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Purpose: To evaluate the value of radiomics analysis in contrast-enhanced spectral
mammography (CESM) for the identification of triple-negative breast cancer (TNBC).

Method: CESM images of 367 pathologically confirmed breast cancer patients (training
set: 218, testing set: 149) were retrospectively analyzed. Cranial caudal (CC), mediolateral
oblique (MLO), and combined models were built on the basis of the features extracted
from subtracted images on CC, MLO, and the combination of CC and MLO, respectively,
in the tumour region. The performance of the models was evaluated through receiver
operating characteristic (ROC) curve analysis, the Hosmer-Lemeshow test, and decision
curve analysis (DCA). The areas under ROC curves (AUCs) were compared through the
DeLong test.

Results: The combined CC and MLO model had the best AUC and sensitivity of 0.90
(95% confidence interval: 0.85–0.96) and 0.97, respectively. The Hosmer–Lemeshow test
yielded a non-significant statistic with p-value of 0.59. The clinical usefulness of the
combined CC andMLOmodel was confirmed if the threshold was between 0.02 and 0.81
in the DCA.

Conclusions: Machine learning models based on subtracted images in CESM images
were valuable for distinguishing TNBC and NTNBC. The model with the combined CC and
MLO features had the best performance compared with models that used CC or MLO
features alone.

Keywords: triple-negative breast cancer, radiomics, contrast-enhanced spectral mammography, breast cancer,
molecular subtypes
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INTRODUCTION

Triple-negative breast cancer (TNBC) accounts for 10–20% of all
diagnosed breast cancers (1). Given the lack of the expression of
human epidermal growth factor receptor-2 (HER-2) and
estrogen and progesterone receptors, which can be used for
targeted therapy, TNBC is difficult to treat and has a high
recurrence and metastasis rate, and a low survival rate (2).

Immunohistochemistry, which analyzes part of the tumor
tissue obtained by invasive biopsy or surgery, is commonly used
for assessing the molecular subtype of breast cancer. However,
given the spatial and temporal heterogeneity of breast tumors
(3), the accuracy of biopsy is limited. In addition, invasive biopsy
is at risk of side effects such as infection, bleeding, and implant
metastasis. Therefore, an alternative method is necessary to
assess the molecular subtype of the breast cancer completely
and non-invasively.

Radiomics is a method of extracting quantitative features
from routine medical images (4). These quantitative features,
defined as radiomic features, reflect the characteristics of the
whole region of interest (ROI) in medical images (5). Several
previous studies have explored the value of radiomic features
in predicting TNBC based on MRI (6, 7) and mammography
(8, 9). However, MRI could not be performed in patients with
some medical implants, such as magnetic cardiac pacemakers,
defibrillators, and metallic clips. The high cost of MRI
also limits its clinical application. Mammography only
focuses on morphology, without functional information,
which limits its clinical application (10). Moreover, the
outline of the tumor is not sharp enough, particularly in
dense breast tissue (11).

Contrast-enhanced spectral mammography (CESM) is
a novel medical imaging method (12). In CESM, low-
energy and subtracted images are obtained using a contrast-
enhancing agent at two levels of energy (13). The low-energy
image is equal to a standard 2D mammography image, and
the subtracted image mostly shows the microcirculation
characteristics in the breast in which neovascularization is
highlighted (10, 14).

Studies focusing on the value of radiomics analysis based
on CESM for the prediction of TNBC are rare. The value of
CESM-based radiomics has been preliminarily explored in
previous studies (15, 16) to differentiate TNBC from other
types of breast cancer. Given the small number of patients,
particularly for patients with TNBC, the prediction models in
their study were not validated in the testing set. The results in
their studies are not highly reliable. Thus, the value of CESM-
based radiomics for identifying TNBC should be further
explored. In this study, a larger population of patients
divided into training and testing sets was used to evaluate
the diagnostic value of CESM for identifying TNBC.
Furthermore, radiomics models based on radiomic features
from cranial caudal (CC) and mediolateral oblique (MLO)
views and their combination were built to explore whether the
extracting features in different views impact the performance
of the prediction models.
Frontiers in Oncology | www.frontiersin.org 28
METHODS AND MATERIALS

Patients
Patients who underwent CESM between July 2017 and June 2020
were retrospectively analyzed. The inclusion criterion was as
follows: (a) patients were pathologically confirmed with breast
cancer. The exclusion criteria were as follows: (a) molecular
subtype of tumor was not available in the pathological result; (b)
tumor not present or not complete in the subtracted image on CC
or MLO; (c) excessive glandular overlapped with lesion to influence
the segmentation of lesion; (d) underwent treatment prior to CESM;
(e) incomplete clinical information, and (f) poor image quality (e.g.,
remarkable motion and susceptibility artefacts). Patients who
underwent CESM between July 2017 and October 2019 were
included in the training cohort. A total of 664 patients (109
TNBC and 555 non-TNBC patients) were included in the
training set. To resolve the class imbalance problem, 446 non-
TNBC patients were randomly excluded. Finally, 109 TNBC and
109 non-TNBC patients were included in the training set. Patients
who underwent CESM between November 2019 and June 2020
were included in the testing set. The testing set retained its original
distribution of TNBC and non-TNBC patients (30 TNBC and 119
non-TNBC patients). The immunohistochemical results and age of
patients were acquired from the electronic medical record system.
This retrospective analysis was approved by the local Ethics
Committee of our institution, and the requirement for patient
informed consent was waived.

CESM Examination Parameters
CESM was performed using a GE Senographe Essential
mammography unit (GE Healthcare, Milwaukee, WI, USA).
Iohexol (350 mg I/ml) was injected intravenously at a dose of 1.3
ml/kg and speed of 3.0 ml/s. The CESM examination consisted of a
low-energy exposure [kilovolt (peak) of 26–31 kV], immediately
followed by a high-energy exposure [kilovolt (peak) of 45–49 kV].
Automatic exposure control (AEC) was used to optimize X-ray
parameters automatically. Low-energy images and subtracted
images on CC and MLO were acquired in 5 min with a
recombination algorithm. No severe adverse events occurred due
to contrast administration.

ROI Segmentation
The ROI was segmented on CC and MLO by two trained
radiologists (Readers 1 and 2, each with 5 years of diagnosis
experience in CESM) by using Radcloud (Huiying Medical
Technology Co., Ltd, Beijing, China, http://radcloud.cn) in
subtracted images (Figure 1). ROIs encompassed the entire
enhancing lesion. The tumor with the largest diameter was
selected for segmentation when the breast cancer was multifocal.
The segmentation work on 70 randomly selected patients was first
performed by Readers 1 and 2 simultaneously. Reader 1 repeated
the segmentation work 2 weeks later. The segmentation work on the
remaining 297 patients was finished by Reader 1. Readers 1 and 2
were blind to the results of the pathological examination. An
experienced radiologist (Reader 3, with 13 years of diagnosis
experience in breast medical images) supervised segmentation
December 2021 | Volume 11 | Article 77319
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work. Revision will be applied if necessary (e.g., Readers 1 and 2
selected different tumors on the same patient, or contour of lesion
was not drawn precisely).

Radiomics Feature Extraction
For each CESM sequence on each image, 1,409 radiomics features
were extracted using a tool from the Radcloud platform, which
extracted radiomics features from medical image data with a large
panel of engineered hard-coded feature algorithms (http://mics.
radcloud.cn/#/project). The 1,409 features obtained were divided
into four main categories: first-order statistics, shape, texture
[gray-level co-occurrence (GLCM), gray-level run length
(GLRLM), gray-level size zone (GLSZM), neighboring gray tone
difference (NGTDM), gray-level dependence (GLDM), Matrices],
and higher-order statistics (Laplacian of Gaussian, wavelet, square,
square root, logarithm, exponential, gradient, and local binary
pattern filters) features. The CC and the MLO feature datasets
were merged into the combined dataset.

Inter- and Intra-Agreement of
Radiomics Features
The inter- and intra- agreements of radiomics features were
evaluated by using intraclass correlation coefficient (ICC) analysis
based on radiomics features for the 70 patients mentioned above.
The inter- and intra-ICCs for each radiomic feature were acquired
via the radiomic features extracted from ROIs segmented by
Readers 1 and 2 simultaneously and by Reader 1 at different
times. Radiomic features with inter- and intra-ICCs >0.75 were
selected for the subsequent statistical analysis.

Radiomic Features Selection and
Radiomic Model Building
Immunohistochemical results were selected as the gold reference.
Normalization was applied to rescale all features from the original
range to a new range of 0 and 1. Radiomic features in the training set
thatwerenotsignificantlydifferentbetweenpatientswithandwithout
Frontiers in Oncology | www.frontiersin.org 39
TNBCwerefiltered from theCC,MLO, and combinedCCandMLO
featuredatasetsbyusingunivariateanalysis.After theabovefiltration,
the least absolute shrinkage and selection operator (LASSO) (17)
method was used to decrease the high degree of redundancy of
radiomic features. The optimal coefficient of regularization (a) used
for the LASSO method was selected using the inner 10-fold cross-
validation in the training set with a maximum iteration of 5,000 via
the binomial deviance. Subsequently, the radiomic parameters with
non-zero coefficients in the LASSO model generated by the entire
training set with the optimal a were selected. CC, MLO, and
combined radiomic models were built on the basis of the
coefficients of each selected feature via the LASSOmethod.

Evaluation of Radiomic Model
The probabilities of TNBC for patients were acquired through the
CC, MLO, and combined models. Respective Youden indexes were
calculated and were selected as threshold. If probability was higher
than threshold, the respective patient was predicted as TNBC
patient. The discrimination ability of the CC, MLO, and
combined radiomic models at all thresholds in the training and
testing sets was shown through receiver operating characteristic
(ROC) curve analysis. The 95% confidence interval (CI) of the area
under the ROC curve (AUC) was acquired on the basis of the
bootstrapping. The AUCs in the testing set for each model were
compared. Prediction models were also evaluated by using the
Hosmer–Lemeshow test, which assessed whether the observed event
rates matched the expected event rates in the subgroups of the
model population. The clinical usefulness of radiomic models in the
testing set was evaluated using decision curve analysis (DCA) (18)
in the testing set. The DCA measured the net benefit which placed
benefits and harms on the same scale at each possible threshold
probability. The workflow of this study is presented in Figure 2.

Statistics Analysis
The R (version 3.6.3) was used for statistical analysis. Age and
tumor diameter of patients with and without TNBC in the
A B C

FIGURE 1 | Region of interest was segmented. A 49-year-old woman with TNBC in the left breast. (A) Low-energy, craniocaudal view. (B) Subtracted image,
craniocaudal view. (C) TNBC was manually segmented in the subtracted image manually.
December 2021 | Volume 11 | Article 773196

http://mics.radcloud.cn/#/project
http://mics.radcloud.cn/#/project
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics in CESM for TNBC
training and testing sets were statistically analyzed using t test or
Mann–Whitney U test. The percentage of postmenopausal
patients in the training or testing set was statistically analyzed
using Chi-Squared Test. Univariate analysis was performed using
one-way ANOVA (19) or the Mann–Whitney U test (20). The
areas under ROC curves (AUCs) of models in the testing cohort
were compared using the Delong test (21). The sensitivities and
specificities of models in the testing set were compared based on
bootstrap. The reported statistically significant levels were all
two-sided, and the statistical significance was set at 0.05.
RESULTS

Patients
Among the 218 patients in the training set (age: mean ± SD =
54.57 ± 10.31 years, range = 29–76 years), 109 had TNBC. Of the
Frontiers in Oncology | www.frontiersin.org 410
149 patients in the testing set (age: mean ± SD = 55.07 ± 9.70
years, range = 27–76 years), 30 had TNBC. The clinical
characteristics between TNBC and non-TNBC patients in
training and testing sets were not statistically different
(p>0.05). The characteristics of the patients in the training and
testing sets are presented in Table 1.

Feature Selection and Prediction
Model Building
A total of 2,072 radiomics features were discarded for low intra-
or inter-class correlations. After univariate analysis, 164, 148,
and 312 radiomics features were significantly different (p < 0.05)
between patients with and without TNBC in the CC, MLO, and
combined feature datasets, respectively. A total of 5, 8, and 8
radiomics features (2 from the CC feature dataset and 6 from the
MLO feature dataset) were selected as useful radiomics features
by the LASSO method in the CC, MLO, and combined feature
datasets, respectively. All selected radiomic features were texture
features (GLRLM), including that after filter transformation
(logarithm in the CC, logarithm and wavelet in the MLO).
Two of the 8 radiomics features in the combined model were
original GLRLM from the CC; the other 6 features were from the
MLO feature datasets. Therefore, the radiomics features in the
combined model were the same as part of radiomics features in
the CC and MLO models. The selected features in the CC, MLO,
and combined prediction models are presented in Table 2.

Validation of Models in the Training and
Testing Sets
The AUCs of the CC, MLO, and combined models were 0.87 (95%
CI = 0.79–0.95), 0.88 (95% CI = 0.81–0.94), and 0.90 (95% CI =
0.85–0.96), respectively, in the testing set. The AUC of the
combined model was higher than that of the CC (p > 0.05) and
MLO (p > 0.05) models in the testing set. The combined model
also reached the highest sensitivity (0.97) compared with the CC
(0.93, p > 0.05) and MLO (0.93, p > 0.05) models in the testing set.
The AUCs of the CC, MLO, and combined models were 0.83 (95%
CI = 0.78–0.89), 0.84 (95% CI = 0.79–0.89), and 0.85 (95% CI =
0.80–0.90), respectively, in the training set. The sensitivity values
of the CC, MLO, and combined models in the training set were
0.87, 0.84, and 0.89, respectively. In addition, the specificity values
of the CC, MLO, and combined CC and MLO models were 0.60,
TABLE 1 | Characteristics of patients in the training and testing sets.

Training set Testing set

Characteristics p Characteristics p

Age, mean ± SD, years 54.57 ± 10.31 0.37 55.07 ± 9.70 0.45
range, years 29–76 27–76
Postmenopausal patients, no. (%) 130 (60) 0.24 87 (59) 0.29
Tumor diameter, mean ± SD, cm 3.57 ± 2.10 0.39 3.17± 1.97 0.80
range, cm 0.97–10.78 0.58–10.62
TNBC, No. (%) 109 (50) – 30 (20) –

All, no. 218 149
De
cember 2021 | Volume 11 | Article 77
SD, standard deviation; TNBC, triple-negative breast cancer.
p Values indicated difference in clinical characteristics between TNBC and non-TNBC patients in the training or testing sets.
FIGURE 2 | Workflow of this study.
3196

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics in CESM for TNBC
0.59, and 0.69, respectively, in the testing set and 0.71, 0.69, and
0.55, respectively, in the training set. The specificity of the
combined model was statistically higher than that of the CC and
MLOmodels (p < 0.05). The Hosmer–Lemeshow test yielded non-
significant statistical difference with p = 0.28, 0.46 and 0.59 for the
CC, MLO, and combined models, respectively. AUCs, sensitivities,
and specificities of CC, MLO, and combined models are shown in
Table 3. All three models were clinically useful in DCA. If the
threshold was between 0.05 and 0.67, the CC model added more
net benefit than the “treat-all” and “treat-none” models. If the
threshold was between 0.03 and 0.74, the MLOmodel added more
net benefit than the “treat-all” and “treat-none” models. If the
threshold was between 0.02 and 0.81, the combined model added
more net benefit than the “treat-all” and “treat-none”models. The
ROC and decision curves are shown in Figure 3.
DISCUSSION

This study indicated that machine learning models based on the
subtracted images in CESM images were valuable for
distinguishing TNBC and non-TNBC, and such models showed
Frontiers in Oncology | www.frontiersin.org 511
good performance. The combined model based on the
combination of CC and MLO features had the best performance
with the highest AUC, sensitivity, and specificity in the testing set.
The best performance of the combined model compared with the
CC and the MLOmodels may be explained by the combination of
the CC and MLO radiomic feature sets, which contained more
information than the CC or MLO radiomic feature set alone.

In the previous CESM study of MARINO et al. (16), only100
patients (12 patients with TNBC) were included. All 12 patients
with TNBC were correctly predicted. The performance of the
model in that study seemed to be better than that of our study.
However, the small number of patients, the imbalance of class,
and the lack of a testing set affected the robustness of the results.
LA FORGIA D et al. (15) evaluated CESM-based radiomic
features to predict TNBC. A total of 52 patients (68 breast
cancers) were included. The obtained AUC of 76.80% was
lower than the AUC obtained in our study. The results in that
study were also not reliable enough. In addition, the number of
patients (367) included in our study was larger than that
included in the abovementioned previous studies. The number
of patients with TNBC and non-TNBC in the training set was
equal to reduce the effect of class imbalance (22).
TABLE 2 | Features in the CC, MLO, and combined models.

Model Feature

CC original_glrlm_ShortRunLowGrayLevelEmphasis_CC
original_glrlm_ShortRunHighGrayLevelEmphasis_CC
original_glrlm_ShortRunEmphasis_CC
logarithm_glrlm_ShortRunLowGrayLevelEmphasis.1_CC
logarithm_glrlm_ShortRunHighGrayLevelEmphasis.1_CC

MLO original_glrlm_ShortRunLowGrayLevelEmphasis_MLO
original_glrlm_ShortRunHighGrayLevelEmphasis_MLO
original_glrlm_ShortRunEmphasis_MLO
logarithm_glrlm_ShortRunLowGrayLevelEmphasis.1_MLO
logarithm_glrlm_ShortRunHighGrayLevelEmphasis.1_MLO
wavelet.HHH_glszm_ZoneEntropy.12_MLO
wavelet.LLL_glrlm_ShortRunLowGrayLevelEmphasis.14_MLO
wavelet.LLL_glrlm_ShortRunHighGrayLevelEmphasis.14_MLO

combined original_glrlm_ShortRunLowGrayLevelEmphasis_CC
original_glrlm_ShortRunHighGrayLevelEmphasis_CC
original_glrlm_ShortRunLowGrayLevelEmphasis_MLO
original_glrlm_ShortRunHighGrayLevelEmphasis_MLO
original_glrlm_ShortRunEmphasis_MLO
logarithm_glrlm_ShortRunLowGrayLevelEmphasis.1_MLO
logarithm_glrlm_ShortRunHighGrayLevelEmphasis.1_MLO
wavelet.HHH_glszm_ZoneEntropy.12_MLO
TABLE 3 | Validation of models in the training and testing sets.

Training set Testing set

AUC Sensitivity Specificity AUC Sensitivity Specificity

CC 0.83 0.87 0.71 0.87
(CC vs combined, p > 0.05)

0.93
(CC vs combined, p > 0.05)

0.60
(CC vs combined,

p < 0.05)
MLO 0.84 0.84 0.69 0.88

(MLO vs combined, p > 0.05)
0.93

(MLO vs combined, p > 0.05)
0.59

(MLO vs combined,
p < 0.05)

Combined 0.85 0.89 0.55 0.90 0.97 0.69
December 2021 | Volume
 11 | Article 773196
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Radiomics features serve as the bridge between medical
images and machine learning. In our study, 1,409 radiomics
features, including first-order statistics, shape, texture (GLCM,
GLRLM, GLSZM, NGTDM, and GLDM), and high-order
statistics (Laplacian of Gaussian, wavelet, square, square root,
logarithm, exponential, gradient, and local binary pattern filters),
were included. The features are more comprehensive than those
in the study of MARINO et al. (16) (300 features) and LA
FORGIA D et al. (15) (7 features). Our study thoroughly
explored the value of CESM radiomics features to predict
TNBC. All radiomics features included in the CC, MLO, and
combined models were texture features, including that after filter
Frontiers in Oncology | www.frontiersin.org 612
transformation. Texture features quantify the inter-voxel
relationships in an image. Such features describe microscopic
characteristics in CESM images. Texture features can capture the
unique aspects of the biological heterogeneity of breast cancers
and contain part of pathological characteristics related to TNBC.

The value of MRI-based radiomics has been explored in
previous studies (6, 7, 23) to differentiate TNBC from others. In
the study of WANG et al. (6), the model based on radiomic
features in the tumor region of dynamic contrast-enhanced MRI
(DCE-MRI) has achieved an AUC of 0.78 in predicting TNBC.
Although the specificity of this model (0.95) was higher than that
of the combined model in our study (0.69), the sensitivity of the
A

B

D

E

FC

FIGURE 3 | (A) Receiver operating characteristic (ROC) curves of the CC model. (B) ROC curves of the MLO model. (C) ROC curves of the combined model.
(D) Decision curve of the CC model. (E) Decision curve of the MLO model. (F) Decision curve of the combined (COM) model.
December 2021 | Volume 11 | Article 773196
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combinedmodel in our study (0.97) was higher (0.33). In addition,
Leithner et al. (23) evaluated the performance of radiomics features
from DCE-MRI and the apparent diffusion coefficient (ADC) to
the assess the breast cancer molecular subtype and yielded an AUC
of 0.86 for predicting TNBC. In our study, the combined CC and
MLO model reached an AUC of 0.90. Moreover, patients with
TNBC in our study were muchmore than those studies, which can
comprehensively represent the characteristics of TNBC. This result
shows that the ability of CESM-based radiomic features is not
worse than that of MRI to predict TNBC.

The value of radiomics features based on mammography in
predicting TNBC has also been explored. MA et al. (9)
investigated the association of radiomic features extracted from
mammogram images with molecular subtypes of breast cancer
and yielded an AUC of 0.87 for TNBC vs. non-TNBC. The AUC
of this study was slightly lower than that of our study. The model
with combined CC and MLO radiomic features has achieved
better performance compared with that with CC or MLO
radiomic features alone. This result is consistent with that of
our study. However, the AUC of the CC-view-based model
(0.695) was lower than that of MLO-view- and CC-and-MLO-
view- based models (0.853 and 0.865, respectively) in their study.
In our study, the CC-view-based model and MLO-view-based
model also performed well, of which AUCs were just slightly
lower than that of the combined model. Therefore, we thought
that if complete images both of CC and MLO could not be
obtained, then CESM features extracted from a single orientation
can also be used to identify TNBC. The present study has several
limitations. Firstly, this study was a retrospective and single-
center study. Prospective and multicenter studies are needed to
verify the results. Secondly, manual segmentation, which is time-
consuming and subjective, was applied in this study because the
automatic segmentation algorithm is not mature enough.
Automatic segmentation algorithms need further development.
In addition, as a pilot study, radiomic features extracted from
low-energy images were not analyzed. The value of radiomic
features extracted from low-energy images will be explored in
future studies. What is more, specificities of models were low.
Parameter optimization methods and more model algorithms
will be applied in future studies to achieve good performance.
Finally, no clinical factor was used to build the prediction model.
Further studies are needed to develop and validate the prediction
model incorporating radiomic features and clinical factors.
Frontiers in Oncology | www.frontiersin.org 713
CONCLUSION

In conclusion, the radiomic features extracted from subtracted
images in the CESM were valuable to the identification of TNBC.
The prediction model based on the combination of CC and
MLO features had the best performance. Better prediction
models incorporating radiomic features extracted from low-
energy, subtracted images and clinical factors are expected to
be developed and validated in future works.
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Background and Purpose: Breast ductal carcinoma in situ (DCIS) has no metastatic
potential, and has better clinical outcomes compared with invasive breast cancer (IBC).
Convolutional neural networks (CNNs) can adaptively extract features and may achieve
higher efficiency in apparent diffusion coefficient (ADC)-based tumor invasion assessment.
This study aimed to determine the feasibility of constructing an ADC-based CNNmodel to
discriminate DCIS from IBC.

Methods: The study retrospectively enrolled 700 patients with primary breast cancer
between March 2006 and June 2019 from our hospital, and randomly selected 560
patients as the training and validation sets (ratio of 3 to 1), and 140 patients as the internal
test set. An independent external test set of 102patients during July 2019 andMay2021 from
a different scanner of our hospital was selected as the primary cohort using the same criteria.
In each set, the status of tumor invasion was confirmed by pathologic examination. The CNN
model was constructed to discriminate DCIS from IBC using the training and validation sets.
The CNN model was evaluated using the internal and external tests, and compared with the
discriminating performance using themean ADC. The area under the curve (AUC), sensitivity,
specificity, and accuracy were calculated to evaluate the performance of the previous model.

Results: The AUCs of the ADC-based CNN model using the internal and external test
sets were larger than those of the mean ADC (AUC: 0.977 vs. 0.866, P = 0.001; and 0.926
vs. 0.845, P = 0.096, respectively). Regarding the internal test set and external test set, the
ADC-based CNNmodel yielded sensitivities of 0.893 and 0.873, specificities of 0.929 and
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0.894, and accuracies of 0.907 and 0.902, respectively. Regarding the two test sets, the
mean ADC showed sensitivities of 0.845 and 0.818, specificities of 0.821 and 0.829, and
accuracies of 0.836 and 0.824, respectively. Using the ADC-based CNN model, the
prediction only takes approximately one second for a single lesion.

Conclusion: The ADC-based CNN model can improve the differentiation of IBC from
DCIS with higher accuracy and less time.
Keywords: breast cancer, ductal carcinoma in situ, diffusion-weighted imaging, magnetic resonance imaging,
deep learning
INTRODUCTION

Breast cancer is the most common malignant tumor in women
worldwide and has the highest mortality rate among all malignant
tumors in women (1). Breast ductal carcinoma in situ (DCIS) is
the proliferation of malignant epithelial cells in ducts without
involving the basement membrane (2). DCIS has no metastatic
potential and has better clinical outcomes compared with invasive
breast cancer (IBC) (3). Mammographic screening programs in
many countries have led to a substantial increase in the early
detection of DCIS, which accounts for 20–30% of newly detected
breast cancers (4, 5). Higher detection rates have triggered anxiety
concerning the problem of overdiagnosis and subsequent
overtreatment. Therefore, the feasibility of pharmacological
intervention may be taken into consideration, and another
option would be watchful waiting rather than immediate
surgery. However, approximately one-quarter of lesions
diagnosed as DCIS via core needle biopsy may be upgraded to
IBCs on the final pathology with surgical specimens because the
limited number, size, and location of samples may miss IBCs (6,
7). Some patients with a missed diagnosis of IBCs may elect to
forgo surgery and pursue watchful waiting, but this management
strategy is not safe for these patients (8).

Magnetic resonance imaging (MRI) is a powerful tool for
discriminating breast lesions. MRI can noninvasively cover the
whole breast with high-spatial-resolution images. Diffusion-
weighted imaging (DWI) can provide a surrogate marker for
tissue microstructure and cell density by measuring the random
movement of water molecules (9). A previous study showed that
the apparent diffusion coefficient (ADC) obtained with DWI
could be used as a valuable noninvasive quantitative biomarker
to assess breast cancer invasiveness (10). However, it is not easy
for radiologists to select a representative region of interest (ROI)
of a lesion, particularly for nonmass lesions. Differences in ROIs
may lead to ADCs that do not truly reflect the lesion
microstructure and cell density. Furthermore, tumors interact
with the tumor microenvironment, and peritumoral tissue has
been indicated to provide helpful information for the diagnosis
and prognosis of tumors (11–13), while the conventional method
of ADC measurement usually ignores the additional peritumoral
information that helps assess invasion.

Deep learning algorithms have displayed excellent
performance in image recognition tasks (14). Many
convolutional neural network (CNN) models with superior
performance exist in deep learning, such as ResNet, AlexNet,
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VGG, and InceptionV3. CNNs can scan all the pixels of the images
using convolution kernels and perceive the global information of
the images. Thus, CNNs may offer a promising alternative to
discriminate between DCIS and IBCs because of their advantages
of being efficient, accurate, and reproducible. Accordingly, this
study aimed to determine whether CNN applied to breast DWI
can aid in the preoperative differentiation of DCIS and IBCs.
MATERIALS AND METHODS

Patients
This study was approved by the ethics committee of our hospital.
The requirement for obtaining informed consent from patients
was waived. We retrospectively searched for breast MRI
examinations using the picture archiving and communication
system. The inclusion criteria for this study were as follows: 1)
histologically confirmed pure DCIS or pure IBC; 2) preoperative
dynamic contrast-enhanced MRI examination. The exclusion
criteria were as follows: 1) preoperative endocrine therapy,
chemotherapy, or radiotherapy; 2) preoperative invasive breast
operation; 3) incomplete clinical data; 4) obvious artifacts in MR
images (Figure 1). From March 2006 to June 2019, 700 lesions
from 700 patients with primary breast cancers were included, of
which 400 lesions were IBCs and 300 lesions were DCIS. We
randomly selected 560 lesions as the training and validation sets
(ratio of 3 to 1) and 140 lesions as the internal test set. From July
2019 to May 2021, an independent external test cohort of 102
patients with primary breast cancers from our hospital was
selected as the primary cohort with the same criteria. A total of
102 lesions from these patients were included in this study.

MR Image Acquisition
Breast MRI examinations of the primary cohort were performed
using 3.0 T superconducting MR scanners (Verio or Trio;
Siemens Medical Systems, Erlangen, Germany) with a
dedicated breast surface coil (4-channel or 4-channel coils). All
the breast MRI examinations of the external test cohort were
performed using 3.0 T superconducting MR scanners (Prisma;
Siemens Medical Systems, Erlangen, Germany) with a dedicated
breast surface coil (18-channel coils). All the patients were
scanned in the prone position. After the standard bilateral T2-
weighted (T2W) axial and DWI fat-saturated axial sequences
with T1-weighted (T1W) gradient-echo VIEWS sequences, a
dynamic protocol was performed with six dynamic acquisitions,
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one before and five immediately after an elbow vein bolus
injection of gadolinium-dimeglumine (GE Healthcare) equal to
0.1 mmol per kg body weight, followed by a 20 ml saline flush.
The scanning parameters of DWI are summarized in Table 1.

Definition of ROIs and Mean ADC
For the delineation and confirmation of ROIs of the lesions on ADC
images, the images of T1W, T2W, and dynamic contrast-enhanced
sequences were referred. Open-source software (3D Slicer; https://
www.slicer.org/) was used to draw polygonROIs for theCNNmodel.
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The polygon ROIs were drawn to cover whole lesion slice-by-slice by
a radiologist with five years of experience in breast MRI analysis
blinded to information about histopathology. An example of polygon
ROIs is shown in Figure 2. Next, the polygon ROIs were confirmed
by a radiologist with more than 15 years of experience in breast MRI
analysis. To measure the mean ADCs of the breast lesions, round
ROIs with sizes ranging from 16 to 225 mm2 were manually placed
slice-by-slice for the whole lesion volume by the radiologist with over
15 years of experience, while cystic, necrotic, fatty, and hemorrhagic
areas were avoided. The ADCs were measured directly from the
picture archiving and communication system of the hospital. The
meanADCswere defined as the sum of the ADCs of all ROIs divided
by the number of ROIs.

Data Preprocessing
Data augmentation was applied to the training and validation
sets during the training, with random rotation from -10 to 10
degrees, stretching from 0.8 to 1.2, and shifting from -10 to 10
pixels. After the geometric image transformations, the original
size of the training and validation sets was expanded five times.
The data augmentation strategy can help prevent network
overfitting and avoid interference from various sources of noise
to improve the robustness of the model (15, 16). Based on
TABLE 1 | Scanning parameters of diffusion-weighted imaging protocols on 3.0
Tesla scanners.

Trio Verio Prisma

Orientation Axial Axial Axial
Repetition time (msec) 5000 4300 6400
Echo time (msec) 66 80 60
Field of view (cm) 34 × 34 34 × 34 34 × 34
Matrix size 256 × 256 256 × 256 256 × 256
Echo train length 1 1 1
Slice thickness (mm) 4.0 5.0 4.0
b value (s/mm2) 0, 1000 0, 1000 0, 1000
Gap (mm) 1.0 1.0 1.5
FIGURE 1 | Flowchart of inclusion and exclusion.
January 2022 | Volume 11 | Article 805911

https://www.slicer.org/
https://www.slicer.org/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yin et al. AI Discriminating Breast Cancer Subtype
polygon ROIs of each lesion, a block centered at the center of the
lesion containing the whole lesion region was cropped from MR
images, and all blocks were reshaped to a size of 128×128×22 by
zero-padding (Figure 2).

Network Architecture
The architecture of the network is shown in Figure 3. It
comprised two convolution layers, four residual blocks, four
max-pooling layers, two fully connected layers, and one softmax
layer. Dropout was performed for the first fully connected layers
to avoid overfitting. Finally, the softmax layer was used to obtain
the probability of classification. The residual block was inspired
by ResNet (17). All convolution layers were followed by a batch
normalization (BN) layer (18), and a leaky rectified linear unit
(LReLU) was used as the activation function.

Model Training and Testing
All preprocessing was conducted in Python (version 3.7.0;
Python Software Foundation, Wilmington, Del) using PyTorch
(version 1.4.0). The blocks from the training sets were fed into
the network to adjust the weight of the network. Before feeding
Frontiers in Oncology | www.frontiersin.org 418
into the network, all the blocks were standardized by subtracting
the mean and dividing by the standard deviation. During the
training process, the ADAM algorithm with a learning rate of
0.001 was used to minimize the loss (cross-entropy) function,
with a mini-batch size of 32. Finally, the model with the lowest
validation loss was selected. During the training phase, an L2
regularization strategy on weight and bias was applied to prevent
overfitting. The blocks from the two test sets were fed into the
network to output the predicted probability of every class, and
the class with the highest probability was chosen as the
classification result. All the experiments were performed using
a workstation equipped with two NVIDIA TITAN XP GPUs.

Statistical Analysis
All statistical analyses were performed using SPSS (IBM SPSS
Statistics for Windows, v.25.0, Armonk, NY) and Python. We
compared the diagnostic performance of the CNN model and
mean ADC on the internal test set and external test set. The gold
standard for the diagnosis of breast lesions was the postoperative
histopathology result, and the classification results derived from
the CNN models and the mean ADC were compared with the
FIGURE 2 | Delineation and preprocessing of regions of interest on apparent diffusion coefficient images.
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postoperative histopathology results. The area under the curve
(AUC) and its 95% confidence interval (CI), sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), F1 score, kappa value, and accuracy were
calculated. The cutoff value was determined by maximizing
Youden’s index. Significant differences between AUCs were
compared by DeLong’s test (19). We analyzed the clinical
characteristics of patients with primary breast cancers. Welch’s
t test or Student’s t test was used for continuous variables, and
Pearson’s chi-squared test was used for categorical variables. A p
value < 0.05 was considered statistically significant.
RESULTS

Clinicopathologic Data
The mean age was 48.5 years (range, 29–84 years) for patients in
the training and validation sets, 50.4 years (range, 31–79 years)
for patients in the internal test set, and 50.7 years (range, 35–74
years) for patients in the external test set. Among all 802 patients,
448 (55.8%) had undergone lumpectomy, and 354 (44.2%) had
undergone mastectomy. Surgical specimens revealed 253 (31.5%)
invasive lobular cancers, 202 (25.2%) invasive ductal cancers, and
347 (43.3%) DCIS cases. Among all the lesions, 688 (85.8%)
Frontiers in Oncology | www.frontiersin.org 519
presented as mass lesions, whereas 114 (14.2%) were nonmass
lesions. The clinicopathological characteristics of all participants
are listed in Table 2.
CNN Model and Mean ADC
Anoverview of the performance of the CNNmodel andmeanADC
is shown in Table 3. Regarding the differentiation of IBC and DCIS
in 140 patients in the internal test set, the CNN model yielded
excellent performance, with an AUC of 0.977 (95% CI: 0.957,
0.998), a sensitivity of 0.893, a specificity of 0.929, a PPV of 0.949,
anNPV of 0.852, an F1 score of 0.908, a kappa value of 0.809 and an
accuracy of 0.907. In the internal test set, the mean ADC of the IBC
group was 0.859×10−3 mm2/s (standard deviation, 0.148×10−3

mm2/s); in the DCIS group, it was 1.118×10−3 mm2/s (standard
deviation, 0.169×10−3 mm2/s) (Figure 4A). IBC showed
significantly lower ADCs than DCIS (P < 0.001). The optimal
threshold for an ADC of 0.980×10−3 mm2/s was applied to the
internal test set (Figure 4D), and the mean ADC at this threshold
showed an AUC of 0.866 (95% CI: 0.805, 0.927), a sensitivity of
0.845, a specificity of 0.821, a PPV of 0.877, an NPV of 0.780, an F1
score of 0.836, a kappa value of 0.661 and an accuracy of 0.836. As
shown in Figure 5A, the performance of the CNN model was
significantly better than that of the mean ADC (P = 0.001).
FIGURE 3 | Architecture of the convolutional neural network.
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Regarding the identification of IBC and DCIS in 102 patients in
the external test set, the CNN model also achieved good
performance, with an AUC of 0.926 (95% CI: 0.876, 0.976), a
sensitivity of 0.873, a specificity of 0.894, a PPV of 0.906, an NPV of
0.857, an F1 score of 0.882, a kappa value of 0.764 and an accuracy of
0.902. The mean ADCwas also significantly lower in the IBC group
than in theDCIS group in the external test set (P < 0.001). Themean
ADC in the IBC group was 0.907×10−3 mm2/s (standard deviation,
0.178×10−3 mm2/s), while the mean ADC in the DCIS group was
1.138×10−3 mm2/s (standard deviation, 0.139×10−3 mm2/s)
(Figure 4B). The optimal threshold for an ADC of 1.029 × 10−3

mm2/s was applied to the external test set (Figure 4E), and themean
ADC at this threshold showed an AUC of 0.845 (95% CI: 0.766,
0.925), a sensitivity of 0.818, a specificity of 0.829, a PPV of 0.849, an
NPV of 0.796, an F1 score of 0.824, a kappa value of 0.646 and an
accuracy of 0.824. As shown in Figure 5B, the performance of the
Frontiers in Oncology | www.frontiersin.org 620
CNN model was slightly better than that of the mean ADC, while
there was no significant difference between them (P = 0.096).

Regarding the identification of IBC and DCIS in 560 patients
in the training and validation sets, the mean ADC in the IBC
group was 0.853×10−3 mm2/s (standard deviation, 0.159×10−3

mm2/s). In the DCIS group, the mean ADC was 1.123×10−3

mm2/s (standard deviation, 0.169×10−3 mm2/s) (Figure 4C). IBC
showed significantly lower ADCs than DCIS (P < 0.001). The
optimal threshold for an ADC of 0.985×10−3 mm2/s was applied
to the training and validation sets (Figure 4F), and the mean
ADC at this threshold showed an AUC of 0.868 (95% CI: 0.838,
0.899), a sensitivity of 0.864, a specificity of 0.820, a PPV of 0.861,
an NPV of 0.823, an F1 score of 0.845, a kappa value of 0.684 and
an accuracy of 0.845.

The training and validation curves of the CNN model that
reflect the process of training are shown in Figure 6. As the
TABLE 2 | Clinicopathological characteristics of the participants.

Characteristic Tra and Val Sets Internal Test Set External Test Set P value

Patients 560 140 102
Age 48.5 (29–84) 50.4 (31–79) 50.7 (35–74) 0.321
<40 y 118 (21.1) 26 (18.6) 13 (12.7)
40-49 y 193 (34.5) 47 (33.6) 38 (37.3)
50-59 y 142 (25.3) 44 (31.4) 34 (33.3)
≥60 107 (19.1) 23 (16.4) 17 (16.7)

Menopausal status 0.572
Premenopausal 293 (52.3) 67 (47.9) 55 (53.9)
Postmenopausal 267 (47.7) 73 (52.1) 47 (46.1)

Tumor size 0.848
≤2.0 cm 258 (46.1) 61 (43.6) 41 (40.2)
2.1-4.0 cm 253 (45.2) 67 (47.9) 51 (50.0)
>4.0 cm 49 (8.7) 12 (8.5) 10 (9.8)

Lesion position 0.053
Right 296 (52.8) 75 (53.5) 41 (39.9)
Left 264 (47.2) 65 (46.5) 61 (60.1)

Morphology 0.683
Mass 484 (86.5) 119 (85.3) 85 (83.1)
Non-mass 76 (13.5) 21 (14.7) 17 (16.9)

Histologic type 0.619
Invasive 316 (56.4) 84 (60.0) 55 (53.9)
DCIS 244 (43.6) 56 (40.0) 47 (46.1)

Tumor grade 0.063
Low 87 (15.5) 28 (19.9) 23 (23.1)
Moderate 298 (53.3) 81 (57.8) 45 (43.8)
High 175 (31.2) 31 (22.3) 34 (33.1)
January 2022 | Volume 11 | Articl
Tra and val sets, Training and validation sets; DCIS, ductal carcinoma in situ.
TABLE 3 | Performance of the CNN model and mean ADC.

Internal Test Set (140) External Test Set (102) Tra and Val Sets (560)

CNN Model Mean ADC CNN Model Mean ADC Mean ADC

Accuracy 0.907 0.836 0.902 0.824 0.845
Sensitivity 0.893 0.845 0.873 0.818 0.864
Specificity 0.929 0.821 0.894 0.829 0.820
PPV 0.949 0.877 0.906 0.849 0.861
NPV 0.852 0.780 0.857 0.796 0.823
F1 score 0.908 0.836 0.882 0.824 0.845
kappa value 0.809 0.661 0.764 0.646 0.684
AUC (95% CI) 0.977 (0.957-0.998) 0.866 (0.805-0.927) 0.926 (0.876-0.976) 0.845 (0.766-0.925) 0.868 (0.838-0.899)
AUC, area under the receiver operating characteristic curve; CI, confidence interval; CNN, convolutional neural network; NPV, negative predictive value; PPV, positive predictive value; Tra
and val sets, training and validation sets; ADC, apparent diffusion coefficient.
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training epoch continued, the accuracy curves of the training and
validation sets gradually became stable after the rapid rise and
slow rise, and the loss curves of the training and validation sets
gradually became stable after the rapid decline and slow decline.
The similar trends of the two loss curves suggest that the CNN
model was not overfitted. The training was performed for 160
epochs, and the CNN model learned the entire training set once
Frontiers in Oncology | www.frontiersin.org 721
at each epoch. The CNN model achieved the best accuracy at the
60th epoch, and the assessments on the internal test set and
external test set were based on this best model. For the CNN
model, the training of the model took approximately 48 hours,
and the prediction took approximately one second for a single
lesion. For the mean ADC, it took approximately 3 to 8 minutes
to perform the measurement and calculation for a single lesion.
A B C

D E F

FIGURE 4 | Mean ADC of the invasive breast cancer group and breast ductal carcinoma in situ group in the internal test set (A) external test set (B) and training
and validation sets (C). Relationship between the Youden index and threshold in the internal test set (D) external test set (E) and training and validation sets (F).
A B

FIGURE 5 | Receiver operating characteristic curve analysis for the differentiation of breast ductal carcinoma in situ and invasive breast cancers in the internal test
set (A) and the external test set (B).
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DISCUSSION

This study showed the exciting utility of the CNN model in
identifying IBC and DCIS. The CNN model showed good
performance, with AUCs of 0.977 and 0.926, sensitivities of 0.893
and 0.873, and specificities of 0.929 and 0.894 for the internal test
set and the external test set, respectively. The mean ADCs of DCIS
were significantly higher than those of IBC in our study. This
finding is in concurrence with those of previous studies (20). The
mean ADC of the internal test set and external test set showed
AUCs of 0.866 and 0.845, sensitivities of 0.845 and 0.818, and
specificities of 0.821 and 0.829, respectively. Overall, the
performance of the CNN model was better than that of the mean
ADC. Our study successfully developed a model for discriminating
IBC and DCIS in patients with breast cancer using CNN, and our
results showed an improved performance in the assessment of
pathological subtypes of breast cancer based on ADC images from
the preoperative scans of the patients.

DWI is a quantitative measurement technique that depicts the
Brownian motion of water molecules, and the ADC indirectly
shows the integrity of cell membranes and degree of cell crowding
(21). Therefore, the ADC provides some insight into the
biological characteristics of breast lesions. Although the mean
ADC has helped considerably to differentiate the pathological
subtypes of breast cancer, it represents only the average
measurement of voxels in the ROI area and does not consider
the spatial relationship among voxels. The CNN model obtained
a significantly higher AUC than the mean ADC in both the
internal test set and external test set, indicating that much spatial
information hidden in the ADC images of patients with primary
breast cancer is useful to differentiate among pathological
subtypes. This finding was also observed in a previous study (22).

ADC is an objectively and quantitatively measured variable
that is less dependent on reader and interobserver variabilities
than conventional morphologic features, such as shape, margin,
or distribution pattern (10, 23). However, the variability of the
ADC in breast DWI due to the signal-to-noise ratio, motion, off-
isocenter effects, different field strengths, sequence variants of the
Frontiers in Oncology | www.frontiersin.org 822
different platforms, and inconsistencies in the ROI definition
cannot be ignored (24, 25). In our study, for both the internal test
set and external test set, the mean ADC achieved satisfactory
performance, but the mean ADC and optimal thresholds were
quite different. Our findings were consistent with those of some
previous studies, which showed significant differences in the
ADCs of lesions between IBC (ranging from 0.65 to 1.31×10−3

mm2/s) and DCIS (ranging from 0.83 to 1.59 × 10−3 mm2/s) (20,
26, 27). These substantial heterogeneities indicate that
standardized measurement protocols, centralized quality
control and centralized analyses are needed for different
medical institutions, and different thresholds will be needed for
ADC images of patients with primary breast cancer obtained
from different scanners, protocols, and field strengths (28, 29).

In our study, the CNN model eliminated the challenge of
artificially selecting the optimal ADC cutoff value and had similar
performance on the internal test set and external test set. ADC
images were normalized to the range from 0 to 1. The normalization
method can partially eliminate the difference in data obtained from
different scanners. Additionally, unlike the MRI signal of T1W and
T2W sequences, which is nonlinearly related to proton density,
relaxation time, time of repetition, and time of echo, ADC is an
inherent physical value (22). Each ADC of a pixel-by-pixel volume
has the same drift tendency when using different scanners, protocols,
and field strengths. The advantage of the CNN model is that it
considers the spatial relationship of a pixel-by-pixel volume in the
task of identification and, may further ignore the differences from the
grayscale drift of ADC images. Therefore, ADC images may be less
affected by different scanners and could be good candidates to
construct CNN models using data from multiple sources.

Although the manual placement of round ROIs slice-by-slice is a
common method of measurement, the definition of these ROIs is
very tedious and time-consuming. Additionally, operator variability
in the definition of these ROIs is a significant factor currently
limiting the reproducibility of ADC measurements. In our study,
the blocks were generated based on polygon ROIs for the CNN
model, and these blocks contained some peritumoral parenchyma.
This method not only ensures a certain degree of repeatability but
A B

FIGURE 6 | Loss curves (A) and accuracy curves (B) of the training and validation sets.
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also obtains additional peritumoral information that helps predict
invasion. The peritumoral/tumor ADC ratio is likely related to the
extensive hyaluronan accumulation and biological aggressiveness of
breast cancer (30). The peritumoral environment contain critical
and rich information related to tumor invasiveness, including
lymphovascular invasion, angiogenesis, lipids, and inflammatory
components, which can be used for diagnosis or prediction (13, 31).
Previous studies have confirmed that combining intratumoral and
peritumoral regions can achieve significantly better performance in
different tasks (32, 33).

This study has several limitations. First, this study had a
retrospective design, and our results were based on a limited
number of patients. Therefore, larger sample size studies are
needed in the future to confirm the results. Second, selection bias
may be present in our study, because these patients were not
consecutive cases. Third, although the possible benefits of
additional information from the peritumoral regions were
considered, the blocks were not the best choice for sampling
peritumoral information. An automatic segmentation algorithm
based on certain standards is a promising solution, but the
accuracy and stability of these algorithms still need improvement.
CONCLUSION

In summary, the ADC-based CNN model can improve the
differentiation of IBC from DCIS with higher accuracy and less
time. This strategy seems to be an effective alternative, valuable,
noninvasive method to assess breast cancer invasiveness. Thus, our
ADC-based CNN model has great potential to reduce overdiagnosis
and is a potentially useful decision support tool in clinical applications.
Frontiers in Oncology | www.frontiersin.org 923
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Purpose: To explore the clinical value of apparent diffusion coefficient (ADC), intravoxel
incoherent motion (IVIM), and diffusion kurtosis imaging (DKI) based on diffusion-weighted
MRI (DW-MRI) for predicting genotypes and prognostic factors of breast cancer.

Materials and Methods: A total of 227 patients with breast cancer confirmed by
pathology were reviewed retrospectively. Diffusion-weighted imaging (DWI), IVIM, and DKI
were performed in all patients. The corresponding ADC, true diffusion coefficient (D),
perfusion-related diffusion coefficient (D*), perfusion fraction (f), mean diffusion rate (MD),
and mean kurtosis value (MK) were measured. Multivariate logistic regression analysis and
receiver operating characteristic (ROC) curve were used to analyze the diagnostic efficacy in
predicting the Nottingham prognostic index (NPI), the expression of antigen Ki-67, and the
molecular subtypes of breast cancer. The nomogram of the combined genotype-prediction
model was established based on the multivariate logistic regression model results.

Results: D* and MK values were significantly higher in the high-grade Nottingham group
(NPI ≥ 3.4) than the low-grade Nottingham group (NPI < 3.4) (p < 0.01). When D* ≥ 30.95 ×
10−3 mm2/s and MK ≥ 0.69, the NPI tended to be high grade (with areas under the curve
(AUCs) of 0.712 and 0.647, respectively). The combination of D* andMK demonstrated the
highest AUC of 0.734 in grading NPI with sensitivity and accuracy of 71.7% and 77.1%,
respectively. Additionally, higher D*, f, and MK and lower ADC and D values were observed
in the high Ki-67 than low Ki-67 expression groups (p < 0.05). The AUC of the combined
model (D + D* + f + MK) was 0.755, being significantly higher than that of single parameters
(Z = 2.770~3.244, p = 0.001~0.006) in distinguishing high from low Ki-67 expression. D*
and f values in the Luminal A subtype were significantly lower than in other subtypes (p <
0.05). Luminal B showed decreased D value compared with other subtypes (p < 0.05). The
HER-2-positive subtype demonstrated increased ADC values compared with the Luminal
B subtype (p < 0.05). Luminal A/B showed significantly lower D, D*, MD, and MK than the
non-Luminal subtypes (p < 0.05). The combined model (D + D* + MD + MK) showed an
AUC of 0.830 in diagnosing the Luminal and non-Luminal subtypes, which is significantly
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higher than that of a single parameter (Z = 3.273~4.440, p < 0.01). f ≥ 54.30% [odds ratio
(OR) = 1.038, p < 0.001] and MK ≥ 0.68 (OR = 24.745, p = 0.012) were found to be
significant predictors of triple-negative subtypes. The combination of f and MK values
demonstrated superior diagnostic performance with AUC, sensitivity, specificity, and
accuracy of 0.756, 67.5%, 77.5%, and 82.4%, respectively. Moreover, as shown in the
calibration curve, strong agreements were observed between nomogram prediction
probability and actual findings in the prediction of genotypes (p = 0.22, 0.74).

Conclusion: DWI, IVIM, and DKI, as MR diffusion imaging techniques with different
mathematical models showed potential to identify the prognosis and genotype of breast
cancer. In addition, the combination of these three models can improve the diagnostic
efficiency and thus may contribute to opting for an appropriate therapeutic approach in
clinic treatment.
Keywords: breast neoplasms, magnetic resonance imaging, diffusion-weighted imaging, intravoxel incoherent
motion, diffusion kurtosis imaging
INTRODUCTION

Breast cancer is the most common malignancy among women
(1). The management and overall survival of breast cancer are
highly individualized and routinely based upon prognostic
factors, such as the Nottingham prognostic index (NPI), the
antigen Ki-67, and molecular expression signatures (2, 3). The
NPI is the most validated system in breast cancer with the least
interobserver variability currently (4). A higher Nottingham
grade is associated with shorter survival and early recurrence,
irrespective of tumor size, hormone receptor status, or lymph
node metastasis status (5, 6). The Ki-67 index, reflecting the
extent of proliferative activity, is a reliable identifier of more
aggressive breast cancer and is associated with high risk for
metastasis or recurrence, worse prognosis, and decreased
survival (7). Furthermore, preoperative genotyping of breast
cancer is essential because it may predict neoadjuvant
chemotherapy responsiveness and allow optimized strategies
for patient-tailored therapy. The Luminal A subtype is less
responsive to chemotherapy, whereas the Luminal B subtype is
responsive not only to chemotherapy but also to endocrine
treatment or molecular-targeted therapy. The HER-2-positive
subtype is insensitive to endocrine therapy but sensitive to
targeted drugs such as trastuzumab therapy (8, 9). Triple-
negative breast cancer (TNBC) lacks expressions of all three
receptors (ER, PR, and HER-2) and is known to have a more
aggressive clinical course and poorer outcomes (10, 11).
However, both the prognostic factors and genotypes need to be
obtained by biopsy or surgery.

MRI has a greater sensitivity than mammography or
ultrasound in the diagnosis of breast cancer (12). Both dynamic
contrast-enhanced MRI (DCE-MRI) and diffusion-weighted
imaging (DWI) can detect the microscopic features of tumors.
However, DCE-MRI requires intravenous contrast media
administration; thus, it is not suitable to be used in patients
with renal dysfunction. Moreover, as a semiquantitative analysis,
time-signal intensity curve (TIC) assessment was reported with a
226
low specificity in benign and malignant breast lesions (13). DWI
with apparent diffusion coefficient (ADC) is routinely used in
breast diagnosis, but the reported diagnostic reliability is still
controversial, mainly due to inaccurate depiction of water
molecule diffusion with the Gaussian model and influence of
microcirculation perfusion (14). To address these two issues, an
extended diffusion model of diffusion kurtosis imaging (DKI)
reflects non-Gaussian diffusive motions of water in biologic
tissues and has the potential to characterize the tissue
heterogeneity and the interaction between water molecules and
adjacent tissues (15). Meanwhile, intravoxel incoherent motion
(IVIM) with multiple b-values, as another advanced diffusion
model, allows the usage of a bi-exponential model to derive fast
and slow diffusion parameters, aiming to separate diffusion from
perfusion behaviors and better reflect the internal situation of
tumors (16).

So far, multiple diffusion imaging techniques, including DWI,
IVIM, or DKI, have been applied to evaluate the diagnostic value
for prognostic factors and genotypes previously (17–19).
However, to our best knowledge, no study was implemented to
systematically apply these three techniques with individual
mathematical models for comparison and to investigate the
potential of the combined model in discriminating the
prognostic factors and genotypes of breast cancer.

This study aimed to quantitatively compare the diagnostic
performance of DWI, IVIM, DKI, and combined models for
discriminating the prognostic factors and genotypes of
breast cancer.
MATERIALS AND METHODS

Patients
From January 2019 to August 2021, 279 patients with breast
cancer, confirmed by pathological examination, were recruited.
The inclusion criteria were as follows: a) no contraindications to
MRI examination; and b) all patients underwent routine MRI
January 2022 | Volume 12 | Article 825264
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and multi-b-value DWI images. The exclusion criteria were as
follows: a) receiving surgery, biopsy, or chemoradiotherapy
before the examination; b) unsatisfactory imaging quality;
c) time interval between MRI and surgery or biopsy was more
than 2 weeks; and d) breast lesion with a size of less than 5 mm.
Figure 1 shows the flow diagram of the recruitment process.
Finally, 227 patients were included in this study.

MRI Acquisition
A 3.0-T MR scanner (Discovery MR 750W, GEMedical Systems,
Chicago, IL, USA) with a 16-channel phased-array coil specific
for breast imaging was used for all MRI experiments. All patients
were scanned in the prone position, with breasts naturally
suspended in the coil. Premenopausal patients were examined
in the second week of the menstrual cycle. The routine scan
sequences were performed as follows: a transverse axial fast spin-
echo T1-weighted imaging (FSE-T1WI) sequence [repetition
time (TR)/echo time (TE) = 420/10 ms, field of view (FOV) =
320 mm × 288 mm, slice thickness/gap = 5/1 mm] and an axial
Frontiers in Oncology | www.frontiersin.org 327
fat-suppressed fast-recovery fast spin-echo T2-weighted imaging
(FRFSE-T2WI) sequence (TR/TE = 6,000/88 ms, FOV = 320 ×
288 mm, slice thickness/gap = 5/1 mm). DWI, IVIM, and DKI
were acquired before contrast injection using spin-echo echo-
planar imaging sequence (SE-EPI). The parameters of DWI were
as follows: TR/TE = 3,600/73 ms, the excitations (NEX) = 2, and
b-values of 0 and 1,000 s/mm2. IVIM was performed with the
following parameters: TR/TE = 2,500/90 ms, matrix = 128 × 128
mm. Thirteen b-values (0, 20, 30, 50,70, 100, 150, 200, 500, 700,
1,000, 1,500, 2,000 s/mm2) were used in three orthogonal
directions. As the b-value increased, the number of NEX also
increased from 1 to 6 to ensure a sufficient image signal-to-noise
ratio (SNR). The total acquisition time for IVIM was 6 min 40 s.
DKI was obtained at b-values of 0, 1,000, and 2,000 s/mm2.
Fifteen diffusion gradient directions were set separately at b-
values of 1,000 and 2,000 s/mm2. Other scan parameters were
TR/TE = 5,000/90 ms, matrix = 128 × 128, NEX = 2, and scan
time = 5 min 55 s. The section thickness/gap and FOV of DWI,
IVIM, and DKI were copied from the FRFSE-T2WI sequence.
FIGURE 1 | Flowchart of the enrolled patients.
January 2022 | Volume 12 | Article 825264
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Data Analysis
All images were transferred to Advantage Workstation (version
AW 4.6, GE Medical Systems) for post-processing. Acquired
DWI, IVIM, and DKI data were processed by vendor-provided
software (Function tool MADC and DKI software; GE
Healthcare) to acquire corresponding parametric maps.

For DWI, ADCmaps were generated on a pixel-by-pixel basis
according to a mono-exponential model: Sb/S0 = exp (−b·ADC),
where b is the diffusion factor, and Sb and S0 are the signal
intensities with diffusion factors of 1,000 and 0 s/mm2 (20).

IVIM-derived parameters were calculated based on the
following bi-exponential model: Sb/S0 = (1 − f) × exp(−b × D) +
f × exp[−b × (D* + D)], where Sb is the diffusion-weighted signal
at a certain b-value; S0 is the signal without diffusion weighting at
b = 0; D, true diffusion coefficient, represents pure water molecular
diffusion in tissues; D*, pseudo-diffusion coefficient, a fast
component of diffusion, reflects the incoherent movements of
microvascular blood within the voxel; and f, perfusion fraction,
represents the volume fraction of random microcirculation over
the total incoherent signal in each voxel (21).

DKI parameters were calculated using the following equation:
Sb = S0·exp(−b

2·D2 + b·D2·K/6), where S0 and Sb represent the
signal intensity (SI) under different b-values (0 s/mm2 or other
values); K (arbitrary units) indicates kurtosis and represents the
degree of deviation from the Gaussian distribution; and D (×10−3

mm2/s) indicates diffusivity and represents the diffusion
coefficient corrected for non-Gaussian bias (22).

The region of interest (ROI) was delineated on the grayscale
map with a b-value of 1,000 s/mm2 (12), and then, the pseudo-
color images of the IVIM and DKI parameters were merged with
the grayscale map by using 3D SynchroView (GE Healthcare)
(Figure 2). The ROI included as much of the solid region of the
tumor as possible, while regions with large blood vessels, necrosis,
or hemorrhage were avoided. For patients with multicentric or
multifocal tumors, only the tumors with the largest diameter were
analyzed. For the non-mass lesions, the ROI was placed on the
representative solid slice of the tumor by using the plain scan and
contrast-enhanced sequence as references. The ROI was
delineated by two independent radiologists (LZ and WW with
15 and 5 years of experience, respectively). In order to reduce the
measurement error caused by the bias of ROI selection, the
maximum layer of the lesion, and the upper and lower
consecutive levels were measured three times. Then, the
corresponding average value was calculated for data analysis.
Pathological Evaluation
All patients underwent breast-conserving surgery or
mastectomy, while 64 patients received additional biopsy
before operation. Tumor size, axillary node status, histologic
type, histologic grade, and lymphovascular invasion status were
determined based on surgically excised specimens. The
pathological evaluation of the surgically resected specimens
was performed by two pathologists (with 4 and 12 years of
experience) independently. NPI was calculated according to the
following formula: NPI = size (cm) × 0.2 + lymph node staging
Frontiers in Oncology | www.frontiersin.org 428
(1–3) + histologic grade (1–3). No metastatic lymph nodes is 1
point, 1–4 nodes is 2 points, and more than 4 nodes is 3 points.
Based on NPI scores, the low-grade (2.0–3.4 points) and high-
grade (>3.41 points) groups were defined (23). Tumor subtypes
were classified as Luminal A for ER or PR positive, HER-2
negative, and Ki-67 negative; as Luminal B for ER or PR positive,
HER-2 positive, and Ki-67 positive; as HER-2 positive for ER and
PR negative and HER-2 positive; and as triple negative (TN) for
ER, PR, and HER-2 negative. ER and PR positivity were defined
as 10% or with more positively stained nuclei in 10 high-power
fields. Ki-67 labeling was defined as negative (<14%) or positive
(≥14%). The intensity of HER-2 staining was semiquantitatively
scored as 0, 1+, 2+, or 3+. Tumors with a 3+ score were classified
as HER-2 positive, and tumors with 0 or 1+ score were classified
as HER-2 negative. In tumors with a 2+ score, gene amplification
with fluorescence in situ hybridization was used to determine
HER-2 status (24).

Statistical Analysis
Statistical analyses were conducted using SPSS 25.0 (IBM
Corporation, Armonk, NY, USA), MedCalc 19.5.1 (Ostend,
Belgium), and R version 4.0.0 (http://www.r-project.org/). The
interobserver consistency was assessed by inter-class correlation
coefficients (ICCs). The interpretation of ICC values was defined
as follows: 0.00–0.20, poor agreement; 0.21–0.40, fair agreement;
0.41–0.60, moderate agreement; 0.61–0.80, good agreement; and
0.81–1.00, excellent agreement (25). The Kolmogorov–Smirnov
test was used to determine whether two samples of measurement
data were normally distributed. An independent-samples t-test
was used to compare the ADC, D, MD, and MK values between
different prognostic factors. The Mann–Whitney U test was used
to detect the difference in D* and f values between the different
prognostic factors. Moreover, one-way ANOVA was used for
multiple comparisons of ADC, D, MD, and MK values between
different genotypes; and the Kruskal–Wallis H test was
performed to compare D* values among different genotypes.
Multivariate logistic regression analyses were used to identify
independent factors. Receiver operating characteristic (ROC)
curves were used to assess the diagnostic efficacy of each
parameter or model in discriminating prognostic factors or
genotypes, and the Delong test was used to determine whether
the area under the curve (AUC) of each ROC was significantly
different. p < 0.05 was considered statistically significant. A
nomogram was developed based on the outcomes of
multivariate logistic regression to predict the genotypes. And a
calibration using bootstraps with 1,000 resamples for internal
validation by comparing nomogram-predicted versus
nomogram-observed response probability was done as well as
the Hosmer–Lemeshow goodness-of-fit test.
RESULTS

Clinical and Pathological Characteristics
The average age of the 227 patients was 50.8 ± 10.3 years (range
27–86). The histological types included 206 invasive ductal
January 2022 | Volume 12 | Article 825264
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carcinomas (90.7%), 7 ductal carcinoma in situ (3.1%), 4 invasive
lobular carcinomas (1.8%), 3 mucinous carcinomas (1.3%), 3
invasive ropapillary carcinomas (1.3%), 3 medullary carcinoma
(1.3%), and 1 cribriform carcinoma (0.5%). Of the 227 lesions,
151 (66.5%) were classified as Luminal subtype, 36 (15.9%) as
HER-2-posit ive subtype, and 40 (17.6%) as TNBC
subtype (Table 1).

Interobserver Agreement
The ICCs between the two radiologists were 0.878 [95% CI: 0.842–
0.906], 0.820 (95% CI: 0.766–0.861), 0.908 (95% CI: 0.880–0.929),
0.892 (95% CI: 0.860–0.917), 0.870 (95% CI: 0.832–0.900), and
0.886 (95% CI: 0.852–0.912) for ADC, D, D*, f, MD, and MK
Frontiers in Oncology | www.frontiersin.org 529
measurements, respectively, indicating an excellent
interobserver agreement.
Diagnostic Performance of Diffusion-
Weighted Imaging-, Intravoxel Incoherent
Motion-, and Diffusion Kurtosis Imaging-
Derived Parameters in Differentiating
Prognostic Factors of Breast Cancer
The D* and MK values were significantly higher in tumors of the
high-grade Nottingham group (NPI ≥ 3.4) than those of the low-
grade Nottingham group (NPI < 3.4) (p < 0.01). The D*, f, and
MK values were higher and the ADC and D values were lower in
FIGURE 2 | A 47-year-old female patient with triple-negative cancer in the right breast. (A) ROI was set on the grayscale map with b-value of 1,000 s/mm2. (B–G) The
pseudo-colored maps of the ADC, D, D*, f, MD, and MK. ADC = 1.05 × 10−3 mm2/s, D = 0.92 × 10−3 mm2/s, D* = 41.8 × 10−3 mm2/s, f = 81.1%, MD = 2.58 × 10−3

mm2/s, and MK = 0.774. (H) H&E staining of the invasive breast ductal carcinoma (×200). (I–L) Immunohistochemistry staining for the ER (I), PR (J), HER-2 (K), and
Ki-67 (L) in the invasive breast ductal carcinoma. ROI, region of interest; ER, estrogen receptor; PR, progesterone receptor.
January 2022 | Volume 12 | Article 825264
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the high Ki-67 expression group than in the low expression
group (p < 0.05) (Table 2).

Diagnostic Efficiency of Diffusion-
Weighted Imaging-, Intravoxel Incoherent
Motion-, and Diffusion Kurtosis Imaging-
Derived Parameters for Predicting
Nottingham Prognostic Index and Ki-67
According to the multivariate logistic regression, D* [odds ratio
(OR) = 1.038, p < 0.001] and MK (OR = 24.745, p = 0.012) were
found to be significant predictors of NPI.When D* ≥ 30.95 × 10−3

mm2/s and MK ≥ 0.69, the NPI tended to be high grade, and the
AUCs were 0.712 and 0.647, respectively. The combination ofMK
and D* demonstrated the highest sensitivity and accuracy of
Frontiers in Oncology | www.frontiersin.org 630
71.7% and 77.1%, respectively. The AUC of the combined model
(D* +MK)was significantly higher than that ofMK (Z = 2.148, p =
0.032),whereas therewasno statistically significantdifference from
that of D* (Z = 0.879, p = 0.379) (Table 3 and Figure 3A).

D (OR = 1.623, p = 0.046), D* (OR = 0.972, p = 0.002), f (OR =
0.964, p = 0.003), and MK (OR = 0.066, p = 0.011) were
independent factors in evaluating the Ki-67 expression status.
When D ≤ 0.68 × 10−3 mm2/s, D* ≥ 31.02 × 10−3 mm2/s, f ≥
34.75%, andMK≥ 0.65, Ki-67 tended to have high expression. The
differences in AUCs of D (0.625), D* (0.634), f (0.638), and MK
(0.657) were not statistically significant (Z = 0.074~0.705, p =
0.481~0.940). TheAUCof the combinedmodel (D+D* + f +MK)
was 0.755, being significantly higher than that of each single
parameter (Z = 2.770~3.244, p = 0.001~0.006) (Table 3
and Figure 3B).

Diagnostic Performance of Diffusion-
Weighted Imaging-, Intravoxel Incoherent
Motion-, and Diffusion Kurtosis Imaging-
Derived Parameters in Differentiating
Molecular Subtypes of Breast Cancer
The D* and f values in the Luminal A subtype were significantly
lower than those of other subtypes (p < 0.05). Luminal A also
exhibited decreased D value as compared with the HER-2-
positive subtype (p < 0.05). The D value in the Luminal B
subtype was significantly lower than that of other subtypes
(p < 0.05). The Luminal B subtype exhibited decreased D* and
MD values compared with the HER-2-positive and triple-
negative subtypes (p < 0.05). The Luminal A/B subtypes (the
Luminal subtypes) showed significantly lower D, D*, MD, and
MK than the non-Luminal subtypes (p < 0.05). The HER-2-
positive subtype demonstrated increased ADC values compared
with the Luminal B subtype (p < 0.05). Triple-negative subtypes
exhibited increased f value compared with the HER-2-positive
and Luminal B subtypes (p < 0.05) (Table 4 and Figure 4).

Development, Validation, and Diagnostic
Efficiency of the Genotype-Prediction
Models of Breast Cancer
According to the multivariate logistic regression, D (OR = 21.023,
p < 0.001), D* (OR = 1.017, p = 0.025), MD (OR = 1.057, p =
0.001), andMK (OR = 24.745, p < 0.001) were independent factors
in identifying the Luminal subtypes from the non-Luminal
TABLE 1 | Clinicopathological characteristics of the included patients.

Characteristics Data

Age (years), mean ± SD 50.8 ± 10.3
Mean tumor size (cm), mean ± SD 2.56 ± 1.22
Histologic grade, n (%)
1 16 (7.0%)
2 99 (43.6%)
3 112 (49.4%)

Histological type, n (%)
Invasive ductal carcinoma 206 (90.7%)
Non-invasive ductal carcinoma 21 (9.3%)
Nodal status, n (%)
Negative (−) 95 (41.9%)
Positive (+) 132 (58.1%)
ER, n (%)
Negative (−) 77 (33.9%)
Positive (+) 150 (66.1%)
PR, n (%)
Negative (−) 95 (41.9%)
Positive (+) 132 (58.1%)

HER-2, n (%)
Negative (−) 107 (47.1%)
Positive (+) 120 (52.9%)

Ki-67, n (%)
Negative (−) 61 (26.9%)
Positive (+) 166 (73.1%)

Genotypes, n (%)
Luminal A 29 (12.8%)
Luminal B 122 (53.7%)
HER-2-positive 36 (15.9%)
Triple-negative 40 (17.6%)
ER, estrogen receptor; PR, progesterone receptor.
TABLE 2 | Diagnostic performance of DWI, DKI, and IVIM parameters in different prognostic factors of breast cancer.

Parameters NPI p-Value Ki-67 p-Value

High Low <14% ≥14%

ADC (×10−3 mm2/s) 0.99 ± 0.35 1.00 ± 0.33 0.884 1.08 ± 0.34 0.96 ± 0.34 0.025
D (×10−3 mm2/s) 0.67 ± 0.32 0.71 ± 0.33 0.407 0.76 ± 0.29 0.65 ± 0.33 0.022
D* (×10−3 mm2/s) 39.98 ± 26.22 23.89 ± 16.99 <0.001* 26.77 ± 15.97 39.70 ± 27.30 <0.001*
f (%) 40.17 ± 16.05 37.93 ± 14.77 0.346* 34.77 ± 14.18 41.44 ± 15.97 0.003*
MD (×10−3 mm2/s) 2.43 ± 0.76 2.45 ± 0.74 0.868 2.46 ± 0.79 2.39 ± 0.66 0.500
MK 0.74 ± 0.23 0.63 ± 0.19 0.001 0.63 ± 0.17 0.75 ± 0.23 <0.001
January 2022 | Volume 12 | Article
NPI, Nottingham prognostic index; DWI, diffusion-weighted imaging; DKI, diffusion kurtosis imaging; IVIM, intravoxel incoherent motion.
*Mann–Whitney U test.
825264

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Quantitative Imaging in Breast Cancer
subtypes. The differences in AUCs were not statistically significant
(Z = 0.164~0.826, p = 0.409~0.765). The AUC of the combined
model (D + D* + MD + MK) was 0.830, which was significantly
higher than that of each single parameter (Z = 3.273~4.440, p <
0.01) (Table 5 and Figure 5A). The nomogram model was thus
generated by using these four independent factors as predictors
(Figure 6A). As shown in the calibration curve, a good agreement
was observed between nomogram prediction values and actual
Frontiers in Oncology | www.frontiersin.org 731
findings, and the Hosmer–Lemeshow test showed no significant
difference (p = 0.22) (Figure 7A).

f ≥ 54.30% (OR = 1.038, p < 0.001) and MK ≥ 0.68 (OR =
24.745, p = 0.012) were found to be significant predictors of
triple-negative subtypes. The AUC of the combined model (f +
MK) was significantly higher than that of f (Z = 2.521, p = 0.012),
whereas there was no statistically significant difference from that
of MK (Z = 1.645, p = 0.100) (Table 5 and Figure 5B).
TABLE 3 | Diagnostic efficiency of the IVIM and DKI models for predicting Nottingham index and Ki-67.

Parameters AUC 95% CI Cutoff Sensitivity (%) Specificity (%) Accuracy (%)

Nottingham index
D* 0.712 0.635~0.789 30.95 × 10−3 mm2/s 64.9 81.1 76.7
MK 0.647 0.563~0.730 0.69 59.2 66.0 73.2

Combined model 0.734 0.672~0.791 : 71.7 65.5 77.1
Ki-67
D 0.625 0.545~0.705 0.68 × 10−3 mm2/s 60.7 65.7 71.8
D* 0.634 0.558~0.710 31.02 × 10−3 mm2/s 61.8 68.9 72.6
f 0.638 0.813~0.913 34.75% 65.7 60.7 73.1
MK 0.657 0.581~0.733 0.65 68.1 59.0 73.5

Combined model 0.755 0.694~0.809 : 67.2 82.0 73.6
Ja
nuary 2022 | Volume 12 |
IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging; AUC, area under the curve.
A B

FIGURE 3 | ROC analysis of IVIM and DKI parameters in predicting Nottingham index (A) and Ki-67 (B) of breast cancer. ROC, receiver operating characteristic;
IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging.
TABLE 4 | Diagnostic performance of DWI, DKI, and IVIM parameters in different genotypes of breast cancer.

Genotypes n ADC (×10−3 mm2/s) D (×10−3 mm2/s) D* (×10−3 mm2/s) F (%) MD (×10−3 mm2/s) MK

Luminal A 29 1.01 ± 0.29 0.72 ± 0.30 17.29 ± 8.87 28.88 ± 12.51 2.44 ± 0.73 0.63 ± 0.16
Luminal B 122 0.93 ± 0.32 0.58 ± 0.26 35.23 ± 26.11 40.06 ± 14.13 2.24 ± 0.68 0.68 ± 0.21
HER-2-positive 36 1.16 ± 0.41 0.88 ± 0.38 44.88 ± 24.53 36.79 ± 14.16 2.80 ± 0.80 0.79 ± 0.25
Triple-negative 40 1.02 ± 0.35 0.78 ± 0.36 45.20 ± 23.87 48.75 ± 18.66 2.44 ± 0.76 0.84 ± 0.23
F/c2 4.544 11.101 41.376* 10.585 7.713 8.509
p 0.004 <0.001 <0.001 <0.001 <0.001 <0.001
Ar
DWI, diffusion-weighted imaging; DKI, diffusion kurtosis imaging; IVIM, intravoxel incoherent motion.
*Kruskal–Wallis H test.
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A nomogram was established according to the multivariate
logistic regression analysis findings (Figure 6B), and there was
a good agreement between the bias-corrected curve and the ideal
curve as shown in the calibration curve plot and the Hosmer–
Lemeshow test (p = 0.74) (Figure 7B).
DISCUSSION

As shown in the results, the functional parameters of DWI,
IVIM, and DKI revealed distinct values in different
histopathological features and genotypes of breast cancer. For
Frontiers in Oncology | www.frontiersin.org 832
the prognostic factors, D* and MK values were higher in the
high- than low-level NPI group. The f, MK, and D* values were
higher and the D value was lower in the Ki-67-positive than Ki-
67-negative group. In terms of molecular subtypes, the D value of
Luminal B was lower than that of other genotypes. D* and f
values of Luminal A were lower than those of other genotypes.
With the combined model of D, D *, MD, and MK, the
diagnostic efficiency of the Luminal subtypes was greatly
improved. Compared with those of other genotypes, the f and
MK values of TN tumors were higher, and the combination of
these two parameters can improve the prediction accuracy of
TN tumors.
FIGURE 4 | Boxplots of ADC, D, D*, f, MD, and MK in differentiating genotypes of breast cancer. *p < 0.05, **p < 0.01, ***p < 0.001.
TABLE 5 | Diagnostic efficiency of the IVIM and DKI models for predicting molecular subtypes.

Parameters AUC 95% CI Cutoff Sensitivity (%) Specificity (%) Accuracy (%)

Luminal A/B vs. non-Luminal
D 0.676 0.602-0.750 0.66 × 10−3 mm2/s 60.5 64.9 68.7
D* 0.704 0.637-0.770 24.51 × 10−3 mm2/s 88.2 52.3 68.9
MD 0.689 0.618-0.759 2.27 × 10−3 mm2/s 73.7 57.6 67.0
MK 0.666 0.594-0.738 0.537 96.1 30.5 63.3

Combined model 0.830 0.774-0.876 : 73.2 87.4 80.2
Triple-negative vs. other genotypes
f 0.667 0.602-0.728 54.30% 52.5 88.8 66.1
MK 0.686 0.621-0.746 0.68 80.0 49.2 67.2

Combined model 0.756 0.695-0.811 : 67.5 77.5 82.4
Ja
nuary 2022 | Volume 12 |
IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging; AUC, area under the curve.
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A B

FIGURE 5 | ROC analysis of IVIM and DKI parameters in predicting Luminal subtypes (A) and triple-negative subtype of breast cancer (B). ROC, receiver operating
characteristic; IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging.
A

B

FIGURE 6 | The nomogram for predicting the Luminal subtypes (A) and triple-negative subtype of breast cancer (B).
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NPI has been reported as an important value for the
prognostic evaluation and formulation of a treatment plan
(26). A number of previous studies have shown that the ADC
value of DWI, tumor volume doubling time of 3D ultrasound,
and contralateral parenchymal enhancement of DCE-MRI could
predict NPI (27–29). However, to the best of our knowledge, this
study is the first attempt to combine DWI, IVIM, and DKI to
predict the NPI of breast cancer. In our study, the IVIM
parameter of D* and the DKI parameter of MK are shown as
independent predictors in the assessment of NPI. The prediction
accuracy of combined D* and MK was higher than that of each
single parameter. The pathological basis is that NPI can be used
to reflect tumor proliferation and metastasis, which is associated
with tumor cell heterogeneity, more microangiogenesis,
higher blood volume, and vascularization. A higher grade
of NPI manifests higher microperfusion and lower non-
Gaussian diffusivity.

Tumor cells with higher Ki-67 expression generally exhibit
increasing heterogeneity and complexity of the microstructural
level, thereby manifesting higher microperfusion and lower
diffusivity (30). In this study, the D, D*, f, and MK values are
independent predictors in discriminating the Ki-67 expression
status. The AUC of the combined model demonstrated superior
diagnostic performance compared with the single parameter,
which is consistent with the study of Meng et al. (31, 32).
However, in some other studies, it was observed that the
expression of Ki-67 has no significant correlation with the D,
MD, and MK values (33, 34). We speculated that this
discrepancy might be related to the inclusion of lesions, the
selection of b-values, and the ROI delineation.

Luminal A breast cancer is defined as a low-proliferation
subtype and generally has a favorable prognosis compared with
other subtypes. In this study, Luminal A showed the lowest D*
and f values, indicating less intratumoral microperfusion. The
reason may be that ER/PR expression is associated with the
Frontiers in Oncology | www.frontiersin.org 1034
inhibition of angiogenesis, which would reduce perfusion (35).
As ER-/PR-positive and higher Ki-67 indices tend to have lower
diffusivity and vascularity, we found that Luminal B has the
lowest D value. The HER-2-positive subtype demonstrated
increased ADC values compared with the Luminal B subtype.
The reason might be that HER-2 overexpression exhibits higher
angiogenesis, which leads to an increased diffusion (36). The
differentiation between the Luminal and non-Luminal tumors is
of particular clinical importance since Luminal subtypes are
treated with endocrine therapy and may benefit less from
cytotoxic chemotherapy. In this study, non-Luminal breast
cancer, including HER-2-positive and triple-negative tumors,
had a higher D* value than Luminal A/B. It is likely that high
vascularity in HER-2-positive and triple-negative tumors may
overcome the restricted Gaussian diffusion related to high
cellularity, which is in line with findings of Uslu et al. (37). On
the other hand, TNBC has a poor response to endocrine or
targeted therapy as well as chemotherapy, and the prognosis is
worse than that of other subtypes (38). This study found that
triple-negative tumors exhibited higher MK values than other
subtypes, due to the most complex microstructure. Moreover, we
demonstrated that MK could reflect the complexity of the
microscopic structures in tissues more accurately, by using
sufficiently high b-values of 2,000 s/mm2 to eliminate the
perfusion effect. In this study, the calibration curve for the
combined genotype prediction models indicated that these
models had good stability and that the corresponding
nomograms could be helpful for visually and interpretatively
predicting the genotypes of breast cancer patients.

The present research has some limitations. Firstly, there may
be selection bias because of the relatively small sample size and
the limited pathological types (most of which were invasive
ductal carcinoma). Secondly, no unified standard exists for the
option of number and value of b used in IVIM and DKI
scanning, and the repeatability of the b-value used in this
A B

FIGURE 7 | Calibration plot for internal validation of the Luminal subtypes (A) and triple-negative subtype (B). The x-axis is the nomogram-predicted probability of
genotypes. The y-axis is the actual probability. The dotted line represents an ideal standard curve; the solid line represents the prediction calibration curve of the
nomogram. The solid line has a closer fit to the ideal dotted line, which indicates better predictive accuracy of the nomogram (p = 0.22, 0.74).
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study requires further verification. Thirdly, we simply calculated
the ROI-based mean value of each parameter, which might not
be enough to fully reflect the heterogeneity of tumors. An
alternative processing method is to extract the whole volume
of the lesions and analyze the histogram and texture features of
each parameter map, which will be the focus of our future study.

In conclusion, the quantitative parameters of DWI, IVIM,
and DKI are correlated with prognostic metrics. D* combined
with MK is more valuable for assessing the Nottingham index.
ADC, D, D*, f, and MK are valuable for reflecting the KI-67
expression status. The AUC of combined D, D*, MD, and MK
could yield robust diagnostic performance for discriminating
Luminal A/B from non-Luminal breast cancers. Combined MK
and f can facilitate the diagnosis of triple-negative breast cancer.
Therefore, this study suggests that the functional parameters of
DWI, IVIM, and DKI may reveal clinical potential in the
diagnosis of genotypes and prognostic factors and may
contribute to opting for an appropriate therapeutic approach
in the clinic.
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Objective: The aim of this study was to perform a meta‐analysis to evaluate the
diagnostic performance of machine learning(ML)-based radiomics of dynamic contrast-
enhanced (DCE) magnetic resonance imaging (MRI) DCE-MRI in predicting axillary lymph
node metastasis (ALNM) and sentinel lymph node metastasis(SLNM) in breast cancer.

Methods: English and Chinese databases were searched for original studies. The Quality
Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score
(RQS) were used to assess the methodological quality of the included studies. The pooled
sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC) were
used to summarize the diagnostic accuracy. Spearman’s correlation coefficient and
subgroup analysis were performed to investigate the cause of the heterogeneity.

Results: Thirteen studies (1618 participants) were included in this meta-analysis. The
pooled sensitivity, specificity, DOR, and AUC with 95% confidence intervals were 0.82
(0.75, 0.87), 0.83 (0.74, 0.89), 21.56 (10.60, 43.85), and 0.89 (0.86, 0.91), respectively.
The meta-analysis showed significant heterogeneity among the included studies. There
was no threshold effect in the test. The result of subgroup analysis showed that ML, 3.0 T,
area of interest comprising the ALN, being manually drawn, and including ALNs and
combined sentinel lymph node (SLN)s and ALNs groups could slightly improve diagnostic
performance compared to deep learning, 1.5 T, area of interest comprising the breast
tumor, semiautomatic scanning, and the SLN, respectively.

Conclusions: ML-based radiomics of DCE-MRI has the potential to predict ALNM and
SLNM accurately. The heterogeneity of the ALNM and SLNM diagnoses included
between the studies is a major limitation.

Keywords: breast cancer, axillary lymph node metastasis, radiomics, machine learning, dynamic contrast-
enhanced magnetic resonance imaging, meta-analysis
February 2022 | Volume 12 | Article 799209137

https://www.frontiersin.org/articles/10.3389/fonc.2022.799209/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.799209/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.799209/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.799209/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.799209/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:18202990355@139.com
https://doi.org/10.3389/fonc.2022.799209
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.799209
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.799209&domain=pdf&date_stamp=2022-02-04


Zhang et al. Radiomics for Lymph Node Metastasis
HIGHLIGHTS

Overall pooled AUC was 0.89 with (95%CI: 0.86, 0.91)
ML, 3.0 T, being manually drawn, using biopsy as gold standard

could improve diagnostic performance compared to deep learning,
1.5 T, semiautomatic scanning, pathology, respectively.
INTRODUCTION

*Axillary lymph node metastasis (ALNM) is common in breast
cancer patients and determines the clinical stage, treatment plans,
surgical procedure and patient outcome (1, 2). Currently, the
axillary lymph node (ALN) status of patients with breast cancer is
diagnosed by sentinel lymph node biopsy (SLNB) and axillary
lymph node dissection (ALND). However, these procedures are
not risk-free operations and can potentially lead to implantation
metastasis (3). Therefore, it is essential to explore a noninvasive
approach for assessing ALNM to reduce the incidence of surgical
complications and improve the patient’s quality of life.

Dynamic contrast-enhanced (DCE) magnetic resonance
imaging (MRI) has generally been well accepted and routinely
used for breast cancer staging (4, 5). For predicting ALNM,
previous studies of DCE-MRI have primarily focused on node
size, cortical thickness, disappearance of lymph parenchyma, and
enhancement patterns (6). Unfortunately, early diagnosis of
ALNM through DCE-MRI is not yet ideal since it is limited by
subjective factors, such as the radiologist’s experience and
knowledge level. Additionally, subtle changes, such as cell
density, morphology, and microtissue structure, in ALNM
might not be apparent to the naked eye (7, 8).

In recent years, radiomics and machine learning (ML) models
have become increasingly popular for analyzing diagnostic
images (9, 10). The ability of radiomics analysis to maximize
the number of features in quantitative images has excellent
potential for evaluating ALNM in breast cancer patients (11–15).

However, because of the small sample sizes of previous
studies, statistical research has been limited, and research
results have also varied from study to study. Thus, it is
necessary to perform a meta‐analysis to further evaluate the
diagnostic performance of ML-based radiomics of DCE-MRI in
predicting ALNM and SLNM in breast cancer.
MATERIALS AND METHODS

We conducted and reported this meta-analysis based on the
PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines (16).
Abbreviations: ALNM, Axillary lymph node metastasis; SLNM, Sentinel lymph
node metastasis; ALND, Axillary lymph node dissection; AUC, Area under the
curve; CI, Confidence intervals; DCE, Dynamic contrast-enhanced; MRI,
Magnetic resonance imaging; ML, Machine learning; PLR, Positive likelihood
ratio; QUADAS-2, Quality Assessment of Diagnostic Accuracy Studies 2; RQS,
Radiomics Quality Score; SROC, Summary receiver operating characteristic curve;
SLNB, Sentinel lymph node biopsy; NLR, Negative likelihood ratio.
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Literature Search
The PubMed, Embase, Web of Science, and Cochrane Library
databases and four Chinese databases [VIP, CNKI, Wanfang and
Chinese BioMedical Literature Databases (CBM)] were searched
by two observers independently to identify studies. The search
was performed on June 23, 2021, without a start date limit. The
study search was conducted using the following keywords:
“magnetic resonance imaging”, “MRI”, “MRI scans”, “breast
cancer”, “breast carcinoma”, “metastasis”, “machine learning”,
“radiomics” and “lymph node”. MeSH terms and variations of
each term were used. Moreover, we restricted the studies to those
published in English or Chinese and performed a manual search
of the related articles’ reference lists to identify other articles that
might meet the inclusion criteria. Endnote software, version X9,
was used to manage all records. Disagreements were discussed
and resolved to reach a consensus.

Study Selection
The titles and abstracts of potentially relevant studies were
screened for appropriateness by two reviewers(Z-J and Z-L).
Inconsistencies were discussed by the reviewers, and consensus
was reached.

All of the studies were selected according to the following
criteria: (a) original research studies; (b) patients with breast
cancer were enrolled who were confirmed to have ALNM or
SLNM by biopsy or histopathology; (c) ML-based DCE-MRI
applied to classify ALNM or SLNM using radiomics; and (d) data
are sufficient to reconstruct the 2×2 contingency table to estimate
the sensitivity and specificity of the diagnosis.

Studies were excluded if: (a) reviews, editorials, abstracts,
animal studies, and conference presentations; and (b) multiple
reports published for the same population (in this case, the
publication with the most details was chosen to be included in
this meta-analysis).

Data Extraction
Relevant data were extracted from each study, including the first
author, publication year, sample size, magnetic field strength,
information about radiomics and ML pipeline, data sources and
reference standards, detailed information on lesion
segmentation, contrast agents, and DCE phases. For each
study, the true positive (TP), false-positive (FP), false negative
(FN), and true negative (TN) values were extracted, and a
pairwise (2×2) contingency table was created.

Data Quality Assessment
The Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) and Radiomics Quality Score (RQS) were used
to assess the methodological quality of the included studies and
the risk of bias at the study level, respectively (17, 18). RQS items
comprise: (a) image acquisition; (b) radiomics feature extraction;
(c) data modeling; (d) model validation; and (e) data sharing.
Each of the 16 items (Table 1) of the RQS is rated, resulting in a
total of points ranging from −8 to 36, with −8 defined as 0% and
36 defined as 100% (18).

The QUADAS-2 tool consists of: (a) patient selection; (b)
index test; (c) reference standard; and (d) flow and timing.
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Two independent reviewers (L-LC and Z-L) conducted the
quality assessment, and disagreements were discussed with a
third reviewer (T-M) to reach a consensus.

Statistical Analysis
This meta-analysis was conducted via Stata software, version
16.0, Review Manager software, version 5.3, and the Open Meta-
analyst software tool. The predictive accuracy was quantified
using pooled sensitivity, specificity, diagnostic odds ratio (DOR),
positive likelihood ratio (PLR) and negative likelihood ratio
(NLR) with 95% confidence intervals (CIs). The summary
receiver operating characteristic curve (SROC) and area under the
curve (AUC) were used to summarize the diagnostic accuracy.

Q and I2 were calculated to estimate the heterogeneity among
the studies included in this meta-analysis. I2 values of 0 to 25%,
25 to 50%, 50 to 75% and >75% represent very low, low, medium
and high heterogeneity, respectively. Pooling studies and effect
size were evaluated using a random-effects model, indicating
that estimating the distribution of true effects between studies
considers heterogeneity (19). If there was obvious heterogeneity,
Spearman’s correlation coefficient was used to assess the
threshold effect between the sensitivity logit and the specificity
logit. Subgroup analysis was performed to further investigate
the cause of the heterogeneity. The following covariates were
used to explain factors that could contribute to heterogeneity:
(a) 1.5 T MR vs. 3.0 T MR; (b) Pathology of SLNB or ALND
vs. Pathology of ALND; (c) deep learning vs. ML; (d) ALN vs.
SLN vs. ALN and SLN; (e) area of interest (ROI) including
ALN vs. ROI including breast cancer; and (f) semiautomatic
vs. manual drawing; (g) support vector machines(SVM) vs.
logistic regression(LR); (h) Siemens MR equipment vs. GE
MR equipment.

In addition, the sensitivity analysis was assessed by
eliminating the included studies one by one. The effective
sample size funnel plot described by Deek’s test was used to
estimate publication bias (20).
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Clinical Utility
A Fagan plot was used to assess the clinical utility, which provided
the posttest probability (P post) of ALNM when pretest
probabilities (P pre, suspicion of ALNM) were calculated (21).
RESULTS

Literature Search
The complete literature search flowchart is presented in Figure 1.

According to the search strategy described above, 450
potentially eligible citations were identified. After removing 95
duplicate records, 355 titles were considered. After the title and
abstract evaluation, 268 citations were omitted because they did
not meet the inclusion criteria. After revision, 22 articles were
excluded, leaving 13 articles for inclusion in the meta-analysis
(11–15, 22–29).

Data Quality Assessment
The 13 studies achieved an average RQS range of 11.38, a median
of 13, and a range of 5 to 15. The mean RQS proportion was
13.9%, with a maximum of 41.7%. Table 1 summarizes the mean
scores for each dimension, and Table S1 (Supplement
Materials) shows the RQS for each study and the individual
scores for each study. None of the included articles employed
prospective validation, and only one study evaluated the cost-
effectiveness of radiomics (25). No studies publicly shared
segmentation, functionality, or code. Generally, the data
quality was considered acceptable, and the details of the risk of
bias and applicability concerns of the included studies are
presented in Figure 2.

Characteristics of the Included Studies
The characteristics of the included studies are summarized
in Tables 2 and 3. Detailed two-by-two contingency tables
of every study are shown in Table S2 (Supplement Materials).
TABLE 1 | Elements of the RQS and average rating achieved by the studies included in this meta-analysis.

RQS scoring item Interpretation Average

Image Protocol +1 for well documented protocols, +1 for publicly available protocols 0.92
Multiple Segmentations +1 if segmented multiple times (different physicians, algorithms, or perturbation of regions of interest) 0.62
Phantom Study +1 if texture phantoms were used for feature robustness assessment 0.62
Multiple Time Points +1 multiple time points for feature robustness assessment 0.08
Feature Reduction −3 if nothing, +3 if either feature reduction or correction for multiple testing 3
Non Radiomics +1 if multivariable analysis with non-radiomics features 0.54
Biological Correlates +1 if present 0.08
Cut-off +1 if cutoff either pre-defined or at median or continuous risk variable reported 0.15
Discrimination and
Resampling

+1 for discrimination statistic and statistical significance, +1 if resampling applied 0.15

Calibration +1 for calibration statistic and statistical significance, +1 if resampling applied 0.08
Prospective +7 for prospective validation within a registered study 0
Validation −5 if no validation/+2 for internal validation/+3 for external validation/+4 two external validation 0.38

datasets or validation of previously published signature/+5 validation on ≥3 datasets from >1 institute
Gold Standard +2 for comparison to gold standard 2
Clinical Utility +2 for reporting potential clinical utility 1.69
Cost-effectiveness +1 for cost-effectiveness analysis 0.08
Open Science +1 for open-source scans, +1 for open-source segmentations, +1 for open-source code, +1 open-source representative

segmentations and features
1
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The 13 studies included in this meta-analysis had 2253 patients,
and 1618 participants in valid or test set. All of the studies used
retrospectively collected data. The models in these studies
included ML (n=11) and deep learning (n=2) for unsupervised
learning. Of these models, the ML algorithm comprised different
Frontiers in Oncology | www.frontiersin.org 440
types of logistic regression models (12, 15, 22, 23, 28),
convolutional neural network models (26, 27), multiple
classifier systems (11, 13, 14, 24, 25), and support vector
machine models (29).

In 13 studies, different phase analysis methods of DCE were
used, including the strongest enhanced phase, the second
postcontrast phase, the first postcontrast images, and two-
phase images in 4 (12, 22, 23, 29), 3 (11, 13, 28), 3 (14, 25, 27),
and 3 (15, 24, 26) studies, respectively. 3 T scanners were used in
8 studies (11–13, 22, 24, 25, 28, 29), and 1.5 T MR was used in 5
studies (14, 15, 23, 26, 27). Seven studies (13–15, 23, 24, 28, 29)
employed SLNB or ALND to serve as the reference standard,
while the remaining 3 studies (12, 25, 26) were based on ALND.
Additionly, PET/CT (27) and ultrasound-guided fine-needle
aspiration or ALND (11) of 1 study, respectively. Five studies
(11, 12, 25–27) focused specifically on ALN, whereas 3 studies
(22–24) focused on SLN, the remaining 5 studies (13–15, 28, 29)
focused on ALN and SLN. Only 4 studies (11, 13, 26, 27) used
semiautomatic segmentation, and 9 studies (12, 14, 15, 22–25, 28,
29) used manual ROIs. The ROIs of the breast tumor area and
ALN area were employed in 10 studies (11–15, 22–24, 26, 29)
and 3 studies (25, 27, 28), respectively.

Data Analysis
For all 13 studies, the mean values and 95% CIs of pooled
sensitivity, specificity, PLR, NLR, and DOR for the radiomics
signature based on DCE-MRI in assessing ALNM and SLNM in
breast cancer were 0.82 (0.75, 0.87), 0.83 (0.74, 0.89), 4.70 (3.01,
7.35), 0.22 (0.15, 0.31), and 21.56 (10.60, 43.85), respectively
(Table 4). The ML models for ALNM and SLNM in breast
cancer showed an overal l pooled AUC=0.89 (0.86,
0.91) (Figure 3).

Exploration of Heterogeneity
There was significant heterogeneity in sensitivity (I2 = 80.6%) and
specificity (I2 = 89.57%). As shown in Figure 4, the results of the
diagnostic threshold analysis showed that there is no threshold
effect because Spearman’s correlation coefficient was 0.181, and
the P value was 0.553.

Subgroup analysis was also performed by comparing studies
with the different variables. Table 4 shows the results of the
analysis for subgroups.

Studies (n =11) using ML had higher specificity (0.83 vs. 0.65)
and an equivalent sensitivity (0.80 vs. 0.84) compared to studies
(n=2) that used deep learning. The studies that used a 3.0 T MR
had higher sensitivity (0.82 vs. 0.78) and specificity(0.83 vs. 0.76)
than those that used 1.5 T MR. Five studies with SLNB or ALND
as the gold standard had an equivalent sensitivity (0.82 vs. 0.80)
and specificity(0.82 vs. 0.80) with studies(n=3) with ALND as
reference standard. Studies (n=3) that only included SLNs had
lowest sensitivity (0.71 vs. 0.81 vs.0.84) and an similar specificity
(0.80 vs. 0.78 vs. 0.82) in among studies that only included ALNs
and combined SLNs and ALNs groups. Eight manually drawn
studies had higher specificity (0.84 vs. 0.74) and equivalent
sensitivity (0.80 vs. 0.82) than studies (n=5) using
semiautomatic segmentation. Studies (n =3) with LN as the
ROI had higher sensitivity (0.85 vs. 0.79) and equivalent
FIGURE 1 | Flow diagram of study selection for meta-analysis.
FIGURE 2 | The risk of bias (left) and concerns for applicability (right) for
each included study using QUADAS-2.
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TABLE 2 | Baseline characteristic of included studies (1).

Study NO.patient Magnetic
field

Contrast agent Phase Data source

Arefan, 2020 (11) 154 Siemens 3.0T Magnevist CE2 Single
institution

Chen, 2021 (12) 140 GE 3.0T GD-DTPA the strongest enhanced phase Single
institution

Cui, 2019 (13) 115 Siemens 3.0T GD-DTPA CE2 Single
institution

Han, 2019 (14) 411 GE 1.5T Omniscan CE1 Single
institution

Liu CL, 2019 (23) 163 GE 1.5T Magnevist One precontrast and four post-contrast
phases

Single
institution

Liu, 2019 (24) 62 GE 3.0T GD-DTPA the strongest enhanced phase Single
institution

Liu, 2020 (22) 164 GE 3.0T GD-DTPA the strongest enhanced phase Single
institution

Nguyen, 2020 (26) 357 GE 1.5T gadopentetate dimeglumine /Gadavist a single precontrast and four serial dynamic
image

Two institution

Zhan, 2021 (29) 166 Siemens 3.0T Omniscan the strongest enhanced phase Single
institution

Shan,2019 (28) 196 Siemens 3.0T Gd‐DTPA CE2 Single
institution

Luo,2021 (25) 67 Siemens 3.0T Gadolinium Diamine and Cardiamine
Sodium

CE1 Single
institution

Ren, 2020 (27) 61 GE 1.5T Gadavist, CE1 Single
institution

Li, 2021 (15) 197 Philips 1.5T Gadoteric acid meglumine salt the early-and delayed-phase Single
institution
CE1, the first postcontrast images; CE2, the second postcontrast phase.
TABLE 3 | Baseline characteristic of included studies (2).

Study Technique used for feature selection Classification Reference
standard

Segmentation
lesion

Tumor seg-
mentation

Validation

Arefan, 2020 (11) LASSO LDA, RF, NB,KNN, SVM SLNB or
ALND

2D, 3D semi-
automatically

Test set, 10-fold
cross-validation

Chen, 2021 (12) LASSO+10fold crossvalidation LR Pathology 3D manually 10-fold cross-
validation

Cui, 2019 (13) LASSO SVM, KNN, LDA SLNB or
ALND

2D, 3D, 4D semi-
automatically

cross-fold
validation

Han, 2019 (14) LASSO+LOOCV SVM Pathology 3D manually 6-fold validation
Liu CL, 2019 (23) LASSO+3fold crossvalidation LR Pathology 3D manually 10-fold cross-

validation
Liu, 2019 (24) The select K best+LASSO SVM, Xgboost, LR Pathology 3D manually cross-fold

validation
Liu, 2020 (22) LASS0 LR Pathology 3D manually NOT

REPORTED
Nguyen, 2020 (26) CNN Pathology 3D semi-

automatically
10-fold cross-
validation, Test
set

Zhan, 2021 (29) Spearman correlation analysis SVM-RF SLNB or
ALND

3D manually 5-fold validation

Shan,2019 (28) One-way analysis of variance+Wilcoxon
rank sum test+correlation test+LASSO

LR SLNB or
ALND

3D manually Confusion matrix

Luo,2021 (25) LASSO linear discriminant analysis and
leave-one-case-out-cross-
validation

Pathology 3D manually 10-fold cross-
validation

Ren, 2020 (27) CNN PET/CT 2D semi-
automatically

5-fold cross-
validation

Li, 2021 (15) Spearman+LASSO LR SLNB or
ALND or
Pathlogy

3D manually 5-fold cross-
validation
LR, logistic regression; CNN, convolutional neural network; SVM, support vector machine; LDA, linear dis-criminant analysis; RF, random forest; NB, naive Bayes; KNN, K-neares
neighbor; LASSO, least absolute shrinkage and selection operator.
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specificity (0.81 vs. 0.80) compared to studies (n =10) with breast
cancer as the ROI. ML including the different algorithms in
models, SVM algorithms had higher sensitivity (0.81 vs. 0.75)
and lower specificity (0.75 vs. 0.88) compared to studies with LR
Frontiers in Oncology | www.frontiersin.org 642
algorithms. The studies that used Siemens MR equipment had
higher sensitivity (0.88 vs. 0.77) and specificity (0.82 vs. 0.75)
than studies used GE equipment. The corresponding forest plots
are presented in Figures S1–8 (Supplement Materials).

Sensitivity Analyses
There were no significant changes when eliminating the included
studies one by one. The results of sensitivity analyses for each
study are shown in Table S3 (Supplement Materials).

Publication Bias
There was no publication bias based on the Deeks funnel plot
(P=0.22) (Figure 5) (20).

Clinical Utility
Using an ML-based radiomics DCE-MRI model would increase
the posttest probability to 54 from 20% with a PLR of 5 when the
pretest was positive and would reduce the posttest probability to 5%
with an NLR of 0.22 when the pretest was negative (Figure 6).
DISCUSSION

In our meta-analysis, radiomics DCE-MRI showed promising
results for ALNM characterization, with a pooled sensitivity,
specificity, and AUC of 0.82, 0.83, and 0.89, respectively. This
finding indicates that this approach could be considered an
effective and accurate tool for ALNM and SLNM prediction.

In the present study, we found that there was obvious
heterogeneity between the studies. Indeed, heterogeneity can be
caused by many factors, e.g., threshold effect, different magnetic
FIGURE 3 | Hierarchical summary receiver operating characteristic (SROC).
curve of the diagnostic performance of ML-based radiomics of DCE-MRI in
predicting ALNM in breast cancer.
TABLE 4 | The results of subgroup analysis.

Analysis No. of study Sensitivity Specificity PLR NLR DOR

Overall 13 0.82 (0.75,0.87) 0.83 (0.74,0.89) 4.70 (3.01,7.35) 0.22 (0.15,0.31) 21.56 (10.60,43.85)
DL vs ML
ML 11 0.80 (0.73,0.86) 0.83 (0.76,0.88) 4.45 (3.27,6.07) 0.21 (0.14,0.32) 22.82 (12.33,42.23)
DL 2 0.84 (0.53,0.96) 0.65 (0.31,0.89) 2.45 (0.76,7.85) 0.24 (0.04,1.45) 9.95 (0.51,192.87)
Biopsy/vs Pathology
Biopsy 6 0.85 (0.74,0.92) 0.82 (0.75,0.88) 4.50 (3.29,6.15) 0.17 (0.09,0.31) 29.17 (13.34,63.81)
Pathology 7 0.77 (0.68,0.84) 0.79 (0.62,0.89) 3.63 (1.93,6.83) 0.28 (0.16,0.52) 13.95 (4.17,46.66)
1.5T vs 3.0T
3.0T 8 0.82 (0.72,0.89) 0.83 (0.76,0.88) 4.62 (3.16,6.75) 0.18 (0.10,0.34) 30.09 (11.87,76.28)
1.5T 5 0.78 (0.69,0.85) 0.76 (0.58,0.88) 3.37 (1.74,6.55) 0.26 (0.11,0.61) 12.71 (3.56,45.41)
SLN vs ALN
ALN 10 0.82 (0.75,0.87) 0.81 (0.70,0.88) 4.27 (2.60,7.03) 0.20 (0.11,0.38) 23.62 (8.99,62.04)
SLN 3 0.71 (0.56,0.83) 0.80 (0.68,0.88) 3.74 (2.11,6.31) 0.27 (0.16,0.46) 12.17 (4.58,32,36)
Segmentation method
Semiautomatic 5 0.82 (0.70,0.90) 0.74 (0.56,0.87) 3.26 (1.60,6.61) 0.21 (0.07,0.60) 15.95 (3.63,70.04)
Manually drawing 8 0.80 (0.71,0.86) 0.84 (0.75,0.90) 4.82 (3.08,7.53) 0.23 (0,16,0.33) 23.59 (9.22,47.57)
different ROI
Lymph 3 0.85 (0.68,0.94) 0.81 (0.71,0.88) 4.30 (2.59,7.15) 0.17 (0.05,0.54) 38.12 (7.06)
Breast Cancer 10 0.79 (0.71,0.85) 0.80 (0.67,0.89) 4.02 (2.38,6.79) 0.23 (0.13,0.42) 17.62 (6.68,46.49)
Different algorithms of ML
SVM 5 0.81 (0.70,0.89) 0.76 (0.70,0.81) 3.32 (2.64,4.17) 0.20 (0.10,0.39) 15.27 (7.49,31.13)
LR 5 0.75 (0.65,0.82) 0.88 (0.77,0.94) 5.72 (3.13,10.44) 0.29 (0.20,0.43) 22.56 (9.15,55.62)
Different MR equipment
Siemens 5 0.88 (0.77,0.94) 0.82 (0.73,0.89) 4.74 (2.93,7.66) 0.14 (0.07,0.30) 42.37 (11.97,149.91)
GE 7 0.77 (0.68,0.84) 0.75 (0.61,0.86) 3.21 (1.79,5.75) 0.28 (0.13,0.62) 12.17 (4.03,36.75)
F
ebruary 2022 | Volum
PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio; SVM,support vector machines; LR,logistic regression.
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fields, segmentation, etc. In this meta-analysis, the threshold
effect was not the source of heterogeneity because Spearman’s
coefficient was not significant. Therefore, subgroup analysis was
used to determine the source of heterogeneity. Our results
demonstrated that studies using 3.0 T MR had better
diagnostic performance than studies using 1.5 T MR. We are
not surprised by this result. Since high magnetic fields can
improve image resolution, they can help to improve diagnostic
accuracy. Another subgroup analysis result showed that studies
employing ML have slightly better value than those employing
deep learning. Deep learning has greater potential for very large
datasets with thousands or even millions of instances. In this
Frontiers in Oncology | www.frontiersin.org 743
setting, datasets usually consist of hundreds of patients at most,
which is better than with deep learning in this case. Similar
findings have been previously reported for ML in other
applications (9, 10, 30). However, deep learning only included
two studies. Future studies employing deep learning are needed
to confirm this conclusion.

ROIs including the ALN area have good diagnostic
performance compared with ROIs including the breast tumor
area. While an ROI of the ALN is useful to evaluate ALN status, it
suffers from some limitations, such as the ALN breast surface coil
being mainly concentrated in the breast area; nevertheless, some
positive lymph nodes might be located at the edge of the coil, and
FIGURE 5 | Deeks funnel plot shows the likelihood of publication bias is low with a P value of 0.22. ESS, effective sample size.
FIGURE 4 | Forest plots of the sensitivity and specificity of ML-based radiomics of DCE-MRI in predicting ALNM in breast cancer. I2>50% indicated substantial
heterogeneity in the diagnostic parameters across studies.
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some might not even be in the imaging range (31). Studies have
focused on breast tumors themselves, which could help to avoid
the above limitations. Studies with SLNB or ALND as the gold
standard had an equivalent sensitivity and specificity with ALND
group. The reason may be that the patient with negative SLN,
SLNB maybe an effective and accuracy approach. The sensitivity
of predict SLNM is lower than that to predict ALNM and the two
kinds of LNs. Therefore, for SLNM, the diagnostic performance
of this imaging tool might not be satisfactory, as concluded in
this meta-analysis. Further studies should investigate how to
improve the sensitivity of SLNM. Although studies in which
ROIs are manually drawn by radiologists might be more prone to
error and user variability, the prediction is still good compared
with the semiautomatic segmentation method. However, manual
segmentation is time consuming, tedious, and prone to error. In
the future, it would be ideal to develop a reliable and validated
automatic method. Our results showed that LR algorithm had
higher DOR than SVM. Generally, LR and SVM algorithms are
all suitable for model construction with small sample sizes and
binary variables. However, for ML-based DCE-MRI radiomics in
predicting ALNM, the LR algorithm is more recommended for
use with our meta-analysis result. We also found that studies
using Siemens MR equipment had higher diagnostic
performance than using GE equipment. It means different MR
equipment maybe affect the diagnostic performance. Therefore,
prospective studies compared the two MR equipment are
necessary to explore the diagnostic performance of ML-based
DCE-MRI radiomics in predicting ALNM and SLNM. In
Frontiers in Oncology | www.frontiersin.org 844
addition, different DCE phases and cross-validation of different
multiples could lead to unknown biases. Moreover, other
unmentioned differences between studies might contribute to
the heterogeneity.

A previous meta-analysis (32) including 3 studies of DCE-
MRI (n=187) reported that the mean sensitivity and specificity
were 0.88 and 0.73, respectively. Another study (6) included 7
studies using DCE-MRI and reported that the median sensitivity
was 0.60 (range 0.33.3–0.97) (31). Our findings showed higher
sensitivity than studies that included DCE-MRI. Conventional
DCE only included morphology and a few quantitative
parameters. However, radiomics could provide many new
quantitative imaging markers and help to characterize
heterogeneous tumor lesions (33). This method could provide
more valuable information to help radiologists to improve
detection, diagnosis, staging, and prediction power.

Limitations
All of the methodological issues followed the Cochrane
handbook (34), but there are still some limitations that must
be discussed. First, a relatively small number of studies met the
selection criteria. The second limitation was the significant
heterogeneity, which is an issue similar to that in other meta-
analyses of diagnostic accuracy using ML based on radiomics (9,
10, 30).

Furthermore, study characteristics, such as different ROIs,
DCE phases, and reference standards, could lead to
heterogeneity. Therefore, we employed subgroup analysis to
reduce heterogeneity.

Third, while there were some uncertainties in the QUADAS-2
assessment, the overall quality of the study was sufficient for
analysis. Thus, this uncertain risk might not have had a
significant impact on the outcomes.

Fourth, 3 studies(3/13)showed an RQS score<20%. The mean
RQS score obtained by analyzing the articles reviewed in this
study was 11.1 (30.1%), indicating moderate overall quality. The
most important points were the type of study, biological
relevance tests and discussion, validation, comparison with the
gold standard, potential clinical utility, economic analysis and
open scientific data (Table 1 and Table S1). Fifth, in most
studies, the lymph nodes assessed by MR have not been
specifically associated with histological findings in a node-to-
node manner, which is a difficult problem to solve in clinical
practice. And it is inevitable that very small lesions may be
missed through DCE-MRI. Sixth, some studies used the SLNB as
reference standard, which may be caused some false negative
rate. Finally, in this meta-analysis, the PLR, NLR and posttest
probabi l i ty were moderate , which would l imit the
recommendation of their integration into clinical practice.

Future
To improve the clinical applicability of future studies utilizing
ML-based radiomics for ALNM, several factors must
be followed.

First, external validation is usually not performed, which
should be seen as a major limitation in the field of study.
Therefore, it is advisable to verify the accuracy of these
FIGURE 6 | Fagan plot of ML-based radiomics models of DCE-MRI in
predicting ALNM in breast cancer.
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models further. When reporting ML-based radiomics, it is crucial
to follow quality guidelines that include external validation.
Second, future studies should also consider expanding
datasets from multiple centers to overcome imbalances caused
by oversampling small samples and to improve classifier
performance. Third, the variation process might affect bias.
There are significant variations in the number of features
selected, the risk of overfitting and redundancy, and the
preprocessing steps (such as manual segmentation), reducing
reproducibility. In addition, the different DCE phases should be
considered. Therefore, it is necessary to build better radiomics
and ML paper standards to establish image acquisition,
segmentation, feature engineering, statistical analysis and report
format standardization to achieve reproducibility and facilitate
the search for radiomics (35). Finally, the ALNM and SLNM
prediction model was constructed with a combination of MR
radiomics and DCE quantitative parameter and clinical
characteristic data to further explore more precise predictions
and to improve the clinical utility for ALNM and SLNM.
CONCLUSION

Our results indicated that ML-based DCE-MRI radiomics
indicates good diagnostic performance in predicting ALNM
and SLNM in breast cancer with high sensitivity and
specificity. Nevertheless, due to the heterogeneity of the
included studies, caution should be taken when applying
the results.
Frontiers in Oncology | www.frontiersin.org 945
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Purpose: The expression of human epidermal growth factor receptor 2 (HER2) in breast
cancer is critical in the treatment with targeted therapy. A 3-block-DenseNet-based deep
learning model was developed to predict the expression of HER2 in breast cancer by
ultrasound images.

Methods: The data from 144 breast cancer patients with preoperative ultrasound images
and clinical information were retrospectively collected from the Shandong Province Tumor
Hospital. An end-to-end 3-block-DenseNet deep learning classifier was built to predict the
expression of human epidermal growth factor receptor 2 by ultrasound images. The
patients were randomly divided into a training (n = 108) and a validation set (n = 36).

Results: Our proposed deep learning model achieved an encouraging predictive
performance in the training set (accuracy = 85.79%, AUC = 0.87) and the validation set
(accuracy = 80.56%, AUC = 0.84). The effectiveness of our model significantly exceeded
the clinical model and the radiomics model. The score of the proposed model showed
significant differences between HER2-positive and -negative expression (p < 0.001).

Conclusions: These results demonstrate that ultrasound images are predictive of HER2
expression through a deep learning classifier. Our method provides a non-invasive,
simple, and feasible method for the prediction of HER2 expression without the manual
delineation of the regions of interest (ROI). The performance of our deep learning model
significantly exceeded the traditional texture analysis based on the radiomics model.

Keywords: breast cancer, ultrasound, deep learning, DenseNet, human epidermal growth factor receptor 2
INTRODUCTION

Human epidermal growth factor receptor 2 (HER2) is an important biomarker and a target in the
therapy used in approximately 30% of breast cancer patients (1, 2). Although HER2-enriched cancers
may have a worse prognosis, they can be effectively treated with therapies targeting HER2 protein,
such as Herceptin (chemical name: trastuzumab), Perjeta (chemical name: pertuzumab), and Kadcyla
February 2022 | Volume 12 | Article 829041147
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(chemical name: T-DM1 or ado-trastuzumab emtansine) (3).
Breast cancer molecular subtypes are categorized in clinical
practice by immunohistochemical markers.

The recent literature shows that radiomics features extracted
from medical images may predict patient outcomes (4–6). Breast
cancer diagnosis in clinical practice is performed using a type of
radiation-free medical imaging approach, and ultrasound imaging
plays a significant role (7–10). The association of peritumoral
radiomics features extracted from magnetic resonance imaging
(MRI) and the expression of HER2 was established (11).

In recent years, besides the development of compressed
sensing (12, 13), wavelet transform (14), and dictionary learning
techniques (15–17), deep learning approaches have become
popular in the field of medical image processing with the
development of optimization techniques and the improvement in
computational devices (18). The deep learning method-based
classification has a positive impact in precision medicine, since it
can improve the effectiveness of computer-assisted clinical and
radiological decision (19). Existing literature describes the use of the
deep learning method to predict medical targets, such as EGFR
mutation status in lung cancer (20), and recurrence in high-grade
serous ovarian cancer (21, 22).

Deep learning automatically generates the representations
that are expressed in terms of other, simpler representations
through gradient descent and back-propagation. The abstract
mapping from the raw data to the target label is built as a training
result (23). DenseNets developed for image tasks have several
advantages: avoid the vanishing-gradient, reuse features, and
reduce the number of parameters (24). DenseNet (24) exceeds
AlexNet (25), GoogLeNet (26), VGG (27), and ResNet (28) in the
ImageNet classification task.

In this study, a dense-block-based deep learning model was
developed to predict HER2 expression based on preoperative
ultrasound images. This proposed method like other supervised
Frontiers in Oncology | www.frontiersin.org 248
deep learning models is an end-to-end workflow. The model
requires only a rectangle region of the tumor without the precise
delineation of the tumor boundary or human-defined features,
while conventional radiomics methods depend on feature
engineering. The interobserver error can be reduced and the time
for manual segmentation can be saved through our method. The
proposed deep learning model can automatically learn HER2
expression features from ultrasound images through back-
propagation and optimization algorithm (23). An ultrasound
image dataset collected from the Shandong Cancer Hospital and
Institute was provided to train and evaluate our deep learningmodel.
MATERIAL AND METHODS

This work used a DenseNet-based deep learning model to predict
breast cancer molecular subtypes from the ultrasound images.
The workflow is shown in Figure 1.

Patients
This retrospective study was approved by the ethics review board.
Preoperative ultrasound images of 144 patients were collect from
the Shandong Cancer Hospital and Institute. The collected
ultrasound images were obtained by an experienced radiologist
using a broadband 42–46-Hz transducer (Philips Healthcare
System, Amsterdam, Netherlands). Most of the images were
cross-section images, the remaining were longitudinal sections.
For consistency, only cross-section ultrasound images were used.
The whole dataset was randomly divided into a training set and a
validation set through the hold-out method. The training set and
the validation set were mutually exclusive.

In clinical practice, the molecular subtypes can suggest candidate
drugs for the treatmentof thesepatients (29). Immunohistochemistry
(IHC) is the most common clinical approach for immunostaining.
FIGURE 1 | Overall structure of the developed DenseNet-based deep learning classifier. Being fed a tumor image, the deep learning model predicts the probability
of the expression of HER2.
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Since IHC can accurately identify the molecular subtypes of breast
cancer by high specificity, in this work, the molecular subtype were
identified by IHC. The resulting score of 0, 1+, 2+, and 3+ in the IHC
staining represented the amount of HER2 protein on the surface of
the cells in a breast cancer tissue sample. The score 0 or 1+ indicate
“HER2 negative.” The score 2+ is called “borderline.” The score 3+
indicates “HER2 positive.” If the result of IHC is uncertain, the
fluorescence in situ hybridization (FISH) was carried out.

Our inclusion criteria of the data were as follows: (1)
pathologically confirmed breast cancer; (2) available
preoperative ultrasound image data; (3) pathological
IHC examination of tumor specimens; and (4) no history
of preoperative therapy. Our exclusion criteria were as
follows: (1) ultrasound images were too ambiguous to be
analyzed and (2) invasive biopsy was performed before the
ultrasound examination.

A rectangle region of interest (ROI) containing the entire
tumor was manually selected by radiologists. The ROI was
enough due to the strong capability of the information
extraction of the deep learning model. Consequently, the
precise drawing of the tumor border was not necessary.

Development of the Deep Learning Model
In comparison with previous popular network architectures,
DenseNets leverage shortcut connections enhance the
information flow to provide better effectiveness. The shortcut
connection can be defined as follows:

xk = Hk(½x0,  x1,…,  xk−1�) (1)
where [x0, x1,…, xk−1] refers to the concatenation of the deduced
feature maps in the kth layers (24).

Before training the network, several data preprocessing
procedures were carried out: ROI selection, image cropping,
and image resizing. In each ultrasound image, a rectangle region
containing the whole tumor and the tumor borderline was
selected. Although tumors have different sizes, all ROI
including tumors were scaled to the same size (64 × 64 pixels)
by bilinear interpolation before being fed into the network.
Frontiers in Oncology | www.frontiersin.org 349
The structure of themodel was designed in an attempt to achieve
better results. Our proposed network was composed of three dense
blocks. Two types of dense block were present among these three
dense blocks (see Figure 1) in our network. Block type 1 contained 4
layers, while block type 2 contained 32 layers. Both the two types of
dense block employed shortcut connections from each layer to all
subsequent layers. The details of the two types of dense blocks are
shown in Figure 1. The detailed structure of the entire network is
indicated in Supplementary Table 1.

The deep learning model was implemented based on the
TensorFlow (30) framework and Python 3.5 (31). The trained
model gradually becomes stable as the batch size increases, resulting
in less overfitting. The weighting coefficient for the classification was
adjusted for the imbalanceof theclasses.Weightingcross-entropywas
used as the loss function in our implementation. This approach could
help us avoid downsampling or upsampling of the original data; thus,
our data distribution was close to the real clinical data. The weight
coefficient was tuned, and then a series of experiments were
performed. The best configuration was related to the label
distribution of the training data. The detailed parameter setting for
training the model is indicated in Supplementary Table 2.

Visual Analysis of the Model
The shallow convolutional layer learned low-level simple features
such as the horizontal and diagonal edges. A deeper convolutional
layer learned more complex features such as tumor shape. The
features learned by the low-level layers were intuitive, while the
learned features becamemore abstract with the layers deepening and
could gradually be related to the molecular subtypes.

The class activation map method was used to generate an
attention map of the trained model for visualization (32, 33).
This method helped to visualize and highlight the discriminative
image parts detected by the feature extractor, which contributed
to the predicted class scores on any given image. The examples of
attention map are shown in Figure 2. The positive filter tended
to focus on the boundary of the tumor or the high echo region. In
the HER2 case, the positive filter indicated the HER2+ category,
FIGURE 2 | Class activation heat map: the attention map of the trained model for predicting HER2 expression.
February 2022 | Volume 12 | Article 829041
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while the negative filter corresponded to the HER2- category.
The positive filter needed to collect more information from a
larger area to make a decision than the negative filter.

Statistical Analysis
Statistical analysis was performed using a Python language-based
toolkit including SciPy (34), scikit-learn (35), and WORC
packages. The Mann–Whitney U-test (36) was used to
compare the age difference, while a chi-square test (37) was
used to compare the difference in other factors. The DeLong test
was used to evaluate the difference of the receiver operating
characteristic (ROC) curves among different models. A p-value <
0.05 was considered statistically significant.
RESULTS

Clinical Characteristics of the Patients
The clinical characteristics of the patients are listed in Table 1. No
significant difference was found between the training and
validation cohorts in terms of age, TNM stages, and BI-RADS.
These clinical characteristics were also used to build a clinical
model for the comparison with the proposed deep learning model.

Prediction Performance of the Proposed
Deep Learning Model
A 3-dense-block-based deep learning model using preoperative
ultrasound images was proposed in this study to predict HER2
expression in patients with breast cancer. Our deep learningmodel
showed promising results of accurate predictions. The DL model
Frontiers in Oncology | www.frontiersin.org 450
achieved anAUCof 0.87 in the training cohort (accuracy = 85.19%,
sensitivity = 75.53%, specificity = 90.54%, PPV = 78.12%, NPV =
88.16%) and AUC of 0.84 in the validation cohort (accuracy =
80.56%, sensitivity = 72.73%, specificity = 84.00%, PPV = 66.67%,
NPV= 87.5%). The result of the experiment allowed us to conclude
that the performance of the deep learning model significantly
exceeded the traditional radiomics model. Moreover, the deep
learning score between HER2+ and HER2- type groups in the
training cohort andvalidationcohortwas significantlydifferent (p<
0.01; Figure 3). A radiomicsmodel was also built for comparison to
predict the Luminal type. The PyRadiomics toolkit was used to
extract image features, and then six features were selected by the
recursive feature elimination. Finally, a random forest including 90
trees was built in the radiomicsmodel for prediction.Deep learning
features were extracted from the last convolutional layer (global
average pool) for cluster analysis (see Figure 4). The clustering
figure suggested that the deep learning features have different
responses to positive and negative cases.

Comparison Between the Deep Learning
Model and Other Methods
A clinical model and a radiomics model were built as a
comparison to the proposed deep learning model. The clinical
model considered age, stage, and BI-RADS as features and
employed a support vector machine as the classifier. In the
radiomics model, 961 features were extracted through the
PyRadiomics toolkit. A random forest classifier was built for
the prediction of HER2 expression in the radiomics model.

The quantitative effectiveness is shown in Table 2, and the
ROC curves are shown in Figure 5, which suggested that our
TABLE 1 | Clinical characteristics of patients in the primary and validation cohorts.

Factors Total Testing cohort Training cohort p-value

Subjects n 144 108 36
Age (years) 53.5 ± 10.6 40 ± 11.3 49 ± 7 0.535
T stage
T1 55 47 (44.1) 8 (22.2)
T2 82 54 (50) 28 (77.8) 0.361
T3 4 4 (2.9) 0 (0)
T4 3 3 (2.8) 0 (0)

N stage
N1 77 63 (57.9) 14 (38.4)
N2 41 28 (26.3) 13 (38.3) 0.236
N3 23 17 (15.8) 6 (15.4)

M stage
M0 138 105 (97.3) 33 (91.0)
M1 6 3 (2.6) 3 (9.0) 0.337

Total stage
I 44 31 (29.6) 11 (30.0)
II 70 52 (48.6) 18 (50.0) 0.347
III 32 25 (22.9) 7 (20.0)
IV 1 1 (0.9) 0 (0)

BI-RADS
III 11 (7.6) 7 (6.5) 4 (11.1)
IV 100 (69.4) 79 (73.2) 21 (58.3) 0.718
V 33 (22.0) 22 (20.3) 11 (30.6)
February 2022 | Volume 12 | Article
(1) Data are presented as mean ± SD, or n (%) unless otherwise stated.
(2) The Mann–Whitney U-test was used to compare the age difference. The chi-square test was used to compare the difference in other clinical factors.
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proposed deep learning model significantly exceeded the clinical
model (AUC = 0.55, accuracy = 68.52%, sensitivity = 52.94%,
specificity = 75.68% in the training set; AUC = 0.51, accuracy =
63.89%, sensitivity = 54.55%, specificity = 68.02% in the testing set;
p < 0.05) and the radiomics model (AUC = 0.78, accuracy =
71.29%, sensitivity = 55.88%, specificity = 78.38% in the training
set; AUC = 0.74, accuracy = 72.22%, sensitivity = 72.72%,
specificity = 72.00% in the testing set; p < 0.05). The confusion
matrix shown in Figure 6 reveals that the deep learning model
achieved a lower confusion degree in comparison with the clinical
model and radiomics model.
DISCUSSION

This work proposed a DenseNet-based deep learning model to
predict HER2 expression in patients with breast cancer
Frontiers in Oncology | www.frontiersin.org 551
through preoperative non-invasive ultrasound images. The
deep learning model was trained in the training cohort,
which included 108 patients and was validated in the
validated cohort, which included 36 patients. The proposed
model was highly effective in the training cohort (accuracy =
85.79%, AUC = 0.87) and the validation cohort (accuracy =
80.56%, AUC = 0.84), exceeding the clinical model and
radiomics model. The related tumor area representing HER2
expression status could be obtained by our model using the
class activation map.

HER2 is a critical biomarker and its expression helps to
make personalized treatments for breast cancer patients.
Patients whose HER2 is positive should receive trastuzumab
(marketed as Herceptin) which is effective only in cancers
where HER2 is overexpressed (38). In clinical practice, IHC is
widely used to evaluate the expression of HER2. HER2
expression is positive when the result of IHC is 3+, while
FIGURE 4 | Cluster analysis of deep learning features.
FIGURE 3 | Deep learning model score HER2 classifier.
February 2022 | Volume 12 | Article 829041
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HER2 is negative when IHC is 0 or 1+. In 2+ cases by IHC,
fluorescence in situ hybridization (FISH) should be employed
to confirm the final expression of HER2 (39). However, the IHC
and FISH methods require an invasive approach to collect a
sample and they are time-consuming. Due to the possibility of
positional deviation, an invasive biopsy may fail, and wrong
results may be obtained. The prediction of HER2 through
preoperative ultrasound images using deep learning could
compensate for the above lack.
Frontiers in Oncology | www.frontiersin.org 652
Recently, the texture analysis-based radiomicsmethod has been
used for the diagnosis of the breast cancer (40). Before building a
predictive model, ROI must be delineated by radiologists, and then
texture features should be manually extracted. However, the
delineation of the tumor boundary influences the extracted
feature values. The deep learning model needs only an
approximate rectangle ROI of the tumors rather than the accurate
delineation of the boundaries compared to the conventional texture
analysis-based radiomics which requires feature engineering (41).
FIGURE 5 | The receiver operating characteristic curve (ROC) of the HER2 on the training set and the testing set.
A B C

FIGURE 6 | Confusion matrix: (A) clinical model; (B) radiomics model; (C) DL model.
TABLE 2 | Predictive performance of each model for HER2.

Prediction target AUC Accuracy Sensitivity % Specificity % PPV % NPV %

Clinical model training set 0.55 68.52% 52.94% 75.68% 50.01% 77.78
Clinical model validation set 0.51 63.89% 54.55% 68.02% 42.86% 77.27%
Radiomics model training set 0.78 71.29% 55.88% 78.38% 54.29% 79.45%
Radiomics model validation set 0.74 72.22% 72.72% 72.00% 53.33% 85.71%
Deep learning model training set 0.87 85.19% 73.53% 90.54% 78.12% 88.16%
Deep learning model validation set 0.84 80.56% 72.73% 84.00% 66.67% 87.5%
February 2022 |
 Volume 12 | Article
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Theproposeddeep learningmodelwith amulti-block structure and
shortcut connections extracts features from raw image pixels to
abstract maps without time-consuming handcrafted feature
engineering. The model takes raw ultrasound images as input and
then predicts HER2 expression.

Despite the promising effectiveness of the proposed deep
learning method, this study has some limitations. First, the
ultrasound images to build the model were collected from only
one manufacture (Philips). Ultrasound signals emitted from
different transducers produced by different manufacturers may
lead to distinct image features. Hence, building a more general
model should be considered in the future. Second, only one type
of ultrasound image was used to build the model. In the future,
the feature concatenation of convolutional operation in the
neural network should be explored to build a two-branch
model. Other types of images such as the color Doppler
ultrasound or mammography may be considered for the two-
modal model to increase the predictive performance. The
combination of the deep learning-based tumor auto-detection
and deep learning-based radiomics will be considered in the
future to obtain a complete clinical diagnostic software.
CONCLUSIONS

The above results demonstrate that features of pretreatment
ultrasound images are related to HER2 expression. Our
proposed deep learning model significantly exceeded the
traditional texture analysis-based radiomics model. Our
method without manual delineation of ROI is non-invasive,
simple, and feasible.
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Zhuo Wu3, Yaping Yang4, Xiaodong Yang1,2, Jian Zheng1,2* and Jun Shen3*

1 Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of
China, Hefei, China, 2Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou, China, 3 Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou,
China, 4 Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun
Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

Purpose: To compare the performances of deep learning (DL) to radiomics analysis (RA)
in predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC)
based on pretreatment dynamic contrast-enhanced MRI (DCE-MRI) in breast cancer.

Materials and Methods: This retrospective study included 356 breast cancer patients
who underwent DCE-MRI before NAC and underwent surgery after NAC. Image features
and kinetic parameters of tumors were derived from DCE-MRI. Molecular information was
assessed based on immunohistochemistry results. The image-based RA and DL models
were constructed by adding kinetic parameters or molecular information to image-only
linear discriminant analysis (LDA) and convolutional neural network (CNN) models. The
predictive performances of developed models were assessed by receiver operating
characteristic (ROC) curve analysis and compared with the DeLong method.

Results: The overall pCR rate was 23.3% (83/356). The area under the ROC (AUROC) of the
image-kinetic-molecular RA model was 0.781 [95% confidence interval (CI): 0.735, 0.828],
which was higher than that of the image-kinetic RA model (0.629, 95% CI: 0.595, 0.663; P <
0.001) and comparable to that of the image-molecular RA model (0.755, 95% CI: 0.708,
0.802; P = 0.133). The AUROC of the image-kinetic-molecular DL model was 0.83 (95% CI:
0.816, 0.847), which was higher than that of the image-kinetic and image-molecular DL
models (0.707, 95% CI: 0.654, 0.761; 0.79, 95% CI: 0.768, 0.812; P < 0.001) and higher
than that of the image-kinetic-molecular RA model (0.778, 95% CI: 0.735, 0.828; P < 0.001).

Conclusions: The pretreatment DCE-MRI-based DL model is superior to the RAmodel in
predicting pCR to NAC in breast cancer patients. The image-kinetic-molecular DL model
has the best prediction performance.

Keywords: breast cancer, neoadjuvant chemotherapy, dynamic contrast-enhanced magnetic resonance imaging,
radiomics, deep learning
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INTRODUCTION

Breast cancer is the most common diagnosed cancer and the most
common cause of cancer death worldwide (1). Neoadjuvant
chemotherapy (NAC) has been well established in managing
breast cancer for patients with locally advanced cancer and
early-stage operable breast cancers of specific molecular subtypes
(2). Pathologic complete response (pCR) is mainly used to
evaluate the degree of regression after NAC, as pCR has been
demonstrated to be associated with better survival (3). However,
only 7%–38% of breast cancers can achieve pCR (4). Thus,
predicting pCR early before NAC is imperative and can timely
switch to a new personalized treatment strategy and exempt from
unnecessary chemotherapy toxicity patients with a low possibility
of pCR.

MRI has been proven to be most accurate for measuring
treatment response based on the change of tumor size or volume
(5). Other than morphologic criteria, kinetic parameters
including quantitative parameters, e.g., Ktrans (volume transfer
constant), Kep (reverse reflux rate constant), Ve (volume fraction
of extravascular extracellular space), and Vp (volume fraction of
plasma), and semiquantitative parameters, e.g., TTP (time to
peak), MaxConc (maximum concentration), MaxSlope
(maximal slope), and AUC (area under the curve), can be
derived from dynamic contrast-enhanced MRI (DCE-MRI),
which can reflect tumor microvascular function such as
vascular density and permeability (6). It has been reported that
reduction in the Ktrans or Kep after two cycles of NAC is
associated with the response to NAC (7, 8). However, only a
few studies with small sample sizes have evaluated the power of
pretreatment kinetic parameters in predicting pCR, with a
reported moderate predictive performance [area under the
receiver operating characteristic (AUROC) = 0.56–0.66] (9, 10).

Recently, imaging-based machine learning approaches have
been used to predict therapeutic response by quantifying the
tumor heterogeneity and irregularity of tissue components (11).
Radiomics analysis (RA) and deep learning (DL) are the two
most popular machine learning approaches, which have
immense capability to obtain minable data by evaluating
tumor features of images (11–14). RA relies on a pipeline
including extraction of numerous handcrafted imaging
features, followed by feature selection and then machine
learning-based classification (11). However, the performance of
radiomics models derived from pretreatment DCE-MRI is
limited in predicting pCR with an AUROC ranging from 0.568
to 0.79 (12, 15, 16). DL can automatically learn discriminative
features directly from images without the necessity of feature
predefinition (17). The AUROC of DL models developed
from pretreatment DCE-MRI alone ranged from 0.553 to
0.7969 (13, 14). In addition, a recent study has shown that the
convolutional neural network (CNN) model based on
pretreatment DCE-MRI (AUROC = 0.7969) had better
prediction performance than the CNN model based on
posttreatment DCE-MRI (AUROC = 0.7737) (13). So far, there
is a lack of head-to-head comparison of predictive performance
between RA and DL models based on pretreatment DCE-MRI in
predicting pCR to NAC. Furthermore, whether an integrative
Frontiers in Oncology | www.frontiersin.org 256
model, which incorporates tumor image features, kinetic
parameters, and molecular biomarkers, could improve
predictive performance remains to be determined.

In this study, women with breast cancer who received NAC
were retrospectively included. The image features and kinetic
parameters of tumors derived from pretreatment DCE-MRI and
molecular information determined by immunohistochemistry
(IHC) were used to develop prediction models. The purpose of
our study was to determine whether the DL model is better than
the RA model in predicting pCR to NAC in breast cancer
patients based on pretreatment DCE-MRI and whether
incorporating molecular biomarkers and kinetic parameters
into image features can improve the predictive performance.
MATERIALS AND METHODS

Study Population
This retrospective study was approved by the Ethics Committee
of Sun Yat-sen Memorial Hospital, with a waiver for informed
consent from all participants. In our institution, a total of 1,757
patients with primary breast invasive cancer were diagnosed
between April 16, 2016, and April 30, 2020. The inclusion criteria
were as follows: 1) an initial diagnosis of primary invasive breast
cancer; 2) DCE-MRI performed before biopsy and within 1 week
before NAC; 3) surgical excision of the tumor whether achieving
pCR or non-pCR after NAC treatment. The exclusion criteria
were distant metastasis (n = 150), another malignant tumor (n =
16), surgery but without NAC (n = 1,187), without any treatment
(n = 33), non-standard NAC treatment (n = 8), or tumor
progression during NAC (n = 7). The patient enrollment
pathway is shown in the consort diagram (Figure 1). Finally,
356 patients were included for analysis. The entire cohorts were
split into independent training and validation dataset by 5-fold
cross-validation (18). Four-fold data (80% of the tumors)
were used as training dataset, and the remaining one-fold
data (20% of the tumors) were used as validation dataset.
The prediction probabilities of five independent validation sets
were collected as a whole set and used to evaluate the model
performance. The 5-fold cross-validation procedure is illustrated
in Supplementary E1 and Supplementary Figure S1.

MRI Protocol
Breast MRI was performed on a 1.5T unit (Magnetom Avanto;
Siemens Medical Solutions, Erlangen, Germany) with patients in
the head-first prone position. The body coil was used as the
transmitter, and a dedicated 8-channel phased-array breast coil
(Siemens Medical Solutions, Erlangen, Germany) was used as the
receiver. MRI sequences consisted of axial T2-weighted turbo
spin-echo (TSE) with short tau inversion recovery (STIR)
sequence; axial T1-weighted volume interpolated body
examination (T1W-VIBE) with Dixon sequence, and axial
diffusion-weighted imaging (DWI) with spectral attenuated
inversion recovery (SPAIR) fat saturation with 2 b values (b =
0, 800 s/mm2) and axial DCE imaging. DCE images were
acquired by using a 3D fat-suppressed T1W-VIBE sequence.
The DCE acquisition consisted of 40–70 measurements with a
March 2022 | Volume 12 | Article 846775
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temporal resolution of 8 s and a total of 5–7 min of imaging time.
After two consecutive measurements, gadodiamide (Gd-DTPA-
BMA) (Omniscan; GE Healthcare, Ireland) was administered via
intravenous bolus injection at a dosage of 0.1 mmol/kg and a
flow rate of 3.5 ml/s, followed by a 20-ml saline flush. Before
DCE acquisition, multiple flip angle images (2°, 4°, 6°, 8°, 10°,
and 12°) were obtained for the calculation of T1 maps using the
same sequence and parameters except for the flip angle. The
details of acquisition parameters of MRI pulse sequence are
provided in Supplementary Table S1.

Neoadjuvant Chemotherapy Programs
and Outcome
The diagnosis of all patients was established by a core needle
biopsy of the primary tumor before NAC. The regimens of NAC,
provided in Supplementary E2, were defined according to the
National Comprehensive Cancer Network (NCCN) guideline
(19). According to the Food and Drug Administration criteria
(20), all patients underwent surgical resection of the tumors and
sentinel lymph node dissection (SLNB) or axillary lymph node
dissection (ALND) after NAC. The resected tumors and lymph
Frontiers in Oncology | www.frontiersin.org 357
nodes were sampled for histologic examination to evaluate the
chemotherapeutic response. The pCR (ypT0/Tis-ypN0) was
defined as the absence of residual invasive tumor in the breast
and axillary lymph nodes on the operative specimen (breast
tumor and axillary lymph nodes) following NAC. In contrast,
non-pCR was defined as a residual invasive cancer in the breast
or axillary nodes.

Kinetic Parameters and Prediction
Model Building
DCE-MRI data were analyzed independently by two radiologists
(ZC and CZ with 10 years and 8 years of experience with
breast MRI) using specialized quantitative analysis software
(Omni Kinetics, GE Healthcare). The kinetic parameters were
calculated using the extended Tofts model. During measurement,
the regions of interest (ROIs) were carefully drawn to cover the
whole tumor. Necrotic or cystic areas of the lesions, if presented,
were excluded from the evaluation. The intraclass correlation
coefficient (ICC) of kinetic parameters between the two readers
was 0.834–0.977. Data from the two readers were averaged for
analysis. The least absolute shrinkage and selection operator
FIGURE 1 | Flowchart of patient enrollment in the study. *Seven patients did not complete the established neoadjuvant chemotherapy program because of tumor
progression, three patients did not have an operation, five HER2-positive patients did not receive trastuzumab plus pertuzumab treatment.
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(LASSO) regression analysis was applied to select independent
predictive kinetic parameters. These selected kinetic parameters
were used to construct the kinetic-only RA model using a robust
supervised classifier, linear discriminant analysis (LDA) (21),
which was employed to classify the NAC treatment efficiency by
searching for a linear combination of the independent predictive
kinetic parameters. A multilayer perceptron (MLP) neural
network (22) was employed to construct the kinetic-only DL
model. The structure of the MLP neural network is shown in
Supplementary Figure 2A.

Molecular Information and Prediction
Model Building
Molecular information, including the status of hormone receptor
[estrogen receptor (ER), progesterone receptor (PR)], human
epidermal growth factor receptor 2 (HER2), and Ki67
expression, was recorded from IHC results. ER/PR negative
was defined as <1% of tumor cells with positive nuclear
staining and ER/PR positive as ≥1% of tumor cells with
positive nuclear staining; the cutoff for Ki67 was 14%; tumors
with IHC staining of 0 or 1 were defined as HER2 negative,
whereas tumors that either showed 3+ IHC staining or had gene
copy number >2.0 were considered HER2 positive (23). The
molecular-only LDA andMLPmodels were constructed by using
the molecular information as input. The structure of the MLP
neural network is shown in Supplementary Figure 2B.

Radiomics Analysis and
Image-Based Radiomics Analysis
Prediction Model Building
For RA, the tumors were segmented on DCE-MRI images
obtained 88 s after the beginning of the contrast agent injection,
as the clinical breast DCE-MRI guideline indicates peak
enhancement and obvious conspicuity at this time point in most
breast cancers (24). Tumor segmentation was performed using
ITK-SNAP software (https://www.itksnap.org) by one radiologist
(ZC, with 10 years of experience in breast MRI) who was blinded
to the clinical and histopathologic results. Tumors were segmented
on a section-by-section basis until the whole tumor volume was
captured and a three-dimensional ROI was acquired. A second
radiologist (JS, with 21 years of experience in breast MRI)
reviewed all the delineations to ensure correct segmentation.
The segmented images were processed by using the open-source
Python 3.7 (https://www.python.org.) and PyRadiomics toolkit to
extract 851 radiomics features, including image intensity
statistical, shape, texture, and wavelet features (Supplementary
Table S2). A coarse-to-fine feature selection strategy was applied
to reduce the dimension and avoid overfitting. Redundant features
were removed according to the Spearman correlation coefficient,
and then the optimal feature subsets (Supplementary Table S3)
were selected using least absolute shrinkage and selection operator
(LASSO) regression. The prediction models, based on optimal
image features, were built by using the five machine learning
classifiers [i.e., LDA, support vector machine (SVM), random
forest (RF), AdaBoost, and Naive Bayes] to verify the performance
of the classifiers to predict pCR successfully. Then, the optimal
Frontiers in Oncology | www.frontiersin.org 458
classifier was used to build the image-only and image-based
RA model.

The integrative image-based RA model was further developed
by incorporating kinetic parameters (image-kinetic RA model),
molecular information (image-molecular RA model), or both
(image-kinetic-molecular RA model) into the image-only model.
The optimal feature subsets of integrative image-based RA
models are shown in Supplementary Tables S4–S6. The
workflow for building RA predictive models is shown in
Figure 2. All the RA models were constructed by using Matlab
R2018b (MathWorks, Natick, MA, USA).

Deep Learning Analysis and Image-Based
Deep Learning Prediction Model Building
For DL analysis, a rectangular box of 128 × 128 × 3 pixels in size was
used to crop three consecutive slices showing the maximum cross-
sectional area of the tumor as input. To ensure comparability of the
image signal intensity across patients, image intensity was
normalized to a fixed range of 0–1. Random rotation, flip, and
translation were used for data augmentation to alleviate the possible
overfitting in the training procedure of model development. The
image features were extracted by using a deep residual neural
network, ResNeXt50 (25), pretrained on a large-scale, well-
annotated ImageNet dataset to automatically learn discriminative
image features, as illustrated in Supplementary E3 and
Supplementary Figure S3. The whole DL structure contained a
ResNeXt50 CNN and three fully connected layers, with the
probability of pCR as output to build the image-only CNN model.
Adam optimizer was used to train all DLmodels with a learning rate
of 0.0001 and a batch size of 32. The triplet loss procedure was
introduced to extract more discriminative features using the output
of ResNeXt50, and the cross-entropy was introduced as
classification loss using the final output of the fully connected
layer. Details of the loss function are provided in Supplementary E4.

The integrative image-basedDLmodelwas furtherdevelopedby
adding kinetic (image-kinetic DL model), molecular information
(image-molecular DL model), or both (image-kinetic-molecular
DLmodel) into the CNN of the image-onlymodel. The kinetic and
molecular informationwas incorporated in the first fully connected
layer of DL models. The kinetic and molecular information was
incorporated in the first fully connected layer of DL models. The
framework for buildingDL predictivemodels is shown in Figure 3.
All the DL programs were implemented in Pytorch (https://
pytorch.org.) on an Intel Core i7-7700 K processor (Intel, Santa
Clara, CA, USA) and Nvidia RTX 2080 Ti GPU with 11 GB RAM
(Nvidia, Santa Clara, CA, USA).

Statistical Analysis
Data were expressed as mean ± standard deviation for continuous
variables, and categorical variables were summarized as
frequencies and percentages. The differences in age, molecular
information, histopathologic types, tumor number type, clinical T
stage, clinical N stage, clinical TNM stage, and treatments between
pCR and non-pCR groups were compared by c2 or Wilcoxon
rank-sum tests as appropriate. The inter-rater agreement of kinetic
parameter evaluation was assessed by using the ICC. An ICC value
>0.75 indicates good to excellent agreement. The predictive
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https://www.itksnap.org
https://www.python.org
https://pytorch.org
https://pytorch.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Peng et al. DCE-MRI in Predicting pCR
performance of the models was assessed by the ROC curve
analysis. The sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and accuracy of the
models were calculated based on a cutoff value determined by
the maximum Youden index. And their confidence intervals were
calculated by bootstrap analysis with 10,000-fold resampling.
DeLong method was used to compare the AUROC between
the models. A two-sided P value <0.05 indicated statistical
significance. All statistical analyses were performed by using
Frontiers in Oncology | www.frontiersin.org 559
SPSS software (version 21; SPSS, Chicago, IL, USA) and
MedCalc software (version 18.9.1; MedCalc, Ostend, Belgium).

RESULTS

Clinicopathologic Characteristics
A total of 356 female patients (mean age, 46.9 ± 9.4 years) were
included in this study. The clinicopathologic characteristics are
shown in Table 1. Here, 83 patients (23.3%) achieved pCR (pCR
FIGURE 2 | The workflow for building radiomics analysis-based predictive models.
FIGURE 3 | The framework for building deep learning-based predictive models.
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TABLE 1 | Clinicopathologic characteristics of patients in the non-pCR and pCR groups.

Characteristics Non-pCR (n = 273) pCR (n = 83) P

Age (year)* 46.3 ± 9.4 48.2 ± 9.1 0.099
ER status <0.001
Negative 68 (25) 49 (59)
Positive 205 (75) 34 (41)

PR status <0.001
Negative 124 (45) 66 (80)
Positive 149 (55) 17 (20)

HER2 status <0.001
Negative 187 (68) 27 (33)
Positive 86 (32) 56 (67)

Ki67 status 0.199
Negative 15 (5) 2 (2)
Positive 258 (95) 81 (98)

Histological type 0.601
IDC 255 (93) 80 (96)
ILC 6 (2) 1 (1)
Others 12 (5) 2 (2)

Tumor number type 0.316
Single 224(82.1) 64(77.1)
Multicentric and multifocal 49(17.9) 19(22.9)

Clinical T stage 0.672
T1-2 154(56.4) 49(59.0)
T3-4 119(43.6) 34(41.0)

Clinical N stage 0.639
N0-1 242(88.6) 72(86.7)
N2-3 31(10.9) 11 (13.3)

Clinical TNM stage 0.920
I-II 153(56.0) 46(55.4)
III 120(44.0) 37(44.6)

Chemotherapy <0.001
AT-based 217(79.5) 57(68.7)
AC-based 38(13.9) 7(8.4)
TC-based 18(6.6) 19(22.9)

HER2 positive therapy 0.010
Trastuzumab 62(70.5) 28(49.1)
Trastuzumab+pertuzumab 26(29.5) 29(50.9)

Surgery 0.059
Mastectomy 100(36.6) 40(48.2)
BCS 173(63.4) 43(51.8)

Axillary Surgery 0.083
SLNB 63(23.1) 27(32.5)
ALND 210(76.9) 56(67.5)

Note: Unless indicated otherwise, values are numbers of patients with percentages in parentheses.
Abbreviations: pCR, pathological complete response; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor2; HR, hormone receptor; TNBC,
triple-negative breast cancer; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; BCS, breast conserving surgery; SLNB, sentinel lymph node biopsy; ALND, axillary lymph
node dissection; AT, anthracycline with paclitaxel; AC, anthracycline with cyclophosphamide; TC, paclitaxel with cyclophosphamide; TP, paclitaxel with platinum.
*Numbers are means ± standard deviations.
P values of the comparison between pCR and non-pCR patients in cohort were generated by one-way ANOVA for numerical variables and c2 test for categorical variables.
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group), while the remaining 273 patients (76.7%) were non-pCR
(non-pCR group). pCR group had a higher prevalence of ER-
negative, PR-negative, HER2-positive compared with the non-
pCR group (all P < 0.001). There was no significant difference in
age, Ki67, histological type, tumor number type, clinical T stage,
clinical N stage, clinical TNM stage, breast surgery, and axillary
surgery between the two groups (all P > 0.05).

Image-, Kinetic-, and Molecular-Only
Prediction Models
The LDA was the most robust classifier across multiple classifiers
(Supplementary Table S7). The image-only LDA model had 12
Frontiers in Oncology | www.frontiersin.org 660
image features selected by LASSO regression (Supplementary
Table S3). The image-only CNN models had 1,000 image
features extracted by ResNeXt50. The Ktrans, Kep, and
MaxSlope were the independent predictors and included in the
kinetic-only LDA and MLP models. Their AUROC, sensitivity,
specificity, PPV, NPV, accuracy, and corresponding 95% CI are
shown in Table 2 and Figures 4A, B. The AUROC of the
molecular-only LDA model was 0.744, which was higher than
that of the kinetic-only LDAmodel (0.682, P = 0.012) and image-
only LDA model (0.55, P < 0.001). The AUROC of the
molecular-only MLP model was 0.752, which was higher than
that of the kinetic-only MLPmodel (0.652, P = 0.007) and image-
March 2022 | Volume 12 | Article 846775
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TABLE 2 | Performances of the image-, kinetic-, and molecular-only LDA and DL Prediction Models.

Model LDA model DL model

Image-only LDA
model

Kinetic-only LDA
model

Molecular-only LDA
model

Image-only CNN
model

Kinetic-only MLP
model

Molecular-only
MLP model

AUROC 0.55 0.682 0.744 0.554 0.652 0.752
(0.513, 0.587) (0.639, 0.726) (0.688, 0.799) (0.513, 0.595) (0.612, 0.693) (0.699,0.805)

Accuracy 0.58 0.638 0.673 0.558 0.65 0.663
(0.502, 0.667) (0.566, 0.711) (0.617, 0.73) (0.461, 0.656) (0.592, 0.709) (0.605,0.721)

Sensitivity 0.534 0.681 0.814 0.566 0.608 0.809
(0.409, 0.660) (0.546, 0.816) (0.688, 0.939) (0.392, 0.74) (0.513, 0.703) (0.682,0.936)

Specificity 0.6 0.625 0.632 0.556 0.663 0.619
(0.465, 0.735) (0.503, 0.748) (0.541, 0.722) (0.386, 0.726) (0.575, 0.75) 0.527,0.712)

PPV 0.273 0.352 0.396 0.262 0.349 0.387
(0.209,0.336) (0.277, 0.427) (0.322, 0.471) (0.201,0.324) (0.277, 0.422) (0.313,0.461)

NPV 0.806 0.87 0.921 0.804 0.851 0.918
(0.757,0.855) (0.824, 0.915) (0.874, 0.969) (0.751,0.858) (0.81, 0.892) (0.869,0.966)

P * <0.001 0.012 – <0.001 0.007 –

P #
– – – 0.208 0.008 0.33

Note: Data in parentheses are 95% confidence intervals. LDA, linear discriminant analysis; MLP, multilayer perceptron; CNN, convolutional neural networks; DL, deep learning; AUROC,
area under the receiver operating characteristics curve; PPV, positive predictive value; NPV, negative predictive value.
*P value of the comparison inside the LDA models and DL models, respectively.
# P value of the comparison between the LDA models and DL models, respectively.
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only CNN model (0.554, P < 0.001). The AUROC of the kinetic-
only LDA model was 0.682, which was higher than that of the
kinetic-only MLPmodel (AUROC = 0.652, P = 0.008). There was
no significant difference between image-only LDA and image-
only CNN models (AUROC = 0.55 and 0.554, P = 0.208), as well
as between molecular-only LDA and molecular-only MLP
models (AUROC = 0.744 and 0.752, P = 0.33).

Integrative Image-Based Radiomics
Analysis and Deep Learning Models
The AUROC, sensitivity, specificity, PPV, NPV, accuracy, and
corresponding 95% CI of integrative image-based RA and DL
models are shown in Table 3 and Figures 5A, B. The AUROC of
the image-kinetic-molecular RA model was 0.781, which was
Frontiers in Oncology | www.frontiersin.org 761
higher than that of the image-kinetic RA model (0.629, P <
0.001), while it did not differ from the image-molecular RA
model (0.755, P = 0.118). The AUROC of the image-kinetic-
molecular DL model was 0.832, which was higher than that of
image-kinetic and image-molecular DL models (0.707, 0.79; both
P < 0.001). The heatmaps (Figure 6) generated from ResNeXt50
based on the Grad-Cam algorithm (26) indicated that locations
were crucial in generating the output.

Comparison Between Integrative
Image-Based Radiomics Analysis and
Deep Learning Models
The AUROC of image-kinetic, image-molecular, and image-
kinetic-molecular DL model (0.707, 0.79, and 0.83,
A B

FIGURE 4 | Receiver operating characteristic (ROC) curves of the image-, kinetic-, and molecular-only linear discriminant analysis (LDA) (A) and deep learning (DL)
(B) models.
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TABLE 3 | Performances of the integrative image-based RA and DL models.

Model RA model DL model

Image-kinetic RA
model

Image-molecular RA
model

Image-kinetic-molecular
RA model

Image-kinetic DL
model

Image-molecular DL
model

Image-kinetic-molecular
DL model

AUROC 0.629 0.755 0.781 0.707 0.79 0.832
(0.595, 0.663) (0.708, 0.802) (0.735, 0.828) (0.654, 0.761) (0.768, 0.812) (0.816, 0.847)

Accuracy 0.619 0.695 0.731 0.661 0.752 0.772
(0.571, 0.668) (0.638, 0.753) (0.678, 0.784) (0.596, 0.725) (0.715, 0.788) (0.724, 0.821)

Sensitivity 0.647 0.778 0.795 0.692 0.797 0.781
(0.559, 0.735) (0.669, 0.887) (0.703, 0.887) (0.579, 0.806) (0.723, 0.869) (0.696, 0.867)

Specificity 0.611 0.671 0.712 0.65 0.739 0.769
(0.537, 0.685) (0.58, 0.762) (0.634, 0.791) (0.54, 0.761) (0.681, 0.797) (0.69, 0.849)

PPV 0.329 0.413 0.451 0.368 0.473 0.497
(0.267, 0.391) (0.333, 0.493) (0.367, 0.536) (0.318, 0.417) (0.401, 0.546) (0.408, 0.587)

NPV 0.855 0.911 0.922 0.88 0.925 0.924
(0.816, 0.894) (0.872, 0.951) (0.888, 0.956) (0.859, 0.902)) (0.897, 0.953) (0.896, 0.953)

P * <0.001 0.118 – <0.001 <0.001 –

P #
– – – <0.001 <0.001 <0.001

Note: Data in parentheses are 95% confidence intervals. RA, radiomics analysis; DL, deep learning; AUROC, area under the receiver operating characteristics curve; PPV, positive
predictive value; NPV, negative predictive value.
*P value of the comparison inside the RA models and DL models, respectively.
# P value of the comparison between the RA models and DL models, respectively.
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respectively) were significantly higher than that of the
corresponding image-kinetic, image-molecular, and image-
kinetic-molecular RA models (0.629, 0.755, and 0.781,
respectively; all P < 0.001). The image-kinetic-molecular DL
model had significantly higher AUROC than other integrative
models (Table 3).
DISCUSSION

Our study results showed that both the molecular-only LDA and
MLP models had a better prediction performance than the
kinetic-only LDA and MLP model and image-only LDA and
CNN model. The integrative image-kinetic-molecular RA and
DL models significantly improved the predictive performance.
Frontiers in Oncology | www.frontiersin.org 862
Moreover, the image-kinetic-molecular DL model had the best
performance (AUROC, 0.83) in predicting pCR before NAC in
breast cancer patients.

Conventionally, the tumor size is used to assess the effect of
NAC. Whereas the baseline tumor size cannot predict pCR (7,
10). It has been shown that molecular biomarkers are correlated
with NAC sensitivity in breast cancer (27). For example, HR
negativity and HER2 positivity were associated with higher pCR
rates [odds ratio (OR) = 0.497 and 1.833, respectively] (28). The
IHC4 score combining ER, PR, HER2, and Ki67 expression levels
was associated with pCR rate; furthermore, the lower the IHC4
score, the higher the pCR rate in the ER-positive breast cancer
patients (AUROC = 0.613) (29). Our results showed that the
molecular-only LDA and MLP model achieved an AUROC of
0.744 and 0.752 in the breast cancer patients, higher than kinetic-
A B

FIGURE 5 | Receiver operating characteristic (ROC) curves of the integrative image-based radiomics analysis (RA) (A) and deep learning (DL) (B) models.
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only and image-only predictive models. However, the molecular
information is acquired via invasive needle biopsy, which cannot
reflect certain pathophysiological characteristics of tumors, such
as microvascular density and permeability, and tumor
heterogeneity, which is known to be relevant to the sensitivity
of pCR NAC in breast cancer (15, 30).

The kinetic parameters can reflect the pathophysiological
microvascular characteristics of tumors (6, 31). Previous
studies (7–10) with a small sample size showed that
pretreatment Ktrans, Kep, or Ve, or their change after two cycles
of NAC, could predict pCR but has a varying AUROC (0.658–
0.93). More importantly, the metric capable of predicting pCR
before NAC is more desirable in clinical settings. Identifying
breast cancer patients who can truly benefit from NAC is crucial
for successfully sparing toxicity and optimally selecting patients
for endocrine or targeted therapy vs. chemotherapy. Whether the
pretreatment value of Ktrans, Kep, or Ve could predict pCR
remains to be determined. Our study showed that the kinetic-
only LDA and MLP models building based on the pretreatment
DCE-MRI achieved an AUROC of 0.682 and 0.656, comparable
to the change of Ktrans, Kep, or Ve after two cycles of NAC (9, 10).

Breast cancer is a highly heterogeneous disease. The
prediction performance of molecular-only and kinetic-only
Frontiers in Oncology | www.frontiersin.org 963
models was suboptimal for predicting pCR, and the highest
AUROC of the molecular-only MLP model was only 0.752 in
our study. The image features extracted from DCE-MRI could
reflect spatial heterogeneity, including volumetric distribution of
microvascular density and the extracellular compartment (32,
33). The image-only LDA and CNN models based on image
features derived from pretreatment DCE-MRI were inadequate
for predicting pCR (AUROC, 0.55 and 0.554). In theory, adding
kinetic parameters or molecular information to the image-only
model may improve predicting pCR to NAC. Indeed, the
performance of the image-kinetic, image-molecular RA, and
DL models (AUROC, 0.629 and 0.755; 0.707 and 0.79) was
also undesirable. The integrative RA and DL models, including
image features, kinetic parameters, and molecular information,
improved the counterparts of model performance in predicting
pCR to NAC with an AUROC of 0.781 and 0.83, which might
represent more tumor heterogeneity comprehensively. Previous
studies (12, 14) have also shown that the prediction performance
of the RA or DL model based on pretreatment MRI in predicting
pCR in breast cancer patients could be improved by combining
with molecular information.

Notably, our results showed that the prediction performance
of integrative DL models, including image-kinetic, image-
FIGURE 6 | Dynamic contrast-enhanced magnetic resonance (DCE-MR) images and feature heatmaps generated from the ResNet50 in pathologic complete
response (pCR) or non-pCR patients. The scaled weights of deep learning features are represented by the color bar. The color closer to red indicates that it has a
greater weight and received more attention from the model. (A, D) A 41-year-old woman with an hormone response (HR)-positive/human epidermal growth factor
receptor 2 (HER2)-negative invasive lobular carcinoma in the right breast and did not achieve pCR following 6 cycles of neoadjuvant chemotherapy (NAC). (B, E) A
53-year-old woman with a triple negative breast cancer (TNBC), invasive ductal carcinoma in the right breast, and achieved pCR following 8 cycles of NAC. (C, F) A
59-year-old woman with a HER2-positive invasive ductal carcinoma in the right breast and achieved pCR following 8 cycles of NAC.
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molecular, and image-kinetic-molecular DL models was higher
than that of the corresponding RA models. The image-kinetic-
molecular DL model achieved the best performance (AUROC,
0.83) in predicting pCR before NAC. The most crucial aspect of
DL, which significantly departs from radiomics classifiers, is that
multiple and deep layers of perceptions capture low- to high-
image features that are not designed by human engineers but are
learned based on representation learning (11). Previous studies
have also reported that the performance of DL is better than RA
in breast lesion discrimination (17), axillary lymph node
metastasis prediction (34), and esophagus cancer treatment
prediction (35). In addition, unlike the radiomics feature
extraction procedure, DL feature extraction only needs setting
a bounding box of fixed size to the tumor region, which improves
efficiency and offers more excellent reliability and higher
reproducibility. For RA, handcrafted image segmentation is time-
consuming and labor-intensive. Automatic and semiautomatic
segmentation is less accurate for the lesions with low
enhancement, indistinct or vague borders (i.e., diffuse non-mass
enhancement), or the lesions in a moderate to marked background
parenchymal enhancement (BPE) (36, 37). Taken together, the
pretreatment DCE-MRI-based DL model in our study is clinically
more favorable than the RA model for pretreatment prediction of
pCR in breast cancer patients.

Our study has several limitations. First, the RA or DL
approaches based on T2WI or DWI were not used to develop
a prediction model. T2WI is not always able to clearly detect the
exact border of breast cancer, especially in patients with dense
breasts (38). In addition, DWI was easily affected by fat
suppression and motion artifacts, which likely caused low
reproducibility in ADC maps and ADC value (39). Previous
studies have shown that RA or DL model established based on
single T2WI, DWI, or ADC has relatively poor predictive ability
(12, 16). Second, this study was a retrospective study in a single
center. This may have caused selection bias. Third, the
heterogeneous nature of molecular subtypes in breast cancer
led to different NAC regimens and pCR probability, but this
reflects the reality in clinical settings practice. Further
investigation with multicenter and larger datasets is warranted
to determine the generalization ability of our pretreatment DCE-
MRI-based DL prediction model.

In conclusion, our study showed that the integrative image-
based DL models are superior to the image-based RA models.
Frontiers in Oncology | www.frontiersin.org 1064
The image-kinetic-molecular DL model achieved the best
performance in predicting pCR to NAC in breast cancer patients.
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Objectives: The molecular subtype plays an important role in breast cancer, which is the
main reference to guide treatment and is closely related to prognosis. The objective of this
study was to explore the potential of the non-contrast-enhanced chest CT-based
radiomics to predict breast cancer molecular subtypes non-invasively.

Methods: A total of 300 breast cancer patients (153 luminal types and 147 non-luminal
types) who underwent routine chest CT examination were included in the study, of which
220 cases belonged to the training set and 80 cases to the time-independent test set.
Identification of the molecular subtypes is based on immunohistochemical staining of
postoperative tissue samples. The region of interest (ROI) of breast masses was
delineated on the continuous slices of CT images. Forty-two models to predict the
luminal type of breast cancer were established by the combination of six feature screening
methods and seven machine learning classifiers; 5-fold cross-validation (cv) was used for
internal validation. Finally, the optimal model was selected for external validation on the
independent test set. In addition, we also took advantage of SHapley Additive
exPlanations (SHAP) values to make explanations of the machine learning model.

Results: During internal validation, the area under the curve (AUC) values for different
models ranged from 0.599 to 0.842, and the accuracy ranged from 0.540 to 0.775.
Eventually, the LASSO_SVM combination was selected as the final model, which included
9 radiomics features. The AUC, accuracy, sensitivity, and specificity of the model to
distinguish luminal from the non-luminal type were 0.842 [95% CI: 0.728−0.957], 0.773,
0.818, and 0.773 in the training set and 0.757 [95% CI: 0.640–0.866], 0.713, 0.767, and
0.676 in the test set.

Conclusion: The radiomics based on chest CT may provide a new idea for the
identification of breast cancer molecular subtypes.

Keywords: breast cancer, molecular subtype, luminal, radiomics, prediction, machine learning
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INTRODUCTION

Breast cancer has now overtaken lung cancer to become the
highest incidence of cancer in women, with about 2.3 million
(11.7%) new cases in 2020; it is the fifth-largest cause of cancer
death in the world, with an annual death toll of 685,000 (6.9%)
(1). Some commonly used clinical predictors, such as TNM grade
and histological grade, cannot fully reflect the heterogeneity of
breast cancer (2). In recent years, with the development of
molecular biology and sequencing technology, it has been
possible to analyze the gene expression profiles of different
breast cancer molecular subtypes, using immunohistochemical
analysis to further deepen the understanding of the disease at the
molecular level (3). There are great differences in the clinical
manifestation, treatment response, and prognosis among
patients with different subtypes; early identification of
molecular subtypes is of great significance for the choice of
treatment (4).

According to the expression level of different receptors, the
molecular subtypes of breast cancer are composed of luminal A,
luminal B, human epidermal growth factor receptor 2 (HER2)-
enriched, and triple-negative (TN) type (5). Among them, luminal
type (including luminal A and B) is sensitive to endocrine therapy,
which is often treated with chemotherapy and endocrine therapy,
and the prognosis is good.While the non-luminal type is ineffective
to endocrine therapy, the effect of chemotherapy is good,
neoadjuvant chemotherapy or targeted therapy and other
treatments can be chosen, and the overall prognosis is poor (6).
The traditional way to determine the molecular subtypes of breast
cancer is usually based on pretreatment biopsy or pathological
examination of postoperative tissue samples. But this examination
is invasive, time-consuming, and costly, and the limited sample size
makes it difficult to fully estimate the heterogeneity within the
tumor. Imaging examination is of great importance in the diagnosis
of breast cancer. However, traditional imaging examination can
only observe the disease from a limited perspective, and it is mostly
applied to judge the benign/malignantmass or calcificationor assist
in preoperative grading, which seriously depends on the experience
of radiologists, and it is difficult to describe the lesions from a
microscopic point of view (7).

Radiomics can use mathematical methods to quantify the
disease information contained in the medical images, and the
quantitative value extracted from images can represent the shape,
intensity, and texture of tumors; the quantitative value is called a
feature, which can be analyzed by different machine learning
methods (8). At present, it is not uncommon to use radiomics
methods to predict the molecular subtypes of breast cancer, and
many encouraging results have been obtained, most of which are
based on the radiomics features of breast mammography,
ultrasound, or MRI for model development and validation (9–11).
CT also plays an important role in the clinical practice of breast
Abbreviations: ICC, intraclass correlation coefficient; LASSO, least absolute
shrinkage and selection operator; ROC, receiver operating characteristic; AUC,
area under curve; SVM, support vector machine; RF, random forest; SHAP,
SHapley Additive exPlanations; XGBoost, extreme gradient boosting; MLP,
multilayer perceptron.
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cancer (12). Although most of the current guidelines do not
recommend the utilization of chest CT as a routine examination
for breast cancer diagnosis or early screening (13, 14), in the
actual diagnosis and treatment activities, because of the incidence
of lung and bone metastasis in breast cancer patients, especially
for patients with late clinical stage, chest CT is still one of the
routine examinations in most patients. In addition, many breast
cancer patients will undergo CT for other reasons (such as chest
pain) (15). You et al. explored the prevalence of initial distant
metastasis and the benefits of initial chest CT in detecting distant
metastasis based on molecular subtypes of breast cancer (16).
Song et al. investigated the usefulness of chest CT-based texture
analysis to predict overall survival in inflammatory breast cancer
patients (17). A prospective study confirmed that the texture and
perfusion characteristics of chest CT can effectively predict the
expression of histological biomarkers and treatment response in
patients with breast cancer (18). Thus, chest CT has great
application potential in breast cancer. If we can use the
quantitative information from chest CT images to predict the
molecular subtypes of patients before treatment, it is very
meaningful from the point of view of clinical usefulness and
patient economy. In our study, we hypothesized that the tumor
quantitative information contained in chest CT can overcome the
traditional limitations of qualitative observation by physicians
and thus contribute to the identification of the molecular subtype
of breast cancer. As far as we know, there is no such research
at present.

Therefore, based on the above background, we extracted
high-dimensional radiomics features from breast cancer
patients’ chest CT images and used this information to
establish and validate a machine learning prediction model to
recognize the luminal type of breast cancer, which provides new
ideas for clinical diagnosis and treatment.
MATERIALS AND METHODS

Patients
A total of 698 female patients with primary breast invasive ductal
carcinoma confirmed by pathology and examined by chest CT before
treatment in the Harbin Medical University Cancer Hospital from
January 2019 to June 2021 were retrospectively collected. This study
was approved by the Ethics Committee, and because it was a
retrospective study, informed consent of the patient was exempted.
Exclusion criteria: a) antineoplastic therapy before CT (n = 186); b)
poor image quality, lesion location or boundary difficult to judge,
incompletemass,orartifacts in the imagesothatacompleteROIsketch
couldnotbeperformed (n=48); c)diffuseormultiple lesions involving
the whole breast (n = 23); d) without immunohistochemical
examination (n = 38); e) combined with malignant tumors of other
organs(n=8);andf)distantmetastasisbefore treatment(n=19). Inthe
end, there were 376 eligible patients. To overcome the category
imbalance caused by the significantly different incidence of different
molecular subtypes, which will affect the fitting effect of the machine
learning algorithm, and to avoid selection bias at the same time, we
selected 220 consecutive patients composed of the same number of
luminal and non-luminal types from January 2019 to December 2020
March 2022 | Volume 12 | Article 848726
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as the training set, and the rest of the patients during this period were
abandoned. In addition, another80patients fromJanuary to June2021
were selected as a time-independent test set for external validation.The
case screening process is shown in Figure 1A.

CT Image Acquisition Protocol
Non-contrast-enhanced CT scan was performed using spiral CT
(GE16, Connecticut Fairfield City, USA) with patients in the
supine position. Scanning parameters: tube voltage, 100 kV; tube
current, 210 mA; 512 × 512 matrix; and slice thickness, 5 mm.
Reconstruction algorithm : filter type, BODY FILTER;
convolution kernel, STANDARD; reconstruction diameter, 390.

Pathological Assessment
Pathological reports included the expression status of estrogen
receptor (ER), progesterone receptor (PR), and HER2. The
pathological diagnosis was completed by two pathologists.
According to American Society of Clinical Oncology (ASCO)
guidelines (5), breast cancer is classified as “luminal A”, “luminal
B”, “HER2-enriched”, and “TN”. Samples with positive ER and/or
PR expression (more than 1%) were classified as luminal type
(including luminal A/B); HER2 enriched type (ER andPR negative,
HER2 3+) and triple-negative type (ER, PR, and HER2 negative)
were classified as non-luminal type. In addition, HER2 2+ type
required fluorescence in situ hybridization (FISH) to further
confirmation. Molecular subtypes were labeled independently by
a breast surgeonwithmore than 10 years of experience according to
the expression of receptors in the pathological diagnosis report.

Tumor Segmentation and
Feature Extraction
All chest CT images were exported from the picture archiving and
communication system (PACS) with DICOM format and
converted to Nifty for anonymization. A radiologist with 10
years’ experience in radiology drew the region of interest (ROI)
along the boundary of the breast mass manually in the mediastinal
window of chest CT, using the open-source platform: the medical
imaging interaction toolkit (MITK, https://www.mitk.org/).
Radiomics feature extraction was performed by the PyRadiomics
package Version2.1.0 (https://pyradiomics.readthedocs.io/) (19).
To test the repeatability of manual segmentation, 30 patients were
randomly selected. Fourteen days after the first segmentation, the
first radiologist and another radiologist with 5 years’ experience
performed a secondary segmentation and feature extraction
process. The features’ intra-observer and inter-observer
intraclass correlation efficient (ICC) were calculated, respectively,
and the features with ICC ≥ 0.80 were selected for subsequent
analysis. The two radiologists who sketched the ROI knew only
that the patient had breast cancer and were blinded to other
available clinical and pathological information. For feature
extraction, resampledPixelSpacing is [3, 3, 3]. Wavelet, LOG,
and LBP3D transform are used to filter the original CT images.
Extracted features can be divided into three categories—first order,
shape, and texture features—in which texture features include gray
co-occurrence matrix (glcm), gray run-length matrix (grlm), gray
size region matrix (glzm), gray correlation matrix (gldm), and
neighborhood gray difference matrix (ngtdm).
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Machine Learning and Model
Performance Evaluation
All features were standardized to a mean value of 0 and SD of 1. To
avoid information redundancyandmodel overfitting causedbyhigh-
dimensional features, in the training set, Spearman’s correlation
coefficient within each feature is calculated first, and the features’
coefficient greater than 0.90 was deleted. Then, Six feature selection
methods, including the least absolute shrinkage and selection
operator (LASSO), F test, Pearson’s correlation, mutual
information, tree model, and recursive feature elimination (RFE),
wereused to further reduce thedimensionoffeatures and to select the
most effective features for predicting luminal type breast cancer.

For the selected features, seven supervised machine learning
classifiers were used, including support vector machine (SVM),
random forest (RF), extreme gradient boosting (XGBoost),
Adaboost, LightGBM, GaussianNB, and multilayer perceptron
(MLP), to build radiomics signatures. The 5-fold cross-
validation (cv) was used for internal validation to evaluate the
robustness and select optimal hyperparameters. In this process, all
patients were randomly divided into five groups with the same
sample size, four of which were regarded as the initial training set
and the rest was the validation set. This process is repeated five
times, and the final performance of internal validation was taken
as the mean value of the 5-fold cross-validations. A total of 42
models (6 × 7 = 42) were established, and the effectiveness of the
model was evaluated in terms of differentiation (AUC, in which
closer to 1 means a better model), calibration (calibration curve,
which is used to describe the consistency between the predicted
results and the real state; the lower the brier score is, the better the
predictions are calibrated) and clinical application (decision
curve). According to the models’ performance in the internal
validation, the hyperparameters with the best model performance
were selected, and the whole data (all five groups) were used as the
final training set to retrain the model, the model of the optimal
combination is selected as the final model, and the independent
external validation is carried out in the test set. The above machine
learning classifiers are built using the Python3.7 version by the
scikit-learn library. The radiomics process is shown in Figure 1B.
To overcome the “black box” nature of machine learning models
and increase the interpretability, we visualized the final model with
the SHapley Additive exPlanations (SHAP) dependence plot,
which can explain how a single feature affects the output of the
LASSO_SVM prediction model. This is a uniform procedure for
interpreting the outcome of machine learning models. The SHAP
value can be used to estimate the contribution of each feature to
the predicted result (20).

Statistical Analysis
R (V3.6.3, https://www.R-project.org/) and Python (V3.7,
https://www.python.org/downloads/) were used for statistical
analysis and figure plotting. The Kolmogorov–Smirnov test
was used to evaluate the normal distribution of continuous
variables. The data with normal distribution and homogeneity
of variance were tested by independent sample t-test and
expressed by mean [Standard Deviation (SD)]. Otherwise, the
data were analyzed by Mann–Whitney U test and expressed as
median [interquartile range (IQR)]. The chi-square test was used
March 2022 | Volume 12 | Article 848726
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to compare categorical variables between groups. Two-tailed p <
0.05 was defined as statistically significant.
RESULTS

Patients
In the total of 300 breast cancer patients (mean age: 61.5 years),
97 (32.3%) belonged to luminal A, 56 (18.6%) to luminal B, 61
(20.3%) to HER2, and 70 (23.3%) to TN. In addition, 16 cases
(ER-, PR- and Her2 2+) were categorized as non-luminal type. A
Frontiers in Oncology | www.frontiersin.org 470
total of 132 (44%) patients had positive lymph node metastasis.
The median time interval between the patient’s pathological
results and the CT images was 23 (IQR: 22–25) days. The
detailed clinical and pathological information is shown in
Table 1 and Supplementary Figure 1.

Machine Learning Model Construction
In the whole cohort, a total of 1561 manual radiomics features
were extracted, of which 78 features were removed because their
ICC was less than 0.80 (Supplementary Figure 2). Then, in the
training process, Spearman’s correlation analysis removed 987
TABLE 1 | Baseline information of the training and test sets.

Variables Total (n = 300) Training set (n = 220) Test set (n = 80) p-Value

Age (years) 61.5 ( ± 10.0) 61.3 ( ± 10.2) 62.2 ( ± 9.2) 0.451
Diameter (cm) 2.5 [1.9, 3.0] 2.5 [1.8, 3.1] 2.5 [2.0, 3.0] 0.249
Ki67 (%) 25 [15, 40] 25 [15, 40] 30 [15, 40] 0.877
T stage, n (%) 0.249
T1 77 (25.6) 61 (27.7) 16 (20.0)
T2 219 (73.0) 157 (71.3) 62 (77.5)
T3 4 (1.3) 2 (0.9) 2 (2.5)
Histological stage, n (%) 0.698
I 7 (2.3) 6 (2.7) 1 (1.3)
II 180 (60) 130 (59.1) 50 (62.5)
III 113 (37.7) 84 (38.2) 29 (36.2)
Positive lymph nodes, n (%) 0.598
0 168 (56) 122 (55.4) 46 (57.5)
1~3 80 (26.6) 57 (25.9) 23 (28.7)
≥4 52 (17.4) 41 (18.6) 11 (13.7)
P53, n (%) 0.225
Negative 171 (57) 130 (59.1) 41 (51.3)
Positive 129 (43) 90 (40.9) 39 (48.7)
Molecular subtype, n (%) 0.311
Luminal A 97 (32.3) 69 (31.3) 28 (35)
Luminal B 56 (18.6) 41 (18.6) 15 (18.7)
HER2-enriched 61 (20.3) 49 (22.2) 12 (15.1)
Triple-negative 70 (23.3) 47 (21.3) 23 (28.7)
Unclear (HER2(2+)) 16 (5.3) 14 (6.3) 2 (2.5)
March 2022 | Volume 12 | Article
Data are presented as mean ( ± SD) or median [interquartile range (IQR)] for continuous variables and n (%) for categorical variables.
HER2, human epidermal growth factor receptor 2.
A B

FIGURE 1 | Flowchart of the patient selection and study design. (A) Case screening and division of training and test set. (B) The radiomics workflow.
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highly related features from the training set and left 496 features,
of which 112 were first-order features, 4 were shape features, and
380 were texture features. For each feature screening method, no
more than 10 features were selected for further modeling to avoid
poor performance in the test set caused by overfitting. The AUC
values and accuracy of the models under different algorithm
combinations are shown in Figure 2. The AUC values of the 42
models ranged from 0.599 to 0.842, with the Recursive_MLP
model performing the worst and LASSO_SVM performing the
best in the internal validation. The accuracy ranged from 0.540 in
the Recursive_ LightGBM to 0.775 in the LASSO_ XGBoost
model. Therefore, the LASSO algorithm is the most superior as
a feature selection method.

In the LASSO algorithm, the result suggested that the number of
features is selected between 4 and 26 (Supplementary Figure 3A). To
ensure thebettermodel effectunder theconditionof the smaller feature
number, the variables in the final model include 9 radiomics features:
original_firstorder_10 Percentile, original_glcm_ClusterShade, log-
sigma-2-0mm-3D_glcm_Correlation, log-sigma-30-mm-
3D_firstorder_90Percentile, log-sigma-5-0-mm-3D_glszm_
SmallAreaEmphasis, wavelet-LLH_glszm_LowGrayLevelZone
Emphasis, wavelet-HLL_glszmSmallAreaEmphasis, wavelet-
HHH_glcm_InverseVariance, and lbp-3D-m1_firstorder_Maximum
(Supplementary Figure 3B). Supplementary Figure 4 shows the
ROC, calibration, and decision curves of the seven machine
learning models.

Model Performance Evaluation
The performance of seven machine learning classification models
based on the LASSO algorithm in external validation is shown in
Figure 3: SVM has the highest AUC value (0.757), LightGBM has
the highest sensitivity (0.93), RF has the highest accuracy (0.763),
and Adaboost has the highest specificity (0.703). The
hyperparameters of SVM were set as follows: regularization
factor, C = 1; kernel function, rbf; convergence measure, tol =
0.1. The mean AUC was 0.842 (fold 1–5: 0.791–0.921) in the
Frontiers in Oncology | www.frontiersin.org 571
validation set (Figure 4A). The learning curve of SVM is shown in
Figure 4B: with the increase of training samples, the performance
of the model in internal validation tended to be stable. The AUC of
the final model in the test set was 0.757, 95% CI: 0.640–0.866
(Figure 4C); and the calibration curve showed a good fitting effect
(Figure 4D, Brier score = 0.103). The model evaluation indexes of
the training set and test set are shown in Table 2. Figure 5 is the
SHAP plot of the visualization for the prediction model, which
described the relationship between the high and low features’
SHAP values of the training set. According to the LASSO_SVM
model, a dot is created for each feature value of the model for each
patient, so a dot is assigned to each patient on each feature line.
The dots were colored according to the feature values of their
respective patients and vertically accumulated to depict density.
Red indicates high feature values, and blue indicates low. The
higher the absolute SHAP value of a feature is, the more likely it is
luminal type breast cancer.

The predictive probability of each patient belonging to luminal
type based on the SVM model was used as a radiomics score. The
boxplot (Figure 6) further showed the differences in age, tumor
diameter, Ki67 expression level, and SVM radiomics scores between
luminal andnon-normal patients. Among them,Ki67 and radiomics
scores were statistically different. Supplementary Figure 5 shows
four typical cases that correspond to the labeled andmodel predicted
molecular subtype classification of the LASSO _SVMmodel.
DISCUSSION

Radiomics is a new technology in recent years. In this
retrospective study, we constructed a diagnostic model based
on the LASSO_SVM classifier containing 9 radiomics features, to
explore the application potential in distinguishing luminal from
non-luminal breast cancer.

A newly published meta-analysis has shown that there are
currently more than 40 studies concerning the radiomics
A B

FIGURE 2 | Heatmap of the model performance under different algorithm combinations of feature selection methods (rows) and classification algorithms (columns).
(A) Area under the curve (AUC) values of the 42 models in the cross-validation. (B) Accuracy values of the 42 models.
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assessment of molecular subtypes of breast cancer, most of which
are based on mammography, ultrasound, and MRI (21). Huang
et al. found that the combination of radiomics and machine
learning based on multi-parameter MRI provides a promising
method for the non-invasive prediction of molecular subtypes
and androgen receptor expression of breast cancer. The MLP
classifier showed the best performance in discriminating triple-
Frontiers in Oncology | www.frontiersin.org 672
negative breast cancer (TNBC) vs. non-TNBC (AUC, 0.965;
accuracy, 92.6%) (22). Choudhery et al. found that MRI
radiomics features were associated with different breast cancer
molecular subtypes in patients treated with neoadjuvant
chemotherapy. Significant differences were found in the
median volume, median longest axial tumor diameter, and
median longest volumetric diameter among different tumor
A B

DC

FIGURE 4 | The model training and testing process. (A) The area under the curve (AUC) values of LASSO_SVM in internal validation [5-fold cross-validation (cv)].
(B) The variation trend of the model’s AUC value with the increasing sample size. (C) The AUC value of LASSO_SVM in external validation (test set). (D) Model’s
calibration curve shows good fitting effect.
FIGURE 3 | Bar plot of the seven models’ performances in the time-independent external validation based on least absolute shrinkage and selection operator (LASSO).
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subtypes (p = 0.008, 0.009, and 0.01, respectively) (23). Lee et al.
(24) investigated the machine learning approaches based on
radiomics to predict the molecular subtypes of breast cancer,
using the quantitative features extracted from MRI, including
perfusion and texture parameters. The RF model achieved the
best performance (AUC = 0.80). Although breast MRI has a very
high sensitivity, due to the limitations of a regional medical
condition and patients’ economic levels, the popularization rate
in China is very low. It has been studied that synthetic
mammography from digital breast tomosynthesis radiomics
signature could discriminate TN, HER2, and luminal subtypes
of breast cancer, which yielded an AUC of 0.838, 0.556, and
0.645, respectively, in the validation cohort (25). Niu et al. have
studied the evaluation of molecular subtypes of breast cancer by
intra-tumor and peritumoral radiomics based on mammography
and MRI and constructed signatures using LASSO regression.
The AUC of identifying HER2 breast cancer in the validation set
can reach 0.907. According to the results of the study, the
peritumoral area can provide some supplementary information
for prediction, and compared with MRI, the mammography had
a higher AUC for distinguishing luminal A from luminal B
subtype breast cancer (26). However, although mammography is
very common in breast examination, because of its low spatial
Frontiers in Oncology | www.frontiersin.org 773
resolution and in young patients with rich glands, the display
effect of mass is not satisfactory. At present, it is often used to
assist in the diagnosis of benign and malignant calcification.

Chest CT, although morphological, so far cannot be used for
routine screening of breast masses, but for most patients, it is still
one of the routine examinations for admission. It is non-invasive
and time-saving does not need a contrast agent, and because of its
tomographic characteristics, it also has the potential to provide
relatively rich focus information, with the improvement of big
data’s analytical ability. It will be beneficial to the full mining of
this information and to explore their correlation with the
biological characteristics of the disease. Yang et al. (27) used
manual and deep radiological features based on multi-detector
CT (MDCT) to evaluate the status of HER2 in breast cancer
patients. The combined model with handmade and deep
radiological signatures showed good discrimination, and the C
index in the main cohort reached 0.829. These features can
provide supplementary help for radiological assessment of the
HER2 status of breast cancer. In another radiomics study based on
chest CT images, the LASSO logical method was used to construct
a prediction model. The AUC values to distinguish TNBC from
non-TNBC were 0.881 and 0.851 in the discovery and validation
groups, respectively (28). In our study, we tried 42 different feature
FIGURE 5 | Each point on the graph is a SHapley Additive exPlanations (SHAP) value for a feature and sample. The position on the y-axis is determined by the
feature, and the position on the x-axis is determined by the SHAP value. In this graph, log-sigma-3-0-mm-3D_firstorder_90Percentile, as the most important feature,
has a high SHAP value. The color represents the value of the feature from low to high. Overlapping points jitter along the y-axis, so we get the distribution of SHAP
values for each feature. The features are listed in order of their importance.
TABLE 2 | Performance of the LASSO_SVM model in the training and test sets.

Training set Test set

AUC 0.842 (0.728–0.957) 0.757 (0.640–0.866)
Accuracy (%) 0.773 (0.681–0.865) 0.713 (0.614–0.812)
Sensitivity (%) 0.818 (0.733–0.903) 0.767 (0.674–0.860)
Specificity (%) 0.773 (0.681–0.865) 0.676 (0.573–0.779)
Positive predictive value (%) 0.772 (0.680–0.864) 0.727 (0.629–0.825)
Negative predictive value (%) 0.781 (0.690–0.872) 0.694 (0.593–0.795)
F1 score 0.792 (0.703–0.881) 0.747 (0.652–0.842)
March 2022 | Volume
The range of values in parentheses indicates the 95% CI.
AUC, area under the curve.
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screening and machine learning classifiers for modeling to predict
luminal breast cancer. The AUC, accuracy, sensitivity, and
specificity in the test set are 0.757, 0.713, 0.767, and 0.676,
respectively. About feature dimensionality reduction methods,
the overall performance of the LASSO algorithm is better than
other dimensionality reduction algorithms in terms of AUC and
accuracy, whether internal or external validation. LASSO is a kind
of compressed estimation, which obtains a more refined model by
constructing a penalty function. The basic idea is to minimize the
sum of squares of residuals when the sum of absolute values of
regression coefficients is less than a certain constraint so that some
regression coefficients that are strictly equal to 0 can be produced,
and an interpretable model can be obtained. It is a biased
estimation for complex collinear data, so it can screen variables
and reduce the complexity of the model (29, 30). At present,
LASSO is the most widely used dimensionality reduction method
that can effectively prevent overfitting in different application
scenarios (31–33). In the machine learning classifiers based on
LASSO dimensionality reduction, the performances of the models
are still different. SVM has the highest AUC value in both internal
and external validations. In the internal validation, the accuracy of
XGBoost is slightly higher than that of SVM, while in the external
validation, the two have the same accuracy. Although LightGBM
has the highest sensitivity (0.93) in the external validation, the
specificity is relatively low (0.486). SVM is a binary classification
model, and the core idea is a hyperplane defined in the feature
space, which can maximize the geometric interval between
different categories, but at the same time, it can also carry out a
variety of kernel transformations. This also makes it an essentially
Frontiers in Oncology | www.frontiersin.org 874
non-linear classifier, which is widely used in a variety of scenarios,
especially showing great advantages for biomedical classification
problems (34–36). SVM is also widely used in breast cancer
research. The accuracy of a breast cancer diagnosis can be
improved by using radiomics and SVM of multi-parameter
breast MRI (37). Zhang et al. constructed a prediction model
based on the LASSO feature selection method and SVM classifier
by using multimodal MRI radiomics, which could distinguish
benign and malignant breast cancer with an AUC value of 0.836
(38). In a study of preoperative MRI radiomics in patients with
oropharyngeal squamous cell carcinoma, the LightGBM model
showed an AUC of 0.8333 in predicting human papillomavirus
(HPV) status and 0.857 in predicting disease recurrence (39). The
XGBoost algorithm has been used for feature selection and model
building to predict axillary lymph node metastasis in breast cancer,
achieving an accuracy of 80%, using the F-18 fluorodeoxyglucose
PET/CT (40). MLP is a kind of artificial neural network with a
forward structure, which maps a set of input vectors to a set of
output vectors. It can follow the principle of the human nervous
system to learn and predict data (41). According to Yun (42), a
robust classificationmodel was constructed by using the radiomics
features based on MRI, which can distinguish glioblastoma from
primary central nervous system lymphoma. MLP classifier served
a high-performing and generalizable model. Mao et al. (43)
constructed multi-classifier-based ultrasound radiomics models,
which can be used to identify primary and metastatic liver cancer,
in which the logistic regression model outperforms MLP (AUC
0.816 vs. 0.790). In our study, the performance of MLP is the worst
among all performance indicators, and the possible reason may be
A B

DC

FIGURE 6 | Boxplot of the relationships between different variables and molecular subtypes. (A) Age. (B) Diameters of breast mass. (C) Ki-67 expression level.
(D) Radiomics score of the LASSO_SVM model.
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that the final effect of the algorithm is closely related to the
generalization ability of the network and learning samples,
which is particularly obvious in the neural network. If the
sample set is poorly representative, there are many contradictory
or redundant samples, and it is difficult for the network to achieve
the expected performance (44).

As the first exploratory research, our study inevitably has
limitations. First of all, as a research on the development and
validation of predictive models, although time-independent
external validation has been carried out, our data came from a
single center; and the application value of CT in breast cancer is still
controversial, which needs to be verified on a larger scale and in
more centers. Secondly, the slice thickness of our images is large,
whichmay lead to the exclusion of small tumors from the study. In
the next work, we plan to prospectively collect thin-slice images to
verify the applicability of small tumors. Finally, due to the nature of
the retrospective study, there is selection bias, which can also be
compensated by future prospective validation. Despite the above
limitations, our research is still enlightening and has potential.
CONCLUSION

This study explored the potential of non-contrast-enhanced CT
imaging in predicting the luminal type of breast cancer and
achieved encouraging results, which has some implications for
clinical work, but further prospective validation and studies
combined with other examinations are still needed.
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The early prediction of a patient’s response to neoadjuvant chemotherapy (NAC) in breast
cancer treatment is crucial for guiding therapy decisions. We aimed to develop a novel
approach, named the dual-branch convolutional neural network (DBNN), based on deep
learning that uses ultrasound (US) images for the early prediction of NAC response in
patients with locally advanced breast cancer (LABC). This retrospective study included 114
women who were monitored with US during pretreatment (NAC pre) and after one cycle of
NAC (NAC1). Pathologic complete response (pCR) was defined as no residual invasive
carcinoma in the breast. For predicting pCR, the data were randomly split into a training set
and test set (4:1). DBNN with US images was proposed to predict pCR early in breast
cancer patients who received NAC. The connection between pretreatment data and data
obtained after the first cycle of NAC was considered through the feature sharing of different
branches. Moreover, the importance of data in various stageswas emphasized by changing
the weight of the two paths to classify those with pCR. The optimal model architecture of
DBNN was determined by two ablation experiments. The diagnostic performance of DBNN
for predicting pCR was compared with that of four methods from the latest research. To
further validate the potential of DBNN in the early prediction of NAC response, the data from
NAC pre and NAC1 were separately assessed. In the prediction of pCR, the highest
diagnostic performance was obtained when combining the US image information of NAC

pre and NAC1 (area under the receiver operating characteristic curve (AUC): 0.939; 95%
confidence interval (CI): 0.907, 0.972; F1-score: 0.850; overall accuracy: 87.5%; sensitivity:
90.67%; and specificity: 85.67%), and the diagnostic performance with the combined data
was superior to the performance when only NAC pre (AUC: 0.730; 95% CI: 0.657, 0.802;
F1-score: 0.675; sensitivity: 76.00%; and specificity: 68.38%) or NAC1 (AUC: 0.739; 95%
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CI: 0.664, 0.813; F1-score: 0.611; sensitivity: 53.33%; and specificity: 86.32%) (p<0.01)
was used. As a noninvasive prediction tool, DBNN can achieve outstanding results in the
early prediction of NAC response in patients with LABC when combining the US data of
NAC pre and NAC1.
Keywords: deep learning, breast cancer, neoadjuvant chemotherapy, pathologic complete response,
ultrasound imaging
INTRODUCTION

Breast cancer is the most common cause of cancer-related death
among women worldwide (1). Neoadjuvant chemotherapy
(NAC) has been used as a systematic preoperative treatment
for patients with locally advanced breast cancer (LABC) (2).
NAC has the advantage of downsizing breast cancers, thus
allowing breast-conserving surgery and assessments of the
response to chemotherapy during treatment. The achievement
of pathologic complete response (pCR) may be a potential
independent predictor of better disease-free survival (DFS) and
overall survival (OS), especially in patients with triple-negative
and human epidermal growth factor 2 (HER2)-enriched breast
cancer (3). However, even with the continuous improvements in
chemotherapy regimens, the number of patients who achieve
pCR remains low (4). Due to the different molecular types and
histopathology of breast cancer, the response to chemotherapy
may be different. Therefore, identifying patients with superior
responses to NAC early has naturally become one of the current
hotspots of study.

The optimal method for monitoring the response to NAC has
not been established (5). Imaging examination can be used as one
of the primary assessment methods. Magnetic resonance imaging
(MRI), US, and positron emission tomography (PET)/computed
tomography (CT) have been used as evaluation tools (5–7).
However, imaging examinations have limitations when used
clinically because image interpretation is mainly based on a
radiologist’s visual assessment and is not standardized.
Furthermore, MRI and PEC/CT are expensive, and PEC/CT is
radioactive, making them impractical for frequent scans of
patients receiving NAC. Among those methods, ultrasound
(US) may become the primary monitoring tool due to its
reusability, versatility, sensitivity, and safety.

With the continuous development of deep learning, computer-
aided diagnosis (CAD) has become an important research topic,
especially in breast cancer research. CAD research has involved
the classification (8), segmentation (9), and detection (10) of breast
tumours. Especially for classification tasks, which mainly focus on
the differentiation of benign and malignant breast tumours, CAD
has attracted increasing attention from researchers (11). Deep
convolutional neural networks (CNNs) have been widely applied
to many healthcare and medical imaging works, leading to state-
of-the-art results (12–16). The classification operation procedure
of a CNN is that an input image is fed into the CNN to learn
essential features and save these parameters as weights and biases
to classify images (17). Recently, with the help of deep learning
methods, there have been several published studies for predicting
279
breast cancer treatment responses based on PET/CT and MRI
images (18–20). El Adoui M et al. introduced a two-branch CNN
for the early prediction of breast cancer response to chemotherapy
using DCE-MRI volumes acquired before and after chemotherapy
(18). Braman N et al. developed a CNN for predicting pCR to
HER2-targeted NAC with pretreatment DCE-MRI (19). Choi J H
et al. used a CNN algorithm based on Alexnet to predict responses
to NAC for advanced breast cancer using PET and MRI images
(20). Those studies have shown that deep learning has emerged as
a promising tool for breast cancer response prediction.

High-resolution breast US images contain rich texture and
echo features that, when combined with deep learning
techniques, may potentially be used to achieve a highly
accurate and noninvasive NAC response detection method. At
present, there are some studies about the use of CAD with US
images for predicting the response of breast cancer to NAC (21–
23). However, most of these studies focus on feature engineering
work based on semiautomatic intermediate steps, and the
technique is labour intensive and time consuming. The
accuracy of a deep network has far exceeded that of a
traditional machine learning method based on handcrafted
features (8). However, in the learning process of existing deep
learning models, the correlation and importance of the data
during different chemotherapy courses have been ignored, and
the characteristics of the data have not been well grasped. The
purpose of our study is to construct a novel deep learning-based
approach named the dual-branch convolutional neural network
(DBNN) based on US images at different stages of chemotherapy
for the early prediction of NAC in patients with LABC.
METHODS

Study Participants
This retrospective single-centre study was approved by the Ethics
Committee of ShangHai RenJi Hospital (ShangHai P.R. China),
and the requirement for written informed consent was waived.
Between February 2015 and June 2019, we enrolled 132 women
with LABC who were treated with NAC and surgical resection at
our institution. The eligibility criteria were as follows: (a) patients
with breast cancer aged 18 to 80 years; (b) patients with
histologically confirmed breast cancer and no history of
treatment for breast cancer; (c) patients for which US was
performed during NAC; and (d) after NAC, the patients
underwent surgery and a pathological evaluation was
performed. Of the 132 patients, 18 were excluded for the
following reasons: (a) US was performed at an outside hospital
April 2022 | Volume 12 | Article 812463
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(n= 3); (b) no midtreatment US data were available (n= 12); and
(c) the US images were of poor quality (n=3). A total of 114
patients (age range: 26-72 years; mean age: 49.92 years)
comprised the study group. (Figure 1).

US Examination
The ultrasonography examinations were performed using MyLab
Twice (Esaote, Genoa, Italy) with a 4–13-MHz LA523 linear
transducer by an experienced radiologist at the Department of
Ultrasound (C.F.W. with 10 years of experience in breast US). In
this study, US images were collected before and after the first course
of chemotherapy. The US images of pCR and non-pCR samples
collected at different treatment stages are shown in Figure 2. The
primary dataset called Renji NAC (RJNAC) contains 1936 (968×2
stages) US images (800×608 pixels) at different treatment stages,
including 968 US images at each stage, with an average of 16 to 20
images per patient. For the prediction of pCR, the dataset was
randomly split into training data (80%) and test data (20%) (a ratio
of 4:1). That is, when dividing the dataset, the pCR and non-pCR
ratios in the samples were kept close. In the training set and the test
set, the pCR and non-pCR ratios were both approximately 0.63.
Specifically, each stage of the training set contained 776 images,
including 300 pCR images and 476 non-pCR images, while the test
set contained 192 images, including 75 pCR images and 117 non-
pCR images. (Figure 1).

Data Preprocessing
The data collected in this study are ultrasonic video data. To
input it into the neural network, we perform a video frame
cutting operation on the video data (24–26). Four preprocessing
steps are applied before starting the training process. As detailed
in Figure 3, the first step is to cut the video with different time
lengths according to the fixed frame interval to form an
indefinite number of M ultrasonic images. The second step is
to select N high-quality breast tissue images by removing some
images containing artifacts, blur, and non-lesion tissue. Blind to
the patients’ private information and pathological results, two
Frontiers in Oncology | www.frontiersin.org 380
professional radiologists (Q.D. and C.F.W. with five and ten
years of experience in breast US, respectively) independently
read the breast US images. They reach a consensus through
discussion to ensure the correctness and repeatability of the
dataset. The N of two stages of each patient must be the same but
can vary for different patients, depending on howmany clear and
usable mass images were contained in the indefinite number of
M images of different patients. The change of N among different
patients does not affect the model learning. N images of two
stages are paired sequentially to ensure that the image pairs of
each pair are closest in the video time sequence. The third step is
that, after removing the nonrelevant breast tissue information,
such as the model number of the instruments, time of scanning
or imaging, and patient information, we retain the remaining
information as a region of interest (ROI). In addition, the
resolution of ROI images obtained after video processing is
consistent with the resolution of ROI images obtained by static
single frame cropping, both of which are 445×445 pixels. Finally,
we use the median filter (27) to denoise the US images and
preserve edge information. All US images are represented as
greyscale images with sizes of 128 × 128 before being fed into the
deep neural network.

Dual-Branch Convolutional
Neural Network
In the prediction of NAC response, the existing studies failed to
take advantage of the correlation among multistage data and the
importance of data at each chemotherapy stage (5, 28–30). To
solve this problem, we developed a model named DBNN based
on feature sharing and weight assignment to predict
chemotherapy response by utilizing US images before and after
the first stage of chemotherapy (NACpre and NAC1,
respectively). Dual branches were designed to extract data
features from NACpre and NAC1. There are feature-sharing
modules between different branches so that the model could
fully use the correlation of the data from each stage. In addition,
the model has a weight assignment module, which considers the
FIGURE 1 | Flowchart for the study. LABC, Locally Advanced Breast Cancer; NAC, Neoadjuvant Chemotherapy; US, Ultrasound; pCR, Pathologic Complete
Response; non-pCR, non-Pathologic Complete Response.
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FIGURE 3 | Data preprocessing of an ultrasonic video. ROI, Region Of Interest.
A

B

FIGURE 2 | Two sets of tumour US images corresponding to different stages of NAC. (A) a set of images of pCR. (B) a set of images of non-pCR. NACpre, US
images before chemotherapy; NAC1, US images after the first stage of chemotherapy.
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importance of different branch features and provides prior
knowledge for accurate classification.

As shown in Figure 4, the DBNN architecture is composed of
two branches that take a 128 × 128 breast tumour ROI cropped
from NACpre and NAC1 images as input. Each path contains
four convolution blocks, which contain nine convolutional layers
in total. Batch normalization layers (31) follow each
convolutional layer to speed up network convergence, and a
rectified linear unit (ReLU) activation function (32) is used to
increase the nonlinearity of the network. Then, these layers are
followed by four max-pooling layers (33), where each max-
pooling layer is used to perform image downsampling.
Furthermore, DBNN has two fully connected layers for feature
weighting, and features are shared between each branch by
feature fusion.

The details of DBNN feature sharing are shown in the black
dotted box in Figure 5. DBNN consists of four convolutional
blocks, and the input of each block is the output of the previous
block (except for Block 1, where the input is US images from
NACpre and NAC1). Sixty-four kernels are used for each
convolutional layer in Block 1, 128 for each layer in Block 2,
256 for each layer in Block 3 and 512 for each layer in Block 4,
and each kernel has a size of 3 × 3. An US image is input into the
respective branch at each stage. Then, the fusion feature map is
trained through the convolutional layer, batch normalization
layer, and ReLU function and finally downsampled and input
into the other blocks until the convolution operation
is completed.

First, the network starts from the input layer and is expressed
as:

C0 = X (1)

C
0
0 = Y (2)

where X denotes the input of NACpre and Y denotes the input of
NAC1. Then, C0 and C

0
0 are input to their respective convolution

layers, and features are extracted through the convolution kernel.
Frontiers in Oncology | www.frontiersin.org 582
Finally, the feature maps C1 and C
0
1 are generated. The formula is

expressed as:

Ci = si wi  ∗ Ci−1 + bið Þ (3)

C
0
i = s

0
i w

0
i  ∗ C

0
i−1 + b

0
i

� �
(4)

where Ci and C
0
i represent the feature maps of layer i, i

ϵ{1,3,5,7,8}. si and s
0
i indicate the ReLU activation function, wi

and w
0
i stand for the network weights of layer i of the two paths,

bi and b
0
i are network biases for the convolution layer, and *

denotes the convolution operation. Ci-1 and C
0
i−1 are used as

inputs of the next layers, Ci and C
0
i , respectively.

Cj = sj wj ∗ Cj−1 + C
0
j−1

� �
+ bj

� �
(5)

C
0
j = s

0
j w

0
j ∗ C

0
j−1 + Cj−1

� �
+ b

0
j

� �
(6)

where Cj and C
0
j represent the feature maps of layer j, j

ϵ{2,4,6,9}. Cj-1 and C
0
j−1 are used as inputs of the next layers, Cj

and C
0
j , respectively.

After each convolution block, we obtain Ck and C
0
k and input

them into the max-pooling layer to reduce the number of
parameters of the feature map:

Ck = maxpooling Ckð Þ (7)

C
0
k =  maxpooling C

0
k

� �
(8)

where Ck and C
0
k represent the feature maps of layer k,

k ϵ{2,4,7,9}.
In contrast to the fusion method in the fully connected layer,

DBNN shares the features between each branch; that is, it uses
fusion when extracting low-level features. As a result, the
model could be trained effectively to screen out crucial
features, including changes in lesion areas before and after
FIGURE 4 | Overview of the DBNN model architecture.
April 2022 | Volume 12 | Article 812463

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xie et al. NAC Response Prediction Using DL
NAC treatment, thus affecting the prediction results of
chemotherapy response.

As shown in Figure 6, the weight fusion strategy of DBNN is
uncomplicated, and the black dotted box shows the details of the
red dotted box. First, the feature vector F(X) from the NACpre

branch and the feature vector F(Y) from the NAC1 branch are
input, and then the updated feature vectors F(X') and F(Y') are
obtained by multiplying the two feature vectors by a(0.2) and
b(0.8), respectively. Finally, the sum operation is performed on the
updated features to obtain the feature vector F(Z) which is fused
with the two branches. The process is expressed by the formula:

F Zð Þ = a  ∗ F X 0� �
+ b  ∗ F Y 0� �� �

(9)

After the fully connected layer, we used a dropout strategy
(34) (with a rate of 0.5), which helps to prevent the model from
overfitting during training. Then, the two branches were
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summed after the fully connected layer with 1024 hidden
units, and a softmax function was applied for pCR classification.

The performance of machine learning algorithms is primarily
affected by their hyperparameters because their performance will be
inferior without optimal hyperparameter values (35). In particular,
the deep learning model relies on good hyperparameter values to
accelerate the convergence of the model and achieve optimal
performance. To compile and evaluate each model, we use cross
entropy (36) as the loss function and a standard accuracy metric
that calculates the mean accuracy rate across all predictions.Table 1
shows the hyperparameter setup. The loss curves show no
overfitting or underfitting in our model (Figure 7).

All experiments were performed on a Dell T640 tower server
deep learning workstation with two NVIDIA GeForce RTX
2080Ti independent graphics cards and two Intel Xeon Silver
4110 CPUs, with RAM extended to 64 GB. The experimental
FIGURE 6 | Diagram of the weight assignment method.
FIGURE 5 | Diagram of the feature-sharing method.
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platform was in Python version 3.7. DBNN was implemented by
PyTorch, which is a deep learning platform.

Histopathologic Assessment
A pathologist with more than 20 years of experience in breast
pathology assessed the histologic results. All pathologic results from
outside biopsies were reviewed at our institution. Tumour pathologic
characteristics were obtained from histopathologic reports of US
guided core biopsies performed before NAC. The histologic type,
grade, and expressions of HER2, the oestrogen receptor (ER), the
progesterone receptor (PR), and antigen Ki67 were assessed.
Tumours with >1% nuclear staining were denoted as ER/PR
positive. The cut-off point for Ki-67 high expression was 30%. In
terms of HER2 expression, tumours were considered HER2 negative
if they had a score of 0 or 1+ during the immunohistochemical
(IHC) examination, and a score of 3+ indicated that the tumour was
HER2-positive. If the HER2 status was equivocal (IHC score: 2+ or 1
+ to 2+), further investigation using in situ hybridization (ISH) was
required. In our study, pCR was defined as no residual invasive
carcinoma in the breast at surgical resection. Molecular subtypes
were classified according to the St. Gallen Consensus (38).

Statistical Analysis
Our statistical analysis was performed using IBM SPSS Statistics 22
(Armonk, NY, USA). Clinicopathological characteristics and US
images before and after the first stage of chemotherapy, including
maximum tumour diameter and tumour histologic type, were
784
collected. The continuous variables were described as the range,
mean and standard deviation, while the categorical variables were
reported as counts with percentages. T-tests, chi-squared tests, or
Fisher exact tests for independent samples were used to determine
significant differences between the pCR and non-pCR groups. To
evaluate the performance of the developed models, we calculated
six performance metrics: accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and F1-
score. The predicted performance was assessed by using receiver
operating characteristic (ROC) curves, and the area under the curve
(AUC) scores were compared. Then, the results were analysed to
select the best model to predict NAC response in patients with
breast cancer utilizing breast US images. P <.05 was considered to
indicate a significant difference. The performance results of the
model and other methods were compared by using the Mann-
Whitney U test. The 95% CIs for AUC were estimated by using the
DeLong method (39–41). Statistical computing was implemented
with the Scipy package, a Python-based open-source data
processing tool. For the prediction of pCR, DBNN was trained
on the training set and then validated on the test set.

F1-score conveys the balance between PPV and sensitivity.
The closer the value is to 1, the better the performance of the
method. The F1-score equation is defined as follows:

F1 − score =
2TP

2TP + FP + FN
(10)
RESULTS

Patient Characteristics
One hundred and fourteen women comprised the final study
group (age range: 26-72 years; mean age: 49.92 years). The median
maximum diameter of the tumours in the pretreatment US images
was 3.82 cm (range: 1.35-8.2cm). The patient characteristics and
FIGURE 7 | The loss curves of DBNN.
TABLE 1 | The hyperparameters of the DBNN architecture.

Hyperparameter Value

Optimizer Adam (37)
Learning rate 0.001
Loss function Cross entropy
Batch size 8
Epochs 500
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the sizes of the tumours in the pCR and non-pCR groups are listed
in Table 2. Of the 114 patients, 39 (34.2%) achieved pCR at the
final pathologic evaluation. No significant differences were found
in age, molecular subtype, or maximum tumour diameter between
the pCR and non-pCR groups. For the 39 patients who achieved
pCR, no residual invasive carcinoma in the breast or axillary
lymph nodes was found in 37 (94.87%) patients. Thirty-seven
(85.29%) patients showed no evidence of malignant cells in the
breast, and 2 (8.82%) patients showed only ductal carcinoma in
situ. Of the 75 patients with non-pCR, partial response was
observed in 72 patients, and disease stability was observed in 3
patients. Disease progression was not observed for any patient in
this study cohort. The pCR group showed a higher proportion of
ER negativity (20 [51.3%], P <0.001), PR negativity (13 [33.3%],
P=0.029), HER2 positivity (20 [51.3%], P=0.042) and Ki-67 high
expression (36 [92.3%], P=0.044) than the non-pCR group. There
were significant differences in molecular types between the pCR
and non-pCR groups (P<0.001), although luminal B was the main
molecular type. The patient characteristics of the tumours in the
training and test cohorts are listed in Table 3. There was no
significant difference in the expression of biomarkers (i.e., ER, PR,
HER2, and Ki-67) between the training and test cohorts. Of the 39
patients who achieved pCR at the final pathologic evaluation, 30/
91 (32.97%) patients and 9/23 (39.13%) patients achieved pCR in
the training and test sets, respectively (Table 4).

Performance Analysis of DBNN
Feature Sharing
As mentioned above, it can be understood that the number of
layers in a CNN has a specific impact on the prediction and
classification performance of the model. Thus, CNNs with
different numbers of layers were designed in this experiment.
The experimental results were compared to determine the best
Frontiers in Oncology | www.frontiersin.org 885
layer number for the dual branch network. The performance of
different convolution layer numbers is shown in the first five
rows of Table 5. It can be seen that with the deepening of the
network, the performance indices of the dual branch model
increased first and then decreased in general. Here, X denotes the
number of layers of each branch network in CNN-X. CNN-9
performs the best out of the models with different numbers of
layers, and it has an accuracy of 81.77%. Moreover, it also ranks
the highest in specificity, PPV, and F1-score. Therefore, in this
study, the nine-layer CNN was selected as the backbone of the
model. Next, the influences of feature sharing and the weight
assignment strategy on the model are explored.

At present, there are many methods of feature sharing,
including feature element sum and feature concatenation,
which are the classic feature fusion methods (42–46). Thus, we
also explored the influence of two different strategies on model
performance. In the last two rows of Table 5, the performance
comparison results of the model with different feature-sharing
strategies are shown. CNN-9 FSS represents the CNNmodel that
uses the feature element sum method, while CNN-9 FSC
represents the CNN model that uses the feature concatenation
method. Table 5 shows that the model achieves better
performance when the feature element sum method is used.
The accuracy, sensitivity, NPV, and F1-score values were higher
than those obtained by the CNN with feature concatenation and
CNN-9 without feature sharing. Therefore, DBNN adopts the
feature element sum method as its feature-sharing method.

Weight Assignment of DBNN Feature
Connection
DBNN is a dual-branch network with two inputs and one output,
and the two inputs are NACpre and NAC1 chemotherapy data.
The output is the probability of predicting pathological results.
TABLE 2 | Clinical characteristics of pCR and non-pCR breast cancer patients.

Characteristics non-pCR Group(n= 75) pCR Group (n= 39) P Value

Age (y)* 50.6 ± 10.7 48.8 ± 11.3 0.367
Max tumour diameter (cm) 3.99 ± 1.49 3.51 ± 1.57 0.112
ER status <0.001
Negative 12 (16.0) 20 (51.3)
Positive 63 (84.0) 19 (48.7)
PR status 0.029
Negative 11 (14.7) 13 (33.3)
Positive 64 (85.3) 26 (66.7)
HER2 status 0.042
Negative 52 (69.3) 19 (48.7)
Positive 23 (30.7) 20 (51.3)
Ki-67 0.044
Low 19 (25.3) 3 (7.7)
High 56 (74.7) 36 (92.3)
Tumour molecular type 0.002
Luminal A 13 (17.3) 1 (2.6)
Luminal B 54 (72) 25 (64.1) 0.595
HER2 positive 19 (35.2) 11 (44.0)
HER2 negative 35 (64.8) 14 (56.0)
HER2 positive (Nonluminal) 3 (4.0) 9 (23.1)
Triple-negative cancer 5 (6.67) 4 (10.3)
April 2022 | Volume 12 | Article
Data represent the number of patients, and data in parentheses are percentages. *Data are ± standard deviations; ER, oestrogen receptor; PR, progesterone receptor; HER2, human
epidermal growth factor receptor 2; Ki-67, antigen Ki67.
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Therefore, a feature map from each branch network needs to
connect the features and then maps from a high-dimensional
vector to a low-dimensional vector to complete the classification
task. We compared the experimental results of the feature
element sum method, feature concatenation method, and
feature weight assignment method of the dual-branch network
to explore different feature connection methods (see Table 6).
CNN-9 FSS_concat represents the CNN model with the feature
concatenation method, and CNN-9 FSS_sum represents the
Frontiers in Oncology | www.frontiersin.org 986
CNN model with the feature element sum method. CNN-9
FSS (A, B) represents the CNN model with the weight
connection method, where A is the weight of the NACpre

branch and B is the weight of the NAC1 branch.
As shown in Table 6, when the feature weight of the NACpre

branch is 0.2 and when that of the NAC1 branch is 0.8, the
model’s performance is the best, with an accuracy of 87.50%. In
addition, the F1-score is higher than that of the other models,
which may be because NAC1 stage data contributed more to the
TABLE 4 | Clinical characteristics of the training and test sets containing pCR and non-pCR breast cancer patient data.

Variables Training set (n= 91) Test set (n= 23)

pCR (n=30) non-pCR (n=61) pCR (n=9) non-pCR (n=14)

Age (y)* 50.6 ± 11.3 50.9 ± 11.1 41.9 ± 8.81 49.21 ± 9.13
Max tumour diameter (cm) 3.44 ± 1.46 4.07 ± 1.63 2.71 ± 1.07 2.99 ± 1.38
ER status
Negative 15 (50.0) 11 (18.0) 5 (55.6) 1 (7.2)
Positive 15 (50.0) 50 (82.0) 4 (44.4) 13 (92.9)
PR status
Negative 10 (33.3) 8 (13.1) 3 (33.3) 3 (21.4)
Positive 20 (66.7) 53 (86.9) 6 (66.7) 11 (78.6)
HER2 status
Negative 15 (50) 40 (65.6) 4 (44.4) 12 (85.7)
Positive 15 (50) 21 (34.4) 5 (55.6) 2 (14.3)
Ki-67
Low 1 (3.3) 15 (24.6) 2 (22.2) 4 (28.6)
High 29 (96.7) 46 (75.4) 7 (77.8) 10 (71.4)
Tumour molecular type
Luminal A 0 (0) 10 (16.4) 1 (11.1) 3 (21.4)
Luminal B 20 (66.7) 44 (72.1) 5 (55.6) 10 (71.4)

HER2 positive 8 (40.0) 18 (40.9) 3 (60.0) 1 (10.0)
HER2 negative 12 (60.0) 26 (59.1) 2 (40.0) 9 (90.0)

HER2 positive (Nonluminal) 7 (23.3) 3 (4.9) 2 (22.2) 0 (0)
Triple-negative cancer 3 (10.0) 4 (6.6) 1 (11.1) 1 (7.1)
April 2022 | Volume 12
Data represent the number of patients, and data in parentheses are percentages. *Data are ± standard deviations; ER, oestrogen receptor; PR, progesterone receptor; HER2, human
epidermal growth factor receptor 2; Ki-67, antigen Ki67.
TABLE 3 | Clinical characteristics of the breast cancer patients in the training and test cohorts.

Variables Training set (n= 91) Test set (n= 23) P Value

ER status 1.000
Negative 26 (28.6) 6 (26.1)
Positive 65 (71.4) 17 (73.9)
PR status 0.569
Negative 18 (19.8) 6 (26.1)
Positive 73 (80.2) 17 (73.9)
HER2 status 0.478
Negative 55 (60.4) 16 (70.0)
Positive 36 (39.6) 7 (30.4)
Ki-67 0.381
Low 16 (17.6) 6 (26.1)
High 75 (82.4) 17 (73.9)
Tumour molecular type 0.823
Luminal A 10 (11.0) 4 (17.4)
Luminal B 64 (70.3) 15 (65.2) 0.480

HER2 positive 26 (40.6) 4 (26.7)
HER2 negative 38 (59.4) 11 (73.3)

HER2 positive (Nonluminal) 10 (11.0) 2 (8.7)
Triple-negative cancer 7 (7.7) 2 (8.7)
| Article
Data represent the number of patients, and data in parentheses are percentages. ER, oestrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2;
Ki-67, antigen Ki67.
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prediction than NACpre stage data. It can be seen from the last
nine rows of Table 6 that the average accuracy and F1-score
values are superior when the NAC1 branch is heavier than the
NACpre branch. Therefore, the method of weight connection is
adopted in the model, and the experimental results show that this
method can achieve the best results. In the following
experiments, CNN-9 FSS (0.2, 0.8) is called DBNN.

Results of DBNN Data Augmentation
As stated earlier, there was a data imbalance problem in RJNAC.
The amount of data with non-pCR pathological results was
approximately twice that with pCR pathological results,
affecting the model’s performance. Therefore, we explored the
impact of different data augmentation strategies on the
performance of DBNN. The experimental results were
compared using nonaugmented data, geometrical ly
transformed data (47), Mixup data (48), and small amounts of
upsampled data. Geometric transformation techniques include
rotations, flips, and zooming to generate new training samples to
maintain realistic tumour shapes. Moreover, small amounts of
data upsampling techniques apply geometric transformations to
non-pCR examples to achieve a quantity balance between the
two categories, solving the data imbalance problem manually.

As seen from Table 7, the performance of the model is better
without data augmentation. First, it can be seen that the
performance of the model on nonaugmented data was better
than that of the model on geometrically transformed data.
Augmenting both types of data aggravate the data imbalance,
leading to degradation in the performance of the model; hence,
Mixup data augmentation also degrades model performance.
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In addition, Mixup may not be suitable for the augmentation of
medical datasets because it disturbs the relationship between a
lesion and the surrounding area, making the model learn
incorrect information. Finally, we enhance the sample size of
the two types of data so that they are consistent by sampling
small numbers of samples. The experimental results on the
augmented data were not as good as the results on the
nonaugmented data. Perhaps DBNN learns the redundant
features of the data during the learning process, resulting in
model performance degradation.

Comparison With the Single
Branch Models
To further validate the potential of DBNN in predicting the
efficacy of NAC, it was used to predict the pathological
classification of patients early based on the different stage data
of NAC treatment in the RJNAC dataset. Compared with the AUC
value in the first two rows and the last row in Table 8, we know
that the model’s prediction results when using a single branch
network for single-stage data were not as good as those when using
multistage data. In addition, the performance of the model trained
on the NAC1 data was slightly superior to that trained on the
NACpre data when using single-stage data, which indicates the
necessity of DBNN weight assignment. From Table 8 and
Figure 8, we can see that the areas under the ROC curve for
NACpre (Azpre), NAC1 (Az1) and NACpre+NAC1 (Azpre+1) were
0.730, 0.739 and 0.939, respectively. The performance of the model
trained on the NAC1 data shows higher specificity than that
trained on the NACpre data. The sensitivity of the model trained
on NACpre was superior to that trained on NAC1 data. The value
TABLE 6 | Performance of the model with different feature connection methods.

Models Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score

CNN-9 FSS_contact 83.33 97.33 74.36 70.87 97.75 0.820
CNN-9 FSS_sum 82.81 82.67 82.91 75.61 88.18 0.790
CNN-9 FSS (0.9, 0.1) 85.94 82.67 88.03 81.58 88.79 0.821
CNN-9 FSS (0.8, 0.2) 83.85 85.33 82.91 76.19 89.81 0.805
CNN-9 FSS (0.7, 0.3) 82.81 81.33 83.76 76.25 87.50 0.787
CNN-9 FSS (0.6, 0.4) 77.08 85.33 71.79 65.98 88.42 0.744
CNN-9 FSS (0.5, 0.5) 83.33 78.67 86.32 78.67 86.32 0.787
CNN-9 FSS (0.4, 0.6) 84.38 81.33 86.32 79.22 87.83 0.803
CNN-9 FSS (0.3, 0.7) 82.29 73.33 88.03 79.71 83.74 0.764
CNN-9 FSS (0.2, 0.8) 87.50 90.67 85.67 80.00 93.46 0.850
CNN-9 FSS (0.1, 0.9) 83.85 82.67 84.62 77.50 88.39 0.800
April 2022
 | Volume 12 | Artic
Values in bold black font represent the best performance in each column.
TABLE 5 | Performance of the model with different convolution layer numbers and feature-sharing methods.

Models Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score

CNN-8 77.08 69.33 82.05 71.23 80.67 0.703
CNN-9 81.77 69.33 89.74 81.25 82.03 0.748
CNN-10 76.56 73.33 78.63 68.75 82.14 0.710
CNN-11 77.60 77.33 77.78 69.05 84.26 0.730
CNN-12 75.00 70.67 77.78 67.09 80.53 0.688
CNN-9 FSS 83.33 97.33 74.36 70.87 97.75 0.820
CNN-9 FSC 81.77 85.33 79.49 72.73 89.42 0.785
Values in bold black font represent the best performance in each column.
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of Azpre+1 was significantly higher than that of Azpre and Az1 (P
<0.01). However, there was no significant difference between the
values of Azpre and Az1 (P =0.3244).

Moreover, some more sophisticated deep learning models
were tested for single branch classification due to CNN-9 was
used to train single branch models. The experimental results are
shown in Table 9. The AUC of CNN-9 on NACpre data was the
highest (AUC=0.730), and the AUC value on NAC1 data was
very close to the optimal value (0.739 vs. 0.756). Therefore, we
believe that CNN-9 can be used as a representative of the classical
single branch network.

Comparison With the Latest Studies
At present, there are few studies on the prediction of NAC
response for breast cancer based on US images, and the datasets
used in each study and each imaging protocol are different, so it is
difficult to compare the results directly. However, to verify the
research value of DBNN, this study referred to the four latest
papers, reproduced the methods according to the technical details
described in the articles, and applied them to the RJNAC dataset
(5, 18, 19, 28). Two identical Inception-ResNet-V2 CNNs based
Siamese models without fine-tuning were reimplemented to
extract generic features. Then the difference between the feature
vectors was used to train a logistic regression model for the
prediction (5). We reimplemented a two-input CNN, in which
each input branch consisted of four blocks of 2D convolution
layers, each followed by a ReLU activation function and max-
pooling layer. A dropout layer was applied after every two
convolutional blocks. Then, the two branches were concatenated
after a fully connected layer followed by ReLU, dropout (with a
rate of 40%), and a Sigmoid function for the final classification
(18), while two dense layers were processed to yield the final
output (19). The developed multi-input deep learning architecture
contained two parallel sub-architectures with similar layers to the
single architecture, consisting of six blocks with multiple
convolutional layers, each followed by a ReLU activation
function and max-pooling layer. Then, a concatenation was
applied between two single architectures, a dropout of 50%, and
a fully connected layer was used at the end of the network to
Frontiers in Oncology | www.frontiersin.org 1188
provide a classification result (28). In these studies, three of the
approaches were based on MRI data (18, 19, 28), and one was
based on US image data (5). In Figure 9, the area under the ROC
curve for DBNN (AzDBNN) was significantly higher than that of
AzByra (5) (P =0.004). However, there was no significant difference
in the values of AzDBNN and the values of the area under the ROC
curve for the other methods (Table 10). We also show the
prediction results and pathology labels of the model on NACpre

and NAC1 images and the probability of the model output
prediction results in Figure 10.
DISCUSSION

The early prediction of chemotherapy response in patients with
breast cancer is crucial for improving and personalizing patient
treatment. In this study, a novel deep learning method, DBNN,
based on US images for the early prediction of NAC response in
patients with breast cancer was proposed and validated. The
experimental results showed that the best prediction
performance was obtained with the DBNN model using feature
sharing and weight assignment. It was worth noting that all the
performances shown in Tables 5–10 were from the test set. The
highest diagnostic performance was obtained when the US image
information of NACpre and NAC1 was combined, in which the
accuracy, sensitivity, specificity, F1-score, and AUC values were
87.50%, 90.67%, 85.67%, 0.850, and 0.939, respectively.

The DBNN approach for the early prediction of NAC
proposed in this study has several advantages.

First, compared to the previous traditional machine learning
methods, which mainly depend on feature engineering and
require domain knowledge to build feature extractors, our deep
learning approach is automatic and does not require feature
engineering. Methods based on machine learning are limited in
their function, as they are dependent on handcrafted features.
Moreover, our model considers not only the tumoral region but
also the tumour’s surrounding tissue by using entire breast
tumour images. Supplementing the US features extracted from
a tumour itself with features computed within the tumour’s
TABLE 8 | Performance evaluation of DBNN using data from different chemotherapy stages.

Data Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score AUC (95% CI) P value

NACpre 71.35 76.00 68.38 60.64 81.63 0.675 0.730 (0.657,0.802) <0.01
NAC1 73.44 53.33 86.32 71.43 74.26 0.611 0.739 (0.664,0.813) <0.01
NACpre+NAC1 87.50 90.67 85.67 80.00 93.46 0.850 0.939 (0.907,0.972) -
April 2
022 | Volume 12 | Article
Values in bold black font represent the best performance in each column.
TABLE 7 | Performance of DBNN with different data augmentation strategies.

Strategies Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score

Nonaugmentation 87.50 90.67 85.67 80.00 93.46 0.850
Geometric transformation 76.04 64.00 83.76 71.64 78.40 0.676
Mixup 70.83 46.67 86.32 68.63 71.63 0.556
Small amount of upsampling 79.69 77.33 81.20 72.50 84.82 0.748
Values in bold black font represent the best performance in each column.
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surrounding tissue, such as the peritumoural region, may
improve the prediction of pCR from US images (49, 50).
Second, different from the existing deep learning algorithms,
DBNN fuses features of each branch in the process of extracting
low-level features, which may effectively screen out important
features through the training network to achieve more accurate
early prediction results. Third, in contrast to the existing
methods for predicting NAC response using two-stage data, we
assume that the importance of the data before and after
chemotherapy is inconsistent. Therefore, DBNN introduces the
weight assignment strategy to increase the weight of data features
after chemotherapy by using prior knowledge to guide network
training to affect the NAC response prediction results.
Frontiers in Oncology | www.frontiersin.org 1289
It is difficult to directly compare our results to those of other
methods reported in other studies due to different data
acquisition techniques, analysis protocols and subject groups.
Moreover, there are few studies that use deep learning for NAC
response early prediction in breast cancer based on US images.
Nevertheless, we can compare our results with those of models
trained on our datasets. The studies performed by El Adoui et al.
(28), Braman et al. (19), and El Adoui et al. (18) were based on
MRI data, and the study designed by Byra et al. (5) was based on
US image data. All four methods are two-input CNN
architectures for the prediction of breast tumour NAC
response from follow-up images. Each branch was operated on
by a series of convolution-based operations and summarized into
a set of deep features, which were then combined and processed
by the feature fusion of two branches to generate a final score
representing the response probability. However, those methods
only considered the late fusion of deep features. The models
cannot effectively share data features at different stages in their
respective branches and may even filter out crucial features, such
as changes in lesion areas. Therefore, they cannot make full use
of the relationship between different data for model training. In
Table 10, comparisons of the performance of the state-of-the-art
methods and our method were made based on seven indices:
accuracy, sensitivity, specificity, PPV, NPV, F1-score and AUC.
Our method obtained better results on most of the evaluation
indices. The ROC curves based on the true positive rate (TPR)
and false positive rate (FPR) for the existing methods and our
proposed method are shown in Figure 9. The AUC values of all
the algorithms were over 0.8, and the largest AUC value (0.939)
was obtained by our model. The area under the ROC curve
obtained by DBNN (AzDBNN) was significantly higher than that
obtained by AzByra (5) (P =0.004). The model developed by Byra
et al. (5) was based on a small dataset with images from 30
patients, while our dataset contained images from 114 patients.
We can train our deep learning model from scratch because a
model pretrained on natural images is often not the best model
when applied to medical images. Moreover, we shared the data
features of the two streams in the training process and assigned
TABLE 9 | Comparison of CNN-9 and sophisticated DL models for single branch classification.

Methods Data Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score AUC

CNN-9 NACpre 71.35 76.00 68.38 60.64 81.63 0.675 0.730
NAC1 73.44 53.33 86.32 71.43 74.26 0.611 0.739

ResNet NACpre 70.83 60.00 77.78 63.38 75.21 0.616 0.681
NAC1 73.44 42.67 93.16 80.00 71.71 0.557 0.748

EfficientNet NACpre 67.19 70.67 64.96 56.38 77.55 0.627 0.710
NAC1 72.92 74.67 71.79 62.92 81.55 0.683 0.750

MobileNet NACpre 72.92 60.00 81.20 67.16 76.00 0.634 0.711
NAC1 73.96 46.67 91.45 77.78 72.79 0.583 0.756

ResNeXt NACpre 69.79 53.33 80.34 63.49 72.87 0.580 0.653
NAC1 71.35 33.33 95.73 83.33 69.14 0.476 0.639

ShuffleNet NACpre 66.15 42.67 81.20 59.26 68.84 0.496 0.640
NAC1 71.35 66.67 74.36 62.50 77.68 0.645 0.707

WRN NACpre 67.71 58.67 73.50 58.67 73.50 0.587 0.668
NAC1 72.92 57.33 82.91 68.25 75.19 0.623 0.726
April 2022 | Vol
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Values in bold black font represent the best performance in each column.
FIGURE 8 | ROC curves of DBNN using data from different
chemotherapy stages.
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the weights of the different stages by using prior knowledge to
obtain more accurate results.

Although the proposed method has improved the prediction
accuracy of NAC response, there are still some limitations in this
study. First, due to the small dataset of US images collected from
a single centre, the model’s generalization ability needs to be
further improved. Since there is currently no public dataset of
ultrasound images before and after the first stage of
chemotherapy for NAC, our next work will continue to collect
data from multi-centres to further verify our model’s
generalization ability. It is generally accepted that the larger a
dataset is, the better the performance of the deep learning models
(51, 52). Limited datasets are a prevalent challenge in medical
image analysis. Second, due to the heterogeneous nature of the
histopathologic and molecular subtypes of breast cancer
included in our study, the pathologic response to NAC may be
affected and may cause selection bias. Finally, we did not add
breast cancer molecular subtype to our method, which may help
to predict the response of breast cancer to NAC early. The
application of DBNN is only in the primary stage. Therefore,
how to extend our method to clinical decision-making is worthy
of in-depth study.

In the future, there will be at least two aspects of NAC
response prediction models based on different stages of data
Frontiers in Oncology | www.frontiersin.org 1390
that can be further developed. On the one hand, DBNN should
also consider more feature methods, such as combining low-level
features and high-level features by utilizing residual cross-branch
connections. Moreover, adaptive weight allocation can be
regarded as the weight assignment strategy. On the other hand,
the robustness and generalization ability of DBNN need
further verification.

In conclusion, our study proposes a novel dual-branch DBNN
model based on feature sharing and weight assignment to predict
the efficacy of NAC treatment for breast cancer utilizing
greyscale US images. DBNN has two remarkable advantages:
feature sharing and weight assignment. Feature sharing can
make the model consider the correlations between data in
different stages of NAC during training. Moreover, weight
assignment, which provided prior knowledge, emphasizes the
importance of data at different NAC treatment stages. The results
show that DBNN has the potential to enable the early prediction
of pCR and achieved good prediction performance when applied
on NACpre and NAC1 data. However, a further large-scale study
with an independent external validation dataset is needed before
this approach can be used for actual clinical decision-making,
and it may become an important monitoring tool for the early
prediction of the response to NAC in patients with breast cancer.
TABLE 10 | Comparison of DBNN and other NAC prediction methods on the RJNAC dataset.

Methods Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score AUC (95% CI) P value

DBNN 87.50 90.67 85.67 80.00 93.46 0.850 0.939 (0.907,0.972) -
Byra (5) 77.08 52.00 93.16 82.98 75.17 0.639 0.804 (0.739,0.869) 0.004
El Adoui (28) 82.81 81.33 83.76 76.25 87.50 0.787 0.882 (0.830,0.930) 0.099
Braman (19) 87.50 82.67 90.60 84.93 89.08 0.838 0.932 (0.897,0.968) 0.500
El Adoui (18) 86.46 76.00 93.16 87.69 85.83 0.814 0.930 (0.894,0.966) 0.381
April 2
022 | Volume 12 | Article
Values in bold black font represent the best performance in each column.
FIGURE 10 | Diagram of the ground truth and prediction results.
FIGURE 9 | ROC curves of DBNN and other NAC prediction methods.
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Value of CT-Based Radiomics in
Predicating the Efficacy of Anti-HER2
Therapy for Patients With Liver
Metastases From Breast Cancer
Miao He1†, Yu Hu1†, Dongdong Wang2, Meili Sun3,4, Huijie Li5, Peng Yan3,4,
Yingxu Meng6, Ran Zhang7, Li Li 1, Dexin Yu2 and Xiuwen Wang1*

1 Department of Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China, 2 Department of
Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China, 3 Department of Oncology, Jinan
Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China, 4 Department of Oncology, Central
Hospital Affiliated to Shandong First Medical University, Jinan, China, 5 Department of Oncology, Affiliated Hospital of
Shandong University of Traditional Chinese Medicine, Jinan, China, 6 Department of Comprehensive Section of Medical
Affairs, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China, 7 Huiying Medical Technology Co.
Ltd, Beijing, China

Objective: This study aims to assess the performance of machine learning (ML)-based
contrast-enhanced CT radiomics analysis for predicating the efficacy of anti-HER2
therapy for patients with liver metastases from breast cancer.

Methods: This retrospective study analyzed 83 patients with breast cancer liver
metastases. Radiomics features were extracted from arterial phase, portal venous
phase, and delayed phase images, respectively. The intraclass correlation coefficient
(ICC) was calculated to quantify the reproducibility of features. The training and validation
sets consisted of 58 and 25 cases. Variance threshold, SelectKBest, and LASSO logistic
regression model were employed for feature selection. The ML classifiers were K-nearest-
neighbor algorithm (KNN), support vector machine (SVM), XGBoost, RF, LR, and DT, and
the performance of classifiers was evaluated by ROC analysis.

Results: The SVM classifier had the highest score in portal venous phase. The results
were as follows: The AUC value of the poor prognosis group in validation set was 0.865,
the sensitivity was 0.77, and the specificity was 0.83. The AUC value of the good
prognosis group in validation set was 0.865, the sensitivity was 0.83, and the specificity
was 0.77. In arterial phase, the XGBoost classifier had the highest score. The AUC value of
the poor prognosis group in validation set was 0.601, the sensitivity was 0.69, and the
specificity was 0.38. The AUC value of the good prognosis group in validation set was
0.601, the sensitivity was 0.38, and the specificity was 0.69. The LR classifier had the
highest score in delayed phase. The AUC value of poor prognosis group in validation set
was 0.628, the sensitivity was 0.62, and the specificity was 0.67. The AUC value of the
good prognosis group in validation set was 0.628, the sensitivity was 0.67, and the
specificity was 0.62.
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Conclusion: Radiomics analysis represents a promising tool in predicating the efficacy of
anti-HER2 therapy for patients with liver metastases from breast cancer. The ROI in portal
venous phase is most suitable for predicting the efficacy of anti-HER2 therapy, and the
SVM algorithm model has the best efficiency.
Keywords: breast cancer, liver metastases, anti-HER2 therapy, radiomics, CT
INTRODUCTION

Breast cancer is the most common cancer in women all over the
world, and its treatment has made substantial progress over the
past years (1–3). Studies have shown that about 1/3 of breast
cancer patients will have distant nonlymph node metastasis, once
distant metastasis occurs, the 5-year survival rate will drop to
23% (4). The common sites of metastasis are the bone, lung, liver,
and brain (5). About 50% of metastatic breast cancer (MBC)
patients have liver metastasis, and the natural overall survival
(OS) of these people is only 4–8 months (6). The liver metastasis
of breast cancer [breast cancer liver metastasis (BCLM)] is one of
the main causes of death in MBC patients. Although some
progress has been made in chemotherapy, targeted therapy,
and endocrine therapy for BCLM, the benefits of the current
treatments are still limited; the average overall survival time of
BCLM is only 3 years (7).

Breast cancer is also a malignancy with high heterogeneity at
molecular level; there are significant differences in the treatment
and prognosis of patients with different molecular subtypes of
breast cancer (8). HER2-positive breast cancer is a subtype of
breast cancer, which is associated with high invasiveness, high
risk of recurrence, rapid progression, and poor prognosis and is
an independent factor in poor prognosis of breast cancer patients
(9–12). Fortunately, the use of anti-HER2 drugs has greatly
improved the survival rate of these patients (13). As the first
humanized monoclonal antibody targeting HER2, the advent of
trastuzumab has affected the diagnosis and treatment mode of
breast cancer (14–18). Clinical trials have also confirmed that
other anti-HER2 drugs such as pyrotinib and lapatinib can
significantly prolong the survival time of MBC patients (19–
23). However, the efficacy of anti-HER2 drugs varies from person
to person. Some patients who used anti-HER2 drugs can achieve
an efficacy greater than the median progression-free survival
(mPFS) and median overall survival (mOS) (19, 24, 25).
Whereas, there were other patients with the same molecular
typing who also used anti-HER2 drugs and failed to achieve the
mean efficacy and lost their chance of survival (26, 27).
Therefore, continued efforts to improve the efficiency of
treatment are an imperative for management.

In recent years, artificial intelligence, especially the radiomics
has developed rapidly. As an emerging technology to realize
tumor segmentation, feature extraction, and model establishment,
the radiomics can indirectly reflect theheterogeneityof tumors,find
the correlation between quantitative data and pathological
phenotype, and evaluate the whole tumor noninvasively, which
has demonstrated predictive power for differential diagnosis and
pathological classification, as well as the evaluation of response to
294
treatment andprognosis (28, 29).However, a reviewof the literature
published to date revealed no report on the predictive imaging
features of anti-HER2 drugs for BCLM in connection with
radiomics. Therefore, the aim of this study is to explore the
feasibility of CT-based radiomics analysis by different ML
classifiers for predicting the efficacy of anti-HER2 therapy in
BCLM patients.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the Medical Ethics
Committee of Qilu Hospital of Shandong University; patients’
informed consent was exempted after review by this ethics
committee. The study population consisted of 83 patients,
which were divided into the poor prognosis group and the
good prognosis group, enrolled consecutively during the period
from January 2011 to November 2021 in the Central Campus
and East Campus of Qilu Hospital, Jinan Central Hospital, and
Affiliated Hospital of Shandong University of Traditional
Chinese Medicine. The poor prognosis group (PP group)
included 42 cases (0 men, 42 women; mean age, 53.02 ± 9.64
years; median age, 53 years; range, 34–71 years). The good
prognosis group (GP group) included 41 cases (0 men, 41
women; mean age, 52.59 ± 9.46 years; median age, 54 years;
range, 32–78 years). All cases were pathologically confirmed by
the primary or metastatic lesions (70 cases were pathologically
confirmed by the primary lesions and 13 cases were
pathologically confirmed by the metastatic lesions, including 7
cases were pathologically confirmed by liver metastases) and
treated with anti-HER2 drugs after liver metastasis (trastuzumab
66, pyrotinib 11, lapatinib 6). The grouping criteria were based
on the results of “H06489” trial that played a role in promoting
trastuzumab as the first-line anti-HER2 drug for patients with
MBC. This trial published in the New England Journal of
Medicine in 2001 showed that for patients with HER2-positive
MBC, the mPFS of chemotherapy plus trastuzumab was 7.4
months (25). A phase 3 clinical trial of MBC patients treated with
trastuzumab and paclitaxel showed an mPFS of 12.5 months for
pyrotinib plus capecitabine and 6.8 months for lapatinib plus
capecitabine (20). According to the 2021 CSCO breast cancer
guidelines, trastuzumab is the first choice of anti-HER2 drug for
patients who had not used trastuzumab and who have used
trastuzumab but eligible for reuse. A phase II clinical study of
pyrotinib enrolled some patients who had not previously used
trastuzumab, so the panel agreed that pyrotinib could also be
applied to patients who have not failed trastuzumab therapy
April 2022 | Volume 12 | Article 852809
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before (19). For patients with failed trastuzumab treatment, both
pyrotinib and lapatinib can be used as first-line treatment for
HER2-positive MBC. Therefore, in order to make the results
more accurate and informative, we selected the mPFS of
trastuzumab plus chemotherapy as the grouping criterion for
this study; the enrolled patients were divided into two groups to
compare their imaging features.

The inclusion criteria were as follows: (1) All patient’s pathology
were obtained by operation or puncture and confirmed as HER2-
positive breast cancer by immunohistochemical or FISH analysis;
(2) Liver metastases were shown on CT images, and pathology or
diagnostic imaging reports have confirmed liver metastases; and
(3) Regularly using anti-HER2 drugs such as trastuzumab,
pyrotinib, or lapatinib after finding liver metastases. Exclusion
criteria included the following: (1) HER2 was negative for BCLM;
(2) CT images had motion artifacts, poor image quality, different
scanning conditions, and inconsistent layer thickness; and (3) PFS
in patients treated with anti-HER2 drugs could not be determined.

Image Data Acquisition
All contrast-enhanced CT images were obtained from
SOMATOM Definition AS 64-detector row CT. The scanning
range was from the top of the diaphragm to the inferior edge of
the liver. The scanning conditions were as follows: tube voltage,
120 kV; automatic tube current; matrix, 512 × 512; scan layer
thickness, 5 mm; and layer spacing, 5 mm. Lopromide was
injected intravenously at the elbow with a flow rate of 3.0–3.5
ml/s and a dose of 1.0 ml/kg. Arterial phase, portal venous phase,
and delayed phase scans were performed at 25–30, 60–70, and
120–180 s after contrast medium injection, and all the patients
were able to cooperate with the examination normally. For
patients with liver metastases found at first diagnosis,
pathological results and CT images were obtained almost at
the same time, and CT images were obtained almost at the same
time as anti-HER2 drug therapy. For patients with liver
metastases found after disease recurrence, pathology results
were obtained before CT images, and the time interval between
patient’s pathological results and the CT images vary from
patient to patient. The acquisition of CT images was almost
the same time as anti-HER2 drug therapy.

Image Segmentation
All these images were assessed and delineated in a double-blind
manner by two radiologists with 5 and 10 years of experience,
respectively, and following review was performed by the senior
physician. If the difference was ≥5%, the latter would determine
the boundary and redraw it. The maximum cross-sectional area
of the largest liver metastases was uniformly selected as the VOI
for outlining in all images. The grayscale normalization is carried
out to reduce the influence of contrast and brightness changes.
Finally, 246 ROI were segmented from the CT images of 83
patients (83 ROI in the arterial phase, 82 ROI in the portal
venous phase, and 81 ROI in the delayed phase; one patient’s
ROI in the venous phase and delayed phase and one patient’s
ROI in the delayed phase were excluded from the enrollment
because the thickness of the scanned layer was 1 mm, which did
not meet our requirements), which were used for subject
Frontiers in Oncology | www.frontiersin.org 395
analysis. An example of the manual segmentation process is
shown in Figure 1.

Feature Extraction and Selection
A total of 1,409 quantitative radiomics features were extracted
from CT images of the arterial phase, portal venous phase,
A

B

C

FIGURE 1 | An example of manual segmentation of liver metastases from
breast cancer. (A) The ROI in arterial phase. (B) The ROI in portal venous
phase. (C) The ROI in delayed phase.
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anddelayed phase, respectively, using the Radcloud platform
(http://radcloud.cn/). These features can be grouped into three
groups. Group 1 (first-order statistics) consisted of 126
descriptors that quantitatively delineate the distribution of
voxel intensities within the CT image through commonly used
and basic metrics. Group 2 (shape- and size-based features)
contained 14 three-dimensional features that reflect the shape
and size of the region. Calculated from gray-level run-length and
gray-level co-occurrence texture matrices, 525 textural features
that can quantify region heterogeneity differences were classified
into group 3 (texture features). In addition, 14 kinds of filters
such as exponent, logarithm, gradient, square root, lbp-2D, and
wavelet (wavelet-LHL, wavelet-LHH, wavelet-HLL, wavelet-
LLH, wavelet-HLH, wavelet-HHH, wavelet-HHL, wavelet-LLL)
are used to filter the image, and the texture is analyzed on a
finer scale.

To guarantee the robustness of the above features, an
intraclass correlation coefficient (ICC) cutoff was set for test–
retest analysis. The features with low repeatability were excluded
from the follow-up analysis, and any features with ICC of less
than 0.85 were discarded. To reduce the redundant features, the
feature selection methods included the variance threshold,
SelectKBest, and the least absolute shrinkage and selection
operator (LASSO). For the variance threshold method, the
threshold is 0.8, so that the eigenvalues of the variance smaller
than 0.8 are removed. The SelectKBest method, which belongs to
a single-variable feature selection method, used p-value to
analyze the relationship between the features and the
classification results; all the features with a p-value smaller
than 0.05 will be used. For the LASSO model, L1 regularizer is
used as the cost function, the error value of cross-validation is 5,
and the maximum number of iterations is 1,000.

Model Construction
The samples were randomly divided into training cohort (n = 58,
70%) and validation cohort (n = 25, 30%). To model the poor
prognosis group and the good prognosis group, KNN, SVM,
XGBoost, RF, LR, and DT classifiers were used. For KNN, the
parameters were n_neighbors (5) and weights(uniform). For
SVM, the parameters were kernel(rbf), C(1), gamma(auto),
class_weight(balanced), decision_function_shape(ovr), and
random_state(). For XGBoost, the parameters were Eta(0.3)
and max_depth (6). For RF, the parameters were n_estimators
(10) and class_weight(None). For LR, the parameters were
penalty(L2), C(1), solver(liblinear), class_weight(None),
multi_class(ovr), and random_state(). For DT, the parameters
were splitter(best) and criterion(gini).

Evaluation Index
The prediction performance was evaluated with a receiver
operating characteristic (ROC) curve with the associated areas
under the ROC curve (AUC), accuracy, sensitivity, and
specificity. In order to estimate the generalization performance
of a model, the models were validated in the test set. In addition,
four indicators were used to evaluate the performance of the
model, including precision (refers to the proportion of all
predicted correct predictions in a sample), recall (actually
Frontiers in Oncology | www.frontiersin.org 496
predicted correct proportion in a sample), F1-score [F1-score =
precision * recall *2/(precision + recall)], and support (the total
number of samples involved). Using random grouping and
taking the validation set results as the evaluation method for
machine learning to evaluate the whole model’s classification
accuracy. The average number of scores for each verification was
taken to establish the score matrix, so as to select the appropriate
ROI and select the best machine learning model.

Statistical Analysis
Clinical data were analyzed with SPSS 24.0 (SPSS, Chicago, IL,
USA). Age difference was tested by independent sample t-test, and
c2 test was used for hormone receptor status, HER2 status,
physical status, previous use of chemotherapeutic drugs,
recurrence, and metastasis status between the PP group and GP
group. Through the linear combination of the selected features
and the product of the corresponding weighting coefficients, the
imaging labels of each patient were formed in turn, and the risk
score of each patient based on each imaging tag was calculated. In
the training set and verification set, the imaging features of the PP
group and GP group were statistically analyzed, and the score
matrix was established to compare and evaluate the results of
different radiomics models. The ROC curve was used to evaluate
the identification efficiency of the model. p < 0.05 was deemed to
indicate statistical significance.
RESULTS

Demographic Results
There was no significant difference in age, physical status,
hormone receptor (HR) status, HER2 status, previous use of
chemotherapeutic drugs, and recurrent and metastatic state
between the PP group and GP group (Table 1).

Feature Extraction and Screening Results
Take the portal venous phase as an example, the variance
threshold method was used to select 362 features from 1,409
features (SI Appendix, Figure S2A), then with the select K best
methods, we selected 9 features (SI Appendix, Figure S2B),
finally, we selected 4 optimal features with the LASSO algorithm
(SI Appendix, Figures S2C–E). Based on these 4 features and
their regression coefficients, the radiomics score (Rad-score)
formula was constructed as follows: Rad – score = feature *
coefficient (Table 2). The feature extraction and screening
results for the arterial phase and delay phase were described in
SI Appendix, Figures S1 and S3 and Tables S1 and S2.

Diagnostic Performance of Various
Classifier Models
The score matrix of the six classifiers in arterial phase, portal
venous phase, and delayed phase are presented in Table 3. The
results of the ROC curve analysis of all classifiers in the arterial
phase and delayed phase are summarized in Tables 4 and 5, and
the ROC curves are shown in Figures 2 and 3. When analyzing
features in portal venous phase, all classifiers performed well,
April 2022 | Volume 12 | Article 852809
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SVM classifier scored the highest, the AUC value of the PP group
in the validation set was 0.865 (95% CI: 0.72~1.00; sensitivity,
0.77; specificity, 0.83), and the AUC value of the GP group in the
validation set was 0.865 (95% CI: 0.72~1.00; sensitivity, 0.83;
Frontiers in Oncology | www.frontiersin.org 597
specificity, 0.77). The results of the ROC curve analysis of all
classifiers in the portal venous phase are summarized in Table 6,
and the ROC curves are shown in Figure 4. The four indicators
of the portal venous phase (accuracy, recall, F1-score, support)
are presented in Table 7.
DISSCUSION

In this study, we evaluated the performance of a quantitative CT
radiomics analysis combined with different ML-based
classification schemes for predicting the efficacy of anti-HER2
therapy for BCLM patients. There are a variety of machine
learning methods that can be used to build radiomics models,
and they have their own advantages for different tasks. In this
study, we used six commonly used classifier models (KNN, SVM,
XGBoost, RF, LR, and DT) to evaluate the performance for
discriminating the PP group from the GP group with three kinds
of ROI. We found that the radiomics classifer demonstrated low
performance for differentiation when using ROI of the arterial
phase and delayed phase. The ROI of the portal venous phase
performed better for each classifier and demonstrated high
performance. Our preliminary results show that classifiers
trained with ROI of the portal venous phase have better
performance on discrimination between the PP group and GP
group with significantly higher AUC than the ROI of the arterial
phase and delayed phase in the validation set and in all patients.
TABLE 2 | Description of the selected radiomics features with their associated
feature group and filter in portal venous phase.

Radiomics feature Radiomics
class

Filter Coefficient

Dependence variance gldm Wavelet-HLL 0.10773
Long run high gray-level
emphasis

glrlm Wavelet-HHL −0.0914

Dependence variance gldm Wavelet-HLH 0.01859
Long run low gray-level
emphasis

glrlm Wavelet-LLH 0.08234
GLDM, gray-level dependence matrix; GLRLM, gray-level run-length matrix.
TABLE 3 | Results of score matrix of training sets and validation sets in arterial
phase, portal venous phase, and delay phase.

Classifiers Category Arterial
phase

Portal venous
phase

Delayed
phase

KNN Training set 0.79 0.72 0.86
Validation set 0.56 0.76 0.52

SVM Training set 0.88 0.77 0.82
Validation set 0.60 0.84 0.52

XGBoost Training set 1 0.89 0.98
Validation set 0.72 0.80 0.56

RF Training set 1 0.98 0.98
Validation set 0.48 0.72 0.48

LR Training set 0.86 0.72 0.73
Validation set 0.68 0.76 0.64

DT Training set 1 1 1
Validation set 0.52 0.64 0.36
TABLE 1 | General status of subjects.

Group PP GP t/c2 p

Number 42 41 – –

Age 53.02 ± 9.64 52.59 ± 9.46 −0.209 0.835
HR
Negative 22 13 3.636 0.057
Positive 20 28

HER2
3+ 32 31 0.004 0.951
2+ FISH positive 10 10

Physical status (ZPS)
<2 41 41 – 1
≥2 1 0

Previous use of chemotherapeutic drugs
Paclitaxel 32 31 0.004 0.951
Anthracycline 33 27 1.675 0.196
Cyclophosphamide 28 23 0.978 0.323

Recurrence or metastasis within 12 months after (adjuvant)
chemotherapy
Yes 16 12 0.725 0.696
No 16 18
– 10 11

Liver metastasis was initially diagnosed
Yes 10 10 0.004 0.951
No 32 31
TABLE 4 | ROC results with six classifiers of validation set in arterial phase.

Classifiers Category AUC 95% CI Sensitivity Specificity

KNN PP 0.544 0.35–0.74 0.62 0.46
GP 0.544 0.35–0.74 0.46 0.62

SVM PP 0.621 0.44–0.80 0.62 0.69
GP 0.621 0.44–0.80 0.69 0.62

XGBoost PP 0.601 0.42–0.79 0.69 0.38
GP 0.601 0.42–0.79 0.38 0.69

RF PP 0.680 0.50–0.86 0.62 0.69
GP 0.680 0.51–0.89 0.69 0.62

LR PP 0.698 0.51–0.89 0.62 0.62
GP 0.698 0.49–0.91 0.62 0.62

DT PP 0.615 0.42–0.81 0.62 0.62
GP 0.615 0.42–0.81 0.62 0.62
April 2022 | V
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TABLE 5 | ROC s with six classifiers of validation set in delayed phase.

Classifiers Category AUC 95% CI Sensitivity Specificity

KNN PP 0.462 0.26–0.67 0.62 0.42
GP 0.462 0.26–0.67 0.42 0.62

SVM PP 0.532 0.33–0.74 0.54 0.50
GP 0.532 0.33–0.74 0.50 0.54

XGBoost PP 0.609 0.40–0.82 0.62 0.50
GP 0.609 0.40–0.82 0.50 0.62

RF PP 0.564 0.36–0.76 0.54 0.58
GP 0.564 0.36–0.76 0.58 0.54

LR PP 0.628 0.43–0.82 0.62 0.67
GP 0.628 0.43–0.82 0.67 0.62

DT PP 0.359 0.17–0.55 0.38 0.33
GP 0.359 0.17–0.55 0.33 0.38
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FIGURE 2 | ROC curves in arterial phase. The yellow curve is the poor prognosis group (PP group), and the blue curve is the good prognosis group (GP group).
(A) ROC curve of the KNN model in the validation set. The AUC were 0.544 in the PP group (sensitivity and specificity were 0.46 and 0.62, respectively) and 0.544
in the GP group (sensitivity and specificity were 0.46 and 0.62, respectively). (B) ROC curve of the SVM model in the validation set. The AUC were 0.621 in the PP
group (sensitivity and specificity were 0.62 and 0.69, respectively) and 0.621 in the GP group (sensitivity and specificity were 0.69 and 0.62, respectively). (C) ROC
curve of the XGBoost model in the validation set. The AUC were 0.601 in the PP group (sensitivity and specificity were 0.69 and 0.38, respectively) and 0.601 in the
GP group (sensitivity and specificity were 0.38 and 0.69, respectively). (D) ROC curve of RF model in the validation set. The AUC were 0.680 in the PP group (sensitivity
and specificity were 0.62 and 0.69, respectively) and 0.680 in the GP group (sensitivity and specificity were 0.69 and 0.62, respectively). (E) ROC curve of the LR
model in the validation set. The AUC were 0.698 in the PP group (sensitivity and specificity were 0.62 and 0.62, respectively) and 0.698 in the GP group (sensitivity
and specificity were 0.62 and 0.62, respectively). (F) ROC curve of the DT model in the validation set and ROC curve of the validation set. The AUC were 0.615 in
the PP group (sensitivity and specificity were 0.62 and 0.62, respectively) and 0.615 in the GP group (sensitivity and specificity were 0.62 and 0.62, respectively).
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FIGURE 3 | ROC curves in delayed phase. The yellow curve is the poor prognosis group (PP group), and the blue curve is the good prognosis group (GP group).
(A) ROC curve of the KNN model in the validation set. The AUC were 0.462 in the PP group (sensitivity and specificity were 0.62 and 0.42, respectively) and 0.462 in
the GP group (sensitivity and specificity were 0.42 and 0.62, respectively). (B) ROC curve of the SVM model in the validation set. The AUC were 0.532 in the PP
group (sensitivity and specificity were 0.54 and 0.50) and 0.532 in the GP group (sensitivity and specificity were 0.50 and 0.54, respectively). (C) ROC curve of the
XGBoost model in the validation set. The AUC were 0.609 in the PP group (sensitivity and specificity were 0.62 and 0.50, respectively) and 0.609 in the GP group
(sensitivity and specificity were 0.50 and 0.62, respectively). (D) ROC curve of the RF model in the validation set. The AUC were 0.564 in the PP group (sensitivity
and specificity were 0.54 and 0.58, respectively) and 0.564 in the GP group (sensitivity and specificity were 0.58 and 0.54, respectively). (E) ROC curve of the LR
model in the validation set. The AUC were 0.628 in the PP group (sensitivity and specificity were 0.62 and 0.67, respectively) 0.578 in the GP group (sensitivity and
specificity were 0.67 and 0.62, respectively). (F) ROC curve of the DT model in the validation set. The AUC were 0.359 in the PP group (sensitivity and specificity
were 0.38 and 0.33, respectively) and 0.528 in the GP group (sensitivity and specificity were 0.33 and 0.38, respectively).
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Distant metastasis is the main lethal cause for advanced breast
cancer patients (6, 30). According to the NCCN guidelines and
the routine diagnosis and treatment in China, patients with
HER2-positive MBC should be treated with continuous anti-
HER2 therapy (31, 32). However, not every HER2-positive MBC
patient can obtain satisfactory outcomes from anti-HER2
therapy clinically. Therefore, accurate prediction of the efficacy
of anti-HER2 therapy for patients with advanced breast cancer
will help guide treatment and potentially resulting in greater
survival benefits for patients.

Of the four significant radiomics features in the venous phase
finally screened out by the LASSO algorithm, we found that the
texture feature of the PP group was different from the GP group.
The main differences between them in terms of radiomics are
gray-level run-length matrix and gray-level dependence.

The center of liver metastasis is usually hypodense, presenting a
concentric circular or double contour structure, and edge
enhancement is due to the hoof tissue at the margin of the
tumor, inflammatory cell invasion, and vascular proliferation
(33). Frederick et al. found significantly more liver metastases on
portal venous-dominant phase than in the arterial-dominant phase
or unenhanced images. This conclusion was further supported by
the results of a larger study from the same group, in which the
addition of unenhanced or arterial-dominant phase imaging did
not reveal substantially more metastases compared with portal
venous-dominant phase imaging alone (34–36). Although the liver
metastases are significantly enhanced in the arterial phase, the
degree of enhancement is significantly improved in the portal
venous phase, which is presumably due to the contrast-enhanced
arterial blood diffusing into the tumor neovasculature and tumor
interstices during the portal venous phase. In malignant tumors,
there are a large number of nourish blood vessels with tortuous and
irregular paths, endothelial cells, and arteriovenous fistulas, and
there are also microscopic cancer thrombi in some of the tumors,
which increase the contrast medium’s access to the vascular
contrast area but increase the resistance at the same time, thus
making the enhancement in the portal phase clearer and longer
and better showing its imaging features. The portal venous phase is
also usually the best choice for showing the additional features of
liver tumors as well as vascular anatomical and pathological
conditions (37). Signal mediated by HER2 receptor can promote
Frontiers in Oncology | www.frontiersin.org 8100
the secretion of vascular endothelial growth factor (VEGF), the
tumor-associated angiogenesis, and the growth of tumor (38–40).
Therefore, we believe that the liver metastases with stronger HER2
expression have richer tumor neovasculature, stronger and longer
portal venous phase enhancement, which can better demonstrate
the imaging characteristics of liver metastases. In other words, the
portal venous phase better demonstrates the imaging features of
TABLE 6 | ROC results with six classifiers of validation set in portal venous
phase.

Classifiers Category AUC 95% CI Sensitivity Specificity

KNN PP 0.718 0.55–0.89 0.77 0.75
GP 0.718 0.55–0.89 0.75 0.77

SVM PP 0.865 0.72–1.00 0.77 0.83
GP 0.865 0.72–1.00 0.83 0.77

XGBoost PP 0.853 0.68–1.00 0.85 0.67
GP 0.853 0.68–1.00 0.67 0.85

RF PP 0.808 0.64–0.98 0.62 0.83
GP 0.808 0.64–0.98 0.83 0.62

LR PP 0.865 0.70–1.00 0.77 0.75
GP 0.865 0.70–1.00 0.75 0.77

DT PP 0.644 0.45–0.84 0.54 0.75
GP 0.644 0.45–0.84 0.75 0.54
A B

C D

E F

FIGURE 4 | ROC curves in portal venous phase. The yellow curve is the
poor prognosis group (PP group), and the blue curve is the good prognosis
group (GP group). (A) ROC curve of the KNN model in the validation set. The
AUC were 0.718 in the PP group (sensitivity and specificity were 0.77 and 0.75,
respectively) and 0.718 in the GP group (sensitivity and specificity were 0.75 and
0.77, respectively. (B) ROC curve of the SVM model in the validation set. The
AUC were 0.865 in the PP group (sensitivity and specificity were 0.77 and 0.83)
and 0.865 in the GP group (sensitivity and specificity were 0.83 and 0.77,
respectively). (C) ROC curve of the XGBoost model in the validation set. The
AUC were 0.853 in the PP group (sensitivity and specificity were 0.85 and
0.67, respectively) and 0.853 in the GP group (sensitivity and specificity were
0.67 and 0.85, respectively). (D) ROC curve of the RF model in the validation
set. The AUC were 0.808 in the PP group (sensitivity and specificity were
0.62 and 0.83, respectively) and 0.808 in the GP group (sensitivity and specificity
were 0.83 and 0.62, respectively). (E) ROC curve of the LR model in the
validation set. The AUC were 0.865 in the PP group (sensitivity and specificity
were 0.77 and 0.75, respectively) and 0.865 in the GP group (sensitivity and
specificity were 0.75 and 0.77, respectively). (F) ROC curve of the DT model
in the validation set. The AUC were 0.644 in the PP group (sensitivity and
specificity were 0.54 and 0.75, respectively) and 0.644 in GP group (sensitivity
and specificity were 0.75 and 0.54, respectively).
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liver metastases associated with HER2 expression and the efficacy
of anti-HER2 drugs.

This study has several limitations: (1) Manual segmentation
inevitably leads to subjective errors. (2) The present study is a
retrospective study with a small sample size, additional data
should be used to confirm the results in order to make the
extrapolation of the model more credible.

In conclusion, the current study showed the feasibility of CT-
based radiomics in predicating the efficacy of anti-HER2 therapy
for BCLM, and the SVM algorithm model in the portal venous
phase of contrast-enhanced CT has the best efficiency. The
additional information provided by CT-based radiomics can
help clinicians predict the therapeutic effect of anti-HER2
therapy and formulate management decisions, promoting the
development of personalized precision therapy.
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Molecular subtypes of breast cancer are important references to personalized clinical
treatment. For cost and labor savings, only one of the patient’s paraffin blocks is usually
selected for subsequent immunohistochemistry (IHC) to obtain molecular subtypes.
Inevitable block sampling error is risky due to the tumor heterogeneity and could result
in a delay in treatment. Molecular subtype prediction from conventional H&E pathological
whole slide images (WSI) using the AI method is useful and critical to assist pathologists to
pre-screen proper paraffin block for IHC. It is a challenging task since only WSI-level labels
of molecular subtypes from IHC can be obtained without detailed local region information.
Gigapixel WSIs are divided into a huge amount of patches to be computationally feasible
for deep learning, while with coarse slide-level labels, patch-based methods may suffer
from abundant noise patches, such as folds, overstained regions, or non-tumor tissues. A
weakly supervised learning framework based on discriminative patch selection and multi-
instance learning was proposed for breast cancer molecular subtype prediction from H&E
WSIs. Firstly, co-teaching strategy using two networks was adopted to learn molecular
subtype representations and filter out some noise patches. Then, a balanced sampling
strategy was used to handle the imbalance in subtypes in the dataset. In addition, a noise
patch filtering algorithm that used local outlier factor based on cluster centers was
proposed to further select discriminative patches. Finally, a loss function integrating
local patch with global slide constraint information was used to fine-tune MIL
framework on obtained discriminative patches and further improve the prediction
performance of molecular subtyping. The experimental results confirmed the
effectiveness of the proposed AI method and our models outperformed even senior
pathologists, which has the potential to assist pathologists to pre-screen paraffin blocks
for IHC in clinic.
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INTRODUCTION

Breast cancer is intrinsically heterogeneous and has been
commonly categorized into molecular subtypes since the late
1990s (1). According to various molecular expressions of certain
genes, breast cancer can be classified into four molecular
subtypes, namely, Luminal A, Luminal B, Her-2, and Basal-like
(2). Molecular subtypes directly reveal the biological behavior of
breast cancer and represent changes in gene expression, which
can be used to determine tailored treatment approaches and
predict prognosis (3).

In clinic, molecular subtype diagnosis usually comes from
immunohistochemistry (IHC) (4). IHC uses the high specificity
between antigen and antibody, as well as histochemical
procedures to mark antigen and antibody positions. IHC
staining is used to identify aberrant cells such as those found
in cancerous tumors. Certain biological activities, such as growth
or cell death, are associated with certain molecular markers (5).
Four biomarkers, including estrogen receptor (ER), progesterone
receptor (PR), human epidermal growth factor receptor 2
(HER2), and Ki67, are commonly utilized to immunostain the
slides to determine molecular subtypes of breast cancer.
Diagnosed subtypes basically determine corresponding
treatment strategies, such as targeted drugs for HER2-positive
and hormone therapy for Luminal-A. Due to tumor
heterogeneity, gene expression of ER, PR, and HER2 often
varies in different paraffin blocks and thus may lead to
inaccurate subtype diagnosis. For cost and labor savings,
pathologists usually examine only one of the paraffin blocks in
a case to determine the molecular subtype of breast cancer. Since
molecular subtypes determine treatment strategies, inevitable
sampling error is risky due to the tumor heterogeneity and
could result in a delay in medical treatment. Molecular subtype
prediction from conventional H&E pathological whole slide
images (WSI) using the AI method is useful and critical to
assist pathologists to pre-screen proper paraffin block for
subsequent IHC in clinic.

Changes in gene expression will cause variations in texture in
pathological images. Some pathologists have attempted to
investigate the statistical relationship between specific gene
expression with hematoxylin and eosin (H&E)-stained
pathological images (6). Directly predicting molecular subtypes
of breast cancer using H&E pathological images based on AI is a
prospective study, which may also help improve diagnosis
reliability of molecular subtypes.

Molecular subtyping on H&E-stained pathological images is a
challenging task since we can only obtain the slide-level label for
each molecular subtype without detailed local region
information. Even experienced pathologists have difficulty
annotating corresponding molecular subtype regions in H&E
pathological images (7). Due to the extremely high resolution of
whole slide images (WSIs), WSIs are computationally infeasible
to be directly fed into a network for training and testing;
therefore, they are usually divided into small patches. The lack
of patch-level labels makes it a weak label problem for
machine learning.
Frontiers in Oncology | www.frontiersin.org 2104
Deep learning is becoming increasingly widely used in
computer vision tasks. Most deep learning tasks require a large
amount of fine-labeled data for supervised learning, which is
time-consuming, especially in medical fields. Weakly supervised
learning, for example, has been a hotspot for research on
reducing the dependence on labeling data. Benenson et al. (8)
adopted an interactive method, in which human annotations and
the model collaborate to complete the segmentation task.
Berthelot et al. (9) augmented labeled data with unlabeled data
for classification. To reduce the influence of noisy data, Cheng
et al. (10) presented a weakly supervised learning method using a
side information network, which largely alleviates the negative
impact of noisy image labels. Qu et al. (11) addressed noisy label
problem by enforcing prominent feature extraction by matching
feature distribution between clean and noisy data.

In recent years, multi-instance learning (MIL) (12) methods
are generally adopted for weakly supervised learning. For WSI
classification based on MIL, all patches extracted from a
pathological image form a bag, and patches are instances of
this bag. With only the bag-level labels in the training stage, the
goal of MIL is to train a classifier to predict bag-level labels and
even instance-level labels. Some previous work extended and
enhanced MIL framework using multiple techniques. Wu et al.
(13) proposed DE-MIMG that allows each bag to contain pairs of
instances and graphs and results in optimal representation.
Discriminative bag mapping (14) was adopted to build a
discriminative instance pool that can properly separate bags in
the mapping space. As attention mechanism gained its
popularity in deep neural networks, Ilse et al. (15) and Shi
et al. (16) introduced attention mechanism to MIL, where
attention weights can represent how much instances contribute
to the bag label. Instead of assuming instances in each bag are
independent and identically distributed (i.i.d.), Zhang et al. (17)
proposed MIVAE that explicitly models the dependencies
among instances within each bag for both instance-level and
bag-level prediction. Li et al. (18) proposed to use contrast
learning to extract multiscale WSI features and a novel MIL
aggregator that models the relations of the instances. Shao et al.
(19) devised transformer-based correlated MIL that explored
both morphological and spatial information. However, most
attention-based and correlated MIL methods require large-
scale training datasets and significant computational resources.
In addition, feature clustering methods have also drawn some
attention in MIL. Wang et al. (20) modeled each WSI as k groups
of tiles with similar features to ensure learning both diverse and
discriminative features. Similarly, Sharma et al. (21) performed
K-means clustering on patches within each WSI and randomly
sampled a certain amount of patches from each cluster to
accommodate for computational limit without much
information loss. However, besides the variability of patches
within a WSI, the variability of WSIs from the same category is
also considerable, where clustering techniques can be used to
refine class-level learned features for more accurate subtyping.

Nevertheless, breast cancer molecular subtyping specifically
on H&E images has been insufficiently studied. Shamai et al. (22)
used logistic regression to explore correlations between
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histomorphology and biomarker expression and a deep neural
network to predict biomarker expression in examined tissue.
Rawat et al. (23) introduced “tissue fingerprints” that can learn
H&E features to distinguish patients, which are further used to
predict ER, PR, and HER2 status. In these studies, machine
learning technique is adopted to predict biomarker expression
level from H&E histomorphology; direct molecular subtype
prediction, however, has not been achieved. Jaber et al. (24)
proposed an intrinsic molecular subtype (IMS) classifier from
H&E images and analyzed heterogeneity within patches from the
same WSI. Although using Inception-v3 to extract features, they
adopted traditional PCA and SVM for classification, leading to
limited performance.

Since the patches cut from each WSI may come from various
regions including lesion, benign, or background of the WSI,
some research (25, 26) regard the non-lesion areas in the patches
of the pathological images as noisy labels. Differing from
pathological classification tasks, such as ductal carcinoma in
situ and invasive ductal carcinoma for breast cancer, where
pathologists can label tumor regions with different pathological
classes, it is impossible to distinguish tumor regions representing
different molecular subtypes even for senior pathologists.
Although tumor region annotations are useful information for
deep networks to learn molecular subtypes, these manual
annotations are time-consuming for pathologists. This paper
focuses on molecular subtyping with only slide-level labeling
instead of detailed tumor region labeling information. The
crucial challenge is to eliminate the influence of noise patches
and learn expressive features for classifying molecular subtypes.

In this paper, we modeled the patch-based molecular subtype
prediction task of pathological slides as a noisy labeling problem
in weakly supervised learning. A multi-instance learning
framework DPMIL for pathological image molecular subtyping
prediction based on discriminative patch filtering was proposed.
First, in order to distinguish noise patches, a pre-classification
strategy for molecular classification of pathological slides based
on co-teaching was presented. This method adopted co-teaching
strategy to train two backbone networks and used co-teaching
loss function to filter out noise patches to update model
parameters. Then, a local outlier factor algorithm was used to
reveal the outliers in the feature space for each molecular
subtype, and the patches with features close to the cluster
center were retained as discriminative patches. Finally, based
on the filtered discriminative patches, the pathological slide-level
global loss and patch-level local loss were integrated to fine-tune
the prediction model for better feature representation of
molecular subtypes. The experimental results confirmed the
effectiveness of our proposed framework on the molecular
subtyping dataset; breast cancer pathological images were
Frontiers in Oncology | www.frontiersin.org 3105
provided by Xiangya Hospital. Our AI models outperformed
even senior pathologists, which has the potential to assist in pre-
screening proper paraffin block of patients for subsequent IHC
molecular subtyping in clinic.
MATERIALS AND METHODS

Data, Software, and Hardware
This paper used breast cancer H&E pathology dataset BCMT
(Breast Cancer with Molecular Typing) provided by Xiangya
Hospital. All the pathologyWSIs used a pyramid storage structure.

As Table 1 shows, the BCMT dataset contains 1,254
pathological WSIs from 1,254 patients or cases with slide-level
molecular subtype annotations between 2017 and 2019. The
dataset contains 313 slides for Luminal A, 382 slides for Luminal
B, 316 slides for Her-2 overexpression subtype, and 243 slides for
the Basal-like subtype. We randomly divided the slides into
training set and validation set with a ratio of 8:2 for each type.
This paper uses accuracy, precision, recall, and F1 score to
measure the performance of four molecular subtypes.

Weuse4GeForceGTX2080Tiswith11GBmemory to train the
network and Python with Pytorch to implement our algorithm.
The initial learning rate is 0.1 and the poly learning rate policy with
the power of 0.9 is employed. The minibatch size is set as 32.

Proposed Framework
This paper proposes a breast cancer molecular subtype
prediction framework based on multi-instance learning and
discriminative patch filtering. The pipeline of our framework is
illustrated in Figure 1.

Firstly, patches from H&E WSIs are extracted to train a
molecular subtype classifier. Co-teaching (27) between two
networks is used to obtain the patch-level classification and select
candidate discriminative patches. Then, local outlier factor (LOF)
(28) based on cluster centers of subtypes is adopted to further filter
out noise patches and obtain discriminative patches. Based on these
discriminative patches, we fine-tuned a new molecular subtyping
model initialized by the model performed better in co-teaching
stage. Finally, the local loss function and global loss function are
combined as constraint information in multi-instance learning
framework to improve feature representation of molecular
subtypes. The fine-tuned model is used to obtain the final patch-
level and slide-level molecular subtyping results.

Feature Construction and Patch Selection
Based on Co-Teaching
In multi-instance learning framework, each patch is usually
assigned the same label as WSI it belongs to (29–31), while for
TABLE 1 | Distribution of each molecular subtyping in the BCMT dataset.

Set Luminal A Luminal B Her-2 Basal-like Total

Train 254 298 255 196 1,003
Val 59 84 61 47 251
Total 313 382 316 243 1,254
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molecular subtyping, patches from WSI may contain benign or
other tissues, which will make slide-level prediction difficult. To
reduce these noise patches, this paper adopts co-teaching
strategy (27), which usually trains two neural networks and
enables them to learn from each other. This strategy assumes
that the two models simultaneously consider the samples with
the lowest loss as non-noisy samples. These selected instances are
considered more representative of the category of the bag than
other instances. Each network treats samples with minimal loss
in each batch as knowledge and feeds these samples to the other
network. Co-teaching strategy is inherently suitable for
classification with noisy labels.

This paper uses ResNet-50 (32) as the backbone for co-
teaching. The parameters of the two models are randomly
initialized and the selection strategy of K follows (27). During
co-teaching process, the ResNet-50 network is used to obtain
representative features and confidence for each patch. Patches
with higher confidence are selected as candidate discrimination
patches for subsequent process.

Noise Patch Filtering Using Local
Outlier Factor
Although the above co-teaching strategy used co-teaching loss to
filter out some noise patches, many noise patches from benign or
other tissue regions remain. For selected high confidence
patches, we can obtain the feature of each patch before the
classification layer. Patches belonging to the same molecular
subtype tend to gather into the same cluster in feature space.

This paper further proposed a noise filtering method based on
local outlier factors (LOF), which is a classic density-based
algorithm (28). The main idea is to calculate a numerical score to
represent the abnormality degree of a sample to the cluster center
with average density. In feature space, the density of a certain point
is compared with the average density of points around it. If the
former score is lower, the point may be abnormal and vice versa.

Figure 2 shows an example of point set (blue point) in feature
space for certain molecular subtyping. We query whether these
Frontiers in Oncology | www.frontiersin.org 4106
four points are outliers of the point set. The green point is not an
outlier with a lower LOF score, and the red points are outliers
with high ones. The size of the red point is the value of the LOF
scores and represents the abnormality degree of a certain point.

We perform LOF for each subtype of molecular features and
regard patches that do not belong to a specific cluster of
molecular subtype as noise patches.

Multi-Instance Learning With Global and
Local Constraint
The above selected discriminative patches are further used to
improve feature representation of molecular subtypes based on
multi-instance learning framework (MIL). MIL regards the WSI
as a bag containing a number of patches. These patches are
considered as instances, and their predictions are aggregated to
obtain a bag-level prediction. ResNet-50 is also adopted as a
backbone to train the MIL classification model. We initialize the
MIL model with the model that performs better in co-teaching
and use discriminative patches for fine-tuning.

We introduce the slide-level loss function to impose global
information constraints to guide the MIL training. The slide-
level loss function LWSI is defined as Formula 1, where LWSI

represents the slide-level loss function of the ith pathological
image defined as the cross-entropy function (32). NWSI

represents the total number of pathological slides in the
training set, and a is the weight of slide-level loss.

LWSI = a
1

NWSI
o
NWSI

i=1
LWSIi (1)

LWSIi is defined as Formula 2, where M is the molecular type
number, and Yo,c is the indicator function. When the output
prediction result in o is the same as the true label c of the
pathological slide, it is set to 1; otherwise, it is 0.

LWSI = −o
M

c=1
yo,clog(Pc) (2)
FIGURE 1 | Our framework DPMIL for molecular subtype prediction. The pipeline of out framework contains 5 stages. (1) WSIs are divided into patches. (2) ResNet
trained with Co-teaching generate feature for each patch. (3) LOF is adopted to select discriminative patches based on features. (4) Discriminative patches are used
to finetune ResNet with WSI and patch loss. (5) Finetuned model predict final molecular subtypes for patches and WSIs.
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Pc is defined in Formula 3, representing the confidence level
of slide-level molecular subtyping. Np s the total number of
patches of the pathological image, and Pi,c represents the
confidence value when the ith patch of WSI is classified as
type c. As shown in Formula 3, the average confidence value of all
patches from the same WSI are obtained and used as the slide-
level molecular subtyping confidence.

PC =
1
Np
o
Np

i=1
pi,c (3)

The two-stage trainingdiagram is shown inFigure3.Weuse the
patches by LOF-Denoising as input. In each epoch, the training
Frontiers in Oncology | www.frontiersin.org 5107
process is divided into two stages. The first stage uses all patches to
calculate the patch-level loss to train the model, and we use cross-
entropy as the loss function, which is defined in Formula 4.

LCE = −o
M

c=1
yclog(pc) (4)

M represents the total number of molecular types and Yc is
the indicator function, which is equal to 1 when prediction c
equals the ground truth of the slide. pc denotes the confidence
level and the current patch is classified as type c. The second stage
is trained for slide-level subtyping using slide-level loss function
as global constraint information.
FIGURE 3 | Two-stage training of MIL model. Finetuning of MOL model contains two stages. (1) Model is trained on discriminative patches using patch-level loss.
(2) Model is trained for slide-level subtyping using slice-level loss.
FIGURE 2 | Local outlier factor example.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. MIL-Based Breast Cancer Subtyping
RESULTS

This section introduces several experiments to evaluate the
performance of our proposed framework DPMIL, including
the patch resampling strategy, co-teaching, LOF, and MIL
training successively. The performance of model is evaluated
using average accuracy, recall, precision, and macro F1 for
four subtypes.

Results of Patch Resampling and
Co-Teaching
The total number of different types of patches at different
resolutions is shown in Figure 4, which shows the imbalance
of number of patches for each molecular subtype and each
resolution. To deal with the imbalance of dataset, we use a
patch resampling strategy to ensure category equalization. For
each epoch, the number of training data for each molecular
subtype is set as a constant value. The common part is randomly
sampled from all patches, and the number of sampled patches is
different according to their resolution: 180,000 patches at 5×,
700,000 patches at 10× and, 5,000,000 patches at 20×. The rare
part of the data is generated by data augmentation such as
randomly flip, horizontal, and vertical symmetry.

We use ResNet-50 as the classifier to evaluate the
performance of the sampling strategy. Figure 5 shows the
results of molecular subtyping with patches resampling at
different resolutions. The accuracy of models with resampling
strategy are all higher than those without resampling at
three resolutions.

F1 values improve about 6% with patch resampling methods
for all the resolutions. In addition, the highest accuracy and F1
value are all achieved at 10×, which indicates that patch size and
tissue texture make a good compromise at 10×.

Molecular Subtype Classification Using
Co-Teaching and LOF
This section describes experiments to verify the effectiveness of
the co-teaching strategy. ResNet-50 was selected as two
backbones for co-teaching. The model is trained for 20 epochs
with a minibatch of 32. The initial value of the learning rate is
Frontiers in Oncology | www.frontiersin.org 6108
0.01, and the polynomial learning rate decay method (33) is used
to adjust the learning rate.

Figure 6 shows the results of molecular subtype classification
with and without co-teaching at different resolutions. The
accuracy improves 4% to 6% and F1 score improves 4% to
11% with co-teaching. The co-teaching framework trains two
neural networks and enable them to learn from each other, which
can reduce the influence of noise patches. The F1 value of 10×-
Co-teaching reaches 0.604 and improves 4.5% compared with
10×-resampling.

We selected the model from Co-teaching with the higher F1
value at each resolution. Features before classification layer were
input into LOF-Denoising for patch filtering for all molecular
types. We supposed Si is the number of normal patches of the ith
molecular type and there were o4

1=1Si features in total. These
features in co-teaching were used for statistical classification of
output logits, the number of which is limited to 2,000. The
experimental results are shown in Figure 6, which shows that
LOF after co-teaching can further improve the metrics since
more noise patches are filtered out. We select 10× resolution in
the following experiments.

Multi-Instance Learning with Global
Information
Based on the above discriminative patch selection, we further
verify the multi-instance learning framework with slide-level
loss. We used a four-class classification model for molecular
subtyping and compared the results with different weights in
Formula 1. In the second training stage of the model with global
constraint, the influence of the weight K in loss function of
formula 1 was examined.

When 0 ≤ a ≤ 1, the influence of the second stage on the
model parameters is weakened. When a = 0, the second stage of
training does not affect the model. When a > 1, the influence of
the second stage is enhanced. We set the value to 0.5, 1.0, and 2.0,
respectively, to evaluate the effectiveness of global loss constraint
in the second stage of training.

Figure 7 shows the results of MIL for molecular subtyping,
proving that using slide-level loss function can improve the
performance of the model. The reason may be that there are
still some noise patches in the selected patches after noise
FIGURE 4 | Statistics patches of different molecular subtypes at each resolution.
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filtering. We used a slide-level loss to add global constraint
information, which can further reduce the influence of
noise patches.

Binary Classification Model and Weighted
Fusion
Apart from the four-class classification model, to further
improve the performance of molecular subtype classification,
we also tried binary classification models for each molecular
subtype. Finally, a weighted fusion method is adopted to
accomplish the final four-type classification.

Binary classification models were trained similar to four-class
classification model, including co-teaching, LOF, and slide-level
loss of MIL. Parameter a is set to 0.5 for all the experiments. The
prediction results of each molecular type of binary classification
model are shown in Figure 8, where F1 reached over 0.72 for all
subtypes. Notably, Basal-like molecular type obtained the highest
F1 value of 0.774.

For four-class classification, we averaged the confidence level
of all patches from aWSI, and then use it as the confidence of the
molecular subtype of the WSI. We used grid search (34) for the
best weight setting of the four-class prediction model and finally
take 0.6, 0.9, 0.5, and 0.7 as weights of four subtypes. The final
weighted four-class classification results are shown in Figure 8.
Compared with the direct four-class molecular type prediction
Frontiers in Oncology | www.frontiersin.org 7109
from model 10×- (0.5) in Figure 7, four-classifier weighted
fusion in Figure 8 can increase the accuracy by 6.7% and the
F1 score by 3.2%.

To compare our method with pathology doctors in
molecular-type classification, nine pathologists were invited to
diagnose molecular subtypes of a total of 99 randomly selected
WSIs from test dataset. In clinic, pathologists usually can classify
molecular subtypes on IHC images but not on H&E-stained
images. Therefore, pathologists can only conduct subtyping
totally based on image pattern and their clinical experience.
Table 2 shows the average accuracy, precision, recall, and macro
F1 scores according to the labels of pathologists (D1: 5 years’
experience, D2: 10 years’ experience, and D3: 15 years’
experience) assigned to each H&E WSI. Specifically, we
provide the means and ranges of 4 metrics from seven 5-year
pathologists (D1s). As shown in Table 2, 5-year experienced
doctors can hardly make better predictions than random guess,
which indicates the unusual difficulty in breast cancer subtyping
on H&E images. To be optimistic, more experienced doctors can
provide a more accurate diagnosis on molecular subtypes. Our
four-class classification model (10×-0.5) and fused binary
classification model (10×-Weight fusion) show obvious
superiority over doctors in all metrics, surpassing predictions
of the most experienced doctor (D3) by 15.4% and 21.5% in
accuracy and F1, respectively.
FIGURE 6 | Results of 4-class molecular subtype classification with co-teaching and LOF at different resolutions.
FIGURE 5 | Results of 4-class molecular subtype classification with patch resampling at different resolutions.
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DISCUSSION

Molecular subtyping is becoming more and more important in
the therapy of malignant disease. However, accurate molecular
subtyping on H&E images is challenging due to tumor
heterogeneity. Pathologists should examine every paraffin block
of the tumor in order to confirm subtype theoretically, but it is so
costly that most pathologists usually examine only one block in a
case. In this situation, the sampling error is inevitable and a
predictive AI model for molecular subtyping on H&E images can
significantly improve the present clinical procedure. Pathologists
can quickly make preliminary subtype predictions of a tumor
and select the most representative block based on our AI model.
Then, the representative block is examined to further confirm the
molecular subtyping prediction with IHC in clinic. In addition,
the inference time and computing resources our model requires
are negligible compared to the expensive IHC. Therefore,
Frontiers in Oncology | www.frontiersin.org 8110
pathologists could avoid the sampling error with the help of
the AI model at almost no additional cost and provide a more
reliable result for oncologists to improve curative effect.

Since WSI-level labels lack detailed region annotation
information, most of the existing methods use patch-based
methods for WSI recognition. How to eliminate the influence of
noise patches and learn the corresponding features for molecular
subtyping through training process is the key problem. Our work
aims to predict slide-level labels of H&E pathological slides using
only weakly annotated information at the slide level. This paper
proposes a framework by selecting these discriminant patches to
reduce the impact of noise patches and combined MIL for
molecular subtype classification. The experimental results show
the effectiveness of our proposed framework on the partner
hospital’s breast cancer H&E pathological image dataset.

MIL has been applied in diverse diseases and image
modalities including classification of cancer in histopathology
FIGURE 8 | Results of 2-class molecular subtype classification and 4-class weighted fusion at 10× resolution.
FIGURE 7 | Results of 4-class molecular subtype classification with MIL finetuning at different resolutions.
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images, dementia in brain MR, tuberculosis in x-ray images, and
others. MIL classifiers can benefit from information about
cooccurrence and structure of instances when classifying bags
(35). For example, Melendez et al. (36) trained a MIL classifier
only with x-ray images labeled as healthy or abnormal, yet
outperforming its supervised version trained on outlines of
tuberculosis lesions.

Some studies combine traditional machine learning
algorithms with weakly supervised learning and apply them to
pathological slide classification tasks. Hou et al. (37) combined
the EM method based on multi-instance learning with a
convolutional neural network and used it to predict patch-level
results. Campanella et al. (38) used a recurrent neural network
model to extract feature representations between different patch
examples to obtain a slide-level classification for basal cell
carcinoma and breast cancer axillary lymph node metastasis.
Raju et al. (39) proposed a graph attention clustering multi-
instance learning algorithm based on texture features to predict
the TNM staging of rectal cancer tumor metastasis and improved
the accuracy of pathological slide staging. Wang et al. (40)
proposed a classification framework for pathological slides for
gastric cancer diagnosis, which used localization networks to
extract patch features and critical filtered patches to replace the
general clustering module. After local network extraction and
screening of key patch feature maps, concatenation is performed
to obtain an overall feature map describing pathological slides.

Recent studies rely largely on the powerful feature extraction
capability of deep learning.Yang et al. (41) trained a six-type classifier
for identification of lung lesions from WSIs based on EfficientNet
(42). To obtain slide-level diagnosis, a threshold-based tumor-first
aggregation method that fused majority voting and probability
threshold was proposed. Wang et al. (43) developed a second-order
multiple instances learning method with an adaptive aggregator
stacked by attention mechanism and RNN for histopathological
image classification, attempting to explore second-order statistics of
deep features for histopathological images. MIL framework can also
be applied to similar tasks like survival prediction. Yao et al. (12)
proposedDeepAttentionMultiple Instance Learning by introducing
Siamese MI-FCN that learns features from phenotype clusters, and
attention-based MIL pooling that performs trainable weighted
aggregation. While our paper focuses on the selection of
discriminative patches and combined local and global constraint
information in a MIL framework.

The retrospective study design would have resulted in
inevitable bias and all the data were collected from a single
center, thereby limiting the sample size of the study. In future
work, we will combine multi-center and multi-resolution
Frontiers in Oncology | www.frontiersin.org 9111
information of pathological images to improve the accuracy
and to evaluate on larger datasets.

CONCLUSIONS

Molecular subtype prediction from H&E pathological slides is a
challenging task. Based on slide-level weak labels, this paper
proposes a multi-instance learning framework for molecular
subtype classification with discriminative patches selection.
Firstly, we use co-teaching strategy to train the molecular subtype
prediction model with noise patches. Then, the noise patches are
filtered out according to features obtained from the model through
local outlier factor algorithm. Finally, based on the filtered
discriminative patches, a multi-instance learning based molecular
subtyping model using both slide-level and patch-level loss is fine-
tuned. The experimental results show the effectiveness of the
proposed framework on the breast cancer H&E pathological
image dataset from Xiangya hospital. Although its performance is
not sufficient to replace pathologists’ clinical diagnosis directly, it is
reasonable to employ our framework to preliminary screening for
more convenient and reliable molecular subtyping.
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Purpose: To compare the mammographic malignant architectural distortion (AD) detection
performance of radiologists who read mammographic examinations unaided versus those
who read these examinations with the support of artificial intelligence (AI) systems.

Material and Methods: This retrospective case-control study was based on a double-
reading of clinical mammograms between January 2011 and December 2016 at a large
tertiary academic medical center. The study included 177 malignant and 90 benign
architectural distortion (AD) patients. The model was built based on the ResNeXt-50
network. Algorithms used deep learning convolutional neural networks, feature classifiers,
image analysis algorithms to depict AD and output a score that translated to malignant.
The accuracy for malignant AD detection was evaluated using area under the curve (AUC).

Results: The overall AUC was 0.733 (95% CI, 0.673-0.792) for Reader First-1, 0.652
(95% CI, 0.586-0.717) for Reader First-2, and 0.655 (95% CI, 0.590-0.719) for Reader
First-3. and the overall AUCs for Reader Second-1, 2, 3 were 0.875 (95% CI, 0.830-
0.919), 0.882 (95% CI, 0.839-0.926), 0.884 (95% CI, 0.841-0.927),respectively. The
AUCs for all the reader-second radiologists were significantly higher than those for all the
reader-first radiologists (Reader First-1 vs. Reader Second-1, P= 0.004). The overall AUC
was 0.792 (95% CI, 0.660-0.925) for AI algorithms. The combination assessment of AI
algorithms and Reader First-1 achieved an AUC of 0.880 (95% CI, 0.793-0.968),
increased than the Reader First-1 alone and AI algorithms alone. AI algorithms alone
achieved a specificity of 61.1% and a sensitivity of 80.6%. The specificity for Reader First-
1 was 55.5%, and the sensitivity was 86.1%. The results of the combined assessment of
AI and Reader First-1 showed a specificity of 72.7% and sensitivity of 91.7%. The
performance showed significant improvements compared with AI alone (p<0.001) as well
as the reader first-1 alone (p=0.006).
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Conclusion: While the single AI algorithm did not outperform radiologists, an ensemble of
AI algorithms combined with junior radiologist assessments were found to improve the
overall accuracy. This study underscores the potential of usingmachine learning methods to
enhance mammography interpretation, especially in remote areas and primary hospitals.
Keywords: artificial intelligence, architectural distortion, mammography, breast cancer, malignant
INTRODUCTION

Breast cancer has become the most commonly diagnosed cancer in
the world, overtaking lung cancer. There were 2.26 million new
breast cancer cases in 2020, and 68.5 hundred thousand patients
died (World Health Organization International Agency for
Research on Cancer, IARC) (1). Breast cancer has become the
most common malignant tumors among Chinese women,
accounting for approximately 15% of all female cancers, and its
overallmortality rate has increased in recent years (2). Breast cancer
screening with mammography is considered effective at reducing
breast cancer-relatedmortality (3–6). Currently,mammograms are
subjectively interpreted by radiologists and rely heavily on their
qualitative visual experience to identify relevant traits (7); thus, the
benefit of mammograms is dependent on subjective human
interpretation to maximally extract all diagnostic information
from the acquired images (8). However, mammography
screening is imperfect, as the identification of subtle lesions is
challenging; as a result, 12.5% of malignancies are missed in
clinical practice (9, 10). In contrast to masses and calcifications,
architectural distortion (AD) is the most difficult type of tumor to
detect and the most commonly missed abnormality due to its
inherent subtlety and varying attributes.

Architectural distortion on mammography, defined as
distortion of the breast parenchymal architecture without a
definable mass, can be due to malignant lesions, such as invasive
cancerorductal carcinoma in situ (DCIS), or tobenign lesions, such
as a radial scar or complex sclerosing lesion (11). Architectural
distortion (AD) has been described by the American College of
Radiology in Breast Imaging Reporting and Data System (BI-
RADS) as follows: “For mammography, this includes thin straight
lines or spiculations radiating from a point, and focal retraction,
distortion, or straightening at the anterior or posterior edge of the
parenchyma” (12). AD can be associated with calcifications and
asymmetries; therefore, caseswith associatedmasseswere excluded.
Furthermore, the orientation of linear structureswithinAD lesions,
such as ligaments, ducts, and blood vessels, may mimic normal
anatomical variations in breast tissue texture, making perception
particularly difficult. Visually, both benign and malignant AD
appear to be more or less the same. Many times, readers report
that they perceive an abnormality, but they are oftenunable tomake
more accurate decisions to differentiate between benign and
malignant tissues, especially for radiologists with little experience
in mammography.

Artificial intelligence (AI), powered by recent advances in
machine learning, may make computer-aided diagnosis (CAD)
for mammography more valuable in clinical practice (7). The
most promising of these advances is deep learning, a family of
2115
machine learning methods focusing on developing convolutional
neural networks (8, 13). Radiologists have been able to improve
their cancer detection and risk prediction by mammography
when using an AI system for support (14, 15). Several articles
have reported the detection of AD in radiomics analyses (16–21).
However, few studies have used deep learning or focused on
developing multilayered neural networks.

The purpose of our study was to assess whether AI algorithms
can overcome the limitations of human mammography
interpretation, match radiologists’ interpretations of AD on
mammography performance and improve the interpretive accuracy.

MATERIALS AND METHODS

This retrospective study was approved by our institutional review
board, and written informed consent was waived. Women were
included from one institution (The Second Affiliated Hospital of
Guangzhou University of Chinese Medicine).

Study Population
We collected consecutive digital clinical mammograms (Hologic,
Bedford, Mass) between January 2011 and December 2016 at a
large tertiary academic medical center. For each patient, we
obtained outcomes through linkage to tumor registries at four
hospitals within our health care system, supplemented with
pathologic findings from our mammography information
system electronic medical records (Y.L. Z Version 8.0.143; Md).

Case Collection
We indicated women with architectural distortion on
mammography. A total of 177 subjects had pathologically
confirmed breast cancer. Ninety benign results were pathologically
confirmedasbenign, ornocancerwasdiagnosed followed for2 years.
Exclusion criteria included a history of breast cancer or prior surgery.

Population Characteristics
The population characteristics and the digital mammographic
examinations included for the observer study are shown in
Table 1. All digital mammographic examinations were bilateral
and contained two views (craniocaudal and mediolateral oblique).
Cancer cases were verified by means of histopathologic evaluation.
A total of 177 patients had malignant tumors, including 124 cases
of invasive ductal carcinoma, 38 cases of ductal carcinoma in situ,
and 15 cases of invasive lobular carcinoma.

Observation Evaluation
A fully crossed, multi-reader, multi-case evaluation with two
sessions (separated by at least 4 weeks) was performed to test
April 2022 | Volume 12 | Article 880150
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both reading conditions. There were 3 different first-reader
radiologists and 3 different second-reader radiologists. The first
readers were general radiologists, and the second readers were
breast radiologists. The median experience with mammography
diagnosis of the first readers was three years (range, 2-4years), and
the approximate mean number of mammograms read per year
during the past 2 years was 200 (range,150-300). The median
experience with mammography diagnosis of the second readers
was 10 years (range, 8-12 years), and the approximate mean
number of mammograms read per year during the past 2 years
was 4800 (range, 4500-5000). In addition, when performing the
assessments, the second readers could access the assessment
already performed by the first reader.

Radiologists were blinded to any information about the patient,
includingprevious radiology andhistopathology reports. Before the
first session, each radiologist was individually trained in a session
with 30 examinations not included in the final evaluation. The
trainingwas intended to familiarize radiologists with the evaluation
workstation, the evaluation criteria, and theAI support system (e.g.,
to understand how to use all its functionalities).

For each examination, the radiologists provided a forced
Breast Imaging Reporting and Data System (BI-RADS) score
(range, 1–5) and assigned a probability of malignancy (POM)
between 1 and 100 (with 100 indicating highly suspicious for
malignancy). During training, radiologists were instructed to use
the full extent of the POM scale with anchor points as a guide.
For instance, a BI-RADS category of 2 was recommended at a
POM of 20, a BI-RADS category of 3 was recommended at a
POM of 30, and the transition from a BI-RADS category of 4a to
4c was recommended at a POM of 50, 60, and 70. A BI-RADS
category of 5 was recommended at a POM of 80.

AI Support System
Using ITK-Snap software, two breast radiologists with rich
experience (Y.Y.L with 15 years of experience and Y.W. with 18
years of experience) independently manually delineated the AD on
mammography. To avoid introducing more noise and non-AD
areas, doctors are required to mark the core area of AD as much as
possible. Then, we calculated the intersection and association ratio
(IOU)of the two regionsof interest to evaluate thedegreeofoverlap.
If the IOU ≤ 0.5, the contour area should be re-evaluated, and the
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contour target area with high consistency was ultimately input into
the model. The model was built based on the ResNext-50 network.
We rotated each imageby -10°, -5°, 5° and10° and then transformed
the images by adding noise to improve the model robustness (22,
23). To enhance image contrast, we used top and bottom hat
transform and gamma transform to make the bright areas of the
image brighter and the dark areas darker.

The system uses deep learning convolutional neural networks
and feature classifiers and image analysis algorithms to depict
AD in two different modules. Each individual algorithm outputs
a confidence level (a number between 0 and 1) indicative of the
likelihood estimated by the algorithm representing the level of
suspicion that cancer is present (with 1 indicating the highest
suspicion) (Figure 1). Finally, proprietary algorithms are used to
combine the scores of the detected regions in craniocaudal and/
or mediolateral oblique right and/or left breast images into an
examination-based score ranging from 1 to 10 (with 10
indicating the highest likelihood that cancer is present on
the mammogram).

Model Construction
All the patients in the two groups (malignant, benign) were
randomly divided into a training set, verification set and test set
at a ratioof6:2:2.The training set included105 cancerand54benign
cases, and the verification set and test set included 36 cancer and 18
benign cases randomly. ResNeXt was selected as the basic network
of Mask R-CNN, and the Feature Pyramid Network (FPN) was
connected behind the basic network (24). For ourMask RCNN, the
input size is 1280 x 780. The initial learning rate is set 0.02 and the
loss functions for classification and mask are both cross entropy
function. For bound box regression, we use L1 loss. For the region
proposal network, we use multiple scales for anchors, which are set
8, 16, 32 with ratios 0.5, 1.0 and 2.0 respectively. Such settings can
cover the whole image. When we select anchors, the regions that
have more than 0.7 overlaps are selected as positive samples while
those with less than 0.3 overlaps are selected as negative samples.
We set random sample number be 256 to control the number of
proposals. We iteratively train our model and periodically evaluate
the model on our validation set. The model that performs best on
our validation set was selected as the final model.

By integrating the features, the feature perception ability of
the network at different scales was obtained. Receiver operating
characteristic (ROC) curves were drawn, and the model
performance was evaluated by the area under the ROC curve
(AUC), accuracy, sensitivity, and specificity.

We determined performance levels for AI algorithms and for
all radiologists’ assessments (Reader First, Reader Second, and
Consensus) in the patients from the test set for the following
diagnostic metrics: sensitivity, specificity, accuracy, positive
predictive value (PPV), and negative predictive value (NPV).

We also investigated whether an association existed between
the number of abnormal interpretations and the number of cases
positive for cancer detected by the AI algorithms alone and
combined with the assessment of the Reader First and Reader
Second as well as the Reader First and Reader Second consensus.
When performing the consensus assessment, the readers can
access the assessment already performed by the AI and make a
TABLE 1 | Characteristics of the population and digital mammographic
examinations selected for the study.

Variable 177 subjects with
malignant

architecture distortion

90 subjects with benign results

Patient age (y)
Mean 49.51±9.12 48.18±7.65
Median 49 47
Range 27-79 34-84
Interquartile range 43-56 43-52
BI-RADS breast density
a 0 2
b 11 8
c 162 68
d 4 11
April 2022 | Volume 12 | Article 880150

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wan et al. Artificial Intelligence Interpret Architectural Distortion
final diagnosis. We also examined the sensitivity and specificity
for the AI CAD algorithm and radiologist combination.

Statistical Analysis
The main end points of the study were to compare the area under
the receiver operating characteristic (ROC) curve, sensitivity and
specificity. The area under the ROC curve (AUC), specificity and
sensitivity values were compared between reading conditions by
using mixed-model analysis of variance and generalized linear
models for multiple repeated measurements.

Statistical analysis was performed with SPSS software (version
24; IBM, Armonk, NY), MedCalc software (version 19.1;
Mariakerke,Belgium) and GraphPad Prism 9 (GraphPad
Software Inc., San Diego, CA, USA).
RESULTS

Reader First Performance
Table 2 reports the AUC values for malignant AD detection for
each First Reader overall and by subgroup. The overall AUC was
0.733 (95% CI, 0.673-0.792) for Reader First-1, 0.652 (95% CI,
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0.586-0.717) for Reader First-2, and 0.655 (95% CI, 0.590-0.719)
for Reader First-3. The differences between Reader First-1 and
each other reader first radiologists (Reader First-2 and Reader
First-3) were statistically significant (P =0.014, 0.015,
respectively), whereas there was no significant difference
between Reader First-2 and Reader First-3 (P = 0.934). In
addition, we observed that the AUCs for younger vs. older and
for higher vs. lower breast density were significantly lower for all
first readers. For Reader First-1, the AUC values were 0.768 for
women 55 years or older and 0.723 for women younger than 55
years, and the AUC values were 0.730 for mammograms with a
high density percentage and 0.748 for mammograms with a low
density percentage.

Reader Second Performance
Table 3 reports the AUC for malignant AD detection for each
reader second radiologist overall and by subgroup. Overall, the
AUC was 0.875 (95% CI,0.830-0.919) for Reader Second-1, 0.882
(95% CI,0.839-0.926) for Reader Second-2, and 0.884 (95%
CI,0.841-0.927) for Reader Second-3. The AUCs for all the
reader second radiologists were significantly higher than those
for all the reader-first radiologists (Reader First-1 vs. Reader
TABLE 2 | Area under the receiver operating characteristic curve for the 3 first readers.

Group (n=) AUC (95%CI)

Reader First-1 Reader First-2 Reader First-3

Overall 0.733 (0.673-0.792) 0.652 (0.586-0.717) 0.655 (0.590-0.719)
By age women, Y
Younger (<55) 0.723 (0.655-0.791) 0.643 (0.569-0.718) 0.643 (0.569-0.716)
Older (≥55) 0.768 (0.651-0.884) 0.677 (0.534-0.819) 0.675 (0.533-0.818)
By mammographic density
Low 0.748 (0.544-0.952) 0.685 (0.484-0.887) 0.595 (0.362-0.828)
High 0.730 (0.666-0.794) 0.648 (0.576-0.720) 0.660 (0.591-0.729)
April 2022 | Volume
FIGURE 1 | Images of a 44-year-old woman with architectural distortion who presented for clinical mammography. (A) Right mediolateral oblique mammogram
shows malignant architectural distortion (arrow) in the upper outer quadrant. (B), Right craniocaudal mammogram shows an AD (arrow) with increased gland density.
(C, D) Green outlined areas were manually delineated for architectural distortion on mammography by radiologists using ITK-Snap software. Yellow and read outlined
areas and scores are shown as observed in the viewer of the AI system.
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Second-1, P= 0.004). The differences between Reader Second-1
and each of the other reader second radiologists (Reader Second-
2 and Reader Second-3) were not statistically significant (P=
0.237, P= 0.180, respectively), and there was no significant
difference between Reader First-2 and Reader First-3 (P =
0.736). Reader First-1 and Reader Second-1 performed a
consensus assessment, and the AUC was 0.878 (95% CI, 0.834-
0.922) for the consensus discussion. There was no significant
difference between Reader Second-1 vs. Consensus discussion
(P = 0.113), Reader Second-2 vs. Consensus discussion (P =
0.507), or Reader Second-3 vs. Consensus discussion (P = 0.385).
In addition, we observed that the AUCs for younger vs. older and
for higher vs. lower breast density were not significantly
decreased for all second readers, different to all first readers.
The receiver operating characteristic (ROC) curves for individual
first readers, second readers and consensus readers unaided by
the AI computer system are shown in Figure 2.

AI Performance
Table 4 presents the AUCs for malignant AD detection for the AI
algorithms and for the simulated scenarios in which the binary
decisions by the AI algorithms and the readers were combined.
Overall, the AUC values were 0.792 (95% CI, 0.660-0.925) for AI
algorithms, 0.880 (95% CI, 0.793-0.968) for AI algorithms
combined with Reader First-1, and 0.893 (95% CI, 0.809-0.976)
for AI algorithms combined with Reader Second-1. The AUC was
0.908 (95% CI, 0.832-0.984) for AI algorithms combined with the
consensus discussion of Reader First-1 and Reader Second-1. In
addition, we observed that the AUCs for younger vs. older and for
higher vs. lower breast density were significantly lower for AI
algorithms and AI algorithms combined with radiologist
readings. There was no significant difference in the AUC values
between AI algorithms vs. Reader First-1 (P=0.493), AI algorithms
combined with Reader First-1 vs. AI algorithms combined with
Reader Second-1 (P = 0.454), AI algorithms combinedwith Reader
First-1 vs. AI algorithms combined with consensus discussion (P =
0.004). The receiver operating characteristic (ROC) curves for the
AI algorithms and Reader First-1, Reader Second-1 and consensus
reading mammograms aided with AI computer systems are shown
in Figure 3.

The results of the comparisons with radiologists’ assessments
are presented in Table 5. AI algorithms alone achieved a
specificity of 61.1% and a sensitivity of 80.6%. The specificity
for Reader First-1 was 55.5%, and the sensitivity was 86.1%. The
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results of the combined assessment of AI and Reader First-1
showed a specificity of 72.7% and sensitivity of 91.7%. The
performance showed significant improvements compared with
AI alone (p<0.001) as well as the reader first-1 alone (p=0.006).
The sensitivity of the combined assessment of AI and Reader
First-1 was slightly higher than that of Reader Second-1 (91.7%
vs. 88.9%). The diagnostic accuracy for the combination of AI
algorithms and Reader First-1 was 85.2%, and for Reader
Second-1, it was 85.2%. The performance of the combined
assessment of AI algorithms and Reader Second-1 was better
than the combination AI algorithms and Reader First-1, as was
the combination of AI algorithms and reader consensus.
DISCUSSION

The current work demonstrates that AD remains a challenging
task for readers, even in the digital era. Radiologists have been
reported to demonstrate poor performance in differentiating
between benign and malignant tissues (25, 26). The best
performance of Reader First-1 had an overall AUC of 0.733 for
the detection of cancer via diagnostic mammography. The two
other first readers had overall AUCs of 0.652 and 0.655. The best
performance of Reader Second-3 had an overall AUC of 0.884 for
the detection of malignant AD via diagnostic mammography.
The two other second readers had overall AUCs of 0.875 and
TABLE 3 | Area under the receiver operating characteristic curves for the 3 second and consensus readers.

AUC (95%CI)

Group (n=) Reader Second-1 Reader Second-2 Reader Second-3 Consensus

Overall 0.875 (0.830-0.919) 0.882 (0.839-0.926) 0.884 (0.841-0.927) 0.878 (0.834-0.922)
By age, Y
Younger (<55) 0.878 (0.828-0.928) 0.888 (0.840-0.935) 0.892 (0.845-0.939) 0.879 (0.830-0.929)
Older (≥55) 0.868 (0.774-0.963) 0.863 (0.782-0.969) 0.863 (0.768-0.959) 0.880 (0.788-0.973)
By mammographic density
Low 0.863 (0.700-1.000) 0.884 (0.724-1.000) 0.884 (0.724-1.000) 0.868 (0.708-1.000)
High 0.874 (0.827-0.921) 0.884 (0.831-0.924) 0.881 (0.834-0.927) 0.877 (0.830-0.924)
April 2022 | Volume
FIGURE 2 | Receiver operating characteristic (roc) curves for the senior and
junior readers and consensus.
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0.882. The AI performance showed an overall AUC of 0.792. The
computer algorithm reached, and in some comparisons
surpassed, the performance level of junior radiologists in
assessing malignant AD on mammography. However, the
performance levels for AI algorithms did not outperform the
assessments of all senior breast radiologists or consensus.

There was additional improvement in performance when
models and junior doctors had access to clinical variables,
including the patients’ age and breast density. The subgroup
analysis of AUCs in our study showed a decreased performance
for younger vs. older women and for higher vs. lower breast density
on mammography. This is in line with prior studies showing
decreased mammographic sensitivity in younger women and
those with higher mammographic density (27, 28). Dense glands
in Asian women may increase the difficulty of detecting AD.
However, for senior doctors who have rich experience in breast
imaging diagnosis, the influence of patient age and glanddensity on
Frontiers in Oncology | www.frontiersin.org 6119
diagnosis can be ignored. In addition, the patient’s clinical data,
clinical history, and prior imaging examinations were not
adequately referenced. The machine learning and deep learning
(ML-DL)models that combined information fromboth images and
clinical data performed better than the ML-DL models trained on
images or clinical data alone (29). TheAI algorithms did not exploit
the use of prior imaging examinations from the same women. The
findings suggest that for future algorithm development, prior
images from the same women should be used to detect early
breast cancer. The changes can be observed by comparing prior
and subsequent imaging examinations, especially for ADdetection.

A computer algorithm that performs at or above the level of a
radiologist inmammography screening assessments could improve
the effectiveness of breast cancer screening (27). Detection
algorithms for mammography that use the expertise of a reader
andAI can identify more positive cases than two readers combined
(28, 30). We know that combining assessments can improve the
performance based on double-reading diagnostic programs.When
assessing the combination of junior reader and AI algorithms, we
achieved a markedly higher performance than a junior reader and
anAI algorithm alone, increasing the overall AUCvalue from0.733
to 0.880. When an AI algorithm is used by a junior reader, we
obtained higher specificity and lower false positives; more true
positive cases would likely be found. However, a much larger
proportion of false-positive results still existed even when junior
readers used AI algorithms. We found that the use of an AI
algorithm by a senior reader did not achieve markedly higher
performance than a senior reader alone. Likewise, when
combining the algorithm with the consensus, we found no clear
advantage over a senior reader alone.

The results from our study underscore the potential of using
deep learning methods to enhance the overall accuracy of pretest
mammography for malignant AD. There is a large gap in the
diagnostic ability of radiologists in basic-level hospitals across the
different regions of China. Radiologists are required to report onX-
TABLE 4 | Area under the receiver operating characteristic curves for the artificial intelligence algorithms and for algorithms combined with the assessment of the reader
first, reader second, and readers consensus.

Group (n=) AUC (95%CI)

AI AI+ Reader First-1 AI+Reader Second-1 AI+ Consensus

Overall 0.792 (0.660-0.925) 0.880 (0.793-0.968) 0.893 (0.809-0.976) 0.908 (0.832-0.984)
By age women, Y
Younger (<55) 0.762 (0.588-0.936) 0.842 (0.719-0.964) 0.851 (0.730-0.971) 0.877 (0.770-0.995)
Older (≥55) 0.870 (0.683-1.000) 0.940 (0.814-1.000) 0.980 (0.919-1.000) 0.990 (0.951-1.000)
April 2022 | Volume
FIGURE 3 | Receiver operating characteristic (ROC) curves for the artificial
intelligence algorithms alone and radiologists with the aid of AI algorithms.
TABLE 5 | Screening performance benchmarks for artificial intelligence algorithms and for radiologists among the 36 patients who received a diagnosis of malignant AD
and 18 women who received a diagnosis of benign AD.

Benchmark Reader first-1 Reader second-1 AI AI+ Reader first-1 AI+Reader Second -1 AI+Consensus

Specificity 55.5% 77.8% 61.1% 72.2% 88.9% 88.9%
Sensitivity 86.1% 88.9% 80.6% 91.7% 88.9% 83.3%
Accuracy% 75.9% 85.2% 74.1% 85.2% 88.9% 85.2%
PPV 79.5% 88.9% 80.6% 86.8% 94.1% 93.8%
NPV 66.7% 77.8% 61.1% 81.3% 80.0% 72.7%
12
PPV, positive predictive value; NPV, negative predictive value.
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ray, CT andMR examination results, and even imaging technicians
are required for this work some of the time. Our results suggest that
adding AI to clinical mammography interpretation in settings with
junior radiologists could yield significant performance
improvements, with the potential to reduce health care system
expenditures, address the recurring shortage of experienced
radiologists, and reduce missed detection of early breast cancer.
LIMITATIONS

This study has some limitations. We recognize that this
combination of radiologist interpretation and AI algorithms is
currently only theoretical in nature. We did not study the
interaction of a human interpreter with AI algorithm results or
how AI could influence radiologists’ final assessments areas that
require greater research efforts. Furthermore, additional time was
required for the radiologist to consider each CAD-marked area.
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As a useful tool, artificial intelligence has surpassed human beings in many fields. Artificial
intelligence-based automated radiotherapy planning strategies have been proposed in
lots of cancer sites and are the future of treatment planning. Postmastectomy
radiotherapy (PMRT) decreases local recurrence probability and improves overall
survival, and volumetric modulated arc therapy (VMAT) has gradually become the
mainstream technique of radiotherapy. However, there are few customized effective
automated treatment planning schemes for postmastectomy VMAT so far. This study
investigated an artificial intelligence based automated planning using the MD Anderson
Cancer Center AutoPlan (MDAP) system and Pinnacle treatment planning system (TPS),
to effectively generate high-quality postmastectomy VMAT plans. In this study, 20 patients
treated with PMRT were retrospectively investigated, including 10 left- and 10 right-sided
postmastectomy patients. Chest wall and the supraclavicular, subclavicular, and internal
mammary regions were delineated as target volume by radiation oncologists, and 50 Gy in
25 fractions was prescribed. Organs at risk including heart, spinal cord, left lung, right
lung, and lungs were also contoured. All patients were planned with VMAT using 2 arcs.
An optimization objective template was summarized based on the dose of clinical plans
and requirements from oncologists. Several treatment planning parameters were
investigated using an artificial intelligence algorithm, including collimation angle, jaw
collimator mode, gantry spacing resolution (GSR), and number of start optimization
times. The treatment planning parameters with the best performance or that were most
preferred were applied to the automated treatment planning method. Dosimetric indexes
of automated treatment plans (autoplans) and manual clinical plans were compared by the
paired t-test. The jaw tracking mode, 2-degree GSR, and 3 rounds of optimization were
selected in all the PMRT autoplans. Additionally, the 350- and 10-degree collimation
angles were selected in the left- and right-sided PMRT autoplans, respectively. The
uniformity index and conformity index of the planning target volume, mean heart dose,
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spinal cord D0.03cc, mean lung dose, and V5Gy and V20Gy of the lung of autoplans were
significantly better compared with the manual clinical plans. An artificial intelligence-based
automated treatment planning method for postmastectomy VMAT has been developed to
ensure plan quality and improve clinical efficiency.
Keywords: artificial intelligence, automated treatment planning, postmastectomy radiotherapy (PMRT), volumetric
modulated arc therapy (VMAT), MD Anderson Cancer Center AutoPlan (MDAP)
INTRODUCTION

Radiotherapy makes use of radiation to kill tumors, and it is one
of the main methods of standard treatment of tumors. Treatment
planning is a key step in the process of radiotherapy for patients,
and it is to create a treatment plan file for radiotherapy
equipment to deliver radiation for patients by optimization
and calculation. Because the structure and geometric
relationship of each patient’s target volume, organs at risk and
normal tissues, the prescribed dose of the target volume, and the
dose constraints of the organs at risk are probably different, it is
necessary to seek a good balance for each treatment plan in terms
of the dose of the target volume, organs at risk and normal tissue,
plan complexity, dose calculation accuracy, treatment planning
time, etc., which belongs to the category of multi-objective
optimization problems, and manual decision-making and
operation of the treatment planning system (TPS) by
radiotherapy dosimetrists is usually required. Automated
treatment planning generally refers to the application of an
algorithm program, instead of manual decision-making and
operation, to control the optimization and calculation of the
TPS, and to realize the automated generation of treatment plans.
In recent years, artificial intelligence technology has developed
rapidly and has reached or surpassed the level of human
processing tasks in many fields (1, 2). Automated treatment
planning methods for multiple cancer sites have been proposed
and implemented, and artificial intelligence-based automated
planning has become a trend in the treatment planning (3–5).

Breast cancer is the most common malignant tumor in
women (6), and breast cancer patients with T4 stage, axillary
metastatic lymph nodes ≥4, or primary tumor diameter >5 cm
are significantly benefited by postmastectomy radiotherapy
(PMRT) (7, 8). Due to the large target volume, the chest wall
target volume close to the heart, ipsilateral lung, and skin, strict
requirements for dose uniformity and high-dose conformity of
the target volume, and low-dose volume to organs at risk, the
treatment planning is difficult. In some cases, the internal
mammary region needs to be included (8), which increases the
difficulty of treatment planning. It is time-consuming and
laborious to complete the treatment plan manually, and the
plan quality is not easy to guarantee, so an automated treatment
planning solution is needed.

Various irradiation techniques have been reported for PMRT,
including fixed beam intensity-modulated radiotherapy (IMRT),
volumetric modulated arc therapy (VMAT), TomoDirect,
TomoHelical, and mixed photon and electron beam irradiation
(9–13). Kisling et al. (14) implemented an automated treatment
2123
planning method similar to manual forward IMRT planning for
left-sided PMRT. VMAT has gradually become the mainstream
technique of radiotherapy due to its good capability of radiation
modulation, short time of dose delivery, convenient operation of
setup, and easy availability of radiotherapy equipment (15, 16). Cilla
et al. (17) conducted a preliminary feasibility study of automated
treatment planning of left-sided postmastectomy VMAT.

VMAT generally refers to an irradiation technique in which
in the process of X-ray delivery of the accelerator, the rotation
speed of the gantry around the isocenter is variable, the angles of
the treatment couch and the collimation are fixed, the movement
speed of the multi-leaf collimator (MLC) is variable, and the
delivered dose rate is variable. The treatment planning of VMAT
usually needs to be optimized and calculated by the radiotherapy
dosimetrist using TPS. The rotation speed of the gantry, the
movement of the MLC, and the dose rate of the radiation
delivery could be optimized by the optimizer of TPS according
to the optimization objectives set manually. However, some
other beam parameters, such as the number of beams, range of
gantry angle, collimation angle, jaw collimator mode and size
limit, and gantry spacing resolution (GSR), as well as some
optimization process-controlling parameters, such as the
maximum iterations for each start optimization times,
stopping tolerance, and number of start of optimization, need
to be set manually, and the optimization objectives and the above
various treatment planning parameters may need to be manually
adjusted during the optimization process (18, 19).

The current research hotspot of IMRT-automated planning is
the setting and adjusting of optimization objectives for different
cancer sites, which mainly include the following. 1) The dose
information of a new plan is predicted based on building a model
of the plan library and fitting coefficients of the features or deep
learning methods, which is converted into optimization
objectives, and no adjusting is generally required during the
optimization process (4, 20). 2) The optimization objectives are
set based on the optimization objective template or dose
information of a similar plan, which may need to be adjusted
by the algorithm program during the optimization process (21,
22). However, there are few studies on treatment planning
parameters such as other beam parameters and optimization
process-controlling parameters of automated treatment
planning, which are generally set manually according to
experience in the algorithm program.

The MD Anderson Cancer Center AutoPlan (MDAP) system
(21) provides treatment planners with an automated planning
tool that enables one button click to generate treatment plans.
The MDAP system provides the interface of the treatment
April 2022 | Volume 12 | Article 871871
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planning language scripting. Treatment planners can write an
MDAP program as the algorithm that controls the treatment
planning process, which can dynamically generate and execute
the scripts of TPS and control TPS to generate a treatment plan.
In this study, the MDAP system and the Pinnacle (v9.8, Philips
Radiation Oncology Systems, Fitchburg, WI) TPS were used to
compare and select several beam parameters and optimization
process-controlling parameters to propose and evaluate an
artificial intelligence-based automated treatment planning
method for postmastectomy VMAT.
MATERIALS AND METHODS

Patient Selection and CT Simulation
20 cases were randomly selected from the patients who
underwent postmastectomy VMAT in our institution from
October 2018 to January 2019, including 10 cases of left-sided
PMRT and 10 cases of right-sided PMRT. The patients were
placed in supine position with free breathing and were
immobilized using the thermoplastic mask (Klarity Medical &
Equipment Co. Ltd., Guangzhou, China). The arm of the affected
side was lifted upward and abducted, the arm of the unaffected
side was placed at the side of the body, and the skin of the chest
wall was covered with a 1-cm-thickness bolus. CT simulation
images of the patients were acquired using a Philips Big Bore CT
with the slice thickness of 5 mm and then transferred to the
Pinnacle TPS.

Delineation and Prescription Dose
Referring to the RTOG guidelines for delineating the target
volume of PMRT, the target volume was delineated by an
experienced senior radiation oncologist and reviewed by a
superior radiation oncologist. The clinical target volume (CTV)
is the chest wall and the supraclavicular, subclavicular, and
internal mammary regions of the affected side. The planning
target volume (PTV) is the CTV uniformly extended 5 mm in 3
dimensions, and it is extended into the bolus at the chest wall.
Organs at risk were delineated including the heart, spinal cord,
left lung, right lung, and lungs.

Tables 1, 2 list the volume data of the PTV and some organs
at risk for left- and right-sided PMRT cases, respectively. The
Frontiers in Oncology | www.frontiersin.org 3124
prescribed dose is 50 Gy in 25 fractions for the PTV, requiring
V50Gy > 90% and V47.5Gy > 95% of the PTV.

TPS, Radiotherapy Equipment, and
Autoplan System
All VMAT plans for this study were optimized using the
Pinnacle TPS, and the optimizer was SmartArc. The
radiotherapy equipment adopts a TrueBeam (Varian Medical
Systems, Palo Alto, CA) linear accelerator equipped with a
Millennium 120 MLC, 6-MV photons, and a maximum
delivery dose rate of 600 MU/min. The jaw collimator has two
modes of jaw tracking and fixed jaw. Using the MDAP system, an
algorithm that controls the treatment planning process can be
written as an MDAP program, which can dynamically generate
and execute the scripts of the Pinnacle TPS and control the TPS
to generate a treatment plan, including generating auxiliary
structures, setting optimization objectives, setting various
treatment planning parameters, starting optimization, and
adjusting optimization objectives.

Auxiliary Structure Generation and
Optimization Objective Setting
Since the range, shape, and prescribed dose of the target volume
of PMRT are relatively uniform, and the positional relationship
between the target volume and organs at risk is also relatively
consistent, a template-based optimization objective setting
method can be adopted for the automated treatment planning;
that is, a universal optimization objective template is
summarized based on the dose of clinical plans and
requirements from oncologists that applies to all plans and
does not need to be adjusted during the optimization process.
Table 3 shows the auxiliary structure name and generation
method. Table 4 shows the optimization objective template.

Setting of Some Treatment
Planning Parameters
The isocenter is located in the box center of the PTV. Using dual
arcs, the gantry angle range for the left-sided PMRT plan is 294 to
180 degrees, and the gantry angle range for the right-sided PMRT
plan is 181 to 66 degrees. The second arcs are generated by the
optimizer after fluence optimization with the same gantry angle
ranges, the opposite gantry rotation orientations, and the same
TABLE 1 | Structure volumes of left-sided PMRT cases.

Case no. PTV Left lung Right lung Heart Overlap of PTV and left lung

1 967.4 928.8 1,334.3 497.7 59.3
2 1,086.4 992.2 1,343.8 609.6 78.9
3 1,283.1 771.3 1,224.8 642.4 59.6
4 1,504.6 805.2 984.5 565.5 37.5
5 1,322.3 1,114.3 1,180.7 621.9 70.1
6 1,035.5 916.5 1,212.4 664.8 55.2
7 1,104.8 1,050.5 1,359.7 503.3 72.8
8 1,280.9 1,132.8 1,423.5 657.7 79.6
9 1,402.0 708.1 955.5 651.1 50.7
10 1,139.0 866.0 1,095.6 620.4 60.2
April 2022
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collimation angles as the first arcs. The maximum size limit for the
movement of the jaw collimator in the x-direction is 10 cm left and
10 cm right. The dose calculation uses the collapsed cone
convolution superposition algorithm, and the dose calculation
resolution is 3 mm × 3 mm × 3 mm. The number of treatment
fractions was set to 30 before optimization, changed to 25 after
optimization, and normalized to satisfy V50Gy > 90% and V47.5Gy >
95%, and the beam MU was as small as possible. The maximum
iterations for fluence optimization is 40, and the maximum
iteration for each start of optimization is 100. The iteration
stopping tolerance is that the difference between the objective
function values of two adjacent iterations is less than 1e-6.

Selection of the Collimation Angle
First, we make the selection of the collimation angle out of 5
degrees, 10 degrees, 350 degrees, and 355 degrees. The jaw
collimator mode is set to jaw tracking, the GSR set to 2
degrees, and the optimization process is set to start
optimization twice, that is, 2 rounds of optimization. Using the
MDAP system, the above operations and settings are written as 4
MDAP programs, corresponding to 4 different collimation
angles. For 20 cases, a total of 80 VMAT plans with
collimation angles of 5 degrees, 10 degrees, 350 degrees, and
355 degrees were generated. The most preferred collimation
angles were selected for the left- and right-sided PMRT plans,
respectively, and statistical analysis was performed.

Selection of Mode of Jaw Collimator
Based on the selected collimation angle, we choose the mode
of the jaw collimator, including jaw tracking and fixed jaw.
Frontiers in Oncology | www.frontiersin.org 4125
The collimation angle selected in the previous step is set, the
GSR is set to 2 degrees, and the optimization process is set to start
optimization twice. Using the MDAP system, the above
operations and settings are written as 2 MDAP programs,
corresponding to the jaw tracking and fixed jaw modes,
respectively. For 20 cases, a total of 40 VMAT plans with the
jaw collimator modes of jaw tracking and fixed jaw were
generated. The most preferred modes of jaw collimator were
selected for the left- and right-sided PMRT plans, respectively,
and statistical analysis was performed.

Selection of the GSR
Based on the selected collimation angle and the jaw collimator
mode, we select the GSR, including 2 degrees and 4 degrees. The
selected collimation angle and jaw collimator mode in the previous
step are set, and the optimization process is set to start optimization
twice. Using the MDAP system, the above operations and settings
are written as 2 MDAP programs, corresponding to the GSR of 2
and 4 degrees, respectively. For 20 cases, a total of 40 VMAT plans
with GSR of 2 and 4 degrees were generated. The most preferred
GSRs were selected for the left- and right-sided PMRT plans
respectively, and statistical analysis was performed.

Selection of the Number of Start
Optimization Times
Finally, we choose the number of start optimization times,
including twice and 3 times, that is, 2 rounds and 3 rounds of
optimization. The selected collimation angle, jaw collimator
mode, and GSR in the previous step are set. Using the MDAP
system, the above operations and settings are written as 2 MDAP
April 2022 | Volume 12 | Article 871871
TABLE 3 | Generation method of auxiliary structures.

Auxiliary structures Generation method

PTV-3mm Create contraction of PTV with a 3-mm margin
PTV 5mmring Create ring of PTV with a 5-mm margin
PTV 1cmring Create ring of PTV between the 5-mm and 1-cm margin
PTV 2cmring Create ring of PTV between the 1-cm to 2-cm margin
PTV 3cmring Create ring of PTV between the 2-cm to 3-cm margin
nt Create subtraction of PTV and PTV rings from the body
Left lung avoid Create subtraction of PTV and PTV 5mmring from left lung
Right lung avoid Create subtraction of PTV and PTV 5mmring from right lung
Heart avoid Create subtraction of PTV and PTV 5mmring from heart
TABLE 2 | Structure volumes of right-sided PMRT cases.

Case no. PTV Left lung Right lung Heart Overlap of PTV and right lung

1 1,009.3 1,351.7 1,512.8 546.8 125.5
2 1,265.2 838.6 1,042.4 709.3 81.7
3 1,217.5 1,069.3 1,277.7 549.9 103.7
4 1,284.3 840.6 1,091.1 562.6 94.5
5 913.9 1,586.6 1,955.3 612.9 107.0
6 1,178.5 1,549.0 1,748.4 537.5 110.9
7 1,476.4 805.8 1,210.2 606.2 104.4
8 1,311.6 1,534.8 1,610.6 526.6 91.3
9 1,394.2 755.9 1,001.6 579.9 71.0
10 1,147.4 1,108.3 1,391.9 792.7 115.1
Volumes were given in cc.
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programs, corresponding to 2 rounds and 3 rounds of
optimization, respectively. For 20 cases, a total of 40 VMAT
plans with 2 rounds and 3 rounds of optimization were
generated. The most preferred starting optimization times were
selected for the left- and right-sided PMRT plans, respectively,
and statistical analysis was performed.

Automated Treatment Planning
The selected collimation angle, jaw collimator mode, GSR, and
start optimization times were set. Using the MDAP system, the
above operations and settings are written as an MDAP program
to realize the automated treatment planning function of
postmastectomy VMAT. For 20 cases, a total of 20 VMAT-
automated treatment plans (autoplans) were generated, and
dosimetric comparison and statistical analysis were performed
with the corresponding left- and right-sided PMRT manual
clinical plans, respectively.

Plan Evaluation
The dosimetric index includes the conformity index CI of the
PTV, which is defined as

CI =
TVref

TV
� TVref

Vref
(1)

where TV is the volume of the target volume, TVref is the
volume of the target volume covered by the prescribed dose, and
Vref is all the volumes covered by the prescribed dose, and the
larger the CI value, the better the conformity. The uniformity
index HI of the PTV is defined as

HI =
D2% − D98%

D50%
(2)
Frontiers in Oncology | www.frontiersin.org 5126
Among them, D2%, D98%, and D50% represent the dose
corresponding to 2%, 98%, and 50% of the PTV, respectively.
The smaller the HI value, the better the uniformity. The mean
heart dose (heart Dmean), spinal cord D0.03cc, where D0.03cc

represents the dose corresponding to the 0.03-cc volume, mean
dose, V5Gy and V20Gy of the ipsilateral lung (ipsilateral lung
Dmean, ipsilateral lung V5Gy, ipsilateral lung V20Gy), where V5Gy

and V20Gy represent the volume corresponding to the 5- and 20-
Gy doses, respectively, mean dose and V5Gy of the contralateral
lung, and mean dose of the lungs (lungs Dmean) were evaluated.

Statistical Analysis
Using SPSS software, the paired t-test method was used to
compare and evaluate the plans of collimation angle selection,
the plans of jaw collimator mode selection, the plans of GSR
selection, the plans of start optimization times selection, and the
automated plans and manual clinical plans respectively. p-values
of <0.05 were considered as statistically significant.
RESULTS

Selection of Collimation Angle
Table 5 shows the dosimetric indexes of 10 left-sided
postmastectomy VMAT plans with different collimation angles.
Through the comprehensive judgment of the dosimetric indexes
of the plans, the selected collimation angle is 350 degrees. The
average heart Dmean of the 350-degree collimation plans (7.41
Gy, p = 0.031) was significantly lower than that of the 5-degree
collimation plans (7.59 Gy) and the average ipsilateral lung
Dmean (13.17 Gy, p = 0.046) significantly lower than that of the
5 degree collimation plans (13.49 Gy). The average PTV HI of
TABLE 4 | Optimization objective template of postmastectomy VMAT plans.

ROI Type Target cGy % Volume Weight a

PTV Max Dose 6,300 80
PTV Max Dose 6,300 80
PTV Max Dose 6,300 80
PTV Min DVH 6,000 98 100
PTV Min DVH 5,800 99 100
PTV Min Dose 5,500 100
PTV-3mm Min Dose 6,000 100
PTV 5mmring Max Dose 6,000 30
PTV 1cmring Max Dose 5,500 30
PTV 2cmring Max Dose 5,000 30
PTV 3cmring Max Dose 4,500 30
nt Max Dose 3,500 30
Left lung Max DVH 2,000 25 100
Right lung Max DVH 2,000 25 100
Lungs Max DVH 500 40 100
PTV 1cmring Max EUD 0 6e-09 1
PTV 2cmring Max EUD 0 1e-08 1
PTV 3cmring Max EUD 0 1.5e-08 1
nt Max EUD 0 1e-07 1
Spinal cord Max EUD 0 1e-08 10
Left lung avoid Max EUD 0 1e-06 1
Right lung avoid Max EUD 0 1e-06 1
Heart avoid Max EUD 0 1e-06 1
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the 350-degree collimation plans (0.148, p = 0.030) was
significantly lower than that of the 10-degree collimation plans
(0.156), the average ipsilateral lung Dmean (13.17 Gy, p = 0.002)
significantly lower than that of the 10-degree collimation plans
(13.52 Gy), the average ipsilateral lung V5Gy (48.7%, p < 0.001)
significantly lower than that of the 10-degree collimation plans
(51.6%), and the average ipsilateral lung V20Gy (23.0%, p = 0.001)
significantly lower than that of the 10-degree collimation plans
(23.4%), and the rest of the indexes were not significantly
different (p > 0.05). The above indexes of the 350-degree
collimation plans are all significantly better than that of the 5-
and 10-degree collimation plans, indicating that the 350-degree
collimation plans are better than those of the 5- and 10-degree
collimation plans. Except for spinal cord D0.03cc, the average
dosimetric indexes of the 350-degree collimation plans is better
than that of the 355-degree collimation plans, but there are no
significant difference. After comprehensive consideration, the
350-degree collimation plans tend to be preferred.

Table 6 shows the dosimetric indexes of 10 right-sided
postmastectomy VMAT plans with different collimation angles.
The selected collimation angle is 10 degrees. The average spinal
cord D0.03cc of the 10-degree collimation plans (15.46 Gy, p =
0.039) was significantly higher than that of the 350-degree
collimation plans (12.68 Gy), the average ipsilateral lung Dmean

(13.65 Gy, p = 0.002) significantly lower than that of the 350-
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degree collimation plans (13.99 Gy), the average ipsilateral lung
V5Gy (49.3%, p = 0.006) significantly lower than that of the 350-
degree collimation plans (51.8%), and the average lungs Dmean

(8.41 Gy, p = 0.014) significantly lower than that of the 350-
degree collimation plans (8.57 Gy). The average ipsilateral lung
Dmean of the 10-degree collimation plans (13.65 Gy, p = 0.005)
was significantly lower than that of the 355-degree collimation
plans (13.86 Gy), the average ipsilateral lung V5Gy (49.3%, p =
0.013) significantly lower than that of the 355-degree collimation
plans (51.1%), the average ipsilateral lung V20Gy (24.2%, p =
0.012) significantly lower than that of the 355-degree collimation
plans (24.3%), the average lungs Dmean (8.41 Gy, p = 0.040)
significantly lower than that of the 355-degree collimator plans
(8.52 Gy), and the rest of the indexes were not significantly
different (p > 0.05). The above indexes of the 10-degree
collimation plans are all significantly better than those of the
355-degree collimation plans, indicating that the 10-degree
collimation plans are better than those of the 355-degree
collimation plans. Although the average spinal cord D0.03cc of
the 350 degree collimation plans is better than that of the 10-
degree collimation plans, after comprehensive consideration, the
10-degree collimator plans tend to be preferred. The average
PTV CI, PTV HI, spinal cord D0.03cc, ipsilateral lung Dmean,
ipsilateral lung V5Gy, and lungs Dmean of the 10-degree collimator
plans are all better than those of the 5-degree collimation plans,
TABLE 6 | Dosimetric results (mean ± standard deviation) of right-sided postmastectomy VMAT plans with different collimation angles.

10 degree 5 degree pa 350 degree pb 355 degree pc

PTV CI 0.846±0.012 0.842±0.015 0.242 0.837±0.017 0.062 0.841±0.016 0.252
PTV HI 0.150±0.019 0.154±0.022 0.080 0.161±0.026 0.063 0.156±0.022 0.154
Heart Dmean (Gy) 3.47±0.81 3.36±0.81 0.101 3.39±0.90 0.507 3.46±0.91 0.094
Spinal cord D0.03cc (Gy) 15.46±3.69 15.73±2.22 0.796 12.68±3.61 0.039 14.56±2.55 0.128
Ipsilateral lung Dmean (Gy) 13.65±0.72 13.72±0.71 0.154 13.99±0.78 0.002 13.86±0.73 0.005
Ipsilateral lung V5Gy (%) 49.3±3.7 49.9±3.4 0.132 51.8±4.1 0.006 51.1±4.0 0.013
Ipsilateral lung V20Gy (%) 24.2±0.9 24.2±0.9 0.624 24.3±1.0 0.093 24.3±0.8 0.012
Contralateral lung Dmean (Gy) 1.97±0.29 1.89±0.38 0.354 1.90±0.38 0.277 1.92±0.37 0.428
Contralateral lung V5Gy (%) 7.6±2.7 7.2±3.9 0.640 6.3±2.7 0.140 6.7±3.1 0.261
Lungs Dmean (Gy) 8.41±0.63 8.43±0.62 0.544 8.57±0.69 0.014 8.52±0.69 0.040
April 2022 |
 Volume 12 | Article 8
aComparison of 10 degree to 5 degree.
bComparison of 10 degree to 350 degree.
cComparison of 10 degree to 355 degree.
TABLE 5 | Dosimetric results (mean ± standard deviation) of left-sided postmastectomy VMAT plans with different collimation angles.

350 degree 5 degree pa 10 degree pb 355 degree pc

PTV CI 0.850±0.011 0.845±0.016 0.133 0.845±0.012 0.092 0.848±0.015 0.300
PTV HI 0.148±0.015 0.151±0.025 0.401 0.156±0.019 0.030 0.149±0.019 0.834
Heart Dmean (Gy) 7.41±1.06 7.59±1.26 0.031 7.65±1.23 0.116 7.48±1.14 0.400
Spinal cord D0.03cc (Gy) 14.76±4.25 14.87±4.39 0.859 16.29±6.61 0.295 14.31±2.88 0.629
Ipsilateral lung Dmean (Gy) 13.17±0.72 13.49±0.97 0.046 13.52±0.85 0.002 13.27±0.86 0.356
Ipsilateral lung V5Gy (%) 48.7±4.2 50.7±6.2 0.070 51.6±5.2 <0.001 49.8±5.9 0.185
Ipsilateral lung V20Gy (%) 23.0±1.3 23.3±1.6 0.144 23.4±1.4 0.001 23.1±1.4 0.487
Contralateral lung Dmean (Gy) 2.69±0.58 2.59±0.54 0.052 2.61±0.62 0.207 2.75±0.61 0.429
Contralateral lung V5Gy (%) 13.8±4.3 13.2±4.0 0.298 12.8±4.7 0.320 14.6±4.4 0.323
Lungs Dmean (Gy) 7.24±0.61 7.33±0.74 0.751 7.34±0.73 0.065 7.31±0.69 0.183
aComparison of 350 degree to 5 degree.
bComparison of 350 degree to 10 degree.
cComparison of 350 degree to 355 degree.
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but there is no significant difference. After comprehensive
consideration, the 10-degree collimation plans tend to
be preferred.

Selection of Mode of Jaw Collimator
Table 7 shows the dosimetric indexes of 10 left- and 10 right-
sided postmastectomy VMAT plans with jaw collimator modes
of jaw tracking and fixed jaw. Through the comprehensive
judgment of the dosimetric indexes of the plans, the jaw
tracking was selected. The average PTV HI of the left-sided
PMRT jaw tracking plans (0.148, p = 0.006) was significantly
higher than that of the fixed jaw plans (0.145), the average heart
Dmean (7.41 Gy, p < 0.001) significantly lower than that of the
fixed jaw plans (7.90 Gy), the average spinal cord D0.03cc (14.76
Gy, p = 0.017) significantly lower than that of the fixed jaw plans
(16.67 Gy), the average ipsilateral lung Dmean (13.17 Gy, p <
0.001) significantly lower than that of the fixed jaw plans (13.61
Gy), the average ipsilateral lung V5Gy (48.7%, p < 0.001)
significantly lower than that of the fixed jaw plans (53.2%), the
average contralateral lung Dmean (2.69 Gy, p = 0.004)
significantly lower than that of the fixed jaw plans (2.93 Gy),
and the average lungs Dmean (7.24 Gy, p < 0.001) significantly
lower than that of the fixed jaw plans (7.56 Gy), and the rest
of the indexes were not significantly different (p > 0.05).
Although the average PTV HI of the fixed jaw plans is better
than that of the jaw tracking plans, after comprehensive
consideration, the jaw tracking plans tend to be preferred.

The average heart Dmean of the right-sided PMRT jaw
tracking plans (3.47 Gy, p < 0.001) was significantly lower than
that of the fixed jaw plans (3.92 Gy), the average ipsilateral lung
Dmean (13.65 Gy, p < 0.001) significantly lower than that of the
fixed jaw plans (14.19 Gy), the average ipsilateral lung V5Gy

(49.3%, p < 0.001) significantly lower than fixed jaw plans
(54.2%), the average contralateral lung Dmean (1.97 Gy, p =
0.005) significantly lower than fixed jaw plans (2.19 Gy), the
average contralateral lung V5Gy (7.6%, p = 0.041) significantly
lower than fixed jaw plans (8.5%), and the average lungs Dmean

(8.41 Gy, p < 0.001) significantly lower than fixed jaw plans (8.82
Gy), and rest of the indexes were not significantly different (p >
0.05). The above indexes of the jaw tracking plans are all
significantly better than those of the fixed jaw plans, indicating
that the jaw tracking plans are better than the fixed jaw plans.
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Selection of the GSR
Table 8 shows the dosimetric indexes of the 10 left- and 10 right-
sided postmastectomy VMAT plans with 2- and 4-degree GSR.
Through the comprehensive judgment of the dosimetric indexes
of the plans, the 2-degree GSR was selected. The average heart
Dmean of the left-sided PMRT 2-degree GSR plans (7.41 Gy, p <
0.001) was significantly lower than that of the 4-degree GSR
plans (7.66 Gy), the average ipsilateral lung Dmean (13.17 Gy, p =
0.002) significantly lower than that of the 4 degree GSR plans
(13.34 Gy), the average ipsilateral lung V5Gy (48.7%, p = 0.010)
significantly lower than that of the 4 degree GSR plans (50.0%),
the average ipsilateral lung V20Gy (23.0%, p < 0.010) significantly
lower than that of the 4-degree GSR plans (23.3%), and the
average lungs Dmean (7.24 Gy, p = 0.014) significantly lower than
that of the 4-degree GSR plans (7.32 Gy), and the rest of the
indexes were not significantly different (p > 0.05). The above
indexes of the 2-degree GSR plans are all significantly better than
those of the 4-degree GSR plans, indicating that the 2-degree
GSR plans are better than that of the 4-degree GSR plans.

The average PTV CI of the right-sided PMRT 2-degree GSR
plans (0.846, p = 0.013) was significantly higher than that of the
4-degree GSR plans (0.841), and the average PTV HI (0.150, p =
0.012) is significantly lower than that of the 4-degree GSR plans
(0.156), the average heart Dmean (3.47 Gy, p = 0.006) significantly
lower than that of the 4-degree GSR plans (3.66 Gy), the average
ipsilateral lung Dmean (13.65 Gy, p = 0.002) significantly lower
than that of the 4-degree GSR plan (13.78 Gy), the average
ipsilateral lung V20Gy (24.2%, p = 0.001) significantly lower than
that of the 4-degree GSR plan (24.5%), and the average lungs
Dmean (8.41 Gy, p < 0.001) significantly lower than that of the 4-
degree GSR plans (8.50 Gy), and the rest of the indexes were not
significantly different (p > 0.05). The above indexes of the
2-degree GSR plans are all significantly better than those of the
4-degree GSR plans, indicating that the 2-degree GSR plans are
better than that of the 4-degree GSR plans.

Selection of the Number of Start
Optimization Times
Table 9 shows the dosimetric indexes of the 10 left- and 10 right-
sided postmastectomy VMAT plans with 2 rounds of optimization
and 3 rounds of optimization. Table 10 shows the iterations
completed in each round of optimization for the 10 left- and 10
TABLE 7 | Dosimetric results (mean ± standard deviation) of postmastectomy VMAT plans with jaw tracking and fixed jaw.

Jaw tracking (left-side) Fixed jaw (left-side) p (left-side) Jaw tracking (right-side) Fixed jaw (right-side) p (right-side)

PTV CI 0.850±0.011 0.849±0.013 0.208 0.846±0.012 0.848±0.015 0.235
PTV HI 0.148±0.015 0.145±0.016 0.006 0.150±0.019 0.144±0.020 0.054
Heart Dmean (Gy) 7.41±1.06 7.90±1.10 <0.001 3.47±0.81 3.92±0.74 <0.001
Spinal cord D0.03cc (Gy) 14.76±4.25 16.67±4.05 0.017 15.46±3.69 15.09±3.06 0.669
Ipsilateral lung Dmean (Gy) 13.17±0.72 13.61±0.73 <0.001 13.65±0.72 14.19±0.74 <0.001
Ipsilateral lung V5Gy (%) 48.7±4.2 53.2±5.1 <0.001 49.3±3.7 54.2±4.5 <0.001
Ipsilateral lung V20Gy (%) 23.0±1.3 23.1±1.3 0.115 24.2±0.9 24.2±1.0 0.543
Contralateral lung Dmean (Gy) 2.69±0.58 2.93±0.57 0.004 1.97±0.29 2.19±0.35 0.005
Contralateral lung V5Gy (%) 13.8±4.3 15.2±4.3 0.175 7.6±2.7 8.5±2.8 0.041
Lungs Dmean (Gy) 7.24±0.61 7.56±0.64 <0.001 8.41±0.63 8.82±0.64 <0.001
A
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right-sided PMRT cases. The maximum 100 iterations per round
were completed in the first 2 rounds of optimization for almost all
cases, while the third round of optimization were not completed
for most cases as the iteration stopping tolerance was reached.
Through the comprehensive judgment of the dosimetric indexes
of the plans, the 3 rounds of optimization were selected. The
average PTV CI of the left-sided PMRT plans with 2 rounds of
optimization (0.850, p = 0.002) was significantly lower than that of
the plans with 3 rounds of optimization (0.854), and the average
PTVHI (0.148, p = 0.003) was significantly higher than that of the
plans with 3 rounds of optimization (0.143), the average heart
Dmean (7.41 Gy, p = 0.003) significantly higher than that of the
plans with 3 rounds of optimization (7.16 Gy), the average spinal
cord D0.03cc (14.76 Gy, p < 0.001) significantly higher than that of
the plans with 3 rounds of optimization (14.14 Gy), the average
ipsilateral lung Dmean (13.17 Gy, p = 0.001) significantly higher
than that of the plans with 3 rounds of optimization (12.95 Gy),
the average ipsilateral lung V5Gy (48.7%, p = 0.009) significantly
higher than that of the plans with 3 rounds of optimization
(47.4%), the average ipsilateral lung V20Gy (23.0%, p < 0.001)
significantly higher than that of the plans with 3 rounds of
optimization (22.5%), the average contralateral lung V5Gy

(13.8%, p = 0.020) significantly lower than that of the plans with
3 rounds of optimization (14.3%), and the average lungs Dmean

(7.24 Gy, p < 0.001) significantly higher than that of the plans with
3 rounds of optimization (7.17 Gy), and the rest of the indexes
were not significantly different (p > 0.05). Although the average
contralateral lung V5Gy of the plans with 2 rounds of optimization
is better than that of the plans with 3 rounds of optimization, after
comprehensive consideration, the plans with 3 rounds of
optimization tend to be preferred.
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The average PTV CI of the right-sided PMRT plans with 2
rounds of optimization (0.846, p = 0.027) was significantly lower
than that of the plans with 3 rounds of optimization (0.851), the
average PTV HI (0.150, p = 0.002) significantly higher than that
of the plans with 3 rounds of optimization (0.142), the average
spinal cord D0.03cc (15.46 Gy, p = 0.025) significantly higher than
that of the plans with 3 rounds of optimization (14.89 Gy), the
average ipsilateral lung Dmean (13.65 Gy, p = 0.010) significantly
higher than that of the plans with 3 rounds of optimization
(13.53 Gy), the average ipsilateral lung V5Gy (49.3%, p = 0.006)
significantly higher than that of the plans with 3 rounds of
optimization (48.4%), the average ipsilateral lung V20Gy (24.2%,
p = 0.001) significantly higher than that of the plans with 3
rounds of optimization (23.9%), and the average lungs Dmean

(8.41 Gy, p = 0.025) significantly higher than that of the plans
with 3 rounds of optimization (8.34 Gy), and the rest of the
indexes were not significantly different (p > 0.05). The above
indexes of plans with 3 rounds of optimization are all
significantly better than that of the plans with 2 rounds of
optimization, indicating that the plans with 3 rounds of
optimization are better than those of the plans with 2 rounds
of optimization.

Automated Treatment Planning
Table 11 shows the dosimetric index of 10 left- and 10 right-
sided postmastectomy VMAT autoplans and manual clinical
plans. Figure 1 shows the dose distribution and DVH for the
autoplan and clinical plan of 1 left-sided PMRT case. The left
picture in Figure 1 is the autoplan, and the right one is the
clinical plan. The blue colorwash area is PTV. The medium solid
lines are isodose lines. Similarly, Figure 2 shows the dose
April 2022 | Volume 12 | Article 871871
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TABLE 9 | Dosimetric results (mean ± standard deviation) of postmastectomy VMAT plans with 2 round and 3 round optimizations.

2 round (left-side) 3 round (left-side) p (left-side) 2 round (right-side) 3 round (right-side) p (right-side

PTV CI 0.850±0.011 0.854±0.012 0.002 0.846±0.012 0.851±0.011 0.027
PTV HI 0.148±0.015 0.143±0.014 0.003 0.150±0.019 0.142±0.015 0.002
Heart Dmean (Gy) 7.41±1.06 7.16±0.93 0.003 3.47±0.81 3.41±0.74 0.055
Spinal cord D0.03cc (Gy) 14.76±4.25 14.14±4.21 <0.001 15.46±3.69 14.89±4.03 0.025
Ipsilateral lung Dmean (Gy) 13.17±0.72 12.95±0.72 0.001 13.65±0.72 13.53±0.63 0.010
Ipsilateral lung V5Gy (%) 48.7±4.2 47.4±3.6 0.009 49.3±3.7 48.4±3.3 0.006
Ipsilateral lung V20Gy (%) 23.0±1.3 22.5±1.4 <0.001 24.2±0.9 23.9±0.8 0.001
Contralateral lung Dmean (Gy) 2.69±0.58 2.74±0.60 0.065 1.97±0.29 1.95±0.32 0.626
Contralateral lung V5Gy (%) 13.8±4.3 14.3±4.3 0.020 7.6±2.7 7.7±2.5 0.591
Lungs Dmean (Gy) 7.24±0.61 7.17±0.62 <0.001 8.41±0.63 8.34±0.59 0.025
TABLE 8 | Dosimetric results (mean ± standard deviation) of postmastectomy VMAT plans with 2 degree and 4 degree gantry spacing resolution.

2 degree (left-side) 4 degree (left-side) p (left-side) 2 degree (right-side) 4 degree (right-side) p (right-side)

PTV CI 0.850±0.011 0.849±0.010 0.089 0.846±0.012 0.841±0.014 0.013
PTV HI 0.148±0.015 0.150±0.012 0.220 0.150±0.019 0.156±0.018 0.012
Heart Dmean (Gy) 7.41±1.06 7.66±1.09 <0.001 3.47±0.81 3.66±0.94 0.006
Spinal cord D0.03cc (Gy) 14.76±4.25 15.19±3.65 0.243 15.46±3.69 16.35±4.09 0.093
Ipsilateral lung Dmean (Gy) 13.17±0.72 13.34±0.69 0.002 13.65±0.72 13.78±0.64 0.002
Ipsilateral lung V5Gy (%) 48.7±4.2 50.0±4.9 0.010 49.3±3.7 49.7±3.5 0.110
Ipsilateral lung V20Gy (%) 23.0±1.3 23.3±1.1 <0.001 24.2±0.9 24.5±0.7 0.001
Contralateral lung Dmean (Gy) 2.69±0.58 2.71±0.60 0.704 1.97±0.29 2.00±0.28 0.302
Contralateral lung V5Gy (%) 13.8±4.3 14.0±4.5 0.504 7.6±2.7 7.9±2.4 0.386
Lungs Dmean (Gy) 7.24±0.61 7.32±0.58 0.014 8.41±0.63 8.50±0.61 <0.001
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distribution and DVH for the autoplan and clinical plan of 1
right-sided PMRT case. The average PTV CI of the left-sided
PMRT autoplans (0.854, p = 0.042) was significantly higher than
that of clinical plans (0.812), the average heart Dmean (7.16 Gy, p
< 0.001) significantly lower than that of clinical plans (9.75 Gy),
the average spinal cord D0.03cc (14.14 Gy, p = 0.012) significantly
lower than that of the clinical plans (22.89 Gy), the average
ipsilateral lung Dmean (12.95 Gy, p = 0.012) significantly lower
than clinical plans (14.02 Gy), the average ipsilateral lung V5Gy

(47.4%, p < 0.001) significantly lower than that of the clinical
plans (58.2%), the average contralateral lung Dmean (2.74 Gy, p =
0.012) significantly lower than that of the clinical plans (4.32 Gy),
the average contralateral lung V5Gy (14.3%, p = 0.032)
significantly lower than that of the clinical plans (23.3%), and
the average lungs Dmean (7.17 Gy, p < 0.001) significantly lower
than that of the clinical plans (8.53 Gy), and the rest of the
indexes were not significantly different (p > 0.05). All of the
above indexes of autoplans are significantly better than those of
the manual clinical plans, indicating that autoplans are better
than manual clinical plans.

The average PTV CI of the right-sided PMRT autoplans
(0.851, p = 0.002) was significantly higher than that of the
clinical plans (0.842), the average PTV HI (0.142, p = 0.004)
significantly lower than that of the clinical plans (0.169), the
average heart Dmean (3.41 Gy) significantly lower than that of the
clinical plans (7.88 Gy, p < 0.001), the average spinal cord D0.03cc

(14.89 Gy, p=0.019) significantly lower than that of the clinical
plans (21.04 Gy), the average ipsilateral lung Dmean (13.53 Gy, p
= 0.003) significantly lower than that of the clinical plans (14.17
Gy), the average ipsilateral lung V5Gy (48.4%, p < 0.001)
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significantly lower than that of the clinical plans (57.9%), the
average contralateral lung Dmean (1.95 Gy, p < 0.001)
significantly lower than that of the clinical plans (4.03 Gy), the
average contralateral lung V5Gy (7.7%, p < 0.001) significantly
lower than that of the clinical plans (20.2%), and the average
lungs Dmean (8.34 Gy, p < 0.001) significantly lower than that of
the clinical plans (9.62 Gy), and the rest of the indexes were not
significantly different (p > 0.05). All of the above indexes of
autoplans are significantly better than those of the manual
clinical plans, indicating that autoplans are better than manual
clinical plans.
DISCUSSIONS

In this study, theMDAP system and the Pinnacle TPS were used to
implement and evaluate an artificial intelligence-based automated
treatment planning method for postmastectomy VMAT, which
achieved better plan quality than manual clinical plans. To the best
of our knowledge, this is the first time that the automated
treatment planning for left- and right-sided postmastectomy
VMAT is fully realized, and this is the first time that the
treatment planning parameters such as collimation angle, jaw
collimator mode, GSR, and number of start optimization times
were investigated in the automated treatment planning study.

Similar to the study by Zhang et al. (13), the setting of
optimization objectives in this study included the equivalent
uniform dose (EUD) constraint, which reduces the dose to
organs at risk and normal tissues more effectively. The constraint
of maximum EUD in the optimization objective template of this
TABLE 11 | Dosimetric results (mean ± standard deviation) of postmastectomy VMAT autoplans and clinical plans.

Autoplan (left-side) Clinical plan (left-side) P (left-side) Autoplan (right-side) Clinical plan (right-side) P (right-side)

PTV CI 0.854±0.012 0.812±0.056 0.042 0.851±0.011 0.842±0.009 0.002
PTV HI 0.143±0.014 0.204±0.103 0.083 0.142±0.015 0.169±0.027 0.004
Heart Dmean (Gy) 7.16±0.93 9.75±1.17 <0.001 3.41±0.74 7.88±1.70 <0.001
Spinal cord D0.03cc (Gy) 14.14±4.21 22.89±9.61 0.012 14.89±4.03 21.04±5.65 0.019
Ipsilateral lung Dmean (Gy) 12.95±0.72 14.02±0.92 0.012 13.53±0.63 14.17±0.46 0.003
Ipsilateral lung V5Gy (%) 47.4±3.6 58.2±5.9 <0.001 48.4±3.3 57.9±4.2 <0.001
Ipsilateral lung V20Gy (%) 22.5±1.4 23.8±2.4 0.197 23.9±0.8 24.2±1.2 0.644
Contralateral lung Dmean (Gy) 2.74±0.60 4.32±1.73 0.012 1.95±0.32 4.03±0.63 <0.001
Contralateral lung V5Gy (%) 14.3±4.3 23.3±11.8 0.032 7.7±2.5 20.2±7.4 <0.001
Lungs Dmean (Gy) 7.17±0.62 8.53±0.91 <0.001 8.34±0.59 9.62±0.58 <0.001
April 2022 | Volume 12 |
TABLE 10 | Iterations completed in each round of optimization of postmastectomy VMAT plans.

Case no. 1st round (left-side) 2nd round (left-side) 3rd round (left-side) 1st round (right-side) 2nd round (right-side) 3rd round (right-side)

1 100 100 10 100 100 100
2 100 93 31 100 100 38
3 100 100 93 100 100 93
4 100 100 65 100 100 93
5 100 100 100 100 100 12
6 100 100 93 100 100 12
7 100 100 26 100 100 100
8 100 100 100 100 100 12
9 100 100 100 100 100 93
10 100 100 100 100 100 93
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study is set to 0, and only the weight and the value a need to be set,
which is more conducive to ensure the generalization of the
automated treatment planning.

Referring to the setting of the gantry angle range of Zhang
et al. (13) and Cilla et al. (17), since the cases in this study
included the internal mammary region, and higher
generalization is required for automated treatment planning,
the setting of the gantry angle range is slightly larger, ranging
from 294 to 180 degrees for the left-sided postmastectomy
VMAT plans and 181 to 66 degrees for the right-sided
postmastectomy VMAT plans. Because the dose rate and field
aperture at each gantry angle can be well modulated for VMAT,
and the jaw tracking mode is used to reduce the leakage dose, the
low-dose volume can be controlled well while ensuring the dose
conformity and uniformity of the target volume.
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The size of the jaw collimator at each gantry angle and the field
aperture formed by the MLC are affected by the collimation angle.
Increasing the width of the jaw collimator in the x-direction may
increase the leakage dose and affect the degree of freedom of the
movement of MLC. When the collimation angle deviates more
from 0 degrees, the width of the jaw collimator in the x-direction
at some gantry angles may increase. Therefore, the collimation
angle range selected in this study is plus or minus 5 degree
and 10 degrees from 0 degree. Due to the different spatial
relationship between the left- and right-sided PMRT target
volume and the organ at risk, the good collimation angle may
also be different. In this study, the 350-degree collimation angle
was selected for the left-sided postmastectomy VMAT plan, and
the 10-degree collimation angle was selected for the right-sided
postmastectomy VMAT plan.
FIGURE 2 | Dose distribution and DVH for autoplan (left) and clinical plan (right) of 1 right-sided PMRT case. The blue colorwash area is PTV. The medium solid
lines are isodose lines.
FIGURE 1 | Dose distribution and DVH for autoplan (left) and clinical plan (right) of 1 left-sided PMRT case. The blue colorwash area is PTV. The medium solid lines
are isodose lines.
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Theoretically, jaw tracking is beneficial to reduce the leakage
dose, which has been confirmed in several studies (23, 24). In this
study, the jaw tracking technique was chosen for the left- and
right-sided postmastectomy VMAT plans. The maximum
distance of the Millennium 120 MLC of the Varian accelerator
which extends out of the carriage is 14–15 cm. In order to avoid
the excessive size of the jaw collimator and affect the
optimization of the field aperture formed by the MLC, the
maximum size limit of the x-direction movement of the jaw
collimator was set to be 10 cm to the left and right in this study.

The Pinnacle TPS provides a choice of 2–4 degrees for GSR.
In theory, the 2-degree GSR provides more degrees of freedom
for the optimization of treatment planning than 4 degrees. The 4-
degree GSR plan is a simple special case of the 2-degree GSR
plan; that is, a 4-degree GSR plan is equivalent to the 2-degree
GSR plan generated by linear interpolating the beam parameters
of two adjacent control points in the middle of each 4-degree
interval. This study first demonstrated the dosimetric advantage
of 2-degree GSR over 4-degree GSR for left- and right-sided
postmastectomy VMAT plans.

In theory, more optimization iterations are beneficial to get a
plan closer to the optimization objectives, but it will also take up
more computing and time resources. In this study, for most of
the cases, the very strict iteration stopping tolerance was reached
without completing the 100 iterations in the third round of
optimization, so this study did not involve more comparison and
selection of the number of start optimization times, and too
many optimization iterations may increase excessive plan
complexity. In this study, we chose to start optimization 3
times for the left- and right-sided postmastectomy VMAT plans.

In this study, the MDAP system was used to realize automated
treatment planning, which has been routinely used in clinical
practice in our hospital. From the data in Table 11, it can be seen
that most of the dosimetric indexes of the autoplans are
significantly better than those of the manual clinical plans.
Compared with manual clinical plans, autoplans significantly
improved PTV CI, reduced the mean heart dose, mean lung
dose, and lung V5Gy, and right-sided postmastectomy VMAT
autoplans significantly reduced PTV HI, thus reducing the
toxicity and side effects of normal tissues, skin reactions, the
probability of radiation pneumonitis, and especially the
probability of coronary events in the heart (25).

Using theMDAP system to generate an autoplan takes about 1 h,
and almost no manual intervention is required, so the computing
and human resources are not occupied much, which can improve
clinical efficiency and it is suitable for clinical treatment.

There are still some limitations in this study. First, the study did
not include cases using the deep-inspiration breath-hold technique
Frontiers in Oncology | www.frontiersin.org 11132
(26), and all cases included the internal mammary region.
Although in theory, the use of the deep-inspiration breath-hold
technique or without the internal mammary region is beneficial to
the protection of organs at risk such as the heart, which can reduce
the difficulty of treatment planning, and the automated treatment
planning method is also applicable, it still needs further research to
confirm or make modifications. Secondly, the cases selected in this
study did not delineate the organs at risk such as the contralateral
breast, larynx, trachea, esophagus, thyroid, liver, stomach, and
intestines. With the popularization and application of the
automated delineation system, we will complete the delineation
and increase the optimization objectives in the next study, which
may have a small impact on the optimization results of the
autoplan, and the automated treatment planning method needs
to be confirmed or modified.
CONCLUSIONS

In this study, the MDAP system and the Pinnacle TPS were used
to implement and evaluate an artificial intelligence-based
automated planning method for postmastectomy VMAT,
which achieved better plan quality than the manual clinical
plan, and improved clinical efficiency.
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Purpose: Developing deep learning algorithms for breast cancer screening is limited due
to the lack of labeled full-field digital mammograms (FFDMs). Since FFDM is a new
technique that rose in recent decades and replaced digitized screen-film mammograms
(DFM) as the main technique for breast cancer screening, most mammogram datasets
were still stored in the form of DFM. A solution for developing deep learning algorithms
based on FFDM while leveraging existing labeled DFM datasets is a generative algorithm
that generates FFDM from DFM. Generating high-resolution FFDM from DFM remains a
challenge due to the limitations of network capacity and lacking GPU memory.

Method: In this study, we developed a deep-learning-based generative algorithm,
HRGAN, to generate synthesized FFDM (SFFDM) from DFM. More importantly, our
algorithm can keep the image resolution and details while using high-resolution DFM as
input. Our model used FFDM and DFM for training. First, a sliding window was used to
crop DFMs and FFDMs into 256 × 256 pixels patches. Second, the patches were divided
into three categories (breast, background, and boundary) by breast masks. Patches from
the DFM and FFDM datasets were paired as inputs for training our model where these
paired patches should be sampled from the same category of the two different image sets.
U-Net liked generators and modified discriminators with two-channels output, one
channel for distinguishing real and SFFDMs and the other for representing a probability
map for breast mask, were used in our algorithm. Last, a study was designed to evaluate
the usefulness of HRGAN. A mass segmentation task and a calcification detection task
were included in the study.

Results: Two public mammography datasets, the CBIS-DDSM dataset and the INbreast
dataset, were included in our experiment. The CBIS-DDSM dataset includes 753
calcification cases and 891 mass cases with verified pathology information, resulting in
a total of 3568 DFMs. The INbreast dataset contains a total of 410 FFDMs with
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annotations of masses, calcifications, asymmetries, and distortions. There were 1784
DFMs and 205 FFDM randomly selected as Dataset A. The remaining DFMs from the
CBIS-DDSM dataset were selected as Dataset B. The remaining FFDMs from the INbreast
dataset were selected as Dataset C. All DFMs and FFDMs were normalized to 100mm ×
100mm in our experiments. A study with a mass segmentation task and a calcification
detection task was performed to evaluate the usefulness of HRGAN.

Conclusions: The proposed HRGAN can generate high-resolution SFFDMs from DFMs.
Extensive experiments showed the SFFDMs were able to help improve the performance
of deep-learning-based algorithms for breast cancer screening on DFM when the size of
the training dataset is small.
Keywords: high resolution, conditional generative adversarial network, deep learning, breast cancer
screening, mammography
1 INTRODUCTION

Breast cancer has become one of the leading causes of cancer
death in women (1). It is crucial to detect breast cancer in the
early stages because early detection leads to a higher survival rate
(2). Mammography screening is one of the most effective
methods for the early diagnosis of breast cancer. Previous
studies show that mammography screening reduces the
mortality rate of breast cancer (3–7).

Digitized screen-film mammography (DFM) and full-field
digital mammography (FFDM) are two major techniques for
mammography screening. Although FFDM has become the
standard procedure for breast cancer screening, DFM had been
widely used and well-studied in the past. Leveraging the well-
studied DFM for better breast cancer screening in FFDM has
become a vital topic for developing a better breast cancer
screening system. Previous studies found that FFDM and DFM
have no significant difference in cancer detection rate other than
visual differences (8, 9). In this paper, we proposed to close the
gap between FFDM and DFM with a high-resolution
generative algorithm.

With the rapid development of deep learning algorithms, deep-
learning-based computer-aided diagnosis (CAD) systems have
shown significant potential in automatic breast cancer screening
(10, 11). However, the application of deep-learning-based CAD
systems is limited due to the lack of labeled data since well-
annotated medical images are difficult and laborious to acquire. In
the case of breast cancer screening with mammography, large-
scale public FFDM datasets with mass and calcification
annotations are yet to be built. Most FFDM CAD systems are
built based on limited size in-house datasets. Fortunately, large-
scale DFM datasets with annotations (12) are available publicly,
yet utilizing these DFM datasets for building better FFDM CAD
systems remains a vital challenge.

Conditional generative adversarial network (cGAN) (13)
algorithms, including Pix2pix (14), pix2pixHD (15), and Cycle-
GAN (16), have been particularly successful in image-to-image
translation. Additionally, Cycle-GAN is state-of-the-art for
2135
unsupervised image translation. However, Cycle-GAN is not
ideal for high-resolution image-to-image translation while
other high-resolution image-to-image translation methods such
as Pix2pixHD require supervised training with paired datasets.

In this study, we proposed HRGAN to tackle the challenge of
leveraging DFM for building better FFDM CAD systems by
closing the gap between DFM and FFDM with a generative
algorithm. Moreover, our proposed HRGAN required no
additional annotation, which makes it easy to apply to existing
FFDM CAD systems. Our method is based on the unsupervised
image translation algorithm Cycle-GAN. To generate high-
resolution FFDM from DFM, a pair with constraint (PWC)
training strategy was purposed. Additionally, multi-scale
networks were purposed in our method to better capture
details such as mass boundary and micro-calcifications. We
further evaluate our method in two breast cancer screening
tasks. Extensive experiments showed the synthesized FFDMs
(SFFDMs) generated by HRGAN were able to help improve the
performance of deep-learning-based algorithms for breast cancer
screening on FFDM when the size of the training dataset is small.

This work is a further development based on our preliminary
work (17). The present work complements the preliminary one
in several aspects. First, we improve the discriminators by
introducing the gradient map as input, which is inspired by
GGGAN (18), a recent study for generating FFDM from digital
breast tomosynthesis (DBT). Second, extensive experiments,
including the mass segmentation and micro-calcification
detection tasks, were conducted while the preliminary one only
evaluated with the density estimation task. Moreover, we present
a more in-depth discussion and analysis of the proposed method.
2 MATERIALS AND METHODS

This section is organized as below. We first describe the data we
used in our study. Second, the overall architecture of HRGAN is
presented. Last, we present detailed information on the essential
components of HRGAN in the following subsections.
April 2022 | Volume 12 | Article 868257
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2.1 Screening Mammography Data
Two public screening mammography datasets, a DFM dataset
CBIS-DDSM (19, 20) and a FFDM dataset INbreast (21), were
included in our study. The CBIS-DDSM, namely Curated Breast
Imaging Subset of DDSM, is an updated and standardized version
of the Digital Database for Screening Mammography (DDSM).
While DDSM was a large-scale screening mammography dataset
containing 2620 mammography studies, a relatively large subset
was selected from DDSM making CBIS-DDSM still a large-scale
DFM dataset. The CBIS-DDSM dataset includes 3568 DFMs with
verified pathology information. The INbreast dataset has a total of
410 FFDMs with annotations of masses, calcifications,
asymmetries, and distortions.

The above two mammography datasets were then
recombined into three independent datasets for this study.
There were 1784 DFMs from CBIS-DDSM and 205 FFDMs
from INbreast randomly selected into Dataset A. Mammograms
belonging to the same patient should be selected together during
the random selection process. The remaining DFMs in the CBIS-
DDSM dataset were selected as Dataset B. The remaining FFDMs
in the INbreast dataset were selected as Dataset C. All
mammograms were resampled to an isotropic pixel resolution
of 100mm × 100mm. Patches for training HRGAN were cropped
from the resampled mammograms. The size of patches was set to
be 256 × 256 pixels in our experiment.
Frontiers in Oncology | www.frontiersin.org 3136
2.2 The Proposed HRGAN
The overall architecture is shown in Figure 1. First, DFMs and
FFDMs were cropped into small patches with the sliding window
method. The threshold method OTSU (22) was applied to extract
the background of mammograms. Patches were assigned to the
categories of breast region, boundary, or background depending
on the ratio of background in the patches. Second, these patches
were used as input of HRGAN. However, unlike the vanilla
Cycle-GAN where the input is a pair of images randomly picked
from the two objective domains, we applied the pair with
constraint (PWC) training strategy where the input pair is
picked from the same categories of the two objective domains.
We used U-Net (23) as the generators and a multiscale DNN
architecture (15) as the discriminators. More details are
described in the following subsections. In the inference stage,
the trained generator was applied to DFMs to generate synthetic
FFDMs (SFFDMs). Note that the model trained on patches can
be applied to full-field screening mammograms because our
generators were fully convolutional networks (24).
2.2.1 The Pair With Constraint (PWC)
Training Strategy
The PWC training strategy is simple but essential to our method.
Before applying the PWC training strategy, all patches cropped
from mammograms should be assigned to their corresponding
FIGURE 1 | Overall architecture of HRGAN.
April 2022 | Volume 12 | Article 868257
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categories. As described above, mammograms were first cropped
into small patches by a sliding window. Second, the background in
the patches was extracted by threshold methods and the
percentages of background in the patches were calculated. If the
whole patch was cropped from the background, then it is assigned
to the background category. If no background is contained in the
patch, it is assigned to the breast region category. The remaining
patches were assigned to the boundary category.

The PWC training strategy was applied to select the input pair
for training HRGAN after all patches were assigned to the three
categories. First, a patch was randomly picked from all DFM
patches. Its corresponding category (breast, boundary, or
background) was marked. Second, another patch was
randomly picked from the same category of FFDM patches.
The selected DFM and FFDM patches formed the input of
HRGAN, unlike Cycle-GAN where the input is a pair of
images randomly picked from the two objective domains,
resulting in a possible situation where a background patch
could eventually be paired with a breast region patch as input
and introduce noise to the training stage. The PWC training
strategy simply divided the patches into three categories based on
background percentages and paired patches only from the same
category and eliminated noisy input from the model.

2.2.2 The Network Architecture of The Generator
The network architecture for generators is illustrated in Figure 2.
Like U-Net (23), it consists of a contracting path (left side) and
an expansive path (right side). First, the input image is fed into a
convolutional block to extract low-level feature maps. The
Frontiers in Oncology | www.frontiersin.org 4137
features are then fed through residual blocks (25) to extract
higher-level feature maps. Then the feature maps are
downsampled and fed into the next layer. The contracting path
and the expansive path follow the typical architecture of a
convolutional network. Skip connections (23) are applied to
each layer to concatenate features of each layer in contracting
patches with features in the expansive path.

2.2.3 The Network Architecture of The Discriminator
The network architecture for discriminators is illustrated in
Figure 3. Inspired by Pix2pixHD (15), we applied the multi-
scale discriminator architecture in Pix2pixHD to HRGAN.
Additionally, we modified the input and output of the multi-
scale discriminator to better distinguish subtle differences
between real and synthesized images. First, the gradient map of
the input image is calculated through the Sobel filter (26). The
input image as well as its corresponding gradient map were
concatenated and fed through the first layer. Second, the input
image is downsampled and its corresponding gradient map is
calculated. The concatenation of the downsampled image and its
corresponding gradient map is fed through the second layer. We
denoted the input image as X and its corresponding gradient
map as X'. Then the input for the l-th layer of the discriminator
can be formulated as

Xl = ½X 1
2(l−1)

, (X 1
2(l−1)

)0�, l ∈ 1, 2, 3f g (1)

where X 1
2(l−1)

denoted X downsampled with factor 2(l-1).
FIGURE 2 | The network architecture of the generator.
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Introducing the gradient map as additional input for the
discriminator was inspired by GGGAN [19], a recent work that
was proposed to generate SFFDM from DBT. The study has
shown that introducing the gradient map enhanced the weak
edges to preserve small-scale structures such as subtle micro-
calcifications in SFFDM. Additionally, we found signing
discriminators with breast region boundary segmentation task
helped discriminators better distinguish synthesis mammograms
from real mammograms. Hence, the output is a two-channel
map, where the first channel is the prediction map, and the
second channel is a downsampled segmentation map indicating
the breast region for the input image. We denoted II as a matrix
whose value of every element is 1 with the same size of the
downsampled segmentation map, ml as the downsampled
segmentation map of the lth layer, and [∙,∙] as the concatenate
operation. The output of the l-th layer of the discriminator can be
formulated as

ml
i = ½i� I,ml�, i ∈ 0, 1f g, l ∈ 1, 2, 3f g (2)

By forcing the discriminator to do the breast segmentation
task, we implicitly guide the generators to learn the difference
between the inside and the outside of the breast region.

2.2.4 Loss Functions for HRGAN
We denoted X as a selected patch from DFMs, Y as a selected
patch from FFDMs, G: DFM!FFDM and F: FFDM!DFM as
generators,DX as the multi-scale discriminator to distinguish real
and synthesized DFMs, and DY as the multi-scale discriminator
to distinguish real and synthesized FFDMs. Additionally, we
denoted X̂ = F(Y) and Ŷ = G(X).
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The loss function for backpropagating discriminator DX can
be formulated as

LGrad(DX) =o3
l=1½(Dl

X(Xl) −ml
1)

2 + (Dl
X(bX l) −ml

0)
2� (3)

where Dl
X is denoted the l-th layer of the multi-scale

discriminator DX and X̂ l = ½X̂ 1
2(l−1)

, X̂ 1
2(l−1)

)0�.
Similarly, we have

LGrad(DY ) =o3
l=1½(Dl

Y (Yl) −ml
1)

2 + (Dl
Y (bY l) −ml

0)
2� (4)

where Dl
Y is denoted the l-th layer of the multi-scale

discriminator DX and Ŷ l = ½Ŷ 1
2(l−1)

, Ŷ 1
2(l−1)

)0�.
The loss function for backpropagating generator G follows

Cycle-GAN, which can be formulated as

L(G) = LGAN(DY , Ŷ ) + lLcyc(G, F,X) (5)

where l is the hyperparameter to balance LGAN and Lcyc

LGAN(DY , Ŷ ) =o3
l=1(D

l
Y (Ŷ l) −ml

1)
2 (6)

Lcyc(G, F,X) = ∥ F(G(X)) − X ∥1 (7)

Similarly, the loss function for backpropagating generator F
follows Cycle-GAN, which can be formulated as

L(F) = LGAN(DX , X̂ ) + lLcyc(F,G,Y) (8)

where l is the hyperparameter mentioned above

LGAN(DX , X̂ ) =o3
l=1(D

l
X(X̂ l) −ml

1)
2 (9)
FIGURE 3 | The network architecture of the discriminator.
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Lcyc(F,G,Y) = ∥G(F(Y)) − Y ∥1 (10)

The training procedure for HRGAN follows Cycle-GAN.
At each iteration, generators are fixed and discriminators
are updated. Then discriminators are fixed and generators
are updated.
3 EXPERIMENTAL RESULTS

This section is organized as follows. First, we describe detailed
information on the experimental setup. Then we describe our
evaluation metrics. Last, we present the experimental results.
3.1 Experimental Setup
As is described in Section 2.1, we used datasets A,B,C
created from the CBIS-DDSM dataset and the INbreast dataset
for our study. First, our proposed HRGAN was trained
on dataset A. We set the hyperparameter l = 10. We used
Adam solver (27) with a batch size of 16. All networks were
trained from scratch with a learning rate of 0.0005. We kept
the same learning rate for the first 80 epochs and linearly
decayed the rate to zero over the next 120 epochs. Second,
SFFDMs were generated from dataset B by the HRGAN
trained on dataset A. Third, two tasks for breast cancer
screening, a mass segmentation task and a calcification
detection task, were performed on dataset C. FFDMs on
dataset C were downsampled to400mm for the segmentation
task. The 100mm FFDMs on dataset C were tiled into 224 × 224
pixel-sized patches for the calcification detection task. Patches
containing more than 80% of background were removed. Patches
containing calcifications were given the label 1; otherwise, they
were given the label 0. The goal of the calcification detection task
is to classify these patches into two categories. U-Net (23) model
was used for the segmentation task. Vgg-16 (28) was used for the
calcification detection task.

Fivefold cross-validation (29) was performed on dataset C for
the breast cancer screening tasks. For each fold, the U-Net and
Vgg-16 models were trained on the training set of dataset C.
They were denoted as the baseline models. We used Adam solver
(27) with a batch size of 8 and a learning rate of 0.0001 for
training the baseline U-Net. We used Adam solver (27) with a
batch size of 16 and a learning rate of 0.0005 for training the
baseline Vgg-16. To show the usefulness of HRGAN, we trained
another U-Net model and another Vgg-16 model on the
SFFDMs generated from dataset B. Similarly, we downsampled
the SFFDMs to 400mm for the segmentation task and tiled the
100mm SFFDMs into 224 × 224 pixel-sized patches for the
calcification detection task. Then we finetuned these two
models on the training set of dataset C. We denoted them as
the finetuned models. We used Adam solver (27) with a batch
size of 8 and a learning rate of 0.0001 for training the finetuned
U-Net. We used Adam solver (27) with a batch size of 16 and a
learning rate of 0.0005 for training the finetuned Vgg-16. We set
the learning rate to 0.00005 for both finetuned models at the
finetuning stage and finetuned them for 200 epochs.
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3.2 Evaluation Metrics
We used dice coefficient to evaluate the segmentation task. The
dice score can be formulated as

dice =
2 A ∩ Bj j
Aj j + Bj j (11)

HereA is denoted as ground truth,B is denoted as the prediction.
For the calcification detection tasks, we used the area under

the receiving operator characteristic (ROC) curve (AUC) (30) to
evaluate the performance of the classification models.

3.3 Results
We first showed an example of the SFFDMs generated with
HRGAN. A visual comparison of DFM and SFFDM is shown in
Figures 4, 5. Proper window width and window level were set in
the comparison. An example of a whole high-resolution DFM
and corresponding high-resolution SFFDM is shown in Figure 4.
Two patches cropped from the DFM are illustrated in Figure 4
and the corresponding patches cropped from the same location
in SFFDM are shown in Figure 5.

We also showed the usefulness of HRGAN with two breast
cancer screening tasks performed on dataset C. The average dice
score with standard deviation across five folds for the
segmentation task was shown in the first column of the table.
The average AUC with standard deviation across five folds for
the calcification detection task was shown in the second column
of the table. As is shown in Table 1, the models pretrained on
SFFDMs and finetuned on the training set of dataset C
significantly (p < 10-10) outperformed the baseline models
trained on the training set of dataset C.
4 DISCUSSION

We proposed the HRGAN to generate detailed preserved high-
resolution SFFDMs from DFMs. There was 100mm SFFDMs
generated from 100mm DFMs in our experiments. Two breast
cancer screening tasks including a mass segmentation task and a
calcification detection taskwere performed to evaluate the usefulness
of HRGAN. Extensive experiments showed the SFFDMs generated
by HRGAN were effective to improve the performance of deep-
learning-based models.

The original Cycle-GAN model was widely used in unpaired
image translation tasks including translation of natural images and
medical images. Despite the great power of Cycle-GAN, its
performance in generating high-resolution images is limited as it
failed to capture details in high-resolution images. Hence, Cycle-
GAN is used for low-resolution medical images, such as CT and
MR, whose resolutions are usually less than 512 × 2000 pixels but
are rarely used to generate high-resolution screening
mammograms whose resolutions were usually larger than 200 ×
200 pixels.

To tackle the challenge of generating high-resolution
medical images, we adopted the Cycle-GAN framework for
unpaired image translation and supplemented our method
with several techniques. A PWC training strategy was
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FIGURE 4 | Visual comparison between DFM and SFFDM. Breast tissues are enhanced in SFFDM compared to DFM. Additionally, the breast region boundary was
barely visible in the left DFM while the boundary was complete and clear in the right SFFDM. This clear boundary helped us locate the nipple position easily.
FIGURE 5 | A more detailed visual comparison between DFM and SFFDM. The DFM patch in the first row of the first column showed apparent density while the
SFFDM patch in the first row of the second column showed that density is due to overlapping tissue. Additionally, the nipple was barely seen in the DFM patch in the
second row of the first column while it was recovered in the SFFDM patch in the DFM patch in the second row of the second column.
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especially designed for generating SFFDM. Our pair with
cons t ra in t t ra in ing s t ra tegy s ignificant ly reduced
inappropriate pair input and forced the model to learn
proper features. In order to expand the capacity of HRGAN
and capture detailed information for image translation, the U-
Net-based generators were adopted. The convolutional blocks
in the original U-Net were replaced by residual blocks for
better capacity. The multi-scale discriminators proposed by
Pix2pixHD were also adopted in our model. Besides modified
network architectures, loss functions for HRGAN were also
modified to capture subtle gradient changes in screening
mammography. We adopted GGGAN to enhance weak
edges to preserve small-scale structures.

Visual comparisons are shown in Figures 4, 5. As we see in
Figure 4, the breast region boundary is barely visible in the left
DFM while the boundary is complete and clear in the right
SFFDM. This clear boundary helped us locate the nipple position
easily. A more detailed comparison is shown in the second row
of Figure 5.

As was reported in Reference (9), digital mammography
resulted in fewer recalls than did screen-film mammography
because fortuitous positioning caused recall on screen-film
mammography but not on full-field digital mammography. A
detailed visual comparison in the first row of Figure 5 showed
similar results. DFM patches in the left showed apparent
density while SFFDM showed that density is due to
overlapping tissue. Another advantage we can observe from
the detailed comparison in Figure 5 is SFFDM has better
contrast than DFM.

To quantitatively evaluate the usefulness of HRGAN, we
leveraged the SFFDMs generated by HRGAN to improve the
performance of deep-learning-based models when only a small
number of annotated FFDMs were available. A mass
segmentation task and a micro-calcification detection task were
included for the evaluation. We trained the baseline models on
the small FFDM dataset. For comparison, the finetuned models
were first trained on SFFDMs and later finetuned on the small
FFDM dataset, unlike the vanilla transfer learning (31) for
medical imaging where models are usually pretrained on
ImageNet (32) and finetuned on the target dataset, resulting in
a large domain gap between natural images and medical images.
We proposed to pretrain the breast cancer screening models on
SFFDMs and finetuned FFDMs. Because the difference between
SFFDMs and FFDMs is very small, the pretrained model
provides a good initialization for feature extraction and is able
to be finetuned to match the certain task.

One major limitation of this work is that a reader detection
study was not performed. Moreover, we only performed the
Frontiers in Oncology | www.frontiersin.org 8141
comparison between the baseline and finetuned models on U-
Net for mass segmentation and on Vgg-16 for calcification
detection. A comparison between the baseline and finetuned
models on various network architectures is needed in the
future. Since the major purpose of this study is not to compare
different network architectures, this study did not conduct a
wide investigation on various network architectures.

Additionally, our model was only trained on certain
public datasets, with data acquired from limited systems.
To investigate the potential capacity of the proposed
method to translate DFMs to other systems such as
Hologic and GE systems, more work needs to be done in
the future to further quantify the cross-vendor potential of
the proposed method.
5 CONCLUSION

In conclusion, the proposed HRGAN can generate high-
resolution SFFDMs from DFMs. The SFFDMs were visually
similar to FFDMs. Furthermore, extensive experiments showed
the SFFDMs can help improve deep-learning-based model
trained FFDMs.
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TABLE 1 | Experimental results of two breast cancer screening tasks.

Dice score for the
segmentation task

AUC for the calcification
detection task

Baseline models 0.7012 ± 0.0102 0.8227 ± 0.0113
Finetuned models 0.7523 ± 0.0098 0.8641 ± 0.0125
p-value <10-10 <10-10
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Tianjin, China, 2 Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China, 3 Department of Radiology, Yantai
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of Qingdao University, Yantai, China, 5 Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases,
Yantai, China, 6 Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China

Purpose: To establish and evaluate non-invasive models for estimating the risk of non-
sentinel lymph node (NSLN) metastasis and axillary tumor burden among breast cancer
patients with 1–2 positive sentinel lymph nodes (SLNs).

Materials and Methods: Breast cancer patients with 1–2 positive SLNs who
underwent axillary lymph node dissection (ALND) and contrast-enhanced spectral
mammography (CESM) examination were enrolled between 2018 and 2021. CESM-
based radiomics and deep learning features of tumors were extracted. The correlation
analysis, least absolute shrinkage and selection operator (LASSO), and analysis of
variance (ANOVA) were used for further feature selection. Models based on the selected
features and clinical risk factors were constructed with multivariate logistic regression.
Finally, two radiomics nomograms were proposed for predicting NSLN metastasis and
the probability of high axillary tumor burden.

Results: A total of 182 patients [53.13 years ± 10.03 (standard deviation)] were included.
For predicting the NSLN metastasis status, the radiomics nomogram built by 5 selected
radiomics features and 3 clinical risk factors including the number of positive SLNs, ratio of
positive SLNs, and lymphovascular invasion (LVI), achieved the area under the receiver
operating characteristic curve (AUC) of 0.85 [95% confidence interval (CI): 0.71–0.99] in
the testing set and 0.82 (95% CI: 0.67–0.97) in the temporal validation cohort. For
predicting the high axillary tumor burden, the AUC values of the developed radiomics
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nomogram are 0.82 (95%CI: 0.66–0.97) in the testing set and 0.77 (95%CI: 0.62–0.93) in
the temporal validation cohort.

Discussion: CESM images contain useful information for predicting NSLN metastasis
and axillary tumor burden of breast cancer patients. Radiomics can inspire the potential of
CESM images to identify lymph node metastasis and improve predictive performance.
Keywords: breast cancer, radiomics, contrast-enhanced spectral mammography, non-sentinel lymph node
metastasis, axillary tumor burden
1 INTRODUCTION

The incidence of breast cancer is increasing, and breast cancer
has overtaken lung cancer as the world’s leading cancer (1).
Whether axillary lymph node metastasis occurs in breast cancer
patients is critical for treatment planning and prognostic
evaluation. Sentinel lymph node biopsy is a common method
to identify the axillary lymph node metastasis status (2). For
patients with positive sentinel lymph nodes (SLNs), axillary
lymph node dissection (ALND) is usually necessary (3).
However, previous studies have proven that, for some breast
cancer patients, axillary metastases are limited to the SLNs (4).
Thus, these patients may get no therapeutic benefit from ALND
and suffer from multiple complications after the surgery (5).

The ACOSOG Z0011 trial demonstrated, for some patients
with 1–2 positive SLNs who undergo breast-conserving surgery,
ALND is unnecessary (6). The guideline from China Anti-
Cancer Association recommends that breast cancer patients
with 1–2 positive SLNs who meet the criteria of ACOSOG
Z0011 trial can only perform SLN biopsy and avoid ALND (7).
However, some breast cancer patients with 1–2 positive SLNs
may fall outside Z0011 guideline. For example, approximately
80% of breast cancer patients do not perform the breast-
conserving surgery in China (8). For these patients, ALND is
necessary in the clinic to achieve accurate axillary lymph node
(ALN) staging, which helps future medical decisions and
prognosis evaluation (9). Developing a non-invasive and
effective prediction model suitable for patients with 1–2
positive SLNs is able to avoid ineffective ALND and achieve
personalized cancer management.

Furthermore, after the ACOSOG Z0011 trial, the
assessment of lymph node status is no longer limited to
axillary metastasis but more focused on the axillary tumor
burden that indicates the extent of lymph node involvement
(10). If the patient has four or more positive ALNs, that is
h node; SLN, sentinel lymph node;
CESM, contrast-enhanced spectral
shrinkage and selection operator;
ovascular invasion; AUC, area under
CI, confidence interval; ALN, axillary
al growth factor receptor 2; CC,
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considered as high axillary tumor burden. The ACOSOG
Z0011 trial shows that only 13.7% of breast cancer patients
with 1–2 positive SLNs have more than three positive ALNs
(11), which means that most breast cancer patients with 1–2
positive SLNs have a low axillary tumor burden. The patients
with a low axillary tumor burden would be safe from
recurrence without ALND (12). The RxPONDER trial shows
that postmenopausal breast cancer patients with 1–3 positive
ALNs and recurrence score of 25 or less can avoid adjuvant
chemotherapy (13). Therefore, developing a non-invasive
predictive method for the axillary tumor burden is also
important for the personalized cancer management of breast
cancer patients with 1–2 positive SLNs.

Several previous studies have demonstrated the utility of
clinical risk factors, such as the number of positive SLNs, ratio
of positive SLNs, and lymphovascular invasion (LVI) in the
prediction of non-sentinel lymph node (NSLN) metastasis for
breast cancer patients with 1–2 positive SLNs (14, 15). In
predicting the SLN status in breast cancer patients, researchers
evaluated the CancerMath model to estimate the probability of
having positive lymph nodes and found that addition of
prognostic factors human epidermal growth factor receptor 2
(HER-2) and Ki67 could help in improving the classification
performances (16, 17). Nevertheless, the predictive ability of
clinical risk factors is limited.

Contrast-enhanced spectral mammography (CESM) uses
mammography in combination with contrast agent to increase
diagnostic capability through detection of areas of increased
vascularization in the breast, being useful to diagnose breast
disease, indicate preoperative staging of breast cancer, and
evaluate the response to neoadjuvant chemotherapy (18, 19).
CESM also increases the detection of breast tumors, especially in
dense breasts (20). Massafra et al. (21) proposed an automated
expert system for discriminating benign and malignant breast
cancer lesions based on radiomics analysis of CESM images.
Even in the case of metastatic neoplastic disease, CESM
represents a valid method to accurately diagnose (22).
However, the features of CESM images in identifying lymph
node metastasis are not obvious.

Radiomics captures intratumoral heterogeneity in a non-
invasive way by extracting large amounts of image features
from radiographic images (23). It is potentially applicable to
aid cancer detection, diagnosis, assessment of prognosis, and
prediction of response to treatment (24). Radiomics has achieved
some encouraging outcomes in predicting lymph node
metastasis (25). Mao et al. (26) established a CESM-based
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radiomics nomogram for the prediction of axillary lymph node
metastasis in breast cancer with good performance.

Cong et al. (27) studied the relationship between imaging
features and NSLN metastasis in mammography and ultrasound
and found that tumor size and the number of positive SLNs,
mammographic mass margins, and ultrasonographic vascularity
were independent predictors of NSLNmetastasis in SLN-positive
patients of breast cancer. Based on this clinical research, a
radiomics nomogram, incorporating CESM-based radiomics
score and several clinical risk factors, is proposed in this study
to differentiate the status of NSLN metastasis. Besides, we further
studied the non-invasive method for axillary tumor burden
estimation and developed a radiomics nomogram for
predicting the probability of high axillary tumor burden (>3
positive ALNs) for 1–2 positive SLN patients.
2 MATERIALS AND METHODS

We retrospectively collected the clinical data and CESM images
of 1–2 positive SLN patients. A radiomics model, a deep learning
model, and the model combining deep learning features and
radiomics features were compared in predicting NSLN
metastasis. Finally, two radiomics nomograms predicting
respectively NSLN metastasis status and the probability of high
axillary tumor burden were built and evaluated.

2.1 Study Participants
This retrospective study was approved by the ethics committee of
Yantai Yuhuangding Hospital. We reviewed 229 breast cancer
patients with 1–2 positive SLNs who underwent ALND and
CESM examination in the Department of Breast Surgery between
Frontiers in Oncology | www.frontiersin.org 3145
January 2018 and October 2021. Incomplete clinical data,
bilateral lesions, multifocal tumor, and incomplete tumor on
CESM images were excluded from our study. The final dataset
included 182 patients, of whom 56 patients were NSLN-positive
and 126 patients were NSLN-negative. There are 34 patients with
high axillary tumor burden and 148 patients with low axillary
tumor burden in the dataset. A total of 151 patients between 2018
and 2020 were split randomly into training and testing sets in a
ratio of 8:2. The temporal validation cohort contained 31 patients
in 2021. The participant selection is detailed in Figure 1.

2.2 Sentinel Lymph Node Biopsy
SLN mapping was performed using lymphoscintigraphy with
methylene blue dye. On the day of the operation, technetium-99
sulfur colloid (Beijing Shihong Pharmaceutical Development
Center, Beijing, China) was injected intradermally above the
tumor, peritumorally, or at the areola of the breast. Methylene
blue dye (Jumpcan, Taixing, China) was injected 15 min before
surgery. During surgery, the SLN was localized by using a g-
probe (Neoprobe Corporation, Dublin, OH, USA). The SLN was
defined as a blue lymph node and/or a lymph node with an ex
vivo radioactive count ≥10% of the ex vivo radioactive count of
the hottest lymph node; the other axillary lymph nodes were
defined as NSLNs.

2.3 Pathological Examinations
All axillary lymph nodes including SLNs and NSLNs were
subjected to standard evaluation with H&E-stained sections.
The nodal tissue was fixed in 10% formalin and embedded in
paraffin. After this fixation, serial sections of the lymph nodes
were obtained for definitive analysis. Tumor deposits were
categorized as isolated tumor cells (≤0.2 mm), micrometastases
A B

FIGURE 1 | Flow diagram of the study exclusion criteria in the training and testing sets (A) and temporal validation cohort (B). CESM, contrast-enhanced spectral
mammography; SLN, sentinel lymph node; NSLN, non-sentinel lymph node; ALND, axillary lymph node dissection.
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(0.2–2 mm), or macrometastases (>2 mm). Macrometastases and
micrometastases were considered as positive lymph nodes.

2.4 Contrast-Enhanced Spectral
Mammography Image Acquisition
All patients underwent CESM examination before ALND. CESM
images were obtained using the Senographe Essential all-digital
mammography system (GE Healthcare, Inc., Princeton, USA),
including low-energy and recombined images in Digital Imaging
and Communications in Medicine (DICOM) format. After
injecting the intravenous iodine contrast agent (1.5 ml/kg body
weight, flow rate of 3.0 ml/s), the mammograms including
craniocaudal (CC) and mediolateral oblique (MLO) views are
obtained around 2 min later, while the breast remains
compressed. After low-energy and high-energy exposure, eight
images are collected within 5 min. Then, four recombined images
are obtained after the subtraction of low-energy and high-energy
images for each position on the workstation. Each image was in
DICOM format with the image size of 3,062 × 2,394.

2.5 Radiomics and Deep Learning Models
The overall workflow of this study is illustrated in Figure 2.
Firstly, a deep learning-based breast tumor segmentation method
was used to automatically delineate breast tumor regions on
CESM images with CC and MLO views. CESM image features in
tumor regions, including radiomics and deep learning features,
are extracted, from which several key features are further
Frontiers in Oncology | www.frontiersin.org 4146
selected. Finally, prediction models are developed by
combining the selected image features and clinical risk factors.
The area under the receiver operating characteristic (ROC) curve
(AUC) (28) and decision curve analysis (DCA) (29) are used for
evaluating these models. Nomograms are also given to show
understandable outcome measures.

2.5.1 Automatic Breast Tumor Segmentation
The automatic segmentation of breast cancer tumors was carried
out by U-Net, a commonly used deep learning-based medical
image segmentation method, which has achieved good
performance in lots of medical image segmentation tasks (30,
31). The architecture and parameters of U-Net is shown in
Figure 3. The low-energy and recombined images with the
same view were used as the input of the network. Before
training, the gray-level range of each image was adjusted via
the self-adaptive contrast enhancement. Then, the intensity scale
was normalized to (0,1) by max–min normalization as follows:

Xnorm =
X − Xmin

Xmax − Xmin
(1)

where Xnorm was the normalized gray matrix, the X was the gray
matrix of the original image, Xmin denoted the minimum gray
value, and Xmax was the maximum gray value.

In order to augment and increase the training dataset, we
applied the horizontal flip, rotation in a range of ±10 degrees,
horizontal and vertical offset by 10%, and zoom in and out by
FIGURE 2 | Overview of the construction of the prediction models. LASSO, least absolute shrinkage and selection operator; ANOVA, analysis of variance; ROC,
receiver operating characteristic.
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10%. The size of the augmented dataset is 10 times larger than
the original training dataset. The U-Net loss function Ltotal was
determined as the sum of the dice loss LDice and the cross-
entropy loss LCE (32). The hyperparameter learning rate of the
optimizer was set to 0.01. The batch size was set to 4, and training
was conducted for 100 epochs.

As the U-Net is a supervised segmentation method, label data
are needed to train the network. In this study, the labels of tumor
regions of interest (ROIs) were manually delineated by two
experienced breast radiologists (one with 7 years of experience
in breast imaging, and another with 10 years of experience in
breast imaging) blinded to pathological outcomes in CC and
MLO images via the MIM software (version 6.8.2, MIM Software
Inc., Cleveland, OH, USA). All disagreements were resolved by a
senior breast radiologist with 15 years of experience in breast
imaging. All the CESM images in our dataset have manual tumor
delineations, which are used not only to train the segmentation
network but also to evaluate the segmentation performance.

2.5.2 Feature Extraction
Two groups of image features were extracted. The first group
contains radiomics features defined by the Imaging Biomarker
Standardization Initiative (33) including shape, first-order
statistics, and texture features. We used logarithm, square root,
square, and exponential transformation to enhance image
contrast, wavelet transform decomposing image signal into
different subbands to enhance the details of images, and
gradient transformation to highlight the images’ edge
information. Radiomics features were extracted not only from
Frontiers in Oncology | www.frontiersin.org 5147
the ROIs in original CESM images but also from these processed
images. A total of 3,738 features were extracted, as shown in
Supplementary Figure S1. Open-source python package
pyradiomics v3.0.1 (34) was used for the above radiomics
feature extraction.

The second group was composed of deep learning features
extracted by pretrained ResNet-18 network (35). Deep learning
networks have been shown as powerful classifiers and can
automatically extract multilevel abstract and discriminative
features from big data sets. Even though deep learning
algorithms have been improving, few data are still a critical
factor limiting the learning of complex tasks. Transfer learning is
a popular approach for improving classification performance
when image data are limited, especially in the medical field (36,
37). The pretrained models in natural image databases such as
ImageNet are beneficial to train deep learning models for
medical image classification (38). The popular networks for
transfer learning include ResNet, VGG, and AlexNet. ResNet
with the residual blocks not only solves the degradation problem
of deep layer networks but also needs fewer parameters
compared to the traditional convolutional neural network
(CNN). It always shows higher precision in classification (39).

Here, ResNet-18 network-based transfer learning is used to
extract CESM deep learning features. The network structure of
ResNet-18 was shown in Supplementary Figure S2. Images
containing only the tumor ROIs of CESM images were resized
to 224 × 224 with bilinear interpolation and input into the
pretrained ResNet-18 network. The penultimate fully connected
layer output with the length of 512 was used as the deep learning
FIGURE 3 | U-Net architecture.
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feature group. For each patient, the deep learning features were
extracted from low-energy and recombined images in CC and
MLO views.

2.5.3 Feature Selection and Radiomics
Score Development
After performing Z-score normalization on the extracted features
so that the mean value of each normalized feature vector was 0
and the standard deviation was 1, the correlation analysis was first
used to eliminate redundant features, which have a high
correlation with other features (the absolute values of
correlation coefficients greater than 0.85). Then, a least absolute
shrinkage and selection operator (LASSO) regression (40) model
was fit on the training set. The optimal LASSO alpha parameter
was set by 10-fold cross-validation, and the features with non-zero
coefficients were reserved. We also used analysis of variance
(ANOVA) (41) to further select the features that had significant
differences (P < 0.05) between different patient groups (for
example, NSLN-positive and NSLN-negative patient groups).
Finally, a radiomics score, a deep learning score, and a deep
learning radiomics score were built by linearly combining
respectively the radiomics features, the deep learning features,
and the deep learning radiomics features. The correlation analysis,
LASSO regression, and ANOVA methods were performed by
“python” scikit-learning and pandas package.

2.5.4 Construction and Validation of the
Radiomics Model
Previous studies have proven that the combination of clinical
factors and radiomics score performed better in terms of disease
diagnosis (42). In our study, one-way ANOVA was used to select
the clinical risk factors related to the final prediction results.
Models incorporating the above three radiomics score and the
selected clinical risk factors were consequently developed by
training a multivariable logistic regression in the training set.

The variance inflation factor (43) was used to access the
multicollinearity in our regression models. A variance inflation
factor lower than 10 means no multicollinearity. Besides, the
good fitness for logistic regression was evaluated by the Hosmer–
Lemeshow test (44). ROC curves were applied to measure the
prediction accuracy of different models. The optimal threshold
values (cutoff points) were determined by maximizing the
Youden index, and the AUC, accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) of different models were calculated. The clinical utility of
the proposed models was also evaluated by DCA.

2.6 Statistical Analysis
Categorical variables were compared using the chi-square test or
Fisher’s exact test, while continuous variables were compared
using t-test. DeLong test (45) was used to compare the AUC
difference between different models. P values <0.05 were
regarded as a statistically significant difference. The statistical
analysis was performed with SPSS (version 25.0, www.ibm.com/
products/spss-statistics) and R software (version 4.0.5, R Project
for Statistical Computing, www.r-project.org). The main R
Frontiers in Oncology | www.frontiersin.org 6148
packages used in this study included rms, pROC, rmda,
PredictABEL, and ggplot2.
3 RESULTS

3.1 Clinical Characteristics
There are 120 patients in the training group, 31 patients in the
testing group, and 31 patients in the temporal validation cohort.
The clinical characteristics of these patients are shown in
Table 1. Significant differences were found in the number of
positive SLNs (P = 0.008), the ratio of positive SLNs (P < 0.001),
and LVI (P < 0.001) between NSLN-negative and NSLN-positive
patients in the training set. The rates of NSLN metastasis were
31.7% (38 of 120), 32.2% (10 of 31), and 25.8% (8 of 31) in the
tra in ing se t , te s t ing se t , and tempora l va l idat ion
cohort, respectively.

3.2 Automatic Breast Tumor
Segmentation Performance
For automatic breast tumor segmentation, the patients with
incomplete clinical data but high CESM image quality were
also included in the segmentation dataset, which contains a
total of 197 patients’ CESM images. This dataset was split
randomly into the training (n = 177) and testing sets (n = 20).
A 5-fold cross-validation was adopted for U-Net training. The
segmentation performance was evaluated with the Dice score,
and the mean Dice score of the proposed segmentation method is
0.84 ± 0.10 in the testing set. Automatic breast tumor
segmentation results of a patient are shown in Figure 4. The
automatic tumor segmentation results are close to the manual
delineation and show good segmentation accuracy.

3.3 Prediction Performance of
Radiomics Model for Non-Sentinel
Lymph Node Metastasis Status
3.3.1 Feature Selection and Radiomics
Score Development
Feature selections were performed respectively in the radiomics
feature group, the deep learning feature group, and the deep
learning radiomics feature group composed of radiomics
features and deep learning features. The correlation analysis
selected 368 radiomics features and 2,048 deep learning
features because deep learning features have low correlation
with each other. After LASSO logistic regression, 6 radiomics
features, 137 deep learning features, and 8 deep learning
radiomics features with non-zero coefficients were selected in
the three feature groups. Figures 5A, B show the radiomics
feature selection of parameter l. Finally, ANOVA reserved 5
radiomics features, 61 deep learning features, and 6 deep
learning radiomics features. Based on the three feature
selection results, radiomics score, deep learning score, and
deep learning radiomics score were constructed via linear
combinations of the selected features in different feature
groups. The NSLN metastasis status prediction performances
May 2022 | Volume 12 | Article 823897
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of the radiomics score, deep learning score, and deep learning
radiomics score are shown in Table 2. The deep learning
radiomics score and the radiomics score performed better in
the testing dataset when compared to the deep learning score,
which has the best training AUC value but a poor testing AUC
value, owing to the overfitting of the model.

3.3.2 Construction of the Radiomics Model
In one-way ANOVA, the number of positive SLNs (P = 0.008),
the ratio of positive SLNs (P < 0.001), and LVI (P < 0.001) were
proven as effective predictors for identifying the NSLN
metastasis. By combining these clinical risk factors respectively
with the radiomics score, deep learning score, and deep learning
radiomics score, the radiomics model, the deep learning model,
and the deep learning radiomics model were built using
multivariate logistic regression. The radiomics model showed
significantly better performance than that of the deep learning
model and the deep learning radiomics model and achieved an
AUC value of 0.85 [95% confidence interval (CI): 0.71–0.99] in
the testing set, as shown in Table 2. The radiomics model was
Frontiers in Oncology | www.frontiersin.org 7149
finally proposed in this study to predict NSLN metastasis status
due to its good prediction performance (P = 0.046 compared to
the clinical model).

Based on the radiomics model, an understandable and visual
nomogram was also constructed for more convenient clinical
application, as shown in Figure 6. The calibration plot for the
nomogram is shown in Supplementary Figure S3. The regression
coefficients of the radiomics score and radiomics model are shown
in Table 3. The variance inflation factors of the four predictors
used in the radiomics nomogram (radiomics score, the number of
positive SLNs, the ratio of positive SLNs, and LVI) ranged from
1.03 to 1.15, which means no multicollinearity.

Figures 7A, B show the ROCs of the radiomics score,
clinical model, and the proposed radiomics model for predicting
NSLN metastasis. AUC values of these models were 0.74 (95% CI:
0.56–0.92), 0.71 (95% CI: 0.53–0.89), and 0.85 (95% CI: 0.71-0.99)
in the testing set, respectively. DeLong test shows that there are
significant differences between the radiomics score and radiomics
model (P = 0.004) and between the clinical model and the
radiomics model (P = 0.001) in the training set and between the
TABLE 1 | Patients’ clinical characteristics.

Characteristic Training set (N = 120) P Testing set (N = 31) P Temporal Validation cohort
(N = 31)

P

Negative
NSLNs

Positive
NSLNs

Negative
NSLNs

Positive
NSLNs

Negative
NSLNs

Positive
NSLNs

Age (years), (mean ± SD), years 55.30 ± 10.15 53.89 ± 10.19 0.483 56.10 ± 10.31 54.80 ± 4.87 0.638 54.70 ± 11.66 58.25 ± 7.61 0.430
Pathology type 0.590 – 0.520
Ductal breast cancer 75 35 21 10 20 7
Lobular breast cancer 5 3 0 0 1 1
Others 2 0 0 0 2 0

Histological grade 0.294 0.170 0.170
1 14 2 3 0 2 0
2 50 25 12 4 18 4
3 13 9 6 6 2 3
NA 5 2 0 0 1 1

Number of positive SLNs 0.008 0.213 0.002
1 61 19 17 6 21 3
2 21 19 4 4 2 5

Number of positive axillary lymph
nodes

– – –

≤3 82 16 21 1 23 5
>3 0 22 0 9 0 3

Ratio of positive SLNs, (mean ± SD) 0.58 ± 0.30 0.78 ± 0.27 <0.001 0.64 ± 0.30 0.82 ± 0.24 0.115 0.41 ± 0.22 0.61 ± 0.21 0.033
ER status 0.249 0.109
Negative 4 4 3 4 1 2 0.089
Positive 78 34 18 6 22 6

PR status 0.725 0.525 0.236
Negative 7 4 6 4 2 2
Positive 75 34 15 6 21 6

HER-2 status 0.458 0.034 0.282
Negative 73 32 18 5 20 8
Positive 9 6 3 5 3 0

Ki67 1.000 0.093 0.746
<14% 41 19 6 6 4 1
≥14% 41 19 15 4 19 7

LVI <0.001 0.353 0.031
Negative 73 22 16 6 20 4
Positive 9 16 5 4 3 4
May 2022 | Volume 12 | Article 8
SLN, sentinel lymph node; NSLN, non-sentinel lymph node; ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor 2; LVI,
lymphovascular invasion.
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clinical model and the radiomics model (P = 0.046) in the testing
set. Furthermore, in the temporal validation cohort, the radiomics
model achieved an AUC of 0.82 (95% CI: 0.67–0.97) and an
accuracy of 74% (95% CI: 0.55–0.0.88) but showed no difference
compared to the clinical model. The prediction performances of
the radiomics model incorporating the radiomics score and the
clinical risk factors are shown in Table 4A.
Frontiers in Oncology | www.frontiersin.org 8150
DCA shows that the radiomics model could add more net
benefits than “all treatment” or “none treatment” with the
threshold probability range from 0 to 0.65 in the testing set
and from 0 to 0.1 and 0.5 to 1.0 in the temporal validation set,
as shown in Figures 7C, D. The net benefit was calculated as
the theoretical relationship between the threshold probability
and the relative values of false-positive and false-negative results.
A B C D

FIGURE 4 | An example of breast tumor segmentation. The green lines are automatic segmentation results. The red lines are manual delineations of tumors. For
images with CC views (A, B), the Dice score is 0.91. For images with MLO views (C, D), the Dice score is 0.85. CC, craniocaudal; MLO, mediolateral oblique.
A B

FIGURE 5 | Radiomics feature selection using the LASSO logistic regression. (A) Mean square error (MSE) path using 10-fold cross-validation. The dotted vertical
line means that the optimal value of l was 0.072. (B) LASSO coefficient profiles of the 368 features. Six features with non-zero coefficients were selected at a l
value of 0.072. LASSO, least absolute shrinkage and selection operator.
May 2022 | Volume 12 | Article 823897
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The Hosmer–Lemeshow test shows that the radiomics model
was no deviation from the perfect fit (P = 0.484).

In our research, 5 useful radiomics features were selected from
the CESM image features to develop the radiomics score for NSLN
metastasis status prediction, 3 features from the low-energy image,
and 2 features from the recombined image. The proposed radiomics
model is available on Github1. The heatmap in Supplementary
Figure S4 shows the quantitative difference of the 5 selected
radiomics features between NSLN-negative and NSLN-positive
patients. Table 5A presents that the “NGTDM-Contrast” feature
and “GLSZM-GrayLevelNonUniformityNormalized” feature have
a strong correlation with patients’ NSLN metastasis status, which is
consistent with the study from Dong et al. (46).

3.4 Performance of the Radiomics Model
for Axillary Tumor Burden Prediction
Because of the good performance of the radiomics model on the
prediction of NSLN metastasis status, we used the same methods
to develop a model for axillary tumor burden prediction.
Frontiers in Oncology | www.frontiersin.org 9151
For predicting high axillary tumor burden, LASSO regression
selected 27 features from 368 features, and ANOVA further
reserved 12 features, based on which the radiomics score for
predicting the axillary tumor burden was calculated.
Furthermore, the number of positive SLNs (P = 0.019) and the
ratio of positive SLNs (P = 0.001) were the clinical risk factors
related to the occurrence of more than 3 positive SLNs according
to one-way ANOVA. The radiomics nomogram using patients’
radiomics scores and clinical risk factors to predict the
probability of high axillary tumor burden is shown in
Figure 8A. The variance inflation factors of the three
predictors (radiomics score, number of positive SLNs,
and ratio of positive SLNs) ranged from 1.04 to 1.25.
Figures 8B, C show the ROCs of different prediction models.
For the testing set, AUC values of the radiomics score, clinical
model, and radiomics model were 0.76 (95% CI: 0.57–0.95), 0.67
(95% CI: 0.47–0.87), and 0.82 (95% CI: 0.67–0.97), respectively.
In the temporal validation cohort, the AUC of radiomics model
was 0.77 (95% CI: 0.62–0.93). DeLong test shows that there are
TABLE 2 | Summary of the performance of different radiomics scores.

AUC of Training Set (95% CI) P AUC of Testing Set (95% CI) P

Radiomics Score 0.84 (0.76–0.91) 0.402 0.74 (0.56–0.92) 0.805
Radiomics Model 0.91 (0.86–0.97) 0.001 0.85 (0.71–0.99) 0.046
Deep Learning Score 1.0 (1.0–1.0) <0.001 0.44 (0.22–0.65) 0.109
Deep Learning Model 1.0 (1.0–1.0) <0.001 0.53 (0.31–0.75) 0.121
Deep Learning Radiomics Score 0.84 (0.77–0.93) 0.385 0.76 (0.59–0.93) 0.596
Deep Learning Radiomics Model 0.83 (0.76–0.91) 0.070 0.73 (0.52–0.94) 0.821
May 2022 | Volume 12 | Article 8
CI, confidence interval; P value, compared to the clinical model.
FIGURE 6 | Radiomics nomogram to predict NSLN metastasis. (50% probability is used as the classification cutoff point, corresponding to 91 points). SLN, sentinel
lymph node; LVI, lymphovascular invasion.
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TABLE 3 | The corresponding coefficients for establishing the radiomics score (A) and radiomics model (B).

Coefficient Odds ratio (95% CI) P

(A)
Interception -2.23 0.788
Low-Energy_CC_wavelet-LH_GLCM_IMC1* 1.88 6.57 (0.93–46.43) 0.059
Low-Energy_MLO_wavelet-HH_firstorder_Median* -0.09 0.91 (0.86–0.97) 0.003
Low-Energy_MLO_logarithm_NGTDM_Contrast* -3.41 0.03 (0.00–0.26) 0.001
Recombined_CC_waveletLH_GLSZM_GrayLevelNonUniformityNormalized* 0.43 1.54 (1.13–2.10) 0.007
Recombined_CC_exponential_GLDM_DependenceVariance 0.59 1.81 (0.98–3.33) 0.059

(B)
Interception -2.78 <0.001
Radiomics score 1.09 2.96 (1.87–4.69) <0.001
Number of positive SLNs 0.31 1.37 (0.43–4.38) 0.600
Ratio of positive SLNs 3.12 22.70 (2.92–176.46) 0.003
LVI 2.48 11.91(2.99–47.47) 0.004
Frontiers in Oncology | www.frontiersin.org 10152
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Features with * need to be multiplied by 100.
CI, confidence interval; SLN, sentinel lymph node; LVI, lymphovascular invasion.
A B

C D

FIGURE 7 | Receiver operating characteristic (ROC) curves of the radiomics score, clinical model, and radiomics model in the (A) training and (B) testing sets. DCA
of the three models in (C) the testing set and (D) the temporal validation set. The y-axis measures the net benefit. The blue line means the radiomics score. The
green line means the clinical model. The red line means the radiomics model. The horizontal black thin line means the assumption that all breast cancer patients were
NSLN-positive. The gray line means the assumption that all patients were NSLN-negative. DCA, decision curve analysis.
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significant differences between the clinical model and radiomics
model (P < 0.001) and between the radiomics score and
radiomics model (P = 0.049) in the training set, but there is no
significant difference between the different models in the testing
and temporal validation set.
Frontiers in Oncology | www.frontiersin.org 11153
Table 4B summarized the prediction performance of different
models, and the radiomics model outperformed the other models
with a prediction accuracy of 79% (95% CI: 0.71–0.86) in the
training set, 75% (95% CI: 0.55–0.88) in the testing set, and 74%
(95% CI: 0.55–0.88) in the temporal validation cohort.
TABLE 4 | Predictive performances of different models.

Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

(A)

Radiomics Score Training set 0.78 (0.69–0.85) 0.87 (0.71–0.95) 0.73 (0.62–0.82) 0.60 (0.46–0.73) 0.92 (0.82–0.97)
Testing set 0.68 (0.49–0.83) 1.00 (0.66–1.00) 0.52 (0.30–0.74) 0.50 (0.28–0.72) 1.00 (0.68–1.00)
Temporal validation cohort 0.71 (0.52–0.86) 0.88 (0.47–0.99) 0.65 (0.43–0.83) 0.47 (0.22–0.73) 0.94 (0.67–1.00)

Clinical Model Training set 0.67 (0.57–0.75) 0.90 (0.74–0.97) 0.56 (0.45–0.67) 0.49 (0.37–0.61) 0.92 (0.80–0.97)
Testing set 0.65 (0.45–0.81) 1.00 (0.66–1.00) 0.48 (0.26–0.70) 0.48 (0.26–0.70) 1.00 (0.66–1.00)
Temporal validation cohort 0.77 (0.59–0.90) 0.88 (0.47–0.99) 0.74 (0.51–0.89) 0.54 (0.26–0.80) 0.94 (0.71–1.00)

Radiomics Model Training set 0.85 (0.77–0.91) 0.89 (0.74–0.97) 0.83 (0.73–0.90) 0.71 (0.56–0.83) 0.94 (0.86–0.98)
Testing set 0.81 (0.63–0.93) 1.00 (0.66–1.00) 0.71 (0.48–0.88) 0.63 (0.36–0.84) 1.00 (0.75–1.00)
Temporal validation cohort 0.74 (0.55–0.88) 1.00 (0.60–1.00) 0.65 (0.43–0.83) 0.50 (0.26–0.74) 1.00 (0.75–1.00)

(B)
Radiomics Score Training set 0.79 (0.71–0.86) 0.96 (0.76–1.00) 0.76 (0.66–0.83) 0.48 (0.33–0.63) 0.99 (0.92–1.00)

Testing set 0.68 (0.49–0.83) 0.89 (0.51–0.99) 0.60 (0.37–0.79) 0.47 (0.24–0.71) 0.93 (0.64–1.00)
Temporal validation cohort 0.61 (0.42–0.78) 1.00 (0.31–1.00) 0.57 (0.37–0.75) 0.20 (0.05–0.49) 1.00 (0.76–1.00)

Clinical Model Training set 0.64 (0.55–0.73) 0.86 (0.64–0.96) 0.59 (0.49–0.69) 0.32 (0.21–0.46) 0.95 (0.85–0.99)
Testing set 0.65 (0.45–0.81) 0.78 (0.40–0.96) 0.59 (0.37–0.79) 0.44 (0.21–0.70) 0.87 (0.58–0.98)
Temporal validation cohort 0.87 (0.70–0.96) 1.00 (0.31–1.00) 0.86 (0.66–0.95) 0.43 (0.12–0.80) 1.00 (0.83–1.00)

Radiomics Model Training set 0.79 (0.71–0.86) 1.00 (0.82–1.00) 0.74 (0.65–0.83) 0.47 (0.32–0.62) 1.00 (0.94–1.00)
Testing set 0.75 (0.55–0.88) 0.88 (0.51–0.99) 0.68 (0.45–0.85) 0.53 (0.27–0.77) 0.94 (0.68–1.00)
Temporal validation cohort 0.74 (0.55–0.88) 1.00 (0.31–1.00) 0.71 (0.51–0.86) 0.27 (0.07–0.61) 1.00 (0.80–1.00)
Ma
y 2022 | Volume 12
CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.
(A) Models for identifying NSLN metastasis. (B) Models for predicting high axillary tumor burden.
TABLE 5 | Spearman rank correlation between selected features and prediction results.

Image Type Position Feature rs P

(A)
Low-energy image CC wavelet-LH_GLCM_IMC1 0.20 0.015

MLO wavelet-HH_Firstorder_Median -0.33 <0.001
MLO logarithm_NGTDM_Contrast -0.24 0.003

Recombined image CC wavelet-LH_GLSZM_GrayLevelNonUniformityNormalized 0.24 0.003
CC exponential_GLDM_DependenceVariance 0.10 0.203

(B)
Low-energy image MLO Wavelet-HH-firstorder-Median -0.23 0.004

MLO Wavelet-HH-firstorder-Skewness 0.18 0.025
MLO wavelet-HH_GLCM_MCC 0.20 0.783
MLO logarithm-NGTDM-Contrast -0.23 0.005

Recombined image CC Original-GLRLM-LongRunLowGrayLevelEmphasis -0.16 0.048
CC Wavelet-LH-GLSZM-GrayLevelNonUniformityNormalized 0.22 0.007
CC wavelet-HH_firstorder_Kurtosis -0.12 0.145
MLO original_firstorder_10Percentile 0.20 0.013
MLO Original-firstorder-Skewness -0.30 <0.001
MLO logarithm_glrlm_ShortRunLowGrayLevelEmphasis -0.22 0.007
MLO logarithm-GLSZM-GrayLevelNonUniformityNormalized 0.15 0.070
MLO logarithm-GLSZM-LargeAreaEmphasis 0.10 0.223
| Article
Informational Measure of Correlation 1 (IMC1): the complexity of the texture by using mutual information.
Median: the median gray-level intensity within the ROI.
Contrast: the measure of spatial intensity change.
GrayLevelNonUniformityNormalized: the variability of gray-level intensity values in the recombined image, with a lower value indicating a greater similarity in intensity values.
DependenceVariance: the variance in dependence size in the image.
The underlined features are not only related with the NSLN metastasis but also associated with axillary tumor burden.
(A) For NSLN metastasis status prediction. (B) For high axillary tumor burden prediction.
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We also explored the Spearman’s rank correlation between 12
radiomics features and axillary tumor burden as shown in
Table 5B. Most of the selected radiomics features have a
strong correlation with patients’ axillary tumor burden. CESM-
based radiomics features can be used as a significant supplement
to non-invasively identify axillary tumor burden in breast cancer,
assisting clinicians in determining the best treatment plan for 1–
2 positive SLN breast cancer patients.
4 DISCUSSION

In this study, we compared the performance of three models,
including the radiomics model, deep learning model, and deep
learning radiomics model, in predicting NSLN metastasis. In
identifying NSLN-negative and NSLN-positive patients before
Frontiers in Oncology | www.frontiersin.org 12154
ALND, the CESM-based radiomics model performed well
with AUC values of 0.85 in the testing set and 0.82 in the
temporal validation cohort, which was better than the other
two models.

Accurately identifying whether a breast cancer patient
with 1–2 positive SLNs has NSLN metastasis without ALND
is important for further treatment and reducing the pain of
patients (47). Zheng et al. (14) reviewed 119 breast cancer
patients, analyzed the clinical predictive factors, including
the invasive tumor size, histological grade, LVI, and
overexpression of HER-2, for predicting NSLN metastasis
in breast cancer patients with 1–2 positive SLNs, and
developed a logistic regression model, yielding the best
AUC of 0.71. In this study, the prediction accuracy can be
improved by adding the radiomics features into the
prediction model.
A

B
C
C

FIGURE 8 | (A) Radiomics nomogram to predict the probability of high axillary tumor burden. ROC curves of the clinical model and radiomics model in the
(B) training and (C) testing sets. ROC, receiver operating characteristic.
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We also proposed a radiomics model to predict the probability
of high axillary tumor burden, which outperformed the radiomics
score and clinical model (AUC of 0.82 and 0.76 and 0.67 in the
testing set, respectively). In the temporal validation cohort, the
radiomics model also demonstrated the AUC value of 0.77 for
predicting the probability of high axillary tumor burden. Previous
studies took advantage of axillary ultrasound to identify axillary
metastasis preoperatively for breast cancer patients (10, 48).
However, axillary ultrasound does not accurately differentiate
between low and high axillary tumor burden (49). As shown in
our results, the CESM-based radiomics model may achieve good
axillary tumor burden prediction, guiding individual treatment and
the evaluation of clinical curative effect.

CESM is a new and reliable imaging technique. The
recombined images in CESM obtained through subtracting
high-energy from low-energy images emphasize breast areas
with greater angiogenesis (22). The enhanced lesion in the
recombined image can provide more detailed information, if
the low-energy images did not show any suspicious lesions,
playing a key role in supplementary screening (50). This new
technique also shows the potential in identifying axillary lymph
node metastases of occult breast cancer (51).

Deep learning has shown superior classification accuracy.
However, it requires a huge amount of data for network
training. Due to the lack of training data, many medical
image-related tasks have applied transfer learning to
improve classification performance (39). Guo et al. (52)
used ultrasound images and a fine-tuned deep learning
radiomics model to identify the risk of NSLN involvement
in primary breast cancer, implying the promising potential of
the deep learning radiomics model in assessing the risk of
ALN metastasis. We also used the pretrained ResNet-18
to extract CESM image features. However, the overall
performance of the deep learning model declined in the
testing set due to overfitting. The combination of deep
learning features with radiomics features and clinical risk
factors did not improve the prediction accuracy. On the
other hand, radiomics aims to extract as many quantitative
features as possible from medical images. The radiomics
model combining predefined radiomics features with other
clinical data has the potential to increase prediction accuracy
(24, 41).

To decrease the man-made factor, the U-Net architecture was
used for accomplishing automatic breast tumor segmentation.
The mean Dice score of automatic segmentation results in the
testing set is 0.84, and the segmentation results are close to the
manual segmentation of the radiologists. However, the
segmentation accuracy is not good enough. The increasing
number of CESM images in the training set or developing
more robust segmentation algorithms will further improve the
accuracy of breast tumor segmentation.

Our retrospective and single-institutional study still had
several limitations. First, as the patients in this study were
enrolled from a single institution and the patient inclusion
criteria were rigorous, the few data limited the performance
of the deep learning model in predicting NSLN metastasis.
Frontiers in Oncology | www.frontiersin.org 13155
More images and fine-tuning pretrained deep learning
networks might improve the predictive performance.
Furthermore, other machine learning methods, such as
support vector machine and CNN, were not compared with
our model because of the training overfitting of these models
caused by few data. Future studies should include a highly
standardized, large, balanced, and multicenter dataset across
patients and institutions. Moreover, the combination with
multimodality medical images such as multiparametric
breast MRI might further improve the predictive accuracy.
The biological meaning of selected radiomics features is yet
to be clarified, which might limit the clinical value of the
proposed prediction models.

1. https://github.com/54rabbits/CESM_Radiomics_Model.git
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Purpose: Sclerosing adenosis (SA) is a benign lesion that could mimic breast carcinoma
and be evaluated as malignancy by Breast Imaging-Reporting and Data System (BI-
RADS) analysis. We aimed to construct and validate the performance of radiomic model
based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
compared to BI-RADS analysis to identify SA.

Methods: Sixty-seven patients with invasive ductal carcinoma (IDC) and 58 patients with
SA were included in this retrospective study from two institutions. The 125 patients were
divided into a training cohort (n= 88) from institution I and a validation cohort from
institution II (n=37). Dynamic contrast-enhanced sequences including one pre-contrast
and five dynamic post-contrast series were obtained for all cases with different 3T
scanners. Single-phase enhancement, multi-phase enhancement, and dynamic
radiomic features were extracted from DCE-MRI. The least absolute shrinkage and
selection operator (LASSO) logistic regression and cross-validation was performed to
build the radscore of each single-phase enhancement and the final model combined
multi-phase and dynamic radiomic features. The diagnostic performance of radiomics
was evaluated by receiver operating characteristic (ROC) analysis and compared to the
performance of BI-RADS analysis. The classification performance was tested using
external validation.

Results: In the training cohort, the AUCs of BI-RADS analysis were 0.71 (95%CI [0.60,
0.80]), 0.78 (95%CI [0.67, 0.86]), and 0.80 (95%CI [0.70, 0.88]), respectively. In single-
phase analysis, the second enhanced phase radiomic signature achieved the highest
AUC of 0.88 (95%CI [0.79, 0.94]) in distinguishing SA from IDC. Nine multi-phase radiomic
features and two dynamic radiomic features showed the best predictive ability for final
model building. The final model improved the AUC to 0.92 (95%CI [0.84, 0.97]), and
showed statistically significant differences with BI-RADS analysis (p<0.05 for all). In the
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validation cohort, the AUC of the final model was 0.90 (95%CI [0.75, 0.97]), which was
higher than all BI-RADS analyses and showed statistically significant differences with one
of the BI-RADS analysis observers (p = 0.03).

Conclusions: Radiomics based on DCE-MRI could show better diagnostic performance
compared to BI-RADS analysis in differentiating SA from IDC, which may contribute to
clinical diagnosis and treatment.
Keywords: sclerosing adenosis, breast carcinoma, magnetic resonance imaging, radiomics, differential diagnosis
1 INTRODUCTION

Sclerosing adenosis (SA) is a common but poorly understood
benign proliferative breast disease, which can mimic invasive
carcinoma in both clinical palpation and imaging findings (1–4).
It’s difficult to guide the formulation of clinical treatment
strategies because SA and invasive carcinoma undergo different
clinical treatments (1). The histopathologic examination may be
necessary for a definite diagnosis of this condition. However,
both biopsy and surgery are invasive and may lead to a series of
complications, such as pain, infection, bleeding, local necrosis,
psychological stress, etc. (5–8). Meanwhile, misdiagnosis may
occur due to sampling errors in some biopsy cases. Accordingly,
a preoperative, noninvasive, and clear approach to differentiate
SA from invasive carcinoma is necessary and crucial to improve
benefits for clinical management.

Previous studies have described the various radiological
characteristics of SA (3, 4, 9, 10). SA may present mainly clustered
microcalcifications, asymmetric focal density, or focal architectural
distortion on mammography (3, 11). SA lesions can be detected as
microlobulated, angulated, or spiculated mass on ultrasonography (4,
12). On magnetic resonance imaging (MRI), SA can be seen as an
oval or irregular mass showing rapid early enhancement and delayed
persistent or washout kinetics (3, 9, 13). The Breast Imaging-
Reporting and Data System (BI-RADS) lexicon of the American
College of Radiologists (ACR) was used to assess the risk of
malignancy of breast lesions for further management (14). Due to
the multiple and atypical imaging features, SA and invasive
carcinoma could be classified into the same BI-RADS category,
such as category 4, and even category 5. The area under the curve
(AUC) of ultrasonography and mammography distinguishing
between benign and malignant lesions was 0.55 and 0.50,
respectively, by BI-RADS analysis as reported (15). It’s challenging
for radiologists to accurately differentiate SA from invasive carcinoma
through conventional imaging evaluation. Liang et al. (16) revealed
that an ultrasound-based nomogram could be used as a supplement
to distinguish malignant tumors from SA for precise biopsies. But
their feature estimation relied on a subjective analysis with inevitable
bias. It’s necessary to evaluate the differentiation by more objective
parameters (3, 4, 17).

Recently, radiomics has shown promise in reflecting the
relationships between radiological and pathological features
more objectively through machine learning and statistical
analysis methods. MRI-based radiomics has been widely
studied and a number of studies have proven the ability of the
2159
classification and prognosis of breast carcinoma (18, 19).
Whereas, the role of radiomics in differentiating SA from
breast carcinoma is unclear. Furthermore, previous literature
mainly focused on different single-static phases of enhanced
images, and the consistency was controversial (19–23). The
development of lesions was a dynamic process that cannot be
fully reflected by single static characteristics. Multi-phase
enhanced and dynamic radiomics has gained increasing
attention and the roles remain to be further revealed (22, 24–26).

In this study, we hypothesized that radiomic analysis might
identify the associations between the quantitative imaging features
and the lesion pathophysiology. This study aims to establish a
radiomic model that combined multi-phase enhancement and
dynamic features on dynamic contrast‐enhanced magnetic
resonance imaging (DCE-MRI) to evaluate their capacity in
differentiating SA from breast carcinoma and to compare it with
BI-RADS analysis. External validation was performed to assess the
preoperative discrimination of the proposed model.
2 MATERIALS AND METHODS

This retrospective study was approved by the Medical Ethics
Committee of our institutions and the requirement for informed
consent was waived. The workflow of the study is summarized
in Figure 1.

2.1 Patient
Patients who underwent DCE-MRI examination between January
2015 and December 2019 were retrospectively collected in two
institutions. The inclusion criteria for the study were as follows:
(1) Patients were pathologically confirmed SA or invasive ductal
carcinoma (IDC). (2) Patients received breast MRI examination
within 2weeks before surgery. (3) MRI scans were available for
qualitative and radiomic analysis. (4) The boundary of the lesions was
well-defined on MRI. (5) No previous chemotherapy or radiation
therapy. (6) No biopsy or surgery before MRI examination.

2.2 Magnetic Resonance
Imaging Protocols
MRI examination was performed with different scanners in two
institutions (institution I: Magneton Verio, Siemens AG, 3T,
Germany; institution II: Ingenia, Philips Healthcare, 3T, China).
They applied the same protocol for dynamic contrast
enhancement including one pre-contrast and five dynamic
May 2022 | Volume 12 | Article 888141
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post-contrast series with fat-saturated T1-weighted dynamic
sequences. Contrast material was injected into the elbow vein
(0.1 mmol/kg of gadodiamide) and followed by a 20 mL saline
flush at a rate of 2.0 mL/s. Contrast-enhanced images were
acquired at 1, 2, 3, 4, and 5 minutes after contrast injection.
The scanning parameters of the two institutions were as follows:
(1) Institution I: TR 4.51, TE 1.61, flip angle 10°, slice thickness
1.0 mm, FOV 320× 320, image matrix 420 × 420; (2) Institution
II: TR 4.2, TE 2.1, flip angle 12°, slice thickness 1.0 mm, FOV
339× 339, image matrix 407 × 407.

2.3 BI-RADS Analysis
According to the 5th edition ACR BI-RADS lexicon (14) on the
standard protocol, MRI data were independently evaluated by
three radiologists: Observer 1 (O1) with 9 years of experience,
Observer 2 (O2) with 10 years of experience, and Observer 3
(O3) with 14 years of experience. The three radiologists were
blinded to the clinical data and the pathological results. To assess
the diagnostic accuracy of BI-RADS analysis, BI-RADS category
3 was considered as probably benign, and BI-RADS categories 4
and 5 were considered suspicious or highly suggestive of
malignancy. The diagnostic performance of the three observers
was analyzed.
Frontiers in Oncology | www.frontiersin.org 3160
2.4 Radiomic Analysis
2.4.1 Image Processing and Tumor Segmentation
The original contrast-enhanced MRI images of enrolled patients
were exported in Digital Imaging and Communication in
Medicine (DICOM) format from the two institutions. MRI
signal intensity standardization and gray-level quantization
were applied to reduce the gray-level differences caused by the
imaging procedure before delineation.

Two radiologists, Observer 4 (O4) with 4 years of experience
and Observer 5 (O5) with 11 years of experience, who were
blinded to the clinical data and pathological results, evaluated the
contrast-enhanced MRI images using ITK-SNAP (Version 3.6)
software for 3D manual segmentation. The volumes of interest
(VOIs) were delineated along the inner margin of the tumor on
each slice of the five enhanced phases images by the two
observers, respectively. All pixels’ gray scales inside the VOIs
were extracted for analysis.

2.4.2 Feature Extraction and Selection
For each VOI, 396 radiomic features were extracted using the
A.K. (Artificial Intelligent Kit, A.K., Version 3.2.2., GE
Healthcare) software. The radiomic features were composed of
six categories of parameters and classed as follows: Histogram
A

B

FIGURE 1 | Workflow of the study. (A) An overview workflow of the present study. (B) The process of radiomics analysis was mainly composed of four parts:
images acquisition, tumor segmentation, feature extraction and selection, model building and validation.
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features (n=42), texture features (n=10), gray level co-occurrence
matrix (GLCM, n=144), gray level run length matrix (GLRLM,
n=180), gray level size zone matrix (GLSZM, n=11), and
morphological features (n=9). Five enhanced phases resulted in
a total of 1980 features of each case for multi-phase analysis.

The interobserver agreement was assessed with the intraclass
correlation coefficient (ICC) to evaluate the reliability and
reproducibility. Features with ICCs higher than 0.75 were
considered reliable and selected. A Spearman correlation
analysis was performed to identify the highly correlated
features. Features with a mean absolute correlation higher than
0.9 were considered redundant and eliminated. Then maximum
relevance and minimum redundancy (mRMR) (27) were
performed to eliminate the redundant and irrelevant features
by the R package glmnet (version 3.3.2).

We defined the changes of radiomic features between each
enhancement phase (Phasex + 1 – Phasex, for instance, Phase2-
Phase1) as the dynamic radiomic features, which was consistent
with the dynamic radiomic study in previous literature (25). The
multi-phase enhancement features selected by mRMR were used
to assess the dynamic radiomic analysis.

2.4.3 Model Building and External Validation
The least absolute shrinkage and selection operator (LASSO)
regression using 10-fold cross-validation was adopted to choose
the optimized subset of features (28). We used the LASSO
regression to build radiomic signatures based on each single-
phase enhancement and a final model by combining multi-phase
enhancement features and dynamic radiomic features. Features
with non-zero coefficients were selected from the optimal
features and were combined linearly to construct a
radscore model.

2.5 Statistical Analysis
Statistical analysis was conducted by R software (version 3.5.1)
and MedCalc (version 19.1). Statistical group comparisons of
data were analyzed by A chi-square test or Fisher’s exact test
(normal variables) and Mann-Whitney U test (continuous
variables). P < 0.05 was considered statistically significant. The
agreement between two radiologists was evaluated using
interclass correlation coefficient (ICC) analysis, which was
defined as good consistency between 0.75 and 1.00, fair
consistency between 0.40 and 0.75, and poor consistency under
0.40. The correlation and collinearity of radiomic features were
evaluated using the variance inflation factor (VIF) function. The
radiomic models were tested using an independent testing set.
The classification performance of BI-RADS analysis and
Frontiers in Oncology | www.frontiersin.org 4161
radiomic analysis were respectively subjected to ROC analysis,
by using sensitivity, specificity, and area under the ROC curve
(AUC) to evaluate the classification efficacy. The comparison of
ROC curves was performed by Delong’s test.
3 RESULTS

3.1 Patients Characteristics
A total of 125 lesions from 125 patients (age range: 24-81 years;
mean age: 49.97 ± 11.85 years) were recruited. The training
cohort was comprised of patients from institution I (n =88). The
external validation cohort was comprised of patients from
institution II (n = 37). The pathological distribution was IDC
in 47 patients, SA in 41 patients of institution I, and IDC in 20
patients, SA in 17 patients of institution II.

3.2 BI-RADS Analysis
The AUC values of the three observers (O1, O2, and O3) were
0.71 (95%CI [0.60, 0.80] p<0.001), 0.78 (95%CI [0.67, 0.86]
p<0.001), and 0.80 (95%CI [0.70, 0.88) p<0.001] in the training
cohort, respectively (Table 1; Figure 2). There were statistically
significant differences between O1 and O2, O3 (O1 vs O2, p =
0.001; O1 vs O3, p < 0.001), and there was no statistically
significant difference between O2 and O3 (p=0.116). In the
validation cohort, the AUC values of the three observers were
0.68 (95%CI [0.50, 0.82] p = 0.042), 0.77 (95%CI [0.61, 0.89] p <
0.001) and 0.77 (95%CI [0.61, 0.89] p < 0.001), respectively
(Table 1; Figure 2). There were statistically significant
differences between O1 and O2, O3 (O1 vs O2, p < 0.001; O1
vs O3, p < 0.001), and there was no statistically significant
difference between O2 and O3 (p = 0. 94).

3.3 Radiomic Analysis
Based on the result of reproducibility analysis by two radiologists
(O4, O5), 1794 out of 1980 (90.6%) radiomic features had good
consistency (ICC ≥ 0.75). The numbers of features with fair
consistency (0.75 > ICC ≥ 0.40) and poor consistency (ICC <0.4)
were 99 (5.0%) and 87 (4.4%), respectively. Features with an ICC ≥
0.75 were considered robust and were maintained for further
processing. We randomly selected one of the groups of data for
radiomic analysis on account of the good level of consistency. Then,
mRMR was applied to eliminate the redundant and irrelevant
features. In this study, only 20 features were retained by mRMR.
The LASSO classifier was used to select the optimal radiomic feature
subset to build a radscore.
TABLE 1 | Performance of the three observers of BI-RADS analysis.

Observer Training cohort Validation cohort

SEN SPEC AUC (95%CI) p value SEN SPEC AUC (95%CI) p value

O1 0.89 0.44 0.71 (0.60-0.80) <0.001 0.50 0.77 0.68 (0.50-0.82) 0.042
O2 0.92 0.49 0.78 (0.67-0.86) <0.001 0.85 0.59 0.77 (0.61~0.89) 0.001
O3 0.94 0.51 0.80 (0.70-0.88) <0.001 0.90 0.53 0.77 (0.61-0.89) 0.001
May
 2022 | Volume 12 | Article
O1, 2, 3 BI-RADS analysis of Observer 1, 2, 3; AUC, area under the ROC curve; SEN, sensitivity; SPEC, specificity.
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In the training cohort, the AUCs ranged from 0.81 to 0.88 for
the five single phase enhancement of radiomic analysis, in which
DCE-phase2 obtained the best performance with an AUC of 0.88
(95% CI [0.79, 0.94] p<0.001) (Table 2; Figure 3).

A total of 11 optimal features, nine from the multi-phase
enhancement (one was from DCE-phase1, six were from DCE-
phase2 and two were from DCE-phase3), and two from dynamic
radiomic features, showed the best predictive ability for final
model building with AUC value of 0.92 (95%CI [0.84, 0.97] p <
0.001) (Table 2). There was no collinearity among the 11 features
after verification by the VIF function. Details of the correlation
between the 11 optimal features and radscore formula are
described in Supplementary materials.

The diagnostic performance of the single-phase enhancement
and the final model of radiomics was validated using external
validation data collected from institution II, with the AUCs
ranged from 0.81 to 0.86 for the five single-phase enhancement
of radiomic analysis. And the DCE-phase2 obtained the highest
AUC value of 0.86 (95%CI [0.71, 0.95] p < 0.001). The final
model displayed AUC of 0.90 (95%CI [0.75, 0.97] p < 0.001).

There were statistically significant differences in the radscore
values for both the training cohort and validation cohort of SA
and IDC (Figure 4).

3.4 Comparative Analysis
AUC of the final model was higher in differentiating SA from
IDC compared to both BI-RADS analysis and single-phase
Frontiers in Oncology | www.frontiersin.org 5162
enhancement in both training and validation cohorts, and all
three observers of BI-RADS analysis showed statistically
significant differences with the final model in the training
(p<0.05 for all) (Figure 2). In the validation cohort, the final
model showed a statistically significant difference with O1 of the
BI-RADS analysis observers (p = 0.03). Details of the comparison
of BI-RADS analysis and the final model of radiomics are
described in Supplementary materials.

Figure 5 shows two cases with SA and IDC, respectively, and
indicates that the final model of radiomics can differentiate SA
from IDC when the lesions present similar MRI findings.
4 DISCUSSION

Our study established and validated a final model which
incorporated multi-phase enhancement and dynamic radiomic
features on DCE-MRI for differentiation between SA and IDC.
The final model showed better diagnostic efficacy than either the
BI-RADS analysis or radiomic analysis of single-phase alone,
which indicated the superiority of the multi-phase enhanced
scanning and kinetic parameters in the disease identification.

SA is a benign but complex lesion characterized
pathologically with the proliferation of the epithelial,
myoepithelial, and basement membrane (5, 17). SA can form
adenosis tumors and may be confused with invasive carcinoma
because of an irregular pattern with involvement of the adipose
TABLE 2 | Performance of single phase enhancement and the final model of radiomics analysis.

Model Training cohort Validation cohort

SEN SPEC AUC (95%CI) p value SEN SPEC AUC (95%CI) p value

DCE-p1 0.62 0.95 0.83 (0.74-0.91) <0.001 0.75 0.82 0.81 (0.65-0.92) <0.001
DCE-p2 0.81 0.88 0.88 (0.79-0.94) <0.001 0.95 0.65 0.86 (0.71-0.95) <0.001
DCE-p3 0.79 0.85 0.86 (0.77-0.92) <0.001 0.90 0.76 0.83 (0.68-0.94) <0.001
DCE-p4 0.64 0.90 0.83 (0.73-0.90) <0.001 0.70 0.88 0.82 (0.66-0.93) <0.001
DCE-p5 0.68 0.83 0.81 (0.71-0.88) <0.001 0.80 0.77 0.81 (0.65~0.92) <0.001
Final model 0.87 0.88 0.92 (0.84-0.97) <0.001 0.85 0.82 0.90 (0.75-0.97) <0.001
May
 2022 | Volume 12 | Article
DCE-p dynamic contrast enhanced phase.
A B

FIGURE 2 | Comparison of BI-RADS analysis and radiomics. ROC curves of BI-RADS analysis and the final model of radiomics on training cohort (A) and external
validation cohort (B).
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tissue, fibromammary tissue, and pseudo perineural invasion on
routine hematoxylin-eosin staining. Immunohistochemistry of
the myoepithelium is requisite for a definite diagnosis of this
condition. A previous study described MRI features of SA of the
breast with correlation to the pathology and showed that SA
component was associated with masses with indeterminate or
suspicious kinetics (13). These may be the plausible reasons why
SA could mimic invasive carcinoma on clinical and imaging
presentation. Although research has reported that SA may
convey an approximate doubling of breast cancer risk as a
single feature, the presence of sclerosing adenosis alone in a
core biopsy does not require surgical excision (29, 30). Close
clinical follow-up or routine imaging is recommended (1, 7, 31).
Accurately distinguishing SA from invasive carcinoma via a non-
invasive, preoperative method is crucial to help avoid
unnecessary biopsy and surgery for both patients and clinicians.

The studies of differentiating SA from invasive carcinoma on
MRI were scarce. The BI-RADS atlas provided standardized
imaging terminology to assess the risk of malignancy while the
imaging evaluation was based on subjective observation by the
naked eye. Liu et al. (4) found that the BI-RADS atlas could be a
powerful tool in demonstrating the SA lesion, and in
Frontiers in Oncology | www.frontiersin.org 6163
differentiating SA from IDC lesions on ultrasonography.
Nevertheless, it’s regrettable that the study didn’t indicate the
diagnostic efficacy and there was no assessment of inter-group
consistency. Liang et al. (16) developed an ultrasound-based
nomogram for distinguishing malignant tumors from nodular
SA and demonstrated that the nomogram could build a precise
sequence of biopsies when multiple nodular SA and malignant
masses were classified into the same BI-RADS category. Both of
the above studies were estimated by relying on a subjective
analysis with inevitable bias.

In our study, the AUCs of three observers ranged from 0.68 to
0.80 and the diagnostic capacity of BI-RADS analysis based on
experiences showed inconsistency. There were statistical
differences between observers with varying experiences (O1 vs
O2, O1 vs O3, p < 0.01), indicating that conventional image
evaluation might be influenced by subjective experience.
Compared with the BI-RADS analysis based on qualitative
assessment, the advantage of the fully quantitative radiomic
analysis is reflected in the consistency between observers of
different experiences. 90.6% of radiomic features had good
consistency (ICC ≥ 0.75) despite significant differences in
experience between the two radiologists who performed
radiomic analysis. Even junior physicians can accurately
delineate tumors on MR images, and distinguish SA from
invasive carcinoma preliminarily by radiomic analysis. Texture
parameters, GLCM parameters, and GLRLM parameters
contributed to the final model construction, which indicated
that the heterogeneity of lesions was more sensitive in
differentiation. Radiomic features represented underlying
histologic characteristics that could not be acquired by the
observer’s naked eye. In addition, our study also showed the
final radiomic model was superior to BI-RADS analysis.

Dynamic contrast-enhanced scans have been widely used in
breast radiomic studies, however, extracting post-contrast
images at which time points was controversial (19). Ahmed
et al. (32) found that texture features showed differences among
different phases after enhancement. Significant differences were
mainly seen at 1-3 minutes post-contrast administration.
Karahaliou et al. (24) and Fan et al. (22) analyzed the images
A B

FIGURE 4 | The box plot of the radscore in the final model. Mann-whitney analysis of radscore for distinguishing SA from IDC in the training cohort (A)
and validation cohort (B) (p < 0.01).
A B

FIGURE 3 | Comparison of single phase enhancement and the final model of
radiomics. ROC curves of single phase enhancement and the final model on
training cohort (A) and external validation cohort (B).
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of two phases after enhancement and showed different results.
The contrast enhancement performance was related to the
abnormal tumor angiogenesis. These malignant lesion vessels
tend to be large, leaky, and typically showed intense
enhancement with rapid uptake and washout of contrast, while
benign lesions and normal tissues were slower and less intense
enhancement (33). Thus, the intensity of lesion enhancement on
MRI at post-contrast 2 min was considered the most critical in
conventional image assessment (33, 34). In our study, DCE-
phase2 presented the best diagnostic performance among single-
phase enhancement analyses, which was consistent with the
previous study.

DCE-MRI can provide tumor kinetic characteristics by
generating pharmacokinetic maps of contrast agents. Previous
research had shown that kinetic characteristics improved the
diagnostic performance of enhancement sequences (23, 35–37).
Jiang et al. (23) and Chai et al. (37) both showed the diagnostic
performance of the combination of kinetic and radiomic
features was superior to radiomic features alone, but the two
studies did not perform external validation to confirm the
generalization under different scanners. In addition, Chai
Frontiers in Oncology | www.frontiersin.org 7164
et al. (37) only analyzed the single-layer image of lesions.
Previously we established and validated a nomogram model
combined radiomics and kinetic curve pattern to detect
metastatic axillary lymph nodes in patients with invasive
breast cancer, which showed a better performance than the
radiomic model or the kinetic curve pattern alone (38).
However, the kinetic curve pattern was evaluated by naked
eyes in routine assessment, which caused inevitably
inconsistency due to subjectivity. To a certain extent,
different scanning protocols may affect the pattern of the
kinetic curve. Consequently, we improved it by conducting
quantitative analysis on the kinetic changes between adjacent
phases and the AUC of the final model reached 0.90 with the
dynamic radiomic features.

There were some limitations in the current study that still
need to be further investigated: (1) This study was a retrospective
analysis, and the number of SA cases was limited. (2) No
comparison or combination with DWI analysis was performed
in this study. (3) The efficacy of clinical factors was not evaluated.
(4) In the dynamic radiomic analysis, we only calculated the
primary kinetic change of the two adjacent phases. More time-
A B

DC

FIGURE 5 | MRI and histopathologic findings of two cases of SA and IDC. (A, B) MRI and histopathologic findings of a 47-year-old woman with SA. The DCE-MRI
image showed an irregularly shaped mass with spiculated margin and heterogeneously enhancement (A). The lesion was classified as malignant by BI-RADS
analysis and benign by radiomic analysis. Histopathological examination proves SA (Hematoxylin-eosin staining; original magnification×100) (B). (C, D) MRI and
histopathologic findings of a 66-year-old woman with IDC. The DCE-MRI image showed an irregularly shaped mass with lobulated margin and heterogeneously
enhancement (C). The lesion was classified as malignant by both BI-RADS analysis and radiomic analysis. The histopathologic result was IDC (Hematoxylin-eosin
staining, original magnification×100) (D).
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related features with a large sample are expected to verify the
conclusions in further studies.
5 CONCLUSION

Our study showed that a final model integrated multi-phase
enhancement and dynamic radiomic features extracted from
DCE-MRI could show better diagnostic performance compared
to BI-RADS analysis in distinguishing SA from IDC. Radiomics
based on DCE-MRI might help clinicians to make more
appropriate management for each patient.
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Breast cancer is one of the diseases with the highest incidence and mortality among
women in the world, which has posed a serious threat to women’s health. The
appearance of clustered calcifications is one of the important signs of breast cancer,
and thus how to classify clustered calcifications comes to be a key breakthrough in
controlling breast cancer. In this study, the discriminant model based on image
convolution is used to learn the image features related to the classification of clustered
microcalcifications, and the graph convolutional network (GCN) based on topological
graph is used to learn the spatial distribution characteristics of clustered
microcalcifications. These two models are fused to obtain a complementary model of
image information and spatial information. The results show that the performance of the
fusion model proposed in this paper is obviously superior to that of the two classification
models in the classification of clustered microcalcification.

Keywords: breast cancer, microcalcification, graph convolut ional network, computer-aided
diagnosis, classification
INTRODUCTION

Breast cancer is one of the diseases with the highest incidence and mortality among women in the
world. According to the statistics of the World Health Organization, in 2020, there were 2.3 million
new cases of breast cancer among women worldwide, and about 685,000 women died of breast
cancer, accounting for 15.5% of all female deaths from malignant tumor (1). However, there is still a
lack of detailed scientific understanding of the causes and mechanisms of breast cancer, and thus it
is particularly difficult to prevent breast cancer (2). Therefore, early diagnosis and early treatment
are particularly important for women with breast cancer. At present, as a relatively low-dose, safe,
and low-cost means of image detection, all-digital mammography has become one of the best
methods for routine clinical examination and preventive screening of breast cancer (3, 4).

The appearance of clustered calcifications is one of the important signs of breast cancer (5), and
the high correlation between clustered calcifications and breast cancer has also attracted extensive
May 2022 | Volume 12 | Article 8716621167
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attention in medical communities and academic circles. How to
classify clustered calcifications comes to be an important
breakthrough in controlling breast cancer.

In evaluating the possibility of malignant calcifications, the
morphology and distribution of microcalcifications are equally
important. The morphology of calcifications in breast cancer is
an important factor to determine whether the calcifications are
benign or malignant. Generally, according to the morphology,
calcifications can be divided into being benign calcifications,
intermediate concern calcifications, and calcifications with a
higher probability of malignancy (6). The spatial distribution
of microcalcifications in breast cancer is another important
factor to distinguish between benign calcifications and
malignant ones. The linear and segmental distributions are
usually closely related to malignant calcifications, the diffused
and regional distribution usually indicates benign calcifications,
and the clustered distribution predicts intermediate concern
calcifications (7). However, this classification is only a rough
estimate based on experience, and the specific diagnosis still
depends on needle biopsy.

In the research on the classification of clustered
microcalcifications in mammography, most of the previous
methods manually extract features of microcalcifications, then
screen the features, and finally classify them by constructing
a classifier.

Feature extraction and screening are the key to automatic
classification of clustered microcalcification. Soltanian et al. (8)
selected 15 characteristics in the cluster, including the number of
microcalcifications, the maximum size of microcalcifications, the
standard deviation of the size of calcifications, the number of
calcifications with the size of 1 pixel, the total area of the
microcalcifications, the average compactness, the maximum
compactness (the ratio of the square of the perimeter to the area),
the maximum moment representing the roughness of
microcalcifications, the average roughness, the approximate circle
radius, the scattering of the microcalcifications, the average gray
level of the microcalcifications, the standard deviation of the mean
of gray levels of microcalcifications, the maximum standard
deviation of the gray levels of the calcifications, and the average
standard deviation of the gray levels of the calcifications. Then, they
trained the classifier to classify clustered calcifications as benign or
malignant calcifications. Veldkamp et al. (9) used 16 features to
classify microcalcifications, which can be split into two types,
distribution features and morphologic features. These features
comprise the distribution features of individual microcalcification
in the cluster, themorphology of the cluster, and the position feature
of the cluster. In mammography, the distribution features include
the number of calcifications in the cluster, as well as the mean and
standard deviation of pixels, direction, contrast, eccentricity, and
compactness of microcalcifications. Moreover, the morphologic
features of microcalcification clusters contain the area, the
eccentricity, and the orientation of calcification clusters.
Furthermore, the position features of clustered calcifications
mainly refer to the relative distance between clustered
calcifications and pectoralis major as well as the relative distance
between clustered calcifications and the breast margin.
Frontiers in Oncology | www.frontiersin.org 2168
At the same time, the classifier plays an important role
in the computer-aided diagnosis of microcalcifications in
mammography. The classifier is trained by using these
extracted features or a screened subset of features, so as to
classi fy microcalcifications as benign or malignant
microcalcifications. Lee et al. (10) used the artificial neural
network based on shape recognition, which has a general
shape feature layer and can extract general rules by learning
from examples. The evaluation of the system by Nijmegen
mammography database shows that its sensitivity and
specificity can reach 86.1% and 74.1%, respectively. Ferreira
et al. (11) designed a nearest neighbor classifier, which used
Euclidean distance as the metric between the corresponding
wavelet coefficients to verify the classification. Veldkamp et al.
(9) used the classification method of clustered calcifications
based on k-Nearest Neighbor (KNN), which firstly assigned a
benign or malignant probability value to each clustered
calcification and then averaged the probability values of
clustered calcification in Cranio Caudial (CC) view and
mediolateral oblique (MLO) view of patients as the final
benign or malignant predictive value.

However, all of these methods have two common defects. On
the one hand, it is necessary to manually predefine the lesion area
of clustered microcalcifications, so as to characterize features and
extract the features of microcalcifications and clusters. This
process is cumbersome, and its labor cost is high. On the other
hand, the feature space constructed by traditional methods often
needs to extract the morphologic features of microcalcifications.
However, because of weak signals and noise, the features of
microcalcifications are difficult to exact, including morphological
features and texture features. Hence, it is a challenging task to
study how to build an effective and robust classification model.

Deep convolutional neural network has been widely used in
image classification, image recognition, natural language processing,
and other fields and has attracted the attention of academic circles
in recent years (12–14). The main advantage of deep learning
method used for classification of microcalcifications in breast cancer
lies in that it can directly learn features and patterns related to
benign or malignant classification from a large number of
microcalcifications data through supervised learning, without
manually constructing and screening corresponding classification
features for microcalcifications (15).

Inspired by the clinical diagnosis mechanism, this study also
sets out from the morphology and distr ibution of
microcalcifications and constructs a model to distinguish benign
microcalcifications frommalignant ones. Firstly, with regard to the
morphologic features of microcalcifications, this study uses the
deep convolutional neural network to extract hidden layer features
related to classification in images. For the spatial distribution
features of microcalcifications, the artificially constructed features
mainly include the number of calcifications in the cluster, the
mean and standard deviation of pixel direction, contrast,
eccentricity and compactness of microcalcifications, and so on,
which are difficult to extract by general convolutional neural
network. In order to solve this problem, this study constructs a
topological graph model and uses the graph convolutional neural
May 2022 | Volume 12 | Article 871662
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network to learn the spatial distribution features of
microcalcifications in the breast. Then, the above two models are
fused through the modal fusion and voting strategy, and finally the
benign or malignant predictive value of the whole input image is
the output.
MATERIALS AND METHODS

Data Set
The data set of this study is from Sun Yat-sen University Affiliated
Hospital, which contains the data of 197 cases (394 two-
dimensional mammograms). The approval of the institutional
review board (IRB) had been obtained before the data set was
collected. The acquisition equipment is Mammo-Novation
Siemens imaging equipment and solid-state detector of
amorphous selenium with a pixel space size of 70 mm/pixel and
a resolution of 2,560 × 3,328 pixels or 3,328 × 4,084 pixels. All
cases included two kinds of mammograms, namely, axial view and
MLO view. The results of all cases are confirmed by biopsy and
hence can be used to evaluate the effectiveness of the diagnostic
system proposed. An experienced radiologist marked a rectangular
lesion area of clustered microcalcifications and the corresponding
results of biopsy (Figure 1). Then, the labels were confirmed and
revised by another experienced radiologist as the gold standard of
the final experiment. The data used in this study are selected cases
that only contain microcalcifications; that is, they do not contain
lumps, structural distortion, and other diseases. Therefore, the
benign or malignant results obtained by needle biopsy can only
reflect whether microcalcifications are benign or malignant, so the
gold standard meets the requirements without ambiguity.

Methods
Discriminant Model Based on Spatial Convolution
Network
In the classification task of benign or malignant clustered
microcalcifications, the regions of interest are irregular with
different sizes. The large one may occupy the whole or half of
the breast, while the small one may only spread in the area with a
diameter of a dozen pixels. Therefore, it is not realistic to use a
unified and large frame to capture the lesion area and input it
into the network training. Especially for small lesions, too large a
frame may cause the lesion area to occupy only a small part of the
captured image. However, it is not appropriate to use image
scaling because the microcalcifications in the image are so small
that their area is only a dozen pixels. With image scaling, a large
amount of microcalcification lesion information may be lost.

In order to solve this problem, this study adopts the strategy of
splitting the large cluster using clustering algorithms. We adopted
a density-based spatial clustering of applications with noise
algorithm (11) (see Figure 2). By adjusting the cluster radius,
the cluster is prevented from forming too large clusters, so that the
originally large clusters will be split into several subclusters with
appropriate sizes. In this circumstance, the researcher can take
these subclusters as the center, use a frame with a uniform size to
capture the lesion area, and input the image into the network for
Frontiers in Oncology | www.frontiersin.org 3169
training. The strategy of splitting large clusters can be applied to
benign cases, while it is not suitable for malignant cases. Because in
malignant cases, it is likely that only part of the large clusters is
malignant, while other areas are still benign. However, the needle
biopsy only obtains the gold standard of the whole case and cannot
accurately locate the specific malignant lesions in large clusters.
Therefore, for malignant cases, only some cases without
particularly large clusters can be selected for training, so that the
frame with a uniform size is still applicable here. Malignant cases
with relatively large clusters are classified into a verification set and
a test set.

The discriminant network based on spatial convolution
mainly adopts the deep convolutional neural network based on
ResNet-50 (12) structure (see Figure 3), which conducts
multilayer perceptual learning through convolution,
downsampling, and nonlinear activation, and uses the back
propagation and stochastic gradient descent algorithm to seek
the parameters of the network model. In the training process,
low-layer features will constitute high-layer features through
automatic composition, and finally features will be screened
and classified by a linear model. The size of the input image is
3 × 224 × 224, and the output is a benign or malignant predictive
value between [0,1]. Because there is only one channel in the gray
image, the other two channels are filled by replication method to
form the 3-channel network input layer.

The basic structure module of the residual network is shown
in Figure 4. The structure of the feed-forward non-residual
network is mostly y = H(x), where x and y are input and
output of the residue block, respectively. The residual block of
the residual network can be expressed as H(x) = F(x) + x, that is F
(x)= H(x) – x. Consequently, the network learns the residual of
input variables, which is equivalent to a differential amplifier. It is
difficult to learn microcalcifications directly because of its small
size and low contrast. But using a residual can make the network
pay more attention to the details of microcalcifications, so it is a
better solution.

Discriminant Model Based on the Graph
Convolutional Network
The graph convolutional network (GCN) can extract spatial
distribution. The convolutional neural network studies the
statistical characteristics of Euclidean data with a regular
spatial structure, such as image, speech sounds, text sequence,
and so on. Essentially, a convolution in the convolutional neural
network uses a filter with shared parameters and constructs a
feature map by calculating the weighted sum of pixel values of
the center point and adjacent points so as to extract image
features (16). However, in this research, microcalcifications
have rather complicated spatial laws and do not have neatly
arranged pixel elements like image matrix, which means
the spatial position relationship between microcalcifications is
non- Euclidean, and image convolution may be difficult to
extract image features for microcalcification clusters. In order
to extract spatial distribution features between clustered
microcalcifications through the network, this study firstly
constructed the relationship between microcalcifications as a
May 2022 | Volume 12 | Article 871662
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graph model, in which the nodes are hidden layer features of
convolutional neural network of microcalcifications and the
edges are Euclidean distances between central pixels of
microcalcifications. Then, what this study needs to solve is
how to choose a fixed convolution kernel to adapt to the
Frontiers in Oncology | www.frontiersin.org 4170
irregularity of the whole graph and thereby construct a feed-
forward network to extract spatial distribution features from
node information and edge information. It means that this study
should construct a graph convolution operation similar to the
extension of image convolution on a topological graph, as shown
FIGURE 1 | Region of interest of microcalcification cluster for classification: (left) original image; (right) red contour is the possible region of interest of microcalcification,
and blue box is the region of interest of microcalcification cluster for classification.
FIGURE 2 | Illustration of density-based spatial clustering of applications with noise algorithm.
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in Figure 5. The starting point of convolution on a topological
graph is similar to that of image convolution. The basic idea is to
generate a new feature graph by integrating the features of the
points adjacent to the central point and parameterize the
Frontiers in Oncology | www.frontiersin.org 5171
convolution kernel to attain an optimized solution by building
a network (16–18).

The constructed graph is recorded as G = (V, E), the element
in V is the vertex of the graph (microcalcifications), and the
element in E is the side between the vertices. The neighbors of
vertex vI are defined as:

(i) = vj ∈ V jvivj ∈ E
� �

(1)

The degree matrix is a diagonal matrix describing the degree
of each vertex vi, namely, (vi):

D(G) =

d(v1) ⋯ 0

⋮ ⋱ ⋮

0 ⋯ d(vn)

0
BB@

1
CCA (2)

Adjacency matrix is an n-order square matrix describing the
spatial position relationship between vertices. It mainly encodes
the spatial distribution information of the graph network, which
is defined as:

½A(G)�ij =
distij if vivj ∈ E

0 otherwise

(
(3)

Laplacian matrix, also known as admittance matrix (17), is
mainly used in graph theory. For graph G = (V, E), the Laplace
FIGURE 3 | Illustration of the network structure used for classification.
FIGURE 4 | Structure of a residual block.
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matrix is defined as the difference between the degree matrix D
and the adjacency matrix A of graph G:

L = D − A

=

d(vi) if i = j

−distij if  ≠  j and vivj  ∈  E

0 otherwise

8>><
>>:

(4)

Obviously, the Laplace matrixLis a symmetric matrix. In fact,
it is easy to prove that it is a positive semidefinite matrix; that is,
the quadratic form is greater than or equal to 0. Usually, the
experiment will normalize it, so the symmetric normalized
Laplace matrix is obtained:

eL = D−1
2LD−1

2 = I − D−1
2AD−1

2 (5)

Considering that the calculation of convolution in the
frequency domain is relatively simple, the Fourier transform
on the graph is introduced to construct the convolution on the
topological graph. Taking the feature vectors of Laplace matrix as
the basis of Fourier transform on the graph, the following is
obtained:

F(ll) = bf (ll) =on
i=1f (i)u

∗
l (i) (6)

The following is obtained when it is expressed in matrix form:

f̂ (l1)

⋮

f̂ (lN )

0
BB@

1
CCA =

u1(1) ⋯ u1(N)

⋮ ⋱ ⋮

uN (1) ⋯ uN (N)

0
BB@

1
CCA

f (1)

⋮

f (N)

0
BB@

1
CCA (7)

Also

UT =

u1(1) ⋯ u1(N)

⋮ ⋱ ⋮

uN (1) ⋯ uN (N)

0
BB@

1
CCA (8)
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Then, the signal f of Fourier transform on the graph is

bf = UTf : (9)

Inverse transform to be

f = Ubf (10)

According to the convolution theorem, the Fourier transform
of function convolution is equal to the product of function
Fourier transform:

f ∗ h = F−1 bf (w)bh (w)
h i

=
1
2p

Z
bf (w)bh (w)eiwtdw (11)

The convolution operation on a graph can be derived; that is,
graph convolution (16):

(f ∗ h)G = U((UTh) o ̇ (UTf )) = U · diag bh (l)
� �

· UTf (12)

However, when the above convolution is actually used, there
exists the following difficulties in solving the convolution kernel.
First of all, the product of U, diag (ĥ (l)) and UTneeds to be
calculated in each forward propagation with a complexity of (n2).
Besides, the convolution kernel has n parameters and does not
have spatial locality.

In order to solve the above problems, the Chebyshev polynomial
k-order truncation is used to approximate the diag ĥ (l)) ,

hq(L) ≈oK
k=0q

0
kTk

eL
� �

(13)

eL =
2

lmax
L − IN (14)

So,

(hq ∗ x)G ≈oK
k=0q

0
kTk

eL� �
x : (15)
FIGURE 5 | Generalization from image spatial convolution to graph convolutional network.
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eL =
2

lmax
L − IN (16)

At this time, the graph convolution does not depend on the
whole graph but only on the k-order neighbors of the current
central node.

The GCN is constructed. Although the above k-order
approximation can establish the dependence of k-order
neighbors, it still needs to perform k-order operation on L. In
order to further reduce the calculation process, k is limited to 1.
At this time, the graph convolution can be approximated as a
linear function of L:

(gq ∗ x)G ≈ q 0
0x + q 0

1(L − IN )x = q 0
0x + q 0

1D
−1=2AD−1=2 (17)

There are only two shared parameters to be trained in the
above formula. To establish k-order neighbor dependence, k-th
continuous first-order graph convolution operation can be
adopted to construct forward propagation:

Z = f (X,A) = softmax(~AReLU(~AXM(0))W(1)) (18)

The loss function adopts the cross-entropy loss function:

Lce = −
1
No

N
i=1onK

j=0yij logpij (19)

Fusion of Discriminant Model
The discriminant network based on spatial convolution is mainly
used to extract the image features of clustered microcalcifications,
including morphologic features. The discriminant model based on
the graph convolution is mainly used to extract the spatial
distribution characteristics of microcalcifications. They need to be
fused tomake full use of the extracted image information and spatial
distribution information, so as to comprehensively diagnose the
input microcalcifications images as benign or malignant.

The key of this part is how to fuse the extracted image
information and spatial distribution information. Image
information and spatial distribution information can be
regarded as two different modes, so the problem comes down
to multimodal fusion. There are many ways to solve multimodal
fusion, such as element-by-element weighted summation,
element-by-element maximum pooling, gated activation, gated
attention, bilinear mapping, and so on (19). According to
different levels, it can be fused at the feature level, such as
splicing, adding, and so on, at the score level, such as
weighting based on the scores of different modes obtained
from training, and at the decision-making level, such as
majority voting, maximum voting, and so on. First, this study
used non-maximum suppression in the scores obtained from the
spatial convolution discriminant model to obtain the predictive
scores based on images at the spatial convolution level. Second,
this study combined the predictive scores with the scores
obtained after the topological graph convolution extracted the
spatial distribution information. Last, using the fusion method at
the score level and the corresponding weights of image
information mode and spatial distribution information mode
obtained through training, the scores are weighted and fused at
Frontiers in Oncology | www.frontiersin.org 7173
the full connection layer (20) to output a final benign or
malignant predictive value. The fusion process of discriminant
model was illustrated in Figure 6.

Training of Benign or Malignant Classification
Network
The discriminant network based on the spatial convolution
adopts the convolutional neural network based on the ResNet-
50 structure. The size of the input image is 3 × 224 × 224, and the
output is a benign or malignant predictive value between [0,1].
Because there is only one channel in the gray image, the other
two channels are filled by the replication method to form the 3-
channel network input layer.

There were 273 benign samples and 273 malignant samples in
the testing data set. The training, validation and testing data sets
were separated as shown in Table 1. During training, data
augmentation was carried out on the samples in the training
set, mainly by random rotation, adding Gaussian noise, and so
on, to expand the training samples. After that, the network can
learn some more essential and stable features, and thus the
trained discriminant model is more robust.

The discriminant network based on the spatial convolution
adopts the graph convolutional neural network, as shown in
Figure 7. The input is the topological graph composed of
microcalcifications. The feed-forward network contains two
hidden layers, among which the rectified linear unit (ReLU)
activation function (14) is used. After the input goes through the
feed-forward network and the action of Sigmoid activation
function (21), the benign or malignant predictive values
between [0,1] are output finally. Back propagation adopts the
two-class cross entropy loss function, and the stochastic gradient
descent optimizer is used for optimization.
RESULTS

Establishing Quantitative
Evaluation Indicators
In order to more clearly compare the results of different methods
in the classification of benign or malignant clustered
microcalcifications, this study uses sensitivity, specificity, and
receiver operating characteristic (ROC) curve as relevant
quantitative evaluation indexes to evaluate the classification
results of clustered microcalcifications in images.

Comparison of Results
In this paper, the comparison was made among the test results of
the discriminant network (referred to as ResNet-50) based on the
spatial image convolution to extract the image information
related to the classification of benign or malignant subclusters,
those of the GCN based on the topological graph convolution to
extract the spatial distribution information of microcalcifications
related to the classification of benign or malignant clustered
microcalcifications and those of the fused network (referred to as
ResNet50-GCN Fusion). The results are shown in Table 2
and Figure 8.
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DISCUSSION

The classification of benign ormalignant clusteredmicrocalcifications
in breast cancer mainly considers the morphology and spatial
distribution of microcalcifications clinically. Taking this as the
starting point, this study proposed to use the discriminant model
based on image convolution to learn the image features related to the
classification of microcalcifications and use the GCN based on the
topological graph to learn the spatial distribution features of
FIGURE 6 | Illustration of fusion process of discriminant model.
FIGURE 7 | Graph neural network.
TABLE 1 | Number of samples for training, verification, and testing in benign or
malignant.

Patch Numbers

Training set Validation set Test set

Benign 590 227 273
Malignant 831 227 273
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microcalcifications. After that, this study tried to fuse them to get a
complementary model.

In this study, the model based on the spatial image convolution
obviously performed better than the model based on the
topological graph convolution both in sensitivity and specificity.
The AUC area under the ROC curve of the former model is also
nearly 5% higher than that of the latter. This shows that the image
information for the diagnosis of benign or malignant clustered
microcalcifications learned by the model based on spatial image
convolution is very helpful for classification to a certain extent.
Although the overall result of the model based on the topological
image convolution is not as good as that based on the spatial image
convolution, the spatial distribution information extracted by the
model is still effective to a certain extent. Especially, if this
distribution information has certain orthogonality with the
image information, it will contribute more and the researcher
can make use of the two information to combine their advantages
and obtain a stronger classification fused model.

In fact, from the comparison results in the table, the AUC area
under the ROC curve of the fused model reaches 0.943, which is
about 1% higher than the AUC of ResNet-50 of the spatial image
convolution, the best model in single mode. This shows that the
spatial distribution information extracted by the GCN model
based on the topological graph convolution exerts a complement
action. However, it is worth noting that when the topological graph
was input into the construction of the GCN in this paper, the
features of the nodes of the graph were the hidden layer features of
false-positive identification of microcalcifications, which actually
limited the classification ability of the GCN to a certain extent. If
Frontiers in Oncology | www.frontiersin.org 9175
the features related to the benign or malignant microcalcifications
can be obtained, it is natural to guess that the overall ability of the
GCN to classify the benign or malignant microcalcifications will be
better. But this is exactly the difficulty of the research. In this study,
it is difficult to obtain the mark of benign or malignant
microcalcifications because doctor’s labeling is costly and highly
subjective. Moreover, it is unrealistic to perform needle biopsy and
registration for each microcalcification. Furthermore, previous
research has never involved this area. Therefore, the following
research can further improve the model to replace the features of
nodes in the GCN with those of diagnosis of benign or malignant
microcalcification if the labeling information of benign or
malignant microcalcifications is obtained. It may be easier to
capture the hidden features of the classification of benign or
malignant microcalcifications and their spatial distribution law
in the breast, which will be more effective for the results.

When constructing the graph network, the node features used in
this study are the hidden layer features of the false-positive
discrimination network of microcalcification detection. If the
benign and malignant label ing information at the
microcalcification level can be obtained in the subsequent
research, the model can be further improved to replace the
features of the GCN nodes with the features of microcalcification
benign and malignant discrimination level. It may be easier to
capture the differences between benign and malignant
microcalcifications and their spatial distribution in the breast,
which may be more helpful to the results.
CONCLUSION

There are some obstacles in the classification of benign or malignant
clustered microcalcifications in mammograms. In this study, image
information and spatial distribution information are modeled on
the issue of the classification of benign or malignant
microcalcifications in breast cancer. The discriminant network
based on spatial image convolution is constructed to extract the
image information related to the classification of microcalcifications
subclusters, and the discriminant network based on the topological
graph convolution is proposed and constructed to extract the spatial
distribution information of microcalcifications related to the
classification of benign or malignant clustered microcalcifications.
This study used non-maximum suppression in the scores obtained
from the spatial convolution discriminant model to obtain the
predictive scores based on images at the spatial convolution level.
Then, this study combined the predictive scores with the scores
obtained after the topological graph convolution extracted the
spatial distribution information. Lastly, using the fusion method
at the score level and the corresponding weights of image
information mode and spatial distribution information mode
obtained through training, the scores are weighted and fused to
output a final benign or malignant predictive value. The results
show that compared with the single-mode classification results, the
classification after modal fusion is more accurate. Automatic
detection and classification of microcalcification clusters may have
an important impact in breast cancer screening.
TABLE 2 | Comparison of classification results of clustered microcalcification in
different methods.

Methods TPR TNR AUC

ResNet50 0.964 0.906 0.932
GCN 0.904 0.782 0.883
ResNet50-GCN Fusion 1.000 0.812 0.943
FIGURE 8 | ROC curve comparison.
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Neoadjuvant chemotherapy (NAC) is increasingly widely used in breast cancer treatment,
and accurate evaluation of its response provides essential information for treatment and
prognosis. Thus, the imaging tools used to quantify the disease response are critical in
evaluating and managing patients treated with NAC. We discussed the recent progress,
advantages, and disadvantages of common imaging methods in assessing the efficacy of
NAC for breast cancer.

Keywords: neoadjuvant chemotherapy (NAC), breast cancer, evaluations of response, imaging, PCR
1 INTRODUCTION

The World Health Organization International Agency for Research on Cancer (IARC) released the
world’s latest cancer burden data in 2020. New breast cancer cases reached 2.26 million in 2020,
replacing lung cancer as the world’s most extensive cancer. In 2020, the number of new breast
cancer cases in China was about 420,000, and the death toll reached 120,000 (1), placing a heavy
burden on society. Therefore, research on the diagnosis and treatment of breast cancer has
significant value.
Abbreviations: NAC, neoadjuvant chemotherapy; pCR, pathological complete responses; US, ultrasound; MRI, magnetic
resonance imaging; PET-CT, positron emission tomography CT; CR, complete remission; PR, partial response; PD, disease
progression; SD, stable disease; CCC, consistency correlation coefficient; PPV, positive predictive value; NPV, negative
predictive value; CESM, contrast-enhanced spectral mammography; DCGV, grey value reduction percentages; CEUS, contrast-
enhanced ultrasound; ABVS, automated breast volume scanner; DBT, digital breast tomosynthesis; SE, Strain elastography;
SWE, shear wave elastography; AUC, area under curve; QUS, quantitative ultrasound; OPTI-MUS, diffused optical
tomography with ultrasound; RF, radio frequency; FFT, fast Fourier transform; SS, spectral slope; SI, spectral intercept;
MBF, mid-band fit; ASD, average scatterer diameter; AAC, average acoustic concentration; ACE, attenuation coefficient
estimate; SAS, spacing among scatterers; HBT, total hemoglobin; HBO2, deoxyhemoglobin; DCE-MRI, dynamic contrast-
enhanced MRI; TIC, time-signal intensity curve; DCIS, ductal carcinoma in situ; DWI-MRI¸ quantitative diffusion-weighted
imaging MRI; ROC, receiver operating characteristic; CI, confidence interval; ADC, apparent diffusion coefficient; IVIM,
quantitative Intravoxel incoherent motion; 1H-MRS¸1H-magnetic resonance spectroscopy; tCho, total choline; DTI, diffusion
tensor imaging; DKI, diffusion kurtosis imaging.

May 2022 | Volume 12 | Article 8162971177

https://www.frontiersin.org/articles/10.3389/fonc.2022.816297/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.816297/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.816297/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:li_hazel@126.com
mailto:lizhenhui621@qq.com
https://doi.org/10.3389/fonc.2022.816297
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.816297
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.816297&domain=pdf&date_stamp=2022-05-20


Kong et al. NAC Efficacy for Breast Cancer
In clinical practice, early breast cancer lesions can be directly
treated by surgical resection, but for breast cancer with large
primary foci or early metastasis, direct surgical resection cannot
achieve the best therapeutic effect. NAC, one of the standard
treatments for most breast cancers, refers to a systemic
chemotherapy administered prior to the local treatment
modality for primary tumors. It can lower the clinical stages of
tumors, to facilitate breast conservation and render inoperable
tumors operable (2). In recent years, NAC has attracted extensive
attention. Although patients with breast cancer respond to NAC,
significant differences exist. For instance, patients at the same
stage and with the same molecular typing may show different
responses to the same NAC. Study (3) shows that 10%~35% of
patients are still insensitive to NAC, and disease progression can
occur during treatment. Therefore, it is of great importance to
timely and accurately evaluate the efficacy of NAC for breast
cancer. During NAC, early evaluation of its efficacy is helpful for
the clinical assessment of patients’ sensitivity to chemotherapy
drugs, to guide subsequent precise drug use (4). In addition,
NAC can reduce the burden of the primary tumor and achieve
pathologic complete response (pCR) of axillary lymph node
metastasis in more than half of patients (5). Thus, the
possibility of axillary preservation is improved, and problems,
such as upper limb edema, pain, and limited shoulder joint
movement caused by the axillary lymph node dissection, are
avoided (6). Therefore, accurate evaluation of the efficacy of
NAC is critical to achieving individualized treatment of
breast cancer.

The first stage of NAC process is patient selection. Ideally, not all
the patients requiring adjuvant chemotherapy should receive NAC.
The American Society of Clinical Oncology (ASCO), National
Comprehensive Cancer Network (NCCN), Chinese Society of
Clinical Oncology (CSCO), and other guidelines have
recommended the selection of an intention-to-treat population.
“Based on the actual clinical needs, and guided by the therapeutic
purpose” is an important clinical practice NAC candidate selection
principle (7). Figure 1 shows the specific screening process of NAC
candidates in Yunnan Cancer Hospital.

On the entry of the candidates into the NAC process, the
NAC efficacy needs to be evaluated. The current methods used to
assess the efficacy of NAC in breast cancer include clinical
manifestations, laboratory examinations (8), imaging,
pathology, and molecular examination (9). Current clinical
examination mainly relies on doctors’ palpation to measure the
size of the mass before and after NAC, to evaluate changes in the
size. However, some problems may exist: subjective
measurement and doctors’ evaluation inaccuracy, failure to
differentiate tumor residue after chemotherapy from fibrosis or
necrosis caused by chemotherapy, difficult perception of deeper
and smaller lesions, and a high dependency on the doctors’
clinical experience.

As the gold standard for evaluating tumor response after
chemotherapy, through pathological examination, changes,
degeneration, necrosis, and tumor cell disappearance after
chemotherapy, can be observed directly with high diagnostic
accuracy. In particular, patients who achieved pCR after NAC
Frontiers in Oncology | www.frontiersin.org 2178
have a better prognosis. A study (10) revealed that the degree of
pathological reaction after NAC is closely related to the patients’
prognosis. Therefore, it is important to accurately evaluate and
report pathological reactions after NAC. The WHO
Classification of Breast Tumor Pathology and Genetics (2012
edition) lists eight assessment systems but does not explicitly
recommend them (11). Currently, the commonly used
pathological evaluation systems of NAC include Miller-Payne
(MP) system, Residual Cancer Burden (RCB) system, Chevallier
system, Sataloff system, and the AJCC ypTNM installment. Most
of these evaluation systems classify post-chemotherapy reactions
into pCR and non-pCR. Non-pCR patients are further categorize
using different assessment systems by degree of response. The
MP system is commonly used in the pathology departments in
China (12), it compares the coarse needle biopsy specimen before
chemotherapy with the surgical specimen after chemotherapy,
and mainly evaluates the cell richness of residual tumor (which is
divided into five grades) after NAC. However, as an invasive
examination, pathologic examination is not actively applied in
the treatment process. It must be performed after surgery; thus,
the outcome of the efficacy evaluation is obtained late, and the
sensitivity of the tumor to chemotherapy cannot be timely
assessed. Therefore, it is difficult to adjust the treatment
schedule in time, resulting in the best time for adjustment
easily missed.

Imaging, as one of the most important methods to evaluate
the efficacy, has the advantage of being non-invasive and can be
used throughout the whole process of breast cancer treatment,
including a pre-treatment baseline image to determine the scope
of the lesion, treatment efficacy evaluation during NAC, and
post-treatment residual lesion evaluation. Imaging examination
can not only objectively be used to evaluate the efficacy of NAC,
but also provides an important basis for clinicians to choose an
appropriate surgical approach and determine patients’ prognosis.
At present, the commonly used clinical imaging evaluation
methods include mammography, ultrasound, magnetic
resonance imaging (MRI), and positron emission tomography
CT (PET-CT). Figure 2 shows the imaging evaluation process of
NAC efficacy for breast cancer in Yunnan Cancer Hospital.

Nevertheless, there is no unified guideline for the imaging
evaluation of NAC response, and in recent times, the efficacy
evaluation is mainly based on changes in tumor size, changes in
the degree of ultrasound or MRI enhancement, and the form of
tumor regression. Currently, the Response Evaluation Criteria in
Solid Tumors (RECIST) 1.1 (13) remains the most used clinical
evaluation criteria. This is done by measuring the change in the
longest diameter of the lesion before and after NAC to evaluate
efficacy, with a focus on the observance of change in the longest
diameter of the lesion. For multifocal lesions, a comparison of
the sum of the longest diameter measurements of all lesions
should be included. Tumor remission after treatment is
categorized as remission or no remission according to RECIST
criteria. Remission included: 1) complete remission (CR) or no
tumor residue; 2) partial response (PR), which was when the
longest diameter of the tumor decreased by >30%. No remission
included: 1) disease progression (PD), which was when the
May 2022 | Volume 12 | Article 816297
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maximum diameter of the tumor increased by >20% or a new
lesion appeared; 2) stable disease (SD), when the tumor size
changes are between those of partial remission and progression.
However, there are some limitations of RECIST 1.1. Tumor
regression can be divided into centripetal (when the tumor size
decreases significantly) and non-centripetal regression (when its
size does not change significantly), RECIST 1.1 is not suitable for
the efficacy evaluation of non-centripetal regression tumor.
Moreover, RECIST 1.1 is far from being adequate for
evaluating NAC efficacy of breast cancer based on tumor
diameter only. There is still no guideline or standard to guide
the selection of important evaluation indicators such as
Frontiers in Oncology | www.frontiersin.org 3179
functional magnetic resonance and three-dimensional US,
which needs to be further improved.

There are different imaging methods suitable for evaluating
NAC efficacy in different stages of breast cancer, and each
imaging method also has its own area of emphasis for
evaluating efficacy in breast cancer of different molecular
types. It is crucial for clinicians to familiarize themselves
with the progress, advantages, and disadvantages of these
imaging methods in evaluating NAC efficacy. Currently,
several studies, reviews, and meta-analyses exist on imaging
assessment of NAC. To this end, this article reviews the value
and recent progress of imaging in evaluating NAC efficacy for
FIGURE 1 | Candidates for NAC screening process in Yunnan Cancer Hospital. a Persons with obvious genetic tendency of breast cancer, history of LCIS or ductal
or lobular dysplasia, or who experienced chest radiation before age 30. b Candidates for NAC: patients with inoperable breast cancer (IBC, bulky or matted cN2
axillary nodes, cN3 nodal disease, cT4 tumors), NAC is preferred for those with inoperable breast cancer (HER2-positive disease and TNBC if cT≥2 or cN≥1, large
primary tumor relative to breast size in a patient who desires breast conservation, cN+ disease is likely to become cN0 with preoperative systemic therapy) and
patients in whom definitive surgery may be delayed. US, ultrasound; MM, mammography; MRI, magnetic resonance imaging; NAC, neoadjuvant chemotherapy;
LCIS, lobular carcinoma in situ; IBC, inflammatory breast cancer; HER2, human epidermal growth factor receptor 2.
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breast cancer based on the study of a large number of
relevant literature.
2 EVALUATION OF THE EFFICACY OF
MAMMOGRAPHY ON NAC IN BREAST
CANCER

2.1 Mammography
Mammography evaluation shows signs of tumor lesion calcification
disappearance and burr shortening or disappearance after breast
cancer NAC. However, the above features have low accuracy in
evaluating the efficacy of NAC. The evaluation of efficacy after NAC
by mammography is mainly based on changes in tumor size and
density. Two retrospective studies (6, 14) showed poor consistency
between mammography measurement and pathological results
after NAC, with a moderate level of consistency correlation
coefficient (CCC) at only 0.52-0.58. Therefore, most experts
consider mammography to be unsuitable for the evaluation of
NAC efficacy. In addition, a recent prospective study (15) compared
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the size of tumors evaluated by mammography, ultrasound, and
tomosynthesis after NAC, and reported the sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) of mammography as 0.65, 0.81, 0.52, and 0.88,
respectively. The agreement rate between mammography and
pathological assessment in pCR was only 43%. Thus, although
mammography is highly specific in detecting tumors, it
misestimates the tumor size in about half of patients.

Although mammography can describe malignant calcification
well, microcalcification is not reliable evidence of the persistence
of residual tumors. A previous study (16) shows that residual
microcalcification after NAC is not always related to a residual
tumor burden. Residual microcalcification can represent both
the residual tumor and necrotic tumor cell products after
treatment. When calcification persists after NAC, compared
with mammography, the size on MRI is more consistent with
the pathological results (17). Feliciano et al. (18) suggested that,
although not all residual microcalcification on mammography
after NAC reflect residual tumor and 44.8% of residual
microcalcification is unrelated to the residual tumor, all
microcalcification in the tumor should be completely excised.
FIGURE 2 | The model of imaging technology to assess the efficacy of NAC for breast cancer in Yunnan Cancer Hospital. NAC, neoadjuvant chemotherapy; MRI,
magnetic resonance imaging; CT, computed tomography.
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In conclusion, mammography has certain limitations in
assessing the efficacy of NAC in breast cancer: 1) it is unable
to accurately determine the changes of multicenter breast cancer
lesions; 2) it has X-ray radiation and cannot be used to examine
frequently; 3) it is not suitable for the identification of tumor
residue, fibrosis, and scar tissue after NAC; and 4) residual
microcalcification after NAC is often overestimated. Therefore,
The American Col lege of Radiology recommended
mammography, ultrasound, and MRI as the highest grade
(grade 9) at baseline (pre-NAC), while MRI was still
recommended at grade 9 during and after treatment; however,
ultrasound and mammography were reduced to grade 8 and
grade 7, respectively (19).

2.2 Contrast-Enhanced Spectral
Mammography (CESM)
CESM, an examination combined with contrast agents based on
conventional mammography, is a new mammary gland imaging
technique used to obtain low energy and subtraction images after
post-processing them through rapid high and low energy dual
exposure, after intravenous injection of contrast agents. It can
show abnormal vascular proliferation in tumor tissues, thus
significantly reducing the false positive and false negative rates
and improves the sensitivity and accuracy of detection (20, 21).

MRI is currently the most recommended imaging for efficacy
assessment during NAC. One study (22) compared the
performance of CESM and MRI in evaluating the tumor
response to NAC treatment at different stages and showed
different consistency of CESM and MRI in measuring the size
of lesions at different treatment stages. The consistency of the
measurement of the lesion size before, during, and after NAC
was 0.96, 0.94, and 0.76, respectively, and both of CESM and
MRI were prone to underestimating the residual lesions.
However, in another retrospective study, Patel et al. (23)
compared the mean residual tumor size measured by CESM
and MRI in 65 patients on NAC, using surgical pathology results
as a reference standard. The residual lesion size measured by
CESM and MRI was found to correlate well with the pathology
results (r of 0.77 and 0.80, respectively), and the mean residual
lesion measured on both was -1~1 cm different from the
pathological results. Similarly, Barra et al. (24) also proved that
CESM can be used to evaluate residual tumor size after NAC,
with good correlation and consistency with pathological results.
A previous prospective study involving 21 breast cancer patients
(25) evaluated CESM in predicting tumor response to NAC; the
specificity, sensitivity, NPV, and PPV of 91%, 40%, 80%, and
62.5%, respectively, show good efficacy of CESM in predicting
tumor response after NAC. However, the sample size in this
study is relatively small, and further large-sample studies are
needed to confirm the reasons for the low CESM sensitivity.
CESM also performed well in predicting pCR early after NAC.
Xing et al. (26) retrospectively quantified the enhancement
intensity of CESM in 111 patients by calculating the
percentage of grey value reduction percentages (DCGV). The
results showed statistically significant differences in DCGV
between the pCR and non-pCR groups, indicating that DCGV
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obtained based on CESM images can be used as a quantitative
indicator for early prediction of pCR after NAC.

The results of previous studies suggest that CESM can be used
to assess the efficacy of NAC and has good application in
predicting pCR early after NAC. Due to the shorter
examination time of CESM, better patient tolerance, and lower
price, CESM has a broader prospect in the evaluation of the
pathological response of breast cancer to NAC. However, the
technique requires multiple breast images in different positions
after contrast injection; hence, its use is limited in patients with
contrast agent allergies. In addition, more extensive studies are
necessary to better understand the efficacy evaluation of NAC for
different molecular subtypes of breast cancer, exploration of
tumor regression patterns, assessment of efficacy after NAC for
tumors containing calcified foci, and assessment of
CESM radiomics.
3 EVALUATION OF THE EFFICACY OF
ULTRASOUND ON NAC IN BREAST
CANCER

Ultrasound is a safe, fast, reproducible, and economical imaging
evaluation method. Conventional ultrasound can describe the
size, morphology, and boundary of tumors. Ultrasound imaging
technology can further evaluate the tumor volume, internal
blood vessels, and other subtle structures, as well as the
softness and hardness of the tumor (27). The China Anti-
Cancer Association Breast Cancer Guidelines strongly
recommend that ultrasound be used regularly to reassess the
tumor’s treatment response after every two NAC cycles (28).
Therefore, ultrasonography has a place in the evaluation of the
efficacy of neoadjuvant therapy. Because ultrasound is
reproducible, cheap, and non-invasive, it is now more widely
used in China.

3.1 Ultrasound
3.1.1 Two-Dimensional Ultrasound, Color Doppler
Ultrasound
Two-dimensional ultrasound can reflect the size, morphology,
boundary, and other information of breast lesions and show the
structure and morphology of lymph nodes well (27). However, it
is greatly influenced by the operating doctor and cannot
accurately distinguish between tumor and normal gland tissue.
Hence, the two-dimensional ultrasound is unable to accurately
monitoring the size change in response to NAC, and its
specificity in assessing the NAC response is low. It is not
recommended for NAC efficacy evaluation.

Tumor vascular distribution is an alternative indicator of
tumor burden. In addition to evaluating tumor size and
morphology, color Doppler ultrasound can also be used to
evaluate tumor vascular distribution through a variety of
parameters that compare tumor changes before and after
chemotherapy, to assess the response to chemotherapy
(Figure 3). Chemotherapeutic drugs can destroy the
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neovascularization of tumors through the blood circulation,
thereby reducing the pressure of tumors on the surrounding
tissues, and hence, the hemodynamic changes can be used as an
indicator to assess the efficacy of treatment (29). A study (30)
using color Doppler ultrasound measured the sizes of tumors
after NAC and compared them to histopathological results. The
study found that the sensitivity, specificity, PPV, and NPV were
91.7%, 38.5%, 57.9%, and 83.3%, respectively. It showed that
Doppler ultrasound has high sensitivity and can accurately
reflect the efficacy of NAC in breast cancer. In recent years,
with the development of color Doppler ultrasound technology
and the improvement of diagnostic technology, it has become
one of the most widely used methods to evaluate NAC efficacy.
Frontiers in Oncology | www.frontiersin.org 6182
However, when chemotherapeutic drugs act on the tumor
vasculature and inflammatory changes occur in the
surrounding tissues, the vasculature may become narrowed
and occluded, and in this case, the measurement results will be
affected. Therefore, the application of color Doppler is
somewhat limited.

3.1.2 Contrast-Enhanced Ultrasound
Technology (CEUS)
CEUS, a purely blood pool imaging technique, detects micro-
vessels to show the neovascularization of breast tumors and the
perfusion pattern of blood flow, to obtain contrast-enhanced
images. It shows the morphology and distribution of lesions and
A

B

FIGURE 3 | B-mode, Color-Doppler ultrasound and histology from a partial responder (A) and complete responder (B) before start of NAC (Pre-) and after 8 course
of NAC (Post-). (A) (a) B-mode ultrasound: the tumor was hypoechoic. (b) Color-Doppler ultrasound: moderate peripheral vascular signals. (c) Microscopic image of
core-needle biopsy. After 8 course of NAC. (d) B-mode ultrasound: the echogenicity increased. (e) Color-Doppler ultrasound: less residual vascularization compared
to baseline. (f) Microscopic image after NAC shows residual tumor cells, but reduced compared to baseline. (B) (g) B-mode ultrasound: the tumor was hypoechoic.
(h) Color-Doppler ultrasound: moderate intralesional and perilesional vascularization. (i) Microscopic image of core-needle biopsy. After 8 course of NAC. (j) B-mode
ultrasound: the echogenicity increased and tumor volume decreased. (k) Color-Doppler ultrasound: almost no vascular spots. (l) Microscopic image after NAC
presents visible stromal tissue, no visible tumor cells.
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blood vessels clearly (29). CEUS can be used to evaluate the mode
of lesion enhancement, and to quantitatively evaluate some
indicators by generating time-intensity curves, such as rise
time, mean passage time, time to peak, peak intensity, and area
under the curve (AUC). Although it is most intuitive and straight
forward to assess the efficacy of breast cancer after NAC by
measuring changes in the size of the lesions, there are limits in
measurements, using this method; this is because of the
operator’s subjective assessment and because the masses do not
all show centripetal retractions after NAC. Thus, the relative
change rate of the size of contrast parameters is of important
clinical significance.

Changes in tumor blood vessels after NAC precede
morphological changes, so the difference in blood perfusion is
critical for NAC efficacy evaluation (29). Especially for localized
liquefaction necrosis of the tumor, CEUS has a higher accuracy
in assessing the mass size compared to a two-dimensional
ultrasound. A study (31) has shown that CEUS can be used to
assess the clinical response of tumors to NAC, and the sensitivity
and specificity of predicting pCR after NAC were 95.7% and
77.5%, respectively. Other studies concluded that CEUS is
similar to MRI in predicting pCR and has a higher correlation
with pathological examination in evaluating the size of residual
lesions, even higher than that of MRI (32, 33). Huang et al. (34)
also identified CEUS as a potential tool for predicting NAC
response in locally advanced breast cancer patients. Compared
with other molecular subtypes, triple-negative and HER2+/ER-
subtypes responded better to NAC. Notably, breast cancer is
highly heterogeneous, and the same NAC regimen may produce
different responses for different molecular subtypes. Therefore, it
is urgent to study the correlation between clinical/biological
indicators and CEUS parameters.

In summary, CEUS, as a cutting-edge research field, has good
clinical application in assessing the efficacy of NAC for breast
cancer patients who cannot undergo dynamic contrast-enhanced
MRI (DCE-MRI) or require multiple evaluations; it can measure
the maximum diameter of lesions after NAC more accurately
than conventional ultrasound and is in good agreement with
histopathological results. However, large sample multi-center
studies are needed to further explore more sensitive indicators
of NAC response. The limitation of CEUS in clinical practice is
the poor visualization of multiple lesions and large lesions
beyond the imaging range.

3.1.3 Automated Breast Volume Scanner (ABVS)
ABVS uses the advantages of multi-plane remodeling to create a
three-dimensional ultrasound imaging of the breast tissue. It can
better reflect the growth mode of breast tumors and the
relationship with the surrounding tissues through automatic,
full-volume, and coronal scanning of the breast (35). Since it is
automatically scanned and digitally stored, it relies less on
physician operations compared to traditional ultrasound, and
the examined images can be reviewed (36). Using the ABVS,
multiple masses can also be examined at once and shown in the
same view, overcoming the limitations of conventional
ultrasound (35). At present, the superiority of ABVS in
identifying benign and malignant breast tumors has been
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recognized (37). Further studies explored its utility in
predicting the efficacy of patients with NAC to provide a better
basis for further clinical diagnosis and treatment.

A Chinese study (38) first explored the use of ABVS to predict
pathological outcomes after four cycles of NAC by assessing the
proportional changes in primary tumors measured after two
NAC cycles. The results suggest ABVS as a valuable tool for the
early assessment of pCR after NAC. However, it is less reliable in
predicting adverse pathological outcomes (Miller-Payne grades 1
to 3). Another study (39) compared the efficacy of ABVS and
MRI in assessing tumor response; the two had a reasonable
correlation for differences in the longest tumor diameter
measurements (CCC 0.73). Regardless, ABVS has higher
patient satisfaction, indicating it can effectively be used to
monitor patients during NAC. However, Park et al. (40)
compared the accuracy of mammography, digital breast
tomography (DBT), ABVS, and MRI in assessing the degree of
tumor residual after NAC. The results showed that ABVS had the
lowest reliability in predicting residual tumor size and pCR and
tended to underestimate residual tumors. This suggests that
ABVS may not be sensit ive enough to distinguish
chemotherapy-induced fibrosis and hypoechoic tumors after
NAC. The differences in the above trial results may be due to
tumor heterogeneity, variability of pathological size assessment,
or differences in study design; moreover, retrospective studies
may lead to bias due to incomplete data. Therefore, we must
interpret these results rationally. More prospective studies and
larger case series are required to explore ABVS in assessing the
efficacy of tumor NAC.
3.2 Ultrasound Elastography
The tumor tissue changes complicatedly during the treatment,
including cell degeneration, necrosis, liquefaction, slow
proliferation rate, tissue fibrosis, and focal tissue hardness.
Pathological biopsy after NAC showed that patients with
ineffective (or effective) treatment had higher (or lower) cancer
cell density, resulting in changes in the elastic coefficient before
and after NAC. Therefore, ultrasound elastography can be used
to evaluate the efficacy of NAC (41). In recent years, ultrasound
elastography has been widely used in the evaluation of NAC,
while strain elastography (SE) and shear wave elastography
(SWE) are commonly used for breast cancer. SE enables
qualitative and quantitative analyses of tissue softness and
hardness to evaluate NAC efficacy, by comparing the elastic
score and strain rate ratio before and after NAC. SWE reflects the
efficacy of NAC for breast cancer by measuring the value of tissue
elasticity, that is, the absolute value of Young’s modulus (42).

Studies in other countries (43, 44) found that the sensitivity
and specificity of assessing tumor changes by SE after two
treatment cycles were 83.3% – 84% and 80% – 85%,
respectively. It is shown that SE can predict the NAC response
of locally advanced breast cancer within two weeks of treatment
with high sensitivity and specificity. Furthermore, the elastic
changes in the tumor response to NAC can be used as an early
response marker in the treatment process. A prospective study by
Jing et al. (45) used SWE for the first time to predict the response
May 2022 | Volume 12 | Article 816297

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kong et al. NAC Efficacy for Breast Cancer
of breast cancer patients to NAC. The relative change of tumor
stiffness after two NAC cycles was significantly associated with
the pathological response of postoperative specimens, with
sensitivity and specificity of 72.9% and 85.7%, respectively.
This indicates that the change in tumor stiffness is a handy
predictive parameter for judging the efficacy of NAC for breast
cancer; thus, SWE can be used as an effective method to guide
NAC. Lee et al. (46) confirmed that the diagnostic efficacy of
ultrasound combined with SWE for NAC was almost similar to
that of MRI (P>0.05), and the elastic value of the residual tumor
tissue after NAC was up to a maximum of 116 ± 74.1 kPa, which
is much higher than that of non-residual tumor tissue (26.4 ±
21.0 kPa). Ma et al. (42) compared the diagnostic performance of
SE and SWE in predicting the NAC response in breast cancer;
the results showed similar diagnostic performance in the early
prediction of NAC response. Regardless, SWE is superior to SE
in the early prediction of NAC resistance. Ultrasound
elastography also has certain value in predicting pCR of
tumors. A comparative study comparing SWE and MRI (47)
showed that the ability of pCR prediction (when the reduction in
the average lesion hardness was combined with tumor diameter
on conventional ultrasound) was close to that of MRI, with AUC
of 0.92 and 0.96, respectively. However, there is a need for further
studies on the combination of elastography and other evaluation
methods, and its detection efficiency in tumors of different
phenotypes (48). Although elastography technology has high
diagnostic efficiency in assessing the efficacy of NAC, there are
no reports of changes in breast cancer treatment strategies based
on elastography evaluation results.

One study showed breast thickness and lesion depth as
important factors affecting the quality of elastography images
(41). In addition, the uneven internal hardness (caused by the
liquefaction and necrosis of the mass) and higher hardness
(caused by fibrosis or hyaline degeneration) of the original
lesions after NAC can affect the measurement results. The
operator’s experience and knowledge also have a significant
influence on the measurement results. Sufficient compression
and precise positioning of the tumor region must be ensured
(44). Therefore, the application has some limitations, and further
improvements are needed in the future. In addition, results from
the evaluation of elastography compared to other imaging
modalities are lacking.

3.3 Quantitative Ultrasound (QUS) and
Diffused Optical Tomography With
Ultrasound (OPTI-MUS)
QUS utilizes changes in the acoustic properties of tissues to
reflect changes in their microstructure. It works by scanning the
breast tumors using a clinical ultrasound system; then, the
ultrasound radio frequency (RF) data within the tumor regions
of interest were retained and displayed as a frequency spectrum
using a fast Fourier transform (FFT). The analysis of the power
spectrum leads to various features like spectral slope (SS),
spectral intercept (SI) at 0 MHz, mid-band fit (MBF), average
scatterer diameter (ASD), average acoustic concentration (AAC),
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attenuation coefficient estimate (ACE), and spacing among
scatterers (SAS) (49). Its parameters reflect both the elastic and
microstructural properties of the tissue. Its simple operation, low
cost, and non-requirement of an exogenous contrast agent gave
the technique partial attention. In a preliminary clinical study
(50), two parameters of QUS were used to determine the
pathological response of patients with locally advanced breast
cancer after NAC treatment. The sensitivity and specificity in the
first and fourth cycles were 77% vs. 86%, and 83% vs. 100%,
respectively. Thus, it can be used for early detection of tumor
response to NAC. Sannachi et al. (49) used a combination of
QUS parameters, texture, and molecular characteristics to
monitor the response to NAC treatment. In the first, fourth,
and eighth week after treatment, the accuracy of this
combination for predicting treatment response was 78%, 86%,
and 83%, respectively. However, the accuracy of QUS parameter
prediction, only, at these three-time points is less than 60%.
There are few studies on QUS predicting breast tumor response
after NAC treatment, and the existing research are insufficient.
Based on current preliminary studies on the objective results,
more extensive prospective studies are necessary to clarify the
evaluation effectiveness of QUS in NAC.

OPTI-MUS is a new imaging technology that combines
conventional ultrasound and diffused optical tomography
through specific technological means. Diffused optical
tomography uses the diffuse scattering effect of tissue on the
multi-wavelength laser to complete the three-dimensional
imaging of tissue physiological information. Measuring the
total hemoglobin (HBT), deoxyhemoglobin (HBO2), and
other parameters in each section of the tumor region
indirectly reflects the tumor angiogenesis activity to evaluate
the efficacy of NAC at the molecular level (51). OPTI-MUS is
associated with NAC response (52–54). Tran et al. (55)
obtained ultrasound and OPTI-MUS data related to the start
of NAC at 0, 1, 4, and 8 weeks, and before surgery, respectively.
The results showed that individual QUS and OPTI-MUS
parameters, including the SI, HBO2, and HBT were
significant markers for response after one week of treatment
(p < 0.01). Multivariate combinations increased the sensitivity,
specificity, and AUC. QUS and OPTI-MUS are both non-
invasive and relatively economical, rapid examinations.
However, challenges, such as errors in the diagnosis of small
and superficial tumors, persist; thus, its application in
monitoring the efficacy of NAC in combination with other
imaging examinations should be further researched.
4 EVALUATION OF THE EFFICACY OF MRI
ON NAC IN BREAST CANCER

There are various diagnostic modalities to assess the efficacy of
breast cancer after NAC. Although many studies have tried to
determine the best imaging method in evaluating the efficacy of
NAC, no consensus has been reached. To date, MRI is the most
used accurate imaging method to assess the extent of tumor
May 2022 | Volume 12 | Article 816297

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kong et al. NAC Efficacy for Breast Cancer
residual after NAC (56). Moreover, breast MRI multiparametric
imaging can quantify and visualize multiple functional processes
simultaneously at the cellular and molecular levels. This clarifies
the therapeutic response of breast cancer and assesses the
response efficacy of NAC earlier, for timely clinical adjustment
of treatment regimens.

4.1 The Conventional MRI
MRI has high soft-tissue resolution and can effectively
distinguish residual tumors from post-chemotherapy fibrotic or
necrotic tissue. The therapeutic effect can be judged mainly by
morphology and by measuring the change in the maximum
diameter of the lesion. Therefore, to some extent, MRI can reflect
the actual size of the mass. The length and diameter
measurements were also based on RECIST 1.1 efficacy
assessment criteria, and tumor responses were classified as
either responsive (CR and PR) or non-responsive (SD and
PD). The presence or absence of residual lesions after NAC of
breast cancer, accurate size measurement, and accurate pCR
prediction directly affect the adjustment of treatment plan and
the choice of surgical approach in clinical practice. Compared
with mammography, ultrasound, or clinical palpation, lesion size
measured by MRI has a higher correlation with pathological
examination. A prospective ultrasound trial (57) enrolled 174
patients with invasive breast cancer who were treated with NAC.
Preoperative measurements of all lesions were assessed by
mammography, clinical examination, and MRI, to detect the
correlation between the accuracy of pathologic CR and final
pathologic size. Ultimately, they found that clinical examination
often underestimated residual tumor size. In contrast,
mammography tended to overestimate, and MRI appeared to
reflect the size of residual lesions more accurately, consistent
with previous results. Therefore, MRI is still the most accurate
method to measure the maximum diameter of NAC when
considering the efficacy assessment after NAC only. The
accuracy of MRI measurement of residual lesions in different
molecular subtypes of breast cancer is, in that order, best in triple
negative and HER2 over-expression (58, 59), while
underestimation of lesions is common in the Luminal type
(58–60). The PPV and NPV for predicting pCR were both
highest in triple-negative breast cancers, while PPV in HER2
over-expressed breast cancers was second only to triple-negative
breast cancers.

Post-NAC MRI shows two main types of tumor shrinkage:
concentric and nested or dendritic shrinkage (61). It can
accurately evaluate concentric shrinkage, but the conventional
MRI has limited value in assessing tumors with nested or
dendritic shrinkage. It is split into many small pieces and
pathologically shows multicentric and discontinuous residual
tumors (62).

4.2 Dynamic Contrast-Enhanced MRI
(DCE-MRI)
DCE-MRI is highly sensitive to changes in tumor presence and
angiogenesis. It is most used for semi-quantitative analysis
parameters to assess NAC efficacy in breast cancer, including
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the early intensification rate, time to peak, maximum
intensification rate, and apparent diffusion coefficient,
reflecting tissue vascular density and vascular permeability. It
has further been demonstrated that some quantitative
parameters, such as volume transfer constant (Ktrans), rate
constant (Kep), and extracellular space volume ratio (Ve), can
be used for early prediction of breast cancer response to NAC
(35). DCE-MRI curve changes can also be used to evaluate the
efficacy of NAC for breast cancer. Generally, time-signal
intensity curve (TIC) morphology is divided into type I (slow
and continuous enhancement type); II (platform type); and III
(clearance type). When the curve shape changes from low to high
grade (e.g. from type II to III) after treatment, it indicates that the
tumor is more aggressive and chemotherapy is ineffective. On the
contrary, when it decreases, it suggests that the treatment is
effective. However, at present, there is no unified standard for the
quantitative index and threshold value of using DCE-MRI to
assess the efficacy of NAC.

The correlation between pathological tumor diameter after
NAC and DCE-MRI tumor diameter was reported to be closer
than that of palpation or ultrasound (63). Furthermore, tumors
with nested or dendritic shrinkage after NAC can be evaluated
for efficacy with DCE-MRI or quantitative diffusion-weighted
MRI (DWI-MRI) (64, 65). A meta-analysis (66) that included 18
studies (969 breast cancer patients) showed that DCE-MRI has a
combined sensitivity and specificity of 0.80 and 0.84,
respectively. DCE-MRI has a higher sensitivity for early
prediction of response to breast cancer, compared with
assessment of tumor response after NAC completion. It is an
effective method for the dynamic monitoring of NAC efficacy
and can also predict the pCR response of breast cancer after
NAC. DCE-MRI was recommended to evaluate the efficacy of
NAC in the RECIST guidelines (35). Other studies (67, 68)
showed that semi-quantitative and quantitative analyses based
on DCE-MRI had certain value in early prediction of NAC
efficacy. In a study on quantitative DCE-MRI assessment of NAC
efficacy for breast cancer, Li et al. (69) noted that the changes in
quantitative parameters, Ktrans and Kep, which reflect blood
perfusion and infiltration, showed statistically significant
differences between the pCR and non-pCR groups after two
cycles of NAC; with subsequent similar conclusions in another
study (70). In the early stages of NAC, the diagnostic efficacy of
combining semi-quantitative and quantitative DCE-MRI
parameters may be higher. Changes in the maximum tumor
diameter in the advanced enhancement stage of DCE-MRI can
be used to better evaluate the tumor ’s sensitivity to
chemotherapy drugs. When the maximum tumor diameter is
reduced by < 25%, there is a high possibility of malignant tissue
residual, while in patients with pCRmonitored by DCE-MRI, the
tumor diameter is reduced by > 45% (71). Therefore, during
NAC treatment, changes in tumor diameter and Ktrans and Kep
parameters in DCE-MRI images, can be used as imaging
indicators to evaluate the degree of tumor remission, thus
providing more useful information for the formulating surgical
plans. Fukuda et al. (72) evaluated the extent of tumor remission
in DCE-MRI after NAC by imaging and performed a consistency
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test between imaging diagnosis results and pathological findings.
They reported an accuracy of up to 88.7%, with a higher accuracy
of 93.2% and 90.9% for Luminal and triple negative breast
cancer, respectively, and a lower accuracy of HER2 over-
expression breast cancer.

Obviously, according to current data, pCR prediction by
imaging does not yet meet clinical expectations, and patients
are still not exempt from surgery by virtue of a negative DCE-
MRI result. However, MRI is still the most accurate method to
evaluate residual tumor and predict pCR among all imaging
evaluation methods. Limitations in the use of DCE-MRI are the
lack of standardization of the DCE protocol and the possible
overestimation due to necrosis, inflammation, fibrosis, or scar
tissue caused by chemotherapy. At the same time, the
antivascular effect of certain chemotherapeutic drugs and the
presence of ductal carcinoma in situ (DCIS) may be
underestimated due to poor imaging (31). Factors such as high
cost, use of contrast agents, and selectivity for patients further
limit its use (73).

4.3 Diffusion-Weighted Imaging (DWI)
Although DCE-MRI is currently a reliable technique for assessing
NAC response, there are still difficulties in using it to predict
postoperative pCR (74). DWI is used to evaluate NAC efficacy by
probing the diffusion capacity of water molecules in living tissues,
i.e., measuring apparent diffusion coefficient (ADC) values and
performing quantitative analysis. It is, thus sensitive to cell
density, membrane integrity, and tissue microstructure (75).
Therefore, DWI may provide complementary information for
predicting chemotherapy response.

An increasing ADC values in the early stages of NAC in breast
cancer is an important indicator to assess the final chemotherapy
outcome of the tumor. After the second cycle of NAC, ADC
values showed statistically significant differences between the
pCR and non-pCR groups (76). According to Iwasa (77), the
increasing tumor ADC values at the end of the first cycle of NAC
was also closely related to the final pathological remission tumor
degree, with an AUC of receiver operating characteristic (ROC)
for predicting pCR of 0.9. It is suggested that DWI can be used to
evaluate the efficacy after the first cycle of treatment, which may
prolong the time to adjust clinical protocols. In 2018, a
prospective multicenter trial in the ultrasound (75) recruited
138 breast cancer patients to determine whether changes in ADC
could predict pCR after NAC. It reported that parameters of
DWI were more predictive of post-NAC pCR after 12 weeks of
treatment, relative to the baseline characteristics [AUC:0.72, 95%
CI:0.61-0.83]. The same conclusion was reached in another
study (78).

Changes in ADC values correlate with the molecular subtypes
of breast cancer. Further studies by Richard (79) and Bufi (80) on
different molecular subtypes of breast cancer suggest that ADC
value could be used as a predictor of efficacy before NAC in
triple-negative type and over-expressed HER2 type breast cancer.
However, in Luminal type breast cancer, there was no significant
difference in tumor ADC value before NAC among different
pathological response groups. Liu et al. (81) analyzed the ADC
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values of 176 patients with different molecular subtypes of breast
cancer before and after NAC, and found that only the triple-
negative breast cancer had significant difference in ADC values
between the pCR and non-pCR groups before NAC; whereas,
other molecular subtypes had no significant difference. There
were significant differences in ADC values between pCR and
non-pCR groups in each subtype of breast cancer after NAC.
This conclusion indicates that due to the existence of multiple
subtypes of breast cancer, the final efficacy evaluated by ADC
value before NAC is limited to triple negative breast cancer and
HER2 over-expressed breast cancer (82).

Although studies have shown that DWI can predict NAC
response, its limitations include high sensitivity to movement,
and thus, it is subject to motion artifacts due to respiratory and
cardiac motions, poor spatial resolution, and difficulty in
assessing certain breast cancer subtypes, such as invasive
lobular carcinoma (83). Therefore, in the evaluation of residual
tumors, it should not just be used as a single indicator to assess
whether the tumor has achieved CR, if possible; but to combine
multiple indicators such as tumor diameter reduction and
increasing ADC value, for a comprehensive assessment of
the tumor.

4.3.1 Intravoxel Incoherent Motion Imaging (IVIM)
IVIM is a new DWI-based technique that separates the micro-
perfusion effect of capillaries in tissues from the diffusion effect of
water molecules to obtain the diffusion coefficient of water
molecules alone (D), the pseudo-diffusion coefficient due to
microcirculatory diffusion (D*), and the perfusion fraction (f),
which may have a good potential for predicting NAC effects.
Several studies have confirmed the potential value of the IVIM
model in monitoring chemotherapy response in a variety of
malignancies, such as liver cancer (84), head and neck tumors
(85), and nasopharyngeal carcinoma (86); however, its studies on
the efficacy of NAC in breast cancer are less available. Studies
(87, 88) concluded that the parameters of IVIM had a good
predictive performance for the pathological response. They
observed that patients with higher baseline f values, higher on-
treatment D values, and lower on-treatment f values responded
better to NAC. Patients in the pCR group showed more
significant changes in D and f values than in the non-pCR
group. Changes in D values after two cycles of NAC treatment
had a good predictive performance for differentiating between
pCR and non-pCR. Another study (89) found no significant
changes in D* and f values before and after NAC and concluded
that they did not predict tumor response. In conclusion, more
studies are needed to explore IVIM in assessing the response to
NAC. In addition, molecular subtypes of breast cancer are
associated with different IVIM parameters. Kim et al. (90)
found that low tissue diffusion was primarily detected in
tumors with high Ki-67 and Luminal B.

IVIM model has the possibility of increasing ADC value to
predict NAC efficacy. However, few studies exist on the
application of IVIM model in the efficacy evaluation and
prediction of NAC in breast cancer, and further research and
confirmation are still needed. IVIM parameters are affected by
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many factors including respiration collection method, fitting
method, and tumor heterogeneity (91–93), resulting in
poor repeatability.

4.3.2 Diffusion Tensor Imaging (DTI)
DTI is considered an extension of DWI, which characterizes
water motion by measuring it in six or more directions. DTI
quantifies two parameters: mean diffusion coefficient (MD) and
fractional anisotropy (FA). MD is an estimate of mean
anisotropy, and FA reflects the degree of anisotropy (94).
Although the early percentage change in tumor FA correlated
weakly with pCR, the significant correlation with pathologic
tumor volume suggests that this metric warrants further
evaluation (95). Furman et al. (96) demonstrated the ability
of DTI to monitor breast cancer response to NAC. It found that
DTI monitors changes in diffusion tensor parameters during
NAC with similar efficiency to DCE; the final pathological
assessment had good agreement. Moreover, DTI provided an
accurate percentage change in size when measuring changes in
tumor volume rather than estimating within a wide range.
Currently, DCE is the primary MRI method for assessing breast
cancer response to NAC. However, DTI has significant
advantages over DCE, such as no contrast injection and
relatively short examination duration. Since DCE and DTI
have similar capabilities in quantitatively assessing tumor size
changes and residual tumor size (95), further large-scale studies
of DTI should be performed to verify whether it can be used
specifically for monitoring and evaluating the response
to NAC.

4.3.3 Diffusion Kurtosis Imaging (DKI)
DKI is a new MRI method to depict the diffusion of non-
Gaussian water molecules in tissues. DWI is based on the
assumption of the homogeneity of the microenvironment, and
considers that the diffusion distribution of water molecules obeys
Gaussian distribution (97). In fact, in living tissue, DWI is
influenced by Brownian incoherent motion, microperfusion,
and blood flow in a non-Gaussian model (98). DKI measured
the tissue diffusion deviation from the Gaussian model. The
ADC value corrected by the non-Gaussian distribution is called
the average diffusion rate (MD). The smaller the MD value is, the
more limited the diffusion motion of water molecules (94). DKI
makes up for the deficiency regarding that DWI and DTI
techniques cannot show the actual diffusion degree of water
molecules (DKI affects the decay at high b-values). In recent
years, DKI has been preliminarily applied to evaluate the efficacy
of NAC in cancers [including rectal cancer (99), nasopharyngeal
cancer (100), and bladder cancer (101)]. The limitation lies in the
fact that the parameters are not as accurate as those of IVIM
model, including the inability to distinguish between the non-
Gaussian increase due to limited dispersion and multi-
component confounding. Currently, there are few studies on
the application of DKI parameters in the evaluation of NAC
response for breast cancer. Still, preliminary results show that
compared with DWI, DKI has significantly higher sensitivity and
specificity in the assessment of breast cancer diagnosis and NAC
efficacy (94).
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4.4 Proton Magnetic Resonance
Spectroscopy (1H-MRS)
The levels of choline (Cho) and its metabolites reflect the level of
cellular metabolism, which is mainly involved in cell membrane
transport and diffusion functions. As an active metabolite, the
concentration of free Cho in normal tissues is low, and the
increase in Cho level reflects an increase in cell membrane
synthesis or cell proliferation. Cho peaks are significantly
elevated in malignant regions, so Cho complexes are usually
considered as markers of malignancy (102). 1H-MRS is used to
assess the therapeutic effect of total choline (tCho) in malignant
tumors by measuring the changes in its concentration. After
effective treatment with NAC, tumor cells are damaged and their
density decreases, thus the tCho peak on the MRS spectrum
subsequently reduces.

In an earlier study, Jagannathan et al. (103) demonstrated that
1H-MRS helped in assessing the response of breast cancer to
NAC. However, they used qualitative observations rather than
the quantitative determination of tCho concentration to monitor
tumor changes. Subsequently, several studies (104, 105) have
determined the reduction in choline signal after one cycle of
chemotherapy to be more sensitive than DWI-MRI in predicting
pathological response. According to Bolan et al. (106), significant
total choline concentration reductions were found as early as 24
hours after the initiation of chemotherapy. Furthermore, changes
in tCho signal measured by MRS may provide an early indicator
of treatment response than changes in size.

Due to the objective technical difficulties of 1H-MRS, it is
currently less used. The main limitations are: 1) the low choline
detection rate currently observed; 2) as the lesions shrink, less
tumor tissue can be measured, especially since small lesions less
than 1 cm are difficult to quantify in tCho; and 3) the relatively
low sensitivity of 1H-MRS compared to MRI (107, 108).

Because of the limitations of various MRI methods and
because some studies are still at the initial stages, for now, the
conventional MRI, DCE-MRI, and DWI can provide more
objective and comprehensive clinical information. The
perfusion and diffusion MRI, which reflect the functional and
molecular levels, could become important methods of imaging
assessment in the future because of their quantifiable
evaluation, and have also been gradually used in clinical
practice (Figure 4). It is worth mentioning that most of the
existing studies have not carefully staged breast cancer, which is
why some of their results show discrepancies, especially
regarding the assessment of the efficacy of the early stages of
NAC. It is known that different subtypes of breast cancer
respond differently to NAC; therefore, the results may be
different if different proportions of patients with different
molecular typing are included.
5 EVALUATION OF THE EFFECT OF
PET-CT ON NAC IN BREAST CANCER

Malignant tumors can show a high uptake of tracers because of
their relatively high metabolic rate. PET-CT mainly reflects the
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metabolism of tissues and organs based on tracers, and reflects
the changes of tumor physiological functions before and after
NAC at the molecular level, which can overcome the limitations
of anatomical imaging, such as MRI (109). Its effectiveness in
assessing the effect of chemotherapy in breast cancer patients has
been reported. Liu et al. (110) conducted a meta-analysis of six
original articles (382 cases). They showed the combined
sensitivity and specificity of PET-CT of 86% and 72%,
respectively. Furthermore, those of MRI were 65% and 88%,
respectively, suggesting that PET-CT has a higher sensitivity and
lower specificity in evaluating the efficacy of NAC for breast
cancer. Another meta-analysis involving 13 original studies (111)
similarly compared MRI and PET-CT performance in predicting
NAC efficacy, showing a combined PET-CT sensitivity and
specificity of 77% and 78%, and that of MRI of 77% and 78%,
respectively. This study concluded that MRI was more sensitive,
and PET-CT more specific; completely contrary to the findings
of previous studies. Another large sample meta-analysis that
Frontiers in Oncology | www.frontiersin.org 12188
compared the performance of MRI and PET-CT in predicting
the efficacy of NAC found that the timing of examination had an
impact on the accuracy of both assessments. The diagnostic
specificity of PET-CT was higher than that of MRI during NAC
(69% vs. 42%), while the MRI sensitivity was higher after NAC
(88% vs. 57%), suggesting that MRI could better assess residual
tumor after treatment, while PET-CT could better assess the
response during treatment (112).

The most used determination method for PET-CT is the
measurement of the maximum standardized uptake value
(SUVmax), which serves the purpose of early monitoring and
assessment of NAC by comparing SUVmax changes before and
after chemotherapy. A study added its contribution to the early
screening of chemotherapy non-responders, based on a 45%
decrease in SUV after the first cycle as a threshold, and a
treatment non-responsive NPV of approximately 90% (113).
Studies (114, 115) showed significantly correlated SUVmax of
tumors with their pCR results after NAC, suggesting SUVmax as
A

B

FIGURE 4 | DCE-MRI, TIC, DWI-MRI, 1H-MRS and histology of partial responder (A) and complete responder (B) before start of NAC (Pre-NAC) and after 8 course of NAC
(Post-NAC). (A) (a) DCE-MRI: the tumor was marked enhancement and irregular margins. (b) TIC : Fast Inflow - Platform Type. (c) DWI-MRI: the ADC value was 0.73 x 10-3

mm2/s. (d) 1H-MRS: high Cho levels. (e) Microscopic image of core-needle biopsy. After 8 course of NAC. (f) DCE-MRI: the mass shows a concentric shrinkage pattern. It is
suggestive of partial response. (g) TIC : Fast Inflow - Platform Type. (h) DWI-MRI: the ADC value was 0.96 x 10–3 mm2/s. (i) 1H-MRS: lower Cho levels compared to baseline.
(j) Microscopic image after NAC shows residual tumor cells, but reduced compared to baseline. (B) (k) DCE-MRI: the tumor was marked enhancement and irregular margins.
(l) TIC : Fast Inflow - Platform Type. (m) DCE-MRI: The ADC value was 0.83 x 10-3 mm2/s. (n) 1H-MRS: high Cho levels. (o) Microscopic image of core-needle biopsy. After 8
course of NAC. (p) DCE-MRI: significant reduction of the mass compared to baseline. (q) TIC : Rapid Inflow - Inflow Type. (r) DCE-MRI: the ADC value was 1.39 x 10–3

mm2/s. (s) 1H-MRS: significant shrinkage of the tumor and a significant decrease of Cho levels. (t) Microscopic image after NAC shows lymphocyte and stromal tissue, no
visible tumor cells. DCE-MRI, dynamic contrast-enhanced MRI; TIC, time-signal intensity curve; DWI-MRI¸ quantitative diffusion-weighted imaging MRI; 1H-MRS, 1H-magnetic
resonance spectroscopy; NAC, neoadjuvant chemotherapy; ADC, apparent diffusion coefficient; Cho, choline.
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a valuable prognostic indicator. Another study (116) showed that
for HER2 over-expressed breast cancer, SUVmax at the second
cycle of NAC is the best indicator to evaluate efficacy. There is
growing evidence that the use of PET-CT to assess metabolic
response has prognostic effect on breast cancer patients treated
with NAC.

PET-CT is helpful for tumor diagnosis and prognosis
assessment. It has high accuracy and can be used in the early
evaluation of NAC efficacy in breast cancer. Still, the specificity of
PET-CT in the efficacy assessment of NAC is low; NAC is a
continuous process that requires multiple tests, and the cost of
PET-CT and the use of radionuclides limits its clinical
application. Therefore, PET-CT has no absolute advantages
over MRI. Consequently, it is not used much in clinical
practice to evaluate the efficacy of NAC.
6 EVALUATION OF THE EFFECT OF NAC
IN BREAST CANCER BY RADIOMICS

The concept of radiomics was first proposed by one American
scholar (117) in 2010 and further improved by Dutch scholar
(118) in 2012. It refers to the high-throughput extraction of a
large amount of information from images (CT, MRI, PET-
CT, etc.) to achieve tumor segmentation, feature extraction,
and model establishment; to carry out deeper mining,
prediction, and analysis; and to assist imaging physicians to
make the most accurate diagnosis. Currently, radiomics
based on different imaging technologies such as ultrasound,
mammography and MRI have been gradually applied to the
differential diagnosis and prognostic analysis of breast cancer
Frontiers in Oncology | www.frontiersin.org 13189
(119–121). In recent years, there have been increasing
number of studies on the application of imaging omics to
evaluate the efficacy of NAC for breast cancer, with several
studies confirming its effectiveness. Among them, Quiaoit
et al. (122) showed that imaging omics had advantages in
predicting pCR after NAC for breast cancer, compared with
traditional single imaging technology. Compared with single
imaging assessment, imaging omics is an important emerging
technology with systematic, comprehensive, and highly
predict ive advantages . In future, i ts superiority in
evaluating the efficacy of NAC for breast cancer should
be demonstrated.

MRI radiomics is the most commonly used technique. A
recent study involving four centers (74) showed that the multi-
sequence MRI model combined with T2WI, DWI, and DCE-
MRI scan sequences before treatment had a higher predictive
pCR ability than the single-sequence model (AUC=0.79). The
predictive ability of the model for pCR in three different
pathological subtypes of hormone receptor-positive, HER2
over-expressing, triple negative breast cancer, performed well
in a cohort of four study centers. Another study showed a
significant advantage of multivariate modeling of MRI for
predicting pCR in the triple negative and HER2 positive
groups before NAC (123). Radiomics combined ultrasound
and PET-CT has greater potential for investigation, and recent
finding showed that some radiomics features of PET and
ultrasound can be considered as potential predictors of pCR
(115). With the development of artificial intelligence and big data
platforms, the automatic identification of breast lesions, the
establishment of a multimodal intelligent and integrated
diagnostic system, and the exploration of clinical mechanisms
TABLE 1A | Studies on the efficacy of various imaging techniques for breast cancer NAC (References to this article) (A) Studies on the efficacy of various imaging
techniques on breast cancer NAC (evaluation index: Sensitivity, Specificity).

Number Study Number of patients Research type Examination Sensitivity (%) Specificity (%)

1 Keune et al. (6) 192 retrospective study US/MG 45.8/54.2 93.8/86.3
2 Skarping et al. (15) 202 prospective study MG/US/DBT 65/62/50 81/81/91
3 Iotti et al. (22) 46 prospective study CESM/MRI 100/87 84/60
4 Patel et al. (23) 65 prospective study CESM/MRI 95/95 66.7/68.9
5 Barra et al. (24) 33 prospective study CESM/MRI 76/92 87.5/75
6 ElSaid et al. (25) 21 prospective study CESM 40 91
7 Xing et al. (26) 111 retrospective study CESM 75-81.25 72.15-51.90
8 Amioka et al. (31) 63 prospective study CEUS/MRI/PET-CT 95.7/69.6/100 77.5/85/52.5
9 Huang et al. (34) 143 prospective study CEUS 78.6 74.5
10 Wang et al. (38) 290 prospective study ABUS 85.7-88.1 81.5-85.1
11 Fernandes et al. (43) 92 prospective study SE 84 85
12 Katyan et al. (44) 86 prospective study SE 97.7-77.8 68.7-100
13 Jing et al. (45) 62 prospective study SWE 72.92 85.71
14 Lee et al. (46) 71 prospective study US/SWE 72.1/83.6 50/80
15 Maier et al. (48) 134 prospective study SWE 79.6 58.6
16 Sannachi et al. (49) 30 prospective study QUS 82 100
17 Yu et al. (52) 20 prospective study OPTI-MUS 76.9 71.4-85.7
18 Altoe et al. (54) 40 prospective study OPTI-MUS 86.7 68.4
19 Tran et al. (55) 22 prospective study QUS+OPTI-MUS 64.3-100 62.5-100
20 Bouzon et al. (58) 91 prospective study MRI 75 78.57
21 Cheng et al. (66) 969 meta-analysis DCE-MRI 80 84
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TABLE 1A | Continued

Number Study Number of patients Research type Examination Sensitivity (%) Specificity (%)

22 Zheng et al. (70) 63 prospective study DCE-MRI 66.8-75.0 60.0-66.7
23 Fukuda et al. (72) 265 prospective study DCE-MRI 43.2 97.7
24 Zhu et al. (78) 64 prospective study DWI-MRI 91.67 87.5
25 Richard et al. (79) 118 retrospective study DWI-MRI 100 38
26 Liu et al. (81) 176 retrospective study DWI-MRI 62.5-75 82.61-97.36
27 Che et al. (87) 36 prospective study IVIM-MRI 100 73.7
28 Jagannathan et al. (103) 67 prospective study 1H-MRS 78 86
29 Tozaki et al. (104) 34 prospective study 1H-MRS / /
30 Bayoumi et al. (108) 47 prospective study 1H-MRS+DCE-MRI 75 97.1
31 Liu et al. (110) 382 meta-analysis (18)F-PETCT/MRI 86/65 72/88
32 Li et al. (111) 1193 meta-analysis MRI/PETCT 0.88/0.77 0.69/0.78
33 Sheikhbahaei et al. (112) 595 meta-analysis MRI/PETCT 0.88/0.71 0.55/0.77
34 Schwarz-Dose et al. (113) 87 prospective study PETCT 69-73 63
35 Akimoto et al. (114) 130 prospective study (18)F-PET/CT 79.3 53.1
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TABLE 1B | Studies on the efficacy of various imaging techniques for breast cancer NAC (References to this article) (B) Studies on the efficacy of various imaging
techniques on breast cancer NAC [evaluation index: correlation coefficient (CC)].

Number Study Number of patients Research type Examination CC

1 Leddy et al. (14) 57 prospective study Ultrasonic/MM/MRI 0.71/0.58/0.50
2 Kim et al. (16) 207 prospective study MG/MRI 0.368/0.823
3 Um et al. (17) 151 prospective study MRI/MG 0.769/0.651
4 Fallenberg et al. (20) 178 prospective study MG/CESM/MRI 0.61/0.69/0.79
5 Cao et al. (32) 31 prospective study CEUS 0.976
6 Lee et al. (33) 30 prospective study CESM/MRI 0.75/0.42
7 Park et al. (40) 51 prospective study MG/DBT/ABUS/MRI 0.56/0.63/0.55/0.83
8 Segara et al. (63) 68 retrospective study MRI/US/physical exam 0.869/0.612/0.439
9 Newitt et al. (64) 20 prospective study DWI-MRI 0.91-0.92
10 Furman-Haran et al. (96) 20 retrospective study DTI-MRI 0.82
11 Tozaki et al. (105) 9 prospective study 1H-MRS 0.91
12 Antunovic et al. (115) 79 retrospective study (18)F-PET/CT radiomics 0.7-0.73
13 Zhuang et al. (122) 144 retrospective study MRI radiomics 0.826-0.902
TABLE 1C | Studies on the efficacy of various imaging techniques for breast cancer NAC (References to this article) (C) Studies on the efficacy of various imaging
techniques on NAC in breast cancer (evaluation index: AUC).

Number Study Number of patients Research type Examination AUC

1 Dromain et al. (21) 110 prospective study MX ± US ± CEDM/MX ± US 0.87/0.83
2 Xing et al. (26) 111 retrospective study CESM 0.733-0.776
3 Lee et al. (46) 71 prospective study US+SWE/MRI 0.877/0.939
4 Evans et al. (47) 80 prospective study US+SWE/MRI 0.92/0.96
5 Rauch et al. (51) 33 prospective study OPTI-MUS 0.92
6 Zheng et al. (70) 63 prospective study DCE-MRI 0.703-0.767
7 Loo et al. (71) 54 prospective study DCE-MRI 0.73
8 Liu et al. (74) 586 retrospective study MRI radiomics 0.86
9 Galban et al. (75) 39 prospective study DWI-MRI 0.825
10 Minarikova et al. (76) 42 prospective study DWI-MRI 0.79
11 Iwasa et al. (77) 24 prospective study DWI-MRI 0.9
12 Bufi et al. (80) 225 retrospective study DWI-MRI 0.587
13 Liu et al. (81) 176 retrospective study DWI-MRI 0.751-0.864
14 Xu et al. (88) 51 prospective study IVIM-MRI 0.832
15 Wilmes et al. (95) 34 prospective study DTI-MRI 0.6-0.83
16 Bolan et al. (106) 119 prospective study 1H-MRS 0.51-0.53
17 Li et al. (111) 1193 meta-analysis MRI/PETCT 0.88/0.84
18 Luo et al. (119) 315 prospective study US radiomics 0.928
19 Quiaoit et al. (121) 36 prospective study US radiomics 0.87
20 Cain et al. (123) 288 prospective study DCE-MRI radiomics 0.707
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with radiomics will be gradually reflected in the clinical studies in
the end.
7 CONCLUSION

In summary, various imaging methods are used to evaluate the
efficacy of NAC for breast cancer in clinical practice. The value of
some of the new imaging techniques has not been thoroughly
studied; thus, it is not suitable for clinical application at present.
With the emergence and development of new imaging
techniques, we believe that certain models may exhibit high
sensitivity and specificity for specific tumor subtypes. Thus,
imaging evaluation is likely to become increasingly
individualized. The value of mammography, ultrasound, MRI,
and PET-CT in evaluating NAC in breast cancer was discussed in
this paper. Additional details on the references included in this
paper can be found in Table 1. However, breast cancer’s
occurrence, development, and sensitivity to chemotherapeutic
drugs are continuous, dynamic, and complex. A single imaging
examination cannot provide a good evaluation of efficacy in the
entire process of NAC. Therefore, in clinical treatment, we
should be clearly aware of the pros and cons of various
imaging methods and adopt a comprehensive method for
evaluating the efficacy of NAC for breast cancer. This is
expected to achieve an early, objective, and accurate
Frontiers in Oncology | www.frontiersin.org 15191
assessment of efficacy, and provide a basis of decision for the
precise treatment of breast cancer, ultimately improving the
overall survival of breast cancer patients.
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Background: The detection of phosphatidylinositol-3 kinase catalytic alpha (PIK3CA)
gene mutations in breast cancer is a key step to design personalizing an optimal treatment
strategy. Traditional genetic testing methods are invasive and time-consuming. It is urgent
to find a non-invasive method to estimate the PIK3CA mutation status. Ultrasound (US),
one of the most common methods for breast cancer screening, has the advantages of
being non-invasive, fast imaging, and inexpensive. In this study, we propose to develop a
deep convolutional neural network (DCNN) to identify PIK3CA mutations in breast cancer
based on US images.

Materials and Methods: We retrospectively collected 312 patients with pathologically
confirmed breast cancer who underwent genetic testing. All US images (n=800) of breast
cancer patients were collected and divided into the training set (n=600) and test set
(n=200). A DCNN-Improved Residual Network (ImResNet) was designed to identify the
PIK3CA mutations. We also compared the ImResNet model with the original ResNet50
model, classical machine learning models, and other deep learning models.

Results: The proposed ImResNet model has the ability to identify PIK3CA mutations in
breast cancer based on US images. Notably, our ImResNet model outperforms the
original ResNet50, DenseNet201, Xception, MobileNetv2, and two machine learning
models (SVM and KNN), with an average area under the curve (AUC) of 0.775.
Moreover, the overall accuracy, average precision, recall rate, and F1-score of the
ImResNet model achieved 74.50%, 74.17%, 73.35%, and 73.76%, respectively. All of
these measures were significantly higher than other models.

Conclusion: The ImResNet model gives an encouraging performance in predicting
PIK3CA mutations based on breast US images, providing a new method for
noninvasive gene prediction. In addition, this model could provide the basis for clinical
adjustments and precision treatment.

Keywords: breast cancer, gene mutation, PIK3CA, deep learning, ultrasonic image
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1 INTRODUCTION

Breast cancer has become the leading cause of global cancer
incidence in 2020 (1), and it is the fifth cause of cancer deaths
among Chinese women (2). A high degree of heterogeneity can be
observed in breast cancer, and genomic instability is regarded as a
major driver of tumor heterogeneity (3). The differences at the
genetic and molecular levels make clinical treatment options
hugely different. Somatic mutations are stable mutations and
play an important role in cancer development and progression
(4). The phosphatidylinositol-3 kinase catalytic alpha (PIK3CA)
gene is one of the most frequent somatic mutations in breast
cancer. According to the Cancer Genome Atlas Network, the
percentage of PIK3CA mutations is 34% (5). Phosphatidylinositol
3-kinase (PI3K) is an activator of AKT, which participates in the
regulation of cell growth, proliferation, survival, and motility. The
PI3K heterodimer consists of two subunits: the regulatory subunit
(P85) and the catalytic subunit (p110). PIK3CA induces
hyperactivation of the alpha isoform (p110a) of PI3K and can
act on the PI3K-AKT-mTOR signaling pathway to trigger
oncogene activation, and also lead to persistent AKT activation
and regulation of tumor growth in breast cancer (6–8).

Currently, available treatment options for breast cancer are
chemotherapy, endocrine therapy (ET), targeted therapy, and
immunotherapy. Two-thirds of breast cancer patients express
hormone receptors (HR) and lack human epidermal growth
factor receptor 2 (HER2) overexpression and/or amplification,
and for them, ET is the paramount medical treatment (9, 10).
However, about 50% of patients eventually develop ET resistance
due to several mechanisms, such as the dysregulation of PI3K-AKT-
mTOR signaling (11). The orally available a-selective PIK3CA
inhibitor, alpelisib, has been approved by the U.S. Food and Drug
Administration (FDA) for the treatment and prognosis of patients
with HR+/HER2- advanced or metastatic breast cancer (12, 13). In
addition, alterations in the PI3K pathway are associated with poor
outcomes of targeted therapy in HER2+ breast cancer (14). For
triple-negative breast cancer (TNBC), PIK3CA protein expression is
significantly associated with improved overall survival and disease-
free survival (15). Therefore, the PIK3CA mutation status plays a
vital role in determining the optimal treatment choice for breast
cancer patients.

Clinically relevant PIK3CA alterations are detected in several
biospecimens using different genetic testing techniques including
direct sequencing, real-time polymerase chain reaction (PCR), next-
generation sequencing (NGS), and analysis of liquid biopsy samples
(16). Although these methods for detecting genetic mutations have
improved considerably, molecular testing is often time-consuming,
operator dependent, and may be limited by inadequate sample
availability. In addition, the cost of genetic testing remains too high
for patients. Thus, it is necessary to develop noninvasive and
efficient methods for estimating PIK3CA mutation status.

Recently, medical images have been employed to identify the
gene mutations in different cancers where different images from
different modalities such as computerized tomography (CT) and
magnetic resonance imaging (MRI). For instance, Weisset al. (17)
found that texture analysis on CT images can differentiate the
presence of K-ras mutation from pan-wildtype non-small cell lung
Frontiers in Oncology | www.frontiersin.org 2197
cancer. Dang et al. (18) used MRI texture analysis to predict p53
mutation status in head and neck squamous cell carcinoma.
Meanwhile, texture analysis has been used to assess the
relationship between genetic mutations in breast cancer and
morphological features of the masses in MRI images. Woo et al.
(19) applied texture and morphological analysis in breast MRI
images to evaluate TP53 and PIK3CAmutations. Georgia et al. (20)
performed texture analysis of breast MRI to predict BRCA-
associated genetic risk. However, CT and MRI are relatively
expensive, time-consuming, and not available for all patients.

As one of the widely used tools in breast tumor assessment,
ultrasound (US) has similar features to assess breast tumors as
CT and MRI and also has the advantages of being non-invasive,
real-time, and low cost (21). To solve the disadvantages of
operator dependence, many deep learning methods have been
proposed for US images. Unlike traditional machine learning
and radionics methods, a deep convolutional neural network
(DCNN), a special type of deep learning, does not require
domain experts to select the specific features beforehand. In
contrast, it takes the raw medical images as inputs, does not
require manually designed features, and can automatically learn
features related to classification or segmentation tasks (22). To
improve the efficiency of clinical workflows and reduce inter-
observer variation, deep learning has already been applied in
large datasets of US images for classifying benign and malignant
breast tumors (23–25), classifying molecular subtypes of breast
cancer (26, 27), predicting breast cancer lymph node metastasis
(28–31) and predicting the response of breast cancer to
neoadjuvant chemotherapy (32, 33), etc.

Some studies have applied deep learning models to identify
TP53 mutations in pancreatic cancer using MRI multi-modal
imaging (34), EGFR mutation status of lung adenocarcinoma
using CT imaging (35, 36), and KRAS mutations in colorectal
cancer using CT imaging (37). However, it remains unclear
whether deep learning models can be employed to identify
breast cancer gene mutations on US images. This study
observed the differences in breast morphology and other
features resulting from microstructural changes in PIK3CA
mutant of breast cancers, investigated whether the differences
could be captured and interpreted by US images, and identified
them using an improved residual network (ImResNet).
2 MATERIALS AND METHODS

2.1 Materials
This study enrolled 589 female patients with breast cancer who are
treated in Guangdong Provincial People’s Hospital between January
2017 and October 2021. To obtain PIK3CA mutation status, all
patients submitted their breast tissue samples and blood samples for
targeted sequencing to a clinical laboratory accredited by the College
of American Pathologists (CAP) and certified by the Clinical
Laboratory Improvement Amendments (CLIA). This retrospective
study was approved by the Institutional Review Board of
Guangdong Provincial People’s Hospital and exempt from
obtaining informed consent from patients.
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Mutational analysis of the PIK3CA gene was performed using
the next-generation sequencing (NGS) technique. First, tissue
and genomic DNAs were extracted from formalin-fixed,
paraffin-embedded (FFPE) tumor tissues using QIAamp DNA
FFPE tissue kit and from blood samples using QIAampDNA
blood mini kit (Qiagen, Hilden, Germany), respectively. NGS
library construction required at least 50 ng DNA. Then, tissue
DNA was sheared using Covaris M220 (Covaris, MA, USA),
followed by end repair, phosphorylation, and adaptor ligation. A
200-400bp fragment was purified, followed by hybridization with
capture probes decoys, magnetic bead hybridization selection,
and PCR amplification. Fragment quality and size were assessed
by the high sensitivity DNA kit (Bioanalyzer 2100, Agilent
Technologies, CA, USA). Target capture was performed using
a commercial panel consisting of 520 cancer-related genes. The
cases were selected for study following the criteria ①surgical
resection was performed for the target tumor; ②the Pathological
and immunohistochemical results were completely obtained;
③the preoperative breast US images of the patients were fully
obtained and stored. Finally, 312 patients including 127 PIK3CA
mutation patients (the mean age of 51.2 years; the age range of
25-76 years) and 185 Non-PIK3CA mutation patients (the mean
age of 48.7 years; the age range of 22-89 years) with 800 US
images were collected in this study. The flowchart of the study
cohort selection is shown in Figure 1. To ensure the robustness
and accuracy of the model, multiple US images of different
sections were acquired per lesion as much as possible.

2.2 Proposed Methods
2.2.1 Tumor Region Extraction
Firstly, the region of interest (ROI) which includes the entire
tumor area, as well as the minimum peritumoral tissue was
manually cropped in breast US images which were completed by
Frontiers in Oncology | www.frontiersin.org 3198
a senior radiologist with 12 years of experience. An example of
the ROI of breast US images is shown in Figure 2. After that, a
total of 800 ROI images were obtained and then split into
training and testing groups at the ratio of 75% to 25%.

2.2.2 Deep Learning Network
In the proposed method, the PIK3CA mutation status is
observed on the ROI images and the mutation identification
problem is transferred into an image classification problem. A
deep residual network (ResNet) is redesigned by changing the
architecture to extract the textural features on images and its
output parts were modified to accomplish this classification task.

In deep learning networks, multiple layers are stacked in
sequence and the output of the previous layer is fed to the
following layer. A convolution layer is a basic layer where
different filters perform a convolution operation to extract the
features from the former layers with different kernels (22). The
kth convolution layer Lk is noted as:

xkn = f omx
k−1
m ⊗Wk

mn + bkn
� �

(1)

f (x) =
x x ≥ 0

0 x < 0

(
(2)

where xk−1m is the mth feature map of layer Lk-1, W
k
mn is the

connecting weights between nth feature map of the output layer
and mth feature map of the previous layer, and the bias of nth

feature map is denoted as bkn⊗ denotes the convolution
operation, Wk

mn is randomly initialized and is then tuned using
a backpropagation procedure, and further optimized with
stochastic gradient descent (SGD) algorithm (38), f is an
activation layer to convert the nonlinear values into linear
FIGURE 1 | Flowchart of the study cohort selection.
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values. There are some commonly used activation functions
namely rectified linear units (ReLU), Sigmoid, Tangent and
softmax functions (39).

Pooling layers reduce the redundant parameters in the
convolution layer to increase the computing speed.

I(k+1) = P(I(k)) (3)

Where P is a pool function, the max pooling, average pooling,
global max pooling, and global average pooling methods are used
for this process.

In the fully connected layer, each neuron is connected to the
previous layer. Their outputs estimate the confidence to
different categories.

For a classification problem, the final layer usually uses an
activation function as the classification layer. The classification
layer yields the probabilities of the inputs belonging to a certain
class (40).

P(y = 1 ∣ x,w, b) =
exp w · x + bf g

1 + exp w · x + bf g (4)

P(y = 0 ∣ x,w, b) =
1

1 + exp w · x + bf g (5)

Where y is the class target, x ∈ RNx1 is a N dimensional feature
vector, w ∈ RNx1 is the weight parameter, and b is a bias term. In
our model, the output layer has two outputs for PIK3CA and
Non-PIK3CA mutation, respectively.

The ResNet employs a unique residual operation in the network
which makes it easy to converge, to gain accuracy from increased
depth. A ResNet utilizes skip connections, or short-cuts, to jump
over some layers. Typically, it consists of convolutional layers,
rectified linear units (ReLU) layers, batch normalization layers,
and layer skips (41). The transfer learning approach redesigns the
pre-defined network to make it accomplish different tasks, which
reduces the time in training and improves the network’s
generalization ability. In our proposed network, rather than
building a model from scratch, a ResNet50 model pre-trained by
natural images from ImageNet, is selected as a backbone to extract
the features from ROI images. ImageNet comprises more than 14
Frontiers in Oncology | www.frontiersin.org 4199
million images that have been hand-annotated to indicate the
pictured objects and are categorized into more than 20,000
categories (42). Of note, in breast US transfer learning, ImageNet
is used as a pre-training dataset in most cases (43–45). The
advantages of using the pre-trained network include reducing
training time, providing better performance for neural networks,
and requiring limited data. The original ResNet is improved by
adding a new fully connected layer for feature extraction and adding
a new global average pooling to interpret these features in the
classification task. The idea is to generate one feature map for each
corresponding category of the classification task in the last
convolutional layer. Thus, the feature maps can be interpreted as
categories confidence maps. Also, the global average pooling is a
structural regularize to prevent overfitting for the overall structure.
Then, another fully connected layer is added as a classification layer
to match the output numbers of classified categories, and a binary
cross-entropy (BCE) function is used as the loss function which
computes the BCE between predictions and targets (46). Figure 3
shows the structure diagram of our proposed ImResNet.

2.3 Evaluation and Statistical
Analysis Metrics
A confusion matrix (CM) is used to evaluate classification
performance. The rows of CM represent the instances of a
predicted class and columns represent the instances of an
actual class, Using the results in CM, four parameters namely
precision (P), recall (R), F1-score, and accuracy (ACC) were
defined as follows:

PðiÞ = Mii

ojMji
(6)

RðiÞ = Mii

ojMij
(7)

P(i) is the fraction of samples where the algorithm correctly
predicted class i out of all predictions using the algorithm, and R
(i) is the fraction of cases where the algorithm correctly predicted
i out of all the true cases of i. Mij is the samples whose true class is
i and prediction class is j.
A B C

FIGURE 2 | Image pre-processing. (A) An original breast US image. (B) Image after coordinate marking. (C) The selected effective image area.
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F1(i) = 2� PðiÞ � RðiÞ
PðiÞ + RðiÞ (8)

ACC = oiMii

oijMij
(9)

where ∑iMii is all correct predictions and ∑ijMij is total
predictions. Accuracy is one metric for evaluating classification
performance, which is defined as a fraction of correct predictions
out of total predictions.

The receiver operator characteristic (ROC) curve was also
utilized to measure the classification performances of different
models. The area under curve (AUC) was calculated and worked
as a metric to evaluate the classification performance.
3 RESULTS

3.1 Platform Settings
The modified deep learning model was trained on a server with a
2 x Six-Core Intel Xeon processor and 128GB of memory. The
server is equipped with an NVIDIA Tesla K40 GPU with 12GB
of memory.

3.2 Predictive Performance of the
ImResNet Model
For the test set of 200 US images, the performance of the
ImResNet50 model has been given in Table 1. The ImResNet
model achieved the best performance in all models, with an
overall accuracy of 74.50%, and the average precision, recall, and
F1-score reached 73.35%, 74.17%, and 73.60%, respectively.
Figure 4A shows the model achieved an AUC of 0.775.
Besides, the performance of the ImResNet model can be
visualized from the CM in Figure 5. In the figures of CM, the
first two rows represent the instances of a predicted class, the first
Frontiers in Oncology | www.frontiersin.org 5200
two columns represent the instances of an actual class, the
diagonal elements correspond to correctly classified
observations, and the off-diagonal cells correspond to
incorrectly classified observations. As well, the bottom row is
the row-normalized row summary, and it shows the percentages
of correctly and incorrectly classified observations for each true
class. The rightest column is the column-normalized column
summary and displays the percentages of correctly (in green
color) and incorrectly classified observations (in red color) for
each predicted class. In each cell, the percentage value is
calculated using the current number over the whole sample
number. Figure 6 shows the classification examples of the
ImResNet model. In the first line, the four images in the
PIK3CA category are listed, while the four images in the Non-
PIK3CA category are shown in the second row.

3.3 Comparison With Machine
Learning Models
First, we compared our proposed ImResNet model with two
commonly used machine learning methods to identify PIK3CA
mutations on the same dataset. In machine learning, the support
vector machine (SVM) (47) is one of the most robust supervised
learning models for classification and regression analysis, which
transfers the training examples to points in space to maximize
the width of the gap between the two categories and maps the
new unknown examples into that same space and predict their
belongings to a category based on which side of the gap they are
in. The K-nearest neighbors (KNN) algorithm is a type of
instance-based classification method where an unknown object
is classified by a plurality vote of its neighbors, with the object
being assigned to the class most common among its K nearest
neighbors. In the parameters of KNN, 5 neighbors are selected.
Euclidean distance is the distance metric, and all features are
standardized in the range of [0, 1]. The two machine learning
models’ performance is listed in Table 1, and the ROC curves are
FIGURE 3 | The ImResNet model’s structure diagram.
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depicted in Figures 4C, D. The ImResNet achieves an AUC of
0.775, higher than that of SVM and KNN models (AUC: 0.745,
0.741). The overall accuracy, average precision, recall rate, and
F1-score of the ImResNet model were all significantly higher
than the SVM and KNN models. The CMs of the two machine
learning models are shown in Figures 5C, D. We find that
compared with the SVM and KNN models, the ImResNet model
has an improvement in the ability to identify Non-PIK3CA
Frontiers in Oncology | www.frontiersin.org 6201
mutation. Compared with the KNN, the ImResNet model has
increased 23(11.5%) correctly identified cases in Non-
PIK3CA mutation.

3.4 Comparison With Deep
Learning Models
To confirm the enhanced performance of the improved
ResNest50 model, we compare it with the original ResNest50
A B

D E F G

C

FIGURE 4 | ROC curves of different models. (A) Improved ResNet50. (B) Original ResNet50. (C) SVM. (D) KNN. (E) DenseNet201. (F) Xception. (G) MobileNetv2.
TABLE 1 | A performance summary of the ImResNet model and other models in identifying PIK3CA mutations of breast cancer.

Model Classifier Categories Precision Recall F1-score Accuracy

Machine learning SVM Non-PIK3CA 64.04% 74.49% 68.87%
PIK3CA 70.93% 59.80% 64.89%
Average 67.48% 67.15% 66.88%
Overall 67.00%

KNN Non-PIK3CA 61.40% 75.27% 67.63%
PIK3CA 73.26% 58.88% 65.28%
Average 67.33% 67.07% 66.46%
Overall 67.33%

Deep learning ImResNet50 Non-PIK3CA 81.58% 75.61% 78.48%
PIK3CA 65.12% 72.73% 68.71%
Average 73.35% 74.17% 73.60%
Overall 74.50%

Original ResNest50 Non-PIK3CA 65.79% 61.48% 63.56%
PIK3CA 45.35% 50.00% 47.56%
Average 55.57% 55.74% 55.56%
Overall 57.00%

DenseNet201 Non-PIK3CA 77.19% 66.67% 71.54%
PIK3CA 48.84% 61.76% 54.55%
Average 63.02% 64.22% 63.05%
Overall 65.00%

Xception Non-PIK3CA 65.79% 65.79% 65.79%
PIK3CA 54.65% 54.65% 54.65%
Average 60.22% 60.22% 60.22%
Overall 61.00%

MobileNetv2 Non-PIK3CA 77.19% 66.17% 71.26%
PIK3CA 47.67% 61.19% 53.59%
Average 62.43% 63.68% 62.42%
Overall 64.50%
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model and other deep learning models (DenseNet201, Xception,
MobileNetv2). We obtained the ROC curves, AUC values (as
shown in Figure 4), accuracy, precision, recall, and F1-score (as
presented in Table 1). Our model’s AUC value was 11.6% higher
than original ResNest50, 8.6% higher than DenseNet201, 15.2%
higher than Xception, and 6.6% higher than MobileNetv2.
Meanwhile, all quantitative metrics are better than other deep
learning models. From the CM in Figure 5, we found that the
ImResNet model has increased 17(19.8%), 5(2.5%), 18(9.0%) and
5(2.5%) correctly identified cases in PIK3CA mutations
compared to the original ResNest50 model, DenseNet201,
Xception and MobileNetv2, respectively.
Frontiers in Oncology | www.frontiersin.org 7202
4 DISCUSSION

In this study, we proposed a DCNN-ImResNet using non-
invasive US images to identify PIK3CA mutation status for
patients with breast cancer. As one of the most common
mutated genes in breast cancer, PIK3CA plays an essential role
in both the development and progression of breast cancer (48,
49). As an oral PI3K inhibitor, Alpelisib has received FDA
approval for targeted breast cancer therapy (13). Accordingly,
determining the PIK3CA mutation status of breast cancer
patients is critical to the management. Whereas complexity of
genetic testing has limited timely testing and targeted treatment
A B

D E F G

C

FIGURE 5 | Confusion matrices of different models. (A) Improved ResNet50. (B) Original ResNet50. (C) SVM. (D) KNN. (E) DenseNet201. (F) Xception. (G) MobileNetv2.
FIGURE 6 | Classification examples of the ImResNet model.
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to breast cancer patients in the era of precision medicine.
Previously, Woo Kyung et al. (19) found that texture analysis
of segmented tumors on breast MRI based on ranklet transform
was potential in recognizing the presence of TP53 mutation and
PIK3CA mutation, and for PIK3CA mutation, the AUC of
ranklet texture feature was 0.70. But this study has some
limitations. On the one hand, acquiring MRI images of breasts
is time-consuming and expensive. On the other hand, the
computer-aided diagnostic approach in that study is semi-
automated and still needs manual interactions. Hence, we
proposed the ImResNet model which can automatically
identify PIK3CA mutations. So far, it is the first study of US
images based on deep learning for the identification of PIK3CA
mutations in breast cancer.

The ImResNet model is a feasible model for identifying
PIK3CA mutations with an AUC of 0.775 for the test cohorts,
outperforming the two machine learning models (SVM and
KNN) and other deep learning models (Original ResNest50,
DenseNet201, Xception, and MobileNetv2). The good
performance obtained illustrates that the differences in breast
morphology and other features resulting from microstructural
changes in PIK3CA mutant breast cancers could be captured by
US images and identified using a deep learning model. The
ResNet50 has been proven to have good performance in breast
US images classification because it is possible to go deeper
without losing generalization capability (26). We used transfer
learning to pre-train ResNet50 to overcome our small sample
size problem and improved the original ResNet50 by adding a
new fully connected layer for feature extraction and adding a new
global average pooling to interpret these features in the
classification task to obtain the ImResNet. Then, we trained
the ImResNet model using the presence or absence of the
PIK3CA mutations as a label and finally confirmed that the
PIK3CA mutation status can be identified from US image
data alone.

One of the advantages of our model is that it automatically
learns US image features without the need to extract features
manually. In recent years, radiomics features extracted from
non-invasive images have been applied to identify gene
mutations in some tumors. Zhang et al. (35) proposed to
develop a deep learning model to recognize EGFR status of
LADC by using the radiomics features extracted from CT
images. Their results show that this method can precisely
recognize EGFR mutation status of lung adenocarcinoma
patients. Nevertheless, the radiomics features rely on manual
annotation by professionals and automatic segmentation of the
target area. Manual annotation is time-consuming and labor-
intensive. Moreover, automated segmentation requires a well-
established segmentation system in clinical practice. By contrast,
deep learning models can automatically learn multi-level
features. A study by Kan et al. (37) investigated performance
by using a deep learning method to estimate the KRAS mutation
status in colorectal cancer patients based on CT imaging and
compared it with a radiomics model, and the results show that
the deep learning model has a better performance.
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Meanwhile, some studies have focused on pathological specimens
of tumors to test whether deep learning models can predict gene
mutations from pathological pictures. Wang et al. (50) demonstrated
that a DCNN could assist pathologists in the detection of BRCA gene
mutation in breast cancer. Velmahos et al. (51) used a deep learning
model to identify bladder cancers with FGFR-activating mutations
from histology images. Furthermore, Nicolas et al. (52) trained a
DCNN to predict the ten most commonly mutated genes in lung
adenocarcinoma on pathology images. They found that six of them
(TK11, EGFR, FAT1, SETBP1, KRAS, and TP53) can be predicted
with AUCs from 0.733 to 0.856. However, some histopathological
information can only be evaluated after invasive biopsy or surgery
resection. The proposed ImResNet model on US images can
repeatedly be tracked during the exploration of tumor treatment
when the patient’s physical condition is not suitable for invasive
biopsy or surgery.

Despite the better performance of the ImResNet model to
identify PIK3CA mutations, it still has several limitations that can
be improved in future work. First, the sample size was relatively small
and retrospectively collected in this study. Therefore, prospective
investigation using considerably larger datasets is required to further
validate the robustness and reproducibility of our conclusions.
Second, we included only a single-center cohort with the internal
testing set. In the future, multi-centercohorts should be recruited for
evaluation. Third, the 74.50% accuracy of our proposed method is
not yet sufficient for clinical needs, and further performance
improvements are needed in future work. However, this promising
performance could still encourage more researchers to utilize deep
learning methods based on US imaging to identify breast cancer
gene mutations.
5 CONCLUSION

In this study, we proposed a DCNN-ImResNet for the automated
identification of PIK3CA mutations in breast cancer based on US
images. Our method’s main advantage is that it is a non-invasive
method for identifying PIK3CA mutations in breast cancer suitable
for avoiding invasive damage when surgery and biopsy are
inconvenient. In addition, US images are easily available to
monitor for PIK3CA mutations throughout the treatment period
of breast cancer. And the cost and time to obtain US images are
relatively low. Although the ImResNet model has some potential in
identifying PIK3CA mutations, there is still space for performance
improvement. In the future, prospective multicenter validation
should be performed to provide a high level of evidence for the
clinical application of the ImResNet model.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material. Further inquiries can be
directed to the corresponding authors.
May 2022 | Volume 12 | Article 850515

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Shen et al. Improved Residual Network Identifies PIK3CA-Mutation
ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by The Institutional Review Board of
Guangdong Provincial People’s Hospital. The ethics committee
waived the requirement of written informed consent
for participation.
Frontiers in Oncology | www.frontiersin.org 9204
AUTHOR CONTRIBUTIONS

G-QD and NL conceived and designed the study. YG designed the
proposed method and accomplished experiments. W-QS, W-ER,
CL, andG-CZ collected the clinical and imaging data.W-QS andW-
ER formed the data interpretation and the statistical analysis. All
authors approved the final manuscript.
REFERENCES

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin
(2021) 71(3):209–49. doi: 10.3322/caac.21660

2. Lei S, Zheng R, Zhang S, Chen R, Wang S, Sun K, et al. Breast Cancer
Incidence and Mortality in Women in China: Temporal Trends and
Projections to 2030. Cancer Biol Med (2021) 18(3):900–9. doi: 10.20892/
j.issn.2095-3941.2020.0523

3. Haynes B, Sarma A, Nangia-Makker P, Shekhar MP. Breast Cancer
Complexity: Implications of Intratumoral Heterogeneity in Clinical
Management. Cancer Meta Rev (2017) 36(3):547–55. doi: 10.1007/s10555-
017-9684-y

4. Kuijjer ML, Paulson JN, Salzman P, Ding W, Quackenbush J. Cancer Subtype
Identification Using Somatic Mutation Data. Br J Cancer (2018) 118
(11):1492–501. doi: 10.1038/s41416-018-0109-7

5. Deng L, Zhu X, Sun Y, Wang J, Zhong X, Li J, et al. Prevalence and Prognostic
Role of PIK3CA/AKT1 Mutations in Chinese Breast Cancer Patients. Cancer
Res Treat (2019) 51(1):128–40. doi: 10.4143/crt.2017.598

6. Goncalves MD, Hopkins BD, Cantley LC. Phosphatidylinositol 3-Kinase,
Growth Disorders, and Cancer. N Engl J Med (2018) 379(21):2052–62.
doi: 10.1056/NEJMra1704560

7 . He rnandez -Aya LF , Gonza l e z -Angu lo AM. Ta rg e t i ng the
Phosphatidylinositol 3-Kinase Signaling Pathway in Breast Cancer.
Oncologist (2011) 16(4):404–14. doi: 10.1634/theoncologist.2010-0402

8. Miron A, Varadi M, Carrasco D, Li H, Luongo L, Kim HJ, et al. PIK3CA
Mutations in in Situ and Invasive Breast Carcinomas. Cancer Res (2010) 70
(14):5674–8. doi: 10.1158/0008-5472.CAN-08-2660

9. Rugo HS, Rumble RB, Macrae E, Barton DL, Connolly HK, Dickler MN, et al.
Endocrine Therapy for Hormone Receptor–Positive Metastatic Breast
Cancer: American Society of Clinical Oncology Guideline. J Clin Oncol
(2016) 34(25):3069–103. doi: 10.1200/jco.2016.67.1487

10. Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, Andre F, et al. 4th
ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer
(ABC 4) Dagger. Ann Oncol (2018) 29(8):1634–57. doi: 10.1093/annonc/
mdy192

11. Liu CY, Wu CY, Petrossian K, Huang TT, Tseng LM, Chen S. Treatment for
the Endocrine Resistant Breast Cancer: Current Options and Future
Perspectives. J Steroid Biochem Mol Biol (2017) 172:166–75. doi: 10.1016/
j.jsbmb.2017.07.001

12. Andre F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al.
Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast
Cancer. N Engl J Med (2019) 380(20):1929–40. doi: 10.1056/NEJMoa1813904

13. Markham A. Alpelisib: First Global Approval. Drugs (2019) 79(11):1249–53.
doi: 10.1007/s40265-019-01161-6

14. Yang SX, Polley E, Lipkowitz S. New Insights on PI3K/AKT Pathway
Alterations and Clinical Outcomes in Breast Cancer. Cancer Treat Rev
(2016) 45:87–96. doi: 10.1016/j.ctrv.2016.03.004

15. Elfgen C, Reeve K, Moskovszky L, Guth U, Bjelic-Radisic V, Fleisch M, et al.
Prognostic Impact of PIK3CA Protein Expression in Triple Negative Breast
Cancer and Its Subtypes. J Cancer Res Clin Oncol (2019) 145(8):2051–9.
doi: 10.1007/s00432-019-02968-2

16. Fusco N, Malapelle U, Fassan M, Marchio C, Buglioni S, Zupo S, et al.
PIK3CA Mutations as a Molecular Target for Hormone Receptor-Positive,
HER2-Negative Metastatic Breast Cancer. Front Oncol (2021) 11:644737.
doi: 10.3389/fonc.2021.644737

17. Weiss GJ, Ganeshan B, Miles KA, Campbell DH, Cheung PY, Frank S, et al.
Noninvasive Image Texture Analysis Differentiates K-Ras Mutation From
Pan-Wildtype NSCLC and is Prognostic. PloS One (2014) 9(7):e100244.
doi: 10.1371/journal.pone.0100244

18. DangM, Lysack JT, Wu T, Matthews TW, Chandarana SP, Brockton NT, et al.
MRI Texture Analysis Predicts P53 Status in Head and Neck Squamous Cell
Carcinoma. AJNR Am J Neuroradiol (2015) 36(1):166–70. doi: 10.3174/
ajnr.A4110

19. Moon WK, Chen HH, Shin SU, Han W, Chang RF. Evaluation of TP53/
PIK3CA Mutations Using Texture and Morphology Analysis on Breast MRI.
Magn Reson Imaging (2019) 63:60–9. doi: 10.1016/j.mri.2019.08.026

20. Vasileiou G, Costa MJ, Long C, Wetzler IR, Hoyer J, Kraus C, et al. Breast MRI
Texture Analysis for Prediction of BRCA-Associated Genetic Risk. BMC Med
Imaging (2020) 20(1):86. doi: 10.1186/s12880-020-00483-2

21. Berg WA, Bandos AI, Mendelson EB, Lehrer D, Jong RA, Pisano ED.
Ultrasound as the Primary Screening Test for Breast Cancer: Analysis From
ACRIN 6666. J Natl Cancer Inst (2016) 108(4):djv367. doi: 10.1093/jnci/
djv367

22. LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature (2015) 521(7553):436–
44. doi: 10.1038/nature14539

23. Qian X, Pei J, Zheng H, Xie X, Yan L, Zhang H, et al. Prospective Assessment
of Breast Cancer Risk From Multimodal Multiview Ultrasound Images via
Clinically Applicable Deep Learning. Nat BioMed Eng (2021) 5(6):522–32.
doi: 10.1038/s41551-021-00711-2

24. Fujioka T, Kubota K, Mori M, Kikuchi Y, Katsuta L, Kasahara M, et al.
Distinction Between Benign and Malignant Breast Masses at Breast
Ultrasound Using Deep Learning Method With Convolutional Neural
Network. Jpn J Radiol (2019) 37(6):466–72. doi: 10.1007/s11604-019-00831-5

25. Zhang X, Liang M, Yang Z, Zheng C, Wu J, Ou B, et al. Deep Learning-Based
Radiomics of B-Mode Ultrasonography and Shear-Wave Elastography:
Improved Performance in Breast Mass Classification. Front Oncol (2020)
10:1621. doi: 10.3389/fonc.2020.01621

26. Jiang M, Zhang D, Tang SC, Luo XM, Chuan ZR, Lv WZ, et al. Deep Learning
With Convolutional Neural Network in the Assessment of Breast Cancer
Molecular Subtypes Based on US Images: A Multicenter Retrospective Study.
Eur Radiol (2021) 31(6):3673–82. doi: 10.1007/s00330-020-07544-8

27. Zhang X, Li H, Wang C, Cheng W, Zhu Y, Li D, et al. Evaluating the Accuracy
of Breast Cancer andMolecular Subtype Diagnosis by Ultrasound Image Deep
Learning Model. Front Oncol (2021) 11:623506. doi: 10.3389/
fonc.2021.623506

28. Zhou LQ, Wu XL, Huang SY, Wu GG, Ye HR, Wei Q, et al. Lymph Node
Metastasis Prediction From Primary Breast Cancer US Images Using Deep
Learning. Radiology (2020) 294(1):19–28. doi: 10.1148/radiol.2019190372

29. Sun Q, Lin X, Zhao Y, Li L, Yan K, Liang D, et al. Deep Learning vs. Radiomics
for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using
Ultrasound Images: Don't Forget the Peritumoral Region. Front Oncol
(2020) 10:53. doi: 10.3389/fonc.2020.00053

30. Zheng X, Yao Z, Huang Y, Yu Y, Wang Y, Liu Y, et al. Deep Learning
Radiomics can Predict Axillary Lymph Node Status in Early-Stage Breast
Cancer. Nat Commun (2020) 11(1):1236. doi: 10.1038/s41467-020-15027-z

31. Guo X, Liu Z, Sun C, Zhang L, Wang Y, Li Z, et al. Deep Learning Radiomics
of Ultrasonography: Identifying the Risk of Axillary Non-Sentinel Lymph
Node Involvement in Primary Breast Cancer. EBioMedicine (2020) 60:103018.
doi: 10.1016/j.ebiom.2020.103018
May 2022 | Volume 12 | Article 850515

https://doi.org/10.3322/caac.21660
https://doi.org/10.20892/j.issn.2095-3941.2020.0523
https://doi.org/10.20892/j.issn.2095-3941.2020.0523
https://doi.org/10.1007/s10555-017-9684-y
https://doi.org/10.1007/s10555-017-9684-y
https://doi.org/10.1038/s41416-018-0109-7
https://doi.org/10.4143/crt.2017.598
https://doi.org/10.1056/NEJMra1704560
https://doi.org/10.1634/theoncologist.2010-0402
https://doi.org/10.1158/0008-5472.CAN-08-2660
https://doi.org/10.1200/jco.2016.67.1487
https://doi.org/10.1093/annonc/mdy192
https://doi.org/10.1093/annonc/mdy192
https://doi.org/10.1016/j.jsbmb.2017.07.001
https://doi.org/10.1016/j.jsbmb.2017.07.001
https://doi.org/10.1056/NEJMoa1813904
https://doi.org/10.1007/s40265-019-01161-6
https://doi.org/10.1016/j.ctrv.2016.03.004
https://doi.org/10.1007/s00432-019-02968-2
https://doi.org/10.3389/fonc.2021.644737
https://doi.org/10.1371/journal.pone.0100244
https://doi.org/10.3174/ajnr.A4110
https://doi.org/10.3174/ajnr.A4110
https://doi.org/10.1016/j.mri.2019.08.026
https://doi.org/10.1186/s12880-020-00483-2
https://doi.org/10.1093/jnci/djv367
https://doi.org/10.1093/jnci/djv367
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s41551-021-00711-2
https://doi.org/10.1007/s11604-019-00831-5
https://doi.org/10.3389/fonc.2020.01621
https://doi.org/10.1007/s00330-020-07544-8
https://doi.org/10.3389/fonc.2021.623506
https://doi.org/10.3389/fonc.2021.623506
https://doi.org/10.1148/radiol.2019190372
https://doi.org/10.3389/fonc.2020.00053
https://doi.org/10.1038/s41467-020-15027-z
https://doi.org/10.1016/j.ebiom.2020.103018
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Shen et al. Improved Residual Network Identifies PIK3CA-Mutation
32. Byra M, Dobruch-Sobczak K, Klimonda Z, Piotrzkowska-Wroblewska H,
Litniewski J. Early Prediction of Response to Neoadjuvant Chemotherapy in
Breast Cancer Sonography Using Siamese Convolutional Neural Networks.
IEEE J BioMed Health Inform (2021) 25(3):797–805. doi: 10.1109/
JBHI.2020.3008040

33. Jiang M, Li CL, Luo XM, Chuan ZR, Lv WZ, Li X, et al. Ultrasound-Based
Deep Learning Radiomics in the Assessment of Pathological Complete
Response to Neoadjuvant Chemotherapy in Locally Advanced Breast
Cancer. Eur J Cancer (2021) 147:95–105. doi: 10.1016/j.ejca.2021.01.028

34. Chen X, Lin X, Shen Q, Qian X. Combined Spiral Transformation and Model-
Driven Multi-Modal Deep Learning Scheme for Automatic Prediction of
TP53 Mutation in Pancreatic Cancer. IEEE Trans Med Imaging (2021) 40
(2):735–47. doi: 10.1109/TMI.2020.3035789

35. Zhang B, Qi S, Pan X, Li C, Yao Y, Qian W, et al. Deep CNNModel Using CT
Radiomics Feature Mapping Recognizes EGFR Gene Mutation Status of Lung
Adenocarcinoma. Front Oncol (2020) 10:598721. doi: 10.3389/
fonc.2020.598721

36. Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, et al. Predicting EGFR Mutation
Status in Lung Adenocarcinoma on Computed Tomography Image Using
Deep Learning. Eur Respir J (2019) 53(3):1800986. doi: 10.1183/
13993003.00986-2018

37. He K, Liu X, Li M, Li X, Yang H, Zhang H. Noninvasive KRAS Mutation
Estimation in Colorectal Cancer Using a Deep Learning Method Based on CT
Imaging. BMC Med Imaging (2020) 20(1):59. doi: 10.1186/s12880-020-00457-4

38. Bottou L. Large-Scale Machine Learning With Stochastic Gradient Descent.
Physica-Verlag HD (2010) 177–86. doi: 10.1007/978-3-7908-2604-3

39. Krizhevsky A, Sutskever I, Hinton G. ImageNet Classification With
DeepConvolutional Neural Networks. Commun ACM (2017) 60(6):84–90.
doi: 10.1145/3065386

40. Bridle JS. Probabilistic Interpretation of Feedforward Classification Network
Outputs, With Relationships to Statistical Pattern Recognition. Berlin
Heidelberg: Springer (1990). doi: 10.1007/978-3-642-76153-9

41. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition.
IEEE (2016) 770–78. doi: 10.1109/CVPR.2016.90

42. Ayana G, Dese K, Choe SW. Transfer Learning in Breast Cancer Diagnoses via
Ultrasound Imaging. Cancers (Basel) (2021) 13(4):738. doi: 10.3390/
cancers13040738

43. Byra M, Galperin M, Ojeda-Fournier H, Olson L, O'Boyle M, Comstock C,
et al. Breast Mass Classification in Sonography With Transfer Learning Using
a Deep Convolutional Neural Network and Color Conversion. Med Phys
(2019) 46(2):746–55. doi: 10.1002/mp.13361

44. Yap MH, Pons G, Marti J, Ganau S, Sentis M, Zwiggelaar R, et al. Automated
Breast Ultrasound Lesions Detection Using Convolutional Neural Networks.
Frontiers in Oncology | www.frontiersin.org 10205
IEEE J BioMed Health Inform (2018) 22(4):1218–26. doi: 10.1109/
JBHI.2017.2731873

45. Yap MH, Goyal M, Osman FM, Marti R, Denton E, Juette A, et al. Breast
Ultrasound Lesions Recognition: End-to-End Deep Learning Approaches.
J Med Imaging (Bellingham) (2019) 6(1):11007. doi: 10.1117/1.JMI.6.1.011007

46. Shen Y. (2005) Loss Functions for Binary Classification and Class Probability
Estimation. [dissertation]. Philadelphia: University of Pennsylvania (2005).

47. Cortes CJML. Support-Vector Networks. Mach Learn (1995) 20(3):273–97.
doi: 10.1023/A:1022627411411

48. Cully M, You H, Levine AJ, Mak TW. Beyond PTEN Mutations: The PI3K
Pathway as an Integrator of Multiple Inputs During Tumorigenesis. Nat Rev
Cancer (2006) 6(3):184–92. doi: 10.1038/nrc1819

49. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High
Frequency of Mutations of the PIK3CA Gene in Human Cancers. Science
(2004) 304(5670):554. doi: 10.1126/science.1096502

50. Wang X, Zou C, Zhang Y, Li X, Wang C, Ke F, et al. Prediction of BRCA Gene
Mutation in Breast Cancer Based on Deep Learning and Histopathology
Images. Front Genet (2021) 12:661109. doi: 10.3389/fgene.2021.661109

51. Velmahos CS, Badgeley M, Lo YJCM. Using Deep Learning to Identify
Bladder Cancers With FGFR-Activating Mutations From Histology Images.
Cancer Med (2021) 10(14):4805–13. doi: 10.1002/cam4.4044

52. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyo D,
et al. Classification and Mutation Prediction From non-Small Cell Lung
Cancer Histopathology Images Using Deep Learning. Nat Med (2018) 24
(10):1559–67. doi: 10.1038/s41591-018-0177-5

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Shen, Guo, Ru, Li, Zhang, Liao and Du. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
May 2022 | Volume 12 | Article 850515

https://doi.org/10.1109/JBHI.2020.3008040
https://doi.org/10.1109/JBHI.2020.3008040
https://doi.org/10.1016/j.ejca.2021.01.028
https://doi.org/10.1109/TMI.2020.3035789
https://doi.org/10.3389/fonc.2020.598721
https://doi.org/10.3389/fonc.2020.598721
https://doi.org/10.1183/13993003.00986-2018
https://doi.org/10.1183/13993003.00986-2018
https://doi.org/10.1186/s12880-020-00457-4
https://doi.org/10.1007/978-3-7908-2604-3
https://doi.org/10.1145/3065386
https://doi.org/10.1007/978-3-642-76153-9
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3390/cancers13040738
https://doi.org/10.3390/cancers13040738
https://doi.org/10.1002/mp.13361
https://doi.org/10.1109/JBHI.2017.2731873
https://doi.org/10.1109/JBHI.2017.2731873
https://doi.org/10.1117/1.JMI.6.1.011007
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1038/nrc1819
https://doi.org/10.1126/science.1096502
https://doi.org/10.3389/fgene.2021.661109
https://doi.org/10.1002/cam4.4044
https://doi.org/10.1038/s41591-018-0177-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Yanhui Guo,

University of Illinois at Springfield,
United States

Reviewed by:
Lou Ronbin,

Sichuan Cancer Hospital, China
Ning Mao,

Yantai Yuhuangding Hospital, China
Tapas Si,

Bankura Unnayani Institute of
Engineering, India

*Correspondence:
Xiaoying Wang

wangxiaoying@bjmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Breast Cancer,
a section of the journal
Frontiers in Oncology

Received: 26 February 2022
Accepted: 09 May 2022
Published: 06 June 2022

Citation:
Ma M, Jiang Y, Qin N, Zhang X,

Zhang Y, Wang X and Wang X (2022)
A Radiomics Model for Preoperative

Predicting Sentinel Lymph Node
Metastasis in Breast Cancer Based on

Dynamic Contrast-Enhanced MRI.
Front. Oncol. 12:884599.

doi: 10.3389/fonc.2022.884599

ORIGINAL RESEARCH
published: 06 June 2022

doi: 10.3389/fonc.2022.884599
A Radiomics Model for Preoperative
Predicting Sentinel Lymph Node
Metastasis in Breast Cancer Based
on Dynamic Contrast-Enhanced MRI
Mingming Ma1†, Yuan Jiang1†, Naishan Qin1, Xiaodong Zhang1, Yaofeng Zhang2,
Xiangpeng Wang2 and Xiaoying Wang1*

1 Department of Radiology, Peking University First Hospital, Beijing, China, 2 Beijing Smart Tree Medical Technology Co.,
Ltd., Beijing, China

Purpose: To develop a radiomics model based on preoperative dynamic contrast-
enhanced MRI (DCE-MRI) to identify sentinel lymph node (SLN) metastasis in breast
cancer (BC) patients.

Materials and Methods: The MRI images and clinicopathological data of 142 female
primary BC patients from January 2017 to December 2018 were included in this study.
The patients were randomly divided into the training and testing cohorts at a ratio of 7:3.
Four types of radiomics models were built: 1) a radiomics model based on the region of
interest (ROI) of breast tumor; 2) a radiomics model based on the ROI of intra- and peri-
breast tumor; 3) a radiomics model based on the ROI of axillary lymph node (ALN); 4) a
radiomics model based on the ROI of ALN and breast tumor. Receiver operating
characteristic (ROC) curve analysis and decision curve analysis (DCA) were used to
assess the performance of the three radiomics models. The technique for order of
preference by similarity to ideal solution (TOPSIS) through decision matrix analysis was
used to select the best model.

Results: Models 1, 2, 3, and 4 yielded AUCs of 0.977, 0.999, 0.882, and 1.000 in the
training set and 0.699, 0.817, 0.906, and 0.696 in the testing set, respectively, in terms of
predicting SLN metastasis. Model 3 had the highest AUC in the testing cohort, and only
the difference from Model 1 was statistically significant (p = 0.022). DCA showed that
Model 3 yielded a greater net benefit to predict SLN metastasis than the other three
models in the testing cohort. The best model analyzed by TOPSIS was Model 3, and the
method’s names for normalization, dimensionality reduction, feature selection, and
classification are mean, principal component analysis (PCA), ANOVA, and support
vector machine (SVM), respectively.

Conclusion: ALN radiomics feature extraction on DCE-MRI is a potential method to
evaluate SLN status in BC patients.
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INTRODUCTION

Accurate assessment of the axillary lymph node (ALN)
metastasis is critical for prognosis and decisions regarding
treatment modalities in breast cancer (BC). Sentinel lymph
nodes (SLNs) are the first station of lymph node metastasis of
BC, which can accurately predict ALN status. Therefore, SLN
biopsy (SLNB) is a common procedure to assess ALN metastasis,
especially in patients with clinically node-negative BC (1).
Although SLNB is a surgical procedure with fewer
complications than ALN dissection (ALND), it can cause
shoulder dysfunction, nerve damage, arm pain/numbness, and
lymphedema (2). Therefore, non-invasive methods to predict
SLN metastasis are desired.

The correlations between SLN involvement and numerous
variables include clinical data (age, primary tumor size, and
family history) and histopathological data [lymphovascular
invasion, histological grade, estrogen receptor (ER) status,
progesterone receptor (PR) status, and Ki-67 proliferation
index] were calculated (3–5). However, histopathological
information can only be available postoperatively. Therefore,
non-invasive methods are greatly needed to preoperatively
evaluate SLN metastasis. Imaging techniques such as
ultrasound, CT, dynamic contrast-enhanced MRI (DCE-MRI),
and PET are usually used for preoperative assessment in BC
detection and ALN status assessment. Among these techniques,
DCE-MRI is the best tool to evaluate tumor heterogeneity by
analyzing the patterns of enhancement (5). Recent studies
reported that radiomics models based on MRI showed good
performance in predicting SLN metastasis in BC patients (6–9).
In previous studies, radiomics was a non-invasive method to
quantify tumoral heterogeneity through the extraction of
heterogeneity from breast MRI to identify SLN status, and all
these studies used the breast tumor as the regions of interest
(ROIs) (6–9). However, few radiomics studies on the prediction
of SLN status included special MRI features from ROIs of ALNs.

Therefore, the purpose of this study is to develop a non-
invasive radiomics model with ROIs of ALNs added from
preoperative DCE-MRI to identify SLN metastasis in
BC patients.
MATERIALS AND METHODS

The study was approved by the institutional ethics committee
[IRB approval number: 2019(170)]. The requirement to
obtain informed consent was waived because this was a
retrospective study.

Patients
A total of 142 female primary BC patients with histology
confirmed from January 2017 to December 2018 at our breast
disease center were enrolled. The inclusion criteria were as
follows: 1) patients received SLNB within 5 days after MRI
examination in our hospital; 2) patients without breast disease
treatment, including surgery, chemotherapy, and radiotherapy;
Frontiers in Oncology | www.frontiersin.org 2207
and 3) clinicopathological data were available. The exclusion
criteria were as follows: 1) occult BC; 2) artifact on DCE-MRI;
3) patients with multifocal tumors. The clinicopathological data
were collected from the patients’ medical records.

MRI Acquisition Protocol
MRI of all patients was performed using a 3.0-T system (Signa
Excite, GE Medical Systems, Chicago, IL, USA) with an 8-
channel breast coil. The whole MRI protocol included T1-
weighted, T2-weighted, and diffusion-weighted imaging (DWI)
and DCE-MRI sequence. Gadolinium contrast agent (Gd-DTPA,
Magnevist, Bayer Schering Pharma, Berlin, Germany) was
administered intravenously with a flow rate of 2 ml/s at the
dose of 0.1 mmol/kg of body weight using a power injector,
followed by a 20-ml saline flush. One pre-contrast and eight
post-contrast phase images with fat saturation were included in
the DCE-MRI with the following parameters: repetition time
(TR) = 4.53 ms; echo time (TE) = 1.66 ms; flip angle = 10°; field
of view (FOV) = 34 cm × 34 cm; matrix = 384 × 384; slice
thickness = 2.4 mm; intersection gap = 0 mm; bandwidth =
62.5 Hz; single scan time = 58 s; and single-phase scanning
slices = 106. Only the third post-contrast of DCE-MRI images
was collected in this study.

Radiomics Analysis
The patients were randomly divided into the training and testing
cohorts at a ratio of 7:3. A total of 100 patients constituted the
training cohort (SLN metastasis = 37 and non-SLN metastasis =
63), and 42 patients constituted the testing cohort (SLN
metastasis = 15 and non-SLN metastasis = 27), as shown
in Figure 1.

The radiomics analysis process consisted of the following
steps: 1) ROI segmentation; 2) pre-processing of the acquired
image; 3) feature extraction; 4) model construction. The
workflow of radiomics models is summarized in Figure 2.
FIGURE 1 | Flowchart of patient enrollment.
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Image Segmentation
Imaging features predicting SLN metastasis were calculated
based on four types of ROIs (tumor, intra- and peri-tumor,
ALN, and ALN and tumor) on MRI. We used a pretrained 3-
dimensional (3D) U-Net segmentation model based on deep
learning in Python (v 3.6.0, https://www.python.org/) to
automatically segment the breast tumor and ALNs on the third
post-contrast of DCE-MRI (10). The input was the images of the
third post-contrast of DCE-MRI when the tumors were most
prominent, and the output was the ROIs of tumor and ipsilateral
ALNs. All the automatically segmented ROIs were checked and
manually modified, if necessary, by two radiologists (with more
than 6 years of experience in breast MRI) based on pathological
records using ITK-SNAP version 3.6.0 (www.itksnap.org). The
standard range of the tumor area is the entire breast tumor,
avoiding surrounding glands and blood vessels, and the standard
Frontiers in Oncology | www.frontiersin.org 3208
range of the ipsilateral lymph node area is all visible lymph nodes
on the affected side, excluding surrounding blood vessels. The
peri-tumoral regions were obtained by dilating the ROI of
the examined tumor by approximately 4 mm in 3D. The
representative DCE-MRI and its corresponding ROI of the
three types are shown in Figure 3.

Pre-Processing and Radiomics
Feature Extraction
Prior to feature extraction, all the MRI images were filtered using
Laplacian of Gaussian (LoG) and wavelet algorithm. There were
3 types of images used for radiomics analysis: “original,” “LoG
image,” and “wavelet image.” The pre-processing is described in
detail in Supplementary Material S1. Then the radiomics
features were extracted using the python package PyRadiomics
(https://github.com/radiomics/pyradiomics). A total of 1,070
FIGURE 2 | The pipeline of this study. LoG, Laplacian of Gaussian; PCA, principal component analysis; PCC, Pearson’s correlation coefficient; KW, Kruskal–Wallis;
RFE, recursive feature elimination; SVM, support vector machine; LR, logistic regression; RF, random forest; LASSO, least absolute shrinkage and selection operator;
ALN, axillary lymph node.
FIGURE 3 | Representative image segmentation. (A) DCE-MRI of a 48-year-old woman with breast cancer in the third phase. (B) Segmentation of breast tumor
(ROI of Model 1). (C) Segmentation of intra- and peri-breast tumor (ROI of Model 2). (D) Segmentation of ALN (ROI of Model 3). DCE-MRI, dynamic contrast-
enhanced MRI; ROI, region of interest; ALN, axillary lymph node.
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radiomics features were extracted from the ROI. The extracted
features were divided into three types, including shape features
(n = 14), first-order statistical features (n = 216), and texture
features (n = 840) (S2 and Supplementary Table 1).

Radiomics Model Construction
The strategy used in developing radiomics models includes the
following steps (S3 and Supplementary Table 2): 1) data
normalization (two methods: MinMax-Normalizer, Mean-
Normalizer); 2) dimension reduction (two methods: Pearson’s
correlation coefficient, principal component analysis); 3) feature
selection (four methods: recursive feature elimination, ANOVA,
Kruskal–Wallis test, and relief); and 4) classification (ten
methods: least absolute shrinkage and selection operator,
random forest, support vector machine, decision tree,
ExtraTrees, Adaboost, logistic regression, GradientBoosting,
LightGBM, and CatBoost). We used the default settings of
sklearn (version 0.24.1) to train the classifier, and the specific
parameters are shown in Supplementary Material 4. When
building the radiomics models, all randomized combinations of
methods were selected for use. In this way, the variable selection
represents the method of choosing the most relevant radiomics
features to select the most suitable model. The model with the
best performance in the testing cohort was selected as the
final model.

We built four radiomics models: 1) a radiomics model based
on the ROI of breast tumor (Model 1); 2) a radiomics model
based on the ROI of intra- and peri-breast tumor (Model 2); 3) a
radiomics model based on the ROI of ALN (Model 3); and 4) a
radiomics model based on the ROI of ALN and breast tumor
(Model 4). For each of the four radiomics models, the model with
the best performance in the testing cohort was selected as the
final model. During the process of radiomics model building and
testing, we use Feature Explorer Pro (FAEPro, v0.3.4) in Python
(v3.6.0) (11).

Statistical Analysis
Statistical analyses of categorical variables between the training
and testing sets were carried out with the Mann–Whitney U test
or chi-square test (SPSS version 23.0; SPSS, Chicago, IL, USA).
Receiver operating characteristic (ROC) curve analysis was
performed to assess the predictive performance of the
radiomics models by calculating the area under the curve
(AUC). The AUC values of the 4 models were compared by
using the DeLong method. The sensitivity, specificity, and
accuracy were also calculated based on the cutoff value that
was maximized with the Youden index. Decision curve analysis
(DCA) was used to assess the clinical practical value of the
4 models. The statistical analysis of ROC and DCA was
performed by using R software (v4.1.2, www.r-project.org).
The technique for order of preference by similarity to ideal
solution (TOPSIS) (12) based on the performance metrics was
used to reflect the balance classification and normalize the
evaluation criteria (AUC, sensitivity, specificity, accuracy,
geometric mean, precision, and F1 score) to select the best-
performing model. For all analyses, a p-value <0.05 was
considered statistically significant.
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RESULTS

Characteristics of Patients
The results of clinicopathological features are described in
Table 1. There was no significant difference in the clinical and
pathological variables between the training and test sets
(p > 0.05).

Performance of the Radiomics Models
The top 20 features for each model were selected for modeling by
feature selectors after a dimension reduction of the feature
matrices. The pipelines of the three models’ development are
listed in Table 2, and the detailed information is listed in
Supplementary Material S5. The average inference time for
each case is about 2.5 s on a personal computer with a processer
of AMD PRO A10-8770 R7 (10 cores) 3.50 GHz, and
RAM 16.0G.

The radiomics features (n = 10, 11, 6, and 6) used in Models 1,
2, 3, and 4 respectively are shown in Supplementary Table 3.
The optimal cutoff values of 0.630, 0.537, 0.649, and 0.556 were
determined by the ROC curve analysis of Models 1, 2, 3, and 4 in
the training cohort. The AUC, sensitivity, specificity, accuracy,
geometric mean, precision, and F1-score of the 4 models are
shown in Table 3. The best model analyzed by TOPSIS through
the decision matrix was Model 3, the 2nd was Model 2, the 3rd
was Model 4, and the 4th was Model 1. Models 1, 2, 3 and 4
yielded the best performance (AUC) in predicting SLN
metastasis in the testing cohort (AUC = 0.699, 0.817, 0.906,
and 0.696, respectively) (Figure 4). Model 3 had the highest
AUC in the testing cohort, and only the difference from Model 1
was statistically significant (p = 0.022) (Figure 5). In addition,
the DCA showed that Model 3 yielded a greater net benefit to
predict SLN metastatic stations than the other two models in the
testing cohort (Figure 6).
DISCUSSION

In this study, we designed 4 types of radiomics models to
preoperatively predict SLN metastasis in BC patients. We
found that the model based on the MRI features of ALN
(Model 3) had the best performance in predicting SLN, which
can be used as a new method for the non-invasive prediction of
SLN metastasis.

To reduce the complications of ALND, including arm edema,
sensory disturbances, impairment of arm mobility, and shoulder
stiffness (13), SLNB is currently the standard procedure for
patients with clinically node-negative BC (14). Memorial Sloan
Kettering Cancer Center (MSKCC) nomogram based on clinical
parameters has been the most widely used model to evaluate the
SLN state (15, 16). Xiang et al. (16) validated the clinical value of
the MSKCC nomogram based on cases undergoing LNB, with an
AUC of 0.722 in predicting the possibility of SLN metastasis. The
previous studies had proved that clinicopathological parameters,
including lymphovascular invasion, the number of positive
SLNs, histological grade, Ki-67 index, and ER/PR status, were
June 2022 | Volume 12 | Article 884599
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independent predictors of SLN metastasis (3–5). Until data
regarding the result of clinicopathological parameters after
completion of surgery are available, this method of MSKCC
nomogram cannot be used as a guide for SLNB.

Although previous studies had demonstrated that MRI
radiomics features of the primary tumors are important
biomarkers in predicting the status of SLN with BC (5–7, 17),
few studies had included the radiomics features of ALNS, which
had been found by Yunfang et al. (18), who observed that
radiomics features extracted from ALNs could be used to
predict ALN status (AUC = 0.85). The innovation of our
research was that the radiomics signature included ALN
besides tumor and intra- and peri-breast tumors, and the ALN
radiomics signature for SLN status prediction shows the best
performance in predicting SLN status with an AUC of 0.906 in
the testing cohort. Many BC studies have demonstrated that
biological changes in the surrounding areas of tumors can
indicate important information. Ding et al. (19) found the
largest improvement in AUC in the validation set when using
Frontiers in Oncology | www.frontiersin.org 5210
peritumoral thicknesses of 4 mm to predict SLN metastases. In
our study, the model based on intra- and peri-breast tumors
(4 mm) shows a good prediction performance (AUC = 0.817),
and there was no statistical difference with the model based on
ALNs. Dong et al. (7) showed that the radiomics signature of
tumors in the combined multiparametric MRI fat-suppressed
T2-weighted imaging (FS-T2WI) and DWI can improve the
performance for SLN status prediction (AUC = 0.805). However,
our research was only based on DCE-MRI because it has become
an important part of conventional clinical breast MRI protocol,
and DWI is not available in all hospitals.

Our current study has several limitations. First, as we know,
lymphatic drainage generally follows a specific path, and most of
the metastatic SLNs are in axillary level I, but the boundary of
this area is not clear. Therefore, the ALN radiomics feature
determined by MRI is based on all visible ALN in the armpit, but
due to the special position of the breast MRI examination, the
axillary area may not be completely covered in the breast MRI,
which may affect radiomics analysis. In addition, it is challenging
TABLE 2 | Construction process of the radiomics models.

Radiomics processes Model 1 (tumor) Model 2 (intra- and peri-tumor) Model 3 (ALN) Model 4 (ALN and tumor)

Data normalization Mean Mean Mean Mean
Dimension reduction PCC PCA PCA PCA
Features selection Relief Relief ANOVA KW
Classification Adaboost Adaboost SVM CatBoost
June 2022 |
ALN, axillary lymph node; PCA, principal component analysis; PCC, Pearson’s correlation coefficient; KW, Kruskal–Wallis; SVM, support vector machine.
TABLE 1 | Clinicopathological characteristics of patients.

Characteristic No. (%) p-Value

Entire set (n = 142) Training set (n = 100) Testing set (n = 42)

Age (year)# 49 (44, 58) 50 (44, 54.3) 49.5 (44, 57) 0.355
Family history of BC 0.952
Yes 7 (5.0) 5 (5.0) 2 (4.8)
No 135 (95.0) 95 (95) 40 (95.2)

Tumor location (UIQ or not) 0.334
Yes 31 (21.8) 24 (24.0) 7 (16.7)
No 111 (78.2) 76 (76.0) 35 (83.3)

Molecular subtype 0.961
Luminal A 25 (17.6) 18 (18.0) 7 (16.7)
Luminal B 93 (65.5) 66 (66.0) 27 (64.3)
Triple negative 13 (9.2) 9 (9.0) 4 (9.5)
HER2 overexpress 11 (7.7) 7 (7.0) 4 (9.5)

Clinical T stage 0.938
1 5 (3.5) 3 (3.0) 2 (4.8)
2 67 (47.2) 47 (47.0) 20 (47.6)
3 61 (43.0) 44 (44.0) 17 (40.5)
4 9 (6.3) 6 (6.0) 3 (7.1)

Histological grade 0.566
1 (low) 74 (52.1) 52 (52.0) 22 (52.4)
2 (intermediate) 56 (39.4) 38 (38.0) 18 (42.8)
3 (high) 12 (8.5) 10 (10.0) 2 (4.8)

Histological type 0.100
Invasive ductal carcinoma 80 (56.3) 58 (58.0) 22 (52.4)
Invasive lobular carcinoma 42 (29.6) 25 (25.0) 17 (40.5)
Others 20 (14.1) 17 (17.0) 3 (7.1)
Volume 12 | Article
p = c2 test between the training and test cohorts.
BC, breast cancer; UIQ, upper inner quadrant.
#Quantitative variables are expressed as median (interquartile range). The others are numbers (%) included in the dataset.
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FIGURE 4 | Receiver operating character (ROC). ROC of the 4 radiomics models in the training and testing cohorts.
TABLE 3 | Performance of the 3 models in the testing cohort.

Model AUC Sensitivity Specificity Accuracy Geometric mean Precision F1-score

Model 1 0.699 0.800 0.593 0.667 0.443 0.500 0.615
Model 2 0.817 0.867 0.700 0.760 0.449 0.591 0.703
Model 3 0.906 0.867 0.852 0.857 0.302 0.765 0.813
Model 4 0.696 0.667 0.889 0.810 0.289 0.769 0.714
Frontiers in Oncolog
y | www.frontier
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AUC, area under the curve.
FIGURE 5 | The p-value reflects the DeLong test between the 4 models.
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to identify SLN node by node through radiological–pathological
correlation in this study. Second, multifocal tumors were not
included, which may be biased against patient selection. Third,
only the third post-contrast of DCE-MRI images was collected,
and future research will evaluate the robustness of features at
multiple time points of DCE-MRI. Fourth, this study used SLNB
as the gold standard for confirming SLN status, which has a
certain false-negative rate. In a future study of the radiomics
model, we will add 5 years of follow-up in patients with non-SLN
metastases. Finally, we explored “hand-crafted” features that
describe the lesion’s size, shape, texture, and enhancement
patterns in this study, which may not capture the full range of
information contained within the images and are limited by
low reproducibility.
CONCLUSION

In conclusion, this study demonstrates that ALN-based DCE-
MRI signatures have the highest predictive power and clinical
utility for radiomics analysis to preoperatively predict SLN status
Frontiers in Oncology | www.frontiersin.org 7212
in BC patients. This non-invasive method to evaluate SLN status
can guide further treatment and eliminate unnecessary invasive
LN removal for those with non-SLN metastasis. However, a large
amount of multicenter data and further validation on
independen t da t a s e t s a r e r equ i r ed to ve r i f y i t s
predictive properties.
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Department of Radiology, The First People’s Hospital of Kashgar, Xinjiang, China

Objective: Preoperative identification of lymphovascular invasion (LVI) in patients with
invasive breast cancer is challenging due to absence of reliable biomarkers or tools in
clinical settings. We aimed to establish and validate multiparametric magnetic resonance
imaging (MRI)-based radiomic models to predict the risk of lymphovascular invasion (LVI)
in patients with invasive breast cancer.

Methods: This retrospective study included a total of 175 patients with confirmed invasive
breast cancer who had known LVI status and preoperative MRI from two tertiary centers.
The patients from center 1 was randomly divided into a training set (n=99) and a validation
set (n = 26), while the patients from center 2 was used as a test set (n=50). A total of 1409
radiomic features were extracted from the T2-weighted imaging (T2WI), dynamic
contrast-enhanced (DCE) imaging, diffusion-weighted imaging (DWI), and apparent
diffusion coefficient (ADC), respectively. A three-step feature selection including
SelectKBest, interclass correlation coefficients (ICC), and least absolute shrinkage and
selection operator (LASSO) was performed to identify the features most associated with
LVI. Subsequently, a Support Vector Machine (SVM) classifier was trained to develop
single-layer radiomic models and fusion radiomic models. Model performance was
evaluated and compared by the area under the curve (AUC), sensitivity, and specificity.

Results: Based on one feature of wavelet-HLH_gldm_GrayLevelVariance, the ADC
radiomic model achieved an AUC of 0.87 (95% confidence interval [CI]: 0.80–0.94) in
the training set, 0.87 (0.70-1.00) in the validation set, and 0.77 (95%CI: 0.64-0.86) in the
test set. However, the combination of radiomic features derived from other MR sequences
failed to yield incremental value.

Conclusions: ADC-based radiomic model demonstrated a favorable performance in
predicting LVI prior to surgery in patients with invasive breast cancer. Such model holds
the potential for improving clinical decision-making regarding treatment for breast cancer.

Keywords: breast cancer, lymphovascular invasion, magnetic resonance imaging (MRI), machine
learning, radiomics
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INTRODUCTION

According to the 2018 global cancer statistics, breast cancer
ranks second in the incidence of new cancers (approximately
11.6%) and fifth in cancer-related mortality (approximately
6.6%) (1). Breast cancer has an incidence rate of 24.2% and a
mortality rate of 15%, making it the most malignant cancer
among women and a veritable “killer of women” (1). The
number of new cases of breast cancer has been increasing
annually (2). Recent studies have shown that lymphovascular
invasion (LVI) by tumors is a crucial prognostic factor affecting
patient outcomes and clinical treatment options (3–5). The main
causes of death among patients with breast cancer are cancer
recurrence and metastasis. Lymphovascular metastasis is the
most common form of metastasis in breast cancer and consists
in the invasion of regional lymph nodes, allowing cancer cells to
reach distant organs (6). In breast cancer, LVI can occur before
the appearance of lymph node metastasis and is an indicator of
poor prognosis (6). Thus, LVI is considered one of the major
criteria for tumor staging, prognostic prediction, and the
selection of treatment options (7–9). However, postoperative
pathology is currently the only available tool to confirm that
tumor vessels promote lymphatic and blood vessel growth and
invasion, with no effective method for non-invasively predicting
LVI status before surgery.

The emergence of radiomics brings new opportunities in this
regard to the field of oncology (10). Radiomics refers to the high-
throughput analysis of digitized quantitative and high-
dimensional imaging data and integrates histopathology,
machine learning, medical statistics, and computer science at
multiple levels and from multiple perspectives to yield high-
fidelity data for the comprehensive evaluation of various tumor
phenotypes (11). Three previous studies applied MRI-based
radiomics to predict LVI in patients with breast cancer (12–
14); however their results were controversial. Liu et al. built a
combined model incorporating dynamic contrast-enhanced
(DCE)-based radiomics signature and MRI-reported axillary
lymph node (ALN) status with an area under the curve (AUC)
of 0.763 (12). Kayadibi et al. identified the apparent diffusion
coefficient (ADC)-based radiomic signature as the best model,
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with an AUC of 0.732 (13). Zhang et al. found that fusion
radiomic model of the T2-weighted imaging (T2WI), contrast-
enhanced T1-weighted imaging (DCE), and ADCmaps achieved
better predictive efficacy for LVI status than either of them alone
(14). In this current study, we aimed to develop and validate
machine learning-based radiomic models using preoperative
MRI images as a non-invasive tool for the prediction of LVI
status in patients with invasive breast cancer.
MATERIALS AND METHODS

Patient Population
This study was conducted in accordance with the Declaration of
Helsinki (as revised in 2013). This retrospective cohort study was
approved by institutional ethics board and informed consent
was waived.

This study included a total of 175 consecutive patients with
pathologically confirmed invasive breast cancer who underwent
pretherapy contrast-enhanced MRI in two tertiary hospitals
between January 2019 and October 2020. All eligible patients
met the following inclusion criteria: i) patients with visible
primary breast lesions on MRI, ii) patients with newly
diagnosed invasive breast cancer by histopathological
evaluation of a surgical specimens, and iii) patients underwent
mastectomy or lumpectomy within two weeks after MRI scans.
The exclusion criteria were as follows: i) patients received biopsy
of the breast lesion before MRI scans, ii) patients received
neoadjuvant chemotherapy before surgery, and iii) patients
with low quality of MR images due to artifacts. The patient
inclusion flowchart is shown in Figure 1.

The clinical and radiological information were included as
follows: age, tumor location, tumor number, mass shape, tumor
diameter, TNM stage, pathological ALN-status, internal
enhancement pattern, background parenchymal enhancement,
fibroglandular tissue, chest wall invasion, and pectoralis major
muscle invasion. The assessment of radiological findings was in
accordance with the American College of Radiology Breast
Imaging Reporting and Data System (ACR BI-RADS) (15).
Histological analysis was performed on specimens obtained at
FIGURE 1 | Flowchart for selection of the study population.
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the surgery. Pathological ALN status was defined as positive if
macrometastases or micrometastases were identified in one or
more ALNs (12). LVI was assessed on hematoxylin and eosin-
stained sections, and was defined as carcinoma cells in a definite
endothelial-lined space in the peritumoral breast surrounding
the invasive carcinoma (12). The specimens were analyzed by
two pathologists with 5 and 16 years of experience in breast
cancer who were blinded to the MRI findings.

MRI Examination
All patients underwent conventional MRI, DCE-MRI, and
diffusion-weighted imaging (DWI). A Siemens Avanto 1.5T
superconducting magnetic resonance scanner, equipped with a
4-channel breast coil and a 6-channel body matrix coil, was used
for MRI examination. A GE Signa HDxt 3.0T MR scanner, with
an 8-channel phased-array breast coil, was used. Patients were
placed in the prone position in the scanner, with both breasts
hanging naturally in the coil. Axial and sagittal MR images were
obtained from the axilla to the inferior margin of the breast,
using the following imaging sequences and parameters: LAVA
DCE sequence (repetition time [TR], 5.68 ms; time to echo [TE],
2.20 ms; inversion time [TI], 16 ms; slice thickness, 2.0 mm; field
of view [FOV], 340 mm × 340 mm; and matrix, 348 × 348) and
STIR T2WI sequence (TR, 11000 ms; TI, 240 ms; TE, 60 ms; slice
thickness, 4.0 mm; slice interval, 0.4 mm; FOV, 340 mm ×
340 mm; matrix, 320 × 192). DWI was performed using a single-
shot SE-EPI sequence, with the following parameters: b, 800 s/
mm2; TR, 6600 ms; TE, 60 ms; slice thickness, 4.0 mm; slice
interval, 0.4 mm; FOV, 340 mm × 349 mm; and matrix, 130 × 96.
For enhanced imaging, a double-barreled high-pressure syringe
was used to inject the contrast agent, gadolinium-
diethylenediamine-pentaacetic acid (DPTA), at a flow rate of
2.5 mL/s and a dose of 0.1 mmol/kg. A repeat LAVA DCE was
obtained after administration of the contrast agent, using the
same parameters as for the plain sequence. Each phase of
imaging was 60s in duration, with eight phases completed, for
480s of imaging.

Imaging Preprocessing
Given that the MRI images were acquired from different
machines with different parameters, it is needed to eliminate
the internal dependence of radiomic features on voxel size. Thus,
we used the resampling method with linear interpolation
algorithm to normalize the voxel size.

Lesion Delineation and Segmentation
All patients’ T2WI, DCE, DWI, and ADC maps were exported
from the picture archiving and communication system into the
Radcloud (Huiying Medical Technology Co.,Ltd, Beijing, China)
software. Subsequently, the region of interest (ROI) was
manually and volumetrically segmented by a radiologist with 5
years of experience. All ROIs were then reviewed by a radiologist
with 10 years of experience.

ROI delineation rules were as follows: first, on the DCE
images, the phase I image with the highest intensity was
selected and an ROI was contoured along the margin of the
tumor. Second, on the T2WI image, the primary tumor was
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defined by contouring the margin of the tumor which had a
slightly higher signal. Third, the ROI on the DWI images was
draw to cover the entire high-signal-intensity area. Finally, the
ROI on DWI images was then transferred to ADC maps. The
ROI excluded any visible liquefaction, necrosis, and cystic
regions. Figure 2 shows the ROI delineation and pathological
image of a case with presence of LVI.

Feature Extraction
A total of 1409 radiomic features were extracted from the DCE,
T2WI, DWI, and ADC maps using the Pyradiomics function
package (https://pyradiomics.readthedocs.io/). These features
were divided into the following three categories: i) First-order
statistical features (n=19), such as peak value, mean, variance,
quantitatively describe the voxel intensity distribution of the
lesion area in MR images through common basic indicators; ii)
Shape-based features (n=16), describe the shape and size of the
lesion; iii) Texture features (n=72), including Gray Level Co-
occurrence Matrix (GLCM, n=24), Gray Level Dependence
Matrix (n=16), Gray Level Run Length Matrix (GLRLM,
n=16), and Gray Level Size Zone Matrix (GLSZM, n=16); and
iv) and (iv) filter-derived features (n=1302): filter ‘wavelet’: n =
744; other filter (‘lbp’, ‘square’,’squareroot’, ‘logarithm’,
‘exponential’, ‘gradient’): n = 93 ×6 = 558. The detailed
calculation formula for each radiomic feature is provided on
the official website (https://pyradiomics.readthedocs.io).

Feature Selection and Radiomic Model
Construction
Before the selection of radiomic feature, the normalization
processing of all extracted features was performed. To verify
the credibility of the manual segmentation between the two
radiologists, the MRI scans of 30 patients were randomly
selected and segmented by the two radiologists for double-
blind interpretation. Interclass correlation coefficients (ICC),
which can be used to assess the interobserver reproducibility of
ROIs delineated, is obtained from the following equation:

ICC =
MSR −MSEð Þ

MSR +
MSC−MSE

n

� �

MSR: mean square for rows; MSC: mean square for columns;
MSE: mean square for error; n: number of subjects.

After feature extraction, 80% of the dataset was randomly
assigned to training set and for all cases, features were
normalized to the normal distribution by mean and variance
scaling. The Support Vector Machine (SVM) classifier was used
to develop radiomic models based on single sequence and
their combinations.

Since some of the extracted features can be invalid for the
specific target task, it is necessary to identify features related to a
specific task to achieve the optimal predictive performance. First,
SelectKBest was applied to select the most significantly relevant
feature set with threshold of 0.05. The least absolute shrinkage
and selection operator (LASSO) is a regression analysis method
that can perform both variable selection and regularization to
improve the identification accuracy and interpretability of the
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model. For example, it has a tuning parameter to control the
penalty of the linear model, which guarantees the minimum
penalty when obtaining a model with a smaller number of
features, where the penalty is mean square error (MSE). In
addition, another parameter controls the correlation of
features, making the selected features less relevant. L1
regularization was used as the cost function, the error value of
cross validation was 5, and the maximum number of iterations
was 1000. The optimization goal of LASSO is:

y =
1

2 ∗ nsamples

 !
∗ y − Xwk k2+alpha ∗ wk k

where X is the radioactivity characteristic matrix, y is the sample
vector marker, n is the sample number, w is the coefficient vector
regression model, alpha∗∥w∥ is the LASSO punishment. A
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radiomic score for each patient was then computed using a
linear combination of the key features weighted by their
LASSO coefficients.

The SVM classifier was built to predict LVI based on final
reduced radiomic features. The performance of the models was
estimated by the receiver operating characteristic (ROC) curve
and confusion matrix analysis with indicators of area under the
curve (AUC), accuracy, sensitivity, and specificity.

Statistical Analysis
Descriptive statistics and continuous variables were expressed as
numbers (percentages) and mean (standard deviation, SD).
Statistical analysis was performed using the Python 3.6
(https://www.python.org/). The univariate and multivariate
logistic regression analysis was used to identify the
independent clinical predictors of LVI status. The packages of
A B

D

E

C

FIGURE 2 | MRI and pathological images of a 46-year-old patient with invasive ductal carcinoma and LVI. Manual delineation of the region of interest on the
T2WI (A), DCE (B), DWI (C), and ADC (D), respectively. (E) displays the presence of LVI.
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“pyradiomics” (https://pyradiomics.readthedocs. io/) ,
“scikitlearn” (https://scikit-learn.org/), and “matplotlib”
(https://matplotlib. org/) were used for feature selection, model
building, and plotting, respectively. A P-value <0.05 was
considered statistically significant.
RESULTS

Patient Characteristics and Clinical Model
Construction
Table 1 illustrates the clinical characteristics of patients in all
datasets. The proportion of positive LVI was 32% (56/175). The
patients from center 1 was randomly divided into a training set
(n=99) and a validation set (n = 26), while the patients from
center 2 was used as a test set (n=50).
Frontiers in Oncology | www.frontiersin.org 5218
The univariate logistic regression analysis showed that
background parenchymal enhancement (P = 0.043), chest wall
invasion (P = 0.022),axillary lymph node metastasis (P = 0.014),
and pectoralis major muscle invasion (P = 0.021) remained as
potential predictors of LVI status, however, they were
nonsignificant (all P values >0.05) in the multivariate logistic
regression analysis. The clinical model yielded an AUC of 0.74
(95%CI: 0.65–082), 0.61 (95%CI: 0.42–0.81), and 0.50 (95%CI:
0.40-0.66) in the training, validation, and test sets, respectively.

Feature Extraction, Selection and
Radiomic Signature Construction
Of all the radiomic features extracted, median ICC was 0.887,
871 (62%) features were robust, with ICC > 0.75. After using
SelectKbest method and LASSO algorithm, 11, 2, 1, and 1
features were identified to develop the DCE, T2WI, DWI, and
ADC based single-layered radiomic models (Table 2). Table 3
TABLE 1 | Demographic and clinical characteristics of patients.

Characteristics Training dataset (n=99) Validation dataset (n=26) Test dataset (n=50)

Mean age (years) 45.8 ± 10.8 48.3 ± 9.3 53.4 ± 10.7
Tumor location
Left 45 (45.5) 15 (57.7) 27 (54)
Right 54 (54.5) 11 (42.3) 23 (46)
Background parenchymal enhancement
Minimal 19 (19.2) 7 (26.9) 21 (42)
Mild 32 (32.3) 8 (30.8) 16 (32)
Moderate 43 (43.4) 8 (30.8) 13 (26)
Marked 5 (5.1) 3 (11.5) 0
Fibroglandular tissue
Almost entirely fat 6 (6.1) 3 (11.5) 1 (2)
Scattered fibroglandular tissue 33 (32.3) 11 (42.3) 5 (10)
Heterogeneous fibroglandular tissue 49 (49.5) 9 (34.7) 44 (88)
Extreme fibroglandular tissue 11 (11.1) 3 (11.5) 0
Chest wall invasion
Yes 20 (20.2) 2 (7.8) 0
No 79 (79.8) 24 (92.2) 50 (100)
Pectoralis major muscle invasion
Yes 11 (11.1) 2 (7.8) 1 (2)
No 88 (88.9) 24 (92.2) 49 (98)
Tumor diameter (mm) 34.9 ± 19.8 30.0 ± 11.4 23.7 ± 9.5
Mass shape
Oval 2 (2) 0 14 (28)
Round 14 (14.1) 2 (7.8) 3 (6)
Irregular 83 (83.9) 24 (92.2) 33 (66)
Internal enhancement pattern
Homogeneous 37 (37.4) 7 (26.9) 4 (8)
Heterogeneous 50 (50.5) 16 (61.5) 44 (88)
Rim enhancement 7 (7.1) 1 (3.8) 2 (4)
Dark internal septations 5 (5) 2 (7.8) 0
Tumor number
Solitary 71 (71.7) 17 (65.4) 39 (78)
≥2 28 (28.3) 9 (34.6) 11 (22)
TNM stage
I 14 (14.1) 3 (11.5) 14 (28)
II 51 (51.5) 16 (61.5) 28 (56)
III 26 (26.3) 6 (23.2) 7 (14)
IV 8 (8.1) 1 (3.8) 1 (2)
Pathological ALN status
Absence 51 (51.5) 16 (61.5) 28 (56)
Single 5 (5) 3 (11.5) 5 (10)
≥2 43 (43.5) 7 (27) 17 (34)
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TABLE 2 | Radiomic features of the single-layered and fusion radiomic models.

Models Features Number

DCE original_shape_Maximum2DDiameterColumn
original_glcm_Idmn
logarithm_glszm_HighGrayLevelZoneEmphasis
wavelet-LHL_glcm_Imc2
wavelet-LHH_glcm_MaximumProbability
wavelet-LLH_glszm_GrayLevelVariance
wavelet-LLH_glszm_LowGrayLevelZoneEmphasis
wavelet-LLH_glszm_ZoneEntropy
wavelet-HLH_glszm_GrayLevelNonUniformityNormalized
wavelet-HHL_glrlm_HighGrayLevelRunEmphasis
wavelet-LLL_glszm_SmallAreaHighGrayLevelEmphasis

11

T2WI wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis
wavelet-HLH_glrlm_ShortRunEmphasis

2

DWI wavelet-HHL_glszm_SmallAreaLowGrayLevelEmphasis 1
ADC wavelet-HLH_gldm_GrayLevelVariance 1
DCE+T2WI DCE_original_shape_Maximum2DDiameterColumn

DCE_exponential_glszm_GrayLevelNonUniformity
DCE_gradient_glszm_ZoneEntropy
DCE_wavelet-LHH_glcm_JointEnergy
DCE_wavelet-HLH_glszm_GrayLevelNonUniformityNormalized
T2_wavelet-LHH_glszm_SizeZoneNonUniformityNormalized
T2_wavelet-LLH_glszm_GrayLevelVariance
T2_wavelet-LLH_glszm_SmallAreaEmphasis
T2_wavelet-HLH_glrlm_ShortRunHighGrayLevelEmphasis
T2_wavelet-HLH_glszm_GrayLevelVariance
T2_wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis
T2_wavelet-LLL_ngtdm_Strength

12

DCE+DWI DWI_wavelet-HHL_glszm_SizeZoneNonUniformityNormalized
DWI_wavelet-HHL_glszm_SmallAreaLowGrayLevelEmphasis

2

DCE+ADC DCE_original_shape_Maximum2DDiameterColumn
DCE_wavelet-HLL_glrlm_LongRunLowGrayLevelEmphasis
DCE_wavelet-HLH_glszm_GrayLevelNonUniformityNormalized
ADC_exponential_gldm_DependenceEntropy
ADC_wavelet-LHL_firstorder_Maximum
ADC_wavelet-LHL_firstorder_RootMeanSquared
ADC_wavelet-LLH_glrlm_ShortRunEmphasis

7

T2WI+DWI DWI_wavelet-LLH_gldm_DependenceVariance
DWI_wavelet-HHL_glszm_SizeZoneNonUniformityNormalized
T2_wavelet-LHH_glszm_SizeZoneNonUniformityNormalized
T2_wavelet-LLH_glszm_SmallAreaEmphasis
T2_wavelet-HHH_glrlm_LowGrayLevelRunEmphasis
T2_wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis
T2_wavelet-LLL_glrlm_ShortRunLowGrayLevelEmphasis
T2_wavelet-LLL_glrlm_LongRunLowGrayLevelEmphasis

8

T2WI+ADC T2_wavelet-LLH_glszm_SmallAreaHighGrayLevelEmphasis
T2_wavelet-LLH_glszm_SmallAreaEmphasis
ADC_wavelet-HHH_glrlm_ShortRunEmphasis

3

DWI+ADC ADC_wavelet-LLH_glrlm_ShortRunEmphasis 1
DCE+T2WI+DWI DCE_wavelet-HHH_glszm_ZoneEntropy

DWI_wavelet-HHL_glszm_SmallAreaLowGrayLevelEmphasis
T2_wavelet-LLH_glszm_SmallAreaEmphasis

3

DCE+T2WI+ADC T2_wavelet-LHL_firstorder_Skewness
T2_wavelet-LLH_glszm_SmallAreaEmphasis
T2_wavelet-HHH_glrlm_LowGrayLevelRunEmphasis
T2_wavelet-HHH_glszm_HighGrayLevelZoneEmphasis
ADC_exponential_gldm_DependenceEntropy
ADC_wavelet-LHL_firstorder_Maximum
ADC_wavelet-LHL_firstorder_RootMeanSquared
ADC_wavelet-HLL_firstorder_Maximum
DCE_original_shape_Maximum2DDiameterColumn
DCE_wavelet-HLL_glrlm_LongRunLowGrayLevelEmphasis
DCE_wavelet-LLH_glszm_GrayLevelVariance
DCE_wavelet-HLH_glszm_GrayLevelNonUniformityNormalized

12

(Continued)
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shows the predictive performance of single-layered radiomic
models and the fusion radiomic models. The results showed
that ADC-based radiomic model achieved the optimal
performance, with an AUC of 0.87 (95%CI: 0.80-0.94) in the
training set and 0.87 (95%CI: 0.70-1.00) in the validation set.
When validated in the test set, the ADC-based yielded an AUC of
0.77 (95%CI: 0.64-0.86).
DISCUSSION

Breast cancer with LVI is the pathological manifestation of
tumor emboli in the lymphatic and blood vessels in the
vicinity of invasive breast cancer. The presence of LVI
increases the risk of axillary lymph node metastasis and distant
metastasis and is associated with a poor prognosis (5). Currently,
LVI can only be confirmed via the pathological assessment of
specimens after resection. The building of radiomic model allows
Frontiers in Oncology | www.frontiersin.org 7220
preoperative evaluation of LVI status. It is of great clinical
significance as the presence or absence of LVI is a crucial
criterion for treatment planning.

MRI has been used as one of the preferred imaging methods
for early screening of breast cancer, assessment of malignancy,
and determination of efficacy and prognosis. Previous studies
suggested that some MRI features were significantly associated
with LVI status, such as background parenchymal enhancement,
peritumoral edema, adjacent vessel sign, enhancement types, and
MRI-reported axillary lymph node metastasis (14, 16–18).
However, these features were somewhat subjective and could
be affected by sample size of a study. In this current study, we
observed no any clinical variables included were independent
risk factors of LVI, possibly due to small sample size of our
training set. More objective and reliable markers are desirable to
identification of LVI status in patients with breast cancer.

Radiomics uses high-throughput extraction of high-level
quantitative features to describe tumor phenotypes objectively
and quantitatively. These features are extracted from medical
TABLE 2 | Continued

Models Features Number

DCE+DWI+ADC ADC_wavelet-LLH_glrlm_ShortRunEmphasis 1
T2WI+DWI+ADC ADC_wavelet-LLH_glrlm_ShortRunEmphasis 1
DCE+T2WI+DWI+ADC ADC_wavelet-LLH_glrlm_ShortRunEmphasis 1
June 2022 | Volume 12 | Articl
TABLE 3 | Predictive performance of single-layered and fusion radiomic models.

Models Sensitivity Specificity AUC (95%CI)

Training set Validation set Test set Training set Validation set Test set Training set Validation set Test set

ADC 0.83 0.63 0.63
0.13

0.85 1.00 0.73
0.91

0.87 (0.80-0.94) 0.87 (0.7–1.00) 0.77 (0.64-0.86)
0.82 (0.64,1.00)

DWI 0.77 0.64 0.60
0.25

0.53 0.60 0.64
0.91

0.68 (0.59-0.76) 0.64 (0.42-0.83) 0.58 (0.47-0.70)
0.74 (0.51-0.92)

T2WI 0.67 0.75 0.60
0.25

1.00 0.73 0.63
0.91

0.89 (082-0.95) 0.64 (0.42-0.83) 0.58 (0.50-0.71)
0.70 (0.48,0.89)

DCE 0.88 0.64 0.75
0.50

0.76 0.63 0.69
0.73

0.88 (0.82-0.93) 0.68 (0.50-0.86) 0.64 (0.51-0.80)
0.65 (0.41-0.87)

DCE+T2WI 0.93 0.64 0.65
0.50

0.74 0.74 0.74
0.91

0.90 (0.84-0.95) 0.68 (0.48-0.88) 0.62 (0.49-0.76)
0.58 (0.35-0.83)

DCE+DWI 0.83 0.88 0.60
0.12

0.61 0.65 0.67 0.76 (0.66-0.85) 0.64 (0.40-0.87) 0.61 (0.48-0.80)
0.68 (0.44-0.89)

DCE+ADC 0.71 0.63 0.60
0.38

0,85 0.93 0.71
0.55

0.85 (0.78-0.90) 0.70 (0.50-0.88) 0.62 (0.52-0.75)
0.53 (0.30-0.77)

T2WI+DWI 1.00 0.65 0.75 0.98 0.93 0.61
0.45

0.99 (0.97-1.00) 0.70 (0.48-0.88) 0.59 (0.51-0.70)
0.70 (0.48-0.91)

T2WI+ADC 0.63 0.64 0.70
0.38

0.76 0.67 0.65
0.82

0.74 (0.66-0.82) 0.65 (0.46-0.83) 0.60 (0.46-0.76)
0.56 (0.28-0.81)

DWI+ADC 0.60 0.63 0.65
0.50

0.76 0.67 0.66
0.55

0.66 (0.57-0.75) 0.70 (0.51-0.88) 0.65 (0.53-0.80)
0.53 (0.29-0.77)

DCE+T2WI+DWI 0.93 0.82 0.63
0.88

0.83 0.61 0.67
0.45

0.91 (0.66-0.85) 0.73 (0.40-0.87) 0.62 (0.40-0.79)
0.64 (0.40-0.87)

DCE+T2WI+ADC 0.90 0.62 0.75
0.13

0.88 0.80 0.69
0.91

0.93 (0.89-0.97) 0.64 (0.44-0.82) 0.58 (0.45-0.75)
0.66 (0.39-0.90)

DCE+DWI+ADC 0.68 0.63 0.75
0.50

0.78 0.70 0.68
0.73

0.78 (0.70-0.86) 0.62 (0.42-0.81) 0.53 (0.44-0.67)
0.56 (0.30-0.81)

T2WI+DWI+ADC 0.60 0.67 0.63
0.38

0.76 0.68 0.73
0.82

0.66 (0.57-0.75) 0.70 (0.51-0.88) 0.69 (0.47-0.89)
0.73 (0.50-0.93)

DCE+T2WI+DWI+ADC 0.68 0.65 0.63
0.25

0.78 0.73 0.67
0.91

0.78(0.70-0.86) 0.62 (0.42-0.81) 0.66 (0.43-0.90)
0.68 (0.44-0.89)
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imaging data using advanced mathematical algorithms, revealing
tumor features that may not be discernible with the naked eye
(19). Radiomics may have great potential in capturing important
phenotypic data on tumors, such as intratumoral heterogeneity
(20, 21), thus providing valuable information for individualized
clinical treatment. The use of radiomic approach to determine
the prognostic factors of breast cancer is almost completely
dominated by DCE-MRI, which provides not only abundant
radiomic data but also functional information reflecting the DCE
parameter characteristics of the tumor. Kinetic enhancement
curve was identified as a predictor of LVI (22). Liu et al. showed
that DCE-based radiomics signature in combination with MRI
ALN status was effective in predicting the LVI status, with an
AUC of 0.763 (12); however, this study was limited due to lack of
external validation and comparison with other MRI sequences.
T2WI allows clear delineation of the lesions, high contrast of the
surrounding soft tissue, clear depiction of the size and shape of
the lesion, and greater sensitivity to cystic changes and necrosis
within the lesion. Adding radiomic features extracted from
T2WI images may improve the diagnostic performance of
other MRI sequences (14). DWI is a functional imaging
method that reflects the Brownian motion of water molecules
in the body. ADC value is a quantitative indicator associated with
the diffusion of water molecules and microcirculatory perfusion.
Previous studies have demonstrated that tumor and peritumoral
ADC values were significantly correlated with LVI status
(23, 24). The quantitative ADC obtained from DWI has been
increasingly used to improve the diagnostic accuracy of contrast-
enhanced MRI in breast cancer (14). The results of this present
study were consistent with a recent study by Kayadibi et al. (13).
in which the ADC-based radiomic model could predict LVI
status with satisfying performance. Zhang et al. (14) found that
the fusion radiomic signature of the T2WI, cT1WI, and ADC
maps achieved a better predictive efficacy for LVI than either of
them alone, which was inconsistent with our study that reported
the combination of multiparametric MRI-derived radiomic
features failed to achieve a complementary effect in the
prediction of LVI status. Thus, the role of fusion radiomic
model needs to be tested in larger datasets.

The limitations of our study need to be acknowledged. First,
this was a retrospective study with small sample size, a
multicenter study with a larger sample size is warranted.
Second, LVI status was only classified as positive or negative in
this study. Uematsu et al. (25), divided into four grades according
to the number of lymphovascular structures invaded. Further
studies should evaluate the association between radiomic
features with different grades of LVI. Third, the influence of
MRI parameters on the radiomic features was not analyzed due
Frontiers in Oncology | www.frontiersin.org 8221
to the small sample size. Finally, only radiomic features derived
from the first postcontrast images of DCE-MRI were analyzed
due to its crucial role in the diagnostic performance of breast
MRI. The precontrast, other DCE-MRI series deserve to be
investigated in further studies.
CONCLUSION

Our results showed that radiomic features based on ADC map
could be used to effectively predict LVI status in invasive breast
cancer, potentially improving preoperative diagnosis and
patient-specific treatment planning. However, the findings of
this preliminary study needs to be validated in larger datasets.
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Shandong University, Jinan, China

Purpose: The purpose of this study was to explore the performance of different
parameter combinations of deep learning (DL) models (Xception, DenseNet121,
MobileNet, ResNet50 and EfficientNetB0) and input image resolutions (REZs) (224 ×
224, 320 × 320 and 488 × 488 pixels) for breast cancer diagnosis.

Methods: This multicenter study retrospectively studied gray-scale ultrasound breast
images enrolled from two Chinese hospitals. The data are divided into training, validation,
internal testing and external testing set. Three-hundreds images were randomly selected
for the physician-AI comparison. The Wilcoxon test was used to compare the diagnose
error of physicians and models under P=0.05 and 0.10 significance level. The specificity,
sensitivity, accuracy, area under the curve (AUC) were used as primary evaluation metrics.

Results: A total of 13,684 images of 3447 female patients are finally included. In external
test the 224 and 320 REZ achieve the best performance in MobileNet and EfficientNetB0
respectively (AUC: 0.893 and 0.907). Meanwhile, 448 REZ achieve the best performance
in Xception, DenseNet121 and ResNet50 (AUC: 0.900, 0.883 and 0.871 respectively). In
physician-AI test set, the 320 REZ for EfficientNetB0 (AUC: 0.896, P < 0.1) is better than
senior physicians. Besides, the 224 REZ for MobileNet (AUC: 0.878, P < 0.1), 448 REZ for
Xception (AUC: 0.895, P < 0.1) are better than junior physicians. While the 448 REZ for
DenseNet121 (AUC: 0.880, P < 0.05) and ResNet50 (AUC: 0.838, P < 0.05) are only
better than entry physicians.

Conclusion: Based on the gray-scale ultrasound breast images, we obtained the best DL
combination which was better than the physicians.

Keywords: breast cancer, deep learning, ultrasound, resolution, artifical intelligence
Abbreviations: AI, Artificial Intelligence; AUC, area under curve; BI-RADS, breast imaging reporting and data system; CI,
confidence interval; DL, Deep Learning; IQR, interquartile range; ML, Machine Learning; ROC, receiver operating
characteristic; ROI, region of interest; SD, standard deviation; SL, supervised learning; SSL, semi-supervised learning;
US, Ultrasound.
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HIGHLIGHTS

1. Different combinations [model_resolution (REZ)] will yield
different performance for the 2D grayscale breast ultrasound
image classification, with Xception_448, MobileNet_224,
EfficientNetB0_320, ResNet50_448, and DenseNet121_448
being the best choices.

2. MobileNet_224, EfficientNetB0_320 and Xception_448 can
achieve equivalent performance as senior physicians.

3. The lightweight model, such as MobileNet_224, is more
dominant in small REZ images, which also indicates that it
is suitable for mobile application scenarios.

4. Image REZ has a slight effect on time consuming for model
prediction, with a slight increase in time consuming for large REZ.
INTRODUCTION

Breast cancer is the leading cause of death among women
worldwide, with the highest incidence and the second highest
mortality rate (1). Detecting and intervening in early stage could
significantly improve 5-year-survival rate (2, 3).

Due to its portability and affordability, ultrasound (US) is
most practical screening modality in different types of breasts,
especially in dense breast (4). Since the fact that US is more
accessible than mammography (5, 6), it is the first choice for
breast early screening. However, the US is not sensitive enough
to detect calcifications (7) and non-mass breast lesions (8, 9).
Diagnose performance of US is highly operator-dependent.
Therefore, there is an urgent need to find a method that is less
operator-dependent and objectively reflects the nature of the
tumor for breast cancer.

Deep learning (DL) can extract a large number of quantitative
features frommedical images, including features that are invisible to
human eyes but could greatly improve diagnose accuracy (10–13).
Breast US Artificial Intelligence (AI) can accurately identify breast
masses in relation to the volume of masses (14–16). In addition, it
can improve the diagnosis of early breast cancer, providing a
reference for early diagnosis of non-mass lesions (17),
determining the molecular subtypes (18, 19), pathological types
(20), status of axillary lymph node metastasis (21, 22) and prognosis
(23, 24). However, by analyzing and summarizing the current
studies on intelligent discrimination based on breast US data,
relationship of model_REZ and diagnose performance is not
deeply explored. Lacking systematic review of model and
parameters selection, no comparison between lightweight models
(e.g., MobileNet, Xception, EfficientNetB0, etc.) (25–27) and
heavyweight models (e.g., such as DenseNet121、ResNet50, etc.)
(28, 29), no analysis and comparison of models under different
image input REZs, and lack of comparison with physician diagnosis
results. Therefore, the accuracy and precision of breast cancer
diagnostic models and image combinations can be statistically
determined by cross-comparison of multiple DL models and
multiple image input REZs. Different models have different depth
Frontiers in Oncology | www.frontiersin.org 2224
of networks, and the network depths are related to the input
resolution. If we want to guarantee the best results of DL models,
we should study the best combination of model depth and input
REZ to ensure that a reasonably optimal models is used (30, 31).

Therefore, this study performed extensive cross-comparison
of model_REZ and generalization tests: 1. Lightweight models
(MobileNet, Xception and EfficientNetB0) and heavyweight
models (DensNet121, and ResNet50). 2. Three dominant REZs
(224 × 224 pixels, 320 × 320 pixels and 448×448 pixels). The
above scientific hypotheses were verified by cross-comparisons:
the diagnostic accuracy of the AI combinations (model_REZ)
based on breast images is higher than senior physicians.
MATERIALS AND METHODS

Research Objects
This multicenter study retrospectively examined 2D grayscale US
breast images recruited from 2 Chinese hospitals from July 2015
to December 2020 with appropriate approval from the respective
ethics committees. All benign and malignant nodules were
confirmed pathologically after US testing.

Inclusion criteria: a. US-detected breast nodules, which
diameter between 5.0 and 30.0 mm. b. Ability to show at least
3.0 mm of breast tissue around the nodule. c. Nodules must be
Breast Imaging Reporting and Data System (BI-RADS) 0, 2, 3,
4a, 4b, 4c or 5. d. The nodules have not undergone interventional
or surgery prior to the US examination. e. The patient underwent
surgery or biopsy within 1 week of US data collection and
pathology results were obtained.

Exclusion criteria: a. Normal breast. b. History of breast surgery or
intervention. c. Poor image quality. d. without pathological results.

Instruments
The Philips, GE, and Mindray equipment were chosen to
increase the model’s adaptability. The image sources are spread
randomly and uniformly. The details of the instrument are
listed below.

a. LOGIQ E9 (GE Medical Systems Ultrasound and Primary
Care Diagnostics, USA) with ML6-15-D linear array probe.

b. EPIQ 5 (Philips Ultrasound, Inc. USA) with L12-5 linear
array probe.

c. Resonan 7 (Mindray, China) with L11-3U linear array probe.
Data Preparation
To filter the combinations (model REZ) suited for breast cancer US
picture classification, three REZs (224×224、320×320 and 448×448)
and five deep learning models (Xception, DenseNet121, MobileNet,
ResNet50, and EfficientNetB0) were trained and tested (Figure 1).

Image Preprocessing
Image Cropping
The field-of-view (FOV) is extracted from the original image
using image processing techniques by cropping out the device
July 2022 | Volume 12 | Article 869421
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and patient-related information and keeping only the image
window. Each FOV images is filled into a square and scaled to
224 × 224, 320 × 320, and 448 × 448, used as input data for model
training and testing.

Image Enhancement
Prior to training the model, all image enhancements were
performed using Python 3.9 as an automatic pre-processing
process. This included Gaussian noise probability: 0.3, left-right
flip probability: 0.5, rotation angle: -0.1: 0.1, X-axis shift: -0.1: 0.1,
Y-axis shift: -0.1: 0.1, scaling. 0.7: 1, gamma correction. 0.6 to 1.6,
stretching (left-right 50px, down 100px) and non-local average
denoising (filter strength = 3, template window size = 7, search
window size = 21).
Model Training and Validation
The data were divided into training, validation and test set in a
ratio of 8:1:1. Also, it was ensured that all images of the same
patient appeared in the same set.
Frontiers in Oncology | www.frontiersin.org 3225
The default setting of training 100 epochs, while setting
EarlyStop, 15 epochs of validation set loss does not drop will
end the training early. The default setting of batch_size is (32).

Model Testing
Internal and external tests were included in the test set. Three
hundred images were randomly chosen from the test set for a
comparison test of physicians and AI models, with the goal of
determining not only the clinical usefulness of the models, but
also whether the models’ diagnostic capabilities exceed those of
physicians. The physcians did not known the results of AI and
pathology. The process is as follows:

a. The AI combinations (model_REZ) make diagnoses
independently.

b. Two physicians each from entry (<2 years), junior (2-5 years),
and senior (>5 years) levels performed the diagnosis based on
BI-RADS (33), which includes features such as size, shape,
orientation, margin, echo pattern, posterior features,
calcification and associated features.
FIGURE 1 | Architecture diagram. US, ultrasound; REZ, resolution.
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Statistical Analysis
Python 3.9 was applied for statistical analysis. The significance
level was set at P = 0.05. In physician-model test, P = 0.1 was
considered statistically significant.

The Kolmogorov-Smirnov test was used as a normality test. If
the normal distribution was matched, variables were expressed as
mean ± standard deviation (SD). If not, the median and
interquartile range (IQR) are reported. The values of categorical
variables are expressed as number (%). Within-group differences
were compared using the paired-samples to test for continuous
variables conforming to a normal distribution, and the Mann-
Whitney U test for non-normal continuous variables. The
Wilcoxon test was used to compare the error between
physicians and AI combinations. The Kappa test was used to
determine the intra-group consistency among different levels of
physicians. The Specificity, sensitivity, accuracy, receiver operating
characteristic curve (ROC), area under the curve (AUC) and 95%
confidence interval (95% CI) were used for evaluation.
RESULT

A final total of 13,684 grayscale US images from 3,447 female
patients were included according to the inclusion and exclusion
criteria from July 2015 to December 2020. On average, 4 valid
grayscale US images were available for each patient. Of these, 2457
were benign tumors (9102 images) and 990 were malignant
tumors (4582 images). The training set, validation set, and
internal test set are 10,806, 1,293, and 1,585 images, respectively,
according to the 8:1:1 of the number of patients. The external
testing set are 440 images respectively. Table 1 show the
distribution of baseline characteristics of the collected patients.
Appendix Tables 1, 2 demonstrate the distribution of the study
sample across trials. The flow chart is shown in Figure 2.

Diagnosis of AI Models
Internal Test
For MobileNet, 448 REZ achieve the best AUC (0.886), with
sensitivity 80.59%, specificity 80.97% and accuracy 80.59%. For
Xception, 224 REZ achieve the best AUC (0.896), with sensitivity
Frontiers in Oncology | www.frontiersin.org 4226
77.31%, specificity 87.74, accuracy 83.53%. For EfficientNetB0,
320 REZ achieve the best AUC (0.887), with sensitivity 80.28%,
specificity 83.30% and accuracy 82.08%. For DenseNet121, 224
REZ achieve the best AUC (0.867), with sensitivity 77.46%,
specificity 81.40% and accuracy 79.81%. For ResNet50, 448
REZ achieve the best AUC (0.851), with sensitivity 72.61%,
specificity 82.88% and accuracy 78.74%. The detailed results
were summarized in Table 2.

External Test
For MobileNet, 224 REZ achieve the best AUC (0.893), with
sensitivity 81.59%, specificity 82.09% and accuracy 81.82%. For
Xception, 448 REZ achieve the best AUC (0.900), with sensitivity
79.92%, specificity 88.56% and accuracy 83.86%. For
EfficientNetB0, 320 REZ achieve the best AUC (0.907), with
sensitivity 91.63%, specificity 72.14% and accuracy 82.73%. For
DenseNet121, 448 REZ achieve the best AUC (0.883), with
sensitivity 66.95%, specificity 94.53% and accuracy 79.55%. For
ResNet50, 448 REZ achieve the best AUC (0.871), with
sensitivity 79.92%, specificity 81.09% and accuracy 80.45%.
The statistical results in detail are outlined in Table 3.

Physician-AI Test Set
The consistency and accuracy of the diagnosis improved with the
clinical experience of the physicians. The above results are shown
in Appendix Table 3.

The 320 REZ for EfficientNetB0 (AUC: 0.896, P < 0.1) is
better than senior physicians. The 224 REZ for MobileNet (AUC:
0.878, P < 0.1), 448 REZ for Xception (AUC: 0.895, P < 0.1) are
better than junior physicians. The 448 REZ for DenseNet121
(AUC: 0.880, P < 0.05) and ResNet50 (AUC: 0.838, P < 0.05) are
only better than entry physicians. The more detailed findings are
presented in Figures 3, 4.

Time Consuming
Time Consuming to Training Models
Each Epoch took 11.06 ± 1.26 min (P < 0.0001); each Batch
required 1.97 ± 0.22 s (P < 0.0001), and theoretical training of 50
Epochs took 9.22 ± 1.05 h (P < 0.0001), with statistically
significant variations (Appendix Table 4).
TABLE 1 | Distribution of baseline characteristics of patients.

Variables Benign (n=2457) Malignant (n=990) P

Age, year, mean ± SD 42.0 ± 11.7 46.0 ± 10.5 <0.001
Size, mm, mean ± SD 18 ± 6.9 21 ± 8.7 <0.001
Pathology, n
Fibroadenoma 1161 –

Adenosis of Breast 501 –

Intraductal Papilloma 92 –

Other Benign Tumors 703 –

Infiltrative Non-specific Type of Carcinoma – 560
Ductal Carcinoma in Situ – 49
Infiltrating ductal carcinoma – 17
Infiltrating lobular carcinoma – 21
Other malignant tumors – 343
July 2022 | Volume 12 | Article
SD, standard deviation.
Parametric continuous variables are represented by mean ± SD and non-parametric variables are represented by median (IQR).
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The Average Time of Predicting an Image
The difference in the average time taken by different models to
predict an image is statistically significant. MobileNet_224 and
320 are the fastest models, both predicting within 0.02 s. The
frame rate can reach 50 Frame/s, which is almost 1/4-1/3 of the
Frontiers in Oncology | www.frontiersin.org 5227
Densenet121 time (Figure 5). REZ had an effect on the elapsed
time of the model. A slight increase in elapsed time was observed
for high REZ model predictions, with statistically significant
differences within groups (Table 4; Figure 5).
TABLE 2 | The results of all combinations (Model_REZ) in internal test set.

Models AUC (95%CI) Sen (%) Spe (%) Acc (%)

Xception
224×224 0.896 (0.880-0.913) 77.31 87.74 83.53
320×320 0.883 (0.866-0.899) 81.22 81.08 81.14
448×448 0.887 (0.869-0.904) 83.41 82.14 82.65

MobileNet
224×224 0.877 (0.859-0.895) 80.75 81.40 81.14
320×320 0.867 (0.849-0.886) 81.38 78.54 79.68
448×448 0.886 (0.870-0.903) 80.59 80.97 80.59

EfficientNetB0
224×224 0.878 (0.861-0.895) 79.34 81.92 80.88
320×320 0.887 (0.870-0.904) 80.28 83.30 82.08
448×448 0.875 (0.857-0.893) 74.49 89.01 83.15

ResNet50
224×224 0.781 (0.758-0.804) 72.46 70.08 71.04
320×320 0.847 (0.827-0.866) 77.93 76.96 77.35
448×448 0.851 (0.832-0.870) 72.61 82.88 78.74

DenseNet121
224×224 0.867 (0.849-0.885) 77.46 81.40 79.81
320×320 0.849 (0.829-0.869) 79.34 78.54 78.86
448×448 0.866 (0.848-0.884) 79.03 80.97 80.19
July 2022 | Volume 12 | Articl
REZ, resolution; AUC, area under the curve; CI, confidence interval; Sen, sensitivity; Spe, specificity; Acc, accuracy.
FIGURE 2 | Study flow chart depicting patient enrollment at two hospitals.
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DISCUSSION

This study used 15 models to classify breast cancers at a higher
degree than previous studies (32–35). The results showed that
MobileNet_224, Xception_448 and EfficientNetB0_320 models
showed the best diagnostic ability in tests set and physician-AI
test set. This is the first study that we are aware of that specifically
describes intra/intergroup comparisons of multiple models and
REZs based on grayscale US breast images.

End-to-end philosophy of DL has benefited a lot for reducing
the heavy workload preparing datasets. Only pathological findings
Frontiers in Oncology | www.frontiersin.org 6228
were used as markers in this investigation, with no annotation of
US pictures. It significantly reduces the initial workload. This
study and a previous study (36) of our team found that, not only
did this DL method produce good diagnostic results, but the
diagnostic idea was similar to that of the physician.

The 224×224, 320×320 and 448×448 pixels were adopted in
this study because these three REZs are commonly used in
engineering (18, 22, 37). They are both obtained after scaling
on the original size, and the different REZs react to the same
model affecting the size of the convolutional kernel field of
FIGURE 3 | The ROC of the AI models and physicians. ROC, receiver operating characteristic; AI, Artificial Intelligence; AUC, area under curve.
TABLE 3 | The results of all combinations (Model_REZ) in external test set.

Models AUC (95%CI) Sen (%) Spe (%) Acc (%)

Xception
224×224 0.885 (0.855-0.915) 74.48 87.56 74.48
320×320 0.832 (0.795-0.869) 69.46 82.59 75.45
448×448 0.900 (0.872-0.928) 79.92 88.56 83.86

MobileNet
224×224 0.893 (0.864-0.922) 81.59 82.09 81.82
320×320 0.869 (0.836-0.902) 76.99 82.59 79.55
448×448 0.871 (0.839-0.903) 64.44 94.03 77.59

EfficientNetB0
224×224 0.869 (0.836-0.901) 75.31 84.58 79.55
320×320 0.907 (0.880-0.934) 91.63 72.14 82.73
448×448 0.874 (0.842-0.906) 81.17 80.60 80.91

ResNet50
224×224 0.788 (0.747-0.830) 68.20 77.11 72.27
320×320 0.838 (0.801-0.875) 75.31 80.60 77.73
448×448 0.871 (0.838-0.904) 79.92 81.09 80.45

DenseNet121
224×224 0.801 (0.759-0.842) 58.16 92.54 73.86
320×320 0.848 (0.812-0.883) 75.31 80.60 77.73
448×448 0.883 (0.852-0.913) 66.95 94.53 79.55
July 2022 | Volume 12 | Articl
REZ, resolution; AUC, area under the curve; CI, confidence interval; Sen, sensitivity; Spe, specificity; Acc, accuracy.
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perception (38). In convolutions, images with small REZs do
consume less computation time than large REZ, but may lose
more information and produce misleading results (39). In this
research, we found an increase in the consumption time of the
model fed by high-REZ images, which is consistent with what
has been reported in the literatures (40).

In both the external and physician-AI tests, MobileNet_224,
EfficientNetB0_320, and Xception_448 surpass the other four
models and all physicians. MobileNet can be a vision model built
on handheld and mobile equipment. Although small image REZ
has its own drawbacks (39), we can appropriately reduce the
image REZ to increase speed to benefit portable US devices while
Frontiers in Oncology | www.frontiersin.org 7229
having good accuracy and efficiency (25). While the high REZ of
the input image (320×320) may increase computational cost,
EfficientNetB0 uses an efficient convolutional neural networks
architecture to process slightly larger images at a relatively
similar cost to smaller images (41, 42). Using depth-segmented
convolution in Xception provides similar properties to the
original module, while being as easy to use as a normal
convolutional layer. The convergence process is faster and
more accurate when the nonlinear activation function is not
used (43). Thus, when the input REZ is further increased to 448 ×
448, Xception_448 is the best. This study found some difficulties
in the selection of image inputs for ResNet50 and DenseNet121.
In physician-AI test set, ResNet50_448 and DenseNet121_448
had only higher AUCs than those of entry physicians.

More data and richer data types are obvious ways to improve
the efficiency of model diagnosis (44). The imbalance of the
sample has an effect on the model. If all the data are trained
together, it may appear balanced on the surface, but this can be
masked in the real world. Sample imbalance at different aspects
can have an impact on the final results of the model (45).
Therefore, developing “one model for all situations” may still
be a long process. Currently, more breast AI experiments of US
with targeted and multimodal have been designed to address
some problems on a smaller scale. They may become a more
achievable goal in the short term, such as the prediction of lymph
node metastasis, molecular subtypes and pathological types of
breast cancer (18–22).

The hypothesis of this study is that AI is superior to
physicians. And in order to reduce the type 2 errors in
statistics and prevent the result that AI dominates the
physician’s diagnosis, we argue that setting P to 0.1 is critical
in the physician-AI test set. This is because AI is supposed to be
an assistant not a decision maker that substitutes the doctor. If
the type 2 error is too large, it will lead to more reliance on AI,
A B

FIGURE 5 | (A), the consuming time of predicting an image of models (sec/frame). (B) the frame rate of models (sec/frame).
FIGURE 4 | The heat map showed the p value of the physician-AI test set.
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which is a bad news for medicine, especially for hospitals in
remote areas or less experienced physicians.

Numerous breast AI of US studies have demonstrated the
amazing utility and reliability of this technique (14–24). But
previous efforts have focused more on what AI can do and how
far it can go, ignoring the differences in models across REZs,
devices, and even users. Therefore, a study of these combinations
(model_REZ) is necessary. It balances the efficiency, accuracy
and reliability of breast AI of US, and provide a theoretical basis
for specific equipment demands in future.

The data is often divided into training, validation and test
sets following a ratio of 8:1:1 and 7:1:2 (46–48). When the
sample size is small and the test set needs more, 7:1:2 is
preferred. In this study, the sample size is 13,684, which is
relatively large in ultrasound AI researches, thus we choose the
ratio of 8:1:1. The sample size of the study by Ren was close to
our study (47).

There are some limitations to this research. a: The study’s
sample size was small, and the pathology was unevenly
distributed. The origin of the instruments was not
differentiated. Subsequently, more subgroups could be added
for analysis. b: This study is a retrospective analysis with only a
small amount of external validation data. c: Only static images
were analyzed in this study. Video data and a multi-omics data
can be added later to improve the richness of training.
CONCLUSION

Based on unlabeled 2D grayscale images of breast US, this study
obtained the optimal combinations (model_REZ) and
outperformed the entry, junior and senior practitioners. This
study also reveals the promising application of unlabeled ROI in
medical imaging of DL, which greatly reduces the cost and time.
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Models REZ
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P 0.0124 <0.0105 <0.0102
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Objective: To investigate the Contrast-enhanced ultrasound (CEUS) imaging
characteristics of granulomatous lobular mastitis (GLM) and the value of differentiating
GLM from breast cancer.

Materials and methods: The study included 30 women with GLM (mean age 36.7 ± 5
years [SD]) and 58 women with breast cancer (mean age 48. ± 8 years [SD]) who were
scheduled for ultrasound-guided tissue biopsy. All patients were evaluated with
conventional US and CEUS prior to the biopsy. In both groups, the parameters of the
quantitative and qualitative analysis of the CEUS were recorded and compared. The
receiver-operating-characteristics curves (ROC) were created. Sensitivity, specificity, cut-
off, and area under the curve (AUC) values were calculated.

Results: TTP values in GLM were statistically higher than in breast cancer (mean, 27.63 ±
7.29 vs. 20.10 ± 6.11), but WIS values were lower (mean, 0.16 ± 0.05 vs. 0.28 ± 0.17).
Rich vascularity was discovered in 54.45% of breast cancer patients, but only 30.00% of
GLM patients had rich vascularity. The AUC for the ROC test was 0.791 and 0.807,
respectively. The optimal cut-off value for TTP was 24.5s, and the WIS cut-off value was
0.185dB/s, yielding 73.33% sensitivity, 84.48% specificity, and 86.21% sensitivity, 70%
specificity respectively in the diagnosis of GLM. The lesion scores reduced from 4 to 3 with
the addition of CEUS for the patients with GLM. However, the scores did not change for
the patients with breast cancer.

Conclusion: CEUS could help distinguish GLM from breast cancer by detecting higher
TTP andWIS values, potentially influencing clinical decision-making for additional biopsies.

Keywords: granulomatous mastitis, breast cancer, quantitative parameters, imaging characteristics, contrasted-
enhanced ultrasound
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INTRODUCTION

Granulomatous lobular mastitis (GLM) is a rare, benign chronic
inflammatory disease with unclear etiology that is frequently
mistaken as a malignant process both clinically and
radiographically (1) Imaging features suggestive of GLM
remain nonspecific and are not always present in all patients.
As a result, accurate diagnosis necessitates pathological
examination (2, 3). Unnecessary biopsies or surgical excision
can result in chronic fistulas and breast deformities. During the
evaluation, the patient may experience a great deal of anxiety.

Ultrasonography (US) is frequently used to assess lesions
using Breast Imaging Reporting and Data System (BI-RADS),
because it has a high sensitivity in diagnosing breast lesions (4).
BI-RADS 3 lesions are likely to be benign and should be
monitored; BI-RADS 4 and 5 lesions are suspected malignant
and must be pathologically confirmed. Contrast-enhanced
ultrasound (CEUS) imaging with microbubble contrast agents
has significantly improved microcirculation visualization and
allowed researchers to overcome the limitations of traditional
B-mode US techniques. Previous studies have shown that
combining CEUS with conventional US could improve
diagnostic performance in breast lesions. The kinetic
parameters of tumor tissue in CEUS can also be quantified by
generating the time-intensity (T/I) curve with specialized
software. Several studies have shown that CEUS can help
distinguish between benign and malignant breast lesions (5–7).
Because the current imaging modalities are not sufficient to
establish a definitive diagnosis of GLM in most patients. Prior
studies of breast cancer reveal increased amounts of microvessels
in cancerous lesions.Based on this data, CEUS may provide
additional information for distinguishing GLM from breast
cancer lesions.

The purpose of this study was to investigate CEUS parameters
of GLM and breast cancer and analyze their values in
distinguishing GLM from breast cancer.
MATERIALS AND METHODS

Study Design
The ethics committee of Jiangsu University Affiliated People’s
Hospital approved this study (K-20190175-W), and written
informed consent for breast CEUS examination was obtained
prior to enrolling a patient in our study. Between September
2019 and November 2021, consecutive patients were screened for
breast cancer at Jiangsu University Affiliated People’s Hospital’s
Department of Breast Surgery. According to the BI-RADS
classification scheme, the selection criteria were represented by
US findings classified as BI-RADS category 3–5. All those
patients contraindicated for CEUS were excluded from the
study. After grayscale and contrast-enhanced ultrasound, a
core needle biopsy (CNB) or vacuum-assisted biopsy (VAB) of
BI-RADS 4 and 5 lesions was performed. Only the most
suspicious lesion fulfilling the selection criteria was evaluated
when a patient had multiple lesions. GLM diagnosis criteria was
based on the management of granulomatous lobular mastitis: an
Frontiers in Oncology | www.frontiersin.org 2234
international multidisciplinary consensus (2021 edition) (8). The
histopathologic results of biopsy served as the diagnosis gold
standard in this study. All patients had standard mammography
and magnetic resonance imaging (MRI) (according to age).

Ultrasound Equipment
All examinations were performed with a Philips EPI Q5 color
Doppler ultrasound equipped with a high-frequency linear array
probe (using a 12-5 MHZ and 9-3 MHZ linear-array transducer)
and dedicated contrast pulse sequences. To reduce contrast agent
destruction, low mechanical index values (MI=0.08) were used.
The contrast medium employed was SonoVue (Bracco Imaging,
Milan, Italy).

Ultrasound Examination
The same sonologist, with 20 years of experience with breast US,
performed all US and CEUS examinations. When a breast lesion
was discovered, its location, maximum diameter, 2-D
characteristics, and color Doppler characteristics were all
recorded. Shape, margin, orientation, inner echo, posterior
echo, and calcification were all 2-D characteristics. A dual
display of grayscale and contrast-enhanced images was used to
allow simultaneous visualization to keep the probe position
constant during the examination. The plane with the most
significant lesion diameter was chosen as the reference scan.
In addition to keeping the transducer in a stable position
throughout the scan, the target area was compressed as little
as possible. The contrast reagent suspension used consisted of
59 mg of SonoVue powder mixed with 5 mL of saline and was
administered via a 20-gauge cannula into the antecubital vein.
Following a bolus injection of 4.8 mL of contrast agent via the
intravenous cannula, a saline injection of 5–10 mL was
administered. A two-minute dynamic image image was
recorded and saved on a hard disk as raw data for later analysis.

Image Analysis
Two other investigators who had not performed the
conventional US and CEUS examinations and were blinded to
surgical, histopathologic, and other imaging findings
independently analyzed the US imaging data. The findings of
the conventional ultrasound examination were evaluated using a
standardized BI -RADS™ (Breast Imaging Reporting and Data
System) for breast ultrasound. The diagnostic criteria for CEUS,
according to a previously published study (5).

A dedicated sonographic quantification software (Qontrast,
Bracco, Milan, Italy) based on signal intensity pixel by pixel over
time was used to generate color-coded maps of the studied
lesion’s perfusion parameters. The enhancement patterns were
evaluated as qualitative parameters, while the time-intensity
curve was analyzed quantitatively (9). The qualitative variables
were classified as follows: The degree of enhancement of lesions
in comparison to surrounding tissue, the type of vascularization
(peripheral or central), the homogeneity of perfusion
(homogeneous vs. heterogeneous), and the degree of
vascularization (peripheral or central) (weak or absent vs.
intermediate vs. rich). The time-intensity curve’s quantitative
parameters were determined. The region of interest (ROI) was
July 2022 | Volume 12 | Article 876487
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placed in the area of most significant enhancement, and its size
was set to the default value of 3 (mean, 6.9 ± 0.3 mm2; range, 5.6-
7.5 mm2). The quantitative parameters were classified as follows:
TTP (time to peak, s), PI (peak intensity, dB), WIS (wash in
slope, dB/s), AUC (area under curve, dB x s). The integral value
of the curve is associated with total blood volume and the sum of
the area wash-in and area wash-out (Figure 1). Predefined
motion compensation and background set were also applied to
obtain these parameters. Motion compensation is an automatic
function that detects slight movements in concordance with
movements of ROI and eliminates their influence. Application
examples are given (Figure 2).

Statistical Analysis
For the statistical analysis, GraphPad Prism 7 was used. The
student’s t-test and ANOVA were used to examine the
differences between independent groups. The Mann-Whitney
U test was used to compare differences between two independent
groups. Fisher’s exact test was used to compare categorical
(qualitative) parameters summarized using absolute and
relative frequencies. The p< 0.05 level was considered
statistically significant.
RESULTS

Patients and Lesions Characteristics
A total of 130 patients who underwent image-guided biopsy
were enrolled in this study. 2 patients were contraindicated
for CEUS, and 40 patients diagnosed with the benign non-
inflammatory disease (fibroadenoma, for example) were
excluded. Fifty-eight patients with breast cancer and 30
patients with GLM were included in the analysis of the
quantitative CEUS parameters (Figure 3).

Basic patient and lesion characteristics are summarized in
Table 1. Patients with GLM were significantly younger (mean
Frontiers in Oncology | www.frontiersin.org 3235
36.7 ± 5 years vs. 48 ± 8 years) and had larger lesions (40.67 ± 8.38
vs. 29.02 ± 6.05mm) (p< 0.01). There was no statistically significant
difference in US-BI-RADS scores between breast cancer patients
and GLMpatients (p = 0.19).When only conventional US was used
to evaluate patients with GLM, the scores were predominantly
determined to be four according to the BI-RADS classification,
similar to breast cancer, preventing differentiation. With the
addition of CEUS for patients with GLM, the lesion scores
decreased from 4 to 3. The scores for patients with breast cancer,
on the other hand, remained unchanged.

CEUS Parameters in GLM and Breast
Cancer
The parameters of the quantitative and qualitative analysis of the
CEUS of GLM and breast cancer are summarized in Table 2.
GLM had statistically higher TTP values (on average by 7 s) and
lower WIS values (on average by 0.12 dB/s) than breast cancer. A
statistically significant difference in the degree of enhancement
was observed when rich vascularity was detected in 54.45% of
breast cancer but only 30.00% of benign lesions. There was no
discernible difference in the nature of the blood supply in the
surrounding tissue of GLM and breast cancer.

CEUS-BI-RADS Categories, TTP and WIS
Values of Patients With GLM
For GLM patients, the mean TTP and WIS distributions for the
BI-RADS categories are shown. There was a significant difference
between BI-RADS 3 and 4 lesions (p< 0.05, 95% CI). There was a
negative correlation between BI-RADS scores and TTP (p< 0.01)
(Table 3). According to ROC curve analysis, the best cut-off
value of TTP for distinguishing between GLM and breast cancer
was 24.5s, yielding sensitivity and specificity of 73.33% and
84.48%, respectively, for the diagnosis of GLM. The cut-off
value of WIS was 0.185dB/s, at which the sensitivity and
specificity for diagnosing GLM were 86.21% and 70%. ROC
results revealed an area under the curve values (TTP-AUC:
0.791, WSI-AUC: 0.807) (Figure 4).
FIGURE 1 | Flow chart with patients in the study. BC: breast cancer,
granulomatous lobular mastitis : GLM; CEUS: contrast-enhanced ultrasound;
CNB: Core needle biopsy; VAB: vcauum-assisted biopsy.
FIGURE 2 | Representation of the time-intensity curve including parameters:
TI (time intensity curves), PI (peakintensity), WIS (wash in slope), AUC (area
under curve), TTP (time to peak).
July 2022 | Volume 12 | Article 876487

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yin et al. Differentiation Between GLM and BC Using CEUS
DISCUSSION

This study aimed to compare the CEUS characteristics of GLM
to those of breast cancer. To interpret the CEUS results, we used
quantitative and qualitative examination parameters that provide
Frontiers in Oncology | www.frontiersin.org 4236
a measurable value for the lesions. In our study, GLM had
statistically higher TTP parameters (sensitivity 73.33%,
specificity 84.48%) and lower WIS values (sensitivity 86.21%,
specificity 70%) than breast cancer. The CEUS adds valuable
information to that obtained through the US. Our findings
TABLE 1 | Basic patient and lesion characteristics.

GLM Breast cancer p-Value

Lesions, n (%) 30 (52,6%) 58 (72.4%)
Age 36.7 ± 5 48 ± 8 <0.0001
Symptoms
Palpable mass 28 50
Breast pain 30 12
Erythema 24 1
Nipple change 21 4
Abscess 6 –

Lesion localization
Right (%) 20 (66.7%) 30 (51.7%) 0.26
Left (%) 10 (33.3%) 28 (48.3%)
Lesion size (mm) (mean) 40.67 ± 8.38 29.02 ± 6.05 <0.0001
TIC
I 21 (70.0%) 8 (13.8%) <0.0001
II or III 9 (30.0%) 50 (86.2%)
US-BI-RADS score (mean) 4.00 ± 0.52 3.88 ± 0.33 0.19
CEUS-BI-RADS score (mean) 3.20 ± 0.41 4.08 ± 0.28 <0.0001
Tumor Grade
1 – 4 (6.9%)
2 – 30 (51.7%)
3 – 24 (41.4%)
Histopathological type – n = 58
invasive carcinoma NST – 42 (72.4%)
invasive lobular carcinoma – 7 (12.1%)
others – 9 (15.5%)
July 2022 | Volume 12 | Article
CEUS, contrast-enhanced ultrasound; TIC, time intensity curves; BI-RADS, Breast Imaging Reporting and Data System; NST, invasive carcinoma of no special type.
FIGURE 3 | Examples of quantitative data acquisition using ROI. (A) Granulomatous lobular mastitis in a 28-year-old female. Moderate enhancement of the lesion
(yellow ROI) compared to minimal enhancement in surrounding breast tissue (green ROI). Gradual enhancement and a gradual wash out of contrast agent
(corresponding TIC below) versus TIC of DEC-MRI. (B) Invasive ductal carcinoma in a 61-year-old female with significant enhancement of the lesion (yellow ROI)
compared to slight enhancement in surrounding breast tissue (green ROI), the lesion is ill-defined. After rapid enhancement of the tumor, early wash-out can be
observed (corresponding TIC below) versus TIC of DEC-MRI. ROI, region of interest; TIC, time intensity curves; DEC-MRI, dynamic contrast enhancement magnetic
resonance imaging.
876487
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indicated that this approach could help to avoid
unnecessary biopsies.

GLM is a rare chronic inflammatory, benign breast disease. It
primarily affects women of childbearing age, and its etiology is
unknown. It is difficult to diagnose because it can mimic breast
cancer clinically and radiologically (1). For the initial assessment
of this rare entity, ultrasound and mammography are commonly
used imaging modalities. However, the imaging findings on
ultrasound and mammography are often inconclusive, making
it difficult to distinguish this disease frommalignancy using these
traditional imaging techniques (2, 10). Dynamic contrast
enhancement Magnetic resonance imaging (DCE-MRI) is a
powerful tool for detecting breast disease. DCE-MRI
parameters of breast cancer were found to be related to the
expression of histopathological factors (11, 12). GLM
characteristics detected by MRI commonly manifest as
heterogeneous enhancing masses, segmental non-mass
enhancement (NME), or focal non-massive lesions. The most
common MRI finding in GLM patients is NME, which is
characterized by heterogeneous and clustered ring
enhancement patterns (13, 14). However, access to MRI may
be limited, and exams are relatively expensive. Furthermore,
patients who are contraindicated for MRI or who cannot tolerate
MRI are not candidates for these exams. Our study only
performed mammography on patients over 40 years of age
who had non-diagnostic images. Four patients with GLM for
DCE-MRI, and two of the images show a ring-shaped pattern of
non-massive enhancement around the lesion.

Several Multiple irregular hypoechoic masses with multiple
tubular extensions are a symptom of GLM (15). Shear wave
elastography (SWE) values were significantly higher in breast cancer
patients than in GLM patients (16, 17). This study’s most common
Frontiers in Oncology | www.frontiersin.org 5237
ultrasound findings were increased skin thickness and irregular
heterogeneous hypoechoic masses with tubular extension, which is
consistent with previous research. These findings mainly were BI-
RADS 4-5 and necessitated a biopsy for a definitive diagnosis (18).

CEUS is currently a widely used diagnostic method for
assessing microvascular architecture in real-time. CEUS has an
advantage over power Doppler, which has been widely used to
assess the vascularity of liver and other organ masses (19).
Ultrasound contrast agents (UCA) are gas-filled microbubbles
(3–10 m diameter) supported by a flexible shell, such as
phospholipids or albumin, employed in CEUS. These
microbubbles operate as resonant entities in an ultrasonic field,
generating nonlinear scattered signals that distinguish blood flow
from surrounding tissue (20). In an ultrasound examination,
SonoVue is used to enhance the vascular signals. As a result, the
breast’s detection, morphology, and flow of microvessels are
improved (21, 22). Previous research has found that CEUS has a
higher diagnostic performance than the conventional US in
distinguishing benign from malignant breast lesions (23). The
use of contrast-enhanced ultrasound in conjunction with blood
cell analysis improved the diagnostic accuracy of plasma cell
mastitis (24). Min Tang demonstrated that CEUS has high
diagnostic accuracy in distinguishing benign inflammation
from the malignant peripheral pulmonary disease (25).

In the present study, according to the BI-RADS classification,
US scores for GLM in this study were predominantly 4. In
patients with GLM, the addition of CEUS reduced the score from
4 to 3. The scores, however, did not change in patients with
breast cancer. We hypothesize that CEUS will be an effective tool
in evaluating GLM with unclear findings on conventional
ultrasound to differentiate between categories 3 and 4. As a
result, CEUS may reduce the number of tissue core needle
TABLE 3 | CEUS-BI-RADS Categories,TTP and WIS Values of Patients with GLM.

TPP (s) WIS (dB/s)

CEUS-BI-RADS 3 27.92 ± 7.98 0.16 ± 0.05
4 26.50 ± 3.89 0.15 ± 0.05
July 2022 | Volume 12 | Ar
TABLE 2 | Quantitative and qualitative parameters of breast CEUS according to the diease.

GLM Breast cancer p-value

Quantitative parameters
TTP (s) 27.63±7.29 20.10 ± 6.11 <0.0001
WIS (dB/s) 0.16 ± 0.05 0.28 ± 0.17 <0.0001
PI (dB) 2.85 ± 0.91 2.91 ± 0.91 0.756
Qualitative parameters
Type of vascularization 0.202
peripheral 25 (83.33%) 40 (68.97%)
peripheral + central 5 (16.67%) 18 (31.30%)
Perfusion homogeneity
homogeneous 4 (14.81%) 3 (5.17%) 0.201
heterogeneous 23 (85.19%) 55 (94.83%)
Perfusion homogeneity
Enhancement degree
poor/absent 2 (6.67%) 3 (5.17%) 0.009
intermediate 19 (63.33%) 14 (24.14%)
rich 9 (30.00%) 31 (54.45%)
ticle
CEUS, contrast-enhanced ultrasound; TIC, time intensity curves; TTP, time to peak; WIS, wash in slope; PI peak intensity; AUC, area under curve.
876487
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biopsies of GLM. In comparison to MRI, CEUS is a relatively
simple, quick, and inexpensive method suited to becoming part
of the diagnostic algorithm of breast examination prior to biopsy.

In our study, we used the TI curves to look at differences in
vascular perfusion kinetics. When compared to breast cancer,
GLM was associated with significantly higher TTP values and
significantly lower WIS values. These findings can be explained
by the earlier and faster onset of breast cancer enhancement.
Several other studies that focused solely on CEUS characteristics
of confirmed breast cancer found earlier peak enhancement
(analogous to TTP and WIS parameters) and faster
microbubble elimination in more aggressive forms of cancer
associated with poor prognosis (7, 26, 27). In our research,
evaluating other qualitative (vascularization type, perfusion
homogeneity) and quantitative parameters (PI, AUC) did not
significantly improve the ability to distinguish between GLM and
breast cancer. Thus, quantitative CEUS analysis provides an
objective and reproducible assessment of lesion vascularization,
whereas some quantitative parameters between GLM and breast
cancer still overlap. One possible explanation for this is that some
hypervascular GLM lesions, particularly at the chronic
inflammation stage, mimic malignant tumors because their
enhancement dynamics are similar to those of carcinomas.

Sonovue was the most widely used UCA in previous studies, but
its mechanical properties limit its use with high-frequency linear
array probes for breast scanning and its capacity for long-term
imaging. In our study, Sonovue imaging could only last 4 minutes,
limiting access to high-quality imaging parameters compared to the
more stable Optison or Sonazoid (28). External perfusion software,
such as VueBox (Bracco, Italy), with integrated motion correction,
allows for a more detailed evaluation of micro vascularization in
terms of wash-in and wash-out kinetics because cine loops for up to
2min can be evaluated andmore parameters are determined (29). As
a result, new UCA in conjunction with analysis software may
improve CEUS diagnostic performance.
Frontiers in Oncology | www.frontiersin.org 6238
There are several limitations to our study. First, neither inter nor
intra-observer variability was assessed. Second, statistical power
may have been compromised because this was a single-center
clinical study with a small number of patients. This study was not
intended to replace conventional US for the diagnosis of GLM and
breast cancer but rather to describe how a complementary method,
based on the microcirculation of the tissues examined, can provide
valuable additional information to that obtained using the US.
CONCLUSION

According to the findings of this study, CEUS has a favorable
diagnostic performance with a higher TTP and a lower WIS
value in distinguishing GLM from breast cancer. Applying this
method in clinical practice can influence clinical decision-
making for further biopsies.
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FIGURE 4 | Diagram shows Comparison receiver operating characteristic
curve of CEUS between granulomatous lobular mastitis and breast cancer.
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Predicting the molecular
subtypes of breast cancer
using nomograms based
on three-dimensional
ultrasonography characteristics

Xiaojing Xu, Liren Lu, Luoxi Zhu, Yanjuan Tan, Lifang Yu
and Lingyun Bao*

Department of Ultrasound, Affiliated Hangzhou First People’s Hospital, Zhejiang University School
of Medicine, Hangzhou, China
Background: Molecular subtyping of breast cancer is commonly

doneforindividualzed cancer management because it may determines

prognosis and treatment. Therefore, preoperativelyidentifying different

molecular subtypes of breast cancery can be significant in clinical

practice.Thisretrospective study aimed to investigate characteristic three-

dimensional ultrasonographic imaging parameters of breast cancer that are

associated with the molecular subtypes and establish nomograms to predict

the molecular subtypes of breast cancers.

Methods: A total of 309 patients diagnosed with breast cancer between

January 2017and December 2019 were enrolled. Sonographic features were

compared between the different molecular subtypes. A multinomial logistic

regression model was developed, and nomograms were constructed based on

this model.

Results: The performance of the nomograms was evaluated in terms of

discrimination and calibration.Variables such as maximum diameter, irregular

shape, non-parallel growth, heterogeneous internal echo, enhanced posterior

echo, lymph node metastasis, retraction phenomenon, calcification, and

elasticity score were entered into the multinomial model.Three nomograms

were constructed to visualize the final model. The probabilities of the different

molecular subtypes could be calculated based on these nomograms. Based on

the receiver operating characteristic curves of the model, the macro-and

micro-areaunder the curve (AUC) were0.744, and 0.787. The AUC was 0.759,

0.683, 0.747 and 0.785 for luminal A(LA), luminal B(LB), human epidermal

growth factor receptor 2-positive(HER2), and triple-negative(TN),

respectively.The nomograms for the LA, HER2, and TN subtypes provided

good calibration.

Conclusions: Sonographic features such as calcification and posterior acoustic

features were significantly associated with the molecular subtype of breast
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cancer. The presence of the retraction phenomenon was the most important

predictor for the LA subtype. Nomograms to predict the molecular subtype

were established, and the calibration curves and receiver operating

characteristic curves proved that the models had good performance.
KEYWORDS

breast cancer, molecular subtypes, ultrasonography, relevance of three-dimensional
ultrasonography, nomogram
Introduction

Breast cancer is a heterogeneous and complex disease. The

main molecular subtypes of breast cancer are luminal A (LA),

luminal B (LB), human epidermal growth factor receptor2-

positive (HER2), and triple-negative (TN) (1, 2).This

heterogeneity leads to vast differences in disease progression,

treatment response, and prognosis. Therefore, preoperatively

identifying different molecular subtypes of breast cancer can be

significant in clinical practice. Nomograms have been used

extensively for visualizing predictive models in cancer. They

present user-friendly graphic presentation of the estimated

probabilities of the molecular subtypes. Moreover, nomograms

may guide clinical diagnosis and treatment and can help

facilitate precision medicine (3).

Hand-held ultrasonography (HHUS) has some limitations

because of the lack of standardization (4). Meanwhile, three-

dimensional ultrasonography (3D-US) has been essential as a

preoperative tool because of its reproducibility and reduced

operator dependence. Furthermore, its unique coronal plane can

provide additional diagnostic information and potentially

improve the characterization of breast lesions. Moreover, the

availability of automated breast US in clinical practice is

increasing (5, 6). Determining whether preoperative 3D-US can

distinguish tumour subtypes has important clinical significance.

Previous studies have shown that the characteristics of 3D-US

correlated with molecular classification, for example, calcification

is associated with the HER2-positive subtype, while the retraction

phenomenon is more related to the LA subtype (7–9).

In recent years, artificial intelligence for 3D-US has been

applied in the differential diagnosis of benign and malignant

breast masses, however there are only a studies on 3D–US in

molecular typing (10).
sonography; ABVS,

e curve; ER, estrogen

ptor 2; HHUS, hand-

B; PR, progesterone

riple-negative.
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The study aimed to investigate the relevance of the 3D–US

imaging characteristics of breast cancer associated with specific

molecular subtypes in order to establish nomograms that

distinguish the molecular subtypes of breast cancer. This study

explored the possibility of predicting molecular typing models

with large samples and provided insights into the future artificial

intelligence prediction of molecular typing.
Methods

Patients

The Institutional Review Board authorized this retrospective

study, The requirement for informed consent was waived due to

the retrospective nature of the study. Between January 2017and

December 2019, 326 patients were consecutively enrolled from

our hospital with random selection. All patients had invasive

breast cancer, which was histologically diagnosed. Their molecular

subtypes were estimated from the surgical specimens. Patients

with lesions of undetermined immunohistochemical results

(n=12) and patients with considerable deformity of the breast or

chest (n=5) were excluded. After these exclusions, 309 patients

were enrolled in this study.
Data collection

Patient information and lesion size and location were

recorded. All imaging features were retrospectively reviewed

according to the 5th edition of the American College of

Radiology Breast Imaging Reporting and Data System lexicon

(11). Two radiologists who were blinded to the patients’ previous

imaging data and clinical information, age, tumor position, and

maximum tumor diameter (according to the TNM[tumor, node,

metastasis] stage, the maximum diameter stratifications were

(<2cm,2–5cm,and >5cm)reviewed the volume data on an

automated breast volume scanner (ABVS)workstation

(Siemens Medical Solutions, Mountain View, CA,USA).

Analysis of mass lesions included shape (regular or irregular),
frontiersin.org
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lesion type (mass or no-mass [no-mass refers to a hypoechoic

area lacking a conspicuous margin or shape and can be defined

as a non space-occupying lesion]) (12), margin (circumscribed

or non-circumscribed), non-parallel/parallel growth,

echogenicity (hypoechoic, isoechoic, hyperechoic, or complex),

post-acoustic features (enhancement, shadowing, mixed, or no

change), calcification types, and axillary lymph node metastasis

(round shape, or irregular shape, cortical thickening, asymmetric

cortical thickness ≥3 mm, hilar compression, or displacement).

Coronal features included the retraction phenomenon and

the skipping sign. The retraction phenomenon was defined as

the convergence tendency of the tissue surrounding a lesion with

or without cord-like hyperechogenicity intervals on the coronal

plane. The skipping sign was defined as anechoic lines around

the lesion (13). Elasticity scores were recorded using strain

elastography(Tsukuba score, 5 points) (14).

Molecular subtypes were defined according to the

2015revised St. Gallen International Expert Consensus

Recommendation (15). Immunohistochemical staining was

performed to examine estrogen receptor (ER), progesterone

receptor (PR), HER2, and Ki-67 expression. Molecular

subtypes were diagnosed according to their hormone receptor

and HER2 status, as follows: LA: ER+, PR+, HER2-, and low Ki-

67 index; LB: ER+, PR+ or PR-, HER2- or HER2+, and high Ki-

67 index; HER2: ER-, PR-, andHER2+; and TN: ER-, PR-, and

HER2-. The Ki-67 index was classified as high when≥14% of the

tumor cells were immunostained (16).
Statistical analysis

R software version 4.0.2 (R Foundation for Statistical

Computing, Vienna, Austria) was used for all analyses.

Statistical significance was set at p<0.05. Nomograms were

developed in four steps.First,single factors were compared

between the different molecular types using the c2test
(parametric) or Fisher’s exact test (non-parametric). The

factors of the entire dataset were compared between groups,

and the p values were calculated. Second, factors with p<0.05

were included in the establishment of a four-category prediction

model, and a multi-classification regression model was

established using multinomial logistic regression for the entire

dataset. Third, nomograms were constructed based on the

results of the multivariate logistic regression model (17). The

total scores of each patient were calculated based on the

nomograms, and the probabilities of the LB, HER2, and TN

molecular subtypes, with the LA subtype as a reference, were

calculated based on these nomograms. Fourth, the performance

of the nomograms was evaluated in terms of discrimination and

calibration. Calibration curves were used to observe the

consistency between the predicted and the true values. The

predictive performance of the nomograms was measured using
Frontiers in Oncology 03
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the concordance index and calibration with 1000 bootstrap

samples was performed to decrease the overfit bias.
Results

General characteristics of the
study population

The average age of the study population was 54.25 ± 11.18

years, ranging from 25 to 85 years. There were 288 cases of

invasive ductal carcinoma and 21 cases of special types of

invasive breast cancer. The general characteristics of the study

population, including height, weight, type II diabetes status, and

hypertension, are shown in Table 1. LB was the most common of

the four molecular subtypes (n=137,44.3%), and LA was the

second most common (n = 82, 26.6%). The HER2 and TN

subtypes were less common(n=40, 12.9% and n=50,

16.2%, respectively).
TABLE 1 General characteristics of patients with breast cancer.

Variables Patients with breast cancer (n=309)

Age (years, mean ± SD) 54.25 ± 11.18

Height (cm, mean ± SD) 159.08 ± 4.33

Weight (kg, mean ± SD) 60.25 ± 8.78

Sex

Female 309 (100.0)

Type2 diabetes

no 286 (92.6)

yes 23 (7.4)

Hypertension

no 227 (73.5)

yes 82 (26.5)

Mastectomy

total 263 (85.1)

partial 46 (14.9)

Tumor type

IDC 288 (93.2)

others 21 (6.8)

Histological grade

I 21 (6.8)

II 135(43.7)

III 132(42.7)

Molecular subtype

LA 82 (26.5)

LB 137 (44.3)

HER2 40 (12.9)

TN 50 (16.2)
SD, standard deviation; IDC, invasive ductal carcinoma; LA, luminal A; LB, luminal B;
HER2, human epidermal growth factor receptor 2; TN, triple-negative.
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Differences in clinicopathological
characteristics,3D-US features, and
coronal features among the
molecular subtypes

There was no significant difference in age and maximum

diameter among the four subtypes. However, the maximum

diameter stratifications (<2cm,2–5cm,and >5cm) showed

statistical significance. On-mass lesions cannot be expressed in

terms of mass description, therefore ‘NA(no answer)’is entered

in the table. The detailed distributions of the histologic types are

shown in Table 2.
Multifactor multiclass logistic
regression analysis

Variables with p< 0.05 in the single-factor analysis were

entered into the model. These included maximum diameter,

irregular shape, non-parallel growth, heterogeneous internal

echo, enhanced posterior echo, lymph node metastasis,

retraction phenomenon, calcification, and elasticity score.
Construction of three nomograms to
visualize the final model

Three nomograms were created to predict the probabilities

of the LB, HER2-positive, and TN subtypes. Each independent

variable value corresponded to a point value on the top row, and

the individual scores were added to yield the total score. The

probability was then calculated based on the total score (15). The

results are shown in Figures 1–3. Receiver operating

characteristic (ROC) curves were established to assess the

accuracy of the model (Figure 4). The macro- and micro-AUC

were 0.744 and 0.787, respectively. The AUC was 0.759 for

predicting LA, 0.683 for predicting LB,0.747 for predicting

HER2-positive, and0.785 for predicting TN. Calibration curves

were also constructed. The closer the calibration curve (black)is

to the standard curve(red), the better the calibration capability of

the model. The model had good calibration for the LA, HER2,

and TN subtypes, as shown in Figure 5.
Discussion

US is the most widely used auxiliary examination technique

for the preoperative evaluation of breast cancer. However,

certain errors may occur during the preoperative puncture,

which can have adverse effects. Therefore, identifying the

molecular classification of breast cancer is vital to guide the

selection of an individualized clinical plan. Moreover, it is
Frontiers in Oncology 04
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difficult to utilize the traditional classification for these

treatment plans. Therefore, establishing a model that

incorporates multiple factors to identify the molecular subtype

can be used to predict the risk of mortality and facilitate the

implementation of individualized treatment (18, 19). Since the

ultrasonography features of different molecular types overlap, it

is more appropriate to use a multivariate prediction model. The

model in this study uses more parameters, thereby avoiding the

limitations of single-parameter evaluation. The nomograms

created here integrated relevant factors that affect molecular

typing in a simple graphical manner, allowing clinicians and

patients to understand the relationship between various factors

and molecular typing. Given a set of known quantitative

conditions, they can easily calculate the probability value of

the corresponding outcome (20). Therefore, the realization of

individualized classification prediction is in line with the pursuit

of individualized treatment.

LA and LB cancers account for approximately 70% of breast

cancer cases (21). Similar findings were observed in this cohort,

where these subtypes accounted for 72.8% of cases (LA: 26.6%

and LB:44.3%). Therefore, the distribution of molecular subtypes

in this single-center study is consistent with those in other

studies with larger samples.

ABVS is a 3D–US imaging system that overcomes the main

shortcomings of HHUS, such as lack of standardization, non-

repeatability, small field of view, and excessive time investment.

Additionally, for women with dense breast tissue, ABVS can

recognize calcification and the retraction phenomenon more due

to its the unique coronal reconstruction. Furthermore, ABVS is

more accurate than HHUS in assessing the extent of the disease,

average lesion size (22), and largest diameter (23). Hence, it can

better assess the ture scope of the disease. Recent studies have

also shown that the imaging features acquired by ABVS are

related to the molecular subtypes of breast cancer. In this study,

there was a significant difference among the four molecular

subtypes in the maximum diameter of the tumor. Patients with

the LA subtype had tumors<2cm, whereas in patients with other

subtypes, the largest diameter was 2–5cm. The HER2 molecular

subtype had more calcification than the other subtypes. The

retraction phenomenon was more likely to be seen in the LA

subtype than in any other subtypes. The TN subtype did not

display the retraction phenomenon orpost-acoustic

enhancement. In the LA subtype, the body has more time to

respond to cancer cells and form fibrosis,which leads to a

contraction pattern (24, 25). Since ABVS has these advantages,

it is moreusefulin evaluating breast cancer preoperatively.

A nomogram is a graphical calculation model that uses

known predictive factors to calculate the numerical probability

of a clinical event. Such prediction models are valuable. A

multivariate logistic regression model we constructed via step

wise analysis, Nomograms were subsequently developed based

on the fitted multivariate logistic regression model.Tumor size,
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TABLE 2 Clinicopathological characteristics of patients with different molecular subtypes.

Variables Molecular subtype p test

LA (n=82) LB(n=137) HER2 (n=40) TN (n=50)

Age (years, mean ± SD) 55.65 ± 11.00 54.37 ± 11.27 52.80 ± 9.68 52.78 ± 12.30 0.420 ANOVA

Age 0.398 c2

<60years 51 (62.2) 90 (65.7) 28 (70.0) 38 (76.0)

≥60years 31 (37.8) 47 (34.3) 12 (30.0) 12 (24.0)

Maximum diameter (cm, mean ± SD) 2.11 ± 1.27 2.95 ± 1.92 3.02 ± 1.30 2.91 ± 1.94 0.002 ANOVA

Maximum diameter stratification <0.001 Fisher

<2cm 47 (57.3) 40 (29.2) 8 (20.0) 15 (30.0)

2-5cm 31 (37.8) 85 (62.0) 28 (70.0) 30 (60.0)

>5cm 4 (4.9) 12 (8.8) 4 (10.0) 5 (10.0)

Lesion type 0.418 c2

no-mass 10 (12.2) 26 (20.4) 7 (17.5) 7 (14.0)

mass 72 (87.8) 109 (79.6) 33 (82.5) 43 (86.0)

Location 0.640 c2

left 42 (51.2) 64 (46.7) 23 (57.5) 25 (50.0)

right 40 (48.8) 73 (53.3) 17 (42.5) 25 (50.0)

Irregular mass 0.068 Fisher

no 71 (86.6) 104 (75.9) 32 (80.0) 36 (72.0)

yes 1 (1.2) 7 (5.1) 1 (2.5) 7 (14.0)

NA 10 (12.2) 26 (19.0) 7 (17.5) 7 (14.0)

Non-circumscribed margin 0.123 Fisher

no 72 (87.8) 106 (77.4) 33 (82.5) 39 (78.0)

yes 0 (0.0) 5 (3.6) 0 (0.0) 4 (8.0)

NA 10 (12.2) 26 (19.0) 7 (17.5) 7 (14.0)

Non-parallel mass 0.064 c2

no 49 (59.8) 84 (61.3) 26 (65.0) 40 (80.0)

yes 23 (28.0) 27 (19.7) 7 (17.5) 3 (6.0)

NA 10 (12.2) 26 (19.0) 7 (17.5) 7 (14.0)

Echogenicity 0.004 exact

complex 4 (4.9) 6 (4.4) 1 (2.5) 8 (16.0)

hyperechoic 2 (2.4) 0 (0.0) 0 (0.0) 0 (0.0)

isoechoic 0 (0.0) 0 (0.0) 1 (2.5) 0 (0.0)

heterogeneous 20 (24.4) 48 (35.0) 17 (42.5) 10 (20.0)

hypoechoic 46 (56.1) 57 (41.6) 14 (35.0) 25 (50.0)

NA 10 (12.2) 26 (19.0) 7 (17.5) 7 (14.0)

Post-acoustic features 0.016 c2

enhance 14 (17.1) 26 (19.0) 15 (37.5) 18 (36.0)

shadowing 27 (32.9) 31 (22.6) 8 (20.0) 6 (12.0)

mix 2 (2.4) 6 (4.4) 3 (7.5) 5 (10.0)

no-change 29 (35.4) 48 (35.0) 7 (17.5) 14 (28.0)

NA 10 (12.2) 26 (19.0) 7 (17.5) 7 (14.0)

Calcification <0.001 c2

no 52 (63.4) 50 (36.5) 10 (25.0) 29 (58.0)

yes 30 (36.6) 87 (63.5) 30 (75.0) 21 (42.0)

Lymph node metastasis 0.029 c2

no 59 (72.0) 75 (54.7) 23 (57.5) 36 (72.0)

yes 23 (28.0) 62 (45.3) 17 (42.5) 14 (28.0)

Retraction phenomenon 0.001 c2

(Continued)
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calcification, post-acoustic enhancement, and the retraction

phenomenon were used to construct the nomogram model for

distinguishing the molecular subtype of breast cancer. The

scores of the influencing factors could show the individualized

prediction results. The discriminative power of the nomogram

was quantified using the AUC, exhibiting the accuracy of the

test. Previous studies have shown that models with AUCs of 0.5–

0.7 have low predictive value, models with AUCs of 0.7–0.85

have better predictive value, and models with AUCs of 0.85–0.95

have the best predictive value (26). The model in this study has

AUCs of 0.68–0.78,indicating that the prediction model had a
Frontiers in Oncology 06
245
good degree of discrimination. The nomograms also contained

information for clinical use; therefore, they might serve as tools

to calculate the probabilities of the various molecular subtypes.

Recent studies have developed models to predict the

molecular classification of breast cancer through radiomics or

machine learning approaches using image segmentation

(27, 28). These generally employ two-dimensional US

modelling for a single molecular classification or deep learning

magnetic resonance image modeling. Although these have been

shown to be predictive, the feature extraction is complicated and

has certain limitations. Compared with HHUS, ABVS allows the
TABLE 2 Continued

Variables Molecular subtype p test

LA (n=82) LB(n=137) HER2 (n=40) TN (n=50)

no 34 (41.5) 72 (52.6) 27 (67.5) 37 (74.0)

yes 48 (58.5) 65 (47.4) 13 (32.5) 13 (26.0)

Skipping sign 0.682 c2

no 56 (68.3) 87 (63.5) 24 (60.0) 35 (70.0)

yes 26 (31.7) 50 (36.5) 16 (40.0) 15 (30.0)

Elasticity score 0.023 c2

3 11 (13.4) 18 (13.1) 3 (7.5) 10(20.0)

4 42 (51.2) 64 (46.7) 22 (55) 34 (68.0)

5 29 (35.4) 55 (40.2) 15 (37.5) 6 (12.0)
frontie
NA (not available) represents missing values.
LA, luminal A; LB, luminal B; HER2, human epidermal growth factor receptor 2; TN, triple-negative; SD, standard deviation; ANOVA, analysis of variance.
FIGURE 1

LB prediction nomogram. Nomograms were constructed based on the results of the multivariate logistic regression mode factors.
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use of computer-aided design (29) and artificial intelligence

technology to improve the diagnostic performance of deep

machine learning due to its repeatability and image storage

method. 3D-USmay potentially be useful in the field of artificial

intelligence, however, this needs further verification. This study

predicted the four molecular classifications using only 3D-US
Frontiers in Oncology 07
246
features. Nomograms we also used to visualize the predictive

multinomial model of the molecular classifications.

The study has several limitations. First, this was a

retrospective study performed at a single institution. A

multicenter prospective study with a large sample size needs to

be performed to validate this study’s results. Second, the sample
FIGURE 2

HER2 prediction nomogram. Nomograms were constructed based on the results of the multivariate logistic regression mode factors.
FIGURE 3

TN prediction nomogram. Nomograms were constructed based on the results of the multivariate logistic regression mode factors.
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FIGURE 4

ROC curve. The macro- and micro-AUC were 0.744 and 0.787, respectively. The AUC was 0.759for predicting LA, 0.683 for predicting LB,0.747
for predicting HER2-positive, and 0.785 for predicting TN.
FIGURE 5

Calibration curve of the nomogram. The diagonal line indicates the ideal nomogram reference.
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sizes of the four molecular subtypes were unbalanced. As a result,

the ROC curves of subtypes with fewer samples are unsatisfactory.

Further studies should consider having balanced sample sizes.
Conclusions

In conclusion, sonographic features such as calcification and

posterior acoustic features were significantly associated with the

breast cancer molecular subtypes. In addition, the presence of

the retraction phenomenon was the most important predictor

for the LA subtype. Nomogramsfor the prediction of the

molecular subtypes were established based on the results of the

multifactor analysis, The calibration and ROC curves showed

that the model had good performance. Further multicenter

studies will be useful for updating and validating these

nomograms to improve the predictions of molecular subtypes.
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Predicting lymphovascular
invasion in clinically
node-negative breast cancer
detected by abbreviated
magnetic resonance imaging:
Transfer learning vs. radiomics

Bao Feng1,2†, Zhuangsheng Liu1†, Yu Liu2, Yehang Chen2,
Haoyang Zhou2, Enming Cui1, Xiaoping Li3, Xiangmeng Chen1,
Ronggang Li4, Tianyou Yu5, Ling Zhang6*

and Wansheng Long1*

1Department of Radiology, Jiangmen Central Hospital, Jiangmen, Guangdong, China, 2School of
Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin, China,
3Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China, 4Department of
Pathology, Jiangmen Central Hospital, Jiangmen, Guangdong, China, 5School of Automation
Science and Engineering, South China University of Technology, Guangzhou, China, 6Department
of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
Objective: To compare the performance of abbreviated breast magnetic

resonance imaging (AB-MRI)-based transfer learning (TL) algorithm and

radionics analysis for lymphovascular invasion (LVI) prediction in patients with

clinically node-negative invasive breast cancer (IBC).

Methods: Between November 2017 and October 2020, 233 clinically node-

negative IBCs detected by AB-MRI were retrospectively enrolled. One hundred

thirty IBCs from center 1 (37 LVI-positive and 93 LVI-negative) were assigned as

the training cohort and 103 from center 2 (25 LVI-positive and 78 LVI-negative)

as the validation cohort. Based on AB-MRI, a TL signature (TLS) and a radiomics

signature (RS) were built with the least absolute shrinkage and selection

operator (LASSO) logistic regression. Their diagnostic performances were

validated and compared using areas under the receiver operating curve

(AUCs), net reclassification improvement (NRI), integrated discrimination

improvement (IDI), decision curve analysis (DCA), and stratification analysis. A

convolutional filter visualization technique was used to map the response areas

of LVI on the AB-MRI.

Results: In the validation cohort, compared with RS, the TLS showed better

capability in discriminating LVI-positive from LVI-negative lesions (AUC: 0.852

vs. 0.726, p < 0.001; IDI = 0.092, p < 0.001; NRI = 0.554, p < 0.001). The

diagnostic performance of TLS was not affected by the menstrual state,

molecular subtype, or contrast agent type (all p > 0.05). Moreover, DCA

showed that the TLS added more net benefit than RS for clinical utility.
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Conclusions: An AB-MRI-based TLS was superior to RS for preoperative LVI

prediction in patients with clinically node-negative IBC.
KEYWORDS

magnetic resonance imaging, lymph nodes, breast neoplasms, radiomic analysis,
transfer learning
Introduction

Lymphovascular invasion (LVI) is a well-recognized risk

factor for disease recurrence and shorter survival in patients with

invasive breast cancer (IBC), especially those with negative

lymph nodes (1–3). Furthermore, it is a potential biomarker

associated with chemoresistance in neoadjuvant chemotherapy

(4, 5) and axillary nodal metastasis in early-stage breast cancer

(6). Although these observations indicated that predicting LVI

preoperatively might facilitate individualized and precise

treatment for patients with IBC, the preoperative identification

of LVI remains a challenge in clinical practice.

Magnetic resonance imaging (MRI), which can characterize

the entire lesion with high spatial resolution, is increasingly

studied with LVI assessment in IBC (7–9). However, the time

consumption and high cost of the conventional breast MRI

protocol hinder its broader use. Thus, a new way to increase

access to breast MRI is needed. Abbreviated breast MRI (AB-

MRI) is being proposed as an alternative to the full protocol

because it reduces the image acquisition time, interpretation

complexity, and examination costs while maintaining equivalent

breast cancer detected ability (10–13). With the increasing use of

AB-MRI, a large number of breast cancer were detected.

Whether these breast cancers can be further staged

preoperatively based on AB-MRI has attracted more and more

concerns because using a one-stop imaging modality to detect

and diagnose preoperative stage breast cancer would be cost-

effective. Recent studies have shown that AB-MRI is effective in

diagnosing breast cancer and mapping the local extent of the

tumor (14, 15), and AB-MRI-based radiomics was preliminarily

used for LVI assessment (16). However, the diagnostic

performance was only moderate. It is needed to develop a

more accurate and effective approach for LVI prediction in

patients with IBC.

Radiomics is a promising tool for the characterization of

breast cancer by extracting quantitative features, but the main
nvasive breast cancer;

aging; TLS, transfer

election operator; RS,

, net reclassification
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drawbacks of using traditional radiomics analysis are time-

consuming lesion segmentation and hard-coded feature

extraction (17). Compared with traditional radiomics, a

convolutional neural network (CNN) algorithm extracts

features by using hierarchical convolution operations from the

raw medical image and does not require precise tumor

delineation (18). Furthermore, it has the advantage of

automatically learning and hierarchically organizing task-

adaptive image features, tending to reflect the high-

dimensional association between images and clinical issues

(19). However, the success of CNN largely depends on large

training datasets (20). When the available datasets are small,

transfer learning (TL) may be an alternative effective feature

extraction method (21–23). Despite the convenience and

advances in technology, the efficiency of a TL algorithm based

on AB-MRI in predicting LVI remains unclear.

Hence, the purpose of this study was to evaluate the

performance of an AB-MRI-based TL algorithm and compare

it with that of radiomics for LVI prediction in patients with

clinically node-negative IBC.
Materials and methods

Patients

A schematic illustration of the study design is presented

in Figure 1.

The ethics committee approved this retrospective study of

two participating centers with a waiver for informed consent.

Between November 2017 and October 2020, the study

enrolled consecutive women with new IBC detected by AB-

MRI and clinically lymph node-negative in the study. These

patients underwent AB-MRI for breast cancer screening or

problem resolving. The inclusion criteria were as follows: (a)

underwent AB-MRI and have enhanced lesions on MR image;

(b) lesions diagnosed as invasive ductal carcinoma based on

pathologic evaluation of surgical specimens; (c) time interval

between surgery (mastectomy or lumpectomy) and MRI

examination: <2 weeks. The exclusion criteria were as follows:

(a) biopsy performed before AB-MRI (n = 58); (b) received

neoadjuvant chemotherapy (n = 30) or radiotherapy (n = 55)
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FIGURE 1

Schematic of the study design. (A) The image acquisition and ROI delineation, where the ROI segmentation for radiomics on the left and ROI acquisition
for the transfer learning on the right. (B) Radiomics feature and transfer learning feature extraction. (C) Feature selection and a signature building.
(D) Independent validation and comparison of models. ROI, region of interest; AB-MRI, abbreviated breast magnetic resonance imaging; LVI,
lymphovascular invasion; RS, radiomics signature; TLS, transfer learning signature; ROC, receiver operating characteristics; AUC, area under curve.
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before MRI examination; (c) node-positive diagnosed on

preoperative ultrasonography (n = 37): rounded hypoechoic

node, complete or partial effacement of the fatty hilum, focal or

diffuse cortical thickening (≥5 mm), complete or partial

replacement of the node with an ill-defined or irregular mass,

extra-hilar blood vessel flow on color Doppler images, or

microcalcifications in the node; (d) MR image with obvious

artifacts (n = 15); (e) diagnosed as benign tumors, high-risk

lesions, pure ductal carcinoma in situ or special types of

invasive breast carcinoma at final pathologic evaluation (n =

69). Finally, a total of 233 patients (age range: 30–79 years; 62

LVI-positive and 171 LVI-negative) were included. Patients

from center 1 were assigned as the training cohort (37 LVI-

positive and 93 LVI-negative), and patients from center 2 were

the external validation cohort (25 LVI-positive and 78

LVI-negative).
AB-MRI acquisition and
pathologic assessment

The AB-MRI protocol included a pre- and early postcontrast

phase using a 3D T1 gradient echo with a fat saturation

sequence. Detailed AB-MRI parameters are listed in Table S1.

The early postcontrast images were used for image analysis. In

patients with multiple breast cancers, only the largest lesion was

selected for analysis.

All of the surgical specimens were examined by two senior

pathologists with 16 and 13 years of experience in breast

pathology, and the pathologic evaluations are provided in

Supplementary A1.
Development of a radiomics
signature (RS)

An RS was developed with the following steps: region of

interest (ROI) acquisition, feature extraction, feature selection,

and model construction. The ROI was manually segmented by a

professional radiologist (reader 1, with 11 years of experience in

breast imaging). Reader 2 (with 15 years of experience in

abdominal imaging) randomly chose 30 patients from the

training cohort and performed tumor segmentation for inter-

reader agreement analysis. Based on the ROI, 10,402 radiomics

features were extracted using the in-house software developed

with MATLAB 2016 (Mathworks, Natick, MA, USA), including

first-order, shape-based, and texture features. Then, the Mann–

Whitney U test was used to compare the between-group

differences of each radiomics feature in the LVI-positive and

LVI-negative groups, and intra-class correlation coefficients

(ICCs) were used to evaluate the reproducibility and stability

of the radiomics features. The specific process is presented in

Supplementary A2.
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A least absolute shrinkage and selection operator (LASSO)

logistic regression was used to build an RS using a linear

combination of features based on the selected features. The

features with nonzero coefficients were considered valuable

predictors for predicting the LVI status, and the tuning

parameter was selected by 10-fold cross-validation for the

radiomics method. Finally, the output of the RS was labeled as

the radiomics score (R-score).
Development of a transfer
learning signature (TLS)

The development of a TLS consisted of two steps: TL

features extraction and classification layer training. The first

step is the training of feature extraction network. In order to

avoid an overfitting of the model, the TL strategy (24) was used

to train feature extraction network. The network was first pre-

trained using the ImageNet dataset (n = 1.3 million), and the

parameters obtained in the pre-training step are taken as the

initial parameters of the network. The AB-MRI images were

then used to fine-tune the parameters in the network. A total of

11264 TL features were extracted by the network, and the details

of feature extraction and selection are presented in

Supplementary A3.

Based on the TL feature, the differences of the transfer

learning signature (TLS) between the LVI-positive and LVI-

negative groups were assessed using the Mann–Whitney U test.

The second step is the classification layer training based on the

LASSO logistic regression; the training process was similar to

that of RS.
Visualization of the TLS

For investigating the interpretability of the TLS, the

convolutional filter was visualized with gradient-weighted class

activation mapping (Grad-CAM) (25), which could produce a

localization map highlighting the import regions for

classification target. By visualizing the filter, we explored the

association between the TL feature and LVI status.

Given an ROI image, each convolutional filter generated a

response map showing all the corresponding feature patterns

extracted from the lesion. A valuable convolutional filter should

have different responses to different types of lesions. Thus, the

visualization of the response map for convolutional filters in

different lesion groups was helpful to understand the TLS.
Comparison of the TLS AND RS

We compared the TLS with the RS to comprehensively

evaluate the performances of the models.
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ROC analysis was performed for the training cohort and

external validation cohort to evaluate the diagnostic

performance of the TLS and RS. The following parameters

were calculated: the area under the curve (AUC), sensitivity,

specificity, accuracy, positive predictive value (PPV), and

negative predictive value (NPV). The AUCs of the TLS and RS

were compared using the DeLong test. In addition, to compare

the classification ability of the DLS and RS, the net

reclassification index (NRI) and integrated discrimination

improvement (IDI) were calculated. Decision curve analysis

(DCA) was used to estimate the clinical utility of the TLS and

RS. Moreover, a stratified analysis was performed on the

menstrual state, molecular subtype, and contrast agent type.
Statistical analysis

All statistical tests were performed using R3.0.1 (http://www.

rproject.org). All radiomics features were extracted with Matlab

2016, and the TL features were extracted with Python 3.6.

LASSO was performed using the “glmnet” package, and the

ROC curve analysis was performed using the “pROC”.

Clinicopathologic characteristics between the LVI-positive and

LVI-negative groups were compared using chi-squared test or

Mann–Whitney U test. p Values <0.05 were considered

indicative of a statistically significant difference.
Results

Clinicopathologic characteristics

As shown in Table 1, in the training and validation cohorts,

only the pathological size of the invasive component and sentinel

lymph node status were statistically different between the LVI-

positive and LVI-negative groups (all p < 0.01), while other

characteristics showed no significant difference (p = 0.072–0.876).
Performance of the RS

A total of 2,994 features with a significant difference (p < 0.05)

and intraclass correlation coefficient (ICC) values greater than 0.75

were used in the LASSO logistic regression. In the LASSO logistic

regression, 14 features with nonzero coefficients (Figures 2A, B)

were selected as valuable predictors to build the RS by calculating

the R-score. The R-score calculation formula and selected features

are presented in Supplementary A4.

As shown in Table 2, the AUC of the RS was 0.850 (95% CI:

0.777–0.906) in the training cohort and 0.726 (95% CI, 0.629–

0.809) in the validation cohort.
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Performance of the TLS

In order to differentiate the LVI-positive and LVI-negative

groups in the training cohort, 2,907 features were selected

according to the Mann–Whitney U test with p < 0.05. With

LASSO logistic regression, 28 TL features with nonzero

coefficients (Figures 2C, D) were selected as valuable

predictors to build the LVI status-related TLS to calculate the

TL-score. The TL-score calculation formula and the selected

deep learning features are presented in Supplementary A5.

Table 2 shows that the AUC of the TLS was 0.911 (95% CI:

0.844–954) in the training cohort and 0.852 (95% CI, 0.769–

0.915) in the validation cohort.
Interpretability of the TLS

In order to further understand the association between TL

features and LVI status, we extracted two filters, including a

positive filter and a negative filter (the first column in Figure 3).

Based on the filters, the TL model generated an attention map

indicating the importance of each part of the lesion. The results

showed that the positive filter had strong responses to LVI-positive

lesions and weak responses to those that were LVI-negative.

Similarly, the negative filter had strong responses to LVI-negative

lesions and was nearly shut down in those that were LVI-positive.
Comparison of the TLS AND RS

The ROC analysis showed that the TLS yielded a higher AUC

value than the RS (0.852 vs. 0.726, p < 0.01; Table 2 and Figure 4).

The IDI and NRI demonstrated that, compared with the RS, the

TLS achieved better capability in discriminating LVI-positive

from LVI-negative lesions (IDI = 0.092, p < 0.001; NRI = 0.554,

p < 0.001). DCA illustrated that within the threshold probability

range of 0.01 and 0.95, the TLS gained a greater net benefit than

the RS (Figure 5). Stratified analysis showed that the performance

of the TLS was not affected by the menstrual state, molecular

subtype, and contrast agent type (all p > 0.05; Supplementary A6).
Discussion

Preoperative prediction of LVI might provide useful

information in the management of neoadjuvant chemotherapy

and axillary surgery in IBC patients with clinically negative

nodes (4–6). As AB-MRI is increasingly applied in breast

cancer screening or lesion diagnosis, more and more breast

cancers were detected by AB-MRI first. Part of these IBC

patients only undergo AB-MRI without the full protocol.
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Thus, we try to investigate whether LVI status can be assessed

simultaneously when IBC is detected on AB-MRI. The current

study developed a TLS and an RS based on AB-MRI to predict

LVI in IBC patients with clinically negative nodes. Their
Frontiers in Oncology 06
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diagnostic performances were validated and compared in an

external cohort. Our results showed that the TLS had a better

discriminating ability between LVI-positive and LVI-negative

lesions than the RS. The satisfied diagnostic performance
TABLE 1 Clinicopathologic characteristics.

Training cohort (n = 130) Validation cohort (n = 103)

LVI-positive
(n = 37)

LVI-negative
(n = 93)

p LVI-positive
(n = 25)

LVI-negative
(n = 78)

p

Clinical characteristics

Age (years) 0.103 0.072

≤ 40 14 (37.8%) 22 (23.7%) 10 (40.0%) 17 (21.8%)

> 40 23 (62.2%) 71 (76.3%) 15 (60.0%) 61 (78.2%)

Tumor location 0.714 0.876

Upper-outer quadrant 13 (35.1%) 35 (37.6%) 10 (40.0%) 28 (35.9%)

Upper-inner quadrant 6 (16.2%) 18 (19.4%) 5 (20.0%) 14 (17.9%)

Lower-outer quadrant 8 (21.6%) 15 (16.1%) 3 (12.0%) 15 (19.2%)

Lower-inner quadrant 5 (13.5%) 18 (19.4%) 5 (20.0%) 12 (15.4%)

Central area 5 (13.5%) 7 (7.5%) 2 (8.0%) 9 (11.5%)

MRI features

Lesion type 0.362 0.457

Mass 33 (89.2%) 77 (82.8%) 23 (92.0%) 65 (83.3%)

NME 4 (10.8%) 16 (17.2%) 2 (8.0%) 13 (16.7%)

Internal enhancement 0.801 0.577

Homogeneous 2 (5.4%) 8 (8.6%) 1 (4.0%) 8 (10.3%)

Not homogeneous 35 (94.6%) 85 (91.4%) 24 (96.0%) 70 (89.7%)

Mass shape 0.604 0.653

Round or oval 6 (18.2%) 11 (14.3%) 2 (8.7%) 10 (15.4%)

Irregular 27 (81.8%) 66 (85.7%) 21 (91.3%) 55 (84.6%)

Mass margin 0.851 0.730

Circumscribed 5 (15.2%) 9 (11.7%) 3 (13.0%) 5 (7.7%)

Not circumscribed 28 (84.8%) 68 (88.3%) 20 (87.0%) 60 (92.3%)

Tumor size on MRI, cm (mean ± SD) 3.1 ± 1.0 2.6 ± 0.9 0.147 2.9 ± 0.9 2.5 ± 0.7 0.202

Pathological characteristics

Pathological size of the invasive component, cm (mean ± S.D.) 2.7 ± 1.0 1.8 ± 0.8 <0.001* 2.4 ± 1.0 1.7 ± 0.9 <0.001*

Sentinel lymph node status <0.001* <0.001*

Positive 23 (62.2%) 13 (14.0%) 18 (72.0%) 9 (11.5%)

Negative 14 (37.8%) 80 (86.0%) 7 (28.0%) 69 (88.5%)

Histological grade 0.423 0.656

I 3 (8.1%) 9 (9.7%) 1 (4.0%) 6 (7.7%)

II 21 (56.8%) 62 (66.7%) 15 (60.0%) 50 (64.1%)

III 13 (35.1%) 22 (23.6%) 9 (36.0%) 22 (28.2%)

Molecular subtype 0.186 0.198

Luminal A 13 (35.1%) 46 (49.4%) 8 (32.0%) 30 (38.5%)

Luminal B 9 (24.3%) 27 (29.0%) 7 (28.0%) 33 (42.3%)

HER2 positive 8 (21.6%) 10 (10.8%) 5 (20.0%) 8 (10.3%)

Triple negative 7 (18.9%) 10 (10.8%) 5 (20.0%) 7 (8.9%)
frontie
*p < 0.05.
LVI, lymphovascular invasion; NME, non-mass enhancement.
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FIGURE 2

Features selected by the LASSO method. (A) Adjustment (l) selection by 10-fold cross-validation for the radiomics method. Binomial deviance
(y-axis) was plotted log(l) (x-axis). The dotted lines were drawn at the optimal value of l, where the model provided its best fit. The optimal
values of l and log(l) were 0.0503 and -2.990, respectively. (B) Radiomics feature characteristics of the LASSO coefficient curve. The dashed
vertical line was defined with the optimal l, where 14 optimal radiomics features with nonzero coefficients are indicated. (C) Adjustment (l)
selection by 10-fold cross-validation for the transfer learning method. Binomial deviance (y-axis) was plotted log(l)(x-axis). The dotted lines
were drawn at the optimal value of l, where the model provided its best fit. The optimal values of l and log(l) were 0.0241 and -3.730,
respectively. (D) Transfer learning feature characteristics of the LASSO coefficient curve. The dashed vertical line was defined with the optimal l,
where 28 optimal transfer learning features with nonzero coefficients are indicated.
TABLE 2 A performance summary of RS, NTLS and TLS in the training and validation cohorts for preoperative identification of lymphovascular
invasion status in patients with invasive breast cancer.

method AUC (95% CI) Sensitivity Specificity Accuracy PPV NPV

Training cohort RS 0.850 (0.777-0.906) 0.865 (32/37) 0.710 (66/93) 0.754 (98/130) 0.543 (32/59) 0.930 (66/71)

TLS 0.911 (0.844-0.954) 0.865 (32/37) 0.839 (78/93) 0.846 (110/130) 0.681 (32/47) 0.940 (78/83)

NTLS 0.748 (0.631-0.882) 0.838 (31/37) 0.602 (56/93) 0.669 (87/130) 0.456 (31/68) 0.903 (56/62)

External validation cohort RS 0.726 (0.629-0.809) 0.680 (17/25) 0.846 (66/78) 0.806 (83/103) 0.586 (17/29) 0.892 (66/74)

TLS 0.852 (0.769-0.915) 0.760 (19/25) 0.846 (66/78) 0.825 (85/103) 0.613 (19/31) 0.917 (66/72)

NTLS 0.614 (0.552-0.731) 0.800 (20/25) 0.500 (39/78) 0.573 (59/103) 0.339 (20/59) 0.886 (39/44)
Frontiers in Oncology
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TLS, Transfer learning signature; NTLS, Non-transfer learning signature; RS, radiomics signature; AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value;
CI, confidence interval.
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suggested that AB-MRI not only could detect breast cancer but

could also be effective in predicting LVI status simultaneously

when transfer learning algorithm was introduced.

In our study, two clinicopathologic characteristics, i.e.,

pathological size of the invasive component and sentinel

lymph node metastasis, were significantly different between

LVI-posi t ive and LVI-negat ive les ions . These two

characteristics were determined after surgery and provided no
Frontiers in Oncology 08
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preoperative value. Therefore, they were not incorporated into

the radiomics and TL model for the preoperative prediction of

LVI. Notably, sentinel lymph node metastasis was more frequent

in the LVI-positive group, which indicated that a sentinel lymph

node biopsy could not be omitted in LVI-positive patients

despite clinically negative nodes. Accordingly, preoperative

identification of the LVI status might be helpful in clinical

decision-making with sentinel lymph node biopsy (26).
FIGURE 3

Attention map visualization of LVI-positive and LVI-negative lesions. The first row shows the first postcontrast images from two LVI-positive
lesions and two LVI-negative lesions. The second and third rows show the attention maps of the input tumor images. The positive filter has a
strong response to LVI-positive lesions, and the negative filter has a strong response to LVI-negative lesions. LVI, lymphovascular invasion.
BA

FIGURE 4

ROC curves of the prediction models. (A) Training cohort. (B) External validation cohort. RS, radiomics signature; TLS, transfer learning signature.
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Previous studies have investigated preoperative LVI

prediction with various imaging modalities. Digital

mammography was reported to be insufficient in predicting LVI

(27). Ultrasound, especially the elastic heterogeneity value

achieved high sensitivity but mediocre specificity (28). MRI is

the most common modality used for LVI assessment in breast

cancer. Multiparametric MRI based radiomics has yielded

satisfied diagnostic performance (29). However, the time

consumption and high cost hinder the broader use of the

multiparametric MRI. In this case, AB-MRI based radiomics

was initially applied to LVI evaluation in breast cancer, while

the diagnostic performance was only moderate (16). The RS in

that study yielded a similar AUC value to the present study in the

validation cohort (AUC: 0.752 vs. 0.726). The results of the

previous and current studies indicated the feasibility of AB-

MRI-based radiomics for LVI evaluation. However, the

performance of RS was slightly below satisfaction for clinical

use. The possible reason is that the radiomic features extracted

from a fixed set cannot completely and accurately reflect the subtle

differences between LVI-positive and LVI-negative lesions. In

addition, manual lesion delineation is extremely labor-intensive

and time-consuming, limiting the clinical application of

radiomics. Accordingly, an advanced machine learning

approach is needed to improve diagnostic accuracy and reduce

image processing complexity.

In contrast, the TL algorithm is a candidate method to

automatically learn to capture useful features on images without

manual tumor segmentation (18, 19). It has become a promising

tool in the studies of breast imaging, such as breast cancer
Frontiers in Oncology 09
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screening (30), cancer risk stratification (31), lesion classification

(32), and axillary lymph node metastasis predictions (33). Thus,

we applied a TLS in LVI prediction. As expected, compared with

the RS, the TLS improved the diagnostic performance significantly

in the validation cohort (AUC: 0.726 vs. 0.852). Similarly,

performance improvement with TL was also observed in other

breast imaging studies, such as breast lesion classification (17) and

lymph node metastasis prediction (34). The results suggested that

TLS can mine more relevant image features to reflect the high-

dimensional association between images and clinical issues. These

image features were generated and extracted using multiple layers

of self-learning units in the TL method. They were different from

visual subjective findings or radiomic features. Furthermore, in

order to further verify the effectiveness of the proposed method,

we construct a TL model (BotELM) based on the bottleneck

transformer network (BotNet) and extreme learning machine

(ELM), we validated it on external validation cohort

(Supplementary Table S1). The experimental results again prove

that the TL model BotELM improved the diagnostic performance

significantly based on AB-MRI compared with the RS (AUC:

0.760 vs. 0.726), while the AUC of BotELM is lower than TLS in

external validation cohort.

Moreover, we visualized the TLS via a convolutional filter

visualization technique to further understand the instinctual

relationship between deep learning features and LVI. For the

positive filter, the attention map illustrated that the tumor and

peritumor areas were two high-response locations in LVI-positive

lesions, while they were not in the LVI-negative lesions. In

contrast, the negative filter had strong responses to LVI-negative
FIGURE 5

Decision curve analysis for prediction models. The solid gray line represents the assumption that all patients were involved in the LVI-positive
group, while the black line represents the assumption that no patients were involved. The threshold probability was the point where the
expected benefit of the treatment and treatment avoidance were equal. The results showed that the net benefit of the TLS was greater than that
of the RS (range, 0.01–0.95). RS, radiomics signature; TLS, transfer learning signature.
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lesions and was nearly shut down in lesions that were LVI-

positive. To some extent, this supported the effectiveness of

the model.

However, it is important to point out that the performance

of CNN without transfer learning (NTLS) was poor in the

validation cohort (Table 2), even compared with the

traditional RS (AUC: 0.614 vs. 0.726). The main reason for

this result is that the CNNmethod works well only when enough

labeled training data is available (35), while the labeled training

data is small in the clinical practice. Thus, in order to ameliorate

the effect of small labeled training data, the use of TL strategy is

ubiquitous. How different TL strategies affect the performance of

CNN is our next research content.

There were several limitations in our study. First, the sample

size was relatively small, especially the training cohort, which did

not meet the traditional CNN modeling requirement. To

overcome this shortage, we pretrained the network with TL. The

model based on a transfer learning strategy can avoid overfitting in

a training dataset, which reduces the amount of data required for

modeling. Nevertheless, the generalization of a TLS still needs to be

validated in other centers. Second, multiparametric MRI-based

TLS performance was not investigated as the purpose of the study

is to investigate whether LVI status can be assessed simultaneously

when IBC is detected on AB-MRI. The included patients only

underwent AB-MRI for breast cancer screening or lesion

diagnosis. However, full diagnostic protocol should be compared

with an AB-MRI for LVI prediction in prospective studies. Finally,

our study was based on the construction of a two-dimensional slice

feature model, and the performance of the three-dimensional

features remains to be further studied.

In summary, the TLS was superior to the RS for LVI

prediction in IBC patients with clinically negative nodes. The

proposed AB-MRI-based TLS could potentially serve as an easy-

to-access and easy-to-use approach to assist individual breast

cancer treatments.
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Objective: In recent years, among the available tools, the concurrent

application of Artificial Intelligence (AI) has improved the diagnostic

performance of breast cancer screening. In this context, the present study

intends to provide a comprehensive overview of the evolution of AI for breast

cancer diagnosis and prognosis research using bibliometric analysis.

Methodology: Therefore, in the present study, relevant peer-reviewed

research articles published from 2000 to 2021 were downloaded from the

Scopus and Web of Science (WOS) databases and later quantitatively analyzed

and visualized using Bibliometrix (R package). Finally, open challenges areas

were identified for future research work.

Results: The present study revealed that the number of literature studies

published in AI for breast cancer detection and survival prediction has

increased from 12 to 546 between the years 2000 to 2021. The United States

of America (USA), the Republic of China, and India are the most productive

publication-wise in this field. Furthermore, the USA leads in terms of the total

citations; however, hungry and Holland take the lead positions in average

citations per year. Wang J is the most productive author, and Zhan J is the most

relevant author in this field. Stanford University in the USA is the most relevant

affiliation by the number of published articles. The top 10most relevant sources

are Q1 journals with PLOS ONE and computer in Biology and Medicine are the

leading journals in this field. The most trending topics related to our study,

transfer learning and deep learning, were identified.

Conclusion: The present findings provide insight and research directions for

policymakers and academic researchers for future collaboration and research

in AI for breast cancer patients.

KEYWORDS

artificial intelligence, breast cancer, diagnosis and prognosis, Bibliometrix analysis,
knowledge structures
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Introduction

Breast cancer is the most commonly diagnosed cancer

among women in most countries (159 of 185 countries), with

an estimated 2.3 million women diagnosed with breast cancer in

2020. Moreover, breast cancer is the leading cause of cancer

death in women in 110 countries, with 685000 deaths globally

(1). However, early detection and prognosis prediction, which

involves explicitly estimating the relapse of breast tumors and

predicting the 5-year survival rate of the breast cancer patient,

can significantly improve patient outcomes (2, 3). In this

context, several developed countries have employed extensive

mammography, Magnetic Resonance Imaging, breast

ultrasound, and thermography-based screening programs for

earlier breast cancer (4, 5). However, one of the significant

challenges lies in interpreting these images generated by such

techniques. In addition, the precision and accuracy achieved by

even the best clinicians in detecting breast cancer using

mammography vary widely, thus leaving room for further

improvements (6, 7). In this context, in the 1990s, Computer-

aided software detection was introduced for mammography, and

several software assistive applications have been approved for

med ica l use . However , desp i t e in i t i a l promis ing

implementations, the software tools of the 1990’s era could not

significantly improve the performance of mammography readers

in real-world scenarios (7–11).

Over the past few years, AI’s potential in precision oncology

has uniquely poised to handle the errors associated with medical

image analysis (12–19). AI is centered on developing high-level

algorithms to execute complex tasks in clinical settings in

radiology to quickly and effectively aid in interpreting image

data. The main objective of applying AI to image analysis is to

reveal a visual pattern from image data and assist clinicians and

mammogram experts in formulating effective clinical decisions

about breast cancer detection and survival prediction. In recent

years, the field of AI in breast cancer research has seen a

resurgence owed to the commendable performances of Deep

Learning (DL) in detecting breast cancer and further predicting

the 5-years survival of breast cancer using mammography.

Studies have shown the capacity of DL to be at par, or in

some cases, exceed the performance of human experts in

medical–image analysis for the diagnosis and prognosis of

breast cancer (20, 21). As the scarcity of mammography

experts threatens the availability and sufficiency of breast-

screening services worldwide, AI agents’ unique precision and

accuracy in an image- analysis could enhance the access to high-

quality diagnosis and prognosis of breast cancer. Therefore, the

prospects of AI in facilitating clinicians in clinical decision-

making and managing breast cancer are manifold and ever-

expanding. As the applications of AI in breast cancer diagnosis

and prognosis grow, it becomes necessary to comprehend the
Frontiers in Oncology 02
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ongoing research setting and future research trajectory.

However, the AI-based research in breast cancer detection and

survival prediction does not explore inherent development rules

and current research trends and discuss the challenges that the

AI will face in diagnosing and prognosis of Breast Cancer.

Therefore, to achieve the goal, the present study aims to

review the existing research articles through bibliometric

analysis to learn about the global progress and trends in the

application of AI for breast cancer detection and survival

prediction. Bibliometric analysis is a quantitative analysis of

research publications to describe the trends in academic

literature, the contributions of journals and authors, nations’

productivity in a particular research area, and info regarding

research collaborations and cooperation (22–24). In addition,

the bibliometric analysis enables monitoring of the patterns and

trends of effectual publications in several areas, including

healthcare research (25).

Thus, the current bibliometric analysis findings will help

researchers, governments, and entrepreneurs understand the

Development of AI research in breast cancer diagnosis and

prognosis in the last two decades. For research scholars and

scientists, the present study results will be helpful to know about

the important journals and understand the thematic trends of AI

in breast cancer diagnosis and prognosis research. Our study will

help governments devise more proficient present and future

action strategies centered on AI research and development

evolution trends in breast cancer diagnosis and prognosis. In

the context of entrepreneurs, the results will help scree the most

contributing research organizations toward AI for breast cancer

research and also develop a competitive AI market for

developing AI applications for breast cancer detection and

survival prediction after understanding the collaboration

networks of the AI in breast cancer diagnostic and prognostic

research area. Moreover, the current study is the first to

quantitatively analyze the hot research domains of breast

cancer research and the application of AI in cancer detection

and survival prediction. Our study portrays the impact of

scientificc information by indicating gaps and presenting a

meaningful path for future research in AI for breast cancer

detection and survival prediction. An overview of the systematic

review of AI’s application in breast cancer detection and survival

prediction includes eight distinct phases, as shown in Figure 1.

As shown in Figure 1, Phase-1 presents the data source and

methodology; Phase-2 offers the fundamental bibliometric

analysis ; Phase-3 shows the conceptual knowledge

structure analysis; Phase-4 describes the intellectual knowledge

s t ruc tu r e ana l y s i s ; Pha s e -5 de s c r i b e s the soc i a l

knowledge structure analysis; Phase-6 lists the current

bibliometric limitations; Phase-7 describes the open challenges

of AI in breast cancer diagnosis and prognosis research; and

finally, Phase-8 describes the concluding remarks.
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Materials and methods

Methodology and data sources

Pre-planning
In the pre-planning stage, search queries were selected as

tabulated in Supplementary Table S1. The search queries were

categorized as 1) key search terms and 2) a combination of key

search terms with breast cancer and search items related to the

prediction and classification of breast cancer. The key search

terms included AI, Machine Learning (ML), and names of

different supervised and unsupervised algorithms as tabulated

in Supplementary Table S1. The second search terms, as

tabulated in Supplementary Table S1, included a combination

of search queries in association with “breast cancer and

detection,” “breast cancer and classification,” “breast cancer

and prognosis detection,” “breast cancer and mortality risk,”

“breast cancer and survival,” “breast cancer and prediction,” and

finally “breast cancer and microarray gene expression.” A subset

of crucial search queries and different combinations of key

search terms were selected based on the relevance of the

search criteria to AI and its application in breast cancer

diagnosis and prognosis research. Our search scope expanded

but remained focused on breast cancer by searching literature
Frontiers in Oncology 03
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using key search terms combined with breast cancer and search

items that include the word prediction, classification, diagnosis,

and prognosis of breast cancer. The idea of adding breast cancer

and microarray gene expression criterion with the key search

items, namely AI and ML, is to explore and analyze the

application of AI and ML in breast cancer research using

microarray gene expression data. Since microarray gene

expression data plays a significant role in understanding the

role of different gene biomarkers in the pathophysiology of

breast cancer disease initiation and progression. Thereby

employing AI and ML techniques, the most relevant/

informative breast cancer gene biomarkers can be screened,

and subsequently, classification and deep learning models can

be constructed to predict and classify the disease’s different

stages. Therefore, the involving gene microarray data with AI

helps us understand the evolving role of AI in breast cancer

severity, mortality, and survival predictions across the past

two decades.

In addition, appropriate research questions were formulated

as tabulated in Supplementary Table S2 to provide a

comprehensive overview of the knowledge structure and

bibliometric and statistical techniques to evaluate the role of

AI research in breast cancer detection and survival prediction

from the year 2000 to 2021.
Data collection
In the data collection stage, we systematically searched

academic articles in WOS core collection and Scopus

databases from 1st January 2000 to 31st September 2021 that

involved AI’s application in breast cancer detection and survival

prediction research. The keywords used for the data retrieval are

tabulated in Supplementary Table S1. In addition, research

articles and review papers written in English were included in

the present study. From Scopus 10161 academic publications

and ISI WOS, 7277 research publications were retrieved

for analysis.
Data refinement
Further, in the data refinement stage, the publications

retrieved from WOS and Scopus were refined based on the

exclusion criteria tabulated in Supplementary Table S2. In

addition, we excluded studies published as books, editorials,

letters, conference papers, and academic publications not

published in the English language were excluded from our

systematic bibliometric review. Lastly, the refined list of

publications obtained from Scopus (1737) and WOS (1841)

was combined by removing the redundant publications.

Therefore, after the refinement process, the total number of

articles was reduced to 2641. A systematic workflow of the

selection criteria for data collection and refinement is shown

in Supplementary Figure S1 and Supplementary Table S3.
FIGURE 1

Bibliometric Process for Reviewing the AI publications in breast
cancer diagnosis and prognosis research from 2000 to 2021.
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Data extraction
We retrieved the metadata from Scopus and WOS as a

bibliographic information file (.bib file). The data exported

included: (a) authors/editors, (b) authors full name, (c) title,

(d) source, (e) authors’ keywords, (f) keywords plus, (g)

abstracts, (h) authors affiliations, (i) corresponding authors

affiliation, (j) cited references, (j) total citations, (k) highly

cited (l) usage counts (m) publication year, (n) DOI, (o)

subject category, (p) author identifiers, (q) languages, and (r)

funding agencies.

Bibliometric data analysis
The bibliometric analysis enables a researcher to record,

access objectively, and process hundreds or thousands of

publications to profoundly summarize recent trends in

scientific publications in a discipline or specifically in a

research area. In the present study, a bibliometric analysis of

publications related to the evolution of AI research in breast

cancer diagnosis and prognosis from 2000 to date is performed

to address the six major queries as tabulated in Supplementary

Table S2. The bibliometric data analysis was conducted using

biblioshiny (26) to represent the publication patterns and the

research trends in implementing AI on breast cancer diagnosis

and prognosis. In addition, we intend to statistically explore and

evaluate the scientific knowledge structure through the current

bibliometric analysis. The basic knowledge structure of a

research field can be categorized into three parts such as:

1. Conceptual structure (what literature talks about central

themes and trends related to a specific research field)

2. Intellectual structure (How the work of an author

influences a given scientific community)
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3. Social structure (how authors, institutions, and countries

interact with each other)

Firstly, the conceptual structure is explored statistically using

thematic mapping (27), thematic evolution, co-occurrence

network, and factorial analysis. Secondly, the intellectual

knowledge structure was assessed by performing co-citation

network analysis (28) and historiography (29). Finally, the

social knowledge structure was reviewed based on the

collaboration network and collaboration world map.

Therefore, upon analyzing the conceptual, intellectual, and

social structure, we can understand the knowledge structure of

the application of AI in breast cancer diagnosis and prognosis

during the last two decades. Thus upon analyzing the knowledge

structure of AI in breast cancer in the previous two decades, we

will understand the current accomplishments and future open

challenges in implementing AI for breast cancer diagnosis

and prognosis.
Results

Annual scientific production

The number of publications from 2000 to 2021 shows the

evolution of the research and trends in AI for breast cancer

diagnosis and prognosis. The current study uses WOS and

Scopus databases to mine 2641 academic publications from

2000 to 2021 using the query listed in Supplementary Table

S1. As shown in Figure 2, the yearly scientific publication

presents variations in scientific contribution in the research

field mentioned above within a specified time duration. The
FIGURE 2

Yearly Publication of AI application in breast cancer diagnosis and prognosis research.
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analysis shows that the global scientific publication trends in AI

for breast cancer diagnosis and prognosis peaked in 2019-2021,

with 2020 being the most productive year (456 scientific

publications). Thus, the increasing frequency of international

academic literature in the last six years (2016 to 2021) depicts a

growing intensity of research in AI for breast cancer diagnosis

and prognosis. Therefore, we can presume that the research in

AI for breast cancer diagnosis and prognosis has attracted the

most attention of researchers during the last decade

(2011-2021).
Most relevant authors
The current paragraph highlights the most prolific

researchers in the field of AI for breast cancer detection and

survival predictions in terms of the number of publications in

this area and the impact of their publications. Table 1 shows the

15 most prolific authors with their number of publications, total

citations, and corresponding h-index. As is evident from Table 1,

Zang, Y from Henan Polytechnic University, Jiaozuo, China, has

the most number of publications, i.e., 31, closely followed by

Wang Y from Hangzhou Dianzi University, Hangzhou, China,

Li Y from Chongquing University/Third Military Medical

University, Chongqing and Zhang J from Zhejiang Cancer

Hospital, Zhejiang Hangzhou, China with 28 publication each

author. However, regarding the impact of these publications in

terms of total citations, Chen H has the highest citations with

1302 citations, followed by Madabhushi, A, Rangayan, R with

1233 and 1225 citations, respectively. Furthermore, Chen H and

Zhang Y is the most contributing author with an h-index of 13,

followed by Rangayyan R with 12, Zhang X, andWang Y with 12

each. Thus, the table suggests that Zang Y, with the highest
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number of publications, is the most contributing researcher in

AI for breast cancer detection and prognosis predictions.

Most relevant organizations
The top 10 most contributing/relevant organizations in AI

for breast cancer detection and survival prediction research are

represented in Supplementary Figure S2. As per Supplementary

Figure S2, there are five most productive organizations, among

which Stanford University, USA, is the topmost productive

organization with 38 publications, followed by National

Taiwan University, Taiwan, with 37 publications, Sun Yat-sen

University, China, with 32 publications, University of Malaya,

Malaysia with 32 publication and Sichuan University, China,

with 30 publications. Moreover, it is remarkable that out of the

top 10 organizations globally, four organizations are from China.

Country scientific production
The top 20 contributing countries in AI for breast cancer

detection and survival prediction are shown in Table 2. The data

tabulated in Table 2 includes the total article published in the

given field, total citations, and the average article citations. It

appears from Table 2 that there are only two countries (China

and USA) producing more than one thousand publications in

the AI for breast cancer detection and survival prediction

from the year 2000 to 2021. As per Table 2, the Republic of

China is the top scientific productive country with 1217

publications, followed by the USA with 1100 publications, and

India with 690 publications in AI for breast cancer detection and

survival prediction research. The USA is the most influential

country with 13015 citations, followed by China and United

Kingdom (UK) with 9375 and 3166 citations. Surprisingly, the
TABLE 1 Tabulation of the 15 most prolific authors with their number of publications (NP), Total Citation (TC), and corresponding h-index (Note
the authors are ranked based on h-index and h-index obtained from biblioshiny).

Rank Element H_index TC NP

1. CHEN H 13 1302 17

2. ZHANG Y 13 445 31

3. RANGAYYAN R 12 1225 13

4. ZHANG X 12 791 21

5. WANG Y 12 666 28

6. ZHANG J 12 444 28

7. WANG J 11 663 24

8. YANG Y 10 1107 15

9. CHEN X 10 1080 13

10. LIU J 10 648 18

11. LI Y 10 565 28

12. CHEN Y 10 418 20

13. SILVA A 10 377 18

14. MADABHUSHI A 9 1233 10

15. POLAT K 9 654 10
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Netherlands is in twenty positions in terms of publication

numbers. However, the average article citation in the

Netherland is 82.26, which is the highest among the top

twenty countries. Thereby, we can conclude that Netherland

significantly impacts research in AI in breast cancer diagnosis

and prognosis.

Most preferred periodicals
The number of publications in terms of Bradford law called the

core sources the nucleus of journals, mainly devoted to the given

research area. It appears from Supplementary Figure S3 that the top

ten journals, as tabulated in Table 3, form the core of journals
Frontiers in Oncology 06
266
publishing about a third of the documents of the entire collection.

The leading ten relevant periodicals that published one or more

articles included in our bibliographic collection are tabulated in

Supplementary Table S4. It is noteworthy that PLOS ONE, with 96

articles, is the most preferred publishing venue, followed by

Computers in Biology and Medicine and Expert Systems With

Application with 86 and 81 articles. In terms of the H-index, which

is a journals number of published articles (h), each of which has

been cited by other papers at least h time, Expert System with

Applications with an h-index of 36 and with amazingly 4230 total

citations is the most leading journal, followed by IEEE Transactions

On Medical Imaging (h-index = 32, TC = 4223). Artificial
TABLE 3 Top 10 preferred periodicals for AI in breast cancer detection and survival prediction research from the year 2000 to 2021 (The journals
are ranked based on the H-index).

Sources Articles H-index Total Citations

PLOS ONE 96 26 2242

Computers In Biology And Medicine 86 28 2147

Expert Systems With Applications 81 36 4230

IEEE Access 80 13 627

Scientific Reports 77 17 1736

BMC Bioinformatics 72 24 3114

Computer Methods And Programs In Biomedicine 66 23 1615

Artificial Intelligence In Medicine 64 28 2837

Neurocomputing 62 25 2529

IEEE Transactions On Medical Imaging 56 32 4223
TABLE 2 Tabulation of the top 20 contributing countries in AI for breast cancer detection and survival prediction (Note that the countries are
ranked based on the number of publications).

Region Number of Publications Total Citations Average Article Citations

CHINA 1217 9375 19.7

USA 1100 13015 34.43

INDIA 690 3153 8.64

UK 273 3166 39.09

CANADA 217 1318 20.28

SPAIN 201 2581 51.62

GERMANY 191 2562 45.75

SOUTH KOREA 189 1445 19.01

IRAN 158 1438 19.43

TURKEY 145 2506 30.19

ITALY 139 822 16.12

AUSTRALIA 125 1819 34.32

MALAYSIA 121 617 10.82

EGYPT 115 1302 21

PAKISTAN 112 532 12.98

SAUDI ARABIA 106 385 9.17

FRANCE 98 493 22.41

BRAZIL 97 908 19.32

SINGAPORE 73 877 38.13

NETHERLANDS 71 2221 82.26
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Intelligence in Medicine (H-index = 28, TC = 2837), Computers in

Biology and Medicine (H-index = 28, TC = 2147) and BMC

Bioinformatics (H -index = 24, TC = 3114) being other most

prominent journals publishing in the area of AI in breast cancer

detection and survival predictions.
Highly cited research publications in
AI for breast cancer detection and
survival predictions

The topmost ten highly local cited (Local citation measures

the impact of documents in the analyzed collection) research

publications within AI for the given research area published

between 2000 to 2021 are tabulated in Table 4. For example,

Delen D 2005 (30) published an article titled “Predicting breast

cancer survivability: a comparison of three data mining methods”

published in “AI in Medicine” is the most locally cited article

with 65 local citations and 539 global citations, respectively.

Akay MF 2009 (31), with the article entitled “Support vector

machines (SVM) combined with feature selection for breast

cancer diagnosis” published in Expert System and applications,

was the second most influential paper with 64 local citations and

367 global citations. Also, Zheng B 2014 (32) published an article

entitled “Breast cancer diagnosis based on feature extraction

using a hybrid of K-means and SVM algorithms” that got 58

local citations and 214 global citations. Finally, Kooi T 2017 (33)

published an article entitled “Large scale DL for computer-aided

detection of mammographic lesions” with 55 local and 387 global

citations. Therefore, as shown in Table 4, these authors are the

most influential authors contributing to AI for breast cancer

detection and survival prediction research from 2000 to 2021.
Conceptual knowledge structure analysis

Keyword analysis
In the current section, we apply the keyword analysis and

keyword co-occurrences to analyze the research trends and
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developments in AI for breast cancer detection and survival

predictions to display the research gaps in the literature and

detect potential future research trends in AI for breast cancer

detection and survival prediction field. The top fifteen keywords

are highlighted in Supplementary Figure S4; with 805

occurrences, the keyword “breast cancer” is the most

frequently occurring keyword, followed by ML (282),

classification (281), DL (276), and feature selection (163).

Furthermore, the correlation between AI and Breast cancer

diagnosis and prognosis research can be mapped using the

word growth graph shown in Supplementary Figure S5. As

observed from the word growth graph, the occurrence per year

of the main keywords, which are all the tools of AI for the earlier

diagnosis of breast cancer, have grown progressively over time,

namely breast cancer, DL, ML, feature selection, and

classification. However, some of them, like “breast cancer,

classification, ML, and DL,” grew more dynamically than other

keywords. For example, in terms of cumulate occurrence in

2000, keywords breast cancer, machine learning, classification,

feature selection, and deep learning were zero, one, three, one,

and zero, respectively. Whereas in the year 2021, the keywords

with the highest increase in occurrences from the year 2000 to

2021 were: Breast cancer (777), ML (275), classification (274),

DL (258), and feature selection (162).

In addition to the author’s keyword analysis, the authors’

keywords co-occurrences were analyzed using biblioshiny. The

Co-occurrence network can enable us to understand the topics

covered by a research field and define the most critical and

recent fronts (issues). It could also help us understand the

evolution of the issues over time. The outcome of the Co-

occurrence network study is presented in Figure 3. In Figure 3,

the node size (keyword) represented by a dot in the network

displays the number of occurrences (keywords). For instance,

Breast cancer is the maximum size node, confirming that breast

cancer is the most frequent keyword. In this regard, we can

observe from Figure 3 that the author’s keywords are DL, ML,

and classification, the highest frequency of occurrence after

breast cancer. Likewise, the width of edges linking other nodes
TABLE 4 List of top 10 highly locally cited articles within AI for breast cancer detection and survival prediction research from 2000 to 2021.

Document Journal DOI Year Local Citations Global Citations

Delen, Walker, and Kadam, 2005 Artif Intell Med 10.1016/j.artmed.2004.07.002 2005 65 539

Akay, 2009 Expert Syst Appl 10.1016/j.eswa.2008.01.009 2009 64 367

Zheng, Yoon, and Lam, 2014 Expert Syst Appl 10.1016/j.eswa.2013.08.044 2014 58 214

Kooi et al., 2017 Med Image Anal 10.1016/j.media.2016.07.007 2017 55 387

Arevalo et al., 2016 Comput Meth Prog Bio 10.1016/j.cmpb.2015.12.014 2016 48 172

Setiono, 2000 Artif Intell Med 10.1016/S0933-3657(99)00041-X 2000 46 140

Karabatak and Ince, 2009 Expert Syst Appl 10.1016/j.eswa.2008.02.064 2009 44 236

Araújo et al., 2017 Plos One 10.1371/journal.pone.0177544 2017 44 243

Cheng et al., 2006 Pattern Recogn 10.1016/j.patcog.2005.07.006 2006 40 303

Dheeba et al., 2014 J Biomed Inform 10.1016/j.jbi.2014.01.010 2014 39 170
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shows the occurrence of keywords employed concurrently in the

research publications present in our metadata. In this context,

we observe that the author keywords “breast cancer and DL”

followed by “breast cancer and ML,” “breast cancer and

classification,” “breast cancer and convolutional neural

network (CNN),” and “breast cancer and computer-aided

diagnosis (CAD)” have the most co-occurrences in current

bibliometric literature.

Keywords evolution trends
Applying a clustering algorithm to the keywords network

makes it possible to highlight different themes of a given domain.
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Each cluster/theme can be represented on a particular plot,

known as a strategic or thematic map (27). In a thematic map,

each bubble represents a network cluster. The bubble name is the

word belonging to the cluster with the higher occurrence value.

The bubble size is proportional to the cluster word occurrences,

and the bubble position is set according to the cluster callon

centrality and density. The callon centrality can be read as the

importance of the theme in the entire research field, and callon

density can be read as a measure of the theme’s development.

Therefore, thematic maps were constructed to reveal the

evolution of the keyword trends, as shown in Figure 4. The

thematic map consists of four quadrants: The first quadrant from
FIGURE 4

Thematic map of author's keywords.
FIGURE 3

A co-occurrence network analysis of author keywords.
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the right top corner signifies the thematic keywords belonging to

motor themes, representing well-developed themes related to the

Applicat ion of AI in breast cancer diagnosis and

prognosis research.

The second quadrant represents the niche themes, which

represent themes that have good internal development. The

third quadrant represents the thematic keyword belonging to

weakly developed, emerging, or declining themes. Finally, the

fourth quadrants represent thematic keywords belonging to

basic and transversal themes with weak internal development.

For example, in Figure 4, the thematic analysis of the data

obtained from 2000-2021, we observed that breast cancer

classification and machine learning are both well developed

and essential for the conceptual structure of the research field

(AI for Breast Cancer Diagnosis and Prognosis). On the other

hand, mammography, CAD, and mammogram are the themes

that are important but less developed as compared to themes of

the first quadrant (Motor themes). The themes such as feature

extraction, cancer, and SVM have good internal development

but unimportant external ties with the other themes, so they

have a marginal role in the given scientific field. It is worth

mentioning that the primary/transversal themes and the motor

themes are considered those that support the development and

strengthening of an area of knowledge (AI for breast cancer

diagnosis and prognosis) due to their centrality and density.
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On the other hand, DL, CNN, and Transfer Learning (TL)

represent the emerging or declining themes with a weak internal

development degree and are marginally crucial for developing

the given scientific field. Next, the thematic evolution of the

keywords from 2000 to 2021 is analyzed based on the keyword

thematic map and Sankey diagram shown in Supplementary

Figure S6 and Figures 5A-D, respectively. According to the

Sankey diagram and keywords thematic map as shown in

Supplementary Figure S6 and Figures 5A-D, we observe that

from 2000 to 2015, studies were more focused on applying ML

tools to detect metastatic breast cancer masses from ultrasound

breast images. However, during the last five to six years, the

implementation of DL techniques to improve the accuracy of

detecting suspicious cancerous breast masses using ultrasound

or MRI images of breast masses has paved the way for earlier

detection of breast cancer. Moreover, studies have shown that

the role of Natural Language Processing (NLP) has great

potential in predicting metastatic breast cancer recurrence.

Multicorrespondence analysis and clustering
map of words

Similarly to the network analysis, we applied the factorial

analysis (data reduction technique) to study the sub-topics related

to the implementation of AI in breast cancer detection and

survival prediction research, as represented in Figure 6. The
A B

DC

FIGURE 5

(A–D) Sankey diagram based on keyword thematic evolution from 2000 to 2020.
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factorial analysis was performed using the multiple

correspondence analyses as the dimensionality reduction

technique and hierarchical clustering as the clustering algorithm

to group related terms close to each other. Through the factorial

analysis, the nodes with the same color constitute a cluster that

depicts their central research theme (main topic) inferred from

their respective sub-topics (nodes) within a given cluster. Further,

the association between two nodes is dependent on proximity

between the nodes. The closer the two nodes’ proximity, the more

significant the articles treat them together. Nodes with lower

proximity are pulled together while nodes with high proximity

are distant, thereby attaining discrete clustering among keywords.

The map’s origin for each cluster in the conceptual structure map

represents the average position of all column profiles and,

therefore, represents the center of the research field.

The conceptual structure analysis using factorial analysis

reveals that the two subfields were identified in the scientific field

of AI for breast cancer detection and survival predictions. The

two main subfields are as follows:

1. Red cluster grouping together author keywords: breast

cancer, CAD, neural network (NN), data mining (DM), CNN,

TL, DL, mammography, mammogram, SVM, classification, ML,

and feature selection. The factorial analysis shows that the

keyword “breast cancer” occupies a more central position in

the red cluster. Thus, we can conclude that breast cancer is the

red cluster’s most common and significant topic.

2. Blue cluster grouping the author keywords: SVM, breast

cancer diagnosis, SVM, cancer, and feature extraction. The

factorial analysis shows that the keyword “cancer” occupies a

more central position in the blue cluster. Thus, we can conclude

that cancer is the most common and significant keyword in the

blue cluster.
Frontiers in Oncology 10
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Multicorrespondence analysis and clustering
most contributing documents

The graphical map shown in Supplementary Figure S7 allows

us to identify the link between the topics and the related documents.

The map plots the documents associated with the highest total

contribution. The total contributions measure each document’s

weight in the information summarized by the two axes. The

colors represent the clusters to which each record belongs. The

most contributing documents related to the blue and the red cluster

are shown in Supplementary Figure S7 and tabulated in Table 5.We

can observe from the data available from the red cluster that the

article published by Chougrad H, 2018 (34), entitled “Deep

Convolutional Neural Networks (DCNN) for breast cancer

screening” published in Compt Meth Prog Bio, is the most

contributing paper followed closely in the second position by

Masud M, 2020 (35) entitled “CNN-based models for diagnosis

of breast cancer” published in Neural Computing Application.” In

the same context, the article authored by Murtaza G, 2020 (36),

entitled “Breast Cancer Multi-classification through Deep Neural

Network (DNN) and Hierarchical Classification Approach,”

published in Multimedia Tools and Applications, is the third

most contributing paper. Finally, the article “MitosisNet: End-to-

End Mitotic Cell Detection by Multi-Task Learning,” published in

IEEE Access and authored by Alom MZ, 2020 (37), is the fourth

most contributing document on the associated topics with the red

cluster. The article entitled “Development of an intelligent CAD

system for mass detection in mammographic images,” published in

IET Image Processing, authored by Andreadis T in 2020 (38), is the

most contributing paper on the topics related to the blue cluster. In

addition, the articles written by Salama WM, 2020 (39) and Eltrass

AS, 2020 (40) were the second and third most contributing paper in

the area of research related to the blue cluster.
FIGURE 6

Factorial analysis of the author keywords constructed using MCA and hierarchical clustering techniques.
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Multicorrespondence analysis and clustering
most cited documents

The graphical map in Supplementary Figure S8 allows us to

identify the link between the topics and the cited documents.

The graphical map plots the documents associated with the

highest global citations. The colors represent the clusters to

which each document belongs. The most cited papers related to

the blue and the red cluster are shown in Supplementary Figure

S8 and tabulated in Supplementary Table S5. We can observe

from the data available from the red cluster that the article

published by Sirinukunwattana K, 2016 (41) entitled “Locality

sensitive deep learning for detection and classification of nuclei

in routine colon cancer histology images” and published in IEEE

Transactions on Medical Imaging is the most cited paper (557

Citations) in deep learning a subtopic associated with the red

cluster. The documents authored by Delen D, 2005 (30) and

Tang J, 2009 (42), are the second with 539 and the third with 443

citations, the most globally cited papers associated with

subtopics of the red cluster. In the blue cluster, the article

“SVM combined with feature selection for breast cancer

diagnosis,” published in Expert systems with applications,

authored by Akay MF, 2009 (31), is the most cited paper with

367 citations related to topics associated with the blue cluster. In

addition, the articles authored by Chen HL, 2011 (43) and

Stoean R, 2013 (44) were the second and third most cited

documents in research related to the blue cluster.
Intellectual knowledge structure analysis

Co-citation analysis
Co-citation analysis (28) is a critical citation analysis

technique in bibliometrics to show a relationship between

nodes representing the author or documents (Representation

of an Intellectual structure of a given research field). Here we talk

about co-citation of two papers or authors when a third
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document or author cites both. The co-cited documents are

represented as nodes, and the edges connecting the co-cited

documents represent the instances of co-citation. Here the node

size means the document occurrence, i.e., a paper with higher

occurrence will have a correspondingly larger node size and vice

versa. Moreover, the edge size is proportional to the document’s

co-occurrence, i.e., records with higher co-occurrence will have a

thicker edge size and vice versa. As per Figure 7, we can observe

that the research papers by Simonyan K, 2014 (45), Kaiming HE,

2016 (46), Krizhevsky A, 2012 (47), Lecun Y, 2015 (48),

Ronneberger O, 2015 (49), Spanhol FA, 2016 (50), Litjens G,

2017 (51), Bray F, 2018 (52), and Cires ̧an DC, 2013 (53) have

been cited by other documents as well as co-cited by many

source documents (documents in the dataset). Moreover,

Breiman I, 2001 (54), Guyon I, 2002 (55), Haralick RM, 1973

(56), Akay MF, 2009 (31), Cortes C, 1995 (57), Delen D, 2005

(30) and Pena-Reyes CA 1999 (58) have been co-cited by other

source documents. The color of the nodes in the co-citation

network represents the research field to which the records

belong. For example, the Red color nodes depict research in

the DCNN for image classification to diagnose cancer. The blue

nodes represent documents related to different ML algorithms

for breast cancer diagnosis.

Historiography analysis
When examined over time, co-citation analysis helps detect

a paradigm shift (a fundamental change in approach or

underlying assumptions) and school of thought related to a

particular research field (29). In Supplementary Figure S9, each

historical path represents a research topic and its core authors

and documents. Each node in Supplementary Figure S9

represents a document (included in the analyzed collection)

cited by other documents. Each edge represents a direct citation,

and nodes and edges are plotted on an oriented graph where the

horizontal axis represents the publication years. Here, the blue

color research path represents a fundamental change in
TABLE 5 Highly contributing Articles by clusters obtained using Multicorrespondence Analysis.

Cluster Documents Article tile Journal Contribution

Red (I) Chougrad, Zouaki and
Alheyane, 2018

Deep Convolutional Neural Networks for breast cancer screening Computer Methods and
Programs in Biomedicine

1.38

Masud, Eldin Rashed, and
Hossain, 2020

Convolutional neural network-based models for diagnosis of breast cancer Neural Computing Application 1.02

Murtaza, Shuib, Mujtaba,
et al., 2020

Breast Cancer Multi-classification through Deep Neural Network and
Hierarchical Classification Approach

Multimedia Tools and
Applications

1.02

Alom et al., 2020 MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning IEEE Access 1.01

Blue (II) Andreadis et al., 2020 Development of an intelligent CAD system for mass detection in
mammographic images

IET Image Processing 4.23

Salama, Elbagoury, and
Aly, 2020

Novel breast cancer classification framework based on deep learning IET Image Processing 4.16

Eltrass and Salama, 2020 Fully automated scheme for computer-aided detection and breast cancer
diagnosis using digitized mammograms

IET Image Processing 3.82
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approach and school of thought related to breast cancer

diagnosis and the prediction of breast cancer survivability

research using AI.

From 2000 to 2015, the focus was on detecting cancer and

predicting survivability using a basic ML algorithm (30–32, 43,

59–63). After that, however, the emphasis has been on using DL

networks in breast cancer diagnosis and prognosis research (64).

The light yellow color research path represents the automated

detection and classification of masses in the mammogram. From

2000 to 2010, the focus was on using CAD for breast cancer (65,

66)). After that, however, the focus shifted to heuristic and CNN

for the CAD of breast cancer. The purple-colored research path

represents breast cancer diagnosis using microscopic biopsy

images. From 2000 to 2015, the purple-colored research path

focused on diagnosing breast cancer using the computer-aided

analysis of biopsy images. After that, however, the focus shifted

to CNN to diagnose breast cancer using histological images (67).

Similarly, the light red color research path represents

classifying and detecting lesions in a mammogram using DL

techniques. The red-colored research path originated in 2015

and continues till 2021 (68–71). Lastly, the light blue research

path represents the field of breast cancer classification’s DL and

TL. Although the light blue research path originated in 2016

(72), the primary contributing authors are continuously

publishing in DL and TL for the diagnosis and prognosis of

breast cancer (73–78).
Social knowledge structure analysis

Authors’ collaboration network analysis
The author’s collaboration network analysis reveals how

authors interact with each other. We applied a threshold of five
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papers per author and represented the global collaboration of

authors worldwide. Figure 8 shows the partnership of the eight

most contributing authors among the total authors in the

dataset. Out of the selected fifty authors, eight authors

collaborated strongly with the other authors in the dataset

and had a minimum of five publications together. The

thickness of the edges represents the association between the

authors, and the node’s size represents the number of articles

they co-authored together. For example, Wang S, Zhang Y, and

Zhang X in the blue-colored research path published more

papers together than other authors in the dataset. Similarly,

Wang J, Li Y, and Li L in the red-colored research path

published more articles than other authors in the dataset in

the red-colored research field. Lastly, Ma Y and Yang Z in the

green-colored research field published more articles together in

the red-colored research field than the other authors in the

dataset publishing article in the green-colored research field.
Institution collaboration network analysis
The Institution collaboration network analysis reveals how

institutions interact with each other. We applied a threshold of

two or more edges and represented the global collaboration of

institutions worldwide. The thickness of the edges represents the

association between the institutions, and the node’s size

represents the number of articles they collaborated on. Among

the total institutions listed in the dataset, Figure 9 shows the

collaboration of the most collaborating institution. For example,

the King Abdulaziz University of Saudi Arabia and the University

of Leicester University had the maximum number of collaborated

research in AI for breast cancer diagnosis and prognosis. Stanford

University collaborated extensively with Radboud University and

Tsinghua University in the same context.
FIGURE 7

A co-citation network graph of documents.
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Collaboration world map analysis
As shown in Figure 10, the country collaboration network

analysis reveals how different countries interact. We applied a

threshold of five or more edges and represented countries’

collaboration worldwide. For example, from Supplementary

Table S4, we observe that China collaborated strongly with the

USA with 77 partnerships, 26 with the UK, and 10 with India in

the research field of AI for breast cancer diagnosis and

prognosis. In addition, the USA strongly collaborated with the

UK with 20 partnerships, 13 with Germany, 13 with India, 12
Frontiers in Oncology 13
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with Saudi Arabia, and 11 with Korea. Concurrently, Pakistan

collaborated with Saudi Arabia, the UK, and Germany in AI for

breast cancer diagnosis and prognosis.
Discussion

AI is perpetually changing the human race’s way of doing

things and has been employed in many fields, including

agriculture, the Internet of things (IoT), manufacturing, and
FIGURE 9

Pictorial representation of the institution’s collaboration using the institution collaboration network map.
FIGURE 8

Pictorial representation of the author’s collaboration using author’s collaboration network plot.
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intelligent healthcare. For example, since AI was introduced to

detect and classify breast cancer and breast cancer patients’

survivability prediction, many academicians, scientists, and

researchers have performed landmark experiments to employ

different DL-based technologies for breast cancer detection and

survival prediction. However, there was still a lack of a systematic

evaluation of the application of DL in breast cancer diagnosis and

prognosis from a bibliometric perspective. In particular, the

existing literature did not conclusively answer the six questions

well, including 1) What are the publishing and citation trends of

the research publication in AI for breast cancer detection and

survival prediction, 2) Who are the most contributing authors,

journals, organizations, and countries in AI for breast cancer

diagnosis and prognosis, 3) What are the publication patterns

andmost frequently used keywords of the articles published in AI

for Breast Cancer diagnosis and prognosis, 4) What are the

collaboration networks of AI research in breast cancer diagnosis

and prognosis, 5) What are the thematic trends of the

Application of AI in breast cancer diagnosis and prognosis

research and development, and 6) What are the main open

areas of challenges and the corresponding solutions for future

research work in AI for breast cancer research. To address the gap

in the knowledge structure in AI for Breast cancer diagnosis and

prognosis, the current data and the related systematic

bibliometric review methods to address the field of research are

discussed. The present study depicts the research hotspots trends,

publication patterns in different countries and journals, the

author’s contribution and collaboration, and collaborations

between countries and their institutions on AI for breast cancer

diagnosis and prognosis research.

China is most productive in publishing research articles on

AI for breast cancer diagnosis and prognosis research, followed
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closely by USA and India, respectively. While the USA has the

most significant global influence based on the total citation

indicators, and Netherland, in terms of average article citation,

is the most influential country in research regarding the

implementation of AI in breast cancer diagnosis and prognosis

research. Furthermore, China is strongly collaborative with the

USA, followed by the UK. Stanford University and National

Taiwan University are the most relevant institutions in AI for

breast cancer diagnosis and prognosis in the past two decades,

from 2001 to 2021. The PLOS One is the most preferred

periodical for researchers publishing articles on AI for breast

cancer diagnosis and prognosis between the years 2000 to 2021.

However, the journal “Expert Systems with Applications,”

followed by the IEEE Transaction on Medical Imaging Journal,

is the most influential AI in breast cancer detection and survival

predictions research.

As per our bibliometric analysis, Zhang Y is the most

contributing author and a prolific author publishing regularly

in AI for breast cancer research. On the other hand, Chen H is

one of the most influential authors, with 1302 citations and an

H-index of 13. In 2017, Chen H and his team proposed a novel

approach (Deep Contour-Aware Networks) for object instance

segmentation from histopathological images (79). The proposed

method won two histological object segmentation challenges: the

2015 MICCAI Nuclei Segmentation Challenge and the 2015

MICCAI Gland Segmentation Challenge, significantly

surpassing all available techniques. Furthermore, Ramón Dıáz-

Uriarte and Sara Alvarez de Andrés, 2006 applied machine

learning algorithms for gene selection and class prediction

with microarray data (80) is the most globally cited article on

AI for breast cancer diagnosis and prognosis research from 2000

to 2021. Delen et al., 2006 [30] compared three DM techniques
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for predicting breast cancer survivability, and as per the articles

in our dataset collected from 2001 to 2022, their work is one of

the most influential research (highly locally cited articles) in

breast cancer research using AI techniques.

The keywords of a publication signify the main focus

research areas, and the rate of recurrence of the keywords and

their co-occurrences suggest the topics focused on that particular

area of research. Accordingly, we found that “breast cancer,”

“ML,” “classification,” “DL,” and “feature selection” are the most

frequently occurring keywords based on keyword analysis.

Analyzing the most relevant word data with that of top locally

and globally cited literature offers a strong association between

breast cancer and AI technologies, namely ML and DL, as these

keywords are the most regularly used keywords in literature

along with the most repeatedly mapped subject areas in articles

present in our dataset. The current observation reveals that the

prime focus of the researchers belonging to the medical imaging

community is on solving medical imaging challenges in

implementing AI techniques, namely DL and ML, for breast

cancer research, especially concerning improving the accuracy of

breast cancer screening and prognosis prediction of cancer

patients. [34-40].

Morphological attributes of breast masses are crucial for

classifying malignant masses based on texture and

morphological characteristics of the breast images from benign

tissues. Studies have shed light on using AI systems to extract

features from breast ultrasound images. In a study by Hsu Sm

et al., where texture attributes (namely, variance), morphological

features, namely, a standard deviation of the shortest distance)

and the nakagami parameters were combined to create a set of

physical characteristics from the ultrasound images to build a

classification model using fuzzy c-means (FCM) clustering

algorithm that achieved a classification accuracy of 89.4% to

discriminate between benign and malignant breast tissues (81).

Zhang et al., in their study, developed a two-layer DL

architecture by combining feature learning and selection

techniques to extract Shear-Wave Elastography (SWE) features

that performed better than the model build using the statistical

features with an accuracy of 93.4% and an AUC value of 0.947,

respectively (82). Furthermore, studies have shown that CAD

systems, when employed to analyze the ultrasound features,

enhance the diagnostic performance of inexperienced and

experienced physicians (83, 84).

Moreover, the most crucial part of various diagnostic

systems and human breast cancer diagnosis is the ability to

classify benign breast masses from malignant breast tissues. In

this context, to allow radiologists and physicians to reach a

reliable conclusion in a short time regarding suspicious breast

masses, AI systems have been developed gradually during the

last two decades to classify benign and malignant breast masses.

Several studies have used different deep learning architectures to

classify malignant and benign breast lesions based on breast

ultrasound images. To discuss a few DL-based studies, namely
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Becker AS et al., in 2018 (85) compared the performance of DL-

based software for classifying malignant from benign breast

tissues with three subjects with variable expertise (a trained

medical student, a resident, and an experienced radiologist) in

screening breast cancer using breast ultrasound images. The

finding was encouraging as the DL software trained using a few

hundred samples (553 benign and 84 malignant) showed

comparable accuracy in classifying malignant from benign

breast tissues compared to the experienced radiologist.

Moreover, the performance of the CNN-based system was

better than the medical student trained using the same training

data (n= 445, i.e., 70% of the total data). These findings showed

that DL-based models could mimic a human decision-making

process. Furthermore, in another study by Cirtisis A et al., in

2019 (86), the dCNN method achieved a classification accuracy

of 95.3%, which was better than 94.1% obtained by a radiologist

on the external dataset comprising ultrasound images of breast

lesions. These studies have shown that AI-based tools can

shorten the diagnosis t ime of experienced doctors

(radiologists) and enhance the diagnostic capability of

inexperienced doctors. Moreover, our claims of the correlation

between breast cancer and AI tools can also be interpreted from

the cumulative occurrence word growth graph of keywords from

2000 to 2021. We can conclude from the observation made from

the word growth graph that a strong correlation between the

keywords, namely “breast cancer,” “ML,” “classification,” “DL,”

and “feature selection,” exists. Moreover, due to the increasing

implementation of AI, particularly DL in breast masses medical

image analysis for the detection of cancer, these keywords form a

significant portion of the trending topics in AI for the earlier

detection and survival prediction of breast cancer and breast

cancer patients, respectively, during the last five years (3, 32, 33,

39, 50, 67–72, 74, 76–78, 87–90).

The conceptual structure map obtained using the factorial

analysis reveals that the last two decades have shed light on AI

sub-topics: CNN, TL, DL, NN, SVM, classification, ML, and

feature selection. While the keywords, namely, CAD,

mammography, and mammogram, represent sub-topics

related to breast cancer diagnosis and detection. Consequently,

we can say that the red cluster contains keywords that highlight

AI techniques’ application in breast cancer diagnosis and

prognosis. Moreover, with its fast computing capability, and

good result reproducibility with minimum efforts, AI has shown

great potential in providing fact-based and helpful information

to doctors in the diagnosis of breast cancer, thereby reducing the

load of medical practitioners and the amount of incorrect breast

cancer analysis (91, 92). Intuitively, the high number of quality

publications published related to topics in the red cluster as

compared to the blue cluster can be dedicated to the increasing

role of ML and DL techniques, namely, CNN (34-35, 47, 50, 68,

70, 73, and 116), NN (16, 21, 36, 53, 60–63, 93), SVM (31, 32, 43,

44, 55), feature selection (31, 43, 44), and classification (50, 59,

63, 67–69, 71, 73, 75, 79, 90) in medical image analysis task.
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TL is based on applying established ML and DL approaches

that implement previously learned knowledge to solve novel

problems more accurately and effectively (94, 95). Hyunh et al.

first applied the TL technique in 2016 (96) for breast cancer

imaging, using the well-defined CNN models: ResNet,

GoogLeNet, AlexNet, VGGNet, and Inception, to solve image

classification tasks that were trained on natural image database,

ImageNet (97). Next, Yap et al., 2018 (98) proposed

implementing a deep neural learning approach for breast

cancer diagnosis —with a pre-trained CN, AlexNet, using

three different methods— a U-Net model, a transfer learning

method, and a patch-based LeNet approach. Later, Byra et al. in

2019 (99) developed a neural TL methodology for classifying

breast lesions using ultrasound images. Succeeding the previous

works, many studies were published in implementing TL

techniques for breast detection using an ultrasound imaging

approach (100, 101). Though TL approaches have continually

been improving in the context of breast ultrasound analyses for

breast cancer detection, there is always room for improvement

(102, 103).

The CAD system for breast cancer diagnosis and prognosis

has been extensively implemented (104). Relevant studies have

shown that CAD systems are helpful in refining descriptions of

the breast lesion and enhancing the consistency of the attributes

of the breast masses among ultrasound examiners, thereby

helping in the decision-making (83, 84). Recently, the

implementation of DL in the CAD system has shown great

potential in optimizing resource allocation, relieving doctors’

workload, and thus significantly improving the detection and

prognosis of breast cancer (33, 93, 105, 106). Besides, DL-based

CAD systems are contributing significantly to the fields of

contrast-enhanced mammography, ultrasound and Magnetic

Resonance Imaging (MRI) (107, 108), ultrasound elastography

(109), and digital breast tomosynthesis (88, 110). Thus, with the

advancement of AI expertise, radiologists are confident of

achieving more accurate classification and thereby achieving

early detection, timely diagnosis, and apt treatment of breast

cancer, thereby benefiting most breast cancer patients.

Further, the conceptual knowledge structure was evaluated

using the co-occurrence network. Therefore, through the co-

occurrence network of the author’s keyword, we determine that

on recent fronts, “breast cancer and DL” (33, 39, 71, 72, 75, 77,

78, 87–90), “breast cancer and ML,” (3, 31, 32, 43, 44, 55),

“breast cancer and classification,” (50, 59, 63, 67–69, 71, 73, 75,

79, 90), “breast cancer and CNN,” (34, 35, 47, 50, 67, 69, 73, 90),

and “breast cancer and CAD” (7, 8, 10, 33, 42, 65, 90), with the

highest total link strength depicts the multi-faceted

implementation of AI in breast cancer detection and survival

prediction research areas during the years 2020- 2021.

Moreover, as per the analysis of the Sankey diagram and the

thematic evolution of keywords from 2000 to 2021, we

understand the following:
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1. From 2000 to 2010, the motor theme focused more on

keywords mammography (4, 6, 8, 10, and 42), and ML-related

topics (31, 43, 44, 50, 59, 60, 63, 67–69, 71, 73, 75, 79, 90) for

breast cancer diagnosis and prognosis. The researchers

investigated several ML methods for automating mammogram

image classification during this period. The major limitation of

the conventional ML studies is the detection of breast masses

which vary in size, making it challenging for the researcher to

detect and classify suspicious malignant breast masses from

benign breast masses (111, 112). Therefore, detecting

suspicious breast masses was still an open challenge for future

cancer detection and prognosis research studies.

2. During the last five to six years, the basic and the

transversal themes show that keywords ML (31, 43, 44, 50, 59,

60, 63, 67–69, 71, 73, 75, 79, 90), DM (30), SVM (31, 32, 43, 44,

55), feature selection (31, 43, 44), and classification (50, 59, 63,

67–69, 71, 73, 75, 79, 90) have merged into a single cluster,

namely breast cancer. Moreover, DL (33, 39, 71, 72, 75, 77, 78,

87, 88, 90) and feature extraction (32) have also evolved as the

primary themes in the AI field for the diagnosis and prognosis of

breast cancer in recent years (2015 to 2021). However, these

fields are essential for applying AI in breast cancer diagnosis and

prognosis research but are not well developed, and it is far from

the goal of being fully integrated into the work of clinicians and

large-scale application in the world. Still, we believe that with the

progress of research in AI methodology, doctors will be in a

position to achieve earlier detection of breast cancer with higher

accuracy and precision.

3. NLP, another emerging area of research in recent years,

has a potential role in harvesting important clinical attributes

unexplored within electronic medical registers. Therefore, by

developing the NLP system, researchers in the coming years can

use the information present in an electronic record on cancer

outcomes and treatment to find individual patient timelines of

metastatic breast cancer relapse (113, 114).

As per the co-citation analysis, we can say that documents by

Simonyan K, 2014 (45), Krizhevsky A, 2012 (47), and Lecun Y,

2015 (48) have a higher occurrence and co-occurrence, proving

that these research articles are landmark articles in applying AI

to Breast cancer diagnosis. Furthermore, the historiography

analysis helps detect a paradigm shift and school of thought

related to AI in breast cancer diagnosis and prognosis research.

Here from the historical path analysis, we observe that during

the last five to six years, the focus has been on using deep

learning (64, 67–72) and transfer learning techniques (75, 77, 87,

115, 118) for an image-based detection of breast cancer and

survivability prediction research.

Finally, the social knowledge structure analysis shows that

authors Zhang Y& Zhang X, Zhang Y &Wang S, Wang J, Li Y, Li

L, and Ma Y & Yang Z collaborated and published more papers

than other authors in the dataset. Similarly, the institution

collaboration network analysis reveals that the King Abdulaziz
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University of Saudi Arabia and the University of Leicester

University had the maximum number of collaborated research

in AI for breast cancer diagnosis and prognosis. In addition,

Stanford University collaborated extensively with Radboud

University and Tsinghua University in the same context.

Finally, as per the world map collaboration analysis, we

observe that the developed nations, namely China, the USA,

India, the UK, and Saudi Arabia, are pivotal in promoting

collaborative research on AI for breast cancer diagnosis and

prognosis research through their constant search for

collaboration with other countries. However, we observed that

institutions in developed countries seldom take the initiative to

collaborate with institutions in developing and underdeveloped

economies. Instead, the developed nations tend to select equally

good or better institutions than themselves as collaborators.

However, these DL and TL techniques have not been

declared primary clinical protocols for clinicians to detect

breast cancer and cancer patients’ survivability. Thus, the

scientific community must collaborate globally to undertake

the necessary medical device regulation to use deep learning

technology in health care. Therefore, the current systematic

bibliometric review could be a valuable resource for beginners

who wish to apply DL and TL techniques for breast cancer

classification, detection, and survivability through different

medical imaging modalities.
Open challenges in AI for breast cancer
diagnosis and prognosis

As per the evolution of the field of AI and its application in

breast cancer diagnosis and prognosis has evolved, we observe

from the thematic map that during the last five to six years, the

basic and the transversal themes show that keyword, DL, and TL

have evolved as the primary themes in the AI field for the

diagnosis and prognosis of breast cancer in recent years (2015 to

2021). However, although DL and TL themes are essential for

applying AI in breast cancer diagnosis and prognosis research

(70, 71, 74, 76, 88, 89), these fields have not developed enough to

be used as clinically proven technology to be used by clinicians

for earlier detection of cancer and cancer patient survivability

predictions using histopathological images and mammograms

(90, 116). Therefore, efforts have to be made by the scientific

community globally to collaborate efficiently to implement DL

technologies to improve the performance of breast cancer

classification and detection performance. Hence, these DL

techniques can be used as a primary diagnostic tool for the

detection of breast cancer and survivability prediction of breast

cancer patients with greater accuracy and precision.

Moreover, we observed that the developed nations’

institutions seldom take the initiative to cooperate with

institutions in developing and underdeveloped countries.

Instead, the developed nations tend to select equal or better
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institutions with infrastructure and intellects than themselves as

collaborators. Therefore, a country with better infrastructure

and economy should collaborate with prolific intellectuals and

their affiliated institutions from developing and underdeveloped

countries with funded projects to try and utilize the current

technology to establish a worldwide AI-based breast cancer

healthcare ecosystem. The AI-based breast cancer healthcare

ecosystem will allow institutions from underdeveloped countries

to significantly implement advanced DL techniques in breast

cancer diagnosis and prognosis.

Clinical and image data should be shared. However, data

that is demonstrative of typical breast cancer patients, annotated,

structured, and ready to be used is inadequate and available in

only a few institutions. Therefore new imaging repositories, such

as the Health Data Research Innovation Gateway, must be set up

to address this data gap. In addition, setting up new image

repositories is vital for developing a data ecosystem to meet the

demand for developing a novel algorithm for the earlier

detection and treatment response prediction of breast cancer.

Further, it is essential to bring scientific fields together,

which means a new multidisciplinary team, including clinical

scientists, informaticians, and clinicians needs to be trained and

developed to incorporate AI analysis into breast cancer care

decisions (117).
Limitations

Our bibliometric review has some limitations. First, we

included publications available only in the English language.

Secondly, we did not include electronic preprints studies

published in an online open-access repository, the ArXiv. We

might have skipped several publications related to AI and Breast

cancer diagnosis and prognosis research; nevertheless, these

electronic preprints in the online repositories are not peer-

reviewed articles. Third, we only extracted and analyzed data

fromWOS and Scopus data from January 2000 to October 2021.

So we might have missed many articles linked to AI and Breast

cancer diagnosis and prognosis research published between the

years November 2021 to January 2022.
Conclusion

DL, feature extraction, and TL for breast cancer diagnosis

have become basic and transversal themes in the last five to six

years. However, these fields are not well developed enough to be

used by clinicians for regular cancer detection and prognosis

prediction. Therefore, there is urgent to convert these basic

themes to motor themes and append these techniques to clinical

practices as a breast cancer diagnostic or prognostic tool.

Therefore, the current systematic bibliometric review could be

a valuable resource for beginners applying AI to researchers on
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DL-based breast cancer classification through different medical

imaging modalities.
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René Aloisio Da Costa Vieira,
Barretos Cancer Hospital, Brazil

*CORRESPONDENCE

Shaodong Cao
shaodong_cao@163.com
Shi Kang
ksannaksxx@126.com

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Breast Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 06 January 2022

ACCEPTED 11 October 2022
PUBLISHED 07 November 2022

CITATION

Yang L, Chang J, He X, Peng M,
Zhang Y, Wu T, Xu P, Chu W, Gao C,
Cao S and Kang S (2022) PET/CT-
based radiomics analysis may help to
predict neoadjuvant chemotherapy
outcomes in breast cancer.
Front. Oncol. 12:849626.
doi: 10.3389/fonc.2022.849626

COPYRIGHT

© 2022 Yang, Chang, He, Peng, Zhang,
Wu, Xu, Chu, Gao, Cao and Kang. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 07 November 2022

DOI 10.3389/fonc.2022.849626
PET/CT-based radiomics
analysis may help to predict
neoadjuvant chemotherapy
outcomes in breast cancer
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Ying Zhang1, Tingting Wu1, Panpan Xu1, Wenjie Chu1,
Chao Gao4, Shaodong Cao4* and Shi Kang5*

1Department of Positron Emission Tomography-Compute Tomography (PET-CT), Harbin Medical
University Cancer Hospital, Harbin, China, 2Department of Chinese Medicine, Qingdao West Coast
New Area People's Hospital, Qingdao, China, 3Anesthesiology Department, Second Hospital of
Harbin City, Harbin, China, 4Medical Imaging Department, The Fourth Affiliated Hospital of Harbin
Medical University, Harbin, China, 5Medical Imaging Department, The Second Hospital of
Heilongjiang Province, Harbin, China
Background: The aim of this study was to evaluate the clinical usefulness of

radiomics signature-derived 18F-fluorodeoxyglucose (18F-FDG) positron

emission tomography–computed tomography (PET-CT) for the early

prediction of neoadjuvant chemotherapy (NAC) outcomes in patients

with (BC).

Methods: A total of 124 patients with BC who underwent pretreatment PET-

CT scanning and received NAC between December 2016 and August 2019

were studied. The dataset was randomly assigned in a 7:3 ratio to either the

training or validation cohort. Primary tumor segmentation was performed,

and radiomics signatures were extracted from each PET-derived volume of

interest (VOI) and CT-derived VOI. Radiomics signatures associated with

pathological treatment response were selected from within a training

cohort (n = 85), which were then applied to generate different classifiers

to predict the probability of pathological complete response (pCR).

Different models were then independently tested in the validation cohort

(n = 39) regarding their accuracy, sensitivity, specificity, and area under the

curve (AUC).

Results: Thirty-five patients (28.2%) had pCR to NAC. Twelve features consisting

of five PET-derived signatures, four CT-derived signatures, and three

clinicopathological variables were candidates for the model’s development.

The random forest (RF), k-nearest neighbors (KNN), and decision tree (DT)
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classifiers were established, which could be utilized to predict pCR to NAC with

AUC ranging from 0.819 to 0.849 in the validation cohort.

Conclusions: The PET/CT-based radiomics analysis might provide efficient

predictors of pCR in patients with BC, which could potentially be applied in

clinical practice for individualized treatment strategy formulation.
KEYWORDS

breast neoplasms, Positron Emission Tomography-Computed Tomography,
neoadjuvant therapies, pathological complete response, artificial intelligence
Introduction

The pathological staging system suggested by the

International Association is taken as the reference standard in

therapeutic strategy decision for patients with breast cancer

(BC). Stages IIB and IIIC BC are categorized as locally

advanced stages, and radical surgical resection is not currently

preferred (1). Presently, neoadjuvant chemotherapy (NAC) is

recommended for patients with these cancers. Thus, NAC has

become a standard option for potentially surgically resectable BC

(2). As a preoperative treatment plan, the main advantage of

NAC lies in reducing the size of the primary tumor and down-

staging the tumor burden before surgery (3).

To date, pCR has been used as an alternative prognostic

endpoint in clinical trials of neoadjuvant drugs for BC patients

(4). A series of works have investigated the potential association

of pCR with the long-term survival outcomes in patients with

BC. An earlier randomized clinical trial revealed that pCR was

correlated with prolonged disease-free survival (DFS) in BC (5).

Another previous study has demonstrated that pCR in human

epidermal growth factor receptor 2 (Her-2)-positive BC is

associated with substantially longer times to recurrence and

death (6). However, other clinical trials indicated that there

was no significant benefit in terms of overall survival (OS) (p =

0.51) and recurrence-free survival (p = 0.80) between the pCR

and non-pCR groups (7). The conflicting results achieved from

different studies might raise strong demands for a biomarker

that could be applied to select candidates who would derive

added benefit from NAC treatment.

Currently, the therapeutic effect during NAC (pCR or non-

pCR) was mainly evaluated through pathological analysis of

surgical specimens at the end of NAC, but it failed to reflect the

tumor changes in the early stage and to monitor the treatment

response in real time (8). In contrast, imaging examinations are

noninvasive and reproducible. A pCR with NAC can be assessed

with various imaging modalities, such as mammography, breast

ultrasound, magnetic resonance imaging (MRI), and positron
02
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emission tomography-computed tomography (PET-CT).

Several clinical trials and meta-analyses have investigated the

diagnostic efficacy of various imaging modalities after NAC

treatment and compared the accuracy of preoperative

measurements with the final pathologic size of the tumor;

however, there is no conclusion yet regarding the most reliable

and accurate modality (9–11). Many of them have shownMRI to

be highly sensitive but rather have low specificity for identifying

pathological complete response (pCR = ypT0N0). Another

previous study has shown that PET-CT may more accurately

predict the pCR because of the functional imaging ability for

viable tumor cells compared with anatomic tumor size (12).

However, there remains a shortage of reliable clinical pCR

indicators based on conventional imaging modalities due to

the great heterogeneity of BC. Radiomics analysis provides

significant clinical usefulness and enables researchers to non-

invasively assess tumor heterogeneity, which is an important

step towards personalized treatment (13, 14). To that end,

radiomics shows great prospects in evaluating treatment

response of NAC regimens in patients with BC. However, the

current status is that almost all previous works concentrated on

x-ray, computed tomography, and MRI. Very few radiomics

studies have involved the predictive value of PET-CT imaging

(15, 16). The goal of this study was to develop and validate

radiomics predictive models for personalized pCR assessment

during NAC in patients with BC.
Materials and methods

Study population

Specific inclusion criteria were listed as follows: (i)

histological diagnosis of primary BC, (ii) performance of 18 F-

FDG PET/CT for staging purposes before any treatment, (iii)

NAC as primary treatment followed by surgery, and (iv) a single

lesion with a maximum diameter ≥ 1 cm and had no difficulty in
frontiersin.org
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tumor margin delineation. The research protocol was reviewed,

approved, and overseen by the institutional review board of

Harbin Medical University Cancer Hospital. Informed consent

permission was not required in line with the local ethics

committee’s regulations for retrospective research.
Image acquisition

PET/CT images were acquired using the Discovery VCT 64

PET/CT system (GE Healthcare, Milwaukee, USA). All patients

were requested to fast for 4–6 h prior to PET-CT scans. In

addition, there are strict regulations on the blood glucose level of

each patient, which must be controlled below 11.1 mmol/L

ahead of 18F-FDG, which is injected intravenously. All patients

must lie still and rest for at least 1 h before starting the scans after

an injection of 7.4 MBq (0.2 mCi)/kg 18F-FDG. Firstly, low-dose

CT scans (free-breathing state and unenhanced images) were

performed before whole-body PET-CT examination. Image

reconstruction was performed based on the 3D ordered subset

expectation–maximization algorithm (two iterations and 17

subsets). The baseline PET-CT scans were performed before

NAC administration, and all PET-CT examinations were

completed in the case of the same institution with the same

equipment and acquisition parameters, which were listed as

follows: tube voltage, 140 kV; tube current, 150 mA; slice

thickness, 3.75 mm; matrix size, 512 × 512; and field of

view, 450 mm.
Image analysis

Image analyses were performed using an advanced post-

processing software (PET VCAR; GE Healthcare). Two nuclear

medicine physicians with more than 10 years of diagnostic

experience, blinded to the outcome of surgery and pathology,

independently assessed the images. Final results were re-checked

by a senior radiologist and any disagreement was settled by

discussion. Each PET-derived volume of interest (VOI) was

defined with a threshold of 40% of the maximum standardized

uptake value (SUVmax), and then corresponding metabolic

parameters were automatically calculated by PET VCAR software.
NAC regimen and pathological
assessment

A paclitaxel-based NAC regimen was performed in 112

patients (90.3%). As for the remaining 12 patients (9.7%), a

recommended NAC protocol with anthracycline plus paclitaxel

was administrated. Anti-Her2 therapeutic strategy (trastuzumab,

starting dose of 8 mg/kg, maintenance dose of 6 mg/kg) was added

for patients with Her2 amplification. Surgery was performed
Frontiers in Oncology 03
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within 4 weeks of the end of NAC. According to the routine

pathological results when NAC treatment was completed,

corresponding pathological response to NAC was assessed by

one pathologist with more than 10 years of work experience. No

residual invasive cancer was identified in the initial lesion area and

both axillary lymph nodes after surgery resection, which was

defined as pCR; otherwise, non-pCR (17).
Image segmentation and
feature extraction

An overview of radiomics workflow is displayed in Figure 1.

The tumor lesion was delineated on axial PET and CT images

using LIFEx software (open-source software; www.lifexsoft.org/

index.php). A VOI that covered the entire tumor was delineated

by segmentation on each axial slice of CT and PET. All 3D

segmentation was first delineated automatically by means of

thresholding or clustering, which were corrected by a radiologist

manually afterwards. The VOI of the breast lesion was defined

on PET images with a threshold of 40% of the SUVmax. Tumor

segmentation was done by a nuclear medicine physician with

more than 15 years of diagnostic experience in BC, blinded to

surgical and pathological results.

We adopted three steps to preprocess the PET and CT images

prior to feature extraction. Firstly, we resampled all images to a

uniform voxel size of 1 mm × 1 mm × 1 mm using linear

interpolation to minimize the influence of different layer

thicknesses. Secondly, based on the gray-scale discretization

process (bin width for CT = 25, bin width for PET = 0.1), we

convert the continuous image into discrete integer values. Finally,

we use the Laplacian of Gaussian and wavelet image filters to

eliminate the mixed noise in the image digitization process in

order to obtain low- or high-frequency features. Radiomics

signatures were extracted from each PET-derived VOI and CT-

derived VOI by applying dedicated AK software (Artificial

Intelligence Kit; GE Healthcare, China, Shanghai). Each

radiomic signature was applied with a Z-score normalization to

transform the data into standardized intensity range. All patients

enrolled were randomly assigned in a 7:3 ratio to either the

training cohort or validation cohort. Synthetic minority

oversampling technique was adopted due to the imbalance

number of pCR- and non-pCR patients in the training cohort.

Next, the feature selection was carried out within the training

cohort by using a step-by-step selection method.
Radiomics signature selection

After the radiomics features extraction, all missing data were

replaced by the median value in the training set. Z-score

normalization was done on each radiomics feature. In

addition, the same preprocessing procedure was also applied
frontiersin.org
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to the validation set. Intra- and inter-class correlation

coefficients (ICCs) were computed to evaluate the intra- and

inter-observer reproducibility of radiomics signature extraction.

For the 40 cases of PET-derived and CT-derived VOIs selected

randomly (20 cases of pCR to NAC and 20 cases of non-pCR to

NAC), radiologists A and B extracted the signatures

independently. All radiomics signatures were re-extracted by

radiologist A 2 weeks later, and radiomics signatures with ICC

lower than 0.80 were considered as the poor reproducibility of

the signature and then were excluded.

After the intra- and inter-operator agreement evaluation,

radiomic features with ICC > 0.80 were selected for further

analysis. Next, the following three steps were carried out within

the training cohort to screen radiomic features related to

pathological status after receiving NAC therapy. Firstly,

univariate logistic regression analysis test was applied to select

features with p-value < 0.05 for the subsequent analysis.

Secondly, multivariate logistic regression analysis was utilized
Frontiers in Oncology 04
285
to choose features closely related to pathological status. Finally, a

subset of the most robust and non-redundant radiomic

signatures was retained using the least absolute shrinkage and

selection operator (LASSO) method.
Models building and predictive
performance assessment

All cases in the training set were used to train the predictive

model, while cases in the test set were utilized to independently

evaluate the model’s performance. Three different machine

learning classifiers, namely, k-nearest neighbors (KNN),

random forest (RF), and decision tree (DT), were developed

separately. All radiomics models were trained in the training

cohort, and then tested in the validation cohort. The predictive

performance of the developed models was assessed using

receiver operating characteristic (ROC) curve.
B

CD

A

FIGURE 1

The radiomics analysis workflow. (A) Tumor segmentation. (B) Feature extraction. (C) Feature selection. (D) Model building.
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Statistical analysis

Statistical analysis was performed using R-studio and

GraphPad Prism software. Radiomics parameters between pCR

group and non-pCR groups were tested by Mann–Whitney U

test. Statistical analysis was performed using SPSS software

(version 23.0, Chicago, IL, USA). In addition, two-sided p-

value below 0.05 was considered statistically significant.

Results

Patient demographics and pathological
outcomes

A total of 124 patients who met the inclusion and exclusion

criteria shown above were studied. The baseline demographic

characteristics are displayed in Table 1. There were 85 cases (24

patients with pCR and 61 with non-pCR) in the training group

and 39 cases (11 patients with pCR and 28 with non-pCR) in the

validation group. In univariate logistic regression analysis and

multivariate logistic regression analysis, three parameters,

namely, Ki-67, tumor grade, and TLG, were demonstrated to

be independent predictors of pCR by multivariate logistic

regression analysis (Supplementary Table 1).

The median follow-up duration was 14.7 months (range,

4.2–25.9 months). When the follow-up ended, one patient died

and seven patients had disease progression. pCR to NAC

treatment was observed in 35 patients, and the overall

pathologic response rate was 28.2%. Table 2 displays the

therapeutic effect to NAC. Representative PET/CT images of a

patient with pCR and a patient with non-pCR after NAC are

demonstrated in Supplementary Figure 1.
Intra- and inter-observer reproducibility
of feature extraction

The intra-observer ICC ranged from 0.802 to 0.923, and

inter-observer ICC ranged from 0.761 to 0.902, which

demonstrated that intra- and inter-observer reproducibility of

radiomics feature extraction was agreeable.
Radiomics signature screening

In the training cohort, a sum of 2,632 radiomics features were

extracted from each VOI (1,316 for CT, 1,316 for PET), including

(i) first-order feature, (ii) shape feature, (iii) gray-level co-

occurrence matrix (GLCM) feature, (iv) gray-level size zone

matrix (GLSZM) feature, (v) gray-level run length matrix

(GLRLM) feature, (vi) neighborhood gray tone difference matrix

(NGTDM) feature, and (vii) 14 gray-level dependence matrix

(GLDM) features. We finally screened out 2,162 features with 470
Frontiers in Oncology 05
286
features excluded due to relatively poor reproducibility (ICC

range: 0.76–0.79). Then, the optimized subsets of nine radiomics

features were selected based on the univariate logistic regression

analysis, the multivariate logistic regression analysis, and the

LASSO method. The heatmap of the model in the training and

validation samples is displayed in Figure 2.
Radiomics model building and evaluation

The predictive performance of radiomics models in the

training and validation samples is shown in Tables 3, 4, 5, and

corresponding ROCs of different models in the training and

validation cohorts are demonstrated in Figures 3 and 4.
RF model

The areas under the curve (AUCs) of the RF model in the

training set and validation set were 0.894 and 0.849, respectively.

The accuracy, precision, sensitivity, and specificity were 0.824,

0.946, 0.714, and 0.952 in the training set, and 0.805, 0.818,

0.818, and 0.789 in the validation set, respectively.
DT model

The AUCs of the RF model in the training set and validation

set were 0.824 and 0.819, respectively. The accuracy, precision,

sensitivity, and specificity were 0.802, 0.792, 0.857, and 0.738 in

the training set, and 0.780, 0.810, 0.773, and 0.789 in the

validation set, respectively.
KNN model

The AUCs of the KNN model in the training set and

validation set were 0.843 and 0.830, respectively. The accuracy,

precision, sensitivity, and specificity were 0.769, 0.818, 0.735,

and 0.810 in the training set, and 0.829, 0.857, 0.818, and 0.842

in the validation set, respectively.
Discussion

In the present study, we demonstrated the clinical usefulness

of radiomics features based on pretreatment 18F-FDG PET in

predicting pathologic response to NAC treatment in BC patients.

Three different machine learning classifiers, namely, KNN, RF,

and DT, were developed in order to obtain the best diagnostic

efficacy. In addition, glucose metabolic parameters and clinico-

pathological parameters were incorporated into the radiomics

model to optimize the predictive performance.
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Tumor metabolic heterogeneity assessment based on 18F-

FDG PET has been investigated previously (18). Regarding the

non-invasive assessment of NAC pathological response using

metabolic metrics derived from pretreatment 18F-FDG PET, in

particular, the predictive potential of the primary tumor’s

SUVmax was reported in various cancers. In a meta−analysis

for FDG PET/CT, the predictive value of SUVmax was reported

to have a pooled sensitivity of 0.847 and a pooled specificity of

0.661, which indicated that FDG PET/CT has reasonable

sensitivity in assessing therapeutic efficacy to NAC in BC,
TABLE 2 The results of pathological response of all patients.

Histopathologic response No. of patients (%)

Pathological complete response 35 (28.22%)

Minimal residual disease 17 (13.71%)

Gross residual disease 72 (58.06%)
TABLE 1 Demographic information and clinicopathological characteristics of selected patients with NSCLC.

Variable Training cohort (n = 85) Validation cohort (n = 39) p-value

Sex, n (%) 0.334

Female 83 (97.65) 39 (100%)

Male 2 (2.35%) 0 (00.00%)

Age (years) 28.00 (23.75, 39.00) 31 (25.75, 46.00)0.452

Tumor Histology, n (%) 0.199

Invasive ductal carcinoma 64 (75.29%) 25 (64.10%)

Invasive lobular carcinoma 21 (24.71%) 14 (35.90%)

Tumor Grade, n (%) 0.986

Moderately differentiated 32 (37.65%) 15 (38.46%)

Poorly differentiated 30 (35.29%) 14 (35.90%)

Well differentiated 23 (27.05%) 10 (25.64%)

Pathological T stage, n (%) 0.859

1 0 (00.00%) 0 (00.00%)

2 18 (21.18%) 10 (25.64%)

3 23 (27.06%) 10 (25.64%)

4 44 (51.76%) 19 (48.72%)

Pathological N stage, n (%) 0.030

2 42 (49.41%) 12 (30.77%)

3 23 (27.06%) 20 (51.28%)

4 0 (00.00%) 0 (00.00%)

Molecular subtype, n (%) 0.379

Luminal A 7 (8.24%) 3 (7.69%)

Luminal B 10 (11.76%) 9 (23.08%)

HER2 38 (44.71%) 13 (33.33%)

TNBC 30 (35.39%) 14 (35.90%)

ER (%)
Her-2 status, n (%)

76.00 (0.00, 90.00) 72.00 (5.00, 80.00) 0.348

Positive 40 (47.06%) 20 (51.28%) 0.662

Negative 45 (52.94%) 19 (48.72%)

PR (%) 14.00 (0.00, 75.00) 16.00 (5.00, 80.00) 0.552

Ki-67 (%) 20.00 (10.00, 50.00) 15.00 (5.00, 40.00) 0.249

CEA (ng/ml) 2.73(1.34, 5.20) 2.55 (1.34, 4.95) 0.496

CAI53 (ng/ml) 10.95 (7.42, 14.25) 12.10 (8.22, 16.65) 0.310

SUVmax 5.65 (2.96, 7.85) 5.40 (2.60, 7.79) 0.420

SUVmean 3.87 (3.36, 5.42) 3.79 (3.19, 5.04) 0.395

TLG 20.95 (9.03, 52.68) 22.01 (9.03, 58.75) 0.406
Continuous variables are expressed as median (IQR). SUVmax, maximum standardized uptake value; SUV mean, mean standardized uptake value; TLG, total lesion glycolysis; CEA,
carcinoembryonic antigen; CA153, carbohydrate antigen 153; ER, estrogen receptor; PR, progesterone; TNBC, triple-negative breast cancer; Her-2, human epidermal growth factor receptor
2; Ki-67, antigen Ki-67.
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which indicated that FDG PET/CT has reasonable sensitivity in

assessing therapeutic efficacy to NAC in BC; however, the

specificity is relatively low (19). However, champion et al.

demonstrated that SUVmax on baseline PET scan, interim

PET scan, and post-treatment PET scan did not statistically

differ between the pCR and non-pCR groups. Meanwhile, our

data provided concordant results to a previous study that

SUVmax did not appear to be a predictor of pCR to NAC

(20). On the basis of this fact, we guessed that the opposite

findings observed may be caused by the intrinsic property of

SUVmax as a PET parameter. SUVmax could be used to reflect

only the most aggressive part instead of the entire tumor

microenvironment. However, it is of vital significance to assess

the tumor microenvironment due to the fact that the

nonhomogeneous microenvironment perplexed the therapeutic

response. Additionally, the intrinsic property of BC patients with

relatively low FDG uptake at baseline or whose level of glucose

metabolism cannot be altered by the NAC is not suitable for

FDG PET-CT examination to evaluate the treatment effect. In

our study, three standard PET/CT parameters, namely,

SUVmax, SUVmean, and TLG, were analyzed; only baseline

TLG was demonstrated to be a predictor of pCR to NAC
Frontiers in Oncology 07
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treatment (p < 0.05), and was added to improve the radiomics

model’s diagnostic power.

The ability of radiomics features derived from baseline 18 F-

FDG PET to predict treatment response was recently reported in

several works (21–24). In a previous study, Antunovic et al.

developed a radiomics model by multiple logistic regression

analysis to investigate the feasibility of using PET-CT radiomics

analysis to assess the role of radiomics parameters in predicting

pCR to NAC in patients with BC (25). However, firstly, it was

carried out on a relatively small sample size (79 patients) and

only PET-derived radiomics signatures were extracted. Secondly,

the area under the curve value analysis for predicting therapeutic

effect displayed limited discrimination performances (only

ranging from 0.70 to 0.73), probably due to the small sample

size, which was further reduced due to the missing data and the

complete case approach used in the main analysis. Furthermore,

advanced radiomics features were not extracted for all patients

for technical reasons and there was a lack of validation set to

assess the models’ diagnostic efficacy. In contrast, the AUCs of

radiomics signatures ranged from 0.894 to 0.843 in the current

study, which might provide a higher diagnostic performance.

The current study used a relatively larger sample size, higher-

order features, and advanced radiomics analysis methods, as well

as high-dimensional radiomics signatures extracted up to 2,632.

Its related engineering features were crucial for high-

dimensional radiomics to avoid overfitting. Eventually, only

optimal parameters were chosen to set up a diagnostic model.

Overfitting is an inevitable issue that resulted from the high

dimensionality of the radiomic signatures; thus, the population

was randomly assigned in a 7:3 ratio to either the training cohort

or the validation cohort to alleviate this problem. A previous

study was designed to assess the clinical usefulness of textural

signatures for predicting pCR to NAC. They found that the early
TABLE 3 Evaluation of the RF model in the training and validation
samples.

Item Training Validation

Accuracy 0.824 0.805

Precision 0.946 0.818

AUC 0.894 0.849

Sensitivity 0.714 0.818

Specificity 0.952 0.789
FIGURE 2

Heatmap of the model in the training and validation samples. For both the training samples and the validation samples, the numbers on the x-
axis stand for different parameters; right to left represent Kurtosis, Gray-Level Variance, Gray-Level Non-Uniformity, Large Area Emphasis,
Coarseness, Long-Run Low Gray-Level Emphasis, Busyness, Joint Entropy, and Complexity.
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changes in the textural signatures based on 18F-FDG PET images

are predictive of pCR (26). The inconsistency between these

results and our own specifically lies in the study cohort and in

the approaches utilized for the analysis. Additionally, only SUV

histogram (skewness), NGLCM (entropy), and NGTDM

(coarseness) were available for textural analysis in the above

study. Neither D %MTV nor D %TLG was an independent

predictor of pCR in any group. It should be noted that the

HER2-positive group is more likely to have a pCR to NAC than

the HER2-negative group in our study, which agreed with

previous works. In the HER2-positive group, all patients

gained a greater benefit from trastuzumab. Baseline TLG

demonstrated a potential predictive ability in our research,

which is in line with the research results of Chen et al. They

reported that pretreatment TLG can differentiate pCR from non-

pCR to NAC in spite of the fact that the BC subtype was not

mentioned. TLG represents the overall glucose metabolism level

of tumor, which is related to the active level of tumor cell

proliferation (27). Although all the data came from BC patients,

there were still differences in the differentiation degree of tumor

cells. The higher the level of glucose metabolism, the more active

the proliferation of tumor cells, and the less the probability of

pCR. However, some studies obtained discrepant findings.

Lemarignier et al. confirmed that baseline TLG showed no

predictive value in pCR assessment in BC patients (28).

Discrepancies between studies may be due to the relatively

small sample size and the limited number of events (i.e., pCR).

Ki-67 is a nuclear protein related to cell division and

proliferation, which plays a key role in malignant tumor

occurrence and development. Most NAC drugs can inhibit

tumor cell proliferation and induce tumor cell apoptosis;

thereby, tumor cell proliferation slows down, and the
Frontiers in Oncology 08
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expression of Ki-67 decreases (29). Other investigators also

have confirmed the clinical usefulness of Ki-67 as a predictive

marker in the NAC response assessment, and they reported that

a high pretreatment Ki-67 value instead of a low one was

correlated with a higher pCR rate (30). Consistent with the

previous study, our data also demonstrated the role of

pretherapeutic Ki-67 as a predictive marker of pCR to NAC.

Currently, many different types of machine learning

approaches can be applied to radiomics analysis; in this work,

we constructed three multivariable classifiers, namely, KNN, DT,

and RF, using pretreatment radiomics features of the primary

tumor to predict pathological response to NAC, and we found

that the RF model demonstrated the highest diagnostic

performance (AUC of 0.894 vs. 0.843 vs. 0.824 in the training

cohort; AUC of 0.849 vs. 0.830 vs. 0.819 in the validation cohort).

The possible reasons are as follows: On the one hand, the RF

machine learning algorithm is an outcome-driven machine

learning approach and is composed of a set of decision trees,

each of which is trained with randomly selected training data,

and a random subset of radiomics signatures was applied to

make decisions. Therefore, the data randomness guarantees low

relevance and high diversity among the decision trees of the RF,

which, in turn, ensures high stability in dealing with data

disturbance and model generalizability (31). On the other

hand, the RF algorithm also promotes the derivation of the

prognostic factor. It is an inevitable truth that the number of

algorithm calculations has increased exponentially due to the

high-dimensional feature space. The RF machine learning

algorithm is capable of selecting discriminative features from

each cluster to build the radiomics model based on consensus

clustering. Thus, the overall performance of the RF algorithm is

better than other classifiers (32). Furthermore, no obvious

difference in AUC values of all models between the training

and the validation sets was observed; the possible reason might

be that disadvantages such as overfitting and unbalanced data

distribution are avoided in this study.

To summarize, our study still has some limitations. Firstly,

although PET/CT-based radiomics analysis demonstrated a

favorable performance in predicting the efficacy of NAC

therapies, controversy still exists in relation to the application

of PET/CT in clinical practice, mainly because of its high cost.

However, we believed that potential savings are also associated

with PET-CT scans as a result of avoiding additional imaging

examinations or invasive procedures and by helping clinicians

make the optimal treatment decisions. Secondly, although the

final results achieved are ideal, the study population was still

limited; a prospective study with a greater sample size should be

conducted to further demonstrate our results. Thirdly, all the

data were obtained from one single center; a multicenter trial

with a much larger study cohort deserves further investigation in

the near future. Lastly, tumor lesions were segmented using the

manual method; an automated approach can be used to provide

higher stability.
TABLE 5 Evaluation of the KNN in the training and validation
samples.

Item Training Validation

Accuracy 0.769 0.829

Precision 0.818 0.857

AUC 0.843 0.830

Sensitivity 0.735 0.818

Specificity 0.810 0.842
TABLE 4 Evaluation of the DT model in the training and validation
samples.

Item Training Validation

Accuracy 0.802 0.780

Precision 0.792 0.810

AUC 0.824 0.819

Sensitivity 0.857 0.773

Specificity 0.738 0.789
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FIGURE 4

ROC of the different models in the validation cohort.
FIGURE 3

ROC of the different models in the training cohort.
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Conclusion

In conclusion, we demonstrated that radiomics analysis based

on pretreatment 18F FDG PET/CT scans can predict treatment

response to NAC in BC. This approach shows great prospect for the

early assessment of therapeutic effect non-invasively and accurately,

which could potentially facilitate personalized precision medicine

and avoid unnecessary treatment.
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Glossary

18F-FDG 18F-fluorodeoxyglucose

PET/CT positron emission tomography

NAC neoadjuvant chemotherapy

LABC locally advanced breast cancer

VOI volume of interest

Pcr pathological complete response

AUC area under the curve

RF random forest

DT decision tree

KNN k-nearest neighbors

BC breast cancer

DFS disease-free survival

Her-2 human epidermal growth factor receptor 2

OS overall survival

SUV max maximum standardized uptake value

ICCs intra- and inter-class correlation coefficients

LASSO least absolute shrinkage and selection operator

ROC receiver operating characteristic

TLG total lesion glycolysis

GLCM gray-level co-occurrence matrix

GLSZM gray-level size zone matrix

GLRLM gray-level run length matrix

NGTDM neighborhood gray tone difference matrix

GLDM gray-level dependence matrix

GLNU gray-level non-uniformity

ER estrogen receptor

PR progesterone receptor

CEA carcinoembryonic antigen

CA153 carbohydrate antigen 153
Frontiers in Oncology
 frontiersin.org12
293

https://doi.org/10.3389/fonc.2022.849626
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Siuly Siuly,
Victoria University, Australia

REVIEWED BY

HyungJoon Cho,
Ulsan National Institute of Science and
Technology, South Korea
Ming Fan,
Hangzhou Dianzi University, China

*CORRESPONDENCE

Jiandong Yin
jiandongyin@sina.com

SPECIALTY SECTION

This article was submitted to
Breast Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 03 January 2022
ACCEPTED 27 October 2022

PUBLISHED 25 November 2022

CITATION

Feng S and Yin J (2022) Radiomics
of dynamic contrast-enhanced
magnetic resonance imaging
parametric maps and apparent
diffusion coefficient maps to predict
Ki-67 status in breast cancer.
Front. Oncol. 12:847880.
doi: 10.3389/fonc.2022.847880

COPYRIGHT

© 2022 Feng and Yin. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 25 November 2022

DOI 10.3389/fonc.2022.847880
Radiomics of dynamic contrast-
enhanced magnetic resonance
imaging parametric maps and
apparent diffusion coefficient
maps to predict Ki-67 status in
breast cancer

Shuqian Feng1,2 and Jiandong Yin1*

1Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning,
China, 2School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
Purpose: This study was aimed at evaluating whether a radiomics model based

on the entire tumor region from breast dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) parametric maps and apparent diffusion

coefficient (ADC) maps could indicate the Ki-67 status of patients with breast

cancer.

Materials and methods: This retrospective study enrolled 205 women with

breast cancer who underwent clinicopathological examination. Among them,

93 (45%) had a low Ki-67 amplification index (Ki-67 positivity< 14%), and 112

(55%) had a high Ki-67 amplification index (Ki-67 positivity ≥ 14%). Radiomics

features were extracted from three DCE-MRI parametric maps and ADC maps

calculated from two different b values of diffusion-weighted imaging

sequences. The patients were randomly divided into a training set (70% of

patients) and a validation set (30% of patients). After feature selection, we

trained six support vector machine classifiers by combining different parameter

maps and used 10-fold cross-validation to predict the expression level of Ki-67.

The performance of six classifiers was evaluated with receiver operating

characteristic (ROC) analysis, sensitivity, and specificity in both cohorts.

Results: Among the six classifiers constructed, a radiomics feature set

combining three DCE-MRI parametric maps and ADC maps yielded an area

under the ROC curve (AUC) of 0.839 (95% confidence interval [CI], 0.768

−0.895) within the training set and 0.795 (95% CI, 0.674−0.887) within the

independent validation set. Additionally, the AUC value, compared with that for
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a single parameter map, was moderately increased by combining features from

the three parametric maps.

Conclusions: Radiomics features derived from the DCE-MRI parametric maps

and ADC maps have the potential to serve as imaging biomarkers to determine

Ki-67 status in patients with breast cancer.
KEYWORDS

breast cancer, radiomics, dynamic contrast-enhanced magnetic resonance imaging,
apparent diffusion coefficient, Ki-67
Introduction

Breast cancer (BC) is the most prevalent malignant tumor

type threatening women’s health globally (1). According to an

immunohistochemistry (IHC) classification system, BC can be

divided into four subtypes, basal-like, HER2-enriched, and

luminal A and B subtypes, on the basis of the expression of

progesterone receptor (PR), estrogen receptor (ER), human

epidermal growth factor receptor 2 (HER2), and Ki-67 (2). Ki-

67 protein is a recognized marker of tumor proliferation and

invasiveness (3), as well as a recognized indicator of BC

prognosis (4). Ki-67 can be used as a molecular marker to

distinguish the molecular subtypes of luminal A and B (5). A

high expression level of Ki-67 is associated with poorer

prognosis (3, 6), greater risk of recurrence (7), and worse

survival outcomes (8). Hence, accurately identifying the status

of the Ki-67 index is crucial for the prognosis of BC.

Dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI) is useful for assessing tumor anatomical

information and angiogenesis (9). Radiomics involves high-

throughput extraction of many image-based features from

standard medical images and determining the potential links

between these features and pathophysiology (10, 11). Radiomics

analysis of features extracted from DCE-MRI images can be used

to distinguish the HER2 2+ status, predict lymphovascular

invasion, determine the status of lymph node metastasis, and

identify the degree of tumor malignancy (12–19). The apparent

diffusion coefficient (ADC), a quantitative parameter generated in

diffusion-weighted imaging (DWI), is the most used clinical

parameter reflecting the degree of tissue distribution according

to the diffusion of water molecules (20). Since ADC is influenced

by cell density and tissue structure, Choi (12) proposed that DCE-

MRI combined with DWI is helpful to evaluate the status of

lymphovascular invasion in patients with node-negative invasive

BC. In addition, ADC values have been shown to correlate with

the Ki-67 index (20, 21). Therefore, radiomics analysis based on

DCE parameters and ADCmight have the potential to predict Ki-

67 status and even improve predictive performance.
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A previous study has shown that the radiomics features

derived from DCE-MRI functional parameter maps achieved

the best results in identifying sentinel lymph node metastasis

status in patients with BC (22). Another study has predicted

the Ki-67 index and HER2 2+ status by using intratumoral and

peritumoral radiomics features based on six DCE-MRI

functional parameter maps (14). Both of these studies used

single-layer lesions and consequently might have overlooked

the correlations between layers. Jong et al. have investigated

the correlation between quantitative MR parameters and Ki-

67 expression status by analyzing DCE-MRI and DWI

sequences in ER-positive invasive BC (23). However, their

analysis of the interstitial signal enhancement ratio used only

univariate and multivariate analysis, without radiomics

analysis. To our knowledge, few studies have used a

combination of breast MRI functional parametric maps and

ADC maps in radiomics analysis. Moreover, in most prior

studies, region of interest (ROI) depiction has been performed

primarily on the slice images showing the largest tumor size

(24–26). In this study, radiomics features were extracted from

the entire tumor volume on the basis of three semi-

quantitative parametric maps and ADC maps, and the

predictive performance of the classification models based on

three-dimensional features in terms of Ki-67 expression status

was evaluated.

Therefore, the purpose of our study was to evaluate the

performance of a radiomics model based on the entire tumor

region from three DCE-MRI parametric maps and ADCmaps to

determine the status of Ki-67 in patients with BC.
Materials and methods

Study population

This research was approved by the ethics committee of our

institution. Given the retrospective nature of the study, the

requirements for informed consent were waived.
frontiersin.org
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Between December 2018 and September 2020, 366 patients

with pathologically confirmed primary BC who underwent

breast DCE-MRI at Shengjing Hospital were enrolled in the

study. Figure 1 shows the patient recruitment process for this

study. The inclusion criteria were as follows. All included

patients 1) underwent DWI-MRI, 2) had clear breast lesions

on magnetic resonance images, 3) had BC confirmed through

histologic examination, and 4) underwent IHC examination,

including the Ki-67 index. The exclusion criteria were as follows.

The excluded patients 1) underwent biopsy before MRI, 2) had

incomplete pathological data, or 3) had insufficient MRI quality

because of clear motion artifacts.

The final cohort consisted of 205 patients who were

randomly divided into a training set and a validation set, in

proportions of 70% and 30%, respectively. The training dataset

(n = 143) comprised 65 patients with low Ki-67 expression and

78 patients with high Ki-67 expression. The validation dataset

(n = 62) comprised 28 and 34 patients with low and high Ki-67

expression, respectively. The clinical characteristics of all

patients are described in Table 1, and the framework for the

radiomics workflow is shown in Figure 2.
Pathological assessment

Streptavidin peroxidase IHC was used to detect the

expression levels of ER, PR, HER2, and Ki-67 in each patient.

If at least 1% of the tumor nuclei were ER or PR positive, the ER

or PR status was determined to be positive (27). A Ki-67

proliferation index ≥14% was considered high, and a

value<14% was considered low (28). HER2 status was

considered positive when the HER2 staining intensity score

was 3+ and negative when the score was 0 or 1+. If the HER2

staining intensity score was 2+, and further fluorescence in situ
Frontiers in Oncology 03
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hybridization confirmed gene amplification, the result was

considered positive (29).
MR image acquisition

DCE-MRI was performed at 3.0 T with a Signa HDxt 3.0 T

MRI scanner (GE Healthcare Life Sciences, Chicago, IL, USA).

All patients were scanned in a prone position with a dedicated

eight-channel double-breast coil. Axial DWI sequence scanning

was performed before DCE-MRI acquisition. The acquisition

parameters were as follows: repetition time, 4,000 ms; flip angle,

90°; echo time, 83.30 ms; field of view, 340 × 340 mm2; matrix

size, 256 × 256; slice thickness, 4.50 mm; spacing between slices,

5.00 mm; and b values, 0 and 800 s/mm2. The ADC maps were

calculated from diffusion images with two b values.

Second, an axial fat-saturated T1-weighted pre-contrast scan

based on the VIBRANT-VX technique was acquired. After the

intravenous injection of a contrast agent (Magnevist, Bayer

Healthcare Pharmaceuticals, Berlin, Germany) at 4 ml/s with a

dose of 0.15 mmol per kg body weight, eight post-contrast scans

were acquired with the following parameters: repetition time, 4.14

ms; flip angle, 12°; echo time, 2.10 ms; slice thickness, 2.00 mm;

spacing between slices, 1.00 mm; and field of view, 340 × 340 mm2.

Finally, eight subtraction sequences were obtained through the

subtraction of each pre-contrast scan sequence from the eight

post-contrast scan sequences.
Tumor segmentation

Tumor segmentation must be completed before the

extraction of high-throughput quantitative features. We used

ITK-SNAP software to perform three-dimensional manual
FIGURE 1

Flowchart of the patient recruitment process in this study.
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segmentation (open-source software; www.itk-snap.org). Two

radiologists with 8 years (reader 1) and 10 years (reader 2) of

experience in breast MR imaging diagnosis completed the layer-

by-layer manual segmentation of tumor area in the MR images.

DCE-MRI images in all cases were segmented on the fourth

subtraction sequence, which is usually useful for visual

examination because it is usually the most enhanced among all

time series (30). For the ADC map, the tumor contour was

manually drawn along the boundary of the high signal area on

each transverse DWI slice (b value of 800 s/mm2) (21). After

manual sketching, the software automatically generated the

three-dimensional tumor volume model, which was finally

copied to the corresponding ADC maps.
Parametric map generation

Before the extraction of radiomics features, three functional

parameter maps and ADC maps were calculated pixel by pixel

according to the following formula.

Wash-in maps:

((SI1  – SI0) =SI0) � 100% (1)
Frontiers in Oncology 04
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Wash-out maps:

((SI1  – SI8) =SI1) � 100% (2)

Signal enhancement ratio (SER) maps:

((SI1  – SI0)=(SI8  – SI0)) � 100% (3)

ADC maps:

(InSIb0  – InSIb800)=(b – b0) (4)

where SI is the signal intensity of each pixel in the image, SI0
represents the value of the pixel in the pre-contrast image, SI1
and SI8 represent the pixel value in the first and eighth post-

contrast scans, and SIb0 and SIb800 represent the signal intensity

when the b value of the DWI sequence is 0 and 800 s/mm2,

respectively. Representative images of DCE-MRI parametric

maps and ADC maps are shown in Figure 3.
Radiomics feature extraction

Feature extraction was performed with an in-house texture

extraction platform developed with the Python (3.6.2) package
TABLE 1 Clinicopathological characteristics according to Ki-67 proliferation status.

Variables Total (n = 205) Low-Ki-67 (n = 93) High-Ki-67 (n = 112) p-Valuea

Age, mean ± SD, years 50.56 ± 9.7 49.9 ± 9.9 51.1 ± 9.6 0.394

Tumor size, mean ± SD, mm 27.60 ± 15.2 25.4 ± 15.5 29.4 ± 14.9 0.061

ER statusc <0.05b

Negative 35 (17.1%) 9 (9.7%) 26 (23.2%)

Positive 170 (82.9%) 84 (90.3%) 86 (76.8%)

PR statusc <0.05b

Negative 51 (24.9%) 11 (11.8%) 40 (64.3%)

Positive 154 (75.1%) 82 (88.2%) 72 (35.7%)

HER2 statusc <0.05b

Negative 141 (68.8%) 80 (86.0%) 61 (54.5%)

Positive 64 (31.2%) 13 (14.0%) 51 (45.5%)

Histological typed <0.05b

Invasive ductal carcinoma 191 (93.2%) 79 (84.9%) 112 (100%)

Other 14 (6.8%) 14 (15.1%) 0 (0.0%)

Histological graded <0.05b

I 13 (6.3%) 13 (14.0%) 0 (0.0%)

II 162 (79.0%) 70 (75.3%) 92 (82.1%)

III 30 (14.7%) 10 (10.7%) 20 (17.9%)

TIC typed 0.068

Plateau 51 (24.9%) 30 (32.3%) 21 (18.8%)

Wash-out 150 (73.2%) 62 (66.7%) 88 (78.6%)

Wash-in 4 (1.9%) 1 (1.0%) 3 (2.6%)
fron
SD, standard deviation; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; TIC, time-intensity curve.
ap-Value comparing low Ki-67 to high Ki-67.
bp< 0.05 is considered statistically significant.
cData were tested with the chi-square test.
dData were tested with Fisher’s exact test.
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PyRadiomics (31). A total of 946 radiomics features were extracted

from each map. These features included 86 original features

(consisting of five categories of features: first-order statistics,

gray-level co-occurrence matrix, gray-level run-length matrix,

gray-level size zone matrix, and gray-level dependence matrix),

172 Laplacian of Gaussian (sigma = 3.0, 5.0 mm) features, and 688

wavelet features (also composed of five categories of features). After

the addition of eight shape features from DCE-MRI, we ultimately

obtained 3,792 radiomics features from the SER maps, wash-out
Frontiers in Oncology 05
298
maps, wash-in maps, and ADC maps. The details of the extracted

features are shown in Supplementary Table 1.
Feature selection and radiomics
model construction

Prior to feature selection, we calculated the intra-class

correlation coefficients (ICCs) to evaluate the reproducibility
B

A

FIGURE 3

(A) Representative images of DCE-MRI parametric maps and ADC maps of low Ki-67 status. (B) Representative images of DCE-MRI parametric maps
and ADC maps of high Ki-67 status. DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; ADC, apparent diffusion coefficient.
FIGURE 2

Framework for the radiomics workflow.
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and stability of radiomics features extracted from segmented

images performed by two experienced radiologists. Features with

a good consistency (ICC > 0.8) were retained for further

radiomics analysis.

For feature selection, significant radiomics features with p<

0.05 between patients with high versus low Ki-67 expression

were first identified with the Mann–Whitney U-tests through a

backward selection approach. Second, the remaining features

were normalized separately with the Z-score to make the

dynamic ranges comparable. Subsequently, the least absolute

shrinkage and selection operator (LASSO) logistic regression

method, which is suitable for dimensionality reduction of high-

dimensional data, was used to select the radiomics features of the

training data. To avoid overfitting, the optimal value of the

LASSO regularization parameter lambda was determined

through 10-fold cross-validation. Finally, the most important

features obtained in LASSO selection were used to establish

support vector machine classifiers to predict the Ki-67

proliferation status in BC, wherein the kernel parameter was

set as a linear kernel, and the other parameters were set as default

values (32).

Feature selection and machine learning classifier

construction were executed in Python software (version 3.6.2,

Welcome to Python.org).
Statistical analysis

The statistical differences in age and tumor size between

groups with high and low Ki-67 expression were evaluated with

independent-samples t-tests. Differences in categorical variables

between the molecular subtype characteristics were evaluated

with chi-square tests. If the expected frequency of any cell in the

table was less than five, it was tested with Fisher’s exact test.

Receiver operating characteristic (ROC) curves were drawn with

the optimal threshold determined by the maximum Youden

index. The area under the ROC curve (AUC) and the

classification sensitivity and specificity in the training and

validation groups were calculated to predict the Ki-67 status.

The AUC between the two models in the validation set was

statistically compared using DeLong’s test. Statistical analysis

was performed in SPSS software (version 23.0, Chicago, IL,

USA). Professional statistical software MedCalc (version

20.0.3, https://www.medcalc.org/) was used to construct the

ROC curves.
Results

Patient characteristics

The statistical test results of the correlations between

molecular subtypes and pathologica l and cl in ica l
Frontiers in Oncology 06
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characteristics are listed in Table 1. We observed no significant

difference in mean age, mean maximum tumor diameter, or

dynamic enhancement time-intensity curve type between the

groups with high or low Ki-67 expression (p = 0.394, 0.061, and

0.068). However, we did observe significant differences in ER

status, PR status, HER2 status, pathologic type, and pathologic

grade (p< 0.05).
Radiomics model construction and
assessment of performance

Among the 3,792 radiomics features initially extracted, 2,622

(69.1%) had good interobserver consistency (ICCs > 0.8) and

were included in further analysis.

To perform Ki-67 status recognition, five, four, six, and one

features were selected from the wash-out, wash-in, SER, and

ADC maps, respectively, and 14 and 15 features were selected

from two combined parameter maps (DCE-MRI parameter

maps and DCE-MRI combined with ADC maps, respectively).

The details of the 15 features selected from the combined DCE-

MRI and ADC maps are shown in Table 2. The feature details

selected from other maps are shown in Supplementary Tables 2–

5. We then established six support vector machine classifiers to

predict Ki-67 status according to the final retained features. The

performance of the classifiers was evaluated on the basis of ROC

curves, and the results are presented in Figure 4. Classifiers

containing features extracted from a wash-out, wash-in, SER,

and ADCmaps were evaluated. After the addition of the features

of ADC maps, the performance of the model combined with the

three parameter maps improved, and the AUC value was 0.839

(95% CI, 0.768, 0.895) in the training set and 0.795 (95% CI,

0.674, 0.887) in the validation set (Table 3). In addition,

compared with that of the single parameter image, the

predictive performance of the support vector machine (SVM)

model in the training dataset was significantly improved by

combining the features of each map (i.e., wash-out, wash-in,

SER, and ADC maps) (p< 0.001; p = 0.001, 0.001, 0.002). The

performance of the combined model in the validation data set

was higher than that of the model based on the SER parameter

maps (p = 0.040; Table 4).
Discussion

In this study, we explored whether the radiomics features of

DCE-MRI parameter maps and ADC maps in patients with BC

could be used to predict the preoperative Ki-67 proliferation

index. The radiomics model constructed in this study performed

well in identifying the low and high expression status of Ki-67.

Many previous studies have described Ki-67 expression, on

the basis of IHC, as a prognostic and predictive indicator of BC.

Higher Ki-67 expression status is associated with poorer
frontiersin.org
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response to treatment and poorer prognosis (33). The Ki-67

index can also play a role in distinguishing molecular subtypes of

BC together with HER2 expression status (2). However,

pathological biopsy only requires sampling in a part of the

tumor tissue, so the Ki-67 proliferation index in the test

results may not reflect tumor heterogeneity. With the

development of imaging technology in recent years, imaging

can provide a holistic picture of the anatomy and function of the

tumor tissue. Therefore, imaging methods may be more

convenient and may even provide more biological information

for determining the expression status of Ki-67.
Frontiers in Oncology 07
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DCE-MRI is a highly sensitive method but has only

moderate specificity for the diagnosis of invasive BC (34). In

recent years, DWI with ADC maps has been increasingly used in

multiparameter imaging environments for BC examination

because it can be performed without a contrast agent (35–37).

DWI can quantitatively measure the Brownian motion of free

water in the tissue to provide functional information about the

tissue structure and does not require intravenous injection (38).

In addition, ADC has been found to increase the specificity of

breast tumor diagnosis and complement DCE-MRI in tumor

qualitative aspects (39, 40). In this study, we selected radiomics
BA

FIGURE 4

ROC curves of six classifiers for identification of Ki-67 status in each cohort. (A) ROC curves of classifiers for identification of Ki-67 status in the
training cohort. (B) ROC curves of classifiers for identification of Ki-67 status in the validation cohort. Fusion 1 represents the SVM model
established by combining radiomics features from three DCE-MRI parameter maps (SER, wash-in, and wash-out). Fusion 2 represents the SVM
model established by combining radiomics features from three DCE-MRI parameter maps and ADC maps. ROC, receiver operating
characteristic; SVM, support vector machine; SER, signal enhancement ratio.
TABLE 2 Description of the selected radiomics features from DCE-MRI combined with ADC maps.

Different map Radiomics feature Radiomics group Feature class filter

SER Dependence non-uniformity normalized Gldm Log-sigma-3.0 mm

SER Dependence variance Gldm Log-sigma-3.0 mm

SER Minimum First order Log-sigma-5.0 mm

SER Tenth percentile First order Wavelet-LLH

SER Run variance Glrlm Wavelet-LHL

SER Autocorrelation Glcm Wavelet-LHH

Wash-in Minimum First order Log-sigma-3.0 mm

Wash-in Large area high gray-level emphasis Glszm Log-sigma-5.0 mm

Wash-in range First order Wavelet-LHH

Wash-in Small dependence high gray-level emphasis Gldm Wavelet-LHH

Wash-in Large dependence low gray-level emphasis Gldm Wavelet-HHL

Wash-out Size zone non-uniformity normalized Glszm Log-sigma-3.0 mm

Wash-out Correlation Glcm Log-sigma-3.0 mm

Wash-out Joint energy Glcm Wavelet-LLL

ADC Gray-level non-uniformity Gldm Original
SER, signal enhancement ratio; ADC, apparent diffusion coefficient; Gldm, gray-level dependence matrix; Glrlm, gray-level run length matrix; Glcm, gray-level co-occurrence matrix;
Glszm, gray-level size zone matrix; LoG, Laplacian of Gaussian.
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features extracted from DCE-MRI parameter maps and ADC

maps and finally established six SVM classifier models. The ROC

curve showed that the AUC score of the model combined with

the parameter maps and ADC maps was higher than that of

other single-parameter models in the training set and validation

set. Therefore, the radiomics model including features of DCE-

MRI parameter maps and ADC maps could improve the

performance of Ki-67 expression status discrimination.

Radiomics, which provides potential biomarkers for clinical

results through extracting and analyzing image features, is a

relatively new technology (11). BC is highly heterogeneous.

Compared with traditional genomics and proteomics,

radiomics not only can non-invasively assess the tumor and its

microenvironment but also can predict the genetic heterogeneity

of the tumor (41). Herein, we used radiomics to quantitatively

extract features within tumors on the basis of DCE-MRI

parameters and ADC maps to reflect the heterogeneity of the
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internal tumor structure. A previous study has modeled

radiomics features extracted from T2-weighted and contrast-

enhanced T1-weighted images of BC and indicated that T2-

weighted classifiers were important predictors of Ki-67 status

(42). Li et al. (14) have combined peritumoral and intratumoral

features from DCE-MRI functional parameter maps to

determine Ki-67 status. Therefore, in this study, we established

a multiparameter model based on the radiomics features of

functional parametric maps and ADC maps. Our study achieved

better predictive performance than the above multiparameter

studies. Another multiparametric MRI study also using DWI

sequences has achieved good performance in predicting Ki-67

status (24). However, these prior studies have analyzed only the

largest tumor slices in two dimensions and therefore were

unlikely to fully assess the heterogeneity of BC. The radiomics

features that we extracted in this study were obtained from the

three-dimensional volume model of the tumor, taking into
TABLE 4 p-Values of DeLong’s test between SVM models.

Model Cohort ADC SER Wash-in Wash-out Fusion 1 Fusion 2

ADC Training / 0.204 0.892 0.507 0.027 0.002

Validation / 0.459 0.644 0.897 0.207 0.095

SER Training 0.204 / 0.167 0.035 0.099 0.001

Validation 0.459 / 0.784 0.399 0.242 0.114

Wash-in Training 0.892 0.167 / 0.581 0.006 0.001

Validation 0.644 0.784 / 0.615 0.377 0.219

Wash-out Training 0.507 0.035 0.581 / 0.001 <0.001

Validation 0.897 0.399 0.615 / 0.082 0.040

Fusion 1 Training 0.027 0.099 0.006 0.001 / 0.004

Validation 0.207 0.242 0.377 0.082 / 0.340

Fusion 2 Training 0.002 0.001 0.001 <0.001 0.004 /

Validation 0.095 0.114 0.219 0.040 0.340 /
fron
Fusion 1 represents the SVMmodel established by combining radiomics features from three DCE-MRI parameter maps (SER, wash-in, and wash-out). Fusion 2 represents the SVMmodel
established by combining radiomics features from three DCE-MRI parameter maps and ADC maps.
ADC, apparent diffusion coefficient; SER, signal enhancement ratio.
TABLE 3 Predictive performance of six models in the training and validation cohorts.

Model Training Validation

AUC (95% CI) SEN (95% CI) SPE (95% CI) AUC (95% CI) SEN (95% CI) SPE (95% CI)

ADC 0.711 (0.629–0.784) 0.680 (0.564–0.781) 0.723 (0.598–0.827) 0.676 (0.545–0.789) 0.677 (0.495–0.826) 0.643 (0.441–0.814)

SER 0.766 (0.688–0.833) 0.859 (0.762–0.927) 0.615 (0.486–0.733) 0.731 (0.603–0.836) 0.706 (0.525–0.849) 0.643 (0.441–0.814)

Wash-in 0.704 (0.622–0.777) 0.756 (0.646–0.847) 0.631 (0.502–0.747) 0.711 (0.629–0.819) 0.529 (0.351–0.702) 0.821 (0.631–0.939)

Wash-out 0.673 (0.590–0.749) 0.769 (0.660–0.857) 0.554 (0.425–0.677) 0.666 (0.535–0.781) 0.618 (0.436–0.778) 0.643 (0.441–0.814)

Fusion 1 0.804 (0.730–0.866) 0.769 (0.660–0.857) 0.739 (0.615–0.840) 0.770 (0.646–0.867) 0.941 (0.803–0.993) 0.536 (0.339–0.725)

Fusion 2 0.839 (0.768–0.895) 0.846 (0.747–0.918) 0.739 (0.615–0.840) 0.795 (0.674–0.887) 0.941 (0.803–0.993) 0.571 (0.372–0.755)
Fusion 1 represents the SVMmodel established by combining radiomics features from three DCE-MRI parameter maps (SER, wash-in, and wash-out). Fusion 2 represents the SVMmodel
established by combining radiomics features from three DCE-MRI parameter maps and ADC maps.
AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; CI, confidential interval; SER, signal enhancement ratio; ADC, apparent diffusion coefficient.
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account the interlayer correlation, and thus fully revealed the

BC heterogeneity.

The current study had several limitations. First, the

retrospective design of this study might have introduced

inherent variations and biases. One source of variation was the

changes in repetition time during DCE-MRI acquisition;

however, the difference in MR signal intensity was not the

principal factor in our study, because the radiomics features

were derived from three parametric maps reflecting the changes

in contrast medium concentration. Although the enhancement

ratio is a function of repetition time, these functions change

relatively slowly (43). Therefore, a well-designed prospective

study supporting the results of this study is necessary. Second,

this was an independent single-center study, and the number of

patients included was limited. Therefore, the model established

herein had several limitations, and datasets from other imaging

units might have different spatial resolutions. Consequently,

further research is required to verify the diagnostic

performance of our model in a large multi-center patient

sample. Finally, only semiquantitative parametric images were

analyzed in this study. The application value of quantitative

parametric images in radiomics will be further explored in

future studies.
Conclusion

In this study, our experimental results demonstrated that

radiomics analysis based on DCE-MRI parameter maps and

ADCmaps can feasibly be used to predict the Ki-67 status in BC.

Given that several different biomarkers must be integrated to

make clinical management decisions for patients, our proposed

model can be further extended in the future, such as by including

more scanning sequences and predicting more molecular

subtypes to support clinical decisions.
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