random forest (RF). Finally, the nomogram incorporating clinical predictors and imaging-genomic prognostic factors (IGPF) of
ccRCC patients was constructed via R package rms.
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TCGA-KIRC project. Then we normalized the raw count data
using variance stabilizing transformation through the vst
function of DESeq2 package.

Extraction of CT Image Features
Tumor segmentation and feature extraction were performed
using 3D slicer (Version 4.7) software. 3D slicer is an open
source software platform which functions in medical image
processing, analysis (including registration and interactive
segmentation) and versatile visualization for image-guided
therapy (24). We loaded deidentified transverse CT images
(DICOM) of ccRCC into the software and conducted
segmentation of area for each lesion with a paint function. The
delineation of the region of interest (ROI) was firstly conducted
by Xuelei Ma, an oncologist with experience in CT
interpretation. To access the intra- and inter-rater feature
stability against ROI delineation variations caused by human
factors, Xuelei Ma and another experienced oncologist Ye Zhao
conducted the delineation of the ROI again. Through the icc
function of R package irr, we calculated the intraclass correlation
coefficient and accessed the repeatability and stability of the
radiomics features based on the ROI conducted by Xuelei Ma
twice and that conducted by Ye Zhao (used for accessing the
inter-rater stability of radiomics features).

Next we performed feature extraction calculations of ccRCC
patients via pyradiomics package (https://pyradiomics.
readthedocs.io/en/latest/), an extension via the 3D Slicer
ExtensionManager. The pyradiomics is an open-source python
package for the extraction of radiomics features from medical
imaging, and most features are in compliance with feature
definitions as described by the Imaging Biomarker
Standardization Initiative (IBSI). Notes are added to specify the
differences where the features vary in the website (25).
Eventually, we obtained a total of 107 features in various
classes. For instance, first order statistics describe the
distribution of voxel intensities within the image region,
including skewness, maximum, minimum, mean, range, and
entropy etc. Shape-based category depicts shape eigenvalue of
ROI and in 3-dimentional size. Gray Level Cooccurrence Matrix
(GLCM) features and Gray Level Run Length Matrix (GLRLM)
represent the eigenvalue of high-order texture characteristics.
Other features extracted were contained in Gray Level Size Zone
Matrix (GLSZM), Neighboring Gray Tone Difference Matrix
(NGTDM) and Gray Level Dependence Matrix (GLDM).

Selection of Prognosis-Related Radiomics
Features
All the ccRCC samples were randomly assigned to training and
test cohorts on a scale of 1:1. Based on the training set, we applied
the least absolute shrinkage and selection operator COX
(LASSO-COX) and support vector machines-recursive feature
elimination (SVM-RFE) algorithm in R package “glmnet” and
“e1071” respectively using 5-fold cross-validation approach to
filtrate prognosis-related imaging features (PRIF). LASSO-COX
reduces feature space dimension and filters variables by
performing a penalized function that compresses insignificant
Frontiers in Oncology | www.frontiersin.org 438
coefficients to zero, and therefore contracts subsets and processes
data with complex collinearity. The cv.glmnet function of glmnet
package provides an argument for K-fold cross validation called
“nfolds”, and this argument was set at 0.04396 for 5-fold
cross validation.

SVM arranges the extracted image features in descending
order according to the variable importance and inputs them to
the training model in sequence in each iteration of the cross-
validation calculation, thus measuring the overall accuracy of the
training sets during the accumulation course. SVM-RFE is a
sequence backward selection algorithm based on the maximum
interval principle of SVM. We applied the 5-fold cross validation
algorithm as the resampling method for SVM-RFE. The final
importance of features was based on the average importance of
each feature in each iteration. Afterwards, we compared the
features displayed in the outcome of two methods and selected
those within the intersection of two subsets as PRIF for
subsequent analyses.

Gene Co-Expression Network Analysis
To further explore the molecular biological mechanisms of the
prognostic-related CT image features and obtain gene expression
modules, we conducted weighted gene co-expression network
analysis (WGCNA) based on training dataset. WGCNA is a
systematic analytical tool which describes the correlation
patterns among genes across microarray samples and clusters
genes into modules, hence investigating the association between
gene sets and clinical traits. The main workflow started with
measuring adjacency coefficient which computes the joint
strength between two nodes. Next we reduced the co-
expression similarity to ensure a scale-free network. The
topological overlap measure (TOM) was performed to
eliminate false correlation, and then we conducted average
linkage hierarchical clustering and classified functional gene
modules in the co-expressed network. The module eigengenes
(ME) was the first principal component of the expression matrix
which represented the gene expression profile of the entire
module. Afterwards we assessed the correlation between MEs
and previously screened image features to identify the most
relevant clinically significant module. Then to assess the
preservation of the connectivity and density between each
couple of modules (from the train and test networks), we
carried out a permutation test through the function
modulePreservation from the WGCNA package. This function
provides a summary preservation Z-score for each module.
Furthermore we applied Gene ontology (GO) enrichment
analysis via Metascape (http://metascape.org) to evaluate the
interlinkage between key modules.

Construction of Integrative Imaging-
Genomic Prognostic Model
We utilized random forest (RF) algorithm with 1,000 decision
trees (DTs) through “randomForestSRC” (rfsrc) in R to obtain
optimal prognostic factors. RF algorithm constructs and
assembles multiple decision trees based on data samples to
attain a more precise prediction, which can reduce the over-
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fitting by averaging the result. The default arguments of the rfsrc
function contained a resampling method argument “bootstrap”.
The default value of the “bootstrap” argument was “by.root”,
which bootstraps the data by sampling with replacement at the
root node before growing the tree. Based on training set we firstly
constructed two prognostic models, one of which incorporated
prognosis-related imaging features (PRIF) and the other
integrated PRIF and the expressed genes profiles. The latter
was defined as imaging-genomic prognostic factor (IGPF)
model. Meanwhile we evaluated the prediction performance of
the two models with test set using 5-fold cross-validation.
Subsequently, we performed the discrimination of the
signature by plotting the receiver operating curve (ROC) and
calculating the corresponding area under curve (AUC) based on
average accuracy of 5 iterations. ROC curve analysis obtained
generalization abilities based on the means computed by all cross
validation sets and the average 1-, 3-, and 5-year AUCs were then
assessed. Furthermore, we calculated the risk scores for all
ccRCC patients using RF, and patients were then separated
into high-risk group and low-risk group based on the median
cut-off value of risk scores. The overall survival (OS) of the two
groups was acquired and displayed via Kaplan-Meier survival
curve analysis and then compared by log rank test.

Univariate and multivariate Cox regression analyses were
performed to further identify the predictive factors of survival
outcome. Variables with p < 0.05 in univariate Cox regression
analysis were considered statistically significant and selected for
multivariate analysis. On the grounds of the results of Cox
regression analysis we established a nomogram based on the
training dataset, which comprised the IGPF and certain clinical
factors including stage and gender through R package rms.
Calibration plots were then applied based on training set to
evaluate the predictive performance of the nomogram by
illustrating the consistency between predicted OS and observed
OS and model discrimination was estimated by the concordance
index (C-index). Moreover we employed the decision curve
analysis (DCA) based on training set to assess the clinical
availability of the nomogram by calculating the net benefit
under a range of threshold probabilities.
RESULTS

Acquisition of Prognosis-Related
Radiomics Features
We initially obtained the patient data containing clinical features
and mRNA sequencing data of 537 ccRCC samples from TCGA
database and the matched CT images of 237 ccRCC patients
from TCIA portal, among which 205 samples with available and
complete data were enrolled for subsequent analyses. The patient
clinical characteristics are listed in Table 1. The results of the
repeatability and stability assessment showed that most of the
radiomics features (104 of 107) were stable against ROI
delineation variations caused by human factors (icc > 0.75 and
p < 0.05). The raw data of the ROI delineation by two oncologists
were presented in Supplementary Material 1. A total of 107
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features of six categories were firstly extracted from original CT
images from the ROIs using pyradiomics package, and the results
adhered to the IBSI recommendations (Supplementary Material
1, icc data). To acquire a reliable and robust model, we randomly
divided the ccRCC samples into a training set (n=103) and a test
set (n=102) in a 1:1 ratio and proceeded to the further selection
based on the training dataset. In an attempt to diminish the
possibility of module overfitting by too many radiomics features
and select the ones with higher prediction accuracy for OS, two
machine-learning approaches including LASSO-Cox regression
and SVM-RFE were employed for mutual authentication. The
tuning parameter l was settled at an optimal value of 0.04396
with the minimum criteria in LASSO regression, and 6
prognostic features were identified with nonzero coefficients
out of 107 radiomics features (Figure 2A). As the extracted
features ranked and excluded sequentially in SVM classifier
during each iteration by contribution value, we found that the
best prediction performance appeared when the first 14
radiomics features were included during the 5-fold cross
validation (Figure 2B).

Therefore, the top 14 features in contribution value were
filtrated as prognosis-related features for further module
construction, covering six in GLCM, three in GLSZM, one in
GLDM, two in shape, one in NGTDM and one in first order.
TABLE 1 | Demographic and clinical characteristics of patients.

Characteristics Total (n=205) Train (n=103) Test (n=102) P
value

NO. NO. (%) NO. (%)

Age at
diagnosis
(years)

0.081

Mean ± SD 59.7 ± 12.2 58.4 ± 12.7 61.0 ± 11.7
Gender 0.433
Male 134 70(68.0) 64(62.7)
Female 71 33(32.0) 38(37.3)

T classification 0.179
T1 109 56(54.4) 53(52.0)
T2 22 15(14.6) 7(6.9)
T3 70 31(30.1) 39(38.2)
T4 4 1(0.9) 3(2.9)

N classification 0.856
N0 83 43(41.7) 40(39.2)
N1 5 2(1.9) 3(2.9)
Unknown 117 58(56.4) 59(57.9)

M classification 0.146
M0 176 93(90.3) 83(81.4)
M1 28 10(9.7) 18(17.6)
Unknown 1 0(0.0) 1(1.0)

TMN stage 0.200
I 106 56(54.4) 50(49.0)
II 18 12(11.6) 6(5.9)
III 51 24(23.3) 27(26.5)
IV 30 11(10.7) 19(18.6)

Grade 0.227
G1 1 1(1.0) 0(0.0)
G2 80 40(38.8) 40(39.2)
G3 91 50(48.5) 41(40.2)
G4 33 12(11.7) 21(20.6)

OS (days) 0.090
Mean ± SD 1371.0 ± 925.1 1493.5 ± 996.7 1247.2 ± 833.5
March 2021 | Vol
ume 11 | Article 6
40881

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Imaging-Genomics Features Predicting ccRCC Prognosis
Eventually four features with predictive efficiency (glszm_Large
AreaHighGrayLevelEmphasis, gldm_GrayLevelNonUniformity,
shape_SurfaceVolumeRatio, glcm_Correlation) within the
overlap of the results produced by the two methods were
identified as prognosis-related imaging features (PRIF)
(Figure 2).

Identification of Co-Expressed Gene
Modules Related to Prognostic Image
Features
To identify the gene modules highly correlated to PRIF in the
ccRCC samples, we performed WGCNA to build a gene co-
expression network based on training dataset. Threshold powers
were set from 1 to 20 to choose an applicable soft-thresholding
power, and the top 25% most variant genes (4,936 genes) ranked
in descending order of SD sequence were included for
subsequent analyses. A total of nine co-expressed gene
modules were identified via the hierarchical clustering
dendrogram (Figures 3A, B). Relationships of the modules
Frontiers in Oncology | www.frontiersin.org 640
were illustrated in a heatmap drawn by adjacencies (Figure
3C). Afterwards, we conducted correlation analysis to estimate
the association between nine MEs and image traits (Figure 3D).
The correlation coefficients and FDR values between each of the
nine gene modules and PRIF were displayed in Supplementary
Material 2. Of all the nine gene co-expression modules, the green
module (625 genes) displayed the most significant correlation
with the prognosis-related image features of ccRCC, including
glszm_LargeAreaHighGrayLevelEmphasis, gldm_GrayLevel
NonUniformity, shape_SurfaceVolumeRatio and glcm_
Correlation. The module preservation analysis presented by the
summary preservation Z-score showed that all the modules were
rather stable and the green module was the most robust between
training and test sets (Figure 3E). Thus we identified the green
module as the key module of significant prognostic importance
for continuous research.

Furthermore we carried out enrichment analysis to describe
the biological interpretations of the genes in green module
(Supplementary Material 3). As illustrated in Figure 4, the
A B

FIGURE 2 | Selection of prognosis-related imaging features (PRIF). (A) A total of six features were identified by LASSO-COX regression analysis. The horizontal axis
represents the lambda value and vertical axis represents independent variable coefficient. (B) A total of 14 features selected by SVM-RFE. And four imaging features
within in the overlap were defined as PRIF.
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genes were significantly related to certain biological processes
such as blood vessel development, circulatory system process,
cell morphogenesis involved in differentiation, cell-substrate
adhesion, and extracellular structure organization. The results
suggested that these genes may be involved in tumor
angiogenesis and cell adhesion, which have been proved to be
associated with tumorigenesis and progression.

Construction and Validation of Integrated
Imaging-Genomic Prognostic Model
In order to establish an integrative model of PRIF and prognostic
co-expressed gene profile, we applied RF algorithm based on
training dataset, and furthermore performed model verification
with the test dataset. Initially we presented PRIF as an
independent variable to analyze its impact on prognosis and
found a significant correlation. Then to explore the combined
effect of genomics and imaging features, we assessed gene
expression profiles in the prognostic-related green module and
selected the top four genes with the highest module membership
(MM) va lue (RPS6KA2 , CYYR1 , KDR, GIMAP6)
(Supplementary Material 4, Figure S1).

Furthermore, we integrated the four genes with PRIF which
were identified as imaging-genomic prognostic factors (IGPF)
and calculated the risk score of each ccRCC patient. The patients
Frontiers in Oncology | www.frontiersin.org 741
were divided into high-risk and low-risk groups in light of the
median value of risk scores and then estimated with time-
dependent ROC. To evaluate the statistical differences between
different models, we applied the compare function of timeROC
package in both training and test sets. The result showed that
there were statistically significant differences between RPIF and
IGPF models in 1-, 3-, and 5-year OS (P<0.05) (Table 2). The
outcome illustrated a more satisfactory predictive performance
of IGPF model compared to the RPIF model alone (Table 3). In
the training set, the average AUCs for 1-, 3-, and 5-year OS were
0.845, 0.772, and 0.737 in PRIF model compared to 0.898, 0.849
and 0.808 in IGPF model respectively (Figures 5C, 6C). In the
test set, the average AUCs for 1-, 3-, and 5-year OS were 0.814,
0.74 and 0.689 of PRIF model compared to 0.837, 0.806 and
0.751 of the combined IGPF module (Figures 5D, 6D).

Establishment and Evaluation of
Nomogram Model
According to Kaplan-Meier survival curves, a distinctly
significant difference of p < 0.0001 can be seen between the
two groups in both test and train cohorts, and patients in the
low-risk group showed a more promising OS than the high-risk
group (Figures 5A, B, 6A, B). In consideration of the
relationship of IGPF and certain clinical predictors, we
A

D E

B C

FIGURE 3 | Identification of prognosis-related co-expressed gene module. (A) The cluster dendrogram of genes in training dataset. (B) The cluster dendrogram of
genes in test dataset. Each branch represents one gene and each color below denotes one co-expression gene module. (C) Heatmap plot of relationship analysis
between co-expression gene modules. (D) Heatmap of the correlation analysis between module eigengenes and PRIF. The green module showed the most
significant correlation. (E) The summary preservation Z-score for each module. The higher the Z-score is, the higher the module preservation will be, whereas values
below 10 indicate a moderate-to-low preservation.
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performed univariate and multivariate Cox analysis. The results
indicated that clinical characteristics including gender, TNM
stage and IGPF were independent risk factors for OS of ccRCC
patients. In order to acquire a quantitative prediction method for
disease progression and survival probability of ccRCC, we
established a nomogram on the basis of the independent
predictors of OS (gender, TNM stage, and IGPF) identified
earlier (Figure 7A). Calibration plots were then applied to
assess the consistency between the nomogram-predicted values
and actual values, and the calibration curves in Figure 7B
A

B

FIGURE 4 | Enrichment analysis of the prognosis-related gene co-expression green module. (A) Metascape enrichment network visualization cluster of genes in green
module. Each circle node denotes one term and the color of node indicates its cluster identity, representing the intra-cluster and inter-cluster similarities of enriched terms.
Cluster annotations and the most significantly enriched terms are shown in color code. (B) GO enrichment analysis of the co-expressed genes in green module.
TABLE 2 | Comparison of PRIF and IGPF models in training set and test set.

Dataset Time (d) P value

Train
(n=103)

t=365 0.294493777

t=1095 0.012522423

t=1825 0.006498863

Test
(n=102)

t=365 0.048720526

t=1095 0.02381105

t=1825 0.007957811
PRIF, prognosis-related imaging features; IGPF, imaging-genomic prognostic factors.
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denoted good performance of 1- and 5-year nomogram model
which showed a closer tendency to the 45-degree standard line.
Meanwhile, the decision curves analysis evaluated the clinical
utility of IGPF model containing radiomics and gene features,
clinical model that involved TNM stage and gender and
nomogram which integrated the former two models (Figure
7C). As depicted in the results, nomogram provided the best net
benefit among most of the threshold probabilities range.
DISCUSSION

In this study, we extracted radiomics features from contrast-
enhanced CT images of ccRCC, and subsequently selected
Frontiers in Oncology | www.frontiersin.org 943
prognosis-related image features (PRIF) with significant
prognostic value via several machine-learning algorithms.
Furthermore we identified gene modules that are most relevant
to PRIF through co-expression network. Based on the PRIF
(screened by LASSO and SVM-RFE) and genes (screened by
WGCNA and MM value), we constructed a robust imaging-
genomic prognostic factors (IGPF) model incorporating
prediction features in the two categories through random
survival forest algorithm. The random survival forest algorithm
acts as a bootstrap algorithm and can predict the overall survival.
The OS prediction analysis demonstrated a notable performance
of the integrative prognostic model, and thus the IGPF based risk
score was considered as an independent prognostic factor.
Afterwards, through nomogram we integrated the IGPF model
TABLE 3 | Survival models based on PRIF and IGPF in training set and test set.

Model HR z P value lower upper c-index se(C-index)

Train
(n=103)

IGPF 9.555645221 3.663583845 0.000248711 2.856506317 31.96574608 0.7435393 0.0303249
PRIF 5.890757826 3.171763552 0.001215163 2.833927216 14.04278158 0.68764045 0.04130209

Test
(n=102)

IGPF 7.624785255 4.189170631 0.000027998 2.947573776 19.72379815 0.74161074 0.02908009
PRIF 4.461795265 3.522355167 0.000427731 1.941329799 10.25462907 0.68504314 0.03922711
March 20
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FIGURE 5 | Univariate analysis of prognosis-related radiomics features model. Patients were divided into high-risk group and low-risk group according to the
median value of IGPF risk score. (A, B) Kaplan-Meier curves demonstrating overall survival (OS) of patients in high-risk group and low-risk group in (A) training set
and (B) test set. (C, D) The 1-, 3-, and 5-year area under curve (AUC) of receiver operating curve (ROC) in (C) training set and (D) validation test set.
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and clinical predictor model, and then made comparisons of the
three prognostic models. Ultimately, the prediction capability of
the nomogram model outweighed the other two.

On the basis of the initially obtained 107 imaging features, we
employed two machine-learning methods LASSO-Cox and
SVM-RFE in combination aiming to achieve a group of
prognostic radiomics features with more robust and accurate
prediction abilities. Four conspicuous prognosis-related image
features in our study were included in Gray Level Size Zone
Matrix (GLSZM), Gray Level Dependence Matrix (GLDM),
shape and Gray Level Cooccurrence Matrix (GLCM)
respectively. As illustrated in the results, features based on
intensity discretization were not screened out in the end. The
results suggested that under these two unsupervised feature
selection algorithms, the gray level-based features and shape-
based features had a better prognostic performance than
intensity discretization-based features in this cohort. However,
considering the differences and limitations among multiple
algorithms and cohorts, we cannot completely deny the
importance of intensity discretization-based features.

A gray level zone is described as the number of connected
voxels which show the same intensity. The texture feature Large
Area High Gray Level Emphasis from GLSZM quantifies the
Frontiers in Oncology | www.frontiersin.org 1044
proportion in the image of the joint distribution of smaller size
zones with higher gray-level values, which has been formerly
adopted in the assessment of the robustness or patient response
in different imageological examinations (26, 27). The GLDM-
based textural feature Gray Level Non Uniformity (GLN)
calculates the similarity of gray-level intensity values, where a
lower GLN refers to a higher intensity value in the image (28).
Surface Area to Volume Ratio is a shape feature that is not
dimensionless and is partly dependent on the volume of the
ROI. It has been utilized in differentiating the benign and
malignant tumors based on shape and margin of the lesions
(29, 30). GLCM conduces to reflecting the comprehensive
information about pixel distribution containing direction,
distance, gray value, and the pattern of gray level
arrangement (28), and Correlation represents the linear
dependency of gray level values to their respective voxels in
the GLCM textural features. It has been applied previously in
the evaluation of breast cancer, osteosarcoma, lung cancer and
gliomas in imaging modalities such as CT, MRI, and PECT
(31–35).

In our study, the predictive efficacy of the elected prognostic
related radiomics features based on training set were found to be
in accordance with some of the reference research above (30, 33,
A B

C D

FIGURE 6 | Multivariate analysis of the integrative prognostic model incorporating radiomics and genomics features. Patients were divided into high-risk group and
low-risk group according to the median value of IGPF risk score. (A, B) Kaplan-Meier curves demonstrating OS of patients in high-risk group and low-risk group in
(A) training set and (B) test set. (C, D). The 1-, 3-, and 5-year area under curve (AUC) of receiver operating curve (ROC) in (C) training set and (D) validation test set.
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34, 36). However, a lot of former studies have concentrated on
the performance of textural features of radiographic images,
which may lack a comprehensive explanation of the biological
mechanism and potential biomolecular features of the disease.
While in our study, we conducted the identification of the
prognostic gene co-expression module and then evaluated the
association between the imaging phenotype and genomic
characteristics. The results demonstrated that the green
module was most related to all the PRIF, and gldm_gray level
non uniformity feature could be mostly affected by gene
expression pattern. In addition, the red and yellow modules
also had a relatively high correlation with the gldm_gray level
non uniformity feature. This may be related to the objective
attributes of this feature, and further studies are still needed to
explain the potential relevance and biological mechanism
Frontiers in Oncology | www.frontiersin.org 1145
between gene modules and radiomics features. Moreover, we
implemented enrichment analysis in order to elaborate the latent
molecular pathways relevant to the prognostic significant green
gene module.

The results indicated that the most prominent enrichment
leans towards pathways involved in tumor angiogenesis, cell
adhesion and extracellular structure organization. Formation of
new vascular networks is a pivotal step in tumor progression and
also expedites the metastasis of cancer cells (37). At present,
tumor microvessel density (MVD) and VEGF are important
immunohistochemical indicators for tumor angiogenesis, and
studies have reported that three-phase dynamic enhanced CT
and MRI can be utilized as auxiliary evaluation methods for
tumor angiogenesis, malignancy and prognosis in ccRCC (38–
40). Cell-substrate adhesion has been widely demonstrated as an
A

B C

FIGURE 7 | Construction and validation of prognostic nomogram model. (A) The nomogram prediction of the 1-, 3-, and 5-year OS of ccRCC patients.
(B) Calibration plots of the nomogram for 1- and 5-year OS prediction. The horizontal axis represents nomogram-predicted survival probability and the vertical axis
represents actual survival. (C) Decision curve analyses of IGPF, clinical and nomogram model. The gray oblique line represents the net benefit of all intervening
patients, and the horizontal gray line indicates the net benefit of no intervening patients. The nomogram model showed the best net benefits in the vast majority of
the threshold probability range.
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indispensable process of metastasis in vivo (41). The
modification of cell adhesion status has significant impact on
biophysical patterns of tumor microenvironment (TME) and
structure of extracellular matrix (ECM), which has been reported
to be related to the prognosis of colorectal cancer, lung cancer
and gastric cancer (42–45). In accordance with previous
researches, the results may provide a chance to understand the
upstream biological mechanisms of tumor development in
ccRCC (46–48). RPS6KA2, CYYR1, KDR, and GIMAP6 were
discovered to be most correlated with the prognostic-related
module eigengene, which was also found relevant to blood vessel
development and cell proliferation in existing researches. For
instance, KDR has been reported to acts as an important
mediator of VEGF-induced endothelial proliferation, tubular
morphogenesis and sprouting and associate with signaling by
GPCR pathway (49, 50). RPS6KA2 has been found to act
downstream of EGFR, RAS, and ERK signaling, which
mediates mitogenic and stress-induced activation of
transcription factors and thus regulate the proliferation and
differentiation of cells (51, 52).

Subsequently, we integrated the prognosis-related image
features and gene profiles into an IGPF model and obtained
corresponding risk scores. The clinical model took in gender and
TNM stage as the common tumor assessment indicators for
prognosis, but the predictive accuracy is still limited. The
nomogram which integrated IGPF and clinical predictors was
validated to outperform all the models with the best
prediction performance.

There were several limitations to this study. First of all, the
sample size was comparatively small because patients with
available identified transverse CT images and gene expression
profiles were limited. Secondly, the data of patients we enrolled
may be incomplete, which might create discrepancies and lead to
potential bias. To better promote the conclusions and
understand the underlying biology molecular mechanism, a
larger scale of multi-center data verification is necessarily
needed. Thirdly, since we used random survival forest
algorithm to build survival prognosis model in this study, the
bootstrap step was a built-in process and the bootstrap corrected
results could not be reported. Fourthly, more clinical trials and
experimental researches are needed to assess the prove the
Frontiers in Oncology | www.frontiersin.org 1246
adaptability of the imaging-genomic prognostic model, and the
molecular mechanisms remain to be further explored.

In conclusion, in this study we constructed an integrative
prognosis-related model incorporating radiomics features,
genomic profile and clinical indicators. The results illustrated
that IGPF may improve the prognostic modalities on the basis of
conventional clinical indexes, and the nomogram prediction
model can serve as an advantageous measurement tool which
may be conducive to personalized treatment and prognosis for
ccRCC patients.
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Background: Renal angiomyolipoma without visible fat (RAML-wvf) and clear cell renal
cell carcinoma (ccRCC) have many overlapping features on imaging, which poses a
challenge to radiologists. This study aimed to create a scoring system to distinguish
ccRCC from RAML-wvf using computed tomography imaging.

Methods: A total of 202 patients from 2011 to 2019 that were confirmed by pathology
with ccRCC (n=123) or RAML (n=79) were retrospectively analyzed by dividing them
randomly into a training cohort (n=142) and a validation cohort (n=60). A model was
established using logistic regression and weighted to be a scoring system. ROC, AUC,
cut-off point, and calibration analyses were performed. The scoring system was divided
into three ranges for convenience in clinical evaluations, and the diagnostic probability of
ccRCC was calculated.

Results: Four independent risk factors are included in the system: 1) presence of a
pseudocapsule, 2) a heterogeneous tumor parenchyma in pre-enhancement scanning, 3)
a non-high CT attenuation in pre-enhancement scanning, and 4) a heterogeneous
enhancement in CMP. The prediction accuracy had an ROC of 0.978 (95% CI, 0.956–
0.999; P=0.011), similar to the primary model (ROC, 0.977; 95% CI, 0.954–1.000;
P=0.012). A sensitivity of 91.4% and a specificity of 93.9% were achieved using 4.5
points as the cutoff value. Validation showed a good result (ROC, 0.922; 95% CI,
April 2021 | Volume 11 | Article 633034149
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0.854–0.991, P=0.035). The number of patients with ccRCC in the three ranges (0 to
<2 points; 2–4 points; >4 to ≤11 points) significantly increased with increasing scores.

Conclusion: This scoring system is convenient for distinguishing between ccRCC and
RAML-wvf using four computed tomography features.
Keywords: clear cell renal cell carcinoma, renal angiomyolipomawithout visible fat, computed tomography, scoring
system, differential diagnoses
INTRODUCTION

Approximately 75% of renal cell carcinomas are clear cell renal
carcinomas (ccRCC) (1), the most common presentation of
which is a renal mass. However, no malignant tumor among
the renal masses accounts for more than 20%, and renal
angiomyolipoma (RAML) is one of the most common benign
cell types (2). RAML can often be diagnosed easily, due to
macroscopic fat tissue within the tumor that can be detected
by imaging. However, about 5% of RAML has insufficient fat for
identification using conventional imaging modalities; these are
regarded as RAML without visible fat (RAML-wvf) (3, 4).
RAML-wvf mimics ccRCC on imaging due to the absence of
fat, and is often diagnosed incorrectly (5). This presents a difficult
challenge to radiologists and clinicians; since misdiagnosis might
cause harm for patients, diagnosis is typically confirmed through
biopsy or surgery. For distinguishing between RCC and RAML-
wvf, the tumor texture, unenhanced computed tomography (CT)
density, enhancement pattern, chemical shift parameter,
sonographic features, and other imaging indexes were useful in
previous reports (6–10). Most reports were based on qualitative
analysis of imaging features because of the low incidence of
RAML-wvf

CT is the preferred imaging method for evaluating renal mass
in clinical settings (11). Previous studies have attempted to
identify useful strategies based on CT imaging to differentiate
ccRCC from RAML-wvf A hyperattenuating mass on
unenhanced CT with homogeneous enhancement pattern on
enhanced CT is highly suggestive of RAML-wvf (12–15).
Investigators also tried detecting hidden fat tissue within the
renal masses by counting negative-attenuation pixels using CT
scans, thin-section (2–5 mm) scanning, and histogram analysis
(16–18). However, these strategies are either too subjective or too
time-consuming. Therefore, some quantitative methods have
been reported recently, such as CT texture analysis (19, 20),
machine learning-based texture analysis (11), and a CT-based
radiomics nomogram (21). However, these methods might not
be sufficiently convenient for clinical application.

Therefore, we aimed to identify characteristic CT features that
could be used to distinguish patients with ccRCC from those
with RAML-wvf weighted scores were assigned to the resulting
model to make it more concise and convenient for use in
clinical practice.
cell carcinoma; RAML-wvf, renal
C, receiver operating characteristic;
graphic phase; EP, excretory phase.

250
MATERIALS AND METHODS

Study Population
A total of 202 patients from 2011 to 2019 that were confirmed
with ccRCC (n = 123) or RAML (n = 79) by pathology were
retrospectively analyzed. The inclusion criteria were: 1) patients
who had a definitive pathologic diagnosis of either RAML or
ccRCC, 2) patients underwent CT and the image quality was
satisfactory for analysis, 3) there was no visible fat on
unenhanced CT images, and 4) patients did not receive
chemotherapy or radiotherapy before the images were taken.
There were five patients excluded because of limited data. The
202 patients were divided randomly into a training cohort (n =
142) and a validation cohort (n = 60) (Figure 1).

Acquisition of Images
CT examinations were performed with multidetector CT
(SOMATOM Definition Flash; Siemens Healthcare and
LightSpeed 16; GE Healthcare). The scanning parameters were
120 kVp tube voltage, 220 mA tube current, slice thickness, and a
5-mm slice interval. Enhanced scanning was performed in three
phases, including the post-contrast corticomedullary phase
(CMP) (delay 30 s), post-contrast nephrographic phase (NP)
(delay 90 s), and post-contrast excretory phase (EP) (delay
180 s).

Analysis of Images
CT images were evaluated independently by two abdominal
radiologists who were blinded to the pathology results. The
observed variables of CT features included the tumor number
(single or multiple), location, contour (regular or irregular), and
edge (clear or blurred), the existence of special findings
(calcification, necrotic or cystic, pseudocapsule, wedge-shape
sign, round tumor-kidney interface), features of the tumor
parenchyma in pre-enhancement scanning, features of the total
tumor in different scanning phases, and the enhancement pattern.

The tumor locations were classified into four patterns: A) the
whole mass located in the renal parenchyma, B) the proportion
of the mass that highlights the outline of the kidney <50%, C) the
proportion of the mass that highlights the outline of the kidney
>50%, and D) the mass grew into the renal medulla. A
pseudocapsule was defined as an unenhanced arc area between
the lesion and renal parenchyma. A wedge-shaped sign indicated
that the tumor was triangular and pointing to the renal hilum.

The tumor CT attenuation in pre-enhancement scanning was
categorized as high or not-high density compared with that of
renal parenchyma (a difference > 5 HU). Heterogeneity was
April 2021 | Volume 11 | Article 633034
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defined as the difference between the highest and lowest
attenuations being more than 30% of the highest value.
Heterogeneous parenchyma in pre-enhancement scanning was
considered when the parenchyma mass that could be enhanced
was mixed. The enhanced scanning ratio 1 (ESR 1) was defined
as the CT attenuation of the lesion minus the renal parenchyma
in the CMP; ESR 2 was minus the aorta in the NP. The lesions
significantly enhanced in CMP were classified as either “fast-in,
fast-out” (the lesion quickly cleared in NP), “fast-in, slow-out”
(the lesion was cleared in EP), or “persistent enhancement” (the
lesion was still enhanced in EP).

Radiologists carefully outlined a 20-mm2 region of interest
(ROI) to include as much tissue mass as possible, avoiding
necrotic or cystic areas when the CT attenuation of the tumor
parenchyma was obtained. The ROI was determined at least
twice, and the average was taken before obtaining the final CT
attenuation. In addition, other clinical data (e.g., age, sex) were
collected for all cases.

Statistical Analysis
Continuous variables were calculated as median with range
(M-R), and categorical variables as the frequency with
percentage. Data of the training cohort were used to establish
the scoring system. The same variables between patients with
RAML-wvf and with ccRCC were compared using the Student t-
test for continuous variables and the chi-square or Fisher’s exact
test for categorical variables. Variables that were significant in
univariate analysis were obtained to a logistic regression model
after confirming there was no multicollinearity. For the training
of an integer-based distinguishing scoring system, we decided to
use the method described by Ben Ayed et al. (22). We first used
the following formula to get the initial value: b/bmin (b,
regression coefficient of each variable; bmin, minimum value of
regression coefficient), which was rounded to the nearest integer
to get the final score of each CT feature. The total score was
Frontiers in Oncology | www.frontiersin.org 351
calculated by summing the individual score corresponding to the
related variables. The performance of the predicting model was
evaluated by discrimination and calibration metrics. The receiver
operating characteristic (ROC) was used to assess the
discriminatory power of the model, and the Hosmer-
Lemeshow goodness-of-fit test evaluated the calibration (23). A
comparison among ROC of different models has been performed
using the Delong nonparametric method (24). Further validation
was performed using data from another 60 independent patients.

All the data were analyzed by SPSS version 25.0 software
(IBM Crop, Aromonk, NY), except ROC comparison performed
by MedCale statistical software, version 19.0 (MedCale Software
bvba), P < 0.05 was defined as statistically significant.
RESULTS

Characteristics of the Study Patients
Differences in clinical and CT characteristics between patients
with RAML-wvf and ccRCC are presented in Table 1. Sex,
necrosis or cystic, heterogeneous parenchyma in pre-
enhancement scanning, pseudocapsule, wedge shape sign,
degree of CT attenuation in pre-enhancement scanning,
enhancement in three scanning phases, enhancement pattern,
ESR 1, and ESR 2 showed a statistically significant difference
between the two groups (P <0.05).

Establishment of the Primary Model
In the univariate analysis, necrosis or cystic, heterogeneous
parenchyma in pre-enhancement scanning, pseudocapsule,
absence of wedge shape sign, non-high CT attenuation in pre-
enhancement scanning, enhancement in three scanning phases
(heterogeneous), enhancement pattern, ESR 1, and ESR 2 were
significantly associated with ccRCC compared with RAML-wvf
FIGURE 1 | Patient flow diagram.
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It was confirmed that there was no multicollinearity among
these factors by checking tolerance (>0.1) and variance inflation
factor (VIF <10) before they were obtained in multivariate
analysis. Multivariate analysis demonstrated four independent
risk factors for distinguishing ccRCC: pseudocapsule,
heterogeneous parenchyma in pre-enhancement scanning,
non-high attenuation in pre-enhancement scanning, and
heterogeneous enhancement in CMP (Table 2), which would
be adopted to develop the distinguishing scoring system. The
Hosmer-Lemeshow goodness-of-fit test indicates good
calibration of this primary predictive model (P = 0.365, >0.05).
The ROC (0.977; 95% CI, 0.954–1.000; P = 0.012) shows a
good result.

Establishment of the Scoring System
We assigned risk scores relative to the regression coefficient of
each variable that showed statistical significance in the
multivariate analysis (Table 2): 2 points for tumors having a
pseudocapsule (Figure 2); 2 points for heterogeneous tumor
parenchyma in pre-enhancement scanning (Figure 3); 4 points
for non-high attenuation in pre-enhancement scanning
(Figure 3); and 3 points for heterogeneous enhancement in
CMP (Figure 3). In the distinguishing scoring system, the total
score was calculated by summing the individual scores
corresponding to the related variables, which produced scores
ranging from 0 to 11 points. The Hosmer-Lemeshow goodness-
of-fit test indicated good calibration of this scoring model (P =
0.918). The prediction accuracy of this distinguishing scoring
system, measured by ROC, was 0.978 (95% CI, 0.956–0.999; P =
0.011). This is similar to the primary model, presenting good
distinguishing power for ccRCC, with a sensitivity of 91.4% and a
specificity of 93.9% that can be achieved when using 4.5 points as
the cutoff value. A comparison of ROC showed no statistical
difference between the two models (P = 0.651) (Figure 4), which
indicates that the distinguishing scoring system has made full use
of the primary predictive model.

To provide further convenience for radiologists, we divided
the final scores into three ranges: 0 to <2 points; 2–4 points; and
>4 to ≤11 points. Patients with ccRCC among the three ranges
significantly increased with increasing scores (Table 3).

Internal validation of the distinguishing scoring system
showed good results. The validation cohort included 30
patients with ccRCC and 30 patients with RAML-wvf. Among
the scoring ranges, ccRCC patients were 0/18 (0%) of the first (0
to <2 points) range; 4/10 (40%) of second range (2–4 points); and
26/32 (81.25%) of the last range (>4 to ≤11 points) (Table 3). The
prediction accuracy measured by ROC was 0.922 (95% CI,
0.854–0.991, P = 0.035).
DISCUSSION

CT is the first-line imaging method used to evaluate renal masses
in clinical practice. Patients with RAML-wvf can avoid
unnecessary surgery for suspected RCC when an accurate
diagnosis is determined preoperatively by CT. Previous studies
April 2021 | Volume 11 | Article 633034
TABLE 1 | Comparison of Characteristics Between Patients with ccRCC and
RAML-wvf.

Patients with
ccRCC (n = 93)

Patients with
RAML-wvf
(n = 49)

P

Age 57 (33–84) 54 (26–90) 0.267
Gender <0.001
Male 67 (72.0) 18 (36.7)
Female 26 (28.0) 31 (63.3)

Amount 1
Single 88 (94.6) 46 (93.9)
Multiple 5 (5.4) 3 (6.1)

Growth pattern 0.163
Pattern A 20 (21.5) 13 (26.5)
Pattern B 71 (76.3) 32 (65.3)
Pattern C 2 (2.2) 4 (8.2)
Pattern D 0 (0) 0 (0)

Contour 0.175
Regular 69 (74.2) 31 (63.3)
Irregular 24 (25.8) 18 (36.7)

Edge 0.184
Blurred 35 (37.6) 13 (26.5)
Clear 58 (62.4) 36 (73.5)

Wedge shape sign <0.001
No 82 (88.2) 29 (59.2)
Yes 11 (11.8) 20 (40.8)

Round tumor-kidney interface 0.353
No 76 (81.7) 43 (87.8)
Yes 17 (18.3) 6 (12.2)

Pseudocapsule <0.001
No 25 (26.9) 45 (91.8)
Yes 68 (73.1) 4 (8.2)

Necrosis or cystic <0.001
No 30 (32.3) 40 (81.6)
Yes 63 (67.7) 9 (18.4)

Calcification 1
No 90 (96.8) 46 (95.8)
Yes 3 (3.2) 2 (3.2)

Heterogeneous tumor parenchyma
in pre-enhancement scanning

0.002

No 74 (79.6) 48 (98.0)
Yes 19 (20.4) 1 (2.0)

Degree of CT attenuation in pre-
enhancement scanning

<0.001

Not-high 63 (67.7) 3 (6.1)
High 30 (32.3) 46 (93.9)

Enhancement in pre-enhancement
scanning

<0.001

Homogeneous 26 (28.0) 34 (69.4)
Heterogeneous 67 (72.0) 15 (30.6)

Enhancement in CMP <0.001
Homogeneous 7 (7.5) 35 (71.4)
Heterogeneous 86 (92.5) 14 (28.6)

Enhancement in NP <0.001
Homogeneous 18 (19.4) 41 (83.7)
Heterogeneous 75 (80.6) 8 (16.3)

ESR 1 <0.001
<1–1 44 (47.3) 43 (87.8)
≥1 49 (52.7) 6(12.2)

ESR 2 0.011
<1 78 (83.9) 48 (98.0)
≥1 15 (16.1) 1(2.0)

Enhancement pattern <0.001
Fast-in-fast-out 76 (81.7) 20 (40.8)
Fast-in-slow-out 10 (10.8) 21 (42.9)

Persistent enhancement 7 (7.5) 8 (16.3)
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have proposed specific CT imaging characteristics for
differentiating between RAML-wvf and ccRCC. Yang et al. (25)
reported that being female, an angular interface, a hypodense
rim, homogeneity, and high, unenhanced attenuation were useful
characteristics that suggest RAML-wvf However, as described
above, using these characteristics or searching for hidden fat
tissue is not clinically convenient. Quantitative methods have
been reported recently, Hodgdon et al. and Yan et al. (19, 20)
proposed that CT texture analysis can quantitatively distinguish
between RAML-wvf and ccRCC at three phases with nonlinear
discriminant analysis. Lee et al. (26) proposed a texture-based
classification system using a three-feature selection method and
four-feature classifiers. Nie et al. (21) developed a radiomics
nomogram that incorporates a radiomics signature and clinical
factors for preoperative differentiation between RAML-wvf and
RCC. However, for general radiologists, these technologies may
need to be verified and perfected by big data before they can be
mature and widely used in clinical practice. We have developed a
reliable, convenient-to-use, scoring system consisting of four
evaluable factors for discriminating between ccRCC and
RAML-wvf based using CT. The simple score system and high
Frontiers in Oncology | www.frontiersin.org 553
accuracy are important strengths of our model, it is simple to use
and can be verified by the users including clinicians and
radiologists, which make it easier to be widely used.

Among the three ranges in the scoring system, there were no
patients with ccRCC in either the training cohort or validation
cohort for the first range (0 to <2 points). This indicates that
RAML-wvf is more likely to be diagnosed when none of the
factors is observed. In the third range (>4 to ≤11 points), 96.6%
of patients had ccRCC (81.25% in the validation cohort),
indicating that ccRCC is more likely to be diagnosed when
more than two critical factors are observed.

Four independent risk factors are included in the system:
1) presence of a pseudocapsule, 2) a heterogeneous tumor
parenchyma in pre-enhancement scanning, 3) a non-high
CT attenuation in pre-enhancement scanning, and 4) a
heterogeneous enhancement in CMP. In addition, women
were found to be more likely to have RAML-wvf compared to
ccRCC, which is consistent with previous results (11). However,
since the desired scoring system is based on CT findings, the
patient’s sex was not incorporated into the model. A round
tumor-kidney interface and calcification are reported as
TABLE 2 | Predictors of Distinguishing scoring system of ccRCC.

Univariate analysis P HR Multivariate analysis b Score
P 95% CI

Wedge shape sign (no) <0.001 0.069
Pseudocapsule (yes) <0.001 0.04 10.824 2.133–54.922 2.382 2
Necrosis or cystic (yes) <0.001 0.216
Heterogeneous tumor parenchyma in pre-enhancement scanning (yes) 0.016 0.049 17.513 1.276–240.377 2.863 2
Degree of CT attenuation in pre-enhancement scanning <0.001 <0.001
Not-high 232.451 15.118–3574.181 5.449 4
High

Density pattern in pre-enhancement scanning (heterogeneous) <0.001 0.71
Density pattern in CMP (heterogeneous) <0.001 0.01 60.25 4.722–768.737 4.099 3
Density pattern in NP (heterogeneous) <0.001 0.348
ESR 1 (<1) <0.001 0.957
ESR 2 (≥1) 0.034 0.059
Enhancement pattern <0.001
Fast-in-fast-out 0.295
Fast-in-slow-out 0.137

Persistent enhancement 0.295
April 2021 | Volume 11
 | Article 6
FIGURE 2 | (A) ccRCC in a 46-year-old male, post-contrast image depicted an unenhanced arc area between the lesion and renal parenchyma (arrow).
(B) RAML-wvf in a 55-year-old male, there is no pseudocapsule sign that could be seen.
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meaningful phenomena previously (27), but showed no
statistical significance in this study. Wedge-shaped signs and
necrotic or cystic lesions showed a significant difference
between RAML-wvf and ccRCC, according to Ma et al. (28),
Frontiers in Oncology | www.frontiersin.org 654
but they did not show statistical significance in multivariate
analysis in this study.

Among the independent risk factors, a non-high CT
attenuation of the tumor in pre-enhancement scanning is the
predominant factor, which means the tumor attenuation is lower
than the attenuation of renal parenchyma. This indicates that
RAML-wvf more often presents with high-CT attenuation in
pre-enhancement scanning, according to previous reports that
found hyperattenuating presentation was a useful method for
discriminating between RAML-wvf and ccRCC (12–14). RAML-
wvf tends to present homogeneous enhancement after contrast
agent administration compared to RCC (12, 13, 15), which is
consistent with our research findings (69.4%, 71.4%, 83.7%,
respectively, in three enhancement phases). The heterogeneous
enhancement pattern is more suggestive of RCC in terms of HR
(HR, 60.25; 95% CI, 4.722–768.737), and heterogeneity in this
study was defined as the difference between the highest and
lowest attenuations being more than 30% of the highest value.
Heterogeneous tumor parenchyma in pre-enhancement
scanning is also a meaningful factor in terms of HR (17.513;
95% CI, 1.276–240.377), which defined as the parenchyma mass
that could be enhanced was mixed. This heterogeneous
appearance in unenhanced and enhanced scanning may be due
to the fact that ccRCC is an adenocarcinoma derived from renal
tubular epithelial cells, often with hemorrhage, necrosis, and
cystic, growing rapidly, and presenting a high degree of
malignancy. The pseudocapsule is one of the indications of
malignancy (29), composed mainly of a fibrous pseudocapsule
FIGURE 3 | ccRCC in a 48-year-old male, which presented not-high attenuation in plain scanning (A), the attenuation of the mass parenchyma that could be
enhanced was mixed. Besides, it was heterogeneous enhanced in CMP (B) or NP (C), thus a score of 9 was assigned in this patient. RAML-wvf in a 61-year-old
female showed homogeneous high attenuation in plain scanning (D) and homogeneous enhancement pattern in CMP (E) or NP (F), thus a score of 0 was assigned
in this patient and presented one of the minimum values in this model.
FIGURE 4 | ROC of primary and scoring model.
April 2021 | Volume 11 | Article 633034
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and compressed renal parenchyma, which presents as an
unenhanced arc area between the lesion and renal
parenchyma. Yamashita et al. and Sung et al. reported,
respectively, that the pseudocapsule sign was found in 66% and
90% of small RCCs, and was also observed in 0% to 10% of
RAML-wvf (28, 30, 31). In this study, 73.1% of patients with
ccRCC presented with the pseudocapsule sign (8.2% in RAML-
wvf), and the HR of this sign was 10.824 (95% CI, 2.133–54.922).
RAML-wvf, presenting the biological behavior of benign tumors
in most cases, grows as a non-invasive pattern and exerts less
pressure on the adjacent renal tissues, which may result in a low
probability of pseudocapsule formation.

This study has several limitations. First, there may be an
inherent selection bias due to the retrospective study design.
Second, although we have collected more cases than previous
reports, the total sample size was small, mainly because of the
low clinical incidence of RAML-wvf, which may increase the risk
of overfitting. In addition, the prediction accuracy of this scoring
system in the validation cohort was somewhat lower, compared
to that in the training cohort, which might be related to biases
caused by the relatively small sample size of the validation
cohort. A further prospective cohort with a larger sample size
is strongly warranted to validate our diagnostic scoring system.

In conclusion, this study investigated risk characteristics of
CT features and built a convenient-to-use scoring system
incorporating the four most meaningful factors: pseudocapsule,
a heterogeneous tumor parenchyma in pre-enhancement
scanning, non-high CT attenuation in pre-enhancement
scanning, and heterogeneous enhancement in CMP. This
scoring system could be valuable for discriminating ccRCC
Frontiers in Oncology | www.frontiersin.org 755
from RAML-wvf in clinical practice, although a further
prospective cohort with a larger sample size will be required to
confirm these results.
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An exploratory study of CT
radiomics using differential
network feature selection for
WHO/ISUP grading and
progression-free survival
prediction of clear cell
renal cell carcinoma
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Ge Wen2* and Weixin Xie1*

1College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China,
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Objectives: To explore the feasibility of predicting the World Health

Organization/International Society of Urological Pathology (WHO/ISUP) grade

and progression-free survival (PFS) of clear cell renal cell cancer (ccRCC) using

the radiomics features (RFs) based on the differential network feature selection

(FS) method using the maximum-entropy probability model (MEPM).

Methods: 175 ccRCC patients were divided into a training set (125) and a test

set (50). The non-contrast phase (NCP), cortico-medullary phase,

nephrographic phase, excretory phase phases, and all-phase WHO/ISUP

grade prediction models were constructed based on a new differential

network FS method using the MEPM. The diagnostic performance of the best

phase model was compared with the other state-of-the-art machine learning

models and the clinical models. The RFs of the best phase model were used for

survival analysis and visualized using risk scores and nomograms. The

performance of the above models was tested in both cross-validated and

independent validation and checked by the Hosmer-Lemeshow test.

Results: The NCP RFs model was the best phase model, with an AUC of 0.89 in

the test set, and performed superior to other machine learning models and the

clinical models (all p <0.05). Kaplan-Meier survival analysis, univariate and

multivariate cox regression results, and risk score analyses showed the NCP
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RFs could predict PFS well (almost all p < 0.05). The nomogram model

incorporated the best two RFs and showed good discrimination, a C-index of

0.71 and 0.69 in the training and test set, and good calibration.

Conclusion: The NCP CT-based RFs selected by differential network FS could

predict the WHO/ISUP grade and PFS of RCC.
KEYWORDS

clear cell renal carcinoma, radiomics features, differential network feature selection,
WHO/ISUP grade, progression-free survival
Introduction

The nuclear grade of clear cell renal cell carcinoma (ccRCC)

is strongly related to 5-year survival time, with higher grades

associated with shorter survival (1, 2) and higher risk for

recurrence after partial nephrectomy (3). The World Health

Organization/International Society of Urological Pathology

(WHO/ISUP) (4) grading system is a new four-level system

commonly used in clinical which has improved the interobserver

reproducibility, and is easier to apply and more clinically

relevant, as well as a better independent prognostic factor (5),

compared to the former Fuhrman grading system. However,

earlier studies have shown no significant difference in the

survival rate between grade 1 and grade 2 RCC (6, 7) and

between grade 3 and grade 4 RCC (1, 2). Therefore, some

scholars tend to simplify it into low-grade and high-grade

lesions. In terms of clinical decision-making, patients with

low-grade RCC may be treated relatively conservatively, such

as through nephron-saving surgery, radiofrequency ablation, or

active surveillance. In contrast, patients with high-grade RCC

may receive more radical interventions and closer follow-up (8).

Therefore, preoperative WHO/ISUP grading is very helpful in

guiding clinical decision-making (8, 9).

Histopathological examination is the standard method to

determine the WHO/ISUP grade of ccRCC. However, needle

biopsy accuracy remains controversial (10, 11), and tumor grade

is often underestimated (12–14). At the same time, the biopsy is

invasive, associated with complications, and may be limited by

tumor location and timely status. Therefore, a new noninvasive

method to preoperatively predict the pathological grade of

ccRCC would be of clinical merit. Studies have shown that

radiomics can be used noninvasively to predict the presence of
02
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oncogenes, prognosis, and the effectiveness of different

treatments (15, 16). Accumulating evidence has shown that

radiomics features (RFs) are useful for predicting the

pathological grade of RCC (17).

In radiomics, the number of features is usually larger than

the experiment samples, which is easy to overfit and hinders the

model’s prediction. Therefore, feature selection (FS) methods are

necessary. Traditional FS methods pick up a subset of features

based on specific criteria, removing redundant, irrelevant, and

noisy data. Based on a reasonable assumption, the RFs used to

predict grade very well could also perform well on progression

free survival (PFS) prediction, as the grade is strongly related to

the prognosis. However, unfortunately, we are unsure about that,

as most studies only focus on a single experiment objective:

predicting the grade or the PFS, which causes the support for the

assumption not enough and the interpretability of RFs poor.

Therefore, designing a suitable FS method should make the

selected RFs that can not only make accurate grade predictions

but may also decipher the survival mechanisms associated with

prognosis remains a significant challenging problem (18).

Several machine learning FS methods have been used in

earlier studies to analyze image data, including Lasso regression

(LR), decision tree (DT), support vector machine (SVM),

convolution neural network (CNN), and random forest.

Although the above methods have been successfully used to

select RFs and build prediction models, they have a few

limitations. For example, some methods select at most n

variables before it saturates (19). However, the most number

‘n’ is not easy to decide. For example, the sparsity ratio l in LR

and penalty coefficient C in SVM should be chosen based on the

prior empirical knowledge of the researchers or complicated

cross-validation, which is not easy and very time-consuming.
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Moreover, suppose there is a group of features among which the

pairwise correlations are very high. In that case, they tend to

arbitrarily select only one feature from the group, which means

some important RFs will be lost. It could work to improve the

model prediction performance. However, the interpretability of

the RFs should be selected was not good enough, as choosing

only one from the redundant features and removing the rest

could lose much helpful information about the RFs. At last, most

machine learning FS methods were wrapped-based; improving

the model’s performance in the training sets was their priority.

Thus, the generalization performance of the models was easy to

overfit. In the meantime, the performance of the existing

machine learning FS methods is not stable when dealing with

small and unbalanced sample size problems. Therefore, a more

reliable FS method is urgently needed. The ideal RFs should not

only have an accurate WHO/ISUP grade classification but also

have some interpretable biological characteristics, such as PFS.

Differential network analysis based on network theory and

related methodologies has shown outstanding robustness in

analyzing various forms of large-scale data, which is evident in

its ability to identify biomarkers (20). Most of the existing

machine learning FS methods are a feature-centric analytic

approach that assesses changes in individual features to a

target. In contrast, differential network FS is a network-centric

analytical approach that focuses on detecting the changes in a

feature’s associations with other features—comparing the

difference between two different populations or groups’

networks to select features. It is especially effective in detecting

essential features that have less dramatic changes for specific

experiments and show outstanding performance in dealing with

small and unbalanced sample problems.

The correlation networks are widely used in constructing the

networks, such as Pearson correlation, Euclidean distance,

Spearman rank correlation, and so on. It should be noted that

this correlation is between features, unlike in some filter FS

methods between features and target labels. However, the biggest

problem of such network constructing methods is that they

could be misleading in reflecting the correlation of two features

as it ignores the influence of the rest ones. The maximum-

entropy probability model (MEPM) (21) is proposed to solve

such a problem. It finds that inverting the matrix of covariances

of features (Pearson correlation) could describe the correlations

that remain once the indirect effects are removed, thereby

providing a more robust description of the interactions

between features.

However, there was no literature report on its application in

the search for imaging RFs. For these reasons, this study aimed

to investigate the feasibility of predicting the WHO/ISUP grade

and PFS of ccRCC from the RFs based on the differential

network FS using the MEPM. Furthermore, this paper

expected to find evidence that the selected RFs of the WHO/

ISUP grade prediction model were related to PFS of ccRCC to
Frontiers in Oncology 03
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make the radiomics prediction models with more interpretable

biological information through our new FS method.
Material and methods

Patients

This retrospective study was approved by the Ethics

Committee of Southern Medical University, and because of the

retrospective nature of the analysis, the requirement of informed

patient consent was waived.

Medical records and picture archiving and communication

systems were searched for patients with RCC treated at our

hospital from March 2011 to March 2016. The age, gender,

maximum tumor size, clinical stage, symptom, growth pattern,

histological subtype, WHO/ISUP nuclear grade, and PFS

were collected.

There were 434 patients with ccRCC confirmed by two

pathologists were preliminarily enrolled. Exclusion criteria: 1)

Patients lacking histopathological material for WHO/ISUP re-

grading (98 cases); 2) Patients who were treated for RCC before

CT examination (29 cases); 3) Patients without compete non-

contrast phase (NCP), cortico-medullary phase (CMP),

nephrographic phase (NP), and excretory phase (EP) phases

CT scan (74 cases) and patients with inadequate quality images

(38 cases); 4) Patients with 2 or more lesions in unilateral (2

cases) or bilateral (3 cases) kidneys; 5) Patients with tumors with

mixed features (8 cases) and cystic RCC (75% or more cystic

components) (7 cases). Finally, 175 Patients were enrolled and

randomly divided into a training set (125 cases) and a test set (50

cases). Patient enrollment and experimental flow charts are

shown in Figures 1A, E.

In performing survival analysis, the follow-up information is

selected based on the criteria as follows: 1) survival information

was obtained by telephone follow-up visits for all patients for at

least 5 years after surgery; 2) tumor recurrence included in situ

recurrence and distant metastasis; 3) diagnosis was mainly based

on imaging examination comparison, and the follow-up

deadline was June 2021;4) PFS was selected as the

clinical endpoint.
CT parameters

A 64 multiprobe spiral CT scanner (Siemens, Somatom

Definition CT scanner, 121 patients) and a 256 multiprobe

spiral CT scanner (Philips, Brilliance ICT, 54 patients) were

performed with patients. The range included both kidneys and

masses in the supine position and a breath-holding scan. The

scanning parameters were: tube voltage = 120 kV; tube current =

150-320 mA; slice thickness = 5 mm; layer spacing = 5 mm; field
frontiersin.org
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of view (FOV) = 360 mm; matrix = 512×512. Spiral scanning

and thin-layer reconstructions were performed for all 4 stages.

After the NCP scan, the contrast agent was injected into the

anterior cubital vein with a high-pressure syringe at a dose of 2

ml/kg and an injection rate of 2.5 ml/s. CMP, NP, and EP

scanning were started at 30-35 s, 60-70 s, and 190-200

s, respectively.
Images segmentation and radiomics
feature extraction

The tumor volume region of interest (VOI) was segmented

by 2 radiologists with 10-year and 15-year experience using ITK-

snap software (www.itk-snap.org). Four phases (NCP, CMP, NP,

and EP) VOI segmented images were obtained for each patient,

and its boundary was kept about 2 mm away from the tumor

edge to reduce interference from adjacent tissues (22). When the

boundary of the tumor was not clear, the boundary of the CMP

image was compared for segmentation. Images segmentation

examples are shown in Figure 1B.

The segmented images were first preprocessed, including

resampling, normalization, and filtering to remove noise. Then

the RFs were extracted from segmented images using the

PyRadiomics computing platform. Features extraction is

shown in Figure 1C. The initial setting of the Pyradiomics are
Frontiers in Oncology 04
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as follows: binWidth = 25, label= 1, interpolato r= ‘sitkBSpline’,

resampledPixelSpacing = ‘None’, weightingNorm = ‘None’.

To assess feature robustness, we conducted a test-retest

study. Two physicians (Doctor A 10 years, and Doctor B 9

years experience) individually contoured the ROIs in the

random 30 images. Intraclass correlation coefficient (ICC) was

used to test the stability between Doctor A and Doctor B groups,

and the results showed that ICC was> 0.75 between groups. One

week later, Doctor A repeated the same procedure to assess the

reproducibility, and the results showed that ICC > 0.75 within

the group (Doctor A). The results between groups and within the

group suggest the segmentation was consistent, and the

remaining image segmentation was performed by Doctor A.
Features selection

A differential network FS using MEPM was proposed in this

study. The flow chart is shown in Figure 2. At first, five control

groups were constructed based on different phases of RFs (NCP,

CMP, EP, MP, ALL). i.e., the NCP group consists of all the

samples with only NCP RFs, and the ALL group consists of all

the samples with all 4 phase RFs. All samples in each group were

marked based on their WHO/ISUP grade (high-grade or low-

grade). Then, high-grade and low-grade networks of each group

were constructed using MEPM based on the corresponding
B C D

E

A

FGH

FIGURE 1

The experimental process of this study. (A) Patient enrollment flow charts; (B) Schematic diagram of image segmentation; (C) Schematic
diagram of feature extraction; (D) Schematic diagram of differential networks features selection method; (E) Experimental Data set. (F) WHO/
ISUP grading model construction and comparison; (G) Survival analysis by Kaplan-Meier survival, univariate, and multivariate Cox analysis;
(H) Visualization risk score and nomogram.
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samples (Figure 2A). i.e., NCP high-grade network was

constructed only using the samples in the NCP group marked

high grade. After that, each phase’s differential network of the

high-low grade was constructed after comparing the differential

topology structure between their high-grade network and low-

grade network, i.e., network2 - network1 (Figure 2B). To be

more specific, For example, features A and F were linked in both

high-grade and low-grade networks, which means the structure

of feature A to feature in these two networks was no different. So

there was no link between feature A and feature F in its high-low

differential network. At last, the RFs for each control group were

selected based on the node degree histogram in their high-low

differential network (Figure 2C), i.e., the nodes (RFs) which had

the highest degree in the network were considered the critical

RFs (marked in red in Figure 1D and Figure 2C); in this case, the

number of selected features was set to less than 15.
MEPM networks construction

Let the state vector x = (x1, …, xN) denote the expression

levels of the N features in an experiment, and a series of T
Frontiers in Oncology 05
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measurements then has associated with its T distinct state

vectors. Let r(x) denote the probability that the genome is in

the arbitrary state x. We determine r(x) by maximizing the

Shannon entropy

S = −r(x)
!

ln (x)
!

(1)

subject to the r(x) is normalized

o
~x

r(x)
!

= 1 (2)

first moment, <xi>, and second moment, <xi, xj>

< xi >=o~xr xið Þ�!
xi =

1
To

T
k=1x

k
i (3)

< xi, xj >=o~xr xð Þ�!
xixj =

1
To

T
k=1x

k
i x

k
j (4)

Eq. (2) provides the normalization condition that the

probabilities of all observable states sum to 1. Eqs. (3) and (4)

ensure that the distribution r(x) preserves the mean expression

level of each gene and the correlations between genes. This

procedure leads to a Boltzmann-like distribution:
B

C D

A

FIGURE 2

The schematic diagram of differential network feature selection. (A) An example of GRN inference using maximum-entropy probability model
(MEPM); (B) An example of using differential networks analysis; (C) The differential networks using MEPM of the non-contrast phase (NCP),
cortico-medullary phase (CMP), nephrographic phase (NP), excretory phase (EP), and all phase (ALL-P), where the red nodes were the selected
RFs; (D) Correlation circle diagram of the RFs of the NCP model.
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r xð Þ e e−H

where

H  ¼  
1
2oijxiMijxj

The elements of the matrix M are the effective pairwise gene

interactions that reproduce the gene profile covariances exactly

while maximizing the entropy of the system. The matrix of M

can be obtained by inverting the matrix of their covariances C.

This makes a substantial difference. The covariance matrix C

reflects the unconditional correlation between features and,

therefore, contains indirect effects. On the other hand, its

inverse, i.e., M, describes the correlations that remain once the

indirect effects are removed and thereby provides a more robust

description of the interactions between features.

However, in the high dimensional setting where the number

of features p is larger than the number of observations n, the

empirical covariance matrix C is singular and so can’t be

inverted to yield an estimate of M. Many MEPM-based

methods have been proposed for inferring networks, including

partial-correlation-based, likelihood-based, and mutual-

information-based approaches.

In our case, we chose a multi-objective memetic algorithm to

infer the MEPM networks (23, 24) and some other method like

Glasso could get the similar results (25).
Prediction model construction and
performance comparison

The performance of all experiment models was explored and

verified by 5 times hierarchical 5-fold cross-validation in the

training set and independently valid in the test set. To be more

specific, the training set was divided into an internal training set

and validation set (4:1) in each 5-fold cross-validation. The data

split is using the python package sklearn: ‘train_test_split’ and

set the ‘stratify’ = result, which makes the classification ratio of

data in the training set and the test set will be the same.

In this study, the NCP, CMP, NP, EP, and ALL models were

constructed using Logistic regression based on the

corresponding RFs. At first, each experiment model was

constructed based on the corresponding selected RFs using the

proposed differential network FS in the internal training set. For

example, the selected RFs of the NCP model was taken in the

internal training set and then constructed using Logistic

regression. Then, the average performance of the experiment

model in 5 times cross-validation in the internal training and

validation sets was considered the final performance in the

training and validation sets. At last, the best selected RFs of

each model in cross-validation were tested in the test set.

According to the performance results in all data sets, the best

of the above five models was selected as our WHO/ISUP grade
Frontiers in Oncology 06
62
prediction model. After that, the LASSO, SVM, and Random

Forest models were constructed based on all four phase RFs as

control models and compared with our model on the same

dataset. More specifically, model training and performance

testing follow the same processing mentioned above

(Figure 1F). Lasso is implemented using the python package

sklearn: ‘lassocv’, which could select penalty parameter

adaptively; SVM is using the python package sklearn: ‘RFE’

and ‘SVM’; Random Forest is using the python package sklearn:

‘RandomForestClassifier’. We keep the default parameter values

for all these methods. Then, the conventional image and clinical

features mode (CICFs) is constructed using Logistic regression

based on the clinic features. The CICFs-RFs model combined

clinic features, and RFs were constructed as control models and

compared with our model following the performance mentioned

above test processing. Finally, the receiver operating

characteristic (ROC), the area under curve ROC curve (AUC),

precision, sensitivity, and accuracy were determined to estimate

the performance of the above models. At last, the best prediction

model was refit on the complete training set as the final WHO/

ISUP grade prediction model.
Survival analysis and
performance comparison

Survival analysis was performed to explore more biological

information about the selected RFs in the final WHO/ISUP

grade prediction model and find whether they were related to

PFS. At first, Kaplan-Meier analysis by converting the RFs into a

dichotomous variable (high and low group) was used to estimate

the selected RFs. Then, the univariate and multivariate Cox

proportional hazard regression models were used to investigate

the factors of RFs associated with PFS (Figure 1G). Independent

variables with p < 0.05 in univariate results and multivariate were

selected. After that, risk score analyses of ccRCC patients were

used to describe the selected RFs. Finally, the selected RFs were

used to build the final multivariate Cox regression model and

visualized using nomograms (Figure 1H). The C-index of the

final model was determined. The Hosmer-Lemeshow test was

used to check the calibration.
Statistical analysis

Continuous data were presented as mean ± standard deviation,

and categorical data were presented as numbers and percentages

(%). For comparisons of means between groups, Student’s

independent t-test or Mann-Whitney U test was used, depending

on the normality assumption. Categorical data were tested using the

chi-square test or Fisher’s exact test (if an expected value ≤ 5 was

found). In all analyses, a 2-tailed value of p < 0.05 was considered to
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indicate statistical significance. The surv_cutpoint function in the

surviminer package finds the best cutoff value for a continuous

variable and is used to predict PFS. Statistical analyses and mapping

were performed by R software (version 4.2) with the ‘rms’, ‘proc’,

‘survival’, ‘rmda’, and ‘ggplot’ package.
Result

Patient and tumor characteristics

175 patients were included in the analysis, including 125

cases in the training set and 50 cases in the test set. Table 1

summarizes the characteristics of the patients. 122 cases were

diagnosed with low-grade ccRCC (WHO/ISUP grades 1 and 2)

and 53 cases with high-grade ccRCC (WHO/ISUP grades 3 and

4). All characteristics of patients in the training set and the test

set were no statistical difference (p > 0.05).
Features extraction and selection

A total of 107 RFs were extracted from the 3D multiphase CT

images of each phase of each patient: 18 first-order statistics

features, 14 shape-based features, 24 gray level co-occurrence

matrix (GLCM) features, 16 gray level size zone matrix (GLSZM)

features, 16 gray level run length matrix (GLRLM) features, 14 gray
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level dependence matrix (GLDM) features, and 5 neighboring gray-

tone difference matrix (NGTDM) features. A total of 428 (4×107)

RFs were extracted from the 4-phase CT images.

Differences in scanner models should be verified as the

dataset collected comes from two scanners. Thus, principal

component analysis (PCA) was performed on the extracted

features to plot data in the space of reduced dimensions (26).

Visual inspection of Supplement Figure 1 suggests the absence of

batch effects. Furthermore the Kruskal–Wallis test, carried out

on both the first and second main component scores, also

confirmed the absence of clusters (PC 1 scores: p-value =

0.526 > 0.05 and PC 2 scores: p-value = 0.174 > 0.05).

Through the differential network FS, there were 10, 10, 8, 8,

and 10 RFs were selected from NCP, CMP, NP, EP, and ALL-P

in the complete training set, respectively. The differential

networks of different phases are shown in Figure 2C where the

red nodes represent the selected RFs. The designation, phase,

abbreviation, classification, and description of RFs are shown

in Table 2.
WHO/ISUP grade prediction model
construction and performance comparison

The ROC analysis of different phase models in the training

set, validation set, and test set are shown in Figures 3A–C,

respectively. DeLong test was used to compare the AUCs of the
TABLE 1 Patient’s clinical characteristics between the training set and test set.

Levels Training set (N=125) Test set (N=50) p

Age (year, mean ± SD) 52.31 ± 14.51 52.06 ± 13.19% 0.915

Gender Male 84 (67.2%) 31 (62.0%) 0.632

Female 41 (32.8%) 19 (38.0%)

Diameter (mm, median) 43.98 43.9 0.589*

WHO/ISUP low 91 (72.8%) 31 (62.0%) 0.221

high 34 (27.2%) 19 (38.0%)

T T1 97 (77.6%) 38 (76.0%) 0.541

T2 16 (12.8%) 9 (18.0%)

T3 12 (9.6%) 3 (6.0%)

N N0 115 (92.0%) 47 (94.0%) 0.891

N1 10 (8.0%) 3 (6.0%)

TNM Stage I 90 (72.0%) 37 (74.0%) 0.439

Stage II 17 (13.6%) 9 (18.0%)

Stage III 18 (14.4%) 4 (8.0%))

Symptom no 65 (52.0%) 25 (50.0%) 0.943

yes 60 (48.0%) 25 (50.0%)

Grow pattern Exophytic 40 (32.0%) 20 (40.0%) 0.241

Mixed 60 (48.0%) 17 (34.0%)

Endophytic 25 (20.0%) 13 (26.0%)

PFS (month, median) 56 66.5 0.122*
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different models. The best two models were the NP and the NCP

models in the training set (AUC = 0.75 and 0.74, respectively).

They were significantly better than the rest models (p < 0.05),

and there was no subtle difference between them (p = 0.087). The
Frontiers in Oncology 08
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NCP model was still the best in the validation set (AUC = 0.71),

significantly better than the other models (all p < 0.05). Finally,

the NCP model (AUC = 0.84) remained one of the best two

models in the test set; the other one was the ALL-P model
TABLE 2 The name and the abbreviation of the RFs of different phases using the differential network feature selection.

NCP (P) CMP (A) NP (V) EP (D) ALL-P

X107-Strength X7-
Maximum2D_DiameterSlice

X1-Elongation X11-Sphericity VX11-Sphericity

X77-Long Run Low Gray Level
Emphasis

X8-Maximum3D_Diameter X107-Strength X1-Elongation AX11- Sphericity

X59-Dependence Non-Uniformity
Normalized

X11-Sphericity X11-Sphericity X45-Idn VX70- Small Dependence Low Gray
Level Emphasis

X74-High Gray Level Run
Emphasis

X34-Cluster Shade X21-Maximum X35-Cluster Shade AX70- Small Dependence Low Gray
Level Emphasis

X2-Flatness X35-Cluster Shade X2-Flatness X54-Sum Average PX11-Sphericity

X11-Sphericity X2-Flatness X94-Low Gray Level Zone
Emphasis

X90-High Gray Level Zone
Emphasis

AX44- Idmn

X90-High Gray Level Zone
Emphasis

X21-Maximum X99-Small Area Low Gray
Level Emphasis

X95-Size Zone Non-
Uniformity

AX45- Idn

PX38-Correlation X45-Idn X48-Inverse Variance X103-Busyness DX104- Coarseness

X33-Autocorrelation X26-Range VX1- Elongation

PX32-Variance AX29-Skewness VX96- Size Zone Non-Uniformity
Normalized
B C

D E F

G H I

A

FIGURE 3

The ROC curves of various models on all data sets: comparing with different phases models in the training set (A), validation set (B), and test set
(C); comparing with the machine learning control models in the training set (D), validation set (E), and test set (F); comparing with the clinic
control models in the training set (G), validation set (H), and test set (I).
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(AUC = 0.89). Their performance was significantly better than

the rest models (all p < 0.05), and no significant difference (p =

0.062) was found between them. Taking all the results together,

the NCP model performed robustly and showed a good

capability of predicting WHO/ISUP grade.

This result indicated that the NCP features selected

by our method contain more helpful information than

the enhanced scan features in terms of ccRCC grading

prediction. This could provide a new basis for reducing the use

of contrast media and reducing patients’ radiation in the future.

The model formula constructed in the training set (125 cases) is

NCP_Y = 0 . 5 6×PX10 7+0 . 4 0×PX77 - 0 . 3 5×PX59+

0 . 1 1×PX74 +0 . 2 5×PX2+0 . 8 4×PX11+0 . 1 1×PX90 -

0.33×PX32 +0.11×PX33-0.37×PX38. The performance of the

NCP model is shown in Table 3.

After that, the NCP model was compared with the machine

learning control models (LASSO, SVM, and the Random Forest

model). The ROC analysis of the above models in the training

set, validation set, and test set are shown in Figures 3D–F,

respectively. The control models performed significantly better

(all p < 0.05) than the NCP model (AUC = 0.74) in the training

set. However, their performance sharply deteriorated in the

validation set, which made the NCP model become the best

(AUC = 0.71), and no significant difference was found among

them (all p >0.05). What’s more, the NCP model (AUC = 0.84)

significantly outperformed other models (all p <0.05) in the test

set. Compared with the traditional FS methods, experimental

results show that our FS method was more effective. Moreover,

unlike the other methods, i.e., the validation and test set

performance sharply deteriorated from the training set, our

approach performed stably in all data sets with good

prediction capability and outstanding robustness.

Finally, the NCPmodel was compared with the clinic control

models (CICFs and CICFs-NCP model), The ROC analysis of

the above models in the training set, validation set, and test set

are shown in Figures 3G–I, respectively. The performance of the

NCP-model (AUC = 0.74, 0.71, and 0.84) was significantly better

than the CICFs (p < 0.001) and the CICFs-NCP model (p <

0.001) in all data sets.
Kaplan-Meier survival analysis

The Kaplan-Meier survival analysis results of the RFs of the

NCP model in the training set are shown in Figure 4. All RFs
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were significant differences between their high and low groups

(all p < 0.05), except PX32 (p = 0.091). The correlation circle

diagram of the RFs of the NCP model is shown in Figure 2D.
Univariate and multivariate Cox
regression analyses

The univariate and multivariate Cox regression analyses

results of the relations of independent variables of the RFs to

PFS in the training set are shown in Table 4. Univariate results

showed that PX2, PX11, PX38, and PX107 were significant (p <

0.05), and were entered into the multivariate model. Similarly,

RFs were substantial in the multivariate model: PX2 and PX11

(p < 0.05) were established as the final NCP model for PFS.
Risk score analyses

Risk score analyses of ccRCC patients in the training set

based on the NCP model are shown in Figure 5. The risk scores

of the NCP model where the rank of patients was set into the

high-low risk group are shown in Figure 5.

Risk scores ranked the relationships between survival status

and survival times of RCC patients are shown in Figure 5B. In

addition, the heatmap of the two RFs of the final NCP model is

shown in Figure 5C. The PX2 was a risk factor as its expression

distribution was like to the risk scores; conversely, PX11 was a

protective factor. Thus, these two NCP RFs could accurately

predict patient prognosis and potentially impact the occurrence

and development of tumors.
Nomogram

The nomogram of the final NCP model for clinical

visualization was established in Figure 6A. The final NCP

model for PFS was established using the PX2 and PX11,

including risk estimations of PFS and 1-, 3-, and 5-year

survival. It was found that the C-index of the final NCP model

was 0.71 (p = 0.038) and 0.69 (p = 0.066) in 3the training set and

test set. The calibration curve of the nomogram of 60 months is

shown in Figure 6B, indicating that the final model fits the real

predicted value.
TABLE 3 The performance of the NCP model of predicting WHO/ISUP grading in the training set, validation set, and test set.

NCP - Model AUC Precision Sensitivity Accuracy

Training set 0.74 0.71 0.66 0.67

Validation set 0.71 0.70 0.64 0.66

Test set 0.89 0.79 0.76 0.76
fro
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FIGURE 4

Kaplan-Meier analysis of the RFs of the NCP model.
TABLE 4 The univariate and multivariate Cox regression analysis of the independent RFS of the NCP model to PFS in the training set.

RFS Levels HR (univariable) HR (multivariable)

PX2 0.7 ± 0.1 299.26 (6.08-14724.37, p = .004) 3828.42 (39.13.00-37458.02, p <.001)

PX11 0.7 ± 0.0 0.00 (0.00-0.06, p = .006) 0.00 (0.00-0.00, p <.001)

PX32 41.0 ± 160.1 1.00 (1.00-1.00, p = .687)

PX33 287.0 ± 618.4 1.00 (1.00-1.00, p = .598)

PX38 0.3 ± 0.1 19.94.00 (1.02-389.01, p =. 046) 13.32 (0.65-272.58, p = .093)

PX59 0.1 ± 0.0 0.00 (0.00-5764.93, p = .097)

PX74 40.2 ± 158.8 1.00 (1.00-1.00, p = .687)

PX77 0.7 ± 0.7 0.68 (0.36-1.28, p =. 228)

PX90 38.6 ± 156.5 1.00 (1.00-1.00, p = .695)

PX107 0.0 ± 0.2 0.00 (1.00-0.18, p = .027) 0.00 (0.00-1202.86, p = .402)
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Discussion

In this retrospective analysis, we developed a new RFs FS

method based on differential network analysis using MEPM.

According to the Radiomics Quality Score (RQS) (27), this paper

received 22 points for self-evaluation, with a total score of 36

points, indicating the high quality of this paper. Five WHO/

ISUP grade prediction models with different phase RFs were
Frontiers in Oncology 11
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constructed based on this method. According to their

performance in all data sets, the NCP model was set as the

final WHO/ISUP grade prediction model. This model was very

competitive with three classical machine learning models and

the clinical models in terms of good prediction capability and

outstanding robustness. Survival analysis was performed to

further explore the biology of the selected RFs. The results

showed that almost all selected RFs could effectively
BA

FIGURE 6

(A) The nomogram of the final NCP model; (B) The calibration curve of the nomogram of the final NCP model.
B

C

A

FIGURE 5

Risk score analysis of RCC patients in the training set based on the RFs of the NCP model. (A) Distribution of risk scores per patient;
(B) Relationships between survival status and survival times of ccRCC patients ranked by risk score; (C) Heatmap of the RFS. Colors from blue to
red indicate decreasing levels from high to low.
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distinguish PFS. In the meantime, PX2 (NCP-Flatness) was a

risk factor, and PX11 (NCP-Sphericity) was a protective factor

for PFS. The results showed that the newly selected NCP RFs

were significant for WHO/ISUP classification and survival

prediction. Thus, the competitiveness and the interpretability

of our new FS method were verified.

The one main difference between this study and prior similar

studies is that we first used a new FS method based on

differential network analysis using MEPM to select RFs. It

focused on the inherent topology of the network of RFs that

could reflect the high-low WHO/ISUP grades of RCC very well.

It should be noticed that different network inference methods

could lead to vastly different results in differential network

analysis. The most common association measure was the well-

known Pearson correlation coefficient. However, the Pearson

correlation could be misleading in reflecting the correlation of

two features as it ignores the influence of the rest ones (28). The

MEPMs were proposed to solve this problem which relied on

Boltzmann’s concept of entropy maximization to support

statistical inference with minimal reliance on the form of

missing information (21). An example of applications of

MEPM to infer gene networks is shown in Figure 2A. The

elements of the matrix Mi jreflect the pairwise gene interactions

between gene i and gene j. The matrix M can be obtained by

inverting the matrix of their covariances C by using Pearson

correlation (21). The covariance matrix C reflects the

unconditional correlation between features and contains

indirect effects. On the other hand, its inverse, i.e., M,

describes the correlations that remain once the indirect effects

are removed, thereby providing a more robust description of the

interactions between genes. For the above reasons, MEPM was

used to construct the high-low WHO/ISUP grade networks.

In our study, the NCP model performed better than the

other phase model based on our FS method. It is a promising

noninvasive rediomics model even without a tri-phase

enhancement scan for predicting the grade of ccRCC. It can

preoperatively predict the tumor’s aggressiveness and provide a

reference for predicting the prognosis. What’s more, it can also

provide a reference for selecting surgical plans and follow-up

plans and can help guide to make more accurate treatment

decisions for ccRCC. Our conclusion is consistent with the study

of Kocak et al. (29) who reported that using an artificial neural

network is a promising noninvasive method for predicting the

grade of ccRCC. Using the traditional machine learning

methods, most other research groups suggested that RFs from

the CMP or NP, or combined phases, produced more accurate

results. For example, Shu et al. (30) found that a combined CMP

and NP model provided a diagnostic accuracy. Our method is

different from the traditional machine learning method, and it

could have advantages in exploring more potential significant

information of NCP RFs in predicting WHO/ISUP grade.
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The existing machine learning FS methods can generally be

classified into two categories: 1) filter-based and 2) wrapper-

based methods. Filter-based FS methods use feature relevance

criteria, such as mutual information or the Pearson correlation

coefficient, to select the feature subset. Wrapper-based methods

utilize a classification algorithm to estimate the importance of

the selected features. Although the filter-based methods are

computationally less expensive than the wrapper ones, they

ignore the performance of the selected features on the

prediction performancethus, the selected features by the filter

methods are often worse than those achieved by the wrapper-

based FS methods (31). Therefore, this study mainly focuses on

comparing wrapper-based FS methods. However, it should be

noted that it does not mean the filter-based FS method does not

work for the radiomics study. Parmar C et al. (32) mRMR

showed the highest prognostic performance in head and neck

cancer. Stefano Barone et al. (33) showed promising results on

prostate cancer radiomics.

In the meantime, unlike the other FS methods, i.e., the

validation and test set performance sharply deteriorated from

the training set, our approach performed stably in all data sets

with good prediction capability and outstanding robustness.

One reason for that could be our FS method paid more

attention to the differences topological of high-low grade

network of the RFs, rather than the prediction performance

in the training set, avoiding the overfitting of the model. On

the other hand, our method used MEPM to construct the

GRN, which could remove the variational effect due to the

influence of the remaining RFs to ensure the selected RFs were

more robust with good generalization performance. Finally,

the differential network analyses have proved to have

strong and stable performance in finding biomarkers in

bioinformatics studies nowadays when the dataset is small

and unbalanced (34), and the results in our study confirm

these advantages.

Another contribution of this paper is that we first explore the

relationship between the RFs of the WHO/ISUP grade

prediction model and the PFS of the ccRCC. According to

survival analysis, the biological association of the selected RFs

with the PFS of ccRCC was proved. The results showed that

almost all the selected NCP RFs of the WHO/ISUP grade

prediction model could effectively distinguish PFS. This could

suggest that the RFs may be related to some intrinsic biologic

behavior. Most previous studies had either explored the grading

or survival prediction abilities of RFs alone rather than

combining them. Feng et al. (35) reported that entropy was

the most critical imaging marker for predicting the Fuhrman

grade of ccRCC. Bektas et al. (36) reported that the SVMmethod

provided the best model for predicting Fuhrman low-grade or

high-grade ccRCCs using ML-based portal-phase contrast-

enhanced CT texture data. In another study, Shu et al. (37)
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reported that a model combined k-nearest neighbor, logistic

regression, multilayer perceptron, random forest, and SVM

methods exhibited better performance than a CMP or NP

model. Beyond an accurate classification, learning an

interpretable model with features biologically relevant to the

target could be more meaningful in understanding the

mechanism of a radiomics model. This study further explored

the underlying molecular basis of the identified RFs of the

WHO/ISUP grade prediction model by assessing the possible

biological association with the PFS. The results showed that our

differential network FS method is applicable.

In this experiment, the image segmentation method is

manual, unlike the other semi-automatic or automatic

segmentation methods, which are most widely used in the

lung and brain. However, the existing general semi-automatic

segmentation method seems to have low accuracy in renal

tumors. For example, separating tumors from normal tissues

during the NCP is impossible because most tumors are of equal

or slightly low density. In the EP, due to the highly enhanced

tumor, which may infiltrate the renal pelvis and encroach renal

veins, it is difficult to exclude these non-tumor normal tissues

using semi-automatic segmentation of regional growth. Though

it could cause problems with repetition and consistency (38, 39),

manual segmentation is still used in most renal radiomics studies

(40, 41). In response to the lack of automated segmentation, the

Medical Imaging Computing and Computer Assisted

Intervention (MICCAI) society developed the KiTS19 (Kidney

Tumor Segmentation) Grand Challenge, where scientists

compete using algorithms to automate the segmentation of

kidney tumors. Although the effect is good in the arterial

phase, there is still a lack of studies on the effectiveness of the

NCP. To make the experiment more rigorous, we selected senior

doctors for image segmentation and trained two doctors to

standardize the segmentation process. In addition, our

experiments aim to propose a new FS method, and we prefer

to let the feature selection part mainly decide which RFs should

be retained to test the performance of FS methods. Thereby we

are relatively relaxed in RFs estimation before the feature

selection, choosing ICC >0.75 instead of ICC >0.8 or 0.9 to

ensure more features could be involved in the feature selection

while avoiding eliminating potentially valuable features to

improve the repeatability (30). Fortunately, all features

were retained.

There are still some limitations to this study. First, as our

work was a single-center and retrospective study, the dataset was

relatively small. In the meantime, comparing with the other

network construction methods and filter-based FS methods are

necessary to verify the effectiveness of the model developed in

this study. Furthermore, we know that only using the protective

or risk factor for PFS to prove the biological meaning of the RFs

is not enough. Therefore, future research will study the

relationship between the RFs and the genomic or pathology

information in the RCC pattern (42).
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Incremental value of radiomics
with machine learning to the
existing prognostic models for
predicting outcome in renal
cell carcinoma

Jiajun Xing1†, Yiyang Liu1, Zhongyuan Wang1†, Aiming Xu1,
Shifeng Su1*, Sipeng Shen2* and Zengjun Wang1*

1Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
2Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing,
Jiangsu, China
Purpose: To systematically evaluate the potential of radiomics coupled with

machine-learning algorithms to improve the predictive power for overall survival

(OS) of renal cell carcinoma (RCC).

Methods: A total of 689 RCC patients (281 in the training cohort, 225 in the

validation cohort 1 and 183 in the validation cohort 2) who underwent

preoperative contrast-enhanced CT and surgical treatment were recruited

from three independent databases and one institution. 851 radiomics features

were screened using machine-learning algorithm, including Random Forest and

Lasso-COX Regression, to establish radiomics signature. The clinical and

radiomics nomogram were built by multivariate COX regression. The models

were further assessed by Time-dependent receiver operator characteristic,

concordance index, calibration curve, clinical impact curve and decision

curve analysis.

Result: The radiomics signature comprised 11 prognosis-related features and

was significantly correlated with OS in the training and two validation cohorts

(Hazard Ratios: 2.718 (2.246,3.291)). Based on radiomics signature, WHOISUP,

SSIGN, TNM Stage and clinical score, the radiomics nomogram has been

developed. Compared with the existing prognostic models, the AUCs of 5

years OS prediction of the radiomics nomogram were superior to the TNM,

WHOISUP and SSIGN model in the training cohort (0.841 vs 0.734, 0.707, 0.644)

and validation cohort2 (0.917 vs 0.707, 0.773, 0.771). Stratification analysis

suggested that the sensitivity of some drugs and pathways in cancer were

observed different for RCC patients with high-and low-radiomics scores.

Conclusion: This study showed the application of contrast-enhanced CT-based

radiomics in RCC patients, creating novel radiomics nomogram that could be

used to predict OS. Radiomics provided incremental prognostic value to the

existing models and significantly improved the predictive power. The radiomics

nomogram might be helpful for clinicians to evaluate the benefit of surgery or
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adjuvant therapy and make individualized therapeutic regimens for patients with

renal cell carcinoma.
KEYWORDS

renal cell carcinoma, radiomics, prognostic model, machine learning, computed
tomography running title, incremental value estimation
1 Introduction

The most common malignant tumor in the kidney is renal cell

carcinoma (RCC), which originates from the proximal tubular

epithelial system of the renal parenchyma, and more than 60,000

people worldwide suffer from it every year (1–3). According to

European Association of Urology Guidelines, surgical treatment is

the first choice for patients with RCC, of whom the overall 5-year

survival rate was in the range of 50–60% (4, 5).

RCC is recognized as having a highly variable natural history,

according to the previous reports (6). RCC patients have different

responses to surgical treatment and prognosis (7). Many prognostic

models for RCC have previously been developed to provide

prognostic assessment for patients and to inform clinical

management strategies and improve risk stratification for clinical

trials, including prognostic scores based on TNM stage, tumor size,

nuclear grade and necrosis (SSIGN), tumor-node-metastasis

(TNM) stage and WHOISUP (8). According to a report from a

retrospective study evaluating 358 patients with RCC, the predictive

efficiency of the SSIGN model was slightly better than that of the

TNM stage system (9).

According to the European Association of Urology guidelines,

among patients with stage I-II localized RCC, neoadjuvant therapy

is still experimental, and chemotherapy and targeted therapy are

not standard treatments for most patients (10). Especially for

resectable tumors, it should not be routinely presented outside of

clinical trials. However, despite following postoperative surveillance

guidelines, approximately 20% to 30% of patients with TNM stage I

and II RCC who were considered to have a better prognosis would

develop recurrence or metastasis after surgery (11, 12). Therefore,

existing prognostic models showed certain limitations in current

clinical practice, and the ability to accurately predict individual

patient outcomes remained limited. An accurate and simple RCC

prognostic tool is still urgently needed.

Tumor heterogeneity is defined as tumor cell with distinct

molecular and phenotypic characteristics. Recent evidence

suggested that the level of tumor heterogeneity could serve as a

prognostic biomarker (13). Tumor heterogeneity manifests at

multiple spatial dimensions, mainly including genetic, cellular,

histological, and radiological levels. The TNM stage and SSIGN

score system are mainly based on the anatomical and histological

features of tumors, which cannot reflect the heterogeneity of tumors

and may not be sufficient to provide accurate prognostic

information for RCC patients (14, 15). In current clinical practice,

the phenotypic heterogeneity of RCC was mainly assessed by
0272
biopsy-based microscopy and gene expression analysis. However,

the capabilities of genomics, proteomics or histology were limited. It

was difficult to assess intratumor heterogeneity well with a random

sample alone.

Radiomics is a promising approach to automatically mine a lot

of quantitative image features that are difficult to identify with the

naked eye and reveal aspects of intratumor heterogeneity with

potential prognostic relevance (16, 17). The application of

machine learning in radiomics has emerged as a non-invasive and

low-cost method for accurate prognosis assessment.

The aim of this study was to identify radiomics features

associated with overall survival in RCC, to evaluate its

incremental value to clinical characteristics and other existing

prognostic models, to establish a visual nomogram for patients

with RCC and to provide reference for neoadjuvant therapy and

surgical plan.
2 Related work

Radiomics refers to the extraction of high-throughput

quantitative features from radiographic images, the in-depth non-

invasive analysis of tumor heterogeneity across the tumor volume,

and the establishment of predictive models that correlate imaging

features with genomic patterns and clinical outcomes. Recently,

radiomics has been widely applied in tumor imaging-based

diagnosis, prognosis prediction, and efficacy monitoring. Some of

the studies were presented below:

According to previous reports, among patients with stage I lung

adenocarcinoma, the radiomics signature was associated with overall

survival. The clinical-radiomics nomogram could accurately predict

Axillary lymph node metastasis (ALNM) (AUC: 0.92) (18). The model,

integrating clinical variables and radiomics features, had good

performance for predicting Microvascular invasion (MVI) and

clinical outcomes (19). Meanwhile, Ruizhi Gao et al. provided a

pred ic t ive nomogram tha t in tegra tes rad iomic and

clinicopathological characteristics for predicting the progression-free

interval (PFI) of kidney renal clear cell carcinoma patients (20).

Mostafa Nazari et al. developed a robust radiomics-based classifier

that was capable of accurately predicting overall survival of RCC

patients for prognosis of ccRCC patients (21).

In addition, Multiparametric MRI (mpMRI) allows assessment

of the anatomical and functional characteristics of the renal mass.

Using diffusion MRI, parenchymal wash index, and ADC ratio were

correlated with clear-cell RCC Fuhrman grade, with a pooled
frontiersin.org
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sensitivity and specificity of DWI to differentiate between high and

low grades of 78% and 86%, respectively (22, 23).

Most of the above studies have used texture analysis, meanwhile,

other studies have also used convolutional neural network (CNN). An

ensemble model based on residual convolutional neural network

(ResNet) was built combining clinical variables and T1C and T2WI

MR images using a bagging classifier to predict renal tumor pathology.

Stavropoulos et al. found that compared with all experts averaged, the

ensemble deep learning model had higher test accuracy (0.70 vs. 0.60,

P = 0.053), sensitivity (0.92 vs. 0.80, P = 0.017), and specificity (0.41 vs.

0.35, P = 0.450) (24).
3 Materials and methods

3.1 Study design and patients

A total of 689 patients with renal cell carcinoma confirmed by

histology were recruited in this study. 281 RCC patients came from

the First Affiliated Hospital of Nanjing Medical University (NJMU)

from 2010 to 2019. In addition, 408 patients were collected from

three external database (Clinical Proteomic Tumor Analysis

Consortium (CPTAC), Kidney Tumor Segmentation Challenge

(KITS) and The Cancer Imaging Archive (TCIA)). The criteria

for inclusion and exclusion are as follows: i) patients with complete

baseline and follow-up information; ii) patients with contrast-

enhanced CT imaging including arterial phase before surgical

resection; iii) patients histologically confirmed RCC; iv) no

imaging artifacts. The detailed flowchart summarizing patient

inclusion and exclusion in this study was presented in Figure S1.

In the phase of model development, we used the NJMU as the

training cohort (N=281) and the remaining datasets (CPTAC, TCIA,

and KITS) as the two independent validation cohorts (N1 = 225, N2 =

183). The validation cohort1 contained the patients in TCIA and

CPTAC (NCI) datasets while the validation cohort2 contained the

patients in KITS dataset. All relevant data was collected in July 2020,

and for patients who could not visit the hospital, a follow-up phone call

was conducted. The overall survival was calculated from the date of

pathological diagnosis to the time of death or the last follow-up.

Baseline data consisted of Age, Gender, Body Mass Index (BMI),

TNM stage, WHOISUP, Tumor size, Laterality, Location, Tumor

margin, SSIGN. The TNM stage is based on The Union for

International Cancer Control tumor node metastasis staging system

(8). In SSIGN, risk points are accumulated and added up to provide a

risk score (25).

The primary tool to assess frailty was the modified frailty index

of the Canadian Study of Health and Aging (11-CSHA), which is a

validated tool based on clinical data and consisting of eleven

elements. The sum score is divided by 11 and a cut-off of ≥ 0.27

has been defined to mirror frailty (26).
3.2 Radiomics feature extraction

In the training set, a total of two types of CT scanners are

involved, including Philips iCT 256 (Koninklijke Philips, Nevada,
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USA) and Somatom force CT A50A (Siemens Healthcare GmbH,

Erlangen, Germany). The detail CT scanning parameters are shown

in Table S1.

The workflow of the study was shown in Figure 1. The regions

of interest (ROIs) in the RCC were separately manually slice-by-

slice contoured and segmented using 3D Slicer (version 4.11.2) by

two urologists (Yiyang Liu and Shifeng Su), who were not

informed of the patients’ personal information. Each of them

with at least 10 years of clinical experience in kidney CT, took full

responsibility for the ROI delineation. The ROIs were evaluated by

experts following the medical imaging standards. After the ROIs

of the SRMs were delineated, the CT images were transferred to a

radiomics plugin for 3D Slicer (PyRadiomics). Then, the

extraction of in-house radiomics features was performed using

PyRadiomics package. Each ROI in contrast-enhanced CT

imaging (arterial phase) had eight sets of radiomics features.

The voxel-based features included shape 2D, shape 3D, first-

order, gray-level cooccurrence matrix (GLCM), gray-level size

zone matrix (GLSZM), gray-level dependence matrix (GLDM),

gray level run length matrix (GLRLM) and neighbouring gray tone

difference matrix (NGTDM), containing a total of 851

quantitative features. The Bland-Altman test was used for

assessment of interobserver variability.

The extracted radiomics features in each dataset were further

normalized with mean value=0 and standard deviation=1 to make

all the variables comparable across different dataset and applicable

easily in the future.
3.3 Unsupervised clustering and
subgroup discovery

Unsupervised hierarchical clustering, based on the raw

radiomics data scaled by mean and centered, was performed

using cutree package in R. Kaplan-Meier overall survival curves

were plotted using survival package in R. The statistical difference in

survival between the two patient subgroups was calculated with the

coxph function. The heatmap was plotted using the pheatmap

package in R.
3.4 Development of the
radiomics signature

Random Forest was performed using the ranger package. The

random forest feature importance was obtained from ranger-

package’s variable-importance-parameter on a trained random

forest model. In the training cohort, the radiomics features

associated with overall survival were screened by the least

absolute shrinkage and selection operator (LASSO) Cox

regression. The Radiomics signature was calculated with a linear

combination of the selected radiomics features multiplied by their

corresponding LASSO-Cox coefficients. Based on median radiomics

score, patients were classified as high-risk or low-risk group.

Kaplan-Meier overall survival analysis was performed between the

stratified subgroups.
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3.5 Development of the radiomics
nomogram

The association between clinical characteristics and overall

survival was separately evaluated by the univariable and

multivariable Cox regression analysis. The hazard ratio (HR) of

each predictor was obtained simultaneously. The clinical

nomogram and radiomics nomogram, which predicted 1-, 3- and

5-year overall survival, were separately constructed using the rms

and survival package in R. Based on TMN Stage, WHOISUP and

SSIGN, the prognosis model for OS Prediction has been developed

by survival package in R.
3.6 Identification of DEGs and functional
enrichment analysis

The differentially expressed genes (DEGs) were identified

between the high- and low-risk subgroups using the limma

package with criteria of |log2-fold change (FC)| ≥ 1 and p-value

< 0.05.

The KEGG enrichment analysis was performed using the

clusterProfiler package to obtain the results of gene set

enrichment. For Gene set enrichment analysis (GSEA), the GSEA

software was obtained from the GSEA website (http://

software.broadinstitute.org/gsea/index.jsp) to evaluate related

pathways and molecular mechanisms.
3.7 Mutation and drug sensitivity analysis

The mutational profiles of RCC patients between high and low

risk subgroups were identified using the maftools package. To

explore the sensitivity of antineoplastic drugs in RCC patients,

the semi-inhibitory concentration (IC50) values of common drugs

was calculated using the oncoPredict package.
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3.8 Statistical analysis

Statistical tests were performed with R statistical software. To

evaluate the performance of the prognosis model, we used calibration

curves constructed by rms package. The performance of the models

was evaluated by the time-dependent area under the curve (AUC) of

receiver operator characteristic (ROC). The decision curve analysis

(DCA) was performed with the rmda package. For all analyses, P <

0.05 was considered statistically significant.
4 Result

4.1 Basic characteristics

Table S2 showed the clinical characteristics of the entire cohort

(689 participants, median 58.8 years), training cohort (NJMU, 281

participants, median 57 years), validation cohort 1 (NCI, 225

participants, median 61 years) and validation cohort 2 (183

participants, median 58 years). The mean follow-up for patients

in the entire cohort was 41 months; and the 5-year OS rates were

86.9%, which was slightly higher than 71% reported in localized

RCC in the literature, which might well be attributable to loss of

some patients without surgery.
4.2 Overview of radiomics profile in RCC

To understand the radiomics features of RCC, the unsupervised

hierarchical clustering analysis was conducted in the entire cohort.

Based purely on the radiomics data, two distinct subgroups within RCC

patients were identified (Figure 2A). Subgroup 2 was significantly

associated with poor OS (p =0.004, log-rank test; Figure 2B).

Furthermore, in the forest plot of the entire cohort, the significant

Hazard Ratios were found for the subgroup, more specifically, in each

age level (<60 and >=60), each BMI level (<=24 and >24), and
FIGURE 1

Graphical abstract of radiomics analysis and model building.
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regardless of TMN Stage, SSIGN level and WHOISUP (Figure 2C). In

aggregate, unsupervised analysis suggested an intrinsic association

between radiomics features and clinical characteristics, warranting

further research.
4.3 Radiomics Signature for OS prediction
with machine learning

To construct the radiomics signature, we extracted the 851

radiomics features of contrast-enhanced CT images. These features

were screened in the random forest model to obtain the robust

predictive factors. Based on the importance scores of features from

the random forest model, the top five percent of the variables, 43

radiomics features were selected (Figure 3A; Table S3). Then, by

LASSO-Cox regression analysis, 11 potential predictors from the 43

candidate variables were selected in the training cohort (Figures 3B, C).

The calculation formula of radiomics signature was shown in the Table

S4. Accordingly, the patients with RCC were divided into low-risk and

high-risk groups. The high-risk group was significantly associated with

poor OS in the three cohorts (p <0.001, log-rank test; Figures 3D–F).
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The prognostic power of the radiomics signature was assessed

using time-dependent ROC analysis in the training cohort and two

validation cohorts (Figures 4A–C). The radiomics model resulted in

AUCs of 5-year OS prediction, 0.7409, 0.7947 and 0.830, respectively.
4.4 TNM stage, WHOISUP and SSIGN for
OS prediction

The TNM Stage, WHOISUP and SSIGN are relatively common

prognostic predictors. We put the three prognostic factors

separately into the COX regression to establish overall survival

prediction model. The above three prognostic predictors were

negatively correlated to OS (HR for TNM Stage: 2.563, 95% CI:

1.246-5.271; HR for WHOISUP: 5.096, 95% CI: 2.435-10.670; HR

for SSIGN: 1.2, 95% CI: 1.058-1.360).

The TNM Stage, WHOISUP and SSIGN models resulted in

AUCs of 5 years OS prediction, 0.7409,0.7947 and 0.830,

respectively, in the training cohort (Figure 4A) and 0.771,0.707

and 0.773 in validation cohort 2 (Figure 4C).
A

B

C

FIGURE 2

Unsupervised clustering analysis of radiomic data in RCC. (A) Unsupervised hierarchical clustering of radiomic profile from RCC identified two
distinct subgroups. The associations between radiomic subgroups with gender, subtype and TNM stage are indicated on the right. (B) Kaplan-Meier
analysis of the radiomic subgroups with OS in the entire cohort. (C) Hazard Ratios for radiomics grouping in each clinicopathological subgroup in
the entire cohort.
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4.5 Clinical nomogram and radiomics
nomogram for OS prediction

The results of univariate and multivariable COX regression

analyses in the training cohort were shown in Table S5. The age-

level, location and radio-diameter were significantly associated with

OS, and these factors as independent prognostic factors were used

to develop the clinical nomogram (Table S6). The clinical

nomogram could distinguish high-risk from low-risk patients in

the training cohort (p =0.0015, log-rank test) and the validation

cohorts (Figures 5A, C; S2D, S2I).

The radiomics nomogram was built with Radiomics signature,

TNM Stage, WHOISUP, SSIGN and Clinical score by the

multivariate Cox regression analysis (Figure 5B, Table S7). The

radiomics nomogram could distinguish high-risk from low-risk

patients in the training cohort (p<0.0001, log-rank test, Figure 5D)

and the validation cohort1 (p<0.001, Figure S2H). The clinical

nomogram and radiomics nomogram resulted in AUCs of 5 years

OS prediction, 0.676 and 0.841 in the training cohort, respectively,

and 0.567 and 0.917 in validation cohort 2 (Figures 4A, C).
4.6 Prediction performance of the models

The prediction performances of the six models (clinical

nomogram, radiomics nomogram, TNM Stage model, WHOISUP

model, SSIGN model and radiomics signature) were presented

in Table 1.
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Compared with the existing prognostic models, the AUC of 5 years

OS prediction of the radiomics nomogram was superior to the TNM,

WHOISUP and SSIGN model in the training cohort (0.841 vs 0.734,

0.707, 0.644) and validation cohort 2 (0.917 vs 0.707, 0.773, 0.771).

Radiomics provided incremental value to traditional models and

improved the power to predict prognosis. The risk plot of radiomics

nomogram suggested as risk score increased, overall survival time

decreased and mortality rose (Figures 4G, H). Moreover, the heatmap

of selected prognostic predictors was shown in Figure 4I.

The calibration curves of the radiomics nomogram for the

probability of 5 years OS were presented in Figure 6F. The

estimations with the radiomics nomogram were consistent with

actual observations in the training, and 2 validation cohorts. And,

the corresponding calibration curves of other models at 5 years were

shown in Figures 6; S3.

To evaluate clinical applicability of these prognostic models,

Clinical impact curve (CIC) analysis was conducted in Figures 6G–L

and Figure S3. CIC visually indicated that the radiomics nomogram

had a greater overall net benefit across a range of threshold

probabilities, suggesting that the radiomics nomogram possessed

significant prognostic value.

In the DCA analysis for the 6 prognostic models, the radiomics

signature and radiomics nomogram showed superior overall net

benefit over the existing prognostic models in predicting OS in the

training and validation cohorts (Figures 4D–F). If the threshold

probability of the traditional existing models was greater than 10%

for predicting OS, radiomics nomogram had more benefit than either

the SSISN, TNM Stage WHOISUP, or radiomics signature alone.
D
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C

FIGURE 3

Development of the Radiomics Signature for OS Prediction with Machine Learning. (A) 43 radiomics feature importance from random-forest models.
(B) The 5-fold cross-validation for tuning parameter screening in the LASSO regression model. (C) LASSO coefficient profiles of the features at
different lambda values. (D–F) Kaplan–Meier curves for patients with High- and Low-Radiomics Score in the training and two validation cohorts.
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4.7 Biological interpretation and drug
sensitivity of the radiomics signature

To explore the radiomics-related biological characteristics of

renal cell carcinoma, based on their radiomics signatures, we

divided the NCI validation cohort1 into high- and low-risk

groups. We compared the transcriptome data of the two groups

to find out the DEGs (Figures 7A, C; S4A, S4C). Then, we evaluated

enrichments of KEGG pathways (Figures 7D and S4B); We found

that HIF-1 signaling pathways and TNF signaling pathways were

significantly enriched in the DEGs. Similarly, we identified that in

gene set enrichment analysis (GSEA), for RCC patient samples in

high-risk group, three signaling pathways were significantly

enriched: P53-Signaling Pathway, G2 Phase and Composition of

Lipid Particles (Figures 7E–G).

Additionally, the distribution differences of the somatic mutations

were investigated between high-risk and low-risk groups in the TCGA-

RCC dataset. As shown in Figure 7B, the VHL mutation incidence of

were higher than 20% in RCC patients in two groups. Interestingly,

compared with RCC in low-risk group, these tumor-related genes were

more likely to be mutated in the high-risk group.

Further, to determine the power of radiomics signature to

predict drug therapeutic response among RCC patients, the IC50

values of 198 drugs were evaluated in TCGA-RCC patients. We

found that RCC patients in low-risk group might positively respond
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to Axitinib, Cisplatin, Gemcitabine, PD173074 and Sorafenib

(Figure 7H). In summary, these findings suggested that radiomics

signature was correlated with drug sensitivity.
4.8 Sensitivity analysis for the consistency
of radiomics features

To evaluate the consistency and robustness of the extracted

radiomics features, we further reanalyzed the CT images of our study

using 3D Slicer by two urologists. The repeated radiomic features

showed a high consistency (Pearson r, median (IQR): 0.71 (0.43-

0.85)). 532 of 851 features (62.5%) had Pearson r > 0.6 (Figure S5A).

Additionally, we estimated the mean difference between 11 duplicate

radiomics features, and compared Bland-Altman plots of agreement

between two observers (Bland and Altman, 1986) (Figures S5B–L;

Table S8). There was high measurement agreement between two

observers using the Bland-Altman test.
5 Discussion

In this study, we evaluated the predictive performance of the

existing prognostic models for OS in RCC patients, and established

a radiomics signature by machine learning algorithms and a
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FIGURE 4

Prediction performance of the six models in the training and validation cohorts. (A–C) Time-independent ROC curves comparing the predictive
accuracy of six models in the training and two validation cohorts. (D–F) Decision curves comparing six models among a series of risk thresholds in
the training and two validation cohorts. (G, H) Ranked dot and scatter plots showing the radiomics-nomogram score distribution and patient survival
status. (I) Component patterns of 5 selected prognostic factors in high- and low-risk groups for radiomics nomogram.
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radiomics nomogram by multivariate COX regression. We

demonstrated that the addition of the radiomics signature

significantly improved the predictive power of traditional

prognostic models, the model’s ability to significantly classify

patients into low- and high-risk groups, and its stability across

both training and validation cohorts. Finally, our preliminary

studies about genomics revealed a correlation between radiomics
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signature and the enrichment of certain pathways in tumors, as well

as drug sensitivity.

The Tumor, Node and Metastasis (TNM) staging system is a

method for stratifying cancer patients based on data from a large

multicenter study involving a large number of patients and has a

good level of evidence (15). TNM staging is also the most

commonly used prognostic system for renal cell carcinoma.
D
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FIGURE 5

Development of the Clinical Nomogram and Radiomics Nomogram. (A) Nomogram for predicting the ratio of RCC patients with a certain survival
time incorporating Age-level, Location and Radio-diameter in the training cohort. (B) Nomogram for predicting the ratio of RCC patients with a
certain survival time incorporating Clinical score, SSIGN, TNM Stage, WHOISUP and radiomics signature in the training cohort. (C, D) Kaplan–Meier
analysis of overall survival curves of High- and Low- Clinical or Radiomics nomogram in training group.
TABLE 1 Performance of six prognostic models in training and validation cohorts.

Cohort
Training Cohort Validation Cohort1 Validation Cohort2

Threshold
AUC at 5 years C index AUC at 5 years C index AUC at 5 years

Radiomics Signature 0.741 0.614(0.498,0.73) 0.795 0.707(0.625,0.789) 0.837 0.828(0.748,0.908) 0.275

Clinical Nomogram 0.676 0.709(0.627,0.791) 0.729 0.691(0.622,0.76) 0.567 0.719(0.617,0.821) -0.193

WHOISUP Model 0.734 0.73(0.63,0.83) – – 0.707 0.791(0.681,0.901) 1.87

SSIGN Model 0.707 0.675(0.575,0.775) – – 0.773 0.74(0.617,0.863) -0.183

TNM Stage Model 0.644 0.62(0.52,0.72) 0.707 0.741(0.665,0.817) 0.771 0.761(0.632,0.89) 0.9

Radiomics Nomogram 0.841 0.834(0.779,0.889) – – 0.917 0.923(0.878,0.968) 0.78
f
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However, patients with the same TNM stage often could have

various genetic and clinicopathological features and inconsistent

survival rates. WHOISUP is also an important standard for the

commonly used microscopic classification of renal cell carcinoma

(27). According to the World Health Organization/International

Society of Urological Pathology (WHO/ISUP) 4th edition grading

system, RCC is classified into grades I to IV. Among RCC patients

after surgery, including those with Partial nephrectomy (PN) and

Radical nephrectomy (RN), the SSIGN score is a valuable

prognostic tool (14). The existing prognostic models are widely
Frontiers in Oncology 0979
recognized and used for post-operative management and clinical

trial design. For patients with good or moderate prognosis,

especially for patients with limited tumor burden and few

symptoms, regular follow-up observation is generally

recommended after surgery (28). Follow-up schedule for localized

renal cell carcinoma after surgery should depend on the possibility

of recurrence. CT scans of the chest and abdomen are routinely

performed at intervals depending on the prognostic risk rating. For

patients with poor prognosis, pembrolizumab combined with

axitinib, lenvatinib and other drugs can be considered after
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FIGURE 6

Comparative evaluation of various models in the training and validation cohorts. (A–F) Calibration plots describing the calibration of six models
based on the consistency between predicted and observed 5-year OS results. (G–L) Clinical Impact Curve (CIC) of six models in the training cohort.
The red curve (Number high Risk) represents the number of people classified as positive (high risk) by the model at each threshold probability; The
blue curve (Number high risk with outcome) is the Number of true positives at each threshold probability.
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surgery (29, 30). Therefore, accurate prediction of patient prognosis

and risk stratification of RCC patients is an urgent problem.

It has been reported that frailty put patients undergoing surgery

at a higher risk for developing poor healthcare outcomes (31). Besides

tumor characteristics, patient characteristics, such as frailty, seemed

to be the main aspects determining the postoperative outcome (32).

However, the mean frailty score based on 11-CSHA score for patients

was 0.18 ± 0.08 and 0.12 ± 0.06, respectively, in the training cohort

and in validation cohort 2. There were only 16 patients (frailty score≥

0.27) in the validation cohort2. This could be because frailty has been

an important factor for the therapeutic strategy patients and

clinicians choose as treatment for RCCs.

Although the above models took into account clinicopathological

variables, tumor heterogeneity, which was thought to be associated

with poorer patient outcomes, was not taken into account. It has been

reported that the predictive power of these existing prognostic models

might be significantly overestimated (33, 34). Although, tumor

heterogeneity reduced the value of histopathology based on cell
Frontiers in Oncology 1080
morphology and gene expression, it provided an opportunity for

medical imaging to characterize whole tumors in a non-invasive and

reproducible manner. In traditional radiology practice, images were

typically evaluated visually or qualitatively, with the exception of a

few measurements such as dimensions and volumes. This approach

not only involved intra- and interobserver variability, but also left a

large amount of deep hidden data in medical images that were not

used, which limited the potential of precision medicine. In contrast,

radiomics provides important complementary data on imaging

phenotypes that may be informative (35).

Combining radiomic features, traditional staging systems, and

other clinicopathological risk factors can improve the predictive

power of tumor prognosis (36). In this study, a radiomics

nomogram, combining radiomics signature with Clinical score,

TNM stage, WHOISUP, and SSIGN prognostic factors, was

established. The nomogram outperformed models using either

radiomics or prognostic model alone (C index: 0.834 vs 0.62, 0.675,

0.73, 0.709). The radiomics nomogram combined multiple
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FIGURE 7

The relationship between radiomics and genomics in TCGA. (A) A volcano plot generated using the data of DEGs between high-risk and low-risk
groups from TCGA. (B) The waterfall plot of somatic genetic alteration features established with high- and low- radiomics score. (C) Hierarchical
clustering of 30 DEGs of RCC. (D) KEGG pathways analysis of DEGs associated with radiomics signature. (E–G) Gene Set Enrichment Analyses showed
three representative pathways enriched in the high-radiomics score group. (H) Relationships between radiomics signature and drug sensitivity.
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prognostic factors to accurately predict OS and stratify high and low-

risk groups in RCC patients. This result was not surprising, as

radiomics reflected higher-order imaging features that captured

more tumor heterogeneity than macroscopic-level histopathological

and clinical information. In this study, we included more patients

with combined clinical characteristics and radiomics features to

predict individualized survival with superior performance. Our

discovery would take a critical step in which predictive models

based on radiomics features could benefit physicians, patients and

caregivers in managing RCC and facilitating personalized treatment.

Meanwhile, some studies have demonstrated different results

due to the instability and low reproducibility of the radiomics

model. A meta-analysis has indicated that image biomarkers

based on the adjacent grey tone difference matrix and the size

zone matrix should not be used in multi-center study, because these

radiomics features were extremely sensitive to variations (37).

Furthermore, CT images obtained from different hospitals may

vary widely, thus leading to potential bias in multicenter studies.

Multicenter normalization of medical images is the key to improve

the predictive performance of radiomics-based applications. The

robustness of reliability and repeatability is a major issue for clinical

implementation of diagnosis and treatment prediction. In this

study, the performance on both the training cohort and two

independent validation cohorts was good (C index: 0.834 and

0.923), indicating that our prediction model was stable.

Compared with previous studies that lacked interpretation of

prognostic features, we comprehensively described biological and

clinical characteristics associated with radiomics features that would

help guide future clinical decision-making processes in a reliable

and reproducible manner. Among the 11 selected radiomics

features, GLCM, GLSZM and NGTDM measured the ROI array

heterogeneity, with greater values of these features representing

greater heterogeneity or a larger range of radiomics signature.

Additionally, in several previous studies, the prognostic models

based on genomic and transcriptomic information of tumor tissues,

such as gene expression, DNA methylation, CNAs, and non-coding

RNAs were developed. It has been reported that a nomogram which

was combined with six genes was able to accurately distinguish

patients with higher risk of cancer-specific death (38). Meanwhile,

Patrick et al. has established 13-gene signature whose expression

levels could predict distinct outcomes of patients with RCC (39).

But these molecular prediction models were difficult to translate

into routine clinical applications because of the timeliness of tumor

specimens and the large intratumor heterogeneity, resulting in

insufficient prognostic power and high detection costs. The

radiomics signature we proposed was simple and based solely on

information from routine preoperative CECT scans at the time of

patient onset. By observing the entire tumor area and extracting

high-dimensional features such as wavelets and features, radiomics

avoided tumor tissue features limited to a single site, and could

mine more prognostic information than genomics. Therefore, it

might serve as a surrogate biomarker for prognostic stratification of

RCC patients.

And even more interesting, according to the radiomics

hypothesis, intra-tumoral imaging heterogeneity might be an

expression of underlying genetic heterogeneity that might lead to
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treatment resistance and thus suggested poorer prognosis. Based on

DEGs between low-high radiomics score groups, some pathways in

cancer, such as HIF-1 signaling pathways and TNF signaling

pathways, were significantly enriched. The VHL regulated the

drug sensitivity of renal cell carcinoma via HIF-1 pathway (40).

The RNF26/CBX7 axis modulated the TNF pathway to promote

Renal cell carcinoma proliferation (41). The RCC patients in low

radiomics score group appeared to respond better to Axitinib,

Cisplatin, Gemcitabine, PD173074 and Sorafenib, which have

been approved for treatment of advanced renal cell carcinoma,

than patients in high radiomics score group. Image data is a high-

throughput macroscopic data. Based on macroscopic imaging data,

we have found connections to the microscopic world, which may be

a powerful tool for tumor prognosis and treatment prediction in

the future.

Nevertheless, there were several limitations to the present study.

First, in a retrospective study, bias was inevitable. Due to the

retrospective nature of the study, the heterogeneity of abdominal

enhanced CT versions and lack of algorithmic standardization

existed across and within centers. Second, we did not assess the

proportion of the patients died because of competing risks instead

of progressive RCC. Third, the TCGA data alone could not prove

that there was a difference between high- and low-radiomics score

groups in tumor microenvironment and drug sensitivity. Fourth,

RCC patients who did not undergo surgery for various reasons were

not included in the study cohort. The absence of this group of

patients might have caused selection bias in the study. Another

limitation was the lack of information on the WHOISUP and

SSIGN in validation cohort 1(NCI). Thus, to further validate

these findings, a prospective multi-center study is needed.

In conclusion, we developed multiple prognostic models for

RCC and evaluated their predictive performance, based on clinical

characteristics and radiomics features from CECT. Radiomics

signature provided statistically significant incremental value to the

existing prognosis models in predicting OS and have broad

clinical applications.
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SUPPLEMENTARY FIGURE 1

Flow chart of the study population enrolment with inclusion and
exclusion criteria.

SUPPLEMENTARY FIGURE 2

Kaplan–Meier curves for overall survival in the training and validation cohorts.

SUPPLEMENTARY FIGURE 3

Comparative evaluation of various models in the validation cohorts. (A-J)
Calibration plots describing the calibration of six models based on the

consistency between predicted and observed 5-year OS results. (K-S)
Clinical Impact Curve (CIC) of six models in the validation cohort. The red

curve (Number high Risk) represents the number of people classified as
positive (high risk) by the model at each threshold probability; The blue

curve (Number high risk with outcome) is the Number of true positives at

each threshold probability.

SUPPLEMENTARY FIGURE 4

The relationship between radiomics and genomics in CPTAC. (A) Hierarchical
clustering of 30 DEGs of RCC. (B) KEGG pathways analysis of DEGs associated
with radiomics signature. (C) A volcano plot generated using the data of

differentially expressed genes (DEGs) between high-risk and low-risk groups

from CPTAC.

SUPPLEMENTARY FIGURE 5

Sensitivity analysis for the consistency of radiomics features. (A) Histogram of

Pearson r values calculated from the radiomic features between the initial
dataset and repeated dataset. (B-L) Bland-Altman plots were used to test the

potential agreement between two observers. Mean difference (dashed line) is

close to zero, showing no bias; solid black lines delimit limits of agreement
(95% CI).
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Boğaziçi University, Türkiye
Giuseppe Simone,
Hospital Physiotherapy Institutes (IRCCS),
Italy

*CORRESPONDENCE

DeXin Yu

yudexin0330@sina.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 11 April 2023

ACCEPTED 09 October 2023

PUBLISHED 26 October 2023

CITATION

Cheng Q, Ren A, Xu X, Meng Z, Feng X,
Pylypenko D, Dou W and Yu D (2023)
Application of DKI and IVIM imaging in
evaluating histologic grades and clinical
stages of clear cell renal cell carcinoma.
Front. Oncol. 13:1203922.
doi: 10.3389/fonc.2023.1203922

COPYRIGHT

© 2023 Cheng, Ren, Xu, Meng, Feng,
Pylypenko, Dou and Yu. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 26 October 2023

DOI 10.3389/fonc.2023.1203922
Application of DKI and IVIM
imaging in evaluating histologic
grades and clinical stages of
clear cell renal cell carcinoma

QiChao Cheng1†, AnLi Ren2†, XingHua Xu1†, Zhao Meng1,
Xue Feng1, Dmytro Pylypenko3, WeiQiang Dou3 and DeXin Yu1*

1Department of Radiology, Qilu Hospital of Shandong University, Jinan, China, 2Department of
Radiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China,
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Purpose: To evaluate the value of quantitative parameters derived from diffusion

kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) in differentiating

histologic grades and clinical stages of clear cell renal cell carcinoma (ccRCC).

Materials and methods: A total of 65 patients who were surgically and

pathologically diagnosed as ccRCC were recruited in this study. In addition to

routine renal magnetic resonance imaging examination, all patients underwent

preoperative IVIM and DKI. The corresponding diffusion coefficient (D), pseudo-

diffusion coefficient (D*), perfusion fraction (f), mean diffusivity (MD), kurtosis

anisotropy (KA), and mean kurtosis (MK) values were obtained. Independent-

samples t-test or Mann–Whitney U test was used for comparing the differences

in IVIM and DKI parameters among different histologic grades and clinical stages.

The diagnostic efficacy of IVIM and DKI parameters was evaluated using the

receiver operating characteristic (ROC) curve. Spearman’s correlation analysis

was used to separately analyze the correlation of each parameter with histologic

grades and stages of ccRCC.

Results: The D and MD values were significantly higher in low-grade ccRCC than

high-grade ccRCC (all p < 0.001) and in low-stage than high-stage ccRCC (all p <

0.05), and the f value of high-stage ccRCC was lower than that of low-stage

ccRCC (p = 0.007). The KA and MK values were significantly higher in low-grade

than high-grade ccRCC (p = 0.000 and 0.000, respectively) and in low-stage

than high-stage ccRCC (p = 0.000 and 0.000, respectively). The area under the

curve (AUC) values of D, D*, f, MD, KA, MK, DKI, and IVIM+DKI values were 0.825,

0.598, 0.626, 0.792, 0.750, 0.754, 0.803, and 0.857, respectively, in grading

ccRCC and 0.837, 0.719, 0.710, 0.787, 0.796, 0.784, 0.864, 0.823, and 0.916,

respectively, in staging ccRCC. The AUC of IVIM was 0.913 in staging ccRCC. The

D, D*, and MD values were negatively correlated with the histologic grades and

clinical stages (all p < 0.05), and the KA and MK values showed a positive

correlation with histologic grades and clinical stages (all p < 0.05). The f value

was also negatively correlated with the ccRCC clinical stage (p = 0.008).

Conclusion: Both the IVIM and DKI values can be used preoperatively to predict

the degree of histologic grades and stages in ccRCC, and the D and MD values
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have better diagnostic performance in the grading and staging. Also, further

slightly enhanced diagnostic efficacy was observed in the model with combined

IVIM and DKI parameters.
KEYWORDS

diffusion kurtosis imaging, intravoxel incoherent motion, histologic grades, clinical
stages, clear cell renal cell carcinoma
Introduction

Renal cell carcinoma (RCC) is a common malignancy in the

urologic system, with a 2%–3% annual increase worldwide (1).

Clear cell RCC (ccRCC) is the most common type of RCC. With the

advancement of imaging techniques, such as ultrasound (US),

computed tomography (CT), magnetic resonance imaging (MRI),

and PET-CT/MRI, small and low-stage kidney tumors can now be

easily detected (2). While radical nephrectomy was once considered

the standard curative therapy, partial nephrectomy is now preferred

due to its better preservation of renal function (3). Relevant studies

have confirmed that partial nephrectomy is widely employed for

localized renal tumors. The study, as evidenced by the references

you provided, demonstrates that the glomerular filtration rate,

chronic kidney disease prevalence, and operative time in the off-

clamp partial nephrectomy group were superior to those in the on-

clamp group (4, 5). Studies have shown that the histologic

differentiation of RCC is an important prognostic factor for

patients undergoing partial nephrectomy. High-grade RCC is

more aggressive and is associated with a higher risk of relapse or

metastasis after surgery (3, 6). Therefore, preoperative prediction of

the histologic grade and clinical stage of ccRCC is essential for the

development of effective therapeutic strategies.

Compared with US and CT examination, MRI has good spatial

and contrast resolution without ionizing radiation burden.

Therefore, it was considered a proper method for preoperative

assessment for the prognosis of ccRCC (7). MRI should be carried

out by contrast injection in detecting malignant lesions; although

gadolinium contrast is safer, patients with chronic renal were also

affected by the use of gadolinium contrast material (8, 9). Diffusion-

weighted imaging (DWI) was mainly applied to quantify the

diffusion of water molecules and provided information on cellular

density, membrane integrity, and tissue perfusion, which can

distinguish viable from necrotic tumors in a non-invasive manner

(10). Several previous studies on DWI have demonstrated good

value in the grades and stages of renal tumors and differential

diagnosis between renal benign and malignant tumors (11–13).

However, due to the complexity and restriction of microstructures

and water molecule diffusion, DWI is primarily used to quantify the

diffusion of water molecules with a Gaussian distribution and

cannot accurately reflect the information of the lesion. Moreover,

the original apparent diffusion coefficient (ADC) values do not

distinguish between the pure diffusive motion of water molecules
0285
and the effects of microcapillary perfusion (14, 15). In recent years,

with the development of MRI, more advanced intravoxel incoherent

motion (IVIM) and diffusion kurtosis imaging (DKI) models have

been developed on the basis of DWI. By using multiple b values,

IVIM may help to evaluate tissue microcapillary perfusion and

provide an accurate characterization of tissue diffusivity motion

(16). A previous study has shown that IVIM is helpful for

distinguishing RCC from fat-poor angiomyolipoma (17). In

addition, IVIM-derived parameters showed important value in

the assessment of different renal tumor subtypes (18). DKI is an

advanced DWImodel that reflects tissue complexity by using higher

b values and quantifies the non-Gaussian behavior of diffusion and

the excess kurtosis of tissue (16, 19). Compared with the DWI

model, the DKI model is mainly applied to detect non-Gaussian

water molecule motion to reflect the lesion microstructure and

identify tumor and necrotic tissue (20). Previous studies have

shown that DKI is able to distinguish different types of RCCs (21,

22). Meanwhile, related studies have revealed that different DKI

parameters have certain values in ccRCC grade (23, 24). Based on

the different advantages of IVIM and DKI, the different models

could show different features of ccRCC tissue, and it may be

valuable to explore grading and staging of the ccRCC. Yang L

et al. (14) showed that IVIM and DKI were helpful in the

assessment of tumor staging and grading after neoadjuvant

chemoradiotherapy in patients with locally advanced rectal

cancer. However, in ccRCC-related results, previous studies were

limited to IVIM or DKI for ccRCC grading or staging; no studies

may have applied both IVIM and DKI techniques in ccRCC

systematic histologic grades and clinical stages diagnosis.

Therefore, the purpose of our study was to investigate the value

of IVIM and DKI parameters in differentiating ccRCC histologic

grades and clinical stages, which was further helpful for the

management of therapeutic strategies.
Materials and methods

Patients

This retrospective study was approved by the Qilu Hospital of

Shandong University ethics committee, and written informed

consent was provided by all the patients. A total of 71 patients

with RCC based on clinical history from September 2022 to January
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2023 were recruited. Postoperative pathologies of five patients

showed other renal tumors (angiomyolipoma = 1, chromophobe

= 1, oncocytoma = 2, and MiT family transcription = 1), and one

patient with obvious image artifact was excluded. Finally, 65 ccRCC

patients were enrolled in this study, including 43 men and 22

women. The age range was between 27 and 76 years, and the

average age was 54 years. The tumor types were classified into four

grades regarding the tumor nuclear size, shape, and chromatin

pattern as described by the World Health Organization/

International Society of Urological Pathology (WHO/ISUP)

grading system. After the cytological assessment, the tumors were

merged into two groups: low-grade (WHO/ISUP grades 1 and 2, n =

39) and high-grade (WHO/ISUP grades 3 and 4, n = 26) RCCs. The

tumor node metastasis (TNM) classification of ccRCC was in four

stages and then merged into two groups: low-stage (stages 1 and 2, n

= 45) and high-stage (stages 3 and 4, n = 20) RCC. Figure 1 shows

the flowchart of ccRCC.
MRI acquisition

All subjects underwent a 3.0T MRI scan (Discovery 750w, GE

Healthcare, Chicago, IL, USA), with a 24-channel abdominal

phased array coil, in a supine and foot-first position. Pre-

inspection preparation was performed including fasting over 4

hours and breath-holding practice. MRI scan sequences included

axial T1-weighted imaging (T1WI), fat-saturated T2-weighted

imaging (T2WI), and dynamic contrast-enhanced MRI (DCE-

MRI). IVIM and DKI imaging were performed on the kidney

after acquiring the corresponding T2-weighted anatomical

images. For IVIM, a single-shot spin-echo echo-planar imaging

sequence was applied in axial view with 10 b values (25, 50, 75, 100,
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150, 200, 400, 600, 800, and 1,000 s/mm2) and respiratory triggered:

repetition time/echo time (TR/TE) = 4,000/80.4 ms; field of view

(FOV) = 36 × 36 cm2; matrix = 128 × 128; slice thickness = 5 mm;

scan time = 276 s. For DKI, a separate respiratory-triggered single-

shot spin-echo echo-planar imaging sequence with 3 b values (0,

500, and 1,000 s/mm2) and 15 diffusion directions per b value was

applied. Other scan parameters were as follows: TR/TE = 6,000/126

ms; FOV = 36 × 36 cm2; matrix = 128 × 128; slice thickness = 4 mm;

scan time = 128 s.
Data post-processing

All IVIM and DKI data were post-processed with vendor-

provided analytic software embedded in the GE ADW4.6

workstation. The resulting IVIM- and DKI-derived parametric

maps were generated. The IVIM model was Sb/S0 = (1 − f).exp

(−bD) + f.exp (−b [D* + D]) (25), where D is the pure molecular

diffusion coefficient, D* is the pseudo-diffusion coefficient

representing incoherent microcirculation of the capillary

networks, and f is the perfusion fraction. The DKI model was Sb/

S0 = exp (−b MD + b2·MD2·MK/6), where MK is the mean kurtosis

(MK), and mean diffusion (MD) value is similar to the corrected

average ADC value (26). Meanwhile, the kurtosis anisotropy (KA)

value was calculated with the DKI model.

The region of interest (ROI) was selected and drawn separately

by two abdominal radiologists with over 10 years of experience in

MRI protocols. The size and location of the ROI were consistent on

the IVIM and DKI parameter maps. The reviewers were blinded to

the provided clinical data and pathological diagnosis. The criteria

for ROI selection included combining conventional T2WI images,

setting the large lesion dimension as the ROI on the b0 image and
71 patients with RCC based on clinical history

1 patient with angiomyolipoma

1 patient with chromophobe

2 patients with oncocytoma

1 patient with MiT family transcription

1 patient with obvious artifact

65 ccRCC patients were enrolled

histologic grades

low grade

(n=39)

high grade

(n=26)

low stage

(n=45)

high stage

(n=20)

clinical stages
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FIGURE 1

The flowchart of ccRCC. ccRCC, clear cell renal cell carcinoma.
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co-registering other b values of IVIM and DKI images to the b0

image. The scope of the lesion was made as large as possible, and

internal areas with necrosis, calcification, and bleeding were

excluded. Clear cell RCCs are classically T2 hyperintense, and

hemorrhage can be variable on T2WI alone (21).
Histologic grades

The surgically resected kidney specimens were used for the

pathological evaluation and assessed by a urological pathologist

who has 12 years of experience and was blinded to clinical data.

Histologic grade was classified according to the criteria of the

WHO/ISUP grade: grade 1, the nucleolus was absent or not

obvious at ×400 magnification; grade 2, under the microscope at

×400 magnification, the tumor cells showed clear nucleoli, but at

×100, the nucleoli were not obvious or unclear; grade 3, the nucleoli

were clear at ×100 magnification; grade 4, tumor giant cells,

sarcomatoid differentiation, and/or rhabdoid morphology (27).

The tumors were merged into two groups: low-grade (WHO/

ISUP grades 1 and 2) and high-grade (WHO/ISUP grades 3 and

4) ccRCC (28).
Clinical stages

Clinical stages were classified according to the criteria of the

TNM classification based on the American Joint Committee on

Cancer (29): stage 1, the ccRCC tumor was confined to the renal

parenchyma, and the maximum diameter of the mass was less than

7 cm; stage 2, the tumor was confined to the renal parenchyma, and

the maximum diameter of the tumor was >7 cm; stage 3 refers to

tumor thrombus in the renal vein or its branches, upper and lower

vena cava, or tumor invasion of the renal pelvis and calyces,

perirenal or sinus fat but not beyond the renal fascia; stage 4, the

tumor broke through the renal fascia. The tumors were merged into

two groups: low-stage (stages 1 and 2) and high-stage (stages 3 and

4) RCC.
Statistical analysis

Statistical analyses were performed using the SPSS 22 software

package (IBM, Armonk, NY, USA). According to the characteristics
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of data distribution, quantitative data were expressed as the mean ±

standard deviation. Inter-class correlation coefficient (ICC) analysis

was used to evaluate the interobserver agreement of IVIM and DKI

parameter measurements (ICC 0.61–0.80 indicates good, and >0.8

indicates excellent). Independent-samples t-test and Mann–

Whitney U test were used to evaluate the differences in IVIM and

DKI parameters between high-grade and low-grade as well as

between high-stage and low-stage ccRCC. Parameters with p <

0.05 were selected for further multivariate logistic regression (30,

31). Receiver operating characteristic (ROC) analysis was

performed using MedCalc software (version 11.4.2.0, Ostend,

Belgium) to obtain the area under the curve (AUC), sensitivity,

and specificity of low and high grades and stages of ccRCC for

different parameters and their combinations; optimal cutoff points

of different parameters were also determined. Spearman’s

correlation analysis was used to analyze the correlation between

each IVIM and DKI parameter and the histologic grade and clinical

stage of ccRCC. The differences were considered statistically

significant at p < 0.05.
Results

Clinical data

Among the 65 cases of HCC, 39 were low-grade and 26 high-

grade patients, and 45 were low clinical stage and 20 were high

clinical stage patients. Detailed patient pathological grades and

clinical stages are summarized in Table 1. Figures 2 and 3 show

the features of low-grade and low-stage ccRCC and high-grade and

high-stage on T2-weighted images: D, D*, f, MD, KA, and MK

maps. The agreements of IVIM and DKI parameters between two

observers were perfect by high ICC for D(0.873), D*(0.838), f

(0.786), MD(0.861), KA(0.860), and MK(0.885).
Comparison of IVIM and DKI parameters
between low- and high-grade ccRCC

The D andMD values were higher in low-grade than high-grade

ccRCC (p = 0.000 and 0.000, respectively), and KA and MK values

were lower in low-grade than high-grade ccRCC (p = 0.000 and

0.000, respectively). However, the D* and f values had no significant

difference in low- and high-grade ccRCC (p = 0.185 and 0.088).
TABLE 1 Pathological grades and clinical stages.

Grade Stage Clinical stages

Stage 1 Stage 2 Stage 3 Stage 4

WHO/ISUP

G1 13 / / /

G2 21 4 1 /

G3 7 / 17 1

G4 / / 1 /
fro
WHO/ISUP, World Health Organization/International Society of Urological Pathology.
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Table 2 shows the differences in IVIM and DKI parameters between

the low- and high-grade ccRCCs.
Comparison of IVIM and DKI parameters
between low- and high-stage ccRCC

The D, D*, f, and MD values were higher in low-stage than

high-stage ccRCC (p = 0.000, 0.005, 0.007, and 0.000, respectively),

and the KA and MK values were lower in low-stage than high-stage

ccRCC (p = 0.000 and 0.000, respectively). Table 3 shows the

differences in the IVIM and DKI parameters between the low-

and high-stage ccRCC.
Correlation analyses of IVIM and DKI
parameters with histologic grade and
clinical stage of ccRCC

The D, D*, and MD values were negatively correlated with the

histologic grades (r = −0.524, −0.258, and −0.561, p = 0.000, 0.038,
Frontiers in Oncology 0588
and 0.000, respectively) and clinical stages (r = −0.470, −0.413, and

−0.516, p = 0.000, 0.001, and 0.000, respectively). In contrast, the

KA and MK values were positively correlated with the histologic

grades (r = 0.504 and 0.542, p = 0.000 and 0.000, respectively) and

clinical stages (r = 0.478 and 0.421, p = 0.000 and 0.000,

respectively). The f value was also negatively correlated with the

ccRCC clinical stage (r = −0.326, p = 0.008). Tables 4 and 5 show the

correlations of IVIM and DKI parameters with the grade and stage

of ccRCC, respectively.
ROC curve analysis in differentiating
histologic grade and clinical stage
of ccRCC

The AUC values of D, D*, f, MD, KA, and MK values were

0.825, 0.598, 0.626, 0.792, 0.750, and 0.754, respectively, in grading

ccRCC and 0.837, 0.719, 0.710, 0.787, 0.796, and 0.784, respectively,

in staging ccRCC. The D, MD, KA, and MK values were significant

predictors in differentiating low from high grade and stage of

ccRCC. Marginally, the model incorporating IVIM and DKI
FIGURE 2

A 60-year-old man with ccRCC (grade 1 and stage 1). (A) Slightly high signal intensity on fat-saturated T2WI. (B) The lesion shows enhancement on
solid part of ccRCC. (C) Pathological analysis confirmed ccRCC (grade 1). (D) D map. (E) D* map. (F) f map. (G) MD map. (H) KA map. (I) MK map.
The necrotic areas in the center of the ccRCC. ccRCC, clear cell renal cell carcinoma; T2WI, T2-weighted imaging; MD, mean diffusivity; KA, kurtosis
anisotropy; MK, mean kurtosis.
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parameters exhibited improved diagnostic capabilities. The AUC

values of DKI and IVIM+DKI values were 0.803 and 0.857,

respectively, in grading ccRCC and 0.823 and 0.916, respectively,

in staging ccRCC, and the AUC of IVIM was 0.913 in staging

ccRCC. The AUC values, cutoff values, sensitivity, and specificity in

differentiating tumor stage and histologic grade of ccRCC are

shown in Tables 6 and 7 and Figures 4–7.
Discussion

This study explored the value of IVIM and DKI in evaluating

tumor grades and T stages in ccRCC patients. The results showed

that IVIM and DKI parameters are of great value in differentiating

low and high grades and stages, and the D, MD, KA, and MK values

have better diagnostic values in grades and stages. In addition, the f

values also helped to assess clinical stages. Meanwhile, the

diagnostic performance saw a minor enhancement when IVIM

and DKI parameters were combined.

IVIM provides a unique view of tissue perfusion without using

exogenous contrast agents. The D values of low-grade ccRCC were

higher those of than high-grade ccRCC. The degree of tumor
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differentiation is closely related to its aggressiveness. The IVIM

parameters of low-stage ccRCC were higher than those of high-

stage ccRCC. The D values represent the water molecule diffusion,

which indicates the change in the microenvironment (32). The solid

tumor components of RCC have greater cellular density and

collagenous interstitial stroma, close arrangement, and small

extracellular space, which reduce water diffusion velocity. The D

values of low-grade ccRCC were significantly higher than those of

high-grade ccRCC (13, 33, 34). Histologic grade and clinical stage

were significantly negatively correlated with the D values, and

poorer differentiation in histologic grade and clinical stage

resulted in lower D values. The reduction in D values can be

attributed to the hindrance of water motion due to the increased

viscosity of the tumor tissue. Poorer tumor differentiation led to

faster proliferation, resulting in increases in the number of tumor

cells and the tumor density and a decrease in intercellular substance.

The diffusion of water molecules within the tumor tissue was more

constrained, which was reflected by significant decreases in D values

(35). Yang L et al. (14) explored the value of IVIM in evaluating

tumor T stages in locally advanced rectal cancer patients; the D

value was significantly distinguished in the diagnosis of staging, and

these findings are consistent with ours. Moreover, previous studies
FIGURE 3

A 66-year-old man with ccRCC (grade 3 and stage 3). (A) High signal intensity on fat-saturated T2WI. (B) Solid part shows enhancement. (C) Pathological
analysis confirmed ccRCC (grade 3). (D) D map. (E) D* map. (F) f map. (G) MD map. (H) KA map. (I) MK map. ccRCC, clear cell renal cell carcinoma; T2WI,
T2-weighted imaging; MD, mean diffusivity; KA, kurtosis anisotropy; MK, mean kurtosis.
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have proven negative correlations of D values with the histologic

grade in RCC and that D values can be used for histologic grading of

RCC (36–39).

The D* and f values are the perfusion parameters, which could

be used to analyze the vascularity of the tissue. The D* value is

defined as the average blood flow and mainly reflects the capillary

blood velocity, and the f value measures the microvascular volume

fraction (32). Zhou Y et al. investigated the IVIM of 40 HCC

patients and found that the D* and f values did not significantly

correlate with the histologic grade (40), being consistent with our

study. Huang YC et al. (41) showed that IVIM parameters are

negatively correlated with stages of esophageal squamous cell

carcinoma, and microvascular volume fraction helps detect and

stage esophageal squamous cell carcinoma. As the tumor stage

progresses, the central microvessel density decreases while its

volume expands. This results in an insufficient central blood
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supply to the ccRCC, leading to increased micronecrosis (42).

The D* and f values of low-grade ccRCC were not statistically

significant. The main reasons include 1) the relatively small

sample size of ccRCC in the high-grade group; 2) the f value

correlated well with the enhancement degree of renal lesions, and

partial low-stage ccRCC displays as cystic mass showing slight

enhancement, leading the f value of low- and high-grade ccRCC to

have no statistical significance (17). In our study, the diagnostic

efficiency of the D* and f values was lower than that of the D value,

and the AUC of the D value was higher than that of the D* and f

values. The limited importance of the D* and f values in this study

was explained previously by its high uncertainty and poor

reproducibility (43). Additionally, the relatively small sample

size might affect the results.

DKI reflects tissue complexity by using higher b values. The

signal intensity largely depends on the b values applied, which could
TABLE 4 The correlations between IVIM, DKI parameters, and grade of ccRCC.

IVIM DKI

D D* f MD KA MK

r −0.524 −0.258 −0.211 −0.561 0.504 0.542

p 0.000 0.038 0.092 0.000 0.000 0.000
frontier
IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging; ccRCC, clear cell renal cell carcinoma; MD, mean diffusivity; KA, kurtosis anisotropy; MK, mean kurtosis. D, corresponding
diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction.
TABLE 3 The differences in the IVIM and DKI parameters between the low- and high-stage ccRCC.

Low-stage High-stage t p

D (×10−3) 1.503 ± 0.427 1.021 ± 0.262 4.667 0.000

D* 0.082 ± 0.060 0.040 ± 0.031 / 0.005

f 0.294 ± 0.112 0.213 ± 0.112 / 0.007

MD 2.383 ± 0.515 1.789 ± 0.507 4.334 0.000

KA 0.779 ± 0.292 1.116 ± 0.294 −4.270 0.000

MK 0.603 ± 0.264 0.895 ± 0.268 −4.077 0.000
IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging; ccRCC, clear cell renal cell carcinoma; MD, mean diffusivity; KA, kurtosis anisotropy; MK, mean kurtosis. D, corresponding
diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction.
TABLE 2 The differences in the IVIM and DKI parameters between the low- and high-grade ccRCC.

Low-grade High-grade t p

D (×10−3) 1.538 ± 0.429 1.080 ± 0.300 5.068 0.000

D* 0.077 ± 0.063 0.057 ± 0.030 / 0.185

F 0.286 ± 0.112 0.240 ± 0.121 / 0.088

MD 2.422 ± 0.530 1.834 ± 0.598 4.544 0.000

KA 0.773 ± 0.294 1.067 ± 0.315 −3.795 0.000

MK 0.589 ± 0.258 0.854 ± 0.288 3.791 0.000
IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging; ccRCC, clear cell renal cell carcinoma; MD, mean diffusivity; KA, kurtosis anisotropy; MK, mean kurtosis. D, corresponding
diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction.
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identify tumor and necrotic tissue (44). However, a higher b value

reduces the signal-to-noise ratio. In our research, the b values used

in DKI were 500 and 1,000 s/mm2 with 15 diffusion directions per b

value. Previous studies have shown that b values of 500 and 1,000 s/

mm2 are acceptable for kidney tumors, and DKI could provide

additional information for revealing the renal microstructure and

function (21, 45). Some previous works have confirmed that DKI

can effectively distinguish high- from low-grade RCC; this is

consistent with the results of this study (22–24). Compared with

the results of previous studies, we systematically analyzed the value
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of DKI in the differentiation and grading of ccRCC, and histologic

grade was classified according to the criteria of the WHO/ISUP

grade; related research shows that the WHO/ISUP grade system has

been considered to be easier to apply to clinical management and

superior to the Fuhrman grading system (46). The MD value is

corrected by non-Gaussian bias and could give insights into the

structural connectivity of tissues, potentially providing useful

information on the pathophysiology of diseases. Yang L (14) et al.

explored the DKI parameters of the high stage and found that they

were lower than those of the low stage in locally advanced rectal
TABLE 6 Diagnostic value of IVIM and DKI parameters in differentiating low- and high-grade of ccRCC.

AUC (area = 0.5) Cutoff Sensitivity Specificity

D 0.825 (p < 0.0001) ≤0.0014 88.5 74.4

D* 0.598 (p = 0.1798) ≤0.061 61.5 64.1

f 0.626 (p = 0.1082) ≤0.173 46.2 89.7

MD 0.792 (p < 0.0001) ≤2.28 88.5 71.8

KA 0.750 (p < 0.0001) >0.895 73.1 71.8

MK 0.754 (p < 0.0001) >0.584 84.6 61.5

DKI(MD+KA+MK) 0.803 (p < 0.0001) / 88.5 61.5

IVIM(D)+DKI 0.857 (p < 0.0001) / 92.3 71.8
IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging; ccRCC, clear cell renal cell carcinoma; AUC, area under the curve; MD, mean diffusivity; KA, kurtosis anisotropy; MK,
mean kurtosis. D, corresponding diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction.
TABLE 7 Diagnostic value of IVIM and DKI parameters in differentiating low- and high-stage ccRCC.

AUC (area = 0.5) Cutoff Sensitivity Specificity

D 0.837 (p < 0.0001) ≤0.0013 95.0 71.1

D* 0.719 (p = 0.0020) ≤0.0325 65.0 82.2

f 0.710 (p = 0.0086) ≤0.166 55.0 91.1

MD 0.787 (p < 0.0001) ≤2.28 90.0 64.4

KA 0.796 (p < 0.0001) >0.791 90.0 64.4

MK 0.784 (p < 0.0001) >0.841 65.0 84.4

IVIM(D+D*+f) 0.913 (p < 0.0001) / 90.0 80.0

DKI(MD+KA+MK) 0.823 (p < 0.0001) / 70.0 86.7

IVIM+DKI 0.916 (p < 0.0001) / 95.0 73.3
IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging; ccRCC, clear cell renal cell carcinoma; MD, mean diffusivity; KA, kurtosis anisotropy; MK, mean kurtosis. D, corresponding
diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction.
TABLE 5 The correlations between IVIM, DKI parameters, and stage of ccRCC.

IVIM DKI

D D* f MD KA MK

r −0.470 −0.413 −0.326 −0.516 0.478 0.421

p 0.000 0.001 0.008 0.000 0.000 0.000
frontier
IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging; ccRCC, clear cell renal cell carcinoma; MD, mean diffusivity; KA, kurtosis anisotropy; MK, mean kurtosis. D, corresponding
diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction.
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cancer patients; in particular, the MD values also yielded

comparable overall diagnostic abilities in differentiating the low-

stage from high-stage patients. These findings are consistent with

ours. Moreover, the MK value identifies deviations of diffusion from
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Gaussian motions. The changes in organizational structure can

affect both MK and KA values (47). Thus, MK and KA are not

completely independent, although both indicators can be used to

test for different aspects of diffusion. Zhu Q et al. (21) found that
FIGURE 4

ROC analysis of IVIM and DKI parameters in differentiating histologic grade. ROC, receiver operating characteristic; IVIM, intravoxel incoherent
motion; DKI, diffusion kurtosis imaging.
FIGURE 5

ROC analysis of DKI and IVIM+DKI in differentiating histologic grade. ROC, receiver operating characteristic; DKI, diffusion kurtosis imaging; IVIM,
intravoxel incoherent motion.
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FIGURE 6

ROC analysis of IVIM and DKI parameters in differentiating clinical stage. ROC, receiver operating characteristic; IVIM, intravoxel incoherent motion;
DKI, diffusion kurtosis imaging.
FIGURE 7

ROC analysis of IVIM, DKI, and IVIM+DKI in differentiating clinical stage. ROC, receiver operating characteristic; IVIM, intravoxel incoherent motion;
DKI, diffusion kurtosis imaging.
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papillary RCC has higher MK and KA values as compared with

ccRCC due to its aggressiveness and histological heterogeneity.

High-grade and stage ccRCC are more aggressive and

histologically heterogeneous as compared to low-grade and stage

ccRCC and increased the MK and KA values. Moreover, the KA

value itself is important in predicting histologic grades and clinical

stages of ccRCC.

In our study, we found that the D, MD, KA, and MK values

were significantly different in evaluating the histologic grades and

clinical stages of ccRCC, whereas the D* and f values were useful

only in staging diagnosis Therefore, in the IVIM model, we

recommend to combine only the valuable D, D*, and f values for

clinical stages. In the DKI model, we recommend combining the

valuable MD, KA, and MK values for both histologic grades and

clinical stages. Previous research demonstrated that the combined

parameters with a p < 0.05 from the statistical analysis had the best

diagnostic ability (30, 31). Subsequently, we integrated the valuable

parameters from both IVIM and DKI models for a more

comprehensive evaluation of the histologic grades and clinical

stages of ccRCC. This primarily includes the D value from the

IVIM model and MD, KA, and MK values from the DKI model for

evaluating histologic grades. For clinical staging, we recommend a

combination of D, D*, and f parameters from the IVIM model and

MD, KA, and MK parameters from the DKI model. Previous

research has demonstrated that combining DKI with chemical

exchange saturation transfer sequences is more effective than

using a single sequence for grading and staging ccRCC (21). In

our study, by combining the IVIM and DKI parameters, the

resultant model showed a higher AUC than that obtained with a

single sequence or parameter.

The limitations of our study include the relatively small sample,

which might result in bias in the comparative evaluations. All

ccRCC patients received radical or partial nephrectomy

treatment. Since all the ccRCC patients in our study underwent

either radical or partial nephrectomy, the number of patients with

high-grade and advanced-stage ccRCC was relatively low. Further

analyses with a larger cohort of ccRCC patients are necessary to

study the correlations among different stages and grades.

In conclusion, compared to other relevant research, our study

highlights the potential of both IVIM and DKI techniques in

systematically characterizing and distinguishing between ccRCC

grades and stages, presenting a more effective tool for accurate

diagnosis. The combined utilization of the IVIM and DKI models

offers enhanced diagnostic accuracy and efficiency. This

combination provides valuable insights for clinical decision-

making concerning surgical plans, including the choice between

partial and radical nephrectomy, and informs patient management

during follow-up. Moving forward, we will focus on expanding the

sample size, with particular emphasis on including a greater

number of cases with high-grade and advanced-stage ccRCC, in

order to further validate the correlations with histologic grades and

clinical stages.
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