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In the field of genome assembly, contig assembly is one of the most important parts. Contig assembly requires the processing of overlapping regions of a large number of DNA sequences and this calculation usually takes a lot of time. The time consumption of contig assembly algorithms is an important indicator to evaluate the degree of algorithm superiority. Existing methods for processing overlapping regions of sequences consume too much in terms of running time. Therefore, we propose a method SLDMS for processing sequence overlapping regions based on suffix array and monotonic stack, which can effectively improve the efficiency of sequence overlapping regions processing. The running time of the SLDMS is much less than that of Canu and Flye in dealing with the sequence overlap interval and in some data with most sequencing errors occur at both the ends of the sequencing data, the running time of the SLDMS is only about one-tenth of the other two methods.
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INTRODUCTION

Due to the limitations of existing gene sequencing technology, we cannot directly obtain the entire gene sequence, but can only use existing sequencing methods to sequence the genes of the species to be tested to generate sequence fragments and then further genome assembly to restore the original genes. The genome assembly problem is also one of the most important and difficult problems in bioinformatics today.

The two algorithms commonly used in genome assembly are the overlap-layout-consensus (OLC) (Li, 2012) algorithm and the de-bruijn-graph (DBG) (Li, 2012) algorithm, which use different methods to convert the assembly problem into a graph-theoretic related problem. By creating an edge-weighted graph of the sequencing data, the resulting edge-weighted graph is processed to find relevant pathway information in the graph for use in downstream genome assembly work. All the algorithms derive the optimal path from the edge-weighted graph to obtain the initial contig (Huang, 1992).

Most applications for genome assembly are based on one of the algorithms such as the Canu (Koren et al., 2017), which chooses to use the MHAP (Koren et al., 2017) algorithm to detect the overlap in noisy sequences to obtain the overlapping regions between sequences. Additionally, the Flye (Lin et al., 2016) software uses the ABruijn (Lin et al., 2016) algorithm to combine the OLC and DBG algorithms, generates its own unique A-bruijn-graph (ABG) graph, and obtains the overlapping regions of the nodes in the graph and some other assembly software can also complete the same work. These software are usually more time-consuming in the sequence alignment process. For example, Flye takes longer to find overlapping regions of sequences and Canu is slower to correct sequencing data, etc.

This article presents a new software for overlapping regions calculation called the SLDMS, a tool that uses gene sequencing data as input and supports the fastq and fasta formats. It can calculate an output overlapping regions information between sequencing data and write it to a file, so that other applications can use it. Compared to other genome assembly software that calculates overlapping regions, our monotonic stack and suffix array-based design approach is more efficient and provides richer pathway information for downstream genome assembly software to use as a reference. At the same time, the SLDMS can be easily integrated into the genomic analysis process.



METHODS

The overall workflow of the SLDMS (Figure 1) includes four steps: (i) data preprocessing; (ii) building a suffix array; (iii) selecting the software version and establishing the relevant data structure; and (iv) traversing the suffix array and output the results of overlapping regions.
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FIGURE 1. The overall workflow of the SLDMS.



Data Structure

The SLDMS needs three arrays when obtaining overlapping regions information, These three arrays are the suffix array (SA) array (Manber and Myers, 1993) longest common prefix (LCP) array (Fischer, 2010), and Document array (DA) array (Muthukrishnan, 2002). First, we briefly introduce these three arrays. The SA array is the suffix array and SA(i) represents the starting position of the suffix whose string rank is i in the original string. The LCP array is the longest common prefix array and LCP(i) represents the longest common prefix of the suffixes represented by SA(i) and SA(i-1). The DA array is a document array. DA(i) represents the number of strings in the input data to which the suffix ranked i belongs to. This array can be obtained in the process of obtaining SA and LCP.

The meaning of the elements stored in the three arrays is given in Figure 2. The SA array: The string above the array is the suffix represented by each item in the array and the value stored in the array is the starting position of the suffix it represents in the original string. LCP array: The string above the array is the suffix represented by each item in the array and the value stored in the array is the length of the longest common prefix between the suffix it represents and the suffix ranked one place ahead of it; to calculate this length, we ignore the ending symbols of the suffix. The DA array: The string above the array is the suffix represented by each item in the array and the value stored in the array is the source of the suffix. For example, DA(i) = 20, “babbc” belongs to the 20th input sequence.
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FIGURE 2. The elements stored in three arrays.




Algorithm Principle

We define read as a piece of data in the sequencing data and its representation in the computer is a string. Before finding the overlapping regions information of the sequencing data, first consider the case of finding the overlapping regions information for two reads. Suppose the two reads are str1 and str2; if the tail of str1 and the head of str2 overlap and the overlap starts at position i, then the suffix suf [suf = str1(i:)] of str1 must be the same as some prefix of str2. In other words, the overlap part is the prefix of str2 (otherwise, str2 is the substring of str1 and the splicing is equivalent to discarding str2, so there is no need to splice str1 with str2 in this case), so the longest overlap part of str1 and str2 must be a suffix belonging to str1 that is ranked before str2 in the dictionary order. The overlapping regions information can be obtained by sorting all the suffixes of str1 with str2 and processing the suffixes ranked before str2 (Figure 3). As shown in Figure 3, the set of suffixes in Figure 3 does not show suffixes belonging to str2 because read cannot be connected to itself, so it will make a judgment on the belonging of suffixes and ignore these suffixes belonging to itself when calculating the candidate answers of str2.
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FIGURE 3. The position of str2 in the suffix set of str1.


Extend the case of two reads overlapping to a set of reads. All the suffixes of the reads are sorted, the best overlapping regions information of each read must exist in some suffix ranked before it, and the read to which this suffix belongs is the maximum possible adjacent node of the current read after building the graph.

Since reading itself is also a suffix of reads, when traversing the set of suffixes, if we encounter a certain read itself, we are able to guarantee that the suffix with its optimal overlapping regions information must have been traversed. Then, the problem is transformed into that the longest common prefix, which is calculated for all the suffixes ranked before it and the current string and when the length of the common prefix is equal to the length of this suffix, we consider this suffix as a candidate answer and select the best or top-K optimal as the final answer among all the candidate answers.

In the design of the algorithm, we choose two advanced data structures, suffix array, and monotone stack, because the information stored in the suffix array is the suffix of the string sorted in dictionary order, which corresponds to the suffix set in Figure 3. The reason for choosing the monotonic stack is that the monotonic stack can work with the LCP array to filter the set of suffixes and remove those suffixes that are not likely to be the answer and improve the computation speed in this way. When we get a certain candidate answer with length x, the rest of the candidates with length greater than x must not match exactly with the subsequent reads; this is because their common prefixes have a maximum length of x, so these candidates should be removed. The monotonic stack exists to remove this part of information.




IMPLEMENTATION


Constructing the SA Array, LCP Array, and DA Array

Since the method of constructing the SA and LCP arrays in a single string is quite mature, the SLDMS stitches all the reads in the data into a single string, splitting the sequence with American Standard Code for Information Interchange (ASCII) code 1, and ending the stitching with ASCII code 0. This allows the read set to be treated as a string and we call this stitched together extra-long string the “original string.” For this part, we use gsufsort (Louza et al., 2020) software based on the gSACA-K (Louza et al., 2017) algorithm to obtain the three arrays.



Maintaining the Monotonic Stack

Assuming that the number of reads is n, after obtaining the information of the SA array and LCP array, the first n + 1 items of the SA array are traversed. These n + 1 items are the positions of the interval $ between strings and the string terminator # in the original string. Therefore, we can obtain the start and end positions of each read in the original string and record them in the Fi array and Se array. For example, the start position of the xth read is Fi(x) = SA(X − 1) + 1 and the end position is Se(x) = SA(x). According to the start position and end position of each read, its length was also calculated as LEN(x) = [SE(x) − Fi(x) + 1].

After obtaining the above information, the matching process of suffixes and reads can be optimized by maintaining a monotonic stack. For different input data, different strategies are adopted and the SLDMS was designed in two versions. The first version considers the data to be completely correct and can directly perform the overlapping regions calculation. The accuracy of the result depends on the input dataset and if the dataset is completely correct, the result is also completely correct. Therefore, the input data required to use this version should be either corrected high-accuracy data or raw high-accuracy data such as the PacBio-HiFi (Hon et al., 2020) dataset and the Sanger dataset. The second version allows some differences between reads when performing overlapping regions calculations. Overlapping regions information can be obtained for data with some errors, the accuracy of the information fluctuates depending on the characteristics of the errors in the data, and the accuracy of the results of the runs varies from one dataset to another. After experiments, it is found that the accuracy of the run results is greatly improved when the error part in the reads is gathered at both the ends. Therefore, for the second version, if the errors in the dataset are completely random, it is recommended to correct the complete data first before using the first version or correct the data center part first before using the second version of the software.

For the part of data error correction, we suggest that the third-generation sequencing data PacBio can be used for self-error correction (Hon et al., 2020) or the second-generation sequencing Illumina data can be used for error correction of the third-generation sequencing data PacBio (Mahmoud et al., 2017) such as PBCR (Koren et al., 2012) in the famous Celera Assembler (Schatz, 2006; Denisov et al., 2008) software and LoRDEC (Leena and Eric, 2014) error correction tool. For the datasets with some regularity of data errors (the errors of the sequencing appear on both the sides of the reads), the second version of this software can be chosen directly.



Deal With Reads Without Mismatch

In this version, since the data can maintain a high accuracy rate, it is enough to directly obtain the overlapping regions information of the reads and the problem of error correction of the reads is not involved. The algorithm idea is as follows.

Build a monotonic stack. The stack is implemented by array simulation to facilitate the acquisition of data in the stack. The element type stored in the stack is a structure similar to a pair designed by us. Its first element is of the int type, which is used to represent the length of the suffix stored in the current element. Its second element is a rolling array, which is used to store the DA information of the suffix that meets the first condition. The length of the array can be set artificially; for example, the length of the array is set to n, i.e., to store the top n best answers for each read. In this way, we can obtain more overlapping information between reads. The struct design of the monotone stack and stack elements is found in Supplementary Figure 1, where vector is the structure of the stack, pair is the element stored in stack, and queue is the main part of storing information in the pair, which is realized by a rolling array (Supplementary Figure 2).

Maintain a monotonous stack (Figure 4A). Let one suffix ranked Y be str and for all the suffixes ranked before Y, assuming their rank is X, their longest common prefix with str, i.e., the length of LCP, must be equal to min[LCP(X + 1:Y)]. According to this property, when traversing the SA and LCP arrays, each time a new LCP(i) is traversed and the elements of the stack whose first item is larger than LCP(i) can be taken off the stack because for these elements and the following suffix the LCP cannot be greater than LCP(i), so these suffixes become useless information and can be cleaned up. Start to operate the elements in the monotonic stack from the top of the stack; if the first element at the top of the stack is larger than LCP(x), just get this top element out of the stack directly and loop this operation until it is impossible to get out of the stack. After clearing, check the pair at the top of the stack, whether its first element is equal to the length of the string corresponding to the current SA(i) [len = se(DA(i) – SA(i))], if it is equal, put DA(i) into the second scrolling array of the pair and update the array. If it is not equal, create a new pair element whose first is equal to len and whose initial values in the second element are set as follows: head = 0, tail = 1, have = 1, size = k, and data(0) = DA(i). After the element is created, this element is put on the stack. Since all the elements in the stack whose first is greater than len have been removed before entering the stack, each element entering the stack must be the largest element in the stack, so the monotonicity of the stack can be guaranteed, which is exactly the reason for using a monotonic stack.
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FIGURE 4. (A) Schematic diagram of the monotonic stack maintenance process. (B) Diagram of the process of obtaining overlapping regions information.


Get overlapping regions information (Figure 4B). In the process of maintaining the monotonic stack, if the current suffix is an ordinary suffix, just follow the normal process of maintaining the monotonic stack and if the current suffix is a complete read [the value of SA(i) is equal to fi(DA(i))], then we should add the process of information acquisition to the normal maintenance process; at this time, you can maintain the monotonic stack information to obtain the required overlapping regions information. The way to obtain the required overlapping regions information is very simple; first of all, we must first check the top of the stack elements to ensure that the top of the stack elements are not expired (if the elements are expired, they can be taken out of the stack). Then, read the data from the top of the stack and read the second item of each element; these are the reads that are most likely to overlap with the current read and output the overlapping regions information to the result file for use in building the edge weight graph. By default, the first ten possible results are provided, the longest overlapping regions read is usually selected, and the specific read chosen as the path in the edge weight graph can be freely chosen according to the subsequent software requirements.



Deal With Reads With Mismatch

The first-generation sequencing data are high-accuracy data, but they are no longer in mainstream use because of their expensive sequencing price. The second-generation sequencing data are short-read data with high accuracy and are more suitable for use with DBG assembly software based on K-mer counting (Wang et al., 2020) such as the SOAPdenovo (Xie et al., 2014) software. The third-generation sequencing data are long-read data with a high error rate and there would be a high error rate if the sequencing data was matched exactly, so this version allows for slight differences in sequence during the matching process. This version is an alternative solution to cope with the situation in which the data cannot be completely corrected because of the long correction time or high correction cost of the dataset.

In this version, the error part of the input data should appear at both the ends of the data as far as possible or the data center part has been corrected to ensure that there will be no error in the middle part of each read. The closer the error location is to both the ends, the better the overlapping regions information will be. In this version, a parameter K will be entered, which determines the maximum allowable cutting size of the sequence head and tail when the algorithm is matching. If K is set speculatively without knowing much about the dataset, there may be some error in the result obtained from a single run due to the parameters. But, the speed of fault-tolerant matching is very fast, we can get the final result by inputting different fault-tolerant parameters and running this version many times. We can also get the result at one time by accurately setting K on the basis of knowing the error distribution of dataset. The optimal value of K is set to ensure that the error data at both the ends can be excised on the basis of as small as possible. The algorithm idea is as follows.

Build a monotone stack. The monotone stack in this version chooses to use another structure similar to a pair. Its first element stores X characters in all the previous reads within the fault tolerance range that match the current suffix. This first element represents X. The second element is no longer a rolling array, but represents the sequence number of the suffix with length X in the suffix array within the fault tolerance range. The final result is obtained by maintaining and optimizing all the second elements in the monotone stack whose first elements are greater than LCP(i). The concept diagram of the monotone stack is shown in Supplementary Figure 3.

Maintain the monotonous stack (Figure 5A). Different from the previous version, if the first element at the top of the stack is greater than LCP(x), it does not directly take the element at the top of the stack out of the stack, but takes out all the stack elements whose first element is greater than or equal to LCP(x) and selects the best element after comparison to access back to the top of the stack. The element that meets the condition [len(STR) – LCP(x)] is the best and its first item is assigned to LCP(x) and its second item to the second of the optimal element. This process is equivalent to allowing an excision operation at the end of the read, where the wrong part is excised and matched again and the length of the allowed excision is set by the user of the software. After updating the stack, use the current suffix information to create a new pair element. If the length is larger than the top of the stack, put it on the stack. If the length is the same, replace the top of the stack. Of course, to prevent self-loops in the graph constructed from the last obtained overlapping regions information, the stack update is performed by ignoring the suffix of the read itself.
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FIGURE 5. (A) Maintenance process diagram of monotone stack and (B) Overlap regions information acquisition flow diagram.


Get overlapping regions information (Figure 5B). When traversing the suffix array under the previous version, the result is obtained only when the current suffix is a complete read. In this version, the result is obtained when the first character of the current suffix is the first K characters of the original string, but of course K is determinable and this operation is equivalent to allowing the head of the sequencing data to be cut and the allowed cut length is K. Each cut method is tried, so that each read is compared several times and stores the maximum possible result. Therefore, two auxiliary arrays are needed for multiple result comparisons, the ANS array and the LEN array, where the ANS array stores the ordinal number of its result in the SA array and the LEN array stores the matched lengths. In the process of maintaining the monotonic stack, if the current suffix is the first K suffixes of the string to which it belongs, it is compared with the top element of the stack and the better result is stored. The final ANS array is obtained after several maintenance sessions. After traversing the SA array under this version, the resulting DA[ANS(i)] is the optimal overlapping regions information to be obtained.

Maintain overlapping regions information. To facilitate subsequent assembly software, the SLDMS provide more overlapping regions information for subsequent software. In this version, a top-k overlap suffix set is also provided for each sequence to facilitate subsequent work on genome assembly and parameters are required to set k before running the software. The data structure used to maintain this set of suffixes is the min heap and the top of the heap stores the Kth good overlapping regions (Supplementary Figure 4). The reason for choosing this data structure is that the heap can efficiently maintain the largest or smallest value in the heap, so a min-heap of capacity K is created and the top of the heap is the worst quality of the candidate answer and when a new candidate answer is encountered, it only needs to be compared with the top of the heap, which facilitates the update of the answer.

Overlapping regions information maintenance method: create a min-heap for each read to maintain the top-k suffix set, the data in the heap store the position of the corresponding suffix in the SA array, and Len stores the matching length between the suffix and the current reads. Node(1) corresponds to the top of the heap. The larger the size of the heap, the more information is obtained and the longer the corresponding program takes to run. To obtain the required information, the top element of the stack is compared with the data in the min-heap, in addition to maintaining the optimal value of the ans array, when traversing the suffix array and encountering a suffix that can obtain the answer [i-fi(da(i)) ≤ k]. If the amount of data in the min-heap is less than k, put the top element of the stack directly into the min-heap and update the heap from the bottom up (Figure 6A). This is because the capacity of the heap is K. There is still space in the heap to store the candidate answers, so the candidate answers can be put directly into the heap and the heap can be updated. Otherwise, compare the top element of the stack with the top element of the heap. If the top element of the heap is better, do not update the elements in the heap; otherwise, use the top element of the stack to replace the top element of the heap and update the heap from top to bottom (Figure 6B). This is because there is no space in the heap to store extra candidate answers, so we must choose between the K answers in the heap and the current candidate answers and delete the worst quality answer. Using this method, software users can obtain more overlapping regions information, which makes the edge weight graph based on this overlap information more high-quality information to facilitate subsequent software processing.
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FIGURE 6. Update process diagram of the min-heap: (A) from bottom to top and (B) from top to bottom.




Output the Final Overlapping Regions Result

The SLDMS software builds an edge-weight graph with read as the point and overlapping regions information as the edge based on the overlap information after obtaining the overlapping regions information, which contains the overlap position information of the two reads in addition to the length of the overlap for use in obtaining the initial contig. Each path in the graph is stitched into a longer read according to the overlapping regions information, which is the initial contig and the SLDMS software stores all the information in this edge weight graph into a file for the next step of obtaining the contig.

When processing reads without mismatch, the SLDMS only counts the overlapping regions information when a complete read is encountered, a complete read is only encountered once, and the result is not updated again in the subsequent maintenance process, so the output to the file is in the order of the encountered reads, which is a way to update the data processing and the result output synchronously. When processing reads with mismatch, the SLDMS collects data for a read several times in the process of maintaining the monotonic stack, so the stored result information may be updated by subsequent maintenance and the program design idea of separating data processing and result output is adopted. To ensure the accuracy of the results, the maintained results are output in the order of the input data after the program has processed all the data.

Although the output of the two strategies is different, logically they both fill in an array of final results and the i-th element of this array stores the answer of the i-th read. The two strategies differ only in the order of filling in the array, one is filling in the array in order and the other is filling in the array in disorder, but the final goal is to fill in the array completely.



Accuracy Analysis

To prove the universality of the SLDMS software, we write a program to generate the simulated gene sequence randomly, traverse the generated gene sequence many times, and randomly take a substring for simulated gene sequencing. In the first version, the substring is completely correct and in the second version, random errors are generated at both the ends of the substring and used for the SLDMS software input. At the same time, we record the start and end positions of each read and store them in the check file for the final accuracy test.

We consider that the result of each read is correct when it refers to its adjacent read in the gene sequence. After using the SLDMS software to run these input data, the output file and check file are combined to prove the accuracy. According to the results in the output file, we determined whether there was a common part in the interval of the two reads in the check file. If there is a common part, it means that the two reads should be assembled together. We think this is the correct result. We write a program to do this work. First, the program reads the output file and the check file; find each pair of reads and the corresponding overlapping regions information in the output file (if the overlap length is less than 100, it is regarded as invalid data and discarded directly) and then find the corresponding interval in the check file and check the interval. If there is a common part in the two intervals, we can find the corresponding interval in the check file, which is considered the correct result. After calculation, the accuracy of the two versions of the SLDMS is above 99.99%.

The SLDMS software itself and the program code used in the above accuracy proof process are stored on the GitHub website at https://github.com/Dongliang-You/sldms.




RESULTS

The SLDMS and Flye and Canu software were tested on 6 PacBio-HiFi datasets of different sizes and sequenced species and 32 simulated datasets (16 ultrahigh-accuracy datasets and 16 datasets with errors at both ends of the read) on a desktop computer with an Intel Core (TM) i7-9700 CPU (3.00 GHz 8-core processor), 32 GB RAM, and 477 GB hard disk. Due to the limited hardware conditions of the test environment, the oversized dataset was cut where the descriptions of the PacBio-HiFi dataset are shown in Table 1, which are the datasets downloaded from the official National Center for Biotechnology Information (NCBI) website. The Sequence Read Runs (SRR) in the description represents the data record of the dataset on the website and the specific data information can be viewed at the official website of the NCBI according to the data record information, which is located at https://www.ncbi.nlm.nih.gov/. The data information of the simulated dataset is shown in Supplementary Tables 1, 2.


TABLE 1. The PacBio-HiFi dataset used in the experiment and its description.

[image: Table 1]
The timing in the experiment starts when the sequencing data are read and ends when the contig is ready to be acquired. This means that it is necessary to be able to build the edge-weight graph from the overlapping regions information to obtain the contig.

For the SLDMS versions that do not allow for mismatching, six PacBio-HiFi datasets with 16 high-accuracy simulated datasets were chosen for testing and comparison with both the Canu and Flye software. When running the Flye software, the genomeSize parameter is the best estimate according to the uasge.md documentation of the Flye software, which is approximately 1% of the file size. The min-overlap parameter is set to 1,000 and the rest of the parameters are the default parameters. When running the Canu software, the genomeSize parameter is the best guess value entered according to the usage documentation, which is the same as the genomeSize parameter of the Flye software and the rest of the parameters are default values without any restrictions.

The time required for different software programs to run the PacBio-HiFi datasets to find the overlapping regions is given in Figure 7 and Supplementary Table 3. The SLDMS software ran faster than Flye on all the datasets, faster than Canu on most datasets, and only slightly slower than the Canu software on the M. musculus_part1 dataset due to the nature of the algorithm of the Canu software, which makes it potentially efficient at running certain datasets. This result suggests that the SLDMS software runs more efficiently than Canu and Flye for sequence alignment on most PacBio-HiFi datasets.
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FIGURE 7. Time required for different software programs to run PacBio-HiFi datasets to find the overlapping regions.


The time required for different software programs to run ultrahigh-accuracy simulation datasets to find overlapping regions is given in Figures 8, 9 and Supplementary Table 4. As shown in the two line graphs in the first row of Figure 8, these are the results of running the ultrahigh accuracy simulation dataset with different average lengths for the same data volume of 5,000, 10,000, 15,000, and 20,000 reads. As shown in the two line graphs in the second row of Figure 8, these are the results of running the ultrahigh-accuracy simulation dataset with different data volumes for the same average data lengths of 5,000, 10,000, 15,000, and 20,000. As seen from the graphs in all the runs, the SLDMS software has a shorter run time than the other two, which suggests that in most cases, it is a good choice to use the SLDMS software to find the overlapping regions information.


[image: image]

FIGURE 8. Time required for different software programs to run ultrahigh-accuracy simulation datasets to find overlapping regions.
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FIGURE 9. The time required for different software to run simulation datasets with errors to find overlapping regions.


For the SLDMS versions that allow for mismatching, there are no real data available that match the conditions for this version to run, so it was only possible to test this version using simulated data. Each read in the simulated data was divided into three parts in order, with the first and third parts being 80% accurate, the second part being 100% accurate, and the second part being at least half the length of the read. The Canu and Flye software selected PacBio-Raw for the data type during the tests and the rest of the parameter settings were the same as the previous version.

The time required for different software programs to run the simulation datasets with errors to find overlapping regions is given in Figure 9, in which row 1 is an experiment with the average length of the data as the variable and row 2 is an experiment with the amount of data as the variable. As seen from the graph, when running these datasets, both when running datasets with different average lengths for the same amount of data and when running datasets with different amounts of data for the same average length, the SLDMS runs much faster than the other two. This shows that using the SLDMS to run this dataset with errors only at both the ends of the data is much better and takes less time than using the other two software tools.

In the experiment, we tested the performance of the different software programs on different datasets. The SLDMS software was stable and efficient in obtaining overlapping regions information for the various test data. The running time of the SLDMS is only related to the size of the input dataset and does not fluctuate depending on differences in the accuracy of the data. This means that the SLDMS is suitable for processing a wide variety of data without the worry that the SLDMS will take a particularly long time to process a particular type of data.

The SLDMS software uses the gsufsort algorithm to calculate the three arrays of SA, LCP, and DA information, which takes a significant amount of time. If new methods are developed to obtain this information more quickly, the SLDMS software will be more efficient.



DISCUSSION

The main contribution of the proposed method SLDMS for extracting information about the overlapping regions between sequences based on suffix arrays and monotonic stacks is to substantially improve the time efficiency of calculating the overlapping regions. Obtaining overlapping regions information is useful in many bioinformatics applications. As the price of sequencing technology decreases and genome sequencing technology develops, it becomes easier to obtain sequencing data with a wide range of characteristics and higher accuracy. When assembling these sequencing data, it is essential to efficiently extract overlapping regions information between sequences to provide a more favorable environment for subsequent genome assembly work.

The Flye software uses the ABruijn algorithm, which combines the OLC and DBG algorithms to generate its own unique ABG graph, obtains the overlapping regions information of nodes in the graph, and then processes the ABG graph to obtain contigs. In this process, it takes considerable time to process the graph, so we can see from the experimental results that the Flye software takes about twice as long to run as the SLDMS on almost all the datasets.

The Canu software uses the MHAP algorithm to aggregate reads with the same k-mer for error correction and pruning and then obtains the overlapping regions information. When dealing with high-accuracy data without error correction, the SLDMS is around 20% faster than Canu. With respect to error correction, the Canu software is very slow, regardless of the error characteristics of the data, indicating that the Canu software does not take full advantage of the error characteristics of the data. The SLDMS does a very good job in this respect and in some data with most sequencing errors occur at both the ends of the sequencing data, the SLDMS runs at many times the speed of Canu.

The SLDMS obtains the three arrays of SA, LCP, and DA by processing the input data and quickly finds the overlapping regions information in the input data with the help of these three arrays and the monotonic stack. The calculation speed of the overlapping regions information is improved. The experimental results show that compared with the other two kinds of software, the SLDMS have faster speed in the calculation of the overlapping regions and with the help of the SA array containing all the suffixes, it also has the ability of data fault tolerance by cutting the suffixes. This shows that the SLDMS is very efficient as an approach based on suffix arrays and monotonic stacks and that suffix arrays are still the ideal data structure for solving the problem of calculating overlapping regions of gene sequences.



ABOUT THE SLDMS

The SLDMS is an open source software tool developed in C and can only be run on Linux systems. The link to the project is (https://github.com/Dongliang-You/sldms). Permission from the author is required before use for non-academic purposes.
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Prediction of RNA secondary structure is an important part of bioinformatics genomics research. Mastering RNA secondary structure can help us to better analyze protein synthesis, cell differentiation, metabolism, and genetic processes and thus reveal the genetic laws of organisms. Comparative sequence analysis, support vector machine, centroid method, and other algorithms in RNA secondary structure prediction algorithms often use dynamic programming algorithm to predict RNA secondary structure because of their huge time and space consumption and complex data structure. In this article, the domain of RNA secondary structure prediction algorithm based on dynamic programming (DP-SSP) is analyzed in depth, and the domain features are modeled. According to the generative programming method, the DP-SSP algorithm components are interactively designed. With the support of PAR platform, the DP-SSP algorithm component library is formally realized. Finally, the concrete algorithm is generated through component assembly, which improves the efficiency and reliability of algorithm development.

Keywords: algorithm component library, feature modeling, PAR platform, RNA secondary structure prediction algorithm, generative programming


INTRODUCTION

RNA is one of the important macromolecules in organisms and plays an important role in protein synthesis, cell differentiation, metabolism, and genetic process. Especially in HIV and other viruses, genetic information is carried directly by RNA rather than DNA (Jiang et al., 2002). To better analyze the role of RNA molecules in the life process, it is necessary to understand the molecular structure of RNA. The molecular structure of RNA can be divided into three levels (Peter and Rdf, 2000; Yang, 2013), namely, primary structure, secondary structure, and tertiary structure. Primary structure refers to a sequence composed of four bases (A, U, C, and G) of RNA. The secondary structure is a two-dimensional planar structure formed by pairing partial bases on the basis of the primary structure, and tertiary structure is a three-dimensional structure formed by folding on the basis of secondary structure (Yu, 2009; Huang et al., 2014). It has been proved that RNA tertiary structure plays a decisive role in RNA function, but the prediction of RNA tertiary structure largely depends on the prediction of secondary structure (Shuaimin, 2019; Bowen, 2021; Zhaokui and Yuanchao, 2021). Therefore, RNA secondary structure prediction is an important and hot issue in the field of RNA research. Since 1980s, RNA secondary structure prediction algorithms have emerged one after another, which can be roughly divided into two categories: one is comparative sequence analysis method, such as Stochastic Context-free Grammar (SCFG) model (Dowell and Eddy, 2004) and Covariance Model (CM) (Eddy and Durbin, 1994); and the other is the prediction method based on dynamic programming. Typical examples include the maximum base pairs algorithm proposed by Nussinov of Weizmann Institute of Science (Nussinov et al., 1978); the minimum free energy algorithm designed by Zuker of Division of Biological Sciences, National Research Council of Canada (Zuker and Stiegler, 1981); the partition function algorithm established by McCaskill of Max-Planck lnstitut fur Biophysikalische Chemie (McCaskill, 1990); and the helix-based prediction algorithm studied by the team of Harbin Institute of Technology (Xia, 2008). Because the former requires a large number of homologous RNA sequences in advance to predict, the time and space complexity of the algorithm is particularly high, and long sequences cannot be analyzed well, people often use dynamic programming model to predict RNA secondary structure.

Most of the existing RNA secondary structure prediction algorithms based on dynamic programming focus on the optimization of specific steps of specific algorithms, such as accelerating the execution speed of algorithms through parallelization technology, and the optimization results will have different effects on different sequences. In addition, the complexity of the RNA secondary structure prediction problem and the diversity of algorithm design strategies make the reliability of the algorithm development difficult to guarantee and the development cost high, which is not convenient for researchers to study.

In this article, the domain of RNA secondary structure prediction algorithm based on dynamic programming (DP-SSP) is regarded as a specific domain. Through in-depth analysis of the DP-SSP domain, the commonness and differences of the domain are extracted, and the generic algorithm component library in the DP-SSP domain is designed by combining domain engineering, feature modeling, formal method PAR, and other related technologies. Then, the abstract generic programming language Apla is used to formalize the implementation. Finally, using the program conversion system of PAR platform, the components of the component library are manually assembled according to the configuration knowledge and generate a specific algorithm, thereby improving the development efficiency of the RNA secondary structure prediction algorithm and ensuring the reliability of the algorithm development.

The section “Materials and Methods” introduces related theories and methods of domain engineering, generative programming (GP), formal method PAR, and so on. The section “Domain Analysis and Abstraction of RNA Secondary Structure Prediction Algorithm” analyzes the domain of RNA secondary structure prediction algorithm domain, establishes the domain feature model of DP-SSP, and implements it by using the generic abstract programming language Apla in the formal method PAR, finally establishing a high abstract component library based on abstract data type (ADT). The section “Results” shows the process of developing Zuker algorithm based on the component library and gives the experimental results of the algorithm and the comparison with other algorithms. Finally, in the section “Discussion,” the full text is summarized and prospected.



MATERIALS AND METHODS


PAR Framework

PAR framework (Jinyun, 1993, 1998; Xue, 1997, 2015; Shi and Xue, 2009; Wang and Xue, 2009) includes a practical formal method and corresponding support platform. PAR platform includes requirements design language SNL, algorithmic modeling language Radl, abstract programming language Apla, and a series of conversion rules and automatic conversion tools. PAR focuses on the design and implementation of algorithms, supports most of the current mainstream algorithm design technologies, includes a new development strategy of loop invariant, and implements the distributed transaction processing system and relational database mechanism. By using PAR method to develop algorithms, we can have a deeper understanding of the algorithm and avoid the difficulty of selecting the design method. The agile generic mechanism is one of the important features of PAR. Regardless of the data type, data value, calculation operation, or user-defined ADT, it can be a generic parameter. Apla can directly use ADTs and abstract processes programming. It not only has the advantages of concise mathematical language but also has the characteristics of expressing unambiguity. Due to its high abstraction, Apla is very suitable for describing abstract algorithm programs. The following describes the implementation mechanism and constraint mechanism of Apla generics:


(1)Apla includes the concepts of type variables, type domains, operation variables, operation domains, ADT variables, and ADT domains. It uses sometype, someaction, and someadt to represent type domain, operation domain, and ADT domain, respectively, and implements the parametric operation of type, function, program, and custom ADT. In the instantiation process, actual parameters that meet the relevant attribute conditions can be passed in to implement different program units.

(2)Generic constraints describe the types and composition of generic parameters in detail. The implementation of generic constraint mechanism can greatly improve the reliability of generic programming, which is one of the necessary conditions for the real implementation of generic programming. PAR platform implements relevant generic constraints on generic parameters such as basic data type, ADT type and subroutine type, and proposes corresponding constraint description, matching, and detection mechanisms, which are still being improved.



In addition, PAR platform also supports the transformation of Apla into executable high-level programming languages such as C++, Java, C#, and Delphi, which has a good support for the development of components. PAR has established two ways to formalize the way to develop programs, and its platform architecture is shown in Figure 1. The first is that for quantitative problems, the PAR method can convert the SNL requirement model into the Radl specification model, then into the Radl algorithm model, and further into the Apla abstract program model, and finally into a high-level language program that can be run directly. The second way is that for nonquantitative problems, we can manually design the Apla program directly through the SNL requirement model, supplemented by the corresponding formal proof, and then convert the Apla program into an executable program.


[image: image]

FIGURE 1. The development algorithm flow of PAR method.




Domain Engineering

Domain engineering (Neighbors, 1989; Li et al., 1999; Hu and Wei, 2008) is the basic process of software reuse, and its purpose is to acquire and use reusable resources in a specific domain to develop high-quality software efficiently and at low cost. Domain engineering mainly analyzes, designs, and implements the domain. Domain analysis includes a series of activities such as system scope definition, domain requirement definition, and related terminology analysis, and finally, the results are reflected in the domain model. The domain design completed the architecture design of the system family in the domain, identified the corresponding functions and related constraints, and made plans for the subsequent implementation process. Domain implementation uses appropriate technology to complete the development of reusable resources such as architecture and components. These three stages adopt the idea of gradual refinement in practical application and modify and improve the completed results at any time according to changes in requirements.

Domain analysis is the basis of domain engineering. The generated domain model affects the quality of subsequent work. It usually adopts a combination of top-down and bottom-up analysis to repeat domain analysis activities. Top-down analysis takes into account the needs of future systems in the domain, while the bottom-up analysis mainly considers the existing systems and the reusable resources accumulated by previous development. After years of efforts by researchers, many methods have been used in domain analysis, such as organization domain modeling (ODM), object-oriented analysis (OOA), and feature-oriented domain model (FODM) (Wartrk, 1999; Chastek et al., 2001). To carry out domain analysis activities efficiently, Zhang and Mei (2003) put forward a feature modeling method FODM, which focuses on the characteristics of services, functions, and behaviors in the domain and discusses the presentation form of a feature model and its detailed modeling process.



Generative Programming

Generative programming (Czarnecki et al., 2000; Fan and Zhang, 2005) is a new type of software paradigm, which accords with the idea of software reuse. It uses components and makes software products in an automated way, which is of great significance to solve the “software crisis.” There are two steps to implement GP. The first is to change the current software development mode into the development of software system families and develop generators to automatically assemble components. GP is an example of domain engineering application, which needs to make full use of existing domain knowledge to complete component development in corresponding domain. Finally, generator is used to develop new software in the field by means of component assembly, without the need to follow the steps of software engineering to start programming from scratch.

The purpose of GP is to realize the production automation of components and applications, and the key part of GP is to establish domain models for system families. The generative domain model consists of three parts: problem space, solution space, and corresponding configuration knowledge. The problem space mainly includes the needs of application programmers and users for the system, and the requirements are generally described by the concepts and characteristics of the program; the solution space includes the relevant components that can solve the demand problem and the combination mode of each component, and it is required to achieve the maximum composability, and the redundancy between the combinations must be minimized, and the highest reusability of the components must be achieved as much as possible. The configuration knowledge is the mapping relationship between the problem space and the solution space, which avoids the occurrence of illegal feature combination and sets the default parameters and rules of features. Configuration knowledge is the mapping relationship between the problem space and the solution space, which avoids the illegal feature combination and sets the default parameters and rules of features.



Concepts Related to RNA Secondary Structure Prediction

RNA sequence: RNA sequence refers to the primary structure S = S1S2S3…Sn of RNA, where Si ∈ (G, C, U, A), 1 ≤ i ≤ n.

Base pair: If (Si, Sj) ∈ {GC, AU, UG}, 1 ≤ i < j ≤ n, then (Si, Sj) constitutes a base pair.

RNA secondary structure: A set of base pairs.

RNA secondary structure prediction: Input an RNA sequence, predict the secondary structure through some algorithm, and follow the following rules in the prediction process:


(1)A base cannot be paired with two or more bases at the same time. That is, there are base pairs (Si, Sj) and (Sk, Sl). If i = k, then j = l.

(2)If i < g < j < h or g < i < h < j, (Si, Sj) and (Sg, Sh) cannot appear in the secondary structure, that is, pseudoknot cannot appear in the secondary structure.

(3)If there are base pairs (Si, Sj), then |j−i| ≥ 4, that is, the length of hairpin loop structure should be ≥ 4.



Hairpin loop: A structure consisting of one base pair (Si, Sj) and all unpaired bases closed by it.

Stem: A structure composed of two adjacent base pairs (Si, Sj), (Si + 1, Sj–1).

Bulge loop: It is composed of two base pairs (Si, Sj) and (Sk, Sl), and the two base pairs are adjacent at one end and not adjacent at the other end (k = i + 1, k < l < j − 1or l = j − 1, i + 1 < k < l).

Interior loop: It is composed of two base pairs (Si, Sj) and (Sk, Sl), and the two base pairs are not adjacent at both ends (i + 1 < k < l < j = 1).

Multibranched loop: A structure closed by three or more base pairs.



Domain Analysis and Abstraction of RNA Secondary Structure Prediction Algorithm

Here, we briefly analyze the core ideas of three typical dynamic programming algorithms.


(1)Nussinov algorithm

Given a sequence s, when the i-th base Si is paired with the j-th base Sj in S, θ(i, j) = 1, otherwise θ(i, j) = 0. M(i, j) is used to represent the maximum matching base logarithm on the subsequence Sij, and its value can be iterated by the following formula:



[image: image]


in which i ≤ k ≤ j, when i = 1, 2, 3, …, n, M(i, i) = 0. When i = 2, 3, 4, …, n, M(i − 1, i) = 0.

The four terms in formula (1) correspond to the possible pairing between the i-th base and the j-th base in the sequence:




➀Si does not participate in base pairing, then the maximum number of base pairing in interval (i, j) is equal to the maximum number of base pairing in interval (i + 1, j).

➁Sj does not participate in base pairing, then the maximum number of base pairing in interval (i, j) is equal to the maximum number of base pairing in interval (i, j = 1).

➂Si is paired with Sj, and the maximum number of base pairs in interval (i, j) is equal to the maximum number of base pairs in interval (i + 1, j = 1) plus 1.

➃Si is paired with base Sk in interval (i, j), then the maximum number of base pairings in interval (i, j) is equal to the number of pairings in interval (i, k) plus the pairing number of interval (k + 1, j). Take k = i, k = i + 1, k = i + 2,…, j in turn, then the maximum number of base pairings in interval (i, j) is equal to the one with the largest number.




Each iteration takes the maximum of the above four cases, and the value of M(1, n) is the maximum number of base pairs. The secondary structure of sequence s can be obtained by backtracking from W(1, n).




(2)Zuker algorithm

Give a sequence s, fragment Sij represents the subsequence from the i-th base to the j-th base in the s sequence, where 1 ≤ i ≤ j ≤ n. W(i, j) is the minimum free energy of all RNA secondary structures composed of subsequence Sij (whether Si and Sj are paired or not), V(i, j) is the minimum free energy of RNA secondary structure formed by pairing Si and Sj. The calculation process of W(i, j) and V(i, j) is shown in formulas (2)–(6) as follows:
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EH(i,j) in formula (5) represents the minimum free energy corresponding to the hairpin loop structure formed by pairing base Si and base Sj, Es represents the minimum free energy corresponding to the stem structure formed by the pairing of base Si and base Sj, EL represents the minimum free energy corresponding to the interior-loop or bulge-loop structure formed by the pairing of base Si and base Sj, and E4 represents the minimum free energy corresponding to the multibranched loop structure formed by the pairing of base Si and base Sj.

By using formula (6) to iterate continuously, w(1, n) is the minimum free energy of sequence s. The secondary structure of sequence s can be obtained by backtracking from W(1, n).




(3)Helix-based algorithm

Given an RNA sequence s, all possible stem regions were calculated by using the INN-HB energy model. Ei,j represents the minimum free energy of the subsequence Sij, and its value can be obtained by using formula (7).
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Equation (7) corresponds to three situations: ➀ If j − i < 8, then Ei,j = Einit = 0; ➁ Otherwise, search the stem regions, if there is a stem region Hi,j,k starting with the i-th base and ending with the j-th base, and Hi,j,k + Ei + k,j–k < Ei,j, then Ei,j = E(Hi,j,k + Ei + k,j–k). ➂ For each k(i < k < j), if Ei,k + Ek + 1,j < Ei,j, then Ei,j = Ei,k + Ek + 1,j. When E1,n is calculated, the minimum free energy of RNA is found, and the secondary structure with the minimum free energy can be found by backtracking.



By further analyzing a large number of RNA secondary structure prediction algorithms based on dynamic programming, we can know that the process of RNA DP-SSP can be summarized as shown in Figure 2.


[image: image]

FIGURE 2. Flowchart of RNA secondary structure prediction algorithm.


Next, we analyze the DP-SSP domain with FODM method, and consider the Service, Function, and Behavior in the DP-SSP domain to build a feature model. The scope of the algorithm field is limited to an algorithm form with dynamic programming as the main strategy and RNA secondary structure prediction as the main prediction method in the field of RNA function analysis. RNA secondary structure prediction is the core service in this field. The user-defined RNA secondary structure prediction algorithm is realized by controlling the prediction mode, the execution priority, and the combination mode between algorithm features in the process of RNA secondary structure prediction.


(1)Sequence validity check (seq_check) is a preprocessing operation that must be performed on the input sequence before each algorithm runs, which is regarded as a common function.

(2)All algorithms in this field need to build matrices and auxiliary storage tables to store data and also need to operate matrices and auxiliary storage tables, so matrix manipulating (matrix_mani) and auxiliary storage table manipulating (auxiliary_storage_mani) are the required components. Further analysis shows that for auxiliary_storage_mani, the auxiliary storage mode (auxiliary_mode) is its behavior characteristic, and there are mainly the following ways: auxiliary matrix (matrix_op), auxiliary stem pool (stem pool_op), and auxiliary free energy parameter (free energy_op).

(3)In this field, the dynamic programming idea is used to predict the RNA secondary structure. Different RNA secondary structure prediction algorithms can be obtained by selecting different dynamic programming strategies. Therefore, dynamic programming pattern selection is regarded as a common component in this field. There are four behavior patterns: based on maximizes base pairs (Nussinov_op), based on minimizes free energy (Zuker_op), based on helix-based (helix_op), and based on partition function (partition function_op).

(4)Output function (result_op) as a common function in the field, it has two output modes: matching logarithmic output (pairing number_op) and matching interval output (pairing interval_op). Among them, the matching interval needs backtracking (backtrack) and remembering the source of elements (element source). Therefore, tracing back and remembering the source of elements are optional components.



The established feature model is shown in Figure 3.
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FIGURE 3. DP-SSP feature model.


A complete domain feature model also needs the interaction between features. In the feature model, the interaction between features is mainly reflected by the constraints and dependencies between features. Therefore, for the feature model established above, we design the feature interaction model in DP-SSP domain.

Through the establishment of DP-SSP feature model, it is analyzed that the algorithm mainly includes three change process features: matrix_mani, dp_mode, and output. In addition, the input of the algorithm in this field is gene sequence, so it is necessary to check the legality of the sequence information before the algorithm is executed. Therefore, the main components in this field are seq_check component, matrix_mani component, dp_mode component, and output component. Other features in the feature model are used as auxiliary components, and the interaction model of components is established according to the dependencies between components, as shown in Figure 4.
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FIGURE 4. Feature interaction model of algorithm components.


Among them, the nodes connected by the solid line represent the basic features that must be contained in the DP-SSP field. The direction indicated by the arrow indicates the execution priority of the four features from high to low. The arrow with dotted line represents the associated operations required in the algorithm assembly process. For example, when we choose dynamic programming mode or perform matrix operations, we need to use the information of auxiliary storage table operations. The dotted line indicates the interaction between the two features in the process of algorithm execution. For example, matrix operation features need to be used in result output or backtracking.

Here, we further analyze the feature model and algorithm component interaction model in the above DP-SSP field and package them into two ADT components and an RNA secondary structure prediction algorithm component. With the advantages of high abstraction, good support for ADT, easy formal derivation, and correctness verification of Apla program, the DP-SSP model is formally designed and implemented based on Apla code.


(1)Matrix-type component

define ADT matrix_mani (sometype elem);

type matrix_mani = private;

var:

matrix:list(array[0…n,elem])

aux:auxiliary_storage_mani

procedure apply_memory (m: matrix _ mani;length:integer);

procedure init_matrix(proc initial(); m:matrix_mani;matrix: list (array[0…n, elem]));

procedure setvalue (m:matrix_mani; matrix:list(array [0…n,elem]); i:integer; j:integer; aux:auxiliary_storage_mani);

function getvalue(m: matrix_mani; matri x:list(array [0…n,elem]);i:integer;j:integer):elem

function the_last_element():elem;

procedure traceback(m: matrix_mani; matrix:list(array [0…n,elem]); aux: auxiliary _ storage_ mani);

procedure output(m:matrix_mani; matrix: list(array [0…n,elem]);aux:auxiliary_storage_mani);

enddef;



The generic ADT named matrix_mani contains a type parameter elem, which can accept character type or other types of data. Type matrix_mani = private is the storage space description, which is used to indicate that the storage space used by the custom ADT is private. Apply_memory (m:matrix_mani;length:integer) is used to dynamically allocate memory space for matrix_mami according to the value of integer variable length; init_matrix(proc initial(); m:matrix_mani; matrix: list (array[0…n,elem])) has a generic process parameter. Different process parameters can be passed in to instantiate different matrices. The functions of Procedure setvalue (m:matrix_mani;matrix:list (array[0…n,elem]); i:integer; j: integer; aux: auxiliary_ storage_mani) and getvalue (m:matrix_mani; matrix: list (array[0…n,elem]); i:integer; j:integer):elem are to set element values and obtain element values, respectively; the_last_element():elem indicates the last element in matrix_mani, i(0 ≤ i ≤ length),j(0 ≤ j ≤ length) indicates the subscript of the corresponding element, and length means the length of RNA sequence. Traceback (m:matrix_mani; matrix: list (array[0…n,elem]); aux:auxiliary_storage_mani) means to backtrack the results. Output (m:matrix_mani; matrix: list (array[0…n,elem]);aux:auxiliary_storage_mani) is used to output the final result. By default, it outputs the interval of base pairing.


(2)Auxiliary storage table-type component

define ADT auxiliary_storage_mani(someproc inilization (sometype:elem);n:integer);

type auxiliary_storage_mani = private;

procedure set_value(a: auxiliary_ storage _mani;i:integer; j:integer);

function get_value(a: auxiliary_storage_ mani;i:integer;j: integer):elem;

procedure traceback(a: auxiliary_storage _mani);

enddef;



The ADT contains a process generic parameter someproc initialization_ auxiliary() and an integer parameter n so that generic programs can support instantiation of different dynamic programming patterns. Type auxiliary_storage_mani = private is the storage space description, which is used to indicate that the storage space used by the custom ADT is private. The functions of Procedure set_value (a: auxiliary_ storage_ mani; i:integer;j:integer) and Function get_value(a: auxiliary_storage_mani; i: integer; j:integer): elem are to set element values and obtain element values, respectively. Procedure traceback(a:auxiliary_ storage_ mani) means backtracking auxiliary_storage_mani.


(3)Secondary structure prediction algorithm component

procedure RNA_prediction(m: matrix_mani; a:auxiliary_ storage_mani)

begin

m.apply_memory(m,length);

m.init_matrix();

do

i,j ≤ length

→

m.setvalue(m.matrix,i,j,a);

od;

m.traceback(m,a);

M.output(m,matrix,a);

end;



The algorithm component contains two generic parameters m and a; corresponding to types matrix_mani and auxiliary_storage_mani, respectively, users can get different RNA secondary structure prediction algorithms by passing in different ADT parameters.



Development of Zuker Algorithm Based on ADT


program Zuker;

Procedure Zuker_auxiliary_initialization(char);………… ..➀

var

i:integer;

length:integer;

symbol:char;

begin

open(D:\Zuker\sourcedata.txt)

foreach(i = 0;i< = length;i++)

……  //Code segment, omitted.

end;

ADT Zuker_auxiliary:new auxiliary_ storage_mani(Zuker_ auxiliary_initialization,4);……………➁

ADT Zuker_ matrix_mani:new matrix_ mami (double);…………………………………………➂

Zuker_RNA_prediction():Procedure RNA_prediction (Zuker_ matrix_mani; Zuker_auxiliary);…➃

Var:

m:Zuker_ matrix_mani

a:Zuker _ auxiliary

Begin //  Main program code………………………………………………➄

open(D:\Zuker\sourcedata.txt)

foreach(i = 0,j = 0;i <=length, j< = length;i++,j++)

……  //Code segment, omitted.

Zuker_RNA_prediction(m,a);

end;



Code block ➀ indicates the dynamic planning mode of Zuker algorithm, ➁ indicates the instantiation of auxiliary storage table of Zuker algorithm, ➂ indicates the main matrix of instantiating Zuker algorithm, ➃ indicates the implementation of prediction code of Zuker algorithm, and ➄ the following code blocks are the main programs. As the above Apla program cannot be run directly, we use Apla-C++ converter in PAR platform to convert Apla program into C++ program for experimental comparison.




RESULTS

Gutell laboratory provided a large number of real secondary structures of RNA, so we downloaded six real RNA sequences from http://www.rna.icmb.utexas.edu/ to run the assembly algorithm. Figure 5 shows the prediction result of an RNA sequence named d.5.e.C.carpio. Table 1 shows the comparative experiments of our assembled algorithm with partition function and Nussinov algorithm in this field.
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FIGURE 5. Experimental results of assembly algorithm.



TABLE 1. Experimental results of different input sequences.

[image: Table 1]
At present, researchers often use sensitivity (X), specificity (Y), and Matthews correlation coefficient (MCC) to measure the prediction accuracy of the algorithm. Sensitivity refers to the percentage that the real base pairs in the secondary structure are correctly predicted. Specificity refers to the percentage of correct prediction among all predicted base pairs. It is difficult to take both into account in general prediction methods, so researchers often use MCC to compromise. The calculation formulas are as follows:
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where TP represents the number of base pairs correctly predicted; FN indicates the logarithm of base pairs in all real structures that are not predicted; and FP represents the predicted logarithm of base pairs that do not exist in the real structure. The value range of MCC is −1 (TP = TN = 0, completely wrong) to 1(FP = FN = 0, absolutely right). Sometimes, for convenience, people often simplify formulas (10) and (11) to evaluate the prediction results.

[image: image]

In this experiment, formulas (8), (9), and (11) are used to evaluate the assembly algorithm.

According to the data in Table 1, when the sequence length is 120, 218, 380, 423, 543, and 670, respectively, the algorithm assembled in this article can obtain a better result. The X parameter, Y parameter, and MCC parameter are not inferior to the other two popular RNA secondary structure prediction algorithms. This shows that the algorithm generated by assembly has certain practicability. In addition, using the formal method PAR to develop the algorithm can also improve the development efficiency and reliability of the algorithm, which is convenient for researchers to maintain and optimize. Users only need to select different components for assembly according to the configuration knowledge to generate different specific algorithms. With the continuous expansion of DP-SSP component library, we are expected to assemble a more efficient new RNA secondary structure prediction algorithm.



DISCUSSION

RNA secondary structure prediction is a hot research direction in bioinformatics, and its implementation algorithm has been widely studied. Because of the flexibility of its algorithm design strategy and the complexity of the problem, this kind of algorithm is full of diversity and complexity. In this article, the GP technology is used to deeply analyze the domain of RNA DP-SSP, find out the general features and variable features, design a highly abstract program component based on Apla language by using the formal method PAR, and use PAR platform to assemble and generate Zuker algorithm, thus improving the reliability and reusability of the algorithm component and reducing the development cost.
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DNA N6-Methyladenine (6mA) is a common epigenetic modification, which plays some significant roles in the growth and development of plants. It is crucial to identify 6mA sites for elucidating the functions of 6mA. In this article, a novel model named i6mA-vote is developed to predict 6mA sites of plants. Firstly, DNA sequences were coded into six feature vectors with diverse strategies based on density, physicochemical properties, and position of nucleotides, respectively. To find the best coding strategy, the feature vectors were compared on several machine learning classifiers. The results suggested that the position of nucleotides has a significant positive effect on 6mA sites identification. Thus, the dinucleotide one-hot strategy which can describe position characteristics of nucleotides well was employed to extract DNA features in our method. Secondly, DNA sequences of Rosaceae were divided into a training dataset and a test dataset randomly. Finally, i6mA-vote was constructed by combining five different base-classifiers under a majority voting strategy and trained on the Rosaceae training dataset. The i6mA-vote was evaluated on the task of predicting 6mA sites from the genome of the Rosaceae, Rice, and Arabidopsis separately. In Rosaceae, the performances of i6mA-vote were 0.955 on accuracy (ACC), 0.909 on Matthew correlation coefficients (MCC), 0.955 on sensitivity (SN), and 0.954 on specificity (SP). Those indicators, in the order of ACC, MCC, SN, SP, were 0.882, 0.774, 0.961, and 0.803 on Rice while they were 0.798, 0.617, 0.666, and 0.929 on Arabidopsis. According to the indicators, our method was effectiveness and better than other concerned methods. The results also illustrated that i6mA-vote does not only well in 6mA sites prediction of intraspecies but also interspecies plants. Moreover, it can be seen that the specificity is distinctly lower than the sensitivity in Rice while it is just the opposite in Arabidopsis. It may be resulted from sequence similarity among Rosaceae, Rice and Arabidopsis.

Keywords: N6-methyladenine, plant genomes, cross-species, feature encoding, ensemble learning


INTRODUCTION

DNA N6-methyladenine (6mA) is a methyl modification at the sixth position of the adenine ring, which was discovered by Vanyushin et al. (1968). 6mA is widely found in prokaryotes and eukaryotes (Fu et al., 2015; Greer et al., 2015; Zhang et al., 2015). It is reported that 6mA plays vital roles in DNA replication, repairing nucleotide dislocations, and preventing the invasion of foreign DNA (Wion and Casadesús, 2006). Although 6mA in animal genomes studies have been well studied, those of plants genomes have still known a little, which hampered to explore their functions. To better understand the molecular mechanism of 6mA in plants, it is the first step to determine the 6mA sites accurately.

To detect 6mA sites, several biochemical methods were developed, such as single-molecule real-time sequencing technology (SMRT-seq) (Davis et al., 2013) and restriction endonuclease-based 6mA sequencing (6MA-RE-seq) (Fu et al., 2015). In SMRT-seq, single-nucleotide molecules labeled by different fluorophores were paired with bases of a DNA sequence, and the fluorescence signals were recorded during the process of pairing. The fragment of DNA sequence may be methylated if it showed the continuous same signal during the process of pairing. 6mA-RE-seq explored restriction enzymes to fragment genomic DNA at “CATG” and “GATC” motifs that did not contain 6mA and then retained these motifs containing 6mA. In this way, after end-repair and other operations, the methylated motifs would be enriched in the internal positions of DNA fragments. However, these methods are hard to detect 6mA sites from high-throughput sequences because they are time-consuming and expensive.

Therefore, some machine learning models have been developed to identify 6mA sites in recent years because they are efficient and cheap. At first, iDNA6mA-PseKNC (Feng et al., 2019) was proposed to detect 6mA sites in the mouse genome. In this model, DNA sequences were represented by pseudo-k-tuple nucleotide composition incorporating the physicochemical properties of nucleotides, and then the sequences were classified by a support vector machine (SVM). Subsequently, i6mA-Pred (Chen et al., 2019) trained a novel SVM model to identify 6mA sites in the rice genome based on the chemical properties of nucleotide such as the loop structure, the hydrogen bond, and the amino groups, and the nucleotide frequency of DNA sequences. To avoid overfitting, i6mA-Pred used the maximum correlation maximum distance approach to select the most representative features. Afterward, iN6-methylate (Le, 2019), another novel SVM model, used FastText to generate feature vectors for DNA sequences based on the assumption that a DNA sequence is a sentence and a nucleotide is a word. Unlike previous models, MM-6mAPred (Pian et al., 2019) constructed Markov chains based on DNA sequences with 6mA sites (positive samples) and DNA sequences without 6mA sites (negative samples) in the training dataset. Based on the Markov chains, the positive and negative probabilities of a DNA sequence were calculated separately. It is considered that a sequence contained 6mA site if the ratio of positive probability against negative probability is greater than 1.

To improve the performance of above methods, ensemble learning has been increasingly applied to 6mA sites prediction. In the beginning, iDNA6mA-Rice (Lv et al., 2019), a rice 6mA site classification model based on random forest, encoded DNA sequences via three feature descriptors, namely the k-nucleotide frequency, the mono-nucleotide binary coding, and the natural vector containing the frequency, average position, and second-order central moment of mono-nucleotides. Soon afterward, on the basis of bagging with CART, i6mA-DNCP (Kong and Zhang, 2019) represented rice DNA sequences by two novel feature descriptors: dinucleotide frequency and dinucleotide physicochemical properties. In addition, i6mA-DNCP employed heuristic ideas to select the most representative features. Several months later, i6mA-Fuse (Hasan et al., 2020) was proposed to classify Rosaceae DNA sequences with random forest and linear regression. Subsequently, a random forest-based multi-species 6mA site prediction model 6mA-Finder (Xu et al., 2020) was developed, which contained three modules for mouse, rice, and a general species admixed by mouse and rice DNA sequences, respectively. i6mA-stack (Khanal et al., 2021) developed a two-level stacked ensemble classifier based on linear regression, random forest, support vector machine, and gaussian naive bayes to recognize Rosaceae 6mA sites.

With the development of deep learning, some neural network models were also developed for identifying 6mA sites. For example, iDNA6mA (Tahir et al., 2019) is composed of four layers: two convolution layers which extract features of DNA sequences, a dropout layer which is used to avoid overfitting, and a full-connection layer which performs classification tasks. Subsequently, SNNRice6mA (Yu and Dai, 2019) was improved iDNA6mA by adding a normalization layer and a pooling layer between the convolution layer and the dropout layer, which aimed to reduce redundant features of DNA sequences according to the correlation of the features. i6mA-DNC (Park et al., 2020) is similar with the above two models except it extracted features from nucleotide pairs of DNA sequences rather than from single nucleotides. It is worth noting that the three neural network models mentioned above were all developed for predicting 6mA sites in the rice genome.

Because the previously mentioned models are species-specific, Meta-i6mA (Hasan et al., 2021) was proposed for 6mA site prediction from multiple plants. Although Meta-i6mA has achieved encouraging results in intraspecies, it still has room for improvement in interspecific. To solve this problem, a novel classification model i6mA-vote was developed based on an ensemble learning strategy. In this model, DNA sequences were encoded by nucleotide position-based feature descriptors, and then these sequences were classified by an ensemble classifier integrating random forest, linear discriminant analysis, multi-layer perceptron, stochastic gradient descent, and extreme gradient boosting. The details of i6mA-vote will be introduced in the following sections.



MATERIALS AND METHODS


Framework of i6mA-Vote

In our study, as shown in Figure 1, i6mA-vote was constructed by four steps. Firstly, positive samples of Rosaceae, Rice, and Arabidopsis were derived from MDR (Liu et al., 2019), GEO (Edgar et al., 2002), and MethSMRT (Ye et al., 2017) databases, and negative samples of these plants were downloaded from NCBI. For each plant, the positive and negative samples were filtered by CD-HIT (Li and Godzik, 2006) to reduce high similar samples. Then all samples were divided into three datasets according to organisms for the subsequent experiments. The Rosaceae dataset was split into a training dataset and a test dataset, and datasets for the remaining two species were used as cross-species evaluation datasets. Secondly, to transform DNA sequences into feature vectors, one-hot encoding method was performed on dinucleotides (e.g., AA, AG, …) of DNA sequences. Because the known nucleotides can be represented by four symbols (A, G, C, T) and other unknown nucleotides can be denoted by symbol N, in this way, there were twenty-five dinucleotide combinations. Thirdly, an ensemble learning model, named i6mA-vote, was built by integrating random forest (RF), multi-layer perceptron (MLP), stochastic gradient descent (SGD), linear discriminant analysis (LDA), extreme gradient boosting (XGB), based on majority voting strategy. Then all samples were represented by feature vectors and the ensemble learning model was trained on the samples. Finally, to evaluate the performance of the model, i6mA-vote was used to perform simulation a task on test datasets, and its superiority was demonstrated by accuracy, Matthew correlation coefficient, sensitivity, and specificity. In the following sections, the detail process of constructing the i6mA-vote model will be illustrated step by step.
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FIGURE 1. Frame diagram of i6mA-vote. (DS1, DS2, DS3, and DS4 refer to Rosaceae training dataset, Rosaceae test dataset, Rice test dataset, and Arabidopsis test dataset; In the DNA sequences, the letter “A” marked in red refers to the possible 6mA site, and the letter “N” indicates the unidentified nucleotide; In the feature vectors, “p” and “n” are short for the positive sample and the negative sample).




Datasets

The quality of the dataset affects the performance of the classification model. In this study, four high-quality datasets that have been applied in the 6mA prediction domain were selected.

The Rosaceae dataset was collected, collated, and constructed by Hasan’s team (Hasan et al., 2021). The part containing 6mA were derived from the MDR database (Liu et al., 2019). After removing similar sequences and excluding 90% sequence identity, 36,537 positive samples were obtained. The other part, including the same number of negative ones, was taken from NCBI, and it was generated by chromosomes with no 6mA detected. Finally, 80% of this dataset was randomly selected as the training dataset (DS1), and the remaining 20% was regarded as the test dataset (DS2).

The Rice dataset (DS3) was created by Lin’s group (Lv et al., 2019). The positive portion and the negative one were obtained from the GEO database (Edgar et al., 2002) and NCBI. And they both included 154000 samples.

The Arabidopsis dataset (DS4) was also constructed by Hasan’s team (Hasan et al., 2021). It extracted 31,873 6mA sites from the MethSMRT database (Ye et al., 2017) and replenished the same number of negative samples from NCBI using the same way as for the Rosaceae dataset.

Among them, DS1 was used for training the model, DS2, DS3, and DS4 were used to evaluate the generalization performance and cross-species prediction ability of the model.

All the above four datasets were downloaded from the online server of model Meta-i6mA (Hasan et al., 2021)1. In addition, these datasets were also processed as follows: (1) Sequences longer than 41bp were removed. (2) If a sequence was repeated multiple times, it would be deleted, leaving only one copy. (3) If a sequence was present in both positive and negative samples, it would be removed from both parts. Finally, the number of samples included in each dataset is shown in Table 1. Their sequences all consisted of 41 nucleotides with an “A” in the middle.


TABLE 1. Number of samples in each dataset.
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Feature Extraction

To convert DNA sequences into feature vectors, One-hot encoding method for dinucleotides was employed in our model. This strategy and other concerned strategies will be described in detail below.


Our Encoding Strategy

One-hot encoding method for dinucleotides (One-hot2) is based on the one-hot encoding method in natural language processing. The one-hot encoding method compiles a dictionary using the words in the sentences and then encodes each word into a 0-1 vector through this dictionary. The length of the vector is equal to that of the dictionary, and each bit in the vector corresponds to a word in the dictionary. When encoding a word, its corresponding bit is set to 1 in the vector, and the other bits are kept at 0. Similarly, One-hot2 treats DNA sequences as sentences and dinucleotides as words.

A DNA sequence is usually composed of four standard nucleotide symbols: A, C, G, and T. However, sometimes the DNA sequence also include non-standard nucleotide symbol N, which means that the nucleotide was not identified. Accordingly, a DNA sequence may consist of 5 symbols, and it contains 25 possible symbol combinations of dinucleotides like AA, AC, AN. In our method, the one-hot2 encoded each dinucleotide into a 25-dimensional 0-1 vector. The vector of each dinucleotide is shown in Formula (1).

[image: image]

To show how One-hot2 encodes DNA sequences, an example is given below. DNA sequence D = ACGTNA can be split into five dinucleotides (AC, CG, GT, TN, NA), and then they are replaced with their corresponding one-hot codes. In this way, a vector with the dimension of 125 is generated.

Because the length of the DNA sequences in our datasets are 41bp, the sequences can be spliced into 40 dinucleotides and thus the vectors of these dinucleotides were concatenated into a 1000-dimensional feature vector to describe their primary sequence.

There are three reasons why One-hot2 was chosen: (1) It can solve the problem that classifiers are not good at handling continuous data. In addition, it generates sparse vectors, allowing many machine learning problems to be linearly separated and models more efficient to be stored. (2) It considers the relationship between adjacent nucleotides as it is encoded in dinucleotide. (3) Some studies (Chen et al., 2019; Feng et al., 2019) found position-specific features can better represent sequences containing 6mA sites, and One-hot2 happens to be this kind of method.



The Concerned Encoding Strategies


Density-Based Approach

Accumulated Mono-Nucleotide Frequency (AMNF) represent the frequency of single nucleotides in the subsequence which ranges from the first nucleotide to the current nucleotide of the original sequence. Similarly, Accumulated Di-Nucleotide Frequency (ADNF) (Chen et al., 2017) denotes the nucleotide pairs which appears before current nucleotide. For example, DNA sequence D = ACGTNA can be encoded as (1, 0.5, 0.33, 0.25, 0.2, 0.33) and (1, 0.5, 0.33, 0.25, 0.2) by AMNF and ADNF, respectively.



Physicochemical-Properties-Based Approach

Dinucleotide Physical-Chemical Properties (DPCP) and Trinucleotide Physical-Chemical Properties (TPCP) (Manavalan et al., 2019; Wei et al., 2019) replace the DNA sequences with the vectors calculated by Equation (2) using the physicochemical-properties in Supplementary Tables 1,2. In Supplementary Table 1, the columns represent 15 physicochemical properties, and the rows represent 25 dinucleotides. In Supplementary Table 2, the columns represent 11 physicochemical properties, and the rows represent 125 trinucleotides.
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where x = D refers to Dinucleotide and x = T denotes Trinucleotide. When x = D, the values of i range from 1 to 25, the values of j range from 1 to 15, DPCPiis the DPCP value of the ith dinucleotides, N_i is the count of the ith dinucleotides in the DNA sequence, and DPCij is the jth properties of the ith dinucleotides; When x = T, the values of i range from 1 to 125, the values of j range from 1 to 11, TPCPi is the TPCP value of the ith trinucleotides, N_i is the count of the ith trinucleotides in the DNA sequence, and TPCij is the jth properties of the ith trinucleotides.



Position-Based Approach

One-hot encoding method for mononucleotide (One-hot1) is similar to One-hot2, except that its encoding unit is the mononucleotide. It converts a mononucleotide into a one-hot code with a length of five, corresponding to five mononucleotides (A, C, G, T, and N). For instance, the encoded vector of DNA sequenceD = ACGTNA is (1,0,0,0,0| 0,1,0,0,0| 0,0,1,0,0| 0,0,0,1,0| 0,0,0,0,1| 1,0,0,0,0).





Classifier

To train a classification model with stable and good performance, five machine learning algorithms was utilized to construct five base-classifiers. Subsequently, majority voting was adopted to integrate these five base-classifiers. Its detailed procedure is illustrated in the following steps.

(1) The processed training dataset was inputted into five machine learning algorithms, and five base-classifiers were generated. These five algorithms were random forest (RF), multi-layer perceptron (MLP), stochastic gradient descent (SGD), linear discriminant analysis (LDA), extreme gradient boosting (XGB). Among them, RF refers to one type of classifier that utilizes multiple decision trees to train and predict samples. MLP, as a simple neural network, contains three fully connected layers, the input layer, the hidden layer, and the output layer. SGD is a kind of support vector machine model. LDA is a classifier generated according to Bayes’ rule. XGB is also based on trees, but unlike random forests, its trees are regressive, and it also optimizes the algorithm itself, the efficiency and robustness of the algorithm.

(2) The five base classifiers were combined into one ensemble classifier by majority voting. That is, when three or more base classifiers judge a sequence to be a positive (or negative) sample, then their combination also treats this sequence as a positive (or negative) sample.

It should be noted that the hyperparameters of the base-learners were optimized by grid search strategy. After manually specifying variation ranges of hyperparameters, this strategy adopted an exhaustive method-like approach to find the best-performing combination from these hyperparameters. In addition, all classifier algorithms in this paper were implemented by sklearn (Hinton, 1989; Belhumeur et al., 1997; Platt, 2000; Breiman, 2001; Bengio and Glorot, 2010; Pedregosa et al., 2011; Kingma and Ba, 2014; He et al., 2015; Chen and Guestrin, 2016).



Performance Evaluation

Our model was validated according to accuracy (ACC), Matthew correlation coefficient (MCC), Sensitivity (SN), Specificity (SP) which had been widely adopted in the field of bioinformatics (Huang and Gong, 2020; Liu et al., 2020; Smolarczyk et al., 2020; Wang H. et al., 2020; Wang J. et al., 2020; Shao and Liu, 2021; Zhang et al., 2021). These metrics can be calculated by equations (3) ∼ (6).
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Where TP and TN refer to correctly predicted 6mA and non-6mA; FP and FN denote incorrectly predicted non-6mA and 6mA; n_x means the number of x.




RESULTS AND DISCUSSION


DNA Sequence Logos

To find optimal features of samples, the DNA sequences of samples should be analyzed. Since these sequences were of equal length, they could be analyzed sequence logos (Schneider and Stephens, 1990). Two Sample Logo was employed (Vacic et al., 2006), which calculated the statistical difference between positive and negative samples at specific positions. The logo consists of three parts, the upper and lower parts represent the enriched and depleted nucleotides at specific positions, and the middle part denotes the consistent results of positive and negative samples. The x-axis indicates the position. The length of DNA sequences in our datasets is 41bp, so there are 41 scales on the x-axis. Additionally, as the middle nucleotide is consistent in both positive and negative samples, it is set to the 0th scale. The y-axis represents the amount of information at the position. The higher the symbol in a position, the more information the position contains. In addition, the relative size of a base letter shows its relative frequency at one position. If a letter is larger than the other letters in the column, it has a high frequency in that position. At each position, the base letters are arranged in the order of dominance from top to bottom. Generally, the consensus motif can be found by reading the top of each position.

Figures 2A-C are the sequence logos established for Rosaceae, Rice, and Arabidopsis. From the three figures, it can be seen that the sequences have a length of 41bp with “A”s at the center. In addition, “A” enriched at positions −6, −4, −3, 4, 7, 8, 10, 11, 12, “C” enriched at positions −7, −2, 2, 6, 9, “G” enriched at positions −8, −1, 2, 3, 5, 8, and “T” enriched at positions 3. Since these sequences containing 6mA are enriched with some nucleotides at some positions, it is speculated that position-based approaches are more suitable for extracting information from the sequences in our datasets.
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FIGURE 2. Sequence logos of Rosaceae (A), Rice (B), and Arabidopsis (C).




Performance Evaluation of Models

To verify the conjecture in the previous section, six methods were chosen to extract the datasets as features and then they were applied to five commonly used well-performing algorithms in sklearn. Since the conjecture is too intuitive and may lead to some significant features being overlooked, not only nucleotide position-based methods are compared, but also density-based and physicochemical property-based methods were also compared.

The experimental results of 5-fold cross-validation are displayed in Table 2. The columns indicate the feature extraction methods which have been introduced in the “Feature Extraction” section. The rows denote classifier algorithms and their evaluation metrics, and they have been briefly described in the “Classifiers” section and the “Performance Evaluation” section.


TABLE 2. Indicators of different features and classifier algorithms.
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As can be seen in Table 2, whichever classifier algorithm is selected, the ACCs, SNs, SPs, and MCCs of AMNF, ADNF, DPCP and TPCP are all lower than 0.80, 0.79, 0.83, and 0.60, whereas them of One-hot1 and One-hot2 are all higher than 0.93, 0.93, 0.91, and 0.86. These illustrate that compared with density-based and physicochemical property-based approaches, position-based ways can better express the characteristics contained in DNA sequences in our datasets. XGB performed slightly better with one-hot1 than one-hot2. This may be because XGB may lose some valuable information when it was applied on high-dimensional one-hot2 features. Specifically, XGB divides the high-dimensional feature space into many small parts which may be treated as noise. In addition, if the feature descriptor is One-hot1 or One-hot2, all classifiers show good performance, which indicates that all these algorithms are appropriate for this classification task.

Moreover, to judge intuitively whether the above six feature extraction methods were good at distinguishing between positive and negative samples, the tSNE (van der Maaten and Hinton, 2008) technique in sklearn (Pedregosa et al., 2011) was used to project the sample points of these methods from the high-dimensional space to the two-dimensional space. If the positive and negative sample points can be well separated in the two-dimensional space, they are also separable in the high-dimensional space. The visualization plots of the projection are shown in Figure 3. It can be seen from Figure 3 that the samples of the two labels are separated by certain dividing lines in Figures 3E,F, while in other subgraphs, the negative sample points are almost covered by the positive ones. These illustrate that One-hot1 and One-hot2 can better discriminate the sample points of the two labels in a high dimensional space than the other four methods.
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FIGURE 3. The tSNE scatterplots of AMNF (A), ADNF (B), DPCP (C), TPCP (D), One-hot1 (E), and One-hot2 (F). (Blue and pink dots indicate DNA sequence samples with and without 6mA sites, respectively).


Through these arguments, the nucleotide position-based methods are indeed more suitable for extracting features from DNA sequences in our datasets, and the assumptions that was made in the previous section are proved to be correct. Therefore, in the subsequent analysis, only One-hot1 and One-hot2 would be considered.



Comparison of Features

In the previous section, it has been learned that the position-based approaches express the information contained in our DNA sequences well. However, it is not sure which is the best among One-hot1, One-hot2, and their fusion. Therefore, in this subsection, they are compared. The comparison results are shown in Figure 4.


[image: image]

FIGURE 4. Comparison before and after feature fusion.


As can be seen from Figure 4, only when the classifier is XGB, the effect of the other two is slightly better than One-hot2; when the classifier is RF, LDA, MLP, or SGD, One-hot2 is significantly better than One-hot1 and slightly better than the fusion. The reason for this is that when encoding a dinucleotide, some information about the mononucleotide is involved. Therefore, in most cases, One-hot1 is not as good as One-hot2, and their fusion produces some redundant information. Consequently, One-hot2 is the best answer.



Efficiency of Ensemble Strategy

Using One-hot2 to extract features and take RF, LDA, MLP, SGD, and XGB as classifiers, five base models can be obtained. As shown in Figure 5, except for some differences between SN and SP of LDA and SGD, SN and SP for the other three classifiers do not differ much, as well as these base models are all with excellent performance, so they were tried to be combined with the majority voting strategy. The integrated results are also shown in Figure 5. It can be found that after voting, except for no enhancement in SP, all the other three metrics improved, which means that after this operation, the performance of the whole classification system has been risen to a higher level.
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FIGURE 5. Effects of the ensemble strategy.




Comparison With Other Machine Learning Models

To evaluate the generalization capability and cross-species identification ability of our model, it was applied to three test datasets, DS2, DS3, and DS4. Moreover, the test results were compared with several other machine learning models to demonstrate the advantages of our model. Table 3 shows the comparative results on Rosaceae, Rice, Arabidopsis. The columns indicate four evaluation indicators that have been introduced in the “Performance Evaluation” section. The rows represent the species and the models applied on these species. The models include Meta-i6mA (Hasan et al., 2021), i6mA-Fuse (Hasan et al., 2020), i6mA-stack (Khanal et al., 2021), i6mA-Pred (Chen et al., 2019), iDNA6mA-Rice (Lv et al., 2019), MM-6mAPred (Pian et al., 2019), and 6mA-Finder (Xu et al., 2020). Among them, i6mA-Fuse consists of two modules, which were trained by the datasets of Fragaria Vesca and Rosa Chinensis, respectively. To better distinguish them, i6mA-Fuse_FV and i6mA-Fuse_RC are used instead. The same situation is true for i6mA-stack.


TABLE 3. Comparison with other machine learning models on Rosaceae, Rice, and Arabidopsis.
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As can be seen from Table 3, when the species is Rosaceae, although our SN and SP values only rank second, our ACC and MCC values are the maximum, suggesting that our model has the best overall performance in Rosaceae. It can be concluded that our model can make cross-species predictions for Rice as all four metrics of our model rank at the top. And it can better find 6mA sites from unknown Rice sequences because our model has the highest SN value. Like Rosaceae, our model predicts 6mA sites well in Arabidopsis, and with the highest SP, our model can better screen out those sequences that do not contain 6mA sites. Considering the comparative results on the three species, our model has better generalization performance and cross-species prediction ability than other methods. This may be because only the best-performing feature descriptor was selected to represent the DNA sequences rather than the fusion of several well-performing features. Thereby, the risk of generating irrelevant and redundant features is reduced so that our model has better predictive performance. Furthermore, for Rosaceae, SN is approximately equal to SP and greater than 0.9, indicating that our model has a good discrimination between 6mAs and non-6mAs in the same plant family. For Rice, the SN is greater than 0.9, while the SP is less than 0.9, which may be due to a strong similarity between Rice sequences and Rosaceae positive sequences, resulting in a high false-positive rate and a low true-negative rate when the model recognizes Rice. The situation for Arabidopsis is contrary to that for Rice. It may be because the similarity between Arabidopsis sequences and Rosaceae positive sequences is weak, leading to some 6mAs in Arabidopsis being identified as non-6mAs.




CONCLUSION

In this study, a plant cross-species 6mA site recognition model was constructed by ensemble learning. It has been applied on Rosaceae, Rice, and Arabidopsis and achieved good results. In the construction process, a hypothesis was put forward by analyzing the sequence logos of these three plants. The conjecture was that position-based approaches were more suitable for extracting information from the sequences in our datasets. Next, the hypothesis was verified by comparing different models and observing the tSNE visualization. Then, one-hot encoding for dinucleotide was chosen to represent the datasets by contrasting two nucleotide position-based feature extraction methods and their fusion. Finally, several well-performed models were integrated to form the final classifier by majority voting. To simulate a realistic prediction task, the model was trained on Rosaceae and tested on Rosaceae, Rice, and Arabidopsis. The experimental results showed that our model was adept at predicting the 6mA sites in homologous and heterologous species. In addition, it was also found that there might be a strong similarity between Rice sequences and Rosaceae positive sequences, and the similarity between Arabidopsis sequences and Rosaceae positive sequences is weak. The comparison with other models also showed the superiority of our model. In summary, i6mA-vote outperformed other concerned methods in predicting 6mA sites in the plant genomes. Meanwhile, our research also has the limitation that only three plants were considered. Therefore, future studies will focus on the 6mA site formation characteristics of more plants.
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A High-Quality, Chromosome-Level Genome Provides Insights Into Determinate Flowering Time and Color of Cotton Rose (Hibiscus mutabilis)
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Hibiscus mutabilis (cotton rose) is a deciduous shrub or small tree of the Malvaceae family. Here, we report a chromosome-scale assembly of the H. mutabilis genome based on a combination of single-molecule sequencing and Hi-C technology. We obtained an optimized assembly of 2.68 Gb with a scaffold N50 length of 54.7 Mb. An integrated strategy of homology-based, de novo, and transcriptome-based gene predictions identified 118,222 protein-coding genes. Repetitive DNA sequences made up 58.55% of the genome, and LTR retrotransposons were the most common repetitive sequence type, accounting for 53.15% of the genome. Through the use of Hi-C data, we constructed a chromosome-scale assembly in which Nanopore scaffolds were assembled into 46 pseudomolecule sequences. We identified important genes involved in anthocyanin biosynthesis and documented copy number variation in floral regulators. Phylogenetic analysis indicated that H. mutabilis was closely related to H. syriacus, from which it diverged approximately 15.3 million years ago. The availability of cotton rose genome data increases our understanding of the species’ genetic evolution and will support further biological research and breeding in cotton rose, as well as other Malvaceae species.

Keywords: Hibiscus mutabilis, genome, Hi-C, phylogenetic affiliation, floral regulators


INTRODUCTION

Hibiscus mutabilis is one of the most popular tree species in the Malvaceae family, which includes species such as Gossypium raimondii and Hibiscus syriacus (Rose of Sharon). Some members of the Malvaceae have relatively high economic value. For example, cotton is the largest source of natural textile fibers in the world, and over 90% of its annual fiber production comes from allotetraploid cotton (G. hirsutum and G. barbadense) (Wang et al., 2019). Additionally, many Malvaceae species are used as ornamentals because of their flowers. H. syriacus is an important horticultural species whose attractive white, pink, red, lavender, or purple flowers are displayed over a long bloom period, although individual flowers last only a day in the landscape (Kim et al., 2016). This study of H. mutabilis (2n = 92) (Li et al., 2015) focuses primarily on its ornamental characters, including its flower colors, long bloom time, and floral development and morphogenesis. In addition to its ornamental value, H. mutabilis is also an ingredient in local herbal remedies. It is thought to cool the blood, relieve toxins, reduce swelling, and alleviate pain, and it has long been used in the treatment of ulcers, swelling, herpes zoster, scalding, bruises, etc. (Liu et al., 2015). The complete genome sequence of an organism provides a large amount of information for subsequent biological studies (Yang et al., 2005). The H. mutabilis genome sequencing project is therefore extremely valuable for breeding, comparative genomics research, and other activities.

H. mutabilis has been cultivated for more than 2,000 years south of the Yangtse River; it is also the city flower of Chengdu and has great significance for the city. Commonly used as an ornamental species, its attractive purple, red, pink, or white flowers are displayed over a long bloom period (3–4 months or more), although its individual flowers last for less than 48 h (Figure 1). During flower development, the floral color of some varieties shows little change, but that of other varieties undergoes a marked change from white to pink within a single day. This interesting dynamic phenomenon can be seen in the cultivars ‘Drunk girl’ and ‘Bairihuacai’ and occurs during the process of individual flower development, unlike the color differences found in distinct cultivars of chrysanthemum (Ohmiya et al., 2006), Narcissus pseudonarcissus (Li et al., 2018), or Brassica napus (Zhang et al., 2015).
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FIGURE 1. Hibiscus mutabilis floral morphology. (A) Dynamic change in the flower color of H. mutabilis f. mutabilis ‘Drunk girl’ from white to pink. (B) A variety of colors found in different color cultivars of H. mutabilis, and from left to right in turn are H. mutabilis ‘Single-Petal Pink,’ H. mutabilis ‘Single-Petal White’ and H. mutabilis ‘Purple silk.’


The development of genomic resources and molecular breeding technologies holds promise for targeted character improvement of H. mutabilis in the near future. Recently, a 1.75 Gb draft genome of H. syriacus was assembled, and a chromosome-scale genome of H. cannabinus was published in 2020 (Zhang et al., 2020). Many breeding systems and novel varieties have been produced using traditional methods to meet horticultural requirements, but a completed genomic sequence will accelerate the breeding of cotton rose.

The many flower colors of cotton rose give it high ornamental value and reflect the complexity of the underlying flavonoid metabolic pathway. One endpoint of flavonoid biosynthesis is the production of anthocyanins, pigments that produce the colors of many flowers, fruits, and other plant tissues (Koes et al., 1994). Chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS), and flavonoid 3-O-glucosyltransferase (UFGT) all function in the synthesis of anthocyanins and anthocyanidins, their aglycone counterparts. CHS represents the first committed step in the flavonoid pathway (Meer et al., 1993). The second step is performed by CHI, which acts on the yellow naringenin chalcone product of CHS, catalyzing its isomerization to the colorless flavanone naringenin (Moustafa and Wong, 1967). Dihydroflavonols are subsequently reduced to leucoanthocyanidins by DFR (Durbin et al., 2004). ANS catalyzes the formation of cyanidin from leucoanthocyanidin and is the penultimate step in the biosynthesis of the anthocyanin class of flavonoids (Figure 2). Despite recent progress in understanding H. mutabilis anthocyanidin biosynthesis, the lack of a genome sequence has hampered efforts to elucidate the molecular and genetic determinants of this trait, which underlies the dynamic phenomenon of flower color development. Genome and transcriptome sequences are needed in order to fully analyze the molecular mechanisms of anthocyanidin biosynthesis.
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FIGURE 2. An abbreviated diagram of the flavonoid pathway that produces anthocyanins. CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; 3GT, 3-O-glucosyl transferase.


In the present study, we generated a reference genome for H. mutabilis using a combination of single-molecule sequencing and Hi-C technology. We identified functional genes involved in the biosynthesis of anthocyanins based on homology searches and functional annotations. We also investigated copy number variation in floral regulators among multiple species to gain insight into the evolution of flowering phenotypes in H. mutabilis. The genomic resources developed here will be useful for further experimentation, cultivation, and breeding of H. mutabilis and other Malvaceae species.



MATERIALS AND METHODS


Plant Materials and Whole-Genome Sequencing

The H. mutabilis material sequenced in this study was the stably heritable single-petal white color cultivars, which is cultivated in the nursery of the Chengdu Botanical Garden (CDBG), Sichuan, China. The breeding system of H. mutabilis belongs to allogamy. Seeds of ‘single-petal white’ were collected in the laboratory of the CDBG. Young leaves (∼3 cm width) were harvested to extract high-quality DNA for Illumina and Oxford Nanopore Technology (ONT) sequencing. For transcriptome sequencing, petals were manually collected from three color cultivars (‘single-petal white,’ ‘single-petal pink,’ and ‘Purple silk’) and at three stages of color development in ‘Drunk girl’ (white, blended white and pink, and fully pink). Flowers at the same stage from individual H. mutabilis plants were pooled and divided into three samples. These samples were immediately frozen in liquid nitrogen and then used for RNA sequencing.

High-quality H. mutabilis genomic DNA was extracted from young leaves with a DNA secure Plant Kit (TIANGEN, China) and used to construct long-read libraries for the ONT platform.1 Libraries were prepared following the ONT’1D Genomic DNA by Ligation (Kit 9 chemistry)-PromethION’ protocol and sequenced using the PromethION protocol. In addition, high-quality DNA was broken into random fragments, and an Illumina paired-end library was constructed with an insert size of 350 bp and sequenced using the Illumina HiSeq X Ten platform.

For Hi-C sequencing, leaves were fixed with 1% formaldehyde solution in MS buffer (10 mM potassium phosphate, pH 7.0; 50 mM NaCl; 0.1 M sucrose) at room temperature for 30 min in a vacuum. After fixation, the leaves were incubated at room temperature for 5 min under a vacuum in MC buffer with 0.15M glycine. Approximately 2 g of fixed tissue was homogenized with liquid nitrogen, resuspended in nuclei isolation buffer, and filtered with a 40-nm cell strainer. The procedures for enriching nuclei from flow through and subsequent denaturation were performed according to a 3C protocol. The chromatin extraction procedures were similar to those described previously. In brief, chromatin was digested for 16 h with 400 U HindIII restriction enzyme (NEB) at 37°C. DNA ends were labeled with biotin and incubated at 37°C for 45 min, and the enzyme was inactivated with 20% SDS solution. DNA ligation was performed by the addition of T4 DNA ligase (NEB) and incubation at 16°C for 4–6 h. After ligation, proteinase K was added for reverse cross-linking during overnight incubation at 65°C. DNA fragments were purified and dissolved in 86 μL of water, and unligated ends were then removed. Purified DNA was fragmented to a size of 300–500 bp, and DNA ends were repaired. Finally, DNA fragments labeled with biotin were separated on Dynabeads M-280 Streptavidin (Life Technologies). Hi-C libraries were assessed for quality and sequenced on an Illumina HiSeq X Ten sequencer.



Genome Assembly and Chromatin Interaction Analysis Using Hi-C Technology

De novo assembly of all Nanopore long reads was performed using wtdbg2 v2.5 (Ruan and Li, 2020). Because Nanopore reads contain systematic errors in homopolymeric regions, we polished the consensus assembly three times using the Nanopore reads as input to Racon v1.3.1 (Vaser et al., 2017) and then three additional times using Illumina reads as input to Pilon v1.22 (Walker et al., 2014).

The Hi-C data were mapped to the original scaffold genome using BWA v0.7.7 (Li, 2009) and only reads with unique alignment positions were extracted to construct a chromosome-scale assembly using LACHESIS v201701 (Burton et al., 2013).

We used both CEGMA (Core Eukaryotic Gene Mapping Approach) (Parra et al., 2007; Supplementary Table 4) and BUSCO (Benchmarking Universal Single-Copy Orthologs) (Simão et al., 2015; Supplementary Table 5) to evaluate the completeness of the assembly.



Genome Annotation

TEs were identified in the genome assembly at both the DNA and protein levels. We used RepeatModeler, RepeatScout (Tarailo-Graovac and Chen, 2009), Piler (Edgar and Myers, 2005), and LTR_FINDER (Xu and Wang, 2007) to develop a de novo TE library. RepeatMasker (Tarailo-Graovac and Chen, 2009) was used for DNA-level identification with Repbase and the de novo TE library. Tandem repeats were identified using Tandem Repeats Finder (Benson, 1999). At the protein level, RepeatProteinMask (Tarailo-Graovac and Chen, 2009) was used to conduct WU-BLASTX searches against the TE protein database. Overlapping TEs that belonged to the same type of repeat were integrated together.

We used homology-based, de novo, and transcriptome-based approaches to predict protein-coding genes in the H. mutabilis genome. For homolog-based prediction, sequences of homologous proteins from six plants (A. thaliana, C. capsularis, D. zibethinus, G. raimondii, H. umbratica, H. syriacus, and T. cacao) were downloaded from Ensembl, NCBI, or JGI. Protein sequences were aligned to the genome using TBLASTN with an E-value cutoff of 1 × 10–5. The blast hits were concatenated using solar (Yu et al., 2007). For each blast hit, GeneWise v2.4.1 (Birney and Clamp, 2004) was used to predict the exact gene structure in the corresponding genomic regions. The five ab initio gene prediction programs AUGUSTUS v3.0.2 (Stanke and Morgenstern, 2005), Genescan v1.0 (Aggarwal and Ramaswamy, 2002), GeneID (Parra et al., 2000), GlimmerHMM v3.0.2 (Majoros et al., 2004), and SNAP (Korf, 2004) were used for de novo protein prediction. To further optimize the genome annotation, RNA-seq data from floral, leaf, and stem tissues were aligned to the H. mutabilis genome using TopHat v2.0.13 (Trapnell et al., 2009) to identify exon regions and splice junctions. The alignment results were then used as input for Cufflinks v2.1.1 (Trapnell et al., 2010) in order to assemble transcripts into gene models. Trinity (Grabherr et al., 2011) was used with default parameters to assemble the RNA-seq data, and PASA (Haas et al., 2003) was used to improve the gene structures. A weighted and non-redundant gene set was generated by EVidenceModeler (EVM) (Haas et al., 2008), which merged all gene models predicted using the three approaches above. PASA adjusted the gene models generated by EVM based on information from the transcriptome assembly.

The functional annotation of protein-coding genes was evaluated by BLASTP (E-value ≤ 1 × 10-5) against two integrated protein sequence databases, Swiss-Prot (Bairoch and Apweiler, 2000) and the NCBI non-redundant (NR) database. Protein domains were annotated using InterProScan v4.8 to search InterPro v32.0 (Mulder and Apweiler, 2007), which includes the Pfam, PRINTS, PROSITE, ProDom, and SMART databases. Gene Ontology (GO) (Ashburner et al., 2000) terms for each gene were obtained from the corresponding InterPro descriptions. Putative pathway assignments for each gene were obtained by blasting against the KEGG (Kanehisa and Goto, 2006) database with an E-value cutoff of 1 × 10–5.

tRNA genes were predicted by tRNAscan-SE (Lowe and Eddy, 1997), and miRNA and snRNA fragments were identified using Infernal (Nawrocki et al., 2009) with the Rfam (Griffiths-Jones et al., 2005) database. rRNA genes were identified using BLASTN (E-value ≤ 1 × 10–10) against the plant rRNA database.



Genome Evolution Analysis

First, nucleotide and protein data from nine species (A. trichopoda, A. thaliana, B. ceiba, C. capsularis, D. zibethinus, G. raimondii, H. syriacus, R. chinensis, and T. cacao) were downloaded from Ensembl, NCBI, and JGI. The longest transcript was selected from the alternatively spliced transcripts of each gene, and genes with ≤ 50 amino acids were removed. Nucleotide and protein data from H. mutabilis and the other nine angiosperms were clustered into orthologous groups using BLASTP and OrthoMCL v2.0.9, and an MCL inflation of 1.5 was used as the cluster granularity setting (Li et al., 2003). A phylogenetic tree was constructed using shared single-copy orthologs. Protein sequences of the orthologs were aligned using MUSCLE (Edgar, 2004), and the protein alignments were transformed to CDS alignments. We then concatenated the CDS alignments into a “supermatrix” from which the phylogenetic tree was constructed using the maximum likelihood (ML) TREE algorithm in RAxML v8.1.13 (Stamatakis, 2006) with the best-scoring protein substitution model (GTRGAMMA) and 1,000 bootstrap replicates. The MCMCtree program in the PAML package (Yang, 1997) was used to estimate divergence times among the ten species. Three fossil calibration points were used for restraining the age of the nodes: 23–48 Mya (Million years ago) for the MRCA of T. cacao–G. raimondii, 65–107 Mya for the MRCA of G. raimondii–A. thaliana (Wang et al., 2012), and 103–109 Mya for the MRCA of Malvales–Rosales (Wikström et al., 2001). CAFE was used to identify expansions and contractions within orthologous gene families by comparing cluster size differences between the ancestor and other species (De Bie et al., 2006). To estimate the synonymous substitutions per synonymous site (Ks), all paralogous gene pairs were analyzed with the ML method in PAML (Yang, 1997). MCscan (Tang et al., 2008) was used to analyze genome collinearity in H. mutabilis.



Identification of Nucleotide-Binding Site-Encoding Genes

To identify NBS-encoding genes, representative genes from each plant genome were screened using a raw Hidden Markov Model (HMM3.0) (Marchin et al., 2005) to search for the Pfam NBS family PF00931 domain with an E-value cut-off of 1.0. All putative NBS protein sequences were analyzed and manually curated based on a TBLASTN search against known R gene sequences in GenBank. To further identify TIR homologs and sequences that encoded CC and LRR motifs, candidate NBS-LRR protein sequences were characterized using SMART (Schultz et al., 1998), the Pfam database (Finn et al., 2013), and the COILS program (Lupas et al., 1991) with a threshold of 0.9 to specifically detect the CC domain.



Transcriptome Sequencing

For analysis of flowering gene(s), petals were manually collected from three color cultivars at the same time (2–3 p.m.) and at three stages of color development in ‘Drunk girl’ (white at the 9 a.m., blended white and pink at the 12 a.m., and fully pink at 6 p.m.) and these samples were immediately frozen in liquid nitrogen and then used for RNA sequencing, and total RNA was extracted using an RNAprep Pure Plant Kit (TIANGEN, China). The quality and quantity of the RNA samples were evaluated using a NanoPhotometer (Implen, CA, United States), a Qubit 3.0 Fluorometer (Thermo Fisher Scientific, United States), and an Agilent 2,100 Bioanalyzer (Agilent Technologies, United States). All RNA samples with integrity values greater than 7.0 were used for cDNA library construction and sequencing. The cDNA libraries were prepared using the NEB Next Ultra RNA Library Prep Kit (E7350L, NEB, United States), and 150-bp paired-end sequencing was performed on the Illumina NovaSeq 6000 platform (Illumina, CA, United States).




RESULTS


Genome Sequencing and Assembly

We assembled the H. mutabilis genome using a combination of Illumina HiSeq X Ten and Oxford Nanopore PromethION sequencing. We generated 315.22 Gb (104-fold coverage) of raw 150-bp paired-end Illumina reads and 469.91 Gb (155-fold coverage) of raw Nanopore reads. The genome size was estimated to be 3032.98 Mb based on the 17-mer depth distribution (Supplementary Table 1 and Supplementary Figure 1). Nanopore long reads were assembled into contigs and scaffolds using wtdbg2 v2.5,13 resulting in a final assembly of 2.68 Gb with 5,464 contigs and a contig N50 of 2.22 Mb (Supplementary Table 2). Its GC percentage was 35.36%, similar to that of the H. syriacus genome (34.04%). In total, 363.5 Gb of clean reads were obtained from Hi-C sequencing (over 121-fold coverage). We used these data to construct chromosome-scale scaffolds, resulting in a total of 5,598 contigs, with a scaffold N50 of 54.70 Mb and a total length of 2,676,237,573 bp (Supplementary Table 10 and Figure 3A).
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FIGURE 3. (A) Chromosomal features of H. mutabilis. (a) Gene density; (b) Repeat density; (c) AT content; (d) Syntonic blocks. (B) Hi-C map of the H. mutabilis genome showing genome-wide all-by-all interactions. The map shows a high resolution of individual chromosomes that were scaffolded and assembled independently. Color intensity indicates the frequency of Hi-C interaction links from low (yellow) to high (red).


Next, The clustering of contig by hierarchical clustering of the Hi-C data was performed. Hi-C linkage was used as a criterion to measure the degree of tightness of the association between different contigs by standardizing the digestion sites of DpnII on the genome sketch. The contigs were assembled into 46 pseudo-chromosomes using LACHESIS package tools. The Illumina paired-end reads were mapped to the assembled genome to assess assembly accuracy, resulting in a 98.81% mapping rate (Supplementary Table 3 and Figure 3B). The genome assembly captured 96.77% of the core eukaryotic genes from CEGMA18 (Supplementary Table 4) and 92.6% of the Embryophyta OrthoDB gene set in BUSCO19 (Supplementary Table 5), indicating a high level of completeness.



Genome Annotation

We identified 1.56 Gb of non-redundant repetitive elements, representing approximately 55.85% of the H. mutabilis genome assembly. Because long terminal repeat retrotransposons (LTR-RTs) typically make a significant contribution to large genome size (Zhao and Ma, 2013), we estimated LTR-RT insertion time in H. mutabilis. We identified a round of LTR-RT burst approximately 2.5 million years ago (Mya), especially for the Ty3/Gypsy-del and Ty1/Copia-Retrofit families (Supplementary Table 6). The transposable elements (TEs) were primarily long terminal repeats (LTRs), which accounted for approximately 53% of the genome (Supplementary Figure 2).

We used de novo and homology-based gene prediction approaches and combined their results to annotate 118,222 protein-coding genes in the H. mutabilis genome. The average transcript length was 2,466.97 bp, with an average of 4.53 exons per gene and an average exon length of 218.86 bp. Compared with other model plants and Malvaceae species, the H. mutabilis genome contained a larger number of genes: H. syriacus (82,827 genes), Arabidopsis thaliana (26,869), Theobroma cacao (29,144), G. raimondii (35,526), Corchorus capsularis (29,356), Herrania umbratica (29,262), and Durio zibethinus (63,819) (Supplementary Table 7).

In addition to RNA-coding genes, we also identified 827 mature microRNAs (miRNAs), 3,604 transfer RNAs (tRNAs), 3,423 ribosomal RNAs (rRNAs), and 9,370 small nuclear RNAs (snRNAs) in the H. mutabilis genome (Supplementary Table 11).

The probable functions of the predicted genes were assessed by searching against public databases, including Swiss-Prot, NR, InterPro, and KEGG of 118,222 predicted genes in the H. mutabilis genome, 113,821 (96.3%) were assigned potential functions as a result of these database searches (Supplementary Table 8).



Genome Evolution

Although morphological investigations have placed H. mutabilis in the Malvaceae family, there is still no phylogenomic analysis of its evolutionary position within the family based on whole-genome data. Here, we compared the H. mutabilis genome with the genome sequences of nine other angiosperm plants (H. syriacus, A. thaliana, Rosa chinensis, Bombax ceiba, Amborella trichopoda, G. raimondii, T. cacao, and C. capsularis). Orthologous protein groups were identified within the genomes, yielding a total of 30,208 gene families and 198 single-copy orthologs across ten species. There were 2,781 gene families specific to H. mutabilis, and 10,593 gene families were shared among all species investigated (Figure 4). We detected 4,558 gene families expansion when H. mutabilis and H. syriacus have diverged (Figure 5C).
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FIGURE 4. Comparative genomics and evolution of gene numbers. (A) The number of genes in cluster of ten plant species, showing a high gene number in H. mutabilis compared with the model plant A. thaliana and other angiosperm species. The number of multiple-copy paralogs is high in H. mutabilis. (B) Venn diagram showing the numbers of shared gene families among H. mutabilis (Hmu), A. thaliana (Ath), H. syriacus (Hsy), R. chinensis (Rch), and G. raimondii (Gra). (C) Phylogenetic relationships of NBS genes in H. mutabilis.
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FIGURE 5. (A) Phylogenetic tree showing the close relationship between H. mutabilis and H. syriacus. Numbers outside the parentheses represent the divergence times of species (Mya), and numbers inside the parentheses indicate the confidence intervals. The red points indicated calibration points, and the red stars indicate WGD events and blue circles indicate diploidization events. (B) Distribution of 4Dtv distances.


We constructed a phylogenetic tree based on single-copy genes using PAML and estimated the divergence times among the 10 species. The Malvaceae family appeared to have diverged from a Tiliaceae–Malvaceae most recent common ancestor (MRCA) approximately 45.8 (34.8–55.6) Mya, and the Hibiscus-Gossypium divergence was estimated at 23.1 (16.0–30.5) Mya. H. mutabilis was most closely related to H. syriacus, with an estimated divergence time of approximately 15.3 (10.1–21.5) Mya (Figure 5A). In addition to the paleohexaploidization event shared by the eudicots, we observed three additional whole-genome duplication (WGD) events in H. mutabilis. Hibiscus and Gossypium shared a WGD event (13.3–20.0 Mya), H. mutabilis and H. syriacus shared a WGD event (10.76–21.51 Mya), and H. mutabilis and H. syriacus each underwent a WGD event (4.61–9.00 Mya) (Figure 5B).



Flowering Time and Disease Resistance Genes

Genetic and molecular mechanisms of floral development are highly conserved among different plant species (Schiessl et al., 2014) and include four major flowering pathways that have been well characterized in A. thaliana. H. mutabilis is similar to H. syriacus, a short-day flowering plant with a long bloom period that produces more than 30 blossoms per day. Like those of H. syriacus, the flowers of H. mutabilis open daily and last for less than 48 h. Because flowering time is frequently dependent on gene copy number (Grover et al., 2015), we investigated the copy numbers of genes involved in the four major flowering pathways in A. thaliana, T. cacao, G. raimondii, A. trichopoda, H. syriacus, and H. mutabilis. Copy numbers of most flowering-related genes were higher in H. mutabilis than in other plants, including T. cacao, G. raimondii, A. trichopoda, and H. syriacus. In particular, the copy number of the plant-specific nuclear protein GIGANTEA (GI) was three to four times greater in H. mutabilis than in A. trichopoda, T. cacao, or G. raimondii (Table 1).


TABLE 1. Copy numbers of genes encoding flowering time regulators in five plant species.
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Nucleotide-binding site (NBS) and carboxy-terminal LRR domains are found in the majority of R proteins (DeYoung and Innes, 2006; Takken et al., 2006). Based on resistance domain analyses in the H. mutabilis genome, a total of 490 NBS-containing resistance genes were identified and classified into six groups: CC-NBS-LRR, CC-NBS, TIR-NBS-LRR, TIR-NBS, NBS-LRR, and NBS. In total, their gene numbers were approximately three times greater in H. mutabilis than in A. thaliana (170). This trend was particularly striking for the NBS genes, whose numbers were much higher in H. mutabilis (192 genes) than in H. syriacus (54), T. cacao (9), G. raimondii (4), and A. thaliana (3). Although H. mutabilis had the highest number of NBS-containing resistance genes among the five angiosperms (Table 2), its number of NBS-containing genes as a percentage of total genes was the lowest. All six NBS-containing groups existed in each plant genome, but their distributions differed among species.


TABLE 2. Numbers and classifications of genes encoding NBS-containing resistance proteins in five plant species.
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Transcriptome Sequencing Analysis

Global gene expression patterns were quantified in three stages of the floral color transition of H. mutabilis ‘Drunk girl’: white (Stage 1), blended white and pink (Stage 2), and fully pink (Stage 3). A total of 9,492 genes were up-regulated from Stage 1 to Stage 2, and more than 15,000 genes were up-regulated from Stage 1 to Stage 3. A total of 8,481 genes were down-regulated from Stage 1 to Stage 2, and 15,839 genes were down-regulated from Stage 1 to Stage 3. In particular, we analyzed expression changes in anthocyanin-related genes at the three flower stages and present the results in a heatmap (Figure 6A). A number of key anthocyanin biosynthesis-related genes, such as Hmchs, HmchI, and Hmans, increased in expression from Stage 1 to Stage 3, consistent with the pattern of floral color development.
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FIGURE 6. Heatmaps show the expression of key genes in the anthocyanin biosynthesis pathway of H. mutabilis. (A) Gene expression changes in flowers of H. mutabilis ‘Drunk girl’ as their color transitions from white to fully pink. (B) Gene expression in flowers of three different color cultivars: ‘single-petal white’ (SPW), ‘single-petal pink’ (SPP), and ‘Purple silk’ (PS).


Key anthocyanin biosynthesis-related genes also differed in expression among different color cultivars of H. mutabilis, including ‘single-petal white,’ ‘single-petal pink,’ and ‘Purple silk.’ The highest expression levels were generally found in ‘Purple silk,’ which is a deep purple color form (Figure 6B).




DISCUSSION

Completeness and continuity are important indicators of genome assembly quality. In this study, we took advantage of the longer read lengths offered by ONT sequencing that have proven advantageous in the assembly of other plant genomes such as Solanum pennellii (Schmidt et al., 2017) and Chrysanthemum nankingense (Song et al., 2018). Here, we report the first genome data for H. mutabilis and estimate its genome size to be 2.68 Gb, far larger than that of H. syriacus. Our H. mutabilis genome assembled using Nanopore reads had a contig N50 of 2.02 Mb. We then used Hi-C data to cluster the contigs into forty-six chromosomes with a final scaffold N50 of 54.70 Mb. The genome contained complete copies of 92.6% of the BUSCO orthologs examined. This genome sequence will contribute to our understanding of the biosynthesis of natural products such as anthocyanins, although additional research is needed to directly link specific genes to individual traits. Nonetheless, our high-quality, annotated genome sequence provides insights into determinate flowering time and flower color in H. mutabilis.

Compared with the H. syriacus genome, the H. mutabilis genome was larger and contained more protein-coding genes. H. mutabilis and H. syriacus share an MRCA approximately 15.3 (10.1–21.5) Mya, and investigation of WGD timing in the H. mutabilis genome showed that two WGDs occurred after H. mutabilis–H. syriacus divergence and H. mutabilis speciation. WGD events and tandem duplications are the most important determinants of genome size variation in angiosperms (Piegu et al., 2006; El Baidouri and Panaud, 2013). This recent WGD event not only caused genome expansion in H. mutabilis, but may also have contributed to the morphological and physiological diversity of H. mutabilis. We inferred that gene losses, which had different frequencies in H. mutabilis and H. syriacus, made the H. syriacus genome smaller than that of H. mutabilis. H. mutabilis has a long bloom period and high blossom turnover. The copy numbers of most flowering-related genes, such as GI, CONSTANS (CO), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) were higher in H. mutabilis than in T. cacao, A. thaliana, and H. syriacus. These results show that H. mutabilis preserved many copies of flowering-related genes during the transition from a polyploid to a diploid genome.

The dynamic color change from white to pink in H. mutabilis ‘Drunk girl’ flowers is reported to be caused by variations in anthocyanin contents (Liu et al., 2008). Flavonoids are the major molecules involved in plant pigmentation (Lai et al., 2014) and include anthocyanins, flavan-3-ols (catechins and proanthocyanidins), flavanonols, flavonols, flavones, and phenolic acid (Lou et al., 2014). To date, regulation of the flavonoid pathway has been shown to occur primarily at the transcriptional level (Mol et al., 1998). Different species have distinct regulated genes, and these appear to be among the most important candidate genes for flower color determination (Casimiro-Soriguer et al., 2016; Jiao et al., 2020). To investigate the expression of anthocyanin-related genes over the course of flower development and in different color forms, we combined the high-quality genome sequence generated here with RNA-seq data from H. mutabilis The expression levels of anthocyanin biosynthetic genes such as Hmchs, HmchI, and Hmans were correlated and increased as flowers transitioned from white to pink. The pink flower color in cotton rose is related to the synthesis of cyanidin-based pigments (Chen et al., 2014), and our results indicate that low CHS, CHI, and ANS expression may inhibit cyanidin production in white flowers. Thus, combined genomic and transcriptomic analysis of H. mutabilis flowers indicated that structural genes had important roles in anthocyanin biosynthesis during the transition from white to pink flower coloration. In maize, an MYB-related protein and a bHLH containing protein interact to activate genes in the anthocyanin biosynthetic pathway (Schwinn et al., 2006). However, the functions of transcription factors, including MYBs, bHLHs, and WD40s, are unknown in H. mutabilis. The investigation of these TFs in cotton rose will be a subject for further research.
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Genomic copy number variations (CNVs) are among the most important structural variations of genes found to be related to the risk of individual cancer and therefore they can be utilized to provide a clue to the research on the formation and progression of cancer. In this paper, an improved computational gene selection algorithm called CRIA (correlation-redundancy and interaction analysis based on gene selection algorithm) is introduced to screen genes that are closely related to cancer from the whole genome based on the value of gene CNVs. The CRIA algorithm mainly consists of two parts. Firstly, the main effect feature is selected out from the original feature set that has the largest correlation with the class label. Secondly, after the analysis involving correlation, redundancy and interaction for each feature in the candidate feature set, we choose the feature that maximizes the value of the custom selection criterion and add it into the selected feature set and then remove it from the candidate feature set in each selection round. Based on the real datasets, CRIA selects the top 200 genes to predict the type of cancer. The experiments' results of our research show that, compared with the state-of-the-art related methods, the CRIA algorithm can extract the key features of CNVs and a better classification performance can be achieved based on them. In addition, the interpretable genes highly related to cancer can be known, which may provide new clues at the genetic level for the treatment of the cancer.

Keywords: gene selection, correlation-redundancy analysis, interaction analysis, copula entropy, copy number variations (CNVs), cancers prediction


INTRODUCTION

The occurrence of many diseases is associated with genome structural variations. Human genome variations include single nucleotide polymorphisms (SNPs), copy number variations (CNVs), etc. The copy number variations refer to the amplification, deletion, and more complex mutations in the genome of DNA fragments longer than 1 kb in length (Redon et al., 2006). SNPs account for 0.5% of the human genome, and nearly 12% of the human genome often undergoes copy number variations (Redon et al., 2006). Copy number variations have become an important genomic variation, and their role in the pathogenesis of complex human diseases is still being revealed.

The close relationship between CNVs and diseases has been widely recognized. Numerous studies have demonstrated that not a few human diseases involved copy number variations that could change the diploid status of particular locus of the genome (Zhang et al., 2016). The Flierl research team found that the higher vulnerability of Parkinson's disease and stress sensitivity of neuronal precursor cells carry an α-synuclein gene triplication (Flierl et al., 2014). Grangeon et al. (2021) discovered that early-onset cerebral amyloid angiopathy and Alzheimer Disease (AD) were related to an amyloid precursor protein (App) gene triple amplification. Breunis et al. (2008) reported that the copy number variations of FCGR2C gene promoted idiopathic thrombocytopenic purpura. Zheng et al. (2017) found that the low copy number of FCGR3B was associated with lupus nephritis in a Chinese population. And Pandey et al. (2015) revealed that there was both direct and indirect evidence suggesting abnormalities of glycogen synthase kinase (GSK)-3β and β-catenin in the pathophysiology of bipolar illness and possibly schizophrenia (SZ). Moreover, several neuro-developmental relevant genes, such as A2BP1, IMMP2, and AUTS2, were reported with mutational CNVs (Elia et al., 2010). In 2006, a research team composed of researchers from the United Kingdom, Japan, the United States, Canada and other countries studied 270 individuals in 4 groups of the HapMap project, and constructed the first-generation copy number variations map of the human genome, and obtained 144 CNVs region (about 12% of the size of the human genome). Among them, 285 CNVs regions were related to the occurrence of known diseases (Redon et al., 2006). Compared with SNPs, CNVs regions contained more DNA sequences, disease sites and functional elements, which could provide more clues for disease research. The publication of this map has become an important tool for studying the complex structural variations of the human genome and human diseases.

Cancer is a kind of diseases which involves uncontrolled abnormal cell growth and can spread to other tissues (Du and Elemento, 2015). The formation and development of cancer are also associated with copy number variations (Frank et al., 2007). Van Bockstal et al. (2020) discovered that HER2 gene amplification had a relationship with a bad result in invasive breast cancer and the amplification of heterogeneous HER2 had been described in 5–41% of breast cancer. The experimental results of Buchynska et al. (2019) shown that assessment of copy number variations of HER-2/neu, c-MYC and CCNE1 genes revealed their amplification in the tumors of 18.8, 25.0 and 14.3% of endometrial cancer patients, respectively. Heo et al. (2020) pointed out that CNVs were related to the mechanism of lung cancer development through a comparative experiment. Moreover, Tian et al. (2020) found that CNVs of CYLD, USP9X and USP11 were significantly associated with the risk of colorectal cancer. A latest global cancer burden data released by the International Agency for Research on Cancer(IARC) of the WHO showed that the number of patients with new cancer and cancer deaths in China ranked first around the world with 4.57 million patients with new cancer and 3 million cancer deaths, accounting for 23.7 and 30%, respectively. It is of great significance to investigate cancer causes and its treatment. Because the gene expression patterns in cancer tumor have high specificity (Liang et al., 2020), studying the relationship between these genetic information and cancer can provide a new idea for investigating the causes of cancer and help in early cancer diagnosis.

However, few studies have utilized machine learning (ML) or deep learning (DL) methods to use copy number variations data for the prediction of various cancer types. Zhang et al. (2016) used the mRMR and IFS methods to select 19 features from the 24,174 gene features of the copy number variations data set, which contained a total of 3,480 samples of 6 cancer types. They applied the Dagging algorithm with ten-fold cross-validation to classify cancer. But the accuracy of final result only reached 75%. Liang et al. (2020) used CNA_origin for cancer classification on the same data set. CNA_origin was an intelligent combined deep learning network, which was composed of two parts—a stacked autoencoder and a one-dimensional convolutional neural network with multiscale convolutional kernels. CNA_origin eventually had an overall accuracy of 83.81% on ten-fold cross-validation. But it could not identify which gene features were more important and more closely associated with cancer classification.

Here, we present an improved novel computational algorithm named CRIA, which can successfully classify cancer based on the information of gene CNVs levels from the same dataset. CRIA can not only effectively perform dimensionality reduction operation on high-dimensional gene CNVs data, which can improve the efficiency of the experiment, but also selects specific gene features closely related to cancer, making it clear which genes are more important in cancer classification. And the final results had higher classification accuracy than the state-of-the-art methods.

The rest sections of this paper are structured as follows: Section Background describes the theoretical background and related work. Section The Proposed Method-CRIA introduces the collection of CNVs dataset, the implementation details and performance of the proposed algorithm. Section Results and Discussions demonstrates the experimental results on CNVs dataset and the performance comparison with the recent methods. In section Conclusions, we summarize the conclusions and point out our future work.



BACKGROUND

In section Information Theory, we introduce some basic information theory knowledge, which is the core of our proposed algorithm. Before proposing our algorithm, we summarize some related work on gene selection methods and point out their drawbacks in section Related Work.


Information Theory

As early as 1948, Shannon's information theory had been proposed (Shannon, 2001), providing an effective method for measuring random variables' information. The entropy can be understood as a measure of the uncertainty of a random variable (Cover and Thomas, 1991). The greater the entropy of a random variable, the greater its uncertainty. If X = {x1, x2, …, xl} is a discrete random variable, its probability distribution is p(x) = P(X = x), x ∈ X. The entropy of X is defined as:

[image: image]

where p(xi) is the probability of xi. Here the base of log is 2 and specified that 0 log 0 = 0.

If Y = {y1, y2, …, ym} is a discrete random variable, p(xi, yj) is the joint probability of X and Y. Then, their joint entropy is defined as:
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If the random variable X is in a given situation, the uncertainty measure of the variable Y can be defined by conditional entropy as follows:

[image: image]

where p(yj|xi) is the conditional probability of Y under the condition of X.

Definition 1: Mutual information (MI) (Cover and Thomas, 1991) is a measure of useful information in information theory. It can be regarded as the amount of information shared by two random variables. MI can be defined as:
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Definition 2: Conditional mutual information (CMI) (Cover and Thomas, 1991) can be defined as the amount of information that shared by variables X and Y, if a discrete random variable Z = {z1, z2, …, zn} is known.
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Definition 3: Joint mutual information (JMI) (Cover and Thomas, 1991) measures the amount of information shared by a joint random variable (X1, X2, ⋯Xq) and Y and it can be defined as:
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Definition 4: Interaction gain (IG) had been introduced by Jakulin (2003), Jakulin and Bratko (2004) to measure the amount of information shared by three random variables at the same time. Mutual information can be regarded as a two-way interaction gain. IG is defined as follows:
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Related Work

The irrelevant features and redundant features existed in high-dimensional data will damage the performance of the learning algorithm and reduce the efficiency of the learning algorithm. Therefore, the dimensionality reduction of features is one of the most common methods of data preprocessing (Orsenigo and Vercellis, 2013) and its purpose is to reduce the training time of the algorithm and improve the accuracy of final results (Bennasar et al., 2015). In recent years, the research of gene selection methods based on mutual information has received wide attention from scholars. Best individual gene selection (BIF) (Chandrashekar and Sahin, 2014) is the simplest and fastest filtering gene selection algorithm, especially suitable for high-dimensional data.

Battiti utilized the mutual information (MI) between features and class labels [I(fi; c)] to measure the relevance and the mutual information between features [I(fi; fs)] to measure the redundancy (Battiti, 1994). He proposed the Mutual Information Gene selection (MIFS) criterion and it is defined as:
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where F is the original feature set, ΩS is the selected feature subset, F − ΩS is the candidate feature subset and c is the class label. β is a configurable parameter to determine the trade–off between relevance and redundancy. However, β is set experimentally, which results in an unstable performance.

Peng et al. (2005) proposed the Minimum-Redundancy Maximum-Relevance (MRMR) criterion and its evaluation function is defined as:
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where |ns| is the number of selected features.

Similarly, other gene selection methods that consider relevance between features and the class label and redundancy between features are concluded, such as Normalized Mutual Information Gene selection (NMIFS) and Conditional Mutual Information (CMI), and they were proposed by Estévez et al. (2009) and Liang et al. (2019) respectively. Their evaluation function are defined as follows:
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where H(fi) is the information entropy and H(fi|c) is the conditional entropy.

Many gene selection algorithms based on information theory tend to use mutual information as a measure of relevance, which will bring a disadvantage that mutual information tends to select features with more discrete values (Foithong et al., 2012). Thus, the symmetrical uncertainty (Witten and Frank, 2002) (a normalized form of mutual information, SU) is adopted to solve this problem. The symmetrical uncertainty can be described as:

[image: image]

The SU can redress the bias of mutual information as much as possible and scale its values to [0,1] by penalizing inputs with large entropies. It will make the performance of gene selection better. Same as MI, for any two features fi1 and fi2, if SU(fi1; c) > SU(fi2; c), due to more information can be provided by the former, fi1 and c are more relevant. If SU(fi1; fs) > SU(fi2; fs), owing to the information shared by fi1 and fs being more and providing less information, fi1 and fs have greater redundancy.

Additionally, these gene selection algorithms mentioned above fail to take the feature interaction into consideration. After relevance and redundancy analysis, one feature deemed useless may interact with other features to provide more useful information. Especially in complicated biology systems, molecules interacting with each other, they work together to express physiological and pathological changes. If we only consider relevance and redundancy but ignore the feature interaction in data analysis, we may miss some useful features and affect the analysis results (Chen et al., 2015).

Sun et al. (2013), Zeng et al. (2015), and Gu et al. (2020), respectively proposed a gene selection method using dynamic feature weights: Dynamic Weighting-based Gene selection algorithm (DWFS), Interaction Weight based Gene selection algorithm (IWFS) and Redundancy Analysis and Interaction Weight-based gene selection algorithm (RAIW). All of them employ the symmetric uncertainty to measure the relevance between features and the class label, and exploit the three-dimensional interaction information (mentioned at Information Theory Definition 4) to measure the interaction between two features and the class label. The evaluation functions are defined as follow:
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where w(fi) is the weight of each feature and its initial value is set to 1, α is a redundancy coefficient and the value is relevant to the number of dataset's features, fs is one of features in the selected feature subset. In each round, the feature weight w(fi) is updated by their interaction weight factors.
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where [image: image] denotes the feature weight of the previous round, I(fi; c|fs) is the conditional mutual information of fi and c when fs is given. I(fi; fs; c) is three-dimensional interaction information. However, we can find that although DWFS and IWFS take into account relevance and interaction, they ignore the redundancy between features. Correlation, redundancy and interaction are all taken into account by RAIW, but there is a no reasonable value for α in a specific dataset.

Furthermore, some other gene selection methods about three-way mutual information are listed and their evaluation function are defined as follows, such as Composition of Feature Relevance (CFR) (Gao et al., 2018a), Joint Mutual Information Maximization (JMIM) (Bennasar et al., 2015), Dynamic Change of Selected Feature with the class (DCSF) (Gao et al., 2018b) and Max-Relevance and Max-Independence (MRI) (Wang et al., 2017).
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where I(fi, fs; c) is the joint mutual information of fi, fs and c. I(fs; c|fi) is the conditional mutual information of fs and c when fi is given. However, these algorithms only take into account three-way mutual information among features and the class label, and none of them considers relevance, redundancy and three-dimensional mutual information between features at the same time, which will affect the performance of these algorithms.




THE PROPOSED METHOD-CRIA

In section CNVs Dataset, we firstly introduce the collection of datasets and the process of data processing specifically. Subsequently, we redress other methods' shortcomings and propose an improved gene selection algorithm called CRIA in section The Proposed Algorithm and give it a specific implementation in section Algorithm Implementation. Finally, in section Verify the Performance of CRIA, we verify the performance of CRIA by comparing the experimental results of CRIA and other 8 algorithms on 5 datasets.


CNVs Dataset

The datasets of copy number variations in different cancer types used in this paper comes from the cBioPortal for Cancer Genomics (http://cbio.mskcc.org/cancergenomics/pancan_tcga/, Release 2/4/2013) (Cerami et al., 2012; Ciriello et al., 2013; Gao et al., 2013). The copy number values in the dataset are generated by Affymetrix SNP 6.0 arrays for the set of samples in the cancer genome atlas (TCGA) study (Liang et al., 2020). The preprocessing analysis of the dataset is performed with GISTIC (Beroukhim et al., 2007). There are 11 cancer types in the cBioPortal database with the largest sample number was 847 and the smallest sample was 135. In order to avoid affecting the experimental results due to the large difference in the number of samples of cancer types, we only select six cancer types with more than 400 samples as our experimental data. The details of six cancer types are listed in Table 1, and totally there are 3480 samples in our experimental dataset.


Table 1. The number of samples for each cancer type in this dataset.
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In this dataset, each sample consists of labels for 24174 genetic cytobands. The CNV spectrum is divided into five regions/labels by setting four thresholds in cancer algorithm (Mermel et al., 2011). Then, the CNV values are discretized into 5 different values—“-2,” “-1,” “0,” “1,” “2,” where “-2” denotes the deletion of both copies (possibly homozygous deletion), “−1” means the deletion of one copy (possibly heterozygous deletion), “0” corresponds to exactly two copies, i.e., no gain/loss (diploid), “1” denotes a low-level copy number gain and “2” means a high-level copy number amplification (Ciriello et al., 2013).

The CNVs values are preprocessed to the range of [−1,1] with Equation (23).
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where val is the value of gene copy number variations of each sample, |val|max is the maximum absolute value of gene CNVs among samples and val′ is the recalculated value.



The Proposed Algorithm

In section Related Work, we analyze the 11 gene selection methods and point out their shortcomings. In view of the defects of these algorithms, we propose an improved gene selection algorithm to redress their shortcomings: Correlation-Redundancy and Interaction Analysis based gene selection algorithm (CRIA). This method uses the symmetric uncertainty (SU) to measure the correlation between features and the class label and the redundancy among features. In addition, copula entropy is introduced to measure the feature interaction information. Different from the three-way interaction of DWFS, IWFS and RAIW, the proposed algorithm considers the interaction between the candidate feature and the entire set of selected features, instead of being limited to the three-dimensional interaction.

As we know, Shannon's definition of mutual information aims at a pair of random variables, and it measures the correlation between two random variables. Therefore, naturally, many researchers have tried to study how to extend the definition of mutual information from two variables to multivariate situations. In 2011, Ma and Sun published a paper (Ma and Sun, 2011), which contributed to the entropy of information theory. They defined a new concept of entropy in that paper, called Copula Entropy. Copula Entropy is defined on a set of random variables and conformed to symmetry. Therefore, it is a multivariate extension of mutual information, which can be utilized to measure the full-order, non-linear correlation among random variables. They proved the equivalence between copula entropy and the concept of mutual information, which was, mutual information was equal to negative copula entropy (Ma and Sun, 2011).

The copula entropy of [image: image] is defined as:
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where [image: image] are random variables with marginal functions [image: image] and copula density [image: image].

Thus, we can use interaction factor IFCRIA, which is defined in Equation (25) to measure the interaction between the candidate feature and the selected feature subset. The meaning of IFCRIA is that, after adding a random candidate feature fi into the selected feature subset ΩS, the amount of interaction information increased relative to the original selected feature subset. So, the bigger value of IFCRIA, the bigger value of interaction between fi and ΩS. In each round of calculation, we are supposed to choose the variable that maximizes the IFCRIA value.
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Where c is the target class label.

Integrating the correlation between the features and the class label and the redundancy between features that we improved, and the interaction factor we proposed, we can define the evaluation criterion of a candidate feature as follows:
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For the equation (26), we can see that the proposed algorithm can take into account the relevance between the candidate feature and the class label, redundancy and multi-dimensional interaction among the candidate feature and the selected features at the same time. The formula SU(fi, c) can denote the relevance and [image: image] calculates the redundancy. Also, the formula [image: image] denotes the interaction among the features.

According to the definition of copula entropy and Equation (24), there is a theorem.

Theorem 1: The mutual information of random variables is equivalent to their negative copula entropy (Ma and Sun, 2011):
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According to Theorem 1, the value of copula entropy can be calculated by the MI of multivariates. The definition of mutual information extended from two variables to multivariate is described as follows:
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where Xm = {x1, x2, …, xm−1, xm} = {Xm−1, xm}.

According to the Equation (28), we have:
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Therefore,
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According to Equation (26), (27) and (30), we have:
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Let ΩS = {f1, f2, …, fm}, Since,
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Therefore,
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The general flow chart of the proposed algorithm is presented in Figure 1 we can see that an original feature set F is first given, from which we select the main effect feature that maximizes the value of (12). Then the main feature is put into the selected feature subset ΩS. For each feature in the candidate feature set, after conducting correlation and redundancy analysis, we are next supposed to use (25) to perform interaction analysis on it. Choose the feature that maximizes the value of (33), which then is put into the selected feature set. If the number of the selected features meets the threshold condition, the above steps will be executed again, otherwise the program ends directly.


[image: Figure 1]
FIGURE 1. General flow chart of the proposed algorithm.




Algorithm Implementation

We propose a gene selection method based on correlation-redundancy and interaction analysis. The pseudo code of CRIA algorithm is described as follows.

Here, for the CNVs dataset, we set the value of the threshold M to be 200 to reduce the calculation time and avoid curse of dimensionality. In addition, we need to control the number of selected features to be same as the method proposed by Zhang et al. (2016).

The CRIA algorithm consists of two stages:

Stage 1 (lines 1–7): In this part, the selected feature subset ΩS and the original feature set F are first initialized. For each feature in the original feature set fi, the symmetrical uncertainty SU(fi; c) between fi and class label c is calculated. The feature whose value of symmetrical uncertainty with class label is the maximum is selected out and added into the selected features subset ΩS, which we name “the main effect feature.”

Stage 2 (lines 8-18): The second stage mainly calculates the correlation measure SU(fi; c) and the redundancy measure [image: image]. Then the interaction value IFCRIA between ΩS, fi and c is updated. JCRIA(fi) is calculated and the feature with the maximum value is added into the selected feature subset ΩS. This procedure terminates until the number of selected features is no less than predefined threshold M.

According to Algorithm 1, when the size of the feature subset reaches the set threshold M, the procedure will be terminated. The value of the threshold setting should be determined by different datasets. A small M can reduce the amount of calculation but may also lose many effective features that are useful; a large M will increase the amount of calculation but may improve the accuracy of final result (Foithong et al., 2012). Actually, when the threshold exceeds a certain value, the accuracy of the final result will not only not increase, but may decrease, and it will bring computational complexity. The selected features are ranked according to the value of the evaluation function JCRIA(fi) from largest to smallest.


Algorithm 1. CRIA: correlation-redundancy and interaction analysis based gene selection algorithm.

[image: Algorithm 1]



Verify the Performance of CRIA

Eight gene selection algorithms—JMIM (Bennasar et al., 2015), mRMR (Peng et al., 2005), DWFS (Sun et al., 2013), IWFS (Zeng et al., 2015), RAIW (Gu et al., 2020), CFR (Gao et al., 2018a), DCSF (Gao et al., 2018b), and MRI (Wang et al., 2017) are used to compare with CRIA to examine the performance of our proposed method.

The datasets used in validation experiment come from Arizona State University (ASU) datasets (Li et al., 2017), which include four biological data and one other type of data (digit recognition). They are all high-dimensional data. The smallest feature number is 2000 and the largest feature number is 9182 among them. The specific details of these datasets are shown in Table 2. We only use minimum description length method (Fayyad and Irani, 1993) for gene selection and utilize it to convert these numerical features.


Table 2. Datasets for comparison between CRIA algorithm and other algorithms.
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The number of features N used in the experiment is reduced to 50 and three classifiers—IB1, J48 and Naïve Bayes are exploited. The parameters of the classifiers are set to the default parameters of Waikato Environment for Knowledge Analysis (WEKA) (Hall et al., 2009). We use 10 times of ten-fold cross-validation to avoid the influence of randomness on experimental results. Then mean value and Standard Deviation (STD) are taken as the comparison indices of performance of each algorithm and STD is defined as follows:
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where nrun is the number of times of our experiments, here we set nrun = 10, ACC is the classification accuracy, u represents the average value of ACC, and N denotes the number of samples. The bigger ACC, the better performance, and the smaller STD, the higher stability.

The comparison results between the proposed algorithm and other gene selection algorithms are shown in Tables 3–5. As shown in Table 3, for the five data sets in the experiment, we can see that the classification results of CRIA in four data sets are better than other eight algorithms, which ranking first, except TOX_171, ranking fourth. Compared with other algorithms, the average accuracy of CRIA is increased by 2.42–5.08%. In Table 4, CRIA also outperforms the other 8 algorithms on four data sets except TOX_171, on which the experimental results of CRIA ranking third. The biggest improved rate of the proposed algorithm is 10.05% and the smallest one is 3.73%. From Table 5, we can find that the results of CRIA on the three data sets are superior to other algorithms, ranking first. However, on the datasets of Carcinoma and TOX_171, compared with the maximum values, the experimental accuracies of CRIA are slightly decreased by 0.50 and 1.71%, ranking second and third respectively. From the perspective of average accuracy, CRIA's result is better than other algorithms, and it is improved by 2.11–8.67%.


Table 3. Comparision (mean ± std.dev.) of performance between CRIA and other 8 algorithms with J48 classifier.
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Table 4. Comparision (mean ± std.dev.) of performance between CRIA and other 8 algorithms with IB1 classifier.
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Table 5. Comparision (mean ± std.dev.) of performance between CRIA and other 8 algorithms with Naïve Bayes classifier.
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RESULTS AND DISCUSSIONS


Evaluation Metrics of Experimental Results

Four evaluation metrics—precision, recall, accuracy and F1-score are utilized to evaluate the performance of the corresponding method and values of these criteria are defined as equation (35).
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where TP, TN, FP, and FN denotes the numbers of true positives, true negatives, false positives, and false negatives respectively.



The CRIA and IFS Results

As mentioned in section Evaluation Metrics of Experimental Results, each sample is represented by 24,174 features, each of which indicates the expression level of genes. The 24174 feature genes are sorted by CRIA value in descending order. However, we only select the top 200 features in this work for the consideration of computational time and curse of dimensionality. The top 15 key feature genes chosen by CRIA defined by equation (26) are listed in Table 6.


Table 6. The top 15 feature genes chosen by CRIA defined as equation (26).
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We use the Incremental Gene selection (IFS) (Yang et al., 2019) to determine the optimal feature set. The first 200 features are added one by one to a feature subset in order. Each time a feature is added, a classifier is trained and examined. So, 200 classifiers are constructed. We use the criteria of accuracy to evaluate the performance of all the 200 classifiers and then we choose the classifier with the highest accuracy as the final one. The corresponding feature subset that the final classifier used is deemed to be the optimal feature set.

In this paper, three commonly used classifiers are adopted to verify the generalization performance of the proposed gene selection method on different classifiers. ten-fold cross-validation is used to evaluate our algorithm with the selected features. The complete data set is randomly split into 10 parts of approximately equal size. The three classifiers are trained 10 times; nine of the 10 subsets are used as the training datasets, and the remaining one is the test dataset. The average values of accuracy for each classifier are calculated and the IFS results are shown in Figure 2. Here, we name our methods as CRIA_CatBoost, CRIA_SVM and CRIA_LightGBM. From Figure 2, it can be seen that the highest accuracy of 86.90% for CRIA_CatBoost method followed by 86.41% for CRIA_LightGBM and 85.98% for CRIA_SVM method, with only using the CNVs of 131 genes, 138 genes and 122 genes respectively.


[image: Figure 2]
FIGURE 2. Classification accuracies of three classifiers (CatBoost, LightGBM and SVM) with different numbers of features during the IFS procedure. The top 200 feature genes are selected by CRIA method.




The Proposed Algorithm Performance

For the different classifiers used in this work, after determining the optimal numbers of features according to the CRIA and IFS results, the classification performance can be further analyzed. The average values of three metrics-precision, recall and F1-score defined in Equation (35) on 10 test datasets are listed in Table 7.


Table 7. Average performance of precision, recall and F1-score on 10 test datasets with three classifiers via ten-fold cross-validation (%).
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Performance Comparison With Other Methods

After selecting important features, we use three common classifiers—CatBoost, SVM and LightGBM to predict cancer samples. The performance of our methods are compared with other two classification methods published before whose experimental dataset is the same as ours. Liang et al. (2020) used a method called CNA_origin which was composed of a stacked autoencoder and an one-dimensional convolutional neural network. The 24,174 gene features were extracted to 100 genes by the autoencoder, and then these 100 gene features were put into the 1D CNN for classification (Liang et al., 2020). A computationally method for cancer types classification proposed by Zhang et al. (2016) was named as mRMR_Dagging here because there was no specific method name given by authors. It first used mRMR and IFS to select 19 of the 24,174 genes as classification features, and then used the Dagging algorithm to give the final results.

In Table 8, it can be seen that if the results of our methods are superior to CNA_origin and mRMR_Dagging, they are marked in bold. Similarly, if the largest of CNA_origin and mRMR_Dagging results is better than our method, it is also marked in bold. Table 8 demonstrated that the performance of our methods is superior to CNA_origin and mRMR_Dagging for UCEC, KIRC, GBM, and COADREAD. For UCEC, the recall and F1-score of our methods (CRIA_Cat- Boost, CRIA_SVM and CRIA_LightGBM) are all superior to CNA_origin and mRMR_Dagging. The best precision of our methods is 0.12 percentage points higher than mRMR_Dagging. SVM and LightGBM are slightly worse than mRMR_Dagging with reductions of 5.28 and 3.82% in precision respectively. For KIRC, the precision and F1-score are all superior to CNA_origin and mRMR_Dagging except the F1-score of SVM, which performs slightly worse than the CNA_origin with reductions of 2.61%. Compared with the best, CNA_origin, the recall of our methods are decreased by 4.77% for CatBoost, 7.15% for SVM and 4.30% for LightGBM. For OV, compared with CNA_origin, the recall of our methods is at least increased by 1.36%. The precision and F1-score are slightly worse than CNA_origin, with reductions at most of 8.40, and 2.37%, respectively. For GBM and COADREAD, our methods are better than CNA_origin and mRMR_Dagging on all evaluation indicators. Compared with the best of the other two algorithms, the worst precision of our methods is increased by 1.64 and 8.53%, respectively, the worst recall is increased by 4.39 and 12.86%, respectively, and the worst F1-score is increased by 4.58 and 10.76%, respectively. For BRCA, the worst among our methods performs slightly worse than the best CNA_origin algorithm, with reductions of 3.57% in precision, 6.09% in recall and 4.66% in F1-score respectively.


Table 8. Performance comparison of the proposed algorithm predictions with those of other methods (%).
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In addition, the macro-average results of four evaluation metrics: accuracy, precision, recall and F1-score are used to assess our methods and the other two algorithms on the datasets of six types of cancers. The results can be seen in Figure 3. For accuracy, our methods have mean values of 86.90% for CatBoost, 86.41% for LightGBM and 85.98% for SVM respectively, which are increased by 3.69, 3.10, and 2.59% compared with CNA_origin. For precision, the average values of our methods are 86.61, 86.39, and 85.86%, which are increased by 3.49, 3.23, and 2.59%, respectively compared with the best among CNA_origin and mRMR_Dagging. For recall, our methods' mean values are 86.37, 86.01, and 85.47%, which are 2.92, 2.56 and 2.02 percentage points higher than CNA_origin, respectively. For F1-score, compared with our methods, whose average values are 86.60, 86.14, and 85.62%, CNA_origin is decreased by 3.71, 3.19, and 2.60%, respectively.


[image: Figure 3]
FIGURE 3. Performance comparison of 4 evaluation metrics: accuracy, precision, recall and F1-score among our methods and the other two algorithms (CNA_origin and mRMR_Dagging).




Further Discussion

In order to study the relationship between the classes, we also summarize the confusion matrices in Figure 4 for class predictions using our methods. From Figure 4, we can find that there existed a high error rate when predicting the samples of UCEC. Regardless of whether it is CRIA_CatBoost, CRIA_SVM or CRIA_LightGBM, more than 10% of the UCEC samples are incorrectly predicted as OV and BRCA. In Figure 4A, 14.00% of UCEC samples are predicted as OV, while 11.06% of UCECsamples are predicted to be BRCA. In Figure 4B, 14.45 and 11.74% of UCEC samples are predicted as OV and BRCA respectively. In Figure 4C, 13.32 and 12.42% of UCEC samples are predicted as OV and BRCA respectively. The reasons may be that UCEC, OV and BRCA are hormone-dependent tumors and they relate closely in tumorigenesis. The 16 and 27 risk regions were identified by an independent genome-wide association study (GWAS) on endometrial cancer and ovarian cancer, respectively (Glubb et al., 2020). Studies have shown that mutations in breast cancer susceptibility genes (BRCA1, BRCA2) have a relationship in hereditary ovarian cancer. Mutations at either end of the BRCA1 gene increase a person's risk of breast cancer, and its probability is higher than ovarian cancer. However, mutations in the middle of the BRCA1 gene put a person at a higher risk of ovarian cancer than breast cancer (Shi et al., 2017). In addition, there is also a study indicated that UCEC, OV and BRCA all have a relationship with the changes in estrogen and estrogen receptors (Rodriguez et al., 2019).


[image: Figure 4]
FIGURE 4. Confusion matrices on the test groups: (A) CRIA_CatBoost; (B) CRIA_SVM; (C) CRIA_LightGBM.





CONCLUSIONS

In this paper, we introduce a gene selection algorithm—CRIA. We firstly apply this algorithm to 5 datasets and verify the effective performance of CRIA through comparison with other eight gene selection algorithms. The proposed algorithm can select features which are closely related to the class label. Then, we use this algorithm to select 200 genes that have a close relationship with cancer types from 24,174 genes features based on the value of copy number variations in the samples, and then combine three common classifiers—CatBoost, SVM and LightGBM to predict the type of cancer. Our experimental results show that our methods have higher accuracies than the state-of-the-art methods for solving this problem. Our research has a certain degree of interpretability for cancer-related researches at the genetic level. As we all know, cancer is closely related to gene structural variations and the appearance of cancer is often accompanied by abnormalities in the deoxyribonucleic acid (DNA) sequence. Because CNVs is one of the most crucial structural variations of genes, studying the relationship between cancers and CNVs is of great significance. Many studies have tried to utilize the genetic information of cancers to predict cancer type, which can provide significant guidance for patient care and cancer therapy in promptly.

The future direction of this work can continue to develop from two aspects. First of all, because we only use the datasets of six cancer types and the total number of samples is only 3,480 in this paper, by collecting data sets of other cancer types and optimizing the proposed algorithm, we can continue to conduct further research in the field of cancer classification based on copy number variations. Moreover, integrating non-CNVs features for the samples can be taken into consideration. In addition to using CNVs for cancer prediction, we can also apply other genetic information for cancer prediction, or combine several biomarkers to reduce the error rate of classification as much as possible.
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The bread wheat (Triticum aestivum) pangenome is a patchwork of variable regions, including translocations and introgressions from progenitors and wild relatives. Although a large number of these have been documented, it is likely that many more remain unknown. To map these variable regions and make them more traceable in breeding programs, wheat accessions need to be genotyped or sequenced. The wheat genome is large and complex and consequently, sequencing efforts are often targeted through exome capture. In this study, we employed exome capture prior to sequencing 12 wheat varieties; 10 elite T. aestivum cultivars and two T. aestivum landrace accessions. Sequence coverage across chromosomes was greater toward distal regions of chromosome arms and lower in centromeric regions, reflecting the capture probe distribution which itself is determined by the known telomere to centromere gene gradient. Superimposed on this general pattern, numerous drops in sequence coverage were observed. Several of these corresponded with reported introgressions. Other drops in coverage could not be readily explained and may point to introgressions that have not, to date, been documented.
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INTRODUCTION

The bread wheat (Triticum aestivum) pangenome is a patchwork containing translocations and introgressions from wheat’s wild relatives (Przewieslik-Allen et al., 2021) as well as numerous deletions. Some of these features may be present in only a handful of accessions coming from a limited geographic area whilst others may be prevalent and present in varying combinations across many accessions. Some variable regions may have occurred naturally by mutation or as a consequence of promiscuous pollination events between wheat and one of its primary relatives (He et al., 2019). Others are the result of breeding efforts (Schneider et al., 2008) using traditional methods to introduce segments from progenitors and close relatives or, more recently, using more advanced methods to perform wide crosses (Cseh et al., 2019; Devi et al., 2019; King et al., 2019; Xu et al., 2020). Regardless of their origin, the number of these variable regions that have been documented is probably not a genuine reflection of their true number; breeding companies may not have reported, and indeed may not know, all the introgressed regions in their elite lines, and chance events in landrace accessions are unlikely to have been documented at all. It would seem highly likely, therefore, that there are numerous unknown, introgressions present in modern wheat accessions (Przewieslik-Allen et al., 2021).

With this in mind, and with modern techniques allowing for wide crossing with increasing success, increasingly diverse wheat accessions are becoming available for pre-breeding (Hao et al., 2020). To be of use to research and breeding programs, such material needs to be tracked using either targeted molecular markers (Singh et al., 2018; Rasheed and Xia, 2019) or sequencing. The former has most frequently been used because it offers low cost and high throughput (Zhang J. et al., 2017; Zhang W. et al., 2017; Przewieslik-Allen et al., 2019). However, marker probes will only hybridize to, and so provide a signal for, the sequences for which they were designed. Thus, wheat genotyping markers intended for introgression detection need to be designed using sequences from a combination of wheat and the progenitors and relatives thought to have been the source of those introgressions (Wang et al., 2014; Zhang J. et al., 2017; Przewieslik-Allen et al., 2019). Where the source of introgressed material is unknown, and so not included in probe design, genotyping is unlikely to track such regions.

Sequencing, having no requirement for prior knowledge of the target, does not suffer from such a problem. However, the size and complexity of the wheat genome create problems in this regard. T. aestivum has a large (∼17 Gb) polyploid and highly repetitive genome of which the exome constitutes less than 5% (International Wheat Genome Sequencing Consortium [IWGSC], 2014). To sidestep these issues, targeted sequencing approaches, such as exome capture, are used (Kaur and Gaikwad, 2017). In wheat, several exome capture systems that incorporate capture probe sets derived from both hexaploid wheat and its relatives have been proposed (Winfield et al., 2012; Gardiner et al., 2019; He et al., 2019). The capture probes themselves can tolerate some degree of mismatch thus allowing the capture of sequences outside the immediate confines of the species from which they are derived. The Roche SeqCap EZ system can tolerate up to 10% (Roche pers com) and the Arbor Biosciences myBaits system can tolerate up to 20% divergence from the target sequence (Arbor Biosciences, 2021). This property is highly beneficial where the exact source of the material is unknown and has been exploited to capture sequences from diverse origins in the wild relative species of cotton (Salmon et al., 2012), cows (Cosart et al., 2011), and humans (Jin et al., 2012) as well as in wheat (Saintenac et al., 2011; Henry et al., 2014; He et al., 2019).

We recently described the variable sequence coverage of the wheat variety ‘Player’ when exome capture data were aligned to the ‘Chinese Spring’ reference sequence (Przewieslik-Allen et al., 2021). Distinct drops in sequence coverage were evident in chromosomes 2A and 2B which correlated with introgressions from Aegilops ventricosa and Triticum timopheevii, respectively. As the use of exome capture prior to sequencing followed by alignment to a standard reference is common practice, the potential for this to be disrupted by introgressions is a concern, especially as many interesting, rare, and novel alleles may be located in regions derived from wild relatives. This was investigated using 10 elite T. aestivum cultivars and 2 T. aestivum landrace accessions used in breeding.



RESULTS


Sequence Coverage

Using gene and promoter sequence capture (Gardiner et al., 2019), 12 T. aestivum accessions (10 elite varieties and 2 landrace accessions) were sequenced and total coverage compared. Total reads were between 48,255,718 and 145,897,760 per accession; after quality trimming and alignment to the IWGSC RefSeq v1.0 ‘Chinese Spring’ reference (International Wheat Genome Sequencing Consortium [IWGSC], 2018), there were between 20,973,857 and 63,662,179 uniquely mapped, paired reads per accession (Table 1).


TABLE 1. Read statistics before and after trimming with alignment statistics for total mapped and uniquely mapped reads.

[image: Table 1]
Sequence coverage across chromosomes displayed a characteristic pattern; that is, there was a greater depth of coverage toward the ends of chromosome arms and lower coverage across centromeres (Figure 1A). However, this overall pattern was, in places, interrupted by regions of pronounced reduction in sequence coverage. These regions were not seen on all chromosomes or simultaneously in all accessions (Supplementary File 1). The most pronounced of these reductions in coverage was observed in ‘Bacanora’, ‘Bobwhite’, and ‘KWS Kielder’ and extended across the whole of the short arm of chromosome 1B (c. 240 Mb; Figure 1B) in line with the well documented and prevalent 1RS/1BL Secale cereale translocation (Rabinovich, 1998). There was no reduction in capture probe density across 1BS (Figure 1C) and the nine accessions without the 1RS translocation do not show a reduction in read coverage across this chromosome arm (Supplementary File 1: 1B).
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FIGURE 1. Read coverage for the accession ‘Bacanora’ after alignment to IWGSC ‘Chinese Spring’ assembly version 1.0. (A) Read coverage across chromosomes tended to be higher toward the telomeres and lower across the centromere. (B) Chromosome 1B shows a clear drop in coverage across the short arm (NB in all plots, chromosome short arms are on the left). (C) Location and density of capture probes across chromosome 1B (data from Gardiner et al., 2019).


Other large drops in coverage were seen on 2BL, 2DL, and 5BL (Figure 2) which extended over approximately 85, 45, and 40 Mb, respectively. Additional, smaller drops in coverage were also observed in telomeric regions, such as 2AS (Figure 3), 7DL, and an additional region in 2DL (Supplementary File 1).
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FIGURE 2. (A) Average depth of coverage for chromosome 5B in the accessions ‘Bobwhite’ and ‘Pavon 76’; both show a drop in read coverage on the long arm at approximately position 490,000,000–540,000,000. (B) Dendrogram based on the 1,749 Axiom markers mapped to chromosome 5B; the 8 varieties (‘Bobwhite’, ‘Boregar’, ‘KWS Kielder’, ‘Maris Huntsman’, ‘Pavon 76’, ‘Renan’, ‘Riband’, and ‘Watkins 141’) with the drop in read coverage cluster. (C) A sample of the SNP calls across the interval 499,569, 304–534,345,241 highlighting the difference between the two groups (blue and red are the alternative homozygote calls; green indicates heterozygote calls).
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FIGURE 3. Sequence coverage across the first 100 Mb of chromosome 2AS. The two accessions, ‘Boregar’ and ‘Renan’, show reduced coverage across the first 25–30 Mb which corresponds with the size of the known introgression from Ae. ventricosa (Robert et al., 1999).




Cluster Analysis of Accessions

To determine whether there was any relationship between the lines that shared read coverage profiles, cluster analysis was performed with Axiom 35K Wheat Breeders’ Array genotyping data (Allen et al., 2016). Analysis was performed on markers specific to the chromosomes 2B (2,083 markers), 2D (2,237 markers), and 5B (1,749 markers). Accessions showed a pattern of clustering that corresponded with the drops in coverage (Figure 2B and Supplementary File 2). For chromosome 5B, for example, the 12 accessions separated into two main clusters; the accessions thought to contain the deletion fell into one cluster while those with even sequence coverage fell into the other. The separation into two clusters was driven by the markers spanning the drop. Across the interval corresponding to the decline in read coverage on chromosome 5B (position 499,569,304–534,345,241), there were 141 single nucleotide polymorphism (SNP) markers; for these markers, the mean percentage similarity between the genotype calls for ‘Chinese Spring’ and those of the eight accessions displaying the drop in coverage was only 13.3%. This compares to a mean similarity of 59.1% for the SNP calls across the rest of the chromosome (Figure 2C).



Bibliographic Search for Introgressions

A number of wheat introgressions reported in the literature were assembled (Table 2) to determine whether there was any relationship between them and the patterns of reduced sequence coverage observed in this study. The large drop in coverage on 1BS, for example, is present in those varieties (Bacanora, Bobwhite, and KWS Kielder) known to possess a whole arm translocation from S. cereale; we have previously reported this ourselves based on genotyping results using the Axiom High-Density Array (Winfield et al., 2015). Other chromosomal regions with reduced read coverage were also related to regions of known introgressions. However, not all the reports of introgressions that we found in the literature had a corresponding drop in sequence coverage, and in some cases, there was a drop in sequence coverage for which no source was found. Notable deletions, such as that on 1DL of ‘Cadenza’, highlight the similarity between deletions and introgressions in sequence coverage.


TABLE 2. Introgressions and deletions reported in the literature for the accessions in this study.
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Efficacy of Sequence Capture

The accessions containing the 1RS.1BL translocation (‘Bacanora’, ‘Bobwhite’, and ‘KWS Kielder’) displayed a clear drop in read coverage across the short arm of 1B; we hypothesized that this was due to capture efficacy in the different backgrounds. The potential efficacy of probes to capture sequences from either ‘Chinese Spring’ or S. cereale was assessed by BLASTing their sequences to their respective assemblies. Capture probe sequences for chromosome 1BS (26,985 sequences) were BLASTed against the 1B pseudomolecule of ‘Chinese Spring’ and 1R of S. cereale. This resulted in 29,652 hits to ‘Chinese Spring’ 1BS and 12,120 hits to S. cereale 1RS. To both assemblies, some probes had multiple hits. The number of probe sequences that had a hit was 26,222 and 8,419, respectively. Those with a single hit were 23,969 and 5,822, respectively (Figure 4A), and the percentage similarity between probe sequences and their target was 99.8 and 95.6%, respectively (Figure 4B). That is, a greater number of probes matched the ‘Chinese Spring’ sequence and with greater percentage similarity.
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FIGURE 4. (A) Bar graphs showing the number of capture probes that had BLAST hits to ‘Chinese Spring’ chromosome 1BS (IWGSC v1), S. cereale chromosome 1RS (JADQCU000000000 v1 of the cultivar Weining), ‘Chinese Spring’ chromosome 5DS (IWGSC v1), and Ae. tauschii chromosome 5DS (PRJNA341983 assembly of Ae. tauschii subsp. strangulata). The number of probe sequences for chromosomes 1BS and 5DS was 26,985 and 20,253, respectively. The number of probes that produced a hit was 26,222 to ‘Chinese Spring’ 1BS, 8,419 to S. cereale 1RS, 20,082 to ‘Chinese Spring’ 5DS, and 19,872 to Ae. tauschii 5DS. There were more hits than probe sequences as some probes had multiple hits. (B) Box and whisker plots showing the percentage similarity between the probe sequences and their respective targets.


In contrast, the known Ae. tauschii introgression into 5DS of the variety ‘Maris Huntsman’ (Wang et al., 2005) was not evidenced by a drop in read coverage. The probe sequences for chromosome 5DS (20,253 sequences) were BLASTed against the assemblies of both ‘Chinese Spring’ and Ae. tauschii 5DS resulted in 24,300 hits to the former and 24,173 hits to the latter. The number of probe sequences that had a hit was 20,082 and 19,872, respectively. Those with a single hit were 17,550 and 17,358, respectively (Figure 4A). The percentage similarity between probe sequences and their target was 99.1 and 98.9%, respectively (Figure 4B). Thus, it would appear, the sequences of wheat and Ae. tauschii are sufficiently similar over this region that capture probes are equally efficient at capturing sequences from them. To confirm this hypothesis, the sequences surrounding Pm2, were compared. Based on the alignment, the ‘Chinese Spring’ and Ae. tauschii reference assemblies were highly similar across the 2 Mb of sequence centered on the Pm2 gene (99.1% similarity); in each, there were 21 annotated genes and synteny appears to be maintained apart from the presence of an inverted repeat of TraesCS5D02G044500 (position 43,382,967–43,386,355) to the upstream position 42,989015–42,992,511 – TraesCS5D02G043600 (Supplementary Table 1). The sequences from ‘Maris Huntsman’ also aligned well to both assemblies. However, within the coding sequence of the Pm2 gene itself, two indels, one particularly relevant, supported the hypothesis that ‘Maris Huntsman’ is more similar to Ae. tauschii than to ‘Chinese Spring’. That is, relative to ‘Chinese Spring’, both Ae. tauschii and ‘Maris Huntsman’ carry a 3 bp insertion at position 43,405,954 and a 7 bp insertion at position 43,407,045 (Figure 51).


[image: image]

FIGURE 5. Details of the Pm2 gene in ‘Chinese Spring’ and Ae. tauschii: (A) a 3 bp insertion and (B) a 7 bp insertion. Respectively, green and blue bases are ‘Chinese Spring’ reference sequences before and after the indel. Red bases are the insertion (found in both Ae. tauschii and ‘Maris Huntsman’).




Efficacy of Alignment to the Reference Assembly

To further investigate the role of sequence alignment in the regions of reduced sequence coverage, a BLAST search was performed using the mapped and unmapped reads from ‘Bacanora’ against a database containing both T. aestivum and S. cereale sequences. Of the 1,959 unmapped reads, 709 (36.2%) hit sequences in the BLAST database: 654 (33.4%) to the S. cereale 1R sequence and 55 (2.8%) to the T. aestivum 1B sequence. Conversely, for the 1,421 reads that had successfully mapped to the T. aestivum ‘Chinese Spring’ reference sequence, there were only 167 (11.8%) hits to the S. cereale 1R sequence while 1,242 (87.4%) hits to the wheat 1B reference sequence.

For unknown introgressions, it is not possible to compare the unmapped reads to the source sequence. To better understand from where these reads came, an assembly of unmapped reads for all 12 accessions was created and then compared with a database of Poaceae/S. cereale protein sequences (Figure 6). The unmapped sequences were predominantly (62.1%) found in the progenitor accessions Triticum turgidum (AABB genome), Ae. tauschii (DD), and Triticum urartu (AA). There were also additional hits to the more distant relatives Hordeum vulgare (HH) and S. cereale (RR).


[image: image]

FIGURE 6. (A) Pie chart showing the best BLAST hits against a combined Poaceae/S. cereale database for captured reads that didn’t map to the IWGSC ‘Chinese Spring’ assembly v1. (B) Phylogenetic tree (redrawn from Zhou et al., 2017), showing the relationship of the species used in our Poaceae/S. cereale database.





DISCUSSION


Exome Capture

The ‘Gene Capture v1’ and ‘Promoter Capture v1’ probes are based on sequences not only from T. aestivum but also Ae. tauschii and T. turgidum and, thus, should capture sequence from bread wheat and its progenitors (Gardiner et al., 2019). In this study, the exome capture protocol proved effective at capturing a representative genome sample from each of the 12 accessions examined with sequence coverage in distal regions of chromosomes being greater than that across centromeres (Figure 1A); this pattern reflects capture probe distribution which itself is determined by the known telomere to centromere gene gradient (Pingault et al., 2015; Gardiner et al., 2019). Probes appear to have successfully captured wheat sequence and that of introgressions from progenitors as demonstrated by the capture of sequence from the 5DS, Ae. tauschii introgression in ‘Maris Huntsman’ (Supplementary Table 1). A review of the literature reporting primary genepool introgression into bread wheat, further indicated that probes were effectively capturing sequence from these introgressions and, thus, resulting in even sequence coverage across such introgressions and the host sequences flanking them. For example, an introgression from T. turgidum subsp. carthlicum has been reported on 2AL of ‘Renan’ and ‘Riband’ (Chantret et al., 1999; United Kingdom Cereal Pathogen Virulence Survey [UKCVS], 2004); we saw no decrease in sequence coverage for either accession indicating successful capture and alignment. Importantly, this was not just the case for the primary relatives (T. turgidum and Ae. tauschii) that had been included in the design of the capture probes. An introgression from the primary relative, Triticum monococcum, has been reported to be present in 5AL of ‘Maris Huntsman’ (Chen et al., 2021; Supplementary File 1), a Triticum spelta introgression has been reported in 2BL of ‘Cadenza’ (Marchal et al., 2018; Supplementary File 1) and introgression from Triticum dicoccum has been reported in 3BS of ‘Pavon 76’ (Mago et al., 2014; Supplementary File 1) and none had a corresponding decrease in coverage suggesting adequate capture of these sequences.

The region associated with the Pm2 gene in ‘Maris Huntsman’ was used as a case study to confirm that sequence diversity present in regions with successful capture and alignment were, indeed, from a wild relative source. Alignment of the captured sequences from ‘Maris Huntsman’ to both the ‘Chinese Spring’ T. aestivum reference (IWGSC v1.0) and Ae. tauschii (Ae. tauschii v4.0 GCF_002575655.1) assemblies showed them to be highly similar. However, two small insertions, with respect to ‘Chinese Spring’, in ‘Maris Huntsman’ and Ae. tauschii give support to the hypothesis that ‘Maris Huntsman’ harbors an Ae. tauschii introgression (Figure 5). The successful capture of this region is hardly surprising considering that Ae. tauschii sequence was used to guide capture probe design (Gardiner et al., 2019) and given the high degree of similarity between the two species, T. aestivum and Ae. tauschii, across the Pm2 region. Indeed, capture probes designed exclusively from bread wheat sequence may well have proved equally efficacious at capturing sequence from this introgressed region.

The design of the probes, then, has allowed the capture of sequences beyond those belonging exclusively to T. aestivum. However, one must expect that beyond a certain level of sequence diversity, a reflection of the evolutionary distance of donors of introgressed segments, probes will no longer capture sequence. Such wide introgressions will not be captured, and coverage of the target will drop. This is a serious limitation if novel regions from more distant relatives are the aim of the capture sequencing and other sequencing methods will need to be employed.



Alignment to the Reference Assembly

In addition to successful capture and sequencing, one must be able to realign the sequence to the reference (in this case ‘Chinese Spring’ IWGSC v1) for it to be identified as present. There is the potential for the mapping parameters to under-utilize the available sequence as the stringency of the parameters used to align the captured sequences to the ‘Chinese Spring’ reference genome result in some successfully captured sequences being unable to align. Not all variation present in sequencing data is a true reflection of the sequence present and as the alignment stringency is relaxed, sequencing errors may enter the data. To preserve the high-quality sequences, it seems inevitable that diverse sequences will be lost by data processing.

Some mapping protocols, such as the mapping of non-unique hits, can allow for homoeologous sequences to mask gaps in coverage due to deletions or introgressions. In addition, as the mapping of zero in read coverage is not a standard protocol, the gaps seen as a result of diverse sequences are not made apparent (Supplementary Figure 1) and the inability to align diverse sequences to the reference is not reported.



Efficacy of Alignment to the Reference Assembly

For all 12 accessions, the captured sequences that could not be mapped to the reference were BLASTed against a Poaceae/S. cereale protein database (Figure 6). Of the sequences that had a hit to the protein database, 62.1% had a match to a sequence derived from a progenitor species (Figure 6). This indicates that some sequences were captured and sequenced but had no corresponding sequence in the ‘Chinese Spring’ reference. Given an alternative reference, some of these sequences may have aligned. The failure of almost 40% of the captured sequences that did not map to the reference probably reflects the limitations of the created Poaceae/S. cereale protein database since we recognize that there is limited sequence data available for many wheat relatives; the major crop species T. aestivum, T. turgidum, and H. vulgare are well represented in nucleotide databases, but this is not the case for wild relatives. Indeed, we chose to compare our un-mapped sequences to a protein database, rather than a nucleotide database, to maximize the amount of sequence data available. The Poaceae/S. cereale protein database contained 472,031 sequences. Through this approach, we were able to identify sequences potentially originating from secondary and tertiary genepool species. However, some sequences remained completely unidentified emphasizing that, probably, some diversity is regularly omitted from standard sequencing and alignment. As such, exome capture followed by alignment to a hexaploid reference is not a reliable tool for the identification of introgressions within hexaploid wheat. Where exome capture has been performed and an introgression is suspected, identification is limited by the current availability of wheat relative sequences.

Diverse sequences, such as the Ae. tauschii introgression, described in ‘Maris Huntsman’ were successfully captured, sequenced, and aligned in part due to the presence of Ae. tauschii sequences in the capture probe set and in part due to the similarity of the progenitor sequence to the D genome of the reference assembly. For the more distant wild relatives, both capture and alignment were less successful. The reduction in mapped sequences was most pronounced in the accessions containing the 1RS.1BL translocation (Figure 1). This is a known introgression that is from a tertiary source. When the 1BS capture probe sequences (26,985) were BLASTed against 1RS of the rye genome assembly (JADQCU000000000 v1), 31% had a hit (Figure 4A), suggesting that some capture would occur, but the percentage similarity between probe sequence and its target was lower in rye than in wheat, suggesting that it might not map back to the reference. This in silico assessment was reflected in the captured but un-mapped sequences. By performing a BLAST search against a T. aestivum and S. cereale database, a number of the unmapped reads in the 1RS containing accession ‘Bacanora’ were found to have matches to the S. cereale sequences (33.4%), considerably higher than the S. cereale sequences found within the mapped reads of the same accession (11.8%). This suggests that some of the unmapped reads were from regions of 1RS.1BL that were successfully captured but could not be successfully mapped back to the reference. As S. cereale sequences are poorly represented in the BLAST database (there were 25,214 out of 472,031 in total), the full extent of S. cereale sequences captured is not known and the ratio present may be higher. While it seems that this tertiary relative introgression was not captured to the same extent as a primary genepool relative, it is important to note that some sequences were captured despite the dissimilarity between S. cereale and the T. aestivum target but the presence of the sequenced further limited by alignment to the reference.

Each of the 12 accessions used in this study, showed reduced read coverage across some regions of at least one of its chromosomes. Most of these drops in coverage were common to several of the accessions studied and, in many cases, they co-located with documented introgressions or with regions where genotyping data had highlighted extensive variability. The accessions ‘Renan’ and ‘Boregar’ had reduced coverage at the end of the short arm of chromosome 2A corresponding to the known introgression from Ae. ventricosa associated with rust resistance (Lr37, Hanzalová et al., 2007; Yr17 Dedryver et al., 2009). The size of this introgression has been reported to be c. 33 Mb (Gao et al., 2021) which corresponds with the size of the decline in coverage observed in this study. The eyespot resistance gene, Pch1 located on the distal end of 7DL, also introduced from Ae. ventricosa (Leonard et al., 2007) corresponded to the terminal drop in coverage seen in ‘Boregar’ and ‘Renan’, both reported containing the Pch1 gene (Burt and Nicholson, 2011). The powdery mildew resistance gene Pm6 from T. timopheevii on 2BL was reported in both ‘Riband’ and ‘Maris Huntsman’ (United Kingdom Cereal Pathogen Virulence Survey [UKCVS], 1996; Wang et al., 2005) and reveals itself as a distinct decrease in coverage in both accessions. Interestingly, this dip is also found in ‘Boregar’ which hasn’t been reported to carry the 2BL introgression but, on the basis of evidence here, probably does. The presence of unreported introgressions is thought to be quite common. For example, several accessions (‘Bacanora’, ‘Boregar’, ‘Cadenza’, ‘KWS Kielder’, ‘Maris Huntsman’, ‘Renan’, and ‘Riband’) shared a large region (c. 45 Mb) with reduced read coverage, which we assume might indicate an introgression, but for which we could find no documentary evidence. This region spans over 640 genes with a range of functions, such as ion channel regulation, phosphorylation, and electron transfer (Supplementary File 4).

Here we demonstrate that there is a relationship between drops in sequence coverage and sequence similarity of the introgression sequence to the region it replaced. That is, introgressions from primary relatives, such as Ae. tauschii or T. dicoccum (Table 2), are unlikely to fail capture and thus be sequenced and aligned. On the other hand, introgressions from secondary and tertiary genepool species, such as S. cereale, Ae. ventricosa, and T. timopheevii, are likely to avoid capture (Figure 4) and, if captured, fail to align to the reference (Figure 6); such failures are characterized by reduced sequence coverage across the introgressions. The degree of sequence similarity between a wheat relative sequence and the T. aestivum equivalent reflects the evolutionary distance. The observations of this study agree with the study in which human exome capture probes were used to capture exome sequences in non-human primates; “specificity of the capture decreased as evolutionary divergence from humans increase” (Jin et al., 2012). Exome capture probes designed for T. aestivum efficiently captured genic sequences from the D genome progenitor species, Ae. tauschii, but performed much less well against S. cereale, an evolutionary more distant species belonging to the tertiary genome.

Modern elite wheat varieties carry numerous introgressions which provide genes of important agronomic traits (Table 2), but exome capture may limit the ability to sequence these novel and interesting regions. Introgressions from the primary genepool were successfully captured. Those from more distantly related species, members of the secondary and tertiary genepool, however, were poorly represented in the mapped sequences data (Table 2). While there was evidence that some sequences from secondary and tertiary genepool relatives were present amongst the captured sequences (Figure 6) their number was small and did not map to the reference. Localized reduction in sequence coverage was observed in all 12 accessions studied, including the landrace accessions. Many of these regions of low coverage were collocated with documented introgressions or deletions, while others remain unknown. The method of sequencing used here has essentially limited the diversity of sequence that could be reported. The careful design of capture probes is critically important as lack of capture probe diversity will lead to failure to capture sequence introgressed from distantly related species. The reference genome used will also strongly bias the sequences that can be aligned and so reported as present.




EXPERIMENTAL PROCEDURES


Sample Preparation and Sequencing

Genomic DNA from 12 wheat accessions (14 days after germination) was extracted, RNase treated, and purified as described in Burridge et al. (2017).

Individual aliquots in a total volume of 55 μl were sheared to an average of 300 bp using an E220 Focused-ultrasonicator (Covaris, Woburn, MA, United States). SeqCap EZ HyperCap Workflow User’s Guide (Version 2.0) was used with the following modifications. The starting material was increased to 2 μg DNA. The A-tailing reaction was changed to 20°C for 30 min, followed by 65°C for 30 min. Size selection of the pre-capture libraries was replaced with a 0.9 bead: sample ratio. The precapture amplification was changed to nine cycles followed by immediate clean-up. COT human DNA was replaced with 1 μl of Developer Reagent Plant Capture Enhancer (NimbleGen) per 100 ng of DNA.

Exome capture was performed using ‘Gene Capture v1, 4000026820’ and ‘Promoter Capture v1, 4000030160’ wheat capture probes (Gardiner et al., 2019). Gene and Promoter capture probes were not lyophilized but capture reactions performed separately and products combined after post-capture amplification. For the capture wash, the first Wash Buffer I and both Stringent Wash Buffer steps used buffer preheated to 57°C. Fragment size distribution throughout was determined by TapeStation (Agilent) analysis.

Capture probe enriched sequencing libraries were sequenced at the Bristol Genomics Facility using NextSeq 500 and NextSeq500 2 × 150 bp High−Output v2 kit (Illumina). A final library concentration of 0.8 pM was used with a 5% PhiX control library. The full library preparation and capture method are described in detail in Supplementary File 3. All reads are available from the NCBI sequencing read archive using project ID: PRJNA789931.



Data Analysis

Fastq files for each wheat variety were subjected to quality control using FastQC1 (Babraham Bioinformatics, 2020) and were pre-processed using Fastp (Chen et al., 2018) to trim adaptor sequence and for quality filtering. Paired-end reads were aligned to the ‘Chinese Spring’ reference sequence (IWGSV v1.0) using Burrow-Wheeler Aligner (BWA) (Li and Durbin, 2009) (version 0.7.7-r441), and uniquely mapped reads were identified using sambamba (Tarasov et al., 2015) (version v0.4.4).

Coverage for each chromosome was calculated using samtools (Li et al., 2009) (version 0.1.19-44428cd) using the depth option. Custom perl scripts (available on request) were used to calculate the average depth of coverage for 5 million base pair bins across each chromosome and exome coverage graphs were generated using R (version 3.2.5) (R Core Team, 2013).

Capture probe coverage diagrams were generated with the R package chromPlot using unique location hits and including 0 reads (Verdugo and Oróstica, 2016).

All unmapped reads for the ‘Bacanora’ were extracted from the bam file using samtools (Version: 1.10-24-g383a31b), along with all reads that mapped to the chromosome 1B IWGSC v1.0 reference from physical mapping positions 1–230,000,000 bp (spanning the putative 1B/1RS introgression. These unmapped and mapped reads were then separately queried against a local BLAST database that contained the wheat 1B sequence and the S. cereale 1R sequence, using default BLASTN parameters. The top BLAST hit was then parsed from the BLAST output files using custom perl scripts.

Several gnome assemblies were required for this study: IWGSC v1 Chinese Spring assembly; Rye assembly of the Chinese rye cultivar Weining (Li et al., 2021); Ae. tauschii subsp. strangulata (Luo et al., 2017).



Exome Capture Probes to 1BS and 5DS

The browser extensible data (BED) file containing the genomic coordinates of the gene capture probes, Wheat_gene_capture_probes.bed, from Gardiner et al. (2019) was downloaded from the Grassroots Data Repository.2 From this file, the coordinates for the TGAC v1 probes to chromosomes 1BS and 5DS were extracted. Using the python package pysam, the sequences for these probes were extracted from the TGAC version 1 genome assembly of ‘Chinese Spring’ (Triticum_aestivum.TGACv1.30.dna.genome.fa). The gene capture probe sequences for chromosome 1BS were BLASTed against the chromosome 1BS sequence from the IWGSC v1 assembly and to the chromosome 1RS sequence of the genome assembly of the cultivar ‘Weining’ rye (JADQCU000000000 v1), an elite Chinese S. cereale variety (Li et al., 2021). Likewise, the capture probe sequences for chromosome 5DS were BLASTed against the chromosome 5DS sequence from the IWGSC v1 assembly and to the chromosome 5DS from Ae. tauschii subsp. strangulata assembly, Aet v4.0 (GCA_002575655.1).



Gene Sequences Surrounding Pm2 Gene

The putative 5D introgression in ‘Maris Huntsman’ containing the powdery mildew resistance gene Pm2, was used as the point of reference. The Pm2 gene (TraesCS5D02G044600.1) sequence downloaded from EnsemblPlants is 1,266 bp long and produces a protein of 421 aa. To obtain the Ae. tauschii homolog, the ‘Chinese Spring’ Pm2 sequence was BLASTed against the NCBI Triticeae database; the top hit, with 99.3% identity (1,255/1,264), was the Ae. tauschii subsp. strangulata sequence on 5D (sequence id MW538911.1). The full length of this sequence was 4,421 bp.

To compare sequence similarity of ‘Chinese Spring’ and Ae. tauschii coding sequences around the Pm2 gene, we identified, using the gff3 file for IWGSC v1 (Ensembl Plants genome browser), all the annotated genes within 1 Mb up- and down-stream; in ‘Chinese Spring’, 21 genes were present within this interval (Supplementary Table 1). The sequences of these 21 genes were BLASTed against the NCBI Triticeae database to obtain their homologs in Ae. tauschii. These were then BLASTED against the Ae. tauschii v 4.0 (GCF_002575655.1) assembly to find their positions.

Using BWA, (Li and Durbin, 2009) we aligned the ‘Maris Huntsman’ captured sequences against both ‘Chinese Spring’ (IWGSC v1.0) and Ae. tauschii (Aet V4.0) assemblies. Both assemblies and the ‘Maris Huntsman’ BAM files were indexed using Samtools. The gff3 file of the ‘Chinese Spring’ assembly was also downloaded. An equivalent gff3 file for Ae. tauschii was created based on the positions obtained by BLAST and the regions viewed in IGV (Robinson et al., 2011).

The ‘Maris Huntsman’ captured sequences were aligned, using BWA, to both CS and Aet the sequences around the Pm2 gene (TraesCS5D02G044600 in ‘Chinese Spring’ and AET5Gv20114600 in Ae. tauschii) in the accession ‘Maris Huntsman’ to that of the ‘Chinese Spring’ assembly (IWGSC v1.0) and Ae. tauschii v4.0. For both assemblies, using pysam, pulled out the sequence for the Pm2 gene (c. 4,420 bp) plus 1 Mb both up and downstream from it. In both assemblies, this region contains 21 genes.

We were interested to see whether the exome captured sequences from ‘Maris Huntsman’ 5DS had greater similarity to the gene sequences of ‘Chinese Spring’ or those of Ae. tauschii. Because we believed that the putative introgression contained the powdery mildew resistance gene Pm2, we used this gene as our point of reference. We began by pulling down the Pm2 gene (TraesCS5D02G044600.1) sequence from EnsemblPlants; this is 1,266 bp long and produces a protein of 421 aa. To obtain the homolog from Ae. tauschii, we BLASTed the ‘Chinese Spring’ Pm2 sequence (TraesCS5D02G044600) against the NCBI Triticeae database; the top hit was the homologous gene on 5D of Ae. tauschii subsp. strangulata (AET5Gv20114600). This sequence was then BLASTed against the NCBI Triticeae database. With 99.3% identity (1,255/1,264), it hit the Ae. tauschii Pm2 sequence (MW538911.1), which has a full-length functional gene of 4,421 bp.
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Supplementary Figure 1 | Sequence coverage diagrams for chromosome 2B of the accession ‘Riband’ using different alignment parameters. (A) Average depth of coverage across 5 Mb bins using any good hit to the 2B reference. (B) Average depth of coverage across 5 Mb bins using only sequences that give a unique hit to the 2B reference and allowing the display of zero reads.


FOOTNOTES

1https://plants.ensembl.org/Triticum_aestivum/Location/Compara_Alignments?align=9814–Aegilops_tauschii–5D:46999777-47002088;db=core;g=TraesCS5D02G044600;r=5D:43405783-43407148;t=TraesCS5D02G044600.1

2https://opendata.earlham.ac.uk/wheat/under_license/toronto/Gardiner_2018-07-04_Wheat-gene-promoter-capture/
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Common bermudagrass (Cynodon dactylon L.) is an important perennial warm-season turfgrass species with great economic value. However, the reference genome is still deficient in C. dactylon, which severely impedes basic studies and breeding studies. In this study, a high-quality haplotype-resolved genome of C. dactylon cultivar Yangjiang was successfully assembled using a combination of multiple sequencing strategies. The assembled genome is approximately 1.01 Gb in size and is comprised of 36 pseudo chromosomes belonging to four haplotypes. In total, 76,879 protein-coding genes and 529,092 repeat sequences were annotated in the assembled genome. Evolution analysis indicated that C. dactylon underwent two rounds of whole-genome duplication events, whereas syntenic and transcriptome analysis revealed that global subgenome dominance was absent among the four haplotypes. Genome-wide gene family analyses further indicated that homologous recombination-regulating genes and tiller-angle-regulating genes all showed an adaptive evolution in C. dactylon, providing insights into genome-scale regulation of polyploid genome stability and prostrate growth. These results not only facilitate a better understanding of the complex genome composition and unique plant architectural characteristics of common bermudagrass, but also offer a valuable resource for comparative genome analyses of turfgrasses and other plant species.

Keywords: Cynodon dactylon, common bermudagrass, genome, haplotype, tiller angle


INTRODUCTION

Common bermudagrass (Cynodon dactylon L., 2n = 4x = 36) is an important warm-season turfgrass species and is widely used to produce beautiful and uniform turf for public parks, home lawns, golf courses, and sport fields in warm regions around the world (Yang et al., 2018; Zhang et al., 2018a). In some regions, C. dactylon is also used as forage, medicinal, and energy plants (Hill et al., 2001; Nagori and Solanki, 2011; Xu et al., 2011). Since its origination from Africa or Indo-Malaysian, C. dactylon was spread to tropical and subtropical areas worldwidely (Kneebone, 1966; Harlan and de Wet, 1969). As a cross-pollinating plant, wild germplasms of C. dactylon collected at different regions usually show enormous genetical and morphological variations (Wu et al., 2004, 2007; Farsani et al., 2012; Tan et al., 2014; Zheng et al., 2017). Karyotype and molecular marker analyses not only revealed that polyploidy and aneuploidy events exist in C. dactylon but also pointed out the genome of C. dactylon is highly heterozygous (Wu et al., 2006; Chaves et al., 2019; Grossman et al., 2021). These characteristics make C. dactylon an interesting plant material to investigate genome stability, variability, and evolution (Khanal et al., 2017).

Unlike domesticated cereal grasses including rice, wheat, maize, and sorghum, C. dactylon has typical plant architectural characteristics of wild grasses that its stems are differentiated into shoots, stolons, and rhizomes (Dong and de Kroon, 1994; Zhang et al., 2019; Ma et al., 2021). Shoots grow erectly and are widely seen in other plants, whereas stolons and rhizomes are two types of prostrate stems that grow aboveground and underground, respectively (Guo et al., 2021). Through regeneration of new seedlings at stolon nodes, C. dactylon plants are asexually reproduced in a colonial growth mode (Zhang and Liu, 2018). The high efficiency to build turf using commercial C. dactylon cultivars is mainly derived from this virtue. During cold days in winter, the aboveground parts of common bermudagrass plants withered and died, whereas the underground rhizomes remain alive and new plants will regenerate from rhizome nodes at warm days next year (Satorre et al., 1996). By repeating the cycle of growth at aboveground and dormancy at underground, C. dactylon maintains a perennial life style, which also contribute to its usage as an eminent turfgrass. Development of asexual reproductive and perennial versions of important grain crops is an attractive measure to sustainably meet the increasing global food demand (Glover et al., 2010; Ozias-Akins and Conner, 2020). Elucidating the mechanism how C. dactylon possesses its unique plant architectural characteristics could simultaneously provide new insights into turf breeding and crop improvement.

In this study, we reported a haplotype-resolved assembly of the highly heterozygous C. dactylon genome through the combined application of Pacific Biosciences (PacBio) single-molecule sequencing, Illumina paired-end sequencing, Bionano optical mapping, and chromosome conformation capture (Hi-C) technologies. With the assembled genome dataset and annotation information, we further analyzed the subgenomic composition and adaptive evolution of C. dactylon. Results of this study not only expand our understanding of genome structure and plant architectural regulation in C. dactylon, but also provide a valuable resource for genetic studies and breeding of turfgrasses.



MATERIALS AND METHODS


Plant Materials and Growth Conditions

Cynodon dactylon cultivar Yangjiang was used for genome sequencing and assembly in this study. The bermudagrass turf were grown in turfgrass plots of Yangzhou University (longitude and latitude: 32°35’N, 119°40′E; average annual temperatures: 22.4°C; average annual precipitation: 1, 106 mm; annual average sunshine hours: 1, 960 h; soil type: 80% river sand; and 20% peat soil) under routine management conditions (irrigation: keep the soil moist as required; fertilization: four times/year; and mowing: one times/month) for 3 years. Healthy leaves were randomly collected from the turf plots. Half of the leaf samples were frozen and used for de novo sequencing, whereas another half of fresh leaf samples were used for Bionano and Hi-C sequencing. Oryza sativa subspecies indica cultivar 93–11 was grown in growth chamber at 24°C under 16 h/8 h light/dark conditions.



Flow Cytometry Estimation of Genome Size

The genome size of C. dactylon cultivar Yangjiang was estimated using flow cytometry as previously described (Zhang et al., 2020). Specifically, O. sativa cv. 93–11 with a genome size of 430 Mb was used as an internal standard. Young leaves of C. dactylon and O. sativa were homogenized on ice in Galbraith’s buffer (45 mM MgCl2, 30 mM sodium citrate, 20 mM MOPS, and 0.1% (v/v) Triton X-100, pH 7.0) with 50 μg mL−1 propidium iodide. After filtration with 40 μm nylon cell strainer (BD Biosciences, Franklin Lakes, United States), samples were analyzed on a FACSCanto™ II flow cytometer (BD Biosciences). The flow cytometry data were analyzed using BD Spectrum Viewer.



Illumina Sequencing and K-mer Analysis

Genomic DNA was isolated from the frozen leave samples using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). The DNA quality and concentration were tested by 1% agarose gel electrophoresis and Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, United States). Two paired-end libraries with short insert size of 270 bp and 500 bp were constructed using the NEBNext® Ultra™ DNA Library Prep Kit for Illumina® (New England Biolabs, Ipswich, United States) and sequenced on the Illumina HiSeq X Ten platform (Illumina, San Diego, United States). The raw Illumina sequencing reads were processed with SOAPnuke v2.1.61 to remove adapters and low-quality reads (Chen et al., 2018). The obtained 161.1 Gb high-quality sequencing reads were used to generate a k-mer depth distribution curve adopting the Jellyfish v2.3.0.2 The obtained peak k-mer number (k = 27) and corresponding peak depth were calculated by GenomeScope v2.03 to estimate the genome size and heterozygosity (Marçais and Kingsford, 2011).



PacBio Sequencing and Preliminary Genome Assembly

High-molecular weight (HMW) DNA fragments were separated from the extracted genomic DNA samples using BluePippin Size Selection System (Sage Science, Beverly, United States) through pulse-field gel electrophoresis and eight 20-kb sequencing libraries were constructed using SMRTbell Template Prep Kit (Pacific Biosciences, Menlo Park, United States) following the manufacturer’s instructions. The libraries (16 SMRT cells) were sequenced on the PacBio RSII platform (Pacific Biosciences). Contig sequences were assembled from the 151.99 Gb PacBio sequencing reads using Hifiasm v0.124 and polished by Racon v1.4.35 (Cheng et al., 2021). The Illumina sequencing reads were aligned to the assembled contigs using Bwa-mem v2.2.16 and the draft assembly was corrected by the aligned short sequences using Pilon v1.247 (Walker et al., 2014).



Bionano Optical Genome Mapping

HMW DNA was extracted from the agarose-embedded cell nuclei fractions, which were isolated from fresh leaf samples, using the Bionano Prep™ Plant DNA Isolation Kit (Bionano Genomics, San Diego, United States) following the manufacturer’s instructions. The DNA was digested by the single-stranded nicking endonuclease Nt.BspQI, fluorescently labeled, loaded into a Saphyr Chip®, and imaged on a Saphyr Optical Genome Mapping Instrument (Bionano Genomics). The 395.4 Gb image data were filtered using a molecule length cutoff of 100 kb and a label number cutoff of 6, and assembled to 954 genome maps. To assist genome assembly, contigs obtained from the above-mentioned PacBio sequencing were transformed into in silico BspQI-digested reference genome maps and compared with the optical genome maps. The aligned and merged genome maps were further transformed into scaffold sequences using the Bionano Solve™ v3.6.1.8



Hi-C Sequencing and Pseudochromosome Construction

Fresh leaf samples were fixed in 1% formaldehyde to maintain the 3-D structure of genome. Genomic DNA was extracted and digested with restriction endonuclease MboI. The digested DNA fragments were biotin-labeled at the ends and ligated to each other randomly. The ligated DNA was sheared into 300–600 bp fragments, blunt-end repaired, and purified using streptavidin pull-down. The purified DNA was also sequenced on the Illumina HiSeq X Ten platform, which yielded 231.38 Gb of data with 771 million paired-end reads. The paired-end reads were mapped to the assembled scaffold sequences using Juicer v1.69 to discriminate valid and invalid interaction pairs (Durand et al., 2016). The obtained 185 million valid interaction pairs (55.5 Gb data) were further used to adjust the relative locations of the scaffolds and cluster the scaffolds into pseudochromosomes using 3D-DNA10 (Kronenberg et al., 2021).



Annotation and Analysis of Repetitive Sequences

Repetitive sequences were annotated by combining the homology alignment and de novo prediction approaches (Zhang et al., 2021). For the homology alignment approach, the assembled genome sequence was blast searched against the RepBase repeat sequence collection11 using RepeatMasker v4.0.912 (Tempel, 2012). For the de novo prediction approach, five softwares, including RepeatModeler,13 PILER,14 RepeatScout,15 LTR_Finder,16 and Tandem Repeats Finder,17 were used to find the possible repeat sequences (Price et al., 2005; Flynn et al., 2020). The identified repetitive sequences were manually checked and classified according to the nomenclature system of transposons. The insertion time of different families of long-terminal repeat retrotransposons (LTR-RTs) were calculated using the formula T = k/2r, where k is the divergence distance between the 5′ LTR and 3′ LTR of intact LTR-RTs and r is the base substitution rate (1.38 × 10−8 substitutions/site/year for grasses; Ma et al., 2004). The LTR Assembly Index (LAI) scores of assembled pseudo chromosomes and whole genome were calculated using LTR_retriever v2.9.018 with default parameters (Ou et al., 2018). Putative centromeric repeat arrays were specifically identified using Tandem Repeats Finder with searching parameters “1 1 2 80 5 200 2000 -d –h” as previously described (VanBuren et al., 2020). The identified centromeric repeat array sequences were used to construct a maximum likelihood phylogenetic tree using MEGA v10.0.5 with a bootstrap of 1,000.



Prediction and Annotation of Protein-Coding Genes

Protein-coding genes were identified by combining the homology alignment prediction, ab initio prediction, and transcriptome-assisted prediction approaches (Zhang et al., 2021). For the homology alignment approach, protein sequences of Arabidopsis thaliana and five grass species, including O. sativa, Brachypodium distachyon, Zea mays, Sorghum bicolor, and Oropetium thomaeum, were downloaded from the Phytozome database19 and blast searched against the assembled genome sequence to identify the homologous proteins, which were then aligned to the genome by GeneWise20 to annotate gene structures (Birney et al., 2004). Ab initio gene prediction was conducted using five softwares, including Augustus v3.4.0,21 geneid v1.4.4,22 FgeneSH,23 GlimmerHMM v3.0.4,24 and Genscan25 with default parameters (Yao et al., 2005; Nachtweide and Stanke, 2019). For transcriptome-assisted prediction, the PacBio single-molecule transcriptome sequencing data of mixed organ samples (Zhang et al., 2018a) were aligned to the assembled genome using GMAP26 and the gene structures were modeled using PASA,27 whereas Illumina transcriptome sequencing data of six different organs (Chen et al., 2021) were aligned to the genome using TopHat v2.1.128 and the gene structures were modeled using Cufflinks v2.2.129 (Wu and Watanabe, 2005; Ghosh and Chan, 2016). A non-redundant reference gene set was generated by merging the predicted genes using EVidenceModeler v1.1.130 (Haas et al., 2008). Functional annotations of the reference gene set were obtained through orthology assignment of the eggNOG v5.0 database31 using eggNOG-mapper v232 (Cantalapiedra et al., 2021). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation of the reference gene set were obtained through BLAST searching against the GO database33 and the KEGG pathway database,34 respectively. KEGG enrichment analysis were performed using KEGG-Orthology Based Annotation System (KOBAS; Xie et al., 2011).35 Transcription factors (TFs) were annotated using iTAK36 incorporated with PlantTFDB database37 (Zheng et al., 2016).



Prediction of Non-coding RNA Genes

rRNA and tRNA genes were predicted using the programs Barrnap38 and tRNAscan-SE-2.0,39 respectively (Chan et al., 2021). miRNA, snoRNA, and snRNA genes were all identified by searching against the Rfam database via Infernal v1.1.440 with default parameters (Nawrocki and Eddy, 2013).



BUSCO Assessment

The completeness and accuracy of the assembled genome and predicted reference gene set were both assessed using the embryophyta_odb10 core gene collect (1,375 genes) of the Benchmarking Universal Single-Copy Orthologs (BUSCO) v5.2.2 database41 (Simão et al., 2015). The number of single-copy and duplicated genes with complete coverage, genes with fragment coverage, and missing genes were all counted.



Gene Family Identification, Phylogenetic Analysis, and Divergence Time Estimation

The protein sequences of A. thaliana, O. sativa, B. distachyon, Z. mays, S. bicolor, O. thomaeum, Panicum hallii, Setaria viridis, Hordeum vulgare, and Tritcum urartu were downloaded from the Phytozome database. Orthologous gene families were clustered using OrthoFinder v2.5.442 through all-against-all blast alignment of these protein sequences and predicted protein sequences of C. dactylon (Emms and Kelly, 2015). The identified 112 single-copy orthologous gene families were aligned using MUSCLE43 and the alignments of each gene family were concatenated to a super-alignment matrix. A phylogenetic tree was then constructed using OrthoFinder with A. thaliana as the outgroup. PAML v4.944 was used to estimate the divergence time of C. dactylon using recorded divergence times of other 10 species in the TimeTree database45 as calibrations (Yang, 2007).



Synteny and WGD Analysis

Homologous pairs of C. dactylon proteins were identified using the all-to-all search in BLASTP v2.12.046 with an E-value cutoff of 10−5. Syntenic blocks with at least 50 collinear gene pairs were then identified using MCScanX47 with default parameters (Wang et al., 2012). The same method was used to identify the collinear blocks between C. dactylon and O. thomaeum/B. distachyon. Synonymous substitutions per site values (Ks) of syntenic gene pairs were calculated using PAML v4.9 and the distribution of Ks values was plotted to infer the time for speciation or whole-genome duplication (WGD) events using the formula T = Ks/2λ, where Ks is peak Ks value and λ is the average substitution rate (6.5 × 10−9 substitutions/site/year for grasses; Gaut et al., 1996).



Transcriptome-Based Gene Expression Analyses

The Illumina transcriptome sequencing data of six different organs of bermudagrass cultivar Yangjiang were aligned to the assembled genome using HISAT v2.1.148 with default parameters (Kim et al., 2015). The numbers of mapped reads for each genes were converted to RPKM (reads per kilobase of transcript per million mapped fragments) values. The log2 transformed RPKM values were applied to perform Hierarchical clustering using Pearson’s correlation distance (Chen et al., 2021). The significantly expressed genes were defined as RPKM value > 1, the organ-enhanced genes were defined as RPKM value is 5-fold above the average RPKM values of other organs, whereas organ-enriched genes were defined as RPKM value is 5-fold above the RPKM values of any other organs (Uhlén et al., 2016; Nautiyal et al., 2020).



Analyses of Homologous Recombination-Regulating Genes and Tiller-Angle-Regulating Genes

To obtain ZMM (acronym for Zip1-4, Msh4-5, and Mer3) protein-coding genes in C. dactylon and other 10 plant species, ZMM genes from A. thaliana were used as baits to search against the assembled genome of C. dactylon and other plant species recorded in Phytozome database or Ensembl Plants database49 using BLASTP v2.12.0 with an E-value cutoff of 10−5. The gene copy numbers and chromosome locations of different genes were manually summarized based on their identities. For PROG1, LA1, and TAC1 genes, PROG1, LA1, and TAC1 proteins from O. sativa were used as baits to search against the assembled genome of C. dactylon and other seven species of Oryza genus recorded in Ensembl Plants database as described above. The amino acid sequences of proteins encoded by each gene families were searched against the Pfam database50 for domain comparisons (Mistry et al., 2021).




RESULTS


Assembly of the Cynodon dactylon Genome

The C. dactylon cultivar Yangjiang was used for genome sequencing. As a national authorized C. dactylon cultivar., cultivar Yangjiang is a typical turf-type common bermudagrass and is widely used for turf planting in China (Zhang et al., 2018a; Supplementary Figure S1). Based on the K-mer genome survey result, the estimated genome size of C. dactylon cultivar Yangjiang is approximately 984 Mb, which is in line with the flow cytometry genome size estimation result of 1.02 Gb (Supplementary Figure S2). K-mer analysis also revealed that the genome of C. dactylon cultivar Yangjiang has a high heterozygosity (1.92%) with a repeat frequency of 56.91%.

To overcome the impact of high heterozygosity on the genome assembly, we adopted an integrated assembly strategy incorporating PacBio sequencing, Illumina sequencing, and Bionano and Hi-C techniques with the haplotype-resolving Hifiasm algorithm (Cheng et al., 2021; Supplementary Figure S3). Firstly, 151.99 Gb PacBio long reads (about 150× coverage of the genome) were de novo assembled into contigs, which were polished by 161.1 Gb Illumina paired-end reads (about 160× coverage of the genome; Supplementary Tables S1 and S2). Totally, 3,703 contigs with a N50 contig length of 2.65 Mb and a sum contig length of 1.295 Gb were obtained (Table 1). Secondly, 395.4 Gb Bionano optical maps (about 390× coverage of the genome) were used to integrate the contigs into scaffolds (Supplementary Figure S4; Supplementary Table S3). This procedure generated 241 scaffolds with a N50 scaffold length of 9.38 Mb and a sum scaffold length of 1.26 Gb (Table 1). Lastly, 231.3 Gb Hi-C data (24% useful information, about 55× coverage of the genome) were used to further cluster the scaffolds into pseudo chromosomes (Supplementary Figure S5; Supplementary Table S4). The finally obtained genome assembly (1.01 Gb) contained 36 chromosome-level superscaffolds, among which the longest and the shortest are 52.77 Mb and 14.32 Mb, respectively (Figure 1; Table 1). The assembly size was consistent with the estimated genome size. Furthermore, BUSCO analysis against the 1,375 Embryophyta gene sets indicated that 96.2% complete genes were successfully identified in the genome assembly, among which 88.1% were duplicated genes (Supplementary Table S5). These results collectively suggested that the assembled C. dactylon genome is high quality and complete.



TABLE 1. Statistics of Cynodon dactylon genome assembly.
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FIGURE 1. Genome features of C. dactylon cultivar Yangjiang. (A) Circular representation of the 36 pseudo chromosomes with scale mark labeling each 10 Mb. The density of (B) long-terminal repeat retrotransposons (LTR-RT), (C) protein-coding genes, (D) tandem repeat sequences, and (E) GC contents were calculated using 500 kb non-overlap window. (F) Inter-chromosomal synteny was illustrated with color lines.




Annotation of the Cynodon dactylon Genome

A total of 76,879 protein-coding genes with an average gene length of 3,535 bp and an average transcript number per gene of 1.9 were successfully predicted from the assembled genome (Table 2). The predicted gene model was also evaluated by BUSCO analysis. The result indicated that 1,324 (96.3%) complete core Embryophyta genes were identified and the majority (1,272, 96.07%) was duplicated genes (Supplementary Table S5). Among the predicted 146,743 transcripts, 87.89% (128, 966) were annotated by various functional database (Supplementary Figure S6; Supplementary Table S6). Functional classification further indicated that signal transduction mechanism, post-translation modification/protein turnover/chaperones, and transcription are the top three categories containing the largest number of transcripts (Supplementary Figure S7). Specifically, 4,888 transcription factors (TFs) belonging to 65 classes were successfully identified. Compared with other grass species, gene numbers of HSF, WRKY, NF-X1, NF-YA, NF-YC, CPP, GARP-G2-like, and DDT TF families were greatly increased in common bermudagrass (Supplementary Table S7). In addition, 6,265 non-protein-coding genes were also identified, including 1349 rRNAs, 2047 tRNAs, 1025 miRNAs, 1441 snoRNAs, and 403 snRNAs (Table 2).



TABLE 2. Statistics of C. dactylon genome annotation.
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Orthologous clustering of protein-coding genes of C. dactylon with other ten plant species totally identified 32,695 orthologous gene families, including 7,792 commonly shared gene families and 3,173 bermudagrass-specific gene families consisting of 9,152 genes (Supplementary Tables S8 and S9). KOBAS enrichment analysis indicated that these bermudagrass-specific genes were enriched in glutathione metabolism, zeatin biosynthesis, ubiquitin mediated proteolysis, and other eight pathways (q value <0.05; Supplementary Table S10). In agreement with the BUSCO analysis result, orthologous gene clustering further revealed that as many as 91.2% (70117) of C. dactylon genes are members of 17,632 multiple-copy gene families, which is much higher than that of other ten species (Figure 2A; Supplementary Table S8). A phylogenetic tree was constructed based on the 112 shared single-copy orthologous genes (Figure 2A). The result indicated that O. thomaeum was closest to C. dactylon and the estimated divergence time of the two species was between 17.85 to 29.19 (midvalue of 23.52) million years ago (MYA). In line with phylogenic relationships, C. dactylon shared more orthologous gene families with members of the PACMAD (acronym for Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, and Danthonioideae) clade of grasses, including O. thomaeum, S. bicolor, and S. viridis, compared with O. sativa belonging to the BEP (acronym for Bambusoideae, Ehrhartoideae, and Pooideae) clade of grasses (Supplementary Figure S8).
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FIGURE 2. Comparative genomic analysis among C. dactylon and other plant species. (A) Phylogenetic relationship, divergence time, and gene family clustering of C. dactylon and other ten plant species. Left panel, Maximum parsimony (MP) species tree was constructed using protein sequences of 112 shared single-copy orthologous genes. The numbers in the brackets indicate the estimated divergence time of each node, and the blue bars show the 95% confidence interval of divergence time. All the nodes are 100% bootstrap support. Right panel, Orthologous gene families of C. dactylon and other ten plant species. (B) Comparison of repetitive sequences in C. dactylon and other ten plant species.


A total of 381.3 Mb of repetitive sequences were also annotated in the assembled C. dactylon genome (Table 2 and Supplementary Table S11). The most abundant repetitive sequences are retrotransposons (70.95% of repetitive sequences and 26.9% of genome assembly), among which LTR-RTs and non-LTR-RT represent 84.73 and 15.27%, respectively. DNA transposons make up 11.29% of the repetitive sequences (4.28% of genome assembly), whereas tandem repeats and unclassified repeat sequences account for 2.79 and 3.75% of the assembled genome, respectively. Interestingly, the total repetitive sequence content and retrotransposon content in C. dactylon (37.91 and 26.9%, respectively) were similar to those of closely related species, including O. thomaeum (45 and 26%, respectively), P. hallii (36 and 23%, respectively), and S. viridis (46 and 29%, respectively), but much lower than those of distantly related species, including Z. mays (82 and 76%, respectively), T. urartu (81 and 72%, respectively), and H. vulgare (80 and 75%, respectively; Figure 2B). It is also noteworthy that genes are unevenly distributed in different chromosomes (39.87 to 104.80 Mb−1 in density), whereas similar distributions of repetitive sequences were found on all chromosomes of C. dactylon (482.23 to 559.93 Mb−1 in density; Supplementary Table S12). The annotated LTR-RTs were further used to calculate the LAI of the assembled genome. The total LAI score of C. dactylon genome is 13.63, implying that the current assembly of C. dactylon genome reached the reference genome level (Supplementary Table S13; Ou et al., 2018).



Subgenome Composition of Cynodon dactylon

Intra-genomic syntenic analysis totally detected 845 syntenic blocks containing 84,649 pairs of homoeologous genes in the C. dactylon genome, whereas 643 syntenic blocks containing 52,590 pairs of homoeologous genes were found between C. dactylon and O. thomaeum through inter-genomics syntenic analysis (Figure 3A and Supplementary Figure S9). Interestingly, the syntenic depth ratios of C. dactylon versus O. thomaeum and C. dactylon itself were 4:1 and 4:4, respectively, implying that C. dactylon genome is composed of four haplotypes containing the same number of chromosomes (Supplementary Figure S9). To distinguish homoeologous chromosomes from the four haplotypes of C. dactylon, putative centromeric array tandem repeat sequences were identified from the 36 chromosomes and were used to construct a maximum likelihood phylogenetic tree as previously described (Supplementary Table S14; VanBuren et al., 2020). The result indicated that the 36 centromeric array sequences showed distinguishing polymorphisms and could be clustered in four clades (Supplementary Figure S10). Based on this classification result and chromosome length variance, the four haplotypes, which were named as A1, A2, B1 and B2, respectively, were successfully resolved in the C. dactylon genome (Supplementary Table S15). In addition, syntenic analysis also revealed that chromosome 2, 3, and 10 of O. thomaeum are split and merged into chromosome 2 and 7 in four haplotypes of C. dactylon, whereas other chromosomes all have one-to-one correspondence (Figure 3A and Supplementary Figure S9).
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FIGURE 3. Subgenomic organization and variation of C. dactylon. (A) Schematic representation of syntenic genes among O. thomaeum and four haplotypes of C. dactylon. Gray lines depict homologous genome blocks. Color lines indicate inversion and translocation on the homologous chromosomes. (B) Distribution of synonymous nucleotide substitution levels (Ks) of syntenic gene pairs between different haploptypes of C. dactylon. (C) Venn diagram of alleles and orphan genes in the four haploptypes of C. dactylon. (D) Total gene expression level of the 11,614 four-copy alleles based on their relative expression level in six organs of C. dactylon. Error bars represent SE of the three sequencing replicates. (E) Box plots showing the insertion dynamics of 13 LTR-RT families in four haploptypes of C. dactylon. Box boundaries indicate the 25th and 75th percentiles of the insertion time and whiskers extend to 1.5 times the interquartile range.


Calculation of Ks of homologous gene pairs in the inter-genomic and intra-genomic synteny blocks not only confirmed the phylogenic analysis result that C. dactylon and O. thomaeum diverged at approximately 21.54 MYA (Ks = 0.28), but also indicated that two rounds of WGD events occurred in the evolutionary history of C. dactylon (Supplementary Figure S11). Specifically, the first WGD event occurred at approximately 5.38 MYA (Ks = 0.07), whereas the second WGD event occurred lately at about 0.77 MYA (Ks = 0.01; Supplementary Figure S11). Interestingly, the two WGD time points equivalent exactly to the divergence time of haplotypes A1/A2 with haplotypes B1/B2 and haplotype A1 with haplotype A2 (the same as haplotype B1 with haplotype B2), respectively (Figure 3B).

In combination with the orthologous gene clustering result, syntenic analysis totally identified 20,849 alleles in C. dactylon (Supplementary Table S16). Among these alleles, 11,614 have four allelic copies in all haplotypes, 2,711 have three allelic copies in three of four haplotypes, and 6,524 have two allelic copies in two of four haplotypes (Figure 3C and Supplementary Figure S12; Supplementary Table S17). Meanwhile, 3559, 4954, 1716, and 3530 orphan genes that exist as single-copy genes were also identified from haplotype A1, A2, B1, and B2, respectively (Figure 3C and Supplementary Figure S12; Supplementary Table S17). KOBAS enrichment analyses indicated that alleles were enriched in valine/leucine/isoleucine degradation, proteasome, brassinosteroid biosynthesis, and other eight pathways, whereas orphan genes were enriched in plant-pathogen interaction, base excision repair, DNA replication, and other nine pathways (q value <0.05; Supplementary Table S18). The expression abundance of alleles and orphan genes were further analyzed using the organ-specific transcriptome sequencing data of C. dactylon cultivar Yangjiang (Chen et al., 2021; Supplementary Table S19). The result indicated that similar portions of alleles and orphan genes in the four haplotypes were significantly expressed in six organs of bermudagrass; however, gene numbers of alleles and orphan genes enhance- or enrich-expressed in different organs, especially the three types of stems, varied greatly in the four haplotypes (Supplementary Figure S13; Supplementary Tables S20 and S21). Accordingly, the 11,614 four-copy alleles of the four haplotypes showed similar total expression abundance in the six organs (Figure 3D).

The distribution of repeat sequences in C. dactylon was also analyzed at the haplotype level. Among the four haplotypes, haplotype A2 and B1 has the minimum and maximum number of RTs, respectively (Supplementary Figure S14). By contrast, maximum number of four types of DNA transposons, including Tcl/mariner, EnSpm/CACTA, hAT, and muDR, was observed in haplotype B2, while haplotype A1 has the fewest muDR- and Helitron-type of DNA transposons (Supplementary Figure S14). Notably, total sequence length of Ty3-Gypsy LTR-RTs in haplotype B1 was 2.2 Mb larger than that of haplotype B2, which contributed approximately 40% of size variance between the two haplotypes, whereas another type of LTR-RTs, Ty1-Copia, showed similar sequence length in the two haplotypes (Supplementary Figure S14; Supplementary Tables S22 and S23). Moreover, 5,066 intact LTR-RTs were further used to estimate the insertion time of different families of LTR-RTs in C. dactylon genome (Supplementary Table S24). The results indicated that four families of LTR-RTs, including Athila, SIRE, TAR, and Tork, inserted into the four haplotypes of C. dactylon genome at different time, whereas other nine families showed similar insertion time range in the four haplotypes (Figure 3E). Interestingly, among the 244 active LTR-RTs with an insertion time of zero, 153 were located in three chromosomes of haplotype B1, 47 were located in two chromosomes of haplotype A1, whereas only 29 and 16 were located in single chromosome of haplotype A2 and B1, respectively (Supplementary Table S24).



Adaptive Evolution of Cynodon dactylon

As a polyploid plant species with four sets of chromosomes, C. dactylon might develop a mechanism to control proper pairing and segregation of chromosomes during meiosis thus maintain its genome stability (Svačina et al., 2020). ZMM proteins, which stabilize the D-loop crossover intermediate of synapsis, are important homologous recombination regulators in all eukaryotes (Pyatnitskaya et al., 2019; Figure 4A). Previous studies have illustrated that gene copy number reduction of a ZMM protein, MSH4, could prevent meiotic crossovers between non-homologous chromosomes and stabilize the genome in allotetraploid Brassica napus (Gonzalo et al., 2019). Similar gene copy number reduction of MSH4 was also observed in other two polyploidy plants, allotetraploid Gossypium hirsutum and hexaploid Triticum aestivum (Figure 4B; Supplementary Table S25). However, MSH4 and other four ZMM genes, including ZYP1, MER3, SHOC1, and MSH5, all existed as four-copy alleles in C. dactylon genome. By contrast, two ZMM genes, PTD and HEL10, existed as two-copy alleles, and another ZMM gene, ZIP4, existed as single-copy orphan gene in haplotype B1 of C. dactylon genome (Figure 4B; Supplementary Tables S25 and S26). Syntenic analysis further indicated that different sizes of chromosomal fragments containing ZIP4 were lost in other three haplotypes (Figure 4C). These results collectively implied that C. dactylon also evolved a ZMM-dependent regulatory mechanism to maintain its genome stability as other polyploidy plants did; however, the key regulator might be ZIP4 rather than MSH4.
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FIGURE 4. Evolution of homologous recombination-regulating genes in C. dactylon. (A) Diagram depicting the essential roles of ZMM proteins in regulating homologous recombination. (B) Comparison of the gene copy number of eight ZMM proteins in C. dactylon, O. thomaeum, and other nine species with different ploidy levels. (C) Enlarged chromosomal gene location map showing the loss of ZIP4 gene and other contiguous genes in haplotype A1, A2, and B2 of C. dactylon. The ZIP4 gene in haplotype B1 was shown in red color.


As a widely used turfgrass species with two types of specialized stems, stolon and rhizome, C. dactylon exhibits a prostrate plant architecture owing to increased tiller angles of the two specialized stems (Dong and de Kroon, 1994). Previous studies have successfully identified several tiller-angle-regulating genes, including PROG1, TAC1, and LA1, in rice and other plants (Li et al., 2007; Yu et al., 2007; Jin et al., 2008; Tan et al., 2008; Figure 5A). Eight PROG1-like genes, four TAC1-like genes, and two LA1-like genes were also identified in C. dactylon (Figure 5B). Similar to semi-prostrate and prostrate growing Oryza genus plants, the family/genome gene number ratio of two prostrate growth-promoting genes, PROG1-like and TAC1-like, were higher than that of erect-growth-promoting LA1-like gene in C. dactylon (Figure 5B). Syntenic and phylogenic analysis revealed that six of the eight PROG1-like genes existed as three-copy alleles and the remaining two genes existed as two-copy alleles, the four TAC1-like genes existed as four-copy alleles, whereas two LA1-like genes existed as two-copy alleles (Figure 5C and Supplementary Figures S15, S16). Pfam domain analysis further indicated that all eight PROG1-like proteins have the conserved C2H2-type zinc finger domain identified in the functional OsPROG1 and OgPROG7 proteins, however, both two LA1-like proteins of C. dactylon lack the functional C-terminal conserved region V (Figure 5D and Supplementary Figure S15). Moreover, the LA1-like protein encoded by the allele of haplotype A2 further lack the functional N-terminal conserved region I and two other conserved regions II and III (Yoshihara and Spalding, 2020; Figure 5D). In combination with the observation that large chromosome fragments containing the LA1-like gene locus were lost in other two haplotypes (Supplementary Figure S16), sequence variation of LA1-like genes in the two residual alleles suggested that LA1 protein activity was inhibited in C. dactylon. In addition, both two LA1-like genes were weakly expressed in stolon and rhizome, whereas three of four TAC1-like genes were preferentially expressed in the two specialized stems (Supplementary Figure S16; Supplementary Table S27). These results collectively implied that different tiller-angle-regulating genes were synergistically evolved to promote a prostrate plant architecture in C. dactylon.
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FIGURE 5. Evolution of tiller angle-regulating genes in C. dactylon. (A) Diagram depicting the positive/negative regulatory roles of PROG1, LAZY1, and TAC1 genes in tiller angle control of grasses. (B) Comparison of the gene number of PROG1-, LAZY1-, and TAC1-like genes in C. dactylon and eight species of Oryza genus with different growth habits. (C) Syntenic relationship of PROG1-like genes in C. dactylon and eight species of Oryza genus with different growth habits. (D) Diagram showing the deficiency of key functional motifs in two LAZY1-like proteins of C. dactylon compared with those of eight species of Oryza genus.





DISCUSSION

Turfgrasses are important groups of grass species serving essential functions, including soil stabilization, water conservation, filtration of air, and water borne pollutants, in urban and suburban landscapes (Huang, 2021). In the past several years, genome sequences of many turfgrass species, including zoysiagrasses (Zoysia japonica and Zoysia matrella), perennial ryegrass (Lolium perenne), centipedegrass (Eremochloa ophiuroides), and African bermudagrass (C. transvaalensis), were successfully sequenced and assembled using different techniques (Tanaka et al., 2016; Cui et al., 2021; Frei et al., 2021; Wang et al., 2021). In this study, we reported a high-quality haplotype-resolved genome of another important turfgrass species, common bermudagrass (C. dactylon), consisting of 36 pseudo chromosomes with a contig N50 of 2.65 Mb and a LAI score of 13.63 (Figure 1; Table 1 and Supplementary Table S13). The assembled nome of C. dactylon not only offers a solid foundation to study the molecular basis of valuable agronomic traits as well as molecular breeding of this important turfgrass species, but also provides an essential resource for comparative genomic analysis among different turfgrasses and other grasses.

The most prominent characteristics of C. dactylon genome are the presence of four haplotypes, named as A1, A2, B1, and B2, respectively. As an allotetraploid plants with high heterozygosity (1.92%), C. dactylon has four sets of chromosomes with significant differences that could be discriminated as different haplotypes using the newest haplotype-resolving Hifiasm algorithm; thus, an A1A2B1B2 genome assembly with 36 chromosomes, rather than an AB genome assembly with 18 chromosomes, was finally obtained (Kyriakidou et al., 2018). Similar result was also observed in the haplotype-phased genome assembly of tetraploid blueberry (2n = 4x = 48), which also reported a four haplotype-resolved genome containing 48 pseudo chromosomes (Colle et al., 2019). Notably, all the four haplotypes of C. dactylon have nine chromosomes; however, the total chromosome size showed variance among different haplotypes (Figure 3A; Supplementary Table S15). Specifically, haplotype A1 and A2 have a similar size (236.96 Mb and 231.36 Mb), whereas haplotype B1 and B2 have another similar size (271.19 Mb and 266.17 Mb; Supplementary Table S15). Accordingly, genes and repeat sequences in haplotype A1 and A2 are fewer than those in haplotype B1 and B2 (Supplementary Table S15). Interestingly, the size of four haplotypes are similar to the genome size of O. thomaeum (10 chromosomes, 243 Mb) and the monoploid genome size of Eragrostis tef (10 chromosomes, 288 Mb), two grass species belonging to the Chloridoideae subfamily of PACMAD clade of grasses as C. dactylon does, but much smaller than the genome size of African bermudagrass C. transvaalensis (nine chromosomes, 444 Mb), which is classified along with C. dactylon in the same Cynodon genus (VanBuren et al., 2015, 2020; Cui et al., 2021). Similar chromosome size variation was also observed between Morus notabilis and M. alba, both of which belongs to the same Morus genus (Xuan et al., 2022). These findings collectively suggested that genome size variation among different plant species might not be simply correlated with their phylogenic relationships.

Whole-genome duplication is an extreme mechanism of gene duplication that leads to a sudden increase in both genome size and the entire gene set thus plays important roles in plant genome evolution (Clark and Donoghue, 2018). Ks analysis revealed that two rounds of WGD events occurred in C. dactylon, which is in correspondence to the divergence time of haplotypes A1/A2 with haplotypes B1/B2 at 5.38 MYA and haplotype A1 with haplotype A2 at 0.77 MYA (the same as haplotype B1 with haplotype B2), respectively (Figure 3B and Supplementary Figure S11). These results collectively implied a complex evolutionary history of C. dactylon. At approximately 5.38 MYA, the ancestor of haplotype A1 and A2, named as A, might hybridized with B, the ancestor of haplotype B1 and B2, to form an AB hybrid species. At about 0.77 MYA, either an autopolyploidization event occurred in the AB hybrid species that doubled the genome to AABB or a secondary hybridization event occurred between two AB hybrid species to form an ABAB hybrid species through allopolyploidization, both of which could finally evolved into the present A1A2B1B2 genome of C. dactylon. The latter allopolyplodization mechanism seems more possible because the ratio of coupling to repulsion linkage phase of nondistorted mapped loci was approximately 1: 1 in an SSR-maker based linkage mapping of the first-generation selfed population of C. dactylon (Guo et al., 2017). Similar two rounds of WGD events were also observed in the formation of the polyploidy genome of Miscanthus floridulus and Saccharum spontaneum, suggesting a conserved evolution mechanism might exist in different genus of polyploid grasses (Zhang et al., 2018b, 2021).

A dominant subgenome often emerges immediately following the WGD event in the genome of allopolyploids (Liang and Schnable, 2018). However, some recent allopolyploids, including the above-mentioned M. floridulus and S. spontaneum, display indistinguishable or slight subgenome dominance (Zhang et al., 2018b, 2021). Orthologous gene clustering analysis indicated that four haplotypes of C. dactylon shared similar number of gene families with O. thomaeum (Supplementary Figure S8). Syntenic analysis further revealed that the four haplotypes have 12,197 (68.50% of 17,805), 12,039 (68.40% of 17,600), 14,406 (69.20% of 20,818), and 14,347 (69.46% of 20,656) syntenic orthologs to O. thomaeum, respectively (Supplementary Figure S9). These results suggested that four subgenomes of C. dactylon did not experience biased gene loss during evolution. Moreover, although a few genes from different haplotypes showed biased expression in different organs, overall gene expression levels showed high similarity among the four haplotypes (Figure 3D and Supplementary Figure S13). In addition, similar distribution and insertion time of LTRs were also observed in the four haplotypes (Figure 3E and Supplementary Figure S14). Taken together, these analyses collectively implied subgenome dominance is also unobvious in C. dactylon.

Polyploidy brings many advantages to polyploid plants. Heterosis could foster a greater biomass and accelerated development, whereas gene redundancy could mask deleterious mutations and diversify the functions of extra gene copies (Comai, 2005). As a worldwidely distributed grass species inhabiting diverse and harsh environments, allotetraploid C. dactylon undoubtedly benefits from these advantages. However, long-term survival of polyploid plants also require a mechanism to withstand the extensive genomic instability that accompanies with the presence of multiple pairing chromosomes in meiosis (Mason and Mason and Wendel, 2020). As a clonal plant with stolons and rhizomes, C. dactylon reproduces asexually through regenerating new plants from axillary buds of stolon and rhizome node (Dong and de Kroon, 1994), thus bypasses meiosis and recombination in gamete generation process. On the other hand, a ZMM-dependent regulatory mechanism to maintain genome stability during meiosis was also identified in C. dactylon (Figure 4). Owing to these belt and braces strategies, four unbiased haplotypes of subgenome are stably maintained in C. dactylon genome.

Tiller angle (branch angle in eudicot plants) is an important plant architectural trait affecting the density of growing plants (Wang et al., 2022). Cereal grasses often have compact and erect plant architecture characteristics with small tiller angles, which is essential for high yields. Specifically, successful domestication of cultivated rice from wild rice ancestors depended on the transition from prostrate growth to erect growth, in which process the tiller angle was greatly reduced (Li et al., 2007; Yu et al., 2007; Jin et al., 2008; Tan et al., 2008). However, for turfgrasses including C. dactylon, prostrate growth mode with large tiller angle is more preferable because it could accelerate turf formation, increase soil coverage, and diminish mowing frequency (Wang et al., 2021). Blast searches indicated that key tiller-angle-regulating genes reported in rice and other plants, including PROG1, LA1, and TAC1, were highly conserved in C. dactylon (Figure 5B). Similar to prostrate growing wild rice species, clustering of PROG1-like C2H2 transcription factor genes in adjacent positions of chromosomes were observed in C. dactylon (Wu et al., 2018; Huang et al., 2020; Figure 5C and Supplementary Figure S15). By contrast, LA1-like genes that promote erect growth not only experienced gene copy lost due to large chromosomal fragment deletions but also mutated to form truncated proteins (Figure 5D and Supplementary Figure S16). These results strongly suggested that similar selection pressure might also exist in C. dactylon to form the prostrate plant architecture characteristics as the domestication of rice from wild rice; however, the selection target might be LA1 rather than PROG1.



CONCLUSION

The genome of a widely used warm-season turfgrass species, C. dactylon, was sequenced and annotated in this study. The assembled genome contains 36 pseudo chromosomes, includes 37.91% genome size of repeat sequences, and encodes 76,879 protein-coding genes. The polyploid C. dactylon genome is consists of four haplotypes derived from two rounds of WGD events. Although a few haplotype-specific genes and transposons were identified, no global subgenome dominance was detected among the four haplotypes. A ZMM-dependent regulatory mechanism to maintain the genome stability was successfully identified. Furthermore, synergistic evolution of tiller-angle-regulating genes was also observed. In summary, the extensive datasets and analyses presented in this study not only offer an essential resource for basic studies and breeding researches of turfgrasses, but also provide new insights into regulation mechanisms underlying polyploid genome stability and prostrate growth.
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Sedum plumbizincicola (Crassulaceae), a cadmium (Cd)/zinc (Zn)/lead (Pb) hyperaccumulator native to Southeast China, is potentially useful for the phytoremediation of heavy metal-contaminated soil. Basic leucine zipper (bZIP) transcription factors play vital roles in plant growth, development, and abiotic stress responses. However, there has been minimal research on the effects of Cd stress on the bZIP gene family in S. plumbizincicola. In this study, 92 SpbZIP genes were identified in the S. plumbizincicola genome and then classified into 12 subgroups according to their similarity to bZIP genes in Arabidopsis. Gene structure and conserved motif analyses showed that SpbZIP genes within the same subgroup shared similar intron–exon structures and motif compositions. In total, eight pairs of segmentally duplicated SpbZIP genes were identified, but there were no tandemly duplicated SpbZIP genes. Additionally, the duplicated SpbZIP genes were mainly under purifying selection pressure. Hormone-responsive, abiotic and biotic stress-responsive, and plant development-related cis-acting elements were detected in the SpbZIP promoter sequences. Expression profiles derived from RNA-seq and quantitative real-time PCR analyses indicated that the expression levels of most SpbZIP genes were upregulated under Cd stress conditions. Furthermore, a gene co-expression network analysis revealed that most edge genes regulated by hub genes were related to metal transport, responses to stimuli, and transcriptional regulation. Because its expression was significantly upregulated by Cd stress, the hub gene SpbZIP60 was selected for a functional characterization to elucidate its role in the root response to Cd stress. In a transient gene expression analysis involving Nicotiana benthamiana leaves, SpbZIP60 was localized in the nucleus. The overexpression of SpbZIP60 enhanced the Cd tolerance of transgenic Arabidopsis plants by inhibiting ROS accumulation, protecting the photosynthetic apparatus, and decreasing the Cd content. These findings may provide insights into the potential roles of the bZIP family genes during the S. plumbizincicola response to Cd stress.
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INTRODUCTION

Heavy metal pollution has become a global environmental problem (Ali et al., 2013). Cadmium (Cd) is a major heavy metal pollutant that is released into the environment because of human industrial and agricultural production activities (Tchounwou et al., 2012). Cd contamination leads to decreased soil quality and suppressed crop production. Heavy metal stress results in changes to various physiological and metabolic processes. For example, the expression of many genes is induced in plants under heavy metal stress conditions, and the upregulated expression of stress-responsive genes, which is usually mediated by transcription factors, may increase plant survival rates (Yao et al., 2018; Zhang et al., 2020; Xu et al., 2021b).

The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factor families in eukaryotes (Pérez-Rodríguez et al., 2010). These transcription factors contain a highly conserved bZIP domain with two different functional regions, one of which is a sequence-specific DNA-binding alkaline region (N-x7-R/K-x9), whereas the other is a leucine zipper consisting of several heptapeptide repeats comprising Leu or other large hydrophobic amino acids (e.g., Ile, Val, Phe, or Met) that influence dimerization specificity (Jakoby et al., 2002; Nijhawan et al., 2008). The bZIP gene family was first identified and classified in Arabidopsis at the genome-wide level (Jakoby et al., 2002). The current study is related to earlier research, during which 78 AtbZIP genes were identified and divided into 13 subclasses (A–M) (Dröge-Laser et al., 2018). Additionally, analyses of the bZIP gene family in diverse species resulted in the identification of 64 genes in cucumber (Corrêa et al., 2008), 85 genes in rice (Nijhawan et al., 2008), 86 genes in poplar (Zhao et al., 2021), 96 genes in buckwheat (Liu et al., 2019b), 112 genes in apple (Zhao et al., 2016), 125 genes in maize (Wei et al., 2012), and 160 genes in soybean (Zhang et al., 2018).

There is considerable evidence that bZIP transcription factors in plants play crucial roles in various biological processes, including seed maturation (Izawa et al., 1994), organ differentiation (Pautler et al., 2015), photomorphogenesis (Huang et al., 2012), and floral development (Abe et al., 2005; Muszynski et al., 2006). They also contribute to responses to various abiotic stresses, including salinity (Bi et al., 2021), drought (Wang et al., 2017; Tu et al., 2020), heat (Deng et al., 2011; Liu et al., 2012), osmotic stress (Xu et al., 2013), and oxidative stress (Choi et al., 2021). Most of these responses are abscisic acid (ABA) signal transduction-dependent processes (Banerjee and Roychoudhury, 2017). As a key member of the ABA signal transduction pathway, bZIP proteins are activated by kinases, such as SnRK2, and then bind to an ABA-responsive element (ABRE) to regulate the expression of downstream genes. In rice, OsbZIP46 positively regulates ABA signal transduction and drought stress tolerance (Tang et al., 2012). The stress-induced expression of the activated form of AtbZIP17 protects Arabidopsis from salt stress (Liu et al., 2008). In poplar, a loss-of-function mutation to PtabZIP1 enhances lateral root formation under osmotic stress conditions (Dash et al., 2017). As the most dangerous pollutant, heavy metals have been regarded as new stress factors.

Similar to other abiotic stress responses, there has been increasing interest in the relationship between bZIP transcription factors and heavy metal stress responses. The BjCdR15/TGA3 transcription factor gene encodes an important regulator of Cd uptake by roots and the subsequent long-distance root-to-shoot transport. The overexpression of this gene in Arabidopsis and tobacco enhances Cd tolerance and accumulation. This is related to the regulation of the synthesis of phytochelatin synthase and the expression of several metal transporter genes (Farinati et al., 2010). In Arabidopsis, ABI5 (ABA-Insensitive 5), which is a central ABA signaling molecule, represses Cd accumulation in plants by physically interacting with MYB49 and preventing it from binding to the downstream genes bHLH38, bHLH101, HIPP22, and HIPP44, resulting in the inactivation of IRT1 and decreased Cd uptake (Zhang et al., 2019). The subgroup F bZIP transcription factors AtbZIP19 and AtbZIP23 are Zn sensors that regulate Arabidopsis responses to Zn deficiency via the binding between Zn2+ ions and their Zn sensor motif (Assunção et al., 2010; Lilay et al., 2019, 2021). Thus, the bZIP transcription factors appear to participate in plant responses to heavy metal stress.

Current research on the heavy metal homeostasis in plants primarily focuses on model plants or crop plants. Hyperaccumulator plants are valuable research materials because of their potential utility for remediating heavy metal-contaminated soil. Moreover, they are useful for investigating plant adaptation and evolution in extreme environments. The Cd, Pb, and Zn hyperaccumulator Sedum plumbizincicola (Wu et al., 2013), which is also known as the hyperaccumulating ecotype of S. alfredii (Yang et al., 2002), can tolerate, transport, and accumulate large amounts of Cd (Li et al., 2018), with a shoot Cd concentration as high as 9,000 mg/kg (Yang et al., 2004). Its efficient Cd absorption, transport, and detoxification systems are necessary for its growth in highly contaminated soils. Some genes related to Cd absorption, resistance, and hyperaccumulation, such as SpHMA3 (Liu et al., 2017), SpMTL (Peng et al., 2017), SaNramp6 (Chen et al., 2017; Lu et al., 2020), SaCAX2 (Zhang et al., 2016), SaHsfA4c (Chen et al., 2020), SaCAD (Qiu et al., 2018), SaREF (Liu et al., 2016), and SaPCR2 (Lin et al., 2020), have been characterized. However, there has yet to be a systematic analysis of the transcription factor families (e.g., bZIP) in S. plumbizincicola to clarify their roles in response to heavy metal stress.

In this study, we identified 92 bZIP genes in the S. plumbizincicola genome and then analyzed their structures, motifs, cis-acting elements, and phylogenetic relationships. On the basis of RNA sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) methods, we explored their expression profiles in response to Cd stress. Furthermore, the bZIP60 function related to plant responses to Cd stress was investigated. The results of this study will be useful for the future functional characterization of the SpbZIP genes in terms of their roles during plant responses to Cd stress.



MATERIALS AND METHODS


Identification of the Basic Leucine Zipper Family Genes in Sedum plumbizincicola

To identify all members of the bZIP gene family in S. plumbizincicola, HMMER3.0 was used to screen for candidate proteins in the S. plumbizincicola genome database (unpublished work) on the basis of the Hidden Markov Model profile of the bZIP domain (PF00170).1 A BLASTP search was performed using 78 Arabidopsis protein sequences that were annotated according to previously published methods from TAIR.2 Subsequently, Pfam, SMART,3 and CDD4 were used to confirm the presence of the bZIP domain in candidate proteins. All putative bZIP genes were named according to their homologs in Arabidopsis. The encoded protein sequences were analyzed using the online tool ProtParam5 to predict the amino acid composition, molecular weight, and isoelectric point (Gasteiger et al., 2005). Additionally, PSORT prediction6 was used to predict the subcellular localization of the proteins.



Multiple Sequence Alignment and Phylogenetic Analysis

ClustalX2 was used to align the full-length SpbZIP and AtbZIP amino acid sequences. Phylogenetic trees were constructed using the maximum-likelihood criteria in MEGA 5.0, with 1,000 bootstrap replicates. The identified SpbZIP genes were divided into different groups according to the AtbZIP classification scheme. The phylogenetic tree was visualized using iTOL.7



Analysis of cis-Acting Elements in SpbZIP Promoters

The cis-acting elements in the promoter region 2 kb upstream of the SpbZIP genes were identified and then submitted to the PlantCARE database8 (Lescot et al., 2002). The position of the identified elements was graphically displayed using the TBtools software.9



Analysis of SpbZIP Gene Structures and Encoded Motifs

The exon/intron structure of SpbZIP genes was analyzed and displayed using the GSDS platform.10 The conserved motifs in the SpbZIP proteins were identified using the MEME program (version 5.0.5),11 with the following parameters: optimum motif width range of 6–50 amino acid residues and a maximum of 22 motifs (Bailey and Elkan, 1994).



Synteny Analysis and Chromosomal Distribution of SpbZIP Genes

The default parameters of the Multiple Collinearity Scan (MCScanX) toolkit were used to analyze gene duplication events (Wang et al., 2012). Diagrams were generated using the Circos program (version 0.69)12 (Krzywinski et al., 2009). Non-synonymous (ka) and synonymous (ks) substitutions in each duplicated SpbZIP gene were calculated using KaKs_Calculator 2.0 (Wang et al., 2010).



Plant Materials and Cd Stress Treatments

Sedum plumbizincicola plants were collected from an old Pb/Zn mine in Huiping town, Quzhou city, Zhejiang province, China. The shoots from a single genotype were asexually propagated and cultivated in water in an artificial climate chamber at 25°C with a 16-h light/8-h dark cycle. The plants were grown in a half-strength Hoagland solution for about 4 weeks. Similarly growing plants were then treated with 400 μM CdCl2. The roots, stems, and leaves were sampled at 0, 0.5, 2, 4, 8, and 12 h after the Cd stress treatment. Three biological replicates were collected for all samples.



SpbZIP Expression Profiles in Response to Cd Stress

The Total RNA Purification kit (NORGEN, Thorold, ON, Canada) was used to extract total RNA from the roots, stems, and leaves. First-strand cDNA was generated using PrimeScript™ RT Master Mix (TaKaRa, Dalian, China). The qRT-PCR analysis was performed in triplicate using the 7,300 Real-Time PCR System (Applied Biosystems, CA, United States) and the SYBR® Premix Ex Taq™ reagent (TaKaRa, Dalian, China). Gene-specific primers were designed using the “Genes” module of the SPDE software (Xu et al., 2021a). The UBC gene was selected as the internal reference (Sang et al., 2013). Primers used are listed in Supplementary Table 5. Relative expression levels were calculated according to the 2–ΔΔCT method (Livak and Schmittgen, 2001). The FPKM values for the SpbZIP genes were derived from the RNA-seq data (Han et al., 2016). Expression values were normalized via Z-score normalization. An expression profile heatmap was generated using the pheatmap package in R (4.0.2).



SpbZIP Co-expression Regulatory Network

The weighted gene co-expression network analysis (WGCNA) R package was used to construct a co-expression regulatory network on the basis of the expression profiles of differentially expressed genes under Cd stress conditions (Han et al., 2016). The SpbZIP genes among the co-expressed genes with strong interconnections were designated as hub genes. The Pearson’s correlation coefficient threshold was set as 0.40 according to the FPKM values for each gene pair using the R (version 4.0.2) program (Han et al., 2016). We screened for co-expression edge genes associated with the SpbZIP hub genes and performed Gene Ontology (GO) analyses using the Gene Annotation Software for Plants (GFAP) (Xu et al., 2022). Subsequently, we classified the related genes according to their functions and visualized the relationships between nodes and edges using Cytoscape (version 3.6.1).



Subcellular Localization of SpbZIP60

The SpbZIP60 coding sequence without the stop codon was fused to the mGFP-encoding sequence in the pCAMBIA1302 expression vector using the ClonExpress II One Step Cloning Kit (Vazyme, Nanjing, China). Agrobacterium tumefaciens GV3101 cells were transformed with the recombinant plasmid, which was then transferred into healthy Nicotiana benthamiana leaves for a transient gene expression analysis; the empty vector was used as a control. After co-culturing for 3 days, the leaves were soaked in a 4,6-diamidino-2-phenylindole (DAPI) staining solution to visualize nuclear DNA. The LSM 710 confocal laser-scanning microscope (Zeiss, Germany) was used to detect the fluorescence of the fusion protein.



Ectopic Expression of SpbZIP60 in Arabidopsis and Cd Treatment

The SpbZIP60 coding sequence was amplified by PCR and inserted into the pCAMBIA1300 vector. The recombinant plasmid was inserted into Arabidopsis (Col-0) plants via A. tumefaciens (EHA105)-mediated transformation (Zhang et al., 2006). The T3 homozygous transgenic lines and wild-type (WT) plants were grown in a half-strength Hoagland solution. The seedlings were transferred to a solution containing 30 μM CdCl2 after 4 weeks and grown for 7 days. The roots of the treated seedlings were immersed in a 10-mM EDTA solution for 0.5 h to remove Cd from the surface. The samples were dried and then digested with a solution comprising HNO3 and perchloric acid (9:1 v/v) at 120–200°C in a microwave-accelerated reaction system (CEM, Matthews, NC, United States). The Cd content was determined using the 7500a inductively coupled plasma mass spectrometry system (Agilent, Santa Clara, CA, United States). Previously described 3,3’-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining methods were used to reveal the presence of H2O2 and O2– in situ (Chen et al., 2020). The chlorophyll content was measured according to an acetone ethanol extraction method (Li et al., 2000). Chlorophyll fluorescence was analyzed using the Dual-PAM-100 system (Walz, Effeltrich, Germany); the parameters were set, and the data were analyzed as previously described (Su et al., 2020).




RESULTS


Identification and Characterization of Putative Basic Leucine Zipper Transcription Factors

Following a search of the S. plumbizincicola genome database using HMMER3.0, the identified candidate sequences were examined using CDD, Pfam, and SMART to confirm the presence of the bZIP domain (E-value < 1e–5). A total of 92 non-redundant genes were identified as bZIP genes in the S. plumbizincicola genome. They were named according to the corresponding Arabidopsis homologs. The subsequent analysis indicated that the SpbZIP proteins comprise 117–707 amino acids (average of 303 amino acids), with a molecular weight of 13.7–77.3 kDa (average of 33.7 kDa) and a predicted isoelectric point of 5.05–10.26 (average of 7.02). Most of the identified SpbZIP proteins were predicted to localize in the nucleus, which is a characteristic of transcription factors (Supplementary Table 1).



Phylogenetic Analysis of SpbZIP Genes

To classify the SpbZIP genes into subgroups and elucidate the evolutionary relationships between S. plumbizincicola and Arabidopsis genes, we constructed an unrooted phylogenetic tree using the maximum-likelihood method and the protein sequences encoded by 78 AtbZIP genes and the 92 identified SpbZIP genes (Figure 1). On the basis of the phylogenetic tree, the SpbZIP genes were divided into 12 of 13 subgroups; the exception was subgroup M. There were no individual clades among the SpbZIP genes, suggesting that they were relatively conserved. Similar to the Arabidopsis homologs, most of the SpbZIP genes were classified into subgroups S and A. Subgroups J and K had the fewest genes, each with only two SpbZIP genes.
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FIGURE 1. Phylogenetic relationships among the bZIP genes from Sedum plumbizincicola and Arabidopsis. The phylogenetic tree was constructed on the basis of the alignment of S. plumbizincicola and Arabidopsis bZIP proteins according to the maximum-likelihood method, with 1,000 bootstrap replicates.




SpbZIP Gene Structure and Protein Motif Composition

To gain insights into the structures of SpbZIP genes, their introns and exons were analyzed. Of the SpbZIP genes in subgroup S, 20 (21.7%) lacked introns. In contrast, three (3.3%) and seven (7.6%) genes contained one and two introns, respectively. Three or more introns were detected in 62 genes (68.5%) (Figure 2C). An examination using the MEME online program detected 22 conserved motifs in the SpbZIP proteins. The conserved motifs comprised 20–50 amino acids. Details regarding the 22 putative motifs are provided in Supplementary Table 2. Motif 1 (leucine zipper region of bZIP) was identified as the core conserved domain. A few subgroup-specific motifs were identified, including motifs 10 and 15 (subgroup A) and motifs 11, 12, and 16 (subgroup G). Most of the SpbZIP proteins in the same subgroup in the phylogenetic tree had common motifs, indicating a close evolutionary relationship and a high degree of conservation.
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FIGURE 2. Phylogenetic relationships, motif compositions, and gene structures of SpbZIP genes in S. plumbizincicola. (A) Phylogenetic analysis of S. plumbizincicola bZIP family members. (B) All conserved motifs in the SpbZIP proteins were identified using the MEME program. Different motifs are highlighted with different colored boxes (numbered 1–22). (C) Gene structures. Exons and 5’/3’ untranslated regions are indicated by green and yellow bars, respectively, whereas gray lines represent introns.




Chromosomal Locations and Collinearity Analysis of SpbZIP Genes

The 92 SpbZIP genes were distributed unequally among 30 S. plumbizincicola chromosomes (Figure 3). Segmental duplications of multiple genes are caused by chromosomal rearrangements (Yu et al., 2005), whereas tandem duplications, which mainly occur in the recombination region of chromosomes, usually result in the formation of a cluster of genes with similar sequences and functions (Ramamoorthy et al., 2008). During evolution, segmental and tandem duplications are the two main drivers of the expansion of plant gene families. In the S. plumbizincicola genome, eight segmental duplication events involving 16 SpbZIP genes (i.e., 17.4% of the SpbZIP genes) were detected. Among the segmentally duplicated gene pairs, SpbZIP42.1/SpbZIP42 and SpbZIP45.2/SpbZIP45.1 were distributed on chromosomes 4 and 14, respectively, whereas SpbZIP60/SpbZIP60.1 and SpbZIP61.3/SpbZIP61.2 were distributed on chromosomes 5 and 6, respectively. Additionally, SpbZIP36.1/SpbZIP36, SpbZIP53/SpbZIP53.1, SpbZIP44/SpbZIP44.1, and SpbZIP52/SpbZIP18.2 resulted from gene duplication events. Of these gene pairs, six were assigned to subgroup S. Furthermore, none of the genes were the result of tandem duplications. Thus, we speculated that segmental duplications were important for the expansion of the SpbZIP family in S. plumbizincicola. Moreover, the Ka/Ks ratios for all eight duplicated SpbZIP gene pairs were less than 0.5 (Supplementary Table 3), indicating that the SpbZIP family paralogs were primarily under purifying selection.
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FIGURE 3. Genome location and synteny of bZIP genes in S. plumbizincicola. Gray lines indicate syntenic blocks in the S. plumbizincicola genome, whereas the red lines between chromosomes indicate segmentally duplicated gene pairs.


Next, we created two comparative syntenic maps of the association between S. plumbizincicola and Arabidopsis or Kalanchoe fedtschenkoi, which is a representative Crassulaceae plant species, to further clarify the origin and evolution of the S. plumbizincicola bZIP family (Figure 4). A total of 15 SpbZIP genes had a syntenic relationship with 17 and 48 genes in Arabidopsis and K. fedtschenkoi, respectively (Supplementary Table 4). Additionally, 20 orthologous gene pairs were detected between S. plumbizincicola and Arabidopsis, which was fewer than the 54 orthologous gene pairs between S. plumbizincicola and K. fedtschenkoi. There were more collinear gene pairs between S. plumbizincicola and K. fedtschenkoi than between S. plumbizincicola and Arabidopsis, which is in accordance with the fact S. plumbizincicola is phylogenetically closer to K. fedtschenkoi than to Arabidopsis. Some collinear gene pairs (involving 11 SpbZIP genes) among all three species were identified, implying that the orthologous gene pairs may have existed before ancestral divergence. These orthologous genes were also under intense purifying selection.
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FIGURE 4. Synteny between SpbZIP genes and genes in other species (Arabidopsis and K. fedtschenkoi). Gray lines in the background represent collinear blocks in S. plumbizincicola and the other species, whereas blue lines indicate syntenic bZIP gene pairs.




Analysis of cis-Acting Elements in SpbZIP Promoters

To clarify the regulatory mechanisms underlying SpbZIP expression, the cis-acting elements in the promoter sequences were analyzed using PlantCARE. The identified cis-acting elements (Figure 5) were divided into three categories (stress-responsive, plant development-related, and phytohormone responsive). The following seven abiotic stress-responsive elements were detected: ARE (important for anaerobic induction), MBS (MYB-binding site associated with drought-inducible expression), TC-rich repeat (stress-responsive element), WUN-motif (wound-responsive element), LTR (low temperature-responsive element), G-box, and W-box. At least one stress-responsive cis-acting element was detected in the promoter of all SpbZIP genes, with the exception of SpbZIP66, reflecting the importance of SpbZIP expression for plant responses to various abiotic stresses. Among the phytohormone-responsive cis-acting elements, ABRE was the most common, with 251 ABREs detected in 72 SpbZIP promoters (enrichment level of 3.49), followed by MeJA-responsive cis-acting elements (TGACG-motif and CGTCA-motif) (enrichment level of 2.49).
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FIGURE 5. Analysis of cis-acting elements in the SpbZIP promoter region. (A) Phylogenetic analysis of SpbZIP genes. (B) The number of each cis-acting element in the promoter region (2 kb upstream of the translation start site) of SpbZIP genes. (C) Distribution of related cis-acting elements in SpbZIP promoters.




SpbZIP Expression Profiles Under Cd Stress Conditions

We used our previously published RNA-seq data to determine SpbZIP expression patterns (Han et al., 2016), which were revealed in terms of FPKM values, in the roots, stems, and leaves. The SpbZIP expression trends in the roots during the Cd treatment period were divided into four categories (Figure 6). The expression levels of 32 SpbZIP genes gradually decreased or increased over the entire treatment period. In contrast, the expression levels of 18 genes peaked at 1 day after initiating the Cd treatment. However, the genes whose expression in the roots was not induced by Cd stress had upregulated or downregulated expression levels in the stems (27) or leaves (8) in response to the Cd treatment. These results suggested that SpbZIP transcription factors may play a major role in the roots as part of the initial response to Cd stress. Transcription factors often rapidly respond to environmental cues. We further shortened and refined the treatment time and then performed qRT-PCR analysis to investigate the expression levels of 25 hub genes selected from the co-expression network. As expected, for most of the SpbZIP genes, the expression levels peaked earlier in the roots (4 h) than in the stems (8 h) and leaves (12 h) (Figure 7).
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FIGURE 6. Expression profiles of SpbZIP genes in plant tissues under Cd stress conditions. Gene expression data at 0, 1, and 4 days after the 400 μM CdCl2 treatment were retrieved from an RNA-seq database and visualized using R (version 4.0.2). Expression levels are indicated by a gradient from low (blue) to high (red). L, S, and R represent leaves, stems, and roots, respectively.
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FIGURE 7. Expression profiles of hub SpbZIP genes in different tissues of S. plumbizincicola soon after the exposure to Cd stress.




SpbZIP Co-expression Network

To further clarify the regulatory effects of bZIP family members on the expression of Cd-responsive genes, a co-expression regulatory network was constructed on the basis of the expression profiles of differentially expressed genes under Cd stress conditions determined in an earlier transcriptome analysis, in which 11 SpbZIP genes were annotated as hub genes. The nodes associated with hub genes were clustered according to functional categories, which reflected their association with metabolic processes, cellular activities, membranes, cells, binding, and catalytic activities (Supplementary Table 6). The Cd-responsive gene co-expression network had 189 nodes (Figure 8). The major categories included transcription factor (59 edges), transporter activity (52 edges), stimulus-response (43 edges), signaling (19 edges), and antioxidant activity (8 edges). The hub gene SpbZIP60.1 was associated with the most nodes (59), including 19 transcription factor nodes, 12 transporter activity nodes, 4 stimulus-response nodes, and 4 signaling nodes, followed by SpbZIP69.2 (34 nodes) and SpbZIP63.3 (21 nodes). Accordingly, in response to Cd stress, SpbZIP transcription factors appear to regulate the expression of downstream genes associated with diverse functions.
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FIGURE 8. SpbZIP gene co-expression network. The genes are divided on the basis of the following seven GO terms, which are represented by different colors: transporter activity, nucleic acid binding transcription factor activity, response to stimulus, signaling, antioxidant activity, protein binding transcription factor activity, and molecular transducer activity.




SpbZIP60 Was Localized in the Nucleus

In this study, SpbZIP60 was one of the hub genes in the co-expression regulatory network, and its expression level was significantly upregulated in the roots during the Cd stress treatment. Hence, the subcellular localization of SpbZIP60 was analyzed to elucidate the potential functions of bZIP transcription factors in S. plumbizincicola. The control GFP signal was distributed throughout the cell, whereas the fluorescence of the SpbZIP60-mGFP fusion protein was detected only in the nucleus (Figure 9). Thus, SpbZIP60 likely functions as a nuclear protein that regulates transcription.
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FIGURE 9. Subcellular localization of SpbZIP60. The SpbZIP60-GFP fusion construct and the GFP gene driven by the CaMV 35S promoter were transiently expressed in tobacco. The nucleus was visualized using the DAPI staining solution.




Overexpression of SpbZIP60 Enhanced the Cd Tolerance of Arabidopsis

To further explore the function of SpbZIP60 under Cd stress conditions, transgenic Arabidopsis plants overexpressing SpbZIP60 were generated. The T0 transgenic lines were verified by PCR using genomic DNA as the template. After analyzing the SpbZIP60 expression levels by semi-RT-PCR, the transgenic lines were cultivated to produce the homozygous T3 lines used for the subsequent analyses (Supplementary Figure 1).

Leaf chlorosis and damages to the photosynthetic apparatus are observable symptoms of Cd toxicity. The degree of chlorosis in leaves at 7 days after initiating the Cd stress treatment was higher in the WT plants than in the SpbZIP60-overexpressing plants (Figure 10A). Histochemical staining revealed that less H2O2 and O2– accumulated in the transgenic Arabidopsis lines (OE#5 and OE#8) than in the WT control following the Cd treatment (Figures 10B,C). Meanwhile, the total chlorophyll content of the SpbZIP60-overexpressing plants where significantly higher than those of WT (Figure 10D). Chlorophyll fluorescence properties, which reflect the photochemical processes of PSII, are a useful indicator of the effects of heavy metal stress, especially Cd stress, on the photosynthetic apparatus. In the WT Arabidopsis plants, the Fv/Fm decreased, which was indicative of photoinhibition. Moreover, the inactivation or destruction of PSII resulted in an increase in the initial fluorescence (F0). Additionally, the relative PSII electron transport rate was higher in the SpbZIP-overexpressing plants than in the WT plants (Supplementary Table 7). These results suggested that in response to Cd stress, the photosynthetic apparatus was damaged less in the SpbZIP60-overexpressing plants than in the WT plants. Next, we analyzed the Cd concentrations in hydroponically grown SpbZIP60-overexpressing lines. The Cd concentrations in the leaves and roots decreased substantially in the transgenic lines (Figure 10E). Therefore, SpbZIP60 significantly decreased the Cd concentration in the roots of the transgenic Arabidopsis plants, likely by inhibiting Cd uptake.
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FIGURE 10. Effects of Cd stress treatments on the growth of SpbZIP60-overexpressing Arabidopsis plants. (A) Phenotypes of SpbZIP60-overexpressing transgenic lines and wild-type (WT) plants under normal conditions or in response to the Cd treatment. Bar = 5 cm. (B) NBT staining results. (C) DAB staining results. (D) Chlorophyll contents of the WT and transgenic lines before and after the Cd treatment. (E) Cd contents of the WT and transgenic lines. Bars represent the mean ± standard deviation (SD) of at least three independent biological replicates. Significant differences according to a one-way analysis of variance are denoted as follows: p < 0.05 (Duncan’s test).





DISCUSSION

Sedum plumbizincicola has undergone long-term evolution and natural selection in heavy metal-contaminated soil (Wu et al., 2013; Yang et al., 2017). The S. plumbizincicola proteins involved in the absorption, transport, sequestration, and detoxification of heavy metals have been thoroughly studied, especially the heavy metal transporters (Liu et al., 2016, 2017, 2019a; Peng et al., 2017; Chen et al., 2020; Zhu et al., 2022). However, systematic analyses of the transcriptional regulation of the genes encoding these proteins have not been conducted. Transcription factors in the bZIP family modulate various physiological processes and abiotic stress responses (Corrêa et al., 2008). Thus, characterizing the S. plumbizincicola bZIP family is critical for clarifying the mechanism underlying the responses of S. plumbizincicola plants to environmental factors, especially heavy metal stress.

In this study, we conducted a genome-wide analysis of the S. plumbizincicola bZIP transcription factor family and explored the potential functions in response to Cd stress. On the basis of the encoded motifs, 92 SpbZIP genes were identified in the S. plumbizincicola genome. The number of bZIP genes in S. plumbizincicola is higher than that in some plant species but lower than that in other plant species (Corrêa et al., 2008; Nijhawan et al., 2008; Wei et al., 2012; Zhao et al., 2016, 2021; Dröge-Laser et al., 2018; Zhang et al., 2018; Liu et al., 2019b). We then divided the 92 SpbZIP genes into 12 subgroups after comparing the encoded protein sequences with the corresponding sequences in Arabidopsis. The classification of the bZIP genes was relatively consistent between S. plumbizincicola and Arabidopsis. However, AtbZIP72 was included in a separate clade (subgroup M), which lacked SpbZIP genes, suggesting that this clade is specific to Arabidopsis. In the phylogenetic tree constructed in this study, there were no branches that were exclusive to S. plumbizincicola, suggesting the SpbZIP genes are evolutionarily conserved (Figure 1). Moreover, genes belonging to the same subgroup were revealed to share similar gene structures and encode common motifs (Figure 2). For example, subgroup S consisted of small proteins encoded by genes lacking introns, which is in accordance with the results of earlier studies (Dröge-Laser et al., 2018; Wang et al., 2021).

Tandem and segmental duplication events are crucial for the expansion of gene families and the diversification of gene functions, which have enabled plants to adapt to environmental conditions (Cannon et al., 2004). We detected eight pairs of segmentally duplicated genes on 11 chromosomes, but no tandemly duplicated genes. Therefore, the expansion of the bZIP gene family in S. plumbizincicola was mainly the result of segmental duplications. The calculated Ka/Ks ratios for all gene pairs were less than 0.5, implying these genes might have experienced strong purifying selection pressure during evolution. Furthermore, we analyzed the collinearity between the SpbZIP genes and genes in Arabidopsis and K. fedtschenkoi. There were more collinear gene pairs between S. plumbizincicola and K. fedtschenkoi, which has a relatively close evolutionary relationship with S. plumbizincicola, than between S. plumbizincicola and Arabidopsis. A comparison between S. plumbizincicola and Arabidopsis detected 20 orthologous pairs of bZIP genes. As putative orthologs of SpbZIP19.1, both AT4G35040.1 (AtbZIP19) and AT2G16770.1 (AtbZIP23), which belong to subgroup F, encode Zn sensors that contain a motif that binds Zn2+ ions, enabling them to regulate plant responses to zinc deficiency (Lilay et al., 2021). Additionally, the following four G-box-binding factors (GBFs) were identified: GBF1 (SpbZIP41.1/AT4G36730.1), GBF2 (SpbZIP55/AT4G01120.1), GBF3 (SpbZIP55/AT2G46270.1), and GBF6 (SpbZIP16.3 and SpbZIP44.4/AT4G34590.1). Previous research indicated that GBFs participate in abiotic stress responses (Sun et al., 2015). For example, the expression of AtGBF3 induces drought and pathogen stress tolerance by activating ABA-mediated signaling (Ramegowda et al., 2017; Dixit et al., 2019). Interestingly, the promoter of SpbZIP55, which is orthologous to AtGBF3, was revealed to contain the most ABREs among the examined SpbZIP genes, suggesting that SpbZIP55 may also be related to ABA signaling and stress responses.

We further explored the SpbZIP expression patterns in response to Cd stress. Most of the SpbZIP genes were responsive to Cd stress, especially in the roots. This finding may be related to the fact that plants first perceive Cd stress in the roots, which take up Cd from the soil. The Cd is then transported to the stems and leaves. Therefore, the response to Cd stress will likely be greater in the roots than in the other plant tissues (Pan et al., 2019). Transcription factors may regulate metal ion transport in the stem. For example, in Brassica juncea, BjCdR15/TGA3 is a transcription factor that is crucial for the regulation of Cd uptake by the roots and the root-to-shoot transport of Cd (Farinati et al., 2010). Moreover, bZIP genes encode transcription factors that respond rapidly to stimuli. A co-expression regulatory network analysis is useful for identifying closely co-regulated and functionally related genes or genes affecting the same signaling pathway or physiological process. To identify the core SpbZIP genes responsive to Cd stress, we constructed a co-expression network and identified 11 hub SpbZIP genes that are co-expressed, with strong interconnections to edges (Han et al., 2016). These genes may encode proteins that sense specific signals, respond to stimuli, regulate the expression of other transcription factor genes, and ultimately affect metal transport or oxidative elimination.

The hub gene SpbZIP60 was selected for functional analysis because its expression was observed to be upregulated by Cd stress. The overexpression of SpbZIP60 in transgenic Arabidopsis resulted in increased Cd tolerance. More specifically, the photosynthetic apparatus was damaged more in the WT plants than in the transgenic plants following the Cd treatment. Furthermore, Cd accumulated less in the transgenic plants than in the WT controls. These results indicate that SpbZIP60 may affect the uptake or transport of Cd. However, it is unclear whether the increased Cd resistance is also the result of enhancements to other detoxification-related processes. The Chlamydomonas bZIP transcription factor BLZ8 confers oxidative stress tolerance by inducing a carbon-concentrating mechanism (Choi et al., 2021). In Arabidopsis, AtbZIP60 responds to endoplasmic reticulum stress through the IRE1-bZIP60 mRNA splicing pathway (Deng et al., 2011). Briefly, AtIRE1 selectively recognizes and cleaves the unspliced bZIP60 mRNA that normally exists in the ER membrane, and the resulting spliced bZIP60 mRNA can be translated into an active bZIP transcription factor (Howell, 2013). The subcellular localization experiment conducted in the current study demonstrated that SpbZIP60 is a nuclear protein, but whether this means SpbZIP60 contributes to the ER stress response remains to be determined. At present, there are relatively few studies on Cd-mediated ER stress in plants.



CONCLUSION

In this study, we identified 92 bZIP genes in S. plumbizincicola and analyzed their evolutionary relationships. These genes were divided into 12 subgroups, and the members of each subgroup had common gene structures and motif compositions. An analysis of the S. plumbizincicola bZIP genes revealed eight segmental duplication events, but no tandem duplication events, suggesting that segmental duplication events were the main force driving the evolution of the bZIP gene family in S. plumbizincicola. A collinearity analysis involving S. plumbizincicola and other species and a comparison between the S. plumbizincicola genes and the genes encoding bZIP transcription factors with known functions in model plants will provide new clues regarding SpbZIP functions. We also characterized the SpbZIP expression profiles under Cd stress conditions and constructed a co-expression network comprising 11 SpbZIP hub genes. The results of this study reflect the importance of SpbZIP transcription factors for regulating plant responses to Cd stress. The expression of the hub gene SpbZIP60 was induced by Cd stress and enhanced the Cd tolerance of transgenic Arabidopsis. Overall, these findings may provide new insights into the stress response-related functions of SpbZIP transcription factors in S. plumbizincicola.
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Ma bamboo (Dendrocalamus latiflorus Munro) is the most widely cultivated clumping bamboo in Southern China and is valuable for both consumption and wood production. The development of bamboo shoots involving the occurrence of lateral buds is unique, and it affects both shoot yield and the resulting timber. Plant-specific TCP transcription factors are involved in plant growth and development, particularly in lateral bud outgrowth and morphogenesis. However, the comprehensive information of the TCP genes in Ma bamboo remains poorly understood. In this study, 66 TCP transcription factors were identified in Ma bamboo at the genome-wide level. Members of the same subfamily had conservative gene structures and conserved motifs. The collinear analysis demonstrated that segmental duplication occurred widely in the TCP transcription factors of Ma bamboo, which mainly led to the expansion of a gene family. Cis-acting elements related to growth and development and stress response were found in the promoter regions of DlTCPs. Expression patterns revealed that DlTCPs have tissue expression specificity, which is usually highly expressed in shoots and leaves. Subcellular localization and transcriptional self-activation experiments demonstrated that the five candidate TCP proteins were typical self-activating nuclear-localized transcription factors. Additionally, the transcriptome analysis of the bamboo shoot buds at different developmental stages helped to clarify the underlying functions of the TCP members during the growth of bamboo shoots. DlTCP12-C, significantly downregulated as the bamboo shoots developed, was selected to further verify its molecular function in Arabidopsis. The DlTCP12-C overexpressing lines exhibited a marked reduction in the number of rosettes and branches compared with the wild type in Arabidopsis, suggesting that DlTCP12-C conservatively inhibits lateral bud outgrowth and branching in plants. This study provides useful insights into the evolutionary patterns and molecular functions of the TCP transcription factors in Ma bamboo and provides a valuable reference for further research on the regulatory mechanism of bamboo shoot development and lateral bud growth.
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INTRODUCTION

Transcription factors play a critical role in plant growth and development and can regulate development by transmitting external environmental factors, mediating hormone signal pathways, and responding to gene regulatory networks in plants (Chen et al., 2021). TCP genes, a kind of plant-specific transcription factors, are typically involved in the plant developmental process, such as seed germination (Zhang et al., 2019a), floral organ development (Wang et al., 2015), leaf morphogenesis (Sarvepalli and Nath, 2011), axillary meristem development (Aguilar-Martínez et al., 2007; Nicolas et al., 2015; Min et al., 2021), and hormone signal transduction (Kosugi and Ohashi, 2002; González-Grandío et al., 2017). The abbreviation “TCP” comes from its earliest discovered members: Teosinte Branched1 (TB1) from maize (Zea mays), CYCLOIDEA (CYC) from snapdragon (Antirrhinum majus), and the PROLIFERATING CELL FACTORS (PCF) from rice (Oryza sativa) (Luo et al., 1996; Doebley et al., 1997; Kosugi and Ohashi, 1997). They all have a conserved TCP domain, a basic helix–loop–helix (bHLH) structure, which is primarily related to DNA binding, protein interaction, and protein nuclear localization (Cubas et al., 1999). It can also be divided into Class I (also known as PCF) and Class II according to the characteristics of the conserved domain of TCP proteins. Additionally, Class II can be divided into CIN subfamily and CYC/TB1 subfamily (Martín-Trillo and Cubas, 2010). The most obvious difference between Class I and Class II is the absence of four conservative amino acids in the Class I basic TCP domain. The R domain is rich in polar amino acids such as lysine, glutamic acid, and arginine and is only found in Class II members, which is used to mediate protein interaction (Cubas et al., 1999).

So far, the majority of TCP family members have been determined to play a role in plant growth and development. Previous studies have shown that the TCP members of Class I primarily promotes leaf cell proliferation, thereby regulating plant growth and development, and plays an important role in the response to stress (Aguilar Martinez and Sinha, 2013). In Arabidopsis thaliana, TCP14 and TCP15 are involved in seed germination by acting downstream of the gibberellin and vernalization pathways (Resentini et al., 2015; Xu et al., 2020). Through binding to the homologous GCCCR elements, AtTCP20 regulates the expression of cyclin and ribosomal protein genes. Furthermore, it acts as a flexible regulator to coordinate growth and division pathways in post-embryonic plant development (Li et al., 2005). Additionally, the downregulation of the expression of OsPCF6 and OsTCP21 enhances the tolerance of rice under cold stress by changing the scavenging of reactive oxygen species (Wang et al., 2014). TCP21 is particularly important during plant growth. Its low expression makes rice more susceptible to rice ragged stunt virus (RRSV) (Zhang et al., 2016; Wang et al., 2021). Overexpression lines of TCP21 exhibited increased tiller bud length, biomass, and tiller number in rice (Wang et al., 2021). PeTCP10 is induced by drought and ABA treatment and plays a vital role in plant growth and development and response to environmental stress, which can be seen due to its effects in the evident effects on drought tolerance and the lateral root growth of transgenic lines (Liu et al., 2020). However, the TCP members of Class II primarily plays an important role in morphological construction and organ development (Manassero et al., 2013; Sarvepalli and Nath, 2018). Overexpression of AtTCP1, the homolog of CYC, directly stimulates the expression of the target gene DWF4 to actively regulate brassinosteroid (BR) biosynthesis, which affects leaf development and leaf shape regulation (Guo et al., 2010; An et al., 2011). It was found that OsTCP17 (REP1), a CYC homologous gene in rice, regulates the attributes and development of palea and controls the flower symmetry of the inner and outer lemma axis (Yuan et al., 2009). In wild rice, the OsTCP15 (TIG1) gene is specifically highly expressed on the distal side of the tiller base, which promotes cell elongation by activating the expression of downstream genes such as EXPA3, EXPB5, and SAUR39, which helps to maintain a large tillering angle (Zhang et al., 2019b).

Branching affects plant morphogenesis and growth to a great extent and determines plant architecture, yield, and ecological sustainability (Richards, 2000; Wang and Li, 2008; Wang et al., 2019). TB1, an inhibitory regulator of the development of axillary buds, realizes the transformation from lateral branch growth to apical dominance, transforming teosinte with more tiller numbers into commonly cultivated maize (Doebley et al., 1997; Wang et al., 2019). It has been found in many species due to its conservative function of negatively regulating axillary bud growth (Takeda et al., 2003; Kebrom et al., 2006; Dixon et al., 2018; Shen et al., 2019). TCP18 (BRANCHED1, BRC1) and TCP12 (BRANCHEND2, BRC2) in Arabidopsis are the two orthologous homologs of ZmTB1 in maize, which are highly expressed in axillary buds and negatively regulate the growth of axillary buds, whereas SML 6, 7, and 8 promote branching through transcriptional inhibition of BRC1 and the non-transcriptional regulation of auxin (Aguilar-Martínez et al., 2007; Wang et al., 2020). Strigolactones (SLs) are a new plant hormone that inhibits the germination of lateral branches and suppresses the growth of tiller buds in rice by regulating the transcriptional level of OsTB1 (Takeda et al., 2003; Nicolas and Cubas, 2016; Wang et al., 2018). Meanwhile, OsMADS57 and OsTB1 jointly regulate the transcription of its target genes OsWRKY94 and D14, realizing the transition between organogenesis and cold adaptation defense in rice at different temperatures (Chen et al., 2018). As wild cucumbers were domesticated, it was found that two light response elements inserted in the promoter region promoted the expression of CsBRC1, which directly restrained the auxin outflow from the lateral buds mediated by PIN3 (encoding auxin transporter) and reduced the production of branches due to the accumulation of auxin in axillary buds (Shen et al., 2019). To date, homologous genes of TB1 were subsequently identified in numerous gramineous plants such as rice (Takeda et al., 2003), wheat (Dixon et al., 2018), and sorghum (Kebrom et al., 2006). They are very conservative in function, which can cause bud dormancy, and effectively regulate the growth of axillary buds in response to hormones and the external environment which controls the tiller number (Wang et al., 2019).

Bamboo is one of the fast-growing non-timber forest resources and has significant economic, cultural, and ecological value (Zhao et al., 2017). Ma bamboo (Dendrocalamus latiflorus Munro) is the most widely cultivated clumping bamboo in Southern China. Its bamboo shoots taste good and are high in nutritional value. Mature bamboo can be used as building materials, decorations, and ornamental planting. Therefore, it is a fast-growing and environmentally friendly clump bamboo species that can be cultivated for its shoots and timber. Bamboo shoots have a longer period of emergence because they are often exposed to the soil surface, which is easily frozen in winter. When cultivating bamboo forests, seasonal shooting and the low germination rate of shoot buds directly affect the yield of bamboo shoots and timber. The formation, growth, and development of bamboo shoots involved in the morphogenesis of lateral branches are unique and affect the yield of bamboo shoots and timber. Therefore, it is important to explore the role of genes related to lateral branch formation in the outgrowth of bamboo shoots, which will help to clarify the molecular mechanism of bamboo shoot development.

Whereas, the TCP family has been characterized in many species, such as Arabidopsis (Yao et al., 2007), rice (Yao et al., 2007), sorghum (Francis et al., 2016), and Moso bamboo (Liu et al., 2018), less is known about the TCP transcription factors in Ma bamboo. Recently released genomic data about Ma bamboo, including a representative of hexaploid clumping bamboo (AABBCC, 2n = 6x = 72), allowed us to perform a genome-wide analysis of the TCP transcription factors in Ma bamboo (Zheng et al., 2022). In this study, 66 TCP transcription factor members of Ma bamboo were identified, and the phylogenetic relationship, gene structure and motif information, collinearity, tissue differential expression analysis, subcellular localization analysis, and transcriptional self-activation analysis were analyzed. Additionally, we performed transcriptome analysis of bamboo shoot buds at different developmental stages to clarify the function of the TCP family during bamboo shoot outgrowth. Through the phenotypic observation of transgenic Arabidopsis, we concluded that DlTCP12-C plays a significant role in controlling the number of branches. Our study reveals the basic information and evolutionary relationship of plant-specific TCP transcription factors in Ma bamboo, clarifies the role of candidate genes in bamboo shoot growth and development by transcriptome analysis, and preliminarily outlines on the function of candidate TCPs, all of which provides valuable insights into future investigations.



MATERIALS AND METHODS


Genome-Wide Identification of Putative DlTCPs

To identify TCP transcription factors, the detailed information of D. latiflorus genome was obtained through the website (http://forestry.fafu.edu.cn/pub/Dla/). On the Pfam website (http://pfam.xfam.org/), the Hidden Markov Model (HMM) of the conserved TCP domain (PF03634) was downloaded. With a threshold: e-values <10−5, all putative TCP members with conserved TCP domain were obtained in our protein dataset through the HMMsearch module in SPDE software (Xu et al., 2021). Subsequently, the putative TCP genes (TCPs) were further checked the integrity of its domain through the NCBI (https://www.ncbi.nlm.nih.gov/), InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan/), and SMART (http://smart.embl-heidelberg.de/) databases. The genes without complete TCP domain will be manually eliminated. The ExPaSy (https://web.expasy.org/compute_pi/) and Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/#) were used to predict their molecular weight (MW) and isoelectric point (pI) and subcellular localization, respectively.



Phylogenetic Tree Construction and Sequence Alignment

All protein sequences of Arabidopsis, rice, and Moso bamboo were downloaded from TAIR (https://www.arabidopsis.org/), China Rice Data Center (https://www.ricedata.cn/gene/), and Bamboo databases (http://forestry.fafu.edu.cn/db/PhePacBio/phe/Jbnest.php), respectively. Then, we obtained the sequences of TCP proteins in Arabidopsis, rice, and Moso bamboo from previous studies (Supplementary Table S1). To explore the evolutionary relationships, ClustalW was used to perform the multiple sequence alignments between 24 Arabidopsis, 22 rice, 16 Moso bamboo, and 66 Ma bamboo TCP proteins with default parameters (Thompson et al., 2003), and MEGA 7.0 was subsequently used to construct a neighbor-joining (NJ) phylogenetic tree with the following parameters: NJ tree method, complete deletion, and 1,000 bootstrap replicates (Kumar et al., 2016). Additionally, the multiple sequences' alignment of DlTCP proteins was performed using DNAMAN software (version 9.0), and the conserved TCP domain regions with 55–60 amino acids were intercepted to further investigate the conservation and diversity. The online tool RNA22 v2 microRNA target detection (https://cm.jefferson.edu/rna22/Interactive/) was used to predict miRNA target sites (Miranda et al., 2006).



Gene Structure, Conserved Motifs, Chromosome Distribution, cis-Regulatory Element Analysis, Synteny, and Gene Duplication Analysis

The exon–intron structures of DlTCPs were mapped using the TBtools software (Chen et al., 2020) based on the obtained coding sequence (CDS) and genomic sequences of Ma bamboo. The online MEME program version 5.4.1 (http://meme-suite.org/tools/meme) was used to identify and analyze the conserved motifs of TCP proteins in Ma bamboo. The 2,000-bp upstream promoter sequences of the DlTCPs were submitted to the online program Plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) to search the predicted cis-regulatory elements, and these results were visualized using the online tool Gene Structures Display Server (http://gsds.gao-lab.org/).

MCScanX was used to analyze the duplication events of the DlTCPs with the default parameters. The diagram of chromosomal location and synteny relationships was generated by the program Circos (Krzywinski et al., 2009) version 0.69 (http://circos.ca/) based on the information about collinear pairs and genetic location. Meanwhile, collinearity analysis between Ma bamboo and the three other species of TCPs was performed using the dual synteny plot module in TBtools. The non-synonymous (Ka) replacement rate and synonymous (Ks) rate were calculated by Ka/Ks calculator to analyze gene duplication events (Wang et al., 2010).



Plant Materials, Growth Conditions, and qRT-PCR

The seedlings of Ma bamboo were cultured in a culture room at 25°C (16-h light, 8-h dark) with stable humidity. About 6-week-old seedlings in similar growth status were selected to collect the samples of young roots, stems, leaves, and bamboo shoots emerging from the bottom. A total of three biological repetitive samples were collected from each tissue to reduce the experimental error.

Tiangen RNAprep plant kit (Tiangen) were used to isolate total RNA from above-mentioned plant samples. Before dissolving RNA, RNase-free DNaseI (Tiangen, Beijing, China) was used to eliminate any contaminating genomic DNA. Then, 1 μg RNA was reverse-transcribed into first-strand cDNA using Takara PrimeScript First-Strand cDNA Synthesis kit (Takara, Dalian, China). All first-Strand cDNA samples were diluted 5 times and stored at −20°C for real-time quantitative PCR (qRT-PCR) experiments. Gene-specific primers were designed using Primer 5 software and shown in Supplementary Table S2. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as used internal reference (Liu et al., 2014). qRT-PCR was performed using TB Green™ Premix Ex Taq™ (Tli RNaseH Plus) kit (Takara) with the QuantStudio™ 7 Flex Real-Time PCR instrument (Applied Biosystems). A total of three biological replicates were carried out to eliminate errors. The relative expression level was estimated based on the 2−ΔΔCT method (Livak and Schmittgen, 2001).



Transcriptome Sequencing and Expression Analysis of DlTCPs

The samples used for transcriptome sequencing were collected from Hua'an County, Zhangzhou City, Fujian Province (117°24′-117°35′ E, 24°65′-25°02′ N) in July 2021. A total of four representative developmental stages of bamboo shoot buds were selected for sampling. In the Stage 1, the largest shoot buds located at the lowest layer of mature bamboo shoots were mainly collected, which were still in the dormant stage. The bamboo shoots were expanding, and the top of the shoots begins to twist and grow upward, which are the main characteristics of bamboo shoots in the Stage 2 (the height is about 8 cm). In the Stage 3, the bamboo shoots grew completely upright, accompanied by the further expansion of the bamboo bodies. The bamboo shoots in the Stage 4 (about 45 cm) have entered the high growth stage, and the height of bamboo shoots is significantly higher than that in the Stage 3 (about 20 cm). After removing the bamboo shoot sheath, the bamboo shoot bud samples around the top 0.4 cm were immediately collected and frozen in liquid nitrogen to prevent RNA degradation. A number of four biological repetitive samples were taken in each stage, and each biological repeat consists of about seven apical buds. The separation of total RNA, quality evaluation, and construction of sequencing library were performed as described in the previous studies (Zou et al., 2021).

Illumina Hiseq 2500 platform (Novogene, Beijing, China) was used for sequencing, and HISAT 2.0.5 software was used to map all clean reads to the reference genome of D. latiflorus. The differentially expressed genes (DEGs) were screened by DESeq2 package according to the threshold of fold change ≥1.5 and the adjusted p-value < 0.05. Compared with the two groups, the differentially expressed genes (DEGs) were screened by pairwise comparison. The above RNA-seq and bioinformatic analysis were carried out by BioMarker Technologies Illumina, Inc. (Shanghai, China). To further screen the differential genes in the transcriptome, all the differential genes were annotated using Gene Annotation Software for Plants (GFAP) (Xu et al., 2022), which quickly obtained the detailed information of candidate differential expressed genes in the transcriptome.



Subcellular Localization and Transactivation Activity

To analyze the subcellular localization of candidate genes (DlTCP5-C, DlTCP7-B, DlTCP9-A, DlTCP12-C, and DlTCP23-C), we designed specific primers to amplify the full-length coding sequence of candidate TCP genes and then inserted them into mGFP fusion expression vector pMDC43 (Supplementary Table S2). Then, the location signal was analyzed in the leaf tissue of Nicotiana benthamiana after transforming Agrobacterium tumefaciens GV3101 as described in the previous research (Sparkes et al., 2006). The empty vector was used as the control. About 72 h later, the transient expression of GFP fusion protein was observed by LSM900 confocal microscope imaging system (Zeiss, Germany). The nucleus was visualized with mCherry-labeled nuclear markers. Subsequently, the candidate TCP genes were inserted into the pGBKT7 vector to study the transcriptional activity of DlTCP proteins in yeast (Supplementary Table S2). Then, the above recombinant vector, positive control pGBKT7-p53 + pGADT7-T, and negative control pGBKT7 empty plasmid were transformed with lithium acetate method into yeast strain AH109. The transformed strains were cultured on SD medium lacking Trp (SD-Trp) and further selected on defective medium SD-Trp-His-Ade supplemented with X-α-gal for 3–5 days. The transcriptional activation activity was evaluated according to the growth status.



Cloning of the DlTCP12-C Gene and Phenotypic Analysis of Transgenic Arabidopsis

The full-length CDS of DlTCP12-C was amplified from D. latiflorus cDNA and constructed into the binary vector pCAMBIA1300 driven by the CaMV 35S promoter using ClonExpress II One Step Cloning Kit (Vazyme, Nanjing, China) (Supplementary Table S2). Then, Agrobacterium tumefaciens (EHA105)-mediated transformation of Arabidopsis was used. The transgenic Arabidopsis seeds were collected from T1 plants alone, and positive lines were screened on MS medium with 50 mg L−1 kanamycin until homozygous transgenic Arabidopsis lines of the T3 generation were obtained. The methods of phenotypic observation refer to the previous studies (Li et al., 2021).




RESULTS


Identification of TCP Genes in Ma Bamboo

A total of 66 TCP members were identified in the D. latiflorus genome, among which the number of subgenomes A, B, and C is 22, 20, and 24, respectively. We renamed and classified the DlTCPs according to their subgenomic attribution and chromosomal position. Consistent with Arabidopsis thaliana, rice, and Moso bamboo, most DlTCPs belong to the PCF subfamily (35 members), whereas the CIN and CYC/TB1 subfamilies have 21 and 10 members, respectively. The molecular weights (MWs) varied from 13.51 (DlTCP13-C) to 81.80 (DlTCP10-B) kDa, and the lengths varied from 128 (DlTCP13-C) to 768 (DlTCP10-B) amino acid (aa) of DlTCP proteins. The isoelectric point (pI) of the DlTCP proteins varied from 5.16 (DlTCP22-C) to 10.60 (DlTCP9-C). As a typical family of transcription factors, predicted subcellular localization results indicated that the majority of DlTCP proteins were located on the nucleus using the online software Plant-mPLoc. The details of the putative DlTCPs can be found in Supplementary Table S3.



Phylogenetic Analysis of TCPs in the Four Different Plant Species

To further explore the phylogenetic relationship and evolutionary process of the TCP gene family, MEGA7.0 was used to construct phylogenetic trees of the TCP members of Ma bamboo, Moso bamboo, rice, and Arabidopsis thaliana. The tree constructed by the neighbor-joining (NJ) method divided the TCP family into two clades with 1,000 bootstraps replication: Class I and Class II. A total of 35 DlTCPs were identified in the Class I (PCF) subfamily, and Class II was further categorized into CIN and CYC/TB1 subfamilies (Figure 1). In addition, the phylogenetic tree showed that the DlTCPs have a close evolutionary relationship between Ma bamboo and Moso bamboo, both of which belong to Gramineae. For example, DlTCP11-C and PeTCP14, and DlTCP8-C and PeTCP13 were clustered in the same small subfamily. We also counted the number of TCP family members in different species (Table 1). The results demonstrate that the number of TCP family members in hexaploid Ma bamboo is approximately three times that of diploid plants, which demonstrates the important role of the TCP family during the growth and development of Ma bamboo.


[image: Figure 1]
FIGURE 1. Phylogenetic analysis of TCP members in Ma bamboo, Moso bamboo, rice, and Arabidopsis. MEGA7.0 was used to construct phylogenetic tree by neighbor-joining (NJ) method divided the TCP family into two clades with 1,000 bootstraps replication. Triangle, round, star, and square represent the TCP members of Ma bamboo, rice, Arabidopsis, and Moso bamboo, respectively. Different colored geometric shapes were used to mark TCP members of different species.



Table 1. The number of TCP family members in five plant species.
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Gene Structure and Conserved Protein Motifs

Gene structure analysis highlighted the differences in conserved domains and motif compositions among subfamilies. However, members of the same subfamily often possess similar structures, for example, motifs 1 and 3 exist in all Class II members (Figure 2). The consistency and difference in this structure can be further confirmed in the results of the multiple sequence alignment of TCP proteins in Ma bamboo. Detailed information of conserved motifs is displayed in Supplementary Table S4. The deletion of four conservative amino acids in Class I members is the most obvious difference compared with Class II (Supplementary Figure S1). Additionally, most TCP members, especially the CYC/TB1 subfamily, showed consistent conservatism with only one exon. In the CIN subfamily, five DlTCPs (DlTCP2-B, DlTCP3-C, DlTCP12-B, DlTCP14-B, and DlTCP15-A) were found to have putative binding sites for miR319 of Ma bamboo (Supplementary Table S5).


[image: Figure 2]
FIGURE 2. Phylogenetic relationships, motif compositions, and gene structure of TCP genes in Ma bamboo. (A) Phylogenetic relationships of 66 TCP members in Ma bamboo. They were further classified into three subfamilies: PCF, CYC/TB1, and CIN. (B) Different motif compositions of TCP members in Ma bamboo were detected using MEME. The conserved motifs were represented by boxes with different colors. (C) Gene structures of TCPs in Ma bamboo. Green indicates 5′UTR and 3′UTR, yellow indicates exons, and black lines indicate introns.




Chromosome Distribution and Synteny Analysis

As expected, synteny analysis demonstrated that the members of the TCP gene family had a very complex colinear relationship in Ma bamboo, suggesting that polyploidization was the main source of the expansion of the TCP gene family (Figure 3). As shown in Figure 3, TCP members have only not been identified on chromosomes 29.1, 30.1, and 31.1, which belongs to the three subgenomes A, B, and C, respectively. The chromosome distribution of TCP members in Ma bamboo was uneven. Chr18.1 contained the largest number of TCP members (6), including 3 PCF members, 1 CYC/TB1 member, and 2 CIN members. Tandem duplication events can drive the renewal of the biological functions of genes. Only one tandem duplication gene pair, DlTCP5-B and DlTCP6-B, was found in this study.


[image: Figure 3]
FIGURE 3. Chromosome distribution and synteny analysis of TCP genes in Ma bamboo. Different chromosomes were showed in different colors. The inner gray lines were used to mark all the collinearity relationships in Ma bamboo and the inner red lines were represented the collinearity relationships of TCP members in Ma bamboo. Gene names of different colors were used to mark the TCP members from different subgenomes.




Collinearity Analysis

The collinearity of TCPs was analyzed in Ma bamboo, Arabidopsis, rice, and Moso bamboo by MCscanX. The results demonstrate that Ma bamboo and Moso bamboo, which are both Bambusoideae, had a more conservative evolutionary relationship compared with Arabidopsis (Figure 4). However, due to polyploidization, several genes are differentiated during the evolutionary process, producing new gene functions to adapt to the environment. The number of genes with a collinear relationship in Ma bamboo is ~3 times that in rice, indicating that the hexaploid Ma bamboo has a very conservative duplication process during evolution. Homologous gene analysis demonstrated that duplication events occur during genomic evolution. Using phylogenetic tree analysis, 3 putative orthologous gene pairs (Dl-Os), 3 putative orthologous gene pairs (Dl-Pe), and 14 putative paralogous gene pairs (Dl-Dl) were obtained (Supplementary Table S6). The Ks value and Ka/Ks ratio of all putative orthologous and paralogous pairs were calculated to analyze the evolutionary selection and divergence pattern of TCPs (Supplementary Table S6). Generally, a Ka/Ks ratio >1, =1, and <1 indicates positive selection, which will be conducive to genetic variation of natural adaptation, neutral selection, and purifying selection to reduce amino acid mutation, respectively. The Ka/Ks ratios of orthologous gene pairs and paralogous gene pairs of TCP members were all <1, indicating that these genes have undergone a strong purifying selection during evolution (Supplementary Figure S2).


[image: Figure 4]
FIGURE 4. Collinear relationships of genes pairs from Ma bamboo, Moso bamboo, rice, and Arabidopsis. Gray lines indicate that all the collinear gene pairs between Ma bamboo and other species, whereas red lines indicate the collinear TCP gene pairs.




Detection of cis-Regulatory Elements in the Promoter Regions of TCPs in Ma Bamboo

To analyze the cis-acting elements of the promoter regions, sequences of the 2,000-bp upstream of 66 TCP members were extracted from the Ma bamboo genome and predicted on the Plant CARE website (Figure 5). A total of 14 cis-acting elements related to hormone response, plant growth and development, and stress have been discovered, including low-temperature-responsive elements, drought-inducible elements, seed-specific regulatory elements, ABA-responsive elements, auxin-responsive elements, and so on. The different cis-elements on promoters may lead to functional differentiation between family members. The number of seed-specific regulatory elements on the promoters of CYC/TB1 subfamily members exceeds that of other members, which suggests that these members have specific functions during seed germination. The results of the phylogenetic tree showed that TCP members that are closely related to each other tend to cluster in a small branch whose promoter region has similar cis-regulatory elements, such as DlTCP21-A, DlTCP18-B, and DlTCP24-C. This suggests that they have a conserved molecular function. Additionally, the promoter regions of most TCP members have an MYB transcription factor-binding site and WRKY-binding site, especially DlTCP12-C, which contains 5 MYB-binding sites and 1WRKY-binding sites.


[image: Figure 5]
FIGURE 5. Predicted cis-elements of TCP gene promoters in Ma bamboo. Plant CARE was used to predict and analyze the promoter region of the 2,000-bp upstream of 66 TCP members. Different colored rectangles represented different cis-elements and especial cis-elements were highlighted in different shapes.




Tissue-Specific Expression Patterns

The tissue expression pattern can deeply reflect the primary role of TCPs, highlighting the need to further study its specific function. According to the above analysis, 16 putative genes were evenly selected from each subfamily of TCP members for tissue expression analysis. The expression levels of putative TCP members were analyzed in bamboo shoots, roots, stems, and leaves of the 6-week-old seedlings (Figure 6). The results demonstrated that TCP family members had obvious tissue expression specificity and were particularly highly expressed in bamboo shoots and leaves. Numerous TCPs were highly expressed in shoots, such as DlTCP5-C, DlTCP15-B, and DlTCP9-A. DlTCP10-B was specifically expressed in leaves, whereas DlTCP-4A was a transcription factor specifically expressed in the roots. We then attempted to clarify the potential functions of TCP members in shoots by other means.


[image: Figure 6]
FIGURE 6. Tissue expression pattern of TCP genes in Ma bamboo. The expression levels of putative TCP members in bamboo shoots, roots, stems, and leaves were normalized and visualized by R (4.0.2). Red and blue represent high and low expression levels, respectively. 1, 2, and 3 represent three biological replicates, respectively.




Transcriptome Analysis of Shoot Buds at Different Developmental Stages in Ma Bamboo

Bamboo shoot buds with a top of ~0.4 cm at four developmental stages were selected for transcriptome sequencing (Figure 7A). We used transcriptome analysis to demonstrate that many growth- and development-related transcription factors were differentially expressed genes, including MYB, NAC, WRKY, and TCP. RNA-seq results indicated that the number of differentially expressed genes (DEGs) in the S1–S2, S1–S3, and S1–S4 groups were higher than in other groups, whereas the number of DEGs significantly decreased between S2, S3, and S4 (Figure 7B). There were only a few differential genes between S3 and S4, which indicates that the morphological structure of the top has been basically developed in later stages of bamboo shoot bud development, making the gene expression very similar. Therefore, we focused on the DEGs in the S1–S2, S1–S3, and S1–S4 comparative groups and selected the common differential genes as the candidate genes. As shown in Figure 7C, 3, 444 and 3,206 DEGs were consistently upregulated and downregulated in the S1–S2, S1–S3, and S1–S4 groups, respectively. The GO enrichment revealed that the DEGs were involved in biological processes, cellular components, and molecular functions (Supplementary Figure S4). Genes related to hormone signaling pathways, transcription factors (MYB, NAC, and WRKY), and developmental processes (expansin, growth-regulating factor, and Dof zinc finger proteins) showed significant differential expression during four developmental stages in Ma bamboo shoots (Figure 7D; Supplementary Table S7).


[image: Figure 7]
FIGURE 7. Transcriptome analysis of shoot buds at different developmental stages in Ma bamboo. (A) A total of four representative developmental stages of Ma bamboo apical bud were characterized by the length of bamboo shoot. The red dotted line represents the position of shoot buds in S1. A separate scale of each image is shown separately. (B) The number of differentially expressed genes between different stages was counted by transcriptome analysis. Yellow and blue represent upregulated and downregulated differentially expressed genes, respectively. (C) Venn diagrams of differentially expressed genes in three group. Left and right represent upregulated and downregulated, respectively. (D) The expression levels of three kinds of differentially expressed genes in transcriptome data were related to hormones, transcription factors, and developmental process, respectively. Yellow and blue represent upregulated and downregulated differential expression, respectively.




Expression Analysis of TCPs in Shoot Buds at Different Developmental Stages

The expression levels of TCP family members in different developmental stages of bamboo shoot buds were obtained to further explore their roles in shoot bud growth and development using transcriptome data. A total of 29 TCP family members were found as DEGs, and 9 and 20 differentially upregulated and downregulated genes, respectively. The expression levels of DlTCP9-A and DlTCP12-C belonging to the CYC/TB1 subfamily were significantly decreased during the shoot germination, indicating that they play an important role in the growth and development of bamboo shoots. This is consistent with the molecular function of the TB1 gene in inhibiting branch growth (Figure 8A). We further counted the differences in DEGs in various stages, and the results indicated that the number of downregulated genes gradually decreased whereas the upregulated genes gradually increased from S1 to S4 in bamboo shoots. This indicates that some members of the TCP family primarily function in the early stage of shoot bud germination and development, while others are highly expressed in the later stages of development (Figure 8B). This emphasized that TCP family members are thoroughly involved in the growth and development of bamboo shoots. Meanwhile, we selected 8 TCP members to verify the reliability of the transcriptome results by qRT-PCR (Figure 8C). GO annotation indicated that TCP transcription factors were involved in growth and development, hormone signal transduction, and stimulus response (Supplementary Figure S3).


[image: Figure 8]
FIGURE 8. Expression analysis of TCPs in shoot buds at different developmental stages. (A) The expression data of TCP family members in different developmental stages of bamboo shoot buds were retrieved from transcriptome analysis. The results were normalized and visualized by R (4.0.2). (B) The number of TCP differentially expressed genes between different stages. Yellow and blue represent upregulated and downregulated differential expression, respectively. (C) qRT-PCR was used to verify the results of the transcriptome analysis. Error bars were obtained from three replicates. Statistically significant differences between the expression level of different stage were analyzed by Student's t-test. Those with different marked letters were represented significantly different: p < 0.05.




Subcellular Localization and Transactivation Activity

The protein structure of transcription factors is typically composed of four functional domains: DNA-binding domain, transcriptional regulatory domain (including activation domain or inhibitory domain), oligomerization site, and nuclear localization signal. Transcription factors normally function in the nucleus to regulate the expression of their target genes by binding to corresponding binding elements on their promoters. A total of four putative DlTCPs highly expressed in bamboo shoots were further selected for subcellular localization and transcriptional self-activation experiment from the 16 genes used for tissue expression analysis. The results showed that DlTCP5-C, DlTCP7-B, DlTCP9-A, and DlTCP23-C are all nuclear-localized TCP transcription factors (Figure 9). In addition, the yeast transforms with the four candidate genes can grow on the defective medium of SD-Trp-His-Ade supplemented with X-α-gal and turned blue, indicating that DlTCP5-C, DlTCP7-B, DlTCP9-A, and DlTCP23-C all have transcriptional self-activation activity (Figure 10).


[image: Figure 9]
FIGURE 9. Subcellular localization of four mGFP-fused TCP proteins in Ma bamboo. The four candidate TCP proteins (DlTCP5-C, DlTCP7-B, DlTCP9-A, and DlTCP23-C) and GFP as a control were transiently expressed in Nicotiana benthamiana leaves and observed under a fluorescence microscope. The nucleus was visualized with mCherry-labeled nuclear markers.



[image: Figure 10]
FIGURE 10. Transactivational analyses of DlTCP proteins in yeast. The positive control pGBKT7-p53 + pGADT7-T, negative control pGBKT7 empty plasmid, and four candidate pGBKT7-DlTCPs plasmids were transformed into yeast AH109, and the strains were further cultured on the yeast medium of SD-Trp and SD-Trp-His-Ade supplemented with X-α-gal to analyze their transactivation activity.




Cloning and Relevant Analysis of DlTCP12-C

DlTCP12-C, the homologous gene of OsTB1, is the key node gene for lateral bud outgrowth, which was significantly differentially expressed according to the transcriptome analysis. This suggests that DlTCP12-C could play an important role in the growth of bamboo shoots. Then, the full-length CDS of the DlTCP12-C was cloned. The DlTCP12-C gene has no intron and contains SP, TCP, and R conserved domains (Figure 11). The original transcriptional self-activating activity was lost after the deletion of 285 bp at the 5' end. The results of the expression pattern and subcellular localization showed that it was a nuclear-localized TCP transcription factor highly expressed in bamboo shoots.


[image: Figure 11]
FIGURE 11. Gene structure, transactivational analyses, subcellular localization, and expression patterns of the DlTCP12-C. (A) Using genomic DNA (I) and cDNA (II) as template, gel electrophoresis amplification results of DlTCP12-C. (B) Transcriptional self-activation experiments of five truncated forms of DlTCP12-C, SD-T, -T/-H, -T/-A, and -T/-H/-A represents SD medium lacking Trp, Trp and His, Trp and Ade, Trp, and His and Ade, respectively. (C) Subcellular localization of DlTCP12-C protein. (D) The expression levels of DlTCP12-C in bamboo shoot, root, stem, and leaf; those with different marked letters were represented significantly different: p < 0.05.




Phenotypic Assay of the DlTCP12-C Overexpression Transgenic Arabidopsis

Due to the long period of genetic transformation of Ma bamboo, preliminary functional verification was performed in Arabidopsis. Transgenic Arabidopsis plants overexpressing DlTCP12-C were obtained, and the phenotype of the T3 generation Arabidopsis lines was observed after 35 days of culture (Figure 12). Compared with the wild type, the overexpressed lines had significantly fewer rosette leaves and branch numbers. Obviously, no new lateral branches were found in DlTCP12-C overexpression transgenic Arabidopsis after 35 days of cultivation, whereas there were typically 3–4 branches in WT lines, indicating that DlTCP12-C plays an important role in the development of branch outgrowth in Arabidopsis. The results of transgene identification and expression detection are shown in Supplementary Figure S4.


[image: Figure 12]
FIGURE 12. Phenotypic assay of the DlTCP12-C overexpression transgenic Arabidopsis. (A) Branching phenotypes of 35-day-old wild-type and DlTCP12-C overexpressing transgenic Arabidopsis lines. Scale bar = 4 cm. (B) Close-up views of the rosettes of the plants in (A). Red arrow indicates branch. Scale bar = 1 cm. (C) Number of rosettes. Error bars were obtained from five replicates. (D) Number of branches. Error bars were obtained from five replicates. Significant differences compared with the WT were analyzed by Student's t-test: **p < 0.01.





DISCUSSION

As we all know, members of gene families tend to expand through several evolutionary mechanisms, including tandem duplication, large-scale chromosome segmental duplication, and translocation, This leads to the evolution of complex phenotypes (Cannon et al., 2004; McCarthy et al., 2015). In Ma bamboo, numerous genes have undergone triple genome duplication due to whole-genome duplication events (Zheng et al., 2022). Approximately 280 gene families have undergone expansion during their evolution from paleotropical woody bamboos to allohexaploid Ma bamboo, which could be the reason for some of bamboos' unique traits, including their rapid vegetative growth and high biomass (Zheng et al., 2022). In this study, a total of 66 plant-specific TCP transcription factors were identified in Ma bamboo, and the number of genes was about three times that of rice, Arabidopsis, and Moso bamboo (Table 1). In other words, all DlTCPs possessed 3–5 homologous genes, indicating that they are preferentially retained during polyploidization. Similarly, there were three closely related homologous genes in the TCP family of hexaploid wheat. However, their cis-acting elements were quite different, which could lead to the sub-functionalization of wheat homologous genes (Zhao et al., 2018). Collinear analysis demonstrated that the main reason for the expansion of the TCP gene family is chromosome polyploidization (whole-genome duplication) and large-scale chromosome segment duplication, which primarily occurs between three subgenomes A, B, and C of D. latiflorus, and only a few chromosomes do not possess TCP transcription factors (Figure 3). The TCP family has expanded due to large-scale segment duplication events that also occurred in upland cotton, whereas 74 GhTCP genes were identified in the allotetraploid plant upland cotton genome (AADD) (Li et al., 2017). Tandem duplication events, which are important events driving the occurrence of new biological functions, have only been found one time between DlTCP5-B and DlTCP6-B. This suggests that TCP transcription factors have conservative and irreplaceable functions in Ma bamboo (Shang et al., 2012). The TCP family could have a continually increasing role in the development of the typical hexaploid bamboo species D. latiflorus. While they may have functional redundancy, the sub-functionalization of these homologous genes and gene dosage could make Ma bamboo more adaptable during growth and development (He et al., 2022).

Plants have several complex regulatory mechanisms and signal networks, which can quickly perceive the external environment and regulate gene expression to adapt to unpredictable environmental changes and resist several biotic and abiotic stresses in the long-term evolutionary process. Transcription factors can regulate the occurrence of biological processes such as plant morphology, developmental patterns, and stress responses to varying degrees. As the plant-specific transcription factors, the TCP family plays a vital role in plant growth and development. A group of functionally redundant phylogenetic-related class I TCP genes (AtTCP7, AtTCP8, AtTCP22, and AtTCP23) had similar expression patterns in young leaves, regulating leaf development by controlling cell proliferation (Aguilar Martinez and Sinha, 2013). In Arabidopsis, AtTCP14 directly activates the growth potential of the embryo during seed germination, whose expression level is highest before seed germination (Tatematsu et al., 2008). In addition, the AtTCP14 mutant was highly sensitive to abscisic acid and gibberellin synthase inhibitors, indicating that AtTCP14 regulates seed germination by regulating hormone response (Tatematsu et al., 2008; Manassero et al., 2013). The senescence phenotype of TCP19 and TCP20 double mutants was significantly enhanced in Arabidopsis, and classic genetic and molecular methods have been used to demonstrate that TCP19 and TCP20 are involved in controlling leaf senescence in Arabidopsis, despite functional redundancy (Danisman et al., 2013). OsPCF7 is primarily expressed at the tillering stage and plays an important role in the tillering and heading process of rice seedlings. It significantly affects the panicle numbers, the number of filled grains per plant, and the grain yield per plant (Li et al., 2020). CsTCP3 is induced by gibberellin, photoperiod, and temperature and directly participates in the development of axillary buds by controlling the content of auxin in axillary buds, which affects the number of lateral branches in cucumber (Wen et al., 2020). It can integrate upstream environmental factors and hormone signals and further affect the development of axillary meristem, to adapt the plant architecture to environmental conditions. Biological processes from shoot bud germination to growth is crucial for the growth and development of bamboo (Shou et al., 2020), all of which directly affect the yield of bamboo shoots and timber in Ma bamboo. Therefore, we collected the apical buds of bamboo shoots from four representative developmental stages for transcriptome analysis to find out the relevant gene sets involved in this process (Figure 7A). A total of 29 TCP transcription factors were subsequently found as differentially expressed genes from RNA-seq data. Interestingly, TCP transcription factors exhibited spatiotemporal expression specificity during the development of bamboo shoots (Figure 8A). From the dormancy stage (S1) to the rapid high growth stage (S4), the number of downregulated genes gradually decreased; in contrast, the number of upregulated genes gradually increased (Figure 8B). These results suggested that there is an alternation and switching mechanism in the function of TCP transcription factors to better adapt to the growth and development of bamboo shoots in Ma bamboo. TB1 is the key node gene for lateral bud outgrowth, which plays a conservative role in many species (Takeda et al., 2003; Dixon et al., 2018; Li et al., 2021). Whereafter, the preliminary functional verification results confirmed the critical role of DlTCP12-C in inhibiting axillary bud growth and lateral branch growth in overexpressed transgenic Arabidopsis (Figure 12). Future research will verify the biological function and regulation pathway of DlTCP12-C in shoot buds development using genetic transformation in Ma bamboo and assess whether there is functional redundancy among other members of the CYC/TB1 subfamily.

Transcription factors have the binding activity of specific DNA sequences or the characteristics of known DNA-binding domains, so they bind to cis-acting elements on the target site to ensure that the target gene is expressed at a specific intensity, in a specific time and place. In our study, a large number of cis-acting regulatory elements related to plant hormone signals, organ development, stress response, MYB transcription factors, and WRKY transcription factor-binding sites accumulated in the promoter of DlTCPs, indicating that TCP transcription factors could act as a central regulatory integrin regulated by environmental factors, hormone signals, and upstream transcription factors to affect plant growth and development. GhTCP14a/22 is involved in controlling cotton fiber growth through the gibberellin, brassinosteroids, and auxin signal transduction pathways, which play a remarkable role in the development of cotton fiber and are primarily expressed during fiber initiation and elongation (Li et al., 2017). DWARF27 (D27) is a key gene involved in strigolactone synthesis, which can sense strigolactone signaling and activate downstream TB1-like TCP transcription factors by recruiting SCF complexes to stimulate the ubiquitination and degradation of DWARF53 (D53) repressor proteins (Kerr and Beveridge, 2017). Cytokinins and sugars also inhibit the expression of TB1 (Mason et al., 2014; Patil et al., 2021). Auxin upregulates the expression of MAX3 and MAX4 through the AXR1-AFB-mediated signaling pathway, but downregulates the members of the IPT family, promoting strigolactone biosynthesis, and the inhibition of cytokinin biosynthesis, which further promotes the expression of TB1 (Nordström et al., 2004; Tanaka et al., 2006). A number of two closely related TCP transcription factors TCP14 and TCP15 affect the development of foliage and trichomes, participate in cytokinin-regulated signal pathways, and stimulate the expression of cytokinin-regulated gene RESPONSE REGULATOR 5 through interaction with SPINDLY (SPY) (Steiner et al., 2012). Jasmonic acid is a kind of plant hormone of lipids (oxylipins), which is involved in plant development, abiotic stress response, and the interaction between plants and microorganisms. AtTCP4 reportedly directly targets LIPOXYGENASE2 (LOX2), encoding a chloroplast enzyme gene involved in α-linolenic acid biosynthesis and jasmonic acid synthesis, and is involved in the regulation of jasmonic acid biosynthesis and leaf development (Vick and Zimmerman, 1983; Danisman et al., 2012). The LsAP2 transcription factor further regulates leaf morphology in lettuce by inhibiting the activity of the CIN-like TCP transcription factor (Luo et al., 2021). The TCP-mediated complicated hormone signal regulatory network further emphasizes the important role of TCP in affecting plant growth patterns and biological processes, and more in-depth research is needed to clarify the pathway of TCP transcription factors. Our transcriptome and promoter element analyses indicate that TCP transcription factors regulate the expression of target genes through transcriptional regulation and hormone signals, which affect related biological processes in plants. Recent studies have made clarified the mechanism of the direct targeting regulation of TCP transcription factors by miRNA. Some TCP members directly targeted by miR319 are widely involved in plant hormone signal transduction, leaf development, vascular formation, and response to abiotic stress (Fang et al., 2021). Comprehensive analysis of catechin metabolism profiles and TCP gene expression profiles in different plant tissues at different developmental stages indicated that the CsmiR319b/CsTCP3-4 module was not only related to shoot tip development, but also played a potential role in catechin biosynthesis in tea plants (Yu et al., 2021). Genetic and molecular analyses indicated that PtoTCP20, the direct target gene of miR319a, regulated the proliferation of vascular cambium along with PtoWOX4a and promoted the differentiation of secondary xylem by activating the transcription of PtoWND6, thereby regulating the secondary growth of Populus tomentosa stem (Hou et al., 2020). A total of five TCP genes were found to contain miR319 directly targeted binding sites in 3′ UTR (Supplementary Table S6). These miR319-targeted DlTCPs were the members of the CIN subfamily. The regulation mechanism of DlTCPs related to the bud growth of bamboo shoots requires further study.

In short, this study identified 66 plant-specific TCP transcription factors in the D. latiflorus genome using bioinformatics and analyzed their evolutionary relationship, duplication events, promoter cis-elements, tissue expression patterns, subcellular localization, and self-activating transcriptional activity. Transcriptome analysis of different developmental stages of bamboo shoot buds was used to preliminarily study the function of TCP transcription factors in Ma bamboo, providing a series of differentially expressed genes that could be involved in the growth and development of bamboo shoots. Subsequently, the conservative function of DlTCP12-C, which negatively regulates axillary bud development and lateral branch growth, was confirmed in overexpressed transgenic Arabidopsis. This comprehensive study of TCP transcription factors in Ma bamboo provides several candidate genes worthy of further analysis, including the regulatory mechanism of bamboo shoot bud growth and development.



DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: National Center for Biotechnology Information (NCBI) BioProject database under Accession Number PRJNA792061.



AUTHOR CONTRIBUTIONS

GQ and RZ conceived this project. KJ and YW designed experiments, interpreted the results, and wrote the manuscript. JX, ZL, HF, and BH performed the experiments and analyzed the data. YW provided technical guidance for the experiment. All authors read and approved the submission of this manuscript.



FUNDING

This research was funded by the Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding, Grant Number 2021C02070-4.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.884443/full#supplementary-material

Supplementary Figure S1. Multiple sequence alignment of TCP proteins in Ma bamboo.

Supplementary Figure S2. Distribution of Ka and Ks from paralogous (Dl-Dl) and orthologous (Dl-Os, Dl-Pe) gene pairs.

Supplementary Figure S3. GO annotation results of all differential genes and TCP members in the transcriptome.

Supplementary Figure S4. The results of transgene identification and expression detection.

Supplementary Table S1. The detailed information of TCP members in rice, Arabidopsis thaliana, and Moso bamboo.

Supplementary Table S2. List of primer sequences used in this study.

Supplementary Table S3. The detailed information of putative TCP members in Ma bamboo.

Supplementary Table S4. The detailed information of conserved motifs in DlTCPs.

Supplementary Table S5. Putative microRNA319-targeted binding sites of DlTCPs.

Supplementary Table S6. The detailed information and Ka/Ks ratio of putative orthologous and paralogous pairs.

Supplementary Table S7. The detailed information of three kinds of differentially expressed genes.



REFERENCES

 Aguilar Martinez, J. A., and Sinha, N. R. (2013). Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front. Plant Sci. 4, 406. doi: 10.3389/fpls.2013.00406

 Aguilar-Martínez, J. A., Poza-Carrión, C., and Cubas, P. (2007). Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19, 458–472. doi: 10.1105/tpc.106.048934

 An, J., Guo, Z., Gou, X., and Li, J. (2011). TCP1 positively regulates the expression of DWF4 in Arabidopsis thaliana. Plant Signal. Behav. 6, 1117–1118. doi: 10.4161/psb.6.8.15889

 Cannon, S. B., Mitra, A., Baumgarten, A., Young, N. D., and May, G. (2004). The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 4, 1–21. doi: 10.1186/1471-2229-4-10

 Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., et al. (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202. doi: 10.1016/j.molp.2020.06.009

 Chen, H.-C., Chien, T.-C., Chen, T.-Y., Chiang, M.-H., Lai, M.-H., and Chang, M.-C. (2021). Overexpression of a novel ERF-X-type transcription factor, OsERF106MZ, reduces shoot growth and tolerance to salinity stress in rice. Rice 14, 1–18. doi: 10.1186/s12284-021-00525-5

 Chen, L., Zhao, Y., Xu, S., Zhang, Z., Xu, Y., Zhang, J., et al. (2018). Os MADS 57 together with Os TB 1 coordinates transcription of its target Os WRKY 94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytol. 218, 219–231. doi: 10.1111/nph.14977

 Cubas, P., Lauter, N., Doebley, J., and Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18, 215–222. doi: 10.1046/j.1365-313x.1999.00444.x

 Danisman, S., Van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., et al. (2012). Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 159, 1511–1523. doi: 10.1104/pp.112.200303

 Danisman, S., van Dijk, A. D., Bimbo, A., van der Wal, F., Hennig, L., de Folter, S., et al. (2013). Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J. Exp. Botany 64, 5673–5685. doi: 10.1093/jxb/ert337

 Dixon, L. E., Greenwood, J. R., Bencivenga, S., Zhang, P., Cockram, J., Mellers, G., et al. (2018). TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell 30, 563–581. doi: 10.1105/tpc.17.00961

 Doebley, J., Stec, A., and Hubbard, L. (1997). The evolution of apical dominance in maize. Nature 386, 485–488. doi: 10.1038/386485a0

 Fang, Y., Zheng, Y., Lu, W., Li, J., Duan, Y., Zhang, S., et al. (2021). Roles of miR319-regulated TCPs in plant development and response to abiotic stress. Crop J. 9, 17–28. doi: 10.1016/J.CJ.2020.07.007


 Francis, A., Dhaka, N., Bakshi, M., Jung, K.-H., Sharma, M. K., and Sharma, R. (2016). Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum. Sci. Rep. 6, 1–13. doi: 10.1038/srep38488

 González-Grandío, E., Pajoro, A., Franco-Zorrilla, J. M., Tarancón, C., Immink, R. G., and Cubas, P. (2017). Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc. Natl. Acad. Sci. 114, E245–E254. doi: 10.1073/pnas.1613199114

 Guo, Z., Fujioka, S., Blancaflor, E. B., Miao, S., Gou, X., and Li, J. (2010). TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22, 1161–1173. doi: 10.1105/tpc.109.069203

 He, F., Wang, W., Rutter, W. B., Jordan, K. W., Ren, J., Taagen, E., et al. (2022). Genomic variants affecting homoeologous gene expression dosage contribute to agronomic trait variation in allopolyploid wheat. Nat. Commun. 13, 1–15. doi: 10.1038/s41467-022-28453-y

 Hou, J., Xu, H., Fan, D., Ran, L., Li, J., Wu, S., et al. (2020). MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa. New Phytol. 228, 1354–1368. doi: 10.1111/nph.16782

 Kebrom, T. H., Burson, B. L., and Finlayson, S. A. (2006). Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol. 140, 1109–1117. doi: 10.1104/pp.105.074856

 Kerr, S. C., and Beveridge, C. A. (2017). IPA1: a direct target of SL signaling. Cell Res. 27, 1191–1192. doi: 10.1038/cr.2017.114

 Kosugi, S., and Ohashi, Y. (1997). PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9, 1607–1619. doi: 10.1105/tpc.9.9.1607

 Kosugi, S., and Ohashi, Y. (2002). DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J. 30, 337–348. doi: 10.1046/j.1365-313x.2002.01294.x

 Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al. (2009). Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645. doi: 10.1101/gr.092759.109

 Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. doi: 10.1093/molbev/msw054

 Li, C., Potuschak, T., Colón-Carmona, A., Gutiérrez, R. A., and Doerner, P. (2005). Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc. Natl. Acad. Sci. 102, 12978–12983. doi: 10.1073/pnas.0504039102

 Li, G., Tan, M., Ma, J., Cheng, F., Li, K., Liu, X., et al. (2021). Molecular mechanism of MdWUS2–MdTCP12 interaction in mediating cytokinin signaling to control axillary bud outgrowth. J. Exp. Botany 72, 4822–4838. doi: 10.1093/jxb/erab163

 Li, W., Chen, G., Xiao, G., Zhu, S., Zhou, N., Zhu, P., et al. (2020). Overexpression of TCP transcription factor OsPCF7 improves agronomic trait in rice. Mol. Breed. 40, 1–13. doi: 10.1007/s11032-020-01129-5


 Li, W., Li, D.-D., Han, L.-H., Tao, M., Hu, Q.-Q., Wu, W.-Y., et al. (2017). Genome-wide identification and characterization of TCP transcription factor genes in upland cotton (Gossypium hirsutum). Sci. Rep. 7, 1–14. doi: 10.1038/s41598-017-10609-2

 Liu, H., Gao, Y., Wu, M., Shi, Y., Wang, H., Wu, L., et al. (2020). TCP10, a TCP transcription factor in moso bamboo (Phyllostachys edulis), confers drought tolerance to transgenic plants. Environ. Exp. Botany 172, 104002. doi: 10.1016/j.envexpbot.2020.104002


 Liu, H.-L., Wu, M., Li, F., Gao, Y.-M., Chen, F., and Xiang, Y. (2018). TCP transcription factors in moso bamboo (Phyllostachys edulis): genome-wide identification and expression analysis. Front. Plant Sci. 9, 1263. doi: 10.3389/fpls.2018.01263

 Liu, M., Jiang, J., Han, X., Qiao, G., and Zhuo, R. (2014). Validation of reference genes aiming accurate normalization of qRT-PCR data in Dendrocalamus latiflorus Munro. PLoS ONE 9, e87417. doi: 10.1371/journal.pone.0087417

 Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2– ΔΔCT method. Methods 25, 402–408. doi: 10.1006/meth.2001.1262

 Luo, C., Wang, S., Ning, K., Chen, Z., Wang, Y., Yang, J., et al. (2021). LsAP2 regulates leaf morphology by inhibiting CIN-like TCP transcription factors and repressing LsKAN2 in lettuce. Horticult. Res. 8:15. doi: 10.1038/s41438-021-00622-y

 Luo, D., Carpenter, R., Vincent, C., Copsey, L., and Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature 383, 794–799. doi: 10.1038/383794a0

 Manassero, N. G. U., Viola, I. L., Welchen, E., and Gonzalez, D. H. (2013). TCP transcription factors: architectures of plant form. Biomol. Concepts 4, 111–127. doi: 10.1515/bmc-2012-0051

 Martín-Trillo, M., and Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends Plant Sci. 15, 31–39. doi: 10.1016/j.tplants.2009.11.003

 Mason, M. G., Ross, J. J., Babst, B. A., Wienclaw, B. N., and Beveridge, C. A. (2014). Sugar demand, not auxin, is the initial regulator of apical dominance. Proc. Natl. Acad. Sci. 111, 6092–6097. doi: 10.1073/pnas.1322045111

 McCarthy, E. W., Mohamed, A., and Litt, A. (2015). Functional divergence of APETALA1 and FRUITFULL is due to changes in both regulation and coding sequence. Front. Plant Sci. 6, 1076. doi: 10.3389/fpls.2015.01076

 Min, Z., Chen, L., Zhang, Y., Li, Z., Liu, M., Li, W. P., et al. (2021). VvBRC inhibits shoot branching in grapevine. Sci. Horticult. 289, 110370. doi: 10.1016/j.scienta.2021.110370


 Miranda, K. C., Huynh, T., Tay, Y., Ang, Y.-S., Tam, W.-L., Thomson, A. M., et al. (2006). A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–1217. doi: 10.1016/j.cell.2006.07.031

 Nicolas, M., and Cubas, P. (2016). TCP factors: new kids on the signaling block. Curr. Opin. Plant Biol. 33, 33–41. doi: 10.1016/j.pbi.2016.05.006

 Nicolas, M., Rodríguez-Buey, M. L., Franco-Zorrilla, J. M., and Cubas, P. (2015). A recently evolved alternative splice site in the BRANCHED1a gene controls potato plant architecture. Curr. Biol. 25, 1799–1809. doi: 10.1016/j.cub.2015.05.053

 Nordström, A., Tarkowski, P., Tarkowska, D., Norbaek, R., Åstot, C., Dolezal, K., et al. (2004). Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proc. Natl. Acad. Sci. 101, 8039–8044. doi: 10.1073/pnas.0402504101

 Patil, S. B., Barbier, F. F., Zhao, J., Zafar, S. A., Uzair, M., Sun, Y., et al. (2021). Sucrose promotes D53 accumulation and tillering in rice. New Phytol. 234, 122–136. doi: 10.1111/nph.17834

 Resentini, F., Felipo-Benavent, A., Colombo, L., Blazquez Rodriguez, M. A., Alabadí Diego, D., and Masiero, S. (2015). TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Mol. Plant 8, 482–485. doi: 10.1016/j.molp.2021.09.012

 Richards, R.. (2000). Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Botany 51(Suppl. 1), 447–458. doi: 10.1093/jexbot/51.suppl_1.447

 Sarvepalli, K., and Nath, U. (2011). Interaction of TCP4-mediated growth module with phytohormones. Plant Signal. Behav. 6, 1440–1443. doi: 10.4161/psb.6.10.17097

 Sarvepalli, K., and Nath, U. (2018). CIN-TCP transcription factors: transiting cell proliferation in plants. Iubmb Life 70, 718–731. doi: 10.1002/iub.1874

 Shang, Q.-M., Li, L., and Dong, C.-J. (2012). Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. Planta 236, 1093–1105. doi: 10.1007/s00425-012-1659-1

 Shen, J., Zhang, Y., Ge, D., Wang, Z., Song, W., Gu, R., et al. (2019). CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. Proc. Natl. Acad. Sci. 116, 17105–17114. doi: 10.1073/pnas.1907968116

 Shou, Y., Zhu, Y., and Ding, Y. (2020). Transcriptome analysis of lateral buds from Phyllostachys edulis rhizome during germination and early shoot stages. BMC Plant Biol. 20, 1–18. doi: 10.1186/s12870-020-02439-8

 Sparkes, I. A., Runions, J., Kearns, A., and Hawes, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protocols 1, 2019–2025. doi: 10.1038/nprot.2006.286

 Steiner, E., Efroni, I., Gopalraj, M., Saathoff, K., Tseng, T.-S., Kieffer, M., et al. (2012). The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 24, 96–108. doi: 10.1105/tpc.111.093518

 Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., et al. (2003). The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33, 513–520. doi: 10.1046/j.1365-313x.2003.01648.x

 Tanaka, M., Takei, K., Kojima, M., Sakakibara, H., and Mori, H. (2006). Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 45, 1028–1036. doi: 10.1111/j.1365-313X.2006.02656.x

 Tatematsu, K., Nakabayashi, K., Kamiya, Y., and Nambara, E. (2008). Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. Plant J. 53, 42–52. doi: 10.1111/j.1365-313X.2007.03308.x

 Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2003). Multiple sequence alignment using ClustalW and ClustalX. Curr. Protocols Bioinform. 2, 2–3. doi: 10.1002/0471250953.bi0203s00

 Vick, B. A., and Zimmerman, D. C. (1983). The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem. Biophys. Res. Commun. 111, 470–477. doi: 10.1016/0006-291x(83)90330-3

 Wang, B., Smith, S. M., and Li, J. (2018). Genetic regulation of shoot architecture. Ann. Rev. Plant Biol. 69, 437–468. doi: 10.1146/annurev-arplant-042817-040422

 Wang, D., Zhang, Y., Zhang, Z., Zhu, J., and Yu, J. (2010). KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom. Proteom. Bioinform. 8, 77–80. doi: 10.1016/S1672-0229(10)60008-3

 Wang, H., Mao, Y., Yang, J., and He, Y. (2015). TCP24 modulates secondary cell wall thickening and anther endothecium development. Front. Plant Sci. 6, 436. doi: 10.3389/fpls.2015.00436

 Wang, L., Wang, B., Yu, H., Guo, H., Lin, T., Kou, L., et al. (2020). Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 583, 277–281. doi: 10.1038/s41586-020-2382-x

 Wang, M., Le Moigne, M.-A., Bertheloot, J., Crespel, L., Perez-Garcia, M.-D., Og,é, L., et al. (2019). BRANCHED1: a key hub of shoot branching. Front. Plant Sci. 10, 76. doi: 10.3389/fpls.2019.00076

 Wang, R., Yang, X., Guo, S., Wang, Z., Zhang, Z., and Fang, Z. (2021). MiR319-targeted OsTCP21 and OsGAmyb regulate tillering and grain yield in rice. J. Integr. Plant Biol. 63, 1260–1272. doi: 10.1111/jipb.13097

 Wang, S.-t., Sun, X.-l., Hoshino, Y., Yu, Y., Jia, B., Sun, Z.-w., et al. (2014). MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS ONE 9, e91357. doi: 10.1371/journal.pone.0091357

 Wang, Y., and Li, J. (2008). Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59, 253–279. doi: 10.1146/annurev.arplant.59.032607.092902

 Wen, H., Chen, Y., Du, H., Zhang, L., Zhang, K., He, H., et al. (2020). Genome-wide identification and characterization of the TCP gene family in cucumber (Cucumis sativus L.) and their transcriptional responses to different treatments. Genes 11, 1379. doi: 10.3390/genes11111379

 Xu, D., Jin, K., Jiang, H., Gong, D., Yang, J., Yu, W., et al. (2022). GFAP: ultra-fast and accurate gene functional annotation software for plants. bioRxiv. [preprint]. doi: 10.1101/2022.01.05.475154


 Xu, D., Lu, Z., Jin, K., Qiu, W., Qiao, G., Han, X., et al. (2021). SPDE: a multi-functional software for sequence processing and data extraction. Bioinformatics 37, 3686–3687. doi: 10.1093/bioinformatics/btab235

 Xu, H., Lantzouni, O., Bruggink, T., Benjamins, R., Lanfermeijer, F., Denby, K., et al. (2020). A molecular signal integration network underpinning Arabidopsis seed germination. Curr. Biol. 30, 3703–3712.e3704. doi: 10.1016/j.cub.2020.07.012

 Yao, X., Ma, H., Wang, J., and Zhang, D. (2007). Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. J. Integr. Plant Biol. 49, 885–897. doi: 10.1111/j.1672-9072.2007.00509.x


 Yu, S., Li, P., Zhao, X., Tan, M., Ahmad, M. Z., Xu, Y., et al. (2021). CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis). Horticul. Res. 8, 104. doi: 10.1038/s41438-021-00538-7

 Yuan, Z., Gao, S., Xue, D.-W., Luo, D., Li, L.-T., Ding, S.-Y., et al. (2009). RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol. 149, 235–244. doi: 10.1104/pp.108.128231

 Zhang, C., Ding, Z., Wu, K., Yang, L., Li, Y., Yang, Z., et al. (2016). Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol. Plant 9, 1302–1314. doi: 10.1016/j.molp.2016.06.014

 Zhang, W., Cochet, F., Ponnaiah, M., Lebreton, S., Mathéron, L., Pionneau, C., et al. (2019a). The MPK 8-TCP 14 pathway promotes seed germination in Arabidopsis. Plant J. 100, 677–692. doi: 10.1111/tpj.14461

 Zhang, W., Tan, L., Sun, H., Zhao, X., Liu, F., Cai, H., et al. (2019b). Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice. Mol. Plant 12, 1075–1089. doi: 10.1016/j.molp.2019.04.005

 Zhao, H., Zhao, S., Bamboo International Network for Bamboo Rattan, Fei, B., Liu, H., et al. (2017). Announcing the Genome Atlas of Bamboo and Rattan (GABR) project: promoting research in evolution and in economically and ecologically beneficial plants. GigaScience 6, gix046. doi: 10.1093/gigascience/gix046

 Zhao, J., Zhai, Z., Li, Y., Geng, S., Song, G., Guan, J., et al. (2018). Genome-wide identification and expression profiling of the TCP family genes in spike and grain development of wheat (Triticum aestivum L.). Front. Plant Sci. 9, 1282. doi: 10.3389/fpls.2018.01282

 Zheng, Y., Yang, D., Rong, J., Chen, L., Zhu, Q., He, T., et al. (2022). Allele-aware chromosome-scale assembly of the allopolyploid genome of hexaploid Ma Bamboo (Dendrocalamus latiflorus Munro). J. Integr. Plant Biol. 64, 649–670. doi: 10.1111/jipb.13217

 Zou, X., Du, M., Liu, Y., Wu, L., Xu, L., Long, Q., et al. (2021). CsLOB1 regulates susceptibility to citrus canker through promoting cell proliferation in citrus. Plant J. 106, 1039–1057. doi: 10.1111/tpj.15217

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Jin, Wang, Zhuo, Xu, Lu, Fan, Huang and Qiao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.









 


	
	
ORIGINAL RESEARCH
 published: 20 May 2022
 doi: 10.3389/fpls.2022.897843






[image: image2]

Organization, Phylogenetic Marker Exploitation, and Gene Evolution in the Plastome of Thalictrum (Ranunculaceae)

Kun-Li Xiang1,2, Wei Mao3, Huan-Wen Peng2,4, Andrey S. Erst5,6, Ying-Xue Yang1*, Wen-Chuang He1* and Zhi-Qiang Wu1,7*


1Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China

2State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China

3College of Ecology and Environment, Hainan University, Haikou, China

4College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China

5Central Siberian Botanical Garden, Russian Academy of Sciences, Novosibirsk, Russia

6Laboratory Herbarium (TK), Tomsk State University, Tomsk, Russia

7Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, China

Edited by:
 Jianyu Zhou, Nankai University, China

Reviewed by:
 Xiaoguo Xiang, Nanchang University, China
 Weishu Fan, Kunming Institute of Botany (CAS), China

*Correspondence: Zhi-Qiang Wu, wuzhiqiang@caas.cn 
 Wen-Chuang He, hewenchuang@caas.cn
 Ying-Xue Yang, yyxue32@163.com

Specialty section: This article was submitted to Plant Bioinformatics, a section of the journal Frontiers in Plant Science


Received: 16 March 2022
 Accepted: 11 April 2022
 Published: 20 May 2022

Citation: Xiang K-L, Mao W, Peng H-W, Erst AS, Yang Y-X, He W-C and Wu Z-Q (2022) Organization, Phylogenetic Marker Exploitation, and Gene Evolution in the Plastome of Thalictrum (Ranunculaceae). Front. Plant Sci. 13:897843. doi: 10.3389/fpls.2022.897843
 

Thalictrum is a phylogenetically and economically important genus in the family Ranunculaceae, but is also regarded as one of the most challengingly difficult in plants for resolving the taxonomical and phylogenetical relationships of constituent taxa within this genus. Here, we sequenced the complete plastid genomes of two Thalictrum species using Illumina sequencing technology via de novo assembly. The two Thalictrum plastomes exhibited circular and typical quadripartite structure that was rather conserved in overall structure and the synteny of gene order. By updating the previously reported plastome annotation of other nine Thalictrum species, we found that the expansion or contraction of the inverted repeat region affect the boundary of the single-copy regions in Thalictrum plastome. We identified eight highly variable noncoding regions—infA-rps8, ccsA-ndhD, trnSUGA-psbZ, trnHGUG-psbA, rpl16-rps3, ndhG-ndhI, ndhD-psaC, and ndhJ-ndhK—that can be further used for molecular identification, phylogenetic, and phylogeographic in different species. Selective pressure and codon usage bias of all the plastid coding genes were also analyzed for the 11 species. Phylogenetic relationships showed Thalictrum is monophyly and divided into two major clades based on 11 Thalictrum plastomes. The availability of these plastomes offers valuable genetic information for accurate identification of species and taxonomy, phylogenetic resolution, and evolutionary studies of Thalictrum, and should assist with exploration and utilization of Thalictrum plants.

Keywords: Thalictrum, plastid genome, genome structure, molecular markers, phylogeny


INTRODUCTION

Thalictrum L., comprising ca. 200 species, is a phylogenetically and economically important genus in the family Ranunculaceae (Tamura, 1995) and is worldwide with main distribution in northern temperate regions. Thalictrum plants are rich in benzylisoquinoline-derived alkaloids; at least 250 such compounds have been isolated from 60 species, and most of them show strong biological activities (Zhu and Xiao, 1991). Thalictrum plants are used in folk medicine for the treatment of many kinds of diseases by various ethnic groups of China, which has a long history (Wang and Xiao, 1979; Zhu and Xiao, 1989; Wu et al., 1998; Wang et al., 2001). In some place, roots of Thalictrum were used as substitutes for Rhizoma coptidis to treat enteritis and dysentery (Wu et al., 1998). Furthermore, bearing luxuriant foliage, extended branches, and attractive flowers, Thalictrum species have previously been mainly applied as perennial garden plants. At present, the horticultural values of Thalictrum plants, such as Thalictrum delavayi, Thalictrum reniforme, and Thalictrum grandiflorum have been widely paid attention with great commercial prospects (Wang and Xiao, 1979).

Thalictrum is taxonomically and phylogenetically regarded as one of the most challengingly difficult taxa in plants. Traditionally, Thalictrum was classified into 14 sections based on morphological traits such as leaf, flower, and fruit characteristics (Tamura, 1995). Molecular phylogenetic analyses have consistently suggested only that Thalictrum is a monophyletic group containing two major clades, based on the nuclear ribosomal internal transcribed spacer (ITS) region (ITS1, ITS2, and 5.8S) and the chloroplast DNA (cpDNA) rpl16 intron (Soza et al., 2012). Then, a revised phylogeny yielded better resolution based on nuclear ribosomal ITS region, external transcribed spacer (ETS) region, and the cpDNA 3’trnV-ndhC (trnV-ndhC) intergenic region (Soza et al., 2013). Nonetheless, none of the sections traditionally assigned to the genus (Tamura, 1995) are monophyletic (Soza et al., 2012, 2013). Moreover, numerous species and varieties in Thalictrum are poorly defined owing to insufficient field studies and lack of consistent characteristics for diagnostic methods in the literature (Wang et al., 2001). Therefore, further exploiting more stable genetic variations and effective molecular markers in Thalictrum species is greatly important for conservation and utilization of the plants from this genus.

The popularity of the ITS region for infrageneric studies within angiosperms is well-known (Baldwin et al., 1995; Hughes et al., 2006; Mort et al., 2007). Levels of ITS sequence divergence within Thalictrum are relatively high (Soza et al., 2012, 2013). However, Thalictrum exhibits an enormous range of ploidy, from 2n = 2x = 14 to 2n = 24x = 168 (Löve, 1982; Tamura, 1995), with very small chromosomes known as the T-type in Ranunculaceae (Langlet, 1927). In Thalictrum, the ITS region is often presented as more than one copy (Soza et al., 2012, 2013). Owing to their haploidy, maternal inheritance, and high conservation in gene content and genome structure, the plastomes have been popular in researches on evolutionary relationships at almost any taxonomic level in plants. Although sequence divergence among the interspecific cpDNAs is generally less than ITS (Hughes et al., 2006; Mort et al., 2007), it is necessary to utilize cpDNA regions that exhibit relatively high rates of substitution in Thalictrum. With the advent of high-throughput sequencing technologies, it is now more practical and inexpensive to obtain plastome sequences and to upgrade cp-based phylogenetics to phylogenomics.

In the present study, we sequenced the complete plastid genomes of two Thalictrum species by using the next-generation sequencing platform and performed the first comprehensive analysis of Thalictrum plastomes by combining these data with previously reported plastomes of other nine species (Park et al., 2015; He et al., 2019, 2021b; Morales-Briones et al., 2019). Our study aims were as follows: (1) to investigate global structural patterns of the 11 Thalictrum plastomes; (2) to identify the most variable regions of these plastomes as prospective DNA barcodes for future species identification; (3) to choose more effective molecular markers via reconstruction of phylogenetic relationships among the 11 Thalictrum species using various makers; and (4) to test for the presence of adaptive evolution in all genes located in the two single-copy regions, and one of the two inverted-repeat (IR) regions by analyses of selective pressure and codon usage bias. The results will provide abundant information for further species identification, phylogenetic, and phylogeographic studies on Thalictrum, and will assist in exploration and utilization of Thalictrum plants.



MATERIALS AND METHODS


Sample Preparation, Sequencing, Assembly, and Annotation

The sequenced two Thalictrum species (Thalictrum minus var. hypoleucum and Thalictrum simplex) are growing in the Beijing Botanical Garden, Beijing, China. Genomic DNA was extracted from fresh leaves and purified using the Tiangen Isolation/Extraction/Purification Kit [Tiangen Biotech (Beijing) Co., Ltd.]. Short insert of 300–500 bp libraries were prepared for sequencing on the Illumina HiSeq X-Ten platform.

Before assembly of the short reads, plastome original reads were extracted by mapping all short reads to the nine plastomes as reference with BWA (Li and Durbin, 2009) and SAMtools (Danecek et al., 2021). Then the two plastomes were de novo assembled with SPAdes v3.15.2 (Bankevich et al., 2012) as described in He et al. (2021a). Highly accurate annotation of organelle genomes was performed by using the Organellar Genome GeSeq tool (Tillich et al., 2017) with subsequent manual correction. Three chloroplast genomes from Thalictrum coreanum (GenBank accession No. NC_026103), Thalictrum minus (NC_041544), and Thalictrum thalictroides (NC_039433) were used as reference sequences. The circular plastomes were visualized by using OGDRAW v1.3.1 (Greiner et al., 2019), with subsequent manual editing. We also updated the annotation of plastomes for the other 11 species in this study.



Detection and Annotation for Plastid Genomic Variations

Multiple sequence alignments of whole plastome sequences from the 11 Thalictrum species that have the representatives of the two major clades of this genus in previous studies (Soza et al., 2012, 2013), as well as Paraquilegia anemonoides and Leptopyrum fumarioides in Thalictreae as outgroups were implemented using MAFFT v7 (Katoh and Toh, 2010) with standard parameters, and further adjusted manually in Geneious v8.0.4 (Kearse et al., 2012). For comparison, the gene order and structure of the 13 plastomes were compared by using IRscope.1

To identifying hypervariable regions, the sequence alignment of Thalictrum plastomes without outgroups was subjected to a sliding window analysis in DNAsp v6.12.03 (Rozas et al., 2017) to evaluate nucleotide diversity (π) of all genes, genes without introns, and intergenic spacer (IGS) regions. Functional annotations for the nucleotide variations were conducted by using snpEff v5.1 (Cingolani, 2012).



Phylogenetic Analysis

Phylogenetic analyses of Thalictrum were performed with maximum likelihood (ML) method in RAxML v8.2.11 (Stamatakis, 2014) with 1,000 replicates under GTRGAMMA model. The analyses were carried out based on the following nine data sets, including the complete plastid DNA sequences, concatenation of 115 IGS regions, concatenation of 114 gene sequences, and six genes and/or their introns and spacers (rpl16 intron, ndhC-trnVUAC, ndhA intron, trnLUAA-trnFGAA, rpl32-trnLUAG, and rbcL) that have been employed in previous studies on Thalictrum (Soza et al., 2012, 2013; Wang et al., 2019).



Selective Pressure Analysis

Selective pressures were detected throughout the phylogenetic tree of Thalictrum for each plastid gene. Nonsynonymous (dN) and synonymous (dS) substitution rates of each plastid gene were assessed by using the CODEML program in PAML v4.9 (Yang, 2007). We tested different hypotheses via branch models, H0: the one-ratio model (m0), assumes the same dN/dS ratio (ω ratio) for all branches in the phylogeny, HA: the free-ratio model (m1) that assumes an independent ω ratio for each branch. Likelihood ratio tests were used to test each model’s fit. The double log-likelihood difference between the two models (2ΔL) was compared to a chi-square distribution with N–1 degrees of freedom, where N is the number of branches in the phylogeny (Whelan and Goldman, 1999).



Codon Usage Analysis

The program DNAsp v6.12.03 (Rozas et al., 2017) was used to examine the synonymous codon usage of 79 protein-coding genes in the plastome of Thalictrum and to calculate several related parameters such as the effective number codons (ENC), codon bias index (CBI), and relative synonymous codon usage (RSCU). The ENC and CBI are often used to evaluate codon bias at the level of an individual gene (Frank, 1990). RSCU is the observed codon frequency divided by the expected frequency. An RSCU value close to 1.0 indicates that the deviation is not significant (Sharp et al., 1986). Amino acid (AA) frequency was calculated as the percentage of codons encoding the same amino acid divided by the total codons.




RESULTS


Genome Features

The 11 plastomes of the Thalictrum species ranged in size from 154,924 bp (T. thalictroides) to 156,258 bp (T. minus var. hypoleucum). All these plastomes displayed the typical quadripartite structure of nearly all land plants, consisting of a pair of inverted repeats (IRs, 26,273–26,521 bp) separated by a single-copy (LSC) region (84,733–85,700 bp) and a small single-copy (SSC) region (17,479–17,655 bp; Table 1). The average GC content was ~38.39%, which is almost identical with each other among the 11 complete Thalictrum plastomes. In the IR region, the GC content (43.22%) was found to be much higher than that in the LSC (36.62%) and SSC regions (32.45%). Although overall genomic structure including gene number and gene order were well-conserved (Figure 1), the 11 Thalictrum plastomes exhibited obvious differences in the IR-SC boundary regions (Figure 2). The gene ycf1 spanned the SSC-IRB region while a pseudogene fragment ψycf1 was located at the IRA region with a length range of 1,144–1,152 bp. The gene rps19 spanned the LSC-IRA region and a pseudogene fragment ψrps19 (100–122 bp) was located in the IRB region of all Thalictrum species except T. thalictroides. At the junction of IRA and SSC regions in most species, the distance between ψycf1 and ndhF ranged from 0 to 752 bp, except for that of Thalictrum foeniculaceum with an overlap region of 39 bp between ψycf1 and ndhF. At the junction of IRB and LSC regions, the distances between ψrps19 and trnH ranged from 42 to 81 bp.



TABLE 1. Summary of characteristics of plastome sequnences used in the study.
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FIGURE 1. Plastome of Thalictrum minus var. hypoleucum (A) and Thalictrum simplex (B). The genes inside and outside of the circle are transcribed in clockwise and counterclockwise directions, respectively. Genes belonging to different functional groups are shown in different colors. The thick lines indicate the extent of the inverted repeats (IRA and IRB) that separate the genomes into small single-copy (SSC) and large single-copy (LSC) regions.
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FIGURE 2. Comparison of LSC, inverted-repeats (IRs), and SSC junction positions among Thalictrum plastomes.


All the 11 plastomes each identically encoded 131 predicted functional genes and three pseudo genes, of which seven protein-coding genes, seven tRNA genes, four rRNA genes, and two pseudo genes were duplicated in the IR regions (Figure 1). Two introns were detected in each of two protein-coding genes (clpP and ycf3) while a single intron was detected in each of 11 protein-coding genes (atpF, ndhA, ndhB, petB, petD, rpl2, rpl16, rpoC1, rps12, rps16, and ycf15) and six tRNA genes (trnAUGC, trnGUCC, trnIGAU, trnKUUU, trnLUAA, and trnVUAC; Supplementary Table S1). Among 79 protein-coding genes, 75 contained standard AUG as the initiation codon, while three genes (ndhD, rps19, and ycf15) contained GUG instead, and the rpl2 started with ACG.



Polymorphic Variation and Hypervariable Regions

Nucleotide variations among the complete plastid genomes of the 11 Thalictrum species were identified to elucidate the level of sequence divergence (Figure 3). The aligned matrix of the 11 Thalictrum plastomes (159,334 bp) contained 2,957 single-nucleotide polymorphisms (SNPs) and 1,016 insertion-deletions (indels). The vast majority of SNPs from coding genes were functionally silent (synonymous), while 594 SNPs (43.8%) and six SNPs (0.4%), from altogether 79 coding genes, were missense and nonsense variations (Supplementary Table S2). A total of 549 simple sequence repeats (SSRs) were identified in the 11 Thalictrum plastomes with a range of 39 (Thalictrum petaloideum) to 60 (Thalictrum baicalense) SSRs were detected in each species (Supplementary Table S3), indicating rich polymorphism of the SSRs among plastomes of different species. The SSC regions showed the highest nucleotide diversity (π = 0.01381), followed by the LSC (π = 0.00803) and IR (π = 0.00154) regions. In the 114 unique genes, the nucleotide diversity for each locus ranged from 0 (e.g., rps7, rrn16, and trnCGCA) to 0.02608 (infA) with an average of 0.00438, whereby 10 regions (i.e., infA, rpl32, ycf1, rpl20, ccsA, rpl22, rpl16, rps15, rps16, and accD) had remarkably high values (π > 0.0096; Supplementary Table S1; Figure 3A). For exons in genes, the nucleotide diversity ranged from 0 (e.g., rps7, rrn16, and trnA-UGC) to 0.02608 (infA) with an average of 0.00373, while for the 115 IGS regions it ranged from 0 (e.g., atpE-atpB, rpl23-trnICAU, rrn16-trnIGAU, and trnIGAU-trnAUGC) to 0.03486 (rpoC1-rpoB) with an average of 0.01025, except for the rpoC1-rpoB (π > 0.07171) with a targetable sequence of only 5 bp. Additionally, 10 of those regions showed considerably high values (π > 0.0217; i.e., ndhF-rpl32, infA-rps8, ccsA-ndhD, rpl32-trnLUAG, trnSUGA-psbZ, trnHGUG-psbA, rpl16-rps3, ndhG-ndhI, ndhD-psaC, and ndhJ-ndhK; see Supplementary Table S4; Figure 3B).
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FIGURE 3. Comparison of nucleotide variability (π) values in Thalictrum plastomes. (A) Pi values among genes, (B) Pi values among intergenic spacer (IGS) regions. The break in the middle of the bars indicated that other regions and genes are omitted here. The dot line denoted the average value.




Phylogenetic Analysis

Three datasets, the whole complete plastid genome sequences, IGS regions, and gene sequences were constructed to investigate the phylogenetic relationships among the 11 Thalictrum species, with P. anemonoides and Leptopyrum fumarioides as two outgroups. By using ML method, three phylogenetic trees were built based on the three respective datasets, whose topologies were found to be highly concordant between one another (Figures 4A–C). The Thalictrum was strongly supported as a monophyletic group [bootstrap support (bs) = 100%], and contained two major clades that are strongly supported as sister groups: clades I (bs = 100%) and II (bs = 100%; Figures 4A–C). The resolution of previously used six molecular fragments was also evaluated for Thalictrum species. Five genes and/or their introns and spacers yielded similar results except for the rpl32-trnLUAG (Figures 4D–I). However, different supporting values were observed from the nodes based on different sequence dataset. For example, two nodes in clades II derived from the dataset of gene sequences both showed weaker supports (bs = 54% and bs = 68%; Figure 4C) than those derived from complete plastid genome sequences (bs = 100% and bs = 95%; Figure 4A) and IGS regions (bs = 100% and bs = 95%; Figure 4B). Additionally, the rpl16 intron had the strongest support within clades II (Figure 4D), while rbcL had the weakest support in them (Figure 4I). These results indicated a much stronger resolving power of complete plastid genome sequences as well as IGS and intron regions as compared to the exon regions, which may serve as a reliable source of phylogenetic information in Thalictrum.
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FIGURE 4. Phylogenetic relationships of Thalictrum inferred from maximum likelihood (ML) analysis. (A) All sequence, (B) concatenation of 115 IGS regions, (C) concatenation of 114 gene sequences, (D) rpl16 (with intron, Soza et al., 2012), (E) ndhC-trnVUAC (Soza et al., 2013), (F) ndhA intron (Wang et al., 2019), (G) trnLUAA-trnFGAA (Wang et al., 2019), (H) rpl32-trnLUAG (Wang et al., 2019), and (I) rbcL (Wang et al., 2019). The numbers above the branches indicate bootstrap support (%), and the asterisk indicates 100% bootstrap support in ML tree.




Selective Pressure and Codon Usage Analysis

Selective pressure analysis was conducted for CDS of all the 79 plastid protein-coding genes. A total of 66 genes are fit of m1 model in which atpF showed the highest ω ratio (1.13) except for rpl23 (ω = 999), while other 13 genes (psbL, psaC, rps12, rps19, petB, psbN, psbF, psaJ, psbE, rpl36, psbZ, petN, and rps7 are fit of m0 model; Table 2). Among the 66 genes, most (50/66) were located in LSC region following by IR (7/66) and SSC (9/66) regions. The values of ω are significantly different (p < 0.05) between Thalictrum species for ndhG (SSC), petA (LSC), and rpl22 (LSC) gene based on likelihood ratio tests, within some species have positive selection (e.g., ndhG in T. coreanum, T. foeniculaceum, Thalictrum foliolosum, and T. thalictroides; petA in T. minus var. hypoleucum). No genes in IR regions were detected significantly different between different species. However, 12 genes (LSC: atpF, rpl33, rpl20, rps16, rps18, petG, rpl2, petL, psbJ, psbM; IR: rpl23; SSC: rps15) were subject to positive selection in most species (median of ω > 1; see Table 2; Supplementary Tables S6, S7), although their values of ω are not significantly different between different species.



TABLE 2. Summary of models H0 and HA analyzed in the study. dN, dS, and ω are presented as medians.
[image: Table2]

We further analyzed the codon usage bias of the 79 protein coding genes in the plastomes of the 11 Thalictrum species. Most codons (55/64) were found to be used without bias or with only a slight bias (0.5 ≤ RSCU ≤ 1.5) in the protein-coding genes (Supplementary Table S8). The effective number of codons (ENC) and codon bias index (CBI) of all the 79 genes varied within a wide range, e.g., from 25.02 to 61.00 and from 0.28 to 0.85, respectively, with a median value of 49.0 and 0.50, respectively (Figure 5; Supplementary Figure S1; Supplementary Table S8). The data indicated that these genes were probably expressed in different levels due to their different usage frequencies of the rare and optimal codons, although they are all highly conserved in the plastomes. Most genes in SSC region (80.0%) showed relatively strong bias in the codon usage (ENC ≤ ENCmedian = 49.0 or CBI ≥ CBImedian = 0.5), while 67.2% of genes in LSC region and 50.0% of genes in IR region performed relatively strong codon usage bias. Notably, almost all genes under positively selective pressures in more than half species performed relatively strong bias in the codon usage (ENC ≤ ENCmedian = 49.0 or CBI ≥ CBImedian = 0.5), e.g., atpF featured a relatively strong codon usage bias with a low ENC of 41.61. This finding suggested that those important genes with higher expression levels may played important roles in the evolution and divergence of Thalictrum plastomes.
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FIGURE 5. The effective number of codons in the study.





DISCUSSION


Plastome Characteristics of Thalictrum

In the present study, complete plastome sequences were firstly assembled for T. minus var. hypoleucum and T. simplex in the Thalictrum genus, with a total length of 156,211 and 156,258 bp, respectively (Table 1). The two plastomes are also highly similar in overall structure and gene order when compared to the majority of previously published plastomes of other nine species in Thalictrum (Park et al., 2015; He et al., 2019, 2021b; Morales-Briones et al., 2019). However, there was obvious variation in the IR-SC boundary regions among the 11 Thalictrum plastomes (Figure 2). The variations in IR-SC boundary regions in the 11 Thalictrum plastomes led to their length variation of the four regions and whole genome sequences. The expansion and contraction of the IR-SC boundary regions was considered as a primarily mechanism causing the length variation of angiosperm plastomes (Kim and Lee, 2004). In general, such expansions or contractions of the IRs into or out of adjacent single-copy regions are frequently observed in angiosperm plastomes (e.g., Yang et al., 2016; Zhang et al., 2016; Ye et al., 2018).

Nonetheless, there are particular genes, especially ycf1, rps19, ndhF, ycf15, and ψrpl32, which deserve closer scrutiny. For instance, in various members of Thalictrum, ycf1 is duplicated, with a shorter copy (ψycf1, 1,144–1,152 bp) and a larger copy (ycf1, 5,616–5,658 bp) located at the SSC-IRA and SSC-IRB boundaries, respectively (Figure 2). Similarly, the rps19 is present as two copies including ψrps19 (100–122 bp) and rps19 (279 bp) at the SSC-IRB and SSC-IRA boundaries respectively except in T. thalictroides (Figure 2). Both shorter copies apparently resulted from incomplete duplication. Similar pseudogenizations of ycf1 and locations of ψycf1 copies are known from other plants (Yang et al., 2013, Szczecińska and Sawicki, 2015; Ye et al., 2018), and two copies of rps19 have been found in Podophylloideae (Berberidaceae; Ye et al., 2018). As for the ndhF, the coding sequence was unexpectedly terminated by a stop-codon-gained event caused by nucleotide variation of a poly-A region in eight Thalictrum species except for T. coreanum, T. foeniculaceum, and T. thalictroides. For the ycf15, an intact copy and an interrupted gene have been found in other plants, with lengths of c. 150–300 bp (Raubeson et al., 2007, Shi et al., 2013). By contrast, an interrupted ycf15 gene has been annotated in the sequenced chloroplast genomes in Thalictrum species. Additionally, ψrpl32 is incomplete because the rpl32 gene was found to be transferred to the nucleus in the ancestor of the subfamily Thalictroideae (Park et al., 2015).

Regarding the initiation codon, ndhD, rps19, and ycf15 used GUG, while rpl2 used ACG in Thalictrum. The ACG codon may be restored to the canonical start codon (AUG) by RNA editing (Hoch et al., 1991; Takenaka et al., 2013), whereas GUG has been detected in in other plastomes (Kuroda et al., 2007; Gao et al., 2009; Zhang et al., 2016).



Noncoding Regions as a Source of Phylogenetic Information in Thalictrum

Given that the nuclear-genome coded ITS region is often presented as more than one copy in Thalictrum, sequences of cpDNA intergenic spacers have been employed to uncover intraspecific variability in Thalictrum (Soza et al., 2012, 2013). The IRs usually showed lower sequence divergence than the SC regions in most of higher plants and possibly due to copy correction between IR sequences by gene conversion (Khakhlova and Bock, 2006; Zhang et al., 2016). In the present study, the whole genome and IGS regions manifested higher sequence divergence than genes did, and genes with introns showed higher sequence divergence than genes without introns in Thalictrum species (Figure 3). In general, the non-coding regions (introns and spacers) had higher variability proportions than coding regions, which was also true for most higher plants (Shaw et al., 2014; Zhang et al., 2016).

In some studies, eight noncoding regions (ndhF-rpl32, rpl32-trnLUAG, ndhC-trnV-UAC, rps16-trnQUUG, psbE-petL, trnTGGU-psbD, petA-psbJ, and rpl16 intron) have been identified as the best possible choices for low-level phylogenetic studies on angiosperms (Shaw et al., 2014). Among these regions, ndhF-rpl32, rpl32-trnLUAG, and the rpl16 intron were also identified as highly divergent loci among Thalictrum species in the present study. Nonetheless, two IGS regions related to rpl32 are not suitable as molecular markers in Thalictrum because the rpl32 gene is often transferred to the nucleus (Park et al., 2015). Aside from these loci, we also observed high nucleotide diversity in infA-rps8, ccsA-ndhD, trnSUGA-psbZ, trnHGUG-psbA, rpl16-rps3, ndhG-ndhI, and ndhD-psaC regions. Additionally, an intron of rps16 also showed highly variable here, similarly to Podophylloideae (Berberidaceae; Ye et al., 2018). These divergence hotspot regions of the 11 Thalictrum plastid genome sequences provided abundant information for developing effective molecular markers to the phylogenetic analyses and plant identification of Thalictrum species. Besides, the resolution and efficiency of chloroplast markers can be strongly affected by the length of target fragment. The rpoC1-rpoB region has a relatively high nucleotide diversity among different plastomes, but cannot be a good molecular marker as its target length is only 5 bp.



Phylogenetic Relationships

The plastid genome sequences have been utilized successfully for the phylogenetic studies on angiosperms (Jansen et al., 2007; Huang et al., 2014; Kim et al., 2015; Li et al., 2019). Our phylogenetic trees based on whole complete plastid genome sequences, 116 IGS regions, and 114 gene sequences revealed that Thalictrum contains two major clades that is consistent with previous studies (Figures 4A–C; Soza et al., 2012, 2013; Morales-Briones et al., 2019; Wang et al., 2019). However, the relationships along the backbone of the clades are not well-supported in their studies. None of the sections traditionally circumscribed for this genus (Tamura, 1995) is monophyletic. It is necessary to apply more samplings and find more efficient molecular markers for Thalictrum.

Our phylogenetic trees indicated that 116 IGS regions had stronger support than 114 gene sequences (Figures 4B,C). Additionally, the rpl16 intron—that was used by Soza et al. (2012) with high sequence divergence in the studies—showed also strong support in clades II here (Figure 4D). While the coding regions of rbcL employed by Wang et al. (2019) showed lower supports within clades II in our analysis (Figure 4I). The non-coding regions (introns and spacers) are more variable molecular markers. For the ML tree of rpl32-trnLUAG used by Wang et al. (2019), the outgroups are embedded in Thalictrum probably because the matrix of rpl32-trnLUAG contained lots of indels (Figure 4H). The rpl32 gene is often transfers to the nucleus (Park et al., 2015) that make the ndhF-rpl32, rpl32-trnLUAG, and rpl32 regions not reliable to be markers for phylogeny in Thalictrum.



Positive Selection in Different Genes

It is believed that selection is the most probable components of the evolutionary forces acting on most highly expressed genes, although all genes are basically subjected to a certain degree of natural selection (Gouy and Gautier, 1982; Sueoka, 1999; Sharp et al., 2010). And the degeneracy of genetic code leads to the expression of variation contained in a gene through its manifestation in protein, which varied among different species (Edelman and Gally, 2001; Wan et al., 2004; Chakraborty et al., 2020). In the present study, we observed different codon usage frequency on different genes under positive pressure. For example, 12 plastid genes (atpF, rpl33, rps15, rpl20, rps16, rps18, petG, rpl2, petL, psbJ, psbM, and rpl23) were observed under positive selective pressure in most of the 11 Thalictrum species among which 11 showed relatively higher CBI values (>0.5) suggesting high expression level in vivo; while three plastid genes that are relative with NADH oxidoreductase (ndhG), cytochrome b6/f complex (petA), and ribosomal proteins (rpl22) were observed under significantly strong positive selective pressure (p < 0.05 based on likelihood ratio tests) in only 1–4 Thalictrum species, showing relatively lower CBI (<0.5). The former and latter genes performed different codon usage bias suggesting different expression levels due to different usage frequency of the rare and optimal codons, which could further affected the functional patterns of those genes during their evolution process. Additionally, it also indicated potential functional divergence among plastid genomes of different Thalictrum species, according to abundant differences observed between selective pressures and usage codon frequencies for different plastid genes in these species.




CONCLUSION

This is the first report to describe a comprehensive landscape of plastomic variations among Thalictrum species on the basis of 11 complete plastomes. Comparison between these plastomes uncovered not only high similarities in overall structure, gene order, and content but also some structural variations caused by the expansion or contraction of the IR regions into or out of adjacent single-copy regions. DNA sequence divergence across 11 Thalictrum plastomes revealed that infA-rps8, ccsA-ndhD, trnSUGA-psbZ, trnHGUG-psbA, rpl16-rps3, ndhG-ndhI, ndhD-psaC, and ndhJ-ndhK are among the fastest-evolving loci and are promising molecular markers. Therefore, these highly variable loci should be valuable for future phylogenetic and phylogeographic studies on Thalictrum. Our phylogenomic analyses based on whole complete plastid genome sequences, 116 IGS regions and 114 gene sequences were all supported the monophyly of Thalictrum and two major clades within this genus. Furthermore, among 79 plastome-derived protein-coding genes (CDSs), 15 genes were identified as fast evolving genes, which were all proved to be under positive selection but showed different bias in their codon usage frequencies. Overall, our results demonstrate the ability of plastid phylogenomics to improve phylogenetic resolution, and will expand the understanding of plastid gene evolution in Thalictrum.
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CONSTANS-like (CO-like) gene is one of the most important regulators in the flowering process of the plant, playing a core role in the photoperiodic flowering induction pathway. In this study, we identified 10 distinct CO-like genes (FveCOs) in woodland strawberry (Fragaria vesca). They were classified into three groups with specific gene structure characteristics or protein domains in each group. The effect of selection pressure on the FveCOs in the woodland strawberry was tested by Ka/Ks, and it was shown that the evolution rate of FveCOs was controlled by purification selection factors. Intraspecific synteny analysis of woodland strawberry FveCOs showed that at least one duplication event existed in the gene family members. Collinearity analysis of woodland strawberry genome with genomes of Arabidopsis, rice (Oryza sativa), and apple (Malus × domestica) showed that CO-like genes of F. vesca and Malus × domestica owned higher similarity for their similar genomes compared with those of other two species. The FveCOs showed different tissue-specific expression patterns. Moreover, real-time quantitative PCR results revealed that the expressions of the most FveCOs followed a 24-h rhythm oscillation under both long-day (LD) and short-day (SD) conditions. Further expression analysis showed that the individual expression changing profile of FveCO3 and FveCO5 was opposite to each other under both LD and SD conditions. Moreover, the expression of FveCO3 and FveCO5 was both negatively correlated with the flowering time variation of the woodland strawberry grown under LD and SD conditions, indicating their potential vital roles in the photoperiodic flowering regulation. Further protein interaction network analysis also showed that most of the candidate interaction proteins of FveCO3 and FveCO5 were predicted to be the flowering regulators. Finally, LUC assay indicated that both FveCO3 and FveCO5 could bind to the promoter of FveFT1, the key regulator of flowering regulation in the woodland strawberry, and thus activate its expression. Taken together, this study laid a foundation for understanding the exact roles of FveCOs in the reproductive development regulation of the woodland strawberry, especially in the photoperiodic flowering process.
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INTRODUCTION

Flowering is a critical growth transition period during growth and development of the plant. To ensure the continuation of species, plants regulate their flowering process accompanying with the external environmental factors such as the temperature and day length. Moreover, plants also adjust their endogenous hormones in response to the external environmental factors to ensure their vegetative and reproductive growth (Song et al., 2013). Flowering regulation is a sophisticated biological process involving various signaling pathways, which have been extensively revealed in the past decades (Perrella et al., 2020). Traditional signaling pathways of flowering regulation are normally known as the photoperiod, vernalization, autonomy, and gibberellin pathway (Mouradov et al., 2002; Hayama and Coupland, 2003; Michaels et al., 2005; Wenkel et al., 2006; Domagalska et al., 2010). The emerging signaling pathways include age pathway, thermosensory pathway, sugar pathway, stress pathway, and hormonal signals to control floral transition (Izawa, 2021). Photoperiodic flowering dominates among these pathways, especially in Arabidopsis and rice (Putterill et al., 1995; Yano et al., 2000). According to the day-length requirements in flowering, photoperiodic condition can be described as long-day (LD) condition, short-day (SD) condition, and neutral condition.

CONSTANS (CO) protein is a core transcriptional regulator in the photoperiodic pathway, which is firstly reported in Arabidopsis mutant studies. AtCO in Arabidopsis accelerated flowering only under long-day (LD) condition via activating the transcriptions of AtFT and AtSOC1 (Valverde, 2011). However, the CO homologs can also promote flowering under SD condition in other species. For example, in rice, the CO homolog HEADING DATE 1 (Hd1) promoted flowering under SD condition, but suppressed flowering under LD condition, which is completed by regulating the expression of the rice FT ortholog HEADING DATE 3a (Hd3a) (Yano et al., 2000).

The CO homologs were characterized as the important zinc-finger transcription factors (TFs) belonging to a subset of BBX protein family with the specific B-box and CCT domains. The B-box domain located in the N-terminal was found to participate in the protein–protein interaction, while the CCT domain located in the C-terminal owned the nuclear localization function (Putterill et al., 1995; Yano et al., 2000; Robson et al., 2001; Griffiths et al., 2003; Valverde, 2011). The CONSTANS/CONSTANS-like proteins (CO/COLs) can be divided into three major groups according to the divergence of conserved domains (Crocco and Botto, 2013). The CCT domain in the C-terminal can be found in all group members. According to the basis of the consistency of amino acid sequences and the specificity of zinc-binding amino acid residues, the B-box domain can be divided into two types, named as B-box1 (B1) and B-box2 (B2) individually. Group I members owned both B-box1 domain and B-box2 domain, while group II members possessed only B-box1 domain. Group III members owned B-box1 domain and one diverged zinc-finger structure.

Diverse numbers of CO-like gene were detected in different plant species, such as 17 members of CO family initially identified in Arabidopsis (Robson et al., 2001; Crocco and Botto, 2013; Romero-Campero et al., 2013; Wang et al., 2013) and 16 members identified in rice (Griffiths et al., 2003). For horticulture plants, CO-like genes have also been widely detected, such as 11 members in Medicago truncatula (Wong et al., 2014), 16 members in potato (Solanum tuberosum) (Talar et al., 2017), 20 members in grape (Vitis vinifera) (Wang et al., 2019), 23 members in tomato (Solanum lycopersicum) (Yang et al., 2020), 25 members in banana (Musa acuminata) (Chaurasia et al., 2016), and 25 members in Chinese cabbage (Brassica campestris) (Song et al., 2015).

The CO gene was initially identified as the transcriptional activator of FLOWERING LOCUS T (FT) using its B-box domain to form a multimeric binding to the FT promoter (Samach et al., 2000; Tiwari et al., 2010). FT protein plays the “florigen” role and can directly target the second exon of LFY, the master regulator of flower fate, to enhance its expression (Zhu et al., 2020). In Arabidopsis, AtCO is considered to be inactive under SD conditions. Flowering time of the co mutant is the same under either LD or SD condition. However, cutting down the expression of AtCO leads to late flowering under LD condition, while overexpression promotes the flowering process under both LD and SD conditions (Putterill et al., 1995; Robson et al., 2001; Kotake et al., 2003).

In Arabidopsis, the expression of AtFT was increased by AtCO and AtCOL5 (Hassidim et al., 2009), which were positive regulators of FT. However, not all the CO members function as the flowering activator. AtCOL3 and AtCOL4 acted as flowering repressors under both LD and SD conditions, while AtCOL8 and AtCOL9 delayed flowering only under LD condition (Cheng and Wang, 2005). Atcol3 mutant could flower earlier under both LD and SD conditions. Further researches demonstrate that AtCOL3 may regulate the expression of AtFT by interacting with AtBBX32 to control Arabidopsis flowering (Yang et al., 2019).

Functions of CO/COL members were not only restricted in the photoperiodic flowering regulation; remarkable different roles of CO/COL genes had been reported in various species. For example, in rice, OsBBX5 plays a role in downstream of phytochrome-B receptor, while OsK accelerates the leaf senescence. The ectopic expression of AtCO gene in potato can inhibit the potato tuber expansion, while silencing of potato StCO gene can promote the potato tuber expansion. In Glycine max, GmCO9 affects root development and is closely related to seed maturation (Huang et al., 2011). CO family also mediates various aspects functions of the plant given as follows: AtCOL3 regulates root growth (Datta et al., 2006), VviCOL1 plays a major role in bud dormancy (Almada et al., 2009), CrCO regulates star synthesis and cell division (Deng et al., 2015), GmCO9 is closely related to seed competition (Liu et al., 2011), AtCOL7 regulates branching (Wang et al., 2013), Ghd2 confers drought sensitivity (Liu et al., 2016), StCO1 is involved in tuberization (González-Schain et al., 2012), and MaCOL1 regulates fruit ripening (Chen et al., 2012).

Strawberry (Fragaria × ananassa), cultivated in different arable regions all over the world, is one of the most important berries characterized by its unique flavor and nutritional value. Fruit quantity and quality directly determine the economic value of strawberry. Early flowering is one of the great advantages of strawberry cultivation with the reduced production time. Compared with other plants, interesting flowering habit is reported in strawberry. For example, while most cultivars of cultivated strawberry are June-bearing SD plants, there are also strawberry cultivars that flower perpetually with no requirement for SD or low-temperature condition, known as the everbearing types (EB). A similar flowering habit also exists in the wild diploid strawberry, whose genome is much simpler than that of the cultivated octoploid strawberry.

At present, studies on strawberry flowering mainly focus on the effects of ambient temperature, photoperiod, or hormone on flowering regulation (Koskela et al., 2012; Sønsteby et al., 2017). Molecular mechanisms research about flowering regulation in strawberry is mainly limited in the function illustration of its FT homolog and TFL1 homolog, which were found function as the florigen and antiflorigen individually (Zhu et al., 2020). Few reports mentioned the possible roles of CO/COL genes in woodland strawberry flowering. FvCO, a homologous gene of AtCO in F. vesca, is found to be indispensable for the generation of the bimodal rhythm expression profile of FvFT1 and thus plays its role in the photoperiodic development of strawberry (Kurokura et al., 2017).

The roles of strawberry CO/COL genes in the flowering process have not yet been well elucidated. Hence, in this study, we performed the genome-wide identification of the CO-like gene family members in the woodland strawberry based on the high-quality Fragaria vesca v4.0.a1 genome database. We provide the detailed molecular information about the Fragaria vesca CO-like gene family, including the chromosomal location, sequence homology, introns distribution, motif composition, and evolutionary relationships. The expression of FveCOs in different tissues and organs was checked. Meanwhile, their diurnal expression changes in leaf treated with different photoperiodic conditions (LD or SD) were also analyzed. Our results would be valuable for understanding the roles of strawberry CO-like genes, especially in the photoperiodic flowering of strawberry.



MATERIALS AND METHODS


Identification of CO/COL Genes in Woodland Strawberry

A BLAST search (E-value < 1E––5) was performed against woodland strawberry (F. vesca) genome data v4.0.a1 in the Genome Database for Rosaceae (GDR1) using the full-length amino acid sequences of COs and COLs of Arabidopsis. The amino acid sequences of 17 CO/COL proteins in Arabidopsis were obtained from NCBI2. Then, the sequences of the retrieved woodland strawberry (F. vesca) CO/COL candidates (FveCOs) were submitted to the PFAM database3 to annotate the unique and conserved protein domains. The amino acid sequences of the B-box and CCT domains in Arabidopsis CO/COL proteins peculiar to the members of this family were then used as the query sequences for further confirmation.

The detailed information of identified woodland strawberry CO-like genes, including chromosomal location, cDNA length, ORF, and the amino acid (AA), was then downloaded from the GDR. Physicochemical properties of the identified FveCOs proteins, including molecular weight (MV) and isoelectric point (pI), were counted in the ProtParam database4. The prediction of subcellular localization was implemented through the PSORT5.



Chromosomal Mapping, Gene Structure, and Multiple Sequence Alignment

Chromosomal positions of FveCOs were plotted with MapInspect software6.

Gene structure was drawn with Gene Structure Display Server7 following the DNA and CDS information of FveCOs.

Multiple sequence alignment of FveCOs and other homologs was performed by ClustalW in the MEGA7 software package (Saitou and Nei, 1987; Tamura et al., 2011). Then, the alignment result was illustrated with JalView8.



Phylogenetic Analyzes and Motif Analyzes

Phylogenetic analysis was performed using the CO/COL homologous sequences of several plant species together with the FveCOs. The CO/COL protein sequences used were obtained from the GDR database9, Ensembl Plants10, NCBI11, and Phytozomev1012. MEGA7 software was used to construct the phylogenetic tree using the neighbor-joining (NJ) method and Jones–Taylor–Thornton (JTT) model by partial deletion with 2000 bootstrap replications.

The main motifs of FveCOs were characterized by the MEME program13. Then, the schematic diagrams of protein domain structure and conserved motif were illustrated with the TBtools software (Chen et al., 2020)14.



Computation of Ka/Ks Values

ParaAT2.0 program15 was used to perform the nucleotide sequence alignment of FveCOs. Non-synonymous and synonymous substitution rates (denoted as Ka and Ks, respectively) were implemented by Ka/Ks_Calculator program16. The ratio of Ka/Ks was used to detect natural selection pressure.



Collinearity Analysis

Genome data of F. vesca, A. thaliana, O. sativa, and Malus × domestica were used to analyze their collinearity and synteny relationships. The genome sequences and genome annotation files were downloaded from Phytozome v1017. MCScanX software was used to perform the whole gene collinearity analysis of the three species, and CO-like gene collinearity of the species was also stood out. The chart was manufactured with Circos 0.69, drawing software developed by Perl18.



Analysis of the cis-Acting Elements

The upstream sequences (2000 bp) of FveCOs were collected for the analysis of cis-acting elements distributed in their promoter regions. The corresponding analysis was performed by online tools PlantCARE (Lescot et al., 2002)19, and then, the results were exported with TBtools software20.



Prediction of FveCOs Interaction Proteins

The interaction networks of FveCO proteins were predicted and constructed by the STRING v11.021. The active interaction sources include text mining, experiments, databases, co-expression, neighborhood, gene fusion, and co-occurrence. The minimum required interaction score was set as 0.400.



Expression Detection of FveCOs

Tissue-specific expression analyzes and diurnal expression analyzes were carried out in the woodland strawberry LD-flowering accession “Ruegen.” For other analyzes, the plants were field-grown in a greenhouse under natural LD conditions during the spring in ShenYang (Liaoning, China; 41°N, 123°E).

Tissue-specific expression detection was carried out with the samples of root (R), petiole (P), leaf (L), flower (F), shoot apex (SA), green fruit (GF), white fruit (WF), turning red fruit (TF), and red fully fruit (RF). All the samples were frozen in liquid nitrogen and laid at –80°C before total RNA was extracted using a modified cetyltrimethylammonium bromide (CTAB) method as described in Koskela et al. (2012). The full-length cDNAs were synthesized using the PrimeScript RT reagent Kit (TaKaRa).

For diurnal expression analysis, the woodland strawberry “Ruegen” plants with three true leaves were moved to the artificial illumination incubators under 12-h light and 12-h dark conditions for 10 days. Then, the plants were moved into two artificial illumination incubators with different photoperiodic treatments, 25°C/18°C in day/night under LD (16-h light) and SD (8-h light) conditions, respectively. Leaves were then collected to detect the diurnal expression profiles of FveCOs at the beginning of the light phase (zeitgeber time 0, ZT0) under different photoperiodic conditions. The leaves were collected as materials every 4 h over 24 h, and the last time point is ZT24.

Pearson’s correlation analyzes were performed with SPSS Statistics 22.0 (IBM Corporation, Armonk, USA) to explore the relationships between the flowering time and relative expression of FveCO3 and FveCO5. Leaves of three plants under each mentioned photoperiod were sampled for expression detection of FveCO3 and FveCO5 when the first inflorescence appeared.

qRT-PCR was performed on the CFX96 Real-Time PCR System (Applied Biosystems, Foster City, CA, United States) using the SYBR Premix Ex Taq Kit (TaKaRa) according to the manufacturer’s protocol. The FveActin served as an internal control. The relative expression of genes was presented by the 2–ΔΔCt method. All of the above samples were executed independently in triplicate. Primers used in this study are listed in Supplementary Table 1.



Dual-Luciferase Assays

The dual-luciferase reporter assay was carried out. The 35S:FveCO3 and 35S:FveCO5 vectors were constructed (Supplementary Figure 1) and used as effectors, and the 2-Kb FveFT1 promoter was inserted into the pGreen II 0800 vector and used as the reporter. The constructed vectors were transformed into Agrobacterium strain GV1301. Agrobacterium strains were introduced into tobacco (Nicotiana tabacum) leaves. The luciferase fluorescence and luciferase signal intensity were imaged and measured after three days using a living fluorescence imager (Lb985, Berthold, Germany).




RESULTS


Identification of CO-like Genes in Woodland Strawberry

To survey the CO-like members in the woodland strawberry, a genome-wide search against the GDR database was performed via selecting the typical B-box and CCT domains. A total of 10 distinct genes were identified as putative members of the woodland strawberry CO-like members. The gene names were entitled according to the order in which they were found. The detailed information of these genes is shown in Table 1.


TABLE 1. Sequence analysis of FveCOs.

[image: Table 1]
The cDNA length of the FveCOs ranged from 1020 bp to 2376 bp, following the polypeptide sequences varying from 312 aa to 478 aa and the molecular weights of 51.77 kDa to 34.5 kDa. The prediction of FveCOs proteins showed that they were all located to the cell nucleus (Table 1).

Chromosomal distribution detection of FveCOs determined by the chromosome mapping indicated that these genes were unevenly distributed on five chromosomes (Figure 1). In detail, FveCO4 and FveCO6 were both located on chromosome 2, FveCO1 and FveCO7 were independently located on chromosomes 5 and 7, FveCO2, FveCO8, FveCO9, and FveCO10 were located on chromosome 4, and FveCO3 and FveCO5 were located on chromosome 6.


[image: image]

FIGURE 1. Chromosome localization map of FveCOs. The light green vertical bars with various lengths represent woodland strawberry chromosomes. Short black vertical lines indicate the position of each FveCOs.




Phylogeny and Multiple Sequence Alignment Analyzes of FveCOs

To fully identify the evolutionary relationship of CO homologs belonging to the woodland strawberry and other plant species, a phylogenetic tree was constructed with 121 CO-like amino acid sequences of 20 plant species, including 17 of Arabidopsis, 13 of tomato, 10 of tobacco, 16 of rice, 2 of apple, and so on. The results (Figure 2) suggested that these CO-like proteins could be subdivided into three groups, which are consistent with the previous findings. As shown in the tree, three Fragaria vesca CO homologs, namely, FveCO3, FveCO4, and FveCO8, belong to group I, two homologs, namely, FveCO2 and FveCO7, belong to group II, while the other five homologs, namely, FveCO1, FveCO5, FveCO6, FveCO9, and FveCO10, belong to group III.


[image: image]

FIGURE 2. Phylogenetic analysis of CONSTANS/CONSTANS-like (CO/COL) homologs in different species. The clades of groups I, II, and III are marked in green, blue, and pink, respectively. Fragaria vesca constans-like genes (FveCOs) are indicated by red points. At, Arabidopsis thaliana; Ca, Capsicum annuum; Gm, Glycine max; Hv, Hordeum vulgare; Lt, Lolium temulentum; Md, Malus domestica; Nt, Nicotiana tabacum; Os, Oryza sativa; Ph, Petunia hybrida; Sb, Sorghum bicolor; Sl, Solanum lycopersicum; St, Solanum tuberosum; Ta, Triticum aestivum; Vv, Vitis vinifera; Zm, Zea mays.


Protein structures and evolutionary relationships could be elucidated by multiple sequence alignment. The alignment results of the amino acid sequences of FveCOs showed that all 10 FveCOs contained at least one B-box domain and one CCT domain. The identity of 10 FveCOs amino acid sequences ranged from 15.4% to 49.9% (Supplementary Figure 2).

According to the consistency difference of the amino acid sequence of B-box domain and the specificity of zinc ion-binding amino acid residues, the B-box domain can be further divided into two types: B-box1 (B1) and B-box2 (B2). Besides the B1 and B2 domains, an additional diverged zinc-finger structure (DZF) was also found in some CO-like proteins of Fragaria vesca.

B-box1 domain is the most conserved region in all the FveCOs proteins and is composed of approximately 40 residues, which owned the consensus C-X2-C-X7-9-C-X2-D-X4-C-X2-C-X3-4-H-X4-8-H, where X can be any amino acid. CCT domains are also highly conserved in FveCOs containing 43–45 amino acid residues.

Thus, according to the domain combination, FveCOs can be grouped into three types, similar to the three clades shown in the phylogenetic tree (Figure 3D). Members in type I (FveCO3, FveCO4, and FveCO8) own two B-box domains and one CCT domain (B1 + B2 + CCT), members in type II (FveCO2 and FveCO7) own only one B-box domain (B1) and one CCT domain (B1 + CCT), while for members in type III (FveCO1, FveCO5, FveCO6, FveCO9, and FveCO10), besides a typical B1-type B-box domain and one CCT domain, the diverged zinc-finger structure domain was also detected (B1 + DZF + CCT).
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FIGURE 3. Genomic and protein structures of FveCOs. (A) Phylogenetic analysis of 10 FveCO genes which are categorized them into three groups. (B) The intron distribution. The exons and introns are represented by dark ochre boxes and light green lines, respectively. (C) The CDS and UTR are represented by purple boxes and orange boxes, respectively. (D) The domain distribution of FveCOs. The CCT, B-box1, B-box2, and DZF are represented by light blue ovals, orange boxes, light green boxes, and blue–gray boxes, respectively.


Meme online software was used to further analyze the amino acid sequence similarity of those domains. The B-box domain is rich in amino acids such as A, C, D, and L, while the CCT domain is rich in arginine (R) and lysine (K) (Supplementary Figure 3). Although the B1, B2, and the DZF domains are all belonging to the zinc-finger domain, their amino acid sequences are variant, even in B1 and B2 (Supplementary Figure 3).



Gene Structure Analysis of FveCOs

Intron distribution is important for the gene selective splicing, allowing a gene to produce different proteins. The distribution of the FveCOs introns was identified by the comparative analyzes of FveCOs DNA sequences with their coding sequences. Two exons and one intron were detected in all the members belonging to group I (FveCO3, FveCO4, and FveCO8) and group II (FveCO2 and FveCO7). For members in group III, most of them own four exons and three introns, except FveCO9 and FveCO10. FveCO9 has only one intron just like members in groups I and II, while five introns were detected in FveCO10 (Figure 3B).

The introns of FveCOs are 81 bp–1114 bp in length separately, leading to a large variation in their genomic length. The CDS and UTR information of FveCOs is listed in Figure 3C.



Synteny Analysis of FveCOs

To estimate the evolutionary character of woodland strawberry FveCO genes, the replication events about this gene family in the intraspecific and interspecific genomes were also analyzed. The results implied that only one pair of duplicate genes (FveCO2/FveCO7) was found in the genome of the woodland strawberry, which may be the result of tandem replication or whole-genome replication (WGD) (Figure 4).


[image: image]

FIGURE 4. Schematic representation of the interchromosomal relationships between FveCOs in the Fragaria vesca genome. Red line indicates the colinear gene pair, and gray lines indicate the syntenic blocks.


To further explore the selection pressure between FveCO duplicate genes, we calculated the Ka, Ks, and Ka/Ks values of paralogous genes (Table 2). The divergence time of the woodland strawberry was estimated as 9.4 Mya (million years ago). Moreover, with the Ks value, we also calculate the substitutions rate of per site per year as 5.8 × e–8.


TABLE 2. Ka/Ks analysis for the duplicated FveCO paralogs.

[image: Table 2]
Moreover, to explore the evolution mechanism and biochemical features of the FveCOs, a collinearity comparison of Fragaria vesca genome with genomes of Arabidopsis, rice, and apple, belonging to dicotyledon plant, monocotyledon plant, and Rosaceae plant, respectively, was also performed. The results showed that there are 12 collinear gene pairs between F. vesca and A. thaliana, 17 pairs between M × domestica and F. vesca, and 5 pairs between O. sativa and F. vesca (Figure 5). Orthologous gene numbers identified between F. vesca and M × domestica, which are all belonging to Rosaceae, were much larger than those identified between woodland strawberry and Arabidopsis and rice.


[image: image]

FIGURE 5. Microsynteny of CONSTANS-like (COL) regions across Fragaria vesca, M × domestica, O. sativa, and A. thaliana. The F. vesca, M × domestica, O. sativa, and A. thaliana chromosomes are shown in different colors. The number on each chromosome box indicates the number of chromosomes. Blue lines represent the syntenic relationships between AtCOLs, MdCOs, OsCOLs, and FveCOs regions. Light gray lines represent the syntenic relationships between genome wide of Arabidopsis, woodland strawberry, apple, and rice.


Both FveCO4 and FveCO6 were located on the second chromosome, and their orthologous gene pairs were detected in the rice genome. Orthologous gene pairs of FveCO1, FveCO2, FveCO3, FveCO4, FveCO5, FveCO6, FveCO7, and FveCO8 were identified in both apple and Arabidopsis, and the remaining FveCOs were not present in any of the duplicated blocks. These results suggested that those genes are highly conservative and the collinear gene pairs may come from the common ancestor before evolution.



Cis-Element Analysis of Woodland Strawberry FveCOs

Promoters with 2 kb in length of each FveCO members were used to identify the putative cis-acting regulatory elements (CREs) with the PlantCARE database. Totally, 43 kinds of CREs were identified (Supplementary Table 2). Among them, there are 283 core promoter elements (TATA box) and 109 common cis-acting elements (CAAT box).

The other cis-acting elements identified might be divided into three main kinds, namely hormone response element, light response element, and stress response element.

Fragaria vesca constans-like genes may also play crucial roles in the regulation of photoperiod flowering just like their reported homologs; thus, we further analyzed the light response elements distributed in their promoters. As shown in Figure 6, a large number of light-responsive elements were detected in all the promoter regions of 10 FveCO genes, while the kinds and amounts are various. Promoter of FveCO3 owns 21 light-responsive cis-elements with the maximum quantity, while promoter of FveCO6 only has three light-responsive cis-element with the minimum number.


[image: image]

FIGURE 6. Distribution of the major light-related cis-elements in the promoter sequences of 10 FveCO genes. Different cis-elements are represented by different symbols as indicated.




Expression of FveCOs in Different Tissues

The qRT-PCR results showed that FveCOs were variously expressed in different tissues (Figure 7). All FveCO genes exhibited higher expression levels in leaves and petioles than those in other tissues. For fruits in different development stages, FveCOs are mainly expressed in green fruit, especially for the expression of FveCO2, FveCO4, FveCO7, FveCO8, and FveCO10. It was also found that the lowest FveCO expression level was detected in the fully red fruit.


[image: image]

FIGURE 7. Expression of FveCOs in different woodland strawberry tissues. Different colors of heat map represent the expression levels. The tissues of the samples are as follows: R, root; P, petiole; L, leaf; F, flower; SA, shoot apex; GF, green fruit; WF, white fruit; TF, turning red fruit; RF, red fully fruit. For each gene, the expression level was set to 1 in the root, and the corresponding fold changes were calculated in other tissues. The gene expression heatmap was generated on the log base 2 average expression fold values.


Among all of these genes, FveCO3 and FveCO4 showed similar high expression levels in different tissues, while the expression of FveCO9 was border on the minimum in each tested tissue. The specific and varied expression profiles of FveCOs in different tissues suggest that they may play diverse roles.



Expression Profile of FveCOs in Photoperiodic Flowering

According to the previous studies, the expression of the CO-like genes exhibits a circadian rhythm profile in most plant species (Suárez-López et al., 2001; Wang et al., 2013; Fu et al., 2015; Chaurasia et al., 2016). Therefore, to evaluate the potential functions of FveCOs in photoperiodic flowering, we detected their diurnal expression profiles over a 24-h period at 4-h intervals under LD and SD conditions, separately.

As shown in Figure 8, three genes, including FveCO1, FveCO2, and FveCO5, owned similar expression patterns under both photoperiodic conditions, with the highest expression level that appeared at ZT16 h under LD condition and then gradually reduced at night. However, the expression levels of these three genes slightly increased during the day of SD and peaked at midnight. In addition, the peak expressions of these genes were higher in plants grown under LD condition than under SD condition.
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FIGURE 8. Diurnal expression pattern of FveCOs under long-day (LD) and short-day (SD) conditions. The collection of samples was started at the beginning of the light phase (zeitgeber time 0, ZT0) and continued every 4 h over 24 h under LD (16-h light/8-h dark) and SD (8-h light/16-h dark) conditions. Each value is the mean ± SD of three biological replicates.


FveCO4, together with FveCO6, FveCO7, and FveCO10, showed the consistent expression pattern under SD and LD conditions, which were slightly similar to that of FveCO1, FveCO2, and FveCO5. The expression of FveCO4, FveCO6, FveCO7, and FveCO10 under SD condition was detected higher separately than that under LD condition. The expression peaks appeared at ZT20 h and ZT16 h for SD and LD conditions, respectively. Under SD condition, their expression decreased rapidly to the lowest level.



Correlation of Woodland Strawberry Flowering Time and the FveCOs Expression

To further explore the potential function of FveCOs on strawberry flowering time, we also investigated the correlation between the flowering time and the expression levels of FveCOs. In all the FveCOs, only the expression of FveCO3 and FveCO5 showed the correlation with the flowering time. The results showed that the expression levels of FveCO3 and FveCO5 were all negatively correlated with the flowering time under both LD and SD conditions (r = –0.949, –0.964, –0.936, and –0.891, respectively) (Figure 9). Plants under LD condition showed earlier flowering time with higher expression levels of both FveCO3 and FveCO5, while plants grown under SD condition owned the lower expression levels of both FveCO3 and FveCO5.
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FIGURE 9. Negative correlation of FveCO3 and FveCO5 expression with flowering time in woodland strawberry “Ruegen.” The black bars indicate the days needed to flower (flowering time); the gray bar and light gray bar indicate the expression of FveCO3 and FveCO5, respectively. Ten plantlets were used for each. Three independent samples were used in the expression analysis. Values are the mean ± SD.




FveCO3 and FveCO5 Activate the Expression of FveFT1

To explore how FveCO3 and FveCO5 regulate photoperiodic flowering in the woodland strawberry, luciferase reporter assay was carried out. The promoter sequence of 2000-bp upstream of the ATG codon of FveFT1 was cloned and inserted into the upstream of LUC reporter gene. The effector plasmid containing 35S-FveCO3 and 35S-FveCO5 construct was co-transfected into tobacco leaves, respectively. The luciferase assays indicated that co-expression of 35S-FveCO3 and proFveFT1-LUC or 35S-FveCO5 and proFveFT1-LUC resulted in much stronger luminescence signals than any other points (Figure 10). These results showed that FveCO3 and FveCO5 could bind to the FveFT1 promoter individually and thus activate the transcription of the corresponding gene.


[image: image]

FIGURE 10. FveCO3 and FveCO5 regulate FveFT1 expression by binding to its promoter. (A,B) Schematic diagram of the reporter and effectors used in luciferase reporter assay. Luciferase reporter assay showing that FveCO3 and FveCO5 regulate FveFT1 expression (C,D), respectively. The FveCO3 and FveCO5 effector and the proFveFT1 reporter were coinfiltrated into tobacco leaves, and the luciferase signal was measured.


Moreover, the interaction networks of FveCO3 and FveCO5 with other flowering-related proteins were predicted and constructed by the STRING v11.0 (see the footnote 21). As shown in Figure 11, multiple genes were screened as the candidate interactors of FveCO3 or FveCO5, including FveSOC1, FveHOS1, FveAGLs, FveGI, FveFBH, and FveAP1.
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FIGURE 11. Interaction network prediction of FveCO3 and FveCO5 with other proteins. The Fragaria vesca constans-like genes (FveCOs) are marked in red.





DISCUSSION


Molecular Characteristics of FveCOs in Woodland Strawberry

Normally, plants can be classified as either SD or LD type according to their flowering response to the photoperiod. In strawberry, two types of flowering habit exist in different varieties, known as the June-bearing SD type and perpetually flowering everbearing type. For the conserved function of CO-FT module in plant photoperiodic flowering regulation, the characterization of the roles of CO-like genes in strawberry flowering habit variation is important for its breeding.

Actually, CO-like genes of strawberry had been reported in some previous studies. Kurokura reported one woodland strawberry CO homolog (gene 04172) and another nine putative CO-like proteins in F. vesca genome (V1.1) using the B-box domain as the search query (Kurokura et al., 2017). Among those putative CO-like proteins, six proteins are included in the FveCOs we reported here, while the CCT domain cannot be detected in the remaining four proteins they reported, so those four proteins should not be classified as CO-like proteins.

Using the updated Fragaria vesca genome database v4.0.a1, here we reported the 10 non-redundant FveCO candidates, including the new four ones which had not been reported. All the FveCO candidates contain both B-box domain and CCT domain (Figure 3). The 10 identified FveCOs can be divided into three groups depending on the phylogenetic analysis (Figures 2, 3), which was consistent with the reports in other plants (Putterill et al., 1995; Cheng and Wang, 2005; Hassidim et al., 2009; Song et al., 2015).

Although the Arabidopsis genome size (130 Mb) is much smaller than that of the woodland strawberry (230 Mb), the number of Arabidopsis COL member is much larger than that in the woodland strawberry (17:10). The gene structure and conserved domain of FveCOs are similar to the homologs of other species. Conserved domain-based CO proteins can also be divided into three subfamilies in the woodland strawberry. However, the gene structure classification of these FveCOs proteins is quite complex. In group III, the gene structures of FveCO9 and FveCO10 were different, but their amino acid sequences encoded were similar to each other. Such variation may come from the duplication, variation and recombination of exons, or the insertion and loss of introns in the process of genome evolution.

The existing of duplicated genes implied that independent duplication events existed besides the whole-genome duplication event. Only one pair of FveCOs (FveCO2/7) is identified to be involved in fragment replication. It should be the reason that the woodland strawberry genome experienced few replication events as a kind of diploid variety. Segmental duplication was a kind of genome replication. Tandem duplications were characterized as multiple members of one family occurring within the same intergenic region or in neighboring intergenic regions. The most representative tandem replication genes are adjacent homologous genes on a single chromosome (Moore and Purugganan, 2003; Yu et al., 2005). In this study, FveCO9 and FveCO10 are adjacent genes on chromosome 4. Therefore, FveCO9 and FveCO10 are probably the results of tandem replication.

Collinearity analysis between the genomes of the woodland strawberry and other three plants suggested that the FveCOs own the highest relationship with their homologs in apple, followed by Arabidopsis thaliana, and the lowest relationship with rice orthologous gene. Such results are consistent with their taxonomical relationship: Strawberry and apple are both Rosaceae plants.

The expansion of all CO genes occurs with the divergence of the plants of the same family. The subclasses of CO genes extend from the common ancestral genes in a species-specific manner, which existed before the diversification of the same family lineage.



Expression Profile of FveCOs Indicates Their Potential Functions in the Photoperiodic Flowering Regulation

Most of the FveCO genes are preferentially expressed in leaf and petiole (Figure 7), which are consistent with the findings in other species (Almada et al., 2009; Tan et al., 2016; Wu et al., 2017). As leaf is the organ in which the plant percepts the light, such result strongly demonstrated that FveCOs might also involve in the photoperiodic sensitive response. Besides the leaf and petiole, the expression of FveCOs could also be detected in many tissues except the root and red fully fruit, which implies that FveCO members might also function in other multiple developmental aspects of the woodland strawberry. On the contrary, the expression of the different FveCO members could be detected in the same tissue, which might result in their functional redundancy.

At the same time, our result also showed that the expression of most FveCO genes can be regulated by circadian clock (Figure 8), which resulted in their diurnal expression changes. The one-day periodic changing expression profile is the prominent character of almost all the CO-like genes (Martin et al., 2004; Pan et al., 2021). When treated with different photoperiods, the FveCOs showed different diurnal expression patterns under SD or LD condition. FveCO genes showed different circadian rhythms, including at least four peaks at different ZT time points. Among them, the expression of FveCO1, FveCO2, FveCO5, and FveCO9 showed notable expressional amplitudes during the circadian rhythms at the time points of measurement in 24 h under both LD and SD conditions.

Interestingly, it was found that the individual diurnal expression profile of FveCO3 and FveCO5 was opposite to each other under both LD and SD conditions. Further work should be performed to clarify the mechanism about such different expression profiles, such as the transcriptional or posttranscriptional regulation research of the upstream regulators on FveCO3 and FveCO5.



FveCO3 and FveCO5 Function as Potential Flowering Promoters in Woodland Strawberry

Our results showed that, under either LD or SD condition, the expression levels of FveCO3 and FveCO5 were both negatively correlated with flowering time (Figure 9). FveCO3 is the woodland strawberry homolog of AtCO belonging to group I type, while FveCO5 is the homolog of AtCOL9 which negatively regulates the expression of AtCO and AtCOL9 to inhibit the flowering in LD. Previous studies have shown that the expression of AtCO is induced by SD rather than by LD (Putterill et al., 1995; Robson et al., 2001; Kotake et al., 2003; Jang et al., 2008), while the expression of FveCO3 in SD or LD was similar to each other, and the same expression profile was also detected in FveCO5. Further work about the protein interaction networks prediction of FveCO3 and FveCO5 showed that they could interact with many other reported flowering regulators, such as FveSOC1, FveHOS1, FveAGLs, FveGI, FveFBH, and FveAP1(Figure 11). In Arabidopsis, SOC1 is one of the direct targets of CO and directly regulates the flowering process (Samach et al., 2000). GI and FBH can both bind to the upstream CO negative regulatory transcription factor CDFs and thus to degrade the CDFs and positively regulates the stability of CO (Toledo-Ortiz et al., 2003; Fornara et al., 2009). GI also promotes the FT expression to regulate flowering (Imaizumi et al., 2005; Sawa and Kay, 2011; Ito et al., 2012; Fornara et al., 2015). Such finding implied that FveCO3 and FveCO5 should both function in the woodland strawberry flowering and the mechanism should be more complex than that of Arabidopsis. The function of CO/COL proteins mainly depends on their regulation of the expression of the FT-like genes, the master regulators in plant flowering process. RcCO is the homolog of FveCO3 in rose, and it regulates the photoperiodic flowering under long-day condition (Lu et al., 2020). RcCO could bind to the CORE motif of the RcFT promoter so as to enhance the RcFT expression. In the woodland strawberry, FveFT1 has been identified as the key gene to determine the flowering time (Koskela et al., 2012). In this study, luciferase reporter assay suggested that both FveCO3 and FveCO5 could directly bind to the FveFT1 promoter individually and thus may promote the flowering process by transcriptional regulation. Similar upregulation of FveFT1 was also reported in the strawberry FveCO overexpression lines (Kurokura et al., 2017). Those findings suggested that the CO-FT module also functions in the photoperiodic flowering of strawberry.




CONCLUSION

Totally, 10 distinct CO-like genes (FveCOs) in the woodland strawberry (F. vesca) were identified. The expression analysis indicated that multiple FveCO genes were highly responsive to the photoperiodic induction. Both FveCO3 and FveCO5 are potential positive regulators for photoperiodic flowering, which is different from their individual homologs in Arabidopsis. FveCO3 and FveCO5 can bind to the promoter of FveFT1, the key reported flowering regulator. The mechanism of FveCO3 and FveCO5 in strawberry flowering regulation should be deeply clarified with further work.



BRIEF SUMMARY

Ten distinct CO-like genes (FveCOs) were identified in the woodland strawberry (F. vesca). The expression of FveCO3 and FveCO5 was both negatively correlated with the flowering time variation of the woodland strawberry grown under both long-day and short-day conditions. FveCO3 and FveCO5 may function in flowering induction via the photoperiodic regulation in the woodland strawberry.
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Following the “green revolution,” indica and japonica hybrid breeding has been recognized as a new breakthrough in further improving rice yields. However, heterosis-related grain weight QTLs and the basis of yield advantage among subspecies has not been well elucidated. We herein de novo assembled the chromosome level genomes of an indica/xian rice (Luohui 9) and a japonica/geng rice (RPY geng) and found that gene number differences and structural variations between these two genomes contribute to the differences in agronomic traits and also provide two different favorable allele pools to produce better derived recombinant inbred lines (RILs). In addition, we generated a high-generation (> F15) population of 272 RILs from the cross between Luohui 9 and RPY geng and two testcross hybrid populations derived from the crosses of RILs and two cytoplasmic male sterile lines (YTA, indica and Z7A, japonica). Based on three derived populations, we totally identified eight 1,000-grain weight (KGW) QTLs and eight KGW heterosis loci. Of QTLs, qKGW-6.1 and qKGW-8.1 were accepted as novel KGW QTLs that have not been reported previously. Interestingly, allele genotyping results revealed that heading date related gene (Ghd8) in qKGW-8.1 and qLH-KGW-8.1, can affect grain weight in RILs and rice core accessions and may also play an important role in grain weight heterosis. Our results provided two high-quality genomes and novel gene editing targets for grain weight for future rice yield improvement project.
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Introduction

Rice is one of the most important food crops in the world, providing food for more than half of the world’s population (Qin et al., 2021). Over the past two decades, multiple high-quality genomes of indica and japonica subspecies have been assembled, such as Nipponbare (Goff et al., 2002), 9311 (Yu et al., 2002), ZS97 (Zhang et al., 2016a,b), MH63 (Zhang et al., 2016a,b), R498 (Du et al., 2017), IR64 (Tanaka et al., 2020), TN1 (Panibe et al., 2021), Huazhan (Zhang H. et al., 2022), Tianfeng (Zhang H. et al., 2022), etc. Recently, several gap-free reference genomes were completed, namely, ZS97, MH63, PR106, LIMA, LARHAMUGAD, KETANNANGKA, NATELBORO, XL628S, LK638S, J4155S, and HZ (Song et al., 2021; Zhang F. et al., 2022; Zhang Y. et al., 2022). Advances in third-generation sequencing and assembly algorithms have continuously updated the accuracy of the rice pan-genome, revealing some important functionally related structural variations (SVs) and gene copy number variations (gCNVs) (Zhao et al., 2018; Qin et al., 2021; Zhang F. et al., 2022). However, there are dramatically different genetic backgrounds among thousands of rice cultivars, especially between subspecies, including cultivar-specific genes, different alleles of one gene, or gene family expansions (Li et al., 2021). Differences in rice agronomic traits are closely related to these genome variations (Stein et al., 2018; Zhao et al., 2018; Qin et al., 2021). Therefore, the discovery of new genes/alleles related to agronomic traits is inseparable from the comparative analysis of the genomes of elite varieties and the fine mapping in derived populations. For instance, we previously found that the hybrid progeny of the Luohui 9 (xian/indica) and RPY geng (geng/japonica) cross had significant heterosis in yield and resistance traits, and multiple recombinant inbred lines (RILs) derived from Luohui 9 X RPY geng aggregated the advantages of both parents (Kong et al., 2022a). Based on the high-density genetic map, we also obtained some QTLs related to plant height, salt stress tolerance, submerged germination, and grain shape (Kong et al., 2021b, 2022a,b; Deng et al., 2022). But the gene number differences and large structural variations between Luohui 9 and RPY geng, and the effects of these variations/differences on traits and heterosis, remain unclear.

Owing to the impacts of human population growth and limited arable land, breeders and scientists faced the challenge of breeding higher yield potential crops. Rice yield is a complex agronomic trait composed of four main factors including effective panicle number, grain number per panicle, seed setting rate and 1,000-grain weight (KGW) (Zuo and Li, 2014). In addition, heterosis refers to the phenomenon that the phenotype of the hybrid progeny surpasses their parents in biomass, yield, growth vigor, resistance, etc., (Birchler et al., 2010). Yield heterosis between indica and japonica subspecies has been widely used to improve rice yield, causing a worldwide yield revolution (Li et al., 2018). As statistics, hybrid rice shows a 20–30% increase in yield than inbred rice and has effectively solved world food crisis (Xu et al., 2016). Therefore, analyzing the mechanism of rice grain weight (GW) and mining GW-related QTLs and GW-related heterosis loci are important foundations for improving rice yield. Based on different populations and QTL mapping methods, more than 600 QTLs related to grain weight and grain shape have been identified on all 12 chromosomes in rice to date1 (Chan et al., 2021), and more than 20 QTLs have been cloned, including GW2 (Yan S. et al., 2011), GS3 (Liu et al., 2018), TGW6 (Ishimaru et al., 2013), GW6a (Song et al., 2015), WTG1 (Huang et al., 2017), GL7 (Wang et al., 2015), and gw5 (Wan et al., 2005). In fact, multiple reported QTLs may belong to one QTL, but there are differences in the size of the interval. Meta-analysis of QTLs was used to merge multiple QTLs from different rice genetic populations and to identify consensus and stable QTLs (Arcade et al., 2004; Kong et al., 2020), which narrowed down the confidence intervals of QTLs (Martinez et al., 2016; Zhang et al., 2017). Recently, 339 published GW QTLs merged into 34 Meta-QTLs (MQTLs) in rice (Khahani et al., 2020). The new GW QTLs/genes must be urgently explored in indica X japonica derived populations to further improve rice yields.

In this study, we performed the chromosome-level de novo assembly of the Luohui 9 and RPY geng genomes and characterized their genomic differences in genome-wide scale. Additionally, the KGW traits of derived RIL populations from Luohui 9 X RPY geng in four environments were used for QTL mapping. Two testcross populations derived from the crosses of RILs and Z7A (japonica) or YTA (indica) were used to explore the heterosis loci of KGW. These results provided a new insight into the diversity mechanism of grain weight in rice.



Materials and methods


Materials and sequencing

The highly homozygous O. sativa ssp. indica/xian (Luohui 9, 2n = 2 × = 24) and O. sativa ssp. japonica/geng (RPY geng, 2n = 2 × = 24) were planted in the field in Wuhan, China, in 2016, These two subspecies have many significant differences in important agronomic traits, including plant height, number of tillers, and heading date, for example, Luohui 9 has excellent agronomic traits, and RPY geng has an ideal plant architecture (Figure 1A).
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FIGURE 1
Whole plant phenotype (A), genomic characteristics (B), and large structural variations (C) between RPY geng and Luohui 9. The tracks from outside to inside are the chromosome, gene density, repeat sequence density, and GC content and the different color links represent orthologous gene pairs among chromosomes in (B).


The genomic DNA of these two subspecies was extracted from young leaves using a modified CTAB method and tested using Qubit Quantitation Starter Kit (Invitrogen, United States) and a 1% agarose gel electrophoresis, respectively. Libraries for Illumina short-read and single-molecule real-time (SMRT) sequencing (Pacific Biosciences, United States) were prepared according to the respective manufacturer’s instructions. The short-read DNA libraries were sequenced by paired-end (2 × 150 bp) method on Illumina HiSeqTM 2,500 (Illumina, United States) and the SMRT sequencing were sequenced on the PacBio RS II platform. In addition, Hi-C reads of DNA of young leaves from F1 progeny of Luohui 9 and RPY geng were sequenced on Illumina HiSeqTM 2,500 paired-end (2 × 150 bp) sequencing according to standard protocol. The total RNA of mixed tissues (root, stem, leaf, and young panicle) was extracted for RNA-seq libraries following the manufacturer’s standard protocol. Then, RNA-seq libraries were sequenced on an Illumina HiSeqTM 2,500 paired-end (2 × 150 bp) and raw reads were filtered using Trimmomatic software as described previously (Kong et al., 2020).



Genome assembly and annotation

PacBio RSII sub-reads were filtered by the PacBio SMRT-Analysis package including removing the adapters, low quality, and short length reads (parameters: readScore, 0.75; minSubReadLength, 500) and sub-reads after filtering were corrected by Illumina reads using an error correction module embedded in Canu v1.5 (Koren et al., 2017). The high-quality PacBio sub-reads were used for genome contigs assembly by using Canu v1.5 with default parameters. The contig-level genome was polished by Plion with these parameters: –mindepth 10; –changes; –threads 4; –fix bases (Walker et al., 2014). Hi-C data were used to assist in constructing chromosome-level genome assemblies. The Hi-C data were mapped to the contig-level genomes using BWA aligner software (Li and Durbin, 2009). A total of 46.73 Gb clean Hi-C data was mapped to the genome, with a coverage of 116.83 X. These uniquely mapped Hi-C reads were retained for chromosome-level genome assemblies using LACHESIS software with these parameters: CLUSTER MIN RE SITES = 22; CLUSTER MAX LINK DENSITY = 2; CLUSTER NON-INFORMATIVE RATIO = 2; ORDER MIN N RES IN TRUNK = 10; ORDER MIN N RES IN SHREDS = 10 (Burton et al., 2013). Finally, the chromosome-level genome was further improved and corrected by the high-density binmaps genetic map constructed in this study using all maps software according to the method described (Tang H. B. et al., 2015).

Repeat sequence annotation was performed by EDTA with default parameters (Ou et al., 2019). Coding genes were predicted by de novo, homolog-based, and transcriptome-based strategies. Augustus v2.4 (Stanke and Waack, 2003), Genscan (Burge and Karlin, 1997), GeneID v1.4 (Alioto et al., 2018), GlimmerHMM v3.0.4 (Majoros et al., 2004), and SNAP (version 2006-07-28) (Korf, 2004) were used for de novo prediction. GeMoMa v1.3.1 (Keilwagen et al., 2016) was used for homolog-based prediction. In the transcriptome-based prediction, we used Hisat v2.0.4 and Stringtie v1.2.3 for sequence assembly based on a reference genome (Pertea et al., 2016), and applied TransDecoder v2.02 and GeneMarkS-T v5.1 (Tang S. Y. Y. et al., 2015) for gene prediction; On the other hand, PASA v2.0.2 software (Campbell et al., 2006) was used to perform unigene sequence prediction without reference assembly based on transcriptome sequencing data. Finally, we used the EVM v1.1.1 software (Haas et al., 2008) to integrate all gene prediction results from these three analysis methods. The predicted coding genes were annotated according to alignments against (E value 1e–5) databases including GO, KEGG, KOG, TrEMBL, and Nr databases using BLAST v2.2.31 (Altschul, 2012).



Orthologous clusters analysis and structural variant identification

We extracted the longest-protein sequences from Luohui 9 and RPY geng genomes for orthologous clusters identification using OrthoVenn2, E-value was set 1e–10, and other parameters with default (Xu et al., 2019). Genomic structural variants between Luohui 9 and RPY geng genomes were identified by SyRI (Goel et al., 2019). Luohui 9 genome was used as the reference genome, “nucmer – mum” for sequence alignment, with parameter, -c 100 -l 50 -g 1,000. Then, “delta-filter” was used to filter the comparison results, with parameter, -1 -q -r -i 89 -l 50. Finally, “show-coords,” “syri -c,” and “syri plotsr” steps were done with default parameters.



QTL mapping of KGW

A 272 RILs and their parents were planted in the Ezhou (30°N, 114°E) Experimental Base of Wuhan University, Wuhan City, Hubei Province in April 2017 (2017EZ) and in April 2018 (2018EZ), the Hybrid Rice Experimental Base of Wuhan University in Lingshui City (18°N, 110°E), Hainan Province in November 2019 (2019LS), and Breeding Experimental Base of Wuhan University Tianyuan Co., Ltd in Hannan District (30°N, 114°E), Wuhan City, Hubei Province in May 2019 (2019HN). Two testcross populations (Z7A-TCF1 and YTA-TCF1) were developed by crossing RILs (F14) with Z7A (japonica) and YTA (indica) in 2019LS. KGWs of Z7A-TCF1, YTA-TCF1, and RILs were investigated in 2019HN.

All plants were planted under standard agricultural management practice (Kong et al., 2022a). KGW was surveyed in the above four environments. Each inbred line counted five individual plants, the average KGW value of five individual plants was considered as the KGW value of each inbred line.

The genetic linkage map of 272 RILs including 4,578 bin blocks with the total bin-map distance 2,356.41 cM was previously constructed in our lab (Kong et al., 2022a). The QTL mapping of KGW was analyzed by R/qtl (Arends et al., 2010), the CIM interval mapping method was adopted and the LOD threshold was set by 3.0. The confidence interval was calculated with the function “lodint” (Dupuis and Siegmund, 1999) and the drop value was set to 1.5.



QTL mapping of KGW heterosis loci

Heterosis related indexes for the KGW trait were calculated by the formulas:
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where MPH is middle-parent heterosis, BPH is better-parent heterosis, LPH is lower-parent heterosis, P1 is the high parent, and P2 is the low parent.

The QTL mapping of KGW heterosis related indexes was analyzed by R/qtl (Arends et al., 2010), the CIM interval mapping method was adopted and the LOD threshold was set by 2.5. The confidence interval was calculated with the function “lodint” (Dupuis and Siegmund, 1999) and the drop value was set to 1.5.




Results and discussion


De novo assembly and annotation of RPY geng and Luohui 9 genomes

A total of 25.1 / 36.5 Gb Illumina short reads with 62 / 91 X coverage of the genome and 15.6 / 19.5 Gb PacBio RSII long reads with 39 / 48 X coverage of the genome of RPY geng / Luohui 9 was obtained (Supplementary Table 1). The long reads were polished by the Illumina paired read and the polished long reads were assembled into contigs by Canu V1.5. After three rounds of contig polish by Pilon v1.22 and Hi-C data correction, we obtained a 383.45 Mb RPY geng genome and a 394.43 Luohui 9 genome, with the contig N50 of 2.81 and 2.84 Mb, respectively (Table 1). Luohui 9 was ∼10.98 Mb larger than the genome of RPY geng. Finally, 96.35 and 96.99 % of contigs were anchored onto 12 pseudo-chromosomes of RPY geng and Luohui 9 based on Hi-C interactions and linkage map from RPY geng x Luohui 9 derived population (Kong et al., 2022a), respectively (Table 1 and Supplementary Figure 1).


TABLE 1    Summary of genome assembly and annotation of RPY geng and Luohui 9.
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The percentages of repeat sequences in the genomes of RPY geng and Luohui 9 were 44.29 and 46.96% based on EDTA with default parameters (Supplementary Table 2). A combination of prediction strategies (de novo, homologous based and RNA-seq based) totally identified 39,255 and 39,440 gene models among RPY geng and Luohui 9 genomes, of which 96.81 and 94.75% had at least one annotation result in GO, KEGG, KOG, TrEMBL, or Nr database (Supplementary Tables 3, 4). The results of CEGMA and BUSCO showed that the assembly of RPY geng and Luohui 9 was complete, with more than 95.0% of the core genes. The long terminal repeat (LTR)-assembly index (LAI) of RPY geng and Luohui 9 was 19.44 and 19.37, which is close to the gold genome level (LAI ≥ 20) (Table 1). All the above-mentioned genome indices indicated that the newly assembled genomes of RPY geng and Luohui 9 was of high quality.



Global genome differences between RPY geng and Luohui 9

RPY geng and Luohui 9 showed obvious differences in yield, grain shape (Deng et al., 2022), plant height (Kong et al., 2022a), and abiotic stress resistances (Kong et al., 2020, 2021a,b,2022b), and the hybrid progeny of RPY geng X Luohui 9 had the excellent heterosis (Figure 1A). These essential agronomic differences are inseparable from the number and structural variation of genes between the two subspecies genomes (Zhao et al., 2018; Qin et al., 2021). Benefiting from the completion of the genomes of RPY geng and Luohui 9, we compared their gene numbers and large structural variations at the genome-wide level and highlighted some genes that have potential impact on agronomic traits. A total of 32,720 orthologous clusters including 32,509 orthologous gene pairs were identified (Supplementary Figure 2 and Figure 1B). Luohui 9 unique orthologous clusters were enriched with multiple essential life GO terms, while RPY geng unique orthologous clusters were enriched with multiple stress-related GO terms (Supplementary Table 5), namely, defense response, cellular response to amino acid stimulus, positive regulation of hydrogen peroxide, as well as response to osmotic stress, suggesting that RPY geng has more tolerance-related genes to abiotic stress than Luohui 9. These results are consistent with our previous findings that RPY geng has stronger resistance to salt stress and cold stress and carries important stress tolerance genes (Kong et al., 2020, 2021a,b,2022b).

We further found 190 inversions, 6,852 translocations, 1,279 (Luohui 9)/1,212 (RPY geng) duplications between RPY geng and Luohui 9 involving 2,234 SV-related genes in Luohui 9 and 1,544 SV-related genes in RPY geng (Supplementary Table 6). Notably, at the position of 12.8–18.6 Mb on Luohui 9 chromosome 6 showed a sequence inversion with a length of about 5.7 Mb compared with the RPY geng genome (Figure 1C) and this inversion has also been reported in previous comparative genomic studies between subspecies (Du et al., 2017; Li et al., 2021; Xie et al., 2021), suggesting that this may be an important structural difference between subspecies. To study the potential roles of these SV-related genes in important agronomic traits, we collected 283 important known genes with functional function verifications (Supplementary Table 7) as query sequences to find homologous genes against SV-related genes by BlastP (value E-10). Totally, 337 SV-related genes were identified as homologous genes of 138 known functional genes belonging to cold tolerance, heat tolerance, salt tolerance, insect resistance, disease resistance, drought tolerance, fertility, grain quality, grain shape, heading date, panicle architecture, nutrient utilization, and panicle architecture (Supplementary Table 8). The above results suggested that the genome-wide number and structural differences play essential roles in the trait differences of RPY geng and Luohui 9, which were consistent with their differential trait characteristics.



QTLs of KGW

RPY geng and Luohui 9 belonged to japonica/geng and indica/xian subspecies, respectively, yield traits of their F1 and many RILs showed obvious over-parent dominance. To resolve yield-related genes, we here conducted trait surveys and linkage analysis of KGW based on the previously constructed high-density genetic map (Kong et al., 2022a).

KGW of RILs were investigated in Lingshui, Hannan, or Ezhou among 2017 – 2019. There was extensive variance of KGW in RIL population while there was a minor difference of KGW between the parents (Figure 2 and Supplementary Table 9). KGW of the RIL population showed a normal distribution with high Pearson coefficients in four different environments and transgressive segregations were observed in the RIL population (Figure 2), which indicated that KGW were controlled by multiple genes and indica x japonica hybrid breeding strategy can breed high-yielding rice materials.
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FIGURE 2
Thousand-grain weight in 2019HN, 2019LS, 2018EZ and 2017EZ.


We totally identified eight KGW QTLs on Chr 2, Chr 3, Chr5, Chr6, Chr8, and Chr10 (Table 2). Of QTLs, qKGW-8.1 was repeatedly detected in 2017EZ, 2018EZ, and 2019LS. qKGW-3.1 and qKGW-3.2 had almost the same interval and qKGW-5.2 was fully contained by qKGW-5.1. These results suggested that these three QTLs had relatively stable effects on KGW in multiple different environments. The remaining QTLs (qKGW-2.1, qKGW-6.1, and qKGW-10.1) were only detected in one specific ecological environment, and were possibly environment-specific KGW QTLs.


TABLE 2    Details of thousand-grain weight QTLs.
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Identification and function confirmation of two novel KGW QTLs

To distinguish the new TWG QTLs first discovered in this study, 34 Meta-QTLs from 339 original GW QTLs (Supplementary Table 10) and 126 known GW genes (Supplementary Table 11) were collected (Khahani et al., 2020). Except for qKGW-6.1 and qKGW-8.1, the remaining QTLs all had complete or partial overlap with Meta-QTLs, or contained the known KGW genes in these intervals (Figure 3). For example, qKGW-3.1 and qKGW-3.2 fully covered MQTL-GW18 and included pls2 and SRL2. Sequence alignment result showed that SRL2 had sequence differences in the coding sequence regions (Supplementary Table 12). Similarly, qKGW-2.1 containing OsVPE3, OsMADS6, and OsGRF4, overlapped MQTL-GW7 and MQTL-GW8; qKGW-5.1 and qKGW-5.2 carrying OsPPKL2, SRS3, and GS5 overlapped MQTL-GW18; qKGW-10.1 including FLO7 overlapped MQTL-GW29.
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FIGURE 3
The positions of QTLs, MetaQTLs, and known KGW-related genes.


Therefore, qKGW-6.1 and qKGW-8.1 were accepted as novel KGW QTLs. To further confirm the KGW regulation function of qKGW-6.1 and qKGW-8.1, all RILs were divided into different allelic combination based on peak maker genotyping results in genetic map. RPY geng allele (AA) RILs of qKGW-6.1 showed greater KGW than Luohui 9 (BB) RILs (Figure 4A). Interestingly, qKGW-8.1 showed the opposite result relative to qKGW-6.1 (Figure 4B). This suggested that the favorable alleles of these two QTLs are derived from RPY geng and Luohui 9, respectively, and the favorable allele aggregation may enhance KGW of some RILs. As expected, RILs that aggregated favorable alleles (qKGW-6.1 AA + qKGW-8.1 BB) had the largest KGW in all tested environments (Figures 4C–F). These results demonstrated that qKGW-6.1 and qKGW-8.1 are two new KGW loci that can be used to improve rice yield.
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FIGURE 4
1000-grain weight of different allele combinations of qKGW-6.1 and qKGW-8.1. In (A), (C–F): qKGW-6.1 AA + qKGW-8.1 AA, (B): qKGW-6.1 AA + qKGW-8.1 BB; (C): qKGW-6.1 BB + qKGW-8.1 AA; (D): qKGW-6.1 BB + qKGW-8.1 AA.




Ghd8 has a potential function in regulating rice grain weight

qKGW-8.1 could be detected repeatedly in three environments with phenotypic interpretation rates of 5.11–9.96. However, no known genes directly related to grain weight were found in qKGW-8.1. We therefore traversed the 92 gene annotation results in qKGW-8.1 and tried to correspond them to the phenotypic differences between the parents. We found that Ghd8 is located within the qKGW-8.1 interval, a gene reported to be closely associated with heading date and yield (Yan W. H. et al., 2011; Dai et al., 2012), which is consistent with parental heading date differences. Whether in Hainan or Hubei, both parents maintained the heading date difference of more than 10 days. We extracted the Ghd8 protein sequences from our newly assembled genome and sequence alignment revealed multiple sequence variations, including seven amino acid substitutions, one amino acid deletion, and a complex C-terminal amino acid variation (Figure 5A).
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FIGURE 5
The candidate gene prediction of qKGW-8.1. (A). Protein sequence alignment results of Nipponbare, RPYgeng (FaGhd8), Luohui 9 (MoGhd8). (B) The 1,000-grain weight of RPY geng (AA) and Luohui 9 (BB) allele recombinant inbred lines (RILs). (C) The 1,000-grain weight of different allele rice core accessions.


To test whether Ghd8 has a potential effect on grain weight as a pleiotropic gene, we observed grain weight at different alleles in our RILs and in 532 rice core accessions from RiceVarMap v2.03 (Zhao et al., 2021). In RILs, the allele types of Ghd8 was determined based on a bin maker (Block174811) because Ghd8 is the only gene within block174811. In 532 rice core accessions, a functional snp (vg0804334484) was found in Ghd8 gene, containing A, C, and N alleles, and the N allele was eliminated in further phenotypic comparisons due to uncertainty about its base type. We found that different allele RILs or core accessions displayed significantly different KGW, suggesting that Ghd8 may play a role in KGW regulation (Figures 5B,C).



KGW heterosis loci

We totally identified two QTLs for KGW BPH, two QTLs for KGW MPH, and four QTLs for KGW LPH (Figure 6 and Supplementary Table 13). Three of the eight heterosis-related QTLs overlapped KGW QTLs: qLH-KGW-5.1 and qLH-KGW-5.2 were covered by qKGW-5.1 and qLH-KGW-8.1 overlapped with qKGW-8.1. Interestingly, qLH-KGW-8.1 coincided with a reported yield heterosis locus, RH8 (rice heterosis 8) (Li et al., 2016). Ghd8, as a major gene in RH8, was also located in the qLH-KGW-8.1 interval. This suggested that Ghd8 plays an important role in rice yield heterosis. In addition, two GW-related genes were in heterosis-related QTLs, namely, SRS3 and GS5 in qLH-KGW-5.1, GS5 in qLH-KGW-5.2. Whether these GW-related genes play a role in heterosis remains to be further explored.
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FIGURE 6
Grain weight heterosis loci in two testcross populations. Black represents QTL loci in recombinant inbred lines (RILs). Red and blue loci represent heterosis-related QTLs of YTA and Z7A testcross population, respectively.





Conclusion

In the present study, we de novo assembled genomes of an indica rice (Luohui 9) and a japonica rice (RPY geng) at the chromosome level and analyzed the KGW trait of their derived RIL populations. We concluded that the substantial genetic diversity of KGW in RILs were closely related to genome variations and allele aggregation difference of KGW QTLs. Importantly, we identified two novel KGW-related QTLs (qKGW-6.1 and qKGW-8.1) and several KGW heterosis loci in three derived population. Based on the genotyping results in RILs and 532 rice core accessions, Ghd8 in qKGW-8.1 was presumed to play an important role in GW regulation.
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Sugar beet (Beta vulgaris L.) is an important sugar-producing and energy crop worldwide. The sugar beet pure line IMA1 independently bred by Chinese scientists is a standard diploid parent material that is widely used in hybrid-breeding programs. In this study, a high-quality, chromosome-level genome assembly for IMA1was conducted, and 99.1% of genome sequences were assigned to nine chromosomes. A total of 35,003 protein-coding genes were annotated, with 91.56% functionally annotated by public databases. Compared with previously released sugar beet assemblies, the new genome was larger with at least 1.6 times larger N50 size, thereby substantially improving the completeness and continuity of the sugar beet genome. A Genome-Wide Association Studies analysis identified 10 disease-resistance genes associated with three important beet diseases and five genes associated with sugar yield per hectare, which could be key targets to improve sugar productivity. Nine highly expressed genes associated with pollen fertility of sugar beet were also identified. The results of this study provide valuable information to identify and dissect functional genes affecting sugar beet agronomic traits, which can increase sugar beet production and help screen for excellent sugar beet breeding materials. In addition, information is provided that can precisely incorporate biotechnology tools into breeding efforts.
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Introduction

Sugar beet (Beta vulgaris L.) is in the Caryophyllales in the family Chenopodiaceae. The chromosome number of cultivated sugar beet is2n =2x= 18, with a predicted genome size of714 to 758 Mb (Arumuganathan and Earle, 1991). Sugar beet is an important biennial root crop cultivated in temperate climate regions with outstanding sugar-producing capability. Sugar beet was originated by selecting lines with high sugar content in the storage root from hybridizations between typical fodder beet and chardin the late eighteenth century (Eberhard, 1989) and thus is one of the most recently domesticated crops.

Sugar beet productivity is threatened by various pathogens, including bacteria, fungi, viruses, and nematodes (Larson et al., 2006; Saleh et al., 2011; Strausbaugh and Eujayl, 2018). Molecular breeding approaches have been used to create resistant or high taproot-yield sugar beet germplasms to increase production while greatly decreasing time, effort, and costs (Boyd et al., 2013). Many genes associated with important agronomic traits have been identified in sugar beet, including those responsible for nematode resistance (Cai et al., 1997), life cycle adaptation (Pin et al., 2012), cytoplasmic male sterility (Matsuhira et al., 2012), bolting tolerance (Hébrard et al., 2016), and salt tolerance (Sahashi et al., 2019). A wide range of sequence-based genetic and genomic resources are emerging for sugar beet. Single Nucleotide Polymorphism based genetic and physical maps have been constructed (Dohm et al., 2012; Holtgräwe et al., 2014), and transcriptome profiles have been analyzed to reveal important metabolic pathways and stress-responsive genes (Mutasa-Göttgens et al., 2012; Lv et al., 2018; Geng et al., 2019; Zou et al., 2020). Several sugar beet genomes have been assembled, including chromosome-level assemblies of double-haploid line RefBeet (Dohm et al., 2014) and the five-generation inbred line EL10 (Funk et al., 2018). Genome-wide identification and characterization of various important functional genes have also been reported (Stracke et al., 2014; Funk et al., 2018; Wang et al., 2019; Wu et al., 2019a; Wu et al., 2019b).

However, insufficient publicly available genetic resources and innovative germplasms are two major factors that limit the development of superior sugar beet cultivars. In this study, the chromosome-level genome assembly of the first Chinese native sugar beet line IMA1 was built by combining IlluminaHiseq, PacBio SEQUEL, and Hi-C sequencing platforms. Compared with previously released sugar beet assemblies, the new genome was 220 Mblarger with N50 size that was at least 1.6 times larger, thereby greatly improving the completeness and continuity of the sugar beet genome. Seven important beet agronomic traits and disease-resistance characteristics were also assessed by resequencing 114 accessions. In addition, a group of candidate genes associated with male sterility in sugar beet were selected based on q-PCR and transcriptome sequencing.

In conclusion, sequencing, assembly, and annotation of the sugar beet IMA1line provide the foundation for future comparative genomics efforts and phylogenetic reconstructions in the Caryophyllales and eudicots. Furthermore, valuable information is provided to identify and dissect functional genes affecting agronomic traits, which can be used to create breeding materials and to precisely incorporate biotechnology tools into breeding efforts.



Materials and methods


Sample collection and processing

Beta vulgaris IMA1, an inbreeding line with low level of heterozygosity, was selected for sequencing. Scientists from the Inner Mongolia Academy of Agricultural and Animal Science (IMAAAHS, Hohhot, Inner Mongolia, China) independently developed line IMA1. The line is standard diploid parent material with good combining ability that is widely used in creating sugar beet parent materials and hybrid breeding.

Seeds of IMA1 were planted in one gallon flowerpots filled with organic loamon August 16, 2018, and placed in a greenhouse at IMAAAHS. Greenhouse temperatures were 26°C(day) and 21°C(night). Two months after planting, tender, young, healthy leaf samples were collected and immediately flash-frozen in liquid nitrogen for one hour and then stored at −80°C until DNA and RNA extraction. Voucher specimens of IMA1 were deposited at IMAAAHS with collection number 14.S4006C.



Sampling germplasms of 114 sugar beet accessions

Test materials were 114 accessions randomly selected from the sugar beet gene bank stored at the Special Crop Research Institute of IMAAAHS. All test materials were planted in the experimental field of IMAAAHS (longitude 40°46′19.43″N, latitude 111°39′44.96″E)in Hohhot, Inner Mongolia, China. The complete data set contained three years (2017 to 2019) of agronomic traits collected in the field. Sugar beets were planted at the beginning of May and harvested at the beginning of October. Each plot was 6 m in length and 55-cm in width. The 114 sugar beet accessions were randomly sampled during the lush growth period. Newly emerged leaves were removed, put into zip lock bags, quickly frozen in a sample box with liquid nitrogen, and placed in a freezer at −80°C.



Selection of beet accessions for transcriptome analysis

Two pairs of beet lines with differences in male fertility were selected for transcriptome analysis: two male-sterile beet lines MS137 and MS301 and two beet maintainer lines OT152 and OT302. Beet roots that had undergone vernalization were planted in a test field arranged for beet breeding and isolation. On June 20, during the sugar beet budding stage, beet inflorescences with unopened, mature flower buds were selected and snap-frozen in liquid nitrogen.



DNA sequencing

To extract DNA and total RNA from young and healthy sugar beet leaf tissues, a DNeasy Plant Mini Kit (Qiagen, Germany) and an RNAprep pure Plant Kit (Tiangen, Beijing, China) were used, respectively. The DNA-seq was used to assist genome assembly, and the RNA-seq was used for gene model prediction. Low-quality reads and adaptor sequences were filtered out with the HTQC utility (Yang et al., 2013).

To obtain long reads for genome assembly, long read libraries were constructed using the extracted high-quality DNA in PacBio sequencing. Five SMRT (Single-Molecule Real Time Sequencing) cells were sequenced, and roughly 65.67 Gb of data were generated on a PacBio SEQUEL platform (Menlo Park, CA, USA) (Supplementary Table 1). With a genome size of 700 Mb assumed for sugar beet, the sequencing result theoretically represented 94-fold coverage. The average subread length was 10,727 bp, and the N50 length was 17,047 bp. The PacBio sequencing was combined with Illumina sequencing to generate longer scaffold genome assemblies.



Scaffold-level genome assembly of Beta vulgaris IMA1

High-quality Illumina sequences with a K-mer size of 17 were counted using the JELLYFISH program (Marçais and Kingsford, 2011). The PacBio sequencing subreads were assembled using Canu v1.7 (Koren et al., 2017). There were two steps of genome assembly polishing to correct random sequencing errors. Aquiver algorithm (Chin et al., 2013) was used to polish the Canu assembly using 50× long PacBio subreads. Next Generation Sequencing (NGS) short reads deliver a read accuracy of over 99% (Dohm et al., 2008). By contrast, with PacBio long reads, the error rate isas high as 15% to 20% (Ono et al., 2013; Ross et al., 2013). Therefore, two rounds of polishing were conducted with 67.22 Gb of Illumina short reads recruited with Pilonv 1.21 (Altschul et al., 1990; Walker et al., 2014). Organellar contigs were also removed by BLAST searches against organellar genomes of sugar beet (chloroplast genome: accession number KR230391.1;mitochondria genome: accession number BA000024.1).



High-throughput chromatin conformation capture library construction and chromosome assembly

In the current study, the Hi-C approach was used for chromosome-level assembly of sugar beet (Zhang et al., 2018; Chen et al., 2019; Zhang et al., 2020). To construct a Hi-C library, young leaves were cross-linked with formaldehyde and digested with DpnII restriction enzyme overnight. Chimeric junctions were formed followed by biotinylating and proximity ligating sticky ends and then sheared and enriched for fragment sizes from 500 to 700 bp. Chimeric fragments were subjected to PE sequencing on an Illumina HiSeq X ten system (San Diego, CA, United States) with the PE 150 nt mode.

After mapping the clean sequencing reads against the polished sugar beet genome with Bowtie2 software (Langmead and Salzberg, 2012), over 369.4 million PE reads matched unique genomic locations, which were assessed and filtered by the hiclib Python library (Imakaev et al., 2012) and HiC-Pro program (Servant et al., 2015). Mis-joined contigs were corrected with the 3D-DNA pipeline (Dudchenko et al., 2017), and Hi-C-corrected contigs were grouped into pseudo-chromosomes by the ALLHIC pipeline (Zhang et al., 2019) on the basis of relations among valid reads.



Genome annotation

With gene model parameter strained from Arabidopsis thaliana, ab initio predictions were conducted using AUGUSTUS (Stanke and Morgenstern, 2005). Previously published sugar beet genome RefBeet-1.2.2 of sugar beet line RefBeet (Dohm et al., 2014) with accession number GCA_000511025.2 was selected as the reference genome to perform homology annotation. The protein sequences of the RefBeet genome were aligned with those of the new genome by TBLASTN software (Winsor et al., 2016). Gene structures were further predicted by GeneWise (Birney and Durbin, 2000) on the basis of TBLASTN results. The RNA-seq data sampled from leaf tissues were used for Trinity (Haas et al., 2013) de novo assembly. Transcript abundance was calculated with RNA-Seq by Expectation-Maximization (RSEM) (Li and Dewey, 2011), and transcripts with Fragments Per Kilobase Million (FPKM) <1 and iso-percentage <3% were filtered out. The PASA program (Haas et al., 2003) was used to construct comprehensive transcripts using the filtered transcripts. Sugar beet transcripts were compared with the UniProt to identify candidates covering ≥95% of any target protein. Homology-based annotation, ab initio, and transcriptome-based gene prediction were combined to generate a protein-coding gene set by using the Evidence Modeler pipeline (Haas et al., 2008).Tandem Repeats Finder (Benson, 1999) and LTR_FINDER (Xu and Wang, 2007) were used to predict repeat elements. Subsequently, assembled genome sequences were aligned to the Repbase TE database (Bao et al., 2015) using Repeat Masker (Tarailo-Graovac and Chen, 2004) to search for sequences of repeat elements. The tRNAscan-SE (Schattner et al., 2005) and rRNAmmer (Lagesen et al., 2007) were used to detect reliable transfer RNA(tRNA) and ribosomal RNA(rRNA) positions, respectively. The small RNAs (sRNAs), microRNAs (miRNAs), and small nuclear RNAs(snRNAs)were predicted by searching the RFAM databases (Gardner et al., 2009) using INFERNAL software (Nawrocki et al., 2009) with the default parameters. For functional annotations, sequence-similarity searches were performed using Blast with E-value of 10−5 in available protein databases [(Non-Redundant Proteins (NR), Swiss-Prot, Clusters of Orthologous Groups (COGs), Kyoto Encyclopedia of Genes and Genomes(KEGG), and Gene Ontology(GO)].



Phylogenetic analysis and divergence time estimation

Phylogenetic analysis was conducted using the protein-coding genes of IMA1 and 25 other species. Protein sequence alignments and phylogenetic tree construction were conducted using OrthoFinder software (Emms and Kelly, 2019). Reconstruction of phylogenetic trees was inferred by maximum likelihood (ML), and the estimated divergence time of plant species based on the TimeTree database (Puttick, 2019) (http://www.time.org/) was used to recalibrate the divergence time for the 26 plant species. To identify the expansion and contraction of gene families, CAFE was used (Lu et al., 2017).



Synteny analysis and whole-genome duplication

The paralogous genes of IMA1 were identified in a BLASTP search (E-value cutoff of 1E−5). Synteny and collinearity blocks of those genes were analyzed using MCScanX (Wang et al., 2012). Gene synteny, gene density, and GC content on individual pseudo-chromosomes were mapped by using Circos software (http://www.circos.ca). The synonymous substitution rate (Ks) was calculated using KaKs_Calculatorand the Nei–Gojobori method (Wei and Zhang, 2014).



Single nucleotide polymorphisms and insertion and deletion calling

Trimmed reads were mapped to the new genome using BWA-MEM (Li, 2013). Average mapping rates were 99.33%, and average genome coverage was 7.72-fold of the reference genome. Mapping results were sorted and duplicate reads marked based on Sambamba (Tarasov et al., 2015). SNPs and InDels of the 114 accessions were called by GATK HaplotypeCaller (Hasanl et al., 2015). The results were calculated using the following parameters: QD < 2.0; MQ < 40.0; FS > 60.0; QUAL <30.0; MQrankSum <−12.5; Read PosRankSum <−8.0 -clusterSize 2 –cluster Window Size 5. The identified SNPs were filtered. High-quality SNPs were defined as only those with a minor allele frequency >0.05 and missing data rate<0.8. SNPs were annotated based on the genome with snpEff (Cingolani et al., 2012). Furthermore, SNPs were classified as coding synonymous SNPs and non-synonymous SNPs, and InDels in exons were grouped based on whether they led to a frameshift.



Genome wide association study analysis

Genome wide association study was performed by using FaST-LMM (v2.07.20140723) or EMMAX (Kang et al., 2010). A total of3,738,500 SNPs with a minor allele frequency of 0.05 or greater and a missing data rate of 80% or less in the entire population were used for GWAS. A Bonferroni correction was used to determine the genome-wide significance thresholds of the GWAS, based on a nominal level of −log10(P) values of 5.




Results


Sequencing and assembly of IMA1 genome

The Illumina resequencing reads combined length was 67.22 Gb, which was 96× the estimated genome size. The RNA-seq generated a clean dataset of 15.93 Gb consisting of over 98.9 million Paired-end reads. Quality of Illumina resequencing reads was high (92.06% with Phred quality score >30). In total, 448 million high-quality, 150-bp clean paired-end reads were retained for use in the following analysis (Supplementary Table 2). The 17-mer analysis-based genome size of sugar beet was estimated at 720.5 Mb. A single main peak indicated the nature of the isolated genomic material, with heterozygosity of only 0.6% (Supplementary Figure 1). For accurate homozygous assembly, Illumina, Pacbio, and Hi-C sequences were combined to perform the sequencing. Approximately 120.75 Gb of clean data consisting of 805 million PE reads were produced from the Hi-C library sequencing (Supplementary Table 2). An initial 786-Mb genome sequence was obtained consisting of 4,824 contigs, with contig N50 of 367.5 kb. The longest contig was 5.91 Mb (Table 1). Additionally, 4,576 contigs from the Canu assembly were successfully clustered, ordered, and oriented to nine pseudo-chromosomes. In the IMA1 genome, 171 syntenic blocks were detected, which involved 3,508 genes (Figures 1, 2). The results indicated the quality of the genome assembly for IMA1was high. The interaction signals were enriched in chromosomes, and the intensity of interaction along the diagonal was relatively smooth, showing well-organized contig orderings. The anchor rate was 99.1%, and only 248 contigs (7.1 Mb) were not anchored. The scaffold N50 was 93.06 Mb, and the longest chromosome values reached 112.63 Mb (Supplementary Table 3).


Table 1 | Assembly statistics of B. vulgaris IMA1nuclear genome.






Figure 1 | Circos plot showing the distribution of genomic features along the IMA1 genome. The rings from outermost to innermost indicate (A) nine pseudo-chromosomes of Beta vulgaris IMA1genome; (B) gene density distributed inside 200-kb sliding windows; (C) transposable element abundance; (D) distribution of GC content; (E) expression values of leaf-expressed genes; and (F) schematic presentation of major inter-chromosomal relations in the B vulgaris IMA1 genome. Each line represents a syntenic block; block size = 3 kb. Chromosomes in the outer ring are ordered by chromosomes length as follow:1, chr5; 2, chr4; 3, chr3; 4, chr7; 5, chr6; 6,chr9; 7, chr1; 8, chr8; 9, chr2.






Figure 2 | Integrated Hi-C interaction heatmap of B. Vulgaris IMA1 genome. The heatmap displays high-resolution single pseudo-chromosomes, which were scaffolded and composed independently. Lines are ordered by chromosomes length as follow:1, chr5; 2, chr4; 3, chr3; 4, chr7; 5, chr6; 6,chr9; 7, chr1; 8, chr8; 9, chr2.





Evaluation of the genome assembly

Assembled genomes were further validated by mapping NGS short reads, which indicated that 446.7 million (99.23%) Illumina reads were reliably aligned, which covered 96.84% of the assembly (Supplementary Table 4). Additionally, 96.8% to 98.08% of RNA-seq clean reads were reliably aligned to the assembled genome. Genome completeness was assessed based on the viridiplantae_odb9 database in the BUSCO program (Jia et al., 1997). A total of 1,326 (96.4%) complete single-copy orthologs among 1,375 conserved plant genes were recalled in the assembly (Supplementary Table 5). We assessed the coherence of the IMA1 genome assembly with LAI (Long terminal repeat assembly index). LAI score was assessed by LTR_RETRIEVER (v2.9.0) (Ou and Jiang, 2017). The LAI value of the IMA1 genome was 13.4, which was at the Reference level.



Gene prediction and functional annotation

In the IMA1 genome, 35,003 genes encoding proteins were annotated. Average gene length was 1,121 bp. Total combined length of all genes was 39.23 Mb, which accounted for 4.99% of the assembled genome. According to the BUSCO assessment, 86.2% of core eukaryotic genes were complete in the assembly. Totals of 32,043; 27,574; 20,155; 10,157; and 21,351 genes were annotated in Nr, GO, COG, KEGG, and Swiss-Prot databases, respectively, and 32,047 (91.56%) genes had at least one hit to the databases (Supplementary Table 6). There were 8,725 genes annotated in all five databases, representing 24.93% of all protein-coding genes. Based on KEGG annotation (Supplementary Figure 2), 10,157 genes were involved in 33 pathways. There were 1,442 tRNAs, 945 5S rRNAs, 138 18S rRNAs, 139 28S rRNAs, 410 snRNAs, and 56 miRNAs in the IMA1 genome (Supplementary Table 7). The IMA1 genome contained a total of 512.72 Mb of repetitive sequences, with more than 284,501 tandem repeats identified (Supplementary Table 8).



Comparisons of the IMA1 genome assembly with previously reported sugar beet genome assembly

The new sugar beet IMA1 assembled genome (~786 Mb) was compared with the two previously released chromosome-level assemblies of B. vulgaris: line RefBeet (~566 Mb, accession numbers: GCA_000511025.2) (Dohm et al., 2014) and EL10 (~540 Mb, accession numbers: GCA_002917755.1) (Funk et al., 2018). The new genome was much larger than those previously reported. In addition, the IMA1 genome had the longest chromosome length of 112.63Mb and the largest number of genes identified, with 35,003 genes. The two previous genome assemblies of B. vulgaris had scaffold N50 of 57.94 Mb and 2.01 Mb, respectively, which were much shorter than the 93.06 Mb in the current assembly (Supplementary Table 3). There were 257 scaffolds in the new genome assembly, and longer scaffold N50s were obtained than those in the EL10 and RefBeet genome, which was the best assembled genome to date. The completeness and continuity of the new assembly might be attributed to the high-sequencing depth of PacBio and Hi-C reads and the extremely low heterozygosity of the sugar beet line.

The IMA1 genome contained a total of 512.72 Mb of repetitive sequences, which were 65.18% of the IMA1 genome. It was higher than the previously released genome of sugar beet line EL10 and RefBeet (62.91% and 51.75%, respectively) (Dohm et al.,2014; Funk et al., 2018). The most abundant repetitive sequences in the IMA1 genome are Class I retroelement (66.65% of total TEs and 43.44% of genome). The Long terminal repeat retrotransposons (LTR-RTs) of IMA1 accounted for 31.24% of the assembly, while those of EL10 and RefBeet accounted for 28.07% and 21.82%, respectively. Over 284,501 tandem repeats were identified, representing 10.34% of the genome. (Supplementary Table 8). Compared with RefBeet and EL10, IMA1 annotated the highest proportion and number of repetitive sequences with significant improvements in the continuity and integrity of repeat regions.

The synteny analysis showed that the B. vulgaris IMA1 assembly shared 17,462 and 14,551 common gene pairs with EL10 and RefBeet, respectively, indicating a high ratio of the syntenicregion. Most sequences in RefBeet and EL10 genomes aligned with corresponding counterparts in the IMA1 assembled genome; whereas the IMA1 assembly had extended sequences, especially in Chr1, Chr3, Chr4, and Chr7. Some genomic arrangements were also observed in the IMA1genome compared with RefBeet and EL10 (Figure 3).




Figure 3 | Genomic alignment among three genome assemblies of sugar beet lines IMA1, EL10, and RefBeet. (A) Schematic representation of synteny among IMA1, EL10, and RefBeet genomes. Gray lines connect matching gene pairs. (B) Scatter plot of syntenic blocks of conserved genes between Beta vulgaris IMA1 and RefBeet genomes. (C) Scatter plot of syntenic blocks of conserved genes between B. vulgaris IMA1 and EL10 genomes. Chromosome order in the new assembly was determined by length (from largest to smallest). Rightward and downward are 5′ to 3′ on assembly plus strands.





Evolution and gene family analysis of the Beta vulgaris IMA1 genome

To analyze genome evolution and divergence time of IMA, some genome sequences of plant species were selected. Gene family expansions were greater than contractions in Nymphaea colorata, Brassica napus, Chenopodium quinoa, B. vulgaris IMA1, Malusbaccata, Rosa chinensis, Cannabis sativa, Juglansregia, Quercussuber, Duriozibethinus, and Camellia sinensis, compared with the other species. In the phylogenetic tree, published B. vulgaris and IMA1 phylogenetically diverged into the Betoideae branch approximately 11 million years ago (Mya). Results also showed that published B. vulgaris and IMA1 were sisters in coccolithophores, which is consistent with the findings of phylogenetic analysis (Figure 4A).




Figure 4 | (A) Phylogenetic tree of gene families number unveiling expansion (green) and contraction (red) among 26 species. Pie diagrams represent the ratio of expanded (green), contracted (red), and conserved (blue) genes among whole gene families. The estimated divergence time (million years ago) is shown in black next to the phylogenetic tree. MRCA: most recent common ancestor. (B) Ks distributions for duplicated gene pairs in Beta vulgaris IMA1, RefBeet, and Arabidopsis thaliana. (C) UpSet plot of gene families intersection in B. vulgaris IMA1, RefBeet, A. thaliana, Brassica napus, Chenopodiumquinoa, Cannabis sativa, Oryza sativa, and Spinacia oleracea. Gene family numbers (clusters) are marked for each species and species intersection.



Age distribution of duplicated genes was determined, followed by using a mixture model implemented in the mixtools R package (Benaglia et al, 2009) to identify significant gene duplication peaks consistent with whole genome duplications (WGDs). The median replication peak for IMA1 was around 0.55, which was younger than the ortholog divergence of IMA1 and A. thaliana (Ks, ~2.56) (Figure 4B). The distribution of ks values indicated that only one recent WGD event occurred in the IMA1 genome, whereas an ancient WGD event occurred 29 Mya ago.

From the 26 species, orthologous protein groups were delineated, and 35,818 orthologous groups were obtained (Figure 4A). In the IMA1 genome, 2,907 gene families expanded and 2,781 contracted. The 2,907 expanded gene families were annotated in KEGG and GO databases. In the GO analysis, the expanded orthologous groups were associated with biological regulation, growth, reproductive process, and signaling. In the KEGG analysis, most of the expanded genes were enriched to the categories of cell growth and death, plant hormone signal transduction, and environmental adaptation. The 2,781 contracted gene families were associated with signal transduction and steroid biosynthesis, as well as metabolism of pyruvate, terpenoids, polyketides, or lipids. In KEGG and GO analysis, contracted genes were also involved in developmental process and regulation of biological process.

In the comparison of IMA1, RefBeet, A. thaliana, B. napus, C. quinoa, C. sativa, O. sativa, and S. oleracea, 9,128 gene families were shared among these species (Figure 4C). According to the GO analysis, functions of those genes were primarily in growth, reproductive process, stimulus response, developmental process, and immune system. According to the KEGG analysis, enriched pathways for the genes included phenylpropanoid biosynthesis, purine metabolism, pyrimidine metabolism, and arginine biosynthesis.



Phylogenetic analysis of SWEET, SUT, SPS and SUS gene families

To analyze evolutionary relations, a phylogenetic tree was constructed with SWEET (sugars will eventually be exported transporters) gene family members from A. thaliana (17), B. vulgaris IMA1 (9), RefBeet (16), and EL10 (10) (Figure 5A). Nine SWEET genes were found in the IMA1 genome, and they were grouped into four clusters: 1, 2, 3, and 4. In cluster 1,there were more subfamily genes of the SWEET family in IMA1 than in B. vulgaris RefBeet and EL10. Therefore, cluster 1 members from the SWEET family in IMA1 might have a more important role in sugar export transportation. In the SUT (sucrose transporters) gene family, a transmembrane transporter was involved in the absorption and transport of sucrose.




Figure 5 | Genes in the SWEET and SUT families were clustered by neighbor-joining method. (A) Evolutionary tree of SWEET genes in Arabidopsis thaliana, Chenopodium quinoa, Spinacia oleracea, and Beta vulgaris IMA1, EL10, and RefBeet. (B) Evolutionary tree of SUT genes in A. thaliana, C. quinoa, S.oleracea, and B. vulgaris IMA1, EL10, and RefBeet.



Evolutionary relations among SUT gene proteins from B. vulgaris IMA1(11), RefBeet(12), and EL10 (8) and C. quinoa (9), S.oleracea (12), and A. thaliana (9) were also determined via phylogenetic tree analysis (Figure 5B). The SUT gene proteins were classified into three groups, including clusters 1, 2, and 3 of subfamily genes. In cluster 3, B. vulgaris IMA1 had eight SUT genes, which was higher than that of RefBeet (6) and EL10 (6). It was hypothesized that the cluster 3 gene proteins have a key role in sucrose accumulation in IMA1.

Evolutionary relations among SPS (sucrose phosphate synthase) gene proteins from B. vulgaris IMA1(3), RefBeet (1), and EL10 (2) and C. quinoa (4),Cucumissativus (3), B. napus (5), O. sativa (4), S.oleracea (2), and A. thaliana (4) were determined via phylogenetic tree analysis (Supplementary Figure 3). The SPS gene proteins were divided into clusters 1, 2, and 3. In IMA1, clusters 3 and 2 had two and one SPS genes, respectively. In addition to SWEET, SUT, and SPS gene families, evolutionary relations of the SUS (sucrose synthase) gene family were also analyzed (Supplementary Figure 4). The SUS gene proteins were analyzed in B. vulgaris IMA1 (4), RefBeet (6), and EL10 (4) and A. thaliana (6), C. quinoa (7), and S. oleracea (4). Numbers in SPS and SUS gene families in IMA1 were fewer than those in other species. However, because IMA1 accumulated higher sugar content than that in other species, it was hypothesized that SPS and SUS gene family members in IMA1 had higher sugar accumulation efficiency than that in the other species.



Genome wide association study of seven agronomic traits in Beta vulgaris IMA1

Phenotyping data of seven major agronomic traits of 114 B. vulgaris samples were used to perform GWAS (Supplementary Table 9). Sucrose content is an important economic trait for superior individuals of B. vulgaris. Nine strong GWAS signals were detected, including BvNR (IMABv01g023663), BvGN4 (IMABv01g023668), BvMYST1 (IMABv01g023671), BvPGD (IMABv01g018581), BvSNAT (IMABv01g018582), BvCDK12_13 (IMABv01g018584), BvGBF (IMABv01g018599), BvPOD(IMABv01g018569), and BvTOGT1(IMABv01g018570) genes (Figure 6A; Supplementary Figure 5A; Supplementary Table 10).




Figure 6 | Manhattan plots for seven agronomic traits of 114 sugar beet lines. (A) Sugar content, (B) sugar yield per hectare, (C) root yield per hectare, (D) root rot of sugar beet, (E) damping off of sugar beet, (F) rhizomania of sugar beet, and (G) pollen fertility of sugar beet.



Some strong GWAS signals on Chr6 and Chr7 were significantly associated with sugar yield per hectare, which is an important target in sugar beet breeding. For example, three genes were located in the strong association peaks, including BvPGD (IMABv01g018581), BvE3.2.1.6 (IMABv01g018526), and BvSLC35F1-2 (IMABv01g015264), which participate in the carbohydrate metabolism. The geneBvYGK1 (IMABv01g018527) is associated with purine metabolism, and there was a strong GWAS signal on Chr7 for BvACP7 (IMABv01g015268), which is associated with purple-acid phosphates (Figure 6B; Supplementary Figure 5B; Supplementary Table11). In addition, genes were also identified that were associated with root yield per hectare, including BvPGD (IMABv05g004241), BvSTP (IMABv04g007036), BvHPGT (IMABv05g004244), and glucose-6-phosphate 1-epimerase (IMABv05g004245), which were associated with the pentose phosphate pathway and galactose and monosaccharide transport. Serine/threonine protein kinase (STPK), a type of eukaryotic cell-like protein kinase, is involved in the transport of glucose and glutamine (Jia et al., 1997). Genes BvULK4 (IMABv03g010205), BvTMK1 (IMABv09g022186), and BvPTO (IMABv03g013119) code serine/threonine kinases and were also associated with root yield per hectare (Figure 6C; Supplementary Figure 5C; Supplementary Table 12).

Root rot, damping off, and rhizomaniaare emerging serious threats to sugar beet production. In the GWAS, several genes associated with disease defense were identified, including BvTSSK6 (IMABv02g031103), BvCLCN7 (IMABv09g022351), BvPRPS (IMABv01g024513), BvEXO1 (IMABv08g027895), BvFAR1 (IMABv04g006805), BvSERK1 (IMABv09g023194), BvLRR (IMABv03g010906), BvPTI1 (IMABv03g010905), WRKY1 (IMABv09g020695), and BvDELLA (IMABv09g020694) (Figures 6D–F; Supplementary Figures 5D–F; Supplementary Tables 13–15).

In the GWAS analysis on pollen scale types of different beet varieties, there were some strong signals on Chr2, Chr3, and Chr4. Genes were identified that were related to pollen number, including BvHSFF (IMABv03g011676), BvQUA3 (IMABv03g011680), BvARR-B (IMABv03g011683), BvBRI1 (IMABv02g031269), BvNXN (IMABv02g031270), BvERAL1(IMABv02g031271), BvFRK1(IMABv04g005357), BvDELLA(IMABv04g005358), and BvANKRD44 (IMABv04g005362). The gene BvQUA3, a putative homo-galacturonan methyl-transferase, is involved in regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells (Miao et al., 2011). The gene BvARR-B is a member of the two-component response regulator ARR-B family, which is a partially redundant negative regulator of cytokinin signaling (To et al., 2004; Mason et al., 2005). The gene BvBRI1, protein brassinosteroid insensitive 1, is another gene associated with plant hormone signal transduction, which can transfer phosphorus-containing groups (Zipfel, 2008). The gene BvFRK1, a target of AtWRKY6 regulation during plant senescence, is a senescence-induced receptor-like serine/threonine-protein kinase (Robatzek and Somssich, 2002) (Figure 6G; Supplementary Figure 5G; Supplementary Table 16). The results provide valuable information on the characteristic genes associated with B. vulgaris pollen fertility, which can be used in molecular breeding.



Gene ontology and KyotoEncyclopedia of genes and genomes pathway analysis of differential expressed genes

Transcriptomes of two pairs of sugarbeet cytoplasmic male sterility (CMS) lines were compared (MS137 vs. OT152 and MS301 vs. OT302). MS137 and MS301 are sugar beet sterile lines, and OT152 and OT302 are sugar beet maintainer lines. There were 2,032 and 2,090 significant DEGs identified in MS137 vs. OT152 and MS301 vs. OT302 comparisons, respectively (Supplementary Figure 6; Supplementary Tables 17, 18). Six hundred and twenty-one DEGs were identified in both MS137 vs. OT152 and MS301 vs. OT302 comparisons (Supplementary Tables 19, 20). In the KEGG analysis, the 621 shared genes were enriched in plant–pathogen interaction [two up-regulated genes, including FRK1 (IMABv09g022061) and RPS2 (IMABv03g008950)], glycolysis/gluconeogenesis [two down-regulated genes, including pdhC (newGene_5384) and gapN (IMABv04g008381)], photosynthesis [one down-regulated gene, petF (IMABv02g032492)), and MAPK signaling pathway (one up-regulated gene, FRK1 (IMABv09g022061)]. “Binding” (GO:0005488, four up- and one down-regulated genes) and “catalytic activity” (GO:0003824, five up- and two down-regulated genes) were the two most enriched GO terms in the molecular function ontology. “Cell” (GO:0005623, two up- and one down-regulated genes) and “membrane part” (GO:0044425, three up- and two down-regulated genes) were the two most enriched GO termsin the cellular component. In addition, there were 997 up-regulated and 1,035 down-regulated DEGs in MS137 vs. OT152 (Supplementary Table 17) compared with 997 up-regulated and 1,093 DEGs in MS301 vs. OT302 (Supplementary Table 18). Among those DEGs, 334 were up-regulated and 285 were down-regulated between MS137 vs. OT152 and MS301 vs. OT302 (Supplementary Figure 7).

Based on GO and KEGG analyses of differential expression, six genes with significant differential expression were selected for a real-time fluorescence quantitative PCR test for verification (Supplementary Figure 8; Supplementary Table 21). The SGNH hydrolase gene (IMABv04g006046), GDSL esterase gene (IMABv05g001851), galacturonase gene (IMABv04g007649), and pectinlyase gene (IMABv07g016298) were up-regulated in maintainers. Genes for UDP-glucosyltransferase (IMABv06g016651) and cytochrome P450 (IMABv09g022885) were up-regulated in sterile lines. The results showed that expression profiles of the genes were consistent with transcriptome results.




Discussion

The newly assembled genome was compared with the two previously released chromosome-level assemblies of B. vulgaris: line RefBeet (Dohm et al., 2014) and EL10 (Funk et al., 2018) (accession numbers: GCA_000511025.2 and GCA_002917755.1, respectively). The covered genome size of ~786 Mb was very close to the estimated sugar beet genome of 714 to 758 Mb (Arumuganathan and Earle, 1991) and was much larger than that of previous reports (RefBeet about ~540 Mb and EL10 about ~566 Mb). Compared with EL10, the best previously assembled genome, the new genome contained fewer scaffolds (257) and had a longer scaffold N50 (93.06Mb), indicating a significant improvement in sequence continuity.

When sugar beet IMA1 assembly and RefBeet genome were compared, the synteny analysis revealed that part of segments in Chr6 of IMA1 had inverted compared with the counterpart in Chr9 of RefBeet. Inherited variation between the two sugar beet cultivars and the much more accurate and complete assembly of IMA1 genome might be major reasons for differences. Overall, the quality of the new genome assembly of B. vulgaris IMA1was higher than that of the RefBeet genome, and therefore, it will be valuable in genetic analyses of sugar beet and related species.

The SUS and SPS gene families are well documented in plants, and gene family members vary from species to species (Castleden et al., 2004). In the metabolism of uridine diphosphate glucose, it is catalyzed and hydrolyzed to sucrose, and SPS is the key rate-limiting enzyme in the process (Lunn and Macrae, 2003). Changes in sugar content are closely related to expression levels of SUS and SPS genes (Lv et al., 2018). For example, increases inactivities of SUS and SPS enzymes are correlated with increases in sucrose content in the high sucrose-accumulating Japanese pear ‘Chojuro’. By contrast, activity of the enzymes does not increase in the low sucrose-accumulating pear cultivar ‘Yali’ during fruit ripening (Moriguchi et al., 1992). In addition, in the early stages of fruit development, Asian pear cultivars ‘Niitaka’ and ‘Whangkeumbae’ have relatively low sucrose content with relatively low activities of SUS and SPS enzymes, but when sucrose content reaches the peak value, SUS and SPS enzymes have the highest activities (Choi et al., 2009).

Cluster analysis of the SUS gene family in six dicotyledons was performed, and 31 genes were categorized into three different clusters. Six and four SUS genes were identified in sugar beet RefBeet and sugar beet IMA1, respectively. Similarly, SPS gene families were compared in nine dicotyledons, and 28 genes were categorized into three different clusters. Three and two SPS genes were identified in IMA1 and EL10, respectively, which were categorized to clusters 2 and 3, respectively. In addition, the number of SPS genes was species-related, and sugar metabolism regulation was related to the activity of SPS enzymes but was not affected by the quantity of genes.

In the distribution and transport of sucrose from source to sink in plants, sucrose transporters (SUTs) are important genes (Chao et al., 2020). However, the molecular mechanisms of SUT function in the sugar metabolism pathway are not fully understood. Three different SUT clusters have been identified in the analysis of SUT gene family clusters in eight dicot species (Chen et al., 2010).

The SUS, SPS, and SUT gene families are involved in sucrose synthesis, transport, and accumulation. Although there are fewer SUS, SPS, and SUT genes, sugar beet accumulates much more sugar in storage tissues than that of other dicots. Therefore, it was hypothesized that compared with other species, members of those gene families in sugar beet have more important roles in sugar catalysis and sugar transport efficiency or some strong transcription regulatory factors regulate those functional genes. As a result, sugarbeet has strong capability to synthesize, transport, and accumulate sugar.

The SWEET gene family in plants is categorized into four different clusters. SWEETs in cluster1 are mainly responsible for glucose transport. For example, AtSWEET1 of Arabidopsis can mediate the absorption and transport of glucose (Chong et al., 2014; Tao et al., 2015). SWEETs in cluster 2 are mainly responsible for monosaccharide transport (Chong et al., 2014). Most of the SWEETs in cluster3 are associated with sucrose transportation (Kryvoruchko et al., 2016). In Arabidopsis, AtSWEET11 and AtSWEET12 are responsible for transporting intracellular sucrose to the apoplast and then moving it into the phloem for long-distance transport (Chen et al., 2012). In cluster 4, AtSWEET16 is associated with transport of glucose, fructose, and sucrose (Klemens et al., 2013). In IMA1, 11 SWEET family genes were identified, including four in cluster1, one in cluster2, four in cluster3, and two in cluster4. It was hypothesized that the SWEET family genes in IMA1 are involved in transporting sucrose, fructose, and glucose, as well as long-distance transport from mesophyll cells into the phloem.

In summary, the data collected from gene sequencing of IMA1 were used to identify the members of SUS, SPS, SUT, and SWEET gene families that are generally considered to be crucial genes involved in plant sugar metabolism. Genes related to disease resistance were also identified. Candidate genes were nominated with the potential to regulate sugar metabolism and improve sugar productivity. Genes were also nominated that were related to disease-resistance, which could be targets for genetic improvement.

In this study, GWAS was performed for a set of sugar beet agronomic traits. Ten disease-resistance genes significantly associated with root rot, damping off, and rhizomania were identified. Five genes were identified that had significant relations with sugar yield per hectare of sugar beet. Among those genes, BvSLC35F1-2 is involved in carbohydrate metabolism, whereas gene BvACP7 codes a purple-acid phosphatase in a family of binuclear metallohydrolases identified in plants, animals, and fungi (Flanagan et al., 2006). In addition, nine highly expressed genes associated with sugar beet pollen fertility were identified. Those genes were involved in regulating cell wall biosynthesis, plant hormone signal transduction, and plant senescence. Among six significant DEGs, SGNH hydrolase, GDSL esterase, and pectinlyase were associated with another development, pollen wall development, and pollen tube growth (Guan et al., 2008; Wang et al., 2018; An et al., 2019). Those genes were down-regulated in sugar beet sterile lines, which might be related to sugar beet pollen abortion and male sterility. Plant auxin metabolism involves cytochrome P450 (Feldmann, 2001), and excessive auxin content can lead to stunting and sterility of plants. Cytochrome P450 was significantly up-regulated in sugar beet sterile lines, which might be related to sugar beet fertility. Yuan long Wu (Wu et al., 2022) recently identified a galacturan 1, 4-alpha-galacturonidase [EC:3.2.1.67] gene that controls the formation of cotton pollen outer cell wall. They revealed the important role of galacturan 1, 4-alpha-galacturonidaseis to de-esterify homogalacturonan in the formation of the outer wall of cotton pollen. In this study, galacturan1, 4-alpha-galacturonidase gene expression was up-regulated in MS301 in the MS301 vs. OT302 DEG analysis (Supplementary Table 22). There were multiple copies of the gene, and expression of all copies was up-regulated (IMABv01g025187, IMABv01g025166, IMABv01g025186, IMABv01g025168). However, in the analysis of MS137 vs. OT152 DEGs, there was no difference in expression of a galacturan1, 4-alpha-galacturonidase gene, suggesting that the mechanism of male sterility might be diverse. The results suggested that secondary metabolism regulates the expression of male sterility genes. The results also provide a valuable resource to study male sterility related pathways in sugar beet.
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Total 3,480 100%
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RNA name Sequence length Partition function algorithm Nussinov algorithm Assembly algorithm
X Y McC X Y MccC X Y MCC
d.5.e.C.carpio 120 0.66 0.68 0.67 0.64 0.59 0.61 0.61 0.63 0.62
a.ll.e.L.dispersa 218 0.49 0.44 0.46 0.46 0.43 0.44 0.62 0.63 0.62
a.l1.e.RPinouyei 380 0.53 0.59 0.56 0.36 0.29 0.32 0.68 0.65 0.66
a.l1.e.Staurastrum.sp 423 0.45 0.49 0.47 0.30 0.29 0.30 0.53 0.51 0.52
b.11.e.H.rubra 543 0.42 0.29 0.35 0.19 0.17 0.17 0.51 0.46 0.48
a.16.m.L.tarentolae 670 0.16 0.21 0.18 015 0.18 0.16 0.23 0.24 0.23H
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Datasets

Number of Number of Total
positive samples negative samples number
DS1 29237 29433 58670
DS2 7298 7300 14598
DS3 153635 153629 307264
DS4 31414 31843 63257
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