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Background: Invasive fungal infections (IFIs) are complications that lead to mortality

and morbidity in hematologic malignancies. The time of starting antifungal therapy is vital.

Preemptive antifungal therapy has appeared recently as a new policy for themanagement

of IFIs based on noninvasive ways in neutropenic patients.

Methods: We enrolled leukemia patients with neutropenia after chemotherapy in Imam

Khomeini Hospital Complex, Tehran, Iran. Patients who entered the neutropenic phase

were divided into two categories (empirical and preemptive) for receiving antifungal

agents. The patients were clinically examined in the preemptive group every day to find

IFIs. As soon as clinical evidence of IFIs was observed, antifungal was prescribed. The

empirical group patients received antifungals based on the ward protocol. Based on

the data in each group, the diagnostic and therapeutic results of cases are followed-up

to 3 months. To compare percentages between the two groups, the chi-squared test

was used. And to compare two means between the two groups, the independent t-test

was used. All the statistical analyses were done in the Statistical Package for the Social

Sciences (SPSS) version 24 software (IBM Corporation, Armonk, New York, USA).

Results: We assessed 132 leukemic patients with inclusion and exclusion criteria.

Eventually, 80 patients were enrolled. The mean age was 35.52 years. Demographics

data and distribution of leukemia type show no significant differences between the two

groups. Despite a higher percentage of IFIs discovered in the preemptive group than the

empirical group (25 vs. 18.75%, respectively), but data show no significant differences.

The average days of IFIs diagnosis since the beginning of neutropenia in the empirical

group were 9.5 days while in the preemptive group, the average days were 5.4 days

(p < 0.05). Totally, there were 15 patients with a proven IFI in each group (40% in the

empirical group and 60% in the preemptive group). Results significantly show an increase
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in surgical sinus debridement in the empirical groups (83.3%) vs. the preemptive groups

(55.5%), (p < 0.05). The mortality rate differed significantly among the two groups; it was

7.5% in the preemptive group and 25% in the empirical group (p < 0.05).

Conclusion: Daily oral and nasal cavities examination to find the symptoms of

IFIs and then start preemptive antifungal agents may be able to lead to accurate

diagnosis, earlier treatment, and decreasing sinus surgery debridement in leukemia

patients with neutropenia.

Keywords: invasive fungal infections, hematologic neoplasms, antifungal therapy, preemptive, empirical,

neutropenia, nasal, oral

INTRODUCTION

Invasive fungal infections (IFIs) are severe complications that
lead to mortality and morbidity in patients with an impaired
immune system, such as acute or chronic leukemia (1–3).
Nowadays, we are facing a general increase in IFIs (4, 5).
New chemotherapymedication causes longer neutropenia, which
raises immunocompromised patients. The diagnosis of IFIs in
the early stages is challenging and it is crucial for a better
prognosis of antifungal treatments (6–8). According to a previous
study, almost 33% of newly diagnosed acute myeloid leukemia
(AML) under chemotherapy has developed IFIs. A 30-day
mortality rate of IFIs among patients with AML in another
study was about 22.1% (7, 9). The remarkable point is that
cytotoxic chemotherapy as a treatment for leukemia causes
critical neutropenia (10–12). Studies have shown that prolonged
neutropenia is the most significant risk factor for getting IFIs
(13–16). Clinical manifestations of IFIs in immunocompromised
hosts can be atypical and silent; therefore, the diagnosis of fungal
infections is troublous (15–17). Some symptoms, such as fever,
facial pain, and headache are nonspecific (3, 18). IFIs in the nasal
cavity represent pallor and discoloration, ischemia, necrosis,
ulcer in the septum, or eschar in the early stages (18, 19). In
contrast, the air-crescent sign in CT scan emerges lately with
the existence of advanced IFI, which is not pleasing for early
recognition (6). Recent studies proved that the incidence of IFIs is
higher in patients with no empirical antifungal therapies (20–22).

Candida spp. are responsible for the most prevalent fungal
nosocomial infections (23–25). IFIs can affect a single organ or
spread across the body. Invasive candidiasis commonly affects
the bloodstream. The lungs and sinuses are the typical sites for
invasive aspergillosis (26–29).

There is an association between a long time and profound
neutropenia with impaired prognosis in patients undergoing
antifungal treatments (30, 31). The time of starting antifungal
therapy is vital in high-risk patients including chemotherapy
patients (32, 33). Based on previous studies, different centers
perform antifungal therapies in various ways: empirical,
preemptive, and targeted therapy (13, 34). Empirical antifungal
therapy is one of the most accepted ones for patients with febrile
neutropenia after 3–7 days of constant fever, despite broad-
spectrum antibiotics (13, 35). Considering clinical manifestation
and the risk of the patient for IFIs, it leads to initiating

antifungal (empirical) therapy, regardless of microbiological
therapy (36, 37).

Empirical antifungal therapy mostly causes overtreatment,
drug resistance, higher medical costs, and is not dedicated
(38, 39). Doubt about the advantages and disadvantages of
empirical antifungal therapy created the necessity for making
another strategy to help the patients (3, 40). Preemptive
antifungal therapy has appeared recently as a new policy
for the management of IFIs in neutropenic patients. This
method uses noninvasive ways, such as imaging (CT scan) or
serological tests (galactomannan testing), for starting antifungal
agents in suspected neutropenic patients in IFIs. However,
preemptive strategies may lead to the delayed beginning of
antifungal therapies, have no effect on higher mortality in
patients, and decrease the medication costs (41–43). A Chinese
survey comparing empirical therapy to preemptive therapy
demonstrated the same survival rate, but fewer changes for
preemptive patients (43). Thus, we designed this study to evaluate
the benefits of initiating preemptive antifungal therapy based on
physical examination of oral and nasal cavities for finding the
clinical features of IFIs as a complementary method in leukemic
patients with neutropenia.

PATIENTS AND METHODS

Study Population and Design
After evaluation of patients with acute leukemia, we enrolled
hospitalized patients in Imam Khomeini Hospital Complex,
Tehran, Iran from April 2018 to March 2020 who met the
inclusion criteria in addition to none of the exclusion criteria and
gave informed consent.

Inclusion Criteria
Diagnosis of acute leukemia, receiving chemotherapy, and
neutropenia defined as an absolute neutrophil count (ANC) of
< 500 cells/mm3 were assumed as inclusion criteria. Peripheral
blood smears of the leukemic patients were evaluated daily after
chemotherapy for defining ANC.

Exclusion Criteria
We considered exclusion criteria as follows: age < 14 years,
septic shock, diagnosis of hematologic malignancy except for
leukemia, history of prior invasive fungal infections, reluctance
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to participate in the project, and the impossibility of additional
diagnostic tests for possible or definitive invasive fungal infection.
Patients who entered the neutropenic phase were divided into
two categories to have antifungal treatment approaches.

Group 1
In the preemptive group, patients who entered the neutropenic
phase (ANC < 500 cells/mm3) following chemotherapy without
fever were daily examined to find a necrotic or ulcerative mucosal
lesion, black scars, acute localized pain, purple discoloration in
the nasal cavity, or similar lesions in the oral cavity, palate,
and pharynx. We composed a datasheet that contains nasal
and oral cavity examination features in the preemptive group.
The daily examination was performed by a trained healthcare
provider. The nasal speculum was used for nasal examination
and evaluation of the mouth was performed by abeslang and a
flashlight. As soon as discovering clinical evidence of invasive
fungal infection (without starting fever), antifungal therapy with
liposomal amphotericin B [3–5 mg/kg/daily/intravenous (IV)]
was added to the medication regimen of the patient. Moreover,
chest and paranasal CT scans, sinus endoscopy, and acquired
samples were checked for pathology and culture and fungal
smear. The serum galactomannan test was sent at the same time
as seeing lesions in daily assessments. The endpoint for serial
examination is recovery from neutropenia or the diagnosis of
invasive fungal infection.

Group 2
The empirical group includes patients who experienced fever in
their neutropenic period subsequent chemotherapy. According
to specified fever and neutropenia guidelines in the hematology
department of Imam Khomeini Hospital Complex, cases were
managed. Based on the mentioned protocol, after 3–5 days
of fever and neutropenia and no response to broad-spectrum
antibiotics—without severe sepsis or septic shock condition—
liposomal amphotericin B (3–5 mg/kg/daily/IV) was started and
diagnostic measurements, such as imaging and galactomannan
level of the serum, were done.

All the patients with neutropenia in both groups received
fluconazole 400 mg/PO/daily for antifungal prophylaxis. The
clinical indicators assessed in clinical examinations were
recorded in datasheets. The diagnosis of IFIs in this study was
based on the European Organization for Research and Treatment
of Cancer/Invasive Fungal Infections Cooperative Group
(EORTC)/National Institute of Allergy and Infectious Diseases
Mycoses Study Group (MSG) criteria (44). The definitions
determined 3 levels of probability to the diagnosis of invasive
fungal infection in immunocompromised patients including
“proven,” “probable,” and “possible” invasive fungal infection.

“Proven” invasive fungal infection is diagnosed only when the
presence of invasion by fungus can be identified by histological
diagnosis or culture of a specimen taken from the site of infection.
In contrast, “probable” and “possible” invasive fungal infections
consist of 3 factors. Probable IFI requires a host factor, a clinical
criterion, and mycological evidence. Patients with a host factor
and a clinical criterion but without mycological evidence are
considered as possible IFI (44, 45). The diagnosis of proven cases

in this study was based on histopathological evidence or tissue
fungal culture.

Finally, based on the data in each group, the diagnostic
and therapeutic results of proven and probable IFI cases were
followed and recorded until 3 months. To compare percentages
between the two groups, the chi-squared test was used and for
comparing two means between the two groups, the independent
t-test was used. All the statistical analyses were done in the
Statistical Package for the Social Sciences (SPSS) version 24
software (IBM Corporation, Armonk, New York, USA).

RESULTS

In this study, we assessed 132 leukemic patients referring
to Imam Khomeini Hospital Complex in Tehran, Iran. They
suffered from neutropenia after chemotherapy with inclusion
and exclusion criteria. Eventually, 80 patients were enrolled. The
empirical (control) group included 40 patients that developed a
fever after chemotherapy. They were treated by antibiotic, if the
treatment did not stop fever; patients were immediately given
antifungal therapy by an empirical method. The preemptive
(case) group consisted of 40 patients that underwent daily clinical
nasal and oral examination.

Among 80 patients, the age range of cases was between
15 and 59 years and the average of all was 35.52 years, with
10.25 years SD. The type of leukemia is shown in Table 1. The
chi-squared test showed that there is no significant association
between type of malignancy and the treatment method (p >

0.05). Demographics data and leukemia type distribution show
no significant differences between the two groups.

Incidence of Invasive Fungal Infections
According to the EORTC/MSG criteria for the classification of
IFIs (44), results are shown in Table 2 divided by probable and
proven cases in each group. The diagnosis of proven cases was
based on histopathological evidence or tissue fungal culture.
12/15 (80%) cases were diagnosed based on histopathological
evidence and 3/15 (20%) cases were diagnosed based on tissue
fungal cultures as proven cases.

The average days of diagnosis of IFIs since the beginning of
neutropenia in the empirical group were 9.5 days (with 2.01
days SD) while in preemptive patients, mean days of diagnosis
were 5.4 days with 1.86 days SD and the difference in averages
was statistically significant. The independent t-test showed a
significant difference between the two means (p < 0.05).

Based on the results, nasal cavity symptoms were the
dominant site (88.8%) of IFIs in this study, while 11.11% of
patients had the symptoms of fungal infection in the oral cavity
(change the color of the palate).

In total, out of 15 proven invasive fungal infections diagnosed
in the two groups, 8 proven invasive fungal infections were
mucormycosis and 7 proven invasive fungal infections were
aspergillosis, while pathogen prevalence of IFIs is near the same
in the two groups (Table 2). In each group, two patients had
positive serum galactomannan levels (Table 3).

There were 15 patients with a proven IFI and 6 (40%)
patients related to the empirical group and 9 (60%) patients
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TABLE 1 | Distribution of empirical and preemptive therapy in 80 leukemic patients.

Type of malignancy, N (%) Empirical Preemptive Total, N (%)

AMLa 29 (36.25%) 30 (37.50%) 59 (73.75%)

ALLb 11 (13.75%) 10 (12.50%) 21 (26.25%)

Total (%) 40 (50.00%) 40 (50.00%) 80 (100.00%)

aAML, acute myeloid leukemia; bALL, acute lymphoblastic leukemia.

TABLE 2 | Frequency of proven/probable fungal infections with regard to type of therapy.

Empirical Preemptive Total (%)

Probable IFIs positive, N (%) 9 (11.25%) 11 (13.75%)

IFIs negative, N (%) 31 (38.75%) 29 (36.25%)

Proven IFIs positive, N (%) 6 (7.50%) Mucormycosis 3 (20.00%) 9 (11.25%) Mucormycosis 5 (33.33%)

Aspergillosis 3 (20.00%) Aspergillosis 4 (26.67%)

IFIs negative, N (%) 34 (42.50%) 31 (38.75%)

Total (%) 40 (50.00%) 40 (50.00%) 80 (100%)

related to the preemptive group. In the course of the disease,
5 (83.33%) patients in the empirical group needed surgical
sinus debridement. In contrast, among 9 preemptive patients, 5
(55.56%) patients needed debridement and 4 (44.44%) patients
with IFIs did not need debridement.

In terms of the need for recurrent sinus surgery debridement,
83.3% of patients in the empirical group needed repetition, while
this rate was 55.5% in the preemptive group. The chi-squared
test significantly showed the increasing necessity of surgical sinus
debridement of IFIs site in the empirical group vs. the preemptive
group (p < 0.05).

The chi-squared test showed that all-cause mortality rate
differed significantly among the two groups: lower mortality rate
in the preemptive group against the empirical group. In the
empirical group, 10 (25%) patients and in the preemptive group,
3 (7.5%) patients died in 3 months follow-up (p < 0.05).

DISCUSSION

Invasive fungal infection is one of the serious etiologies of
chemotherapy-induced neutropenia (14, 45). As a common
approach, empirical therapy has been used in treating IFI patients
for years, but administering empirical antifungal agents may have
certain problems, such as overtreatment or higher expenses and
due to lack of trustworthy data, the efficiency of this method is
still debatable (16, 38, 46).

With low specificity of clinical symptoms (e.g., fever,
nodules, cough, hemoptysis, erythema, and maculopapular
eruptions) and radiologic diagnostic tests, it has always been
challenging to diagnose IFI in the early stages, but nowadays
because of new diagnostic tools being employed for early
identification of IFI, including the G-test, GM test, chest CT,
and PCR, it is possible to define more exact starting points for
antifungal treatment (4, 17, 18).

Studies comparing empirical vs. preemptive antifungal
therapy in adult populations use different criteria including

overall mortality, IFI-related mortality, percentage of patients
with the final diagnosis of IFI, percentage of patients receiving
antifungal therapy, and the number of days of antifungal
treatment (19). To the best of our knowledge, this study is
the first randomized controlled trial that recruits daily clinical
nasal and oral examination before the manifestation of fever, as
the inclusion criteria in the preemptive group and comparing
with the empirical group. Patients with stem cell transplant and
hematological disorders including neutropenic leukemia tend
to have abrupt fatal courses of Mucor spp. or Aspergillus spp.
sinusitis with a high mortality rate (47). Chen CY et al. reported
19 of 46 enrolled patients with invasive fungal sinusitis (IFS)
died within 6 weeks indicating poor prognosis, especially in
patients with prolonged neutropenia status in their study (ANC
less than 500 cells/mm3 for more than 10 days) (48). During
the daily nasal and oral examination, any symptom of nasal
discharge, stuffiness, epistaxis, periorbital swelling, and maxillary
tenderness as nonspecified and nose ulceration, eschar of the
nasal mucosa, black necrotic lesions, and perforation of the hard
palate as a more specific manifestation of IFS can lead to an
early-stage diagnosis and antifungal therapy (47, 49, 50).

In this study, although numerically, the detection
rate of fungal infections was higher in the preemptive
group; this method could not significantly increase
the diagnostic rate of invasive fungal infection
in the preemptive group, which was 25% in the
preemptive group vs. 18.75% in the empirical
group (p > 0.05).

Lower rates of surgical sinus debridement in the preemptive
group compared to the empirical group were needed. Surgical
sinus debridement was done in 5/9 (55.56%) cases in the
preemptive group and 5/6 (83.33%) cases in the empirical
group (p < 0.05). On the other hand, the mortality rate
differed significantly among the 2 groups with a noticeable
reduction of mortality rate in the preemptive group (p
< 0.05).
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TABLE 3 | Results of galactomannan test with regard to type of therapy.

Galactomannan Test, N (%) Empirical N (%) Preemptive N (%) Total (%)

Mucormycosis Positive 0 (0.00%) Mucormycosis Positive 0 (0.00%) 0 (0.00%)

Negative 3 (21.43%) Negative 5 (35.71%) 8 (57.14%)

Aspergillosis Positive 2 (14.29%) Aspergillosis Positive 2 (14.29%) 4 (28.58%)

Negative 1 (7.14%) Negative 1 (7.14%) 2 (14.28%)

Total (%) 6 (42.86%) 8 (57.14%) 14 (100%)

As mentioned in this study, the preemptive method that we
devised was based on diagnosing IFI in neutropenic patients
prior to the onset of fever, which differed from other studies that
defined preemptive antifungal therapy as a strategy initiated after
at least 4 days of refractory fever (38, 51, 52). This study shows
a significant decrease in the average days of diagnosis of IFIs in
the preemptive group (5.4 ± 1.86 days) vs. the empirical group
(9.5 ± 2.01 days) that can indicate more efficiency of this study
design to define preemptive therapy method in comparison with
other studies (38, 56).

The mean age of patients was 35.52 years in our randomized
controlled trial; As reported by Carol A Kauffman, these range of
ages indulge more in social interactions and have more exposure
to fungal and bacterial infections, so we can observe a higher
incidence of histoplasmosis, aspergillosis, and cryptococcosis
in these patients more than others (53). As reported in this
study, the distribution of mucormycosis and aspergillosis in our
population of interest with an age range of 35.52 years, with
10.25 years SD, was 8/15 (53.3%) and 7/15 (46.6%), respectively;
that was in accordance to the prevalence of mentioned fungal
infections reported by Njunda et al. (54) and Dhooria et al. (55)
in their studied population.

Costs associated with antifungal therapy as an important
reason for implementing preemptive antifungal therapy were
indicated in a previous study by Cordonnier et al. (56) to lower
the expenses of patients by 35% using the preemptive method.
Although, they stated an incidence rate of IFI of 3/143 (9%)
patients in the preemptive group vs. 4/150 (3%) patients in the
empirical group that was in accordance with our IFI incidence
rate. Ko et al. (35) also indicated the cost-effectiveness of a
diagnostic-driven (preemptive) approach as a novel method to
treat patients of hematological malignancies with neutropenia
following chemotherapy and hematopoietic stem cell transplant
(HCST) recipients with severe graft vs. host disease (GVHD).
They also stated that choosing the preemptive or empirical
therapy should be individualized according to the hospital
and patient factors (e.g., feasibility, the turnaround time of
diagnostics, local epidemiology, and risk of IFI). They suggested
using preemptive strategy in the patients with low risk of IFI
due to epidemiological factors or diagnostic tools and empirical
strategy in high-risk patients or patients with severe illness.

According to the systematic review published in 2015,
including 9 studies comparing preemptive vs. empirical
antifungal therapy, it states that the medical expenses of
leukemic neutropenia patients infected with IFI received
preemptive antifungal strategy have shown significantly lower
antifungal exposure and less clinical expenses than patients in

the empirical group without increasing both the overall and
IFI-related mortality rate (57). In another retrospective study,
to evaluate preemptive antifungal strategy, 348 neutropenia
episodes in 234 patients were reviewed. The main elements of
preemptive therapy included a weekly chest CT scan and GM
test twice a week. Patients were under prophylactic therapy with
fluconazole 400mg and antifungal therapy started at the stage of
prognosis of IFI. Chest CT scans in a 10-day interval in 81% of
cases diagnosed 109 patients with IFI. Forty-nine patients passed
away before day 100 and 2 IFI cases were found after their death
that was not diagnosed in preemptive antifungal strategy.

As reported in studies and protocols, in the majority of
cases, it takes 3–7 days of persistent fever to start antifungal
therapy in empirical method and obviously, there is a high risk
of disseminated infection, but in the preemptive approach with
our novel study design, we can observe a significant decrease
in IFI-related and overall mortality (13, 35, 57). This study
shares the same results on the early-stage diagnosis of IFI but
additionally, despite many previous studies, we can observe a
decrease in mortality rate in the preemptive group compared to
the empirical group.

This randomized study revealed that preemptive antifungal
treatment guided by daily nasal and oral examination before
the manifestation of fever in addition to imaging findings and
the GM test was able to significantly decrease the mortality rate
in the preemptive group with decreasing the need for surgical
debridement in leukemia patients with neutropenia.

CONCLUSION

Daily oral and nasal cavities examination to find the features of
IFIs and then start preemptive antifungal agents may be able
to lead to accurate diagnosis, earlier treatment, decreasing sinus
surgery debridement, and even mortality in leukemia patients
with neutropenia.
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Background: Hepatic alveolar echinococcosis (AE) is a zoonotic parasitic disease.

There are more than 16,000 new cases each year, approximately 60 million people are

threatened, and the annual direct economic loss is RMB 3 billion. The prevalence of

AE in some areas of the Qinghai–Tibet Plateau is as high as 6.0%. Radical resection,

including anatomic and non-anatomic hepatectomy, for advanced AE can significantly

prolong the survival time of patients. However, there is no literature compared the

efficacy of anatomic and non-anatomic hepatectomy. Therefore, by comparing various

clinical evaluation indices between anatomic and non-anatomic hepatectomy, this study

explored the short-term and long-term efficacy of these two surgical methods for AE.

Methods: The clinical data of patients with AE who underwent radical hepatectomy

at Qinghai Provincial People’s Hospital from January 2015 to January 2021 were

retrospectively analyzed. The patients were divided into two groups by surgical method,

that were, non-anatomic hepatectomy group and anatomic hepatectomy group. We

compared these two groups focusing on basic preoperative data, such as age, sex,

lesion size, and liver function parameters; main intraoperative evaluation indices, such

as operation time, intraoperative porta hepatis occlusion time, intraoperative blood

loss, and blood transfusion; and postoperative recovery evaluation indicators, such as

postoperative liver function, incidence of surgical complications, and AE recurrence.

Results: A total of 240 patients were enrolled in this study, including 123

in anatomic hepatectomy group and 117 in non-anatomic hepatectomy group.

There were no significant differences (P > 0.05) between baseline characteristics.

Anatomic hepatectomy group was advantageous than non-anatomic hepatectomy

group regarding intraoperative blood loss (P < 0.001), blood transfusion (P < 0.001),
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and porta hepatis occlusion time (P < 0.001). There were statistically significant

differences in postoperative liver function (aspartate aminotransferase: P< 0.001; alanine

aminotransferase: P< 0.001), surgical complications (P< 0.001), and AE recurrence rate

(P = 0.003). The median survival of patients in the anatomic hepatectomy group was 66

months, compared to 65 months in the non-anatomic hepatectomy group (χ2
= 4.662,

P = 0.031).

Conclusions: Anatomic hepatectomy was not only safe for AE but also showed better

short-term and long-term superiority than non-anatomic hepatectomy.

Keywords: hepatic alveolar echinococcosis, non-anatomic, anatomic, hepatectomy, efficacy

INTRODUCTION

Hepatic alveolar echinococcosis (AE) is a zoonotic parasitic
disease caused by the larvae of Echinococcus multilocularis that
seriously endangers human health (1–3). It’s treatments mainly
include radical resection and medication (4, 5). Medication
is mainly used for early-stage AE, while radical resection is
the first choice for progressive cases (6–8). The best treatment
strategy is combination of surgical and postsurgical medication
therapy. However, in patients whose conventional resection
is not possible, other curative therapeutic options includes
ex vivo liver resection associated with autotransplantation
and liver transplantation (9). Because AE lesions are most
frequently located in the right liver lobe, especially in
advanced cases the major bile ducts and vessels have been
invaded, major hepatic surgery is often required (10). Palliative
operations have been shown to be a cause of recurrence
without improving patient survival and is not recommended
nowadays (11, 12).

Hepatic AE shows a similar pattern to malignancies in terms
of radiologic and clinical features. For this reason, oncological
surgical principles should be applied during the resection
of hepatic AE. Studies have shown that based on adequate
preoperative evaluation of the feasibility, and knowledge about
the intraoperative techniques such as hepatic blood flow control,
liver anatomy, and portal vein and biliary reconstruction, radical
surgical resection can improve the quality of life and extend the
survival time of the patients (13). Both anatomic hepatectomy
and non-anatomic hepatectomy are radical surgical resections.
However, other studies have shown that anatomic hepatectomy
for AE has the advantages of less intraoperative bleeding, low
incidence of postoperative complications, and rapid recovery
(14). Our clinical study on anatomic hepatectomy for AE found
that it has the advantages of less liver function injury, low
incidence of complications, and short postoperative hospital
stay (15). However, due to the shortage of early-stage cases
and short follow-up times, we mainly evaluated the short-term
efficacy of anatomic hepatectomy for AE. To further study,
we retrospectively analyzed the clinical data of 240 patients
with AE who underwent hepatectomy in Qinghai Provincial
People’s Hospital from January 2015 to January 2021, to explore
the effect of surgical methods in the long term in patients
with HAE.

METHODS

Basic Patient Information
The clinical data of 513 patients with hepatic AE who underwent
hepatectomy in Qinghai Provincial People’s Hospital from
January 2015 to January 2021 were retrospectively analyzed.
Inclusion criteria: (1) Pathological diagnosed with AE; (2)
Disease stages were I, II, or III according to the World Health
Organization Informal Working Group on Echinococcosis
(WHO-IWGE) PNM classification (16); (3) Without previous
surgical history; (4) There was no cirrhosis, and the patient’s liver
function was graded as A or B before operation according to
Child-Pugh classification. For the patients whose liver function
was grade B, reevaluation was performed after inteventions, and
if it was grade A then, they were included in the study; (5) Open
hepatectomies were performed. Exclusion criteria: (1) The porta
hepatis and retrohepatic inferior vena cava were severely invaded
and required revascularization or ex vivo liver resection; (2) The
surgery was palliative.

Altogether 240 patients which met above criteria were
enrolled. The patients were divided into non-anatomic
hepatectomy group and the anatomic hepatectomy group
according to distinct surgical methods. This study was approved
by the hospital ethics committee.

Preoperative Preparation
After admission to the hospital, 240 patients underwent contrast-
enhanced computed tomography and angiography (CTA) of
abdomen; enzyme-linked immunosorbent assay (Diagnostic Kit
for IgG Antibody to Hydatid, ELISA brand is HAI TAI and
from Zhuhai special economic zone haitai biopharmaceutical Co.
LTD) for the hydatid; and eight tests for infection (Including
HBsAg, HBsAb, HBeAg, HBeAb, HBcAb, HCV-Ab, HIV-Ag/Ab,
and TPAb). Metastasis of AE to the brain, lung, and other
organs was excluded before surgery based on relevant imaging
examinations. The liver function, residual liver volume, and the
relationships between the lesion and the blood vessels and bile
ducts were evaluated.

There were 7 patients with jaundice in this study, including 3
patients in the anatomic hepatectomy group with total bilirubin
levels ranging from 54.7 to 116.4umol/L. 4 patients in the
non-anatomic hepatectomy group with total bilirubin levels
ranging from 44.07-154.8umol/L. However, the preoperative
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FIGURE 1 | The case is a 32-year-old female patient who was hospitalized due to the chief complaint of “intermittent right upper abdominal distension, pain and

discomfort for more than 4 years”. (a–d) Preoperative abdominal CT of patients showed that there was a lesions of echinococcosis in the liver with the size of about

12.0 × 7.0cm in S2-4 segments. (e–h) The intraoperative anatomy of the first hepatic portal and pathologic specimens. (i) Abdominal CT showed that there was

residual liver compensatory and hyperplasia, but there was no recurrence of echinococcosis.

Child-Pugh grading of the above cases was grade B, and 3 patients
underwent ultrasound-guided percutaneous liver puncture and
bile duct drainage before surgery. The remaining 4 patients were
treated with echinococcosis necrotic cavity puncture drainage
after percutaneous liver puncture biliary drainage failed because
intrahepatic bile duct dilation was not obvious. All 7 patients
were treated with hepatoprotective medicine, and the liver
reserve function was evaluated again after the total bilirubin level
returned to normal, and the Child-pugh grade of all patients
was A.

Surgical Methods and Indications
Anatomic hepatectomy: After the patient was successfully
anesthetized, an inverted “L”-shaped incision was made in the
upper abdomen, and the abdomen was examined layer by layer
to detect whether there was metastasis of AE in the abdominal
cavity. The first porta hepatis and second porta hepatis were
routinely dissected and hung with ribbons to cut off the ligaments
around the liver. When the resection range was large, a liver sling
was placed behind the liver and in front of the vena cava. During
the surgery, the central venous pressure was kept at 3–5 cmH2O.

The blood flow into and out of the liver was selectively blocked
according to the scope of resection. The range of liver ischemia
was observed, and a precut line was drawn along the ischemic
line and the boundary of the lesion. R0 resection was performed
when the resection margin was >1.0 cm from the lesion, and R1
resection was performed along the edge of the lesion to cut it. The
liver parenchyma was transected with a water jet or ultrasonic
scalpel. A duct with a diameter of≤0.1 cmwas cauterized with an
electrotome, and an intrahepatic duct with a diameter of>0.2 cm
was sutured and repaired with 5-0 Prolene. The cutting surface
of the liver was sutured to stop the bleeding, a drainage tube
was placed in the abdominal cavity, and the abdomen was closed
(Figure 1).

The indications for anatomic hepatectomy were as follows:
Anatomic hepatectomy should be preferred if AE lesions are at a
certain distance from the porta hepatis and retrohepatic inferior
vena cava or if it would not be difficult to dissect the first porta
hepatis and second porta hepatis.

Non-anatomic hepatectomy: After successful general
anesthesia, an inverted “L”-shaped incision was made, and the
abdominal cavity was explored layer by layer. The ligaments
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FIGURE 2 | The case is a 22-year-old male patient who was hospitalized due to the chief complaint of “liver space-occupying lesions found in physical examination

for more than 1 year”. (a–d) Preoperative abdominal CT and abdominal MRI of patient showed that there was a lesions of echinococcosis in the liver with the size of

about 8.0 out.0cm in S5-6 segments. (e–h) The Intraoperative resection and postoperative pathological specimens. (i) The abdominal CT showed that there was

residual liver compensatory and hyperplasia, but there was no recurrence of echinococcosis.

around the liver were dissociated according to the scope of
the resection, and the precut line was marked according to the
size and location of the lesions. The resection margins (R0,
R1) were defined as above. The routine Pringle maneuver was
used to block the first porta hepatis, and the liver parenchyma
was transected layer by layer along the precut line. The duct
structure with a diameter of >0.2 cm was ligated with silk thread
or sutured and repaired with Prolene. Smaller blood vessels
and bile ducts were cauterized with an electrotome. The cutting
surface of the liver was treated with gauze dipped in hot saline
for hemostasis. After confirming no active bleeding, a drainage
tube was placed in the abdominal cavity, and the abdomen was
closed (Figure 2).

The indications for non-anatomic hepatectomy were as
follows: For the surgical safety of the patient, non-anatomic
hepatectomy was selected if it would be difficult to dissect
the first and second porta hepatis or the AE lesions were
closely associated with important ducts inside and outside
the liver.

Postoperative Management of Patients
and the Administration of Albendazole
Patients in both groups were given an intravenous analgesia
pump combined with subcutaneous injection of analgesics
after surgery. The postoperative fluid volume was kept within
2,000–2,500ml. The patients drank water after waking up from
anesthesia and were encouraged to get out of bed as soon as
possible. During the postoperative hospitalization, the patient
did not take albendazole because the liver function was still
recovering. Albendazole was prescribed for discharged patients
in strict accordance with WHO guidelines for the diagnosis and
treatment of echinococcosis (16).

Follow-Up After Discharge
The patient was re-examined every 6 months in the first 2
years after discharge and every 12 months thereafter. The
follow-up examinations mainly included ELISA for the hydatid,
liver and kidney function tests, abdominal color ultrasound or
abdominal CT (CT of the whole abdomen every 12 months).
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AE recurrence was diagnosed if imaging examination revealed
new AE lesions in the liver and an ELISA for the hydatid
was positive. AE recurrence was diagnosed the same way as
the initial AE was, dividing it into resection margin recurrence
and distant intrahepatic recurrence according to the recurrence
site. Resection margin recurrence referred to recurrence when
the edge of the new lesion was within 2 cm of the remaining
cutting surface, and the distant intrahepatic recurrence referred
to recurrence when the edge of the new lesion was >2 cm from
the remaining cutting surface.

The treatments of AE recurrence, including drugs,
reoperation, and comprehensive treatment, were based on
the WHO guidelines for the diagnosis and treatment of

TABLE 1 | Comparison of baseline data between the two groups.

Index Groups t/χ2/Z P

Anatomic

hepatectomy

Non-anatomic

hepatectomy

Age (years) 33.93 ± 16.21 34.49 ± 12.85 −0.298 0.766

Lesion size

(centimeter)

11.86 ± 3.42 11.71 ± 3.74 0.339 0.735

Alanine

aminotransferase

before surgery (U/L)

28.33 ± 14.39 30.32 ± 15.28 −1.035 0.302

Aspartate

aminotransferase

before surgery (U/L)

32.31 ± 10.63 32.78 ± 14.47 −0.285 0.776

Number of hydatids 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) −0.164 0.870

Child–Pugh score 5.00 (5.00, 6.00) 5.00 (5.00, 6.00) −0.071 0.944

Sex

Male 53 55 0.372 0.542

Female 70 62

Ethnicity

Han 7 6 1.147 0.563

Tibetan 115 108

Hui 1 3

Hepatitis B

Yes 30 31 0.140 0.708

No 93 86

Lesion location

left lobe 34 27 0.814 0.666

right lobe 77 76

middle lobe 12 14

Surgical method

Segmental

hepatectomy

69 58 3.430 0.180

Hemihepatectomy 42 30

Extended

hemihepatectomy

12 29

Age, hydatid size, alanine aminotransferase before surgery, aspartate aminotransferase

before surgery comparison was performed using two independent samples t test. Numbe

of hydatids and Child-pugh score were compared using the rank-sum test of two

independent samples (Mann-Whitney U test). Sex and hepatitis B were compared by

chi-squared test with four-fold tables. The R×C chi-square test was used to compare

ethnicity, Lesion location and surgical method.

echinococcosis (16). The treatment plan was chosen according
to the lesion and the condition of the patient. The long-term
efficacy of the patient’s treatment was determined by follow-up,
including over the telephone and face to face. The time between
the date of surgery and the first recurrence diagnosis was defined
as disease-free survival (DFS).

Statistical Methods
SPSS 22.0 software was used for data analysis. The non-normal
measurement data are represented by median and quartiles
[M(Q1, Q3)], and they were compared between groups by the
rank-sum test. Count data were analyzed by the chi-squared test
with four-fold tables or the R × C chi-squared test. Repeated
measurements were used to compare the trend of indicators
at different time points between the two groups. The Kaplan-
Meier survival curves were plotted, and the differences in survival
curves were analyzed by the log-rank test. P < 0.05 indicates that
a difference was statistically significant.

RESULTS

Baseline Data
A total of 240 eligible patients with AE were enrolled, of
whom 108 were males and 132 were females, with an average
age of 34.20 ± 14.64 years (range: 5–79 years). Most (92.9%,
223/240) of the patients were Tibetans. Among the 240 patients,
123 underwent anatomic hepatectomy and 117 non-anatomic
hepatectomy. There were no significant differences in age, sex,
ethnicity, hydatid size or number, or liver function indices before
the surgery between the two groups (Table 1).

TABLE 2 | Comparison of intraoperative and postoperative data between the two

groups.

Indices Groups t/χ2/Z P

Anatomic

hepatectomy

Non-anatomic

hepatectomy

Occlusion time

(minutes)

27.36 ± 11.30 48.38 ± 20.24 −9.869 <0.001

Intraoperative bleeding

(milliliter)

300.00

(200.00, 600.00)

600.00

(400.00, 1,000.00)

−6.221 <0.001

Intraoperative blood

transfusion (milliliter)

0.00

(0.00, 770.00)

600.00

(0.00, 1,200.00)

−3.196 <0.001

Duration of surgery

(hours)

6.24 ± 0.86 6.34 ± 0.91 −0.877 0.381

Complication

Yes 65 104 37.394 <0.001

No 58 13

Recurrence

R0 5 19 9.875 0.003

sR1 118 98

Occlusion time and Duration of Surgery were compared using two independent sample

T-tests. Two independent sample rank sum tests (Mann-Whitney U test) were used in

the comparison of intraoperative bleeding and Intraoperative blood transfusion. The chi-

squared test with four-fold tables was adopted for comparison between complication

and recurrence.
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TABLE 3 | Comparison of liver function indices between the two groups at different times before and after surgery.

Indices Time Sum F P

Before surgery 1 day after surgery 3 days after surgery 5 days after surgery

ALT (U/L)

Anatomic hepatectomy 28.33 ± 14.39 327.02 ± 169.10 190.52 ± 77.81 98.35 ± 52.08 161.06 ± 147.82 274.307 <0.001

Non-anatomic hepatectomy 30.32 ± 15.28 439.46 ± 280.63 236.32 ± 135.86 115.64 ± 64.27 205.43 ± 221.12 182.380 <0.001

Sum 29.30 ± 14.83 381.84 ± 236.63 212.85 ± 112.14 106.78 ± 58.86 182.69 ± 188.39 411.767* <0.001*

t −1.035 −3.736 −3.183 −2.283 17.022* 10.475# <0.001#

P 0.302 <0.001 0.002 0.023 <0.001*

AST (U/L)

Anatomic hepatectomy 32.31 ± 10.63 347.67 ± 173.31 100.91 ± 60.75 47.50 ± 16.96 132.10 ± 157.01 335.436 <0.001

Non-anatomic hepatectomy 32.78 ± 14.47 438.70 ± 255.10 127.46 ± 52.49 59.16 ± 32.61 164.77 ± 208.66 249.69 <0.001

Sum 32.54 ± 12.62 392.05 ± 221.35 113.85 ± 58.29 53.19 ± 26.40 148.01 ± 184.61 554.871* <0.001*

t −0.285 −3.217 −3.615 −3.448 16.747* 8.170# 0.003#

P 0.776 0.002 <0.001 0.001 <0.001*

*indicates the F-statistic and P-value of the main effect; # indicates the F-statistic and P-value of the interaction. Two independent sample t-test was used to compare ALT and AST

between different groups at the same time, and one-way repeated measurement analysis of variance was used to compare the changes of ALT and AST between the same group at

different times.

FIGURE 3 | Interactive profile of time factor and grouping factor.

Comparison of Intraoperative and
Postoperative Indices
The comparison of the intraoperative and postoperative
data of the two groups showed that the time of porta
hepatis occlusion, intraoperative bleeding, intraoperative blood
transfusion, complication rate, and AE recurrence rate in the
anatomic hepatectomy group were significantly better than those
in the non-anatomic hepatectomy group. The duration of surgery
was not different. The results of the surgical margins showed that
the recurrence rate of R0 margins was significantly lower than
that of R1 margins (χ2

= 175.135, P < 0.001, Table 2).

Comparison of Liver Function Indices at
Different Times
Repeated-measures analysis of variance of alanine
aminotransferase (ALT) and aspartate aminotransferase

FIGURE 4 | Interactive profile of time factor and grouping factor.

(AST) of the two groups at different times showed that there
were significant differences in ALT before and after surgery
in the whole sample (F = 411.767, P < 0.001) and in each
group (anatomic hepatectomy group: F = 274.307, P < 0.001;
non-anatomic hepatectomy group: F = 182.380, P < 0.001).
The trend of ALT in the two groups was the same: ALT was the
lowest before surgery, peaked on the first day after surgery, and
decreased gradually on the third and fifth days after surgery. The
concentration of ALT in the anatomic hepatectomy group was
significantly lower than that in the non-anatomic hepatectomy
group (F = 17.022, P < 0.001). There was no significant
difference in ALT between the two groups before surgery, but it
was significantly lower in the anatomic hepatectomy group at
all other time points. There was an interaction effect between
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FIGURE 5 | Comparison of survival curves between the two groups with

different surgical methods.

FIGURE 6 | Cumulative survival curve of hydatid patients.

ALT expression time and surgical method (F = 10.475, P <

0.001). The highest ALT expression was 1 day after surgery in
the non-anatomic hepatectomy group, and the lowest was before
surgery in the anatomic hepatectomy group. The changes in AST
concentration in both groups were the same as those of ALT
(Table 3 and Figures 3, 4).

Comparison of Survival Time Between the
Two Groups
The survival analysis of the two groups showed that 118
cases were censored in the anatomic hepatectomy group, for
a censoring rate of 95.9%, and 99 cases in the non-anatomic
hepatectomy group, for a censoring rate of 84.6%. The median
survival time of patients in the anatomic hepatectomy group
was 66 months, compared to 65 months in the non-anatomic
hepatectomy group (χ2

= 4.662, P = 0.03, Figure 5). From
the survival curve in Figure 3, the prognosis of patients in the

FIGURE 7 | Survival curve of patients with different surgical margins after

anatomical hepatectomy.

FIGURE 8 | Survival curve of patients with different surgical margins after

non-anatomical hepatectomy.

anatomic hepatectomy group was better than that in the non-
anatomic hepatectomy group. The survival analysis of all patients
showed that the median survival time of patients was 67.12
months, as shown in Figure 6.

Survival Time Analysis of Different Margins
in the Anatomic and Non-anatomic Groups
The survival analysis of patients with different margins in the
anatomic hepatectomy group showed that 118 patients with R0
margin were censored, for a censoring rate of 99.2%, and no
patient was censored with an R1 margin. The median survival
time of patients with R0 margins was 66 months and R1 margins
65 months (χ2

= 1.561, P = 0.212, Figure 7). The survival
analysis of patients with different margins in the non-anatomic
hepatectomy group showed that 98 patients with R0 margin were
censored, for a censoring rate of 95.1%, and no patient was
censored with R1 margins. There was no significant difference
in the survival time between these two sub-groups (χ2

= 0.947, P
= 0.330, Figure 8).
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DISCUSSION

Hepatic AE is called “hydatid cancer” due to its special
biological characteristics (17, 18). Radical resection of lesions
is an effective treatment for advanced hepatic AE (19, 20).
Anatomic hepatectomy is not only the basic method of
precision liver surgery but also the ideal method of liver
tumor resection (21, 22). Studies in China (23, 24) have
shown that anatomic hepatectomy is safe and reliable
for hepatic AE, with the advantages of fewer surgical
complications and rapid recovery. The cited studies have mainly
evaluated the short-term efficacy of anatomic hepatectomy
for hepatic AE, with a postoperative follow-up time <1
year. Therefore, in this study, 240 patients with hepatic
AE after hepatectomy were followed up for a long time,
and the follow-up data were statistically processed to better
evaluate the long-term efficacy of anatomic hepatectomy
for hepatic AE.

This study mainly focused on the following three results.
First, the short-term efficacy of anatomic hepatectomy was
significantly better than that of non-anatomic hepatectomy in
terms of rapid recovery of liver function and a low incidence
of complications. Anatomic hepatectomy can best maintain the
integrity of the residual liver structure and function by precise
intraoperative methods, selective hepatic blood flow occlusion,
and low central venous pressure, and these measures can
effectively control intraoperative blood loss, since intraoperative
blood loss and blood transfusion are closely correlated with
poor outcomes (25). At the same time, selective hepatic blood
flow occlusion can effectively reduce the ischemia–reperfusion
injury of residual liver tissue (26–29). However, the focus
of this clinical study was the long-term efficacy of anatomic
hepatectomy for hepatic AE. Second, there was no difference
in the overall survival time between the anatomic and non-
anatomic hepatectomy groups, but the DFS time of patients
in the anatomic hepatectomy group was significantly longer
than that in the non-anatomic hepatectomy group. Similar
results have been reported in studies of the prognosis of
liver cancer (30, 31). Studies abroad have shown that radical
resection for hepatic AE can significantly prolong the DFS
of patients (6, 7). Studies in China (32, 33) have shown
that some patients with hepatic AE have a high recurrence
rate even after radical resection of lesions and regular oral
administration of anti-echinococcosis drugs after operation.
The main reason may be related to the range of surgical
resection. Wen et al. (34) showed that the main factor for
hepatic AE recurrence was the control of surgical margins.
Shabunin et al. (35) reported more than 2 cm of that normal
liver tissue around the lesion should be removed during radical
resection for AE in order to reduce the postoperative recurrence
rate. For this reason, the academic community in China has
reached a consensus that during the thorough removal of
echinococcosis lesions, the normal liver tissue more than 1 cm
away from the lesion edge should be removed, aiming to
eliminate the “infiltration zone” with active hyperplasia around
lesions and reduce postoperative recurrence (36, 37). The
infiltration zone is the location of actively proliferating cells,

which is rich in microvessels and mainly includes the portal
vein and hepatic artery. AE lesions are constantly infiltrating
and growing into lesion microenvironment, which concept was
firstly established by Dr. Aini et al. (38–40). This study found
that the infiltration zone had not only active hyperplasia but
also microvascular invasion of AE, which is similar to the
microvascular invasion in the tissues adjacent to liver cancer.
Microvascular invasion is closely related to the prognosis of
liver cells (41, 42), but whether microvascular invasion of AE
is related to postoperative recurrence is not known. Finally, in
clinical practice, we often encounter irregular AE lesions, or
lesions adjacent to the porta hepatis or retrohepatic inferior
vena cava. In such cases, sufficient margin width (>1 cm)
cannot be achieved, and only complete resection of the lesions
and negative margins can be achieved. However, a recent
research that studied AE lesion microenvironment proposed that
different lesion categories had different infiltrative boundary,
thus, tailored resection margin was strongly recommended (40).
Therefore, any resection margin that do not consider lesion
heterogeneity would not be appropriative in the era of precision
management. These shortcomings may explain the high
recurrence rate of patients in the non-anatomic hepatectomy
group. Joliat also showed that when radical resection for AE
was performed, the recurrence rate of patients with positive
margins confirmed by postoperative pathology was as high as
41% at 7 years, even with the postoperative adjuvant albendazole
treatment (43).

CONCLUSION

In conclusion, for hepatic AE, anatomic hepatectomy can achieve
good long-term efficacy only on the premise of ensuring a large
enough resection range. In addition to comparing the efficacy of
the two surgical methods, this study examined the factors related
to postoperative recurrence of hepatic AE, and we will continue
to study this topic.
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Moderate-To-Severe COVID-19: An
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Azucena Bautista Hernández 4, Lucio García-Fraile 4, Ana Barrios Blandino 4,
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Background: The use of IL-6 blockers in COVID-19 hospitalized patients has been

associated with a reduction in mortality compared to standard care. However, many

uncertainties remain pertaining to optimal intervention time, administration schedule, and

predictors of response. To date, data on the use of subcutaneous sarilumab is limited

and no randomized trial results are available.

Methods: Open label randomized controlled trial at a single center in Spain. We included

adult patients admitted with microbiology documented COVID-19 infection, imaging

confirmed pneumonia, fever and/or laboratory evidence of inflammatory phenotype,

and no need for invasive ventilation. Participants were randomly assigned to receive

sarilumab, a single 400mg dose in two 200mg subcutaneous injections, added to

standard care or standard care, in a 2:1 proportion. Primary endpoints included 30-day

mortality, mean change in clinical status at day 7 scored in a 7-category ordinal scale

ranging from death (category 1) to discharge (category 7), and duration of hospitalization.

The primary efficacy analysis was conducted on the intention-to-treat population.

Results: A total of 30 patients underwent randomization: 20 to sarilumab and 10 to

standard care. Most patients were male (20/30, 67%) with a median (interquartile range)

age of 61.5 years (56–72). At day 30, 2/20 (10%) patients died in the sarilumab arm vs.

none (0/10) in standard care (Log HR 15.11, SE 22.64; p= 0.54). At day 7, no significant

differences were observed in the median change in clinical status (2 [0–3]) vs. 3 [0–3],

p = 0.32). Median time to discharge (days) was similar (7 [6–11] vs. 6 [4–12]; HR 0.65,
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SE 0.26; p = 0.27). No significant differences were detected in the rate of progression

to invasive and noninvasive mechanical ventilation.

Conclusions and Relevance: Our pragmatic pilot study has failed to demonstrate

the benefit of adding subcutaneous sarilumab to standard care for mortality by 30 days,

functional status at day 7, or hospital stay. Findings herein do not exclude a potential

effect of sarilumab in severe COVID-19 but adequately powered blinded randomized

phase III trials are warranted to assess the impact of the subcutaneous route and a more

selected target population.

Trial Registration: www.ClinicalTrials.gov, Identifier: NCT04357808.

Keywords: COVID-19, sarilumab, subcutaneous route, IL-6, IL-6 receptor inhibitors, IL-6 blockade, randomized

controlled trial, subcutaneous

INTRODUCTION

Approaching the second year after WHO declared COVID-
19 as a pandemic, many uncertainties persisted about the
disease course, prognosis, and treatment. Vaccination has
emerged as the real hope for the global threat, but global herd
immunity will take months or even years to be reached (1).
Therefore, thousands of patients will still require supportive and
pharmacological treatment.

During the early days of the pandemic, the rapid spread of
the SARS-CoV-2 coronavirus posed unprecedented challenges
for health services to properly manage COVID-19 severe and
critical manifestations affecting a wide population in a short
period of time. Given the ineffective antiviral therapy on
hospitalized patients (2), huge efforts were directed to abrogate
the hyperinflammatory status that complicates the clinical course
and eventually leads to death (3). Off-label use of plenty of
immunomodulatory drugs emerged, targeting cytokines involved
in COVID-19 acute respiratory distress syndrome (ARDS),
where high IL-6 levels have a prominent role (4). Tocilizumab
(TCZ), an IL-6 receptor (R) inhibitor, was the first anti-cytokine
agent tested in the pandemic (5–7), based on the pathogenic
role of IL-6 as a driver of hyperinflammation (4, 8) and high
IL-6 levels as predictors of poor outcomes (9–11). Consistent
with those results, an observational study conducted in our
hospital during the first outbreak in Spain demonstrated that
early IL-6 blockade with TCZ was associated with improvement
of oxygenation and reduced the death rate in patients with IL-
6>30 pg/ml, as this was the best predictor of invasive mechanical
ventilation (IMV) (12). In those early days, intravenous IL-6R
inhibitors began to be tested in several trials; however, no data
on subcutaneous formulations were available.

Sarilumab (SAR) is a human monoclonal antibody that binds
membrane-bound and soluble IL-6 receptors to inhibit IL-6
signaling, licensed in a subcutaneous route administration for the
treatment of Rheumatoid Arthritis (13). At a moment where the
health system was overrun, especially emergency and intensive
care unit (ICU) facilities, with real concern about TCZ shortages,
we conceived that subcutaneous administration of SAR could
facilitate the administration of an IL-6 inhibitor in all settings,
including wards and overloaded emergency rooms. Additionally,

the safety and maximum pharmacodynamic effects of a single
200mg dose of subcutaneous SAR are known through the results
of two open randomized controlled trials (RCT) (14). Data were
similar to those obtained with single doses of 4 and 8 mg/kg
intravenous TCZ, with a longer effect of TCZ in the second week.
Our hypothesis was that the use of 2 subcutaneous SAR injections
and early intervention (window of opportunity) could prevent
higher oxygenation requirements through non-invasive (NI) and
invasive mechanical ventilation (IMV) and reduce death rate.
Thus, we proposed an open pilot pragmatic RCT to evaluate the
efficacy and safety of a single 400mg subcutaneous dose of SAR,
in patients with moderate to early severe COVID-19, compared
to standard care (SC).

METHODS

Design
SARCOVID is an investigator-initiated open-label phase II RCT,
conducted from April 13 (first patient enrolment) to December
4 (last patient’s last visit), 2020, at Hospital Universitario La
Princesa (HUP) during the first and second outbreak in Madrid,
Spain. This design was a counterproposal from the Spanish
Agency for Medicines and Health products (AEMPS) to our
urgent proposal of an exploratory propensity score-matched
observational study. The trial was approved by the AEMPS and
the Research Ethics Committee of the HUP on April 9, 2020
(Reference number 4078) and was conducted in accordance
with the principles of the Declaration of Helsinki and the
GoodClinical Practice guidelines of the International Conference
on Harmonization.

The timeline of recruitment is illustrated in
Supplementary Figure 1. Enrolment abruptly dropped
following the decrease of COVID-19 incidence in Madrid. A
formal amendment was submitted to the HUP Ethics Committee
on May 7, 2020, for the inclusion of a positive serologic test
(IgM/IgA by ELISA) as diagnostic confirmation of COVID-19
infection in the absence of a positive reverse-transcriptase–PCR
(RT-PCR) assay for SARS-CoV2 in a respiratory tract specimen.
After concomitant approval of the AEMPS, trial recruitment
remained open until completion. A full version of the protocol
and amendment, which includes the statistical plan, has been
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published elsewhere (15). This study followed the Consolidated
Standards of Reporting Trials (CONSORT) reporting guideline
(See Supplementary Material).

Study Population
Patients ≥18 and <80 years attending the emergency room
of HUP in need for hospitalization or those in hospital
wards were eligible if they had confirmed pneumonia on
chest imaging and a documented diagnosis of COVID-19 by
RT-PCR assay or, in its absence, case definition of COVID-
19 pneumonia as per local protocol and a positive IgM/IgA
serologic ELISA test. For recruitment, at least 2 of the following
additional criteria needed to be fulfilled: Fever ≥ 37.8◦C; IL-
6 in serum ≥ 25 pg/mL or PCR > 5mg / dL; lymphocytes
<600/mm3; ferritin > 300 µg /L doubling in 24 h; ferritin >

600 µg /L in the first determination; and LDH > 250 or D-
dimer > 1mg / L. Exclusion criteria included requirements
of IMV at inclusion; AST / ALT values more than 5-folds
the upper normal limit; absolute neutrophil count <500/
mm3; absolute platelet count <50,000/ mm3; superimposed
infection by pathogens other than COVID-19; complicated
diverticulitis or intestinal perforation; immunosuppressive anti-
rejection therapy; pregnancy or lactation; previous treatment
with TCZ or SAR; contraindication to SAR or excipients; and
comorbidities that can likely lead to an unfavorable result.

Randomization and Treatments
A total of 30 patients were randomly allocated in a 2:1 ratio to the
intervention group, SAR (400mg single dose in 2 subcutaneous
injections 200mg each in pre-filled syringe) plus SC, or current
SC. Central telephone randomization was performed by the
Clinical Research and Clinical Trials Unit (CRCTU) at the
HUP using the program www.randomization.com with a 2:1
proportion and 5 blocks of 6 subjects. After checking that
all entry criteria were met, the CRCTU communicated the
assigned treatment to the recruiting investigator, who reported
the correct allocation in the electronic clinical record (ECR).
Patients in both arms received drugs, including corticosteroids,
or full supportive care according to the best SC updated in the
local protocol for COVID-19. Patients in the SC were given
the option to receive intravenous TCZ after randomization if
they worsened at the investigator’s discretion, as this agent had
become the SC in our center when the protocol was designed
(12). Other immunomodulators or investigational drugs in trials
were prohibited.

Outcomes
The primary endpoints were mortality by 30 days, mean change
in functional status at day 7 on a 7-category ordinal scale
as recommended by the WHO R&D Blueprint Group (16)
(1. death; 2. hospitalized, requiring ECMO, IMV, or both; 3.
hospitalized, requiring high-flow oxygen therapy, NIMV, or both;
4. hospitalized, requiring supplementary oxygen; 5. hospitalized,
not requiring supplementary oxygen but in need of ongoing
medical care; 6. hospitalized, not requiring ongoing medical
care; and 7. not hospitalized), and time to discharge from
randomization. Secondary outcomes included time to become

afebrile during 48 h without antipyretics, mean change in 7-
category ordinal scale at day 14, time to NIMV and IMV, time
to oxygen supply independence, and adverse events (AE). As no
events occurred in SC, the outcomes time to NIMV and IMV
were changed to progression to NIMV and IMV.

As this trial has been included in a recent prospective meta-
analysis of IL-6 inhibitors in hospitalized COVID-19 patients
(17), mortality by 90 days and serious infections by 90 days were
also assessed, although these outcomes were not included in the
original protocol.

Procedures
This trial was intended to be carried out pragmatically according
to the usual clinical practice in Spain during the first pandemic
wave, avoiding any additional workload in treating physicians
who assessed each patient several times a day. The study
calendar and procedures are detailed in the protocol. Briefly,
vital signs, targeted physical examination, supplementary oxygen
requirements, and resting oxygen saturation were recorded daily
and registered at admission and subsequent study visits at days
0, 1, 2, 5, 7, and 14 after randomization, and at discharge day.
Efficacy assessments included an evaluation of clinical status by
a 7-category ordinal scale at days 0 (randomization), 7, and 14
(through a phone call if the patient had been discharged).

Laboratory testing was performed locally according to clinical
practice at established study visits when the patient continued to
be at the hospital. IL-6 serum levels were determined at baseline,
day 5, and on patients still admitted at day 14. Serum IL-6 was
quantified in duplicate with the Human IL-6 Quantikine high-
sensitivity ELISA from R&D Systems Europe Ltd (Abingdon,
United Kingdom), following the manufacturer’s instructions.

On day 30 after randomization and days 10–15 after discharge,
the patient appraisal was performed through a phone call by
a member of the research team. Screening for tuberculosis,
Hepatitis B Virus, and HIV was also done on day 0, and
safety and concomitant medication assessments were performed
daily until discharge. Although not included in the protocol, a
review of the ECR, including microbiological isolations and drug
prescriptions, both in hospital and primary care settings, was
done to assess mortality and infections by 90 days. Patients with
no recorded data for this timeframe were interviewed through a
phone call by the principal investigator.

All patient data were anonymized and recorded into a
local database.

Data Quality Monitoring
Data quality on-site monitoring was performed by a dedicated
staff of the CRCTU at the HUP, independent of the investigators’
team, with 100% source data verification for all critical data
points. All severe AE (SAE) was reviewed and evaluated by a
qualified pharmacovigilance expert of the CRCTU, independent
of the investigators’ team.

Statistical Analysis
A formal calculation of the sample size was not performed, since
the study was designed as a pragmatic proof of concept study
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with a drug that had not been previously evaluated in COVID-
19. Regulatory authorities (AEMPS) estimated that 30 patients
(20 SAR: 10 control) might be sufficient for an initial evaluation
of the study objectives.

Qualitative variables were described using a calculation of the
proportions and due to the low number of patients in the SC
group, the two-sided Fisher’s exact test was used to compare
categorical variables. Quantitative variables were represented
as median and IQR and, considering the sample size, Mann–
Whitney U test was used to analyze significant differences.
Statistical significance was considered if p < 0.05.

The primary efficacy analysis was conducted on the intention-
to-treat (ITT) population. To estimate the intervention effect
size, hazard ratio (HR) was estimated when it was feasible. In
these cases, follow-up was censored to 30 days, which was the
longest duration of hospitalization since randomization. For the
total length of hospital stay, follow-up was censored to 33 days.
For HR estimation, dead patients were assigned 30- or 33-day
follow-ups, respectively.

As three patients received TCZ in the SC group, sensitivity
analyses for primary and secondary outcomes were performed
excluding those patients.

To provide a more accurate assessment of our results,
avoiding biases, we performed a multivariable linear regression
using generalized linear models (glm command of Stata) with
the primary outcome change in clinical status on the 7-
category ordinal scale at day 7 as the dependent variable,
and several independent variables that could be confounding
factors (age, gender, baseline category in the ordinal scale, time
from symptoms onset, comorbidities, cumulative glucocorticoid
use . . . among others). Since there were 30 cases, we first
tested the independent variables one by one, and then with
those with a better performance we fitted the best model
with 3 independent variables, namely, gender, cumulative
glucocorticoid dose between baseline and day 7, and the
allocated treatments.

Statistical analyses were performed using Stata 14.0 for
Windows (Stata Corp LP, College Station, TX, United States).

FIGURE 1 | Flow chart of the study.
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RESULTS

Patients
Between April 13 and October 30, 2020, 30 of 65 screened
patients underwent 2:1 randomization: 20 to SAR (400mg single
dose, subcutaneous) + SC and 10 to SC. The last patient’s
last visit was on December 4, 2020. All patients received the
allocated intervention and completed the follow-up, except 1
in the SC arm, who was discharged alive on day 13, with no
response to the study’s post-discharge appointment (Figure 1).
Of the 10 patients assigned to SC, 3 received late TCZ after
randomization and were included in the ITT analysis on the
arm they were originally allocated. The median age was 61.5
years (IQR 56–72), 67% were men (Table 1). All randomized

patients had finally a documented diagnosis of COVID-19

by RT-PCR assay. Most clinical, demographic, and laboratory

baseline data (Tables 1, 2, respectively) were similar across

treatment groups. However, a higher proportion of men, fever,

and extended radiological pattern at admission was recorded

in the SAR arm, along with a shorter duration from symptom
onset to randomization. All patients receiving high flow oxygen
therapy or NIMV at randomization were allocated to SAR
while all patients under SC had low flow supplementary oxygen
requirements. Conversely, 4/20 (20%) in the SAR arm had no
supplementary oxygen requirements.

Median CRP levels were 9.28 (IQR 5.06–19.73) mg/dl without
significant differences between allocations at randomization

TABLE 1 | Baseline demographics and clinical characteristics of the study population.

n (%)

Total (n = 30) Sarilumab + SC (n = 20) SC (n = 10)

Median Age in years (IQR) 61.5 (56–72) 61.5 (50.5–72) 62 (58–71)

Male sex, n (%) 20 (67) 15 (75) 5 (50)

Race, ethnicity (%)

White 14 (47) 10 (50) 4 (40)

Asian 1 (3) 0 (0) 1 (10)

Hispanic or latino 15 (50) 10 (50) 5 (50)

Coexisting Disorders, n (%) 19 (63) 14 (70) 5(50)

Hypertension 13(43) 8 (40) 5 (50)

Diabetes Mellitus 5 (17) 3 (15) 2 (20)

Obesity 3 (10) 2 (10) 1 (10)

History of Malignancy 2 (7) 2 (10) 0 (0)

COPD 2 (7) 1 (5) 1 (10)

Stage III Chronic kidney disease 4 (13) 2 (10) 2 (20)

Coronary artery disease 3 (10) 3 (15) 0

Median days from symptom onset to randomization (IQR) 11 (8-16) 10.5 (8-12.5) 16 (12-23)

Median days from admission to randomization (IQR) 2 (1-4) 2 (1-4) 3 (1-6)

Median body temperature at randomization (IQR),
◦

C 37 (36.4-37.7) 37.1 (36.6-38.1) 36.5 (36.3-37.2)

Fever ≥37,5◦C, n (%) 10 (33) 9 (45) 1 (10)

Oxygen support at randomization (7-category ordinal scale) n (%)

5. No supplemental oxygen therapy 4 (13.3) 4 (20) 0 (0)

4. Supplemental low flow oxygen therapya 22 (73.3) 12 (60) 10 (100)

3. High-flow supplemental oxygen therapy or NIVb 4 (13.3) 4 (20) 0 (0)

Median PaO2/FiO2 mmHg (IQR) at randomization 318 (233-358) 298 (223-348) 341 (261-404)

Additional treatment during hospitalization

Hydroxychloroquine 6 (20) 4 (20) 2 (20)

Lopinavir/Ritonavir 5 (17) 4 (20) 1 (10)

Azithromycin 18 (60) 12 (60) 6 (60)

Interferon 0 (0) 0 (0) 0 (0)

Remdesivir at randomization 0 (0) 0 (0) 0 (0)

Corticosteroids at randomizationc 25 (83) 17 (85) 8 (80)

Methylprednisolone bolus 17 (57) 14 (70) 3 (30)

COPD, Chronic obstructive pulmonary disease; IQR, interquartile range; NIV, noninvasive ventilation; PaO2/Fi02, partial pressure of arterial oxygen/fraction of inspired oxygen; SC,

standard care.
aO2 flow ≤ 15 l/min e.g., by face mask, nasal cannula (NC).
bO2 flow >15 l/min, e.g., by face mask, ‘High Flow’ devices (e.g., HFNC), CPAP or NIV including BiPAP and other devices.
cCorticosteroids: ≥ 30mg Prednisone/d or equivalent; endovenous bolus of 6-Metilprednisolone 120–125 mg/d, except for 1 patient 80 mg/dl.
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TABLE 2 | Baseline laboratory and radiologic findings of the study population.

n (%)

Total (n = 30) Sarilumab + SC (n = 20) SC (n = 10)

Laboratory values (median, IQR)

White Blood Count (cells/mm3 ) 7,985 (5,160–11,140) 7,070 (4,975–12,310) 10,065 (6,750–10,460)

Lymphocyte Count (cells/mm3 ) 830 (680–1,130) 825 (680–1,070) 865 (680–1,580)

Neutrophil Count (cells/mm3 ) 5,910 (3,935–9,312) 6,215 (5,398–9,313) 5,850 (3,575–10,972)

Creatinine. mg/dL 0.80 (0.63–0.98) 0.83 (0.71–0.99) 0.65 (0.59–0.87)

Bilirubin. mg/dL 0.40 (0.32–0.52) 0.38 (0.32–0.53) 0.49 (0.34–0.52)

AST. U/L 33 (26-54) 40 (27-53) 32 (25-93)

ALT. U/L 46 (24-61) 48 (29-57) 28 (21-97)

GGT. U/L 56 (34-117) 41 (30-119) 71 (55–108)

LDH. U/L 297 (238–349) 317 (263–350) 263 (222–333)

Inflammatory markers

serum IL-6. pg/mL (n = 24) 12 (3–21.5) 13.3 (7.5–24) 3 (1–16.5)

IL-6 ≥ 30 pg/mL, n (%) 4/24 (17) 3/16 (19) 1/8 (13)

Ferritin. ng/mL (n = 29) 1,179 (735–1,511) 1,048 (664–1,511) 1,265 (735–1,532)

CRP. mg/dL 9.28 (5.06–19.73) 8.59 (4.17–18.1) 9.94 (6.19–19.73)

PCT. ng/mL (n = 13) 0.11 (0.08–0.18) 0.11 (0.09–0.18) 0.12 (0.07–0.18)

D-dimer (µg/mL) (n = 29) 0.49 (0.37–1.14) 0.49 (0.36–1.28) 0.51 (0.37–1.09)

Baseline thorax radiologic findings (x ray and/or CT scan) a

Alveolar pattern or ground glass opacities > 50% 14 (47) 11 (55) 3 (30)

AST, Aspartate amino-transferase; ALT, Alanine amino- transferase; CRP, C-reactive protein; GGT, Gamma-glutamyl transferase; IL-6, Interleukin-6; IQR, Interquartile range; LDH, Lactate

Dehydrogenase; PCT, Procalcitonin. SC, Standard care.
aAll radiologic exams were assessed and reported by radiologists with pneumological expertise.

(Table 2). Serum IL-6 levels were available in 24 patients at
randomization, with a median of 13.3 (IQR 7.5–24) pg/ml on 16
SAR patients and 3 (IQR 1–16.5) pg/ml on 8 SC subjects. Only
3/16 patients in the intervention arm and 1/8 in SC had high IL-6
levels (Table 2), according to the threshold (30 pg/ml) previously
established in our hospital population (12).

More than 80% of patients received glucocorticoids at
randomization (Table 1), with no significant differences between
arms in the median accumulated dose before randomization
(156mg [IQR 90–300] in SAR vs. 207mg [IQR 80–550] in SC,
p = 0.81) and after allocation (105mg [IQR 0–403] in SAR vs.
135mg [100–200] in SC, p= 0.80).

Primary Outcomes
No significant differences were seen in the median change [IQR]
in clinical status on the 7-category ordinal scale at day 7 between
SAR and SC (2 [0–3] vs. 3 [0–3], p = 0.32) (Table 3). The
proportion of patients in each category at this time point is shown
in Figure 2. Regarding 30-day mortality, 2/20 (10%) patients
died in the SAR arm while no events (0/10) were found in SC
(Table 3). Those results were identical for in-hospital mortality.
Two deaths occurred in patients with previous Grade III chronic
kidney disease (CKD) and NIMV at randomization. Median days
to discharge on SAR and SC were similar (HR= 0.65, SD= 0.26;
p= 0.27).

We performed a multivariate analysis to determine which
variables influenced the primary outcome “change in clinical
status at day 7” that ranges from death (0) to discharge (7).

Along with other confounding factors, age was not significantly
associated with this outcome in the bivariate analysis and finally,
the best multivariate model included 3 independent variables:
sex/gender, cumulative glucocorticoid dose between baseline and
day 7, and the allocated treatments. The results (Table 4) showed
that higher requirements of glucocorticoids after randomization
were significantly associated with a worse clinical evolution at
day 7, likely reflecting a confounding by indication bias, as those
patients that rapidly worsened were prescribed higher doses of
corticosteroids. In addition, the female gender showed a trend to
worse evolution. After adjustment by these variables, there were
no significant differences between SC and SC plus SAR.

Secondary Outcomes
No significant differences were observed between arms for any of
the secondary outcomes (Table 3). In SAR, 4/20 (20%) and 3/20
(15%) patients required NIMV and IMV, respectively, vs. none
in the SC. Notably, 2/3 of patients progressing to IMV were not
receiving corticosteroids at randomization day, although just one
of these 2 patients died. The median time to oxygen withdrawal
was similar between groups (Table 3).

Evolution of partial pressure of arterial oxygen/fraction
of inspired oxygen (PaO2/FiO2) throughout study visits
(Figure 3A) showed no significant differences between both
allocated interventions at days 1, 2, and 7 after randomization,
nor at discharge. Baseline high IL-6 levels (≥ 30 pg/ml) appeared
only in 3 patients allocated to SAR and 1 to SC. Along the
study visits, patients with low baseline IL-6 levels (< 30 pg/ml)
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TABLE 3 | Clinical outcomes in the intention-to-treat population.

Median (IQR)

Outcomes Sarilumab + SC (n = 20) SC (n = 10) Hazard ratio (SE) Log hazard ratio P-Value

(Log SE)

Primary outcomes

Median change in clinical status (7-category ordinal scale a) at day 7, 2 (0–3) 3 (0–3) 0.32

Mean change on clinical status at day 7, (SD) 1.45 (1.93) 2.1 (1.45) 0.36

30-day mortality, n (%) b 2 (10) 0 15.11 (22.64) 0.54

Duration of hospitalization, days from randomization c 7 (6-11) 6 (4-12) 0.65 (0.26) 0.27

Secondary outcomes

Median change in clinical status at day 14 3 (3) 4 (2-4) 0.36

Time to become afebrile for a minimum of 48 h, daysd 3 (3-6) 4 (4-8) 1.60 (0.97) 0.39

Progression to NIMV, n (%) 4 (20) 0 (0) 15.09 (22.52) 0.27

Progression to IMV, n (%) 3 (15) 0 (0) 15.10 (22.52) 0.5

Time to supplemental oxygen withdrawal, days from randomization 5.5 (3−13) 4.5 (2-12) 0.83 (0.37) 0.83

IMV, invasive mechanical ventilation; IQR, interquartile ranges; NIMV, Noninvasive mechanical ventilation; SD, standard deviation: SC, Standard care; SE, Standard error.
a Scale range: 1 = death to 7 = non hospitalized.
b One patient in the SC arm was lost to follow-up after discharge at day 13.
c Accounting for survival status by treating patients who died as having a 30-day hospital stay.
d Eleven patients in the SAR+SC arm and 5 in the SC arm were febrile at randomization.

FIGURE 2 | Evolution of clinical status in COVID-19 patients from baseline to day 14 according to the 7-category ordinal scale. Data are shown as the percentage of

patients at each ordinal point in the sarilumab + standard care (SAR; n = 20) and standard care (SC; n = 10) groups, displayed as boxes with the different hues

ranging from black (1 = death) to white (7 = discharge) scale.

Frontiers in Medicine | www.frontiersin.org 7 February 2022 | Volume 9 | Article 81962128

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


García-Vicuña et al. Subcutaneous Sarilumab in COVID-19

tended to present non-significantly higher PaO2/FiO2 than their
counterparts (Figure 3B).

Regarding surrogate inflammatory markers and laboratory
parameters, no significant differences were observed between
arms at baseline nor throughout the study, except for significant
reductions of LDH levels after day 2 from randomization
(Figure 4, and data not shown) in patients allocated to SC. The

time plot decline of median CRP levels was consistent with
previously reported data for sarilumab after a single 200mg

subcutaneous injection (14) with a maximum decrease on day 7,

but we did not observe a steeper decrease with 400mg SAR on
days 1, 2, 4, and 5 after randomization compared to the control

group (Figure 4A, and data not shown).
To avoid a possible bias, we performed a sensitivity analysis

excluding the three patients that received late TCZ as SC.
Baseline characteristics of these populations are shown in

Supplementary Table 1, with no significant differences between

TABLE 4 | Variables associated with improvement in clinical status at day 7.

β Coefficient 95% Confidence interval p-value

Treatment

SC Reference - 0.156

SC + Sarilumab −0.89 −2.11 – 0.34

Gender

Male Reference - 0.085

Female −1.07 −2.30 – 0.15

Cumulative GC

dose (by g of

prednisone)a

−1.92 −3.27 to −0.58 0.005

SC, standard care; GC, glucocorticoids; g, gram.
aCumulative GC dose from randomization to day 7.

arms, except for a shorter disease duration to randomization

in the SAR arm (10.5 days [8–12.5]) vs. SC (18 [12–24], p =

0,013), and lower median body temperature at randomization
in SC (36.3 [36.2–37]) vs. SAR (37.1 [36.6–38.1] p = 0.056).

No significant differences were observed for primary and key

secondary outcomes between allocated interventions (Table 5),
confirming the results of the ITT analysis.

Safety outcomes are reported in Table 6. Five SAE

occurred in 4 patients allocated to SAR: 2 secondary
respiratory bacterial infections by Achromobacter xylosoxidans

and Staphylococcus aureus, 1 respiratory failure, and 2
fatal cases with failure of 2 organs (lung and kidney).

The rate of AE of special interest was similar in SAR
(50%) and SC (40%) (Table 6). Only one transient Grade

III neutropenia on the SAR arm was considered as

treatment related.

Other Outcomes
No additional deaths or serious infections were recorded by 90
days in any of the allocated arms.

DISCUSSION

This pragmatic open pilot RCT in hospitalized patients with
moderate-to-severe COVID-19 has failed to demonstrate the
benefit of adding subcutaneous SAR to the SC for preventing
high oxygen requirements, invasive ventilation, or death.
Additionally, serious adverse events also occurred in the
intervention arm, although no definite relationship with SAR
could be demonstrated.

Limited evidence based on case series (18–20) and
observational studies (21–23) suggested that SAR off-label
use was safe and might be beneficial in the treatment of
COVID-19 infection (24). However, a systematic review and

FIGURE 3 | Evolution of partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) throughout study visits. Patients are grouped depending on

(A) allocated interventions: standard care (SC) or sarilumab (SAR) and (B) level of serum interleukin-6 (IL-6) at randomization (cut-off for high levels ≥ 30 pg/ml). Two

patients died and their last observed value was carried forward. IL-6 levels at randomization were available only in 24 patients; high IL-6 levels were observed in 3

patients from the SAR group and 1 patient from the SC group. Data are shown as interquartile ranges (p75 upper edge of the box, p25 lower edge, p50 midline) as

well as the p95 (line above box) and p5 (line below). Dots represent outliers. Statistical significance was determined with the Mann–Whitney U test.
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FIGURE 4 | Evolution of laboratory parameters throughout study visits. (A) C reactive Protein; (B) Total lymphocyte count; (C) Lactate dehydrogenase; (D) Ferritin;

(E) Creatinin. Patients from standard care (SC; white boxes) and sarilumab (SAR; gray boxes). Only values available at each time point is shown and results are

displayed as the interquartile range (p75 upper edge of the box, p25 lower edge, p50 midline) as well as the p95 (line above box) and p5 (line below). Dots represent

outliers.
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TABLE 5 | Clinical outcomes in the sensitivity analysis population.

Median (IQR)

Outcomes Sarilumab + SC (n = 20) SC (n = 7) Hazard ratio (SE) Log hazard ratio P Value

(Log SE)

Primary outcomes

Median change in clinical status (7-category ordinal scalea) at day 7, 2 (0–3) 3 (0–3) - - 0.36

Mean change in clinical status at day 7, (SD) 1.45 (1.93) 2.14 (1.46) - - 0.40

30-day mortality, n (%)b 2 (10) 0 - 15.01 (22.60) 0.54

Duration of hospitalization, days from randomizationc 7 (6–11) 5 (4-12) 0.54 (0.25) - 0.12

Secondary outcomes

Median change in clinical status at day 14 3 (2-3) 3 (3) - - 0.45

Time to become afebrile for a minimum of 48 h, daysd 3 (3-6) 15 (8-22) 5.27 (5.70) - 0.042

Progression to NIMV, n (%) 4 (20) 0 (0) - 16.30 (-) 0.27

Progression to IMV, n (%) 3 (15) 0 (0) - 15.01 (22.60) 0.5

Time to supplemental oxygen withdrawal, days from randomization 6 (4-15) 3 (2-8) 0.58 (0.28) - 0.091

IMV, invasive mechanical ventilation; IQR, interquartile ranges; NIMV, Noninvasive mechanical ventilation; ES, standard deviation; SC, Standard care; SE, Standard error.
aScale range: 1 = death to 7 = non hospitalized.
bOne patient in the SC arm was lost to follow-up after discharging alive at day 13.
cAccounting for survival status by treating patients who died as having a 30-day hospital stay.
dOnly 2 patients in the SC arm and 11 in the SAR+SC arm were febrile at randomization.

TABLE 6 | Safety outcomes.

N◦ (%)

Outcomes Sarilumab + SC (n = 20) SC (n = 10)

Any adverse event of special interest

Number of patients 10 (50) 4 (40)

Number of events, n 11 4

Neutropenia Grade IV 0 0

Increased liver enzymesa 5 (25) 3 (30)

Steroid-induced hyperglycemia 4 (20) 1 (10)

Invasive bacterial or fungal

infection

2 (10) 0

Serious adverse event

Number of patients 4 (20) 0 (0)

Number of events, nb 5 0

Secondary bacterial infectionc 2 (10) 0

One organ (lung) failure 1 (5) 0

Two organ (lung/kidney) failure 2 (10) 0

SC, Standard care.
a Increase in liver enzymes indicates an increase in serum levels of alanine and aspartate

aminotransferases more than three times the upper limit of normal.
bOne patient with respiratory and kidney failure under invasive mechanical ventilation also

presented a respiratory bacterial infection by Achromobacter xylosoxidans.
cRefers to the same infection episodes described as AEs of special interest.

meta-analysis that included five prospective studies exploring
outcomes in 389 patients who received SAR revealed that data
are insufficient to establish conclusions about efficacy (25).

One retrospective case series study explored SAR in
subcutaneous administration in severe and critical COVID-19
(18), suggesting a clinical benefit through early intervention
before high levels of surrogate hyperinflammatory markers such
as CRP or IL-6 become irresponsive. In the same way, an

early observational case–control study in Italy reported survival
advantage with the use of intravenous SAR when initiated in
severe hyper-inflamed COVID-19 patients with a PaO2/FiO2
≥ 100 mmHg, suggesting a potential therapeutic window of
opportunity (26).

Restricted to critically ill patients, a metanalysis conducted
by the international, adaptive platform trial REMAP-CAP has
revealed beneficial effects of TCZ and SAR in-hospital mortality
and prolonged organ support-free days in ICU (27). Those
results were not validated in the first SAR RCT published in
COVID-19, comparing intravenous SAR with SC in severe and
critical patients (28). Neither the primary endpoint of time to
improve clinical status 2 or more points on a 7-category ordinal
scale nor the survival rate at day 29 showed the superiority of
SAR over placebo, although a trend toward reduced mortality
was observed in critically ill patients. Similar results have been
reported in an early U.S. phase II/III trial, available in a non–peer-
review publication (29), but the authors suggest that on patients
with IMV, concomitant corticosteroids could increase the benefit
of SAR.

In this regard, a recent prospective meta-analysis involving
10,930 hospitalized patients in 27 randomized trials concluded
that the use of IL-6 antagonists, TCZ and SAR, was associated
with a reduction in 28-day all-cause mortality, compared with
SC or placebo, but this benefit was only found with concomitant
administration of corticosteroids (17). SAR, mostly in the
intravenous route, was assessed in nine trials, including the study
reported herein, allocating 2,073 patients to SAR and 753 patients
to usual care or placebo. Notably, the results were stronger
for TCZ and in non–IMV-treated participants, maybe as more
patients in the SAR group were under IMV and less number of
patients received corticosteroids at randomization, compared to
TCZ (17).

To date, no results from RCT are available supporting the use
of SAR in early stages such as moderate-to-severe COVID-19.
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Among clinical trials planned or initiated in those stages,
only two are exploring SAR in subcutaneous administration
(NCT04359901, EudraCT: 2020-001531-27) and their results
are awaited.

Regarding our pilot study, we outline the limitations and
propose explanations for several issues behind our results.

First, a limited sample size, especially on the SC arm with no
events in key endpoints such as mortality at day 30 and the need
for IMV or SAE, complicated the estimation of the effect size of
the intervention.

Second, assigned treatment groups were not well-balanced
with several data that point to higher baseline severity in SAR arm
patients. Patients on SAR were randomized earlier after disease
onset compared to SC participants, suggesting a more advanced
or poor prognostic disease leading to meeting the inclusion
criteria in a shorter time. A higher proportion was male, had a
fever, needed high-flow oxygen requirements including NIMV,
or presented larger radiological lung involvement compared to
SC patients. In this regard, SAR has been associated with faster
recovery than SC in a subset of patients showing minor lung
consolidation at baseline (23). The limited sample size prevented
us from performing stratified analysis and adjustments in the
multivariable models could not include all the baseline potential
confounding factors.

Third, unknown comorbidities led to randomize patients with
a low probability of survival. Two deaths occurred in two 72-
year-old patients with previous Grade III CKD and NIMV at
randomization. In addition, one of them suffered from a previous
chronic thromboembolic disease with right heart failure and
the other one from a serious sleep apnea hypopnea syndrome,
both discovered after randomization when further information
was gathered.

Fourth, the trial was not blinded and might have influenced
clinical decision-making. Likely, this can explain the introduction
of TCZ after randomization in some SC assigned patients to
prevent further deterioration, since in usual care clinicians were
used to indicate off-label TCZ following the AEMPs criteria, quite
similar to ours in the trial. Nonetheless, excluding those patients
from the SC arm in the sensitivity analysis did not alter the results
obtained in the ITT population.

Fifth, low baseline IL-6 levels in most SAR assigned patients
might have halted the potential beneficial effect of IL-6 blockade.
In our experience, besides prognostic information, IL-6 levels
>30 pg/ml can also predict the response to IL-6R blockade
(12). However, when the protocol was designed in March 2020,
we were not aware of its discriminative value for therapeutic
response. Thus, we did not include this threshold as a mandatory
inclusion criterion. In our previous study, no benefit of TCZ was
observed in severe or critical patients with low IL-6 levels (12),
and similar findings have been reported with a baseline CRP
cut-off of 15 mg/dL in patients requiring ICU support (30). On
the other hand, the complex biology of IL-6 and the potential
dysregulation of their activities in the context of SARS-CoV2
infection should be considered to understand the effect of IL-
6 blockade across different disease outcomes (31). The use of
IL-6 as a biomarker of disease severity does not identify IL-6
as a unique contributor to the distinct severe manifestations in

COVID-19. In a systematic review and meta-analysis of COVID-
19 studies, the estimated pooled mean for IL-6 concentrations
in patients with severe and critical COVID-19 was 36.7 pg/ml
(95% CI 21.6–62.3 pg/ml), far lower than those reported for IL-6
and other cytokines in patients with unrelated COVID-19 ARDS,
sepsis, and CAR T cell-induced cytokine released syndrome (32).
This distinct inflammatory profile prompted questioning the role
of a cytokine storm in COVID-19-induced organ dysfunction
and considering alternative models of organ failure (32).

Sixth, the limitations of using the initial ordinal scales for
primary outcomes, endorsed by theWHO early in the pandemic,
has been widely recognized (33). The question remains if a
threshold level of respiratory support can guide the appropriate
initiation of IL-6 inhibitors.

Seventh, the widespread use of glucocorticoids on both arms
(85% SAR vs. 80% SC patients) might have affected the results.
Corticosteroids were commonly used in our center from the
first outbreak but became the rule after the publication of
their beneficial effects in the RECOVERY trial (34) and the
WHO REACT metanalysis (35). However, after adjusting for a
cumulative dose of glucocorticoids at day 7 after randomization,
no significant differences were detected between treatment
groups in the primary outcome of change in clinical status
at day 7. Additionally, a cumulative dose of corticosteroids
before and after randomization was similar in both arms.
Concerning the simultaneous use with SAR, robust evidence
has been accumulated for a greater effect of IL-6R inhibitors
in concomitant use with corticosteroids (17, 27, 36). In fact,
in our study, 2 out of 3 patients progressing to IMV, early
recruited and allocated to SAR, were not receiving corticosteroids
at randomization day and were prescribed later, followed by one
patient survival.

Lately, some concerns have arisen about the subcutaneous
formulation and dosage in severe patients. In line with
pharmacodynamic data provided for intravenous SAR in severe
and critical COVID (28, 29), with a reported rebound of CRP
after declining for 7 days, a single 400mg dose of subcutaneous
sarilumab could have been sub-therapeutic. The similar time plot
decline of median CRP levels in both arms in our study does not
support the use of the subcutaneous route, at least with a single
400 mg dose.

CONCLUSION

In our study of hospitalized patients with moderate-to-
severe COVID who are not invasively ventilated at baseline,
subcutaneous sarilumab added to standard care showed no
additional benefit for preventing noninvasive and invasive
ventilation or death by 30 days, early improvement of clinical
status, or reducing hospital stay. Findings of this pilot study do
not exclude a potential effect of sarilumab in moderate-to-severe
COVID-19 and suggest that further blinded randomized phase
III trials should be adequately powered with primary endpoint
accuracy, testing higher or repeated doses, and selecting the
population based on high baseline IL-6 levels. Questions remain
open on subcutaneous administration and the appropriate
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time of intervention pending the results of more powered
ongoing RCT.
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Since its emergence, the COVID-19 pandemic has been ravaging the medical and
economic sectors even with the significant vaccination advances. In severe
presentations, the disease of SARS-CoV-2 can manifest with life-threatening
thromboembolic and multi-organ repercussions provoking notable morbidity and
mortality. The pathogenesis of such burdensome forms has been under extensive
investigation and is attributed to a state of immune dysfunction and hyperinflammation.
In light of these extraordinary circumstances, research efforts have focused on
investigating and repurposing previously available agents that target the inflammatory
and hematological cascades. Aspirin, due to its well-known properties and multiple
molecular targets, and ought to its extensive clinical use, has been perceived as a
potential therapeutic agent for COVID-19. Aspirin acts at multiple cellular targets to
achieve its anti-inflammatory and anti-platelet effects. Although initial promising clinical
data describing aspirin role in COVID-19 has appeared, evidence supporting its use
remains fragile and premature. This review explores the notion of repurposing aspirin in
COVID-19 infection. It delves into aspirin as a molecule, along with its pharmacology and
clinical applications. It also reviews the current high-quality clinical evidence highlighting the
role of aspirin in SARS-CoV-2 infection.

Keywords: COVID-19, SARS-CoV-2, coronavirus, aspirin, salicylic acid

INTRODUCTION

The latest pandemic caused by the novel SARS-CoV-2 virus has led to the emergence of coronavirus
disease 2019 termed COVID-19. The disease first appeared inWuhan, China in December 2019 as an
outbreak of atypical pneumonia (Younis et al., 2020; Rana O; Zareef et al., 2020; Tsang et al., 2021;
Younis et al., 2021). The virus has ever since spread at an unpreceded pace, exhausting the global
health sector and endangering the economies (Arthi and Parman, 2021; Padhan and Prabheesh,
2021). SARS-CoV-2 belongs to the Coronaviridae family. Although the majority of Coronaviridae
family members are implicated in mild upper respiratory tract illness, SARS-CoV-2 has caused a
wide range of more serious illnesses (Morens et al., 2020). Overall, most COVID-19 patients exhibit
mild to moderate disease (Landete et al., 2020). However, a small percentage of patients may display
severe sickness and are placed at greater risk of experiencing mortality and morbidity (Landete et al.,
2020). Studies have shown that some factors including obesity, older age, cardiovascular
comorbidities, pre-existing pulmonary condition, and chronic kidney disease, among other
factors, are associated with increased risk of hospitalization, mechanical ventilation and
mortality (Attaway et al., 2020; Feng et al., 2020; Klang et al., 2020; Williamson et al., 2020; Wu
andMcGoogan, 2020; Phelps et al., 2021). In these cases, the disease has beleaguered multiple organ-
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systems imparting significant irreversible damage. Unfortunately,
the cardiovascular system is also embattled, with subsequent
substantial complications has been reported (Magadum and
Kishore, 2020; Zareef et al., 2020). Besides, a high rate of
coagulopathy has been described in patients infected with
COVID-19, suggesting a critical COVID-19 induced
thromboembolic event. Such events are major cardiovascular
complications and are associated with increased mortality
(Zareef et al., 2020; Zhou et al., 2020; Aktaa et al., 2021).
Studies have highlighted an astonishing rate of venous
thromboembolism and pulmonary embolism in COVID-19
patients reaching 42 and 17% respectively in severe cases (Wu
et al., 2021). Arterial thrombotic events at various sites including
coronaries, brain, and extremities have also been described
(Mehra et al., 2020; De Roquetaillade et al., 2021).

Vaccines developed against SARS-CoV-2 virus have shown
effective reduction in transmission rate as well as the pattern of
hospitalization, ventilation and mortality, as evident by the
clinical trials (Polack et al., 2020; Voysey et al., 2021).
However, even with the large-scale global vaccination
programs, the virus has attained several remarkable mutations
and produced new variants such as B.1.1.7, P.1, B.1.351, B.1.427,
P.3, B.1.429, B.1.526, and B.1.617.2 (Baden et al., 2021;
Chookajorn et al., 2021; Vasireddy et al., 2021; Voysey et al.,
2021). This is particularly problematic as emerging variants might
acquire the ability to transmit rapidly, and cause more severe
disease, while escaping the host immune system (Vasireddy et al.,
2021). Theymight as well challenge the previously proven vaccine
efficacy (Bernal et al., 2021). Due to the rapid rise of events during
the pandemic, and the high mortality and morbidity rates, the
quest for therapeutic strategies has been ongoing. In this manner,
drug repurposing has constituted an attractive mean for fighting
the current crisis. Several regimens have been tried including
steroids, azithromycin, ivermectin, hydroxychloroquine,
tocilizumab, baricitinib, antivirals among others (Santos et al.,
2020; Younis et al., 2020; Younis et al., 2021b). In light of the
evidence of thromboembolic events and the noticeable
hyperinflammatory state, several studies and investigators have
suggested a possible role for aspirin in treating COVID-19 disease
(Mohamed-Hussein et al., 2020). This paper discusses the
potential therapeutic role of aspirin in COVID-19 disease
through dissecting its pharmacology, cellular targets, clinical
uses, as well as the current high quality clinical evidence.

PHARMACOLOGY OF ASPIRIN

Salicylic acid (Aspirin) is produced and administered via different
routes in various doses and forms (Arif and Aggarwal, 2021). The
usual therapeutic range of serum salicylate concentration is
10–30 mg/dl (0.7–2.2 mmol/L). Indeed, the dosing of aspirin is
crucial as it dictates its mechanism of action. Traditionally, anti-
thrombotic effects are achieved at low doses (75–81 mg/day),
analgesic and antipyretic effects are achieved at intermediate
doses (650 mg–4 g/day), while aspirin at high doses (between 4
and 8 g/day) is effective as an anti-inflammatory agent (Pillinger
et al., 1998).

Aspirin intoxication can occur after ingesting 10–30 g in
adults and as little as 3 g in children. Most patients exhibit
signs and symptoms of intoxication if the serum concentration
level of salicylate exceeds 40–50 mg/dl (2.9–3.6 mmol/L) (Hill
1973).

Pharmacokinetically
Acetylsalicylic acid is in general rapidly and completely absorbed
by the gastrointestinal tract following oral administration (Awtry
and Loscalzo, 2000). However, absorption may also be variable
depending on several factors including the route of
administration, the dosage, the rate of tablet dissolution,
gastric pH, gastric contents, and emptying time (INC, 2017).
It is mainly absorbed in the stomach and small intestine. The
plasma concentration of salicylate peaks between 1 and 2 h
following administration. It gets distributed to all body tissues
shortly after administration, mainly to peritoneal, spinal, synovial
fluids, milk, saliva, liver, kidneys, heart, and lungs. It is also
known to cross the placenta (DrugBankonline, 2005). Aspirin is
hydrolyzed in plasma to salicylic acid and its levels become
undetectable 4–8 h after administration. The liver is the main
site of metabolism for salicylate, although other tissues may also
be involved. It then gets eliminated by the kidneys via glomerular
filtration and tubular excretion processes (INC, 2017). An entire
dose needs around 48 h for the salicylate to be completely
eliminated. The half-lives of ASA versus salicylate is 15 min
versus 4 h respectively, while the clearance rate of ASA is
variable depending on several factors (DrugBankonline, 2005).

Pharmacodynamically
The pharmacodynamic aspect of aspirin is unique, as it doesn’t
interact with any surface or intracellular receptors. It exerts its
activity through non-specific irreversible acetylation of
molecules. The acetylation process instigates alterations at the
level of macromolecules, and accordingly adjusts the function of
the proteins. Due to the irreversibility of such modification, the
duration of activity depends on the turnover rate of the target
molecule irrespective of aspirin plasma concentration (Schrör,
2016).

MECHANISM OF ACTION OF ASPIRIN

Aspirin is one of the most commonly used drugs worldwide
(Vane and Botting, 2003; Zhou et al., 2014). It is an anti-
inflammatory, anti-pyretic, analgesic, and anti-platelet drug.
Aspirin exerts its major activity by inhibiting the
cyclooxygenase enzyme (COX), which exhibits two forms:
COX-1 and COX-2 (Patrono et al., 2001) (Patrono et al.,
2001). Subsequently, it blocks the conversion of arachidonic
acid into prostaglandins and thromboxane, collectively called
prostanoids. Its activity expands to target several other structures
circumventing a set of inflammatory and thrombotic events.

Anti-Inflammatory Activity
Aspirin exerts its anti-inflammatory property through several
mechanisms (Figure 1). At intermediate and high concertation,
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aspirin non-selectively acetylates and inhibits the activity of
COX-1 and COX-2, hampering the biosynthesis of prostanoids
and their subsequent inflammatory outcome. Indeed, COX-2
expression is induced by inflammatory cytokines, hormones,
and growth factors, and it plays a role in cancer, acute stress,
inflammation, and infection (Chiang and Serhan, 2009). Aspirin
also interferes with innate immunity through the inhibition of
thromboxane A2 production. Thromboxane A2 facilitates
platelet-polymorphonuclear (PMNs) cells interaction and the
subsequent migration of PMNs to the areas of inflammation.
This also takes place at low doses of aspirin (Patrono et al., 1980;
Cooper et al., 2004). Similarly, at low concentrations, aspirin
stimulates the synthesis of certain eicosanoids that terminates the
trafficking of PMNs (Claria and Serhan, 1995). Low dose aspirin
also inhibits leukocyte adhesion and migration by stimulating the
synthesis of 15-epi-lipoxin A4. 15-epi-lipoxin A4, known as
aspirin-triggered 15-epi-lipoxin A4 (ATL), pathway alters
leukocyte/endothelium interactions and limits leukocyte
extravascular accumulation (Perretti et al., 2002; Serhan, 2002).
In fact, the anti-inflammatory effect of aspirin doesn’t stop at
altering the biosynthesis of prostaglandins and thromboxane, it
also interferes with various cellular pathways to intrude on the
inflammatory response. Several studies have shown that aspirin
disturbs intracellular signaling pathways including nuclear
factor-kappa B (NF-K B) (Kopp and Ghosh, 1994; Grilli et al.,
1996; Yin et al., 1998). NF-KB plays a role in the inflammatory
response. Aspirin reduces the production of NF-KB, and at the
same time inhibits the breakdown of its inhibitor (Kopp and
Ghosh, 1994). Besides, aspirin exerts a protective effect at the
cellular level as an anti-oxidant by induction of heme oxygenase-1
during inflammatory states (Grosser et al., 2003). At higher

concentrations and over longer periods, aspirin can
nonspecifically acetylate other proteins (Vane and Botting,
2003). Remarkably, one study highlighted the role of aspirin in
gene regulation through acetylation of histones (Sabari et al.,
2017). Endothelial nitric oxide synthase (eNO) is another target
for aspirin. When aspirin acetylates the enzyme, it stimulates
nitric oxide release thus maintaining vascular homeostasis
(Taubert et al., 2004). Aspirin likewise acts as an anti-pyretic
and analgesic agent. Prostaglandins potentiate the effect and
sensitivity of pain receptors and other substances like
histamine and bradykinin (Patrono et al., 2001). A decrease in
prostaglandins production reduces pain and inflammation.
Similarly, aspirin inhibits the production of brain
prostaglandin E1 which is a potent fever-inducing agent, thus
acting as an antipyretic (Vane, 1976).

Anti-Platelet Activity
Aspirin is a well-known potent anti-thrombotic (Figure 1). At
low doses, the acetyl group of aspirin binds to serine 530
residue of COX-1 and irreversibly inhibits its activity (Funk
et al., 1991). Therefore, prostaglandin H2 synthesis is inhibited
(Patrono, 1994). Prostaglandin H2 is a substrate used by the
enzyme thromboxane-A-synthase to produce thromboxane
A2. Thromboxane A2 is a strong pro-thrombotic molecule
that is synthesized and released by platelets; it stimulates
platelets activation and aggregation (FitzGerald, 1991). It
also promotes vascular constriction and smooth muscle
proliferation. This inhibitory effect is irreversible. The
synthesis of new thromboxane A2 depends on the synthesis
of new platelets, a process occurring at a rate of 10% daily (Di
Minno et al., 1983).

FIGURE 1 | Mechanism of action of aspirin. Aspirin possesses several targets through which it exerts its activity. First, it inhibits prostanoids synthesis thus
employing anti-thrombotic, anti-inflammatory, anti-pyretic and analgesic effect. In addition, it acetylates multiple cellular proteins hence affecting DNA transcription and
expression. It also constrains NF-KB production, limiting its pro-inflammatory effect. Furthermore, aspirin enhances the synthesis of eicosanoids and 15-epi-lipoxin A4.
Combining all together, aspirin impedes PMNs interaction with platelets and endothelium, PMNs chemotaxis, adhesion, and migration. Finally, it acetylates and
activates eNOS to maintain vascular homeostasis. (NF-KB: nuclear factor kappa B; PMNs: polymorphonuclear cells; eNOS endothelial nitric oxide synthase).
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CLINICAL USES OF ASPIRIN

The medicinal history of aspirin dates back to more than
3,500 years ago, where the old Egyptians and Sumerians used
the willow bark as anti-pyretic and analgesic agent. As medicine
progressed, the first precursor of aspirin, salicylate, was described
in 1763 by Reverned Stone as antipyretic, while aspirin was first
described in 1897 by Felix Hoffman (Montinari et al., 2019).
Today, aspirin is a well-known and widely used drug. It
represents a famous well-established antipyretic and analgesic
agent. It is extensively used in cardiovascular diseases, mainly in
the acute settings of myocardial infarction, unstable angina,
ischemic stroke, and for secondary prevention of recurrent
coronary artery disease (Framework, 1998; De Gaetano, 2001;
Members; Gibbons et al., 2003; Younis et al., 2021c) (Awtry and
Loscalzo, 2000; Members; Antman et al., 2004; Pan et al., 2019).
Perhaps, the most common off-label use of aspirin is for the
primary and secondary prevention of atherosclerotic disease.
However, the protective value of aspirin has not been well
established in healthy individuals with no risk or previous
occlusive events. (Collaboration, 2002; Dai and Ge, 2012).
Aspirin is also the drug of choice for prophylaxis in
revascularization surgeries including coronary bypass surgery
(Members, Eagle et al., 2004; Smith et al., 2006). While being
initially widely used, aspirin’s use in rheumatic diseases such as
rheumatoid arthritis has declined for two reasons: 1) its anti-
inflammatory properties are established at relatively high doses,
and 2) the desired effects are reached at lower doses with more
efficacy with non-salicylate nonsteroidal anti-inflammatory
drugs (NSAIDs) (Csuka and McCarty, 1989). Despite that,
aspirin is still part of the treatment Kawasaki disease (Rife and
Gedalia, 2020). Aspirin was also proved to be beneficial in
preventing preeclampsia, and more ongoing trials are
exploring the role of aspirin in reducing the risk of colorectal
cancer (Roberge et al., 2018) (Dubé et al., 2007). In pediatrics,
aspirin is used in patients with congenital heart disease and
recently in treating multisystem inflammatory syndrome in
children (Abani et al., 2021; Abi Nassif et al., 2021).

The use of aspirin is not without adverse effects. Increased risk
of bleeding is possible, mainly secondary to decreased levels of
thromboxane A2 (Arif and Aggarwal, 2021). In addition, aspirin,
just like all NSAIDs, can potentially cause gastritis and ulcers, as
cyclooxygenase is essential in maintaining the gastrointestinal
mucosa (Awtry and Loscalzo, 2000). A rare side effect is tinnitus
at high doses. Aspirin metabolite, salicylic acid, can alter cochlear
nerve function, but tinnitus usually resolves after drug
discontinuation (Edward et al., 2021). Reye’s syndrome, which
encompasses liver failure and encephalopathy, is associated with
aspirin use in children [(MD) 2017]. Given this, aspirin is not
generally used in kids except in the case of Kawasaki disease.

ASPIRIN AND COVID-19

COVID-19 complications have been linked to an immune
dysregulation syndrome accompanied by cytokine storms
(Coperchini et al., 2020; Mehta et al., 2020). This severe

inflammation is known to trigger the coagulation cascade and
inhibit fibrinolysis, disrupting blood homeostasis. On the other
hand, COVID-19 has been found to infect vascular endothelial
cells leading to endotheliitis (Varga et al., 2020). Endothelial
inflammation and von-Willebrand exposure to sub-endothelial
collagen, in turn, precipitate thrombus formation manifesting as
arterial, venous, and microvascular thromboembolic events.
Aspirin, with its anti-inflammatory and antithrombotic
properties, could therefore protect against severe forms of
COVID infection. High dose aspirin is in fact used in MIS-C
for its anti-inflammatory properties. Aspirin is also commonly
used in atherosclerotic CVD to stabilize diseased arterial
endothelium. Its anti-platelet properties are mediated through
COX-1 inhibition preventing platelet aggregation, while its
anticoagulant properties stem from factor 8 activation
inhibition. Acetylsalicylic acid also stimulates fibrinolysis and
modifies thrombus architecture (Mekaj et al., 2015). Aspirin,
through its pleiotropic effects, was therefore naturally
hypothesized to prevent COVID’s multifactorial complications
and is the subject of the following review.

Pros
Pathologic examination of lung tissue in patients who died due to
COVID-19 infection and its complications revealed
morphological aspects of acute respiratory distress syndrome
including diffuse alveolar damage, intra-alveolar edema,
inflammatory infiltration by mononuclear and multinucleated
cells, and vascular damage (Xu et al., 2020; Yao et al., 2020; Batah
and Fabro, 2021). Further pathological examination revealed the
formation of immune and fibrin microthrombi leading to
intracapillary thrombosis (Colling and Kanthi, 2020; Batah
and Fabro, 2021). Remarkably, it is suggested that such
changes, specifically the edema and inflammatory infiltrates,
develop before the pneumonia symptoms (Tian et al., 2020).
Add to these the hyperinflammatory and hypercoagulable state
(Figure 2), marked by laboratory aberrations namely increasing
D-dimer and fibrinogen and decreasing platelet count with more
severe disease (Lin et al., 2021). From these repercussions of the
infection stems the utility of antiplatelet and anticoagulant agents
specifically aspirin.

Because aspirin is a chronic medication for many patients,
studies at first investigated the effect of chronic aspirin use on the
course of COVID-19 infection (Table 1). Osborne’s retrospective
study included 35,370 patients with and without active aspirin
prescription before acquiring SARS-CoV2 (Osborne et al., 2021).
Aspirin users had a significantly decreased risk of mortality by
32% at 14 and 30 days after infection. After adjusting to
confounding covariates [age, gender, comorbidities, and the
Care Assessment Needs (CAN) 1-year mortality score] and
propensity score matching, mortality dropped from 6.3 to
2.5% with aspirin use at 14 days and from 10.5 to 4.3% at
30 days in the propensity matched cohorts.

Other studies investigated in-hospital aspirin use irrespective
of pre-infection use. A retrospective observational cohort study
by Chow et al., studied the severity of the disease in patients who
received aspirin within the first day of admission or a week before
admission (Chow et al., 2021). Patients in both groups had similar
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vital signs and lab tests, except fibrinogen level, which was
significantly lower in patients receiving aspirin. On initial
crude analysis, there was no difference in in-hospital mortality
between the two groups in spite of the improvement in other
outcomes and no difference in rates of bleeding and overt
thrombosis. However, after adjusting to age, sex, race, body
mass index (BMI), comorbidities and home beta blocker use,
patients receiving aspirin had reduced risk of mechanical
ventilation, intensive care unit (ICU) admission and in-
hospital mortality, these results persisted on subgroup analysis.
In addition, sensitivity analysis was performed by stratifying
patients relative to the timing of aspirin use: started in the
first 24 h, in the 7 days prior to admission, or both; this
analysis showed lower rates of ICU admission in patients who
started aspirin in the first 24 h compared to the others.

Low in-hospital mortality was also deduced in other studies
assessing different populations (Haji Aghajani et al., 2021; Liu
et al., 2021). In those studies, patients were receiving aspirin

during their hospitalization not withstanding prior chronic
aspirin use, had similar baseline vital signs, inflammatory and
infectious markers, and medications used during hospitalization.

To be able to assess the efficacy of aspirin in an acute COVID-
19 setting, Meizlish et al. dissected the use of anticoagulants and
antiplatelets in COVID-19 patients with documented
abnormalities in D-dimer and fibrinogen levels (Meizlish et al.,
2021). At first, propensity matched cohorts comparing patients
receiving aspirin vs. patients receiving no aspirin were
considered, adjusting to multiple factors including physicians’
tendency to administer aspirin to critically ill patients.
Multivariate analysis showed a lower cumulative incidence of
in-hospital death in the aspirin cohort (Meizlish et al., 2021).
After May 18, they released a recommendation to administer
aspirin for all patients hospitalized for COVID-19, which showed
similar favorable outcomes.

While considering the favorable outcomes that these studies
revealed, one should consider many factors. All of these included

FIGURE 2 | COVID-19 induced hyperinflammatory and hypercoagulable states. Although the pathogenesis of COVID-19 induced coagulopathy has not been fully
elucidated, interplay among immune dysregulation, hyperinflammation and thrombosis is proposed. SARS-CoV-2 virus, via its spike protein, interacts with the ACE-2
receptor to enter the cell through endocytosis. Endothelial cells as well as respiratory cells have high expression level of ACE-2. Inside the cell, the virus releases its
genetic material and replicates using the cellular machinery. The viral effect is suggested to take place through two mechanisms: 1) Direct viral injury and 2) indirect
cytokine-mediated injury. The viral cytopathic effect is implicated in direct damage and apoptosis of the host cell thus contributing to endothelitis. In turn, endothelial
damage triggers platelet activation and aggregation. At the same time, the virus drives intense inflammation and immune dysregulation. It suppresses the lymphocytic
activity and activates macrophages and polymorphonuclear cells, thus generating pro-inflammatory cytokines including IL-1, IL-2, IL-6, IL-10, IL-17, IL-18 and TNF-α,
and leading to cytokine storm in severe illness. TF production, release of VWF and the initiation of coagulation cascade are triggered by cytokines and the injured
epithelium. The cytokine storm also induces activation of complement system which contributes to coagulopathy by activating platelets, and increasing production of
fibrin and thrombin. The cytokine storm is also associated with NETs, which in turn promotes VWF and TF activity and disables tissue factor inhibitor and
thrombomodulin, therefore induing inflammation andmicrovascular thrombosis. These cellular processes are reflected on laboratory values, which ae usually remarkable
for a combination of prolonged prothrombin time, normal tomildly prolonged activated partial thromboplastin time, thrombocytopenia, elevated D-dimer level, fibrinogen,
fibrinogen degradation products, VFW, plasminogen, protein C, and factor VIII. Clinically, the hyperinflammatory response and endothelial dysfunction affect both venous
and arterial systems. Venous thromboembolism includes pulmonary embolism and deep venous thrombosis. Arterial thromboembolism including myocardial injury and
strokes have been also reported. Consumptive coagulopathy and ultimately DIC is also observed in critically ill patients (Lippi et al., 2020a; Iba et al., 2020b; Lippi et al.,
2020b; Goshua et al., 2020; Guan et al., 2020; Levi and Thachil 2020; Mehta et al., 2020; Middleton et al., 2020; Tang et al., 2020; Varga et al., 2020; Zhang et al., 2020;
Zhou et al., 2020; Tan et al., 2021). ACE-2: angiotensin converting enzyme-2; IL: Interleukin; VWF: von Willebrand factor; NET: neutrophil extracellular traps; TF: Tissue
factor; DIC: disseminated intravascular coagulation.
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studies were retrospective in nature. Some studies had an
adequate number of patients but from a homogeneous sample
enlisted in the Veterans Health Administration, which makes the
results generalizable only to this population (Osbornes et al.,
2021). Additionally, most studies failed to distinguish between the
efficacy of chronic and acute aspirin uses. None of them have
specified whether chronic aspirin use is superior to using aspirin
only in the acute setting, and vice versa. Yet, the abovementioned
studies indeed took into consideration the baseline factors that
might affect patients’ clinical course as well as eventual morbidity
and mortality, including underlying conditions, demographics,
vital signs, and lab values at presentation and others. Specifically,
in Haji Aghajani et al., the initial bivariate analysis revealed higher
in-hospital mortality in aspirin users (Haji Aghajani et al., 2021).
After adjusting to the aforementioned factors, aspirin was found
to be protective of mortality, although aspirin users were

admitted for longer and needed more time on the mechanical
ventilator.

A meta-analysis done by Kow and Hassan included 12 studies,
six of which investigated antiplatelet use in COVID-19, and six
others investigating aspirin use (Kow and Hasan, 2021). The
pooled analysis showed a significant benefit to aspirin use in
protecting the patients from a fatal course of COVID-19. To note,
this benefit was not seen when considering antiplatelet use,
suggesting that maybe the other effects of aspirin, specifically
its anti-inflammatory properties, account for the favorable
results.

Cons
Alongside publications supporting the use of aspirin in COVID-
19 patients, there is also antipodal literature arguing against it
(Table 2).

TABLE 1 | High quality clinical studies showing evidence of beneficial aspirin role in COVID-19 disease.

Author(s) Country Date Study design Dose Mortality Mechanical ventilation Other outcomes

Osbourne
et al.

United States Feb-
21

Retrospective
database review

NA Pre-existing aspirin use was
associated with lower
mortality at 14 and 30 days
(adjusted OR: 0.38)
Propensity matched cohort:
drop in 14-day mortality from
6.3 to 2.5% and a drop in 30-
day mortality from 10.5
to 4.3%

Kow and
Hasan

United States,
United Kingdom,
China, Italy, Germany

Apr-
21

Meta-analysis NA Significantly reduced risk of a
fatal course of COVID-19 with
the use of aspirin in patients
with COVID-19 relative to
non-use of aspirin (pooled
OR = 0.50 (0.32–0.77);
pooled HR = 0.50
(0.36–0.69)

Chow et al. United States Apr-
21

Multicenter
retrospective
observational
cohort

Low
dose

In-hospital initiation of aspirin
was independently
associated with reduced in-
hospital mortality (adjusted
HR, 0.53, p-value = 0.02)

Aspirin was independently
associated with a reduced
risk for mechanical
ventilation (adjusted HR,
0.56 (0.37–0.85), p-value =
0.007)

Aspirin was associated
with a reduction in the risk
of ICU admission (adjusted
HR, 0.57 (0.38–0.85),
p-value = 0.005)

Liu et al. China Feb-
21

Single-center
retrospective
cohort

Low
dose

In-hospital aspirin initiation
had significantly lower 30-day
and 60-day mortality
compared to the non-aspirin
group

No significant difference in
the viral duration time (time
from 1st positive PCR to
1st negative PCR) between
the two groups

Meizlish
et al.

United States Apr-
21

Multicenter
retrospective

Low
dose

In-hospital, aspirin initiation
was associated with a lower
cumulative incidence of in-
hospital death, on
multivariate regression and
propensity score matching
(HR = 0.52)

Aghajani
et al.

Iran Apr-
21

Retrospective
cohort

NA Aspirin (HR = 0.753
[0.573–0.991], p-value =
0.043) was associated with
decreased risk of in-hospital
mortality

16.07% of aspirin users and
90 13.74% of nonusers
needed mechanical
ventilation (p-value = 0.324)

Length of hospital stay was
significantly longer in
patients who received
aspirin (p-value < 0.001)
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TABLE 2 | High quality clinical evidence displaying negative role for aspirin in COVID-19 disease.

Author(s) Country Date Study design Mortality Mechanical
ventilation

Other outcomes

Yuan et al. China Jan-
21

Retrospective
database review

No difference in mortality
between CAD patients taking
and not taking aspirin

No difference in need of
mechanical ventilation
between the 2 groups

No difference in severe disease,
inflammatory markers, liver and
kidney function and lung imaging
between patients taking and not
taking aspirin pre-hospitalization

Sahai et al. United States Dec-
20

Retrospective
database review

Neither aspirin nor NSAIDs
affected mortality. They were
associated with increased risk
of MI, CVA, or VTE

Salah and
Mehta

United States,
China, Iran

Mar-
21

Meta-analysis Mortality was not associated
with the use of aspirin in
patients with COVID-19 (RR
1.12, [0.84, 1.50])

Son et al. South Korea Jul-
21

Case control Mortality was not associated
with the use of aspirin.
Adjusted OR = 0.92
(0.46–1.84)

No correlation between prior
aspirin use and COVID-19
complications. Adjusted OR =
1.06 (0.66–1.69)

Abdelwahab
et al.

Egypt Jul-
21

Retrospective
cohort

No correlation between prior
aspirin use and mechanical
ventilation Adjusted OR =
1.095, p-value = 0.932

Decreased risk of
thromboembolic events with prior
aspirin use. Adjusted OR = 0.163,
p = 0.02

Pan et al. United States May-
21

Retrospective
cohort

Mortality was not associated
with the prior use of anti-
platelets. Adjusted OR = 1.13
(0.70–1.82)

No correlation between prior anti-
platelet use and the composite
outcome (high oxygen need,
invasive ventilation and death).
Adjusted OR = 0.98 (0.65–1.46)

Tremblay
et al.

United States Jul-
20

Retrospective
cohort

Mortality was not associated
with the prior use of anti-
platelets. HR = 1.029
(0.723–1.466)

No correlation between prior
anti-platelet use and
mechanical ventilation. HR =
1.239 (0.807–1.901)

No correlation between prior anti-
platelet use and either survival
time, time to mechanical
ventilation or hospital admission

Russo et al. Italy May-
20

Retrospective
cohort

In-hospital mortality was not
associated with the prior use of
anti-platelets. Adjusted RR =
0.51 (0.21–1.15) p-value =
0.110

No correlation between prior anti-
platelet use and ARDS upon
admission. Adjusted RR = 0.58
(0.38–1.14), p-value = 0.165

Banik et al. Germany Nov-
20

Retrospective
cohort

No correlation between prior
anti-platelet use and the
composite endpoint death or
transfer for ECMO. Adjusted
OR = 2.25 (0.0456–270)

No correlation between prior
anti-platelet use and the need
for mechanical ventilation.
Adjusted OR = 0.781
(0.0253–17.0)

Prior anti-platelet use correlated
with a positive chest CT. Adjusted
OR = 12.1 (1.41–167), p-value =
0.0354 prior use of anti-platelet
did not correlate with the length of
hospital stay

Horby et al. United Kingdom,
Indonesia, Nepal

Jun-
21

RCT 28-day mortality was not
associated with aspirin
treatment. RR = 0.96
(0.89–1.04) p = 0.35

Mechanical ventilation need
was not associated with aspirin
treatment. RR = 0.96
(0.9–1.03)

Rate of discharges before 28 days
was slightly higher among
patients in aspirin arm. RR = 1.06
(1.02–1.1) p- value = 0.0062
median time until discharge was
8 days in aspirin users versus
9 days in non-users. There was
no correlation with successful
cessation of mechanical
ventilation or need for renal
replacement therapy

Kim et al. South Korea Sep-
21

Retrospective
cohort

Increased risk of death among
patients who took aspirin within
the 2-weeks prior to COVID-19
diagnosis (40%) vs. those who
did not (5%) p-value = 0.027;
however, groups were not

Mechanical ventilation need
was not associated with aspirin
treatment either before
(p-value = 0.141) or after
(p-value = 0.173) diagnosis

People who received aspirin after
diagnosis were at higher risk of
needing oxygen therapy (46.7%)
vs. those who did not receive
aspirin (35.0%), p-value <0.0001.
No correlation between oxygen
(Continued on following page)
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The RECOVERY trial is, to date, the only published
randomized clinical trial (RCT) testing the benefits of aspirin
therapy in COVID-19 patients. This trial is an open-label,
platform RCT that recruited 14,892 inpatients with COVID-
19. In this study, 7,351 patients were randomly allocated to
receive 150 mg of aspirin daily alongside usual care, while
7,541 received usual care alone. It involved 177 hospitals in
the United Kingdom, two hospitals in Indonesia, and two
hospitals in Nepal. Authors did not find a correlation between
aspirin intake and 28-day mortality, the study’s primary outcome
(rate ratio 0.96; 95% confidence interval 0.89–1.04; p = 0.35).
There was also no significant difference in the composite outcome
of mechanical ventilation or death within 28 days of admission
between the two treatment arms (risk ratio 0.96; 95% CI
0.90–1.03; p = 0.23). On the other hand, a slightly higher but
significant proportion of inpatients on aspirin was discharged
alive before 28 days (75 vs. 74%; rate ratio 1.06; 95% CI 1.02–1.10;
p = 0.0062) (Abani et al., 2021).

This study only looked at inpatients and excluded those on
chronic aspirin therapy. This trial being a platform RCT, it also
involved looking at many drugs simultaneously. For example,
90% of patients in this trial were taking corticosteroids while 93%
were on lowmolecular weight heparin (LMWH). Authors suggest
these high rates of antithrombotic therapy with LMWH and
corticosteroid treatment must have decreased thrombo-
inflammatory stimulation in the entire study population.
Therefore, the treatment arm might not have significantly
benefited from aspirin given that almost everyone was
anticoagulated and taking corticosteroids. However, in a real-
life scenario where a patient is admitted and given steroids and
LMWH, it seems the addition of aspirin is not indicated and will
not further improve outcomes. Aspirin might also be more
beneficial among people with a higher risk of thrombosis,
i.e., the patients on chronic antiplatelet therapy that were
excluded from the study.

The remaining literature against aspirin use in COVID-19
disease stems from retrospective cohort and case control
studies, none of which found a correlation between aspirin
treatment and mortality despite adjusting for comorbidities
such as cardiovascular disease and its risk factors (older age,
hypertension, diabetes, hyperlipidemia, smoking . . . ) (Pan
et al., 2019; Russo et al., 2020; Tremblay et al., 2020; Banik
et al., 2021; Sahai et al., 2021; Son et al., 2021; Yuan et al.,
2021). These studies looked at patients with an underlying

condition and who were prescribed aspirin before testing
positive for COVID-19. The bias imparted by their
comorbidities should be accounted for when adjusting for
risk factors, however it cannot be excluded that a
confounder might have been missed in the statistical
analysis. Furthermore, no correlation was found between
mortality and either aspirin use in specific (Sahai et al.,
2021; Son et al., 2021; Yuan et al., 2021) or antiplatelet use
more generally (Pan et al., 2019; Russo et al., 2020; Tremblay
et al., 2020; Banik et al., 2021). The results were also similar
between inpatient populations (Pan et al., 2019; Russo et al.,
2020; Banik et al., 2021; Yuan et al., 2021) and mixed
ambulatory and hospitalized patients (Tremblay et al., 2020;
Sahai et al., 2021; Son et al., 2021). In addition, despite
combining the findings of Russo et al. and Tremblay et al.
in a meta-analysis, the effect of antiplatelets on mortality was
still insignificant OR = 0.65 (0.40–1.06) p = 0.498 for a total of
3,964 patients (Russo et al., 2020; Tremblay et al., 2020).
Similarly, but in a non-COVID setting, a meta-analysis
done by Liang et al. including a pooled population of 6,764
patients showed that prior aspirin use was linked with a
significantly lower incidence of ARDS in at-risk patients
(p = 0.018) but had no effect on hospital mortality (OR,
0.88; 95% CI, 0.73–1.07; p = 0.204; I2 = 0%) (Liang et al.,
2020). These findings were validated by Wang et al. in their
2018 meta-analysis on the same subject (Wang et al., 2018).

Microthrombi formation plays an essential role in COVID-
19 pathophysiology, aspirin use could therefore be potentially
beneficial in that regard. However, findings concerning
aspirin’s effects are contradictory. Sahai et al. noticed an
increased risk of thromboembolic events among COVID-19
patients on chronic aspirin therapy despite adjustment for
comorbidities like age, sex, smoking, hypertension, diabetes,
and cardiovascular diseases (adjusted OR = 0.163, p = 0.005),
however they failed to adjust for a history of MI, stroke or
venous thromboembolism (VTE) (Sahai et al., 2021). Aspirin
therapy may therefore simply be a coincidental signal of the
increased baseline risk of thrombosis in these patients.
However, it could also be an indication of a different
mechanism of thrombosis in COVID-19. Manne et al.
detected a deranged and altered platelet phenotype in
SARS-COV-2 (Manne et al., 2020). While Elbadawi et al.
found absolute neutrophil count to be an independent
predictor of thrombotic events in patients with COVID-19

TABLE 2 | (Continued) High quality clinical evidence displaying negative role for aspirin in COVID-19 disease.

Author(s) Country Date Study design Mortality Mechanical
ventilation

Other outcomes

matched for prior CAD No
correlation between mortality
and aspirin treatment within
2 weeks after diagnosis

need and aspirin use before
diagnosis. No correlation
between COVID infection rate and
prior aspirin use. No correlation
between aspirin use before or
after diagnosis and ICU admission

CAD, coronary artery disease; NSAIDS, non-steroidal anti-inflammatory drugs; MI, myocardial infarction; CVA, cerebrovascular accident; VTE, venous thromboembolism; ARDS, acute
respiratory distress syndrome; ECMO, extra-corporeal membrane oxygenation; ICU, intensive care unit.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8496288

Zareef et al. Aspirin and COVID-19

42

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


(Elbadawi et al., 2021). Several studies have also shown the role
of neutrophil extracellular traps in thrombus formation
(Skendros et al., 2020). These findings supporting an
immunological trigger to thrombosis suggest platelets may
be indirect mediators in this process and perhaps not the
best direct targets for pharmacological intervention (Sahai
et al., 2021).

Another retrospective trial conducted in Egypt by Abdelwahab
et al. found that the risk of stroke or MI among patients on
chronic aspirin therapy was significantly lower than among non-
users after adjustment (p = 0.02), but anticoagulants were found
to be even more effective (adjusted OR = 0.071, p < 0.001)
(Abdelwahabet al., 2021). The essence of coagulopathy in
COVID-19 is indeed hypothesized to be massive fibrin
formation. Anti-platelets might therefore not work as well as
anti-coagulants if microthrombi have more fibrin than platelets.
In fact, 90% of hospitalized COVID-19 pneumonia patients have
elevated D-dimer levels. D-dimer can also reach very high
thresholds and it is associated with disease severity (Iba et al.,
2020a).

Another studied outcome was the need for mechanical
ventilation, and here too there was no clear benefit for aspirin
among COVID-19 patients. Antiplatelets were not found to affect
the need for or time to mechanical ventilation, nor the risk of
acute respiratory distress syndrome (ARDS) upon admission
among patients on aspirin or other anti-platelets (taken as
primary or secondary cardiovascular prophylaxis or as
treatment for thromboembolic disease) (Pan et al., 2019; Russo
et al., 2020; Tremblay et al., 2020; Abdelwahab et al., 2021; Banik
et al., 2021). Limitations within these studies include failure to
adjust for smoking status and BMI, small sample size
(Abdelwahab et al., 2021), inclusion of only inpatients
(Abdelwahab et al., 2021), and lack of correction for the
influence of post-admission treatments (Tremblay et al., 2020).
Banik et al. were able to detect a positive effect of anti-coagulants
on mechanical ventilation need but found no correlation between
antiplatelets and intubation (Banik et al., 2021). Surprisingly, they
found that a positive chest CT was correlated with antiplatelet
intake despite adjustment (OR = 12.1 (1.41–167), p = 0.0354).
While another retrospective cohort showed an increased risk of
oxygen therapy in patients prescribed aspirin within 2 weeks after
diagnosis (Kim et al., 2021); but here propensity matching failed
to adjust for a history of CAD. SARS-Cov-2 was indeed found to

infect pulmonary endothelial cells causing endothelial injury and
thrombosis (Acosta and Singer, 2020). It also seems that an
important feature of ARDS is platelet and/or neutrophil
aggregation (Zarbock et al., 2006). Gongalves de Moraes et al.
showed that aspirin treatment could increase neutrophil number
in the bronchial alveolar fluid in a mouse model (Gongalves de
Moraes et al., 1996) which could potentially explain the
correlation between aspirin intake and a positive chest CT,
even though this correlation had no prognostic value as noted
by Banik et al.

CONCLUSION

The pandemic has imparted significant burdens on the global
health and economic sectors, leaving behind substantial
morbidity and mortality. While the scientific community
merged efforts to obtain the vaccine at an unpreceded velocity,
the search for a therapeutic agent is still ongoing. Aspirin with its
various molecular targets and properties has been under clinical
investigations. Gathering all the high-quality clinical evidence to
date, it appears that the effect of aspirin is still not clearly
delineated. Despite the large number of studies exploring
aspirin role in COVID-19 disease, the evidence is still
premature. Almost all studies are retrospective in nature, and
many fail to consider baseline clinical status that might eventually
alter the outcomes measured. More studies are needed to better
define recommendations of clinical practice. The anti-
inflammatory and anti-platelet properties of aspirin are
appealing, yet future studies have to pledge to more objective
designs. Multi-center placebo-controlled high-quality
randomized clinical trials with plainly outlined baseline
characteristics and outcomes are urgently needed to evaluate
the efficacy of aspirin.
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Multiple methodologies have been developed to identify and predict adverse events (AEs);
however, many of these methods do not consider how patient population characteristics,
such as diseases, age, and gender, affect AEs seen. In this study, we evaluated the utility of
collecting and analyzing AE data related to hydroxychloroquine (HCQ) and chloroquine
(CQ) from US Prescribing Information (USPIs, also called drug product labels or package
inserts), the FDA Adverse Event Reporting System (FAERS), and peer-reviewed literature
from PubMed/EMBASE, followed by AE classification and modeling using the Ontology of
Adverse Events (OAE). Our USPI analysis showed that CQ and HCQ AE profiles were
similar, although HCQ was reported to be associated with fewer types of cardiovascular,
nervous system, and musculoskeletal AEs. According to EMBASE literature mining, CQ
and HCQ were associated with QT prolongation (primarily when treating COVID-19), heart
arrhythmias, development of Torsade des Pointes, and retinopathy (primarily when treating
lupus). The FAERS data was analyzed by proportional ratio reporting, Chi-square test, and
minimal case number filtering, followed by OAE classification. HCQwas associated with 63
significant AEs (including 21 cardiovascular AEs) for COVID-19 patients and 120 significant
AEs (including 12 cardiovascular AEs) for lupus patients, supporting the hypothesis that
the disease being treated affects the type and number of certain CQ/HCQ AEs that are
manifested. Using an HCQ AE patient example reported in the literature, we also
ontologically modeled how an AE occurs and what factors (e.g., age, biological sex,
and medical history) are involved in the AE formation. The methodology developed in this
study can be used for other drugs and indications to better identify patient populations that
are particularly vulnerable to AEs.
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INTRODUCTION

Generally, adverse events (AEs) are an undesirable experience
associated with the use of a medical product, and can or cannot be
causally related (see 21 CFR 314.80) (FDA, 2016). AEs can range
from mild effects such as abdominal discomfort to more severe
effects such as cardiac arrhythmias or acute neurological
disorders. AEs may be detected during research or clinical
studies or via postmarket surveillance. AEs can differ between
patient populations, including patients taking the same drug for
different indications (Yu et al., 2019). These differences can often
be difficult to elucidate and may be overlooked in both traditional
and newer pharmacovigilance methods.

To better study various AEs under different conditions, we can
rely on the help from biomedical ontologies. A biomedical
ontology is a structured vocabulary of computer- and human-
interpretable terms and relations among these terms that
represent entities in the biomedical world and how they relate
to each other. Ontologies play a critical role in data science to
facilitate biomedical data normalization, integration, processing,
and analyses (Schulz et al., 2013; Hoehndorf et al., 2015). The
Ontology of Adverse Events (OAE) is a community-based formal
AE ontology designed to standardize and classify different types
of AEs arising subsequent to medical interventions. In addition,
OAE addresses AE properties and associated factors and supports
computer-assisted reasoning (He et al., 2014). The OAE has been
used to support drug and vaccine AE data analysis and could be
used to identify AE differences between populations (Sarntivijai
et al., 2012; He et al., 2014; Xie et al., 2016a; Xie et al., 2016b;
Sarntivijai et al., 2016); additionally, OAE has demonstrated
better performance in classifying AEs compared to the
Medical Dictionary for Regulatory Activities [MedDRA, the
default system for standardizing terms of AEs after medical
interventions (Brown et al., 1999)] (Sarntivijai et al., 2012; Xie
et al., 2016a; Xie et al., 2016b).

With the coronavirus disease 2019 (COVID-19) pandemic
spreading worldwide, many FDA-approved drugs are being
evaluated for their efficacy in COVID-19 treatment (Sultana
et al., 2020). One class of drugs that has been evaluated is the
quinoline antimalarials (Foley and Tilley, 1997), which include
the FDA-approved drugs chloroquine (CQ) and
hydroxychloroquine (HCQ). This drug class was hypothesized
to treat COVID-19 based on findings in a related virus, SARS-
CoV (Keyaerts et al., 2004). In late March 2020, the FDA issued
an Emergency Use Authorization (EUA) for CQ and HCQ to
treat certain patients with COVID-19 in a hospital setting (FDA,
2020b). However, on June 15, 2020, the FDA revoked the
emergency use authorization of HCQ and CQ for treatment of
COVID-19 patients due to lack of efficacy and a significant risk of
AEs, including cardiotoxicity (FDA, 2020a). While CQ and HCQ
were previously associated with cardiotoxicity, the prominent
appearance of this AE in COVID-19 patients raises the possibility
that AE profiles associated with these drugs depend on the disease
being treated.

The aim of this paper is to develop a new ontology-based
approach to evaluate different patient populations for AEs, using
the various indications of CQ and HCQ as a use case. While the

consensus is that CQ and HCQ are not effective for COVID-19
(Group et al., 2020), many clinical trials have been conducted,
providing a significant amount of AE and other clinical data. In
this study, we collected and analyzed AE reports from FAERS,
literature, and product labels across and within the various
indications and model the results in the OAE to identify
similarities and differences in AEs. We also tested our
hypothesis that CQ and HCQ would have different AE
profiles from each other, and that these profiles would differ
depending on the indication. The methodology developed in this
study is scalable and can be used to identify similarities and
differences in AEs between other drugs and their respective
indications.

METHODS

General Workflow of Our Methodology
Figure 1 shows the workflow of our methodology, with
Figure 1A providing the general workflow and Figure 1B
providing the workflow for this evaluation of HCQ and CQ.
Specifically, our research used three data sources: 1) the
United States Prescribing Information (USPI), also known as
package insert information, 2) literature databases including
PubMed (Lu, 2011) and EMBASE (Wong et al., 2006), and 3)
FAERS data. All data were processed and analyzed to extract
drugs and their associated AEs under specific conditions (such as
COVID-19 infection). Then the AE terms for one or more specific
drugs were mapped to the OAE to generate OAE-based AE
classifications. Alternatively, for the FAERS data, specific
statistical tests, including proportional reporting ratio (PRR)
(Evans et al., 2001), Chi-square, and minimal case number
filtering tests were performed, and statistically significantly
enriched AEs were identified. PRR is often used to measure
the extent to which a particular AE is reported for individuals
taking a specific drug, compared to the frequency at which the
same AE is reported for patients taking other drugs in an AE case
report system such as FAERS. These AEs under FAERS were
tagged with MedDRA IDs and were then mapped to OAE terms.
The OAE-based AE classifications were then used for further
classification.

In this study, we used the above-described methodology to
analyze the AE differences by indication for HCQ and CQ. The
details about the HCQ and CQ AE analysis workflow (Figure 1B)
are provided below.

AE Collection From US Prescribing
Information Inserts and Literature
Three drug USPIs, commonly known as a package insert or label,
databases were surveyed: Drugs@FDA, DailyMed, and
RxDrugLabels, to find AEs associated with name brand and
generic quinoline-containing drug products. The FDA USPIs
available on September 30, 2020, of the name brand drugs of
CQ and HCQ, Aralen® and Plaquenil® respectively, as well as two
generic versions of the drugs, were surveyed. AEs listed under the
“Adverse Reactions” section were extracted, mapped, and
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catalogued using the OAE. Ontologies were created to visualize
CQ and HCQ’s specific AEs as well as their shared AEs.
Meanwhile, the diseases treated by these drugs were also gathered.

AEs reported in published literature as of January 17, 2021,
were found through the biomedical bibliographic database,
EMBASE (Wong et al., 2006). The usage of CQ/HCQ was at
its peak before June 15, 2020 when the EUA was revoked by the
FDA due to safety issues and lack of efficacy (FDA, 2020a). The
literature reports of their usage dramatically decreased after 2020.
Each drug was searched under three disease states: COVID-19,
systemic lupus erythematosus (SLE), and rheumatoid arthritis for
HCQ, and COVID-19, systemic lupus erythematosus, and
malaria for CQ. Results were then filtered by the “Drugs”
category to select specific papers using CQ or HCQ. The key
subheading, “Adverse drug reaction,” was used to find specific
AEs mentioned and provided the number of literature reports
where these AEs were reported. The five most commonly
reported AEs were collected, along with the number of papers
mentioning those AEs and their respective percentages of the
total, for each disease state. Results were then analyzed to exclude
repeat data.

Additional clinical trials and case reports were found through
PubMed using the search terms, “COVID-19”, “chloroquine,” or
“hydroxychloroquine,” and “adverse events”, by the date of
January 17, 2021. While over 100 clinical trials related to CQ/
HCQ exist in clinicaltrials.gov, only five clinical trials were found
to have AE results available (as of March 12, 2021).

AE Collection and Analysis From FAERS
FAERS is a database containing AEs andmedication error reports
that have been sent to FDA by industry, healthcare providers,
patients, and other interested parties. To ensure these data are
easily accessible, FDA has developed the FAERS Public
Dashboard (https://www.fda.gov/about-fda/update-fda-adverse-

event-reporting-system-faers-public-dashboard), a web-based
interface that allows for user-friendly querying and
organization of FAERS data. The dashboard sorts the data by
individual AE or individual product (drug). AEs in the dashboard
correspond to MedDRA Preferred Terms, and they are also
grouped by “Reaction Group,” which corresponds to the
MedDRA System Organ Class (SOC) terms. The AE data for
generic CQ, Aralen®, generic HCQ and Plaquenil® were
downloaded from the dashboard as Excel files, and at the time
of the analysis the last quarterly data update had been included on
September 30, 2020. Additionally, the total number of reports in
FAERS and the number of reports for each AE in FAERS were
also recorded.

The Excel spreadsheets contained each AE reported for the
individual drug and the number of cases reported for that AE-
drug pair. The four products were analyzed separately and then
compared. For both HCQ and CQ, the generic drug is more
commonly used, and therefore used for further analysis. For HCQ
(generic), the data was also sorted by reported indication to
compare the incidence of AEs for COVID-19 and systemic lupus
erythematosus. HCQ was chosen for further analysis as more
cases have been reported in the FAERS database for all
indications, which would reduce statistical error. The data was
sorted by number of reported AE cases, and any AE with fewer
than 10 reported cases or representing less than 0.2% of the
number of case reports for that drug was deemed insignificant.
Using the data in the spreadsheet, a Chi-square test and PRR test
(Evans et al., 2001) were performed for each AE. PRR compares
the individual case numbers for each AE to the overall cases in the
FAERS system and the overall cases reported for the specific drug.
Cases with a Chi-square result of less than 4 (corresponding with
a p-value > 0.05) and a PRR result of less than 2 were determined
to be insignificant (Sarntivijai et al., 2012). The resulting AEs were
then sorted back into the high-level Reaction Groups/MedDRA

FIGURE 1 |Workflow for our drug AE analysis. (A)General workflow. (B)HCQ specific workflow. The red paths presented with red edges represent the workflow of
FAERS-specific drug AE analyses. USPI, United States Prescribing Information. FAERS, FDA Adverse Event Reporting System. AE, Adverse Event. PRR, Proportional
Reporting Ratio. OAE, Ontology of Adverse Event. HCQ, hydroxychloroquine.
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SOCs within Excel, and the number of unique cases for each
group was recorded. This was then divided by the total significant
AE instances and converted to a percentage to allow for
comparison. The resulting lists for each drug were input into
the OAE.

OAE Ontology Term Mapping, Extraction,
and Visualization
An online biomedical ontology tool OntoFox (Xiang et al., 2010)
was used to extract a subset of the Ontology of Adverse Event that
includes the enriched AE terms identified in our data analysis as
well as other high level AE terms related to these enriched AE
terms. The OntoFox output was then visualized using the
Protégè-OWL editor (Musen, 2015). This process develops a
visual representation of all the AEs for a given drug and
indication, and how they all relate to one another by placing
them in groups. For example, “myopathy” is categorized under
“muscle AE,” which can then be categorized under the more
general “musculoskeletal and connective tissue AE.” This
provides a way to directly compare specific types of AEs
between different drugs and indications.

RESULTS

Comparison of CQ and HCQ AEs From
USPIs
CQ and HCQ are generally considered safe molecules with low
incidences of AEs (James et al., 2007). With their similar
structures and both being 4-aminoquinolines, CQ and HCQ
have similar AE profiles, with many AEs in common
(Figure 2). There is evidence that HCQ, a derivative of CQ, is
associated with fewer AEs, although no mechanism has been
proposed (Felson et al., 1990; Ruiz-Irastorza et al., 2010).
However, CQ has fewer AEs listed on the USPIs compared to
HCQ. Although HCQ has more labeled AEs, it lacks specific
cardiovascular, nervous system, and musculoskeletal/connective
tissue AEs compared to CQ.

COVID-19 CQ/HCQ AE Profiles From
Literature Mined Reports Using EMBASE
AEs from EMBASE, using the filters, “Drugs,” and “Adverse drug
reactions,” were used to gather the number of published articles
that report the specified AE for both CQ and HCQ, as

FIGURE 2 | Comparison of USPI-listed AEs associated with chloroquine and Hydroxychloroquine using the OAE. (A) Venn Diagram of CQ and HCQ AEs. (B)OAE
display of 28 CQ-specific AEs (C)OAE display of 42 AEs shared by CQ and HCQ. (D)OAE display of 31 AEs specific to HCQ. These results were identified using the FDA
US Prescribing Information (USPI) data. In each panel in (B,D), cardiovascular and eye AEs are expanded, if present in the list. Overall CQ and HCQwere associated with
similar AE profiles, but HCQ had fewer types of severe cardiovascular, nervous, and musculoskeletal AEs.
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summarized in Table 1 and Table 2, respectively. The inclusion
criteria for the papers screened were to be reporting results from a
human randomized clinical trial and published during
2017–2021. The literature regarding COVID-19 were all
published during 2019–2021, but because CQ and HCQ
possess a long history in both autoimmune and infectious
diseases, the inclusion criteria for literature regarding those
diseases (rheumatoid arthritis, systemic lupus erythematosus,
and malaria) was extended two additional years, back to 2017.
This is to ensure the data is current and follows modern AE
collection guidelines.

Of 87 published papers that were reviewed for CQ use for
COVID-19, 38 (43.7%) reported the development of QT
prolongation, 13 (14.9%) reported the development of heart
arrhythmias, and 13 (14.9%) reported the development of
Torsade des Pointes. Only 11 (12.6%) reported retinopathy,
an AE commonly associated with CQ use. 23 published articles
on CQ use for SLE were reviewed, of which 6 (26.1%) reported
cardiomyopathy as an AE. The most prevalent AE associated
with CQ use for SLE are eye AEs, including retinopathy
(34.8%) and eye toxicity (21.7%). Additionally, 25 articles
on CQ use for malaria were reviewed, of which the most
common AEs include general side effects, headache, and
retinopathy. QT prolongation was reported only in 6 (24%)
articles.

This trend holds true when observing HCQ use for COVID-19
and SLE. QT prolongation is also the most prevalent AE reported
in the 303 published articles on HCQ use for COVID-19, with
other cardiac AEs being heart arrhythmias and Torsade des
Pointes. HCQ use for SLE (lupus) resulted in similar AEs as
CQ use for SLE, with cardiomyopathy being reported in 8.9% of
the 146 published articles compared to retinopathy (26.7%) and
eye toxicity (8.2%). As for the 133 published articles on HCQ use

for RA, retinopathy was the most reported AE, followed by rash,
infection, nausea, and general side effects.

COVID-19 CQ/HCQ AE Profiles From
Clinical Trial and Observational Studies
Reports
AEs associated with COVID patients treated with CQ and HCQ
were collected. At the time of reviewing the related works, not
many studies have been conducted. Although many reports focus
on HCQ, only two studies focused on CQ. Therefore, these two
studies were surveyed for CQ. Three representative HCQ studies
were also surveyed. The results are summarized in Table 3 and
described below.

In a 2018 study in China, no serious AEs were reported
(Huang et al., 2020). Out of ten COVID-19 patients treated
with CQ, five reported AEs. The most frequent AEs were
vomiting (50%), diarrhea (50%), nausea (40%), and cough
(40%). Other non-serious AEs such as abdominal pain, rash,
and shortness of breath were also reported (10%) (Huang et al.,
2020). However, in a 2020 randomized clinical trial held in Brazil,
high and low dosages of CQ were compared in patients with
severe COVID-19 (Borba et al., 2020). The lower dose group
(450 mg daily) showed fewer cases of AEs including decreased
hemoglobin, increased creatinine, increased creatine kinase, and
increased CK-MB, an isoenzyme of creatine kinase. Seven of
thirty-seven patients (19%) receiving the high dosage reported a
prolonged QTc interval compared to one patient receiving the
low dosage, and two patients receiving the high dosage reported
symptoms of ventricular tachycardia compared to zero patients
receiving the low dosage (Borba et al., 2020).

In a 2020 study conducted in China, seventy-five COVID-19
patients were treated with HCQ with 30% of them reporting AEs.

TABLE 1 | Five AEs most frequently discussed in papers describing chloroquine (CQ) use in various disease states (as discerned by a search of EMBASE).

COVID-19 Systematic Lupus Erythematosus (SLE) Malaria

Adverse Event Frequency (%a) Adverse Event Frequency (%a) Adverse Event Frequency (%a)

QT Prolongation 38 (43.7%) Retinopathy 8 (34.8%) General Side Effects 8 (32%)
Heart Arrhythmia 13 (14.9%) Cardiomyopathy 6 (26.1%) Headache 7 (28%)
Torsade des Pointes 13 (14.9%) Eye Toxicity 5 (21.7%) Retinopathy 7 (28%)
Retinopathy 11 (12.6%) Heart Arrhythmia 4 (17.4%) QT Prolongation 6 (24%)
General Side Effects 9 (10.3%) Diarrhea 3 (13.0%) Nausea 5 (20%)

aPercentage of papers reporting this AE, as classified by the EMBASE database.

TABLE 2 | Five AEs most frequently discussed in papers describing hydroxychloroquine (HCQ) use in various disease states (as discerned by a search of EMBASE).

COVID-19 Systemic lupus erythematosus (SLE) Rheumatoid arthritis (RA)

Adverse Event Frequency (%a) Adverse Event Frequency (%a) Adverse Event Frequency (%a)

QT Prolongation 133 (43.9%) Retinopathy 39 (26.7%) Retinopathy 23 (17.3%)
Diarrhea 47 (15.5%) Cardiomyopathy 13 (8.9%) Rash 13 (9.8%)
Nausea 47 (15.5%) Eye Toxicity 12 (8.2%) Infection 12 (9.0%)
Heart Arrhythmia 37 (12.2%) Rash 12 (8.2%) Nausea 12 (9.0%)
Torsade des Pointes 35 (11.6%) Diarrhea 11 (7.5%) General Side Effect 11 (8.3%)

aPercentage of papers reporting this AE, as classified by the EMBASE database.
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Three percent of patients reported serious AEs, including disease
progression (1%) and upper respiratory tract infection (1%). The
other 27% of patients who reported AEs reported non-serious
AEs, the most common ones being diarrhea (10%) and vomiting
(3%). Other AEs commonly associated with HCQ such as blurred
vision, fatigue, and abdominal discomfort were only reported
once each (Tang et al., 2020). In the second HCQ trial in New
York (2020) involving 1438 participants, diarrhea was reported in
17% of patients treated with HCQ alone and 11.6% of patients
treated with HCQ in conjunction with azithromycin, a broad-
spectrum antibiotic used in treating infections present in
COVID-19 patients. The New York study also reported
serious cardiac AEs such as cardiac arrest (13.7%), abnormal
ECG (27.3%), arrhythmia (16.2%) and QT prolongation (14.4%)
in COVID-19 patients treated with HCQ alone (Rosenberg et al.,
2020). In the impactful study done by the RECOVERY Group,
who treated 1,561 COVID-19 patients with HCQ, 60 (8.2%)
developed major cardiac arrhythmias compared to 90 of 3,155
(6.3%) of patients who received the usual care. The most common
cardiac AEs reported were supraventricular tachycardias, with 56
(7.6%) patients from the HCQ group and 74 (5.2%) patients in
the usual care group (Borba et al., 2020).

Differential FAERS AE Profiles by CQ
and HCQ
In total, 1,998 AE case reports were collected for CQ and
Aralen® with possibility for duplication. A total of 908
different AEs were reported for CQ and 351 different AEs
were reported for Aralen®. After statistical analysis (see the
Methods section for detail), 78 AEs met or exceeded the
significance thresholds for CQ, and 63 AEs met or exceeded
the significance thresholds for Aralen®. The three most
frequent reaction groups among the significant AEs for CQ
were Cardiac Disorders, Nervous System Disorders, and Eye
Disorders. The two most frequent reaction groups among the
significant AEs for Aralen® were Eye Disorders, and Nervous

System Disorders. Under the source term there were 15
subheadings for CQ and 16 subheadings for Aralen®.

In total, 36,641 AE reports were collected for HCQ and
Plaquenil®. A total of 3,486 different AEs were reported for
HCQ, and 2,796 different AEs for Plaquenil®. After statistical
data analysis, 353 AEsmet or exceeded the significance thresholds
for HCQ and 303 AEs for Plaquenil®. The three most frequent
reaction groups among the significant AEs for HCQ and
Plaquenil®, analyzed separately but with the same result, were
General Disorders and Administration Site Conditions (top
condition: drug ineffective AE), Musculoskeletal and
Connective Tissue Disorders (top condition: rheumatoid
arthritis AE), and Gastrointestinal Disorders (top condition:
nausea AE). Under the top-level source term in OAE there
were 23 subheadings for HCQ and 21 subheadings for Plaquenil®.

When considering FAERS reports across all indications, the
percentage of significant AE cases for just CQ that falls in the
FAERS reaction group of Cardiac Disorder is about 20.5%
compared to 0.32% for HCQ. OAE’s Cardiovascular AE
(http://purl.obolibrary.org/obo/OAE_0000493) is highlighted in
Figure 2. The number of AEs under the Cardiovascular AE
heading for CQ (Figure 3A) is much larger than the number
of AEs under the Cardiovascular AE heading for HCQ
(Figure 3B). Compared with the results from USPIs
(Figure 2), more cardiovascular AE term types were reported
in both CQ and HCQ cases in FAERS. This could be a result of
increased use after the EUA and stimulated reporting after news
of cardiac complications. HCQ reports doubled in the year 2020,
10,362 compared to 5,042.

Differential FAERS AE Profiles in Systemic
Lupus Erythematosus and COVID-19
Patients Treated With HCQ
The FAERS database had 1,002 case reports for COVID-19 patients
and 1,527 case reports for SLE patients treated with HCQ. After
analysis, there were 63 significant AE types for COVID-19 patients

TABLE 3 | AEs associated with CQ/HCQ administration were reported in two clinical trials and three observational studies where COVID-19 patients were given either CQ or
HCQ in combination with standard of care drugs.

Drug/Location/References Clinical
Trial No./PubMed No

AEs Reported

Chloroquine (Rosenberg et al., 2020) PMID: 32236562 Vomiting; abdominal pain; nausea; diarrhea; rash/itchiness; cough; shortness of breath

Chloroquine (Borba et al., 2020) NCT04323527 PMID:
32330277

Decreased hemoglobin; increased creatinine; increased CK; increased CKMB; QTcF
>500 m; ventricular tachycardia

Hydroxychloroquine (Tang et al., 2020) PMID: 32409561 Diarrhea; vomiting; nausea; abdominal discomfort; thirst; sinus bradycardia; hypertension;
orthostatic hypotension; hypertriglyceridemia; decreased appetite; fatigue; dyspnoea;
flush; kidney injury; coagulation dysfunction; blurred vision; decreased WBC; increased
alanine aminotransferase; increased serum amylase; decreased neutrophil count; disease
progression*; upper respiratory tract*

Hydroxychloroquine (Rosenberg et al., 2020) PMID: 32392282 Diarrhea; hypoglycemia; cardiac arrest*; abnormal ECG*; arrhythmia*; QT prolongation*

Hydroxychloroquine (RECOVERY Group, (Group
et al., 2020)

NCT04381936 Atrial flutter/fibrillation, other supraventricular tachycardia, ventricular tachycardia,
ventricular fibrillation, atrioventricular block requiring intervention

Serious AEs, as defined by the respective study investigators, are marked with *.
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and 120 significant AE types for SLE patients (Supplementary Table
S1). When broken into MedDRA higher level term percentages, of
significant cases for each separate disease, the categories with the
greatest differential were Cardiac Disorders, General Disorders and
Administration Site Conditions, and Injury, Poisoning and
Procedural Complications (Figure 4). Compared to HCQ, a
greater percentage of the significant cases for both COVID-19 and
SLE were cardiac disorders; however, cardiac disorders are markedly
more reported in COVID-19 patients (i.e., 12.2%) than that in SLE
patients (3.8%) taking the same drug (Figure 4).

Of the 63 significant AEs for COVID-19 patients treated with
HCQ, 21 are classified by OBO as Cardiovascular AE (http://purl.
obolibrary.org/obo/OAE_0000493), a concern FDA has
previously highlighted in association with the treatment of
COVID-19 patients with quinoline drugs (Arshad et al., 2020).
Of the 120 significant AEs for SLE patients treated with HCQ, 12
fall under Cardiovascular AE (http://purl.obolibrary.org/obo/
OAE_0000493). In addition, 14 AEs fall under the
Cardiovascular AE sublevel Cardiac Disorder AE (http://purl.
obolibrary.org/obo/OAE_0000084) for COVID-19 patients
compared to 7 AEs for SLE patients (Figure 5). Notably, there
were more reports of long QT syndrome, atrial fibrillation, and
bradycardia in COVID-19 compared to SLE. This demonstrates
that AE profiles for a drug may differ between indications.

Drug AE Condition Modeling and
Classification
While our study has so far focused on the analysis of the
difference between AE manifestation between SLE and
COVID-19 patients following CQ/HCQ drug administration,
AEs occur under specific conditions that also include many
other factors than the disease type. Figure 6A provides a
general OAE modeling and classification of how an AE occurs
and what factors are involved in the generation of the AE.
Basically, an AE of a patient occurs after a drug
administration in the patient after its diagnosis of a specific
disease with specific disease symptoms or signs. The patient’s
qualities (e.g., age and biological sex) and medical history are
associated with and may affect the manifestation of the AE.

The general model shown in Figure 6A can be illustrated with
specific patient cases. As part of the literature review, many case
reports (n = 1) have been published as observational reports. We
have selected one such case report in which a COVID-19 patient

FIGURE 3 | Comparison of significant cardiovascular AEs for CQ and HCQ from the FAERS database. (A) Venn Diagram of significant cardiovascular AEs for CQ
and HCQ. (B)OAE classification of 10 significant cardiovascular AEs for CQ. (C) OAE classification of 6 significant cardiovascular AEs for HCQ. The red sign of “X” next to
the AE terms in (B,C) represent the shared AE for CQ and HCQ. Note that cardiac disorder AE passed the significance threshold for CQ (A) but not for HCQ (B). Overall
CQ was associated with more cardiovascular AEs.

FIGURE 4 | Significant AE reaction group percentage comparison for
COVID-19 and SLE patients treated with HCQ from the FAERS database. The
purpose bars represent the percentage of the total significant count for
COVID-19 for each reaction group. The green bars represent the
percentage of the total significant count for SLE for each reaction group. The
reaction groups of Ear and Labyrinth Disorders, Immune System Disorders,
Pregnancy, Puerperium and Perinatal Conditions, Product Issues, Psychiatric
Disorders, Social Circumstances, and Surgical and Medical Procedures were
left off the graph due to small percentages for both patient types. Note that
only the AEs that have passed the significance test were used here for all
calculations). HCQ AE patterns appeared different depending on the diseases
treated.
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developed cardiac AEs after beginning HCQ treatment
(Abdelmaseih et al., 2020). The details of the case were
mapped (Figure 6B) to help identify variables that could
potentially affect disease state and AE outcomes. This is the

modeling of the case study of a 75-year-old male presenting to the
emergency room with worsening shortness of breath, dry cough,
fatigue, and high fever (Abdelmaseih et al., 2020). The patient had
a medical history of hypertension and diabetes. After testing

FIGURE 5 | Comparison of significant cardiac AEs for COVID-19 and SLE patients treated with HCQ from the FAERS database. (A) Venn diagram of significant
cardiac AEs for COVID-19 and SLE patients treated with HCQ. (B) OAE classification of significant cardiac AEs for COVID-19 patients treated with HCQ. (C) OAE
classification of significant cardiac AEs for SLE patients treated with HCQ. The percentages next to the AE terms represent the occurrence rates of these AEs under the
specific condition. The red sign of “X” next to the AE terms in (B,C) represent the shared AE for the two types of patients. Different cardiac AEs were found to be
associated with HCQ following its usage for treating COVID-19 and lupus.

FIGURE 6 |Modeling of condition-dependent AE occurrence with an example published in PubMed. (A)General modeling. (B)HCQAE case study example. In this
example, a human patient with COVID-19 was treated with HCQ, and later suffered from unsustained ventricular tachycardia AE (Abdelmaseih et al., 2020). In addition to
the positive COVID-19 diagnosis, the study of the HCQ AE needs to consider the patient’s age (75 years old), biological sex (male), medical disease history (hypertension
and diabetes), and the symptoms (e.g., fever, dry cough) before the usage of the HCQ drug. If these conditions had changed, the cardiac disease might have not
occurred. To support ontology interoperability, OAE also reuses terms from other ontologies, including Human Phenotype Ontology (HP) (Kohler et al., 2021), Drug
Ontology (DrON) (Hanna et al., 2013), disease Ontology (DOID) (Schriml et al., 2012), Phenotype And Trait Ontology (PATO) (Mabee et al., 2007), and Ontology of
Biological and Clinical Statistics (OBCS) (Zheng et al., 2016). The relation “has age (in year)” is a shortcut relation of (“has quality” some (age and “quality measured as (in
year)”)). This method of ontology modeling allows us to better visualize the many factors that contribute to the manifestation of certain AEs.
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positive for COVID-19, the patient was treated with HCQ and
subsequently developed episodes of unsustained ventricular
tachycardia, which resolved after termination of HCQ. In this
case, while the administration of HCQ in the COVID-19 patient
was associated with a cardiac AE, a better understanding of this
case requires our consideration of the patient’s specific conditions
including age, biological sex, and medical history.

The ontology modeling approach (Figure 6) facilitates the
identification of variables that may affect the AE outcomes in
COVID-19 or other disease patients given different
conditions. In addition to the diseases to be treated, patient
qualities such as age and biological sex, preexisting health
conditions, other factors such as drug dosage can be included.
OAE treats the AE as a pathological bodily process that is a
dynamical process and thus may require dynamic monitoring.
For example, given that the half-lives of CQ and HCQ are long
(approximately 1–2 months), long-term monitoring for their
safety profiles is also needed (Gevers et al., 2020). As a result,
we could expect the generation of a metadata (i.e., the data
that describe the representation of instance data) standard
that standardizes these AE-associated variables and their
measurement for better case reports and data analysis.
Ontology modeling and standardization can provide
support to such process.

DISCUSSION

In this study, we utilized a systematic methodology to analyze and
classify AEs across the various indications of two drugs, CQ and
HCQ. First, we developed a formal survey and analysis pipeline
using three major resources (i.e., USPIs, literature resources
including EMBASE and PubMed, and FAERS database) to
consistently analyze AEs given difference conditions including
the disease being treated. We have emphasized the role of
ontology in the AE classification and modeling in our pipeline.
Second, we have applied our methodology to study the profiles of
CQ and HCQ AEs for treating diseases including COVID-19 and
SLE. The findings in this study demonstrated that a systemic
methodology leveraging complementary publicly available
sources can assist with identifying differences in the number
of and type of AEs between different indications of the same drug.
For example, the FAERS and EMBASE analyses each
demonstrated different AE types given different indications.
OAE modeling of these results further supported these
conclusions and enabled us to semantically represent different
conditions under which an AE may be identified. In summary,
although common AEs were found, our results identified many
distinct AE results given various conditions, including different
diseases treated by these two drugs.

One major focus of this paper was on the methodology for
evaluating AEs (Figure 1). While AEs for multiple indications
may be labeled on one USPI, there may be differences in AE
rates between indications. Therefore, multiple sources were
evaluated, including literature, USPIs, and FAERS. Beyond this
analysis, ontology modeling facilitated the identification of
similarities and differences in AE profiles. Ontologies have

emerged to become important for standard data and knowledge
representation, classification, and analysis. OAE provides a standard
ontology method for classifying and analyzing various AEs. Previous
studies demonstrated that OAE performed better than MedDRA (a
commonly used AE presentation standard for AE case reporting) in
ontology classification analysis (Sarntivijai et al., 2012; He et al., 2014;
He et al., 2016; Xie et al., 2016a). In the current study, we used USPI
data, FAERS data, and literature data in correlation to compare AE
profiles of drugs in the same class and of one drug in different
diseases. Our OAE-based AE classification method clearly shows the
hierarchical structure of identifiedAEs and allows us to quickly group
various AEs into specific categories. In addition, OAE can be used to
model and represent AE formation processes in individual patients as
shown in Figure 6, which can be further used to support AE data
standardization and analysis (He et al., 2014; Wong et al., 2017).

This methodology demonstrated several strengths for
evaluating AEs. First, using multiple sources allows for trend
identification, signal strengthening, and can help reduce bias that
may be present in one source. In this example, while FAERS may
have biased reporting, cardiovascular events were also reported in
the literature and labels, supporting the possibility that
cardiovascular AEs are more prevalent in COVID-19 than SLE
patients taking HCQ. Next, incorporating the information from
these sources into OAE allows for easy visualization and analysis.
In this example, we were able to identify AE differences between
HCQ and CQ as well as SLE and COVID-19 via ontology
modeling. This methodology can be utilized to evaluate other
drug-drug pairs or drug-indication pairs for differences; other
drugs have shown similar patterns, such as sirolimus (also known
as rapamycin), which displays specific AEs (e.g., acne, stomatitis)
that manifest when it is used to treat lymphangioleiomyomatosis,
yet different AEs (e.g., anemia, hypertension) that manifest when
used in renal transplantation (Yu et al., 2019).

Using the methodology described above, we analyzed different
data sources related to CQ and HCQ AEs and made many
interesting findings. First, our USPI data analysis found that
while CQ and HCQ had similar AE profiles, HCQ lacked many
cardiovascular, nervous, and musculoskeletal AEs found in CQ,
including hypotension, arrhythmia, convulsion, and polyneuropathy
AEs (Figure 2). While USPI results came from well-controlled
randomized studies, the information about study size were
limited in the USPI results. To complement the USPI reports, the
EMBASE database includes a large number of studies and results,
and the number of EMBASE papers citing specific AEs provides us a
feasible way to rank the frequency of AE occurrences. EMBASE data
mining found that CQ andHCQwere frequently associated withQT
prolongation, heart arrhythmias, development of Torsade des
Pointes, and retinopathy. QT prolongation was the most reported
AE when treating COVID-19, and retinopathy was the most
reported when treating lupus. The FAERS data was analyzed
based on three methods: PRR, Chi-square test, and minimal case
number filtering; the results of the analysis were then classified using
the OAE. Our FAERS study found that HCQwas associated with 63
significant AEs (including 21 cardiovascular AEs) for COVID-19
patients and 120 significant AEs (including 12 cardiovascular AEs)
for lupus patients, and different (Figures 3–5). These results
supported our hypothesis that the disease being treated would
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significantly affect the likelihood of certain CQ/HCQ AEs to be
manifested and reported. Lastly, we developed an OAE-based
ontological model for semantically representing different
components involving drug AE generation, and we illustrated our
model using an HCQ AE patient example reported in the PubMed
literature database. The CQ/HCQ drug AE study provided in this
paper illustrates the strengths of our newly proposed methodology.

This methodology does have several limitations that require
careful investigation and addressing. First, FAERS does have
several known biases, including under-reporting, duplicates,
stimulated reporting, and confounding by comorbidities or
other drug treatment (FDA, 2005). Our analysis demonstrated
some of these limitations, as rheumatoid arthritis, a labeled
indication for HCQ, was one of the top AEs for HCQ
reported in FAERS. Additionally, by filtering out low FAERS
case counts, we may have missed rare AEs. It’s also possible that
different dosages and exposure levels between indications could
account for some of the AEs identified. Reported concentrations
of HCQ vary widely, as concentrations may be affected by age,
gender, comorbidities, and other confounding factors (Browning,
2014). Drug concentration levels could be evaluated in future
iterations of this methodology. Additionally, this methodology
does not take into account underlying population differences in
event rates between indications, although this could also be
evaluated in future iterations of this methodology. For
example, both SLE and COVID-19 are known to be associated
with cardiac complications (Kreps et al., 2018; Caforio, 2021;
Murk et al., 2021), but the underlying event rates were not taken
into account in this analysis. Similarly, age, gender, and other
individual characteristics may play a role in AEs experienced,
which were ontologically modeled (Figure 6) but not accounted
for in the FAERS data analysis. In the future, we can further
explore how the ontology modeling of these different
characteristics can be applied for practical data
standardization, sharing, and analysis of the FAERS AE data
related to these characteristics. Finally, data extraction and
compilation were performed manually; future iterations of this
methodology will incorporate automatic data extraction.
Ontology also supports data to be findable, accessible,
interoperable, and reusable (Wilkinson et al., 2016; Wang and
He, 2021; Xie et al., 2021). Ontology can be used to support
automatic and FAIR data extraction and analysis.

CONCLUSION

To compare AEs between drugs (or indications) used for
treating diseases under various conditions, a methodology
was developed to apply ontological and statistical methods to
analyze data from different sources including USPIs,
EMBASE and PubMed literature resources, and FAERS
database. As a use case, the AEs of CQ and HCQ following
their usages for different diseases were systematically
surveyed, represented, and analyzed. Our USPI study found
fewer cardiovascular AEs associated with HCQ compared to
CQ. Our EMBASE and FAERS data analysis showed that these

two drugs have different AE profiles when they were used to
treat different diseases including COVID-19 and lupus. An
OAE ontology modeling with its usage on a HCQ AE example
study further identified the semantic relations among
components related to drug AE investigations. This study
demonstrated that ontologies such as OAE are helpful and
accessible tools to catalogue and identify AEs associated with
drugs, allowing the public to further understand the
correlation between various factors and drug AEs.
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Objectives: An accurate prognostic score to predict mortality for adults with COVID-19

infection is needed to understand whowould benefit most from hospitalizations andmore

intensive support and care. We aimed to develop and validate a two-step score system

for patient triage, and to identify patients at a relatively low level of mortality risk using

easy-to-collect individual information.

Design: Multicenter retrospective observational cohort study.

Setting: Four health centers from Virginia Commonwealth University, Georgetown

University, the University of Florida, and the University of California, Los Angeles.

Patients: Coronavirus Disease 2019-confirmed and hospitalized adult patients.

Measurements and Main Results: We included 1,673 participants from Virginia

Commonwealth University (VCU) as the derivation cohort. Risk factors for in-hospital

death were identified using a multivariable logistic model with variable selection

procedures after repeated missing data imputation. A two-step risk score was developed

to identify patients at lower, moderate, and higher mortality risk. The first step selected

increasing age, more than one pre-existing comorbidities, heart rate >100 beats/min,

respiratory rate ≥30 breaths/min, and SpO2 <93% into the predictive model. Besides
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age and SpO2, the second step used blood urea nitrogen, absolute neutrophil count,

C-reactive protein, platelet count, and neutrophil-to-lymphocyte ratio as predictors.

C-statistics reflected very good discrimination with internal validation at VCU (0.83,

95% CI 0.79–0.88) and external validation at the other three health systems (range,

0.79–0.85). A one-step model was also derived for comparison. Overall, the two-step

risk score had better performance than the one-step score.

Conclusions: The two-step scoring system used widely available, point-of-care data

for triage of COVID-19 patients and is a potentially time- and cost-saving tool in practice.

Keywords: prognostic score, two-step, time-and cost-saving tool, COVID-19, multicenter cohort study

INTRODUCTION

Coronavirus disease 2019 (COVID-19), the infectious disease
resulting from severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has led to morbidity and mortality in millions of
people (1). A simple, reliable, point-of-care risk score to predict
mortality could help clinicians triage patients and appropriately
allocate resources. This is particularly important as health
systems face shortages of hospital intensive care unit (ICU) beds
that can lead to worse clinical outcomes (2).

Various prognosis scores have been proposed to achieve this
goal (3–6). Several models have used varying combinations
of demographic variables, laboratory tests, or imaging (7–
10). Tools that provide accurate, low-cost risk estimates are
needed, as estimates requiring extensive testing or imaging
increase the burden on healthcare systems already operating at
capacity. Prognostic tools based on data combined from different
regions or countries (11–13) are problematic, as they ignore
heterogeneity between populations that may increase the risk of
bias (3). While the extent of this risk across all regions is not well
elucidated, it has been demonstrated in one regional comparison
by the ISARIC 4C Deterioration model (13).

We developed an easy-to-use, practical clinical prediction
rule for mortality in patients with COVID-19, building on
a conceptual framework of a two-step triage (14). With the
proposed two-step procedure, early identification of lower- and
higher- risk groups and accurate patient triage are possible while
conserving limited resources. We validated our model on distinct
external cohorts across various populations to fully characterize
heterogeneity across settings and clinical presentation.

MATERIALS AND METHODS

Derivation Cohort and Validation Cohorts
Four universities with inpatient health centers including Virginia
Commonwealth University (VCU), Georgetown University
(GU), University of Florida (UFL), and University of California,
Los Angeles (UCLA) participated in the study. Data were
retrospectively extracted from electronic health records (EHRs)
of each health system. The cohort from VCU, with the
longest patient enrollment period (from March 2020 to June
2021) among centers, was used as the derivation cohort
and the remaining three university health system cohorts

were used for validation to assess model performance in
heterogeneous populations.

Study Participants and Data Collection
Participants included from each center were hospitalized
adults (18 years old and above) with a positive polymerase
chain reaction (PCR) test for SARS-CoV-2 and a determined
disposition (discharged or deceased) at the time of data
extraction. The diagnosis of SARS-CoV-2 infection was based
on World Health Organization interim guidance (15). The
outcome of interest was in-hospital mortality, documented in
each patient’s EHR-based hospital disposition.

Data collection of the four cohorts all started in March,
2020. The derivation cohort VCU possessed the latest patient
information by June, 2021. GU included data collection from
March to August, 2020. Data of UFL was last updated by
December, 2020, while the UCLA cohort enrolled patients
until May, 2021. Demographic, clinical, and laboratory variables
were extracted from the EHRs following the standardized
approach to each variable definition (6). Those variables
were divided into routinely available and laboratory available
categories. Routinely available predictors included age, gender,
vital signs, physical examination results such as heights and
weight that generate body mass indexes (BMIs), and number
of comorbidities. Comorbidities were defined using Clinical
Classifications Software categories for diabetes mellitus (CCS
49), cardiovascular disease (CVD, CCS 101), asthma (CCS
128), and chronic obstructive pulmonary disease (COPD, CCS
127) (16), then these comorbidities were combined to create a
count variable. Laboratory available predictors were commonly
used laboratory test measurements (white blood cell count,
neutrophil count, lymphocyte count, creatinine, platelets, blood
urea nitrogen, lactate dehydrogenase, aspartate aminotransferase,
alanine aminotransferase, C-reactive protein, and troponin-I).
Only the first measured predictor variables available within 24 h
of admission date/time were included.

Model Development
We developed a two-step risk score using an approach similar
to that used by Fine and colleagues to develop the Pneumonia
Severity Index (14). The study followed the Transparent
Reporting of a multivariable prediction model for Individual
Prognosis or Diagnosis (TRIPOD) principles (17). The first
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step was designed for rapid identification of lower- and higher-
risk groups; the second step was for classification of the
remaining patients using additional and more-difficult-to-obtain
predictor variables.

Before model development, numerical variables were
categorized according to their clinical normal ranges (18, 19).
The neutrophil-to-lymphocyte ratio (NLR) was computed using
extracted values (20, 21), and its dichotomous cutoff was derived
from the max Youden index (22) of a univariable binary logistic
model. Only categorical variables were used for model fitting.
The multiple imputation (MI) method was applied for missing
values of candidate predictor variables. Under the assumption of
missing at random, a chained equations approach (23) carried
out five imputations. We used Rubin’s rules (24) to combine the
model parameter estimates across the imputed datasets.

The developed algorithm involves two steps as shown in the
flowchart in Figure 1. In the first step, only routinely available
variables like demographics and vital signs were included as
candidate predictors. Step 1 applied the MI-stepwise method
(25) with a likelihood-ratio test statistic to select risk factors. We
repeated the variable selection procedure 100 times and included
those that were selected over 50 times. Then, a multivariate
binary logistic model was employed with relaxed inclusion
criteria (P ≤ 0.1) to include more risk factors. After parameter
estimation, each beta-coefficient was divided by the smallest one
and subsequently rounded to the nearest integer to create a
simple point score (18). The risk score was calculated additively.
Patients with the lowest observed-cumulative mortality in Step
1 were classified into the lower-risk group, and those with
observed-cumulative mortality >30% were classified into the
higher-risk group. The corresponding observed mortality of the
two groups was then used as the lower- and higher-risk cutoffs in
the next step (11, 14). Patients who were not assigned to either the
lower- or higher- risk group in the first step then participated in
the second step. Both routinely available and laboratory available
variables were taken into consideration for the second stage
model. Step 2 conducted a similar procedure to develop its risk
score as for Step 1, categorizing remaining individuals into lower-
, moderate-, and higher-risk groups based on the corresponding
observed cumulative mortality.

Model Validation
Complete datasets from each of the four health systems were
used to evaluate the performance of the proposed risk score.
The cohort from VCU was used for internal validation, while
complete cases from the remaining health centers were used
separately for external validation. The number of patients in each
risk group and the corresponding mortality rate for each risk
group were calculated for each health system cohort. Cochran-
Armitage tests (26) were used to test for trends in mortality
from an increasing number of points and classification categories.
We also employed the Gaussian mixture model (GMM) (27) at
the second step to assess the rationality of clustering and the
consistency of risk group separation with the first step. Overall
discrimination ability was assessed by C-statistics (28) with a
corresponding 95% confidence interval. Calibration curves (29)
and the Hosmer-Lemeshow test (30) were used to evaluate how

well the predicted mortality matched the observed mortality.
Sensitivity analysis was conducted using complete case data to
assess theMARmissing assumption and to evaluate the goodness
of MI-stepwise two-step method.

Comparison With Direct Risk Stratification
Traditional mortality predictive scores are often derived from
direct logistic models to create single one-step risk scores (3–6).
We used all risk factors available and employed the one-step
model-fitting method on the derivation cohort (P ≤ 0.05).
After calculation of mortality scores, patients were classified
into three groups according to the same observed cumulative
mortality cutoffs of the two-step method. Model validation was
also conducted on the complete cases for each cohort.

To compare the performance of the two methods, we assessed
discrimination and calibration using C-statistics (28) and Brier
scores (31), respectively. For those patients whose probability
of death could not be evaluated due to missing variables
needed for prediction, we also conducted MI-imputation using
demographic variables and vital signs for mortality estimation.
Decision curve analysis (32) was subsequently employed to
compare the clinical utility of the two models at different risk
thresholds. Briefly, by assuming a threshold probability for
the higher mortality risk, we can derive the net benefit by
weighing the benefit of the true-positive and the cost of the false-
positive prediction. The net benefit curve obtained from different
threshold probabilities reflects the clinical utility of a model. Two
extreme strategies in which either all or none of the patients were
classified to the higher-risk group served as reference points.

Ethics Approval
The overall study protocol was approved by the Institutional
Review Board at the University of Georgia under approval
number: PROJECT00002208.

RESULTS

Patient Demographic and Clinical
Characteristics
The derivation cohort included 1,673 adults with PCR confirmed
COVID-19, with 180 (10.8%) deaths. GU, UFL and UCLA had
558, 1,815 and 1,570 individuals, with 93 (16.7%), 269 (14.8%),
184 (11.7%) deaths, respectively. We summarized continuous
variables as medians with interquartile ranges and categorical
variables using proportions (Supplementary Table S1). The
missing proportion of collected variables in the VCU cohort is
shown in Supplementary Table S2.

Development of Predictive Risk
Stratification of Two-Step Methods
In step 1, 63 (3.77%) individuals of the derivation cohort (VCU)
had missing information for routinely available variables. The
repeated MI-stepwise variable selection procedure identified
age above 55, more than one pre-existing comorbidities, heart
rate >100 beats/min, respiratory rate >30 breaths/min, and
SpO2 <93% as the most important predictors for mortality
(Suppmentary Tables S3, S4). Individuals who scored zero,
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FIGURE 1 | Two-step algorithm for assessing mortality risk from SARS-CoV-2 infection.

without any of these risk factors, were classified into a lower-
risk group. While patients with score ≥7 were considered as
having relatively high risk of death, admitted into the higher-
risk group (Figure 1). The corresponding observed cumulative
mortality cutoffs was then used as the corresponding thresholds
in the second step. In step 2, 1,155 patients from the remaining
patients (n = 1,220) had missing information. Repeated MI-
stepwise procedure showed that besides age and SpO2, laboratory
variables including blood urea nitrogen (BUN), neutrophils
absolute count, C-reactive protein (CRP), platelets count and
NLR also had significant influences on the mortality rate
(Supplementary Tables S5, S6). The final risk score is shown in
Table 1.

Independent Validation of Two-Step Rule
Internal Validation

When the derived predictive risk stratification was applied,
mortality rates in step 1 were 2.0% and 30.1% in the lower- and
higher-risk groups, respectively. Patients assigned to the lower-,

moderate-, and higher-risk groups for step 2 had an observed
mortality rate of 1.8, 7.6 and 35.5%, consistent with results from
step 1. We merged patients of the two steps together to evaluate
the overall death rates of each group, and the corresponding
mortality rates were 1.9, 7.6 and 33.3% (Table 2; Figure 2),
resulting in good separation among the risk groups. Mortality
risk had an increasing trend (Ptrend < 0.001) among groups.
GMMon the score-based predicted probability of the second step
indicated significantly different risk profiles between the three
groups (Figure 3B). The C-statistic was 0.83 (95% CI, 0.79–0.88)
with good overall discrimination ability. The calibration curve
(Figure 3C) suggested that predicted and observed mortality
matched well (Hosmer–Lemeshow test, P= 0.995).

GU as External Validation

The external validation in the GU cohort showed an overall good
stratification. The mortality of the lower-risk group identified in
the first step was 3.2%, while the higher-risk group had death
count of 13 in total 19 cases (death rate: 68.4%). Risk probabilities
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TABLE 1 | The proposed two-step risk score for coronavirus disease

2019 mortality.

Predictors of step 1 Points Risk group Points

Age (years) Lower risk 0

< 55 0 Higher risk ≥ 7

55–64 2 Go to Step 2 1–6

65–74 3

≥75 5

Respiratory rate ≥30 2

SpO2 < 93% 2

Commodity count ≥2 1

Heart rate >100 1

Maximum 11

Predictors of step 2 Points Risk group Points

Age (years) Lower risk ≤3

<55 0 Moderate risk 4–6

55–64 1 Higher risk ≥7

65–74 2

≥75 3

SpO2 < 93% 2

BUN > 20 mg/dl 2

NLR > 3.7 2

NEU >6.3 2

Platelets ≥350 2

CRP >10 1

Maximum 14

TABLE 2 | Validation of the two-step coronavirus disease 2019 risk score in 4

populations #.

Risk group Internal

validation

External validation cohorts

VCU GU UFL UCLA All

External

Validation

Lower 1.9%

(7/362)

2.8%

(5/180)

2.4%

(12/499)

2.3%

(5/220)

2.5%

(22/899)

Moderate 7.6%

(8/106)

7.2%

(7/97)

10.3%

(44/428)

9.4%

(13/139)

9.6%

(64/664)

Higher 33.3%

(68/204)

49.5%

(45/91)

31.0%

(173/559)

33.1%

(77/233)

33.4%

(295/883)

AUROCC* 0.832 0.854 0.793 0.829 0.825

*AUROCC, Area under the receiver operating characteristic (ROC) curve.
#Numbers in parentheses were listed as deaths/total.

classified by the second step in lower-, moderate- and higher-
risk groups were 1.2, 7.2, and 44.4%, respectively. Overall risk
stratification demonstrated a similar trend (Table 2; Figure 2).
An increasing trend was suggested by the Cochran-Armitage
test (Ptrend < 0.001). GMM curves (Figure 3B) also identified
the existence of 3 groups of the remaining people. The C-
statistic was 0.85 (95%CI, 0.80–0.91). Calibration curve showed a

deviation (Figure 3C), yet the P-value of the Hosmer-Lemeshow
test was 0.080.

UFL as External Validation

278 people were identified in the lower-risk group at the first step
and 7 of them died (2.5%), while 149 individuals in the higher-
risk group with 63 death cases (42.3%). Overall corresponding
mortality rates were 2.3, 10.3, and 26.8% of the lower-,
moderate-, and higher-risk groups (Ptrend < 0.001) (Table 2;
Figure 2). The GMM curves (Figure 3B) also supported three
risk clusters among step 2-remaining patients. The validation
in the UFL cohort showed slightly less differentiable observed
risks among different groups, with a C-statistic at 0.79 (95%CI,
0.76–0.82). Calibration curve displayed satisfactory calibration.
Corresponding P-value of the Hosmer-Lemeshow test was 0.197.

UCLA as External Validation

Mortality rates derived from the first step of the UCLA
validation for the lower- and higher-risk groups were 3.5
and 46.8%. Observed probabilities of the lower-, moderate-,
and higher-risk groups in step 2 were 0.9, 9.4, and 21.0%,
respectively (Table 2; Figure 2). Stratification of overall risk was
consistent with other cohorts (lower: 2.3%, moderate: 9.4%,
higher: 33.1%). The UCLA cohort also presented an increasing
trend of risk (Ptrend < 0.001) across risk groups. GMM curve
(Figure 3B) implied a 3-level risk stratification. C-statistic was
0.83 (95%CI, 0.79–0.87). P-value of the Hosmer-Lemeshow
test was 0.968.

Sensitivity Analysis Using Complete Case
Analysis
Our sensitivity analysis showed that both steps using complete
cases selected similar variables to those selected by MI-stepwise
procedure (Supplementary Tables S7, S8). Except for age, scores
assigned to each level of selected risk factors remained the same
as those assigned using the multiple imputation (MI) based
two-step method. Besides, the two-step method using MI had
better discrimination (Supplementary Table S9) and calibration
(Supplementary Figure S1) abilities than the approach using
only complete cases.

Comparison With the Direct Method
The one-step direct method identified age, SpO2, blood urea
nitrogen and C-reactive protein (CRP), white blood cell count,
platelets count, and NLR as predictors. The score in each
reference group was assigned to 0. Three older age groups (score:
1, 2, 2), SpO2 below 93% (score: 1), above normal levels of
laboratory variables including BUN (score: 2), CRP (score: 1),
platelets count (score: 2), white blood cell count (score: 1),
as well as NLR (score: 2) were associated with elevated death
risk. A total score was obtained by summing all points each
subject received, after which patients were directly classified into
lower- (below 2 points), moderate- (3–5 points), and higher-
risk (6 and above points) groups. More details are provided in
Supplementary Tables S10–S12.

The two-step method (TS) had better C-statistics and brier
scores than the one-step direct method (OS) (Table 3). Net
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FIGURE 2 | Risk Stratification Among Derivation and Validation Cohorts. Bar plots represented mortality risk. A dot below each main plot represented five people

within each corresponding group, and the number of dots suggests the approximate sample size in each group.
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FIGURE 3 | Distribution of demographic variables, discrimination, and calibration ability of the two-step method in the derivation cohort. (A) Distributions of

demographic variables. (B) GMM distributions among different cohorts. (C) Calibration curves for two-step method using logistic calibration and locally weighted

scatterplot smoothing (lowess). The dot lines in (A) were age cutoffs. The first cluster line plot of VCU in (B) was truncated for convenient comparison with other

cohorts. The actual peak of this line was at around 95.
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benefit curves (Figure 4) were generated based on thresholds
of score-derived probabilities to evaluate clinical utilities. The
higher net benefits observed from the two-step method in
VCU, GU and UCLA suggested that it benefits more people at
the population level in these regions. In the UFL cohort, the
two methods resulted in comparable net benefits. Compared
with the one-step method, the two-step risk score classified
additional 331, 77, 165, and 136 subjects into the lower- or
higher-risk groups in VCU, GU, UFL, and UCLA cohorts,
respectively. Over half of the individuals triaged in the first

TABLE 3 | C-statistics and brier score comparison between the two-step method

(TS) and direct one-step (OS) method.

VCU GU UFL UCLA

C-statistics

(95% CI)

TS 0.83

(0.79,0.88)

0.85

(0.80,0.91)

0.79

(0.76,0.82)

0.83

(0.79,0.87)

OS 0.82

(0.77,0.88)

0.81

(0.74,0.87)

0.79

(0.76,0.82)

0.79

(0.74,0.84)

Brier Score TS 0.09 0.11 0.11 0.11

OS 0.12 0.12 0.12 0.11

step of the two-step method would be uncategorized by
the one-step method due to missing lab testing predictors
(Supplementary Table S13).

DISCUSSION

SARS-CoV-2 has resulted in a growing number of deaths and
a shortage of medical resources. Improved clinical prediction
and decision support tools, feasible for implementation “at the
bedside,” are urgently needed. Various scoring methods have
been proposed (3–6) to achieve this goal with additional testing
including laboratory exams, CT imaging, amongst others, leading
to increased time and costs for patients and hospitals. We
developed a simple, quick, and practical two-step predictive
mortality score system for adult COVID-19 patient triage. The
first step uses only routinely available characteristics that are
easily collected to identify individuals with lower and higher
mortality risk. The second step assesses the remaining patients
comprehensively using both routinely available and laboratory
data. The score system was validated in cohorts from multiple
regions in the United States and achieved overall satisfactory
prediction. Those validation cohorts were also collected over
different time courses. The relatively stable performance adds

FIGURE 4 | Decision curve analysis plots for a comparison of net benefits at different risk thresholds between the two-step (orange line) method and the direct

one-step (green line) method.
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strength to the generalizability and future applications of the
study findings.

In comparison, the two-step model had better overall
discrimination and calibration than the direct one-step method
(Table 3; Supplementary Figure S2). The primary strength of
the two-step approach is the time and money saved by
appropriately stratifying patients using only easy-to-collect
and routinely available variables, e.g., no imaging information
needed, and no lab tests needed unless you get to the second
step. The first step in the two-step method also ensures a higher
coverage of all SARS-CoV-2 infected patients, which eventually
would benefit a larger population. Overall, more than half of the
individuals identified as lower or higher risk in the first step of
the two-step method would otherwise be left uncategorized by
the one-stepmethod due tomissing laboratory testing predictors.
The number of lower- and higher-risk individuals identified
by the two-step method in the first step can be regarded as
the “benefit” of using this two-step procedure. Rapid, accurate
triagemay improve timely decisionmaking, particularly for those
patients missed by the one-step method.

To assess the performance of the two-step method in
heterogeneous populations, we validated the score system using
multiple external cohorts. As expected, model performance
varied. Across derivation and validation cohorts, UFL performed
worse than other cohorts, possibly because of geographic
variability and a surprising increase of mortality in that cohort
in late 2020. Age and gender differences could have contributed
to the observed heterogeneity, as the four cohorts showed
disparities in age distributions stratified by gender (Figure 3A).
Racial diversity and its associated social economic status,
underlying health conditions, healthcare access, and care-seeking
behavior may also be important factors influencing mortality
(33–35). As a surrogate for racial heterogeneity across the
cohorts, we obtained state-level racial diversity information
for each site (36). The derivation cohort from Virginia had
comparable racial distribution with Delaware (where GU is
located). By comparison, Florida and California had distinct
racial profiles potentially explaining the suboptimal validation
performance from the UFL and UCLA cohorts. Overall, the
results suggest that the two-stepmodel is suitable for each of these
regions, but also identified regional heterogeneity that should
be further explored for model refinement. Prospective, regional
studies are needed to assess heterogeneity bias more precisely.

There are several limitations to this study. Coronavirus
mutations may alter the course of the disease, and the proposed
two-step method needs further validation in patients infected
with emerging SARS-CoV-2 variants. Variant information was
not available in our datasets, though based on the timeframe
of our data collection the majority of our enrolled patients
were likely infected with the wild-type. Further validation of
the proposed approach and possible development of new triage
scores on cohorts with new and existing SARS-CoV-2 variants
are warranted. Data on vaccination status was also unavailable
in our cohorts, which precludes an assessment of the effect of
vaccination. Based on our data collection period and the current
knowledge that the vaccinated population is at a significantly
reduced risk of hospitalization, we consider our study findings
mainly apply to the unvaccinated population. In addition, only

the first measured predictor variables available within 24 h of
admission date/time were included in developing the prediction
model. It is unknown at what point in the disease’s course a
patient was admitted. Early or late enrollment in the cohort could
result in false negative or false positive results in the higher-risk
group. However, subjects included in our study were hospitalized
patients who likely had been infected beyond the incubation
period before admitted to the hospitals. They were all sick enough
to present symptoms to be initially admitted for inpatient care.
As such, our primary purpose is to assist in initial triage when
these patients present. We suspect including days from initial
symptom onset as a potential predictor in the model may further
improve the prediction accuracy and reduce the bias caused by
false negative or false positive predictions. Unfortunately, our
working datasets did not collect this information.

CONCLUSIONS

The proposed two-step score system for COVID-19-related in-
hospital mortality among adults is time and cost-saving and may
decrease health care burden in settings with high COVID-19
infection rates.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
licenses/restrictions: Medical records data. Requests to access
these datasets should be directed to ebell@uga.edu.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the University of Georgia IRB. Written
informed consent for participation was not required for this
study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

YL, YK, and YS contributed to the conception and design of
the study. RL, DT, AM, AZ, BB, W-JT, KM, MG, AK, and TG
organized databases from each study site. ME, XC, and YK
organized the combined database. YL, YK, and YS performed
the statistical analysis. YL, YK, ME, LM, and YS wrote the
first draft of the manuscript. M-HS, CL, and YJ provided
technical supports to the manuscript. All authors contributed to
manuscript revision, read, and approved the submitted version.

FUNDING

YL is supported by Platform of Public Health & Disease Control
and Prevention, Major Innovation & Planning Interdisciplinary
Platform for the Double-First Class Initiative, Renmin University
of China.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2022.827261/full#supplementary-material

Frontiers in Medicine | www.frontiersin.org 9 April 2022 | Volume 9 | Article 82726167

mailto:ebell@uga.edu
https://www.frontiersin.org/articles/10.3389/fmed.2022.827261/full#supplementary-material
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Li et al. Two-Step CPR for COVID-19

REFERENCES

1. World Health Organization. WHO Coronavirus (COVID-19) Dashboard.

Available online at: https://covid19.who.int/ (accessed February 19,

2022).

2. Szakmany T, Walters AM, Pugh R, Battle C, Berridge DM, Lyons RA.

Risk factors for 1-year mortality and hospital utilisation patterns in

critical care survivors: a retrospective, observational, population-based data-

linkage study. Crit Care Med. (2019) 47:15. doi: 10.1097/CCM.000000000000

3424

3. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et

al. Prediction models for diagnosis and prognosis of covid-19: systematic

review and critical appraisal. BMJ. (2020) 369:m1328. doi: 10.1136/bmj.

m1328

4. Galloway JB, Norton S, Barker RD, Brookes A, Carey I, Clarke BD, et al.

clinical risk score to identify patients with COVID-19 at high risk of critical

care admission or death: an observational cohort study. J Infect. (2020)

81:282–8. doi: 10.1016/j.jinf.2020.05.064

5. Gupta RK, Marks M, Samuels TH, Luintel A, Rampling T, Chowdhury

H, et al. Systematic evaluation and external validation of 22 prognostic

models among hospitalised adults with COVID-19: an observational cohort

study. Eur Respir J. (2020) 56:2003498. doi: 10.1183/13993003.03498-

2020

6. Ebell MH, Cai X, Lennon R, Tarn DM, Mainous AG, Zgierska AE, et

al. Development and validation of the COVID-NoLab and COVID-

SimpleLab risk scores for prognosis in 6 US health systems. J Am

Board Family Med. (2021) 34:S127–35. doi: 10.3122/jabfm.2021.S1.

200464

7. Gong J, Ou J, Qiu X, Jie Y, Chen Y, Yuan L, et al. A tool for early prediction

of severe coronavirus disease 2019 (COVID-19): a multicenter study using

the risk nomogram in Wuhan and Guangdong, China. Clin Infect Dis. (2020)

71:833–40. doi: 10.1093/cid/ciaa443

8. Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and

validation of a clinical risk score to predict the occurrence of critical illness

in hospitalized patients with COVID-19. JAMA Intern Med. (2020) 180:1081–

9. doi: 10.1001/jamainternmed.2020.2033

9. Jianfeng X, Hungerford D, Chen H, Abrams ST, Li S, Wang G. Development

and external validation of a prognostic multivariable model on admission for

hospitalized patients with COVID-19.medRxiv. (2020) 2020.03.28.20045997.

10. Yue H, Yu Q, Liu C, Huang Y, Jiang Z, Shao C, et al. Machine learning-based

CT radiomics method for predicting hospital stay in patients with pneumonia

associated with SARS-CoV-2 infection: a multicenter study. Ann Transl Med.

(2020) 8:859. doi: 10.21037/atm-20-3026

11. Knight SR, Ho A, Pius R, Buchan I, Carson G, Drake TM, et al. Risk

stratification of patients admitted to hospital with covid-19 using the ISARIC

WHO Clinical Characterisation Protocol: development and validation

of the 4C Mortality Score. BMJ. (2020) 370:m3339. doi: 10.1136/bmj.

m3339

12. Bertsimas D, Lukin G, Mingardi L, Nohadani O, Orfanoudaki A, Stellato

B, et al. COVID-19 mortality risk assessment: an international multi-

center study. PLoS One. (2020) 15:e0243262. doi: 10.1371/journal.pone.

0243262

13. Gupta RK, Harrison EM, Ho A, Docherty AB, Knight SR, van Smeden

M, et al. Development and validation of the ISARIC 4C Deterioration

model for adults hospitalised with COVID-19: a prospective cohort

study. Lancet Respir Med. (2021) 9:349–59. doi: 10.1016/S2213-2600(20)

30559-2

14. Fine MJ, Auble TE, Yealy DM, Hanusa BH, Weissfeld LA,

Singer DE, et al. A prediction rule to identify low-risk patients

with community-acquired pneumonia. New Engl J Med. (1997)

336:243–50. doi: 10.1056/NEJM199701233360402

15. World Health Organization. Clinical Management of Severe Acute Respiratory

Infection When Novel Coronavirus (2019-nCoV)? Infection is Suspected:

Interim Guidance, 28 January 2020. Available at: https://apps.who.int/iris/

handle/10665/330893 (accessed January 30, 2022).

16. Agency for Healthcare Research and Quality Healthcare Cost and Utilization

Project website. Available at: https://www.hcup-us.ahrq.gov/ (accessed January

30, 2022).

17. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting

of a multivariable prediction model for individual prognosis or

diagnosis (TRIPOD): the TRIPOD statement. J Br Surg. (2015)

102:148–58. doi: 10.1002/bjs.9736

18. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of

138 hospitalized patients with 2019 novel coronavirus–infected pneumonia

in Wuhan, China. JAMA. (2020) 323:1061–9. doi: 10.1001/jama.2020.

1585

19. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al.

Comorbidity and its impact on 1590 patients with COVID-19 in China: a

nationwide analysis. Eur Respir J. (2020) 55. doi: 10.1183/13993003.00547-

2020

20. Yang AP, Liu JP, Tao WQ Li HM. The diagnostic and predictive

role of NLR, d-NLR and PLR in COVID-19 patients. Int

Immunopharmacol. (2020) 84:106504. doi: 10.1016/j.intimp.2020.

106504

21. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HH, et al. Neutrophil-to-

lymphocyte ratio as an independent risk factor for mortality in hospitalized

patients with COVID-19. J Infect. (2020) 81:e6–12. doi: 10.1016/j.jinf.2020.

04.002

22. Schisterman EF, Perkins NJ, Liu A, Bondell H. Optimal cut-

point and its corresponding Youden Index to discriminate

individuals using pooled blood samples. Epidemiology. (2005)

16:73–81. doi: 10.1097/01.ede.0000147512.81966.ba

23. White IR, Royston P, Wood AM. Multiple imputation using chained

equations: issues and guidance for practice. Stat Med. (2011) 30:377–

99. doi: 10.1002/sim.4067

24. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: John

Wiley & Sons (2004). 258 p.

25. Wood AM, White IR. Royston P. How should variable selection be

performed with multiply imputed data? Stat Med. (2008) 27:3227–

46. doi: 10.1002/sim.3177

26. Cochran WG. Some methods for strengthening the common χ2 tests.

Biometrics. (1954) 10:417–51. doi: 10.2307/3001616

27. McLachlan GJ, Lee SX, Rathnayake SI. Finite mixture models. Ann

Rev Stat Appl. (2019) 6:355–78. doi: 10.1146/annurev-statistics-031017-

100325

28. Hanley JA, McNeil BJ. The meaning and use of the area under a

receiver operating characteristic (Roc) curve. Radiology. (1982) 143:29–

36. doi: 10.1148/radiology.143.1.7063747

29. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski

N, et al. Assessing the performance of prediction models: a

framework for some traditional and novel measures. Epidemiology

(Cambridge, Mass). (2010) 21:128. doi: 10.1097/EDE.0b013e3181c

30fb2

30. Agresti A. Categorical Data Analysis. 3rd ed. Hoboken, NJ: Wiley (2012).

714 p.

31. Brier GW. Verification of forecasts expressed in terms of

probability. Monthly Weather Rev. (1950) 78:1–3. doi: 10.1175/1520-

0493(1950)078&lt;0001:VOFEIT&gt;2.0.CO;2

32. Vickers AJ, Elkin EB. Decision curve analysis: a novel method

for evaluating prediction models. Med Decis Making. (2006)

26:565–74. doi: 10.1177/0272989X06295361

33. Ogedegbe G, Ravenell J, Adhikari S, Butler M, Cook T, Francois F,

et al. Assessment of racial/ethnic disparities in hospitalization and

mortality in patients with COVID-19 in New York City. JAMA

Network Open. (2020) 3:e2026881. doi: 10.1001/jamanetworkopen.2020.

26881

34. Lee EH, Kepler KL, Geevarughese A, Paneth-Pollak R, Dorsinville

MS, Ngai S, et al. Race/ethnicity among children with COVID-

19–associated multisystem inflammatory syndrome. JAMA Network

Open. (2020) 3:e2030280. doi: 10.1001/jamanetworkopen.2020.

30280

35. Iyanda AE, Boakye KA, Lu Y, Oppong JR. Racial/ethnic heterogeneity

and rural-urban disparity of COVID-19 case fatality ratio in

the USA: a negative binomial and GIS-based analysis. J Racial

Ethnic Health Disparities. (2021) 1–14. doi: 10.1007/s40615-021-

01006-7

Frontiers in Medicine | www.frontiersin.org 10 April 2022 | Volume 9 | Article 82726168

https://covid19.who.int/
https://doi.org/10.1097/CCM.0000000000003424
https://doi.org/10.1136/bmj.m1328
https://doi.org/10.1016/j.jinf.2020.05.064
https://doi.org/10.1183/13993003.03498-2020
https://doi.org/10.3122/jabfm.2021.S1.200464
https://doi.org/10.1093/cid/ciaa443
https://doi.org/10.1001/jamainternmed.2020.2033
https://doi.org/10.21037/atm-20-3026
https://doi.org/10.1136/bmj.m3339
https://doi.org/10.1371/journal.pone.0243262
https://doi.org/10.1016/S2213-2600(20)30559-2
https://doi.org/10.1056/NEJM199701233360402
https://apps.who.int/iris/handle/10665/330893
https://apps.who.int/iris/handle/10665/330893
https://www.hcup-us.ahrq.gov/
https://doi.org/10.1002/bjs.9736
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1183/13993003.00547-2020
https://doi.org/10.1016/j.intimp.2020.106504
https://doi.org/10.1016/j.jinf.2020.04.002
https://doi.org/10.1097/01.ede.0000147512.81966.ba
https://doi.org/10.1002/sim.4067
https://doi.org/10.1002/sim.3177
https://doi.org/10.2307/3001616
https://doi.org/10.1146/annurev-statistics-031017-100325
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1097/EDE.0b013e3181c30fb2
https://doi.org/10.1175/1520-0493(1950)078&lt;0001:VOFEIT&gt;2.0.CO;2
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1001/jamanetworkopen.2020.26881
https://doi.org/10.1001/jamanetworkopen.2020.30280
https://doi.org/10.1007/s40615-021-01006-7
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Li et al. Two-Step CPR for COVID-19

36. World Population Review. US States by Race 2022. (2022). Available at:

https://worldpopulationreview.com/states/states-by-race (accessed January

30, 2022).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflictof interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Li, Kong, Ebell, Martinez, Cai, Lennon, Tarn, Mainous, Zgierska,

Barrett, Tuan,Maloy, Goyal, Krist, Gal, Sung, Li, Jin and Shen. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 11 April 2022 | Volume 9 | Article 82726169

https://worldpopulationreview.com/states/states-by-race
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pharmaceutical Prospects of
Curcuminoids for the Remedy of
COVID-19: Truth or Myth
Yaw-Syan Fu1,2, Wan-Yi Ho3, Ning Kang4, May-Jywan Tsai5, Jingyi Wu1, Liyue Huang1 and
Ching-Feng Weng1,2*

1Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China,
2Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China, 3Department of
Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan, 4Department of Otorhinolaryngology, the Second Affiliated Hospital
of Xiamen Medical College, Xiamen, China, 5Department of Neurosurgery, Neurological Institute, Neurological Institute, Taipei,
Taiwan

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), which is a positive-strand RNA virus, and has rapidly spread
worldwide as a pandemic. The vaccines, repurposed drugs, and specific treatments have
led to a surge of novel therapies and guidelines nowadays; however, the epidemic of
COVID-19 is not yet fully combated and is still in a vital crisis. In repositioning drugs, natural
products are gaining attention because of the large therapeutic window and potent
antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties. Of note, the
predominant curcumoid extracted from turmeric (Curcuma longa L.) including phenolic
curcumin influences multiple signaling pathways and has demonstrated to possess anti-
inflammatory, antioxidant, antimicrobial, hypoglycemic, wound healing, chemopreventive,
chemosensitizing, and radiosensitizing spectrums. In this review, all pieces of current
information related to curcumin-used for the treatment and prevention of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through in vitro, in vivo, and in
silico studies, clinical trials, and new formulation designs are retrieved to re-evaluate the
applications based on the pharmaceutical efficacy of clinical therapy and to provide deep
insights into knowledge and strategy about the curcumin’s role as an immune booster,
inflammatory modulator, and therapeutic agent against COVID-19. Moreover, this study
will also afford a favorable application or approach with evidence based on the drug
discovery and development, pharmacology, functional foods, and nutraceuticals for
effectively fighting the COVID-19 pandemic.

Keywords: curcumin/curcuminoids, COVID-19, immunomodulation, nutraceuticals, inflammation, antioxidant,
chemosensitizing, oxidative stress

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an infectious disease that has rapidly spread throughout
the world, leading to high mortality rates, and has become a epidemic from the end of 2019.
Coronavirus disease (COVID-19), caused by the novel coronavirus—severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has surged across the globe, affecting 233 countries or
territories, with greater than 337 million confirmed cases and over 5.56 million deaths till January
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2022, with the World Health Organization (WHO, 2022)
categorizing it as a pandemic (https://covid19.who.int).
Infected patients manifest fever, cough, shortness of breath,
and lost smell and taste, and critical cases might show acute
respiratory infection and multiple organ failure. Probability of
these severe indications is further enhanced by age and
underlying comorbidities such as diabetes, cardiovascular, or
thoracic problems, as well as due to an immunocompromised
state (Adhikari et al., 2020). Coronavirus infection, including
SARS-CoV, MERS-CoV, and SARS-CoV-2, causes daunting
diseases that can be fatal because of lung failure and systemic
cytokine storm. The development of coronavirus-evoked
pneumonia is associated with excessive inflammatory
responses in the lung, releasing extremely high amounts of
cytokines known as “cytokine storms,” which result in
pulmonary edema, atelectasis, and acute lung injury (ALI) or
acute respiratory distress syndrome (ARDS). The
pathophysiology of COVID-19 involves the activation of three
main pathways: inflammatory, coagulation, and bradykinin
cascades (Wiersinga et al., 2020).

SARS-CoV-2 is an enveloped virus belonging to the order
Nidovirales, composed of a single-strand, non-segmented, and
positive sense RNA genome. SARS-CoV-2 causes COVID-19 that
is classified as beta-coronavirus, which primarily occurred and
was recorded in December 2019 at Wuhan, China (Godeau et al.,
2021). As one member of human coronavirus (HCoV) that has
the largest RNA virus genome, the single positive-strand RNA
genome of SARS-CoV-2 is approximately 30 kd with two
untranslated regions (UTR) linked to the 3′-poly-A tail, and
5′-cap structure, which are crucial for gene transcription and
RNA replication. The SARS-CoV-2 genomic structure comprises
5′UTR/NSP/S/3a/E/M/6/7a/7b/8/N/10/3′UTR organization. The
non-structural protein (nsp) region of SARS-CoV-2 can be coded
and translated as the non-structural proteins 1–16 (nsp1-16), the
structural protein regions including spike protein (S), envelop
protein (E), membrane protein (M), nucleoprotein (N), and
accessory protein regions 3a, 6, 7a, 7b, 8, and 10. Two-thirds
of the SARS-CoV-2 genome from the 5′-end contains two open
reading frames (ORF), ORF-1a and ORF-1b, which are coded and
translated into two long polypeptides, polyprotein 1a (PP1a) and
polyprotein 1b (PP1b). The posttranslated cleavage of PP1a and
PP1b by two virus-encoded proteases to form 16 NSPs: nsp1-16.
Other one-third of the viral genome contains the distinct ORFs
derived to form several single-guide RNAs (sgRNAs) that are
translated into structural proteins and accessory proteins (Ciotti
et al., 2019).

The Pathogenesis of SARS-CoV-2 Infection
The pathogenesis of the infection severity of SARS-CoV-2
encompasses several stages, the suppression of host antiviral
and innate immune responses to increase the infected host
cells (Shi et al., 2020; Oh and Shin, 2021), the viral
replication-induced infected cell oxidative stress (Laforge et al.,
2020; Saheb Sharif-Askari et al., 2020), and injury of infected cells
expressing and secreting large amounts of various chemokines or
cytokines, colony-stimulating factors, interferons (IFNs),
interleukins (IL-1, IL-6, IL-8, IL-12), and tumor necrosis

factor-α (TNF-α), which cause acute inflammation described
as the “cytokine storm symptom” (CSS) (Junqueira et al.,
2021; Kunnumakkara et al., 2021). The CSS of serious SARS-
CoV-2 infection causes acute lung injury, tissue fibrosis, and
pneumonia. Subsequently, CSS with hemophagocytic
lymphohistiocytosis (HLH)/macrophage activation syndrome
(MAS) may cause serious systemic hyper-inflammation,
plasma leakage, peripheral tissue fluid accumulation, and
hypotension. The serious pulmonary inflammation, edema,
and tissue fluid accumulation in the lung such as ARDS,
combined ARDS, HLH, and MAS will affect gas exchange that
leads to systemic hypoxemia and multi-organ failure with
disseminated intravascular coagulation (DIC) that have
resulted in extreme morbidity and mortality (Horowitz and
Freeman 2020; Kunnumakkara et al., 2021; Saad and Moussa
2021). Deficiency in red blood cells, serum, and alveolar
glutathione levels has been published in the medical literature
for ARDS, as well as viral and bacterial pneumonias, resulting
from the increased levels of free radical/oxidative stress
(Horowitz and Freeman 2020). Even the patients can recover
from ARDS of SARS-CoV-2-infected pneumonia, the lung tissue
remodeling and pulmonary fibrosis will continue to last and
subsequently limit the pulmonary functional recovery (Bazdyrev
et al., 2021; Giacomelli et al., 2021). Additionally, the
pathophysiology of COVID-19 is highly heterogeneous, and
the way of SARS-CoV-2 modulates the different systems of
the host remains unidentified, despite recent discoveries such
as viral nucleocapsid (N) protein can bind host mRNA to impair
host stress response (Nabeel-Shah et al., 2022); viral infection-
induced host hypoxia status can modulate ACE2 expression
(Prieto-Fernández et al., 2021); and the overexpression of viral
nsp9 can reduce the host’s nucleoporin 62 expression to defective
nuclear pore complex formation (Makiyama et al., 2021).
Remarkably this deadly virus could affect multiple vital organs
and systems (blood, lungs, heart, nervous system, and immune
system); however, its exact mechanism of pathophysiology
remains obscure. Usually depending on the viral load, infected
and sick people commonly manifest fever, cough, shortness of
breath, coagulopathy, cardiac abnormalities, fatigue, and death.
This complex and multifactorial response of COVID-19 requires
a comprehensive therapeutic approach, enabling the integration
and refinement of therapeutic responses of a given single
compound that has several action potentials. With
comprehensive interaction (synergism), biosafety of multi-
compounds or multiple treatments need to be taken into
consideration and can also provide a promising strategy to
cure COVID-19 infection. Currently, several available vaccines
and drugs are in the process of evaluation of efficacy and safety,
and the determination of dosage in the COVID-19 pandemic.
Unfortunately, vaccines are on the market from Pfizer (BNT),
Moderna, and AstraZeneca (AZ) with limited supply under an
Emergency Use Authorization (EUA) by the WHO. In fact,
several vaccines filed phase III clinical trials are still underway
from other manufacturers (Srivastava et al., 2021). Intensely,
BNT and Moderna vaccines have been currently approved by
the FDA (Chilamakuri and Agarwal 2021). Within 2 years, there
are several mutated variants of SARS-CoV-2 from the origin
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strain, and their wide dispersion led to multiple waves of
outbreaks, especially the mutation on the spike gene of new
SARS-CoV-2 variants caused the alteration in several amino acid
residues and change the structural conformation of spike protein,
decreasing the titer of human antibodies and neutralizing
antibodies induced by infection or vaccination (Khateeb et al.,
2022; Ma et al., 2022; Tay et al., 2022). New antibody-resistant
variants of SARS-CoV-2 in vaccine breakthrough infection can be
seen even in people who have received two or three vaccinations
within 6 months which shows that the vaccines have failed to fully
protect the people from variants of SARS-CoV-2 infection such as
Omicron (Khateeb et al., 2022; Servellita et al., 2022; Wang et al.,
2022). On the other hand, exploring the repurposing of natural
compounds and drugs may provide an alternative approach or
strategy against COVID-19. Various repurposing phytochemicals
are showing a broad range of antiviral activities, and its different
modes of action have been identified (Kumar Verma et al., 2021;
Kumar et al., 2022). Repurposing drugs such as Arbidol,
hydroxychloroquine, chloroquine, lopinavir, favipiravir,
remdesivir, hexamethylene amiloride, dexamethasone,
tocilizumab, and INF-β that neutralize antibodies exhibit
in vitro anti-coronaviral properties by inhibiting multiple
processes in the virus life cycle. Plant-based antiviral
compounds such as baicalin, calanolides, curcumin,
oxymatrine, matrine, and resveratrol exhibit different modes of
action against a wide range of positive-/negative-sense RNA/
DNA virus, and future research needs to be conducted to
ascertain their role and use in managing SARS-CoV-2 (Rai
et al., 2021). Recently, several nutraceuticals have been proven
to have an ability of immune-boosting, antiviral, antioxidant, and
anti-inflammatory effects in COVID-19 infection (Adhikari et al.,
2021; Isidoro et al., 2022), and this scenario will be addressed in
the next section.

Prospective of Natural Compounds on
COVID-19 Treatment
Remarkably, using herbal natural compounds is explored as a
complementary approach to treating various diseases including
COVID-19. Using the active constituents of medicinal plants has
long been a well-accepted therapeutic treatment strategy,
although understanding their complex pharmacological actions
is a major challenge as they provide tremendous chemical
varieties and frequently exhibit multi-pharmacological
functions (Catanzaro et al., 2018). One report has
demonstrated that crude extract or pure compounds isolated
from several medicinal plants and/or herbs such as Artemisia
annua, Agastache rugosa, Astragalus membranaceus, Cassia
alata, Ecklonia cava, Gymnema sylvestre, Glycyrrhizae
uralensis, Houttuynia cordata, Lindera aggregata, Lycoris
radiata, Mollugo cerviana, Polygonum multiflorum, Pyrrosia
lingua, Saposhnikoviae divaricata, and Tinospora cordifolia
have shown promising inhibitory effects against coronavirus
(Adhikari et al., 2021). Moreover, several phytocompounds
including acacetin, amentoflavone, allicin, blancoxanthone,
curcumin, daidzein, diosmin, epigallocatechin gallate, emodin,
hesperidin, herbacetin, hirsutenone, iguesterin, jubanine G,

kaempferol, lycorine, pectolinarin, phloroeckol, silvestrol,
tanshinone I, taxifolin, rhoifolin, xanthoangelol E, and zingerol
isolated from plants could also be considered as potential drug
candidates against COVID-19 (Adhikari et al., 2021). In this
article, we draw more attention to the ancient active substance,
especially curcumin, to exploit all promising mechanisms of the
antiviral property or applications in the treatment of COVID-19.

Literature Search
We reviewed all retracted studies up to Feb 2022 that have
evaluated the medicinal benefits of curcumin for COVID-19
infection. The following databases were used: Web of Science,
SciVerse, Sci-Hub, Google Scholar, Library Genesis, open access
library, Public Library of Science, Scientific Research Publishing,
Research Gate, Hindawi, ScienceDirect, Scopus, Medscience,
Academia, JAMA, PubMed (NCBI), Springer, Directory of
Open Access Journals (DOAJ), Elsevier, Wiley, Taylor and
Francis, ProQuest, EBSCO, MEDLINE, and SciELO. Thus,
case reports, clinical trials, original research, and review
articles were also evaluated. We used free text and Medical
Subject Heading (MeSH) terms “curcumin,” “COVID-19,”
“ACE2,” “Immunomodulation,” “In silico,” “In vitro,” “In
vivo,” and “clinical trial.” The search was done with no
language restrictions. All cited articles related to COVID-19
and curcumin were categorized according to MeSH or
keywords; the portion of each presenting item in this article is
shown in Figure 1.

Data Extraction After Search
Data extraction was performed according to the following
inclusion and exclusion criteria for the current study: studies
examining the effects of curcumin on COVID-19 infection were
included in this study. We also considered publications in English
language including only English abstract. The authors
independently obtained data from each selected publication
including the type of study, study population (location, age,
gender, and sample size), curcumin dose and measured
outcomes, and study results.

Pharmaceutical Potential of Curcumin
For centuries, curcumin chemically known as (1,7-bis(4-
hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) or
diferuloylmethane, is a yellowish pigment and a phenolic
component present in the rhizome of turmeric (Curcuma
longa Linn) and other Curcuma spp., and has been consumed
as a flavoring and therapeutic medicinal natural compound.
Turmeric grows primarily in Asian countries, particularly
India (Yousefian et al., 2019). Curcumin is a plant of the
ginger family Zingiberaceae with the related compounds
demethoxycurcumin, bis-demethoxycurcumin, and cyclo-
curcumin, which are referred to as curcuminoids (Priyadarsini
2014). In C. longa, the crude extract curcuminoid makes up 1–6%
of turmeric by weight, distributed in 60–70% curcumin (CUR),
20–27% demethoxycurcumin (DMC), and 10–15% bis-
demethoxycurcumin (BDMC) (Nelson et al., 2017), whereas
commercially available curcumin contains about 77% in
curcuminoids (Esatbeyoglu et al., 2012). Curcuminoids vary in
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potency, effectiveness, and stability, that is, the relative potency
for suppression of TNF-induced nuclear factor kappa B (NF-κB)
activation was Cur > DMC > BDMC (Sandur et al., 2007). An
extensive spectrum of pharmacological and physiological actions
of curcumin according to an effective and safe substance has been
previously documented in the literature. Numerous studies have
shown that curcumin has a broad variety of medicinal functions,
including anti-inflammatory (Ghandadi and Sahebkar 2017;
Gorabi et al., 2021), antiangiogenic (Sahebkar 2010; Hewlings
and Kalman 2017), antidiabetic (Panahi et al., 2018; Riyaphan
et al., 2018; Huang et al., 2019), antimicrobial (Praditya et al.,
2019; Zahedipour et al., 2020), and antitumor properties
(Thiyagarajan et al., 2013; Lin et al., 2020a; Mohajeri et al.,
2020). It has also been proven that curcumin confers the
therapeutic benefits in inflammatory disorders, neoplasms,
neurodegenerative disorders, rheumatologic diseases, and
cardiovascular diseases (CVDs) (Aggarwal and Harikumar
2009; Velmurugan et al., 2018). Of note, there is scientific
evidence of a beneficial impact on human health in functional
foods produced by incorporating plant parts that have known or
unknown bioactive components like flavonoids, phenolic acid,
and alkaloids with various biological properties as aforesaid
(Tsuda 2018; Xu et al., 2018; Roy et al., 2022). However,
curcumin has some limitations in terms of physicochemical
properties such as very low aqueous solubility, high
degradation, and limited activity only in acidic pH, which
leads to a decrease in bioavailability (Wan et al., 2012; Peng
et al., 2018; Dei-Cas and Ghidoni 2019). Importantly, curcumin
has been demonstrated to impede inflammation, oxidative stress,
cancer cell proliferation, and cell death and abrogate infections
caused by bacteria, fungi, and viruses (Omosa et al., 2017; Fu
et al., 2021). Additionally, curcumin treatment supports total
white blood cell counts and increases the levels of antioxidant
indicators, circulating levels of antibodies to sheep red blood cells

(SRBC), and plaque-forming cells (PFC) in the spleens of mice
(Antony et al., 1999; Shakeri et al., 2017; Afolayan et al., 2018).
Furthermore, it also enhances the phagocytic action of
macrophages in various animal models including mouse
(Wang et al., 2016; Sohn et al., 2021), ferret (Huang et al.,
2021) and hamster (Lee et al., 2022; Seldeslachts et al., 2022).
As mentioned before, curcumin is a polyphenolic compound, and
the activity associated with its polyphenolic chemical structure
varies depending on its concentration as well as the cell types and
their status (sometimes it can act as a reactive oxygen species
(ROS) scavenger, sometimes it can increase ROS production and
cause apoptosis, etc.) (Balasubramanyam et al., 2003; Kim et al.,
2016; Lin S.-R. et al., 2017; Larasati et al., 2018). From amolecular
point of view, curcumin may mediate its pharmacological
activities through Janus kinase/signal transducers and
activators of transcription (JAK-STAT) (Rajasingh et al., 2006;
Salehi et al., 2019), NF-κB (Marquardt et al., 2015; Mortezaee
et al., 2019), protein kinase B (AKT or PKB) (Wang et al., 2019),
transforming growth factor β (TGF-β) (Li et al., 2013; Thacker
and Karunagaran 2015), and mammalian target of rapamycin
(mTOR) (Lin J. et al., 2017; Thiyagarajan et al., 2018). In
particular, the transcription factors nuclear factor E2-related
factor 2 (Nrf2) and NF-κB can regulate 1) the inhibition of
the transcription factor NF-κB mediates anti-inflammation,
and 2) the induction of Nrf2 signaling pathways promotes
antioxidant defense mechanisms and production of phase II
enzymes (Dai et al., 2018; Esatbeyoglu et al., 2012).
Anticarcinogenic effects of curcumin are also related to an
increase in the p53 levels and thus in pro-apoptotic Bax and
cytochrome C. The suppression of proliferation and a cell cycle
arrest can also be modulated by curcumin through a p53-
independent pathway such as the inhibition of NF-κB
inhibitor α (IκBα), B-cell lymphoma 2 (Bcl-2), B-cell
lymphoma-extra large (Bcl-xl), cyclin D1, and IL-6. Moreover,

FIGURE 1 | Present proportion (%) of cited literature related to COVID-19 and curcumin according to their categories in this review article.
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apoptosis can be initiated by curcumin by the increased cleavage
of poly (ADP-ribose) polymerase (PARP) (Xu and Liu 2017;
Esatbeyoglu et al., 2012). In vitro and in vivo studies of influenza
A virus infection have shown curcumin treatment could suppress
influenza A virus absorption and replication by activation of the
Nrf2 pathway to suppress the NF-κB pathway and inflammatory
cytokines to attenuate the oxidative stress and symptoms (Dai
et al., 2018).

Challenges of Curcumin on COVID-19
Treatment
Several lines of evidence suggest curcumin as a talented
prophylactic and therapeutic candidate for COVID-19 in the
clinic and public health settings. First, curcumin exerts antiviral
activity against many types of enveloped viruses, including SARS-
CoV-2, through multiple mechanisms: direct interaction with
viral membrane proteins, disruption of the viral envelope;
inhibition of viral proteases, and induction of host antiviral
responses. Second, curcumin protects from lethal pneumonia
and ARDS via targeting NF-κB, inflammasomes, IL-6 trans-
signal, and high-mobility group box 1 (HMGB1) pathways.
Third, curcumin is basically recognized as safe and well-
tolerated in both healthy and diseased human subjects
(Miryan et al., 2021; Thimmulappa et al., 2021).

According to the aforementioned understanding about the
COVID-19 pandemic and pharmacological merits of curcumin,
the therapeutic use in SARS-CoV-2 infection remains to be
explored. In this context, curcumin/curcuminoids have been
shown to possess beneficial effects on the progression of
inflammatory diseases including COVID-19 based on
numerous action mechanisms including antiviral, anti-
inflammatory, anticoagulant, antiplatelet, and cytoprotective
(Babaei et al., 2020; Rattis et al., 2021). These investigations
and many other effects of curcumin make it a promising agent
in the adjuvant treatment of COVID-19; however, all current
entities related to curcumin used for proposed treatment and
prevention of COVID-19 infection are mostly based on in vitro,
in vivo, and in silico studies, clinical trials, and new formulation
designs. In fact, there is no direct use in the SARS-CoV-2-infected
patients, so it is necessary to re-evaluate the efficacy of curcumin
and provide deep insights into knowledge and strategy about
curcumin’s role as an immune booster, inflammatory modulator,
and therapeutic agent against COVID-19.

Curcumin as the Anti-Inflammatory Drug
Candidate and Immune Modulator
There is a great variation in the clinical symptoms of SARS-CoV-
2 infection from asymptomatic infection, upper respiratory tract
infection, pneumonia, ARDS to multi-organ dysfunction.
Although the patients recover from ARDSs of serious COVID-
19 pneumonia, their lung parenchyma tissue remodeling and
pulmonary fibrosis will continue to suffer and limit the
pulmonary functional recovery of the patients, indicating that
anti-inflammation will be one of the most important focuses on
the treatment of SARS-CoV-2 infection. As an inflammatory

response, NAcht leucine-rich repeat protein 3 (NLRP3)
inflammasomes induce the production of several cytokines,
which have been confirmed to play major roles in the
pathogenesis of several viral diseases, including COVID-19
(Freeman and Swartz 2020; Zhao M. et al., 2021; Junqueira
et al., 2021; Pan et al., 2021). The key molecular mediators of
inflammation include pro-inflammatory cytokines such as TNF-
α; chemokines; inflammatory enzymes such as cyclooxygenase-1,
and -2 (COX-1, COX-2), matrix metalloproteinase-9 (MMP-9),
and 5-lipoxygenase (5-LOX); transcription factors such as signal
transducer and activator of transcription 3 (STAT3) and NF-κB;
and ILs, for example, IL-1, IL-6, and IL-8 (Ghasemi et al., 2019;
Norooznezhad et al., 2020), and notably the inhibition on those
proteins or pathways can be considered as the major therapy
targets for anti-inflammatory treatments of COVID-19. On the
other hand, the cellular oxidative stress could be attenuated by the
Nrf2 and heme oxygenase-1 (HO-1) pathway, which helps in
decreasing and maintaining the redox balance in cells thereby
reducing inflammation (Yang et al., 2009; Ahmed et al., 2017;
Zhang et al., 2021); the activation and increase in Nrf2 expression
can suppress and downregulate NLRP3 inflammasomes (Hennig
et al., 2018; Yarmohammadi et al., 2021); and the activation of
Nrf2 relative pathways can be a strategy to attenuate the infective
symptoms of COVID-19. Experimentally, in vitro curcumin
treatment as an Nrf2 activator can stimulate the Nrf2
signaling pathway to deter the NF-κB pathway and suppress
viral replication in the influenza A virus infection with an IC50 of
140.67 μg/ml. In vivo, rodents treated with curcumin (50 mg/kg)
significantly promoted Nrf2 expression to scavenge ROS that
protects cells against oxidative stress and lung injury (Dai et al.,
2018; Lin and Yao, 2020). In in vivo experiments, gavage with
curcumin (40–50 μg/ml) inhibited the activation of NLRP3 by
triggering the SIRT1/Nrf2 pathway to abrogate the downstream
cytokine expression, such as IL-1β, IL-6, IL-18, and TNF-α (Yin
et al., 2018; Yin et al., 2020). For virus-induced inflammation,
curcumin treatment can revoke pro-inflammatory cytokine
production, such as IL-1β, IL-6, and TNF-α via the inhibition
on the NF-κB signaling pathway to hinder NLRP3 expression
(Sordillo and Helson 2015; Xu and Lin 2017; Saeedi-Boroujeni
et al., 2021). Based on the anti-inflammatory dosage of curcumin
in rodent experiments and the Guidance for Industry of the FDA
(https://www.fda.gov/media/72309/download), we found that the
effective dose for human adults (70 kg) is about 450–550 mg/day
using the surface area-to-body weight relative relationship.

The anti-inflammation of curcumin suppresses the
expressions of inflammatory mediators not only by triggering
the SIRT1/Nrf2 pathway but also activating PPARγ, IL-10, and
AMPK pathways. Through the activation of IL-10, AMPK, and
PPARγ pathways, curcumin can downregulate NF-κB, COX-2,
inducible nitric oxide synthase (iNOS) expression, and
prostaglandin E2 (PGE2) levels (Zhai et al., 2015; Kumar
et al., 2017), and through the activation of the PPARγ
pathway, curcumin can obstruct NF-κB, STAT, activator
protein 1 (AP-1), and mitogen-activated protein kinases
(MAPK) (Carvalho et al., 2021). The inhibition of NF-κB can
decrease the expression of several genes, including COX-2,MMP-
9, IL-8, iNOS, and TNF-α (Bengmark 2006). Through the
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activation of the AMPK pathway, curcumin can hinder mTOR,
p38, p53, and COX-2 pathway (Thiyagarajan et al., 2018; Soltani
et al., 2019), and through IL-10, curcumin can also increase the
HO-1 expression and modulate the immune response (Naito
et al., 2014). Based on the aforementioned studies, indirect anti-
inflammatory investigations including signaling pathways are
affected by curcumin, but very few results are directly
pertaining to the SARS-CoV-2 treatment, and interestingly,
there is still promising beneficial potential for treatment and
prevention of COVID-19 in the future.

In Vitro and in Vivo Validations of Curcumin
Use in SARS-CoV-2 Infection
According to the quick spread and high mortality of COVID-19,
several clinical trials of the antiviral drugs or formulations applied
for COVID-19 treatment were conducted or recruited without
passing the in vitro and in vivo tests. Only very few in vitro-tested
models of curcumin for COVID-19 treatment were investigated
using Vero E6 cells or human Calu-3 cells that were infected with
SARS-CoV-2 (Bormann et al., 2021). The data revealed that
in vitro models treated with curcumin, nano-curcumin
formulation, or turmeric root extracts could neutralize and
decrease the SARS-CoV-2 viral RNA level at low subtoxic
concentrations (Guijarro-Real et al., 2021; Pourhajibagher
et al., 2021). Another biochemical and enzyme activity tests
showed that the turmeric root extract can significantly
constrain the main protease (Mpro) activity of SARS-CoV-2
(Dound et al., 2021). Within the past 3 months, the results of
a new in vitro study by Bahun et al. (2022) showed the IC50 of
curcumin on the SARS-CoV-2 protease 3CLpro is 11.9 μM, but in
another in vitro study by Marín-Palma et al. (2021), results
illustrated that curcumin has the EC50 from 1.14 μg/ml to
6.03 μg/ml in the antiviral effects of several different SARS-
CoV-2 variants, whereas the data revealed curcumin has a
cytotoxic effects with the CC50 about 16.5 μg/ml, which is
equal to 6.1 μM. The results of the two in vitro studies
demonstrate that curcumin has the potential to inhibit the
SARS-CoV-2 infection, but its effective and cytotoxicity doses
are very close and have some overlapping that needs additional
studies to evaluate its practical safe dose and treatment mode of
its application for COVID-19 treatment. Due to urgent demands
for curing or preventing COVID-19, there were several clinical
trials based on the application of curcumin on COVID-19
treatment that are either under recruitment or completed, but
only few non-human in vivo animal studies that are simulated to
apply a curcumin formulation on COVID-19 therapy has been
published. One study used human beta-coronavirus to mimic the
SARS-CoV-2 infection (Dound and Sehgal 2021), and the result
showed the application of a curcumin-based herbal formulation
could significantly increase CD4+ and CD8+ cell count in blood
and plasma IgG and IgM levels in virus-infected animals.
Mounting evidence obtained from preclinical studies using
animal models of lethal pneumonia shows curcumin exerts the
protective effects by regulating the expression of both pro- and
anti-inflammatory factors such as IL-6, IL-8, IL-10, and COX-2,
promoting the apoptosis of polymorphonuclear leukocytes

(PMNs) and scavenging ROS which exacerbates the
inflammatory response (Liu and Ying, 2020).

In Silico Study of Curcumin on Viral Proteins
There are several major viral site targets for COVID-19 therapy or
prevention simulated by in silico studies. The molecular docking
results revealed that curcumin has multiple targets with potential
to bind with five viral proteins of SARS-CoV-2, and those
candidate proteins contain S protein, main protease (Mpro),
RNA-dependent RNA polymerase (RdRp, nsp12), nucleic
acid-binding protein (nsp9), and RNA uridylate-specific
endoribonuclease (nsp15). In silico studies showed curcumin
can bind and act on the host proteins that participate SARS-
CoV-2 infection, such as angiotensin-converting enzyme 2
(ACE2), and several proteins applied for intracellular signal
transduction pathways and modulate cytokines secretion
(Noor et al., 2021).

There are two domains, S1 and S2, which consist the spike
protein of SARS-CoV-2 (Walls et al., 2020), and 319–541 aa of S1
is known as the receptor-binding domain (RBD) (Trigueiro-
Louro et al., 2020). Within the RBD of S1, 437–508 aa are
known as an ACE2 receptor-binding motif (RBM) (Rath and
Kumar 2020). The COVID-19 virus entry into host cells is
initiated by binding of S protein to the host cell surface ACE2
as its target receptor (Yan et al., 2020), and the RBD is the
virus–host binding spots (Veeramachaneni et al., 2021). In silico
simulation data exhibited that curcumin has a high binding
affinity to the RBD and ACE2 (Babaeekhou et al., 2021; Nag
et al., 2021; Umashankar et al., 2021). The binding of amino acid
residues to curcumin presented near the RBM of S1 protein, and
some curcuminoids have stable interactions with key spot
residues for the binding of ACE2 comprising the glycosylation
site (Babaeekhou et al., 2021), suggesting the potential efficacy of
curcumin/curcuminoids in hindering the formation of S
protein–ACE2 complex (Jena et al., 2021). A recent genome
sequencing study also indicated that the spread of double
mutations at E484Q/L452R, T478K/L452R, and F490S/L452Q
of RBD has the latent potential for the enhancement of viral
mutated S protein (Sm) and host ACE2 to form Sm–ACE2 binding
(Aggarwal et al., 2021), and concurrently, that may cause more
and effective infection of SARS-CoV-2 mutants. Interestingly, the
molecular docking results showed that curcumin and piperine
have been demonstrated not only high binding potential with
native S protein but also similar or more stability of binding
potential with Sm or/and Sm–ACE2 complex (Nag et al., 2021).

The nsp12 is the RNA-dependent RNA polymerase (RdRp) of
SARS-CoV-2, and its binding with nsp7 and nsp8 to form the
nsp12–nsp7–nsp8 complex is the central component for viral
replication and transcription (Gao et al., 2020; Peng et al., 2020).
The inhibition of RdRp could abrogate SARS-CoV-2 replication;
thus, this nsp12–nsp7–nsp8 complex is recognized as a potential
target for COVID-19 treatment (Khan et al., 2020; Begum et al.,
2021; Ruan et al., 2021). Compared with antiviral drugs
(favipiravir and remdesivir), the results of molecular docking
and molecular dynamic simulation showed curcumin/
curcuminoids have a good binding affinity and stability with
RdRp–RNA complex of SARS-CoV-2 (Kumar Verma et al., 2021;
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Singh et al., 2021) and also showed they have higher potential to
be developed as viral replication inhibitors of COVID-19.

The genome of the COVID-19 virus is encoded in two
protease enzymes, main protease (3CLPRO or Mpro-nsp12) and
papain-like protease (PLpro, nsp3), which are involved in the
proteolytic processing viral polyproteins into functional proteins
for viral replication and genomic expression within the host cells
(Das et al., 2021). The proteolytic cleavage by viral proteases at the
posttranslational stage plays the crucial role in the life cycle of
SARS-CoV-2. Mpro as a main protease can catalyze more than 11
proteolytic cleavage sites for nsp generation and without human
homologs (Dai et al., 2020); therefore, Mpro is considered to be an
ideal antiviral target for COVID-19 treatment (Li and Kang
2020). Results of in silico studies show that curcumin/
curcuminoids can form strong bonds with the active site of
SARS-CoV-2 Mpro (Ibrahim et al., 2020; Bahun et al., 2022).
Due to high binding affinity and its binding with the interface
region of Mpro may cause the protein conformational changes,
indicating that curcumin/curcuminoids could be the potential
ligands for COVID-19 therapy (Ibrahim et al., 2020; Li and Kang
2020; Kumar M. et al., 2021; Mahmud et al., 2021a; Babaeekhou
et al., 2021; Teli et al., 2021; Halder et al., 2022). One more study
demonstrated that demethoxycurcumin and
bisdemethoxycurcumin had an optimum binding affinity with
COVID-19 Mpro by molecular modeling and showed the stable
state by molecular dynamic (MD) simulation assay, suggesting
these could be one of the potential ligands for COVID-19 therapy
(Mulu et al., 2021). Unfortunately, there are only two reports with
in vitro validation of the inhibitory and selectivity effects of
curcumin on SARS-CoV-2 infection to confirm its powerful
potential on COVID-19 therapy (Kandeil et al., 2021; Bahun
et al., 2022).

The nsp9 is single-strand RNA-binding protein of SARS-CoV
(nsp9–SARS) which was found to be essential for viral replication
(Frieman et al., 2012). nsp9 of SARS-CoV-2 can bind to the
nidovirus RdRp-associated nucleotidyltransferase (NiRAN)
domain relating the viral replication and transcription (Kumar
M. et al., 2021), and it was also considered to be the therapy target
for COVID-19 treatment (Zhang et al., 2020; Kumar et al.,
2021b). There were several studies to screen the potential
candidate compounds to bind or act on nsp9 by in silico tools
(Barros et al., 2020; Chandra et al., 2021; Junior et al., 2021), and
one in vitro cellular assay showed the inhibition on nsp9 can
reduce the viral replication of SARS-CoV-2 (Littler et al., 2021).
The molecular docking results showed that curcumin can bind to
the ligand binding site of nsp9, and curcumin can form about 11
interaction sites with nsp9 (Kumar et al., 2021b).

The nsp15 of SARS-CoV-2 is a RNA uridylate-specific
endoribonuclease (NendoU) and a conserved protein in
coronavirus (Bai et al., 2021). nsp15 can degrade negative-
strand viral RNA to protect virus from the host immune
responses (Hackbart et al., 2020; Zhao et al., 2020; Gao et al.,
2021), and the inhibition of nsp15 can also promote viral
elimination by the host immune system (Kumar et al., 2021c).
There were several in silico-based studies on nsp15 to find
potential antiviral compounds or candidates (Mahmud et al.,
2021b; Canal et al., 2021; Quimque et al., 2021; Zrieq et al., 2021),

and only few studies have conducted further validation of the
antiviral effects by in vitro or in vivo study (Canal et al., 2021;
Kumar et al., 2021c). The molecular docking result showed
curcumin can bind to nsp15, which might have the potential
to inhibit SARS-CoV-2 replication (Kumar et al., 2021d).

Gaining deep insights into all those viral protein in silico
studies of SARS-CoV-2, we infer that curcumin can bind and
interact with several target viral proteins that assist in viral
attachment (S protein), replication (nsp12, nsp9),
posttranslational protein cleavage/modification (Mpro), and
host immunity evasion (nsp15), suggesting that curcumin/
curminoids provide a promising hit against COVID-19 even
without any additional demonstration (in vitro and in vivo
validation). To meet the urgent demand for managing the
COVID-19 pandemic, curcumin use will be the first priority
with high biosafety because the toxicity of curcumin is very low
even in high amounts up to 12–18 g/day (Fu et al., 2021).

In Silico Study of Curcumin on Host Proteins
Associated With COVID-19 Infection
As SARS-CoV-2 is a single-strand RNA virus, its mutation may
quickly and easily evade the host immune system or targeting
drugs; therefore, targeting on the inhibition of host proteins that
participate in the viral infections will have the stable therapeutic
advantages for COVID-19 treatment or prevention. The viral
infection of SARS-CoV-2 is initiated by its S protein binding to
ACE2 of the host cellular surface (Alcocer-Díaz-Barreiro et al.,
2020; Jahanafrooz et al., 2022). Several in silico studies showed
curcumin can bind to the S protein and ACE2 to restrict viral
entry (Maurya et al., 2020; Nag et al., 2021). The molecular
docking results showed that curcumin not only exhibits high
interaction with ACE2 but also has the most potent binding with
Sm and Sm–ACE2 complex (Nag et al., 2021), indicating that
curcumin can be applied in treatments for different SARS-CoV-2
mutated strand infections. The human serine protease serine 2
(TMPRSS2) is a transmembrane protease of host cells; it cleaves
and activates the S protein of SARS-CoV-2 to bind with ACE2 on
the initiated stage of the viral infection (Singh et al., 2020) and
reveals that TMPRSS2 is a suitable target for COVID-19 therapy.
TMPRSS2 genes may be co-expressed with SARS-CoV-2 cell
receptor genes ACE2 and basigin (BSG), but only TMPRSS2 is
demonstrated to have tissue-specific expression in alveolar cells
(Brooke and Prischi 2020). Acetaminophen (paracetamol) and
curcumin can downregulate the expression of TMPRSS2 in
human cells (Zarubin et al., 2020). In addition to the major
mode of viral infection by S protein binding to ACE2, SARS-
CoV-2 can infect host cells by endocytosis and follow the
proteolytic activation by cathepsin L (Jackson et al., 2021;
Takeda 2021). Based on the MD simulations, curcumin was
found to be the inhibitor of TMPRSS2 (Umadevi et al., 2020;
Jackson et al., 2021), and in vitro results showed curcumin
treatment can also impede the activity of cathepsin L (Goc
et al., 2021; Oso et al., 2022). Another key host cell membrane
protein in SARS-CoV-2 infection is the glucose-regulating
protein 78 (GRP78) receptor. GRP78, also termed as a HSP5A
or binding immunoglobulin protein (Bip), is one member of the
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TABLE 1 | In silico studies of curcumin/curcuminoids on the viral proteins and host proteins with SARS-CoV-2 infection.

Protein Description/functions In silico binding sites References

Viral
proteins

nsp 12 RNA-dependent RNA polymerase, virus RNA replication Curcumin: Lys545, Arg553, Ser759, Ser682, Arg555, Ala688,
Val557dDiacetylcurcumin: Thr680, Asn691, Thr687, Lys545,
Arg555, Asp623, Val557, Asp761

PDB ID: 7BV2 (Singh
et al., 2021)

Curcumin: Asn691, Asp623, Arg624 PDB ID: 6M71 (Kumar
et al., 2021d)

S protein Receptor-binding domain (RBD) of spike protein O-Demethyl demethoxycurcumin: Cys336, Asp364, Leu335,
Phe338, Asp364, Val367, Leu368, Phe374, Phe374, Trp436

PDB ID: 6VSB
(Umashankar et al.,
2021)

Curcumin: Arg328, Pro527, Lys529, Asn542, Ser98, Asn121,
Arg190, Ser730, eu861, Asp867, Phe970, Asp994, The998

PDB ID: 6VSB
(Babaeekhou et al.,
2021)

Curcumin: Leu452, Glu484, Phe490, Ser494, Tyr495 for S;
Arg403, Try449, Leu452, Phe453, Lys484, Asp494 for Sm

PDB ID: 6M0J (Nag
et al., 2021)

Curcumin: Leu546, Gly548, Phe541, Asn856, Leu997,
Ser967, Asp571, Ala570, Val976, Thr572, Asp979, Thr547,
Arg1000, Ser975, Thr573, Asn978, Cys743, Thr573, Asn978,
Cys743, Leu966

PDB ID: 6VSB (Jena
et al., 2021)

Curcumin: Tyr505, Ala387, Asp38, Gln493, Glu 35, His34, Glu
37, Arg393

PDB ID: 6VW1 (Kumar
Verma et al., 2021)

Mpro Main protease, 3-chymotrypsin-like cysteine protease
(3CLpro), there are 11 proteolytic cleavage sites of Mpro
on the posttranslation of viral gene expressions

Curcumin: His41, Leu141, Asn142, Glu166, Gln189 PDB ID: 6M03
(Babaeekhou et al.,
2021)

Curcumin: Thr190, Pro168, Met165, Glu166, Cys145 PDB ID: 6LU7 (Kumar
Verma et al., 2021)

Curcumin: His163, Cys145, Gly143, Ser144, Leu141 PDB ID: 6LU7 (Ibrahim
et al., 2020)

Curcumin: Asn142, Gln192; demethoxycurcumin: Leu272,
Thr199, Lys137; and bisdemethoxycurcumin: Phe294,
Gln110, Glu240

PDB ID: 7BUY (Mulu
et al., 2021)

Curcumin: Gly143, Gln189, Thr190, Pro168, Leu141, Glu166,
Cys145, Met165, Pro168

PDB ID: 6LU7 (Mahmud
et al., 2021a)

Curcumin: Thr26, Gly143, Cys145 PDB ID: 6LU7 (Teli et al.,
2021)

Curcumin: Gly143, Ser144 PDB ID: 6LU7 (Halder
et al., 2022)

Curcumin: Thr26, His41, Gln89 PDB ID: 6LU7 (Kandeil
et al., 2021)

Curcumin: Met49, Met165, Glu166, Arg188, Gln189, Gln192 PDB ID: 6M2N (Bahun
et al., 2022)

Curcumin: Leu141, Gly143, Ser144, Cys145, His163,
Met165, Thr190

PDB ID: 6M2N (Adhikari
et al., 2022)

Curcumin: Thr190, Pro168, Met165, Glu166 and Cys145 PDB ID: 6LU7 (Umadevi
et al., 2020)

nsp 9 Nucleic acid-binding protein Curcumin: Met16, Gly41, Gly42, Arg43, Val45, Phe60, Pro61,
Lys62, Ser63, Ile69, Thr71

PDB ID: 6W4B (Kumar
et al., 2021a)

nsp 15 RNA uridylate-specific endoribonuclease (NendoU)
activity, degrades viral RNA

n.a. PDB ID: 6VWW (Kumar
et al., 2021d)

Host
proteins

ACE2 Angiotensin-converting enzyme-2, serve as viral spine
protein receptor

Curcumin: Leu591, Lys94, Asn210, Glu564, Glu280, Tyr207,
Asp206, Gly205, Tyr196, Ala99, Lys562, Ala396, Gln102,
Trp566, Gln98, Val209, Pro565, Val212, Leu95

PDB ID:LR42 (Jena
et al., 2021)

Curcumin: Ser44, Ala46, Ser47, Gly66, Trp69, Ser70, Lys74,
Ser77, Glu110, Met62, Leu73

PDB ID: LR42 (Kumar
Verma et al., 2021)

Curcumin: Ala348, His378, Asn394, Tyr385, His401, Glu402 PDB ID: 1R42 (Maurya
et al., 2020)

Curcumin: Ans210, Lys94, Leu91, Ala396, Lys562, Ala99,
Try196, Gly205, Try207, Glu208, Glu564, Asp206, Gln102,
Trp566, Gln98, Val209, Pro565, Val212, Leu95

PDB ID: n.a. (Kumar
et al., 2021f)

GRP78 Glucose-regulating protein 78 (GRP78) receptor, ER
molecular chaperone, and cell surface GRP78 help viral
infection

Curcumin: Thr39, Ile61, Glu201, Asp224, Phe258, Glu228 PDB ID: 5E84 (Allam
et al., 2020)

Curcumin: Ile426, Thr428, Thr434, Phe451 PDB ID: 5E84 (Sudeep
et al., 2020)

Cathepsin B/
K/L

Host cysteine protease serves as viral spine protein
activator

Curcumin: Gly143, Ser144 Cys145, His172 PDB ID: 3KW9 (Oso
et al., 2022)

TMPRSS2 Transmembrane serine protease 2, cleaving and
activating S protein of SARS-CoV-2

Curcumin: Gly148, Asp147, Ser195 PDB ID: 2OQ5 (Umadevi
et al., 2020)

n.a. non-available.
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70-kDa heat shock protein (HSP70) family and functions as the
endoplasmic reticulum (ER)-resident molecular chaperone for
the clearance of misfolded proteins (Dessie and Malik 2021). An
intracellular ER stress increase may upregulate the GRP78
expression and induce GRP78 re-localization to the cell
membrane as cell surface GRP78 (Elfiky et al., 2021). The
cellular surface GRP78 can associate with the major
histocompatibility complex class I (MHC-I) that may aid
SARS-CoV-2 to get into the host cells for starting an infection
or help viral release from infected host cells (Ha et al., 2020;
Gonzalez-Gronow et al., 2021). In silico data showed curcumin
could interact with the S protein binding site and ATPase domain
of GRP78 (Allam et al., 2020; Sudeep et al., 2020), suggesting that
curcumin can assist in preventing COVID-19 viral attachment
and enter host cells by binding to and inhibiting GRP78 of host
cell surface.

In silico studies of curcumin/curcuminoids on the viral
proteins and host proteins with SARS-CoV-2 infection are
given in Table 1. It was deems the same as the viral site; all in
silico results of the host proteins on SARS-CoV-2 infection show
that curcumin can bind and interact with several targeting host
proteins that play roles in viral binding (ACE2) and S protein
activation (TMPRSS2, cathepsin L), and aid viral entry host cells
(GRP78). Multiple targeting effects of curcumin on the site of
virus and host cells during SARS-CoV-2 infective stages show its
high potential to be applied for COVID-19 prevention or therapy,
but until now, validations by in vitro or/and in vivo studies are

still few or nil, and strikingly, it is only applicable as a co-
supplement or adjuvant for therapy; nowadays, filing for
approval by the FDA to become a real anti-COVID-19
medicine is most challenging.

Clinical Trials of Curcumin on COVID-19
Treatment
Remarkably, there are numerous reports of in silico, in vitro, and
in vivo studies demonstrating that curcumin has the therapeutic
potential against the COVID-19 based on its anti-inflammation,
antioxidant, and antiviral effects. In this section, we have
reviewed many clinical trial applications and published reports
regarding the antiviral potential of curcumin/curcuminoids on
COVID-19 therapy from PubMed and clinicaltrials.gov. In all
these clinical trials, curcumin/curcuminoids formulations are
used as a therapeutic co-supplement in the treatment of
COVID-19 patients (Table 2). Because of the drawback of
poor bioavailability of curcumin, several strategies are applied
to improve the oral bioavailability of curcumin in clinical trials
containing nano-delivery systems (Hatamipour et al., 2019), with
addition of adjuvants (Tabanelli et al., 2021) and new formulation
(Flory et al., 2021). Inferiorly, the metabolic rate of curcumin is
high in the intestine and liver, which causes its poor
bioavailability. Extraordinarily, piperine is an inhibitor of
glucuronidation in the liver and intestine (Kaur et al., 2018).
Therefore, the combination of curcumin and 1% piperine is a

TABLE 2 | Clinical trial of curcumin on COVID-19 treatment of PubMed and ClinicalTrial.gov.

Formulation/design Regimen Administration Patients
(n)

Masking Age
(y)

Placebo
(n)

Country Authors

Nano-micellar gel 40 mg, four times/day Oral 80 Double 19–69 40 Iran Valizadeh et al. (2020)
Nano-micellar gel 40 mg, four times/day Oral 40 Double 18–75 20 Iran Hassaniazad et al., 2020*
Nano-micellar gel 80 mg, twice/day Oral 60 Triple 18–65 30 Iran Ahmadi et al. (2021)
Nano-micellar gel 40 mg, four times/day Oral 40 Triple 18–75 20 Iran Hassaniazad et al. (2021)
Nano-micellar gel 80 mg, twice/day Oral 41 None 18–75 20 Iran Saber-Moghaddam et al.

(2021)
Nano-micellar gel 80 mg, thrice/day Oral 60 None 18–75 30 Iran Asadirad et al. (2022)
Nano-micellar gel 40 mg, four times/day Oral 48 Double 30–65 24 Iran Honarkar Shafie et al.

(2022)
CurcuRougeTM 90 mg, twice/day Oral 60 Double 65–75 30 Japan Kishimoto et al. (2021)
Curcumin add 5 mg
piperine

500 mg, twice/day Oral 100 Double 20–75 50 Iran Miryan et al., 2020*

Curcumin add 5 mg
piperine

500 mg, thrice/day Oral 100
in ICU)

Double 20–75 50 Iran Askari et al., 2021*

Curcumin add 2.5 mg
piperine

525 mg, twice/day Oral 140 Double >18 70 India Pawar et al. (2021)

Artemisinin, boswellia,
curcumin, vitamin C, and
nanoparticle

Artemisinin 12/8.4 mg,
curcumin 40/28 mg, boswellia
30/21 mg, and Vitamin C 120/
84 mg, twice/day

Spray 50,
240, 252

Double >18 16, 80, 84 Israel NCT04382040*,
NCT05037162*,
NCT04802382*

Curcumin, quercetin, and
vitamin D

Curcumin 42 mg, quercetin
65 mg, and vitamin D 90 units,
four times/day

Oral 100 None >18 50 Pakistan,
Belgium

NCT05008003*

Curcumin, quercetin, and
vitamin D

Curcumin 168 mg, quercetin
260 mg, and vitamin D 360
units, twice/day

Oral 50 None >18 25 Belgium NCT04844658*

* as the clinical trial application; ICU: intensive care unit.
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potential option for the management of COVID-19 based on
several properties including antiviral, anti-inflammatory,
immunomodulatory, anti-fibrotic, and antioxidant effects
(Miryan et al., 2021). In other clinical trials, results of non-
COVID-19 treatment revealed that co-supplementation of
curcumin/curcuminoids with 1% piperine could significantly
improve the bioavailability (Panahi et al., 2015a; Shoba et al.,
1998), and this formulation provides more antioxidant (Panahi
et al., 2016a,b) and anti-inflammatory effects (Panahi et al.,
2015b; Rahimnia et al., 2015). Different ayurvedic therapeutic
agents (C. Longa L, green tea, and Piper nigrum) suppress the
entry of virus into host cells, transmission of pathogens, and
concurrently promote the immunity. Curcumin and piperine
(1-piperoylpiperidine) interact with each other and form a π–π
intermolecular complex which enhances the bioavailability of
curcumin by inhibiting glucuronidation of curcumin in the liver
(Kumar G. et al., 2021). The dose of curcumin from two clinical
trial applications and one report for COVID-19 treatment is
1,000 mg/day curcumin plus 0.5–1% piperine (Askari et al.,
2021; Pawar et al., 2021). When compared with the control
group, the clinical results indicated that patients with the
manifestation of mild, moderate, and severe symptoms orally
receiving curcumin with piperine formulations as the adjuvant
symptomatic therapy for COVID-19 infection have better
clinical outcomes, and it can also reduce morbidity and
mortality (Miryan et al., 2020).

Furthermore, curcumin incorporated with a nano-delivery
system can enhance water solubility, decrease degradation,
control slow release, and increase absorptive efficiency (Chen
et al., 2020; Li et al., 2020; Quispe et al., 2021), thereby increasing
circulation time, pharmacokinetics, and biodistribution.
Cumulative evidence unveiled that encapsulated curcumin
with a nano-delivery system has more significant effects than
native curcumin in the clinical trials for the treatment in
metabolic syndrome to decrease triglyceride levels in serum
(Bateni et al., 2021); in coronary elective angioplasty treatment
to improve total cholesterol, triglycerides, and antioxidative
capacity (Helli et al., 2021); and in knee osteoarthritis
treatment to improve the severity of symptoms (Hashemzadeh
et al., 2020). Curcumin is re-proposed as a potential antiviral key
for the treatment of SARS-CoV-2 based on its relation to the
infection pathways. Moreover, the use of curcumin-loaded
nanocarriers for increasing its bioavailability and therapeutic
efficiency was highlighted in several clinical trials (Dourado
et al., 2021; Hassaniazad et al., 2021; Tahmasebi et al., 2021a;
Tahmasebi et al., 2021b; Valizadeh et al., 2020; Hassaniazad et al.,
2020; Ahmadi et al., 2021; Saber-Moghaddam et al., 2021;
Asadirad et al., 2022; Honarkar Shafie, et al., 2022).
Additionally, the potential of the nanostructured systems and
their synergistic action with curcumin on the molecular targets
for viral infections have been explored (Hassaniazad et al., 2020).
One report illustrates that the administration of nano-curcumin
can accelerate recovery from the acute inflammatory phase of
COVID-19 by mediating inflammatory immune responses
(decrease in serum IFN-γ and IL-17, TBX21 mRNA; increase
in serum IL-4 and TGF-β, FOXP3 mRNA) (Ahmadi et al., 2021).
COVID-19 patients receiving nano-curcumin supplements could

significantly increase the O2 saturation and decrease the scores of
the Wisconsin Upper Respiratory System Survey (WURSS-24) in
the third domain, fourth domain, and total score, indicating
nano-curcumin supplementation could help decrease hypoxia
and moderate the symptoms induced by SARS-CoV-2 infection
(Honarkar Shafie, et al., 2022). After nano-curcumin treatment, a
significant reduction in the frequency of Th17 cells,
downregulation of Th17 cell-related factors, and decreased
levels of Th17 cell-related cytokines were found in mild and
severe COVID-19 patients, implying that curcumin could be a
potential modulatory compound in improving the patient’s
inflammatory condition (Hassaniazad et al., 2020; Saber-
Moghaddam et al., 2021). In all these clinical trials of
COVID-19 treatment, nano-micelle curcumin was applied
with the dose of 160 or 240 mg/day, and the dosage was
lower than that of native curcumin treatment. Positively,
hospitalized COVID-19 patients with oral administration of
nano-curcumin formulation can modulate the inflammatory
cytokine expression and secretion, such as IFN-γ, IL-1β, IL-6,
and TNF-α (Kishimoto et al., 2021; Asadirad et al., 2022);
regulate inflammatory immune responses to accelerate the
recovery of the acute inflammatory phase; and shorten total
recovery time (Ahmadi et al., 2021; Saber-Moghaddam et al.,
2021). Additionally, oral spray with nano-curcumin
formulation was developed and has entered phase III clinical
trial for COVID-19 treatment in Israel (NCT04382040,
NCT05037162, NCT04802382). Moreover, a new modified
starch–curcumin formulation could increase curcumin
absorption and distribution in blood circulation over
150 times compared to oral administration of native
curcumin. This result showed this can significantly improve
the anti-inflammatory effects and reduce the neutrophil/
lymphocyte ratio with the administration of lower dose
(Kishimoto et al., 2021).

Clinical trials of curcumin for COVID-19 treatment from
PubMed and ClinicalTrial.gov are listed in Table 2. There are
some points worth noting from all those clinical trials with
curcumin formulations as the co-supplementation in COVID-
19 treatment. As the sample size of those clinical trials was too
small, their results cannot be representative and promising.
Within 2 years from 2019, the mutants of SARS-CoV-2 (Sm)
varied and increased, and the outbreak of the mutated strands
was faster; consequently, patients diagnosed with COVID-19
were infected by different viral variants with different clinical
symptoms, severity, and mortality. These several viral variants
of COVID-19 spread simultaneously around the world, but
most clinical trials with curcumin applications in COVID-19
treatment did not easily establish the sample criteria for the
patient’s viral mutants. There some pieces of evidence show that
curcumin has a significant inhibitory effect on cytochrome P450
(CYP450) enzymes (Mashayekhi-Sardoo et al., 2021; Sharma
et al., 2022), which play important roles in the phase 1
metabolism of several clinical drugs, such as steroids (Zhao
N. et al., 2021). Generally, steroids are widely used for anti-
inflammation in the clinical treatment of COVID-19 (Lin et al.,
2021). Therefore, the safety of curcumin or curcuminoids was
approved by the U.S. FDA, but the inhibitory effect of curcumin
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on CYP450 isoenzymes still needs more studies to investigate
the interaction between curcumin and clinical drugs for treating
COVID-19.

Promises and Perils of Curcuminoids on the
Remedy of COVID-19
Curcumin attenuates oxidative stress and inflammation and
regulates inflammatory and pro-inflammatory pathways
associated with most chronic diseases (Quiñonez-Flores
et al., 2016), and it presents future perspectives regarding
the usage of curcumin as an immunomodulatory drug.
Paradoxically, curcumin (along with many other dietary
polyphenols), as abovementioned, can target multiple
organs or cell lineages without a known receptor or a
defined target. This, along with other chemical features of
curcumin, has generated enormous difficulties in the detailed
dissection of mechanistic pathways underlying its biomedical
functions. Indeed, these features have been causing some
confusion among drug developers and have been heavily
debated recently (Jin et al., 2018; Heger 2017; Nelson et al.,
2017). Taken together, the pharmaceutical potential of
curcumin and curcuminoids in the remedy of COVID-19 is
depicted in Figure 2. The underlying mechanisms of curcumin
and curcuminoids on the viral protein and host cell proteins in
combating COVID-19 infection are also illustrated, including
proposed signaling pathways of stimulation and inhibition
from both viral and host cellular sites. Recently, with the
awareness of the immunomodulatory properties of
curcumin, curcumin was successfully added to different
food matrices to formulate functional foods that can
improve human body immunity to abate the outbreak of
SARS-CoV-2 (reviewed in Tripathy et al., 2021). Further
investigation is needed to unequivocally determine whether
curcumin might provide a therapeutic benefit in various

diseases, particularly COVID-19. The utilization of purified
active compounds like curcumin at higher than normal doses
warrants additional scrutiny, including an accurate
determination of the appropriate dose, dosing regimen,
duration of treatment, and further clarification of the
mechanism(s) of action as it pertains to viral infection.
With regard to the treatment of COVID-19 infection or any
other viral infection disease in which curcumin is
administered via the oral route, another important issue
concerns the increase in the bioavailability of curcumin.
Despite its efficacy and safety, the therapeutic potential of
curcumin is indeed still debated due to relatively poor
bioavailability in humans including its poor solubility in
water, chemical instability, and a low pharmacokinetic
profile (Anand et al., 2007). Importantly, the oral
bioavailability of curcumin is low due to a relatively low
absorption by the small intestine coupled with an extensive
reductive and conjugative metabolism in the liver and
elimination through the gall bladder. Moreover, although
curcumin is orally administered at a high dose, only a small
quantity is detected in the blood plasma that is rapidly
metabolized and excreted via faces and urine (Niu et al.,
2012). Aforementioned limitations have restricted
curcumin’s therapeutic effectiveness in treating human
diseases. Numerous studies have been conducted under heat
and pressure with various formulations (amorphous) (Tran
et al., 2019; Sunagawa et al., 2021) to increase the aqueous
solubility and bioavailability of curcumin, which
demonstrated that curcumin supplemented with
nanoparticles of active substances or nano-formulations had
enhanced bioavailability, controlled release, and increased
stability. Additionally, lipid-based delivery systems and the
encapsulation are mainly used for the enrichment of food
products with health-promoting compounds. Notably, the
delivery systems of curcumin (such as particles, micelles,

FIGURE 2 | Underlying mechanism of curcumin and curcuminoids on the viral protein and host cell proteins for combating the COVID-19 pandemic. stimulation;
inhibition.
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emulsions, and liposomes) have a demonstrably positive effect
on augment bioavailability (Chebl et al., 2017; Guerrero et al.,
2018; Tan et al., 2018).

CONCLUSION

Curcumin is a bioactive phytochemical that can be utilized as a
nutraceutical or pharmaceutical in functional foods,
supplements, and medicines. There are several limitations of
curcumin use like low solubility and fast metabolism which
restrict its absorption in the gastrointestinal tract and lead to
poor oral bioavailability. Curcumin has multiple effects on the
antioxidative stress, anti-inflammation, antiviral infections, but
it has some inhibitory effects on the drug metabolism which
need to be further clarified. To overcome these limitations,
various curcumin formulations such as encapsulation in
edible nanoparticles or microparticles to enhance its water
dispersibility, chemical stability, and bioavailability are
applied. Clinical trials of curcumin indicate safety,
tolerability, and non-toxicity. However, the efficacy is
questionable because of the small number of patients
enrolled in each study. The challenges concerning research
on curcumin’s health benefits are given as follows: clarifying
the relationship between curcumin’s health benefits and the
immunomodulation particularly in treatment of COVID-19
and conducting further human trials in which multiple
research groups use the same samples and conditions. For
the application of curcumin in COVID-19 treatment, further
studies are still needed to optimize or improve its bioavailability
following oral administration and to explore the degree of
influence or interference of curcumin on clinical drugs

metabolism. Moreover, this study after re-evaluation can
afford a favorable application or approach of curcumin with
evidence based on the drug discovery and development,
pharmacology, functional foods, and nutraceuticals for
effectively fighting COVID-19. Overall, curcumin is a
promising ingredient of novel functional foods with
protective efficacy in preventing or reducing the
manifestation or complications of COVID-19 infection.
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The diagnostic protocol currently used globally to identify Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2) infection is RT-qPCR. The spread of these

infections and the epidemiological imperative to describe variation across the virus

genome have highlighted the importance of sequencing. SARS-CoV-2 rapid antigen

diagnostic tests (RADTs) are designed to detect viral nucleocapsid protein with positive

results suggestive of the presence of replicating virus and potential infectivity. In this study,

we developed a protocol for recovering SARS-CoV-2 RNA from “spent” RADT devices

of sufficient quality that can be used directly for whole virus genome sequencing. The

experimental protocol included the spiking of RADTs at different concentrations with

viable SARS-CoV-2 variant Alpha (lineage B.1.1.7), lysis for direct use or storage. The

lysed suspensions were used for RNA extraction and RT-qPCR. In parallel, we also tested

the stability of the viral RNA in the RADTs and the RNA extracted from the RADTs was

used as a template for tiling-PCR and whole virus genome sequencing. RNA recovered

from RADTs spiked with SARS-CoV-2 was detected through RT-qPCR with Ct values

suitable for sequencing and the recovery from RADTs was confirmed after 7 days of

storage at both 4 and 20◦C. The genomic sequences obtained at each time-point

aligned to the strain used for the spiking, demonstrating that sufficient SARS-CoV-2 viral

genome can be readily recovered from positive-RADT devices in which the virus has

been safely inactivated and genomically conserved. This protocol was applied to obtain

whole virus genome sequence from RADTs ran in the field where the omicron variant

was detected. The study demonstrated that viral particles of SARS-CoV-2 suitable for

whole virus genome sequencing can be recovered from positive spent RADTs, extending

their diagnostic utility, as a risk management tool and for epidemiology studies. In large

deployment of the RADTs, positive devices could be safely stored and used as a template

for sequencing allowing the rapid identification of circulating variants and to trace the

source and spread of outbreaks within communities and guaranteeing public health.

Keywords: antigen testing, RT-qPCR,whole virus genome sequencing, lateral flowdevice, rapid antigen diagnostic

test
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INTRODUCTION

The diagnostic protocol currently used globally to identify
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) infection is RT-qPCR (1). RNA extracted from nasopharyngeal
swabs is amplified to detect several viral structural and accessory
genetic elements as suitable targets for this method (2).
Although RT-qPCR has excellent sensitivity, the rapid spread of
these infections and the epidemiological imperative to describe
variation across the virus genome highlights the importance of
sequencing (3). This in turn can enable refinement of detection
methods (4) to facilitate the tracking of transmission pathways
in nosocomial outbreaks (5) whilst highlighting superinfections
and intra-host mutations resulting in the emergence of variants
of concern (VOC) (6). SARS-CoV-2 rapid antigen detection tests
(RADT) are designed to detect viral nucleocapsid protein with
positive results suggestive of the presence of replicating virus and
potential infectivity. RADT do not detect viral particle numbers
as low as those detected by PCR, but are effective in detecting
levels of virus likely to transmit infection (7). The frequent use
of RADT testing in particular settings, such as meat processing
plants (MPPs), can support risk-mitigation, in identifying and
excluding highly infectious individuals from the workplace
(8). The ability to recover viral RNA from spent positive
RADT devices for subsequent whole virus genome sequencing
(WvGS) would enable both the identification of virus lineage
and definition of nucleotide polymorphisms, thus facilitating
molecular epidemiological mapping of viral spread within these
communities, as well as detecting the emergence of any new
SARS-CoV-2 VOCs. This study provides proof of concept of
using spent positive RADT kits to generate viral sequence data
of sufficient quality to identify circulating variants and to trace
the source and spread of outbreaks within communities.

METHODS

Recovery of SARS CoV-2 RNA From
“Spent” RADT Test Devices
In this study, we used the Abbott PanbioTM COVID-19 Ag
Rapid Test Device kit (Nasal) (Abbott Laboratories Ltd., USA)
as RADT spiked with viable SARS-CoV-2 variant Alpha, lineage
B.1.1.7 (Human nCoV19 isolate/England/MIG457/2020) grown
in Vero E6 cells with a titer of 1.8 × 104 plaque forming units
(PFU)/mL (9). For studying the correlation between recovery
of the RNA from RADTs and concentration of SARS-CoV-2,
the RADTs were inoculated in a 90◦ angle to the specimen well
with 120 µL 1:500, 1:1,000, 1:2,000, 1:4,000, 1:8,000, and 1:16,000
dilutions of SARS-CoV-2 in duplicate. The buffer provided in the
RADTs was used for preparing the dilutions. After inoculation,
the RADTs were maintained on a flat surface for 15min at room
temperature, in accordance with the manufacturers’ instructions.
The appearance of control and test lines showed that the test
was valid and capable of detecting cultured virus. The spent
RADTs were then slowly filled with 700 µL viral lysis buffer
(AVL) (QIAamp R© Viral RNA Mini kit, Qiagen Ltd, UK) and
then incubated for 10min at room temperature. Each device was
then transferred into a sterile 30mL sample tube, vortexed for

5 s and centrifuged at 5,000 × g for 1min. The lysed suspension
(∼700 µL) was then used as a template for RNA extraction using
a programmable QIAcube Platform (Qiagen Ltd., UK) according
to the manufacturer’s instructions.

The same protocol was used for the preparation of RADTs
inoculated with neat and 1:16,000 dilution of SARS-CoV-2 with
the aim of testing the stability of the RNA in these devices
following incubation for maximum 7 days at 4 and 20◦C after
addition of buffer AVL.

In order to validate virus inactivation, eluate recovered from
RADTs spiked with 120 µL of neat SARS-CoV-2 and 700 µL
Buffer AVL was added to Vero E6 cells. Before addition to
Vero E6 cells, cytotoxic components of the AVL buffer were
eliminated from eluate using detergent removal spin columns
(ThermoFisher, UK), which were shown to recover 100% of
virus (10). The protocol demonstrated that viable virus could
no longer be detected in the eluate from positive RADT test
devices to which AVL buffer was added, but viable virus was
detected when 700µL of PBS was added. RNA suitable forWvGS
was recoverable.

Protocol for Safe Virus Inactivation and
Use for RT-qPCR and WvGS
The protocol described above was modified to facilitate the
safe handling of real-field positive RADTs. SARS-CoV-2 positive
RADTs were inoculated on-site with 700 µL AVL provided in
ready to use aliquots in 1.5mL tubes and transferred gently
drop-by-drop using a single-use polyethylene Pasteur pipette
(Fisher Scientific Ireland). After an incubation of 10min, the
RADT were transferred into a 50mL sample tube, sealed and
maintained at 4 or 20◦C, then delivered to the laboratory
(Figure 1). The next steps were performed in containment
biosafety laboratory category 2 (BSL-2) facilities using standard
BSL-2 work practices. The tubes were centrifuged for 5,000
× g for 1min, and the discharged liquid collected in the
bottom of the tubes (about 700 µL) was retrieved for RNA
extraction and RT-qPCR using the method as described above.
This protocol was used for the extraction of 30 RADTs from
a number of MPPs in Ireland returning positive results. The
samples were randomly chosen from a larger dataset of positive
RADTs, including Abbott PanbioTM (Abbott Laboratories Ltd.,
USA) and Clinitest R© Rapid COVID-19 Antigen Test (Siemens
Healthineers, Germany) where voluntary participants from a
number of MPPs provided their informed consent. Workers
were invited to participate and provided with an information
leaflet and consent form for signature. Anonymised data from the
survey was provided to the research team, with ethical approval
from UCD Human Research Ethics Committee (No.: LS-E-20-
196-Mulcahy).

RT-qPCR Detection of SARS-CoV-2 and
Whole Viral Genome Sequencing
The presence of SARS-CoV-2 RNA in purified samples, either
from the experimental protocols or positive RADTs from MPPs,
was confirmed by RT-qPCR targeting the nucleocapsid genes 1
(N1) and 2 (N2) and the human RNase P (RP). Three single
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FIGURE 1 | Protocol for safe virus inactivation of RADT on-site. The experimental protocol was modified to facilitate the safe handling of real-field positive RADTs.

SARS-CoV-2 positive RADTs are inoculated on-site with 700 µL AVL provided in ready to use aliquots and transferred gently drop-by-drop. After an incubation of

10min, the RADT is transferred into a 50mL sample tube, sealed and maintained at 4 or 20◦C, then delivered to the laboratory.

TABLE 1 | Panel of primer and probes used for the RT-qPCR used in this study.

Label name Description Oligonucleotide sequence (5
′

> 3
′

) Label Final conc.

2019- nCoV_N1-F 2019-nCoV_N1 Forward Primer GAC CCC AAA ATC AGC GAA AT None 500 nM

2019- nCoV_N1-R 2019-nCoV_N1 Reverse Primer TCT GGT TAC TGC CAG TTG AAT CTG None 500 nM

2019- nCoV_N1-P 2019-nCoV_N1 Probe FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1 FAM, BHQ-1 125 nM

2019- nCoV_N2-F 2019-nCoV_N2 Forward Primer TTA CAA ACA TTG GCC GCA AA None 500 nM

2019- nCoV_N2-R 2019-nCoV_N2 Reverse Primer GCG CGA CAT TCC GAA GAA None 500 nM

2019- nCoV_N2-P 2019-nCoV_N2 Probe FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1 FAM, BHQ-1 125 nM

RP-F RNase P Forward Primer AGA TTT GGA CCT GCG AGC G None 500 nM

RP-R RNase P Reverse Primer GAG CGG CTG TCT CCA CAA GT None 500 nM

RP-P RNase P Probe FAM – TTC TGA CCT GAA GGC TCT GCG CG – BHQ-1 FAM, BHQ-1 125 nM

reactions were prepared using combined Primer/Probe Mix (1.5
µL) (IDT, USA) for each target (Table 1) adding DNase & RNase
free water (6.5 µL) (Fisher Scientific Ireland), qScript XLT One-
Step RT-qPCR ToughMix (2X) Low ROX (10 µL) (Quantabio,
USA) and 2 µL of the template RNA, obtaining 20 µL of total

reaction. A standard curve with 1:10 serial dilution of single
stranded RNA (ssRNA) fragments of SARS-CoV-2 reference
material (EU-JRC, Italy) was included on each RT-qPCR run
along with negative extraction control. The cycling protocol of
the complete reaction mix was incubated in a QuantStudio 5
Real-Time PCR System (Applied Biosystems, USA) as follows:
cDNA Synthesis (50◦C for 10min), initial denaturation (95◦C,
for 1min) PCR cycling (40 cycles) included denaturation (95◦C
for 10 s) extension and data collection step (60◦C for 1 min).

The extracted samples were also used as a template for

multiplex PCR (tiling-PCR) according to the ARTIC panel

(version 3) (11) and amplicons were prepared for WvGS,
following the protocol for Illumina MiSeq sequencing (5). Raw
data were quality assessed using FastQC (version 0.11.7) and pre-

processed with fastp (version 0.20.1) (12). Consensus sequences

were generated using the computational package iVar (version

1.0) (13). For phylogenetic analysis, sequences were aligned

using a pipeline used previously (5, 6) which included the
analysis with Nextclade (14) to identify differences between

sequences and report sequence quality, while the pangolin tool
was used for the assignment of epidemiological lineages (15). The
sequences obtained were aligned using MAFFT (version 7) and
for outlining the phylogenetic relationship among the sequences,
a tree was generated with the Neighbor-Joining method (16)
and visualized using FigTree (version 1.4.4) (https://github.com/
rambaut/figtree).

RESULTS

RT-qPCR Detection of SARS-CoV-2 in
Positive Spent RADT Test Device and
Genomic Comparison Experimental Study
All RADT spiked with SARS-CoV-2 produced a test and control
line within 15min of inoculation. The RNA recovered from
RADTs spiked with SARS-CoV-2 was detected through RT-
qPCR and the Ct values ranged between 27.49 and 31.80 for
the gene N1 and 28.19 and 31.91 for the gene N2 (Figure 2)
with ∼1-Ct difference between each 1:2 dilution. There was
no significant change in RNA detected by RT-qPCR overtime
when RADTs were spiked with a high titer of SARS-CoV-2
(1 × 103 PFU/mL) following storage of RADTs at 4 or 20◦C
(Figure 3A) using neat concentration of cultured SARS-CoV-
2, while the stability study demonstrated reduced detection
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FIGURE 2 | Ct values for N1 and N2 of RNA recovered from RADTs spiked with different concentrations of SARS-CoV-2 viral particles. The RNA recovered from

RADTs spiked with SARS-CoV-2 was detected through RT-qPCR and the Ct values ranged between 27.49 and 31.80 for the gene N1 (blue) and 28.19 and 31.91 for

the gene N2 (red) reported in the y-axes. The log10 of the SARS-CoV-2 viral particles dilutions is presented in the x-axes. The R-squared (R2) values are displayed in

the dotted trend lines and the vertical bars on the points represent the standard deviation considering the average of the two Ct values recorded for each sample.

FIGURE 3 | Effect of the storage temperature and time on the Ct values of RNA by RT-qPCR recovered from spiked LFD. (A) Ct values (y-axes) of the RNA recovered

from RADTs spiked with a high titer of SARS-CoV-2 (1 × 103 PFU/mL) following storage of RADTs at 4◦C (blue) or 20◦C (red) for 7 days. The vertical bars on the points

represent the standard deviation considering the average of the two Ct values recorded for each sample and the trendlines (dotted lines) are shown. (B) Stability test.

A diluted concentration (1:16,000) of the virus was used for spiking RADTs and stored at 4 and 20◦C. The Ct values (y-axes) obtained on day 0 and 7 are shown in the

plot along with the vertical bars on the points representing the standard deviation considering the average of the two Ct values recorded for the measurements.

of viral RNA by RT-qPCR when RADTs were inoculated
with the 1:16,000 dilution (Ct = 31.63) at day 7. Low
amounts of RNA in RADTs appear to be more stable when
incubated at 4◦C (Ct = 33.38) compared to 20◦C (Ct =

37.85) (Figure 3B). A total of four RNA samples extracted from
RADTs from the stability test were sequenced, including two

RADTs stored at 4◦C and two at 20◦C after addition of buffer
AVL and extracted after 2 and 7 days. The alignment of the
sequences showed the perfect alignment with the sequence of
the Human SARS-CoV-2 variant Alpha (lineage B.1.1.7, isolate
England/MIG457/2020) (17, 18) used for spiking the RADTs
(Figure 4).
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FIGURE 4 | Sequence alignment of WvG sequences obtained from RNA during the stability test. The spiked RADTs were stored at 4◦C and 20◦C after the addition of

buffer AVL and the extraction protocol was performed after 2 and 7 days. The GenBank id of the four samples are included in the left side of the figure, the Human

nCoV19 isolate/England/MIG457/2020 used for the spiking is included. The colored lines represent the mutations and polymorphisms common to the four WvGs

compared to the reference WvG (MN908947 - Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1).

FIGURE 5 | Maximum likelihood phylogenetic tree of the 30 field-samples. The sequences were obtained from the positive RADTs provided by operators in the MPPs

and treated with the developed protocol described in this study. The six yellow squares highlight the clusters and the colored spots on the branches of the tree, group

the related samples with the same date of isolation. The clusters are annotated based on the average distance among the sequences and the tree is rooted with the

reference MN908947 (Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1).

RT-qPCR Detection of SARS-CoV-2 in
Positive Spent RADT Test Device and
Genomic Comparison in Field Samples
The RNA extracted from positive RADTs from meat plants
were tested for the presence of RNA of SARS-CoV-2 with the
RT-qPCR. All the samples resulted positive with a Ct value
included between 18.39 and 34.67 (Supplementary Table 1). All
the samples were sequenced and the clade 21K (Omicron) was
identified for 26 samples and four resulted 21L (Omicron).
According to Nextclade Pango nomenclature, were identified

seven different lineages: 9 BA.1.1.15 (30.0 %), 5 BA.1 (16.7 %),

4 BA.1.19 (13.3 %), 4 BA.1.1 (13.3 %), 4 BA (13.3 %), 3 BA.1.17
(10.0 %), and 1 BA.1.10 (3.3%). In addition the genome coverage

ranged between 67.4 and 98.8% (Supplementary Table 1) while

other parameters and details on the genomics sequence are

presented in the Supplementary Table 2. The phylogenetic tree

(Figure 5) highlighted the relationship among the samples

clustered according to the MPPs and dates of positivity. In total

were identified six clusters and four of them (BA.2, BA.1.1,
BA.1.19, and BA.1) grouped samples originated from the same
MPP. The cluster grouping the lineage BA.1.1.15 included
samples from three different MPPs (U, J, and I), while samples
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from MP R generated two distinct clusters with two lineages
(BA.2 and BA.1.19) of the variant Omicron (clade 21L and 21
K respectively).

DISCUSSION

WvGS can be used to identify VOCs in the population at
large (18) and can also be used at higher resolution to support
epidemiological investigation of outbreaks (1, 5, 6, 17–19). As
more of the Irish population is vaccinated, the application of
WvGS becomes increasingly important to quickly identify and
control new and emerging variants that could escape vaccinal
protection particularly in elderly and vulnerable individuals (6).
In this context, the source and spread of future virus outbreaks
should be more aggressively tracked and traced to expedite its
elimination from the Irish population.

RADTs in which virus has been inactivated have been used
for years for example when transferring foot-and-mouth disease
virus test samples from remote field locations to reference
laboratories for characterization (20). The present study provides
proof of the concept that sufficient SARS-CoV-2 viral genome
can be readily recovered from positive RADT devices in which
the virus has been safely inactivated to allow for high resolution
sequencing. This is a useful extended finding which should be
viewed in the context outlined above, as providing an additional
source of material for WvGS.

Detection of lineages of the Omicron VOC from field samples
and one lineage of the Alpha VOC experimentally, means there is
no guarantee that other VOCs could be detected by the method
described here. Only two different RADTs were used in this study
and either the lysis buffers provided or the makeup of the lateral
flow devices provided with other RADT kits could prevent the
isolation of viral RNA for sequencing by the method described
here. Further application of this method to recover RNA from
positive RADTs and detect circulating variants will determine if
this method can be utilized to detect other VOCs and be used
with other RADT kits. Interestingly, the phylogenetic analysis
highlighted the relationship among samples, and different
clusters were identified, grouping in some cases, samples from
the same MPPs. The limited number of samples for this trial and
the relatively short period of time of the survey couldn’t support
more speculations on the direction of the infections however, the
significant additional benefit derived from this study was proof of
the concept that viral genome sequences could be obtained from
spent positive RADTs. As the pandemic has evolved, tracking
the spread of VOCs has become a priority for public health
authorities. This study demonstrates the possibility of rapidly
sequencing viruses associated with infections in workplace

environments, such as MPPs, both to monitor the viral variants
and lineages in circulation, and in future, with the validation of
other available RADTs and the availability of WvGS obtained
using this protocol, could be potentially applied to identify
sources of infection, and the direction of person-to-person spread
within workplaces.
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Higher circulating polyunsaturated fatty acids (PUFAs), especially omega-3 fatty acids,
have been linked to a better prognosis in patients of coronavirus disease 2019 (COVID-
19). However, the effects and causality of pre-infection PUFA levels remain unclear.
This study aimed to investigate the observational and causal associations of circulating
PUFAs with COVID-19 susceptibility and severity. We first performed a prospective
cohort study in UK Biobank, with 20,626 controls who were tested negative and 4,101
COVID-19 patients, including 970 hospitalized ones. Plasma PUFAs at baseline (blood
samples collected from 2007 to 2010) were measured by nuclear magnetic resonance,
including total PUFAs, omega-3 PUFAs, omega-6 PUFAs, docosahexaenoic acid (DHA),
linoleic acid (LA), and the omega-6/omega-3 ratio. Moreover, going beyond UK Biobank,
we leveraged summary statistics from existing genome-wide association studies to
perform bidirectional two-sample Mendelian randomization (MR) analyses to examine
the causal associations of eight individual PUFAs, measured in either plasma or red
blood cells, with COVID-19 susceptibility and severity. In the observational association
analysis of each PUFA measure separately, total, omega-3, and omega-6 PUFAs, DHA,
and LA were associated with a lower risk of severe COVID-19. Omega-3 PUFAs and
DHA were also associated with a lower risk of testing positive for COVID-19. The omega-
6/omega-3 ratio was positively associated with risks of both susceptibility and severity.
When omega-6, omega-3, and their ratio are jointly analyzed, only omega-3 PUFAs
remained significantly and inversely associated with both susceptibility and severity. The
forward MR analysis indicated that docosapentaenoic acid (DPA-n3) and arachidonic
acid (AA) might be causally associated with a lower risk of severe COVID-19, with OR
(95% CI) per one SD increase in the plasma level as 0.89 (0.81, 0.99) and 0.96 (0.94,
0.99), respectively. The reverse MR analysis did not support any causal effect of COVID-
19 on PUFAs. Our observational analysis supported that higher circulating omega-3
PUFAs, especially DHA, may lower the susceptibility to and alleviate the severity of
COVID-19. Our MR analysis further supported causal associations of DPA-n3 and AA
with a lower risk of severe COVID-19.

Keywords: COVID-19, polyunsaturated fatty acid, Mendelian randomization, prospective cohort,
docosapentaenoic acid, arachidonic acid
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic, caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has resulted in over five million deaths in less than
2 years (1, 2). Understanding the role of nutrition in moderating
susceptibility to and progression of COVID-19 is critical for
the development of evidence-based dietary recommendations
to prevent infection and to manage disease progression (3, 4).
Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are
of special interest because of their potent immunomodulatory
effects, not only in mounting immune responses against viral
infection but also in promoting inflammation resolution to
avoid tissue damage (5–7). COVID-19 is an infectious disease
characterized by cytokine storm and hyperinflammation in severe
cases (8), presenting multiple possible points of action for PUFAs.

Recent observational studies have noted significant changes in
the circulating levels of various PUFAs when comparing COVID-
19 patients to healthy controls and across severity subgroups
of patients. In general, total PUFAs, omega-6 PUFAs, linoleic
acid (LA), and the omega-3 index measured as the percentage of
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
in red blood cell (RBC) fatty acids, are lower in COVID-
19 patients and even lower in severe cases (9–12). A higher
omega-3 index in patients was further associated with lower
risks of requiring mechanical ventilation and death (9, 10).
But conflicting patterns were also reported across cohorts and
studies (11, 12), such as elevated levels of LA and arachidonic
acid (AA) in COVID-19 patients (12). Moreover, the circulating
levels of PUFAs in patients are likely confounded by immune
responses to the viral infection and do not represent the effects
of pre-infection circulating levels. There is a prospective cohort
study that compared hospitalized COVID-19 patients to non-
cases and found that almost all PUFA measures, including total
PUFAs, omega-6 PUFAs, omega-3 PUFAs, LA, and DHA, are
associated with a lower risk of severe COVID-19. The only
exception is the omega-6/omega-3 ratio, which exhibits a positive
association (13). However, the study did not distinguish the
effects on susceptibility and severity, and the usage of non-
cases without COVID-19 status as the control did not correct
for selection bias in those receiving tests. Altogether, while
these observational studies provide valuable insights, they are
susceptible to residual confounding and reverse causation. The
causal effects of circulating PUFAs on COVID-19 susceptibility
and severity remain unclear.

Mendelian randomization (MR) is an analytic tool for
inferring the causal effects of an exposure on an outcome of
interest (14). MR uses randomly allocated genetic variants related
to the exposure as instrumental variables, which are inborn
and minimally affected by confounders and reverse causation
(15). This method has been widely utilized in recent studies
to evaluate the causal roles of specific risk factors in COVID-
19, such as body mass index (BMI), white blood cells, some
circulating proteins, and smoking (16–19). On the other hand,
MR studies have also provided support for the causal clinical
effects of circulating PUFAs (Supplementary Table 1). The
genetically predicted circulating levels of various PUFAs have

been associated with clinical biomarkers, such as blood lipids,
white blood cell counts, and blood pressure (20–22). They were
also directly associated with risks of specific diseases, such as
cardiovascular diseases, diabetes, and cancers (23–27). Therefore,
MR is a valuable and cost-effective tool to evaluate the causal roles
of circulating PUFAs in COVID-19 susceptibility and severity.

In this study, we first performed an observational analysis
in a prospective cohort, UK Biobank, with 4,101 COVID-19
patients, including 970 hospitalized ones, and 20,626 controls
that were tested negative. We performed multiple comparisons
across different case and control groups to evaluate the effects of
six baseline plasma PUFA measures on COVID-19 susceptibility
and severity. Furthermore, we applied bidirectional two-sample
MR analyses to examine the causal associations between eight
individual PUFAs and COVID-19. Genetic instruments for
circulating PUFAs were obtained from previous genome-wide
association studies (GWAS) of corresponding PUFAs measured
in either plasma or RBC (28–30). Genetic associations with
COVID-19 susceptibility and severity were obtained from GWAS
meta-analyses conducted by the COVID-19 Host Genetics
Initiative (HGI) (31). Our study, integrating observational and
genetics-instrumented MR analyses, unraveled the effects of total
and individual circulating PUFAs on the risks of COVID-19
susceptibility and severity.

MATERIALS AND METHODS

Ethical Considerations
The usage of individual-level data for this study was approved
by the University of Georgia Institutional Review Board and
UK Biobank (application no. 48818). All participants of UK
Biobank and the Framingham Heart Study (FHS) provided
written informed consent before joining these studies. Informed
consent was not required for publicly available summary
statistics. Our study follows the guidelines for strengthening
the reporting of observational studies in epidemiology
(STROBE, Supplementary Table 2) and strengthening the
reporting of Mendelian randomization studies (STROBE-MR,
Supplementary Table 3) (32).

Participants and Study Design
We performed an observational cohort study based on UK
Biobank and then a bidirectional two-sample MR study with
summary statistics from GWAS of PUFAs and COVID-19.
UK Biobank is a population-based prospective study, including
>500,000 participants aged 37–73 years at recruitment from
2006 to 2010 in the United Kingdom (33). The observational
analysis was performed to examine the associations between six
plasma PUFA measures and COVID-19 status in UK Biobank.
The six plasma PUFA measures include total PUFAs, omega-3
PUFAs, omega-6 PUFAs, DHA, LA, and the calculated omega-
6/omega-3 ratio. The MR study investigated the causal effects
of eight individual PUFAs on COVID-19 susceptibility and
severity. Genetic instruments for plasma PUFAs were obtained
directly from published GWAS (28, 29). Genetic instruments
for RBC PUFAs were determined based on a published GWAS,
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but their summary statistics, not reported in the original study,
were calculated by ourselves with the same statistical model
and individual-level data from 2,462 FHS participants (30).
Six PUFAs have genetic instruments for their circulating levels
in both plasma and RBC, including α-linolenic acid (ALA),
docosapentaenoic acid (DPA-n3), LA, γ-linolenic acid (GLA),
dihomo-γ-linolenic acid (DGLA), and AA. Docosatetraenoic
acid (DTA) only has genetic instruments for its RBC level, while
DHA only for its plasma level.

Observational Analysis
Figure 1 displays the flow of participants throughout the
observational study. To minimize the possibility of bias, we
removed participants who had mismatched self-reported sex
and genetic sex, sex chromosome aneuploidy, ten or more
third-degree or closer relatives, or had withdrawn from UK
Biobank. Our exposure variables were six PUFAs, as measured
by nuclear magnetic resonance (NMR) in a random subset of
plasma samples collected between 2007 and 2010 (13, 33, 34).
We used the COVID-19 testing result and inpatient status as
our outcome (data accessed on June 21, 2021). The specimen
collection dates were March 16, 2020 to June 14, 2021 for those
in England; February 11, 2020 to March 18, 2021 in Scotland;

and January 13, 2020 to June 7, 2021 in Wales. Hospitalized
COVID-19 patients were identified as those with positive PCR-
based diagnosis and explicit evidence of being inpatients. Of note,
being an inpatient does not necessarily indicate hospitalization
for COVID-19 because patients in hospitals for any reason may
be prioritized for COVID-19 testing (35). Inpatient status was not
available for assessment centers in Scotland and Wales. To test the
association with COVID-19 severity, we performed two separate
analyses with different controls: (1) non-hospitalized COVID-
19 patients, and (2) individuals who tested negative. To examine
the association with COVID-19 susceptibility, we focused on all
COVID-19 cases, which were tested positive for SARS-CoV-2.
Individuals with negative tests were used as the control. This
analysis of susceptibility was performed in two datasets: (1)
participants from England, and (2) participants from England,
Scotland, and Wales. For the 24,727 participants with both
plasma PUFA measures and COVID-19 status, we applied logistic
regression models on various case and control groups to estimate
the associations of PUFAs with COVID-19 susceptibility and
severity. Covariates included continuous variables, including age,
BMI, and Townsend deprivation index, and categorical variables,
including sex, ethnicity, and assessment center. Individuals with
missing information in PUFA measures, COVID-19 status, or

FIGURE 1 | Flowchart of the UK Biobank participants from recruitment to inclusion in the observational analysis.
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covariates were excluded. All plasma PUFA measures were
standardized to z scores and their comparable effect sizes were
expressed per one standard deviation (SD) increase in the
corresponding PUFAs. All analyses in the observational study
were conducted using R version 4.0.0, and nominal significance
was set at p-value < 0.05. Bonferroni correction for multiple
testing [corrected P significance cutoff: 0.05/2 (outcomes)/6
(exposures) = 0.0042] was used to avoid the type I error (36).

Genetic Associations With
Polyunsaturated Fatty Acids
Two types of circulating PUFAs were evaluated in our MR
analyses, plasma and RBC PUFAs. For plasma PUFAs, single
nucleotide polymorphisms (SNPs) were obtained from published
GWAS of omega-3 PUFAs (n = 8,866) and omega-6 PUFAs
(n = 8,631) in participants of European ancestry (28, 29). We
selected SNPs for each plasma omega-3 and omega-6 PUFA,
which reached genome-wide significance level (P < 5 × 10−8)
and were restricted by linkage disequilibrium (LD) clumping to
ensure independence (r2 < 0.001 within a 10 Mb window). To
ensure robustness and reduce false positives, we also used less
stringent LD cutoffs (r2 < 0.01, 0.1, and 0.3) to select SNPs
associated with plasma omega-3 PUFAs. The same LD-related
sensitivity analysis was not possible for plasma omega-6 PUFAs
because their genome-wide summary statistics were not available.
To examine the effects of RBC PUFAs, we obtained genetic
associations at a genome-wide significance level (P < 5 × 10−8)
identified by Tintle et al. (30). We used the individual-level
data from the FHS to confirm the significance of these SNPs
and calculate their effect sizes and standard errors. In the
same linear mixed model, covariates included age, sex, and
matrix of kinship coefficients in the FHS. We respectively
selected independent (r2 < 0.001, 0.01, 0.1, and 0.3 within a
10 Mb window) SNPs predicting RBC PUFAs at genome-wide
significance (P < 5 × 10−8). We calculated F-statistics to test
instrument strength (F-statistics > 10 for all plasma and RBC
PUFAs) (37). Summary statistics for the genetic instruments for
plasma and RBC PUFAs are openly available for public access
(Supplementary Tables 4, 5).

Genetic Associations With COVID-19
To assess genetic associations with COVID-19 severity, we used
three GWAS meta-analyses of only European participants which
were conducted by the HGI (release 5, released on January
18, 2021) (31). First, we used the GWAS of severe COVID-
19, labeled as study A2, that compared patients confirmed with
very severe respiratory symptoms (n = 5,101) to the control
group of general population samples (n = 1,383,241). Second,
another HGI GWAS, labeled as study B2, compared hospitalized
COVID-19 patients (n = 9,986) to general population samples
(n = 1,877,672). The third severe COVID-19 GWAS utilized
in our study, labeled as B1, compared hospitalized COVID-
19 patients (n = 4,829) to non-hospitalized COVID-19 patients
(n = 11,816). To assess genetic associations with COVID-19
susceptibility, we used one GWAS by HGI, labeled as study C2,
that compared any COVID-19 case (n = 38,984) to population

controls (n = 1,644,784). In addition to these four COVID-19
GWAS used in our primary analysis, we repeated MR analyses
using the study A2, B1, B2, and C2 from HGI release 4 (released
on October 20, 2020), to examine the consistency of our findings
across different data releases. Detailed information about these
GWAS is available at the COVID-19 HGI website.1

To assess reverse causality, we obtained strong (P < 5 × 10−8)
and independent (r2 < 0.001 within a 10 Mb clumping
window) SNPs associated with COVID-19 phenotypes as genetic
instruments. We also used a less stringent selection criterion
(P < 5 × 10−6) to determine the robustness of our results.

Mendelian Randomization Analyses
Mendelian randomization was used to infer causality
between PUFAs and COVID-19 by leveraging genetic data
as instrumental variables. We scaled the odds ratio (OR)
estimates per SD increment of plasma and RBC PUFAs (%
of total fatty acids). We obtained the SNP-specific Wald
estimate (ratio of the SNP-outcome effect divided by the
SNP-exposure effect) when only one SNP was available. The
inverse variance-weighted (IVW) method with a multiplicative
random-effects model (≥2 SNPs) was used as the primary
analysis (38–40). We used the MR-Egger intercept test to
evaluate the extent of unbalanced horizontal pleiotropy,
which can lead to a biased causal effect estimate (39). In
sensitivity analyses, we applied the MR-Egger and weighted
median (WM) methods to account for pleiotropy (39–
41). The MR-Egger method provides an unbiased causal
estimate even when all SNPs are invalid instruments as
long as that the horizontal pleiotropic effects are balanced
across SNPs (39). However, MR-Egger can be imprecise
and suffer from low statistical power, particularly when
based on a small number of SNPs (e.g., <10) (39). The WM
method gives robust causal estimates even when up to 50%
of SNPs are invalid genetic instruments (41). To test the
presence of heterogeneity among genetic instruments, we
calculated Cochran’s Q statistic for the IVW method and
an extended version of Cochran’s Q statistic (Rücker’s Q’)
for the MR-Egger method (42, 43). We utilized Bonferroni
correction [corrected P significance cutoff: 0.05/2 (outcomes)/7
(exposures) = 0.0036] for multiple testing. Additionally, we
required a relationship to be nominally significant (P < 0.05)
with both measures of the same PUFA (plasma and RBC)
and in the case of COVID-19 severity, with different outcome
GWAS (study A2, B2, and B1). All MR analyses were performed
in R version 4.0.0 with the TwoSampleMR package version
3.6.9 (44).

RESULTS

Baseline Characteristics
The flow of UK Biobank participants throughout the
observational study is described in Figure 1, while their
baseline characteristics are summarized in Table 1. Across all

1https://www.covid19hg.org/results/
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TABLE 1 | Characteristics of the UK Biobank participants at baseline.*

England England, Scotland, and Wales

Characteristics Hospitalized
COVID-19

Non-hospitalized
COVID-19

Test positive Test negative Test positive Test negative

Participants, n 4,209 12,240 16,449 76,307 17,395 86,717

Participants with plasma PUFA measures, n 970 2,903 3,873 18,293 4,101 20,626

Age, y 59 [40–70] 51 [40–70] 52 [40–70] 59 [40–70] 52 [40–70] 59 [40–70]

Females, n (%) 445 (46) 1,559 (54) 2,004 (52) 9,771 (53) 2,123 (52) 11,145 (54)

Body mass index, kg/m2 (SD) 29.55 (5.61) 27.96 (4.94) 28.36 (5.16) 27.69 (4.88) 28.36 (5.14) 27.71 (4.89)

PUFAs, mmol/l (SD) 4.82 (0.81) 4.92 (0.78) 4.89 (0.79) 4.97 (0.80) 4.89 (0.78) 4.96 (0.80)

Omega-3 PUFAs, mmol/l (SD) 0.48 (0.20) 0.49 (0.21) 0.49 (0.20) 0.53 (0.22) 0.49 (0.20) 0.53 (0.22)

DHA, mmol/l (SD) 0.21 (0.074) 0.22 (0.075) 0.22 (0.075) 0.24 (0.084) 0.22 (0.075) 0.23 (0.084)

Omega-6 PUFAs, mmol/l (SD) 4.34 (0.70) 4.42 (0.66) 4.40 (0.67) 4.44 (0.68) 4.40 (0.67) 4.44 (0.68)

LA, mmol/l (SD) 3.29 (0.70) 3.39 (0.65) 3.37 (0.67) 3.39 (0.69) 3.37 (0.66) 3.39 (0.68)

*Values are numbers (%) for categorical variables, mean (SD) or medians [range] for continuous variables. PUFAs, polyunsaturated fatty acids; DHA, docosahexaenoic
acid; LA, linoleic acid.

assessment centers in England, Scotland, and Wales, there were
104,112 participants with COVID-19 status. Among them,
17,395 were tested positive for COVID-19. Inpatient status
was only reported by assessment centers in England. Of the
92,756 participants with COVID-19 status in England, 16,449
were tested positive, and 4,209 had confirmed inpatient status.
Across England, Scotland, and Wales, COVID-19 patients
were more likely to be male (t-test, P = 0.008), with higher
BMI (P = 9.34 × 10−14), but younger than participants with
negative testing results (P < 2.2 × 10−16). Across assessment
centers in England, hospitalized COVID-19 patients were older
(P < 2.2 × 10−16), were more likely to be male (P = 2.44 × 10−5),
and had higher BMI (P = 1.13 × 10−14), when compared to
non-hospitalized COVID-19 patients. The three known risk
factors of severe COVID-19, age, sex, and BMI, were included as
covariates in our observational association analysis.

Observational Association Analysis
Table 2 shows the observational associations between baseline
plasma PUFAs and COVID-19 susceptibility and severity.
Among participants from England who also had plasma
data, there were 18,293 with negative testing results and
3,873 with positive tests. Among the COVID-19 patients, 970
were hospitalized and the other 2,903 were non-hospitalized.
Comparing hospitalized patients to those tested negative, we
observed a lower risk of COVID-19 severity per SD increase in
total PUFAs (OR: 0.88; 95% confidence interval (CI): 0.82, 0.95;
P = 0.00051), omega-3 PUFAs (OR: 0.82; 95% CI: 0.76, 0.89;
P = 8.07 × 10−7), omega-6 PUFAs (OR: 0.91; 95% CI: 0.85, 0.98;
P = 0.012), DHA (OR: 0.78; 95% CI: 0.72, 0.85; P = 4.56 × 10−9),
and LA (OR: 0.92; 95% CI: 0.86, 0.99; P = 0.023). Using 2,903
non-hospitalized COVID-19 patients as the control group, there
were consistently inverse associations of COVID-19 severity
with total PUFAs (P = 0.0012), omega-3 PUFAs (P = 0.0013),
omega-6 PUFAs (P = 0.0047), DHA (P = 8.92 × 10−5), and LA
(P = 0.0079).

We further evaluated the effects of baseline plasma PUFAs
on COVID-19 susceptibility by comparing COVID-19 patients

to those tested negative. Among 24,727 participants in England,
Scotland, and Wales, we found a lower risk of getting COVID-19
per SD increase in omega-3 PUFAs (OR: 0.92; 95% CI: 0.89,
0.96; P = 2.27 × 10−5) and DHA (OR: 0.91; 95% CI: 0.87, 0.94;
P = 1.41 × 10−6). Among 22,166 individuals in England only,
we also observed consistently significant associations for omega-
3 PUFAs (OR: 0.92; 95% CI: 0.88, 0.96; P = 4.29 × 10−5) and DHA
(OR: 0.91; 95% CI: 0.87, 0.94; P = 3.00 × 10−6).

The omega-6/omega-3 ratio was significantly associated with
an increased risk of severe COVID-19, either by comparing
hospitalized patients to participants who tested negative (OR:
1.13; 95% CI: 1.07, 1.20; P = 1.48 × 10−5) or to non-hospitalized
patients (OR: 1.12; 95% CI: 1.03, 1.22; P = 0.0061). The ratio
was also positively associated with COVID-19 susceptibility
when comparing COVID-19 patients to those tested negative
in England, Scotland, and Wales (OR: 1.06; 95% CI: 1.03, 1.10;
P = 0.00054) or in England only (OR: 1.05; 95% CI: 1.02, 1.09;
P = 0.0030). Notably, these PUFA measures are correlated with
each other. For example, in the biggest sample from three regions
(n = 24,727), there is a medium correlation between omega-6
and omega-3 PUFAs (Spearman’s ρ = 0.46, P < 2.2 × 10−16).
To evaluate if their COVID-19 associations are independent of
each other, we jointly evaluate their effects in the same model
(Table 3). Only the effects of omega-3 PUFAs persist after
controlling for omega-6 PUFAs, the omega-6/omega-3 ratio, or
both. In a model including all three PUFA measures, omega-3
PUFAs are associated with a lower risk of hospitalized COVID-
19 when compared to those tested negative (OR: 0.86; 95%
CI: 0.75, 0.98; P = 0.029), and a lower risk of testing positive
in the England-only sample (OR: 0.89; 95% CI: 0.82, 0.96;
P = 9.93 × 10−4) and in the sample from three regions (OR: 0.90;
95% CI: 0.84, 0.96; P = 2.66 × 10−3). Overall, our observational
analysis showed that individuals with lower baseline levels of
all five examined PUFAs were associated with a higher risk of
hospitalized COVID-19, and those with lower levels of omega-
3 PUFAs and DHA were also at a higher risk of COVID-19
susceptibility. On the other hand, the omega-6/omega-3 ratio
was positively associated with the risks of both COVID-19
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TABLE 2 | Associations of single polyunsaturated fatty acids (PUFAs) with COVID-19 susceptibility and severity.*

COVID-19 severity COVID-19 susceptibility

Hospitalized vs.
non-hospitalized (n = 3,873)

Hospitalized vs. test
negative (n = 19,263)

Test positive vs. test
negative (n = 22,166)†

Test positive vs. test
negative (n = 24,727)‡

Plasma PUFAs β SE P β SE P β SE P β SE P

PUFAs −0.14 0.043 0.0012 −0.13 0.037 0.00051 −0.029 0.019 0.13 −0.027 0.018 0.13

Omega-3 PUFAs −0.14 0.044 0.0013 −0.20 0.040 8.07 × 10−7
−0.083 0.020 4.29 × 10−5

−0.082 0.019 2.27 × 10−5

DHA −0.18 0.045 8.92 × 10−5
−0.25 0.042 4.56 × 10−9

−0.098 0.021 3.00 × 10−6
−0.097 0.020 1.41 × 10−6

Omega-6 PUFAs −0.12 0.043 0.0047 −0.090 0.036 0.012 −0.010 0.019 0.62 −0.0078 0.018 0.67

LA −0.11 0.043 0.0079 −0.082 0.036 0.023 −0.0066 0.019 0.73 −0.0063 0.018 0.73

Omega-6/omega-3 0.11 0.042 0.0061 0.12 0.029 1.48 × 10−5 0.053 0.018 0.0030 0.058 0.017 0.00054

*Only one PUFA measure was included in each logistic regression analysis. Effect sizes (β) per SD increase in the exposure, SEs, and P-values were obtained from the
logistic regression analysis of COVID-19 susceptibility and severity. All models were adjusted for age, sex, ethnicity, BMI, Townsend deprivation index, and assessment
center. PUFAs, polyunsaturated fatty acids; DHA, docosahexaenoic acid; LA, linoleic acid.
†Data from England only.
‡Data from England, Scotland, and Wales.

TABLE 3 | Associations of multiple polyunsaturated fatty acids (PUFAs) with COVID-19 susceptibility and severity.*

Plasma PUFAs β SE P Plasma PUFAs β SE P Plasma PUFAs β SE P

COVID-19 severity

Hospitalized vs. non-hospitalized (n = 3,873)

Omega3 −0.11 0.049 0.031 Omega6 −0.071 0.048 0.14

Omega3 −0.12 0.066 0.069 Omega6/Omega3 0.026 0.064 0.69

Omega6 −0.11 0.043 0.014 Omega6/Omega3 0.099 0.042 0.018

Omega3 −0.043 0.078 0.58 Omega6 −0.091 0.052 0.080 Omega6/Omega3 0.069 0.068 0.31

Hospitalized vs. test negative (n = 19,263)

Omega3 −0.19 0.044 1.61 × 10−5 Omega6 −0.015 0.040 0.70

Omega3 −0.17 0.058 3.08 × 10−3 Omega6/Omega3 0.027 0.047 0.56

Omega6 −0.078 0.036 0.030 Omega6/Omega3 0.12 0.029 3.94 × 10−5

Omega3 −0.15 0.068 0.029 Omega6 −0.028 0.043 0.52 Omega6/Omega3 0.039 0.049 0.43

COVID-19 susceptibility

Test positive vs. test negative (n = 22,166), data from England only

Omega3 −0.098 0.023 1.61 × 10−5 Omega6 0.031 0.021 0.14

Omega3 −0.089 0.031 3.97 × 10−3 Omega6/Omega3 −0.0072 0.028 0.80

Omega6 −0.0033 0.019 0.86 Omega6/Omega3 0.052 0.018 3.41 × 10−3

Omega3 −0.12 0.038 9.93 × 10−4 Omega6 0.039 0.023 0.088 Omega6/Omega3 –0.027 0.031 0.38

Test positive vs. test negative (n = 24,727), data from England, Scotland, and Wales

Omega3 −0.098 0.022 6.42 × 10−6 Omega6 0.033 0.020 0.099

Omega3 −0.075 0.029 9.46 × 10−3 Omega6/Omega3 0.0093 0.026 0.72

Omega6 −0.00060 0.018 0.97 Omega6/Omega3 0.058 0.017 5.99 × 10−4

Omega3 −0.11 0.035 2.66 × 10−3 Omega6 0.035 0.022 0.10 Omega6/Omega3 –0.0071 0.029 0.80

*Two or three PUFA measures, shown on the same row, were included in each logistic regression analysis. Effect sizes (β) per SD increase in exposures, SEs, and P-values
were reported. All models were adjusted for age, sex, ethnicity, BMI, townsend deprivation index, and assessment center. PUFAs, polyunsaturated fatty acids.

susceptibility and severity. A joint analysis further support that
these effects were mainly driven by omega-3 PUFAs.

Bidirectional Mendelian Randomization
Analyses
We performed bidirectional MR analyses to examine the
causal relationships between individual PUFAs and COVID-19.
First, we performed a forward MR analysis to investigate
the effects of PUFAs on COVID-19 susceptibility and
severity. Second, we conducted a reverse MR analysis

to evaluate the causal effects of genetically instrumented
COVID-19 on PUFAs. All genetic instruments for PUFAs
(F-statistics > 31.43) and COVID-19 (F-statistics > 30.81)
were strong instruments. Six individual PUFAs have existing
GWAS for their levels in plasma and RBC, and there are three
GWAS on severe COVID-19 (i.e., HGI study A2, B2, B1).
Only results that were consistent across these different GWAS
were reported here.

In the forward MR study of plasma PUFAs, genetically
instrumented one-SD increase in AA (OR: 0.96; 95% CI: 0.94,
0.99; P = 0.007) and DPA-n3 (OR: 0.89; 95% CI: 0.81, 0.99;
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FIGURE 2 | Mendelian randomization estimates of the effects of polyunsaturated fatty acids on COVID-19 severity risk. (A) Mendelian randomization analysis based
on the release 5 HGI A2. (B) Mendelian randomization analysis based on the release 5 HGI B2. (C) Mendelian randomization analysis based on the release 5 HGI
B1. Odds ratios are scaled to a genetically predicted SD increase in polyunsaturated fatty acids. Associations with p-value < 0.05 were indicated with diamonds,
while others with squares. Detailed summary statistics are available in Supplementary Tables 6–8. PUFA, polyunsaturated fatty acid; ALA, α-linolenic acid; LA,
linoleic acid; GLA, γ-linolenic acid; DGLA, dihomo-γ-linolenic acid; AA, arachidonic acid; DPA-n3, docosapentaenoic acid; DTA, docosatetraenoic acid; DHA,
docosahexaenoic acid; OR, odds ratio.

P = 0.026) were associated with a lower risk of very severe
respiratory symptoms of COVID-19 based on HGI study A2
(Figure 2A). Consistently, genetically instrumented AA (OR:
0.96; 95% CI: 0.96, 0.97; P = 3.23 × 10−20) and DPA-n3 (OR:
0.93; 95% CI: 0.92, 0.95; P = 4.73 × 10−20) were associated
with a lower risk of hospitalized COVID-19 based on HGI
study B2, which used general population samples as the control
(Figure 2B). Similar results were observed with HGI study B1,
which used non-hospitalized COVID-19 patients as the control
(Figure 2C). Besides plasma PUFAs, MR analyses with RBC
PUFAs consistently support the protective effects of AA against
severe COVID-19 based on HGI A2 (OR: 0.97; 95% CI: 0.94, 1.00;

P = 0.048), B2 (OR: 0.95; 95% CI: 0.93, 0.97; P = 1.32 × 10−5),
and B1 (OR: 0.84; 95% CI: 0.83, 0.85; P = 8.57 × 10−130)
studies (Figure 2). For DPA-n3, its genetically instrumented RBC
level was consistently associated with a lower risk of COVID-19
severity in our forward MR analysis with study A2 (OR: 0.79;
95% CI: 0.63, 0.99; P = 0.041), B2 (OR: 0.88; 95% CI: 0.82,
0.94; P = 9.30 × 10−5), and B1 (OR: 0.76; 95% CI: 0.59, 0.98;
P = 0.036) (Figure 2). To ensure the robustness of findings,
we selected genetic instruments based on various LD categories
(r2 < 0.001, 0.01, 0.1, and 0.3). The causal estimates of AA
and DPA-n3 were consistent and at least nominally significant
throughout all MR analyses (Supplementary Tables 6–8). Causal
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FIGURE 3 | Mendelian randomization estimates of the effects of
polyunsaturated fatty acids on COVID-19 susceptibility risk based on the
release 5 HGI C2. Odds ratios are scaled to a genetically predicted SD
increase in polyunsaturated fatty acids. Associations with p-value < 0.05 were
indicated with diamonds, while others with squares. Detailed summary
statistics are available in Supplementary Table 9. PUFA, polyunsaturated
fatty acid; ALA, α-Linolenic acid; LA, linoleic acid; GLA, γ-linoleic acid; DGLA,
dihomo-γ-linoleic acid; AA, arachidonic acid; DPA-n3, docosapentaenoic
acid; DTA, docosatetraenoic acid; DHA, docosahexaenoic acid; OR, odds
ratio.

estimates for AA and DPA-n3 maintained the same effect
directions in MR-Egger and WM methods, and sensitivity tests
identified no evidence of horizontal pleiotropy or heterogeneity
of effects (Supplementary Tables 6–8). Of note, while there were
nominally significant associations between plasma DHA and very
severe COVID-19 with HGI A2 and between RBC DTA and
hospitalized COVID-19 with HGI B1, these two relationships
were not replicated in analyses with the other two GWAS of
severe COVID-19 (Figure 2).

In terms of COVID-19 susceptibility, we found that genetically
instrumented one-SD increase of plasma DGLA (OR: 1.01;
95% CI: 1.00, 1.02; P = 0.031) was associated with an
increased risk of any SARS-CoV-2 infection (Figure 3). MR
analysis with RBC DGLA showed a similar pattern (OR: 1.01;
95% CI: 1.00, 1.02; P = 0.007). However, the association
of genetically instrumented DGLA with the risk of testing
positive for COVID-19 was not statistically significant using
any other LD criteria for genetic instruments (Supplementary
Table 9). Notably, our forward MR findings were confirmed
using additional COVID-19 GWAS from HGI release 4
(Supplementary Tables 10–13). In summary, our forward MR
analyses suggest that higher circulating levels of AA and DPA-
n3 are associated with a lower risk of developing severe
forms of COVID-19.

We further applied reverse MR analyses to investigate the
causal effects of COVID-19 on each PUFA. Although several
reverse MR analyses showed that genetically instrumented

COVID-19 susceptibility or severity was associated with ALA,
DHA, GLA, or DGLA, there was no consistent evidence for
an effect of COVID-19 on these PUFAs using the conventional
genome-wide significance threshold (P < 5 × 10−8) and the
more lenient threshold (P < 5 × 10−6) for COVID-19 SNPs
from HGI release 5 (Supplementary Tables 14–21). In addition,
we used SNPs associated with COVID-19 from HGI release 4
and did not observe any causal effect of COVID-19 on PUFAs
(Supplementary Tables 22–29). Importantly, the reverse MR
results showed no significant association of genetically predicted
COVID-19 severity with AA and DPA-n3, suggesting that the
significant forward MR results are unlikely to be confounded
by reverse causation. Lastly, we performed a supplemental and
confirmatory MR analysis utilizing summary statistics of GWAS
for four NMR-based plasma PUFA measures, omega-3 PUFAs,
omega-6 PUFAs, DHA, and LA (45). The forward MR indicated
that higher genetically predicted omega-3 PUFAs were associated
with reduced risk of severe COVID-19 based on HGI release
5 study A2 (OR: 0.85; 95% CI: 0.72, 0.99; P = 0.034), B1
(OR: 0.76; 95% CI: 0.67, 0.86; P = 8.81 × 10−6), and B2 (OR:
0.85; 95% CI: 0.76, 0.95; P = 0.004) (Supplementary Table 30).
No significant association was found for omega-3 PUFAs and
COVID-19 susceptibility, nor for any other PUFA measures.

DISCUSSION

Our observational analysis in a prospective cohort showed that
total PUFAs, omega-3 PUFAs, omega-6 PUFAs, DHA, and LA in
baseline plasma samples were inversely associated with the risk of
severe COVID-19. There were also inverse associations of omega-
3 PUFAs and DHA with COVID-19 susceptibility. In contrast,
the omega-6/omega-3 ratio was positively associated with both
COVID-19 susceptibility and severity. A joint analysis of omega-
6 PUFAs, omega-3 PUFAs, and their ratio further revealed that
these effects were mainly driven by omega-3 PUFAs. In our
bidirectional two-sample MR analyses, we provided evidence for
the potential causal roles of higher circulating AA and DPA-n3 in
a lower risk of COVID-19 severity.

Our observational findings are broadly consistent with
previous observational studies and a pilot clinical trial. Julkunen
et al. (13) also examined the UK Biobank cohort, although
with smaller sample sizes and different controls. They showed
that for total PUFAs, omega-3 PUFAs, omega-6 PUFAs, DHA,
and LA, their absolute levels and relative percentages in total
fatty acids were both inversely associated with the risk of
severe COVID-19 when comparing patients to non-cases with
unknown COVID-19 status. Our study corrected for potential
selection bias by restricting the analysis to individuals with
COVID-19 testing status and used those with negative tests
or non-hospitalized patients as the controls. We confirmed the
same inverse association patterns for severe COVID-19. We
further showed that omega-3 PUFAs and DHA were inversely
associated with COVID-19 susceptibility. Importantly, our joint
analysis of omega-6 PUFAs, omega-3 PUFAs, and their ratio
revealed that these effects were mainly driven by omega-3
PUFAs. Another study investigated the metabolic fingerprint of
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COVID-19 severity in 581 samples from three cohorts, revealing
inverse associations with severity for total PUFAs, omega-6
PUFAs, and LA. But inconsistent associations of omega-3 PUFAs,
DHA, and the omega-6/omega-3 ratio were also observed across
cohorts (11). Comparing the lipid profile of 42 severe COVID-
19 patients to 22 healthy subjects, a study by Perez-Torres et al.
(12) found that plasma GLA, DGLA, and EPA were decreased
in COVID-19 patients, but LA and AA were elevated. Two
small studies found that the omega-3 index was significantly
lower in COVID-19 patients and was inversely associated with
risks of requiring mechanical ventilation and death (9, 10). The
differences in these observational studies are likely results of
uncontrolled confounding factors or the usage of patients at
different disease stages. In support of the associated protective
effect of omega-3 fatty acids, the first randomized clinical trial
of supplementing 1,000 mg omega-3 fatty acids in 128 critically
ill COVID-19 patients showed that the intervention group
had a significantly higher 1-month survival rate and improved
respiratory and renal function (46). Altogether with the existing
literature, our study supports the protective effects of omega-
3 fatty acids against the development of severe COVID-19 and
likely also against viral infection.

In our MR study, we examined whether specific individual
PUFAs play causal roles in COVID-19 susceptibility and severity.
We found that genetically instrumented circulating levels of AA
and DPA-n3 are associated with a lower risk of severe COVID-
19. AA is an omega-6 fatty acid, while DPA-n3 is an omega-3
fatty acid. Although these two specific PUFAs were not available
in our observational analysis, their potentially causal protective
effects are consistent with the inverse associations of both omega-
6 PUFAs and omega-3 PUFAs with severe COVID-19. The
potential protective roles of AA and DPA-n3 in severe COVID-
19 have mechanistic support. It is usually generalized that
omega-6 PUFAs are precursors to pro-inflammatory signaling
molecules, such as the AA-derived prostaglandins (PGs) and
leukotrienes, while omega-3 PUFAs, mainly EPA, DPA-n3, and
DHA, give rise to anti-inflammatory signaling molecules, such
as resolvins, protectins, and maresins. However, the underlying
biochemistry and signaling pathways are complex, depending
on specific mediating molecules and timing of actions (7, 47).
First, both AA and DPA-n3 may modulate the inflammatory
process and prevent the development of cytokine storm in
COVID-19 patients. Both of them are well-known to serve as
precursors of specialized pro-resolving mediators. In addition
to resolvins, protectins, and maresins derived from DPA-n3,
lipoxins derived from AA play essential roles in promoting the
resolution of inflammatory responses and tissue repair (5, 7,
48). Notably, it has been highlighted that the roles of AA in
initiating timely inflammatory responses through its derived PGs,
such as PGE2, may be as important as its roles in inflammatory
resolution through lipoxins (6, 47). Second, both AA and DPA-
n3 may inhibit virus entry into host cells. LA has been shown
to directly and tightly bind the SARS-CoV-2 spike glycoprotein,
reducing its interaction with the human ACE2 receptor (49).
Similar inhibitory effects were observed for ALA, EPA, and
DHA in a ligand screening study (50), which did not include
AA and DPA-n3. Third, AA may suppress virus replication

in host cells. In a pre-pandemic lipidomics study aiming
to comprehensively characterize the host cell lipid response
upon coronavirus infection, Huh-7 cells, a hepatocyte-derived
carcinoma cell line, when infected with human coronavirus
229E (HCoV-229E), exhibit significantly elevated levels of LA
and AA (51), a pattern that is also observed in a recent study
of severe COVID-19 patients (12). Interestingly, exogenous
supplementation of LA and AA in HCoV-229E-infected cells
significantly decreased the virus genome copies in both cell
lysates and supernatants, suggesting that LA and AA suppressed
HCoV-229E virus replication. Similar suppressive effects were
observed for the highly pathogenic Middle East respiratory
syndrome coronavirus (MERS-CoV) (51), suggesting a general
mechanism of LA and AA on coronavirus. Consistently, it has
been known that unsaturated fatty acids, especially AA, can
inactivate enveloped viruses, such as influenza and HIV (47). Our
MR findings call for future studies into the mechanistic roles of
AA and DPA-n3 in the development of severe COVID-19.

Our study has a number of strengths and novel features.
Most notably, our study integrates two complementary research
approaches, an observational analysis in a prospective cohort
and a MR analysis. The observational analyses used, to our
knowledge, the largest sample size to date. We also applied
multiple comparisons and controls to significantly increase the
credibility of the results. The two research approaches revealed
consistent patterns. While the observational analyses highlighted
omega-3 PUFAs to be negatively associated with both COVID-
19 severity and susceptibility, our MR analyses confirmed that
total omega-3 PUFAs and DPA-n3 may play causal roles in
reducing the risk of severe COVID-19. There are multiple
strengths associated with our MR analyses. To our knowledge,
this is the first MR study examining the causal effects of PUFAs
on COVID-19. It is also the first MR study of PUFAs that
used genetic variants for RBC PUFAs, in addition to plasma
PUFAs. RBC and plasma PUFAs are two lipid pools that reflect
dietary input at varying time frames ranging from months to
weeks, with RBC PUFAs reflecting longer-term dietary input
and plasma PUFA more impacted by recent dietary intakes.
There are medium to high correlations between PUFAs measured
in the two sources (52–54). The inclusion of both RBC and
plasma PUFAs has at least two benefits. It expanded the list of
exposures to include those that only have genetic instruments
in one source, including DTA in RBC and DHA in plasma.
For PUFAs having genetic instruments in both sources, we only
reported consistently significant results to reduce false positives.
To obtain robust evidence and to ensure reproducibility across
data releases, we confirmed the results with analyses based on
four COVID-19 GWAS (A2, B2, B1, and C2) from HGI releases
5 and 4. Bonferroni correction was used to overcome the issue of
multiple testing. We also applied sensitivity analysis with various
LD cutoffs. Another strength is the application of bidirectional
two-sample MR analyses to evaluate the direction of the causality
and to rule out the impacts of reverse causation. Additionally,
comparing our MR results between severe COVID-19 and
any SARS-CoV-2 infection, we found that AA and DPA-n3
might mainly impact the severity of disease progression but not
susceptibility to viral infection.
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Our study has several limitations. First, we could not
completely rule out the possibility that some genetic variants
might be pleiotropic, although we applied multiple sensitivity
analyses, including the heterogeneity test, MR-Egger, and WM
method. We also applied the PhenoScanner to examine the
pleiotropic effects of genetic instruments for AA and DPA-
n3, which might provide alternative explanations for our MR
observations (Supplementary Table 31) (55, 56). However, it
is still difficult to distinguish if they represent horizontal or
vertical pleiotropic effects. Second, another limitation in the MR
analysis is that the population controls have no information
on COVID-19 status in three COVID-19 GWAS used in our
primary analysis, including the HGI A2, B2, and C2 studies. To
mitigate this issue, we also utilized the HGI B1 study, which is
another GWAS of COVID-19 using non-hospitalized patients
as the control group. Third, dietary intakes of specific PUFAs,
which influences their circulating levels, were not available in
UK Biobank. So, our observational analysis did not investigate
the direct or indirect effects of dietary PUFAs on COVID-19
risk. However, our MR study leveraging genetic instruments
yields novel insights into their possible roles. Fourth, UK
Biobank recruited healthier individuals and thus may not be
representative of the general population. Fifth, the NMR-based
measures of plasma PUFAs were collected over 10 years before
the COVID-19 pandemic, and the time lag probably attenuates
the magnitude of association. Sixth, the NMR-based method
only measured two individual PUFAs (DHA and LA), while
many other individual PUFAs (e.g., AA, ALA and EPA) were
not available for the observational analyses. Notably, our MR
study alleviates this limitation by using eight individual PUFAs
(i.e., ALA, DPA-n3, DHA, LA, GLA, DGLA, AA, and DTA)
from both RBC and plasma. Seventh, our study did not examine
saturated or monounsaturated fatty acids. A previous study in
UK Biobank found that the percentages of these two groups
are both positively associated with the risk of severe COVID-
19 (13). Eighth, our observational study could be affected by
ascertainment bias in differential healthcare seeking and testing.
Being an inpatient does not necessarily indicate hospitalization
for COVID-19 because patients in hospitals for any reason may
be prioritized for COVID-19 testing. Hospitalized patients and
the observed effects of PUFAs might be driven by other diseases
instead of COVID-19. One possible mitigation analysis is to use
hospitalized non-COVID-19 patients as the control, which was
not analyzed in this study. Ninth, our findings might not be
extrapolated to other ethnicities because the study mainly focused
on participants of European descent. Future studies in large
non-European samples are needed to test the generalizability of
our observations. Tenth, our study cannot thoroughly explain
the mechanisms. Further mechanistic research is necessary to
investigate the biological pathways underpinning the roles of
PUFAs in severe COVID-19.

CONCLUSION

Our observational analysis in a prospective cohort shows that
total PUFAs, omega-3 PUFAs, omega-6 PUFAs, DHA, and LA are

inversely associated with the risk of severe COVID-19. Omega-3
and DHA may also be protective against SARS-CoV-2. A higher
omega-6/omega-3 ratio has adverse effects on both COVID-
19 susceptibility and severity. These associations are mainly
driven by omega-3 PUFAs. Our MR study further suggests a
possible causal role of AA and DPA-n3 in reducing the risk of
severe COVID-19. Our findings call for further studies into the
mechanistic roles of PUFAs in COVID-19. They also support
the possible usage of circulating PUFA levels as biomarkers for
identifying high-risk individuals and as therapeutic targets for
managing COVID-19 patients.
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Unlike other low- and middle-income countries, infectious diseases are still predominant,

and non-communicable diseases (NCDs) are emerging without replacing the burden

of infectious diseases in India, where it is imposing a double burden of diseases

on households in the country. This study aimed to analyse the socio-economic and

demographic differentials in the magnitude of economic burden and coping strategies

associated with health expenditure on infectious diseases in India. National Sample

Survey Organization (NSSO) data on “Key Indicators of Social Consumption in India:

Health, (2017–18)” have been employed in this study. The findings of the study revealed

that more than 33% of the individuals are still suffering from infectious diseases out of the

total ailing population in India. Based on the various socio-economic and demographic

covariates, infectious diseases are highly prevalent among individuals with marginalized

characteristics, such as individuals residing in rural areas, females, 0–14 age groups,

Muslims, illiterates, scheduled tribes (STs), and scheduled castes (SCs), large family

households, and economically poor people in the country. The per capita out-of-pocket

(OOP) expenditure on infectious diseases is INR 7.28 and INR 29.38 in inpatient

and outpatient care, respectively. Whereas, monthly per patient OOP expenditure on

infectious diseases by infection-affected populations is INR 881.56 and INR 1,156.34

in inpatient and outpatient care in India. The study found that people residing in rural

areas, SCs followed by other backward classes (OBCs), illiterates, poor, and very poor

are more dependent on borrowings, sale of assets, and other distressed sources

of financing. However, under National Health Policy 2017, many initiatives, such as

“Ayushman Bharat,” PM-JAY, and National Digital Health Mission (NDHM) in 2021,

have been launched by the government of India in the recent years. These initiatives

are holistically launched for ensuring better health facilities, but it is early to make any

prediction regarding its outcomes; hopefully, the time will define it over the passing of

a few more years. Finally, the study proposed the need for proper implementations of

policy initiatives, awareness against unhygienic conditions and contamination of illnesses,

immunisations/vaccination campaigns, subsidized medical facilities, and the country’s

expansion of quality primary health-care facilities.

Keywords: infectious diseases, out-of-pocket expenditure, source of finance, coping, low- and middle-income

countries
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INTRODUCTION

The narratives of public health are facing a significant challenge
in demographic and epidemiological transitions, particularly
in low- and middle-income countries (LMICs) (1–3). This
transition has changed the pattern and distribution of morbidity
and mortality among inhabitants and exaggerated the burden
on these countries’ pre-existing inadequate public health systems
(1). Although several life-threatening diseases have been cured
through various preventive, curative, and policy measures,
infectious diseases are still one of the leading causes of death
in LMICs (4, 5). These are the diseases caused by pathogenic
microorganisms, such as viruses, bacteria, protozoa, parasites,
and fungi. It spreads through direct or indirect interaction
with unhygienic conditions (6, 7). Adverse living conditions are
expected in LMICs, further augmenting the number and severity
of infectious diseases in these countries (7–11).

World Health Organization (WHO) has ranked infections,
such as lower respiratory infections, diarrheal diseases, and
tuberculosis, in the top 10 causes of mortality worldwide in 2016.
Most of the burden of these diseases has been observed in LMICs
(12, 13). HIV/AIDS is still a significant cause of death in LMICs
but left out from the list of top ten causes of death from 2000
to 2016 worldwide (13). Similarly, malaria prevalence has been
reduced due to massive investment and policy initiatives in the
past years. However, eliminating malaria is still a big challenge
in most LMICs (14). New infectious diseases, such as avian flu,
swine flu, and coronavirus, are also emerging at a higher rate and
spreading more rapidly than ever in the communities (15, 16).

India is not an exception in such a transition. However, unlike
other LMICs, infectious diseases are still predominant, and non-
communicable diseases (NCDs) are emerging without replacing
the country’s burden of contagious diseases (17, 18). This double
burden of diseases is a serious public health concern where
NCDs are continuously increasing with prevalent contagious
diseases, a significant cause of premature mortality among
people in the country (17–21). Various long-standing infectious
diseases, such as smallpox, guinea worm, polio, leprosy, cholera,
and plague, have been controlled and eradicated from the
community. However, diseases, such as dengue, malaria, typhoid,
and tuberculosis, are still the common causes of febrile illness
among people in India (17, 22, 23). In tuberculosis, India is
the top country globally, with a 26% share of this disease in
the global burden of diseases (13). After South Africa, India is
the leading country suffering from HIV/AIDS worldwide, where
4.6 million people are infected with this life-threatening disease
(13, 24, 25). Even among neonatal, the frequency of infectious
diseases, such as typhoid, diarrhea, measles, tuberculosis, and
jaundice, remains the primary cause of infant morbidity and
mortality in India. The findings from various studies show that
the burden of NCDs has increased from 37.9 to 61.8%, whereas

Abbreviations: OOP, out-of-pocket; INR, Indian National Rupee; LMICs, low-

and middle-income countries; SCs, scheduled castes; STs, scheduled tribes; OBCs,

other backward classes; TCE, total consumption expenditure; NSSO, National

Sample Survey Organization; HIV/AIDS, human immune virus/acquired immune

deficiency syndrome; GDP, gross domestic product; NHP, national health policy.

the burden of communicable and infectious diseases is still at
27.5% for three decades in the country (21, 26).

Similarly, in a study, Banerjee and Dwivedi (27) observed
that the prevalence of infectious diseases had slightly reduced
between 2004 and 2014. But it is still stagnant and has become
a significant challenge to public health. However, Paul and
Singh (28) observed that the prevalence of infectious diseases
in outpatient care increased nearly three times, from 8 to 26
per 1,000 in two decades (1995 to 2014). Also, typhoid fever
incidence has been reported at 27.3 at the age under 5 years, 11.7
at 5 to 19 years, and 1.1 between 19 and 40 years per 1,000 person
among residents of a low-income urban area of Delhi, India (29).

It is clear from the above discussion that infectious diseases
are still contributing to both the physical and the economic
burden of diseases in India (30). However, the Indian economy
is one of the fastest-growing economies globally with a 6–7%
annual average gross domestic product (GDP) growth rate but
spends only 1%of its GDP on health (31, 32). Insufficient health
insurance coverage also plays a crucial role in contributing to
the country’s increasing economic burden of diseases (33). This
meager amount of public health spending and under-coverage of
health insurance increases the household’s dependence on out-
of-pocket expenditure. The households’ inability to cope with the
economic burden of diseases pushes them into poverty (34–36).

Differences and vulnerabilities based on the socio-economic
characteristics are common phenomena among the Indian
population. Due to these vulnerabilities, the emergence and re-
emergence of infectious diseases have been consistent among
inhabitants for centuries. However, many contagious diseases
have not even been controlled but also have been eliminated
from society. Despite it, many of them are still more susceptible
to the population in the country. Also, these diseases do not
harm only individuals’ health status but also impose an economic
burden. A few studies, such as Visaria (21), Banerjee and Dwivedi
(27), and Paul and Singh (28), have conducted an analysis
of infectious diseases using nationally representative sample
survey data but explored only the prevalence and its association
with background characteristics. These studies lack to analyse
the economic burden, especially out-of-pocket expenditure and
finance’s primary source, to cope with spending on infectious
diseases. Considering the importance of the associated socio-
economic covariates and economic dimensions compels us to
analyse the problem accordingly. Hence, the study aims to
analyse the prevalence and financial burden of out-of-pocket
expenditure and source of finance on infectious diseases among
various socio-economic and demographic covariates in India.
Also, it is expected that the results of this study would provide
a deep insight into the problem, which will work as a roadmap
for the policymakers to control the same through appropriate
policy initiatives.

METHODOLOGY

Data
The analysis is based on cross-sectional data from the National
Sample Survey Organization (NSSO), 75th Round (2017–
2018) on Key Indicators of Social Consumption in India:
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Health (37). The survey consists of a sample of 113,823
households comprising 555,115 individuals. In inpatient care,
19,443 individuals, out of 58,214 ailments affected sample
persons, reported suffering from at least any infectious
diseases during the recall period of 365 days. While on
outpatient care, 10,960 individuals, out of 39,778 ailments
affected sample persons, reported suffering from at least any
infectious conditions during 15-day recall period. Furthermore,
all contagious diseases have been analyzed collectively as
infectious diseases both in inpatient and outpatient care
in India.

Methods
In this study, the prevalence (Pi) of infectious diseases has
been calculated as follows: Pi =

1
N

∑n
i=1 I, where “N” is the

population size and “I” is the number of individuals affected by
infectious diseases.

The economic burden of infectious diseases among various
socio-economic covariates has been measured in terms
of out-of-pocket expenditure on infectious diseases as a
percentage share of total consumption expenditure (TCE)
is given by: OOPTCE =

∑n
i=1 OOPi/

∑n
i=1MPCEi × 100,

where “OOP(TCE)” stands for out-of-pocket expenditure as a
percentage share of total consumption expenditure, “OOPi”
is the out-of-pocket expenditure on infectious diseases, and
“MPCEi” is the monthly per capita consumption expenditure of
the ith individual.

While out-of-pocket expenditure on infectious diseases as a
percentage share of total consumption expenditure (TCE) of
a country’s infection affected population at different threshold
levels (reporting level, 5, 10, and 15%) is given by OOPTCEiap =
∑n

i=1 OOPi/
∑n

i=1MPCEiap×100, where “OOPTCEiap” is the out-
of-pocket expenditure on infectious diseases and “MPCEiap” is
the monthly per capita consumption expenditure of the country’s
infection-affected population.

Also, the average per capita OOP health expenditure on
the infection has been measured as; Per Capita OOP =∑n

i=1 OOPi/N, where “OOPi” is the out-of-pocket expenditure
on infectious diseases and “N” denotes the total population.
Furthermore, average per capita OOP expenditure on infection
by the individuals particularly suffering from infectious diseases
has been measured as; Per Patient OOP =

∑n
i=1 OOPi/

∑n
i=1Q,

where “OOPi” is the out-of-pocket expenditure on infectious
diseases and ‘Q’ is the number of people affected with
infectious diseases.

Finally, the source of finance to cope with OOP expenditure
on infectious diseases has also been measured. Savings/income,
borrowings, contributions from friends and relatives, sale of
physical assets, and other resources have been taken as the
individuals’ key strategies or sources of finance. In the case
of inpatient care, information on coping strategies has been
given as the first and second primary sources of finance. While
on outpatient care, the only first significant source of finance
has been shown in the data source. Therefore, to ensure the
similarities in inpatient and outpatient care, only the first
important source of finance has been taken in the analysis.

Besides the critical coping strategies, such as savings/income
and borrowings, the remaining basis of finance has been taken
collectively due to their less significant share and simplification of
the analysis. The percentage of different sources of finance used to
cope with the OOP health expenditure on the infection has been
calculated as Y =

∑n
i=1 U/V ∗ 100.

where “Y” is the percentage share of a source of finance, “U” is
the source of finance, and “V” is the sum of all sources of finance.

Variables of the Study
Dependent Variable

The study’s dependent variable is morbidity due to
infectious diseases among inpatient and outpatient
care individuals.

Independent Variable

In this analysis, the independent variables are the place of
residence (rural/urban), sex (male, female, and transgender),
age (0–14, 15–29, 30–59, and >60), education (illiterate, up
to primary, secondary and graduation, and above), religious
groups (Hindu, Muslims, and others), social groups (scheduled
tribes, scheduled castes, other backward classes, and others),
economic status (wealth quintiles, such as very poor, poor,
average, rich, and very rich), households size (less than average
and more than average), and region (north, north-east, east,
central, west, and south). In Indian society, religion is one of the
critical variables broadly divided into Hindus, Muslims, Sikhs,
Buddhism, Christianity, Jainism, Zoroastrianism, and many
smaller religious groups. But in this analysis, we have classified
religion into three major categories, viz. Hindus, Muslims, and
the remaining have been included in other religious groups
because of their small size in the total population. The monthly
per capita consumption expenditure (MPCE) has been taken
as a proxy for income to measure the economic status of the
individuals. It has been ranked from very poor to a very rich
one. The analysis categorizes households’ sizes into less than
average andmore than average. Furthermore, all states and union
territories have been characterized into six regions based on
their geographical locations: north, north-east, east, central, west,
and south.

RESULTS OF THE STUDY

Summary Statistics
The details of sample persons and the respective estimated
population in different demographic and socio-economic
categories, i.e., place of residence, sex, age, religion, social
classification, economic status, etc., have been given in Table 1.
A total of 555,115 sample persons have been surveyed,
representing the 1,140,187,554 total population of the country.
Individuals suffering from various ailments have been shown
in two categories, i.e., inpatient and outpatient. Where 58,214
individuals reported suffering from multiple diseases and were
hospitalized during the last 365 days before the day of the
survey, 19,443 individuals stated that they were affected by
infectious ailments during this time. While on 15-day recall
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period, a sample of 39,778 persons reported suffering from
various diseases, out of which only 10,960 were affected with
infectious diseases during this period.

Prevalence Rate and the Proportion of
Population Spending on Infectious
Diseases
Table 2 shows that out of 1,000 persons, 8.26 persons reported
infectious diseases in inpatient care, which is 33.90% of the
country’s total ailing population. Furthermore, the percentage
share of population spending and their income regarding their
total consumption expenditure (TCE) on infectious diseases has
been measured at different threshold levels. The finding shows
that nearly 0.66, 0.54, and 0.45% of the population suffering
from infections are spending more than 5, 10, and 15% of
their TCE on infectious diseases in India. The analysis shows
a significant variation among demographic and socio-economic
covariates in the prevalence of infectious diseases. Therefore,
the association of several demographic and socio-economic
variables with infectious diseases has been analyzed in the study.
The prevalence is highest among individuals residing in the
urban area (10.05 individuals), among transgender people (24.92
individuals), 60+ age group (12.21 individuals), other religious
groups (10.78 individuals), other social groups (9.12 individuals),
illiterate people (10.19 individuals), and people coming from
the southern part of the country (12.19 individuals) than their
respective correspondents in the study.

Similarly, in outpatient care, the prevalence has been reported
at 25.41 persons out of 1,000 persons in India and is 33.97% of the
country’s total ailing population. Furthermore, the findings reveal
that instead of their absolute numbers, nearly 2.13, 1.84, and
1.63% population suffering from infections are spending more
than 5, 10, and 15% of their TCE on infectious diseases in India.
Whereas, based on various socio-economic and demographic
variables, the prevalence and percentage of people suffering from
infectious diseases is highest among people residing in rural areas
(25.58 individuals), among females (26.53 individuals), among 0–
14 age groups (40.04 individuals), among other religious groups
(29.83 individuals), more than average family size (26.97), among
SCs (26.60 individuals), among the central region of the country
(31.93 individuals) than their corresponding variables in the
analysis. Also, the proportion of people suffering from infectious
diseases out of the total ailing population is highest among
people residing in the rural area, male, 0–14 age group, Muslims,
scheduled tribes (STs), education up to secondary level, very
poor economic status, large family size, and northern regions
of the country. However, a similar trend has been found in
the percentage and prevalence of infection-affected populations
among various socio-economic and demographic variables. Still,
it differs in the case of absolute numbers of people suffering
from infections and the population spending OOP expenditure
equal to their TCE at various threshold levels in the study. The
analysis shows that the dependent age groups, such as 60+ and 0–
14, are more suffering from infectious diseases. While education
emerges as a critical preventive factor, an increase in the number
of years spent in an educational institution positively impacts
the dominance of infectious diseases in communities. Further,

the prevalence of infectious diseases is growing, with an increase
in India’s economic level. In comparison to the emergence of
the ailments, it is describing the ability to report and access
healthcare facilities by the economically sound section of the
society in India. Indeed, these figures confirm the notion that
people belonging to low-income families may not be able to
hospitalize their family members during severe life-threatening
ailments due to their insufficient financial resources or low
economic status in India.

Level of Out-of-Pocket Expenditure on
Infectious Diseases
Table 3 shows that in the case of inpatient care, the overall
average per capita OOP expenditure on infectious diseases is
INR 7.28 in the country. Whereas, for various socio-economic
and demographic variables, it is highest among urban areas (INR
10.42), among transgender people (INR 8.57), among 60+ age
groups (INR 11.64), among other religious groups (INR 9.35),
among different social groups (INR 10.34), among educated up
to secondary level (INR 8.98), among economically rich people
(INR 15.38), among less than average households (INR 7.98),
and people populated in the southern region (INR 9.72) of India.
Furthermore, we have also calculated the average monthly per
capita OOP expenditure of infection-affected population. Results
show that, on average, INR 881.56 has been spent per month on
inpatient care in India. The distinction between various socio-
economic and demographic covariates has been found in the
analysis. The average monthly per capita OOP expenditure on
infectious diseases is relatively low among people residing in rural
areas, transgender people, Muslims, STs, people educated up to
primary level and illiterates, economically poor, and people from
the north-east region of the country.

The OOP health expenditure on infectious diseases as a
share of total consumption expenditure has been calculated
as 0.34% in the study. On various demographic and socio-
economic variables, it is relatively highest among individuals
residing in rural areas (0.36%), females (0.34%), above 60+
(0.47%), and Hindus (0.35%). Among different social groups,
it is 0.36% in other social groups. Among different education
groups, illiterates (0.49%), among various economic groups, very
poor wealth quintile (0.41%), among other households’ size,
more than average (0.37%), and among different geographical
regions, eastern region (0.53%) spends a higher share of TCE on
infectious diseases as compared to their respective counterparts
in the country. On the other hand, OOP health expenditure
on infectious diseases out of total consumption expenditure of
infection-affected population has also been measured at different
threshold levels in the study. The analysis illustrates that 36.04%
of total consumption expenditure is spent on infectious diseases
by the country’s infection-affected population at the reporting
level. It has been observed at different threshold levels: 31.59,
28.06, and 25.23%, with their corresponding levels as 5, 10,
and 15%, respectively. The analysis shows that it declines with
an increase in the infection’s consumption expenditure from
reporting to above threshold levels.

Similarly, India’s overall average per capita OOP health
expenditure on infectious diseases in outpatient care is INR
29.38. Furthermore, based on numerous socio-economic and
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TABLE 1 | Summary statistics of the sample population.

Variables Estimated and

sample population

Inpatient Outpatient

Total ailing

population

Population ailing

from infectious

diseases

Total ailing

population

Population ailing

from infectious

diseases

All India 1,140,187,554 27,783,232 9,419,082 85,269,522 28,969,799

(555,115) (58,214) (19,443) (39,778) (10,960)

Place of residence

Rural 804,273,325 17,989,881 6,041,486 54,781,294 20,571,709

(325,883) (32,441) (11,048) (20,802) (6,506)

Urban 335,914,229 9,793,351 3,377,596 30,488,228 8,398,090

(229,232) (25,773) (8,395) (18,976) (4,454)

Sex

Male 589,257,319 14,075,161 4,833,223 39,474,970 14,352,788

(283,200) (30,033) (10,076) (18,948) (5,372)

Female 550,864,001 13,704,591 4,584,209 45,793,674 14,617,011

(271,878) (28,177) (9,365) (20,829) (5,588)

Transgender 66,234 3,480 1,650 878 0

(37) (4) (2) (1) 0

Age

0–14 301,230,284 4,676,254 2,827,072 17,561,555 12,063,353

(155,647) (10,208) (6,322) (7,946) (5,162)

15–29 318,486,584 5,198,084 1,996,661 10,555,762 5,921,053

(152,909) (10,750) (4,215) (4,316) (2,044)

30–59 441,153,086 12,628,168 3,626,929 35,162,767 8,485,415

(203,797) (26,185) (7,032) (15,746) (2,792)

60+ 79,317,600 5,280,726 968,420 21,989,438 2,499,978

(42,762) (11,071) (1,874) (11,770) (962)

Religion

Hindu 925,019,675 22,107,923 7,399,669 66,622,950 22,844,158

(412,512) (44,026) (14,485) (29,273) (8,089)

Muslim 161,096,251 3,939,529 1,436,344 13,039,977 4,512,422

(83,001) (7,805) (2,534) (6,750) (1,901)

Others* 54,071,628 1,735,780 583,069 5,606,595 1,613,219

(59,602) (6,383) (2,424) (3,755) (970)

Social groups

STs 103,490,979 1,710,964 658,676 5,221,281 2,421,788

(75,256) (6,885) (2,998) (2,783) (1,079)

SCs 223,840,510 5,296,687 1,824,955 15,555,824 5,955,188

(94,062) (9,621) (3,228) (6,502) (bib2,046)

OBCs 512,112,220 12,169,154 4,191,417 36,144,771 13,170,645

(222,766) (23,369) (7,713) (15,943) (4,648)

Others 300,743,845 8,606,427 2,744,034 28,347,646 7,422,178

(163,031) (18,339) (5,504) (14,550) (3,187)

General education

Illiterate 297,266,691 8,996,019 3,028,885 30,587,274 10,580,025

(147,275) (17,117) (5,694) (14,156) (4,503)

Up to primary 498,126,420 11,108,187 3,989,067 34,039,172 12,678,283

(226,320) (23,076) (8,429) (15,038) (4,246)

(Continued)
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TABLE 1 | Continued

Variables Estimated and

sample population

Inpatient Outpatient

Total ailing

population

Population ailing

from infectious

diseases

Total ailing

population

Population ailing

from infectious

diseases

Secondary 250,785,824 5,703,816 1,819,081 14,596,197 4,314,580

(126,888) (12,880) (3,946) (7,260) (1,646)

Graduation and

above

94,008,619 1,975,210 582,049 6,046,879 1,396,911

(54,632) (5,141) (1,374) (3,324) (565)

Wealth quintile

Very poor 534,658,598 9,524,508 3,358,934 30,175,229 14,049,087

(218,202) (18,152) (6,414) (10,970) (4,309)

Poor 268,007,766 6,975,140 2,318,274 19,937,428 6,601,036

(134,525) (13,823) (4,616) (9,342) (2,709)

Average 164,381,344 5,179,085 1,764,899 15,379,224 4,368,359

(97,343) (11,484) (3,869) (8,123) (1,966)

Rich 107,479,414 3,857,699 1,301,897 12,010,674 2,613,975

(67,558) (8,777) (2,797) (6,785) (1,312)

Very rich 65,660,432 2,246,800 675,078 7,766,967 1,337,342

(37,487) (5,978) (1,747) (4,558) (664)

Households size**

Less than average 687,672,512 18,922,107 6,515,377 57,874,634 18,547,100

(289,829) (39,646) (13,530) (23,870) (6,173)

More than average 452,515,042 8,861,125 2,903,705 27,394,888 10,422,699

(265,286) (18,568) (5,913) (15,908) (4,787)

Regions***

North 160,836,817 3,768,445 1,174,847 10,385,958 3,809,508

(105,232) (10,349) (3,030) (7,187) (2,009)

Northeast 44,044,744 658,172 259,272 1,025,085 490,600

(72,324) (7,129) (2,926) (1,436) (581)

Central 284,261,422 5,362,634 1,923,078 18,086,039 9,075,577

(106,814) (9,520) (3,156) (6,416) (2,497)

East 250,025,083 5,526,488 1,645,190 19,914,913 6,697,091

(94,334) (9,632) (2,811) (7,649) (2,269)

West 159,468,994 4,116,808 1,471,742 12,813,455 4,201,608

(68,771) (7,457) (2,631) (5,313) (1,374)

South 241,550,494 8,350,685 2,944,953 23,044,072 4,695,415

(107,640) (14,127) (4,889) (11,777) (2,230)

Figures are based on the author’s calculations from the NSSO 75th rounds.

Values in parentheses are sample sizes.
* Include remaining religions such as Christianity, Sikhism, Jainism, Buddhism, Zoroastrianism, and others.
**Households size is categorized into two categories viz. less than average and more than average.
***North: J&K, Himachal Pradesh, Punjab, Chandigarh, Uttarakhand, Haryana, Delhi, Rajasthan; Northeast: Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, Meghalaya,

Assam; East: Bihar, West Bengal, Jharkhand, Odisha; Central: Utter Pradesh, Chhattisgarh, Madhya Pradesh; West: Gujrat, Daman, and Diu, Dadar and Nagar Haveli, Maharashtra,

Goa; South: Andhra Pradesh, Karnataka, Lakshadweep, Kerala, Tamil Nadu, Pondicherry, Andaman and Nicobar, Telangana.

demographic covariates, it is highest among urban areas (INR
32.65), among women (INR 30.05), among 0–14 age groups
(INR 41.46), among other religious groups (INR 35.12), among
different social groups (INR 31.09), among illiterate people
(INR 38.63), among economically wealthy people (INR 38.95),
among less than average households (INR 30.94), and people
populated in the eastern region (INR 38.52) of India. At
the same time, we calculated the average monthly per capita

OOP expenditure of infection-affected population. Results show
that INR 1,156.34 has been spent per month on outpatient
care in India. Unlike inpatient care, it is highest in urban
areas, rich wealth quintiles, and relatively weaker sections
(socio-economically), such as female, 0–14 age groups, and
Muslims, OBCs, illiterates’ individuals than their corresponding
counterparts in India. Furthermore, OOP health expenditure on
infection as a percentage share of total consumption expenditure
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TABLE 2 | Socio-economic and demographic covariates in the prevalence rate (out of 1,000), and the population spending OOP as a percentage of total consumption expenditure (TCE) on infectious diseases at

various thresholds levels in India (2017–18).

Variables Inpatient Outpatient

Prevalence

of infectious

diseases

affected

population

(out of 1,000)

Percentage

of

individuals

suffering

from

infectious

diseases out

of total

ailing

population

Population

spending

more than

5% of TCE

on

infectious

diseases#

Population

spending

more than

10% of TCE

on

infectious

diseases#

Population

spending

more than

15% of TCE

on

infectious

diseases#

Prevalence

of infectious

diseases

affected

population

(out of 1,000)

Percentage

of

individuals

suffering

from

infectious

diseases out

of total

ailing

population

Population

spending

more than

5% of TCE

on

infectious

diseases#

Population

spending

more than

10% of TCE

on

infectious

diseases#

Population

spending more

than 15% of TCE

on infectious

diseases#

All India 8.26 33.90 7,566,479 6,206,458 5,118,207 25.41 33.97 24,313,160 21,028,176 18,607,805

(0.66) (0.54) (0.45) (2.13) (1.84) (1.63)

Place of residence

Rural 7.51 33.58 4,908,874 4,109,357 3,458,224 25.58 37.55 17,686,381 15,389,695 13,795,506

(0.61) (0.51) (0.43) (2.20) (1.91) (1.72)

Urban 10.05 34.49 2,657,605 2,097,101 1,659,982 25.00 27.55 6,626,779 5,638,481 4,812,299

(0.79) (0.62) (0.49) (1.97) (1.68) (1.43)

Sex

Male 8.20 34.34 3,928,688 3,195,816 2,647,006 24.36 36.36 11,958,945 10,497,358 9,473,398

(0.67) (0.54) (0.45) (2.03) (1.78) (1.61)

Female 8.32 33.45 3,636,635 3,009,487 2,470,045 26.53 31.92 12,354,215 10,530,818 9,134,407

(0.66) (0.55) (0.45) (2.24) (1.91) (1.66)

Transgender 24.92 47.42 1,156 1,156 1,156 0 0 0 0 0

(1.74) (1.74) (1.74)

Age

0–14 9.39 60.46 2,355,396 1,935,175 1,577,076 40.05 68.69 10,651,752 9,361,453 8,424,760

(0.78) (0.64) (0.52) (3.54) (3.11) (2.80)

15–29 6.27 38.41 1,593,614 1,297,719 1,097,511 18.59 56.09 4,834,563 4,152,473 3,648,294

(0.50) (0.41) (0.34) (1.52) (1.30) (1.15)

30–59 8.22 28.72 2,848,611 2,320,435 1,910,599 19.23 24.13 6,762,962 5,781,272 4,988,549

(0.65) (0.53) (0.43) (1.53) (1.31) (1.13)

60+ 12.21 18.34 768,858 653,128 533,020 31.52 11.37 2,063,884 1,732,978 1,546,202

(0.97) (0.82) (0.67) (2.60) (2.18) (1.95)

Religion

Hindu 8.00 33.47 5,988,086 4,943,440 4,066,503 24.70 34.29 19,296,804 16,804,927 14,905,312

(0.65) (0.53) (0.44) (2.09) (1.82) (1.61)

(Continued)
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TABLE 2 | Continued

Variables Inpatient Outpatient

Prevalence

of infectious

diseases

affected

population

(out of 1,000)

Percentage

of

individuals

suffering

from

infectious

diseases out

of total

ailing

population

Population

spending

more than

5% of TCE

on

infectious

diseases#

Population

spending

more than

10% of TCE

on

infectious

diseases#

Population

spending

more than

15% of TCE

on

infectious

diseases#

Prevalence

of infectious

diseases

affected

population

(out of 1,000)

Percentage

of

individuals

suffering

from

infectious

diseases out

of total

ailing

population

Population

spending

more than

5% of TCE

on

infectious

diseases#

Population

spending

more than

10% of TCE

on

infectious

diseases#

Population

spending more

than 15% of TCE

on infectious

diseases#

Muslim 8.92 36.46 1,116,550 902,428 759,880 28.01 34.60 3,723,305 3,156,296 2,792,440

(0.69) (0.56) (0.47) (2.31) (1.96) (1.73)

Others* 10.78 33.59 461,843 360,589 291,823 29.83 28.77 1,293,052 1,066,953 910,053

(0.85) (0.67) (0.54) (2.39) (1.97) (1.68)

Social groups

STs 6.36 38.50 498,904 392,379 316,222 23.40 46.38 1,914,754 1,667,578 1,485,687

(0.48) (0.38) (0.31) (1.85) (1.61) (1.44)

SCs 8.15 34.45 1,403,728 1,056,581 892,188 26.60 38.28 4,841,682 4,171,069 3,606,080

(0.63) (0.47) (0.40) (2.16) (1.86) (1.61)

OBCs 8.18 34.44 3,430,279 2,893,105 2,397,502 25.72 36.44 11,261,062 9,731,786 8,657,122

(0.67) (0.56) (0.47) (2.20) (1.90) (1.69)

Others 9.12 31.88 2,233,568 1,864,393 1,512,295 24.68 26.18 6,295,662 5,457,743 4,858,916

(0.74) (0.62) (0.50) (2.09) (1.81) (1.62)

General education

Illiterate 10.19 33.67 2,449,347 2,038,858 1,699,493 35.59 34.59 9,037,526 7,928,451 6,948,430

(0.82) (0.69) (0.57) (3.04) (2.67) (2.34)

Up to

primary

8.01 35.91 3,158,874 2,508,953 2,048,849 25.45 37.25 10,695,820 9,245,178 8,195,519

(0.63) (0.50) (0.41) (2.15) (1.86) (1.65)

Secondary 7.25 31.89 1,482,428 1,260,815 1,031,526 17.20 29.56 3,496,711 2,928,393 2,644,182

(0.59) (0.50) (0.41) (1.39) (1.17) (1.05)

Graduation

and

above

6.19 29.47 475,829 397,832 338,338 14.86 23.10 1,083,103 926,154 819,673

(0.51) (0.42) (0.36) (1.15) (0.99) (0.87)

(Continued)
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TABLE 2 | Continued

Variables Inpatient Outpatient

Prevalence

of infectious

diseases

affected

population

(out of 1,000)

Percentage

of

individuals

suffering

from

infectious

diseases out

of total

ailing

population

Population

spending

more than

5% of TCE

on

infectious

diseases#

Population

spending

more than

10% of TCE

on

infectious

diseases#

Population

spending

more than

15% of TCE

on

infectious

diseases#

Prevalence

of infectious

diseases

affected

population

(out of 1,000)

Percentage

of

individuals

suffering

from

infectious

diseases out

of total

ailing

population

Population

spending

more than

5% of TCE

on

infectious

diseases#

Population

spending

more than

10% of TCE

on

infectious

diseases#

Population

spending more

than 15% of TCE

on infectious

diseases#

Wealth quintile

Very

poor

6.28 35.27 2,868,802 2,404,820 2,074,478 26.28 46.56 12,116,112 10,500,884 9,350,584

(0.54) (0.45) (0.39) (2.27) (1.96) (1.75)

Poor 8.65 33.24 1,784,914 1,488,153 1,268,611 24.63 33.11 5,587,556 5,043,970 4,444,407

(0.67) (0.56) (0.47) (2.08) (1.88) (1.66)

Average 10.74 34.08 1,372,420 1,084,720 864,461 26.57 28.40 3,621,808 3,063,676 2,688,672

(0.83) (0.66) (0.53) (2.20) (1.86) (1.64)

Rich 12.11 33.75 1,044,103 855,777 630,876 24.32 21.76 2,007,087 1,655,098 1,447,385

(0.97) (0.80) (0.59) (1.87) (1.54) (1.35)

Very rich 10.28 30.05 496,240 372,989 279,780 20.37 17.22 980,597 764,548 676,756

(0.76) (0.57) (0.43) (1.49) (1.16) (1.03)

Household size**

Less

than

average

9.47 34.43 5,088,301 4,092,923 3,272,155 26.97 32.05 14,638,243 12,229,554 10,479,367

(0.74) (0.60) (0.48) (2.13) (1.78) (1.52)

More

than

average

6.42 32.77 2,478,178 2,113,536 1,846,052 23.03 38.05 9,674,918 8,798,622 8,128,438

(0.55) (0.47) (0.41) (2.14) (1.94) (1.80)

Regions***

North 7.30 31.18 946,173 725,453 616,859 23.69 36.68 3,231,769 2,764,717 2,491,067

(0.59) (0.45) (0.38) (2.01) (1.720 (1.55)

Northeast 5.89 39.39 228,147 162,731 115,253 11.14 47.86 367,352 334,918 312,119

(0.52) (0.37) (0.26) (0.83) (0.76) (0.71)

(Continued)
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TABLE 2 | Continued

Variables Inpatient Outpatient

Prevalence

of infectious

diseases

affected

population

(out of 1,000)

Percentage

of

individuals

suffering

from

infectious

diseases out

of total

ailing

population

Population

spending

more than

5% of TCE

on

infectious

diseases#

Population

spending

more than

10% of TCE

on

infectious

diseases#

Population

spending

more than

15% of TCE

on

infectious

diseases#

Prevalence

of infectious

diseases

affected

population

(out of 1,000)

Percentage

of

individuals

suffering

from

infectious

diseases out

of total

ailing

population

Population

spending

more than

5% of TCE

on

infectious

diseases#

Population

spending

more than

10% of TCE

on

infectious

diseases#

Population

spending more

than 15% of TCE

on infectious

diseases#

East 6.77 35.86 1,650,676 1,447,197 1,242,895 31.93 50.18 8,022,211 6,829,588 6,044,282

(0.58) (0.51) (0.44) (2.82) (2.40) (2.13)

Central 6.58 29.77 1,252,856 982,828 774,223 26.79 33.63 5,645,658 5,088,658 4,658,459

(0.50) (0.39) (0.31) (2.26) (2.04) (1.86)

West 9.23 35.75 1,215,744 1,050,639 891,142 26.35 32.79 3,361,856 2,945,451 2,565,950

(0.76) (0.66) (0.56) (2.11) (1.85) (1.61)

South 12.19 35.27 2,272,883 1,837,610 1,477,834 19.44 20.38 3,684,314 3,064,844 2,535,928

(0.94) (0.76) (0.61) (1.53) (1.27) (1.05)

Figures are based on the author’s calculations from the NSSO 75th rounds.
#Values in parentheses show the percentage share of the total population.

*Include remaining religions such as Christianity, Sikhism, Jainism, Buddhism, Zoroastrianism, and others.

**Households size is categorized into two categories viz. less than average and more than average.

***North: JandK, Himachal Pradesh, Punjab, Chandigarh, Uttarakhand, Haryana, Delhi, Rajasthan; Northeast: Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, Meghalaya, Assam; East: Bihar, West Bengal, Jharkhand,

Odisha; Central: Utter Pradesh, Chhattisgarh, Madhya Pradesh; West: Gujrat, Daman, and Diu, Dadar and Nagar Haveli, Maharashtra, Goa; South: Andhra Pradesh, Karnataka, Lakshadweep, Kerala, Tamil Nadu, Pondicherry, Andaman

and Nicobar, Telangana.
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TABLE 3 | Socio-economic and demographic covariates in the level of out-of-pocket (OOP) expenditure as a share of total consumption expenditure (TCE) on infectious diseases in India (2017–18).

Variables Inpatient Outpatient

Average

per

capita

OOP

expenditure

on

infectious

diseases

(INR)

OOP

expenditure

on

infectious

diseases

as a

percentage

of TCE

(%)

Per

capita

OOP

expenditure

of the

individuals

suffering

from

infectious

diseases

(INR)

OOP

expenditure

as a

percentage

of TCE

of the

individuals

suffering

from

infectious

diseases

(% at

reporting

level)

OOP

health

expenditure

as a

percentage

of TCE

of the

individuals

suffering

from

infectious

diseases

(5%)

OOP

health

expenditure

as a

percentage

of TCE

of the

individuals

suffering

from

infectious

diseases

(10%)

OOP

health

expenditure

as a

percentage

of TCE

of the

individuals

suffering

from

infectious

diseases

(15%)

Average

per

capita

OOP

expenditure

on

infectious

diseases

(INR)

OOP

expenditure

on

infectious

diseases

as a

percentage

of TCE

(%)

Per

capita

OOP

expenditure

of the

individuals

suffering

from

infectious

diseases

(INR)

OOP

expenditure

as a

percentage

of TCE

of the

individuals

suffering

from

infectious

diseases

(% at

reporting

level)

OOP health

expenditure

as a

percentage

of TCE of

the

individuals

suffering

from

infectious

diseases

(5%)

OOP health

expenditure

as a

percentage

of TCE of

the

individuals

suffering

from

infectious

diseases

(10%)

OOP health

expenditure

as a

percentage

of TCE of

the

individuals

suffering

from

infectious

diseases

(15%)

All India 7.28 0.34 881.56 36.04 31.59 28.06 25.23 29.38 1.06 1156.34 35.82 31.74 28.70 26.26

Place of residence

Rural 5.97 0.36 794.98 42.50 37.99 34.39 31.41 28.01 1.29 1095.23 44.16 39.93 36.59 33.83

Urban 10.42 0.31 1036.43 29.83 25.42 21.96 19.27 32.65 0.77 1306.03 25.81 21.92 19.22 17.18

Sex

Male 7.22 0.33 880.25 35.94 31.47 27.92 25.06 28.75 1.03 1180.53 34.86 30.88 27.98 25.66

Female 7.35 0.34 883.13 36.17 31.72 28.22 25.41 30.05 1.09 1132.59 36.86 32.69 29.47 26.91

Transgender 8.57 0.30 344.07 10.43 7.67 5.40 3.12 0 0 0 0 0 0 0

Age

0–14 6.93 0.37 737.93 32.49 27.93 24.21 21.25 41.46 1.82 1035.20 41.49 37.03 33.38 30.37

15–29 5.31 0.24 847.16 33.67 29.22 25.79 23.01 21.63 0.75 1163.30 34.14 30.22 27.35 25.00

30–59 8.17 0.36 993.24 39.71 35.33 31.87 29.09 25.33 0.87 1317.06 32.48 28.66 26.05 24.06

60+ 11.64 0.47 953.51 36.65 32.15 28.68 25.84 37.16 1.10 1178.92 33.37 29.23 26.11 23.74

Religion

Hindu 7.52 0.35 939.49 38.56 34.09 30.51 27.63 28.88 1.03 1169.49 35.51 31.43 28.37 25.92

Muslim 5.25 0.26 589.02 26.85 22.49 19.10 16.39 30.32 1.22 1082.32 39.06 34.98 31.92 29.46

Others* 9.35 0.32 867.01 27.22 22.78 19.46 16.90 35.12 1.13 1177.24 32.88 28.80 25.98 23.79

Social group

STs 2.73 0.17 428.34 25.17 20.92 17.77 15.33 18.79 0.81 803.15 27.68 23.85 21.17 19.01

SCs 6.04 0.34 740.79 36.94 32.59 29.42 26.92 29.68 1.14 1115.62 34.38 30.52 27.77 25.64

OBCs 6.95 0.34 849.19 36.28 31.80 28.21 25.29 30.38 1.12 1181.39 38.42 34.26 31.04 28.45

Others 10.34 0.36 1133.42 36.82 32.33 28.66 25.73 31.09 0.99 1259.80 35.07 30.89 27.78 25.30

General education

Illiterate 8.34 0.49 818.58 41.18 36.70 33.14 30.24 38.63 1.53 1085.49 36.13 31.97 28.79 26.19

Up to

primary

5.67 0.29 707.85 30.83 26.39 22.93 20.22 27.46 1.07 1078.73 37.14 33.00 29.79 27.24

(Continued)
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TABLE 3 | Continued

Variables Inpatient Outpatient

Average

per

capita

OOP

expenditure

on

infectious

diseases

(INR)

OOP

expenditure

on

infectious

diseases

as a

percentage

of TCE

(%)

Per

capita

OOP

expenditure

of the

individuals

suffering

from

infectious

diseases

(INR)

OOP

expenditure

as a

percentage

of TCE

of the

individuals

suffering

from

infectious

diseases

(% at

reporting

level)

OOP

health

expenditure

as a

percentage

of TCE

of the

individuals

suffering

from

infectious

diseases

(5%)

OOP

health

expenditure

as a

percentage

of TCE

of the

individuals

suffering

from

infectious

diseases

(10%)

OOP

health

expenditure

as a

percentage

of TCE

of the

individuals

suffering

from

infectious

diseases

(15%)

Average

per

capita

OOP

expenditure

on

infectious

diseases

(INR)

OOP

expenditure

on

infectious

diseases

as a

percentage

of TCE

(%)

Per

capita

OOP

expenditure

of the

individuals

suffering

from

infectious

diseases

(INR)

OOP

expenditure

as a

percentage

of TCE

of the

individuals

suffering

from

infectious

diseases

(% at

reporting

level)

OOP health

expenditure

as a

percentage

of TCE of

the

individuals

suffering

from

infectious

diseases

(5%)

OOP health

expenditure

as a

percentage

of TCE of

the

individuals

suffering

from

infectious

diseases

(10%)

OOP health

expenditure

as a

percentage

of TCE of

the

individuals

suffering

from

infectious

diseases

(15%)

Secondary 8.98 0.36 1237.33 42.76 38.34 34.74 31.78 25.81 0.84 1500.09 36.85 32.97 30.29 28.20

Graduation

and

above

7.97 0.21 1287.96 28.91 24.38 20.81 17.96 19.85 0.52 1335.55 25.41 21.55 18.98 17.01

Wealth quintile

Very

poor

4.83 0.41 768.83 62.86 58.21 54.32 51.06 27.96 1.38 1063.93 46.77 42.59 39.24 36.48

Poor 6.18 0.32 714.71 36.77 32.32 28.82 25.85 24.97 0.97 1013.90 34.45 30.17 26.87 24.19

Average 8.75 0.33 814.81 30.47 26.06 22.59 19.86 37.63 1.14 1416.05 36.62 32.37 29.10 26.51

Rich 15.38 0.40 1269.47 33.05 28.58 24.96 22.06 28.99 0.68 1192.02 21.08 17.39 15.03 13.27

Very rich 14.82 0.21 1441.86 20.70 16.38 13.17 10.82 38.95 0.67 1912.17 24.45 20.80 18.54 16.86

Households size**

Less

than

Average

7.98 0.32 842.32 31.43 27.01 23.60 20.91 30.94 0.87 1147.30 27.87 23.94 21.14 18.99

More

than

average

6.22 0.37 969.60 50.50 45.92 42.02 38.74 27.00 1.71 1172.43 71.14 66.43 62.27 58.60

Regions***

North 6.62 0.25 906.54 32.01 27.58 24.02 21.21 30.82 0.99 1301.05 30.28 26.34 23.59 21.36

Northeast 2.24 0.12 380.27 18.50 13.80 10.31 7.98 12.57 0.51 1128.54 40.24 36.43 33.34 30.55

East 8.77 0.53 1296.07 64.88 60.29 56.33 52.92 38.52 1.77 1206.64 45.19 40.93 37.71 35.11

Central 3.34 0.20 506.92 28.49 24.19 21.08 18.65 28.16 1.27 1051.23 41.60 37.64 34.53 31.83

West 9.19 0.35 996.02 36.38 31.83 28.04 24.91 32.17 1.04 1221.09 32.28 28.36 25.47 23.33

South 9.72 0.36 797.15 28.02 23.62 20.27 17.67 20.15 0.55 1036.58 26.00 21.78 18.61 16.23

Figures are based on the author’s calculations from the NSSO 75th rounds.

*Include remaining religions such as Christianity, Sikhism, Jainism, Buddhism, Zoroastrianism, and others.

**Households size is categorized into two categories viz. less than average and more than average.

***North: JandK, Himachal Pradesh, Punjab, Chandigarh, Uttarakhand, Haryana, Delhi, Rajasthan; Northeast: Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, Meghalaya, Assam; East: Bihar, West Bengal, Jharkhand,

Odisha; Central: Utter Pradesh, Chhattisgarh, Madhya Pradesh; West: Gujrat, Daman, and Diu, Dadar and Nagar Haveli, Maharashtra, Goa; South: Andhra Pradesh, Karnataka, Lakshadweep, Kerala, Tamil Nadu, Pondicherry, Andaman

and Nicobar, Telangana.
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is 1.06% on outpatient care in the study. Whereas, at various
socio-economic and demographic variables, it is highest among
rural inhabitants (1.29%), females (1.09%), 60+ age groups
(1.82%), Muslims (1.22%), scheduled castes (1.14%), illiterates
(1.53%), very poor wealth quintiles (1.38%), more than average
households’ size (1.71%), and coming from eastern region
(1.77%) than their respective counterparts in the analysis.

Furthermore, the percentage share of OOP health expenditure
on infectious diseases as a share of total consumption expenditure
of infection-affected populations has also been measured at
different threshold levels in the study. The findings show that it
is 35.82% of the total consumption expenditure of the country’s
infection-affected population at the reporting level. At the
same time, it reduces proportionately with the increase in the
threshold levels as 5, 10, and 15% in the analysis, respectively.
Moreover, a similar trend of deterioration with an increase in
threshold has been observed among various socio-economic
and demographic variables. But the proportion has been found
highest among patients inhabiting rural areas, females, 0–14
age groups, Muslims, OBCs, education up to primary levels,
economically very poor people, accompanying large family size,
and an inhabitant of the eastern region of India, respectively.

Source of Finance to Cope With
Out-of-Pocket Expenditure on Infectious
Diseases
Table 4 shows that in the case of inpatient care, 86.4% of
the infected population are using savings/income as a first
source to finance the infection-derived expenditure in India.
Simultaneously, the share of borrowings and other remaining
coping strategies are only 8.4 and 5.0% in the country. Not using
any coping strategies to finance health expenditure on infectious
diseases has been reported in the study, which constituted only
a 0.3% share of the infection-affected population in the country.
Furthermore, concerning the individuals’ residence and sex, the
percentage of savings/income is highest among people residing
in the urban area (89.1%) and female (87.5%) patients. In
comparison, borrowings are significantly prevalent among rural
(10.1%) and male (9.0%) patients in India. In the patients’ age,
both savings/income (87.2%) and borrowings (9.2%) are highly
employed as a source of finance by the 0–14 age group in the
study. While concerning religion, the share of both sources of
finance for coping is relatively less among Muslim people, but
other residual coping strategies are highest in the study.

Among social categories, savings/income are employed by
STs (88.1%), and borrowings are used mainly by SCs (10.2%)
in India. Furthermore, savings/income (90.6%) are highly used
by educated people suffering from infectious diseases in the
analysis. Still, the dependency on borrowing (10.1%) is relatively
highest among illiterate people in the country. Among different
economic statuses, the share of savings/income is highest among
wealthy people, but the poor are more dependent on borrowings
in the study. The analysis shows that savings/income and
borrowings are the leading sources of finance for coping among
individuals related to large family size. Finally, savings/income
with a 95.1% share is the top strategy for dealing in the north-
east region. In contrast, individuals from the southern part

have a larger share of borrowing to finance their inpatient care
expenditure in India.

In outpatient care, savings/income with a 92.9% share is the
leading strategy to finance health-care expenditure in India.
However, it has been seen that the percentage of borrowings is
not very much significant in the study. But as a source of finance,
borrowings and other coping strategies contribute only 1.5 and
2.8% to the total share of expenditure on infectious diseases in
the country. The findings also illustrate that nearly 3.0% of people
suffering from infection did not report any source of finance
in the analysis. Based on various socio-economic variables,
savings/income is primely used by urban (94.2%) inhabitants and
male (93.2%) patients in India. It is highest among different age
groups among 0–14 with a 94.1% share. Although the overall
percentage of borrowings is less significant among all coping
strategies, dependence has been higher among the aged,Muslims,
educated, and very poor. Again, it has been seen that 93.9%
OBCs are dependent on savings/income while not reporting any
source of finance for coping and other remaining strategies are
highest among STs in India. The share of savings/income is
highest among educated people in the country on educational
background. Finally, the percentage of savings/income is highest
in the northern region. At the same time, the share of people
who did not report any copying strategies is highest in the
north-eastern part of India.

DISCUSSION AND CONCLUSION

Overall, the results indicate a significant existence of infectious
diseases that are still a big threat to India’s public health. Although
several horizontal and vertical policy initiatives to cure, control
and eradicate infectious diseases have been taken into account by
the governments, but could not provide any landmark changes
in this regard. It has been perceived that these infectious diseases
are not easily controllable until the worse surroundings, such
as the lack of cleanliness, open defecation, and many other
associated factors, are addressed. In inpatient and outpatient
cases, infectious diseases are significantly prevalent among rural
areas, females, transgender, children (0–14 age group), aged
persons (60+ age group), SCs, non-Hindu communities, and
illiterate people in India. In the analysis, the relatively lower
percentage of poor people suffering from infectious diseases
does not illustrate their better health conditions. Still, it reflects
their un-reportability to health-care facilities than economically
prosperous people. This results from their insufficient financial
resources and fulfills this notion that accessibilities of health-
care facilities are still far from the reach of these economically
marginalized sections of Indian societies.

Furthermore, the analysis shows that OOP expenditure on
infectious diseases is comparatively high in outpatient care. Per
patient OOP expenditure on contagious diseases has been found
lower among most socio-economically vulnerable groups, such
as rural inhabitants, transgender people, Muslims, scheduled
tribes, illiterates, educated up to primary level, and poor wealth
quintile in India. Also, a declining trend of average per capita
OOP expenditure with an increase in the thresholds level
has been seen. The result further elaborates that people rely
more on savings/income to cope with infectious diseases. Still,
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TABLE 4 | Socio-economic and demographic covariates in the source of finance to cope with out-of-pocket (OOP) expenditure on infectious diseases in India (2017–18).

Variables Inpatient Outpatient

Savings/

Income

Borrowings Others# Not reported

any source

of finance

Savings/

Income

Borrowings Others# Not reported

any source of

finance

All India 86.4 8.4 5.0 0.3 92.9 1.5 2.8 3.0

(85.9–87.9) (7.9–9.4) (4.4–5.8) (0.1–0.4) (91.9–93.9) (1.1–2.0) (2.1–3.5) (2.4–3.6)

Place of residence

Rural 85.6 10.1 5.1 0.3 92.4 1.8 2.8 3.4

(84.3–86.9) (9.1–11.2) (4.2–6.0) (0.03–0.5) (91.2–93.6) (1.1–2.4) (2.0–3.5) (2.6–4.1)

Urban 89.1 5.9 5.0 0.3 94.2 1.0 2.9 2.1

(87.8–90.6) (5.1–6.9) (3.9–6.1) (0.2–0.5) (92.6–95.9) (0.4–1.6) (1.6–4.3) (1.3–3.0)

Sex

Male 86.1 9.0 5.0 0.3 93.2 1.5 2.9 2.7

(84.8–87.8) (7.9–10.3) (4.0–6.0) (0.1–0.6) (91.8–94.6) (0.8–2.2) (1.8–3.6) (1.9–3.5)

Female 87.5 8.2 5.2 0.2 92.7 1.6 2.7 3.3

(86.2–88.7) (7.3–9.1) (4.3–6.1) (0.1–0.3) (91.3–94.1) (0.9–2.3) (1.9–3.6) (2.4–4.2)

Transgender 1.0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Age

0–14 87.2 9.2 4.5 0.6 94.1 1.3 2.2 2.4

(85.6–88.7) (8.0–10.5) (2.9–4.5) (0.1–1.2) (92.8–94.1) (0.7–1.9) (1.3–3.1) (1.7–3.2)

15–29 85.5 9.0 6.0 0.1 91.4 2.2 4.1 2.4

(83.4–88.2) (7.3–10.7) (4.3–7.8) (0.05–0.2) (88.8–94.1) (0.8–3.5) (1.9–6.2) (1.4–3.4)

30–59 87.1 8.4 4.7 0.1 93.7 1.1 2.2 3.7

(85.5–89.0) (7.2–9.9) (3.6–6.1) (0.01–0.2) (91.9–95.4) (0.3–1.9) (1.3–3.2) (2.4–5.1)

60+ 87.0 6.3 8.0 0.1 88.3 2.7 4.6 4.8

(84.6–89.4) (4.8–8.2) (6.0–10.0) (0.02–0.2) (84.0–92.7) (0.5–4.9) (1.5–7.8) (2.3–7.3)

Religion

Hindu 87 8.6 4.7 0.2 93.1 1.4 2.7 3.0

(86.0–88.2) (8.0–9.6) (4.1–5.7) (0.1–0.3) (92.0–94.3) (0.9–1.9) (1.9–3.4) (2.4–3.7)

Muslims 85.6 7.9 6.2 0.6 91.8 2.8 3.6 2.2

(83.0–88.6) (5.8–10.2) (4.6–8.1) (−0.2–1.5) (89.1–94.5) (0.9–4.6) (1.8–5.3) (1.1–3.4)

Others* 87.2 8.7 4.3 0.2 93.4 0.6 2.7 4.6

(83.8–90.6) (5.7–11.9) (2.8–5.9) (0.1–0.3) (90.2–96.5) (−0.03–1.2) (0.5–4.8) (1.8–7.4)

Households size**

Less

than

average

86.5 8.5 5.4 0.2 91.8 0.2 3.3 3.5

(85.4–87.8) (7.7–9.4) (4.6–6.5) (0.1–0.3) (90.4–93.1) (1.1–2.4) (2.4–4.3) (2.7–4.4)

More

than

average

87.4 8.7 4.0 0.3 95.0 1.1 1.9 2.1

(85.8–89.2) (7.4–10.4) (3.1–4.9) (−0.001–0.8) (93.7–96.3) (0.4–1.8) (1.0–2.8) (1.5–2.8)

Social groups

STs 88.1 6.2 5.5 0.4 88.2 0.4 4.2 7.3

(85.8–90.5) (4.6–7.8) (4.0–7.4) (0.2–0.7) (84.5–91.8) (0.05–0.7) (1.8–6.6) (4.4–10.1)

SCs 86.3 10.2 4.0 0.2 92.7 1.4 1.9 4.3

(84.4–88.4) (8.5–12.1) (3.1–5.0) (0.01–0.4) (90.4–94.9) (0.4–2.3) (0.8–2.9) (2.5–6.1)

OBCs 86.1 9.7 4.5 0.2 93.9 1.4 2.7 2.2

(Continued)

Frontiers in Public Health | www.frontiersin.org 14 June 2022 | Volume 10 | Article 901276120

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Ram and Thakur The Burden of Infectious Diseases

TABLE 4 | Continued

Variables Inpatient Outpatient

Savings/

Income

Borrowings Others# Not reported

any source

of finance

Savings/

Income

Borrowings Others# Not reported

any source of

finance

(84.6–87.8) (8.7–11.1) (3.7–6.1) (0.03–0.3) (92.5–95.3) (0.8–2.0) (1.7–3.8) (1.4–2.9)

Others 88 6.1 5.7 0.5 93.0 2.3 3.2 2.1

(86.1–89.8) (5.0–7.5) (4.6–7.3) (0.03–1.0) (90.9–95.1) (1.0–3.6) (1.7–4.8) (1.3–2.9)

General education

Illiterate 84.5 10.1 5.5 0.5 92.2 1.3 3.0 3.7

(82.6–86.8) (8.6–11.8) (4.2–7.1) (0.04–0.9) (90.5–94.0) (0.7–1.9) (1.8–4.2) (2.5–4.8)

Up to

primary

88 8.1 4.2 0.2 93.6 1.7 2.3 2.8

(86.8–89.2) (7.3–9.2) (3.7–5.2) (0.09–0.3) (92.2–95.0) (0.9–2.6) (1.5–3.1) (1.9–3.6)

Secondary 86.6 8.4 5.2 0.2 93.3 1.3 3.8 2

(84.6–89.0) (6.8–10.2) (3.8–6.8) (−0.1–0.4) (90.3–96.2) (−0.04–2.6) (1.2–6.4) (1.1–2.9)

Graduation

and

above

90.6 3.8 5.6 0.1 91.2 2.5 3.3 3.4

(86.3–95.1) (2.2–5.7) (1.6–9.9) (−0.05–0.3) (86.4–95.9) (−0.7–5.8) (0.7–5.8) (0.7–6.1)

Wealth quintile

Very

poor

85.6 9.3 5.3 0.3 91.5 1.8 3.2 3.7

(83.9–87.5) (7.9–10.8) (4.4–6.6) (−0.1–0.7) (89.8–93.1) (1.0–2.5) (2.0–4.3) (2.7–4.7)

Poor 84.2 11 5.4 0.2 94.8 1.5 2 1.8

(81.9–86.7) (9.4–12.8) (3.6–7.6) (0.05–0.4) (93.2–96.4) (0.5–2.5) (1.0–2.9) (1.0–2.7)

Average 88.1 8.2 3.7 0.5 94.3 1.4 2.8 2.1

(86.2–90.1) (6.7–10.0) (2.8–5.0) (0.1–0.9) (92.4–96.3) (0.3–2.4) (1.4–4.3) (1.2–3.1)

Rich 90.5 5.7 4.0 0.2 95.7 1.3 1.5 2.5

(88.8–92.5) (4.5–7.4) (2.8–5.3) (0.03–0.3) (93.6–97.8) (−0.4–2.9) (5.8–2.4) (1.0–4.1)

Very rich 91.1 2.5 6.1 0.2 89.2 0.4 5.7 5.5

(89.0–93.3) (1.6–3.8) (4.4–8.2) (−0.01–0.3) (82.4–96.0) (−0.2–1.0) (0.05–11.3) (1.1–9.9)

Regions***

North 89.6 7.6 2.6 0.4 95.4 1.3 0.9 3.3

(87.6–91.8) (6.0–9.5) (1.6–3.8) (0.01–0.7) (93.3–97.5) (0.2–2.4) (0.2–1.7) (1.4–5.2)

Northeast 95.1 2.6 2.0 0.3 89.6 1.2 1.2 8.1

(93.5–96.7) (1.3–3.9) (1.0–3.1) (0.1–0.4) (82.5–96.6) (−0.4–2.8) (−0.3–2.8) (1.3–14.8)

Central 87.1 8.1 5.0 0.3 93.6 1.6 3.4 1.4

(84.7–89.6) (6.1–10.4) (4.0–6.2) (−0.004–0.6) (91.6–95.6) (0.7–2.6) (1.8–5.0) (0.6–2,2)

East 88.2 6.0 5.6 0.6 92.3 0.7 4.0 3.0

(86.5–90.3) (4.8–7.2) (4.4–7.1) (−0.1–1.4) (90.4–94.3) (0.4–1.1) (2.4–5.5) (1.8–4.3)

West 92.4 5.2 2.3 0.1 92.7 2.7 1.6 3.0

(90.7–94.5) (3.5–7.0) (1.6–3.1) (0.02–0.2) (89.8–95.6) (0.7–4.7) (0.03–3.2) (1.5–4.5)

South 81.0 13.0 7.2 0.1 91.2 1.7 2.7 5.2

(79.0–83.2) −11.6 (5.5–9.1) (0.04–0.2) (88.9–93.5) (0.7–2.8) (1.7–3.7) (3.4–7.1)

Figures are based on the author’s calculations from the NSSO 75th rounds.

Values in parentheses are 95% confidence interval.
# Includes the remaining source of finance such as the sale of physical assets, contributions from friends and relatives, and other sources.
* Include remaining religions such as Christianity, Sikhism, Jainism, Buddhism, Zoroastrianism, and others.
**Household size is categorized into two categories viz. less than average and more than average.
***North: JandK, Himachal Pradesh, Punjab, Chandigarh, Uttarakhand, Haryana, Delhi, Rajasthan; Northeast: Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura,

Meghalaya, Assam; East: Bihar, West Bengal, Jharkhand, Odisha; Central: Utter Pradesh, Chhattisgarh, Madhya Pradesh; West: Gujrat, Daman, and Diu, Dadar and Nagar Haveli,

Maharashtra, Goa; South: Andhra Pradesh, Karnataka, Lakshadweep, Kerala, Tamil Nadu, Pondicherry, Andaman and Nicobar, Telangana.
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borrowings are employed significantly to manage inpatient care
than outpatient care in India. Also, socio-economically deprived
people, such as rural people, SCs, illiterate, and very poor, are
more dependent on borrowing than others. This fact exaggerates
the belief that these people are still reliant on borrowings to attain
basic needs, including health, due to their improper inclusion
in the country’s main streams. Furthermore, an interesting fact
regarding education status and different sources of finance for
coping has been observed in the study. The analysis states a
positive impact on the use of savings/income with an increase in
the individuals’ education level.

This study concludes that infectious diseases are still a
significant threat to public health in India. Various life-
threatening, long-lasting contagious diseases such as smallpox,
cholera, plague, dengue, and flu pandemic, have been controlled,
cured, and eradicated through numerous vertical and horizontal
disease control programmes. But several re-emerging infectious
diseases are increasing the challenges of health care, treatment
behavior, health-care costs, and source of finance for coping in
the country. The global emergence of COVID-19 has challenged
humanity’s survival in India and worldwide (38). Since its
emergence, the continuously rising number of active cases has
warned the world of its death toll. With the government’s
imposition of social distancing through lockdown, the only way
to prevent such pandemic has radically broken the entire social
structure, cultural values, and economic systems (15, 16). This
evidence hypothesizes that socially and economically vulnerable
sections of societies become worse when they suffer from such
contagious diseases. It increases their burden of health care
through OOP health expenditure and reduces their productive
efficiency during the spell of ailments. For instance, in the study,
SCs depend more on borrowings to finance infectious diseases
than other social groups in India. The idea of dependency on
borrowings to fund health-care expenditure communicates that
these deprived sections are still at the mercy of their masters and
very far from the mainstream of the country.

Additionally, to curtail the share of OOP expenditure on
health care, an increase in the percentage of GDP on health
care and universalisation of insurance coverage is the need of
the hour (36). According to the budget estimates for the fiscal
year 2018, around 1.3% of India’s GDP has been spent on
public health, whereas it is a minimum of 6–7% of GDP in
most European countries. Only 12% of the urban and 13% of
the rural population are under the protection coverage through
Rashtriya Swasthya Bima Yojana (RSBY) in the country (39).
Though various health insurance schemes have been launched
by the country’s union and state governments, people without
insurance coverage are still considerable due to the improper
implementations. As a result, nearly 86% of the rural population
and 82% of the urban population were not covered under any
public or private scheme of health expenditure support in India
(39). To fulfill the objectives of maximum population coverage,
another plan, “Ayushman Bharat,” PM-JAY the world’s largest
government-funded health-care scheme, was launched by the
Government of India in 2018 under National Health Policy 2017.
The scheme provides a health cover of Rs. 5 lakhs per family
per year, specifically targeted 10.74 crore poor and vulnerable

families (∼50 crore beneficiaries) (40). The plan ensures financial
protection against catastrophic health expenditure and access to
affordable and quality health care for all country’s citizens (41).

In addition, for ensuring the quality of health-care services,
the Government of India had initiated the “National Digital
Health Mission (NDHM)” in 2021. The mission will create a
national digital health ecosystem to support universal health
coverage in an efficient, accessible, inclusive, affordable, timely,
and safe manner. The system will provide a wide range of data,
information, and infrastructure services to the people (41, 42).
However, these initiatives have been holistically launched for
ensuring better health facilities, but it is early to make any
prediction regarding its outcomes; hopefully, the time will define
it over the passing of a few more years.

Also, spreading awareness among people about cleanliness,
sanitation, and free from open defecation has positively
impacted the country’s individuals’ health. The findings tabled
the fact that Swachh Bharat Mission-Gramin (SBM-G) has
reduced the number of diarrheal cases. They avoided more than
14 million Disability-Adjusted Life Years (DALYs) between
2014 and October 2019 (43, 44). Recently, to prevent the
community transmission of the coronavirus disease, propagation
of awareness through multiple media platforms changed the
public attitudes and behavior toward susceptible people to
this contagious disease (15, 45). The awareness campaigns not
only reduced the chances of contact with coronavirus but also
encouraged the asymptomatic individuals to conduct health
protocols, such as self-isolation and social distancing, in the
country (45). Therefore, the result deliberates the need for
proper implementations of policy initiatives against ailments,
outcome-oriented implementation of health-care schemes
among targeted population, ensuring quality of public health-
care system and its expansion nearer to the people’s doorsteps,
immunisations/vaccinations drives, subsidized medical facilities
to vulnerable sections, and awareness programmes against
unhygienic conditions in the country.
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Olafur Gudlaugsson3, Mar Kristjansson2,3, Karl G. Kristinsson2,4

and Bjorn R. Ludviksson1,2*

1Department of Immunology, Landspitali—The National University Hospital of Iceland, Reykjavik,

Iceland, 2Department of Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland,
3Department of Infectious Diseases, Landspitali—The National University Hospital of Iceland,

Reykjavik, Iceland, 4Department of Clinical Microbiology, Landspitali—The National University
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From the beginning of the COVID-19 pandemic, it has claimed over 6 million

lives, and globally the pandemic rages with detrimental consequences, with

the emergence of newmore infectious and possibly virulent variants. A clinical

obstacle in this battle has been to determine when an infected individual

has reached a non-infectious state. Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) can be transmitted under diverse circumstances,

and various rules and regulations, along with di�erent testing methods, have

been applied in an attempt to confine the transmission. However, that has

proven to be a di�cult task. In this review, we take together recently published

data on infectivity and transmission of SARS-CoV-2 and have combined it with

the clinical experience that physicians in Iceland have accumulated from the

pandemic. In addition, we suggest guidelines for determining when patients

with COVID-19 reach a non-infectious state based on a combination of clinical

experience, scientific data, and proficient use of available tests. This review

has addressed some of the questions regarding contagiousness and immunity

against SARS-CoV-2.

KEYWORDS

COVID-19, SARS-CoV-2, transmission of SARS-CoV-2, non-infectious state,

viral testing

Initial infectious state

The average incubation period for SARS-CoV-2 is 2–7 days, with over

98% of symptomatic patients falling ill within 12 days (1–4). The different

variants of SARS-CoV-2 have different mean incubation times, the omicron

variant (B.1.1.529) has a mean incubation period of 3.2 days as compared to

4.4 days for the delta variant (B.1.617.2) (5). The delta variant also has a

shorter mean incubation period as compared to previous variants (6). The most

common way to diagnose COVID-19 infection is by using reverse transcription

polymerase chain reaction (RT-PCR) on samples collected from the upper respiratory

tract (nasopharyngeal and/or oropharyngeal swabs). SARS-CoV-2 virus in infected

individuals can be detected by RT-PCR for an average of 17.0 days in samples

taken from the upper respiratory tract, with the highest levels in the first week (7).
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The mean duration of viral shedding is variable depending on

what type of sample is being measured. Viral shedding can be

detected by RT-PCR in samples from the lower respiratory tract

for an average of 14.6 days while samples from stool are positive

for an average of 17.2 days (7).

In some cases, patients can remain SARS-CoV-2 positive

by RT-PCR for a prolonged time, up to 230 days in an

immunocompromised patient (8) but also in previously healthy

individuals for 60–110 days (9–11). However, it is unclear, in

these cases, whether the cause of prolonged viral shedding

is the retention of the virus in the body or re-infection.

It has been reported that patients with COVID-19 can be

tested negative after disease followed by a positive test (re-

detectable positive) both with the same and different variants

or even co-infected by multiple variants of the virus (12, 13).

Many individuals test positive for COVID-19 without showing

symptoms, after diagnosis, many patients develop symptoms,

but some remain asymptomatic. The reported percentage of

individuals that remain asymptomatic throughout the disease

varies widely. Based on testing in the general population and in

defined groups for COVID-19, the percentage of asymptomatic

COVID-19 positive individuals that do not develop symptoms

ranges from 12.2 to 62.5% (14–18). In addition, asymptomatic

infections of COVID-19 have been shown to be more common

when the SARS-CoV-2 virus has a specific mutation, the

11083G>T mutation (19). Symptomatic, pre-symptomatic,

asymptomatic individuals, and patients with COVID-19 can

transmit COVID-19 to others (20–22).

There are similar viral loads at the start of infection among

asymptomatic and symptomatic patients (7, 16) and viral load

does not seem to correlate with disease severity as there is no

statistical difference in viral load between asymptomatic and

hospitalized patients with COVID-19 (23). Higher viral load

in nasopharyngeal samples is more common in patients with

an unfavorable outcome; however, a high viral load is not an

independent risk factor for intensive care unit (ICU) admission

or death (24).

The viable SARS-CoV-2 virus, cultured in Vero cells, can

be isolated from the samples of patients with COVID-19 up to

24 days after symptom onset with more success in the earlier

days (25–29). Viable SARS-CoV-2 virus cannot be isolated from

all RT-PCR confirmed patients, as it is highly dependent on

a high viral load (27). The likelihood of isolating a viable

virus is significantly higher in the first week after the onset of

symptoms than in the second and after 10 days, the probability

drops to 6.0% (30). The virus is most commonly isolated from

nasopharyngeal swabs and sputum but has also been isolated

from saliva (25), endotracheal samples (28), stool (31), and

urine (32). The viable virus has been cultured in samples

from symptomatic, pre-symptomatic, asymptomatic, and re-

detectable positive patients with COVID-19 (33–35).

The infectivity of SARS-CoV-2 that varies among patients

with COVID-19 depends on multiple factors, such as

their vaccination status. However, the highest viral load

and infectivity are noted during the first 5 days of the

symptomatic state.

SARS-CoV-2 antibody response

Seroconversion following SARS-CoV-2
exposure has been under intense
investigation

Seroconversion (when antibodies against SARS-CoV-2 can

be detected) has been reported to be at around day 12

after the onset of symptoms with some individual variability

that is not associated with disease severity (36). The clinical

significance of the individual isotype responses has been

evaluated. Interestingly, higher immunoglobulin M (IgM),

immunoglobulin M (IgG), and immunoglobulin M (IgA) SARS-

CoV-2 specific antibodies have been associated with worse

clinical outcomes (37–41). Patients with high levels of IgG and

IgA anti-receptor-binding domain (RBD) antibodies were more

likely to require hospital admission, mechanical ventilation, and

fatal outcomes when compared to patients with lower levels.

Non-hospitalized patients also had lower neutralizing antibodies

(42). Patients with COVID-19 in the ICU had higher levels

of IgA for RBD, S1, and N protein when compared to non-

hospitalized patients (41).

It has become increasingly common to test for the presence

of SARS-CoV-2-specific antibodies in the serum of individuals.

It is performed for numerous reasons 1) to determine if an

individual has been infected with the SARS-CoV-2 virus, 2)

to determine the level of protection against re-infection, 3) to

determine the level of protection in vaccinated individuals, and

4) to determine if an individual is contagious or not. However,

it remains to be completely resolved if serological status against

SARS-CoV-2 can be used to determine the non-infectious

state. Excluding RT-PCR and measuring only antibodies for

SARS-CoV-2 are not sufficient to indicate whether an individual

has been infected in the first week of disease but after 21–35

days, the sensitivity of pooled IgG/IgM measurements rises to

96.0% (43).

The sensitivity and specificity of the various commercially

available SARS-CoV-2-specific serologic assay kits vary,

based on testing method and manufacturer. Currently,

there are at least 222 commercialized SARS-CoV-2 antibody

immunoassays that have received CE-in vitro diagnostic (IVD)

certification (44).

Immunological memory after COVID-19
and neutralizing antibodies

Immunological memory is formed after infection, but how

long the memory lasts is highly dependent on the type of
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infection. Neutralizing antibodies are of special importance as

they prevent the binding of the pathogen to the host cells. Studies

have shown that antibodies formed after COVID-19 last at least

6 months or more in most patients, but the level of antibodies

decreases with time (18, 45–47). Levels of IgG specific for the

spike protein of SARS-CoV-2 are stable for over 6 months and

the number of spike-specific memory B cells is higher 6 months

after infection when compared to 1 month (46, 48).

The half-life of anti-spike protein IgG antibodies has been

shown to be 184 days, with a shorter half-life for men (49). The

spike protein consists of the S1 and S2 subunits, with the RBD

situated within S1. The half-life of antibodies against different

parts of the spike protein differs, with antibodies against S1

having the shortest half-life at 115 days, 125 days for antibodies

against the RBD, and 344 days for antibodies against the S2

part (50).

The main neutralizing antibodies for SARS-CoV-2 have

been found to be directed against the spike protein of the virus

and the RBD domain, presumably, as they prevent respiratory

epithelial cellular entry by the virus (51). Although the majority

of today’s known neutralizing antibodies disrupts angiotensin-

converting enzyme 2 (ACE2) binding to the RBD, others have

been found to recognize epitopes outside this site (52). The

half-life of neutralizing antibodies against SARS-CoV-2 has been

documented to be from 90 to 114 days (46, 53). Only 20.2%

of the mean serum levels of SARS-CoV-2-specific antibodies

in convalescent and vaccinated individuals is needed to confer

a 50% protection against severe infection (53). Only time will

tell how the antibodies for SARS-CoV-2 are maintained in

the long term. However, it has been estimated that antibodies

will maintain a 50% protection against COVID-19 infection

for 1.5–2 years, while 50% protection against serious infection

would last several years (49, 53). This can clearly represent a

weakness in the efficacy of the vaccines, as the spike protein

is prone to mutate, making the SARS-CoV-2 virus more

infectious (54).

Vaccine targets

After the SARS outbreak in 2003, studies reported

neutralizing antibodies against the SARS-CoV spike protein

(55). Since both SARS-CoV and SARS-CoV-2 utilize the

attachment of spike protein to the human ACE2 receptor

to invade host cells, it is crucial to develop neutralizing

antibodies against the spike protein to induce protection against

SARS-CoV-2 infection (56). The spike protein thus became the

main target of vaccine development (52). Presently, Sputnik

V, ChAdOx1, Spikevax, BNT162B2, Vidprevtyn, VLA2001,

COVID-19 Vaccine Janssen, Nuvaxovid, and COVID-19

Vaccine from Sinovac all target the spike protein. This can

clearly represent a weakness in the efficacy of the vaccines, as

the spike protein is prone to mutate (57–59).

Recent results from a retrospective study based on the U.S.

registry have shown that transfusion of plasma with high anti-

SARS-CoV-2 antibody levels was associated with a lower risk

of death when compared to plasma with lower antibody levels

(60). In Iceland, RonapreveTM was used successfully in treating

patients against the first variants of concern. However, with the

emergence of the Omicron variant, the usefulness of many of the

monoclonal antibody biologicals is dwindling. SotrovimabTM

was effective against the BA.1 Omicron subvariant, but the

effectiveness against the BA.2 Omicron subvariant is negligible.

Examining the neutralizing antibodies in seropositive and

seronegative individuals after receiving the BNT162b2 mRNA

(Pfizer) vaccine, it was seen that individuals who had been

infected with SARS-CoV-2 produced antibodies with a higher

neutralization potency and were less susceptible to escape

variants of the virus. Suggesting that booster doses of the

vaccine that induced a higher frequency of memory B cells

are able to produce a broader range of neutralizing antibodies

and target the escape variants (61). Moreover, neutralizing IgG

and IgA antibodies have been detected in the breast milk of

lactating women, reaching stable levels 14 days after the second

dose (62). The third dose of BNT162b2 has also been shown

to have a 93% effectiveness in preventing COVID-19-related

hospital admission, 92% effectiveness in preventing against

severe disease, and 81% effectiveness in preventing death,

when compared to two doses administered at least 5 months

before (63).

The declining efficacy of BNT162b2 in protecting against

SARS-CoV-2 infections of the BNT162b2 vaccine has been

reported 6 months after being fully vaccinated (two doses),

the reason probably being due to waning immunity, rather

than new variants, such as Delta. Importantly, however,

the effectiveness of the vaccine in protecting against severe

disease and hospital admissions did not wane (64). A fourth

dose, administered 4 months after the third, has been

shown to be efficacious against symptomatic disease. It did

not show any substantial differences in humoral responses

when compared to the third, suggesting that the third

dose induced the maximal immunogenicity of the vaccine,

whereas the fourth dose was able to restore the antibody

levels (65).

The omicron variant harbors over 30 mutations in the

coding region for the spike protein (66). Models, validated

by experimental results, have suggested that the omicron

variant is 2.8 times more contagious than the delta variant

(67). This is of concern regarding the efficacy of the

current vaccines targeting the spike protein of the SARS-

CoV-2 virus. It has been shown that the efficacy of the

BNT162b2 vaccine is still maintained, although at a lower

level (68). One month (66, 69) after the second dose of the

mRNA-1273 vaccine, the neutralization titers were 35 times

lower against the omicron variant than the delta variant. While

a booster dose of the vaccine increased the neutralization
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FIGURE 1

Infectivity and non-infectivity of fully vaccinated, immune competent, patients infected with Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2). Flow chart depicting the suggested strategy on how to isolate SARS-CoV-2 infected individuals to minimize the likelihood of

releasing infectious individuals back into society. The flow chart takes into account that it is the last symptom or reverse transcription

polymerase chain reaction (RT-PCR) measurement (Cq value) that defines in what category the individual will place since patients will be in

di�erent stages of the disease when they are sampled. *It should be noted that the positive predicted value of the antigen test can vary and it

may therefore be important to confirm the diagnosis with RT-PCR. Created with BioRender.com.

titer against the omicron variant 20-fold when compared

to 1 month after the second dose of the vaccine (70).

Three doses of mRNA COVID-19 vaccine have also been

associated with protection against both the omicron and delta

variants (65, 71), with the fourth dose able to restore the

antibody levels comparable to the third dose, but not showing

any difference in the levels of omicron-specific neutralizing

antibodies (65).

Thus, it is clear that vaccines protect against infections

with SARS-CoV-2 and even though the virus mutates, they

still offer some protection against the new variants. However,

vigilance is needed offering the science community a challenge

to develop new vaccines tailored against new virus variants.

Even though initial vaccines offer less protection against newer

variants but they are still helpful as demonstrated by their

ability to protect against severe disease, hospitalization, and

death (72).

Is it possible to determine
non-infectivity?

A clear defining criterion when patients with COVID-19

cease to be infectious remains to be determined. This has a wide

range of implications, such as public health recommendations,

the safety of healthcare personnel, and international traveling to

name a few.

Scientifically validated guidelines on this matter are

required. Unfortunately, major differences exist between the

current guidelines, and they are everchanging. The most

common clinical and biological markers used to determine

non-infectivity are viral RNA copies, viable viral isolation,

symptom score, serology, and days from initial symptoms.

Viral viability studies are the gold standard but are not

practical for widespread use. Case studies where patients with

COVID-19 have been followed have shown that infectivity can
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TABLE 1 Determination of non-infectivity in relation to vaccination status and symptoms.

Vaccination status Symptoms Days of isolation until non-infectivy

Three dosesa No or mild symtpoms 5 days, no need for second PCR or antibody

measurements

Two dosesb No symptoms or low symtpoms 7 days, no need for second PCR or antibody

measurements

Partially and unvaccinatedc 10 days, no need for second PCR or antibody

measurements.

Serious COVID-19 disease, indipendent of

vaccionation status

Serious COVID-19 symptoms needing dexamethasone,

tocilizumab, ICU admission, respirator.

14 days and patient has N-protein specific antibodies

and/or 1 negative PCR test OR 21 days after diagonsis

aThree doses of vaccine or two doses of vaccine and recovered from COVID-19.
bTwo doses of vaccine or one dose of vaccine and recovered from COVID-19.
cNo vaccination or only one dose.

be maintained for a longer time than the 20-day transmission-

based precautions recommended by the Centers for Disease

Control and Prevention (CDC) (26, 73) or the 14–20 days of

isolation as recommended by the European Center for Disease

Prevention and Control (ECDC) for individuals with severe

symptoms (74).

The quantification cycle (Cq, also known as threshold

cycle (Ct)) value from the RT-PCR has also been used as a

surrogate marker for infectivity, where Cq < 35 is regarded

as positive. Thus, a value of <20 has been shown to correlate

with high viral load, whereas values of >35 might reflect a

low contagious state with no detectable viable virus (27, 75).

However, detection power is significantly affected by various

factors (76), such as sampling location, swab technique, days

from exposure, duration, and severity of symptoms among

others. It is also important to note that one sample only

gives a point estimate in time and the Cq values are most

likely low (high viral load) before symptom onset and in

the post-infectious state and as previously mentioned, re-

infections with SARS-CoV-2 are common. However, a meta-

analysis shows that a pooled estimate of how many people

are re-detectable positive, in a cohort of recovered COVID-19

patients post discharge, is 14.8% and that the time from onset

of symptoms to being re-detectable positive is 35.4 days (77).

COVID-19 could therefore have a longer disease duration than

previously thought.

Rapid antigen tests have significantly lower sensitivity and

specificity than RT-PCR assays. These have been suggested as

an alternative quick way to differentiate between contagious

and non-contagious individuals (78, 79). In addition, in a

comparative study of 122 CE-marked SARS-CoV-2 antigen

rapid diagnostic tests (Ag RDTs), 78.6% met the authors’ 75%

sensitivity criteria in samples with relatively high viral load

(Cq ≤ 25). Finally, only 20.8% met that criterion in samples

with moderate viral load (Cq >25 to <30) and the majority

were negative in samples with low viral load (Cq > 30).

A Cochrane review on rapid antigen tests shows that these

tests have a higher sensitivity for symptomatic patients with

COVID-19 than asymptomatic (72.0 vs. 58.1%, respectively)

and in patients that have Cq ≤25 than in those with higher

Cq (94.5 vs. 40.7%, respectively). In addition, in the first

week of symptoms, the average sensitivity of the rapid antigen

tests was higher than in the second week (78.3 vs. 51.0%,

respectively) (78). Another recent study found that the rate

of false negative rapid antigen testing was noted in 87 of the

807 tests. Furthermore, the negative predictive value correlated

strongly with the time of symptoms with a negative predictive

value of rapid antigen testing being 80–100% for symptoms

lasting < 5 days, whereas, the negative predictive value for

the longer duration was only 50% (80). Thus, since very high

viral load most often coincides with a symptomatic state,

it is clear that rapid antigen tests are, at best, only useful

in identifying potentially infected individuals with symptoms

highly suggestive of COVID-19 that should be corroborated

with PCR testing (81). It has been shown that if viral load

fell below 106 copies/ml in patients with COVID-19, it was

not possible to culture viable virus despite positive RT-PCR

up to day 28 (27). In addition, in an earlier report, it was

suggested that patients with Cq above 33–34 by RT-PCR

technology might not be contagious and might be used to

determine if they could be safely discharged or relieved from

strict confinement. Similar findings have been observed by

others suggesting that Cq values above 30–33 might be used

to define the viability of replicating the SARS-CoV-2 virus

(1). In addition, comparing Cq values between laboratories

can be problematic, as large variation has been found with

a quantitative comparison between samples (82). Where the

method of sampling and sampling location are of importance,

with the nasopharyngeal swabs still being the gold standard

while throat swabs are not recommended due to the low

sensitivity and positive predictive value (83). Thus, based upon

these and similar findings, this has been further stratified into

the following groups of viral load: high (Cq 17–25), moderate

(Cq 25–30), and low (Cq 30–36).
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Based on the data discussed above and the clinical

experience of the physicians managing the pandemic in Iceland,

a flow chart (Figure 1, Table 1) was created, proposing a strategy

on how to determine a low risk for viral transmission (non-

infectivity) in fully vaccinated individuals based upon their

symptomatic state. A similar strategy has already been proven

to be highly successful at Landspitali University Hospital in

Reykjavik, Iceland.

Concluding remarks

Numerous attempts have been made to provide evidence-

based protocols to establish non-infectivity, particularly for

determining when to stop quarantine of infected individuals,

when healthcare workers can return to work, and more

importantly for infected immunocompromised individuals.

While rapid antigen tests do not have the sensitivity

or specificity of RT-PCR tests, they can contribute to the

removal of asymptomatically infected or pre-symptomatic

SARS-CoV-2 spreading individuals from the general population.

In addition, in selected cases in asymptomatic individuals, in-

depth SARS-CoV-2-specific IgM/IgG/IgA levels might provide

a better overview of the individuals’ timeline of infectivity.

Thus, the suggested flow chart will hopefully provide some

insight into how to minimize the likelihood of releasing an

infected and contagious individual from all restrictions either

within the hospital or within general public settings.
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Hantaviruses, the causative agent for two types of hemorrhagic fevers,

hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary

syndrome (HPS), are distributed from Eurasia to America. HFRS and HPS

have mortality rates of up to 15% or 45%, respectively. Currently, no certified

therapeutic has been licensed to treat hantavirus infection. In this study, we

discovered that benidipine hydrochloride, a calcium channel blocker, inhibits

the entry of hantaviruses in vitro. Moreover, an array of calcium channel

inhibitors, such as cilnidipine, felodipine, amlodipine, manidipine, nicardipine,

and nisoldipine, exhibit similar antiviral properties. Using pseudotyped vesicular

stomatitis viruses harboring the different hantavirus glycoproteins, we

demonstrate that benidipine hydrochloride inhibits the infection by both

HFRS- and HPS-causing hantaviruses. The results of our study indicate the

possibility of repurposing FDA-approved calcium channel blockers for the

treatment of hantavirus infection, and they also indicate the need for further

research in vivo.

KEYWORDS

Hantaan virus, hantavirus, bunyavirales, hemorrhagic fever with renal syndrome,
hantavirus pulmonary syndrome, antivirals, benidipine hydrochloride, calcium
channel blocker

Introduction

Hantaviruses, the causative agents for hemorrhagic fever with renal syndrome

(HFRS) and hantavirus pulmonary syndrome (HPS) worldwide (Jiang et al., 2017),

belong to the genus Orthohantavirus, family Hantaviridae, within the order

Bunyavirales. Hantaviruses are enveloped viruses containing tripartite negative-

stranded RNA and a large (L) genome, including medium (M) and a small (S)

segment, which encode RNA-dependent RNA polymerase (RdRp or LP), glycoprotein
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precursor (GPC), and nucleocapsid protein (NP), respectively

(Vaheri et al., 2013). During virus maturation, GPC is cleaved

into Gn and Gc by the host enzyme, and this cleavage

facilitates virus attachment to cellular receptors and

subsequent membrane fusion (Cifuentes-Munoz et al.,

2014; Mittler et al., 2019; Serris et al., 2020).

The distribution of HFRS and HPS was defined by the

geographical distribution of the natural host of these causative

viruses (Kabwe et al., 2020). HFRS is mainly endemic in

Eurasia, primarily caused by the Hantaan virus (HTNV),

Seoul virus (SEOV), Dobrava virus (DOBV), and Puumala

virus (PUUV). HPS is an epidemic in the Americas, with SNV

and ANDV as the predominant pathogens. HTNV and SEOV

are the two primary pathogens of HFRS in China, and HTNV

is responsible for severe cases (Jonsson et al., 2010). There are

currently no certified pharmaceutical agents approved by the

U.S. Food and Drug Administration (FDA) to treat hantavirus

infection, considering the mortality of up to 15% for HFRS

and 45% for HPS, respectively. It underlines the urgent need

to develop new therapeutic antivirals (Brocato and Hooper,

2019; Ye et al., 2019; Munir et al., 2020). The repurposed use of

FDA-approved drugs is an effective strategy to identify

potential antivirals, considering clinical safety, and was

adopted during the SARS-CoV-2 pandemic (Riva et al.,

2020; Santos et al., 2020; Zhou et al., 2020). In addition to

SARS-CoV-2, this strategy has been applied to various

emerging and re-emerging viruses, such as the Ebola virus,

Zika virus, and severe fever with thrombocytopenia syndrome

virus (SFTSV) (Johansen et al., 2015; Barrows et al., 2016; Li

et al., 2019).

Hantavirus, an enveloped virus, binds to cellular receptors

through viral glycoprotein and enters cells via endocytosis

(Mittler et al., 2019; Noack et al., 2020; Guardado-Calvo and

Rey, 2021). The interfering entry process is, therefore, an

attractive strategy for combating hantavirus infection.

Vesicular stomatitis virus (VSV) is widely used to screen

viral entry inhibitors due to its multiple advantages

including the ability to be handled under lower biosafety

conditions and the ability to pseudotype various viral

envelope proteins (Mayor et al., 2021). Based on

recombinant VSV-based antiviral screening, we found that

benidipine hydrochloride, a calcium channel inhibitor, is a

potential beneficial countermeasure against hantavirus. By

blocking membrane-bound calcium channels, calcium

channel inhibitors reduce the intracellular calcium level,

which may have protective effects on vascular endothelial

cells (Yao et al., 2006). Furthermore, benidipine HCl exhibits

pan-anti-hantaviral activity when applied to pseudotyped

viruses carrying different hantaviral glycoproteins. As a

result of our study, we believe that benidipine HCl and

other calcium channel inhibitors hold promise as potential

therapeutic agents for treating hantavirus infection. We

believe further in vivo studies are warranted.

Methods

Cells, viruses, and reagents

African green monkey kidney Vero-E6 (ATCC, CCL-81),

human non-small-cell lung carcinoma (A549) (ATCC; CCL-

185), Syrian golden hamster kidney BHK-21 (ATCC; CCL-10),

human embryonic kidney HEK-293T, and human hepatoma

Huh7 cells were cultivated in Dulbecco’s modified Eagle’s

medium (DMEM, Sigma-Aldrich, St. Louis, MO,

United States) supplemented with 10% fetal bovine serum

(FBS, Sigma-Aldrich) in 5% CO2 at 37°C, as described

previously (Ye et al., 2020). DMEM without Ca2+ was

obtained from Yuchun Bio (Shanghai, China).

HTNV (strain 76-118) was propagated and titrated in Vero-

E6 cells, as previously indicated (Ye et al., 2015; Ye et al., 2019).

The primary mouse monoclonal antibodies against HTNV

NP (1A8) were produced in a lab, as mentioned earlier (Cheng

et al., 2016). An antibody against GFP was purchased from

Abbkine (Wuhan, China), and tubulin/GAPDH was

purchased from Sangon Biotech (Shanghai, China).

Horseradish peroxidase (HRP) or infrared dye-conjugated

secondary antibodies were obtained from Sangon Biotech and

Li-Cor Biosciences (Lincoln, NE, United States), respectively.

Benidipine hydrochloride (HCl) was purchased from

MedChemExpress (NJ, United States) and cilnidipine, felodipine,

nicardipine HCl, nifedipine, nisoldipine, and nitrendipine were

purchased from TargetMol (Shanghai, China). Manidipine was

purchased from APExBIO Technology (Houston, TA,

United States). The calcium chelator BAPTA-AM was purchased

from GlpBio (Montclair, CA, United States).

Cytotoxicity assay

Cell viability was calculated as previously mentioned (Ye

et al., 2020). Briefly, Vero-E6 and A549 cells were incubated with

serial dilutions of each drug for 24–48 h. Cell viability was

assayed using Cell Counting Kit-8 (CCK8) (TargetMol), with

absorbance (A) at 450 nm being measured using a BioTek HT

synergy instrument.

Rescue of recombinant vesicular
stomatitis virus bearing the Hantaan virus
glycoprotein precursor

The plasmid-bearing VSV antigenome lacking VSV-GORF but

with an additional GFPORFwas synthesized at GenScript (Nanjing,

China), containing unique restriction sites for foreign gene

expression: 5′ flanked by the T7 bacteriophage promoter, 3′
flanked by hepatitis delta virus ribozyme (HDVRz), and the

T7 terminator sequence. The codon-optimized GPC genes of
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HTNV (NC_005219) were PCR amplified and inserted into the

VSV antigenome plasmid, resulting in the rVSV-HTNV-G vector.

BHK-21 cells were seeded into a six-well plate overnight and

infected with vaccinia virus bearing T7-pol (kindly provided by

the Wuhan Institute of Virology, CAS) for 2 h. Then, the cells

were transfected with helper plasmids encoding VSV-N, VSV-P,

VSV-L, and VSV-G (kindly provided by the Wuhan Institute of

Virology, CAS). The transfection ratio for each plasmid was 5:3:5:

1:8, with a total of 11 μg per well. Transfections were performed

using the Hieff Trans Liposomal Transfection Reagent (Yeasen,

Shanghai, China). Cytarabine (TargetMol) was added after

transfection at a concentration of 100 μg/ml, and the culture

supernatant was collected 72 h post-transfection and used to

blind infect VeroE6 cells. After several passages, the cytopathic

effect (CPE) in the cell monolayer was noticeable and indicated a

successful rescue. The rescued virus was referred to as rVSV-

HTNV-G and verified by HTNV GPC-specific antibodies.

Viruses were propagated and tittered on Vero E6 cells, and

the titer was determined using plaque assays.

Preparation of the hantavirus glycoprotein
precursor pseudotyped vesicular
stomatitis virus

GPC genes of HTNV (NC_005219), SEOV (AB027521), PUUV

(U14136), DOBV (L33685), ANDV (AF291703), and SNV (L25783)

were codon-optimized and synthesized at GenScript (Nanjing,

China). All target genes were cloned into the pCAGGS vector, as

previously indicated (Yao et al., 2020). Pseudotyped VSV (pVSVΔG-
GFP) was stored in our laboratory, where the coding region of the G

protein was replaced with an enhanced green fluorescent protein, and

the VSV-G protein was expressed in the trans form. BHK-21 cells

were transfected with pCAGGS-GPC of each hantavirus, 24 h later,

and then pVSVΔG-GFP-bearing VSV-G was added at a multiplicity

of infection (MOI) of 1 for 1 h at 37°C. The monolayer was then

washed with Dulbecco’s Phosphate-Buffered Saline (DPBS, Cellgro)

three times, and the fresh medium was replenished. After 36 h of

incubation, the culture supernatant was clarified by low-speed

centrifugation, aliquoted, and stored at −80°C.

Western blot analysis

As indicated in different experiments, cells in six-well plates

were treated with benidipine HCl and infected with viruses. Cells

were washed twice with DPBS and lysed with RIPA buffer

(Beyotime, P0013C, or P0013D). Samples were quantified

using a BCA kit (Thermo Fisher Scientific), and 20 μg or

40 μg aliquots of each cell lysate were boiled for 10 min and

subjected to 12% SDS-PAGE and then transferred to

polyvinylidene difluoride (PVDF) membranes (Millipore) and

blotted with indicated primary antibodies, followed by secondary

antibodies conjugated to infrared dyes or HRP and visualized

using an Odyssey Infrared Imaging System (Li-Cor Biosciences)

or Tanon 5200SF Imaging System (Shanghai, China).

Immunofluorescence assay

Cells in 24-well plates were treated with drugs and infected

with rVSV, rVSV-HTNV-G, or different pVSV and were imaged

with an IX71 fluorescence microscope (Olympus, Tokyo, Japan)

24 h post-infection. For the immunofluorescence assay, cells

were seeded onto coverslips in 24-well plates at a confluence

of 60%–70%. Then, cells were treated with benidipine HCl and

infected with HTNV, subjected to IFA at the indicated time

points, p. i., following an established protocol (Ye et al., 2019).

Cells were imaged with a BX60 fluorescence microscope

(Olympus).

Quantitative reverse transcription PCR

Total RNA of HTNV or rVSV-HTNV-G infected cells was

extracted and reverse transcripted using the Hifair® 1st Strand

cDNA Synthesis SuperMix (Yeasen), according to the

instructions provided by the manufacturer. qRT-PCR was

performed using the Hieff® qPCR SYBR Green Master Mix

(Yeasen) on a CFX96 Real-Time system (Bio-Rad). The

mRNA expression level of each target gene was normalized to

the corresponding GAPDH expression level. The primers used

for gene amplification were as follows: GFP (forward: 5′-CTG
GACGGCGACGTAAACG -3’; reverse: 5′-CCAGGGCACGGG
CAGCTTGC -3′), HTNV S segment (forward: 5′-GAGCCT
GGAGACCATCTG -3’; reverse: 5′-CGGGACGACAAAGGA
TGT -3′), and GAPDH (forward: 5′- ACCCACTCCTCCACC
TTTG -3’; reverse: 5′- ATCTTGTGCTCTTGCTGGG -3′).

Statistical analysis

Statistical analysis was performed using a two-tailed

unpaired t-test in GraphPad Prism software (La Jolla, CA,

United States). Data are presented as means ± standard

deviations (SDs) (n = 3 or otherwise indicated). All

experiments were repeated at least three times.

Results

Benidipine hydrochloride inhibits Hantaan
virus infection in different cell lines

The repurposing of FDA-approved drugs is an effective

method of screening potential antiviral agents since the safety
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of these drugs has been demonstrated in clinical trials. By

leveraging this strategy, we found that benidipine

hydrochloride (HCl) significantly inhibited HTNV replication.

Benidipine HCl was added to Vero cells 1 hour prior to HTNV

infection; the cells were inoculated with HTNV at a multiplicity

of infection (MOI) of 1, and benidipine HCl was added during

and after virus adsorption. The relative intracellular RNA levels

of the HTNV S segment were determined by quantitative real-

time PCR (qRT-PCR) at 24 h after infection. A dose-dependent

reduction of the HTNV S segment was observed in cell

monolayers treated with benidipine in comparison with the

DMSO vehicle, with an IC50 of 3.063 μM (Figure 1A).

However, CCK8 assays did not reveal any effect on cell

viability (Figure 1D). Inhibition of HTNV infection by

benidipine HCl was also observed on A459 cells with an IC50

of 6.552 μM (Figures 1B,E) and Huh7 cells (Figures 1C,F), both

permissive cell lines for replication of HTNV. Furthermore, in

HTNV-infected Vero E6 cells, treated with benidipine HCl, the

number of NP-positive cells was remarkably reduced

(Figure 1G). Additionally, benidipine HCl treatment

significantly reduced the relative protein levels of NP

(Figures 1H,I).

FIGURE 1
Benidipine hydrochloride inhibits HTNV infection. (A–C) Benidipine hydrochloride inhibited HTNV in Vero, A549, and Huh7 cells with dose-
dependent effects. Benidipine hydrochloride was applied to cell monolayers at the indicated concentrations for 1 hour, and then, HTNV was
inoculated at MOI 1 with the same concentrations of benidipine hydrochloride. After adsorption, the inoculum was discarded, and benidipine
hydrochloride was added to the fresh medium. Total RNA was extracted 24 hpi, and the HTNV S segment RNA level was measured by qRT-PCR
and normalized to GAPDH. IC50 was indicated in the panel (IC50 refers to 50% inhibitory concentration). Vero cells (D), A549 cells (E), and Huh7 cells
(F) were analyzed for viability using the CCK8 assay after 24 h of benidipine hydrochloride treatment. The inhibition of the expression of HTNV
structural proteins by benidipine hydrochloride. (G–I) Vero cells were treated with 10 μM benidipine hydrochloride and infected with HTNV; after
24 h of infection, coverslips were stained with the NP-specific antibody 1A8 (G). After being exposed to 10 μM benidipine hydrochloride, Vero cells
(H) or Huh7 cells (I)were infected with HTNV. After 24 h of infection, cells were lysed and immunoblotted with the antibody 1A8. Student’s t-test was
used to compare mean values between the benidipine hydrochloride-treated group and the vehicle control group (DMSO). *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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Benidipine hydrochloride inhibits Hantaan
virus infection by blocking virus entry
interfering with virus internalization

Following this, we examined the mechanisms by which

benidipine HCl inhibits HTNV infection. Upon treating Vero

E6 cells with 10 μM benidipine HCl before virus adsorption, or

during virus adsorption and afterward, or after virus adsorption,

intracellular levels of the viral S segment RNA were detected 24 h

post-infection (Figure 2A). A gradual decrease in the HTNV RNA

level was observed over the course of benidipine HCl treatment,

during and after the treatment, and after adsorption, suggesting that

benidipine HCl inhibited HTNV entry into the cell (Figure 2B).

For further validation of benidipine HCl’s entry inhibitory

effects on HTNV, we tested its effect on a recombinant VSV

expressing GFP with glycoprotein substituted for HTNV GPC

FIGURE 2
In vitro anti-HTNVmechanism of benidipine hydrochloride. (A) Benidipine hydrochloride was administered to Vero E6 cells, as described in the
schematic diagram. After HTNV infection, cells were treated with benidipine hydrochloride (#1), or added with HTNV prior to adsorption (#2), or 1 h
before HTNV and added throughout the infection procedure (#3). (B)The effect of benidipine hydrochloride on the entry of HTNV. As depicted in (A),
the relative intracellular S segment RNA level of HTNV was determined at 24 h post-infection using a variety of methods. *p < 0.05; **p < 0.01.

FIGURE 3
Effect of benidipine hydrochloride on the entry stages of HTNV. (A) Vero E6, A549, andHuh7 cells were treatedwith benidipine hydrochloride or
the DMSO vehicle and then inoculated with rVSV-HTNV-G at MOI 1, and GFP-positive cells were photographed 24 h after infection. (B,C) Vero
E6 cells were treated with benidipine hydrochloride or the DMSO vehicle and then infected with rVSV (B) or rVSV-HTNV-G (C). After 24 h post-
infection, total RNA was extracted, and GFP RNA levels were determined by qRT-PCR and normalized to GAPDH. (D, E) Vero (D) and Huh7 (E)
cells were treated with 10 μM benidipine hydrochloride and infected with rVSV-HTNV-G; the cells were lysed 24 h after infection and blotted with
antibodies against GFP and GAPDH. **p < 0.01; ***p < 0.001.
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(rVSV-HTNV-G). In Figure 3A, the number of GFP-positive cells

was significantly lower in benidipine HCl-treated cells than in

DMSO-treated cells, indicating that benidipine HCl inhibited

rVSV-HTNV-G infection in different cell lines. Additionally, the

level of GFP RNA within cells was detected 24 h following infection

with rVSV and rVSV-HTNV-G, indicating that benidipine HCl is

more effective at inhibiting rVSV-HTNV-G than rVSV (Figures

3B,C). In addition, Vero E6 and Huh7 cells treated with benidipine

HCl had significantly lower levels of GFP protein than Vero E6 and

Huh7 cells treated with DMSO (Figures 3D,E).

Calcium channel blockers inhibit Hantaan
virus infection through reducing cellular
Ca2+ uptake

As a calcium channel blocker derived from dihydropyridine

(DHP), benidipine HCl is commonly used in the treatment of

hypertension. In order to determine whether other members of

the DHP process exhibit similar HTNV inhibition functions, we

tested the anti-HTNV activity of an array of DHPs. In Figure 4A,

cilnidipine, felodipine, amlodipine, manidipine, nicardipine, and

nisoldipine inhibit HTNV replication on A549 cells at 10 μM,

suggesting that multiple DHP-derived calcium channel blockers

have a common anti-HTNV effect. The HTNV RNA level was

also significantly reduced when Huh7 cells were treated with

Ca2+-free medium as compared to the normal medium

(Figure 4B). Likewise, the HTNV RNA level was also

decreased in a dose-dependent manner when Huh7 cells were

treated with BAPTA-AM, a calcium chelator (Figure 4C). Thus,

these results suggest that calcium channel blockers inhibit HTNV

infection by reducing the Ca2+ influx.

Benidipine hydrochloride exhibits the
broad-spectrum anti-hantaviral entry
activity

In order to examine whether benidipine HCl inhibits other

hantaviruses, we rescued various VSV pseudoviruses enveloped

with pathogenic hantaviral glycoproteins, including SEOV,

PUUV, DOBV, SNV, and ANDV. As expected, benidipine

HCl significantly decreased the infection rate of those pVSVs

(Figure 5), demonstrating that it has a broad-spectrum anti-

hantavirus activity.

Discussion

The development of a drug is a complex process that

involves a great deal of uncertainty and takes a long time. The

repurposing of licensed drugs is an alternative strategy for the

development of antivirals (Johansen et al., 2015; Barrows

et al., 2016; Li et al., 2019; Riva et al., 2020; Santos et al., 2020;

Zhou et al., 2020). Dihydropyridine-derived calcium channel

blockers have been used for a long time to treat hypertension

and angina pectoris (Yamamoto et al., 1990). As a new long-

acting drug, benidipine HCl is approved for its ability to bind

to the voltage-gated calcium channel’s DHP-binding site

(Yao et al., 2006). In addition to its anti-hypertensive and

cardioprotective properties, benidipine HCl also exhibits

renoprotective and endothelial protective properties

(Karasawa and Kubo, 1990; Yao et al., 2000; Matsubara

and Hasegawa, 2005). In addition, because benidipine HCl

only has mild side effects and has a high level of clinical

safety, it is attractive for its potential application against

other diseases.

As an acute disease with high mortality, HFRS is transmitted

primarily through the inhalation or consumption of rodent-

contaminated air or food (Jiang et al., 2017; Kabwe et al.,

2020). Endothelial permeability increases and renal damage

FIGURE 4
Different dihydropyridine-derived calcium channel blockers
inhibit HTNV infection. (A) A549 cells were treated with the
indicated CCBs or the DMSO vehicle and infected with HTNV at
MOI 1, and the relative level of S segment RNA was
determined by normalizing to GAPDH. (B) Huh7 cells were
cultured in Ca2+-free or normal medium and then infected with
HTNV (MOI = 1), 24 hpi; the relative intracellular HTNV RNA level
was measured by qRT-PCR. (C) Huh7 cells were infected with
HTNV upon treatment with BAPTA-AM, 24 hpi. The relative
intracellular HTNV RNA level was measured by qRT-PCR. *p <
0.05; **p < 0.01; ***p < 0.001.

Frontiers in Pharmacology frontiersin.org06

Wang et al. 10.3389/fphar.2022.940178

138

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.940178


are the main symptoms of HFRS caused by HTNV or SEOV

(Jiang et al., 2017). Currently, there are no licensed antivirals

against these viruses, and the first-line treatment option is

supportive therapy. Since the responsible pathogens are

biosecurity-related, treatment measures are needed for these

viruses.

The present study demonstrated that benidipine HCl has a

powerful antiviral effect on HTNV in a variety of cells with an

IC50 at a low micromolar level. Furthermore, benidipine HCl

significantly inhibited the entry of rVSV-bearing HTNV GPC

into cells, and the inhibition is more potent than that of VSV

itself. Pretreatment of cells with benidipine HCl during virus

infection and after virus adsorption results in the most effective

inhibition of HTNV compared to other methods. The results

indicate that benidipine HCl inhibits HTNV mainly at the entry

stage.

Additionally, both the calcium-free medium and BAPTA-

AM, a cellular calcium chelator, inhibit HTNV replication, along

with numerous calcium channel blockers derived from DHP.

These results suggest that the level of intracellular Ca2+ correlates

with the replication level of HTNV and other hantaviruses. In

fact, West Nile virus (WNV) is one example of a virus that

induces Ca2+ influx, which is crucial for efficient viral replication

(Scherbik and Brinton, 2010). Aside from this, Ca2+ can regulate

multiple pathways through signal transduction (Bagur and

Hajnóczky, 2017) and could serve as an active center for some

special proteins, such as the annexin family, which has been

shown to be involved in the regulation of multiple virus

infections. Furthermore, DHP-derived calcium channel

blockers target different calcium channel subtypes and differ

in half-life times, which may result in different inhibitory

efficacies against HTNV. Nevertheless, further research is

necessary to identify the specific mechanism.

Viral hemorrhagic fever (VHF) poses a serious health

threat to humans, particularly in less-developed countries.

There are several types of viruses that can cause VHF, such as

filoviruses, arenaviruses, bunyaviruses, and alphaviruses.

Other CCBs, in addition to benidipine HCl, may inhibit

VHF-induced virus infection by interfering with the virus

entry stage (Lavanya et al., 2013; Sakurai et al., 2015; DeWald

et al., 2018; Li et al., 2019). A number of CCBs were also

evaluated to see if they were effective in stopping HTNV

infection, and multiple drugs were found to be effective. In

light of the wide-spectrum nature of CCBs against VHF

viruses, we investigated the effect of benidipine HCl against

hantavirus pseudotyped viruses and concluded that this agent

was able to inhibit the main pathogenic hantaviruses

responsible for both HFRS and HPS. This host-targeting

treatment is unlikely to result in drug-resistant strains.

Further research into how Ca2+ regulates the replication of

HTNV may provide additional information regarding the

hantavirus lifecycle and strengthen our understanding of its

virology.

Overall, we found that benidipine HCl, as well as other

CCBs, can inhibit hantavirus infection. This is similar to what

has been observed for other viruses, which indicates that an in

vivo study of benidipine HCl against hantavirus infection is

warranted.

FIGURE 5
Benidipine hydrochloride inhibits multiple hantaviruses’ glycoprotein pseudotyped VSV infection. Various pseudotyped VSV bearing different
hantaviral glycoproteins were incubated with 10 μM benidipine HCl or the vehicle DMSO, after which the mixture was used to infect A549 cells, and
the GFP-positive cells were photographed 24 h post-infection. **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Background: Hemorrhagic fever with renal syndrome (HFRS) is a serious

public health problem in China. The geographic distribution has went

throughout China, among which Zhejiang Province is an important epidemic

area. Since 1963, more than 110,000 cases have been reported.

Methods: We collected the meteorological factors and socioeconomic

indicators of Zhejiang Province, and constructed the HFRS ecological niche

model of Zhejiang Province based on the algorithm of maximum entropy.

Results: Model AUC from 2009 to 2018, is 0.806–0.901. The high incidence of

epidemics in Zhejiang Province is mainly concentrated in the eastern, western

and central regions of Zhejiang Province. The contribution of digital elevation

model ranged from 2009 to 2018 from 4.22 to 26.0%. The contribution of

average temperature ranges from 6.26 to 19.65%, Gross Domestic Product

contribution from 7.53 to 21.25%, and average land surface temperature

contribution with the highest being 16.73% in 2011. In addition, the average

contribution of DMSP/OLS, 20-8 precipitation and 8-20 precipitation were all

in the range of 9%. All-day precipitation increases with the increase of rainfall,

and the effect curve peaks at 1,250 mm, then decreases rapidly, and a small

peak appears again at 1,500 mm. Average temperature response curve shows

an inverted v-shape, where the incidence peaks at 17.8◦C. The response curve

of HFRS for GDP and DMSP/OLS shows a positive correlation.

Conclusion: The incidence of HFRS in Zhejiang Province peaked in areas

where the average temperature was 17.8◦C, which reminds that in the areas

where temperature is suitable, personal protection should be taken when
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going out as to avoid contact with rodents. The impact of GDP and DMSP/OLS

on HFRS is positively correlated. Most cities have goodmedical conditions, but

we should consider whether there are under-diagnosed cases in economically

underdeveloped areas.

KEYWORDS

MaxEnt, HFRS, socio-economic factors, ecological data, meteorological data

Introduction

Hemorrhagic fever with renal syndrome (HFRS) is a
rodent viral disease caused by hantaviruses (HVs), which
are distributed in Eurasia and have a case fatality rate
of 5–15%; HVs can also cause hantavirus cardiopulmonary
syndrome (HCPS), which develop mainly in the Americas
and have a case fatality rate of up to 40% for HCPS (1).
Since there are no specific drugs, HFRS and HCPS can
only be treated with symptomatic support. HFRS caused by
Hantaan (HTNV) and Seoul (SEOV), HTNV and SEOV which
belongs to genus in Orthohantavirus family Hantaviridae,
order Bunyavirales (2). Whole virus-inactivated vaccines
against HTNV or SEOV are currently licensed in Korea
and China, but the protective efficacy of these vaccines is
uncertain (1).

HFRS is a serious public health problem in China. The
epidemic reached the peak in 1986, with a total of 115,804 cases
reported. As government launched a series of disease control
and prevention measures, the incidence began to decrease
(3). HFRS was first observed in the Heilongjiang Province of
China in the 1930s. It remained poorly understood until 1978
when Hantaan Virus and its reservoir Apodemus agrarius were
discovered by Lee et al. (4). During 2006–2012, 77,558 human
cases and 866 fatal cases of HFRS were reported, with an
average annual incidence rate of 0.83 per 100,000 and a case
fatality rate of 1.13%. About 84.16% of the total cases were
concentrated in 9 provinces, with the highest incidence in spring
and autumn/winter (5).

Zhejiang Province is an HFRS endemic region, and the
first case was reported in 1963. From 1963 to 2020, the
morbidity and mortality rates decreased significantly, however,
the geographical distribution of endemic areas has been
expanding to all of Zhejiang Province (6).

Studies had shown hantavirus infection dynamics: changes
in climate (7–9), environmental condition affect the risk
of zoonotic transmission via changes in reservoir dynamics
(8); nephropathia epidemica is more likely to occur with
intense vegetation activity, soil with low water content
condition (10). Previous analyses in China suggest rainfall,
mouse density and autumn crop yield are correlated with
the incidence of HFRS (11). A study in Xi’an, China

showed HFRS is correlated to rainfall, rodent density and
lags of temperature (12). Another research observed HTNV
stabilities and results show at 4 degrees wet conditions
particularly, HTNV is detectable after 96 days, and sensitive to
drying (13).

Materials and methods

Data collection and case definition

The data from 2009 to 2018 on HFRS cases were
obtained from the Chinese Notifiable Disease Reporting System.
Information of HFRS cases includes age, gender, residential
address and date of illness onset. According to the health
industry standard of the People’s Republic of China for
diagnostic criteria of HFRS, HFRS cases were classified as
suspected cases, clinically diagnosed cases and confirmed cases
(6). Zhejiang Province is located on the southeast coast of China,
with 11 cities and 90 county (Supplementary Figure 1).

Meteorological data (DEM01-11) were obtained from
China Meteorological Data Sharing Service System.1

It included sunshine hours, average relative humidity,
average land surface temperature, 20–8 precipitation, 8–
20 precipitation, 20–20 precipitation, average air pressure,
average air temperature, daily maximum temperature,
average wind speed and maximum wind speed. Layers
for yearly average meteorological data from 2009 to 2018
were generated using the kriging interpolation method
with ArcGIS 10.2.

The socio-economic factors and ecological data used in this
study were obtained from the Resource and Environmental
Science Data Center of the Chinese Academy of Sciences.2

They included normalized difference vegetation index
(NDVI), enhanced vegetation index (EVI), Annual NDVI
(aNDVI); clay, sand, silt; gross domestic product (Zjgdp),
and digital elevation model. Digital elevation model (DEM)
can be regarded as an image, a typical raster data obtained

1 http://data.cma.cn/

2 http://www.resdc.cn
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by sampling the image plane coordinates and height.
Defense Meteorological cSatellite Program Nighttime
Lighting Index (DMSP/OLS), DMSP/OLS imageries were
acquired by the Defense Meteorological Satellite, mainly
used for urban expansion research. We used ArcGIS 10.2
to set the grid for layers of different variables to the same
geographic boundaries and cell sizes to extract data for
Zhejiang Province.

Statistical methods

The maximum entropy principle is to predict the
unknown information of a target area by incomplete
known information. Using known species distribution and
ecological environment data, the non-random relationship
between environmental characteristics and species distribution
in the known species distribution area is studied to find
the probability distribution with maximum entropy as the
optimal distribution to predict the suitable habitat for a
species (14).

The maximum entropy model (MaxEnt) is a valuable
software for ecological niche models (ENM) study to estimate
the habitat suitability of a species through occurrence data and
a set of environmental variables (15). It is well documented
that MaxEnt has great advantages in epidemiological studies
of natural epidemics, detecting the main meteorological factors
influencing the high incidence of infectious diseases (16–18)
and predicting the impact of future climate change on local
species (19, 20). MaxEnt is a machine learning algorithms
based on the maximum information entropy to construct the
model. The prediction structure is accurate, and its response
curve depends on the data characteristics. It can obtain
more accurate results with only a small number of sample
data (21).

To select the best model, we consulted with epidemiologists
on which factors might be associated with the occurrence
of HFRS and performed cross-correlation analysis to
effectively identify multicollinearity. We selected a
validity variable from the variables of multicollinearity.
Different regularization multipliers (RM) were adjusted
in MaxEnt, then we selected the features that contributed
most to the model, thus reducing model overfitting
(20, 22).

In this study, ecological niche models of HFRS were
constructed using Maxent 3.4.1. Spatial distribution of HFRS
cases from 2009 to 2018 was dependent variable; meteorological
factors, socio-economic factors and ecological data were
independent variables. In our modeling, 75% of the data are
randomly selected as the training set and the remaining 25% as
the test set. The stability of the model is verified by the (cross-
validation) method, and the result of the average of 10 modeling
repetitions is used as the model result (21). In the parameter

setting, Regularization multiplier was set as 1, Replicate type
was set as bootstrap, Replicates was set as 10, Max number of
background points was set as 10,000, Max iterations was set as
500. In general, AUC values < 0.7 are considered low accuracy,
0.7–0.9 are considered useful for applications, and >0.9 are
considered high accuracy (23, 24).

Results

From 2009 to 2018, the cumulative number of HFRS
reported cases in Zhejiang Province was 4240, The annual
numbers of HFRS cases in each year during 2009–2018
were 438, 458, 541, 501, 526, 385, 362, 349, 353, and
327. Cases were reported in 80% of counties in Zhejiang
province, and the number of counties reporting cases each
year from 2009 to 2018 were 62, 56, 59, 61, 65, 63,
61, 62, 71, and 63.

Figure 1 is the receiver operating characteristic (ROC)
curve for the again averaged over 10 replicate, and AUC for
different years were given in ENMs. The AUCs for 12 models,
2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,
2009–2010 average of 2009–2018 were 0.901, 0.879, 0.867,
0.857, 0.848, 0.882, 0.869, 0.872, 0.869, 0.869, 0.808, and 0.759.
(Part of 2009–2018∗: We selected all variables that contributed
more than 5% in the above 11 models to be included in this
model).

Figure 2 shows the predicted potential risk map of HFRS
from 2009 to 2018 in Zhejiang Province.

The legend on the right side of the picture shows the
different risk levels in red, orange, green and blue in descending
order, with red representing the highest risk and, and blue
representing the lowest risk. It can be concluded from the
above risk map that the high incidence of epidemics in Zhejiang
Province is mainly concentrated in the eastern and western
regions, as well as in the central region.

Table 1 shows the contribution of each variable to the
final training MaxEnt model in different years used in this
study, showing the mean and average of the 10 replicate runs.
According to Table 1, it can be seen that zjdem, average
temperature and GDP contribute the most to the MaxEnt model
constructed in Zhejiang Province.

DEM that made the greatest contribution varied
significantly by years, ranging from 4.22 to 26.0% from
2009 to 2018. Average temperature had the second highest
contribution, ranging from 6.26 to 19.65% during 2009–2018.
The third highest contribution is gross domestic product,
contribution during 2009–2018 ranging from 7.53 to 21.25%.
The contribution of average land surface temperature ranked
fourth, and it fluctuates greatly from year to year, with the
highest being 16.73% in 2011, but the lowest being only 1.67%
in 2018. In addition, the average contribution of DMSP/OLS,
20-8 precipitation and 8-20 precipitation were all in the range
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FIGURE 1

The receiver operating characteristic (ROC) curve for HFRS from 2009 to 2018.

of 9%, even though the contribution of DMSP/OLS was as high
as 17.8% in 2010.

The following picture shows the results of the jackknife test
of variable importance. In Figure 3, the dark blue bar is the
separate contribution of the variable and the light blue bar is the
contribution that does not include that variable.

Figure 4 shows the response curves for the 4 variables that
contributed the most to this study after excluding the variables
that contributed less than 5%.

Figure 4A shows the effect curve of All-day Precipitation,
and it can be seen that the incidence of HFRS increases with
the increase of rainfall, and the effect curve peaks at 1,250 mm,
then decreases rapidly, and a small peak appears again at 1,500
mm; through Figure 4B, we can see that average temperature
response curve shows an inverted v-shape, the incidence of
HFRS increases with the increase of average temperature, and
the incidence peaks at 17.8◦C, followed by a rapid decrease;
through Figure 4C, we can see the response curve of HFRS and
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FIGURE 2

The predicted potential risk map of HFRS from 2009 to 2018 in Zhejiang Province.

GDP showing a positive correlation—the incidence increases
with the increase of GDP; through Figure 4D, we can see
the response curve of DMSP/OLS Nighttime Light Data
(DMSP/OLS), also show positive correlation—the incidence rate
increases with the increase of DMSP/OLS.

Discussion

The advantage of the maximum entropy model is that
it is based on the prediction of positive points, avoiding
the problem of missing negative data, and it predicts the

probability magnitude of risk, which is more widely used in
the field of infectious diseases. The prevention and control of
any infectious disease cannot be separated from three major
elements: infectious source, transmission route and susceptible
population. HFRS is a natural epidemic disease, and the
influence of meteorological factors on natural epidemic disease
needs to be considered from various aspects.

Yuan et al. constructed a maximum entropy model with 16
environmental factors, and then they considered NDVI, rainfall
variance and elevation as the main environmental factors
affecting landslide hazard (25). Sun et al. constructed ENM of
severe fever with thrombocytopenia syndrome (SFTS) using
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TABLE 1 The contribution of each variable to the final training MaxEnt model.

Variables 2009 (%) 2010 (%) 2011 (%) 2012 (%) 2013 (%) 2014 (%) 2015 (%) 2016 (%) 2017 (%) 2018 (%) 2009–2018 (%)

zjdem 15.75 6.38 7.56 4.22 18.43 13.06 11.00 10.19 12.16 26.00 20.98

demo8 19.65 16.25 6.53 8.20 7.11 10.26 12.30 9.67 6.26 9.20 14.63

gdp 9.79 7.53 12.94 20.09 16.79 13.32 11.09 19.11 21.25 8.55 11.81

demo3 8.57 11.01 16.73 3.42 14.89 10.98 11.19 3.29 9.69 1.67 10.79

zjdmsp 6.02 17.80 13.96 13.05 8.61 11.51 14.31 11.26 2.92 13.61 9.05

demo4 0.90 1.16 3.11 19.22 11.08 0.88 2.93 1.35 4.51 0.76 9.00

demo5 6.22 11.12 0.69 6.90 0.79 13.83 2.80 2.30 5.90 3.04 5.95

demo7 1.75 1.73 1.42 2.33 3.80 1.49 3.03 4.53 2.04 2.58 3.20

ndvi 4.76 2.46 3.82 3.59 2.39 2.25 4.40 4.05 13.05 3.44 2.76

demo2 3.40 6.21 8.05 5.62 2.67 10.82 4.79 10.02 3.33 3.57 2.75

andvi 2.51 5.04 4.57 4.41 2.55 3.07 3.33 6.08 7.21 4.52 2.12

demo9 1.16 2.41 1.38 0.71 1.72 1.82 1.33 0.99 1.60 1.46 1.75

evi 1.82 1.33 2.32 1.57 2.79 2.32 6.55 2.01 2.42 1.97 1.59

demo1 3.09 3.64 2.08 1.19 2.49 0.89 0.69 1.81 1.49 13.58 1.43

demo6 9.23 1.06 12.09 2.07 0.92 0.98 4.39 4.84 1.38 0.99 0.37

demo10 1.34 1.82 0.64 0.64 0.47 0.94 1.99 0.96 0.58 0.54 0.56

demo11 0.94 1.66 0.54 0.57 0.47 0.39 1.85 5.57 1.71 2.48 0.55

sand 1.71 0.35 0.42 0.36 0.49 0.52 0.53 1.14 1.00 0.45 0.09

silt 0.60 0.80 0.32 1.22 1.12 0.48 1.16 0.41 0.84 0.70 0.40

clay 0.82 0.24 0.82 0.61 0.40 0.18 0.37 0.47 0.67 0.88 0.23

MaxEnt, and they found yearly average temperature, altitude,
yearly average relative humidity and yearly accumulated
precipitation accounted for 94.1% contribution for ENM
(17). Fang et al. found that HFRS incidence in Shandong
Province is mainly associated with the seasonal environmental
variables: temperature, precipitation and humidity (26). Our
study confirmed the contribution of mean temperature to the
incidence of HFRS in Zhejiang Province ranged from 6.26 to
19.65% in 2009–2018.

Firstly, temperature have impact on people’s willingness of
travel, and the probability of HFRS infection will increase when
people go out in favorable temperature and sunny weather (27);
secondly, temperature will affect the reproduction and activities
of host animals and vector organisms, and only when the density
of host animals and vector organisms reaches a certain level,
human can be infected when they go out (27).

We likewise found some fluctuations in the effect of all-
day precipitation on the onset of HFRS, with the effect curve
peaking at 1,250 mm and then declining rapidly, with another
small peak at 1,500 mm. This is consistent with many studies
in which there is a certain lag in the onset of HFRS by rainfall.
Studies have confirmed that there is a lag effect of meteorological
factors on the onset of HFRS, and the conclusions obtained from
different study areas vary from several weeks to several months
(27–29). Cao et al. found that the effect of temperature on HFRS
varies widely among regions with different temperature zones,
ranging from a lag of 1 month in temperate regions to 3 months
in subtropical regions (29).

Our findings concern seasonal patterns of HFRS in Zhejiang
Province of China that there are two peak incidences of HFRS,
one from May to June and the other from November to January
(6). The host of SEOV- Rattus norvegicus is more common in
urban while the host of HTNV—Apodemus agrarius is more
likely to inhabit rural areas (30). Zhejiang Province has shifted
from a single peak incidence in winter in the early stage to two
peak incidences in winter and spring at this stage, based on the
reasons described below, which is also a renewal of previous
concepts. The first reason is that the main host animal of the
spring peak is the Rattus norvegicus (26), and the main host
animal in the urban residential area is the Rattus norvegicus,
which lives very closely with humans, resulting in an increase in
the incidence of urban areas. Secondly, the medical conditions of
urban residents are significantly better than those in rural areas,
and their medical security and transportation conditions have
played a key role (31).

Our results found that the incidence of HFRS shows a
positive correlation with GDP and DMSP/OLS response curves,
which is consistent with our earlier findings and could further
explain why Ningbo city has the province’s most number of
cases, compared with other cities. GDP (32) and DMSP/OLS
are socioeconomic indicators, and many scholars have used
DMSP/OLS to study urban development and agreed that
DMSP/OLS has strong potential for urbanization research
(33, 34).

DMSP/OLS images can be used as a characterization of
human activities and become a good data source for human
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FIGURE 3

The results of the jackknife test of variable importance.
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FIGURE 4

The response curves contributed to the MaxEnt model of HFRS.

activity monitoring studies. One of the main advantages of this
data is that it does not depend on high spatial resolution, which
is usually around 1 km, so it is easier to process DMSP/OLS data;
another important feature is that it covers information closely
related to the distribution of factors such as population and city
layout, like traffic roads and residential places (33).

Zhejiang Province is mainly concentrated in the eastern
and western regions, which is consistent with the results of
our earlier study (6). The city with the highest incidence rate
in Zhejiang Province is Ningbo, which is inseparable from
the ability of local medical institutions to detect and diagnose
diseases (35). Ningbo is a sub-provincial city with developed
economy, convenient transportation and high level of medical
services. Due to the rapid development of Ningbo, a large
number of rural areas have been merged into the city, and the
living environment of the urban-rural integration area is not
perfect, which is also one of the reasons for the high incidence
of local diseases.

The peak incidence in summer mainly is related to indoor
infection caused by the breeding of domestic rodent, and the
peak incidence in winter is related to exposure to wild rodent
in the field (36). The HFRS monitoring in Zhejiang Province

found that Apodemus agrarius accounted for 59.71% of the
total number of wild rodent captured, and Rattus norvegicus
accounted for 10.77% of the total number of domestic rodent
captured (37). The clinical symptoms and outcomes of HTNV-
caused HFRS are usually more serious than those of SEOV-
caused (38).

Our study found that the incidence of HFRS varies greatly
among regions in Zhejiang Province, but Zhoushan city always
has the lowest incidence in the province. Another study
found that the incidence of SFTS in Zhoushan city ranks
among the top in the province, and we speculate that local
rainfall and humidity have a certain relationship with this
incidence (39). The MaxEnt model has great advantages in
predicting the survival of endangered species. Scholars have
used the optimized MaxEnt model to predict the distribution
of Quasipaa boulengeri in different provinces in China is
important environment variables (40).

The advantage of this study is that two environmental
variables and two economic indicators associated with the
incidence of HFRS in Zhejiang Province were found by
incorporating meteorological factors and socioeconomic
indicators. The ecological locus model with maximum
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entropy explored the incidence risk areas and provided a
reference basis for the rational allocation of medical resources
in the province.

This study has the following disadvantage: the
international algorithms of ecological niche models
are complex and diverse, and we only used the most
widely used and stable maximum entropy algorithm
to analyze the HFRS epidemic in Zhejiang Province,
thus we are unable to achieve an in-depth and
comprehensive analysis. Since only some counties in Zhejiang
Province are under surveillance, the lack of molecular
epidemiological analysis of the impact is also a major
shortcoming of the study.

Conclusion

Although many models have been used for the study of risk
factors of infectious diseases, the present study confirmed that
the maximum entropy model for the study of risk factors of
HFRS in Zhejiang Province was in good agreement with the
results of previous studies. In summary, the incidence of HFRS
peaks in areas where the average temperature is 17.8 degrees
Celsius, which reminded us that in areas where temperature is
suitable, personal protection should be taken when going out to
avoid contact with rodents. The incidence of HFRS by rainfall
is more complicated and fluctuates to a certain extent, which
is also consistent with the conclusions of most studies, and
there is a certain lag in the impact on the disease. The impact
of GDP and DMSP/OLS on HFRS is positively correlated.
Most cities have good medical conditions, but it also reminds
us whether there are under-diagnosed cases in economically
underdeveloped areas.
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