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The Burden of Neonatal Diseases
Attributable to Ambient PM 2.5 in
China From 1990 to 2019
Jia Yuan1, Lu Shi1, Hongbo Li1, Jing Zhou2, Lingxia Zeng1, Yue Cheng1* and Bei Han1*

1School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China, 2Department of Pediatrics, The Second
Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China

Background: Air pollution exposure is an environmental risk to public health. And the
available data on relationships of air pollution and neonatal disease burden are scarce. This
study assessed neonatal disease burden attributable to Particulate Matter 2.5 (PM 2.5)
pollution in China.

Methods: This is a retrospective analysis with data from the GBD2019 database. Data of
PM 2.5 pollution exposure levels and neonatal disease burden attributable to PM 2.5 in
China from 1990 to 2019 were obtained from the Global Burden of Disease Study 2019
(GBD 2019); Data of PM2.5 concentration was collected from the Bulletin of the State of
the Ecological Environment in China; Data of perinatal mortality was collected from the
Chinese Maternal and Child Health Surveillance Network. Deaths, Disability-adjusted life
years (DALYs), Year of life lost (YLLs), and Years lived with disability (YLDs) are primary
indicators used to assess neonatal diseases burden. The correlation of PM2.5 pollution
and neonatal death was analyzed. Average Annual Percentage Change (AAPC) and
increment were used to assess exposure levels and disease burden trends.

Results: PM 2.5 pollution exposure level of newborns in China is much higher than global
average, 32.08 per 100 people (95% UI: 26.57–38.06) in 2019 compared to 1990 (15.86
per 100 people, 95% UI: 6.83–30.88), with an increase of 102.27%. And it is statistically
verified PM2.5 concentration was positively correlated with neonatal disease deaths (r =
0.9534, p = 0.0009) and DALYs (r = 0.9534, p = 0.0009). The overall disease burden of
neonatal diseases attributed to PM 2.5 pollution in China has decreased from 1990 to
2019, with a decrement of 5738.34 deaths (decreased: 56.85%), 51.01 person/years
(decreased: 56.84%) for DALYs, 51.23 person/years (decreased: 57.11%) for YLLs and an
increase of 150.69 person/years (increased: 31.71%) for YLDs.

Conclusion: There exists positive correlation between environmental pollution and
neonatal diseases in China. The number of neonatal disease deaths, DALYs, and YLLs
due to PM 2.5 pollution showed a decreasing trend with the environmental pollution
control. For the rising YLDs, there is a need to improve survival rates while focusing on
prognosis of neonatal disease and reducing the burden of disease brought on by disability.
Controlling environmental pollution is likely to help reduce neonatal disease burden,
especially premature birth and neonatal encephalopathy.
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INTRODUCTION

Newborns’ first 28 days of life (neonatal period) are the most
vulnerable period for a child’s survival, with approximately
2.5 million children dying each year in the first month of life
(EF et al., 2017). Newborns may suffer from various diseases in
this stage, such as prematurity, neonatal encephalopathy,
jaundice, and sepsis. The main causes of newborns’ death are
preterm birth and intrapartum-related complications and
infections, such as sepsis, meningitis, and pneumonia. The
global neonatal mortality rate decreased from 3.66% in 1990
to 1.80% in 2017, with China decreasing from 2.95% in 1990 to
0.47% in 2017. In the United States, the neonatal mortality rate
decreased from 0.58% in 1990 to 0.36% in 2017, while in Japan, it
decreased from 0.25% in 1990 to 0.09% in 2017. In 2017, neonatal
diseases were ranked ninth in the YLL ranking of the 25 leading
causes of death of newborns in China (Zhou et al., 2019).
Neonatal diseases are complex, and the mortality rate has
decreased significantly with the development of medical and
neonatal care; however, the potential for developmental
disability cannot be ignored. The impact of neonatal disease
on quality of life increases the burden of disease.

Air pollution has a negative impact on human health.
Particulate Matter 2.5 (PM 2.5) is one of the main air
pollutants. It has been shown that PM 2.5 pollution impacts
maternal health during pregnancy and affects the outcome of
birth, especially the birth weight and the preterm birth (Jacobs
et al., 2017). Ambient particulate matter pollution was one of the
top 4 risk factors for deaths and DALY percentages in China in
2017 where age-standardized Summary Exposure Values (SEV)
have increased from 1990 to 2017, which is the largest change of
age-standardized SEV among the top 10 risk factors in China
(Zhou et al., 2019). The Chinese government has been actively
combating air pollution over the past few years; even PM 2.5
pollution has been controlled strictly and its concentration has
decreased obviously. Moreover, the long-term average absolute
level of air pollution in China is still high, and the burden of
disease due to those air pollution has decreased, but some areas
are still on the rise (Huang et al., 2018; Yin et al., 2020; Zhang
et al., 2021).

In recent years, the health effects of air pollution on newborns
have received increasing attention. Therefore, this study aimed to
assess the burden of neonatal diseases caused by PM 2.5 pollution
in China from 1990 to 2019. Furthermore, to understand more
systematically the burden of neonatal diseases attributable to PM
2.5 pollution in China and explore the pattern of change over the
past 30 years; And the analysis results will provide a basis for
rational allocation of health resources and the formulation of
health policies.

MATERIALS AND METHODS

Data Sources
The 2019 Global Burden of Disease (GBD) project
comprehensively assesses the disease burden for 87 risk factors
in 204 countries and territories worldwide. The GBD publishes

data on attributable mortality, disability-adjusted life years
(DALYs), years of life lost (YLLs), and years lived with
disability (YLDs) data. The current data is given for
1990–2019 (Murray et al., 2020). YLL was estimated by
multiplying the estimated number of deaths by the patient’s
age with the standard life expectancy at that corresponding
age. The YLD due to disease-induced disability was estimated
by multiplying the disease prevalence with different disability
weights, and the DALY was obtained by summing YLD and YLL
(Liu et al., 2019). The rates were all age-standardized using the
world standard population developed by the GBD research
(Feigin et al., 2015).

In the GBD database, the primary data used to estimate
mortality in China were obtained from the Chinese Center for
Disease Control and Prevention, the Chinese Disease Surveillance
Point System (DSPs), the Chinese Maternal and Child Health
Surveillance Network, the Chinese Health Statistical Yearbook,
and data from published and unpublished studies and reports
(Luo et al., 2017). The GBD PM2.5 values were derived from the
integration of satellites combined with a chemical transport
model, surface measurements, and geographical data at a 0.1°

× 0.1° (approximately 11 km × 11 km at the equator) resolution,
and then aggregated to national-level population-weighted means
to produce a national exposure estimate (Brauer et al., 2016;
Cohen et al., 2017; Liu et al., 2021).

Data Analysis Parameters
The data used in this study was obtained fromGBD 2019 through
the Global Health Data Exchange query tool (GHDx, http://ghdx.
healthdata.org/gbd-results-tool) with data refinement
distinguishing between years, genders, attributions, and ages
(Liu et al., 2021). The PM2.5 exposure data and the neonatal
disease burden data attributable to PM2.5 from 1990 to 2019 were
extracted from the GHDx. Deaths, DALYs, YLLs, and YLDs, were
the main indicators used to assess the disease burden in
newborns. Neonatal diseases are divided into five categories:
neonatal preterm birth, neonatal encephalopathy due to birth
asphyxia and trauma, hemolytic disease, neonatal jaundice,
neonatal sepsis, and other neonatal infections and disorders.

The data on China’s PM2.5 concentration comes from the
Bulletin of the State of the Ecological Environment in China
issued by the Ministry of Ecology and Environment of the
People’s Republic of China (https://www.mee.gov.cn/). The data
on perinatal mortality in China comes from the Chinese Maternal
and Child Health Surveillance Network (http://www.mchscn.cn/).

Statistical Analysis
The annual percentage change (APC) and average annual
percentage change (AAPCs) were used to evaluate the change
trend of PM2.5 exposure from 1990 to 2019. APCs were used to
detect specific segments of the linear trend throughout the study.
AAPCs were used to estimate the overall change. APC, AAPC,
and its 95% CI were calculated using Joinpoint Regression
Program 4.9.0.0, and differences were considered significant
at p < .05.

GraphPad prism 5 was used to plot the figures and describe
population exposure levels of PM2.5 pollution and its changes in
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China and globally from 1990 to 2017. And Pearson Correlation
was analyzed to directly explore the correlation between PM2.5
pollution concentration and the neonatal death rate, also used to
analyze the current level of mortality and disease burden
attributable to PM 2.5 pollution among Chinese newborns
from 1990 to 2019, as well as the magnitude of their changes.

RESULTS

Trends in PM 2.5 Exposure of the Whole
Population
The PM 2.5 SEV in Global whole population increased from
15.65 (95% UI:10.62–21.58) per 100 population in 1990 to 26.22
(95% UI:21.57–30.50) per 100 population in 2019. Although a
decreasing trend was observed from 2015 to 2017, the global
average exposure level of PM 2.5 steadily increased between 1990
and 2019, with an increase of 71.20%. The global AAPC in PM 2.5
exposure level was 1.8% (95% CI: 1.7–1.9%) with an overall
increasing trend. There existed a fastest increasing period from
2006 to 2014, with a statistically significant APC of 3.0% (95% CI:
2.9–3.1%).

Conversely, the PM 2.5 SEV in whole population of China was
16.92 (95% UI: 7.57–30.64) per 100 population in 1990, which is
close to the global SEV, but has been increasing since then at a

much higher rate than the global average. The SEV value
increased to 37.57 (95% UI: 31.94–43.25) per 100 population
in 2019, with a downward trend starting in 2015; however, an
overall upward trend of 133% was observed from 1990 to 2019
and has remained high compared to the global average. The
AAPC of PM 2.5 exposure level in China was 2.8% (95% CI:
2.6–2.9%). An overall increasing trend with the fastest increasing
period being from 1995 to 1999 with an APC of 4.6% (95% CI:
3.5–5.7%) and a decreasing trend in 2014–2019 with an APC of
−1.4% (95% CI: −1.9-0.9%), which was statistically significant
(Tables 1, 2; Figure 1).

Trends of Neonatal PM 2.5 Exposure Levels
The PM 2.5 SEV in Global newborns population increased from
13.27 (95% UI:8.22–19.58) per 100 people in 1990 to 22.60 (95%
UI:17.96–27.69) per 100 people in 2019. The average exposure
level showed an overall upward trend from 1990 to 2019 with an
increase of 71.11%. The global AAPC in neonatal PM 2.5
exposure levels was 1.8% (95% CI: 1.5–2.1%). An overall
increasing trend with the fastest increasing period being from
2010 to 2014 with a statistically significant APC of 4.3% (95% CI:
3.0–7.4%).

PM 2.5 exposure levels among Chinese newborns increased
from 16.88 (95% UI: 7.55–30.62) per 100 people in 1990 to 32.08
(95% UI:26.57–38.06) per 100 people in 2019. A downward trend

TABLE 1 | Trends in PM 2.5 exposure of the whole population globally and in China from 1990 to 2019 (SEV, 95%UI).

Year Whole population Neonates

Global China Global China

1990 15.65 (10.62–21.58) 16.92 (7.57–30.64) 13.27 (8.22–19.58) 15.86 (6.83–30.88)
1991 15.82 (10.81–21.61) 17.47 (7.99–31.46) 13.38 (8.45–19.52) 16.31 (7.21–30.71)
1992 16.02 (11.06–21.71) 18.08 (8.54–32.19) 13.50 (8.63–19.60) 16.80 (7.71–30.61)
1993 16.24 (11.26–22.04) 18.75 (8.97–32.77) 13.65 (8.76–19.57) 17.34 (8.11–30.91)
1994 16.48 (11.49–22.28) 19.47 (9.45–33.45) 13.81 (8.95–19.66) 17.92 (8.70–31.39)
1995 16.73 (11.74–22.50) 20.23 (10.01–34.34) 14.00 (9.16–19.77) 18.56 (8.94–32.60)
1996 17.03 (12.08–22.63) 21.08 (10.90–34.64) 14.22 (9.37–19.89) 19.28 (9.71–33.12)
1997 17.43 (12.49–23.05) 22.08 (11.98–35.34) 14.53 (9.70–20.15) 20.11 (10.73–33.33)
1998 17.89 (12.98–23.52) 23.15 (13.39–36.02) 14.91 (9.97–20.57) 20.98 (11.62–34.56)
1999 18.34 (13.46–23.98) 24.19 (14.36–37.50) 15.27 (10.31–20.95) 21.83 (12.48–35.22)
2000 18.73 (13.70–24.45) 25.12 (15.26–38.25) 15.58 (10.64–21.36) 22.6 (13.13–35.62)
2001 19.01 (13.96–24.56) 25.92 (16.37–38.27) 15.78 (10.85–21.55) 23.26 (14.24–36.09)
2002 19.27 (14.28–24.61) 26.72 (17.61–38.25) 15.94 (11.03–21.53) 23.93 (14.92–36.25)
2003 19.53 (14.62–24.63) 27.54 (18.43–38.03) 16.13 (11.23–21.79) 24.64 (15.54–36.02)
2004 19.83 (14.95–24.87) 28.38 (19.00–38.93) 16.35 (11.45–21.85) 25.38 (16.36–36.80)
2005 20.17 (15.32–25.30) 29.25 (19.78–39.58) 16.64 (11.73–22.18) 26.13 (17.23–37.27)
2006 20.60 (15.73–25.50) 30.21 (21.74–38.97) 16.99 (12.19–22.26) 26.94 (18.55–36.50)
2007 21.15 (16.38–25.82) 31.38 (23.72–39.15) 17.44 (12.74–22.75) 27.91 (20.33–36.28)
2008 21.77 (17.06–26.28) 32.64 (25.40–39.47) 17.96 (13.29–23.20) 28.97 (21.98–36.18)
2009 22.40 (17.74–26.96) 33.88 (26.74–40.28) 18.50 (13.89–23.71) 30.04 (23.55–36.43)
2010 22.98 (18.28–27.62) 34.98 (27.90–41.25) 19.04 (14.40–24.30) 30.98 (24.61–37.40)
2011 23.64 (18.87–28.21) 36.10 (29.21–42.30) 19.74 (15.11–24.81) 31.97 (25.68–38.30)
2012 24.45 (19.64–28.95) 37.36 (30.42–43.49) 20.71 (16.03–25.85) 33.11 (26.84–39.42)
2013 25.27 (20.42–29.85) 38.54 (31.63–44.66) 21.63 (16.78–26.83) 34.17 (27.84–40.43)
2014 25.92 (21.01–30.52) 39.45 (32.57–45.67) 22.27 (17.37–27.66) 34.93 (28.56–41.14)
2015 26.19 (21.27–30.80) 39.83 (33.24–45.94) 22.72 (17.88–28.15) 35.22 (28.97–41.34)
2016 25.80 (20.97–30.21) 38.77 (32.44–44.65) 22.48 (17.80–27.72) 33.91 (28.03–39.90)
2017 25.41 (20.73–29.73) 37.53 (31.57–43.28) 21.99 (17.29–27.11) 32.44 (26.73–38.42)
2018 25.64 (21.01–29.90) 37.35 (31.64–43.08) 22.04 (17.42–27.04) 32.11 (26.58–38.02)
2019 26.22 (21.57–30.50) 37.57 (31.94–43.25) 22.60 (17.96–27.69) 32.08 (26.57–38.06)

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8284083

Yuan et al. PM2.5 Related Neonatal Disease Burden

7

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


began in 2015; however, the overall trend over the period of
1990–2019 showed an upward trend with an increase of 102.27%
and was beyond the global average. The mean AAPC in PM 2.5
exposure levels for newborns in China was 2.4% (95% CI:
2.2–2.6%). An overall increasing trend with the fastest
increasing period from 1994 to 1999 with an APC of 4.0%
(95% CI: 3.2–4.8%) and a decreasing trend from 2014 to 2019
with an APC of - 2.0% (95% CI: 2.6% to −1.5%), which is
statistically significant. (Tables 1, 2; Figure 1).

Correlation Analysis Between PM2.5
Concentration and Neonatal Disease
Burden
The PM2.5 concentration is positively correlated with the burden
of neonatal disease by Pearson Correlation analysis, showing that
the data in GBD is consistent with the data from the China
Maternal and Child Health Surveillance Network. Data from

GBD shows that both neonatal disease deaths (r = 0.9534, p =
0.0009) and DALYs (r = 0.9534, p = .0009) in China are positively
correlated with PM2.5 concentrations. Data obtained from the
Chinese Maternal and Child Health Surveillance Network shows
that the perinatal mortality rate is positively correlated with the
concentration of PM2.5 (r = 0.9134, p = .004) (Figure 2).

Neonatal Disease Burden Attributable to
PM 2.5 Pollution in China
From 1990 to 2019, the overall neonatal disease deaths, DALYs,
and YLLs due to PM 2.5 pollution in China showed a decreasing
trend, while YLDs showed an increasing trend (Figure 2).
Compared to 1990, the number of deaths in 2019 decreased
by 5738.34 cases, which is a decrement of 56.85%; DALYs
decreased by 51.01, which is a decrement of 56.84%; YLLs
decreased by 51.23, a 57.11% drop, and the YLDs increased by
150.69, which is an increment of 31.71%. Moreover, compared to

TABLE 2 | The analysis of trends in PM 2.5 exposure of the whole population globally and in China from 1990 to 2019 according to the APC and the AAPC.

Location Period Index General population Neonates

Value 95% CI p Value Value 95% CI p Value

Global 1990–1995 APC 1.3a 1.2–1.5 <.001 1.0a 0.5–4.1 .001
1995–2000 2.3a 2.1–2.5 <.001 2.2a 1.5–6.2 <.001
2000–2006 1.5a 1.4–1.7 <.001 1.2a 0.4–3.4 .005
2006–2014 3.0a 2.9–3.1 <.001 2.8a 2.0–7.7 <.001
2014–2017 −0.6 −1.3–0.0 .060 4.3a 3.0–7.4 <.001
2017–2019 1.2a 0.5–1.9 .002 −.2 −0.7~-0.7 .522

1990–2019 AAPC 1.8a 1.7–1.9 <.1 1.8a 1.5–2.1 <.1

China 1990–1995 APC 3.6a 3.1–4.2 <.001 3.1a 2.3–3.9 <.001
1995–1999 4.6a 3.5–5.7 <.001 4.0a 3.2–4.8 <.001
1999–2014 3.4a 3.3–3.5 <.001 3.3a 3.1–3.4 <.001
2014–2019 −1.4a -1.9~-0.9 <.001 −2.0a -2.6~-1.5 <.001

1990–2019 AAPC 2.8a 2.6–2.9 <.1 2.4a 2.2–2.6 <.1
aRepresents p < .05, the difference is statistically significant.

FIGURE 1 | Trends in PM 2.5 exposure of the whole population and newborns globally and in China from 1990 to 2019.
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FIGURE 2 | Correlation between pm2.5 concentration and neonatal disease burden.

TABLE 3 | Neonatal disease burdens (in mortality, DALYs, YLDs, and YLLs) attributable to PM 2.5 exposure in China in 1990 and 2019.

1990 2019 Increment %

Mortality (person,95%UI)
A 5476.80 (2537.60–9464.55) 2214.69 (1653.17–2782.82) −3262.11 −59.56
B 3573.77 (1573.65–6351.33) 1484.47 (1111.38–1898.03) −2089.30 −58.46
C 231.65 (103.94–413.66) 64.84 (47.92–84.61) −-166.81 −72.01
D 166.3 (75.81-1–299.01) 164.91 (124.45–209.46) −1.39 −0.84
E 645.5 (295.61–1131.09) 422.78 (315.76–544.35) −222.72 −34.50

Total 10094.03 (4589.31–17883.13) 4351.69 (3282.10–5478.61) −5738.34 −56.85

DALYs (person/10000/year,95%UI)
A 48.69 (22.56–84.14) 19.71 (14.72–24.76) −28.98 −59.52
B 31.76 (13.98–56.44) 13.19 (9.88–16.87) −18.57 −58.47
C 2.06 (0.93–3.68) 0.58 (0.43–0.75) −1.48 −71.84
D 1.48 (0.68–2.66) 1.48 (1.12–1.88) −.00065 −0.04
E 5.74 (2.63–10.06) 3.77 (2.82–4.85) −1.97 −34.32

Total 89.74 (40.80–158.97) 38.73 (29.24–48.76) −51.01 −56.84

YLDs (person/year,95%UI)
A 294.85 (129.99–521.18) 300.16 (209.60–407.37) 5.31 1.80
B 31.92 (11.13–75.18) 23.34 (13.31–37.56) −8.58 −26.88
C 26.49 (9.73–63.81) 25.17 (9.16–65.39) −1.32 −4.98
D 62.13 (22.61–129.12) 178.94 (108.98–265.40) 116.81 188.01
E 59.80 (27.39–105.86) 98.27 (66.42–135.02) 38.47 64.33

Total 475.19 (218.62–826.69) 625.88 (440.90–834.91) 150.69 31.71

YLLs (person/10000/year,95%UI)
A 48.66 (22.55–84.10) 19.68 (14.69–24.73) −28.98 −59.56
B 31.76 (13.98–56.44) 13.19 (9.88–16.87) −18.57 −58.47
C 2.06 (0.92–3.68) 0.58 (0.43–0.75) −1.48 −71.84
D 1.48 (0.67–2.66) 1.47 (1.11–1.86) −.01 −0.68
E 5.74 (2.63–10.05) 3.76 (2.81–4.84) −1.98 −34.49

Total 89.70 (40.78–158.90) 38.67 (29.16–48.68) −51.23 −57.11

Note.: A, preterm birth; B, neonatal encephalopathy due to birth asphyxia and trauma; C, hemolytic disease and other neonatal jaundice; D, neonatal sepsis and other neonatal infections;
E, Other neonatal disorders.
DALYs, Disability-adjusted life years; YLDs, Years lived with disability; YLLs, Years of life lost.
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1990, the number of deaths, DALYs, and YLLs for all types of
neonatal diseases attributed to PM 2.5 pollution in China in 2019
decreased to various degrees, as shown in Table 3. YLDs
indicators revealed a different scenario with increases of 5.31
person/years (1.8% increase), 116.81 person/years (188.01%
increase), and 38.47 person/years (64.33% increase) for
preterm birth, sepsis, and other infections and neonatal

diseases, respectively; however, decreases of 8.58 person/years
(26.88% decrease) and 1.32 person/years (4.98% decrease) for
neonatal encephalopathy and hemolytic disease and jaundice,
respectively were observed.

Mortality rate, DALY, YLL, and YLD rate of preterm neonatal
birth due to PM 2.5 pollution in China in 1990 and 2019 is the
highest among all types of neonatal diseases. Neonatal

TABLE 4 | Different neonatal disease burdens and the rank in mortality, DALY, YLD, and YLL attributable to PM 2.5 exposure in China in1990 and 2019 (rate/100k).

Disease Mortality DALY YLD YLL

1990 2019 1990 2019 1990 2019 1990 2019

Rank Rate Rank Rate Rank Rate Rank Rate Rank Rate Rank Rate Rank Rate Rank Rate

A 1 300.74 1 194.73 1 26738.98 1 17329.83 1 16.19 1 26.39 1 26722.79 1 17303.43
B 2 196.24 2 130.53 2 17439.53 2 11600.44 4 1.75 5 2.05 2 17437.78 2 11598.39
C 4 12.72 5 5.70 4 1131.59 5 508.71 5 1.45 4 2.21 4 1130.14 5 506.50
D 5 9.13 4 14.50 5 814.75 4 1304.04 2 3.41 2 15.73 5 811.34 4 1288.30
E 3 35.45 3 37.17 3 3152.71 3 3311.65 3 3.28 3 8.64 3 3149.42 3 3303.01

Note: A, Preterm birth; B, Neonatal encephalopathy due to birth asphyxia and trauma; C, Hemolytic disease and other neonatal jaundice; D, Neonatal sepsis and other neonatal infections;
E, Other neonatal disorders; DALYs, Disability-adjusted life years; YLDs, Years lived with disability; YLLs, Years of life lost.

FIGURE 3 | The trends of neonatal disease burdens attributable to PM 2.5 exposure in China from 1990 to 2019 [(A), mortality; (B), DALYs; (C), YLDs; (D), YLLs].
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FIGURE 4 | The trends of different neonatal disease burdens in different genders attributable to PM 2.5 exposure in China from 1990 to 2019 [(A), mortality; (B),
DALYs].
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encephalopathy has the second highest mortality rate, DALY, and
YLL. Sepsis and other infections had the second highest rate of
YLD (Table 4).

The overall disease burden indicators for male infants are
slightly higher than for female infants. The number of cases of
death in 2019 was 2533.45 and 1818.24 for males and females,
respectively. The mortality rates for males and females were
413.50 per 100K, and 346.58 per 100K, respectively. The
DALYs were 225,449.84 person/years and 161,856.02 person/
years for males and females, respectively (Figure 3). The burden
of neonatal diseases attributable to PM 2.5 pollution in China
decreases year to year, but the most predominant neonatal
diseases are still preterm birth and neonatal encephalopathy
(Figure 4).

DISCUSSION

As the source of various health problems, numerous scientific
studies have explained the environmental risk to public health
caused by particle exposure. And the available data on the
relationships of particulate matter air pollution and neonatal
disease burden, particularly in China, are scarce. This study
assessed neonatal disease burden of attributable to PM 2.5
pollution in China from 1990 to 2019 using data related to
PM 2.5 pollution exposure and neonatal disease obtained from
the GBD research.

In this study, PM 2.5 pollution exposure levels among Chinese
newborns were much higher than the global average and more
than doubled in 2019 compared to 1990. Environmental PM2.5
concentration is positively correlated with neonatal disease
burden. Though the overall disease burden of neonatal
diseases attributed to PM 2.5 pollution in China has decreased
from 1990 to 2019. Deaths, DALYs, and YLLs, decreased to
various degrees, but YLDs for preterm birth, sepsis, and other
infections and other neonatal diseases showed varying degrees of
increase, which deserved more attention.

The global number of deaths attributable to PM 2.5 exposure
in 2015 was 4.2 million, with 1.1 million deaths coming from
China, accounting for more than a quarter of all deaths caused by
PM 2.5 exposure. The mortality rate attributable to PM 2.5
pollution in China was 84.3 per 100K, more than four times
that of the United States 18.5 per 100K people (Cohen et al.,
2017). Globally, more than 250 million people live in highly
polluted areas, primarily in east-central China and the Ganges
Plains of India (Cheng et al., 2016). In 2013, China implemented
the Action Plan for the Prevention and Control of Air Pollution,
focusing on treatment mainly in the eastern and central regions
(Huang et al., 2018). There is a decreasing trend of PM 2.5
exposure among Chinese newborns in 2014–2019 with an APC
of–2.0% (95% CI: –2.6% to –1.5%, p < .001)., and there is a
decreasing trend of mortality of neonatal diseases attributable to
PM 2.5 in 2015–2019 with an APC of –6.4% (95% CI: –7.7% to
–5.1%, p < .001). This study shows that the PM 2.5 exposure levels
in China slowed down after 2013 and declined in 2015.
Furthermore, the disease burden attributable to PM 2.5
pollution among newborns has also shown a significant

decrease, However, China still has a severe PM 2.5 pollution
problem and needs to further intensify its treatment and control
efforts to reduce the damage of PM 2.5 pollution on population
health.

Our research verified the data obtained in China and the GBD
data, and the results showed that PM2.5 pollution does have a
certain relationship with the burden of neonatal disease. One
study found that short-term exposure to PM 2.5 adversely affects
neonatal and postnatal mortality, specifically mortality related to
respiratory causes (Yorifuji et al., 2016). A strong association
between PM 2.5 and infant mortality has also been demonstrated
for neonatal mortality in low- and middle-income countries
(Anwar et al., 2019; Goyal et al., 2019). Several studies have
also shown that PM 2.5 exposure during pregnancy or the
postpartum period has adverse effects on neonatal health and
results in adverse outcomes such as preterm birth, low birth
weight, neonatal death, and impaired lung development (Proietti
et al., 2013; Gauderman et al., 2015; Korten et al., 2017; Smith
et al., 2017; Heft-Neal et al., 2018; Zhang et al., 2019; Macchi et al.,
2021).

The leading causes of neonatal death are prematurity, birth-
related complications, and infections such as sepsis, meningitis,
and pneumonia. According the estimates from World Health
Organization (WHO), 35% of all neonatal deaths in 2017 were
due to complications of prematurity, 24% of deaths were related
to delivery (intrapartum events), such as birth asphyxia, and 14%
of deaths were due to sepsis or meningitis (Hug et al., 2019). From
1990 to 2017, there has been a significant improvement in
neonatal survival globally, a 51% reduction in neonatal
mortality, and a reduction in deaths from 5 million to
2.5 million per year (Hug et al., 2019). Despite this, 2.5 million
newborns died in 2017 alone, with significant variation in
neonatal mortality across regions and countries.

Preterm birth is an important global health issue. An
estimated 15 million neonates are born preterm each year, and
the rate of preterm birth has been steadily increasing worldwide
(Blencowe et al., 2012). The World Health Organization’s Birth
Too Soon: Global Action Report on Preterm Birth, released on 02
May, 2012, states that 15 million preterm babies are born
worldwide each year with more than 1 million dying soon
after birth. Those who survive often endure a lifetime of
accompanying illness (Hua et al., 2015). Preterm birth
complications are the leading cause of death in children under
5 years of age. Approximately 1 million people died worldwide in
2015 (Liu et al., 2016). Air pollution has been shown to influence
preterm birth (Sun et al., 2015; Li et al., 2017; Guan et al., 2019;
Wang et al., 2020). This study shows that China has the highest
mortality and disease burden of preterm births attributable to PM
2.5 pollution, with 197,100 person/years for DALYs, 300.16
person/years for YLDs, and 196,800 person/years for YLLs. It
is suggested that the main contribution to the disease burden
attributable to PM 2.5 neonatal preterm birth in China is
currently YLL. Therefore, it is vital to target preterm birth
complications with the necessary interventions to reduce
deaths due to preterm birth.

Neonatal sepsis is an acute infectious disease with a very high
morbidity and mortality rate. The widespread application of
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antibiotics has led to a significant increase in drug-resistant
strains of pathogenic bacteria (Jia et al., 2017). In 2019, the
rate of neonatal sepsis and other infectious diseases YLD
attributed to PM 2.5 pollution ranked second, increasing
142.31% compared to 1990. The death rate was the fourth
highest, with a reduction of 14.29% compared to 1990. The
results show that the burden of disability caused by neonatal
sepsis is increasing, suggesting that early diagnosis, timely and
rational antimicrobial drug treatment, as well as attention to its
treatment prognosis leading to the possibility of disability should
be achieved.

With improvements in obstetric and neonatal care, the
number of children who survived high-risk neonatal illness
with neurodevelopmental disorders and disabilities has
increased. The risk of having at least one impairment during
development after a perinatal injury is estimated to be
approximately 40% (Kohli-Lynch et al., 2019). Sometimes,
improper application of technical interventions, such as
induction of labor without adequate monitoring during labor,
may result in a higher incidence of injured survivors. In these
settings, YLDs accounts for a larger proportion of the total
DALYs (21% in East Asia/Pacific and Middle East/North
Africa, and 9% in sub-Saharan Africa/South Asia) (Lee et al.,
2013). This study found that the number of neonatal disease
deaths, DALYs, and YLLs due to PM 2.5 pollution in China
decreased from 1990 to 2019, while YLDs increased by 31.71% in
2019 compared to 1990. Developmental disabilities caused by
neonatal diseases increase the burden of disease. It is suggested
that reducing the burden of disease in the neonatal stage requires
not only improving neonatal survival but also requires further
attention. Moreover, we need to focus on the prognosis of
neonatal diseases, paying attention to child developmental
issues, and reducing the burden of disease caused by disability.

There have certain limitations in our research for using the
available database. The data of PM2.5 concentration in China and
the data of perinatal mortality in China are not detailed enough,
and there are differences in the spatial distribution. Further
cohort studies are needed to verify the relationship between
PM2.5 pollution and neonatal disease burden.

CONCLUSION

This study assessed neonatal disease burden of attributable to PM
2.5 pollution in China from 1990 to 2019 using data related to PM

2.5 pollution exposure and neonatal disease obtained from the
GBD research. The results show a high level of PM 2.5 pollution
exposure in China. Environmental PM2.5 concentration is
positively and strongly correlated with neonatal disease
burden. With the control of PM2.5 pollution, although the
burden of disease of newborns is reducing, the burden of
disease caused by disability is increasing, which indicates that
the long-term effects of PM2.5 exposure may contribute to the
disability of newborns. The results of our study suggest that
various measures should continue to be taken to improve air
quality, and focus on the prognosis and developmental disabilities
during improving the neonatal survival.
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Effects of Different Aerosols on the Air
Pollution and Their Relationship With
Meteorological Parameters in North
China Plain
Hujia Zhao1*, Ke Gui2, Yanjun Ma1, Yangfeng Wang2, Yaqiang Wang2, Hong Wang2,
Yuanyuan Dou3, Yu Zheng2, Lei Li 2, Lei Zhang2, Yuqi Zhang4, Huizheng Che2 and
Xiaoye Zhang2

1Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, China, 2State Key Laboratory of Severe
Weather (LASW) and Key Laboratory for Atmospheric Chemistry (LAC), Institute of Atmospheric Composition and Environmental
Meteorology, Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, China, 3WeifangMunicipal Linqu Ecology and
Environment Monitoring Center, Weifang, China, 4Liaoning Meteorological Service Center, Liaoning Meteorological Bureau,
Shenyang, China

Located in East Asia, the North China Plain (NCP) has a severe air pollution problem. In this
study, variations in visibility, particulate matter (PM), gaseous pollutants, vertical
meteorological parameters, and different types of aerosols and their optical properties
were evaluated during an air pollution episode that occurred from 10 to 15 January 2019 in
Tianjin over the NCP. The visibility was <10 km for approximately 96 h, and the
concentrations of PM with an aerodynamic diameter of <2.5 μm (PM2.5) and <10 μm
(PM10) increased to 300 and 400 μg/m3, respectively. Because of the conversion of SO2 to
sulphate aerosol particles, the sulphur dioxide (SO2) concentration decreased to a
minimum of 10 μg/m3. The continual deterioration of visibility was related to the high
relative humidity and the boundary layer of <0.1 km. The southwest airflow (3.0–4.0 m/s)
transported various pollutants from Hebei Province to the NCP. Higher mixing ratios of
sulphate aerosols, organic aerosols, and black carbon aerosols were distributed over a
0.5-km-diameter area, and the maximum concentrations were approximately 90,
250–300, and 20 μg/kg, respectively. Higher mixing ratios of dust aerosols and sea
salt aerosols were distributed within 1.5 km and 1.0–2.5 km, respectively, and their
maximum concentrations were approximately 15 and 9 μg/kg, respectively. The findings
are valuable for analysing the relationship between air quality and pollutant transport in
the NCP.

Keywords: Pm, meteorological parameters, aerosol, aerosol optical depth, North China plain

INTRODUCTION

Aerosols can directly alter the energy balance of the earth–atmosphere system by absorbing and
scattering solar radiation (Ackerman and Toon, 1981; Charlson et al., 1992; Hansen et al., 1997).
Aerosols can facilitate the formation of cloud condensation nuclei, thereby causing changes in global
and regional climates (Twomey et al., 1984; Hansen et al., 2000). Studies have investigated the
environmental effects of aerosols, focusing on the problem of global climate change (Dubovik et al.,
2002; Eck et al., 2005; Che et al., 2019; Gui et al., 2021a; Gui et al., 2021b).
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In the past decade, PM2.5 has become the main pollutant in the
urban areas of China during haze events because of the rapid
development of the economy, the expansion of urbanisation, and
the acceleration of energy consumption (Che et al., 2009; Zhang
et al., 2009; Wang et al., 2014). The regional degradation of
visibility in urban agglomerations in China characterised by
intensive anthropogenic activities has garnered widespread
public attention (Che et al., 2007; Chang et al., 2009; Zhang
et al., 2012). The Beijing–Tianjin–Hebei (BTH) region is the
political and cultural centre of China and a crucial economic zone
in northern China. In recent years, severe pollution caused by
PM2.5 in the BTH region has resulted in considerable public
concern (Jin et al., 2016; Shen et al., 2019). Extreme haze episodes
occur more frequently in the BTH region; moreover, several cities
with poor air quality are located in this region (Che et al., 2014;
Che et al., 2015). Studies have examined fine PM pollution in the
BTH region because of its negative socioeconomic impacts (Gao
et al., 2015; Zheng et al., 2015; Chen et al., 2017). During heavy
pollution episodes, intercity transport is a crucial contributor to
PM2.5 pollution in this region (Hua et al., 2016; Chang et al.,
2018). Studies have conducted model simulations to estimate the
contributions of different source regions (Zhang et al., 2013; Sun
et al., 2016; Zou et al., 2018). In addition to regional transport,
local atmospheric circulation substantially contributes to high
PM2.5 pollution in the BTH region (Miao et al., 2015; Miao et al.,
2017). Therefore, air pollution in the BTH region is mainly
affected by local pollutant emission, specific regional
topography, and regional pollutant transport.

Tianjin is the largest coastal city in the North China Plain
(NCP; 117.2°E, 39.13°N). This city is the central functional area of
the BTH region in China’s Capital Economic Circle and a vital
central city in the Bohai Economic Circle in northern China.
Continuous increases in anthropogenic activities as well as
vehicle exhaust and coal combustion are key factors of
pollutant emissions in this region (Wu et al., 2015; Zhao et al.,
2019). In addition, seasonal biomass burning substantially
contributes to PM2.5 pollution in Tianjin, thus affecting
regional air quality (Andreae and Merlet, 2001; Yang et al.,
2006; Chen et al., 2015). Tianjin Port, one of the world’s
largest container ports, is affected by pollutant emissions from
ships. Furthermore, mesoscale atmospheric circulation
considerably contributes to air pollution in coastal areas
(Corbett et al., 2007; Dore et al., 2007; Yau et al., 2012).

Most studies on pollution events in Tianjin have focused on
particle concentration evolution, chemical composition, and
regional transport (Bai et al., 2021; Lang et al., 2021; Li et al.,
2021). Very few studies have examined the vertical mixing ratios
of different types of aerosols. Thus, we synchronously observed
near-surface and boundary-layer meteorological factors and
aerosols in the vertical direction to examine mechanisms
through which aerosols with different chemical compositions
affect regional air quality, thus causing severe pollution. The
findings provide insights into the mechanisms of regional severe
air pollution. We investigated a pollution event characterised by
high PM2.5 concentrations in the coastal city of Tianjin that
occurred from 10 to 15 January 2019. Temporal variations in the
concentrations of PM and gaseous pollutants as well as

meteorological parameters, namely relative humidity (RH),
temperature, wind speed (WS), and wind direction (WD),
both near the surface and in the vertical direction, were
examined. Moreover, potential sources contributing to PM2.5

emission during the sampling period were determined using
the weighted potential source contribution function (WPSCF)/
weighted concentration weighted trajectory (WCWT) model. In
addition, we determined the effects of different types of aerosols
and their contribution to aerosol extinction during the event.
Multiple data sources were employed. The results may be used to
formulate strategies for the prevention and control of local and
regional air pollution in coastal areas during pollution events.

The remainder of the paper is organised as follows. Section 2
describes the study site and introduces the data used to analyse
the temporal and vertical characteristics of pollution evolution. In
Section 3, variations in pollutant concentrations, surface and
vertical meteorological parameters, and potential PM2.5 sources
during the event were examined. Moreover, the spatial
distributions of aerosol optical properties are discussed
according to the aerosol type and their effects on aerosol
extinction during the episode. Finally, conclusions are drawn
in Section 4.

STUDY SITE AND DATA COLLECTION

Tianjin is a large port city in China with a thriving chemical
industry. The combined effects of local accumulation, regional
transport, and secondary aerosol formation have resulted in
severe atmospheric pollution in this region (Han et al., 2014).
As shown in Figure 1, Tianjin is located east of the Bohai Sea.
Local circulation, such as sea–land breeze, affects air quality
under stable weather conditions. Under the effect of sea–land
breeze circulation, the dispersion of pollutants to distant locations
is inhibited, leading to pollutant accumulation (Han et al., 2015;
Han et al., 2018). During severe pollution events, a convergence
flow field appears in Tianjin and its surrounding areas, leading to
high local pollution levels.

Data collected from six meteorological stations in Tianjin,
comprising the hourly mass concentrations of four crucial
particles and gaseous pollutants, namely PM2.5 (PM with an
aerodynamic diameter of ≤2.5 μm), PM10 (PM with an
aerodynamic diameter of ≤10 μm), SO2, and NO2, were obtained
from the website of the China National Environmental Monitoring
Centre (http://www.cnemc.cn). Furthermore, PM2.5 data collected
nationwide over the study period were used to present the
spatiotemporal evolution of PM2.5 in northern China. The time
series analysis of the pollutants (Figure 2) is based on the average of
data collected from the six stations.

Data on hourly horizontal visibility, temperature, WS, WD,
pressure, and RH at the surface was obtained from the Tianjin
meteorological station (No. 54527, 39.0819°N, 117.0533°E; 3.3 m
above sea level). This information is stored in the database of the
National Meteorological Information Centre of the China
Meteorological Administration (http://data.cma.cn/site/index.html).

Using TrajStat software (http://www.meteothink.org/
products/trajstat.html), 72-h back trajectories corresponding to
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FIGURE 1 | Study site and its surrounding area in the NCP; the red star represents Tianjin.

FIGURE 2 | Time series variations in visibility, PM, gaseous pollutants, PBL height, and meteorology parameters from 10 to 15 January 2019 in Tianjin.
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the period from 11 to 14 January 2019 (with 6-h intervals) were
calculated and clustered by a starting height of 500 m. Two weight
function models, namely the WPSCF and WCWT, were used to
investigate the spatial distribution of potential PM2.5 sources for
prevailing transport trajectories (Wang et al., 2006; Wang et al.,
2009).

Potential source contribution function (PSCF) and
concentration weighted trajectory (CWT) analyses of the study
area (33.5°N–56.0°N, 85.0°E–117.5°E) were performed. A
horizontal resolution grid of 0.5° × 0.5° was applied. To
calculate the WPSCF and WCWT, global data assimilation
system data with a resolution of 1° × 1° were used.

PSCF was analysed to calculate the probability that a source at
latitude i and longitude j. The endpoints of the trajectory segment
in each cell were obtained according to the results obtained by
TrajStat and used to calculate the PSCF value of the grid cell. The
following equation was employed:

PSCFij � mij/nij (1)
where nij is the total number of endpoints present in a cell (i, j)
andmij is the number of sources with concentrations higher than
the threshold criterion when trajectories pass through the cell
(i,j). According to China’s national ambient air quality standard
(GB3095-2012: http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/
dqhjzlbz/201203/t20120302_224165.htm), the criterion value of
a PM2.5 source was set to 75 μg m−3.

The weight function Wij was multiplied by the PSCF value to
reduce the effect of the smaller nij. The equation used was as
follows:

WPSCF � Wij × PSCF (2)

Wij �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.00, 3< nij
0.70, 2< nij ≤ 3
0.42, 1< nij ≤ 2
0.17, nij ≤ 1

(3)

The CWT analysis was performed to localize the major
sources of PM2.5. The Cij value was multiplied by the same
weight function Wij as the PSCF to minimize the uncertainty of
the CWT value.

The equation used was as follows:

Cij � ∑M
k�1Ck × τijk

∑M
i�kτijk

× W(i, j) (4)

whereCij is the weighted average concentration in a grid cell (i, j),
Ck is the measured concentration at the sampling site during the
residence time k, and τijk is the residence time of the back
trajectories corresponding to k in a grid cell (i, j).

To analyse variations in weather conditions during pollution
episodes, two-dimensional data (horizontal 10-m wind field
[WF]) and planetary boundary layer [PBL] height) and three-
dimensional data (vertical WF, vertical RH, and vertical
temperature) were obtained from the European Centre for
Medium-Range Weather Forecasts Reanalysis v5 (ERA5), data
from which have a resolution of 0.25 ° × 0.25 °. The time–height
distributions of RH, temperature, and WF for Tianjin (Figure 3)

were obtained by interpolating the three-dimensional
meteorological data in the ERA5 to those collected by the station.

To examine regional aerosol extinction during the pollution
episode, the spatial distributions of total aerosol optical depth
(AOD) and different types of AOD (SO4AOD, DUAOD,
OMAOD, BCAOD, and SSAOD), as well as the mixing ratios
of sulphate aerosol, dust aerosol, organic matter aerosol, black
carbon aerosol, and sea salt aerosol, were obtained from the
Copernicus Atmosphere Monitoring Service Reanalysis (https://
ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-
reanalysis-eac4?tab=overview) (Inness et al., 2019). The data have
a resolution of 0.75° × 0.75°.

RESULTS AND DISCUSSION

Temporal Variations in Visibility, PM, and
Gaseous Pollutants
Temporal variations in visibility, PM2.5, PM10, and gaseous
pollutant concentrations during a severe pollution episode that
occurred from 10 to 15 January 2019 in Tianjin are presented in
Figure 2.

During this pollution event, visibility deteriorated
significantly, dropping below 5 km and lasting for
approximately 96 h. In the early stage of the pollution episode,
visibility was approximately 10 km at 0000 China Standard Time
(CST) on 10 January; subsequently, visibility continued to
decline, falling to under 5 km on 11 January. Notably, on 12
January, with the intensification of pollution, visibility was <1 km
and accompanied by poor air quality. At 1700 CST on 14 January,
air quality improved and visibility significantly increased to
approximately 30 km until 15 January at the end of the pollution.

At the start of the pollution event, on 10 January, the PM2.5

concentration was approximately 50 μg/m3. With the further
evolution of pollution, the PM2.5 concentration increased to
approximately 200 μg/m3 at 0000 CST on 11 January, reaching
approximately 250 μg/m3 on 12 January. On 13 January, with the
continuous accumulation of pollutants, the PM2.5 concentration
increased to 300 μg/m3. From night-time on 14 January to early
morning on 15 January, the PM2.5 concentration decreased
substantially to approximately 20 μg/m3. Compared with the
influence of fine mode particles, the significant increase of
PM10 mass concentration also reflects the important
contribution of coarse particles to aerosol pollution in Tianjin.
With the further exacerbation in pollution, the PM10 mass
concentration increased to approximately 250 μg/m3 at 0000
CST on 11 January, reaching approximately 300 μg/m3 on 12
January. The PM10 mass concentration remained at the
maximum of approximately 400 μg/m3 on 13 and 14 January.
This result reveals the strong effect of the substantial increase in
coarse particle emission sources on air quality in Tianjin during
this period. This phenomenon corresponded to the dust
contribution, which will be discussed in Section 3.5. On 15
January, after the end of the pollution event, the PM10

concentration significantly decreased to approximately 20 μg/m3.
Variations in the concentrations of SO2 and NO2, during the

pollution event are displayed in Figure 2. In contrast to changes
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in the PM mass concentration (which significantly increased
during the pollution event), the SO2 concentration exhibited a
declining trend. The highest concentration of SO2 (~30 μg/m3)
was observed in the early stage of pollution on 10 January. With
the further evolution of pollution, the SO2 concentration
gradually decreased to approximately 20 μg/m3 on 11 January.
When visibility was less than 5 km on 12 and 13 January, the SO2

concentration was at its lowest point of approximately 10 μg/m3.
With the increase in visibility and improvement in air quality, the
maximum SO2 concentration increased to approximately 20 μg/
m3 on 14 January. On 15 January, air quality improved further,
and the SO2 concentration remained low at <10 μg/m3 as the
pollutants diffused. The variation in the SO2 concentration
during the pollution event indicated the contribution of SO2

to the transformation and generation of sulphate aerosol. The
accumulation of sulphate aerosols was one of the main factors
affecting the formation and transformation of pollutants and is
discussed in Section 3.5. Therefore, the effects of the emission and

concentration of SO2 on air quality during air pollution should be
investigated.

In contrast to the low SO2 concentration observed during
the pollution event, the NO2 concentration remained at a
certain level. The average NO2 concentration was
approximately 30 μg/m3 from 10 to 14 January. The
maximum daily NO2 concentration was observed in the
evening, between 1900 and 2100 CST. During this period,
motor vehicle emissions increased substantially, and the NO2

concentration increased to 40–50 μg/m3. On 15 January, the
NO2 concentration dropped below 10 μg/m3. This finding
indicates that the NO2 concentration was related to fossil
fuel emissions from traffic sources (Dai et al., 2021). The
results demonstrate that the main emission sources of
gaseous pollutants in the NCP, including the energy,
industry, transportation, residential, and port sectors, could
contribute to specific aerosol concentrations in pollution
events and affect air quality. NO2 from vehicle exhaust and

FIGURE 3 | Time–height distribution of (A) RH, (B) temperature, and (C) WF from 10 to 15 January 2019 in Tianjin.
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SO2 from fuel combustion can lead to an increase in the PM2.5

concentration through precursor conversion.

Temporal Variations in Surface and Vertical
Meteorological Parameters
Temporal variations in WS, temperature, RH, pressure, and PBL
height during the study period (Figure 2) were evaluated to
investigate the effects of meteorological conditions on air quality.

The PM2.5 mass concentration increased to 200–250 μg/m3 in
the early morning of 11 and 12 January, and the average WS
decreased to 1–2 m/s. Subsequently, the southwest airflow
strengthened, and the pollutant concentration increased. The
PM2.5 mass concentration increased to approximately 300 μg/
m3 from the afternoon of 13 January to the morning of 14
January. On 14 and 15 January, the airflow from the
northwestern and northeastern directions increased
significantly, and the hourly WS was 8–10 m/s, contributing
to aerosol dispersion and improved air quality. When pollution
was at its most severe on 11 and 12 January, with the continuous
deterioration of visibility, RH increased to approximately 90%. At
the end of the pollution event, RH decreased to 30%–40%. The
results reveal that the hygroscopic growth of aerosols under high
RH significantly reduced visibility over the pollution episode.
Temperatures increased as the pollution worsened; they were
significantly higher on 13 January than on 12 January, with the
highest temperature being 5°C. With the gradual reduction in the
pollutant concentration, the average temperature began a
reduction to approximately 0°C. The atmospheric boundary
layer exhibited a significant diurnal fluctuation during the
pollution process. With the further exacerbation of pollution,
the nighttime and daytime height of the boundary layer was
<0.1 km and approximately 0.7 km, respectively. On 15 January,
with further improvements in visibility and air quality, the height
of the boundary layer increased to 1.0–1.2 km.With the reduction
in visibility, air pressure decreased to 1,022 hPa at 0800 CST on 11
January. At the end of the episode, air pressure increased to
1,042 hPa. These results indicate a positive correlation between
visibility and air pressure. The low atmospheric pressure
condition inhibited the upward dispersion of pollutants,
leading to the accumulation of atmospheric pollutants near the
surface, thus resulting in poor visibility.

We analysed vertical variations in meteorological parameters,
namely RH, temperature, WS, and WD, at different heights
during the pollution event (Figure 3). During the severe
pollution period from 11 to 12 January, near-surface RH
increased to approximately 50%–60%. With the further
evolution of pollution, near-surface RH ranged between 70%
and 80% on 13 January, and upper-atmosphere RH was close to
90%. At the end of the pollution event, on 14 January, near-
surface RH decreased to approximately 20%, whereas near-
surface RH was approximately 90% and distributed over
approximate altitudes of 8–10 km. These results indicate that
the pollution event was affected by the vertical distribution of RH.
RH is a key factor that facilitates the transformation of SO2 and
NO2 into sulphate and nitrate aerosols, respectively, through
chemical reactions (Khoder 2002; Su et al., 2011). The

temperature at an altitude of approximately 3 km was
approximately 265 K from 9 to 13 January. On 14 January, the
temperature dropped significantly to 255 K. The variation in the
temperature distribution during the pollution period indicated
that the combination of high temperature and RH is beneficial to
the formation of secondary aerosols that exacerbate the level of
aerosol pollution. The distribution of WF at different heights
during the pollution process demonstrated that WS was low near
the surface and that this altitude (0–2 km) was dominated by
westerly airflow. With the evolution of pollution, airflow in the
upper atmosphere exhibited a downward movement (~0.3 Pa/s),
and airflow near the surface presented a weak downdraft of
approximately 0.2 Pa/s on 11 January. As pollutant
accumulation intensified on 12 January, a descending airflow
was observed near the surface, with a positive rate of 0.3–0.4 Pa/s.
In particular, a strong downdraft (0.5 Pa/s) appeared at an
altitude of 2–6 km in the upper atmosphere. Pollutants were
transported to the ground with the downdraft; this phenomenon
increased the local pollutant concentration. On 13 January, the
near-surface and upper-atmosphere flows were stable at
approximately 0 Pa/s, leading to the accumulation of
pollutants. At the end of the pollution event, the rapidly
sinking northwest airflow, the speed of which was
approximately 0.5 Pa/s, facilitated pollutant dispersion.

Spatial Distribution of Daily Averages of
PM2.5, WF, and PBL
Figure 4 depicts the spatial distribution of daily averages of PM2.5

and WF as well as PBL.
On 10 January, the PM2.5 mass concentration in Tianjin was

approximately 100 μg/m3. The highest concentration of PM2.5

(approximately 190 μg/m3) was observed in the southwest of
Tianjin in Hebei Province. At that time, a southwest airflow, the
speed of which was approximately 2.0 m/s, facilitated to the
transport of pollutants to Tianjin. On 11 January, the spatial
distribution of air pollutants in Tianjin and the southwest region
intensified, and the PM2.5 concentration in Tianjin and its
surrounding areas increased to 200 μg/m3. Moreover, the WF
at 10 m, which was 1.0 m/s, was conducive to the initial
accumulation of pollutants in Tianjin. During the severe
pollution period on 12 January, the WF at 10 m indicated that
the prevailing southwest airflow (3.0–4.0 m/s) transported
various pollutants from Hebei Province to the NCP. Under
the effect of the westerly airflow, a pollution belt characterised
by the southwest–northeast transport of aerosols was formed.
The centre of the high PM2.5 mass concentration (approximately
300 μg/m3) was observed in Baoding, Hebei Province. The daily
average of the PM2.5 concentration in Tianjin was approximately
250 μg/m3 at that time.With an increase in westerlyWS (~2 m/s),
pollutants were transported to the eastern coast. The daily average
of the PM2.5 mass concentration in Tianjin remained high at
nearly 200 μg/m3 on 13 January. On 14 January, with the gradual
strengthening of the northwest wind (4–5 m/s), pollution
continued to spread to eastern China. At that time, the daily
average of the PM2.5 concentration in Tianjin was relatively low
(approximately 190 μg/m3). Under the control of a strong

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8147366

Zhao et al. Effects of Aerosols on Pollution

20

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


FIGURE 4 | Spatial distribution of daily PM2.5 mass concentration and WF at 10 m from 10 to 15 January 2019 in Tianjin shown in (A–F).

FIGURE 5 | Spatial distribution of daily PBL height from 10 to 15 January 2019 in Tianjin shown in (A–F).
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northwest airflow (4–5 m/s), pollutants were dispersed from
Tianjin on 15 January. The daily average of the PM2.5

concentration in Tianjin decreased to 30–50 μg/m3. These
results indicate that the WF plays a crucial role in the
transport and dispersion of pollutants, including the spatial
distribution of PM2.5.

Considering the effect of the variation in the atmospheric
boundary layer on air pollution, we examined the spatial variation
in PBL during the pollution event.

As shown in Figure 5, the daily PBL height was approximately
200m from 10 to 13 January. On 14 January, under the effect of the
northwest airflow, the height of the atmospheric boundary layer in
Tianjin significantly increased in the northwest direction, peaking at
approximately 1,000m. The average daily height of PBL in Tianjin
increased to approximately 600m on 14 January; this phenomenon
was conducive to the dispersion of pollutants. Subsequently, the
height of the boundary layer over the study area, centred in Tianjin,
increased to approximately 600m on 15 January.

FIGURE 6 | Back trajectories for a 72-h period from 10 to 15 January 2019 in Tianjin, expressed as the total number of trajectory endpoints in each 0.5 × 0.5
grid box.

FIGURE 7 | PM2.5 data obtained using the (A) WPSCF and (B) WCWT model for 10 to 15 January 2019 in Tianjin.
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We used 72-h back trajectories to investigate main potential
sources during the pollution event. Moreover, the WPSCF and
WCWT models were used to quantitatively analyse the local and
regional contributions of pollutants (Figure 6 and Figure 7).

The trajectories of air pollutants in Tianjin on 11 to 14 January
were analysed. The major trajectories mainly originated from two
directions during the pollution process. One was the northwest
direction, with a long, fast-moving transport pattern at a high
altitude of 3–4 km; the other was the southwest direction, with a
short, slow-moving transport pattern at a low altitude of <400 m.
The WPSCF value of >0.9 indicated that the most likely source
areas for PM2.5 pollution were Hebei Province, southwest of
Tianjin, and most of the Shijiazhuang–Baoding area. A
WCWT concentration of >200 μg/m3 was observed in the
southwest of Tianjin, indicating that Hebei Province was the
main source region for PM2.5 pollution in Tianjin during this
pollution event.

Spatial Distribution of Daily AOD and AOD
by Aerosol Type
The spatial distributions of total AOD and AOD by the aerosol
type in the NCP during the pollution event are shown in Figure 8
and Figure 9. The characteristics of aerosol extinction during the
pollution event varied significantly.

On 10 January, the total AOD in Tianjin was 0.6–0.8, which is
lower than that in the southwest region (~1.2). This result
indicated that the main source of pollution in Tianjin was
Hebei Province, which located in the southwest. On 11

January, the total AOD in Tianjin increased to exceed 1.0, and
as aerosol extinction spread from the surrounding areas of Hebei
Province to the Shandong Peninsula, the AOD increased to 2.0.
With the further exacerbation of pollution, aerosol extinction
significantly increased in Tianjin, and the AOD increased to
approximately 1.5 on 12 January. At that time, the pollution zone
expanded to the eastern coastal area, and the AOD exceeded 2.0.
With the further evolution of pollution, aerosol extinction in
Tianjin weakened, and the total AOD dropped below 0.5 on 13
January. The relatively high near-surface PM concentration of
approximately 300 μg/m3 indicated that aerosol pollution exerted
a stronger effect at ground level. At that time, the total AOD in
Hebei Province decreased to approximately 1.0, and severe
pollution, as reflected by an AOD of >2.0, was observed in
eastern China. With the eastward transport of pollutants, the
AOD in Hebei Province, the source of pollution in the southwest
of Tianjin, decreased to approximately 0.8 on 14 January.

We further discuss the contribution of different types of aerosols
to aerosol extinction during the pollution event (Figure 9). On 10
January, the spatial distribution of SO4AOD in Tianjin was
approximately 0.2, and the SO4AOD in the pollution source area
in the southwest was approximately 0.5. On 11 January, the
SO4AOD in Tianjin increased to approximately 0.5, and aerosol
extinction in the surrounding area of Shijiazhuang, Hebei Province
increased to 0.8. As pollution worsened, aerosol extinction increased
significantly in Tianjin, and SO4AOD increased to approximately
0.6 on 12 January. On the same day, SO4AODwas high—more than
0.8—in the entire southwest–northeast line and the Bohai Sea.
Sulphate aerosols are mainly emitted through anthropogenic

FIGURE 8 | Spatial distribution of daily AOD from 10 to 15 January 2019 in Tianjin shown in (A–F).
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activities conducted near ground level (Dai et al., 2021). Thus, the
extinction of sulphate aerosols in the entire column decreased,
whereas the near-surface PM concentration remained high. The
SO4AOD distribution was higher on the east coast and in northeast
plains. In the heavily polluted area, it was approximately 0.7. The
distribution of SO4AOD (<0.1) was larger in the southwest of
Tianjin. These results reveal the considerable effect of sulphate
aerosol transport on the spatial distribution of aerosol extinction.
According to the spatial distribution of DUAOD, dust particles from
the northeast areas of Tianjin were found on 13 and 14 January. The
effect of DUAOD on aerosol extinction was approximately 0.04
observed on 13 January, and the dust pollution zone spread to the
east on 14 January. Changes in OMAOD showed a similar variation
and spatial distribution as did SO4AOD during the pollution event.
On 10 January, the highest OMAOD was approximately 0.3 in
Tianjin. A higher OMAOD (~0.6) was observed in the southwest
area of Tianjin during that period. On 11 January, OMAOD in
Tianjin and the surrounding regions increased substantially to 0.9
with increased aerosol extinction. As pollution worsened, OMAOD
remained constant at 0.9 on 12 January in Tianjin. On the same day,
high OMAOD was noted in the entire BTH region, eastern coastal
areas, and the Bohai Sea, with an OMAOD of >0.9. Because coal
burning, vehicle exhaust, and biomass combustion are the main
emission sources of OC, pollutants were concentrated near ground
level, resulting in a high PM concentration (Pang et al., 2020);
however, the extinction of organic carbon aerosols in the entire

column was weakened. This phenomenon indicated the significant
contribution of organic aerosols to the extinction of organic aerosols
in the NCP that was related to the emission source. During the early
stage of pollution, on 10 January, the highest in Tianjin in BCAOD
(~0.05) was observed. The maximum BCAOD (~0.07) was detected
in the surrounding regions in the southwest. On 11 January, the
BCAOD in Tianjin increased to approximately 0.07, and aerosol
extinction in the surrounding areas of Hebei Province increased to
0.1. With the further evolution of pollution, aerosol extinction in
Tianjin significantly increased, and the BCAOD reached
approximately 0.1 on 12 January. At that time, high BCAOD
(>0.1) was observed in the entire southwest–northeast line and
the Bohai Sea. This observation indicates the contribution of black
carbon aerosols to atmosphere extinction in the column. Moreover,
the contribution of SSAOD to aerosol extinction in Tianjin during
the pollution process was nonsignificant, and the SSAOD remained
at approximately 0.002.

Time–Height Evolution of Different Types of
Aerosols
Figure 10 displays the time–height vertical structural evolution of
different types of aerosols during the pollution episode.

At 1200 CST on 10 January 2019, sulphate aerosols were
distributed near the surface at an altitude of 1.0 km, and the
mixing ratio of sulphate aerosols near the surface was

FIGURE 9 | Spatial distribution of daily AOD by aerosol type from 10 to 15 January 2019 in Tianjin shown in (A–F).
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40–50 μg/kg. On 11 January, the proportion of near-surface
sulphate aerosols gradually increased, and the mixing ratio of
sulphate aerosols within an altitude of 1.0 km significantly
increased to 80–90 μg/kg. The distribution of sulphate aerosols
gradually increased, and sulphate aerosol layers of different
concentrations appeared at an altitude of 1–2 km, with a
mixing ratio of 10–20 μg/kg. On 12 January, pollution
continued to intensify, and the mixing ratio of near-surface

sulphate aerosols remained high. The mixing ratio of sulphate
aerosols within an altitude of 0.5 km was >90 μg/kg. As pollution
evolved from 13 to 14 January, the mixing ratio and distribution
of sulphate aerosols decreased both near the surface and at high
altitudes, and the mixing ratio of sulphate aerosols decreased to
50–60 μg/kg within an altitude of 1 km near the surface. The
variation in the mixing ratios of sulphate aerosols in the pollution
event indicated the conversion of SO2 to sulphate aerosols under

FIGURE 10 | Time–height distribution of mixing ratios by aerosol type (A) SO4, (B) DU, (C) OM, (D) BC, and (E) SS from 10 to 15 January 2019 in Tianjin.
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high RH, reflecting a crucial relationship with the variation in RH
near the surface and at high altitudes. This finding was confirmed
by the SO2 emissions mentioned in Section 3.1.

Beginning on 13 January, dust aerosols were distributed from
near the surface to an altitude of approximately 1.5 km. The
mixing ratio of dust aerosols within 500 m near the surface was
approximately 15 μg/kg, and the mixing ratio of dust aerosols at
an altitude of 1.0–1.5 km was lower, at 3–6 μg/kg. Beginning on
14 January, with the reduction in dust aerosol pollution, the effect
of dust aerosols gradually decreased within an altitude of 1 km,
and the mixing ratio of dust aerosols near the surface decreased to
7–8 μg/kg within an altitude of 0.5 km. The presence of dust
aerosols observed over the pollution event was consistent with the
increase in PM10 emissions discussed in Section 3.1.

During the pollution event, organic aerosols had a highmixing
ratio near the surface below an altitude of 0.5 km. The mixing
ratio of organic aerosols on 10 January was approximately
100 μg/kg. With the evolution in pollution, the mixing ratio of
organic aerosols near the surface gradually increased to
150–200 μg/kg on 11 January. With the intensification of
pollution, the mixing ratio of near-surface organic aerosols
reached a maximum of 250–300 μg/kg on 12 January.
Furthermore, with the dispersion of pollution, the mixing ratio
of organic aerosols decreased to approximately 150 μg/kg on 13
and 14 January. At the end of the pollution event on 15 January,
organic aerosols disappeared. The vertical distribution of the
mixing ratio of organic aerosols indicated that organic aerosols
were mainly concentrated near the surface; this differed from the
distribution of sulphate and dust aerosols in the upper
atmosphere during the pollution event.

During the pollution episode, black carbon aerosols had a high
mixing ratio near the surface below an altitude of 0.5 km. In the
initial stage of pollution on 10 January, the mixing ratio of black
carbon aerosols was approximately 5 μg/kg. With the further
evolution of pollution, the mixing ratio of near-surface black
carbon aerosols increased to 10–15 μg/kg on 11 January. As
pollution continued to worsen, the mixing ratio of near-
surface black carbon aerosols increased to 20 μg/kg on 12
January. With the dispersion of pollution, the mixing ratio of
black carbon aerosols decreased to 10 μg/kg on 14 January. On 15
January, the black carbon aerosols had disappeared. The
distribution of black carbon aerosols indicated that the effect
of black carbon aerosols was mainly concentrated near the
surface; this phenomenon is similar to that of organic carbon
aerosols but different from the vertical distribution of sulphate
and dust aerosols.

Because Tianjin is a coastal city, sea salt aerosols can cause a
certain degree of air pollution. As shown in Figure 10, although
the mixing ratio of sea salt aerosols was lower than that of other
types of aerosols, it still was observed at an altitude of 1.0–2.5 km
on 13 January. Combined with the time–height evolution of RH
presented in Figure 3, the higher RH at a high altitude on 13
January was conducive to the hygroscopic growth of sea salt
aerosols. With the vertical reduction in RH, the mixing ratio of
sea salt aerosols decreased gradually. Because of the transport of
water vapour in the atmosphere, sea salt aerosols were mainly

distributed in the upper atmosphere and were strongly correlated
with RH.

DISCUSSIONS AND CONCLUSION

With rapid economy development and massive anthropogenic
emission, severe urban PM2.5 pollution have occurred frequently
in major cities over the BTH region and its surroundings in
China. Some studies analyzed the variations of PM2.5 and gaseous
precursors and their chemical composition through in situ real-
time comprehensive observation from measurement campaigns
and simultaneously online measurements to examine the impact
of meteorological conditions and pollutant emissions on air
quality in these regions before and after the strictly controlled
emissions. Dai et al. (2021) pointed out that SO2 and NO2

generated from vehicle emission and residential coal burning
could be two major additional sources of environmental sulfate
and nitrate during the haze episodes in Tianjin. Zhao et al. (2020)
analyzed the long-range transport of dust and its impact on the
pollution process that occurred in Tianjin by the westerly flow
transported from northwestern China. Pang et al. (2020)
investigated that NO3-, SO42+, and NH4+ was the main water-
soluble ions contribute to PM2.5 pollution in Tianjin during the
heating season. Li et al. (2021) presented the important
contribution of increased nitrate concentration to PM2.5

during wintertime in Tianjin from 2014 to 2018. Shao et al.
(2021) shown that nitrate aerosol was the most sensitive
component to severe aerosol pollution under typical extremely
unfavorable meteorological events in Tianjin.

In this study, an air pollution event in a typical city of the NCP
was comprehensively analysed. In view of the core scientific
problem of the whole process of the evolution of severe
pollution, a comprehensive observation was conducted that
overcame the limitation of a single observation data of near-
surface stations. In particular, the temporal and spatial evolution
of different composition aerosols was tracked. Temporal
variations in visibility, PM mass concentration, PBL height,
and vertical meteorological parameters as well as the spatial
distributions of various types of aerosols and their optical
properties were examined to determine aerosol pollution
sources and regional transport characteristics during a
pollution event from 10 to 15 January 2019 in Tianjin.

During this pollution event, the minimum visibility reached
<5 km for approximately 96 h. The accumulative concentration
of PM2.5 and PM10 reached 300 and 400 μg/m3, respectively. The
variation in SO2 exhibited a declining trend, indicating the
contribution of SO2 transformation to sulphate aerosols. The
concentration of NO2 remained at approximately 30 μg/m3 which
was significantly correlated with fossil fuel consumption and
contributed to this pollution process.

The southwest airflow and low WS were dominant factors
affecting PM accumulation and contributed to low visibility.
With the continuous deterioration of visibility, RH increased
to approximately 90%, thus aggravating pollution. A low PBL
height of <0.1 km was observed during this period. The high RH
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in the vertical direction facilitated the chemical transformation of
SO2 and NO2 into sulphate and nitrate aerosols, respectively.

The prevailing southwest airflow transported various
pollutants from Hebei Province to the NCP at a WS of
3.0–4.0 m/s, and the daily PBL height was approximately
200 m. A WPSCF of >0.9 and a WCWT of >200 μg/m3

indicated that Hebei Province was the main source of PM2.5

pollution in Tianjin during the pollution episode.
The total AOD in Tianjin increased to approximately 1.5

during the pollution episode. The effect of sulphate aerosols
on the spatial distribution of aerosol extinction increased, with
an SO4AOD of approximately 0.6. The extinction of organic
aerosols in the NCP was related to the emission source, with the
OMAOD remaining at approximately 0.9. The BCAOD increased
to approximately 0.1 with the further evolution of pollution.

Themixing ratio of sulphate aerosols within an altitude of 0.5 km
was >90 μg/kg. Themixing ratio of dust aerosols within 500m of the
surface was approximately 15 μg/kg. Black carbon and Organic
aerosols had a high mixing ratio near the surface, below an
altitude of 0.5 km. The mixing ratio of sea salt aerosols was
correlated with higher RH and vertically distributed at 1.0–2.5 km.

The findings provide insights into the effect of near-surface
pollutants and vertical meteorological parameters on air pollution
in the NCP. Aerosol transformation process and transport
mechanism in this region can be explored by analysing the
contributions of different types of aerosols.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: the Copernicus Atmosphere
Monitoring Service Reanalysis (https://ads.atmosphere.
copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?
tab=overview).

AUTHOR CONTRIBUTIONS

HZ, HC and XZ contributed to conception and design of the
study. KG, YM and YW organized the database. YW, HW and
YD performed the statistical analysis. YZ, LL, LZ and YZ wrote
sections of the manuscript. All authors contributed to
manuscript revision, read, and approved the submitted
version.

FUNDING

This work is financially supported by grant from National
Natural Science Foundation of China (41875157 and 41825011
and 42030608 and 42175185), Basic Scientific Research Fund of
Shenyang Institute of Atmospheric Environment
(2021SYIAEZD3).

REFERENCES

Ackerman, T. P., and Toon, O. B. (1981). Absorption of Visible Radiation in
Atmosphere Containing Mixtures of Absorbing and Nonabsorbing Particles.
Appl. Opt. 20, 3661–3668. doi:10.1364/ao.20.003661

Andreae, M. O., and Merlet, P. (2001). Emission of Trace Gases and Aerosols from
Biomass Burning. Glob. Biogeochem. Cycles 15, 955–966. doi:10.1029/
2000gb001382

Bai, Y., Ni, Y., and Zeng, Q. (2021). Impact of Ambient Air Quality Standards
Revision on the Exposure-Response of Air Pollution in Tianjin, China. Environ.
Res. 198, 111269. doi:10.1016/j.envres.2021.111269

Chang, D., Song, Y., and Liu, B. (2009). Visibility Trends in Six Megacities in China
1973-2007. Atmos. Res. 94, 161–167. doi:10.1016/j.atmosres.2009.05.006

Chang, X., Wang, S., Zhao, B., Cai, S., and Hao, J. (2018). Assessment of Inter-city
Transport of Particulate Matter in the Beijing-Tianjin-Hebei Region. Atmos.
Chem. Phys. 18, 4843–4858. doi:10.5194/acp-18-4843-2018

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Jr, Hansen,
J. E., et al. (1992). Climate Forcing by Anthropogenic Aerosols. Science 255,
423–430. doi:10.1126/science.255.5043.423

Che, H., Xia, X., Zhao, H., Dubovik, O., Holben, B. N., Goloub, P., et al. (2019).
Spatial Distribution of Aerosol Microphysical and Optical Properties and
Direct Radiative Effect from the China Aerosol Remote Sensing Network.
Atmos. Chem. Phys. 19, 11843–11864. doi:10.5194/acp-19-11843-2019

Che, H., Xia, X., Zhu, J., Li, Z., Dubovik, O., Holben, B., et al. (2014). Column
Aerosol Optical Properties and Aerosol Radiative Forcing during a Serious
Haze-Fog Month over north china plain in 2013 Based on Ground-Based
Sunphotometer Measurements. Atmos. Chem. Phys. 14, 2125–2138. doi:10.
5194/acp-14-2125-2014

Che, H., Xia, X., Zhu, J., Wang, H., Wang, Y., Sun, J., et al. (2015). Aerosol Optical
Properties under the Condition of Heavy Haze over an Urban Site of Beijing,
China. Environ. Sci. Pollut. Res. 22, 1043–1053. doi:10.1007/s11356-014-3415-5

Che, H., Zhang, X., Li, Y., Zhou, Z., Qu, J. J., and Hao, X. (2009). Haze Trends over
the Capital Cities of 31 Provinces in China, 1981-2005. Theor. Appl. Climatol.
97, 235–242. doi:10.1007/s00704-008-0059-8

Che, H., Zhang, X., Li, Y., Zhou, Z., and Qu, J. J. (2007). Horizontal Visibility
Trends in China 1981–2005. Geophys. Res. Lett. 34, 497–507. doi:10.1029/
2007gl031450

Chen, H., Lin, Y., Su, Q., and Cheng, L. (2017). Spatial Variation of Multiple Air
Pollutants and Their Potential Contributions to All-Cause, Respiratory, and
Cardiovascular Mortality across China in 2015-2016. Atmos. Environ. 168,
23–35. doi:10.1016/j.atmosenv.2017.09.006

Chen, Y., Tian, C., Feng, Y., Zhi, G., Li, J., and Zhang, G. (2015). Measurements of
Emission Factors of PM2.5, OC, EC, and BC for Household Stoves of Coal
Combustion in China. Atmos. Environ. 109, 190–196. doi:10.1016/j.atmosenv.
2015.03.023

Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V., and Lauer, A.
(2007). Mortality from Ship Emissions: a Global Assessment. Environ. Sci.
Technol. 41, 8512–8518. doi:10.1021/es071686z

Dai, Q., Ding, J., Hou, L., Li, L., Cai, Z., Liu, B., et al. (2021). Haze Episodes before
and during the COVID-19 Shutdown in Tianjin, China: Contribution of
Fireworks and Residential Burning. Environ. Pollut. 286, 117252. doi:10.
1016/j.envpol.2021.117252

Dore, A., Vieno, M., Tang, Y., Dragosits, U., Dosio, A., Weston, K., et al. (2007).
Modelling the Atmospheric Transport and Deposition of sulphur and Nitrogen
over the United Kingdom and Assessment of the Influence of SO2 Emissions
from International Shipping. Atmos. Environ. 41, 2355–2367. doi:10.1016/j.
atmosenv.2006.11.013

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., et al.
(2002). Variability of Absorption and Optical Properties of Key Aerosol Types
Observed in Worldwide Locations. J. Atmos. Sci. 59, 590–608. doi:10.1175/
1520-0469(2002)059<0590:voaaop>2.0.co;2

Eck, T. F., Holben, B. N., Dubovik, O., Smirnov, A., Goloub, P., Chen, H. B., et al.
(2005). Columnar Aerosol Optical Properties at AERONET Sites in central
Eastern Asia and Aerosol Transport to the Tropical Mid-Pacific. J. Geophys. Res.
110, D06202. doi:10.1029/2004jd005274

Gao, J. J., Tian, H. Z., Cheng, K., Lu, L., Zheng, M., Wang, S. X., et al. (2015). The
Variation of Chemical Characteristics of PM2.5 and PM10 and Formation
Causes during Two Haze Pollution Events in Urban Beijing, China. Atmos.
Environ. 107, 1–8. doi:10.1016/j.atmosenv.2015.02.022

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 81473613

Zhao et al. Effects of Aerosols on Pollution

27

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=overview
https://doi.org/10.1364/ao.20.003661
https://doi.org/10.1029/2000gb001382
https://doi.org/10.1029/2000gb001382
https://doi.org/10.1016/j.envres.2021.111269
https://doi.org/10.1016/j.atmosres.2009.05.006
https://doi.org/10.5194/acp-18-4843-2018
https://doi.org/10.1126/science.255.5043.423
https://doi.org/10.5194/acp-19-11843-2019
https://doi.org/10.5194/acp-14-2125-2014
https://doi.org/10.5194/acp-14-2125-2014
https://doi.org/10.1007/s11356-014-3415-5
https://doi.org/10.1007/s00704-008-0059-8
https://doi.org/10.1029/2007gl031450
https://doi.org/10.1029/2007gl031450
https://doi.org/10.1016/j.atmosenv.2017.09.006
https://doi.org/10.1016/j.atmosenv.2015.03.023
https://doi.org/10.1016/j.atmosenv.2015.03.023
https://doi.org/10.1021/es071686z
https://doi.org/10.1016/j.envpol.2021.117252
https://doi.org/10.1016/j.envpol.2021.117252
https://doi.org/10.1016/j.atmosenv.2006.11.013
https://doi.org/10.1016/j.atmosenv.2006.11.013
https://doi.org/10.1175/1520-0469(2002)059<0590:voaaop>2.0.co;2
https://doi.org/10.1175/1520-0469(2002)059<0590:voaaop>2.0.co;2
https://doi.org/10.1029/2004jd005274
https://doi.org/10.1016/j.atmosenv.2015.02.022
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Gui, K., Che, H., Li, L., Zheng, Y., Zhang, L., Zhao, H., et al. (2021a). The Significant
Contribution of Small-Sized and Spherical Aerosol Particles to the Decreasing
Trend in Total Aerosol Optical Depth over Land from 2003 to 2018.
Engineering. in press. doi:10.1016/j.eng.2021.05.017

Gui, K., Che, H., Zheng, Y., Zhao, H., Yao, W., Li, L., et al. (2021b). Three-
dimensional Climatology, Trends, and Meteorological Drivers of Global and
Regional Tropospheric Type-dependent Aerosols: Insights from 13 Years
(2007-2019) of CALIOP Observations. Atmos. Chem. Phys. 21,
15309–15336. doi:10.5194/acp-21-15309-2021

Han, L., Zhou,W., Li, W., and Li, L. (2014). Impact of Urbanization Level on Urban
Air Quality: A Case of fine Particles (PM 2.5 ) in Chinese Cities. Environ. Pollut.
194, 163–170. doi:10.1016/j.envpol.2014.07.022

Han, S., Liu, J., Hao, T., Zhang, Y., Li, P., Yang, J., et al. (2018). Boundary Layer
Structure and Scavenging Effect during a Typical winter Haze-Fog Episode in a
Core City of BTH Region, China. Atmos. Environ. 179, 187–200. doi:10.1016/j.
atmosenv.2018.02.023

Han, S., Zhang, Y., Wu, J., Zhang, X., Tian, Y., Wang, Y., et al. (2015). Evaluation of
Regional Background Particulate Matter Concentration Based on Vertical
Distribution Characteristics. Atmos. Chem. Phys. 15, 11165–11177. doi:10.
5194/acp-15-11165-2015

Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V. (2000). Global Warming in
the Twenty-First century: An Alternative Scenario. Proc. Natl. Acad. Sci. 97,
9875–9880. doi:10.1073/pnas.170278997

Hansen, J., Sato, M., and Ruedy, R. (1997). Radiative Forcing and Climate
Response. J. Geophys. Res. 102, 6831–6864. doi:10.1029/96jd03436

Hua, Y., Wang, S., Wang, J., Jiang, J., Zhang, T., Song, Y., et al. (2016). Investigating
the Impact of Regional Transport on PM2.5 Formation Using Vertical
Observation during APEC 2014 Summit in Beijing. Atmos. Chem. Phys. 16,
15451–15460. doi:10.5194/acp-16-15451-2016

Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt,
A.-M., et al. (2019). The Cams Reanalysis of Atmospheric Composition. Atmos.
Chem. Phys. 19, 3515–3556. doi:10.5194/acp-19-3515-2019

Jin, L., Luo, X., Fu, P., and Li, X. (2016). Airborne Particulate Matter Pollution in
Urban China: a Chemical Mixture Perspective from Sources to Impacts. Natl.
Sci. Rev. 4, 593–610. doi:10.1093/nsr/nww079

Khoder, M. I. (2002). Atmospheric Conversion of Sulfur Dioxide to Particulate
Sulfate and Nitrogen Dioxide to Particulate Nitrate and Gaseous Nitric Acid in
an Urban Area. Chemosphere 49, 675–684. doi:10.1016/s0045-6535(02)00391-0

Lang, J., Liang, X., Li, S., Zhou, Y., Chen, D., Zhang, Y., et al. (2021). Understanding
the Impact of Vehicular Emissions on Air Pollution from the Perspective of
Regional Transport: A Case Study of the Beijing-Tianjin-Hebei Region in
China. Sci. Total Environ. 785, 147304. doi:10.1016/j.scitotenv.2021.147304

Li, X., Bei, N., Hu, B., Wu, J., Pan, Y., Wen, T., et al. (2021). Mitigating NOX Emissions
Does Not Help Alleviate Wintertime Particulate Pollution in Beijing-Tianjin-Hebei,
China. Environ. Pollut. 279, 116931. doi:10.1016/j.envpol.2021.116931

Miao, Y., Guo, J., Liu, S., Liu, H., Zhang, G., Yan, Y., et al. (2017). Relay Transport of
Aerosols to Beijing-Tianjin-Hebei Region by Multi-Scale Atmospheric Circulations.
Atmos. EnvironmentEnviron 165, 35–45. doi:10.1016/j.atmosenv.2017.06.032

Miao, Y., Liu, S., Zheng, Y., Wang, S., Chen, B., Zheng, H., et al. (2015). Numerical
Study of the Effects of Local Atmospheric Circulations on a Pollution Event
over Beijing-Tianjin-Hebei, China. J. Environ. Sci. 30, 9–20. doi:10.1016/j.jes.
2014.08.025

Pang, N., Gao, J., Che, F., Ma, T., Liu, S., Zhao, P., et al. (2020). Cause of PM2.5
Pollution during the 2016-2017 Heating Season in Beijing, Tianjin, and
Langfang, China. J. Environ. Sci. 95, 201–209. doi:10.1016/j.jes.2020.03.024

Shao, M., Dai, Q., Yu, Z., Zhang, Y., Xie, M., and Feng, Y. (2021). Responses in
PM2.5 and its Chemical Components to Typical Unfavorable Meteorological
Events in the Suburban Area of Tianjin, China. Sci. Total Environ. 788, 147814.
doi:10.1016/j.scitotenv.2021.147814

Shen, Y., Zhang, L., Fang, X., Ji, H., Li, X., and Zhao, Z. (2019). Spatiotemporal
Patterns of Recent PM2.5 Concentrations over Typical Urban Agglomerations
in China. Sci. Total Environ. 655, 13–26. doi:10.1016/j.scitotenv.2018.11.105

Su, S., Li, B., Cui, S., and Tao, S. (2011). Sulfur Dioxide Emissions fromCombustion
in China: from 1990 to 2007. Environ. Sci. Technol. 45, 8403–8410. doi:10.1021/
es201656f

Sun, Y., Chen, C., Zhang, Y., Xu, W., Zhou, L., Cheng, X., et al. (2016). Rapid
Formation and Evolution of an Extreme Haze Episode in Northern China
during winter 2015. Sci. Rep. 6, 27151. doi:10.1038/srep27151

Twomey, S. A., Piepgrass, M., and Wolfe, T. L. (1984). An Assessment of the
Impact of Pollution on Global Cloud Albedo. Tellus 36B, 356–366. doi:10.1111/
j.1600-0889.1984.tb00254.x

Wang, L. T., Wei, Z., Yang, J., Zhang, Y., Zhang, F. F., Su, J., et al. (2014). The 2013
Severe Haze over Southern Hebei, China: Model Evaluation, Source
Apportionment, and Policy Implications. Atmos. Chem. Phys. 14,
3151–3173. doi:10.5194/acp-14-3151-2014

Wang, Y. Q., Zhang, X. Y., and Arimoto, R. (2006). The Contribution from Distant
Dust Sources to the Atmospheric Particulate Matter Loadings at XiAn, China
during spring. Sci. Total Environ. 368, 875–883. doi:10.1016/j.scitotenv.2006.
03.040

Wang, Y. Q., Zhang, X. Y., and Draxler, R. R. (2009). TrajStat: GIS-Based Software
that Uses Various Trajectory Statistical Analysis Methods to Identify Potential
Sources from Long-Term Air Pollution Measurement Data. Environ. Model.
Softw. 24, 938–939. doi:10.1016/j.envsoft.2009.01.004

Wu, H., Zhang, Y.-f., Han, S.-q., Wu, J.-h., Bi, X.-h., Shi, G.-l., et al. (2015). Vertical
Characteristics of PM2.5 during the Heating Season in Tianjin, China. Sci. Total
Environ. 523, 152–160. doi:10.1016/j.scitotenv.2015.03.119

Yang, H.-H., Tsai, C.-H., Chao, M.-R., Su, Y.-L., and Chien, S.-M. (2006). Source
Identification and Size Distribution of Atmospheric Polycyclic Aromatic
Hydrocarbons during rice Straw Burning Period. Atmos. Environ. 40,
1266–1274. doi:10.1016/j.atmosenv.2005.10.032

Yau, P. S., Lee, S. C., Corbett, J. J., Wang, C., Cheng, Y., and Ho, K. F. (2012).
Estimation of Exhaust Emission from Ocean-Going Vessels in Hong Kong. Sci.
Total Environ. 431, 299–306. doi:10.1016/j.scitotenv.2012.03.092

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., et al.
(2009). Asian Emissions in 2006 for the NASA INTEX-B mission. Atmos.
Chem. Phys. 9, 5131–5153. doi:10.5194/acp-9-5131-2009

Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., et al. (2013). Chemical
Characterization and Source Apportionment of PM2.5 in Beijing: Seasonal
Perspective. Atmos. Chem. Phys. 13, 7053–7074. doi:10.5194/acp-13-7053-
2013

Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., et al.
(2012). Atmospheric Aerosol Compositions in China: Spatial/temporal
Variability, Chemical Signature, Regional Haze Distribution and
Comparisons with Global Aerosols. Atmos. Chem. Phys. 12, 779–799. doi:10.
5194/acp-12-779-2012

Zhao, H., Wu, Z., Liu, J., and Wu, G. (2019). Two Air Pollution Events in the
Coastal City of Tianjin, north China plain. Atmos. Pollut. Res. 10, 1780–1794.
doi:10.1016/j.apr.2019.07.009

Zhao, L., Wang, W., Hao, T., Qu, W., Sheng, L., Luo, C., et al. (2020). The Autumn
Haze-Fog Episode Enhanced by the Transport of Dust Aerosols in the Tianjin
Area. Atmos. Environ. 237, 117669. doi:10.1016/j.atmosenv.2020.117669

Zheng, S., Pozzer, A., Cao, C. X., and Lelieveld, J. (2015). Long-term (2001-2012)
Concentrations of fine Particulate Matter (PM2.5) and the Impact on Human
Health in Beijing, China. Atmos. Chem. Phys. 15, 5715–5725. doi:10.5194/acp-
15-5715-2015

Zou, Q., Cai, X., Guo, M., Song, Y., and Zhang, X. (2018). Long-term Mean
Footprint and its Relationship to Heavy Air Pollution Episodes in Beijing. Acta
Sci. Nat. Univ. Pekin. 54, 341–349. doi:10.13209/j.0479-8023.2017.134

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhao, Gui, Ma, Wang, Wang, Wang, Dou, Zheng, Li, Zhang,
Zhang, Che and Zhang. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 81473614

Zhao et al. Effects of Aerosols on Pollution

28

https://doi.org/10.1016/j.eng.2021.05.017
https://doi.org/10.5194/acp-21-15309-2021
https://doi.org/10.1016/j.envpol.2014.07.022
https://doi.org/10.1016/j.atmosenv.2018.02.023
https://doi.org/10.1016/j.atmosenv.2018.02.023
https://doi.org/10.5194/acp-15-11165-2015
https://doi.org/10.5194/acp-15-11165-2015
https://doi.org/10.1073/pnas.170278997
https://doi.org/10.1029/96jd03436
https://doi.org/10.5194/acp-16-15451-2016
https://doi.org/10.5194/acp-19-3515-2019
https://doi.org/10.1093/nsr/nww079
https://doi.org/10.1016/s0045-6535(02)00391-0
https://doi.org/10.1016/j.scitotenv.2021.147304
https://doi.org/10.1016/j.envpol.2021.116931
https://doi.org/10.1016/j.atmosenv.2017.06.032
https://doi.org/10.1016/j.jes.2014.08.025
https://doi.org/10.1016/j.jes.2014.08.025
https://doi.org/10.1016/j.jes.2020.03.024
https://doi.org/10.1016/j.scitotenv.2021.147814
https://doi.org/10.1016/j.scitotenv.2018.11.105
https://doi.org/10.1021/es201656f
https://doi.org/10.1021/es201656f
https://doi.org/10.1038/srep27151
https://doi.org/10.1111/j.1600-0889.1984.tb00254.x
https://doi.org/10.1111/j.1600-0889.1984.tb00254.x
https://doi.org/10.5194/acp-14-3151-2014
https://doi.org/10.1016/j.scitotenv.2006.03.040
https://doi.org/10.1016/j.scitotenv.2006.03.040
https://doi.org/10.1016/j.envsoft.2009.01.004
https://doi.org/10.1016/j.scitotenv.2015.03.119
https://doi.org/10.1016/j.atmosenv.2005.10.032
https://doi.org/10.1016/j.scitotenv.2012.03.092
https://doi.org/10.5194/acp-9-5131-2009
https://doi.org/10.5194/acp-13-7053-2013
https://doi.org/10.5194/acp-13-7053-2013
https://doi.org/10.5194/acp-12-779-2012
https://doi.org/10.5194/acp-12-779-2012
https://doi.org/10.1016/j.apr.2019.07.009
https://doi.org/10.1016/j.atmosenv.2020.117669
https://doi.org/10.5194/acp-15-5715-2015
https://doi.org/10.5194/acp-15-5715-2015
https://doi.org/10.13209/j.0479-8023.2017.134
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Gated Recurrent Unit Coupled with
Projection to Model Plane Imputation
for the PM2.5 Prediction for
Guangzhou City, China
Muhammad Waqas Saif-ul-Allah1, Muhammad Abdul Qyyum2, Noaman Ul-Haq3,
Chaudhary Awais Salman4* and Faisal Ahmed1*

1Process and Energy Systems Engineering Center-PRESTIGE, Department of Chemical Engineering, COMSATS University
Islamabad, Lahore Campus, Lahore, Pakistan, 2Department of Petroleum and Chemical Engineering, Sultan Qaboos University,
Muscat, Oman, 3Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan,
4School of Business, Society and Engineering, Mälardalen University, Västerås, Sweden

Air pollution is generating serious health issues as well as threats to our natural ecosystem.
Accurate prediction of PM2.5 can help taking preventive measures for reducing air
pollution. The periodic pattern of PM2.5 can be modeled with recurrent neural
networks to predict air quality. To the best of the author’s knowledge, very limited
work has been conducted on the coupling of missing value imputation methods with
gated recurrent unit (GRU) for the prediction of PM2.5 concentration of Guangzhou City,
China. This paper proposes the combination of project to model plane (PMP) with GRU for
the superior prediction performance of PM2.5 concentration of Guangzhou City, China.
Initially, outperforming the missing value imputation method PMP is proposed for air quality
data under consideration by making a comparison study on various methods such as
KDR, TSR, IA, NIPALS, DA, and PMP. Secondly, it presents GRU in combination with PMP
to show its superiority on other machine learning techniques such as LSSVM and two other
RNN variants, LSTM and Bi-LSTM. For this study, data for Guangzhou City were collected
from China’s governmental air quality website. Data contained daily values of PM2.5,
PM10, O3, SOx, NOx, and CO. This study has employed RMSE, MAPE, and MEDAE as
model prediction performance criteria. Comparison of prediction performance criteria on
the test data showed GRU in combination with PMP has outperformed the LSSVM and
other RNN variants LSTM and Bi-LSTM for Guangzhou City, China. In comparison with
prediction performance of LSSVM, GRU improved the prediction performance on test data
by 40.9% RMSE, 48.5% MAPE, and 50.4% MEDAE.

Keywords: PM2.5 prediction, project to model plane, LSTM, Bi-LSTM, GRU, Guangzhou city

INTRODUCTION

The intrusion of foreign particles into the environment is identified as pollution that can make
terrible changes in the natural environment. This intrusion could be natural or anthropogenic. Air is
one of the most important resources of nature which is essential for humans, plants, and animals.
Most of the developing countries are facing extreme challenges to control and reduce air pollution.
Reasons of alarming levels of pollution are excessively increasing population, industries, and
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automobiles (Sosa et al., 2017). Unfortunately, air pollution has
become worst and intense over the time and has increased the
death rates at such an alarming level that millions of people lose
their lives every year. According to WHO, around 7 million
people died because of air pollution in 2012— one in eight deaths
worldwide. This report claims 9 out of 10 people are inhaling air
pollutants exceeding WHO standard limits (World Health
Organization, 2021). According to the WHO’s urban air
quality statistics, 98% of cities having financial issues in low-
income countries with populations greater than 100,000 do not
meet WHO air quality instructions. Reducing air pollution might
help millions of human lives from acute and chronic health
disorders (Kampa and Castanas, 2008; Bustreo, 2012). In high-
income countries, however, this percentage drops to 56% (Dora,
2016). Children, pregnant women, and people with respiratory
and cardiovascular problems are more prone towards air
pollution risks. Symptoms of air pollution on health might
include wheezing, coughing, breathing problems, and in some
extreme cases, mental health disorders (Kanner et al., 2021).
Quality of life strongly depend upon the quality of air we inhale
for breathing; a recent study has reported more vulnerability
towards COVID-19 infection for humans as air pollution
negatively affects the respiratory defense mechanism (Brauer
et al., 2021).

Airborne particulate matters (PM) including PM10 (10
micron) and PM2.5 (2.5 micron) are the main contributor
towards smog and disturb the human immune functionality
and increases susceptibility to other infectious diseases
(Sharma et al., 2021). A study has reported health issues of
PM10, PM2.5, and O3 as air-pollutants on children and has
claimed adverse health problems for them (Zhang et al., 2019).
The larger PM10 particles stick to mucosa and cause respiratory
irritation, exacerbating lung infections and asthma (Wu et al.,
2018). The finer particles of PM2.5 get into the internal
respiratory tract, absorb through the pulmonary vein, and
finally enter the bloodstream through the capillary network,
which has a detrimental effect on the cardiovascular system
(Xing et al., 2016). Recent study has reviewed health effects of
short-term and long-term exposure to PM10 and PM2.5 and put
forward the proof of morbidity and mortality related to different
diseases (Lu et al., 2015; Kim et al., 2021). Air pollution is
contributing to depletion of the ozone layer; acid rain and
global climate change induce greater responsibility to human
beings to protect the environment (Panda and Maity, 2021).
Major air pollutants are chemical contaminants like carbon
monoxide (CO), nitrogen dioxide (NO2), lead (Pb), sulfur
dioxide (SO2), PM, and ozone (O3) (Donald, 2021).
International standards have described the standard ranges of
Air Quality Index (AQI), and the concentration (µg/m3) of PM2.5
in the environment in order of their intensities is given elsewhere
(Omer, 2018). Rapid technological development and public
demand lead to industrialization that is becoming a major
cause of air pollution, and to curb the issue, multiple control
methods/strategies need to be adopted (Wang et al., 2021). A very
recent study found a convincingly positive relationship between
PM2.5 and OCV (outpatient clinic visit) for hypertension in
Guangzhou City in China (Lin et al., 2021). This study employed

Cox-regression model to see the effects of PM2.5 on daily OCV
for hypertension. Moreover, sensitive analysis study also pointed
out PM2.5 daily mean and hourly peak concentration can be
strong metrics for OCV. Owing to such serious medical and
visibility concerns of PM2.5 concentration, research attention
and practical measures on such issues are required in Guangzhou
City, China. The concerned city has a 13.64 million population
with reportedly high pollution rates. The official bodies of
Guangzhou city have installed different air pollution sensors
that constantly log SO2, NO2, O3, CO PM10, and PM2.5
pollutant concentration. To avoid serious medical conditions
and to take precautionary measures before time, reliable
prediction models for pollutant concentration are employed.

There are many parameters that tend to affect air quality and
can be recorded with sensitive devices and logged on different
time series scales such as per hour, per day, etc. Complexity of the
air quality parameters and other technical glitches cause missing
values in the logged data. Commercial scale processes where a
large number of variables are obtained might have 20–40%
missing values.

Data containing missing values already loose quality of
information and hence cannot be employed for effective
model training (Kwak and Kim, 2017). In data preprocessing,
the first step is to impute missing values using a suitable technique
that should not disturb the quality of data. For multivariate data,
principle component analysis (PCA) plays a significant role in
data analysis and preprocessing (Bigi et al., 2021). In a study, the
linear discriminant method has been employed and compared
with the PCA technique for dimensionality reduction and results
were evaluated by training different machine learning algorithms.
The study concluded that Machine Learning algorithm with PCA
performed better (Reddy et al., 2020). A study has also worked on
data imputation that is centered on a PCAmodel that imputes the
missing values by minimizing squared prediction error (SPE)
(Wise and Ricker, 1991). Another study has investigated iterative
algorithm (IA) for missing data imputation. This study has
discussed the performance of iterative PCA, partial least
square (PLS), and principal component regression (PCR)
(Walczak and Massart, 2001). A novel PCA model building
technique has also been reported with missing data imputation
including data augmentation (DA) and nonlinear programming
approach (NLP) along with the nonlinear iterative partial least
squares (NIPALS) algorithm, IA, and trimmed score regression
(TSR) (Folch-Fortuny et al., 2015). A study has discussed
graphical user interface (GUI)-based data analysis and
imputation methods such as DA, TSR, IA, projection to model
plane (PMP), and NIPALS in the MATLAB environment (Folch-
Fortuny et al., 2016).

Prediction of PM2.5 is an effective approach to improve the
concern of the public about air quality. Many of the researchers
provided the best contributions in improving the model
capabilities to predict and identify the pollutants along with
other quality variables (Oliveri Conti et al., 2017). A study
discussed the mathematical and statistical models, and their
coding methods were done by differential equation; drawbacks
and amendments were done in alternative models introduced
afterwards (Marriboyina, 2018). A study has put forward a
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novel hybrid of the least square support vector machine
(LSSVM), PCA-CS-LSSVM, for AQI prediction and
reported better prediction efficiency than LSSVM and
GRNN (Sun and Sun, 2017). Another study has worked on
time series AQI prediction using the internet of things (IoT)
and linear regression (LR) machine learning algorithms
(Kumar et al., 2020). Neural network architecture has been
evolving since the past decade and researchers have employed
deep neural network (DNN) for AQI prediction. Neural
network techniques such as multichannel ART-based neural
network (MART), deep forward neural network (DFNN), and
long short term memory (LSTM) have been used for AQI
prediction and found LSTM has outperformed (Karimian
et al., 2019). Keeping in mind the adverse effects of PM on
human health as well as crops, a study has also employed the
recurrent neural network (RNN) model as a time series
prediction framework (Gul and Khan, 2020). Furthermore,
considering the time series behavior of PM2.5, a recent study
has discussed the LSTM-based PM2.5 prediction model and
reported accurate and stable time series predictions (Li, 2021).
For comparison purposes, this study has employed the back
propagation model and proved LSTM superiority over it.

Data recorded on time basis contains sequences of pollutant
concentration variation in the environment. Researchers have
put efforts in developing time series deep learning models to
predict the air pollutant concentration trend with time using
LSTM and BILSTM. A recent study employed an LSTM neural
network using time series data to predict PM10 concentration
for major cities in China. This study reported superior
performance of LSTM compared to statistical prediction
and machine learning methods (Chen et al., 2021). More
sophisticated and complex models tend to be more
computationally expensive yet providing accurate
predictions. However, the computationally expensive
behavior of prediction models also needs attention.
Certainly, there is a need to put more emphasis on deep
learning models that are accurate and computationally
feasible. Moreover, data preprocessing techniques such as
outlier handling, missing data handling, feature extraction,
etc., impact modeling efficiency.

Considering medical and other physical concerns, this
work has dealt with input variables such as NO2, SO2, O3,
CO, and PM10 to predict the concentration of PM2.5 in the
environment using different machine learning algorithms
such as LSSVM, LSTM, Bi-LSTM, and GRU. Moreover,
suitable parameters of each abovementioned model are
then used in PM2.5 modeling. Researchers have developed
and investigated different deep learning models, but this
study aimed to investigate the abovementioned models for
their accuracy, reliability, and computationally inexpensive
behavior. The input variables that influence the concentration
of PM2.5 were collected from the website of Guangzhou City
in China and then preprocessed for missing values. Lastly, the
comparison among different models has been carried out
using error methods such as RMSE, MAPE, and MEDAE.
The outperformed model is then suggested for PM2.5
prediction for taking precautionary measures in time.

GATED RECURRENT UNIT

A standard Artificial Neural Network (ANN) usually consists of
three types of layers namely input layer, hidden layer, and output
layer, respectively. Input, hidden and output layers are
represented as x, h, and y. Recurrent neural network (RNN) is
a special type of neural network architecture that has significance
in learning sequential and time varying pattern (Cai et al., 2004).
Because of the structure of RNN, a vanishing gradient problem
comes in the way with large sequence input (Fei and Tan, 2018).

Hochreiter and Schmidhuber introduced LSTM back in
1997 to address the RNN vanishing gradient issue
(Hochreiter and Schmidhuber, 1997). Four gates have been
incorporated in a modified RNN memory cell to replace the
RNN hidden state. The bidirectional LSTM (Bi-LSTM) variant
of RNN was introduced in the same year as previous LSTM in
1997 (Schuster and Paliwal, 1997). It applies the previously
explained two LSTMs in positive as well as negative time axis
direction on input data. First, forward input sequence is
propagated through LSTM. After this, reverse input
sequence is propagated through the LSTM model. Bi-LSTM
has certain advantages over single propagated LSTM such as
good long-term learning capability and improved model
prediction accuracy (Siami-Namini et al., 2019).

Gated recurrent unit (GRU) was introduced back in 2014,
which performs a gating mechanism in RNN (Cho et al., 2014).
GRU contains a modified LSTM-unit type hidden unit that has
combined the input gate and forget gate into the update gate. The
cellular and hidden states have also been considered while mixing
the input and forget gate. The final model was simpler than LSTM
and had fewer training parameters Figure 1.

The activation of hidden unit at time step is processed as
follows:

rt � σ(Wrht−1 + Urxt) (1)
Initially, rt is calculated using (1) where σ represents logistic

sigmoid function and Wr and Ur represent weight matrices. The
new ht is calculated by rt with a tanh type layer:

h̃t � tanh(W(rt × ht−1) + Uxt) (2)
In GRU, zt replaces the remember gate along with the forget

gate in LSTM. zt is calculated as follows:

zt � σ(Wzht−1 + Uzxt) (3)
Finally, the hidden state gets updated as follows:

ht � (1 − zt)(ht−1) + (zt)(h̃t) (4)

DATA ACQUISITION AND
PREPROCESSING

In order to test imputation methods including KDR, IA,
NIPALS, DA, and PMP, 2514 observations of six
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parameters, PM2.5, PM10, SO2, NO2, O3, and CO were used
from Guangzhou air quality governmental website (TheWorld
Air Quality Project, 2020). The collected data contained ~2.5%
missing values, and imputation was required with a suitable
method. In order to select a suitable imputation method for
this PM2.5 data, comparison experimentation was carried out.
Firstly, all the rows with missing values were removed. The
resulting new data were without missing values and run into
random deletion of ~2.5% values of variables PM2.5, PM10,
SO2, NO2, O3, and CO overall.

Secondly, imputation methods including KDR, IA, NIPALS,
DA, and PMP were employed to fill the missing values. After
imputation, the imputed data results were compared using
numerical errors for the abovementioned imputation methods.
The criterion RMSE (Eq. 5) helped in opting the outperformed
technique.

RMSE �
�������������
(xactual− ximputed)2

N

√
(5)

Each method was allowed to iterate 5,000 times to impute
missing data. The RMSE values obtained through comparison
experimentation are tabulated in Table 1. KDR and TSR
reported an RMSE value of 1.77 for overall imputed missing
values. RSME values obtained by IA, NIPALS, and DA are 2.66,
3.6, and 2.25, respectively. Amongst all the methods, PMP
showed better results with RMSE value equal to 1.22.

The outperformed method PMP was used to impute
originally collected data. In order to summarize the impact
of the individual variable on all other variables, correlation
coefficients were obtained. For that, the correlation matrix was
formed for imputed data that depicted the impact of individual
input variables, i.e. PM10, SO2, NO2, O3, and CO, in terms of
correlation coefficients, on the output variable PM2.5
(Figure 2). The magnitude of the correlation coefficient
shows the strength of correlation between two variables.
The correlation matrix provided all possible correlations
among all variables. Correlation coefficient ranges from −1
to +1. The coefficient value of −1 shows perfect inverse impact;
0 shows no impact, and +1 shows perfect direct impact. From
the bottom left of Figure 2, it can be seen that output variable
PM2.5 is strongly correlated with input variable PM10 with a
coefficient value of 0.65. High coefficient value depicts that the

FIGURE 1 | Parameter comparison between (A) LSTM framework and (B) GRU framework.

TABLE 1 | Missing value imputation parameters

Imputation method PCs Tolerance RMSE

KDR 6 10–10 1.77
TSR 6 10–10 1.77
IA 6 10–10 2.66
NIPALS 6 10–10 3.6
DA 6 10–10 2.25
PMP 6 10–10 1.22
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change in concentration of PM10 will significantly affect the
output variable PM2.5. Moreover, the output variable PM2.5
was least affected with the variation in SO2 concentration that
can be analyzed using the correlation coefficient in Figure 2.
The correlation coefficient was very small, 0.07 between output
variable PM2.5 and input variable SO2. Removing SO2 from
the training data set for model training from the data under
consideration would not significantly decrease the prediction
performance of the model.

Moreover, the reported air pollutant safe limits (Agency,
2018) allow further analysis of the imputed data. A different
coloring scheme with respect to the severity of individual
pollutant concentration was employed to understand the
distribution of data with their ranges (Table 2). The
collected data contained approximately 80 months of PM2.5
and other pollutant data recorded on a per day basis.

Most of the PM2.5 data were found in an unhealthy range.
Percentage-wise, data distribution in various ranges is given in
Table 2. Out of 2514 total samples of PM2.5 collected for
Guangzhou City, 0 samples were in green limit, 59 samples in
yellow range, 330 samples in orange range, 1874 samples in red
ranges, and 250 samples in purple range. PM10 data did not show
much of the variation in ranges and categorized in safe or green
ranges.

However, out of 2,514 total samples of PM10, 1,636 data
points were in green range, 875 were in yellow, and 3 samples
were in orange range that were collectively categorized in safe
ranges. CO concentrations have shown variation in different
ranges. Most of the data points were categorized in a not-safe
range. Out of 2514 samples, three samples were in green range, 98
in yellow, 156 in orange, 269 in red, 1414 in purple, and 254 in
maroon range. Moreover, most of the CO pollutant distributions
were found in a very unhealthy range. NOx data and ozone data
did not show any categorical variations. Almost all the data were
in green range.

METHODOLOGY

The data were collected from the official Guangzhou air quality
website that contained 2514 samples from Jan 2014 to Nov 2020
that contained missing values. To impute the missing values,
various missing data imputation methods were employed and
compared as shown in Table 1. This comparison study has been

FIGURE 2 | Matrix of correlation among all variables.

TABLE 2 | Percentage wise data distribution in various ranges

Range PM2.5% PM10% CO % NOx % Ozone %

Good 0 65.07 0.11 100 100
Moderate 2.3 34.8 3.9 0 0
Unhealthy for some 13.12 0.11 6.20 0 0
Unhealthy for all 74.5 0 10.7 0 0
Very unhealthy 9.94 0 56.24 0 0
Hazardous 0 0 22.8 0 0
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discussed in the Data acquisition and preprocessing section in
detail. The imputationmethod giving the least RMSE was selected
to impute the original missing data. After the data was imputed,
in order to select the most correlated variables with PM2.5, a
correlation matrix was formed as shown in Figure 2. According
to the figure, SO2 was found least correlated with PM2.5 with the
correlation coefficient 0.07. Owing to the insignificant impact of
the SO2 on PM2.5 for the data under consideration, it was decided
that SO2 can be removed from the input variables list. Afterwards,
prior to model training, data standardization was carried out
using Eq. 6 to rescale the data for zero mean and unit variance.
The standardized data were incorporated inmodel training where
training input and corresponding output were termed as Xtrain
and Ytrain. Training data with 2214 samples and validation data
with 150 samples were devised for model training and validation,
and 150 samples were devised for model testing. Furthermore,
suitable parameters along with training data were employed to
train these models, while the validation data were used to validate
the model to check whether it is under-trained or over-trained.
Subsequently, test data were fed to the trained model to evaluate
the model prediction capability.

standardized (xi) � xi − µ
σ

(6)

where xi is the data value, µ represents the mean and σ represents
standard deviation of the data. Moreover, RMSE, MAPE, and
MEDAE were calculated using Eqs. 7, 8, and 9 respectively, to
evaluate model performance by comparing PM2.5 predictions
with actual PM2.5 from testing data.

RMSE �
��������������
1
n
∑
n

i�1
(xi − predi)2

√
(7)

MAPE � 1
n
∑
n

i�1

∣∣∣∣∣∣∣
xi − predi

xi

∣∣∣∣∣∣∣ (8)

MEDAE � 1
n
∑
n

i�1

∣∣∣∣predi − xi

∣∣∣∣ (9)

Here, xi, predi, and n represent actual PM2.5 value, predicted
PM2.5 value, and testing data sample size, respectively.

LSSVM-based model development
Data standardization was done using Eq. 6 to scale it to zero mean
and include unit variance in the data set. For LSSVM, two
parameters, gamma and sigma, were selected after extensive
trials, and set values came out to be 20 and 40, respectively.

LSTM-based model development
Input layer of LSTM contained four input units that were
provided with training data to train the model. The training
progressed using Adam algorithm. The Adam algorithm has the
excellent capability to reach a globally optimal solution (Kingma
and Ba, 2014). The Adam algorithm back-propagates the error to
update the weights and biases of the LSTM to minimize the
training error. Validation of the model training has also been
performed to see if the model is under-trained or over-trained.
The model was trained with 80 epochs. Moreover, necessary

parameters for LSTM model training such as hidden units,
dropout, initial learn rate, learn rate drop factor, learn rate,
and drop period were set as 80, 0.9, 0.25, 1 × 10–6, and 80,
respectively. Finally, the test data were fed to obtain the
prediction of the model.

Bi-LSTM-based model development
Bi-LSTM consists of two LSTMs that work in opposite direction,
hence requiring more training time. The Adam algorithm was
used to update the weights and biases of the Bi-LSTM to
minimize the training error. The model was allowed to train
for 80 epochs and validation of the model training was also
carried out to see if the model was under-trained or over-trained.
A dropout layer was also added to avoid overfitting while training
the model. Moreover, necessary parameters for Bi-LSTM model
training such as hidden units, dropout, initial learn rate, learn rate
drop factor, and learn rate drop period were set as 80, 0.9, 0.75,
1 × 10–6, and 80, respectively.

GRU-based model development
The GRU-based prediction model is shown in Figure 3. The GRU
network trained the weights and biases while training to
minimize the validation errors. The Adam algorithm was used
for training due to its ability to reach the globally optimal solution
effectively. The model was trained using 80 epochs and validation
of the model training was also carried out to see if the model was
under-trained or over-trained. A dropout layer was also added to
avoid overfitting while training the model. If both training error
and validation error decrease simultaneously, then the model is

FIGURE 3 | GRU-based prediction framework.
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said to under-train. If training error decreases but validation error
increases, the model is said to be over-trained. Moreover,
necessary parameters for GRU model training such as hidden
units, dropout, initial learn rate, learn rate drop factor, and learn
rate drop period were set at 160, 0.9, 0.0009, 1, and 120,
respectively.

RESULTS AND DISCUSSION

The acquisition of the PM2.5 data was described in the Data
acquisition and preprocessing section along with missing data
handling. Amongst all the methods employed for the data
considered, KDR and TSR performed better with ~2.5% of
missing value imputations (Table 1). Moreover, through
imputation experiment, PMP was selected as the outperformed
imputation method and, hence, used for the imputation of
original collected PM2.5 missing data (Figure 4).

This study has employed time series predictive RNN models
such as LSTM, Bi-LSTM, and GRU for prediction of PM2.5 using
input variables of PM10, NO2, O3, and CO. The models were
compared and evaluated on prediction error. RSME, MAE, and
MAPE model evaluation techniques were used to evaluate model
prediction performance.

After preparing data for model training, LSSVM, LSTM, Bi-
LSTM, and GRU models were developed for PM2.5 prediction.
The training and testing performances of the respective models
are discussed afterwards.

Training performance of models
All models were trained with 2214 samples of the input variables
PM10, NO2, O3, and CO and output variable PM2.5. The training
data comprised almost 74 months of data. The training
performance, in terms of RMSE, of all the models are given in
Table 3.

LSSVM got trained with overall training RMSE of 29.4
(Figure 5A). The blue line in the upper graph shows the
original values of PM2.5 of 74 months of data samples. The

red line shows the trained PM2.5 values. It can be analyzed that
the model training RMSE of 29.4 is significantly high. Moreover,
the red-faced circles (Figure 6A) show the trained PM2.5 values
in the form of scatter graph plotted against actual PM2.5 of
74 months of data. The red-faced circles were found distributed
around the trend line (dashed diagonal line) and following it but
not significantly, representing the deviation from the trend line at
points. This was one of the reasons of high training RMSE,
though the closeness of the red-faced circles with the trend line at
various points also exhibits that the model was a good fit.

Seventy-four months of data were also employed to train the
LSTM network, and training performance was plotted on a per
day basis (Figure 5B). The solid blue line shows the actual PM2.5
from the training data and the red line shows the trained data by
the model. It can be seen that model was able to learn the time
series sequence very well and trained values showed relatively less
RMSE 17.32.

Generally, it is not recommended to train the model as much
in that trained values tightly fit the original data because
overfitting takes away the generalizability of the model and
future predictions get compromised drastically. Moreover
Figure 6B was also plotted between original PM2.5 from
74 months of training data and trained data by the model.
This scatter plot shows that the model was following the trend
line with lesser deviation, which means the LSTM was able to
learn time series sequence from the provided training data, and
the closeness of red-faced circles with the trend line showed the
superior learning capability of LSTM compared to LSSVM.

Figure 5C shows the training performance of the Bi-LSTM
model with 74 months of PM2.5 training data. The upper plot
shows the model has trained the time series sequences
substantially from the provided training data. The Bi-LSTM
model showed relatively poorer learning performance as
compared to LSTM and showed the training RMSE of ~19.29.
However, the model trained the time series sequence very well
and was also able to show good performance in learning training
data values.

Overall, the model showed relatively larger training error at
every instance of training than LSTM. Moreover, Figure 6C
shows that the trained data are distributed around the trend
line with lesser deviation than that of LSSVM but greater
deviation than that of LSTM. However, the trained data were
found following the trend line very well showing better time series
sequence learning capability as compared to LSSVM but not
better than LSTM.

The GRU network has fewer parameters to train as compared
to LSTM and Bi-LSTM (Figure 1). The GRU training looks
similar to the LSTM network (Figures 5B,D). However,

FIGURE 4 | Missing values imputation method comparison.

TABLE 3 | Model performance review

Models Training RMSE Validation RMSE Testing RMSE

LSSVM 29.4 23.77 17.94
LSTM 17.32 13.87 10.82
Bi-LSTM 19.29 16.23 12.43
GRU 18.24 13.60 10.60
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comparison showed that GRU model trained better than
previously discussed models from the 74 months of training
data and reported training an RMSE value of 18.24. Figure 6D
also shows that the trained data was spread along the trend line,
depicting good time series sequence learning capability of the
model comparable to LSTM.

Moreover, comparison of RMSE of the models for
training data shows that LSTM outperforms. However, it
is important to note that lesser RMSE while training might
not necessarily give lesser RMSE while testing. After
training, models were validated with 150 samples
(January 2020–June 2020) and validation RMSEs were

FIGURE 5 | (A) LSSVM model PM2.5 prediction on training data. (B) LSTM model PM2.5 prediction on training data. (C) Bi-LSTM model PM2.5 prediction on
training data. (D) GRU model PM2.5 prediction on training data.
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reported in Table 3. Validation performance figures can be
found in Supplementary data.

Testing performance of models
All models were trained and tested with four variables discussed in
the Data acquisition and preprocessing section. The test data set
contained 150 samples from July 2020 toNovember 2020 (5months).
Prediction performance criteria i.e., RMSE, MAPE, and MEDAE of
the models under consideration are tabulated in Table 4. For the first

2 months (July, August) of LSSVM model prediction, performance
was a bit poor (Figure 7A). For the next 2months (Sep, Oct), the
model showed a good trend following ability compared to previous
2 months of results. However, the model was found deviating from
the actual trend for the end of October and start of the final month
(November). The model reported overall prediction error using
testing data as RMSE, MAPE, and MEDAE equal to 17.94, 21.40,
and 11.70 respectively. From (Figure 8A) the scatter plot of predicted
values was visualized against the actual PM2.5 testing values. Red-
faced circles showed that the predicted values were getting far apart
along the trend line representing the poor performance of the model.
The model was not generalized enough to predict the PM2.5 values
accurately.

The testing performance of the LSTM model is shown in
(Figure 7B). For the first 2 months, some prediction values were
found less accurate but were following the actual trend. For next
2 months, the model prediction followed the actual trend very well
and predicted values were very close to the actual trend. For very few
points, the model compromised the prediction in these months.
However, for the last month the LSTM PM2.5 model was found
losing its outstanding trend following capability as it had shown in

FIGURE 6 | A) LSSVM training scatter plot. (B) LSTM training scatter plot. (C) Bi-LSTM training scatter plot. (D) GRU training scatter plot.

TABLE 4 | PM2.5 models prediction errors with test data

Models RMSE MAPE MEDAE

Value % Diff a Value % Diff a Value % Diff a

LSSVM 17.94 – 21.40 – 11.70 –

LSTM 10.82 39.7% 15.57 27.2% 8.54 27%
Bi-LSTM 12.43 30.7% 14.29 33.2% 7.22 38.3%
GRU 10.60 40.9% 11.01 48.5% 5.80 50.4%

a% diff refers to the percentage difference in RMSE, MAPE, and MEDAE, compared to
that of LSSVM.
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FIGURE 7 | (A) LSSVM model PM2.5 prediction on test data. (B) LSTM model PM2.5 prediction on test data. (C) Bi-LSTM model PM2.5 prediction on test data.
(D) GRU model PM2.5 prediction on test data.

FIGURE 8 | (A) LSSVMmodel test data scatter plot. (B) LSTMmodel test data scatter plot. (C)Bi-LSTM test data scatter plot. (D)GRUmodel test data scatter plot.
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the previous 4months Figure 8B shows the scatter plot of LSTM
PM2.5 prediction against the actual testing values of PM25. The
overall red-faced circles were found closely spread along the trend
line compared to LSSVM representing good time series trend
prediction of PM2.5 compared to that of the LSSVM model. The
values of RMSE, MAPE, and MEDAE are 10.82, 15.57, and 8.54,
respectively, which are 39.7%, 27.2%, and 27% lower than that of the
LSSVM model, respectively, as shown in Table 4 and Figure 9.

In case of Bi-LSTM, the actual trend following the ability of
the model is shown in Figure 7C. The Bi-LSTM model
predicted PM2.5 values accurately and actual trend
following for the first 2 months was even better than LSTM.
For the next 2 months, the prediction capability of the Bi-
LSTM model was reduced compared to LSTM model.
Figure 8C shows the Bi-LSTM prediction scatter plot
against the actual PM2.5 testing values. In terms of overall
prediction, the red-faced circles were closely spread along with
the trend line, however, a bit far compared to LSTM model
scatter plot. The Bi-LSTM model produced RMSE, MAPE, and
MEDAE as 12.43, 14.29, and 7.22, respectively, which are
30.7%, 33.2%, and 38.3% lower than that of the LSSVM
model, respectively, as shown in Table 4 and Figure 9.

The GRUmodel with testing data set performed very well in
terms of following the actual trend (Figure 7D). The model
performance for the first 4 months of the testing data was
significantly better than that of previously discussed models.
The model displayed good prediction capability and followed
the actual testing data trend accurately with close predicted
values. However, for the last month the model lost excellent
prediction performance but still predicted the actual trend
effectively. However, in terms of overall prediction, the GRU
model showed excellent performance with the testing data set
as compared to previous models such as LSSVM, LSTM, and
Bi-LSTM. Figure 8D shows the prediction performance of the
GRU model in the scatter plot. The red-faced circles were
found following the trend line excellently, better than that of
LSSVM, LSTM, and Bi-LSTM.

The RMSE, MAPE, and MEDAE values are 10.60, 11.01,
and 5.80 respectively, which are 40.9%, 48.5%, and 50.4% lower
than those of the LSSVM model, respectively, as shown in
Table 4 and Figure 9.

The performance criteria values of the GRU model are the
lowest among comparative models considered in this work. The
results depicted that the GRU model outperformed the other
PM2.5 prediction models with the least RMSE, MAPE, and
MEDAE.

CONCLUSION

In this study, predictions of PM2.5 in Guangzhou City in
China were performed with different machine learning models
including LSSVM, LSTM, Bi-LSTM, and GRU. Originally
collected data contained missing values ~2.5% of all data.
Prior to model development, imputation experiment was
run to shortlist the outperforming method among KDR, IA,
NIPALS, DA, and PMP. Comparison experiment showed that
PMP outperformed all other imputation methods with RMSE
of 1.22. Therefore, the prediction models were developed in
combination with PMP. The correlation result showed that
SO2 concentrations were badly correlated with PM2.5;
therefore, the models were developed without SO2

concentration in the data.
The RMSE, MAPE, and MEDAE of the LSSVM model with

test data were produced to be 17.94, 21.4, and 11.7,

FIGURE 9 | Model performance improvement summary. (A) RMSE
improvement summary. (B) MAPE improvement summary. (C) MEDAE
improvement summary.
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respectively. Compared to LSSVM, the LSTM improved the
prediction performance by 39.7% RMSE, 27.2% MAPE, and
27% MEDAE. In the case of Bi-LSTM, it improved the
prediction performance by 30.7%, 33.2%, and 38.3%
compared to that of LSSVM, according to RMSE, MAPE,
and MEDAE, respectively. Likewise, GRU improved the
prediction performance by 40.9%, 48.5%, and 50.4%
compared to LSSVM, according to RMSE, MAPE, and
MEDAE, respectively. Based on the prediction performance
improvement percentages, it can be concluded that GRU in
combination with PMP was able to update its learnable
parameters better and outperformed the LSSVM, LSTM,
and Bi-LSTM for the prediction of PM2.5 data from
Guangzhou City, China.
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Increasing but Variable Trend of
Surface Ozone in the Yangtze River
Delta Region of China
Keqin Tang1, Haoran Zhang1, Weihang Feng2, Hong Liao1, Jianlin Hu1 and Nan Li1*
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Surface ozone (O3) increased by ~20% in the Yangtze River Delta (YRD) region of China
during 2014–2020, but the aggravating trend is highly variable on interannual time and city-
level space scales. Here, we employed multiple air quality observations and numerical
simulation to describe the increasing but variable trend of O3 and to reveal the main driving
factors behind it. In 2014–2017, the governmental air pollution control action plan was
mostly against PM2.5 (mainly to control the emissions of SO2, NOx, and primary PM2.5) and
effectively reduced the PM2.5 concentration by 18%–45%. However, O3 pollution
worsened in the same period with an increasing rate of 4.9 μgm−3 yr−1, especially in
the Anhui province, where the growth rate even reached 14.7 μgm−3 yr−1. After 2018,
owing to the coordinated prevention and control of both PM2.5 and O3, volatile organic
compound (VOC) emissions in the YRD region has also been controlled with a great
concern, and the O3 aggravating trend in the same period has been obviously alleviated
(1.1 μgm−3 yr−1). We further combined the precursor concentration and the
corresponding O3 formation regime to explain the observed trend of O3 in 2014–2020.
The leading O3 formation regime in 2014–2017 is diagnosed as VOC-limited (21%) or mix-
limited (58%), with the help of a simulated indicator HCHO/NOy. Under such condition, the
decreasing NO2 (2.8% yr−1) and increasing VOCs (3.6% yr−1) in 2014–2017 led to a rapid
increment of O3. With the continuous reduction in NOx emission and further in ambient
NOx/VOCs, the O3 production regime along the Yangtze River has been shifting from VOC-
limited to mix-limited, and after 2018, the mix-limited regime has become the dominant O3

formation regime for 55% of the YRD cities. Consequently, the decreases of both NOx

(3.3% yr−1) and VOCs (7.7% yr−1) in 2018–2020 obviously slowed down the aggravating
trend of O3. Our study argues that with the implementation of coordinated regional
reduction of NOx and VOCs, an effective O3 control is emerging in the YRD region.

Keywords: ozone, YRD region, NO2, O3 formation regime, WRF-Chem
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INTRODUCTION

Tropospheric ozone (O3) is a critical secondary air pollutant
featured with strong oxidation (Thompson, 1992), which is
produced via complicated photochemical reactions with
volatile organic compounds (VOCs) and nitrogen oxides
(NOx, x = 1 and 2) acting as its precursors (Seinfeld and
Pandis, 2006; Wang et al., 2017). A high concentration of O3

may degrade air quality and pose health risks to humans, such as
respiratory illness and premature birth (Barry et al., 2019; Ekland
et al., 2021; Guan et al., 2021). Moreover, a severe O3 pollution
episode leads to premature mortality as well. A rise of 10 μg m−3

in O3 concentration would increase mortality by 2% (Lei et al.,
2019). For the ecosystem, O3 can impair plant production by
getting into leaves through stomata (Ainsworth et al., 2012).
Agricultural yields are also negatively impacted by O3 with
losses ranging from 6% to 15% for wheat products in China
(Feng et al., 2015). At the same time, as an oxidant, the
elevated O3 also promotes the formation of secondary
aerosols (Chen et al., 2020b; Feng et al., 2021). For
example, the enhanced O3 and secondary aerosols induced
an unexpected haze event in Beijing during the COVID-19
lockdown (Huang et al., 2020; Le et al., 2020).

In 2013, China implemented the Air Pollution Prevention and
Control Action Plan (APPCAP), which includes a series of
measures for alleviating the current air pollution with
particular attention to fine particulate matter (PM2.5). The
PM2.5 pollution was, thus, effectively controlled with more
than 30% of nationwide PM2.5 reduced by the end of 2018
(Zhai et al., 2019). At the same time, O3 concentration
indicated an inverse trend. The average maximum daily
average 8-h O3 at the 90th percentile (MDA8-90) in 74 major
cities increased by 20% from 2013 to 2017 in China. Major causes
for the aggravated O3 are summarized as follows. First, a decrease
in NOx and increase in VOC emissions (Zheng et al., 2018)
facilitated the nonlinear production of O3 in urban areas that
belong to VOC-limited (Wang et al., 2017; Li et al., 2019c; Liu and
Wang, 2020b). Second, enhanced radiation intensity and
increased HO2 radicals caused by the reduced PM2.5 also
posed a nonnegligible influence on O3 pollution (Li et al.,
2019a). Besides this, the meteorologically driven variability
also contributed to the increase of O3 (Liu and Wang, 2020a;
Dang et al., 2021). From 2013 to 2017, humidity and wind speed
drove an annual increase of 2.3 ppbv in O3 over the Yangtze River
Delta (YRD) region (Li et al., 2019b).

The rapid increase of O3 in China since 2013 has been
confirmed by many observational and model studies (Shen
et al., 2019; Zhai et al., 2019; Chen et al., 2020c; Shen et al.,
2020; Liu et al., 2021; Mousavinezhad et al., 2021). However, the
upward trend has significant differences in different regions and
different periods. Chen et al. (2021) revealed that annual O3

concentration was in continuous increase across the YRD region
during 2014–2019 but rose in volatility in the Pearl River Delta
(PRD) region over the same period. In addition, the increment of
O3 in the YRD region is more obvious with a rate of 3.2 ppbv yr−1

from 50.7 to 66.3 ppbv, which is approximately four times that in
the PRD region.

In this study, we used multiple air quality observations in
conjunction with a regional chemical model, weather research
and forecasting coupled with chemistry (WRF-Chem) to analyze
the O3 pollution in the YRD region from 2014 to 2020 with the
aim of exploring the interannual and regional variations of O3

and understanding the chemical principles behind it. Our study
differs from previous studies in that 1) we combined surface air
quality and meteorology observations, satellite remote sensing
observations, numerical model simulation and an indicator-
based approach to uncover the increasing but variable pattern
of O3 in the YRD region, and 2) we further explored and
compared the chemical mechanisms and driving factors in
different regions and at different stages.

MATERIALS AND METHODS

Observation
We adopted air quality monitoring measurements from 2014 to
2020 over the YRD region (Figure 1). Data was derived from the
public website of the Ministry of Ecology and Environment
(MEE) of China (http://106.37.208.233:20035/). MEE provides
hourly in situ measurements of six criteria air pollutants,
including PM2.5, PM10, NO2, O3, SO2, and CO. A total of 127
sites from 26 cities in the YRD region were utilized for further
analyses. Descriptions for the monitoring sites and cities can be
found in Supplementary Table S1; Supplementary Figure S1. It
is noted that the number of surface observational sites established
by MEE continuously increased since 2013. We selected these
sites with complete records during 2014–2020 for analyzing.
Meanwhile, for measurements of the gaseous pollutants after
September 2018, we converted the mass concentration under
reference state into that under standard state in advance (https://
www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201808/t20180815_
629602.html).

Moreover, we also obtained the hourly meteorological
observation, including surface temperature, relative humidity,
and wind speed from the open-source website (https://q-
weather.info/) for assessing the meteorological conditions in
the YRD region. Four meteorological stations located at the
provincial cities of the YRD region were collected, including
Shanghai, Nanjing, Hangzhou, and Hefei. Illustration of the
meteorological stations used in this study is given in
Supplementary Table S2; Supplementary Figure S1.

The WRF-Chem Model
WRF-Chem (Grell et al., 2005) is a regional air quality model
developed by the National Center for Atmospheric Research
(NCAR), Pacific Northwest National Laboratory (PNNL), and
the National Oceanic and Atmospheric Administration
(NOAA) of the United States. We applied WRF-Chem
(v3.9.1) to simulate the summertime O3 in July over the
YRD region from 2014 to 2020. Each month-long simulation
was spinned up for the last 2 days of the previous month.
Spatially, two nested domains are configured (Figure 1). The
parent domain covers the eastern China (100 × 100 grid cells)
with a horizontal resolution of 18 km. The nested domain,
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whose horizontal resolution is 6 km, mainly includes the YRD
region (145 × 166 grid cells). A total of 28 vertical layers extends
from the ground to the height of 50 hPa. The bottom seven
layers distribute below 1 km. The initial and boundary
conditions of meteorological fields are determined by FNL
reanalysis data sets by the National Centers for
Environmental Prediction (NCEP) of the United States.
Physical parameterization for describing subgrid processes,
such as radiation, microphysics, and the surface layer are
listed in Supplementary Table S3. For chemical species, the
initial and boundary conditions are provided via the global
chemical transport model MOZART (Emmons et al., 2010) and
CAM-Chem (Emmons et al., 2020). Meanwhile, the Statewide
Air Pollution Research Center (SAPRC99) mechanism is
utilized for the gas phase reaction scheme in our study
(Carter, 2000). For aerosols, we apply Model for Simulating
Aerosol Interactions and Chemistry (MOSAIC) as the aerosol
parameterization (Zaveri et al., 2008).

Multi-resolution Emission Inventory for China (MEIC)
developed by Tsinghua University was adopted as the
anthropogenic emission (Li et al., 2017). MEIC summarizes
the 0.25° × 0.25° gridded emissions of SO2, NOx, CO, CO2,
NH3, VOCs, EC, OC, PM2.5, and PM10. All species are
categorized into five sectors, i.e., agriculture, industry, power,
transportation, and residential activities. Online biogenic
emissions were calculated by Model of Emissions of Gases and
Aerosols from Nature (MEGAN, v2.0.4), which comprehensively
took landcover, meteorology, and atmospheric chemical
compositions into consideration (Guenther et al., 2006).
Biomass burning emissions were provided by the Fire
Inventory from NCAR (FINN). Combined with satellite
retrieval constrains, FINN can generate high spatio-temporal
resolution products of biomass burning emissions
(Wiedinmyer et al., 2011).

O3 Formation Regime
The ratio of formaldehyde (HCHO) to NOy was utilized as the
indicator (i.e., HCHO/NOy) for diagnosing the formation regime
of O3 (Hu, 2021). In this indicator, HCHO can track the
contribution of VOCs (Cao et al., 2018), which is a transient
oxidation product of many VOCs and is positively correlated with
peroxyl radicals. NOy describes the impacts of multiple reactive
nitrogenous compounds, including NO, NO2, HONO, HNO3,
HO2NO2, N2O5, NO3, peroxy acetyl nitrate (PAN), and other
organic nitrates. Reactive nitrogen species play a central role in
determining the levels of O3 and hydroxyl radicals in the
troposphere. In Supplementary Figure S2, NOy is mainly
concentrated in cities along the Yangtze River with 7.2 ppbv
on average. Considering that photochemistry is the most active in
the presence of abundant radiation, we, thus, investigated the O3

formation regime from 12:00 to 16:00 (local time, UTC + 8).
When HCHO/NOy is less than 0.3, the O3 formation regime is
considered to be VOC-limited. NOx controls O3 production if the
ratio is more than 0.72. Otherwise, it is expected to be under a
mixed-limited condition, sensitive to changes both in NOx and

FIGURE 1 | Simulation domains of the WRF-Chem model used in this study (left). Right panel illustrates the YRD region as well as the locations of 26 cities in the
YRD region. Names of the 26 cities are also labeled with colorful text in this panel.

TABLE 1 | Model performance in predicting meteorological parameters and air
pollutants over the YRD region during the study period.

Mean IOA MFB

Simulation Observation

Meteorological parameter
Temperature (K) 300.2 301.3 0.84 0%
Relative humidity (%) 79.5 79.1 0.85 1%
Wind speed (m·s−1) 3.1 2.9 0.64 9%

Air pollutant
PM2.5 (μg·m−3) 27.7 29.4 0.59 -17%
NO2 (ppb) 14.4 12.6 0.62 12%
O3 (ppb) 67.5 51.8 0.66 28%
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VOCs. The threshold values were obtained by counting the
distribution of the HCHO/NOy for different O3 formation
regimes in the YRD, which allow the HCHO/NOy sensitivity
zone to be delineated in a way that is more consistent with the
EKMA curve and accurately represents the sensitivity of O3 to the
precursors (Hu, 2021; Li, 2021).

MODEL EVALUATION

Reliable simulation of meteorological parameters and air
pollutants could be the crucial premise for analyzing
complicated causes of O3 pollution. Comparisons between
observation versus simulation are concluded in Table 1. To
statistically quantify the model performance, we applied two
following statistical metrics, i.e., index of agreement (IOA,
varies from 0 to 1) and mean fractional bias (MFB, varies
from −2 to 2). IOA and MFB are calculated based on Eqs
1–2, where s, o, and N represent simulation, observation, and
the number of samples, respectively.

IOA � 1 − ∑N
i�1(Cs − Co)2

∑N
i�1(

∣∣∣∣∣∣∣Cs − Co

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣Co − Co

∣∣∣∣∣∣∣)
2 (1)

MFB � 1
N

∑N

i�1
(Co − Cm)
(Co+Cm

2 ) (2)

First, our model is capable of reproducing meteorological
conditions, which is the key to simulate horizontal
transportation, chemical transformation, and the removal of
air pollutants. As shown in Table 1, the mean observed
(simulated) temperature, relative humidity, and wind speed is
averaged for 301.3 K (300.2 K), 79.1% (79.5%), and 2.9 m/s
(3.1 m/s), respectively, in July from 2014 to 2020. Differences
in terms of magnitudes between observation and simulation are
quite small. All MFBs are less than 10% as well. IOAs for these
meteorological parameters vary from 0.64 to 0.85, highlighting
that our model has a good agreement with surface observations.
The evaluation indicators of each city for each year can be found
in the Supplementary Table S4. The city-level IOAs and MFBs
varied in 0.6–0.9 and −0.1–0.3 except for the wind speed in 2016,
which again confirmed the reasonable model performance.

Moreover, WRF-Chem reasonably reproduced the
concentration levels of photochemical products. The mean
observed summer O3 and NO2 concentrations are 51.8 and
12.6 ppbv averaged for 2014–2020. Simulations for these two
species posed an overestimation by 28% and 12%, according to
the hourly MFB index. Meanwhile, both hourly IOA values
exceed 0.60, indicating that our model reasonably captures the
temporal variations of O3 and NO2 as well. WRF-Chem also well
simulates PM2.5 with a predicted IOA of 0.59 as well as a MFB
of –17%.

Supplementary Figures S3, S4 show scatterplots of
simulations versus observations in daily MDA8 O3 and NO2

concentrations and their regression parameters in the 26 cities of
the YRD region. The simulated O3 demonstrates various model
performance in different cities. The daily IOA of O3 ranges from

0.55 (Hefei) to 0.83 (Shanghai) and the corresponding daily MFB
poses a range from 13% (Shanghai) to 49% (Wuhu). Meanwhile,
most of the fitted slopes of O3 range from 0.9 to 1.3, further
confirming that our model is reliable in reproducing
concentrations of O3. In addition, we verified the diurnal
patterns of O3 in all 26 cities of the YRD region as well. As
shown in Supplementary Figure S5, both observation and
simulation pose the same diurnal patterns with the peak O3

concentration occurring between 12:00 and 16:00. The
correlation coefficients (R) are more than 0.96, implying that
diurnal variations of O3 are successfully captured.

RESULTS AND DISCUSSION

Observed O3 Pollution in the YRD Region
From 2014 to 2020
We first analyzed the observed spatio-temporal variations of six
air pollutants over the YRD region from 2014 to 2020. As
illustrated in Supplementary Figure S6, regional mean O3

concentration is 107.1 μg m−3 in 2020, which increased by 18%
compared with the concentration level in 2014. In contrast,
concentrations of other five air pollutants sharply decreased
over the study period. For example, the annual mean SO2

shows a dramatic drop by 16.8 μg m−3 from 2014 to 2020 with
a relative reduction of 68%. At the same time, both PM2.5 and
PM10 concentrations are also reduced by more than 50%. It is
precisely because of this decline that the dominant air pollutant in
the YRD region has been changing from PM2.5 to O3. For NO2,
the variation trend generally showed a decrease with a rate of
0.8 μg m−3 yr−1 even though an individual slight increase
occurred in 2017. The changes of city-level pollutant
concentrations are shown in Supplementary Figure S7. In
addition, Figure 2; Supplementary Figures S8–S12 show the
frequency distribution of O3, NO2, PM2.5, PM10, CO, and SO2

daily concentrations, respectively, which again emphasize that the
concentration distribution of O3 is changing from a low to a high
value region while other pollutants show an opposite trend.

Based on the above analysis, we further find that the upward
trend of O3 is significantly different at different stages. In general,
the increasing trend of O3 concentration during 2014–2017 is
more obvious in contrast to the years 2018–2020. Annual mean
O3 rapidly increased by 4.9 μg m−3 yr−1 (5.5% yr−1) during the
period of 2014–2017, while in 2018–2019, the increasing trend
slowed down, with the increase rate dropped to 1.1 μg m−3 yr−1.
Even in 2020, O3 in many YRD cities has decreased by
0.1–14.3 μg m−3 compared with 2019, mainly caused by the
reduction of human activity and the more precipitation in
2020, especially in mobile sources and industry (Chen H.
et al., 2020; Huang et al., 2021).

In addition, the upward trend of O3 is also different in
different regions of the YRD. As shown in Figure 3, the
growth of O3 in the Anhui Province is faster than that in
other YRD regions. Especially during 2014–2017, the O3

concentration in Anhui increased by a rate of
14.7 μg m−3 yr−1—four times that in other provinces
(i.e., Shanghai, Jiangsu, and Zhejiang, SJZ). Such trends can
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also be observed on the city scale (Supplementary Table S5;
Supplementary Figure S7). Hefei doubled its O3 concentration
between 2014 and 2017 while, in Shanghai, Nanjing, and
Hangzhou, the increase was 9.7%–14.3%. To highlight the
distinctive variation of O3 in Anhui, we further compared the
frequency distributions of O3 in Anhui with that in other regions
from 2014 to 2020 (Figure 2). In 2014, the O3 concentration in
Anhui was mostly concentrated around 50 μg m−3 while the city-
level O3 concentration in SJZ distributed in a range of
14.8–256.7 μg m−3, and the average value was 80% higher than
that in Anhui. However, after 2014, the O3 in Anhui prominently
increased with the frequency distribution rapidly moved to the
high value scope (central at ~70 μg m−3), and by 2018, it was close
to other regions of YRD.

Driving Factors of Interannual Changes in
O3 From 2014 to 2020
We analyze the interannual variation of O3 in the YRD region
from 2014 to 2020 through two factors. One is the O3 formation
regime, and the other is the precursor (NOx and VOCs)
concentrations. The dual role of NOx in O3 generation results

in the variation of O3 formation regime. NOx can either promote
O3 production through photochemical reactions with atomic
oxygen (O), O2, or mitigate O3 formation by removing OH
from the oxidation cycle. At the same time, ambient radical
budget and weather conditions can also affect the O3 generation
regime (Li et al., 2019b; Liu and Wang, 2020a; Lin et al., 2020;
Wang et al., 2020).

We employed HCHO/NOy as an indicator to diagnose the
formation regime of O3. Figure 4 shows the spatial distributions
of the indicator over the YRD region simulated by WRF-Chem.
The surrounding areas of the Yangtze River (purple line) are
mostly under VOC-limited, mainly due to the abundant NOx

emissions from industrial and shipping activities (An et al., 2021).
In contrast, the south regions of YRD demonstrate a universal
pattern of NOx-limited. This could be attributed to the substantial
biogenic VOCs emissions from the forest districts in Zhejiang
province (Cao et al., 2021). Other YRD regions are mainly
controlled by both NOx and VOCs.

To better understand the fate of O3 formation regime, we
primarily explore the emission characteristics of NOx and VOCs
during this period. As shown in Figure 5, the NOx emission over
the YRD region was continuously reduced by a rate of 3.5% yr−1

FIGURE 2 | Frequency distribution of the MDA8 O3 concentration in the YRD region during the study period. Red bars represent the values of 2014. Blue bars
indicate the values in the other year during 2015–2020. The colored shaded areas show different pollution levels according to the National Ambient Air Quality Standard
of China.
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from 2014 to 2020, which was largely benefited from the
APPCAP (http://www.gov.cn/zwgk/2013-09/12/content_
2486773.htm). Unprecedented emission reductions due to
COVID-19 in 2020 also enhance this trend (Wang G. et al.,
2021; Li et al., 2021b; Hu et al., 2021).

However, during 2014 and 2017, the VOC emissions in the
YRD region were not effectively controlled and even increased by

0.8% yr−1. After 2018, with the implementation of strict VOC
control (http://www.gov.cn/zhengce/content/2018-07/03/
content_5303158.htm), VOC emissions began to decline, and
in 2020, the VOC emissions in the YRD region dropped by 15.4%
compared with the highest level in 2017. The decline in aromatics
propene/ethene emission from the petrochemical industry as well
as gasoline evaporation and vehicular emissions is the main

FIGURE 3 | Monthly variations of SO2, NO2, PM2.5, CO, O3, and PM10 concentrations over the YRD region in 2014 (filled dots). Also shown are the differences
between 2014 and each of 2015–2020 (bars).

FIGURE 4 | Spatial distribution of the indicator (HCHO/NOy) for diagnosing the O3 formation regime over the YRD region in the summertime. (A) indicates
2014–2017, and (B) indicates 2018–2020. Red, green, and blue shaded areas represent VOC-limited, mix-limited, and NOx-limited condition, respectively.
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component of the reduction of VOCs emissions in 2020 (Wang
M. et al., 2021; Qi et al., 2021). The distribution of emission
variation also reveals similar trends with the whole region
(Supplementary Figure S13). Emissions of NOx in 2018–2020
decreased by 17.7%–50.8% compared to 2014–2017 in most
regions of the YRD. VOCs emissions for 87.8% of YRD areas
are reduced in 2018–2020 relative to 2014–2017.

With the changes in NOx and VOCs emissions, the O3

formation regime has also changed in response. In 2014–2017,
most cities along the Yangtze River are in VOC-limited areas, and
other regions are mainly under mix-limited except for the
forested areas in southern Zhejiang. Since 2018, the original
VOC-limited region has shifted to mix-limited (36%). It
should be noted that there are still 15% areas controlled by
VOC-limited over the YRD region.

In addition, the concentrations of NOx and VOCs in the YRD
region show a consistent trend as their emissions. As shown in
Figure 5, the NO2 concentration clearly demonstrates a
continuous decreasing trend over the YRD region during
2014–2020. In term of VOCs, we employed the column
density of HCHO via satellite retrievals to represent the
interannual variations of VOCs (Li R. et al., 2021). The
column density of HCHO shows an inverted “U” shape, which
increases from 7.2 × 1015 molec cm2 (2014) to 8.0 ×
1015 molec·cm2 (2017) and then drops to 7.4 × 1015 molec cm2

(2020).
As a result of the changes of both O3 formation regime and

precursor concentrations, the O3 concentration in the YRD
region shows an increasing but variable trend during
2014–2020. Between 2014–2017, the declined NO2 and the
elevated VOCs, under the VOC-limited and mix-limited O3

formation regime, led to a rapid increase of O3. However,
when it comes to 2018–2020, the VOCs began to slowly

decline, and meanwhile, the formation regime shifted to more
mix-limited so that the upward trend of O3 has obviously slowed
down and even appeared as a downward trend in 2020.

Explanation for Distinctive Variation of O3 in
Anhui
The main reason of the rapid growth of O3 in Anhui, which is
different from that in other regions, is the distinctive growth of NOx

during 2014–2017. The NO2 in Anhui elevated with a rate of
2 μgm−3 yr−1 while, in other YRD regions, it posed a remarkable
decline of 1.1 μgm−3 yr−1. At the same time, the O3 formation
regime in Anhui was mostly controlled by NOx-limited (24%) or
mix-limited conditions (65%). It is also different from other YRD
regions wheremore than 27% areas were controlled by VOC-limited
condition. The ambient non-VOC-limited condition is conducive to
generation ofO3whenNO2 increases, via enhancing the “NOx cycle”
(Wang et al., 2017). In addition, the VOCs concentration in Anhui
also increased in 2014–2017, which had not yet received much
attention over the early stage. It intensified theO3 production as well.
Since 2018, the concentration of O3 in Anhui (130.6 μgm

−3) reached
the same level as other regions (122.9 μgm−3).

DISCUSSION

Though the emission control strategy since 2018 is effective for
slowing down the worsening O3 pollution over the YRD region,
there is still a long way to go to see continuous decline in O3

concentration. Meanwhile, previous studies point out that the O3

formation regime in other Chinese city clusters, such as the north
China plain and PRD, are dominated by VOC-limited and
changes toward mix-limited (Jiang et al., 2018; Wang et al.,

FIGURE 5 | The schematic diagram for illustrating changes of precursor emissions and concentrations, O3 formation regime and O3 concentration over the YRD
region during the study period.
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2019). To address this issue, a more efficient synergistic measure
should be taken to control both NOx and VOCs (Li et al., 2019c;
Huang et al., 2020). O3 concentration can be quickly reduced with
a reasonable reduction ratio between these two precursors
according to its nonlinear formation regime. In addition, it is
also complicated to conduct the reduction of VOCs emissions. A
comprehensive source apportionment for detailed VOCs
speciation is necessary for planning better control policies
(Wu and Xie, 2017).

Meanwhile, the mitigation of O3 that is focused on other
seasons except for summertime is also proved to be meaningful.
Previous case studies of air quality, such as research during
COVID-19 or summit exhibited that O3 could increase
resulting from the weakened titration of NOx due to the
reduction of its emissions (Le et al., 2020; Li K. et al., 2021;
Zhang et al., 2021b). The elevated O3 further facilitated the
production of secondary aerosols and even led to haze events
(Chang et al., 2020; Zhang et al., 2021a; Wang N. et al., 2021).
Thus, controlling O3 concentration during other nonwarm
seasons also helps to eliminate the negative environmental
impacts by O3 and PM2.5.

CONCLUSION

In this study, we employed multiple air quality observations and
WRF-Chem simulation to describe the increasing but variable
trend of O3 concentration in the YRD region from 2014 to 2020,
and further revealed the main factors that caused such trends.
During the period of 2014–2020, the annual average O3

concentration in the YRD region was 101 μg m−3 with an
increase from 93.4 μg m−3 in 2014 to 107 μg m−3 in 2020. The
increase rate was 4.9 μg m−3 yr−1 in the first 4 years, which was
four times higher than that in 2018–2020. It should be noted that
the O3 concentration in Anhui significantly increased by
44.1 μg m−3 during 2014–2017, twofold higher than that in the
YRD region (13.0 μg m−3). Since 2018, both Anhui and other
regions in the YRD slowed down their increase in O3.

We further analyzed the two main factors driving the
interannual variation of O3 in the YRD region, including
precursor concentrations and the corresponding O3 formation
regime. With the help of the indicator HCHO/NOy simulated by
WRF-Chem, we concluded that the O3 production regime along
the Yangtze River has shifted from VOC-limited to mix-limited.

In 2014–2017, most cities along the Yangtze River were in VOC-
limited areas, and other regions were mainly under mix-limited.
After 2018, 36% areas that belong to the VOC-limited condition
shifted to a mix-limited condition. Therefore, the alleviative NOx

and elevated VOCs under a VOC- and mix-limited O3 formation
regime generally contributed to the cumulative rise in O3

concentration. However, since 2018, the drop of both
precursors under the mix-limited O3 formation regime
alleviated the worsening O3 pollution. Our work is of
importance to understand the current O3 pollution in a
megacity cluster of China and offers an investigative insight
for further alleviating O3 pollution in the future.
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Spatiotemporal Distributions of PM2.5
Concentrations in the
Beijing–Tianjin–Hebei Region From
2013 to 2020
Xiaohui Yang1,2,3, Dengpan Xiao1,2,3*, Huizi Bai3, Jianzhao Tang3 and Wei Wang1,2*

1College of Geography Science, Hebei Normal University, Shijiazhuang, China, 2Hebei Laboratory of Environmental Evolution and
Ecological Construction, Shijiazhuang, China, 3Institute of Geographical Sciences, Hebei Academy of Sciences, Hebei
Engineering Research Center for Geographic Information Application, Shijiazhuang, China

Fine particulate matter (PM2.5) seriously affects the environment, climate, and human
health. Over the past decades, the Beijing–Tianjin–Hebei region (BTH) has been severely
affected by pollutant gas and PM2.5 emissions caused by heavy industrial production,
topography, and other factors and has been one of the most polluted areas in China.
Currently, the long-term, large-scale, and high spatial resolution monitoring PM2.5

concentrations ([PM2.5]) using satellite remote sensing technology is an important task
for the prevention and control of air pollution. The aerosol optical depth (AOD) retrieved by
satellites combined with a variety of auxiliary information was widely used to estimate
[PM2.5]. In this study, a two-stage statistical regression [linear mixed effects (LME) +
geographically weighted regression (GWR)] model, combined with the latest high spatial
resolution (1 km) AOD product and meteorological and land use parameters, was
constructed to estimate [PM2.5] in BTH from 2013 to 2020. The model was fitted
annually, and the ranges of coefficient of determination (R2), root mean square
prediction errors (RMSPE), and relative prediction error (RPE) for the model cross-
validation were 0.85–0.95, 7.87–29.90 μg/m3, and 19.19%–32.71%, respectively.
Overall, the model obtained relatively good performance and could effectively estimate
[PM2.5] in BTH. The [PM2.5] showed obvious temporal characteristic within a year (high in
winter and low in summer) and spatial characteristic (high in the southern plain and low in
the northern mountain). During the investigated period of 2013–2020, the high pollutant
areas ([PM2.5] > 75 μg/m3) in 2020 significantly narrowed compared to 2013, and the
annual average [PM2.5] in BTH fell below 55 μg/m3, with a drop of 54.04%. In particular, the
[PM2.5] in winter season dropped sharply from 2015 to 2017 and declined steadily after
2017. Our results suggested that significant achievements have been made in air pollution
control over the past 8 years, and they still need to be maintained. The research can
provide scientific basis and support for the prevention and control of air pollution in BTH
and beyond.

Keywords: PM2.5 concentrations, aerosol optical depth, two-stage statistical regression model, spatiotemporal
distribution, Beijing–Tianjin–Hebei region, Tianjin–Hebei region
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INTRODUCTION

Fine particulate matter (PM2.5, particles with aerodynamic
diameter less than 2.5 μm) are suspended in the atmosphere
as a composite of solid and liquid particles. It can carry toxic
and harmful substances over long distances, crossing countries
and geographic boundaries (Engel-Cox et al., 2013; Li et al.,
2017). Epidemiological studies have shown that exposure to
high PM2.5 concentrations ([PM2.5]) has adverse effects on
human health, such as increasing morbidity and mortality of
cardiopulmonary diseases (Chow et al., 2006; Gu et al., 2018;
Riediker et al., 2018; Zhang et al., 2018). With the rapid
economic and urbanization development, PM2.5 has become
a major air pollutant in China, especially in densely populated
urban agglomerations, such as the Beijing–Tianjin–Hebei
region (BTH) and the Yangtze River Delta region (He and
Huang, 2018a; Wang G. et al., 2021). Therefore, studying the
spatiotemporal patterns and trends of [PM2.5] is conductive to
taking accurate preventive measures against PM2.5 pollution for
policymakers and has important practical significance for air
pollution control (Yan et al., 2021).

At present, PM2.5 monitoring data mainly were derived from
the ground monitoring network and aerosol optical depth (AOD)
products generated by satellite sensors (van Donkelaar et al.,
2006; Chudnovsky et al., 2014). AOD is a measure of the degree
about which aerosols prevent light from penetrating the
atmosphere and describes the reduction effect of aerosols on
light. The AOD retrieved by visible channels is most sensitive to
particles with sizes between 0.1 and 2 μm (close to the particle size
of PM2.5), which is an important theoretical basis for establishing
the correlation between AOD and PM2.5 (Kahn er al., 1998; Hu
et al., 2013). Generally, satellite-derived AOD can provide
valuable information for the estimation of ground-level PM2.5

pollution due to its large spatial coverage, high spatial resolution,
and reliable repeated measurement, especially suitable for those
places without PM2.5 monitoring station on the surface (Schaap
et al., 2009; Yeganeh et al., 2017; Stowell et al., 2020). Recently,
most of the AOD products used to predict [PM2.5] were derived
from the Moderate Resolution Imaging Spectroradiometer
(MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS),
Multiangle Imaging SpectroRadiometer (MISR), and Advanced
Himawari Imager (AHI) that the nominal spatial resolutions for
AOD retrieved by their algorithms are 10 or 3 km, 17.6 or 4.4,
0.75 and 5 km, respectively (Lee et al., 2011; Hu et al., 2014a; Yao
et al., 2018; Wang et al., 2020). However, the coarser resolution
AOD products hinder the study of fine-scale [PM2.5]. For
example, the detailed spatial variability of PM2.5 exposure was
ignored at the urban scale (Hu et al., 2014b). A new high spatial
resolution (1-km) MODIS Collection 6 (C6) daily AOD product
(MCD19A2) was released in 2018, which was generated based on
the Multi-Angle Implementation of Atmospheric Correction
(MAIAC) algorithm and demonstrated excellent performance
in estimating [PM2.5] (Lyapustin et al., 2018; Zhang Z. et al., 2019;
Choi et al., 2019).

Previous studies have established a variety of models to
explore the relationship between station-based PM2.5

observations and satellite-based AOD data, including scaling

approach (Liu et al., 2004), semi-empirical (Wang and
Christopher, 2003), and statistical regression models. Given
their simplicity, fast process, and high performance, statistical
regression models are widely used. These models ranged from
simple linear regression (Engel-cox et al., 2004) in early study to
advanced statistical models, such as linear mixed effects (LME)
(Lee et al., 2011), generalized additive (GAM) (Liu et al., 2009),
geographically weighted regression (GWR) (Hu et al., 2013),
space-time LME (STLME) (Wang W. et al., 2021),
geographically and temporally weighted regression (GTWR)
(Bai et al., 2016), and time fixed effects regression (TEFR)
(Yao et al., 2018). To improve prediction accuracy, various
models have evolved from using AOD as the only predictor to
a combination of multiple additional predictors [e.g.,
meteorological factors, human activities, and land use (LU)
variables] (Gupta and Christopher, 2009; Hu et al., 2017). To
reduce the deviation caused by a single model prediction, more
complex models were then developed by combining two or more
models, such as two-stage model (e.g., LME + GWR, LME +
GAM, and TEFR + GWR) (Ma et al., 2016; Yao et al., 2019; Xue
et al., 2020; Guo et al., 2021) and three-stage model [e.g., inverse
probability weighting (IPW) + generalized additive mixed model
(GAMM) + kriging with external drift (KED)] (Liang et al., 2018).
In addition, some machine learning methods were employed to
estimate [PM2.5], such as random forest (RF) (Stafoggia et al.,
2019; Zhao et al., 2020), artificial neural network (ANN) (Polezer
et al., 2018), adaptive deep neural network (SADNN) (Chen et al.,
2021), and support vector machine (SVM) (Moazami et al., 2016).
However, the parameters in the machine learning models cannot
explain the spatiotemporal relationship between PM2.5 and AOD,
owing to an unknown mechanism, causing the model to lack
reasoning capability (Yang et al., 2021). The LME + GWR model
is weak in dealing with nonlinear relationships between various
predictors, but it can accurately capture the spatiotemporal
variability of PM2.5–AOD, which is better than the LME
model and LME + GAM model (Zhang K. et al., 2019; Guo
et al., 2021). Moreover, related studies indicated that adding
interaction terms (quadratic terms) to the statistical regression
models could better describe nonlinear effects (Xiao et al., 2017;
He et al., 2020).

PM2.5 estimation data with higher resolution and long-term
series are of great significance for the analysis of small-scale air
pollution (Lu et al., 2021). In this study, our main goal was to
estimate the [PM2.5] in the BTH and analyze its long-term
spatiotemporal characteristics and trends. The specific
objectives of this research were 1) to establish a suitable
two-stage statistical regression model (LME + GWR),
including adding quadratic terms and interaction terms in
the model to account for the nonlinear relationship, and
considering the influence of meteorological and LU
information and AOD data in the BTH; 2) to estimate the
daily [PM2.5] distribution with 1-km spatial resolution in the
BTH from 2013 to 2020; and 3) to analyze the spatiotemporal
characteristics and trends of long-term [PM2.5] on annual,
seasonal, and monthly scales. The results can provide a
reference for the joint prevention and control of particulate
pollution in the study area.
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MATERIALS

Study Area
The BTH (113.45°E–119.85°E and 36.03°N–42.62°N) is one of the
most important administrative, commercial, and cultural center in
northern China, including Beijing and Tianjin, and 11 prefecture-
level cities of Hebei Province (Figure 1). The region is densely
populated and is a secondary industry that used coal as the main
energy source emits various air pollutants, which causing relatively
severe haze (Zhao et al., 2019). In particular, in the inland plains,
coupled with unfavorable topography, it makes it more difficult for
pollutants to spread (Lv et al., 2017). According to the statistics from
the “China Environmental Bulletin” (http://www.cnemc.cn/jcbg/
zghjzkgb/) during 2013–2020, the BTH included seven, eight,
seven, six, six, five, four, and one, respectively, among the top 10
cities with poor air quality in China. Although the air quality in this
region has improved during the past few years, we should still pay
close attention to PM2.5 pollution. Therefore, it is essential to analyze
the spatiotemporal distribution and the trend of [PM2.5].

PM2.5 Monitoring Data and Predictor
Variables
In addition to addingAOD to themodel for [PM2.5] prediction, it has
been recognized that combining meteorological and LU information
can significantly improve the model predictability (Hu et al., 2017;
Wang G. et al., 2021). In this study, for the proposed two-stage
statistical regression (LME + GWR) model, a main independent

predictor (AOD) and eight auxiliary predictors [i.e., planetary
boundary layer height (PBLH), 2-m air temperature (TEMP), 10-
m wind speed (WS), relative humidity (RH, specific humidity
calculated), surface pressure (PRS), precipitation (PRCP), forest
coverage (FC), and urban coverage (UC)] were utilized through
variables selection and multicollinearity diagnosis. The datasets
covered the period from January 1, 2013, to December 31, 2020.
The detail information about the datasets is shown in Table 1.

1) PM2.5 data. The PM2.5 hourly concentration of 80 monitoring
stations in BTH was obtained from the National Urban Air
Quality Real-time Release Platform. In the process of fitting
the daily mean [PM2.5], we eliminated the [PM2.5] (i.e., <2 and
>500 μg/m3) that was not within the monitoring range of the
National Ambient Air Quality Standard (NAAQS) (GB 3095-
2012) to ensure the validity of the PM2.5 data.

2) AErosol RObotic NETwork (AERONET) AOD. The AOD
measured by AERONET was used as the true value to verify
the accuracy of the AOD retrieved by remote sensing. The
AERONET AOD data (version 3, level 2) from three sites
(i.e., Beijing, Beijing-CAMS, and Xianghe) were collected in
our modeling area (https://aeronet.gsfc.nasa.gov/), which
were used to validate the MODIS MAIAC AOD.

3) One-kilometer AOD data. High-resolution AOD products are
increasingly used to capture the fine-scale differences in the
spatial distribution of [PM2.5]. The emergence of the MAIAC
algorithm provided a theoretical basis for constructing a high-
resolution [PM2.5] estimation model. The MAIAC Terra/

FIGURE 1 | Study area with 80 monitoring stations in the Beijing–Tianjin–Hebei region (A) and sub-areas (B) divided by terrain.
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Aqua AOD (0.55 µm) products were available through the
MODIS Collection-6 data record. The AERONET AOD550 nm

was calculated from the AOD at 675 and 440 nm using the
Angstrom exponent. Simple linear regressions were carried
out between the MAIAC Terra/Aqua AOD (0.55 µm) and
AERONET AOD550 nm at the AERONET sites for each year.
The results show that the fitting with the coefficient of
determination (R2) in 0.81–0.91 was acceptable in all years
(Figure 2). The root mean square prediction error (RMSPE)
ranged from 0.10 to 0.25, 73.15%–83.74% of the samples
falling within the interval of 1 × variance, and the slope of
0.95–1.17, which met the verification accuracy requirements.

4) Meteorological data. The hourly PBLH data were derived
from the Goddard Earth Observing System Model 5-
Forward-processing (GEOS5-FP). Other daily
meteorological data (e.g., TEMP, WS, RH, PRS, and PRCP)
were extracted from the National Tibetan Plateau Data Center
(TPDC) and only cover the period from 2013 to 2018 (Yang
and He, 2019). The daily data from 2019 to 2020 were
downloaded from the National Meteorological Science Data
Center. The meteorological data in the two periods have
negligible influence on the model prediction results because
they have similar spatial resolutions and need to be
interpolated to the same resolution as MODIS MAIAC AOD.

5) LU data. LU data were downloaded from the Geographical
Information Monitoring Cloud Platform (GIM Cloud). The
study selected LU data in 2015 to represent the LU status from
2013 to 2020 and extracted the urban coverage and FC in the
study area into the model.

6) Data integration. Considering to match the daily [PM2.5], the
daily PBLH data were represented by averaging the
observation values obtained at two times during the transit
of the MODIS satellite. The daily meteorological data were
then resampled to the 1-km grid by the bilinear interpolation
method. In addition, the UC and FC data with 30-m spatial
resolutions were averaged over the 1-km grid.

METHODS

Collinearity Diagnosis
Considering the stability of the predictive model, the collinearity
of the independent variables should be diagnosed. In this study,
the variance inflation factor (VIF) and tolerance value (TV) were
selected to diagnose the collinearity of the selected variables. The

VIF and TV of all independent variables participating in the
model satisfied VIF < 10 and TV > 0.1 for each year (Table 2),
indicating that there was no collinearity problem among the
independent variables and could be considered for model fitting.

Two-Stage Statistics Regression Model
A two-stage statistical regression model consisting of LME model
and GWR model was used to simulate the spatiotemporal
variation of the PM2.5–AOD relationship. The LME model in
the first stage was applied to correct the time-varying relationship
of PM2.5–AOD. The quadratic term of AOD (AOD2) and the
interaction between PBLH and AOD (PBLH × AOD) were added
to the model to explain the nonlinear relationship between AOD
and PM2.5. The specific structure of the model is as follows:

PM2.5st � (β0 + θ0) + (β1 + θ1)AODst + (β2 + θ2)AOD2
st

+ (β3 + θ3)PBLHst + (β4 + θ4)WSst

+ (β5 + θ5)TEMPst + (β6 + θ6)RHst + (β7 + θ7)PRSst
+ (β8 + θ8)PRCPst + β9 × PBLHst × AODst

+ β10 × FCs + β11 × UCs

+ εst(θ1 ~8) ~ N[(0, 0, 0,ψ)], εst ~ N(0, σ2)
(1)

where PM2.5st is the [PM2.5] at station s on day t; AODst is the AODof
the grid cell inwhich the station s is positioned on day t; AOD2st is the
quadratic term for AOD at station s on day t; PBLHst, WSst, TEMPst,
RHst, PRSst, and PRCPst are the planetary boundary layer height,
wind speed at 10-m height, temperature at 2-m height, relative
humidity, surface pressure, and precipitation at station s on day t,
respectively; PBLHst × AODst is the interaction between PBLH and
AODat station s on day t; FCs andUCs are the FC value andUCvalue
at station s, respectively;β0 and θ0 are thefixed and random intercepts,
respectively; β1 and β2 are the fixed slopes of square polynomials for
AOD; β3, β4, β5, β6, β7, β8, β10, and β11 are the fixed slopes of PBLH,
WS, TEMP, RH, PRS, PRCP, FC, and UC; β9 is the fixed slope of the
interaction between PBLH and AOD; θ1 and θ2 are the daily random
slopes of square polynomials for AOD; and θ3–θ8 are the daily
random slopes of each meteorological variables, respectively.

The GWR model of the second stage was used to correct the
spatial heterogeneity between PM2.5 and AOD. The specific method
was to model the residuals of the LMEmodel. This GWRmodel was
fitted once a day to account for temporal variability. In addition, the
model using adaptive bandwidth selection methods calculated by

TABLE 1 | Information about data source, temporal and spatial resolution.

Variable Temporal resolution Spatial resolution Data source

PM2.5 hourly site http://106.37.208.233:20035/
AOD daily 1 × 1 km https://ladsweb.modaps.eosdis.nasa.gov/
Meteorological PBLH hourly 0.25° × 0.3125° ftp://rain.ucis.dal.ca/ctm/

TEMP, WS, RH, PRS, and PRCP daily 0.1° × 0.1° http://data.tpdc.ac.cn/zh-hans/data/ (2013–2018)
0.0625° × 0.0625° http://data.cma.cn/ (2019–2020)

Land use FC yearly 30 × 30 m http://www.dsac.cn/DataProduct/
UC

PBLH is planetary boundary layer height; TEMP, WS, RH, PRS, and PRCP are 2-m air temperature, 10-m wind speed, relative humidity, surface pressure, and precipitation, respectively.
FC and UC are forest coverage and urban coverage, respectively.
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minimizing the corrected Akaike Information Criterion (AIC) value.
The specific expression is as follows:

PM2.5 resist � β0(us, vs) + β1(us, vs)AODst + εst εst ~ N(0, σ2)
(2)

where PM2.5_resist is the residual value from the LME model at
station s in day t; AODst is the AOD value at station s on day t; (us,

vs) is the spatial coordinates of the monitoring station s; and β0
(us,vs) and β1 (us,vs) represent the regression intercept and
regression slope at station s, respectively.

For model verification, a 10-fold cross-validation (CV) method
was conducted to detect the degree of overfitting of the model. The
entire model-fitting dataset was randomly split into 10 subsets, with
each subset containing approximately 10% of the dataset. In each CV
time, we selected one subset as the testing sample and used the

FIGURE 2 | Scatter plot of MODIS MAIAC AOD and AERONET AOD at 550 nm for the period of 2013–2020 (A–H). The red dashed line is the regression line. The
black line is a 1:1 line. The gray lines represent the expected error (EE) envelopes [±(0.05 + 20%×AERONET AOD)]. It also shows the coefficient of determination (R2), the
number of samples (N), the percentage in EE (P), and the root mean square prediction error (RMSPE).
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remaining nine subsets to fit the model for prediction on the testing
sample. This process was repeated 10 times to ensure that all the
subsets were predicted. We fitted a linear regression was performed
between the measured and predicted [PM2.5], and the fitted R

2, slope,
RMSPE, and relative prediction error (RPE) were evaluated the
performance of the model. They represented by Eqs. 3 and 4,
respectively.

RMSPE �
�����������������
∑n

i�1(ymod,i − yobs,i)2
n

√
(3)

RPE � RMSPE × 100%
�y

(4)

where ymod,i is the estimated PM2.5 at site i; yobs,i is the observed
PM2.5 at site i; n is the total number of data samples; and �y is the
average of the observed PM2.5.

The estimation process of the daily [PM2.5] by the LME +
GWR model is shown in Supplementary Figure S1.

RESULTS

Descriptive Statistics
As shown in Table 3, the daily minimum and maximum [PM2.5]
in the BTH were ranged from 2 to 3 μg/m3 and from 371 to
499 μg/m3, respectively, which indicated that the pollution degree

of different areas in the BTH had considerable differences. The
annual average [PM2.5] during the investigated period from 2013
to 2020 in the BTH were 91.27, 85.93, 72.89, 68.22, 61.02, 53.53,
45.75, and 40.97 μg/m3, respectively, indicating that the PM2.5

pollution has been on a downward trend in the past 8 years.
However, it still exceeded the limit (35 μg/m3) of the national
secondary standard for ambient air quality (GB3095-2012). The
average annual AOD ranged from 0.37 to 0.69 during the same
period. The great difference between the mean FC and UC
reflected that most of the monitoring sites in the study area
were located inside or around the city. In addition, the ranges of
the meteorological variables from 2013 to 2020 are also shown in
Table 3.

During the period from 2013 to 2020, the monthly [PM2.5]
monitored in the BTH demonstrated that the median monthly
[PM2.5] presented a U-shaped oscillation for each year (Figure 3).
Overall, the [PM2.5] displayed significant monthly differences,
following the change pattern of “high in winter, low in summer,
falling in spring and rising in autumn”. In detail, [PM2.5]
displayed a downward trend from January to May, a general
stability from June to September, and an upward trend from
October to December. The reason for the highest monthly
[PM2.5] in December and January was the combined effect of
coal-fired heating in winter and unfavorable meteorological
conditions in the BTH, such as low air humidity and weak
wind speed.

Model-Fitting and Validation
The comparison of LME + GWR model fitting (Figure 4A) and
10-fold CV results (Figure 4B) from 2013 to 2020 indicated that
the model displayed excellent performance in capturing daily
[PM2.5]. For model fitting, the data distribution was concentrated
toward the regression line. The R2 ranged from 0.89 to 0.97,
indicating that the two-stage model could effectively explain
89%–97% of the ground-level [PM2.5] variation. The slope
ranged from 0.89 to 1.04, indicating that only a small
prediction bias remained in the model. In addition, the fitting
results also displayed that the RMSPE and RPE were
6.85–24.60 μg/m3 and 16.67%–26.94%, respectively. Compared
with model fitting, the 10-fold CV results showed that the CV-R2,
CV-RMSPE, and CV-RPE ranged from 0.85 to 0.95, 7.87 μg/m3 to

TABLE 2 | The range of variance inflation factor (VIF) and tolerance value (TV) in the
analysis of variable collinearity.

Predict variables VIF TV

AOD 1.18–1.64 0.60–0.84
PBLH 1.17–1.60 0.69–0.84
WS 1.15–1.28 0.68–0.86
TEMP 1.15–1.78 0.56–0.86
RH 1.41–1.88 0.52–0.82
PRS 1.24–1.50 0.66–0.80
PRCP 1.03–1.07 0.93–0.96
FC 1.30–1.48 0.67–0.76
UC 1.43–1.87 0.53–0.69

PBLH is planetary boundary layer height; TEMP, WS, RH, PRS, and PRCP are 2-m air
temperature, 10-m wind speed, relative humidity, surface pressure, and precipitation,
respectively. FC and UC are forest coverage and urban coverage, respectively.

TABLE 3 | Statistical indicators of modeling variables.

Variables Minimum Maximum Mean Std. Deviation

PM2.5 (µg/m3) 2.00–3.00 371.00–499.00 40.97–91.27 34.18–77.23
AOD (unitless) 0.003–0.02 2.98–3.79 0.37–0.69 0.37–0.71
PBLH (m) 54.68–64.69 2,307.02–3,124.23 333.92–553.57 321.9–471.71
WS (m/s) 0.05–0.63 5.61–12.04 1.52–2.59 0.73–1.28
TEMP (°C) −22.66–-12.85 31.58–33.97 9.83–12.88 10.30–11.57
RH 0.04–0.10 0.93–1.00 0.42–0.51 0.16–0.18
PRS (hPa) 866.01–891.61 1,016.94–1,042.73 997.25–1,006.12 27.10–33.92
PRCP (mm) 0 42.02–99.12 0.30–0.43 2.27–2.74
FC 0 0.68–0.75 0.03–0.05 0.11–0.14
UC 0 0.79–1.00 0.55–0.78 0.29–0.33

PBLH is planetary boundary layer height; TEMP, WS, RH, PRS, and PRCP are 2-m air temperature, 10-m wind speed, relative humidity, surface pressure, and precipitation, respectively.
FC and UC are forest coverage and urban coverage, respectively.
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29.90 μg/m3, and 19.19–32.72%, respectively. The CV-R2

decreased, and CV-RMSPE and CV-RPE increased, indicating
that the model had a slight overfitting. In addition, Figure 4
shows that, when the measured [PM2.5] exceeds 400 μg/m

3, the
model had a slight “high value underestimation” phenomenon.

During the study period, the model performed best in 2020.
Under the regression of the observed and predicted [PM2.5] in the
study area,CV-R2was the highest at 0.95, and the CV-RMSPE and
CV-RPE were the lowest at 7.87 μg/m3 and 19.19%, respectively.
This is mainly attributable to the government’s series of “Air
Pollution Prevention and Control Action Plans” (APPCAP), and
the [PM2.5] has been declining year by year. About 93.72% of
[PM2.5] data samples in 2020 were less than 100 μg/m3. In
contrast, the model performed the worst in 2013, with the
lowest CV-R2 and the largest forecast uncertainty. The main
reason was that more than 32.38% of the data samples were more
than 100 μg/m3, and relatively discrete data samples increased the
difficulty of model fitting. Overall, the LME + GWR model that
we have established was robust. Using the LME + GWR model
combined with the 1-kmMAIAC AOD product could excellently
predict the daily near-surface [PM2.5] with CV-R2 > 0.84, CV-
RMSPE < 30 μg/m3, and CV-RPE < 33% in the BTH.

Spatiotemporal Patterns of PM2.5

Concentrations
Annual Variations
Figure 5 illustrated the annual mean [PM2.5] estimated by the LME
+ GWR model, and ground-level observed [PM2.5] from 2013 to
2020 in the BTH. The spatial variation pattern of [PM2.5] estimated
by the model was in good agreement with ground observations. The
low-value areas of [PM2.5] were located in the western and northern
mountainous areas (Zone I), and the high-value areas were located in
the middle and south of the BTH inland plain (Zone II). In general,

the [PM2.5] present a spatial distribution pattern of “low in the
northern mountains and high in the southern plains”. During the
study period, the annual mean [PM2.5] were 69.67, 65.31, 49.26,
51.17, 44.96, 43.11, 34.54, and 32.02 μg/m3, respectively, and the
overall PM2.5 pollution level dropped significantly. Moreover, high-
concentration areas ([PM2.5] > 75 μg/m3) have shrunk remarkably,
and polluted cities were mainly concentrated in Handan, Xingtai,
Shijiazhuang, and Baoding.

We adopted linear regression method to analyze the trends of
annual mean [PM2.5] in BTH. Figure 6 illustrates the spatial
distribution of the slope and significance level of [PM2.5] from
2013 to 2020. Most of the mountain areas (Zone I) in the BTH
failed the significance test (p ≥ 0.01). The reason was speculated
that the [PM2.5] changed slightly during the study period. In
addition, the [PM2.5] level showed a significant decreasing trend
(p < 0.05) in inland and coastal areas (Zone II and Zone III).

Seasonal Variations
PM2.5 pollution in the BTH displayed strong seasonal variability.
On the whole, the [PM2.5] presented the seasonal variation
characteristics of “high concentration in winter, low
concentration in summer, and transition between spring and
autumn” (Figure 7). During the study period in winter, the mean
[PM2.5] were 117.46, 84.24, 75.30, 72.72, 55.97, 52.75, 51.48, and
51.42 μg/m3, respectively. There was a sharp decline in pollution
from 2015 to 2017 and a steady decline after 2017. Compared
with the [PM2.5] in the winter of 2013, there was a decrease of
61 μg/m3 (52%) in 2017 and 66 μg/m3 (56%) in 2020. In addition,
the annual and seasonal mean [PM2.5] in the Zone II dropped the
fastest compared with Zone I and Zone III (Figure 8).

Monthly Variations
During the study period, the estimated monthly [PM2.5] of each year
presented a U-shaped pattern (Figure 9), which was consistent with

FIGURE 3 | The monthly mean observed PM2.5 concentrations from 2013 to 2020 (A–H) in the Beijing–Tianjin–Hebei region.
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the monthly measured [PM2.5] distribution (Figure 3). January and
December were the two months with the highest monthly mean
[PM2.5], which were related to coal-fired heating in the BTH. In
addition, the low atmospheric humidity and temperature in these
two months were also an important reason.

For the spatial distribution, the mean monthly [PM2.5] had
significant differences (Figure 10). The [PM2.5] from May to
September remained at a relatively low level. From October to
February of the next year, cities in inland plain areas (e.g.,
Shijiazhuang, Baoding, Handan, and Xingtai) had the high-
level [PM2.5].

Figure 11 represents the daily fluctuations of [PM2.5] based on
station measurements and model estimates in Beijing and
Shijiazhuang. The [PM2.5] estimated by LME + GWR from
2013 to 2020 had excellent consistency with the monitoring
station data and merely appeared a “high value
underestimated” prediction deviation at few high
concentrations (more than 400 μg/m3). The fluctuation pattern
of PM2.5 pollution in Shijiazhuang was identical with Beijing. The
peak values of [PM2.5] were mainly distributed in winter, and the
peak value in Shijiazhuang (the highest of 492.28 μg/m3 appeared
in 2014) was higher than that in Beijing (the highest of 463.52 μg/

FIGURE 4 | Comparison of model fitting (A) and 10-fold cross-validation (B) results from 2013 to 2020.
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FIGURE 5 | The distribution of the annual mean estimated PM2.5 concentrations and observed PM2.5 concentrations in the Beijing–Tianjin–Hebei region during
2013–2020 (A–H).

FIGURE 6 | Spatial distributions of the slope (A) and significance levels (B) of annual mean PM2.5 concentrations in the Beijing–Tianjin–Hebei region from 2013
to 2020.
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FIGURE 7 | Distribution of mean PM2.5 concentrations in spring (A1–H1), summer (A2–H2), autumn (A3–H3), and winter (A4–H4) in the Beijing–Tianjin–Hebei
region during 2013–2020.
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FIGURE 8 | Scatter plots of seasonal and annual trends of PM2.5 concentrations in the Zone I (A1–E1), Zone II (A2–E2), Zone III (A3–E3), and the
Beijing–Tianjin–Hebei region (A4–E4) from 2013 to 2020. (The gray band represents the 95% confidence interval).
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m3 appeared in 2015). During the study period, the annual mean
[PM2.5] in Beijing were 57.54, 54.34, 54.30, 54.53, 54.38, 39.07,
30.87, and 30.09 μg/m3, which were lower than 108.40, 91.61,
69.31, 74.48, 67.63, 53.63, 43.52, and 39.87 μg/m3 in Shijiazhuang.
However, PM2.5 fell sharply in Shijiazhuang, with a drop of
63.21% from 2013 to 2020. In addition, the frequency of high
pollution in Shijiazhuang in winter was higher than that in
Beijing.

DISCUSSION

Causes Affecting the Spatiotemporal
Distributions of PM2.5
During the period from 2013 to 2020, [PM2.5] in the BTH showed
obvious spatiotemporal variations on different scales of annual,
seasonal, and monthly. Overall [PM2.5] in the BTH revealed a
downward trend during the investigated period. Exploring the
reasons for the decrease in the [PM2.5] was inseparable from the
national policy control, such as coal-to-gas and energy-saving
transformation (Pan et al., 2021). In detail, the APPCAP
implemented between 2013 and 2017 has successfully reduced
[PM2.5] (Yue et al., 2020), and the sharp decline in 2017 was
closely related to the termination year of the APPCAP in 2017.
Moreover, the [PM2.5] in December 2015 and December 2016
were significantly higher than that in other years. The reason was
that El Niño in 2015 enhanced the winter air pollution in
northern China (Chang et al., 2016). The high concentration
in the winter of 2016 might be influenced by anthropogenic
factors (Ding et al., 2021). In addition, the [PM2.5] in the winter of
2018–2020 decreased slowly compared with 2017, and the light-
pollution areas (such as Langfang and Tangshan) slightly
expanded. Furthermore, combined with the contribution of
the suspension of work and production during new
coronavirus disease (COVID-19) (Xian et al., 2021), the
[PM2.5] in the winter of 2020 dropped to 51.42 μg/m3, which
was the lowest [PM2.5] in winter during the study period.

In the BTH, [PM2.5] presented the significant seasonal variation
characteristics of “high in winter, low in summer, and transition

between spring and autumn”, which were consistent with previous
studies (Wu et al., 2016; Guo et al., 2021; Lu et al., 2021). The high
[PM2.5] in winter was concentrated in cities such as Shijiazhuang,
Xingtai, and Handan. In the study areas, pollutant emissions were
mainly due to the coal-fired heating and unfavorable meteorological
conditions (Lv et al., 2017). Relevant studies have pointed out that
the increase of boundary layer height and higher water vapor content
in summer are the main reasons for the low [PM2.5] (Qu et al., 2016;
Ding et al., 2021). Moreover, the elevated [PM2.5] levels in autumn
were likely caused by the large scale straw burning in the rural areas
and coal burning for heating in November (Duan et al., 2004; Lv
et al., 2017). In addition, the spatiotemporal variation trends on the
monthly scale follow the characteristics of seasonal changes, with the
most polluted months appearing in December and January.

Comparisons With Other Studies in the
Beijing–Tianjin–Hebei Region
In previous studies, the CV-R2 value range of the satellite-based
ground [PM2.5] estimation model for the BTH was 0.54–0.95
(Table 4). Among these, the [PM2.5] estimation model based on
MODIS MAIAC AOD (CV-R2 up to 0.82–0.95) has been found to
perform better than other [PM2.5] estimation models (a maximum
CV-R2 of 0.83), owing to its superior spatial resolution. Under the
same high spatial resolution of AOD, our model showed similar or
even better performance than other machine learning models. The
performance statistics of the LME + GWR model developed was
also comparable with other studies conducted in the United States
that used the MODIS MAIAC AOD data (CV-R2 up to 0.62–0.84)
(Hu et al., 2014a, 2014b; Chudnovsky et al., 2014; Stowell et al.,
2020). For model, the LME model cannot estimate the daily value
of PM2.5 at non-monitoring points, even if there are abundant data
available. Models such as TEFR and STLME also have this
shortcoming (Wu et al., 2016; Wang W. et al., 2021). In
addition, machine learning methods that account for complex
nonlinear relationships between different variables by adding
hidden nodes and layers exhibited good performance in
estimating [PM2.5] (Ni et al., 2018; Stafoggia et al., 2019; Sun
et al., 2019; Zhao et al., 2020; Ding et al., 2021). However, the

FIGURE 9 | Statistical variations of the monthly mean PM2.5 concentrations in the Beijing–Tianjin–Hebei region from 2013 to 2020.
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addition ofmore hidden nodes and layers consumed a lot of time in
estimating PM2.5 load and produced different results for each
training (Wang W. et al., 2021). Therefore, the LME + GWR
model has certain advantages in terms of performance and
stability. For AOD product, AHI AOD was commonly used to
estimate hourly [PM2.5] due to its high resolution. However, AHI
cannot retrieve AOD at nighttime, and the quality is slightly
inferior to MODIS AOD (Sun et al., 2019; Wang W. et al., 2021).

The model proposed in this study has many advantages. First, the
high spatiotemporal resolution MAIAC Terra/Aqua fusion AOD
data were employed in the model and achieved satisfactory

performance. Second, the AOD quadratic term (AOD2) and the
interaction term of AOD and PBLH (PBLH×AOD) were introduced
into the first-stage LME model to describe the nonlinear effect of the
model. Third, we adopted theGWRmodel as the second-stagemodel
to improve the spatial difference of the PM2.5–AOD. The bisquare
kernel bandwidth function and adaptive bandwidth method were
selected owing to the difference between the daily sample data. After
CV, the degree of overfitting was very small (compared with R2, CV-
R2 was only reduced by 0.01–0.04).

However, themodel still has some limitations. One limitationwas
the mismatch in spatial resolution between MODIS MAIAC AOD

FIGURE 10 | Spatial distributions of monthly mean PM2.5 concentrations (A–L) in the Beijing–Tianjin–Hebei region during 2013–2020.
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(0.01° × 0.01°) andmeteorological parameters (0.1° × 0.1° and 0.0625°

× 0.0625°). Although the bilinear interpolation method for
meteorological factors has proved to have better performance
than linear interpolation and nearest neighbor interpolation
algorithms (Zhao et al., 2020), more meteorological products with
high spatial resolution were still needed. Another limitation was that
we only keep three data records in some days to bring into themodel.
Related studies have pointed out that the overfitting degree of the
two-stage model incorporating GWR decreases with the increase in
the number of matching data records per day (Hu et al., 2014a; Wu
et al., 2016). Therefore, too few observations in some days would lead
to the GWR model to overfitting. We will explore the optimal
threshold that matches the minimum number of data records later.
In addition, some studies have indicated that PM2.5 monitoring

stations mostly located in cities and suburbs, and the PM2.5

estimation in mountainous and rural areas was relatively poor
(Zeng et al., 2020; Ding et al., 2021). Our study area is in the
BTH with characteristics of urban industrial conditions. In
particular, Hebei Province that has many rural administrative
units also has a large number of factories. Provincial monitoring
sites with a larger coverage area should be added to future research to
increase the regional representation of the sample.

CONCLUSION

In this study, the two-stage model (LME + GWR) that applied
MODIS MAIAC AOD and measured [PM2.5] and

FIGURE 11 | Daily fluctuation in PM2.5 concentrations based on station observations and model-based estimates in Beijing (A) and Shijiazhuang (B).

TABLE 4 | Performances of previous studies on PM2.5 estimates in the Beijing–Tianjin–Hebei region.

Related study Spatial resolution (km) Time period Model Model-fitting Cross-validation AOD source

R2 RMSPE R2 RMSPE

Wang et al. (2019) 10 2017 LME 0.81 24.48 0.78 26.69 MODIS, NAQPMS
Wu et al. (2016) 6 2014 TEFR + GWR 0.88 13.05 0.71 19.29 VIIRS
Wang et al. (2021b) 5 2018 STLME 0.88 17.10 0.83 20.90 AHI
Ni et al. (2018) 3 2014–2016 BPNN 0.68 20.99 0.54 24.13 MODIS
He and Huang (2018b) 3 2013–2015 iGTWR 0.88 24.22 0.82 29.96 MODIS
Sun et al. (2019) 1 2017 DNN 0.91 14.27 0.84 19.90 AHI
Zhao et al. (2020) 1 2010–-2016 RF 0.86 23.48 0.83 MODIS
Ding et al. (2021) 1 2015–2019 CatBoost - - 0.88 17.79 MODIS
This study 1 2013–2020 LME + GWR 0.89–0.97 6.85–24.60 0.85–0.95 7.87–29.90 MODIS

BPNN, iGTWR, and DNN are the back propagation neural network model, improved geographically and temporally weighted regression model, and the deep neural networks model,
respectively.
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meteorological and LU data as input variables was constructed
to estimate the daily [PM2.5] from 2013 to 2020 in the BTH. The
LME + GWR model presented satisfactory performance (CV-R2

was 0.85–0.95, RMSPE was 7.87–29.90 μg/m3, and RPE was
19.19–32.71%) and provided a well-documented dataset for
air pollution monitoring. During the investigated period
from 2013 to 2020, PM2.5 pollution in the BTH region has
generally been on a downward trend. This decline is mainly due
to anthropogenic factors such as pollution-preventing policies,
but natural factors such as climate phenomenon (El Niño) also
have a certain effect. In particular, in winter season, the [PM2.5]
exhibited relatively small fluctuations from 2013 to 2014, a
sharp decline occurred from 2015 to 2017, and a steady
decline from 2018 to 2020.
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Comparative Study of Source
Inversion Under Multiple Atmospheric
Pollutant Emission Scenarios
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Source inversion is an effective approach for estimating air pollutant source parameters
(e.g., source emission or source strength [Q0], source horizontal location [x0, y0], and
release height [z0]) in industrial activities or accidents. Air pollution events in the real world
generally correspond to complex application scenarios arising from unknown source
parameters (i.e., Q0, [Q0, z0], [Q0, x0, y0], and [Q0, x0, y0, z0]) and atmospheric dispersion
conditions. However, the source inversion characteristic law of these complex practical
scenarios and the interaction mechanism between source location prior information and
source strength inversion have not been revealed. In this study, the source inversion
performance (accuracy and robustness) under the aforementioned scenarios was
evaluated based on the Prairie Grass field experiments. Results indicated that the
estimation accuracy of source strength was worse with an increase in the number of
unknown source parameters with absolute relative deviations of 34.4, 46.0, 80.1, and
83.6% for a single parameter and double, triple, and quadruple parameters, respectively.
Source strength inversion performance was obviously affected by location parameters;
robustness was markedly reduced when source height was unknown, whereas accuracy
was obviously reduced when source horizontal locations were unknown. Impacts of
atmospheric conditions on different source parameters were distinct. Extreme
atmospheric conditions (stability A and F) can obviously reduce the estimation
accuracy of source strength for single and double parameter inversion scenarios,
whereas unstable conditions (stability A, B, and C) can reduce the estimation accuracy
of source strength for triple and quadruple parameter scenarios. Source inversion
accuracy and robustness were generally poor under extremely stable conditions. This
study can fill the knowledge gap in characteristic laws of source inversion under complex
application scenarios and the interaction relationship between different unknown source
parameters. The results of the influence law of location prior information on source strength
inversion have important guiding significance to further improve the inversion accuracy of
source strength in practical environmental managements.

Keywords: air pollution, source parameter estimation, inversion modeling, atmospheric dispersion conditions,
multiple pollutant emission scenarios, small-scale regions
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INTRODUCTION

As works promoting air pollution treatment and thereby ensuring
the safety of life and property are given importance, air pollution
events in small-scale regions triggered by conventional pollution
discharge or accidents have caught the attention of governments
and the public (Chen and Carter, 2020; Du et al., 2020; Lin et al.,
2021; Liu et al., 2020; Wang et al., 2021). Accurately estimating
unknown source emission information (or source parameters) is
essential for rapidly promoting the refined control of air pollution
or effective emergency response in sudden accidents (Mao et al.,
2021; Zhou et al., 2021). However, capturing source emission
information is difficult because pollutant emissions are generally
abnormal or furtive (Bildirici, 2017; Jeričević et al., 2019).

To solve this problem, optimization inversion technologies
have been proposed and proven promising for identifying
unknown source parameters (e.g., source emission rate or
source strength [Q0], source horizontal location [x0, y0], and
source release height [z0]) of air pollution (Gao et al., 2009; Stohl
et al., 2012; Wang et al., 2020; Zheng and Chen, 2010). The
technology determines the unknown source information by
solving an inversion model (or cost function) that minimizes
the gap between the observed and simulated concentrations (Ma
et al., 2018). The technical structure of the optimization source
inversion mainly consists of two parts: inversion models and
optimization algorithms. In the past decades, scholars have
conducted meaningful research on source inversion.
Algorithms such as gradient-based methods (e.g., least-squares;
Singh and Rani, 2014; Singh and Rani, 2015), direct search
methods (e.g., simulated annealing; Thomson et al., 2007),
genetic algorithms (Cantelli et al., 2015; Hamblin, 2013; Haupt
et al., 2006; Mao et al., 2020b), and hybrid algorithms (Cui et al.,
2019; Wang et al., 2020) have been proposed to estimate the
characteristics of source parameters. A few scholars have focused
on the forms of cost functions (Ma et al., 2017; Wang et al., 2018),
whereas Dong et al. (2020) found that the method involving the
sum of deviation squares exhibited relatively better source
inversion performance. However, the literature has mainly
focused on theoretical research at the technical level. Notably,
from the perspective of practical applications, optimization of
source inversion is also vulnerable to external environmental
factors (e.g., pollutant emission types and atmospheric dispersion
conditions), except the aforementioned technical factors.

In the real world, pollutant-release scenarios are complex,
and various types of pollutant emission events generally
generate different source parameter inversion scenarios.
For instance, conventional pollutants (e.g., volatile organic
compounds and nitrogen oxides [NOx]) can be discharged via
industrially organized or unorganized emissions, which
correspond to inversion scenarios where the source
location (e.g., horizontal location and release height) is
known and unknown, respectively (Amoatey et al., 2019;
Clappier and Thunis, 2020; Wang et al., 2019; Wei et al.,
2014). For sudden accidents, hazardous gas releases from
leakage accidents may occur near the surface or at a certain
height. The release height of hazardous gas from fire accidents
is generally difficult to determine because of the thermal lift

(Koutsomarkos et al., 2021; Lei et al., 2021); however, the
horizontal source location information might be known.
These pollutant release types correspond to the different
source inversion scenarios due to the difference in prior
source location information available for different pollution
event types. Meanwhile, Cervone and Franzese (2011), Cui
et al. (2019), and Cantelli et al. (2015) found that, in the real
world, optimization of source inversion is also affected by
atmospheric dispersion conditions by influencing the
simulation performance of forward dispersion models or
the number of effective monitoring sensors utilized for
source inversion. However, they only focused on the single
inversion scenario where the source location is unknown (i.e,
unknown source parameters are [Q0, x0, y0, and z0]) under
different atmospheric conditions. The inversion characteristic
law under other different complex practical application
scenarios arising from unknown source parameters
(i.e., Q0, [Q0, z0], and [Q0, x0, and y0]), atmospheric
dispersion conditions, and the possible interaction
mechanism between source location prior information and
source strength inversion have not been revealed. This limits
our understanding of the source inversion problem.

Consequently, the aim of this study was to comprehensively
investigate the optimization of source inversion performance
under multiple specific application scenarios. In an effort to
reflect reality, 68 experiments from the Parris Grass field
experiment dataset were used as the basic data (Barad, 1958).
Four inversion models corresponding to four source inversion
scenarios were established based on a relationship analysis
between unknown source parameters and real air pollution
events. Next, the source strength estimation performance
(i.e., accuracy and robustness) under the four inversion
scenarios was evaluated under different atmospheric dispersion
conditions (i.e., Pasquill stability classes A, B, C, D, E, and F). The
relationship between the performance of the source strength
estimation and unknown source location parameters was
revealed. Furthermore, the estimation performances of
different location parameters were evaluated under different
atmospheric conditions, and those of the same parameter
under different application scenarios were compared. The
results of this study can deepen the understanding of the
impacts of external environmental factors on source inversion
and provide a valuable reference for objectively evaluating and
utilizing the source inversion results in practice.

METHODS

As mentioned in the introduction section, the core idea of the
source inversion technology is determining the unknown source
information by solving an inversion model that minimizes the
gap between the observed and simulated concentrations
(Figure 1). Thus, combined with this concept, the
methodology section was divided into four sub-sections:
forward dispersion model, source inversion model, basic field
experimental data, and inversion performance evaluation
method.
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Forward Dispersion Model
A dispersion model with high efficiency and relatively high
accuracy is generally required to conduct source inversion in
small-scale regions in practice. From the viewpoint of practical
applications (source term estimations and prediction
concentrations) (MEPPRC, 2004; Senocak et al., 2008; Lushi
and Stockie, 2011; Stockie, 2011; Ma et al., 2017; Ma et al.,
2018), the Gaussian plume model was adopted in this study.
According to the dispersion theory of the Gaussian model
(Pasquill and Smith, 1983), the simulation concentration at
any point in the downwind direction can be expressed as follows:

C(x, y, z) � Q0

2 · π · u · σy(x−x0) · σz(x−x0)
exp⎛⎝ − (y − y0)2

2 · σ2y(x−x0)
⎞⎠p

⎡⎢⎢⎣exp⎛⎝ − (z − z0)2
2 · σ2z(x−x0)

⎞⎠ + exp⎛⎝ − (z + z0)2
2 · σ2z(x−x0)

⎞⎠⎤⎥⎥⎦
, (1)

where C(x,y,z) is the pollutant concentration (g/m3) at the
monitoring site (x,y,z) (m); Q0, y0, and z0 represent the pollutant
emission rate parameter (g/s), horizontal crosswind location
parameter (m), and the release height parameter (m); u is the
near-surface average wind speed (m/s); σy and σz represent the
dispersion parameters in the horizontal and vertical directions,
respectively, which are the functions of downwind distance
(x-x0). The BRRIGS scheme (Briggs, 1973) was used to calculate
the dispersion parameters. See Table 1 for further details.

Source Inversion Model
The widely used form of the sum of deviation squares (Zheng and
Chen, 2010; Ma et al., 2018; Dong et al., 2020) was also used to

construct the inversionmodels in this study, which is expressed as
follows:

min f � ∑
n

n�1
(cobs,i − csim,i)2. (2)

In Eq 2, cobs,i and csim,i are the monitoring concentration and
simulated concentration, respectively, of the sampling site i; and
N is the number of sampling sites in the downwind.

As described in the introduction section, different pollutant
release types may correspond to different prior source location
information available. According to the difference in location
prior information, the source emission estimation of hazardous
pollutants can be divided into two main cases: the known release
source location (i.e., only source strength is unknown) and the
unknown release source location (i.e., source strength and
certain location parameters are unknown). In the case of an
unknown release source location, it can be further divided into
1) only the release height is unknown (e.g., emissions from fires
or certain industrial smokestacks), 2) only the horizontal
location is unknown (e.g., emissions from near-ground
source leakages), and 3) horizontal location and height are
both unknown (e.g., emissions from near-ground or elevated
source leakages). Thus, four source emission estimation
scenarios were determined based on the aforementioned
analysis, and four corresponding source emission inversion
models were built by combining Eqs. 1, 2. The expressions
under four source estimation scenarios are as follows:

Scenario 1. Only estimating source strength (single parameter
estimation).

FIGURE 1 | Concept diagram of source inversion.

TABLE 1 | Dispersion parameter schemes established by BRRIGS.

Atmospheric conditions (Pasquill standard) σy(m) σz(m)

A (extremely unstable) 0.22·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.20·(x-x0)
B (stable) 0.16·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.12·(x-x0)
C (slightly stable) 0.11·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.08·(x-x0)·(1 + 0.0002·(x-x0))−0.5
D (neutral) 0.08·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.06 (x-x0)·(1 + 0.0015·(x-x0))−0.5
E (stable) 0.06·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.03 (x-x0)·(1 + 0.0003·(x-x0))−1
F (extremely stable) 0.04·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.016 (x-x0)·(1 + 0.0003·(x-x0))−1

Note: x0 represents the horizontal downwind location parameter of the gas release source.
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min f � ∑
n

n�1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cobs,i − Q′0
2·π·u·σy(xi−x0)·σz(x−x0)

exp⎛⎝ − (y−y0)2
2·σ2y(xi−x0)

⎞⎠p

⎡⎢⎢⎣exp⎛⎝ − (zi−z0)2
2·σ2z(xi−x0)

⎞⎠ + exp⎛⎝ − (zi+z0)2
2·σ2z(xi−x0)

⎞⎠⎤⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

2

, (3)

where Q0
′ is the unknown source parameter (i.e., the source

strength) to be estimated.

Scenario 2. Estimating both source strength and release height
(double parameter estimation).

min f � ∑
n

n�1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cobs,i − Q′0
2·π·u·σy(xi−x0)·σz(x−x0)

exp⎛⎝ − (y−y0)2
2·σ2y(xi−x0)

⎞⎠p

⎡⎢⎢⎣exp⎛⎝ − (zi−z′0)2
2·σ2z(xi−x0)

⎞⎠ + exp⎛⎝ − (zi+z′0)2
2·σ2z(xi−x0)

⎞⎠⎤⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

2

, (4)

where Q0
′ and z0′ are the unknown source parameters (i.e., source

strength and release height) to be estimated.

Scenario 3. Estimating both source strength and horizontal
location (triple parameter estimation).

min f � ∑
n

n�1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cobs,i − Q′0
2·π·u·σyxi−x′0 ·σz(x−x′0)

exp⎛⎜⎜⎜⎜⎝ − (y−y0′)2
2·σ2y(xi−x0′)

⎞⎟⎟⎟⎟⎠p

⎡⎢⎢⎣exp⎛⎝ − (zi−z0)2
2·σ2z(xi−x′0)

⎞⎠ + exp⎛⎝ − (zi+z0)2
2·σ2z(xi−x′0)

⎞⎠⎤⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

2

, (5)

where Q0
′, x0′, and y0′ are the unknown source parameters

(i.e., source strength, horizontal downwind location parameter,
and horizontal crosswind location parameter, respectively) to be
estimated.

Scenario 4. Estimating source strength, horizontal location, and
release height (quadruple parameter estimation).

min f � ∑
n

n�1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cobs,i − Q′0
2·π·u·σy(xi−x′0)·σz(x−x0′)

exp⎛⎜⎜⎜⎜⎝ − (y−y0′)2
2·σ2y(xi−x0′)

⎞⎟⎟⎟⎟⎠p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣exp⎛⎜⎜⎜⎜⎝ − (zi−z0′)2
2·σ2z(xi−x0′)

⎞⎟⎟⎟⎟⎠ + exp⎛⎜⎜⎜⎜⎝ − (zi+z0′)2
2·σ2z(xi−x0′)

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

2

,

(6)
where Q0

′, x0′, y0′, and z0′ are the unknown source parameters
(i.e., source strength, horizontal downwind location parameter,
horizontal crosswind location parameter, and release height
parameter, respectively) to be estimated.

The aforementioned equations indicate that source inversion
is an ill-posed and nonlinear optimization problem; however, the
degrees of nonlinearity vary with specific unknown parameters.
The genetic algorithm (GA) was selected as the optimization
method of source inversion in this study owing to its excellent

capability in global searching and robustness (Haupt, 2005;
Haupt et al., 2006; Long et al., 2010). It mainly includes the
process of individual evaluation iteration, selection, crossover and
mutation, and finally produces a best solution through the
continuous iterative evolution of population. The mutation
(0.2) and crossover rates (0.5) in the GA were chosen based
on previous studies (Haupt, 2005). The average change in the
fitness function value less than the threshold value (10–6) was set
as the algorithm convergence termination criterion of the search
process. One hundred independent calculations were performed
for each experiment in order to reduce the influence of
randomness on inversion results. Figure 2 shows the flowchart
of performance evaluation of source inversion in this study.

Field Experimental Data
Prairie Grass field experiments were conducted over a broad flat
grassland in O’Neill, Nebraska, in 1956 (Barad, 1958). The overall
roughness of the experimental site was approximately 6 cm. In
total, 68 release experiments of SO2 were performed, and each
experiment lasted for 10 min (Table 2). SO2 gas was continuously
released as a point source at 0.46 or 1.5 m (the last six trials,
i.e., numbers R63 to R68). The downwind sample collection
adopted a semicircular arrangement of points and the base

FIGURE 2 | Flowchart of performance evaluation of source inversion.

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 8577014

Mao et al. Source Inversion Under Multiple Scenarios

72

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


line of the horizontal sampling network was oriented along a true
east–west line to take advantage of the prevailing southerly winds.
Five arcs at distances of 50, 100, 200, 400, and 800 m from the
release source were set as sampling arcs, and approximately 600
sensors were scattered along the sampling arcs to monitor
downwind concentrations with a sampling height of 1.5 m.
The coverage area of each sampling layer was 180°; the first
four layers of sampling points were arranged at intervals of 1°, and
the fifth layer was arranged at intervals of 2°. Wind speeds and
wind direction at the height of 2 m above the ground were
measured during the experiments by the cup anemometers
and the means of airfoil-type vanes, respectively. Cervone and
Franzese (2011) divided the dataset into six subset data of
different atmospheric conditions based on the Pasquill
atmospheric stability classification standard. The number of
field experiments under Pasquill atmospheric stability classes
A (extremely unstable), B (unstable), C (slightly unstable), D
(neutral), E (stable), and F (extremely stable) were 5, 5, 10, 31, 5,
and 12, respectively. To reflect the effects of atmospheric
conditions in the real world, all valid detection concentrations
above the sensor detection limit were used for each experiment.

Inversion Performance Evaluation Method
The absolute value of the relative deviation (ARD) of the source
strength and the absolute value of deviation (AD) of the source
location parameters were introduced to characterize the accuracy
of the source inversion.

ARD � ∣∣∣∣(EQ,J − RQ,J)∣∣∣∣/RQ,J, (7)
AD � ∣∣∣∣EL,J − RL,J

∣∣∣∣, (8)
where E represents the inversion value, R represents the real
value, Q is the source strength, J represents the serial number of
the test experiment, and L represents the source location
parameter (x0, y0, and z0).

The coefficient of variation (CV) was used to evaluate the
robustness of the source inversion. The formula is as follows:

CV � μ(Q,L)/m(Q,L), (9)
where μ represents the standard deviation of the inversion results
(estimation values of source strength or source location) and m
represents the mean value of the inversion results.

In this study, ARDs of the inversion results for 100
independent calculations for each field experiment were
calculated first, then mean of 100 ARDs was taken as the

result of each field experiment, and mean ARD of all field
experiments for each atmospheric stability class was taken as
the final result of each atmospheric stability class. The CV of each
field experiment was calculated first based on the inversion results
of 100 independent calculations, and the mean CV of all field
experiments for each atmospheric stability class was taken as the
final result of each atmospheric stability class.

RESULTS

Source Strength Estimation Under Multiple
Scenarios
Figure 3 shows the change progress of the best fitness value with
evolutionary generations for GA optimization under different
inversion scenarios. From the figure, as evolution progressed, the
fitness value gradually declined. The process for searching source
parameters under each inversion scenario stopped when the
fitness value was less than the threshold value (i.e., 10–6). This
indicates that the genetic algorithm can be successfully converged
and efficiently applied to source parameter inversion.

Figure 4 shows the estimation accuracy and robustness of the
source strength estimation under different inversion scenarios.
Figures 4A,B show results for the single parameter and double
parameter inversion. The atmospheric conditions had a similar
effect on source strength inversion between the two inversion
scenarios. Specifically, regarding the inversion accuracy, the
comparable interquartile ranges, numerical distribution
intervals of deviation data, mean values, and median values
for these two scenarios under nearly all stability classes (except
the stability class F) revealed that the impact of the pollutant
release height parameter on the inversion accuracy of source
strength was limited. The numerical distribution intervals of the
deviations in the box under atmospheric stability classes A
(extremely unstable condition) and F (extremely stable
condition) were obviously higher than those under the other
stability classes. These findings indicated that most experiments
under stability classes A and F had large estimation deviations in
source inversion. Notably, for the stability class A, the minimum
and mean values of ARD under single (71.1 and 130.1%) and
double (72.5 and 129.6%) parameter inversion were obviously
larger than those of other stability classes. These aforementioned
findings demonstrated that the inversion accuracy of source
strength under extreme atmospheric conditions performed
worse than the other conditions, wherein the inversion

TABLE 2 | Information of field experiments under different atmospheric conditions.

Atmospheric stability class Serial number of the experiments

A (extremely unstable) R15, R16, R25, R47, and R52.
B (unstable) R1, R2, R7, R10, and R48S.
C (slightly unstable) R5, R8, R9, R19, R27, R43, R44, R49, R50, and R62.
D (neutral) R6, R11, R12, R17, R20, R21, R22, R23, R24, R29, R30, R31, R33, R34, R35S, R37, R38, R42, R45, R46, R48, R51, R54,

R55S, R56, R57, R60, R61, R65, and R67.
E (stable) R18, R28, R41, R66, and R68.
F (extremely stable) R3, R4, R13, R14, R32, R35, R36, R39, R40, R53, R58, and R59.
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accuracy was the worst under extremely unstable atmospheric
conditions. The worst inversion accuracy under extremely
unstable atmospheric conditions might be the main reason for
the significant decline in the simulation performance of the
forward model for stability class A (Mao et al., 2020a).
However, for the obviously large estimation deviations under
extremely stable conditions, the reasons might have been mainly
caused by the combined action of the poor simulation

performance of the forward model (Mao et al., 2020a) and the
fewer number of sensors with effective ground measurements
owing to a smaller dispersion footprint (Cervone and Franzese,
2011; Cantelli et al., 2015). The aforementioned analysis indicated
that the dominant factors that obviously reduced the inversion
accuracy in two extreme atmospheric conditions were completely
different. Additionally, there were obviously larger interquartile
ranges of deviations under the atmospheric stability classes A

FIGURE 3 |Change progress of best fitness value with evolutionary generations for GA optimization under different inversion scenarios: Scenario 1: only estimating
source strength (Q0); (b) Scenario 2: estimating source strength (Q0) and release height (z0); Scenario 3: estimating both source strength (Q0) and horizontal location (x0,
y0); Scenario 4: estimating source strength (Q0), horizontal location (x0, y0), and release height (z0).

FIGURE 4 | Boxplots of the inversion accuracy index (ARD) and line charts of the inversion robustness index (CV) for source strength (Q0) estimation under different
application scenarios: (A) Scenario 1: only estimating source strength (Q0), and (B) Scenario 2: estimating source strength (Q0) and release height (z0).
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(68.7 and 68.6% for single and double parameter inversion,
respectively) and F (48.8 and 52.0% for single and double
parameter inversion, respectively). This indicated that data in
the box fluctuated greatly, representing a large difference in the
inversion accuracy of different experiments under both stability
classes. The reasons for large individual differences among these
experiments in the inversion accuracy may also be attributed to
the aforementioned factors. Conversely, the estimation accuracy
of source inversion performed well under the stability classes B, C,
D, and E because of small interquartile ranges and low numerical
distribution intervals of inversion deviations, where the number
of tested experiments with ARD less than 50.0% accounted for
more than 75% in each stability class.

For robustness, CVs in all stability classes for single parameter
inversion (<0.001) and double parameter inversion (<0.4) were
both at a relatively low level. This suggested that the atmospheric
conditions had only a limited impact on inversion robustness.
There were slightly higher values of CVs under the atmospheric
stability class F than under other stability classes. It indicated that
the inversion robustness performed relatively worse under
extremely stable atmospheric conditions. However, comparing
the results of Figures 4A,B, the CV of the double parameter
inversion was obviously higher than that of the single parameter
inversion by more than an order of magnitude in each stability
class. This phenomenon indicated that the inversion robustness
of the source strength largely declined as the unknown parameter
was added to the source height. Figures 5A,B show the results
under inversion scenarios of triple and quadruple parameters.
These figures reveal that the variation characteristics of the
parameter inversion performance under atmospheric
conditions under these two scenarios were also similar.
Regarding accuracy, similar to single and double parameter
scenarios, the comparable interquartile ranges, numerical
distribution intervals of deviation data, mean values, and
median values for these two scenarios under each stability
class revealed that the vertical release height parameter had
little influence on the inversion accuracy of source strength.
The numerical distribution intervals of the deviation data in

the box under unstable atmospheric conditions (stability classes
A, B, and C) were obviously higher than those in the box under
neutral (stability class D) and stable conditions (stability classes E
and F), with most ARDs larger than 50.0%. However, the
interquartile ranges (202.8 and 203.2% for triple and
quadruple parameter inversion, respectively), and minimum
values of ARD (225.2 and 225.0% triple and quadruple
parameter inversion, respectively) under the stability class B
were much larger than those of the other two unstable
stability classes. This finding suggests that the inversion
accuracy for unstable atmospheric conditions was obviously
worse than that for extremely unstable and slightly unstable
dispersion conditions. However, what seems to be
contradictory is that the inversion accuracy under unstable
conditions (stability class B) was obviously worse than that
under extremely unstable conditions (stability class A). This
phenomenon was also found by Cui et al. (2019) where the
source inversion performance was evaluated under different
stability classes based on another optimization algorithm
(PSO-NM). Cervone and Franzese et al. (2011) summarized
the calculated error between the simulated and observed
concentrations under all the 68 Prairie Grass field experiments
and found that four out of the five experiments had a remarkably
larger margin of errors between the simulated and observed
concentrations under the stability class B. Meanwhile, Cantelli
et al. (2015) investigated the relationship between the averaged
wind direction standard deviation and distance errors of source
location inversion and found that the worst inversion
performance of source location was associated with high
values of the measured averaged wind direction standard
deviation. It is worthy to note that this phenomenon had no
relation with single and double parameter scenarios. This might
be related to the fact that the horizontal location parameter
increased the complexity of solving nonlinear problems. Thus,
in summary, the large uncertainty of inversion results under
unstable conditions may be attributed to two factors including the
large simulation error of the forward model due to insufficient
description for the turbulent characteristics of the dynamic wind

FIGURE 5 | Boxplots of the inversion accuracy index (ARD) and line charts of the inversion robustness index (CV) for source strength (Q0) estimation under different
application scenarios: (A) Scenario 3: estimating both source strength (Q0) and horizontal location (x0, y0), and (B) Scenario 4: estimating source strength (Q0), horizontal
location (x0, y0), and release height (z0).
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field by the model itself and the nonlinear degree variation with
the addition of unknown horizontal location parameters. On the
whole, from unstable to slightly stable atmospheric conditions
(i.e., stability classes A–E), the inversion accuracy generally
tended to increase because the interquartile ranges, mean
values, and median values all showed a decreasing tendency.
This finding indicates that the inversion accuracy gradually
improved with the stabilization of atmospheric conditions.
However, large interquartile ranges and the mean value of
ARD occurred when the atmospheric dispersion condition
developed to an extremely stable state (i.e., the stability class
F). This finding indicated that the extremely stable condition
increased the uncertainty of the inversion deviations of the source
strength. Our results of atmospheric condition influence based on
the classical GA method are basically consistent with those based
on improved algorithms (PSO-NM, Cui et al., 2019; non-
Darwinian evolutionary algorithm, Cervone and Farnese,
2011) when applied to the same Prairie Grass experiments and
under the same inversion scenarios. However, different
conclusions stating that the inversion accuracy under the A
and B classes performed relatively well were drawn by Catelli
et al. (2015). This is mainly caused by the difference in evaluation
methods of inversion results. In the study by Cantelli et al., the
inversion performance was evaluated by comparing the number
of experiments in which the inversion deviation exceeded a
certain value under different stability degrees, whereas the
inversion performance was evaluated by calculating the mean
value of the inversion deviation of all experiments in the present
and previous studies (i.e., Cui et al., 2019; Cervone and Franzese,
2011).

Comparing the different scenarios, the mean ARDs of 68
experiments were 34.4, 46.0, 80.1, and 83.6% for single parameter,
double parameters, triple parameters, and quadruple parameters,
respectively. This indicated that the estimation accuracy of source
strength gradually worsened with an increase in the number of
unknown source parameters. Additionally, by comparing the
scenarios of single and double parameters and the scenarios of
triple and quadruple parameters, it was obviously found that
source release height had a minimal effect on the estimation
accuracy; whereas, by comparing the scenarios of single and triple
parameters and the scenarios of double and quadruple
parameters, it was obviously found that source horizontal
location largely affected the estimation accuracy. This
indicated that the unknown source horizontal location
parameters were important factors influencing the accuracy of
source strength inversion and source release height only had
limited influence.

For robustness, there were obviously higher values of CVs
under the atmospheric stability class F (0.02 and 0.61 for the triple
and quadruple parameter inversions, respectively) than those of
other stability classes. This phenomenon is similar to the single
and double parameter inversions. The robustness performed
worse in the case of quadruple parameter inversion than in
the case of triple parameter inversion under each stability class
because the CVs were obviously larger (0.037, 0.028, 0,03, 0.124,
0.385, and 0.613 for the stability classes A, B, C, D, E, and F,
respectively) when four parameters were both estimated. Notably,

a remarkable picture occurred when we compared the robustness
of the source strength estimation under all scenarios: CVs had
more than one order of magnitude and were smaller under triple
parameter inversion than under double and quadruple parameter
inversion in all atmospheric conditions except for the stability
classes A and B; and although the CVs of quadruple parameter
inversion were generally higher than those of double parameter
inversion, they were of the same order of magnitude as those of
double parameter inversion. These findings indicated that the
inversion robustness did not necessarily deteriorate as expected
with an increase in the number of unknown parameters, whereas,
it was obviously affected by the type of the unknown source
location parameter. In other words, the inversion robustness was
more susceptible to source release height parameter in the source
strength estimation and relatively insensitive to horizontal
positional parameters.

Source Location Estimation Under Multiple
Scenarios
Accurately locating pollutant sources is also important in some
scenarios, especially in the case of toxic gas release caused by an
accidental leak or terrorist acts (Ma et al., 2018). Figure 6 shows
the estimation deviations and CV for source location parameters
(i.e., x0, y0, z0) estimation under different inversion scenarios.
Figure 6A shows the results of the inversion performance
indicators of horizontal location x0 under triple and quadruple
parameter inversion. Regarding accuracy, the variation
characteristics of inversion deviations under the effects of
atmospheric conditions were similar for these two inversion
scenarios. The magnitude of the deviation values was very
close under each stability class (A, B, C, D, E, and F) for triple
parameter inversion (14.6, 74.2, 21.5, 27.4, 20.4, and 94.7 m) and
quadruple parameter inversion (14.7, 73.9, 19.0, 27.6, 23.3 and
99.4 m). Obviously, the estimation accuracy of location x0
changed little with the addition of release height parameters.
This indicated that the inversion accuracy of location x0 was
insensitive to the source release height. The higher numerical
distribution intervals of the deviation data, larger mean values,
and median values for the stability classes B and F than for other
stability classes suggested that the inversion accuracy was
obviously worse in unstable and extremely stable atmospheric
conditions. The relatively larger interquartile ranges for the
stability classes B and F indicated that there were larger
fluctuations of inversion deviation for different experiments.
These findings for location x0 were similar to source strength
Q0. The inversion accuracy performed relatively well with low
numerical distribution intervals (most ADs <50.0 m) for stability
classes A, C, D, and E. For robustness, all CVs were at a low level,
with values less than 0.1. This finding indicated that the inversion
robustness performed well in estimating the location x0.
However, there were large differences in the robustness. The
CV of each stability class (A, B, C, D, E, and F) was obviously
higher for quadruple parameter inversion (0.102, 0.021, 0.045,
0.093, 0.061, and 0.137) than that of triple parameter inversion
(0.060, 0.005, 0.020, 0.080. 0.014, and 0.020). This finding
indicated that the inversion robustness of location parameter
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FIGURE 6 | Boxplots of the inversion accuracy index (AD) and line charts of the inversion robustness index (CV) for source location (i.e., x0, y0, and z0) estimation.
(A) Comparison of inversion performance indicators of the horizontal location parameter x0, (B) comparison of inversion performance indicators of the horizontal location
parameter y0, and (C) comparison of inversion performance indicators of the vertical height parameter z0.
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x0 was obviously affected by the unknown source height
parameter. Figure 6B shows the comparison results of the
inversion performance indicators of the horizontal location y0.
Overall, the variation characteristics of the inversion accuracy
with atmospheric conditions were consistent for the two
inversion scenarios. Interquartile ranges and minimum values
of inversion deviations were comparable for the triple and
quadruple parameter inversion scenarios. Compared with
parameter x0, inversion deviations were obviously reduced,
with deviations less than 10.0 m in most experiments. For
robustness, the largest CVs for triple parameter inversion and
quadruple parameter inversion were obtained in stability classes
C (0.11) and B (0.40), respectively. Overall, CVs of the triple
parameter inversion were slightly lower than those of the
quadruple parameter inversion in most atmospheric
conditions. Figure 6C shows the comparison results of the
inversion performance indicators of the source release height
z0. There were only slight differences between the double
parameter inversion and quadruple parameter inversion
scenarios in accuracy under each atmospheric stability class,
and the deviations under the two inversion scenarios were
very low (< 4.0 m). Regarding robustness, similar decline
characteristics of the robustness with the atmospheric
condition variation occurred, and the highest CVs (0.69 and
0.59 for triple and quadruple parameter inversions, respectively)
occurred under extreme conditions (stability class F).

DISCUSSION

The practical application and popularization of optimized source
inversion technology must overcome substantial challenges
because complex, real air pollution accident scenes generally
correspond to different source inversion scenarios. This study
investigated the performance variation law of optimization
source inversion in small-scale regions (<1 km) under multiple
scenarios involving different atmospheric conditions (stability
class A–F) and unknown source parameters (source strength and
location) and further explored the influencing mechanism of
different location parameters on the estimation performance of
source strength. The results showed that atmospheric conditions
had different impacts on the source strength inversion under
different parameter inversion scenarios. Extreme atmospheric
conditions (stability classes A and F) can obviously reduce the
estimation accuracy of source strength for single and double
parameter inversion scenarios. However, the dominant factors
that reduced the inversion accuracy in two extreme atmospheric
conditions were completely different. Thereinto, the poor
inversion accuracy under stability class A may mainly be
attributed to poor model simulations. However, the poor
performance under the stability class F was caused by the
combined actions of the poor model simulations and the fewer
available sensors. However, for triple and quadruple parameter
scenarios, the estimation accuracy of the source strength was
worse under unstable atmospheric conditions (stability classes A,
B, and C) than that under other atmospheric conditions.
Thereinto, a contradiction occurred stating that the inversion

accuracy under unstable conditions (stability class B) was worse
than that under extremely unstable conditions. This large
uncertainty of inversion results may be attributed to the
combined effects of the increase in the complexity of
nonlinearity problem with the addition of horizontal location
parameters and poor model simulation performance caused by
the insufficient description for the dynamic wind field.
Relationship analysis between estimation performance of
source strength and source location revealed that source
strength inversion performance was affected by location
parameters; robustness was markedly reduced when source
height was unknown, whereas accuracy was obviously reduced
when source horizontal location parameters were unknown.

These new findings in this article can fill the knowledge gap in
the characteristic laws of optimized source inversion technology
under complex application scenarios and the interaction
relationship between different unknown source parameters.
The results of the influence mechanism of source location
prior information on source strength have important guiding
significance to further improving the inversion accuracy of source
strength in practical environmental management. Additionally,
this study quantified the uncertainty of the inversion results
under multiple specific scenarios based on sufficient
experimental data. This can provide a reference for pollutant
emission estimation in small-scale flat terrains (e.g., small-scale
industrial parks distributed in flat rural or suburban areas) in real
applications. However, the limitations of this study should be
investigated in further research. For example, the number of
experiments used in some atmospheric stability classes
(i.e., stability A, B, and E) was small. This may have caused
uncertainties in the results. For a limited number of searching
problems (less than four variables) in this study, the GA may not
be the optimal method in searching solutions when the factors
such as solving efficiency, absolute accuracy, and so on were
considered. Thus, a more appropriate optimization method
should be selected according to the requirements in actual
research studies or real-world applications. Furthermore, the
conclusions may provide a limited application reference in
practice for more complex scenarios (e.g., urban and long-
range scale) because the basic dataset used is from a flat
grassland terrain on a small scale, and the dispersion model is
a relatively simple Gaussianmodel where the pollution dispersion
process under complex terrains cannot be well described.
Additionally, this study did not focus on the secondary
chemical transformation of pollutants; therefore, the study
results may not be successfully applied to secondary pollutants.

CONCLUSION

This study investigated the estimation performance of source
optimization inversion under multiple application scenarios
involving different atmospheric dispersion conditions and
inversion parameters. Four source inversion models were
constructed based on typical application scenarios of source
estimation. The genetic algorithm was selected as the
optimization inversion method, and the Prairie Grass dataset,
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including 68 experiments, was selected as the basic data to evaluate
the estimation performance. The results showed that the
atmospheric conditions obviously affected the source strength
inversion performance. The atmospheric conditions had similar
effect characteristics on the source strength inversion for the
single and double parameter inversion scenarios. The source
inversion performed poorly with regard to the estimation
accuracy of source strength under extremely unstable (stability
class A) and stable (stability class F) atmospheric conditions.
However, the robustness of source strength estimation was
obviously poor under only extremely unstable atmospheric
conditions (stability class F). For the triple and quadruple
parameter inversion scenarios, similar performances were also
shown; that is, the inversion accuracy of the source strength was
worse under unstable atmospheric conditions (stability classes A, B,
and C) than under other atmospheric conditions. As for robustness,
similar to the single and double parameter inversions, there were
obviously high values of the CV under the atmospheric stability class
F. Comparative results of the four inversion scenarios indicated that
the estimation accuracy of source strength declined with an increase
in the number of unknown source parameters. The estimation
accuracy of the source strength obviously declined when the
horizontal location parameters were unknown, and the
estimation robustness of the source strength greatly declined
when the source height parameter was unknown. The results of
location parameter inversion showed that, for parameter x0, the
variation characteristics of inversion accuracy under different
atmospheric conditions were essentially consistent for the two
scenarios. The robustness of source inversion is vulnerable to the
unknown source height parameter, whereas the inversion accuracy is
not sensitive to the unknown source height. There were obviously
smaller estimation deviation distribution ranges for the parameters
y0 and z0 than for the parameter x0. Furthermore, there was a little
difference in the accuracy of the two parameters y0 and z0 under
different inversion scenarios. Regarding robustness, related to the
parameter y0, the performance was relatively worse owing to the
addition of an unknown source height parameter. Regarding the
parameter z0, similar decline characteristics of robustness
occurred with variations in atmospheric conditions; the

highest CVs occurred under extreme conditions (stability
class F). This study can deepen the understanding of the
impacts of external environmental factors on source
inversion and provide a reference for pollutant emission
estimation and location tracking of air pollution events in
small-scale flat terrains in practice.
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Response of Summer Ozone to
Precursor Emission Controls in the
Yangtze River Delta Region
Yu-Hao Mao1,2*, Shukun Yu1, Yongjie Shang1, Hong Liao1,2 and Nan Li1

1Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control/Jiangsu Collaborative Innovation Center
of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of
Information Science and Technology (NUIST), Nanjing, China, 2Key Laboratory of Meteorological Disaster, Ministry of Education
(KLME)/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/International Joint
Research Laboratory on Climate and Environment Change (ILCEC), NUIST, Nanjing, China

Surface ozone concentrations in the Yangtze River Delta (YRD) region in China have shown
a significant increase with the dramatic reduction of anthropogenic nitrogen oxide (NOx)
emissions since 2013. As the nonlinearity between ozone and its precursors (i.e., NOx and
volatile organic compounds (VOCs)) varies greatly in time and space, we quantify the
monthly changes of surface ozone with the co-control of NOx and VOCs anthropogenic
emissions in the YRD region from May to October 2017 by using the GEOS-Chem model.
Model evaluations show that the GEOS-Chem model exhibits good performance to
simulate ozone concentrations in the region. For May–September 2017, most areas in
the YRD region are under a transitional regime, but the regions with high anthropogenic
emissions including Shanghai and southern Jiangsu are under a VOCs-limited regime. In
October, basically, the entire YRD region is under a VOCs-limited regime. Generally,
reducing VOCs emissions only is the most effective method for ozone control in the YRD.
Nanjing is under a VOCs-limited regime in May, June, September, and October, and under
a transition regime from July to August. The VOCs/NOx emission reduction ratio of 1:1 is
effective for ozone mitigation in Nanjing (Shanghai) in May, June, and September (for
May–September); the corresponding ratio is 2:1 in October. Hangzhou belongs to a
transitional regime fromMay to September and is under a VOCs-limited regime in October.
Reducing NOx emissions only would control ozone in Hangzhou from May to September,
while the VOCs/NOx emission reduction ratio of 1:1 is favorable to reduce ozone
concentrations in October. During high pollution days on July 22–27, 2017, the three
cities belong to a transitional regime and reducing NOx emissions only is generally the most
effective way to control high ozone pollution. GEOS-Chem tagged ozone simulation shows
that ozone problem in the region is caused by the joint effect of local generation and
regional and long-distance transport. Local generation (19.0–50.7%) is generally the
largest contributor to monthly mean ozone concentrations in Jiangsu and Shanghai,
Zhejiang, and central eastern China; the contribution of ozone from regions outside the
YRD is larger in spring and autumn (42–76.0%) than in summer (23.3–51.8%). Since the
annual VOCs (NOx) anthropogenic emissions in the region have shown a decline by 8%
(11%) from 2017 to 2020 and would continue to reduce by 10% (10%) by 2025 according
to the Chinese government requirement, the growth of ozone would be stopped in the
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YRD for May–September but likely to continue in October. Our study thus would provide a
scientific base for guiding the effective emission reduction strategies to control ozone
pollution in the YRD region.

Keywords: ozone, precursor emissions, VOCs/NOx, source contribution, Yangtze River Delta

HIGHLIGHTS

• Yangtze River Delta is changing from a VOCs-limited
regime to a transition regime.

• VOCs emission reduction is the key to control ozone
pollution in the YRD region.

• Ozone decreases effectively with VOCs/NOx emission
reduction ratio larger than 1:1.

• Regional transport is a larger contributor to ozone in spring
and fall than in summer.

INTRODUCTION

Ozone is the main component of photochemical smog, mainly
generated by the reaction of volatile organic compounds (VOCs)
and nitrogen oxides (NOx) in the sunlight (NRC, 1991). Because
of its strong oxidative capacity and the formation of OH radicals,
ozone pollution enhances the oxidation of the background
atmosphere (Seinfeld and Pandis, 1998). The ground-level
ozone is considered as an air pollutant as it can severely harm
public health and damage the ecosystem (Krupa and Manning,
1988; Bell et al., 2006).

With the rapid development of economics and the fast
process of industrialization and urbanization in China, ozone
pollution is becoming more and more severe in recent years.
Yangtze River Delta (YRD) located on the east coast of China
is one of the most economically developed and densely
populated regions in China. The ozone pollution in the
YRD region is thus particularly serious and ozone
concentrations measured by the China National
Environmental Monitoring Center have increased
significantly since 2013 (e.g., Lu et al., 2018; Lu et al.,
2020; Li M et al., 2021). A report on the Ministry of
Ecology and Environment of China (https://www.mee.gov.
cn/hjzl/sthjzk/zghjzkgb/) showed that the 90th percentile of
daily maximum 8 h average (MDA8) ozone concentrations
reached 152 μg m−3 in the YRD region in 2020 and that the
number of days with ozone as the primary pollutant
accounted for 50.7% of all the polluted days. Nanjing,
Shanghai, and Hangzhou are economically developed cities
in the YRD region; ozone pollution problem of these cities has
attracted much public attention (e.g., An et al., 2015; Gao
et al., 2017; Li K et al., 2017).

VOCs and NOx are important precursors of ozone, the
emissions of which are major factors influencing ozone
concentration (Ding et al., 2019; Yu et al., 2019).
Anthropogenic emissions in China have shown dramatic
changes in the recent 2 decades due to rapid economic growth
and urbanization as well as energy structure changes and strict

emission controls (Wu et al., 2016; Liu et al., 2017; Wang et al.,
2019; Liang et al., 2020). In 2013, Chinese government put
forward “Air Pollution Prevention and Control Action Plan”
(APPCAP, http://www.gov.cn/zhengce/content/2013-09/13/
content_4561.htm) and implemented strict emission control
measures to reduce anthropogenic emissions for 2013–2017.
NOx anthropogenic emissions have decreased by 19.1% from
2013 to 2017 and continue to decline after 2017 (Liu et al., 2017;
Zheng et al., 2018; Zheng et al., 2021). Different from NOx

emissions, VOCs anthropogenic emissions remain stable for
2013–2017, but begin to decline after 2017 (Ma et al., 2019;
Zheng et al., 2018; Zheng et al., 2021). Previous studies (e.g., Xue
et al., 2014; An et al., 2015; Gao et al., 2017) have shown that the
reduction of NOx anthropogenic emissions could not effectively
alleviate ozone pollution in the YRD region, largely due to the
strong nonlinear relationship between ozone and its precursors
(e.g., Li K et al., 2017; Lu H et al., 2019; Xu et al., 2021).

Chemical transport models (CTM) are widely used to
determine ozone sensitivity to its precursors (e.g., Kanaya
et al., 2009; Wang et al., 2019; Wei et al., 2019). Based on
sensitivity simulations, exploring the changes on ozone
concentrations under different VOCs/NOx emission reduction
ratios is useful for formulating appropriate and effective ozone
reduction strategies (e.g., Wang et al., 2019; Wang et al., 2020; Su
et al., 2021). Previous studies have shown that the YRD region
was generally under a VOCs-limited regime or a transitional
regime (e.g., Wang et al., 2019; Li L et al., 2021; Yang et al., 2021).
The VOCs/NOx anthropogenic emission reduction ratio larger
than 2:1 was generally effective to control ozone concentrations in
the YRD region (e.g., Wang et al., 2019; Wang et al., 2020). Due to
the significant reduction of NOx anthropogenic emissions from
2013, the sensitivity of ozone to its precursors is changing
dramatically which would significantly affect ozone control
strategies.

Ozone has a lifetime of several days to weeks in the free
troposphere (Lin et al., 2008). Ozone pollution is thus not only
related to local source emissions of ozone precursors but also
influenced by regional transport (Zheng et al., 2010; Gong et al.,
2020). By using a tagged ozone simulation in GEOS-Chem, Gong
et al. (2020) found that ozone transport from central eastern
China contributed 36% to the enhanced daily mean ozone
concentrations during the persistent ozone pollution episodes
in North China in May–July of 2014–2018. Based on the ozone
source apportionment technology of WRF/CMAx, Li L et al.
(2019) found that regional transport was a significant source of
ozone in urban regions in the YRD region and contributed
38.7–111.1 μg m−3 to daily average MDA8 ozone
concentrations in May, August, and October of 2015.

To our knowledge, previous studies on ozone–NOx–VOCs
sensitivity and ozone control strategies have largely focused on
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the whole summer season, a certain month, or high ozone
pollution days (e.g., Xu et al., 2017; Li K et al., 2017; Wang
et al., 2020; Zhang et al., 2020). Due to the strong nonlinearity
between ozone and its precursors in time and space, it is thus
necessary to systematically analyze the ozone–NOx–VOCs
sensitivity and control strategies of NOx and VOCs
anthropogenic emissions for different months, different cities,
and high pollution days to guide the effective ozone mitigation in
the YRD region. In this study, we aim to quantify the changes of
surface ozone with the control of NOx and VOCs anthropogenic
emissions at different reduction ratios in the YRD region
(28.2°N~34.5°N, 115.8°E~123.4°E) using the GEOS-Chem
CTM. We mainly focus on three big cities (Nanjing, Shanghai,
and Hangzhou) in the region from May to October in 2017, the
final year of implementation of the APPCAP action plan. To
explore the reasons for the differences in monthly sensitivity of
ozone–NOx–VOCs, we further quantify the ozone contributions
from different regions to monthly mean surface ozone
concentrations in the YRD region using the GEOS-Chem
tagged ozone technique. We introduce the observation data
and the sensitivity simulations of the GEOS-Chem model in
Section 2. We evaluate model results with observation data from
the China National Environmental Monitoring Center in Section
3. In Section 4, we evaluate the ozone–NOx–VOCs sensitivity in
the YRD region and the changes in ozone concentrations with the
reduction of NOx and VOCs anthropogenic emissions. In Section
5, we quantify the contributions of ozone from different regions
to surface ozone concentrations in the YRD region. We conclude
in Section 6.

METHODS

Observations
In this study, we obtain the observations of hourly ozone
concentrations for May–October 2017 from the China
National Environmental Monitoring Center (http://106.37.208.
233:20035/). There are 10 monitoring sites in Shanghai, 11 in
Hangzhou, and 9 in Nanjing. The sampling measurements and
techniques comply with the Chinese national ambient air quality
monitoring technical regulations HJ/T193-2005. According to
ambient air quality standard GB 3095-2012, the MDA8 ozone
concentrations are calculated if at least 6 hourly averages are
recorded in every 8 h and more than 14 8-hour averages are
available from 8:00 to 24:00 local time.

Model Description and Simulations
The GEOS-Chem global CTM is driven by assimilated
meteorological data from the Goddard Earth Observing
System (GEOS) of the NASA Global Modeling and
Assimilation Office (GMAO) (Bey et al., 2001). Here, we use
GEOS-Chem version 11-01 (http://wiki.geos-chem.org/GEOS-
Chem_v11-01) driven by MERRA-2 meteorological data with
spatial horizontal resolutions of 2 × 2.5 ° globally and 0.5 × 0.625 °

nested over Southeastern Asia (11°S~55°N, 60°E~150°E), reduced
47 vertical levels from the surface to 0.01 h Pa, and a temporal
resolution of 1 h.

We conduct full-chemistry NOx–Ox–Hydrocarbon-aerosol
model simulations. We use the Linoz scheme for ozone
production in the stratosphere (McLinden et al., 2000) and the
nonlocal planetary boundary layer (PBL) mixing scheme for
vertical mixing of air tracers in the PBL (Holtslag and Boville,
1993; Lin and McElroy, 2010). Dry deposition is calculated based
on the resistance-in-series scheme (Wesely, 1989). The wet
deposition for water-soluble aerosols and gas is described by
Liu et al. (2001) and Amos et al. (2012).

The Harvard–NASA Emission Component (HEMCO) is used
to process emissions in the GEOS-Chem model (Keller et al.,
2014). Global anthropogenic emissions are from the Emissions
Database for Global Atmospheric Research (EDGAR). The
Global anthropogenic VOCs emissions are from the
REanalysis of TROpospheric chemical composition (RETRO)
inventory, but C2H6 and C3H8 are overwritten by the emission
inventory developed by Xiao et al. (2008). The regional
anthropogenic emissions are taken from the European
Monitoring and Evaluation Project (EMEP) for Europe
(Auvray and Bey, 2005), the Big Bend Regional Aerosol and
Visibility Observational emission inventory (BRAVO) forMexico
(Kuhns et al., 2005), the Canadian Criteria Air Contaminant
emission inventory (CAC) for Canada, the National Emission
Inventory (NEI) for the United States, and the MIX emission
inventory over East and South Asia (Li M et al., 2017).

Particularly, we used monthly anthropogenic emissions in
China from the Multi-resolution Emission Inventory for China
(MEIC) with a horizontal resolution of 0.5 ° × 0.667 ° for 2017.
The annual NOx anthropogenic emissions in MEIC are 3,666 Gg
in the YRD region (including Jiangsu, Shanghai, Zhejiang, and
Anhui provinces) in 2017 and reduce by 19.1% from 2013 to
2017; NMVOCs emissions are 5,593 Gg and increased by 3.3%
from 2013 to 2017 (http://meicmodel.org/). Figure 1 shows
monthly anthropogenic NOx and VOCs emissions of the
MEIC inventory in the YRD region averaged for May–October
2017. The spatial distributions of NOx and VOCs emissions in the

FIGURE 1 | Monthly anthropogenic (A) NOx emissions and (B) VOCs
emissions (g m−2 month−1) from the MEIC inventory in the Yangtze River Delta
(YRD) region averaged for May–October 2017. Red enclosed areas indicate
Nanjing, Shanghai, and Hangzhou, respectively.
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YRD region are generally similar. The regions with high
emissions are mainly concentrated in Shanghai and southern
Jiangsu. Among the three cities of Nanjing, Shanghai, and
Hangzhou, NOx and VOCs emissions are the highest in
Shanghai (3 g m−2 month−1 and 2.4 g m−2 month−1,
respectively) and the lowest in Hangzhou (0.6 g m−2 month−1

and 0.5 g m−2 month−1, respectively).
A number of natural emissions are also implemented in the

model. We used biomass burning emissions from the Global Fire
Emissions Database version 4 (GEFD v4) with a horizontal
resolution of 0.25 ° × 0.25 ° and a spatial resolution of
1 month (van der Werf et al., 2017). Biogenic VOCs emissions
are from the MEGAN version 2.1 (MEGAN v2.1) (Guenther
et al., 2012). Lightning and soil NOx emissions are also included
in the model following Lu X et al. (2019).

We simulate ozone concentrations in the YRD region from
February to October 2017 with the first 3 months for spin-up.
Our analysis centers on 2017, the final year of
implementation of the APPCAP action plan and also the
latest year currently available for the MEIC emission
inventory. In addition to a standard simulation with all
emissions unchanged, we also conduct simulations to study
the sensitivities of NOx and VOCs to ozone formation and the

effective emission reduction ratio of VOCs/NOx for ozone
control in the YRD region. Empirical Kinetic Modeling
Approach (EKMA) isopleths of ozone concentrations
under different emissions of precursors are commonly
used method to reflect ozone-NOx-VOCs sensitivity (e.g.,
Xing et al., 2011; Guo et al., 2019). In order to obtain the
EKMA isopleths, we conduct 24 sensitivity simulations with
anthropogenic NOx and VOCs emissions in the YRD region
reduced by 20, 40, 60, and 80%, respectively.

The ratio of formaldehyde (HCHO) to nitrogen dioxide
(NO2) (HCHO/NO2, FNR) has been widely used to evaluate
ozone–NOx–VOCs sensitivity (e.g., Jin and Holloway, 2015;
Xu et al., 2021). To examine the ozone–NOx–VOCs sensitivity
obtained from the EKAM isopleths, we calculate FNR using
monthly mean HCHO and NO2 column concentrations from
the GEOS-Chem simulations. FNR > 2 indicates a NOx-limited
regime, FNR < 1 reflects a VOCs-limited regime, and FNR
between 1 and 2 is considered as a transitional regime (Martin
et al., 2004).

The offline tagged ozone technique in the GEOS-Chem
CTM is used to quantify the contributions of ozone from
different source regions to monthly mean ozone
concentrations in the YRD region. We run tagged ozone
simulation with a spatial horizontal resolution of 2 ° × 2.5 °

globally (the only resolution available) by using 3-D ozone
production rates and loss frequencies archived from the full-

FIGURE 2 | Observed (black) and simulated (red) daily maximum 8 h
average (MDA8) ozone concentrations (μg m−3) averaged for stations at (A)
Nanjing (9 sites), (B) Shanghai (10 sites), and (C) Hangzhou (11 sites) from
May to October 2017. Also shown are observed and simulated mean
ozone concentrations for the time period, correlation coefficients (r),
normalized mean bias (NMB), and normalized mean errors (NME) between
model results and observations. All the correlation coefficients pass the two-
tailed t-test with 95% confidence interval.

FIGURE 3 | Differences in monthly mean daily maximum 8 h average
(MDA8) ozone concentrations (μg m−3) between sensitivity simulations with
reduced anthropogenic NOx (left two columns) or VOCs (right two columns)
emissions and the standard model simulation from May to October
2017. Anthropogenic NOx or VOCs emissions in the Yangtze River Delta (YRD)
region reduced by 20 and 40%.
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chemistry standard simulation. We consider eight regions in
China and one region representing the rest of the world
(Supplementary Figure S1). We tag the generated ozone
from the surface to the 38th vertical layer in the model
(~48 hPa altitude) from nine regions. Generally, the sum of
these nine tagged ozone concentrations in the YRD region is
equal to the simulated ozone concentration in this region.

MODEL EVALUATIONS

Previous studies have shown that the GEOS-Chemmodel with
the MEIC emission inventory reasonably captured observed
ozone concentrations in China (e.g., Li K et al., 2019; Sun

et al., 2019). We further compare in Figure 2, observed and
GEOS-Chem simulated MDA8 ozone concentrations at
stations in Nanjing, Shanghai, and Hangzhou. Observations
are averaged for the measurement stations in each region, and
the model results are sampled at the corresponding locations
of the measurement stations. The GEOS-Chem model is
generally in good performance to simulate ozone
concentrations in three regions. The differences in MDA8
ozone concentrations between simulations and observations
are 6.77 μg m−3 in Nanjing, –0.38 μg m−3 in Shanghai, and
9.64 μg m−3 in Hangzhou, respectively, averaged for
May–October 2017.

We further used correlation coefficients (r), normalized mean
bias (NMB), and normalized mean errors (NME) (Emery et al.,

FIGURE 4 | (A) Empirical kinetic modeling approach (EKMA) isopleths of monthly mean daily maximum 8 h average (MDA8) ozone concentrations (μg m−3) in
Nanjing for May–October 2017. Red and purple arrows represent VOCs and NOx anthropogenic emissions simultaneously reduced by 1:1 and 2:1, respectively. (B)
Differences in monthly mean MDA8 ozone concentrations between sensitivity simulations and standard model simulation in Nanjing for May–October 2017. Sensitivity
simulations include VOCs anthropogenic emissions reduction only, NOx anthropogenic emissions reduction only, and reduction of VOCs and NOx anthropogenic
emissions simultaneously by 1:1, 1:2, 1:3, 2:1, and 3:1.
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2017) between simulated and observed ozone concentrations to
evaluate the model performance.

r �
∑N

i�1(cm − cm)(co − co)������������������������
∑N

i�1(cm − cm)
2∑N

i�1(co − co)
2

√ (1)

NMB � ∑N
i�1(cm − co)
∑N

i�1co
p100% (2)

NME � ∑N
i�1|cm − co|
∑N

i�1co
p100% (3)

where co is the observed MDA8 ozone concentration averaged for
stations in each region (μg m−3), cm is the corresponding
simulated MDA8 ozone concentration (μg m−3), and N is the
number of the observation days from May to October 2017.

Simulated ozone concentrations largely capture the day-to-
day variations of observations with the correlation coefficients in

the range of 0.69–0.80 at the stations in Nanjing, Shanghai, and
Hangzhou. All the correlation coefficients pass the two-tailed
t-test with 95% confidence interval. The model performance
criteria for MDA8 ozone concentrations have been met when
both the NMB and NME are less than or equal to approximately
±15% and +25%, respectively (Emery et al., 2017). The NMB and
NME of simulated and observedMDA8 ozone concentrations are
0.37–8.97% and 16.54–24.72% at the stations in Nanjing,
Shanghai, and Hangzhou, which are within the model
performance criteria.

Model performance is further evaluated by the monthly
correlation coefficients between observations and model results
in Nanjing, Shanghai, and Hangzhou for May–October 2017
(Supplementary Figure S2). Generally, monthly correlation
coefficients averaged for the three areas are highest in July
(r = 0.87), May (0.75), and August (0.73), but lowest in
October (0.5). For each city, model performance is best in
Nanjing in May and June, in Shanghai from August to
October, and in Hangzhou in July.

FIGURE 5 | Same as Figure 4, but for Shanghai.
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We also conduct the GEOS-Chem simulation at a horizontal
resolution of 0.25 × 0.3125 ° with the samemodel configuration as
those at 0.5 × 0.625 °. The differences of simulated MDA8 ozone
concentrations between 0.5 × 0.625° and 0.25 × 0.3125 ° model
simulations are only −0.03, 5.67%, and 0.51%, respectively, for
correlation coefficients, NMB, and NME averaged for three cities
during May–October 2017. Considering the problem of
computing time cost, we thus conduct sensitivity simulations
at 0.5 × 0.625 °.

RESPONSE OF OZONE TO PRECURSOR
CONTROLS

The sensitivity of ozone to its precursors varies significantly
over time and location (e.g., Tang et al., 2017; Wei et al., 2019;
Yang et al., 2021). Figure 3 shows the changes in the monthly
mean MDA8 ozone concentrations for May to October 2017
from sensitivity simulations with anthropogenic NOx or

VOCs emissions in the YRD region reduced by 20 and
40%, compared to the ozone concentrations from the
standard model simulation. The sensitivities of ozone
concentrations to anthropogenic NOx emissions show large
differences in space and time. From May to September, ozone
concentrations decrease with the reduction of NOx emissions
in northern Jiangsu and most areas of Zhejiang and Anhui.
The ozone concentrations decrease by more than 6 μg m−3 in
southwestern YRD region from May to September when the
reduction of NOx emissions reaches 40%. In May, June, and
September, ozone concentrations yet increase in the regions
with high anthropogenic emissions including Shanghai and
southern Jiangsu; the increases of ozone concentrations are
largest in Suzhou by ~8 μg m−3 with the reduction of NOx

emissions by 40%. From July to August, reducing NOx

emission is effective for most of the YRD regions, except
for a small part of southeast Jiangsu and northern Shanghai.
In October, most of the YRD region shows increased ozone
concentrations with decreased NOx emissions, except for the

FIGURE 6 | Same as Figure 4, but for Hangzhou.
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southwestern YRD region including southern part of Anhui
and Zhejiang.

Compared to cutting NOx emissions, the reduction of VOCs
emissions is more effective to control the ozone concentrations in
the entire YRD region, where the ozone concentrations decrease
with the reduction of VOCs emissions fromMay to October. The
ozone concentrations are most sensitive to VOCs emissions in
Shanghai and southern Jiangsu, which decrease by more than
8 μg m−3 with the reduction of VOCs emissions by 40% fromMay
to September.

Combined with the changes in ozone concentrations due to
the reduction of NOx or VOCs emissions, most of the regions
in the YRD are controlled by a transitional regime for
May–September 2017 while under a VOCs-limited regime
in October. The regions with high anthropogenic emissions
including Shanghai and southern Jiangsu are controlled by a
VOCs-limited regime in May, June, September, and October.

From July to August, the VOCs-limited regions shrink to only
small part of southeast Jiangsu and northern Shanghai.
Previous studies have also shown that the YRD region is
changing from a VOCs-limited regime to a transition
regime due to the reduction of NOx anthropogenic
emissions in recent years (e.g., Jin and Holloway, 2015;
Wang et al., 2019).

To further investigate the ozone sensitivity to its precursors for
Nanjing, Shanghai, and Hangzhou and the changes of ozone
concentrations under different VOCs/NOx emission reduction
ratios, Figure 4, Figure 5, and Figure 6 show the EKMA isopleths
of monthly MDA8 ozone concentrations from May to October
2017 for the three cities. Figure 4, Figure 5, and Figure 6
(Supplementary Figure S3) show the differences in monthly
mean MDA8 ozone concentrations between sensitivity
simulations (including VOCs emissions reduction only, NOx

emissions reduction only, and reduction of VOCs and NOx

FIGURE 7 | Sensitivity regimes of ozone–NOx–VOCs defined by HCHO/NO2 ratios (FNR) in the Yangtze River Delta (YRD) region from May to October 2017. Red
enclosed areas indicate Nanjing, Shanghai, and Hangzhou, respectively.
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emissions simultaneously by 1:1, 1:2, 1:3, 2:1, and 3:1) and the
standard model simulation in Nanjing, Shanghai, and Hangzhou
for May–October 2017. In the three cities, reducing VOCs
emissions is generally an effective approach to control ozone
concentrations. When VOCs emissions are reduced by 40%,
ozone concentrations from May to October would decrease by
5.3–12.3 μg m−3 (3.8–7.5%) in Nanjing, 4.0–14.5 μg m−3

(4.1–9.3%) in Shanghai, and 3.2–7.9 μg m−3 (2.5–7.2%) in
Hangzhou.

In Nanjing, ozone concentrations are more sensitive to the
VOCs emissions in May, June, September, and October, when
ozone concentrations would decrease by 6.8–12.3 μg m−3

(5.6–7.5%) with the VOCs emissions reduced by 40%.
Nanjing would turn into a transition regime when NOx

emissions reduce by more than 20% for May–June, by 40%
in September, and by 60% in October. The VOCs/NOx

emission reduction ratio of 1:1 is effective for ozone
mitigation in May, June, and September; the corresponding
ratio is 2:1 in October. Nanjing belongs to a transition regime
from July to August when controlling ozone would be achieved
by reducing VOCs emissions only, NOx emissions only, or
both NOx and VOCs emissions. For near-term ozone control
in July and August, the VOCs emissions reduction only is the
most effective method; while for a long-term control strategy,
the NOx emissions reduction only is more effective. Ozone

concentrations in July and August would decrease by
3.7–6.9 μg m−3 (2.6–5.0%) with the reduction of NOx

emissions by 40%.
Shanghai is generally under a VOCs-limited regime from May

to October. Ozone concentrations always decrease with the
reduction in VOCs emissions; ozone concentrations would
decrease by 4.0–14.5 μg m−3 (4.1–9.3%) with the VOCs
emissions reduced by 40% from May to October. In July and
August, Shanghai closes to a transition regime. Ozone
concentrations would decrease when NOx emissions reduce by
40% in May, June, and September, by 20% in July and August, and
by 60% in October. The effective VOCs/NOx emission reduction
ratios for controlling ozone concentrations are larger than 1:1 for
May–September and 2:1 in October, which are close to those in
Nanjing.

Hangzhou belongs to a transitional regime from May to
September and a VOCs-limited regime in October, when
Hangzhou would become a transition regime with the NOx

emission reduced by more than 60%. Ozone concentrations
would decrease by 1.5–33.8 μg m−3 (1.2–25.1%) in Hangzhou
from May to September under all emission reduction
scenarios. In May, June, and September, the VOCs emissions
reduction only below 40% is the most effective way for near-term
ozone control; while the NOx emissions reduction only above
40% is more effective as a long-term control strategy. The NOx

FIGURE 8 | Same as Figure 4, but for high pollution events from July 22 to 27, 2017 in Nanjing, Shanghai, and Hangzhou, respectively.
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emission reduction only scenario is generally the effective way to
control ozone concentrations in July and August, when ozone
concentrations decrease by 8.6–11.2 μg m−3 (6.8–8.9%) with the
NOx emissions reduced by 40%.

Figure 7 shows sensitivity regimes of ozone–NOx–VOCs
defined by FNR in the YRD region for May–October 2017.
Generally, the ozone–NOx–VOCs sensitivities in the YRD
indicted by FNR are consistent with those from the model
sensitivity simulations and the EKAM isopleths. From May to
September, most areas of the YRD region belong to a transition
regime; while southern Jiangsu, Shanghai, and northern
Zhejiang are under a VOCs-limited regime. In October,
basically, the whole YRD region belongs to a VOCs-limited
regime. Nanjing and Shanghai are under a VOCs-limited
regime in May, June, September, and October and parts of
the cities are in a transition regime in July and August.
Hangzhou generally belongs to a transition regime for
May–September and parts of the city are under a
NOx-limited regime.

We further analyze the sensitivity of ozone to its precursors
and the changes of ozone under different VOCs/NOx emission
reduction ratios in Nanjing, Shanghai, and Hangzhou during

high pollution event (Figure 8). We choose the high ozone
pollution period from July 22 to 27, 2017, when the observed
daily MDA8 ozone concentrations exceed the national air quality
standard of 160 μg m−3 (https://www.mee.gov.cn/ywgz/fgbz/bz/
bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf)
simultaneously in Nanjing, Shanghai, and Hangzhou. The NMB
and NME of simulated and observed MDA8 ozone
concentrations during this period are −14.9 to 11.4% and 14.
9–18.7% at the stations in three cities, which are within the
model performance criteria. Ozone concentrations under all
emission reduction scenarios would decrease by 3.8–59.
7 μg m−3 (1.9–29.4%) in Nanjing, 6.1–68.3 μg m−3 (2.7–30.6%)
in Shanghai, and 3.4–65.0 μg m−3 (1.7–32.7%) in Hangzhou. The
three cities all belong to a transitional regime during high
pollution days and NOx emissions reduction only is generally
the most effective method to control long-term ozone
concentrations. When NOx emissions reduce by 40%, the
reduction of ozone concentrations in high pollution days are
larger than those averaged in July by 11.8 μg m−3 in Nanjing, 12.
9 μg m−3 in Shanghai, and 10.8 μg m−3 in Hangzhou. In
Shanghai, the VOCs emissions reduction would be the most
effective for near-term ozone control.

FIGURE 9 | Ozone contributions from different source regions to monthly mean surface ozone concentrations in three regions: (A) Jiangsu and Shanghai, (B)
Zhejiang, and (C) central eastern China from May to October 2017.
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Our results of ozone–NOx–VOCs sensitivity are broadly
consistent with previous studies (e.g., Xu et al., 2017; Li K et al.,
2017; Yang et al., 2021), but provide updated and detailed
information about monthly ozone sensitivity to its precursors
and the effective emission reduction ratios of VOCs/NOx to
control ozone in the three cities. Generally, the three cities are
under a VOCs-limited regime or a transitional regime during
the summer season and changing to a transitional regime
gradually. Previous observational and modeling studies have
shown that ozone concentrations would decrease in the YRD
region when VOCs/NOx emission reduction ratio was greater
than 2:1 (e.g., Wang et al., 2019; Wang et al., 2020). With the
reduction of NOx emissions from 2013, our results show that
VOCs/NOx emission reduction ratio of 1:1 is in favor of
effective ozone control in the region for May–September,
and NOx emission reduction only is an effective way to
control ozone concentrations during the high pollution
event in July.

OZONE CONTRIBUTIONS FROM
DIFFERENT SOURCE REGIONS

In Figure 9, we qualify the contributions of ozone from nine
defined regions to monthly mean surface ozone concentrations
in the YRD region for May‒October 2017 using the GEOS-
Chem tagged ozone technique. We focus on the contributions
to monthly mean surface ozone concentrations in three
regions, Jiangsu and Shanghai (Figure 9A), Zhejiang
(Figure 9B), and central eastern China (Figure 9C),
generally belonging to the YRD region. Locally generated
ozone is the largest contributor to monthly mean surface
ozone concentrations in the three regions for
May–September 2017, ranging from 42.4 to 74.7 μg m−3

(30.0–44.1%) in Jiangsu and Shanghai, 38.5–54.2 μg m−3

(31.5–47.4%) in Zhejiang, and 53.6–68.3 μg m−3

(39.0–50.7%) in central eastern China. The control of local
source emissions is thus important to control ozone
concentrations in the YRD region.

For Jiangsu and Shanghai region (Figure 9A), ozone from
adjacent areas, i.e., Zhejiang and central eastern China are the
second (20.6–33.7%) and third (21.6–22.4%) largest
contributors in July and August. For other months, ozone
from the rest of world also shows large contributions to surface
ozone concentrations in Jiangsu and Shanghai in May (25.1%),
June (18.1%), September (24.7%), and October (41.4%),
indicating that regional and long-distance transport is also a
significant contributor to surface ozone in Jiangsu and
Shanghai. For Zhejiang region (Figure 9B), ozone from
nearby southeast is the second largest contributor for the
summer months of June to August (20.9–28.0%). Ozone
from the rest of world accounts for 27.0% of surface ozone
concentrations in Zhejiang in May, 24.4% in September, and
39.3% in October. For the central eastern China region
(Figure 9C), ozone contributions from the rest of the world
to the surface ozone in central eastern China are the second
largest in spring and autumn months (20.2% in May, 15.7% in

September, and 25.1% in October). For the summer months of
June to August, ozone transport from the adjacent west regions
contributes the second largest fraction of surface ozone
(12.9–16.6%) in central eastern China.

Previous studies have shown that ozone pollution is a
regional problem and regional transport has large
contribution to the ozone within the YRD region (e.g., Gao
et al., 2016; Li L et al., 2019). Our results also show that
regional and long-range transport is also a significant
contributor to surface ozone in the YRD. Ozone from
regions outside the YRD accounts for 23.3–76.0% of surface
ozone in Jiangsu and Shanghai, 46.3–63.8% in Zhejiang,
41.9–51.3% in central eastern China, which are larger in
spring and autumn than in summer. The largest regional
transport in October (51.3–76.0%) would affect the
sensitivity of ozone to its locally emitted precursors, which
show significant differences compared with those for
May–September. The large regional transport will therefore
affect the effectiveness of local precursor emission reduction
on ozone control.

DISCUSSION AND CONCLUSION

We used the GEOS-Chem model to analyze ozone sensitivity to
its precursors in the YRD region from May to October 2017. We
aimed to quantify the changes of surface ozone with the control of
NOx and VOCs anthropogenic emissions at different reduction
ratios in three big cities in the YRD region (Nanjing, Shanghai,
and Hangzhou). The GEOS-Chem model was generally in good
performance to simulate ozone concentrations in the three cities
with correlation coefficients, NMB, and NME values in the range
of 0.69–0.80, 0.37–8.97% and 16.54–24.72%, respectively, which
were all within the model performance criteria.

We conducted sensitivity simulations by reducing
anthropogenic NOx and VOCs emissions by 20, 40, 60, and
80% in the YRD region, and evaluated the ozone–NOx–VOCs
sensitivity in the YRD region. Most areas in the YRD region were
under a transitional regime for May–September 2017 while under
a VOCs-limited regime in October. The regions with high
anthropogenic emissions including Shanghai and southern
Jiangsu were under a VOCs-limited regime for May–October;
the VOCs-limited regions for July–August shrank to only a small
part of southeast Jiangsu and northern Shanghai. Generally,
compared to reducing NOx emissions, VOCs emissions
reduction was more effective to control ozone concentrations
in the entire YRD region.

We further evaluated ozone sensitivity to its precursors and
compared changes of ozone concentrations between sensitivity
simulations and standard model simulation in Nanjing,
Shanghai, and Hangzhou. Nanjing was under a VOCs-
limited regime in May, June, September, and October and
under a transition regime from July to August. The VOCs/NOx

emission reduction ratio of 1:1 was effective for ozone
mitigation in Nanjing in May, June, and September; the
corresponding ratio was 2:1 in October. Shanghai was
generally under a VOCs-limited regime for May–October
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and closed to a transition regime for July–August. The effective
VOCs/NOx emission reduction ratios for controlling ozone
concentrations in Shanghai was larger than 1:1 for
May–September and 2:1 in October. Hangzhou belonged to
a transitional regime from May to September and was under a
VOCs-limited regime in October. Reducing NOx emission was
the effective method to control ozone in Hangzhou from May
to September, while the VOCs/NOx reduction ratio of 1:1 was
favorable to reduce ozone concentrations in October. During
high pollution days on July 22–27, 2017, the three cities belong
to a transitional regime and reducing NOx emissions only is
generally the most effective way to control high ozone
pollution.

We used tagged ozone simulation to quantify contributions of
ozone from eight regions to monthly mean ozone concentrations
in Jiangsu and Shanghai, Zhejiang, and central eastern China
from May to October 2017. Generally, locally generated ozone
was the largest contributor to monthly mean ozone
concentrations in Jiangsu and Shanghai (30.0–44.1%) and
Zhejiang (31.5–47.4%) from May to September, while in
central eastern China (36.4–50.7%) from May to October.
Ozone transport from adjacent regions was also a major
contributor for June–August. Ozone from regions outside the
YRD were larger in spring and autumn than in summer, and
accounted for 23.3–76.0% of surface ozone in Jiangsu and
Shanghai, 46.3–63.8% in Zhejiang, and 41.9–51.3% in central
eastern China. Ozone in the YRD region was therefore caused by
the joint effect of local source and transport of ozone from
adjacent and long-distance regions.

Due to the strict and effective emission reduction policies
of the Chinese government, annual anthropogenic NOx

emissions continued to reduce in the YRD from 2017, and
anthropogenic VOCs emissions have begun to show a decline.
Compared to the MEIC emission inventory in 2017, the
annual anthropogenic VOCs (NOx) emission in 2020
reduced by 8% (11%) in the YRD region (Zheng et al.,
2021). The VOCs/NOx emission reduction ratio was thus
about 1:1. According to our discussions in Sect.4, the joint
reduction of VOCs and NOx emissions with the VOCs/NOx

reduction ratio larger than 1:1 would be conducive to ozone
mitigation in the YRD region. The report on the Ministry of
Ecology and Environment of China has shown that 90th
percentile of MDA8 ozone concentrations in the YRD
region has decreased by 10.6% from 2017 to 2020. In
November 2021 (https://www.mee.gov.cn/zcwj/zyygwj/),
the Chinese government has put forward specific
requirements for ozone control to reduce anthropogenic
VOCs and NOx emissions by 10% by 2025 compared with
2020. The ozone concentration in the YRD would further
show a decline by 2025, especially from May to September.
However, ozone concentrations are likely to continue to rise
in October, especially when weather conditions are

unfavorable and regional and long-range transport are
significant.

Our study may provide a scientific base for guiding
effective control strategies for ozone pollution. In the
present study, we evaluated the ozone sensitivity to only
anthropogenic precursor emissions in a monthly time
scale, which may not meet the requirements of controlling
daily maximum ozone concentrations due to the strong
nonlinear relationship between ozone and its precursors.
NOx emissions are mainly from vehicles, industry, and
power plants, while VOCs emissions are from solvent use,
industry, vehicles, and residences. Future studies include the
ozone sensitivity to precursor emissions from different
emission sectors and ozone sensitivity on daily or hourly
bases under different weather patterns would be more
valuable for emission mitigation measures.
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The Effect of Banning Fireworks on Air
Quality in a Heavily Polluted City in
Northern China During Chinese Spring
Festival
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Air pollution has a negative impact on the ecological environment as well as on the
health of people. Setting off fireworks and firecrackers lead to a significant deterioration
in air quality in a short period of time. The firework prohibition policy of 2016 in
Zhengzhou City provides an opportunity to investigate the effect of banning fireworks
on air quality during the Spring Festival. The Air Quality Index and the concentrations of
PM2.5, PM10, SO2, NO2, CO and O3 during the Spring Festival between 2014 and 2019
in Zhengzhou City were analyzed. The results show that: There were small fluctuations
in precipitation, air pressure, wind speed, temperature and relative humidity during the
Spring Festival from 2014 to 2019. The air quality index in the Spring Festival in 2016
was significantly lower than that in 2014 and 2015, and the air quality in 2018 and 2019
showed greater improvements. The sudden increases in pollutants concentrations has
been weakened, showing an obvious “peak-shaving” effect during the traditional heavy
pollution period, New Year’s Eve to the first day of the first lunar month. In 2014 and
2015 years, the concentrations of PM2.5 and PM10 reached their peaks at 1:00 a.m. on
the first day of the new year, and fluctuated in the ranges of 259–271 μg/m³ and
380–384 μg/m³, respectively. The concentrations of PM2.5 and PM10 were 44 and
100 μg/m³, respectively in 2016, 40 and 80 μg/m³ in 2018 during the same period. In
addition, the ban implemented has the most obvious impact on PM2.5 and PM10.
Compared with the Spring Festival in 2014, the concentrations of PM2.5 and PM10

increased by 19.15 and 18.64% in 2015, decreased by 18.38% and 15.90% in 2016,
and decreased by 16.83% and 26.05% in 2018. Therefore, banning fireworks and
firecrackers will help to improve the air quality during the Spring Festival in Zhengzhou
City to a certain extent.
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1 INTRODUCTION

Due to a rapid increase in heating, traffic, industrial emissions
and the stable synoptic conditions especially during the cold
winter, air pollution has become a major environmental problem
that get special attention from the general public (Sahu and Sahu,
2019; Xu et al., 2020). Air pollution not only cause adverse effects
on the development of regional economies (Zhou et al., 2019; Xu
et al., 2020), but also has a negative impact on the ecological
environment and health (Doherty et al., 2017; Hanaoka and
Masui, 2019). Studies found that high concentrations of air
pollutants may cause cardiovascular disease, chronic
obstructive pulmonary disease, respiratory disease and chronic
kidney disease (Shakerkhatibi et al., 2015; Todorović et al., 2019;
Lin et al., 2020), resulting in a large number of deaths every year
throughout the world (Sharma et al., 2019). With the rapid
development of economy, severe air pollution engulfed in the
winter in China (Zhou et al., 2019); Many studies proposed that
coal combustion, industrial emissions, transportation and dust
are the main sources of air pollutants in China (Ye et al., 2016; Ge
et al., 2018; Wang et al., 2021; Wang et al., 2022); Chinese Spring
Festival is an important holiday when a large number of people
return to their hometowns causing many factories shut-down,
and the traffic volume decreases significantly in megacities.
However, setting off fireworks and firecrackers is a great
tradition during this festival, which lead to a significant
deterioration in air quality but crucially in a short period of
time (Saha et al., 2014; Zhao et al., 2014; Lai and Brimblecombe,
2017; Wang et al., 2019; Kumar et al., 2016; Zhang et al., 2017;
Greven et al., 2019; Zhang et al., 2020).

The main components of firecrackers are black powder,
including potassium nitrate, sulfur powder, charcoal powder,
and some of them contain potassium chlorate. When making
fireworks, inorganic salt and magnesium powder are added (Wang
et al., 2007; Zhang et al., 2017). Therefore, setting off large numbers
of fireworks and firecrackers will inevitably cause the concentration
of gas pollutants, particulate pollutants, and toxic substances to rise
rapidly in a short period of time, resulting in adverse effect on the
health and safety of people (Ji et al., 2018; Greven et al., 2019;
Zhang et al., 2020). Setting off fireworks and firecrackers is a
traditional custom that has been part of celebrating the Spring
Festival in China for more than 1000 years (Kumar et al., 2016; Ye
et al., 2016; Zhang et al., 2017). Haze still formed in megacities
during the Spring Festival, although most enterprises shut down or
half shut down, and traffic activities sharply reduce, resulting in a
significant reduction in local pollution sources and emissions. The
haze pollution could be attributed to intermittent and centralized
fireworks and firecrackers during the Spring Festival, due to the
chemicals making up their construction (Wang et al., 2019; Zhang
et al., 2020).

Setting off fireworks and firecrackers was prohibited in
Zhengzhou in 2016 during the spring festival. This inaugural
prohibition policy applied to the five districts of Zhongyuan, Erqi,
Jinshui, Guancheng and Huiji; as well to the four development
zones of Zhengzhou Airport Economy Zone, Zhengdong New
District, Zhengzhou Economic and Technological Development
Zone and Zhengzhou National High&New Technology

Industries Development Zone. In 2018, the policy was in effect
strengthened through expansion if its scope to include the heavily
built-up areas of wider Zhengzhou to include Xinzheng City,
Xinmi City, Dengfeng City, Xingyang City, ZhongmuCounty and
Shangjie District. The implementation of the policy which
effectively closed down one specific source of air pollution
during the Spring Festival, therefore, provided a unique
opportunity in Zhengzhou to investigate the impact of
fireworks on atmospheric environmental quality and comment
on the efficacy of such policies on improving environmental air
quality in general.

Scholars have researched into the impact of fireworks on
atmospheric environmental quality. Saha et al. (2014) found
that over an urban metropolis in India, an increase in air
pollutant concentration, from large amounts of fireworks set
off there during the Deepawali Festival, is related to the
climate and environmental change patterns in the region.
Among these pollutants, the increase in Particle Pollutant
concentrations was significance (Kumar et al., 2016). In
central London, the total concentration of PM2.5 at night is
higher than average daytime values, exceeding national
ambient air quality standards (NAAQS), and the risk of
PM2.5-PTEs at night during fireworks activities is higher than
that during daytime (Hamad et al., 2015). Case crossover studies
have shown a positive correlation between fireworks and
mortality, as well as PM10, during the Dutch New Year
celebrations (Greven et al., 2019). Many studies reported the
relationship between fireworks and air pollution in Beijing (Wang
et al., 2007), Tianjin (Xie et al., 2019), Nanning (Li et al., 2017),
Lanzhou (Zhao et al., 2014)and Chengdu (Zhang et al., 2016; Wu
et al., 2018)in China. The research usually involves on-line
monitoring during combustion (Zhang et al., 2016; Wu et al.,
2018), air pollution status determinations in different periods of
the Spring Festival (Zhang et al., 2016), and the impact of
fireworks combustion on air pollutants (Jing et al., 2014; Zhao
et al., 2014; Zhang et al., 2017).

Obviously, the above research mainly focuses on the impact of
fireworks on the overall atmospheric environmental quality of
cities in the absence of no-burn or firework prohibition policies,
and there are relatively few comparative studies before and after
the implementation of such policies. Moreover, the time spans of
existing studies are also relatively short, often within a year, and
therefore, long-term sequence comparative studies are lacking.
The firework prohibition policy was implemented in 2016 and
expanded and strengthened in 2018 Based on the air quality
monitoring data in Zhengzhou City from 2014 to 2019, We study
the effects of banning fireworks and firecrackers on the air quality
index and air pollutants such as PM2.5, PM10, NO2, SO2, O3, CO
during the Spring Festival to provide a scientific basis for the
prohibition of setting off fireworks and firecrackers during the
Chinese Spring Festival in other areas of the country.

2 STUDY AREA

Zhengzhou City (112°42′E to 114°14′E, 34°16′N to 34°58′N) is
located in the eastern part of the Qinling Mountains, in the
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transition zone between the second and third levels of the national
geographic steps. Its altitude is generally high in the southwest
whilst low in the northeast and experiences a temperate continental
monsoon climate with poor rainfall and low wind speed. In winter,
static wind and inversions are easily formed, which is well
recognized as being detrimental to the movement and diffusion
of air-based pollutants (Guo et al., 2019).

Zhengzhou is densely populated as a result of the city’s rapid
expansion which has also brought about increasing levels of air
pollution. According to statistics, by the end of 2017, Zhengzhou
had a permanent population of 9.88 million, with an annual GDP
of 919.377 billion yuan, hosting some 133 industrial enterprises
consuming in excess of 10,000 tons of standard coal annually,
accounting for 17.7% of the province’s total consumption, of
which its industrial energy consumption has been dominated by
coal for a significant amount of time (Wang and Xia, 2018). At the
same time, Zhengzhou is not only the main city of the Central
Plains urban agglomeration, but also the important
transportation hub of “2 + 26 cities” in Beijing, Tianjin, Hebei
and its surrounding areas (Guo et al., 2019).

As already alluded to in the introduction, Zhengzhou has a long
history of culture in which fireworks and firecrackers have been
used for thousands of years in traditional customs associated with
events such as the spring festival. This use of fireworks in a
significant coal burning area which is meteorologically
predisposed to retain air pollution are the main reasons for this
study’s interest in choosing Zhengzhou as the study area (Figure 1).

3 MATERIALS AND METHODS

The air quality index and pollutant quality concentration data
(including AQI, PM2.5, PM10, NO2, SO2, O3, CO) are crucial to

the analysis in this study, and are sourced from the state control
station of Zhengzhou Environmental Protection Bureau for the
period 2014 to 2019. The pollutant quality concentration and
meteorological factor data are from http://www.tianqihoubao.
com/ and https://www.aqistudy.cn/historydata/ in 2020. In these
data sets, for dates where there are missing or partially missing
data, the data average for the month in which the date occurred
are used in replacement.

According to the ambient air quality standard GB3095-2012
(20160101) (Xie et al., 2019), the following definitions are used:
“daily average” refers to the arithmetic mean of 24-h average
concentration of a natural day; “quarterly average” refers to the
arithmetic mean of daily average concentration in a calendar
quarter; and “annual average” refers to the arithmetic mean of
daily average concentration in a calendar year. Referencing the
lunar calendar, Spring comprises the months March, April and
May (92 days); summer comprises June, July and August
(92 days); autumn comprises September, October and
November (91 days); and winter comprises December as well
as January and February of the following year (90 days for no leap
year and 91 days for leap year).

According to the revised National Ambient Air Quality
Standard (NAAQS-2012) issued by China’s Ministry of
Environmental Protection (now known as the Ministry of
Ecology and Environment) (Ye et al., 2016; Zhou et al., 2019),
AQI is a dimensionless index used to quantitatively describe air
quality. As shown in Table 1, AQI is divided into six grades,
depending on its value range, where each grade has an associated
severity categorization and description. The larger the value range
is, means a higher grade which implies the air pollution is more
serious and of greater harm to human health. It is, therefore,
suitable for characterizing the short-term air quality status and
change trend of the city.

FIGURE 1 | Distribution map of meteorological observation stations in zhengzhou city.
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4 RESULTS

4.1 Air Quality Characteristics of Zhengzhou
During the Spring Festival
The air quality index data for Zhengzhou City during the Spring
Festival (from the 27th December to the 6th January) from 2014
to 2019 were used to establish the change trend in AQI average
during the Spring Festivals as shown in Figure 2. The change
trend of the AQI in Zhengzhou City during the Spring Festival
shows a double peak trend of first rising and then falling, while
the AQI in winter shows a double valley trend of first falling and

then rising. The lowest AQI during a Spring Festival occurs in
2019 and can be classified as Grade III, that is “Moderate”; the
second lowest occurred in 2018 (AQI = 141); whilst the highest
occurred in 2017 (AQI = 197) and can be categorized as grade IV;
the second highest in 2015 (AQI = 194), also a Grade IV but is
higher than the average annual AQI. This is mainly because
Zhengzhou started to implement its firework prohibition policy
in 2016, but in 2017 there was a significant increase in the AQI, a
reflection of inadequacies in the policy. However, in 2018, with
the further expansion of the scope of the policy, the AQI
decreased, and decreased further in 2019, the lowest it has
been in recent history. This policy change is also the main
reason for the opposite trend between AQI during the Spring
Festival and AQI in winter.

2016 is the first year of Zhengzhou’s policy implementation
prohibiting fireworks, and it is also a turning point for the
improvement of its air quality as evidenced in the decrease of
26.17% in the AQI during the Spring Festival in 2016 compared
with the same period in 2015, as well as being significantly lower
than the average value in winter. Hence, the banning of setting off
fireworks and firecrackers during the Spring Festival had a great
impact on the atmospheric environment quality. The AQI
reached 197 during the Spring Festival in 2017, which is
significantly higher than the winter average and close to being
categorized as in the Unhealthy grade. This mainly resulted from
the realization in 2017 of limitations in the prohibition policy that
provided exemptions for certain districts and the problem was
further compounded through significant levels of firework theft
and their subsequent illegal setting off.

The AQI in 2018 decreased by 28.43% compared with the
same period in 2017, moving from the Unhealthy for sensitive
people grade to the Moderate grade. This is because the
prohibition policy was strengthened in 2018 through
expansion of its jurisdiction from the original five districts and
four development zones to include the built-up areas surrounding
the wider city. The AQI index further decreased significantly
during the Spring Festival of 2019, reaching its lowest level (AQI
= 119) in recent years.

The distribution of the air quality grades for Zhengzhou
during the Spring Festivals from 2014 to 2019 are shown in
Table 2. The air quality levels from the 27th December to the

FIGURE 2 | AQI change trend of Zhengzhou during Spring Festival from
2014 to 2019.

TABLE 2 | Distribution of air quality grades during the Spring Festival of Zhengzhou from 2014 to 2019.

TABLE 1 | AQI values, grade, and description.

AQI Value Grade Description

0–50 I Good
51–100 Ⅱ Moderate
101–150 Ⅲ Unhealthy for sensitive people
151–200 Ⅳ Unhealthy
201–300 Ⅴ Very unhealthy
301–500 Ⅵ Hazardous
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1st January from 2014 to 2015 are all between III-VI. After the
implementation of Zhengzhou’s firework prohibition policy in
2016, the air quality has significantly improved, ranking at level
II for four consecutive days. With the relaxation of the
prohibition policy in 2017, the air quality level from the
27th December to the 1st January remains high, and only
after the 3rd January does it reduce. With the strengthening
of the prohibition policy during the Spring Festival,
Zhengzhou’s air quality from the 27th of December to the
1st January in 2018, significantly improved compared with
2017. Finally, the air quality obviously improved from the
27th December 2019 to the 1st January, while the air quality
from the third day to the 6th January is eminently an
improvement from that of previous years, a result that is
attributed to the further strengthening of the prohibition
policy, and corresponds to the results of annual AQI mean
changes during the Spring Festival in Zhengzhou. The results

indicated that the prohibition of fireworks and firecrackers
plays an important role in improving the air quality of
Zhengzhou during the Spring Festival, especially from the
27th December to the 1st January.

4.2 Daily Variation Characteristics of
Pollutant Concentrations
The combustion of fireworks and firecrackers has an effect on the
airborne concentrations of gas pollutants, particulate pollutants,
heavy metals and toxic substances. The daily variations of
pollutant concentrations were stduied in Zhengzhou during
Spring Festival over three periods: firstly, from 2014 to 2015
which is before the implementation of the initial firework
prohibition policy in 2016; secondly, from 2016 to 2017
during the initial implementation of the policy; and thirdly,
from 2018 to 2019 after the implementation of the
strengthened prohibition policy in 2018.

4.2.1 Variation Characteristics of Pollutant
Concentrations Before the Prohibition Policy
(2014–2015)
As shown in Figure 3, the average concentrations of PM2.5 and
PM10 increased during the Spring Festivals from 2014 to 2015. In
2014, the average concentration of PM2.5 and PM10 were 126.18
and 178.97 μg/m³, respectively; whilst in 2015, they were 150.34
and 212.33 μg/m³, respectively; both exceeding the national
secondary atmospheric standard. Secondly, as shown in
Figure 4, from a local point of view, the PM2.5 concentration
reached a peak on the 1st January in 2014 at 210.75 μg/m³, and
peaked again on the 3rd January at 210.38 μg/m³; whilst the PM10

concentration peaked on the 2nd January at 381.30 μg/m³. In
2015, the first peaks of PM2.5 (283.17 μg/m³) and PM10

(333.63 μg/m³) occurred on the 27th of December, whereas the
second peak of PM2.5 (174.67 μg/m³) occurred on the 6th

FIGURE 3 | Annual change trend of average concentration of main
pollutants in Zhengzhou during the Spring Festival from 2014 to 2019.

FIGURE 4 | Daily trend of average concentration of main pollutants in Zhengzhou during the Spring Festival from 2014 to 2019.
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January, and the second peak of PM10 (257.21 μg/m³) occurred
on the 5th January.

The average concentrations of SO2 and NO2 decreased during
the Spring Festival from 2014 to 2015. In 2014, the average
concentration of SO2 and NO2 were 61.36 and 45.96 μg/m³,
respectively; whilst in 2015, they were 45.55 and 40.85 μg/m³,
respectively. Secondly, from a local point of view, the
concentrations of SO2 and NO2 in 2014 reached their respective
first troughs of 26.71 and 42.21 μg/m³ on the 1st January, and
troughed again on the 6th January at 18.38 and 21.63 μg/m³,
respectively. In 2015, the troughs for SO2 occurred on the 2nd
January, whilst that of NO2 was still on the 1st January.

Before the prohibition policy came into effect, the average
concentration of CO decreased during the Spring Festivals of
2014 and 2015, whilst that of O3 increased. The average
concentrations in 2014 and 2015 of CO are 2.43 mg/m³,
1.80 mg/m³ and of O3 are 28.75 and 38.90 μg/m³, respectively.
The CO concentration first increased slowly, reaching a peak of
3.69 mg/m³ on the 3rd January in 2014, then decreased rapidly to
its lowest value on the 6th January. CO concentrations showed a
general downward trend, which troughed on the 2nd January in
2015 at 1.28 mg/m³ and again on the 4th January at 1.31 mg/m³.
In 2014, the O3 concentration peaked on the 29th December and
on the 1st January, and in 2015, it peaked mainly on the 1st and
4th January. The high concentrations of pollutants mainly occur
on the 1st and 2nd January, and also on the 5th and 6th January,
which also confirms that New Year’s Eve, the 1st and 5th January
(commonly known as the fifth day break) are the peak periods for
setting off fireworks during the Spring Festival (Pang et al., 2020).

4.2.2 Variation Characteristics of Pollutant
Concentrations During the Initial Prohibition Period
(2016–2017)
As shown in Figure 3 the average concentrations of PM2.5 and
PM10 showed an upward trend from 2016 to 2017. In 2016, the
average concentration of PM2.5 and PM10 were 102.98 and
150.52 μg/m³, respectively, and in 2017, they were 149.88 and
210.20 μg/m³, respectively. Compared with 2015, the average
concentrations of PM2.5 and PM10 decreased by 31.50% and
29.11%, respectively. As shown in Figure 4, the average
concentrations of PM2.5 and PM10 in 2016 (the first year of
prohibition policy) troughed at 14.67, 63.79 μg/m³, respectively
on 28 December and troughed again on the 6th January. The first
trough in 2017 is on the 1st January, and the second trough
occurred on the 3rd January.

The average concentrations of SO2 and NO2 during the Spring
Festival before the prohibition policy came into effect in 2016 and
2017 show a slight upward trend. In 2016, the average
concentrations of SO2 and NO2 were 49.08, 39.70 μg/m³,
respectively, and in 2017, they were 36.22 and 42.61 μg/m³,
respectively. The trend of SO2 and NO2 changes in 2016 are
similar, troughing on the 28th December, and on the 3rd and 6th
January. In 2017, the trend of SO2 and NO2 is similar, troughing
on the 1st and the 3rd January.

The average concentrations of CO decreased during the Spring
Festival from 2016 to 2017, while O3 increased. The average
concentrations of CO in 2016 and 2017 are 1.95 and 1.79 mg/m³,

respectively, whilst the average concentrations of O3 are 56.22
and 45.02 μg/m³, respectively. In 2016 (the first year of the
prohibition policy), the CO concentrations troughed
at0.95 mg/m³ on the 28th December and at 1.34 mg/m³ on the
6th January, whilst in 2017, the CO concentrations troughed at
1.37 mg/m³ and 1.11 mg/m³ on the 1st and 3rd January. In 2016,
the O3 concentrations peaked on the 2nd January at 76.92 μg/m³,
and in 2017, it peaked on Spring Festival’s Eve at 59.75 μg/m³ and
on the 3rd January at 57.67 μg/m³.

4.2.3 Variation Characteristics of Pollutant
Concentrations After Expansion of the Prohibition
Policy (2018–2019)
As shown in Figure 3, after the implementation of the expanded
prohibition policy, the average concentrations of PM2.5 and PM10

in Zhengzhou during the Spring Festival showed a slight
downward trend. In 2018, the average concentrations of PM2.5

and PM10 were 104.94 and 132.34 μg/m³, respectively, and in
2019, they were 85.01 and 131.88 μg/m³, respectively. As shown
in Figure 4, from a local point of view, in 2018 (scope of
prohibition policy expanded) the first peaks of PM2.5 and
PM10 occurred on the 29 December at 77.04 and 170.67 μg/
m³, respectively; whilst the second peak occurred on the 3rd
January at 187.29 and 195.08 μg/m³, respectively. However, in
2019, PM2.5 and PM10 concentrations reach their respective peaks
of 260.96 and 334.83 μg/m³ after the 2nd January, and they
decrease rapidly, from the 3rd to the 6th January when they
become lower than the national secondary atmospheric standard.

The average concentrations of SO2 and NO2 during the Spring
Festivals of 2018 and 2019 show a slight downward trend. The
average concentrations of SO2 and NO2 in 2018 are 21.13 and
30.65 μg/m³, respectively, and in 2019 are 12.90 and 24.53 μg/m³,
respectively. The trend of SO2 and NO2 changes is similar. In
2018, SO2 peaked on the 29th December, the first day of January
and then again on the sixth day of January; whilst NO2 peaked on
the 28th December, the first and sixth days of January. In 2019,
SO2 peaked on the first and fifth days of January, and NO2 peaked
on the 29th December and 5th January.

The average concentrations of CO and O3 during the Spring
Festivals from 2018 to 2019 show a slight downward trend. The
average concentrations of CO in 2018 and 2019 are 1.26 mg/m³
and 1.00 mg/m³, respectively; whilst the average concentrations
of O3 in 2018 and 2019 are 69.10 and 62.83 μg/m³, respectively. In
2018, the CO concentration reached its first trough of 0.93 mg/m³
on New Year’s Eve, its second trough of 1.03 mg/m³ on the 4th
January, whereas in 2019, it reached its first trough of 0.68 mg/m³
on Spring Festival’s Eve, and its second trough of 0.70 mg/m³ on
the 6th January. In 2018, O3 concentrations reached troughs of
58.58, 60.67 μg/m³ on the 3rd and 6th January. Whereas, in 2019,
it reached troughs of 54.33 μg/m³ on the 29th December and 2nd
January.

4.3 Impact of the Prohibition Policy on
Hourly Variation Characteristics
The hourly variations in the average concentrations of the major
pollutants in Zhengzhou from New Year’s Eve to the 1st January
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in 2014 and 2015 are shown in Figures 5A,B, respectively. The
concentrations of PM2.5 and PM10 on New Year’s Eve in 2014 are
initially at relatively low levels but from 03:00–09:00 their
respective concentrations exceed 200 μg/m³ and 300 μg/m³,
and between 0:00–01:00 on the 1st January, they reached their
respective peaks of 259 and 384 μg/m³. Between 02:00–05:00, the
concentrations of PM2.5 and PM10 began to decline. However, at
06:00 the concentration of PM10 was still above 240 μg/m³ but by
18:00 it peaked again at 340 μg/m³. An hour later at 19:00, PM2.5

peaked again at 269 μg/m³.
In 2015, between 05:00–17:00 on New Year’s Eve, the

concentrations of PM2.5 and PM10 were at low levels.
Compared with the same period of the Spring Festival in
2014, the rising speed of pollutant concentrations are slightly
delayed, and the time to reach their peaks lagged slightly. The
PM2.5 concentration exceeded 200 μg/m³ at 23:00 on New Year’s
Eve but at 01:00 on the 1st January it peaked at 271 μg/m³. At the
same time, the PM10 concentration also peaked at 380 μg/m³,
exceeding 300 μg/m³ for the first time. After 01:00 the PM2.5 and
PM10 concentrations rapidly decreased until about 12:00 when
their concentrations remained at relatively low levels. In addition,
in 2014 and 2015, the timings of the PM2.5 and PM10

concentration peaks are in good agreement with the
traditional peak period for setting off fireworks, and the
response results are obvious.

The firework prohibition policy was implemented for the first
time, on the 1st January 2016 in Zhengzhou City as well as in five
districts, four development zones and built-up districts of
counties (cities) in the wider Zhengzhou region. In 2016, the
air quality of New Year’s Eve was in the two grades of excellent
and good. As can be seen in Figure 5C, the concentrations of
PM2.5, PM10, SO2, NO2 and CO peaked at 09:00 on the 1st
January with respective concentrations of 122, 216, 138, and
52 μg/m³ and 1.6 mg/m3; these peaks are significantly delayed
compared with the peak timings of pollutants in 2014–2015 prior
to the implementation of the prohibition policy covering the
Spring Festival, The results are consistent in that, after the
implementation of the policy the peak value of pollutants
decreased (Zhang et al., 2020). The concentration of O3

peaked at 14:00–18:00 on the 1st January, while other
pollutants troughed at this time, an observation that is mainly
attributed to a series of photochemical reactions involving
oxygen, nitrogen oxides and volatile organic compounds in the
air under the action of natural light. Compared with the same
period in 2014, the respective pollutant concentration decreased
by 52.90%, 43.75%, 11.54%, 38.82%, 69.23% and 53.45%; and
compared with the same period in 2015, the respective pollutant
concentrations decreased by 54.98%, 43.16%, 22.12%, 10.64%,
38.46% and 65.71%. This essentially shows the net effect of the
prohibition policy during the Spring Festival in Zhengzhou, the

FIGURE 5 | Hourly variation of the average concentration of main pollutants from New Year’s Eve to the 1st January in 2014–2019.
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concentration of various pollutants has decreased significantly,
and the air quality has been improved significantly.

The change characteristics of pollutants concentrations in
2017 are quite different from those in 2014–2016 (Figure 5D).
On New Year’s Eve, from 00:00–03:00, the concentration of each
pollutant is at a high level. On New Year’s Eve, from 03:00–12:00
and on the 1st January, from 17:00–23:00, the concentration of
each pollutant is still at a high level, while from 13:00 to 16:00 on
the 1st January, the concentration of each pollutant became
relatively low; From 23:00 on New Year’s Eve to 02:00 on the
1st January, fireworks were set off intensively, but the
concentration of pollutants in 2017 was not high. This shows
that the policy has played a role in restraining the traditional high
concentration stage of pollutants in 2017. It may also be that some
residents illegally set off fireworks and firecrackers but
deliberately avoided do so in the peak period.

On New Year’s Eve and the 1st January in 2018, as can be seen
in Figure 5E, the concentrations of pollutants were generally low.
PM2.5 and PM10 took the lead in reaching respective troughs of 32
and 41 μg/m³ at 06:00 on New Year’s Eve, both of which exceeded
the national level II standard. After that, the concentrations
gradually increased, reaching respective peaks of 93 and 109 μg/
m³ at 23:00. Compared with the same period in 2014 (before the
prohibition policy), their respective concentrations decreased by
61.09% and 67.07%. After that, they only reached troughs at 06:00
on the 1st January, and then began to rise slowly, reaching
respective peaks of 93 μg/m³and 109 μg/m³ at 23:00, which is a
respective decrease of 124 μg/m³ and 162 μg/m³ compared with the
same period in 2017, showing a very large reduction ratio.

Concentrations of PM2.5 and PM10 on New Year’s Eve 2019
are relatively low and do not exceed the national secondary air
quality standard (Figure 5F). However, with the arrival of the
1st January, the concentrations of pollutants gradually
increased, and the increasing range became larger and larger.

The first peaks appeared between 14:00–15:00 on the 1st January,
whilst the second peaks for PM2.5 and PM10 of 287 μg/m³and
328 μg/m³, respectively occurred at 23:00, and are 54.70% and
39.63% higher than their respective first peaks. In addition,
the changes of other gas pollutants concentrations are not obvious.

5 DISCUSSION

In order to further explore the relationship between the release of
fireworks and the concentration of various pollutants, the average
concentration of various pollutants during the Spring Festival
from 2015 to 2019 was compared with that of 2014 and found in
Figure 6, the implementation of the ban on combustion has the
most significant impact on PM2.5 and PM10 (Lorenzo et al., 2021;
ten Brink et al., 2019; Tian et al., 2014). In 2015, the
concentrations of PM2.5 and PM10 were increased by 19.15
and 18.64%, respectively, compared with 2014. In 2016, the
first year of the ban on combustion, the concentrations of
PM2.5 and PM10 decreased by 18.38% and 15.90%,
respectively, compared with 2014. Compared with 2014, the
increase in 2017 was 18.78% and 17.45%, respectively, which
was caused by the decline in the implementation of the ban on
combustion policy and the intensity of the ban. In 2018, with the
further expansion of the scope of the ban and the strengthening of
the ban, the concentrations of PM2.5 and PM10 gradually
decreased from 2018 to 2019, and dropped to the lowest in
2019, decreasing by 32.63% and 26.31%, respectively. The
implementation of the non-combustion policy has little effect
on the reduction of SO2, NO2 and CO concentrations, that is,
fireworks and firecrackers are not the main cause of their
pollution during the Spring Festival, but are determined by the
types of pollutants produced by the discharge. With the
implementation of the combustion ban policy, the pollutant

FIGURE 6 | average concentration changes of these pollutants from 2015 to 2019 compared to those during Spring Festival periods 2014.
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concentration from 2015 to 2019 showed a downward trend year
by year, from 61.36, 45.96, and 2.43 mg/m³ in 2014–2019, reaching
a minimum value of 12.90, 24.53 and 1.00, respectively. When the
combustion ban policy was initially implemented in 2016 and
further strengthened in 2018, there was no significant trend change
in SO2, NO2 and CO concentrations. The implementation of the
ban on combustion has no effect on the change of O3

concentration. From 2015 to 2019, the O3 concentration
increased significantly compared with 2014.

In order to further analyze the phenomenon of the sudden
increase of pollutant concentrations during the Spring Festival,
the meteorological element data during the Spring Festival from
2014 to 2019 were used to analyze the fluctuation trend. In
Figure 7, the inter-annual variation of precipitation and air
pressure during the Spring Festival from 2014 to 2019 was not
obvious. Only a small amount of precipitation occurred on The
New Year’s Eve in 2016 and on the 28th and 29th of the first
month of 2019, and the air pressure was mainly fluctuation at
995–1022 Pa. Among them, the air pressure only fluctuated
between 998 and 1002 Pa from 2017 to 2018, with the smallest
variation. The wind speed, relative humidity and temperature are
slightly larger than those of precipitation and air pressure. The
wind speed is similar from 2014 to 2017, and the annual average
wind speed fluctuates between 1.7 and 2.1 m/s during the Spring
Festival. The wind speed is similar from 2018 to 2019, and the
average wind speed varies between 2.8 and 2.9 m/s during the
Spring Festival. The overall relative humidity changed slightly.
The relative humidity was the lowest at 27% during the Spring
Festival in 2018. The average relative humidity during the Spring
Festival from 2016 to 2017 was similar, at 75% and 81%,
respectively. The relative humidity in 2014, 2015 and 2019 was
relatively concentrated, respectively. 50%, 43%, 46%. The changes

in temperature and wind speed are roughly similar. The
temperatures in 2018 and 2019 are similar and higher than
those in other years. The average temperature during the
Spring Festival is 1.9 and 1.6°C, respectively, and the
temperature fluctuates from −0.6 to 1.4°C from 2014 to 2017.

6 CONCLUSION

Based on air pollution data from 2014 to 2019, this study analyzed
the characteristics of concentration changes of various air pollutants
during the Spring Festival in Zhengzhou City for six consecutive
years, to investigate the impact of the fireworks and firecracker
prohibition policy, that came into effect in 2016, on the air
environmental quality. The conclusions of the study are as follows:

Banning fireworks and firecrackers significantly improved
Zhengzhou’s air quality. There were small fluctuations in
precipitation, air pressure, wind speed, temperature and
relative humidity during the Spring Festival from 2014 to
2019. The AQI (143) of the Spring Festival in Zhengzhou in
2016 (the first year of the ban) was significantly better than that in
2014 (164) and 2015 (194). With the further implementation of
the embargo policy, the air quality in 2018 and 2019 showed
obvious improvements, decreasing to 141 and 119, respectively.
The turning point for air quality improvement came in 2016,
which coincided with the initial implementation of the policy. At
the same time, the ban has effectively slowed down the sudden
increase in pollutant concentrations from New Year’s Eve to the
first day of the first lunar month during the traditional heavy
pollution period, showing an obvious “peak shaving” effect. In
2014, the concentrations of PM2.5 and PM10 reached their first
peaks at 1:00 a.m. on the first day of the new year, at 259 and
384 g/m³, respectively. In 2015, the peaks were also reached at 1:
00 on the first day of the first lunar month, at 271 and 380 g/m³,
respectively. During the same period, the PM2.5 and PM10

concentrations were 44 and 100 μg/m³, respectively in 2016,
and 40 and 80 μg/m³ in 2018. In addition, the implementation
of the ban on combustion has the most obvious impact on PM2.5

and PM10. During the Spring Festival of 2015, which was not
banned from burning, compared with 2014, the concentrations of
PM2.5 and PM10 increased by 19.15% and 18.64%, respectively. In
2016, they decreased by 18.38% and 15.90%, respectively,
compared with 2014. In 2018, the concentrations of PM2.5
and PM10 decreased by 16.83% and 26.05%, respectively,
compared with 2014.
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Chemical Compositions in Winter
PM2.5 in Changzhou of the Yangtze
River Delta Region, China:
Characteristics and Atmospheric
Responses Along With the Different
Pollution Levels
Zhuzi Zhao*, Ning Sun, Wenlin Zhou, Shuaishuai Ma, Xudong Li, Malong Li, Xian Zhang,
Shishi Tang and Zhaolian Ye*

School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China

Changzhou, a typical industrial city located in the center of the Yangtze River Delta (YRD)
region, has experienced serious air pollution in winter. However, Changzhou still receives
less attention compared with other big cities in YRD. In this study, a four-month PM2.5

sampling campaign was conducted in Changzhou, China from 1 November 2019, to 1
February 2020. The period covers the entire wintertime and includes first week of the Level
1 response stage of the lockdown period due to the outbreak of COVID-19. The mean
PM2.5 concentrations were 67.9 ± 29.0 μgm−3, ranging from 17.4 to 157.4 μgm−3.
Secondary inorganic ions were the most abundant species, accounting for 37 and
50% during the low and high PM2.5 pollution periods, respectively. Nitrogen oxidation
ratio (NOR) during the high PM concentration level period was twice the low PM
concentration period whereas sulfur oxidation ratio (SOR) showed a less significant
increase. This represents that nitrate formation is potentially the predominant factor
controlling the occurrence of PM pollution. The analysis of NOR, SOR as functions of
relative humidity (RH) and ozone (O3) concentrations suggest that the sulfate formation
was mainly through aqueous-phase reaction, while nitrate formation was driven by both
photochemistry and heterogeneous reaction. And, excess ammonium could promote the
formation of nitrate during the high PM period, indicating that ammonia gas played a critical
role in regulating nitrate. Furthermore, a special period-Chinese New Year overlapping first
week of COVID-19 lockdown period, offered a precious window to study the impact of
human activity pattern changes on air pollution variation. During the special period, the
average PM2.5 mean concentration was 60.4 μgm−3, which did not show in a low value as
expected. The declines in nitrogen oxide (NOx) emissions led to rapid increases in O3 and
atmospheric oxidizing capacity, as well as sulfate formation. The chemical profiles and
compositions obtained during different periods provide a scientific basis for establishing
efficient atmospheric governance policies in the future.
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1 INTRODUCTION

As one of the most economically developed zones with high
energy consumption in China, the Yangtze River Delta (YRD)
region has experienced serious air pollution problems in recent
years (Fu et al., 2013). The temporal distribution showed the
highest PM2.5 concentration is found in winter, heavily
affected by prevailing northerly and westerly winds (Qian
et al., 2021). Hence, in-depth investigation at typical heavily
polluted cities in the YRD region in winter is critical, assisting
the formulation of efficient regional pollution control
strategies (Ye et al., 2019).

At the end of the year 2019, the tragic coronavirus disease
(COVID-19) pandemic occurred. To combat the rapid
dispersion of the virus, many national lockdown policies
were implemented in China to keep social distance.
Quarantine measures have effectively alleviated the spread
of the epidemic, and simultaneously resulted in declines in
anthropogenic emissions from industry and transportation,
and import and export of goods (Chen H. et al., 2020). Such a
shutdown serves as a natural experiment to evaluate air-quality
responses to a marked emissions reduction, and also to assess
the interplay between emission, atmospheric chemistry, and
meteorological conditions (Le et al., 2020). For example, Li
et al. (2020) found that the implemented lockdown policy
caused approximately 80% and 20–40% emission reductions
for the traffic and the industrial sectors, respectively,
corresponding to a reduction of >20 μg m−3 PM2.5

compared to that during the pre-lockdown period.
However, despite primary emissions being significantly
reduced during the lockdown period, the air quality in
some megacities has not been improved as expected due to
the complex responses in terms of aerosol chemistry, with the
variations of precursors and meteorological conditions (Sun
et al., 2020).

Changzhou, a typical industrial city located in the center of
the YRD region, has suffered haze pollution, especially in
wintertime (Ma et al., 2019; Ye et al., 2019). To reduce air
pollution, the establishment of effective pollution control
strategies is important. However, there are many challenges
such as the requirement of accurate apportionment of
predominant sources and distinguishing primary emissions
or secondary formations (Huang et al., 2014). In this study, we
present the major chemical compositions of PM2.5 and the
concentrations of gaseous pollutants in urban Changzhou
from 1 November 2019 to 1 February 2020. The period
covers the entire wintertime and includes the first week of
the Level 1 response stage of the lockdown period. It should be
noted that the Chinese New Year (abbreviated as CNY, also as
known as the Spring Festival) overlapped with the Level I
response period. The YRD region hosted the first level of
response started on 24 January 2020. The government
actively executed epidemic prevention actions and control
steps to the cities, including the adoption of compulsory
measures following the law that prohibit all large-scale mass
activities (Li et al., 2020). During the Level 1 response period,
the number of people accessed and vehicles passed by the

public places decreased substantially, and there were large-
scale stoppages or even closures for the industrial factories,
construction sites, and catering enterprises (Li et al., 2020).
Due to the strict lockdown policy in Changzhou starting on
February 2nd, no more offline sampling could be continuously
carried out. Even though this circumstance, the samples
collected in the days before the complete city lockdown
could still provide a precious window to study how the air
quality responds to the quick decline of anthropogenic
emissions in Changzhou.

As the above description, we studied the temporal
characteristics of PM2.5 and its chemical compositions, gaseous
pollutants, and meteorological factors during the wintertime. In
addition, we investigated the characteristics of chemical
compositions during different periods as well as the responses
to the lockdown policies. Furthermore, the influence factors to the
concentrations of air pollutants were interpreted to demonstrate
the relationships between the meteorological conditions,
emissions of primary pollutants, secondary species formation,
etc. Our findings could assist to understand the winter haze
formation, the impacts of different pollutants abatement, and the
development of effective control strategies in this typical
industrial city.

2 EXPERIMENT AND METHOD

2.1 Site Description
Changzhou, is located in central-south Jiangsu Province,
geographically in the center of the YRD region, China
(Figure 1). The Beijing-Hangzhou Canal runs through the
city. To the south of the city is Lake Taihu, the third-largest
freshwater lake in China. Moreover, the Yangtze River lies to
the north of Changzhou. Abundant water sources around the
city supply plentiful moisture in the air, leading to a humid
atmosphere in Changzhou throughout the year.

The sampling site locates in the western part of downtown
Changzhou where situates on the rooftop of a four-story building
inside the campus of the Jiangsu University of Technology
(31.7°N, 119.9°E). It is approximately 10 m above ground level.
The location represents a typical urban monitoring site,
surrounded by school and residential areas with medium-
scaled population and middle traffic volume. There were no
major industrial or constructive activities nearby during the
observation period.

2.2 Measurements
2.2.1 Ambient PM2.5 Sampling and Chemical Analyses
Ambient daily PM2.5 samples (from 10:00 to 09:50 next day local
time) were collected on Ø47 mm quartz-fiber filters (Whatman
Ltd., Maidstone, United Kingdom) using a mini-volume air
sample (Mini_TAS, Arimetric, Oregon, United States) at a
flow rate of ~5 L min−1. Before sampling, all filters were pre-
combusted at 900°C for 4 h to remove organic contaminants. A
total of 92 PM2.5 filter samples were collected from 1 November
2019, to 1 February 2020. No more sampling could be continuous
beyond February 1st due to the strict lockdown policies
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conducted in Changzhou. Mass concentrations, carbonaceous
fractions, major inorganic ions, and elements were measured with
an electronic microbalance balance, DRI OCEC analyzer, DX-600
ion chromatography and Epsilon-5 PANalytical ED-XRF,
repectively. The details of sampling and analyses could be
found in supplementary.

2.2.2 Air Quality Data and Meteorological Data
Hourly concentrations of the six pollutants (including SO2, NO2,
CO, O3, PM2.5, and PM10) were achieved from the website of the
Ministry of Ecology and Environment of the People’s Republic of
China (http://datacenter.mep.gov.cn). In this study, the citywide
hourly and daily concentrations of the target air pollutants were
calculated by averaging the hourly and daily data from all
monitoring sites.

Meteorological data in Changzhou were obtained from the
China Meteorological Administration and used to interpret the
influence on air pollution. The observations include 2-m
temperature (T), 10-m wind speed (WS) and wind direction
(WD), and sea level pressure (P) available every 3 h at 02:00, 05:
00, 08:00, 11:00, 14:00, 17:00, 20:00, and 23:00 LT, as well as 2-m
RH (RH) available every hour.

2.3 Data Analysis
2.3.1 Secondary Organic Carbon Calculation
For secondary organic carbon (SOC) calculation, most studies
estimated SOC using the EC-tracer method (Turpin and
Huntzicker, 1995), which applies the following equation.

SOC � OC − EC × (OC/EC)primary orminimum (1)
Here, we used Minimum R Squared (MRS) method for the

(OC/EC)primary calculation according to Wu and Yu (2016).
Briefly, this method derives (OC/EC)primary through calculating
a hypothetical set of (OC/EC)primary and SOC followed by seeking
the minimum of the coefficient of correlation (R2) between SOC
and EC. The hypothetical (OC/EC)primary that generates the
minimum R2 (SOC, EC) then represents the actual (OC/
EC)primary ratio if variations of EC and SOC are independent
and (OC/EC)primary is relatively constant. In comparison, the
MRS is identified as more accurate than the conventional subset
percentile or minimumOCEC ratio approaches (Wu et al., 2016).
Therefore, MRS was employed for the SOC calculation in
this study.

2.3.2 Sulfur Oxidation Ratio and Nitrogen Oxidation
Ratio Calculation
To assess the degrees of the secondary formation of SO4

2- and
NO3

−, sulfur oxidation ratio (SOR) and nitrogen oxidation ratio
(NOR) was calculated by the following equation.

SOR � n − SO2−
4

n − SO2−
4 + n − SO2

;NOR � n −NO−
3

n −NO−
3 + n −NO2

(2)

where n-SO4
2− and n-NO3

− are the molar concentrations of
SO4

2− and NO3
−, n-SO2 and n-NO2 are the molar

concentrations of SO2 and NO2, respectively.

FIGURE 1 |Map of Jiangsu province (filled with blue in the left panel) and Changzhou (red dot in the red panel). The observation site photos were displayed in the
bottom right panel. (Maps downloaded from the website http://bzdt.ch.mnr.gov.cn/index.html.).
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3 RESULTS

3.1 Comparison of Online and Offline PM2.5

Measurements
To cross-check the reliability of the offline sampling, data
comparison between online monitoring and offline gravimetric
analysis for PM2.5 was performed, and the results are presented in
Supplementary Figure S1. Notably, the online PM2.5 data with 1 h
resolution were integrated to calculate the average for 24 h,
corresponding to the offline filter collection. Good linearity
(r2 = 0.97) was found between the online and offline
approaches. Besides, the linear regression that passed through

the origin of the plot yielded a slope of 1.053, indicating that the
concentrations were relatively close. Therefore, the two
approaches produced the PM2.5 results in a good agreement.

3.2 General Characteristics of Atmospheric
Pollutants
3.2.1. Online Measure for Six Criteria Pollutants
Figures 2A–C illustrate the time series of six criteria pollutants
(i.e., PM2.5, PM10, SO2, NO2, CO, and O3) and the meteorological
parameters including temperature, relative humidity, wind speed,
and precipitation during the sampling period. The CNY from

FIGURE 2 | Time series of (A) PM10 and PM2.5 concentrations, (B) SO2 and CO concentrations, (C) NO2 and O3 concentrations, (D) temperature and relative
humidity, and (E) precipitation and wind speed from 1 November 2019 to 1 February 2020 (The dotted lines represent the mean concentrations for each pollutant).
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January 23rd to February 2nd was highlighted by the light green
column. In general, the trends of PM10 and PM2.5 are consistent
with each other, showing peaks in mid-January. The PM2.5

concentration levels ranged from 16.1 to 194.8 μg m−3. An
arithmetic mean of 61.6 ± 31.6 μg m−3 was found during the
observation period, lower than the 24-h averaged Chinese PM2.5

Grade II standard of 75 μg m−3 but greatly exceeded the Grade I
standard of 35 μg m−3 (GB3095-2012). It should be noted that
relatively low PM2.5 concentrations were seen in November 2019
(48.7 ± 19.2 μg m−3), and increased 1.3 and 1.4 fold in December
and January, respectively. Compared to the PM2.5, the PM10

concentration levels from November to January are relatively
stable, showing the monthly averages of 90.1–96.1 μg m−3 (<10%
difference). In another word, the monthly averaged PM2.5/PM10

ratios increased from 0.53 (November) to 0.69 (December) and
0.77 (January), indicating particles might be more influenced by
crustal matters in November while the fine particles played an
important role in January.

For the gaseous precursor species, the average concentrations
of NO2 and CO at the monitoring site were 47.6 μg m−3 and
0.9 mg m−3, respectively, which are lower than the daily Grade I
means of 50 μg m−3 and 4 mg m−3 for NO2 and CO, respectively,
established by the National Ambient Air Quality Standard
(NAAQS) of China. Daily mean SO2 concentrations ranged
from 5.7 to 18.4 μg m−3, much lower than the daily average
SO2 Grade I value (50 μg m−3) from the NAAQS, indicating
the implementation of the clean air policy since 2013 has
substantially reduced the ambient SO2 concentration in China
(Zhang et al., 2019). The correlation of CO was well consistent
with that of PM2.5 (R2 = 0.69, figure not shown), while the
correlation between SO2 and PM2.5 was weak (R2 = 0.11). CO
is often used as a primary emission indicator due to its lifetime
against oxidation by OH radicals (DeCarlo et al., 2010), thus the
significant correlation between CO and PM2.5 reflected the
influence of primary combustion emissions during the
sampling period.

Each species showed a different pattern during the sampling
periods. As shown in Figure 2, in January (before Jan. 24th),
major peaks of particulate matter coincided with high levels of
CO and NO2, NO2 in November, and NO2 and SO2 in December.
Overall, there was a doward trend of PM10, PM2.5, NO2, SO2 and
CO in the CNY that overlapped the COVID-19 lockdown period.
Compared with the first 3-week mean in January, NO2

plummeted 65% due to the sharp decrease from the traffic
sector, while SO2 and CO reduced by 10% and 26%,
respectively. The decreases of particulate matter are not
obvious as expected (33% for online PM10 and 32% for online
PM2.5). These phenomena suggested the variations of dominant
emission sources or formation mechanisms at the different
phases. In contrast to the changes to these pollutants, O3

increased by a factor of 2.13. The increase of O3 could be
attributed to insufficient NO for its uptake via the titration
effect (Pei et al., 2020). More further discussions on the
gaseous pollutants variations in different phrases were
conducted in Section 3.3.1.

3.2.2 Offline PM2.5 and Its Chemical Compositions
The time series of offline PM2.5 and major chemical species (OC,
EC, sulfate, nitrate, ammonium, Fe) are shown in Figure 3. The
mean offline PM2.5 concentrations were 67.9 ± 29.0 μg m−3,
ranging from 17.4 to 157.4 μg m−3. Such levels were close to
that observed in Changzhou in February 2017 (68.9 μg m−3) (Ye
et al., 2019) but significantly lower than that (126.9 ± 50.4 μg m−3)
in December 2015 to January 2016 in Changzhou (Ye et al., 2016).
As mentioned in Section 3.2.1, the offline PM2.5 mass also
exhibited a well-defined trend, with higher mass
concentrations observed during January and relatively low
values in November.

Supplementary Table S1 summarizes the statistical data for the
water-soluble ions, carbonaceous fractions concentrations in
PM2.5. For the carbonaceous fractions, the overall average
concentrations of OC and EC were 12.4 ± 4.5 μg m−3 and
2.8 ± 1.8 μg m−3, respectively. A moderate correlation between
OC and EC was observed (r = 0.66, figure not shown). The ratios
of OC to EC ranged from 1.8 to 13.6, with an average of 5.3 ± 2.1,
suggesting complex sources for OC likely include both primary
emission and also secondary formation (Ye et al., 2016). As
shown in Supplementary Figure S2, the (OC/EC)primary was
2.62, 1.78, and 2.71 in November, December, and January,
respectively. Correspondingly, the estimated SOC was 6.0 ±
4.5 μg m−3 during the sampling period, accounting for ~49.7%
of OC. SOC/OC ratios were 45.4, 56.4, and 40.4 and 64.4% in
November, December, January (before Jan. 24th) and the special
period (Jan. 24th to Feb. 1st), respectively, demonstrating the
importance of secondary aerosol formation, especially in
December and the special period. A positive correlation
between SOC/OC ratio and RH was observed in November
and December (r = 0.44, figure not shown). That indicated
that SOC formed at elevated levels of RH was likely part of
water-soluble. However, in January, the SOC/OC ratio was not
well correlated with RH. For the CNY overlapping lockdown
period, high SOC/OC ratios could be explained by 1) the
significant reduction of primary emissions leading to the
relatively high contributions from secondary components; and
2) the enhancement of atmospheric oxidizing capacity and
consequently strong photochemical processes due to the high
levels of O3.

The sum of the concentrations of the water-soluble ions was
39.2 ± 18.4 μg m−3, accounting for ~57.8% of the total PM2.5

mass. Among the water-soluble ions, Nitrate accounted for the
largest fraction, with an average concentration of 15.8 ±
10.0 μg m−3, followed by SO4

2-, NH4
+, Na+, Ca2+ and Cl−, with

averages of 9.2 ± 4.5, 5.2 ± 4.0, 4.0 ± 0.6, 1.7 ± 0.5 and 1.6 ±
0.9 μg m−3, respectively. The concentrations of other ions (i.e., K+,
Mg2+, F−, and NO2

−) were relatively low. The fraction of the
secondary inorganic compounds (sulfate, nitrate, and
ammonium, namely as SNA) had the highest contributions
(~72.9% of total ions). Ion mass balance calculations were
used to evaluate the acid-base balance of aerosol. The average
ratio of anions and cations (AC ratio) was 0.85 (averages of 0.77,
0.89, and 0.88 for November, December, and January,
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respectively), suggesting that Changzhou PM2.5 was alkaline in
the 2019 winter.

We further estimated the average aerosol acidity level
([H+]total) and in-situ acidity ([H+]in-situ) by E-AIM model,
which described in Section 2.3.3 in supplement. The in-situ
acidity of aerosols is an important parameter, because it could
affect many acidity-dependent heterogeneous chemical
processes (e.g., the oxidation of SO2, the hydrolysis of
N2O5) on the aerosol surfaces. On average, the aerosol
acidity levels in Changzhou (164 nmol m−3) were
comparable with those in Shanghai (157 nmol m−3) (Zhao
et al., 2015), but higher than those in Lanzhou
(59 nmol m−3) and Guangzhou (90 nmol m−3) (Pathak et al.,
2011). And the in-situ acidity was 90.3 nmol m−3, accounting
for 55% of [H+]total. Previous study revealed that the [H+]in-situ
was related to water content. In high levels of aerosol water
content conditions, H2SO4 and HSO4

−molecules would release
more [H+]. But overall, it also dilutes the [H+] concentrations
(moles per mole of aerosol water), making the aerosol less
acidic (Pathak et al., 2004; Pathak et al., 2009). Thus, a large
fraction of aerosol acidity releasing as in-situ acidity may
related to the high levels of aerosol water content.

Among all species as shown in Figure 3, NH4
+, NO3

−, SO4
2-,

K+, and EC showed low levels in November but some fluctuations
from December to January. Comparatively, Fe remained stable

(0.54 ± 0.17 μg m−3) throughout the entire observation period.
PM2.5 showed three prominent peaks (December 1 ~ 4, January
12 ~14, and January 20 ~ 21, respectively), which coincided with
relatively high loadings of secondary inorganic ions (NH4

+, NO3
−

and SO4
2−), OC, EC, and K+, indicating both contributions of

direct combustion emissions and secondary aerosol formation
during these episodes. However, from December 7th to 13th,
the high PM2.5 mass co-varied with high loadings of POC, EC,
and K+, but moderate loading of secondary inorganic ions,
suggesting the primary combustion emissions played a more
important role in PM2.5 pollution these days. In addition, the
concentration K+ substantially rose in the Chinese New Year
within the lockdown period. More frequent fireworks
occurred for the celebrations. Major oxidizers in the
fireworks include KNO3 or KClO4, which are common
constitutes used to generate green flames and are widely
used as coloring agents and stabilizers (Zhang et al., 2017).
Besides, Sr(NO3)2 can be used to generate red color
fireworks, while Cu can produce blue flames and be used
as a catalyzer (Kong et al., 2015). These elements are
important fireworks constitutes, thus exhibited significant
correlations with K+ as shown in Supplementary Figure S3.
Therefore, we concluded that K+ was more influenced by the
traditional fireworks rather than biomass burning during
this period.

FIGURE 3 | Daily variation of major chemical compositions in PM2.5 at the sampling site.
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3.3 Characteristics of Chemical
Compositions in Different Phases
The study was divided into three phases based on the PM2.5 daily
mass concentration thresholds established by the NAAQS as
follows: low PM levels (clean) phase (PM2.5 ≤ 35 μg m−3,
6 days), moderate PM levels phase (35 < PM2.5 ≤ 75 μg m−3,
48 days) and high PM levels phase (PM > 75 μg m−3, polluted
phase, 30 days). In addition, the local coronavirus broke out in
Wuhan, China at the end of 2019 and was confirmed to be
human-to-human transmission on 20 January 2020. Since then,
several provincial administrative units in China have declared the
highest level of public health emergency response and imposed
national lockdown policies within a week (Pei et al., 2020).
During the lockdown period, emissions from the traffic sector,
industrial activities, construction sites, and eateries were
markedly reduced (Pei et al., 2020). Therefore, the CNY
covered lockdown period (9 days) was separately listed as the
special changeover of anthropogenic emissions.

3.3.1 Variations of Gaseous Pollutants
For gaseous pollutants, the average concentrations of SO2, NO2,
and CO were 12.4 μg m−3, 62.1 μg m−3, and 1.1 mg m−3 during
the high PM levels phase, which were 1.5, 2.0, and 2.1 times
higher than those of the clean phase, respectively. Among these,
the increases of NO2 and CO were more remarkable, while the
variation of SO2 was not obvious, indicating the importance of
vehicle emissions on the polluted days. In contrast, O3 declined
from 43.4 μg m−3 during the clean phase to 36.9 μg m−3 during
more polluted phases. This could be attributed to the higher mass
concentration of particles that weaken the radiation, as a result of

the concentration of photochemical oxidants decreased (Zhang
et al., 2018). The gaseous pollutants showed different responses to
the COVID-19 lockdown. As previous studies revealed, the
COVID-19 lockdown indeed helped reduce NOx levels with a
substantial decrease in traffic volume and closure of small to
middle sizes enterprises (Li et al., 2020; Pei et al., 2020). In
Changzhou, the concentration of NO2 plunged to 16.6 μg m−3

during the special period, even 50% lower than that during the
low PM level phase. The concentration level of SO2 is relatively
steady (8.1 μg m−3), comparable with that during the low PM
level phase.

3.3.2 Material Balance of PM2.5

The average chemical compositions of PM2.5 during different
phases are presented in Figure 4, grouping as, secondary
inorganic aerosols (i.e., sulfate, nitrate, and ammonium), EC,
primary organic matter (POM), secondary organic matter
(SOM), and others. The dust was calculated by dividing the
measured elemental Fe concentration by 4% based on its
composition in the Asian dust and Chinese loess (Zhang et al.,
2003). Most studies estimated OM by OC with the empirical
conversion factors ranging from 1.4 to 2.2 shown in the literature
(Turpin and Lim, 2001). In this study, OMwas divided into POM
and SOM to assess the relative contributions of primary or
secondary OM to PM2.5 during different phases. The POM
concentrations were calculated as 1.2 times POC, while SOM
concentrations were estimated as SOC multiplied by 1.8 because
of the aerosol aging. The conversion factors were chosen based on
the assumption that hydrocarbon-like organic aerosols were
considered as the dominant aspect of the POM, while

FIGURE 4 |Material balance during different PM concentration level periods. [The campaign was divided into three levels depending on the threshold values of the
PM2.5 concentrations as Low (≤35 μg m−3), moderate (35–75 μg m−3) and high (>75 μg m−3) PM concentration levels. And the CNY overlapping lockdown period was
separately listed.].
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oxygenated organic aerosols were a priority in SOM because of
the aging process.

Overall, PM2.5 mean concentrations were 34.5, 53.1, 100.5,
and 60.4 μg m−3 during the low, moderate, high PM level
phases and the special period, respectively. The quantified
compounds were reconstructed for ~95.0, 96.1, 92.0, and
88.9% of the measured PM2.5 mass during the different
periods. The chemical compositions showed no obvious
differences (approximately ±10%) between the low PM and
moderate PM concentration phases (Figure 3), suggesting the
primary emissions and secondary formations have not altered
greatly between the two phases. From the clean to polluted
phases, the compositions of different components varied. For
example, the dust in PM2.5 decreased from 24.4 to 14.1%, while
the fractions of ammonium and nitrate showed 2.6-fold and
1.5-fold increases, respectively. POM and EC had consistent
contributions from the clean to the polluted phase indicating
primary combustion emissions were steady. The proportion of
SOM to PM2.5 declined from 26.1% (low PM level phase) to
13.3% (high PM level phase). SOA aerosol is a product of
photochemical reactions (Zheng et al., 2013) while O3 is the
crucial oxidant for the formation of SOA (Jimenez et al., 2009).
Along the pollution periods, with the increase of particles, the
concentration of photochemical oxidants decreased, and the
photochemical reactions weakened, consequently, the
concentration of SOM decreased.

Major compositions of PM2.5 showed significantly different
patterns during the CNY overlapping lockdown period. Firstly,
under a low emission scenario with the quarantine policy, the
concentrations of POM and EC dropped by almost half compared
with those during other phases, accounting for 6.8 and 2.1% of
PM2.5 only. Secondly, the percentage of SOM to PM2.5 was 17.2%,
lower than that of the clean phase but higher than that of polluted
phases. However, there was a considerable rise in the SOM/POM
ratio, from 1.2 to 1.6 during different PM level phases to 2.5
during the special period, suggesting the important contribution
of SOA while the anthropological activities were terminated.
Lastly, the proportion of sulfate increased obviously and
became dominant (21.2%), while the proportion of nitrate
decreased noticeably.

4 DISCUSSIONS

Many factors influenced the concentration levels of air
pollutants and the process of haze evolution, including
meteorological conditions, emissions of primary pollutants,
the conversion rate of secondary species, regional transport,
etc. These factors will be discussed thoroughly in the following
section.

4.1 Meteorological Influences
Meteorological conditions pose important effects on air quality. A
previous study revealed that strong winds and precipitation
would be effective in reducing air pollution (Liu et al., 2020).
And, RH is generally regarded as one of the main factors
facilitating the formation of secondary inorganic ions, which

highly contributed to the episode events (Wu et al., 2019; Ye
et al., 2019; Chen C. et al., 2020). A previous study conducted in
Changzhou found that high PM2.5 concentrations typically
appeared at high RH and low WS (Ye et al., 2019). Figures
1D,E displayed the major meteorological parameters
(temperature, RH, WS, and precipitation) during the sampling
period. The geography of Changzhou (e.g., lakes and rivers)
sustain the RH at high levels. The mean temperature, RH and
WS were 8.9 ± 4.7°C, 76.9 ± 12.2% and 1.7 ± 0.9 m s−1,
respectively, demonstrating relatively high moisture and poor
air diffusion. The averaged WS were 2.6, 1.7, 1.4, and 2.2 m s−1

during the low, moderate, high PM concentration phases and the
special period, respectively, demonstrating that relatively lowWS
favored the accumulation of atmospheric pollutants such as
airborne particles. And the relatively low PM concentrations
were observed on the rainy days due to the wet scavenging
effect. The high humidity environment could serve as reaction
media promoting the secondary inorganic ions formation. The
impact of RH on the secondary species formations will be further
discussed in Section 4.1.2.

In addition, the regional sources and transport of air
pollutants affect the local air quality (Xu et al., 2016). The
72 h air mass back trajectories starting 500 m above ground
level at 00:00 UTC were calculated using the Hybrid single-
particle Lagrangian integrated trajectory (HYSPLIT 4) model
developed by the National Oceanic and Atmospheric
Administration (NOAA) Air Resource Laboratory. The
calculated back trajectories were conducted by cluster
analysis (Supplementary Figure S4) to obtain the main
transport pathway of air masses. During the moderate PM
concentration level phase (Supplementary Figure S4B), moist
air mass trajectories were in cluster 3 (accounting for 46.2% of
the total clusters) from the north, passing through highly
industrialized and densely populated areas (i.e., Hebei and
Shandong Province). Approximately 36.5% of air masses
transport originated from the Yellow Sea and the East
China Sea, which expectedly brought relatively clean air to
Changzhou. The rapid air masses (cluster 1 and cluster 2, a
sum of 17.3%) came from the northwest, sweeping across the
northern region of Xingjiang Province and the northwest
region of Inner Mongolia. With strong wind and declined
temperatures, these factors consequently reduced the pollution
in Changzhou to some extent. During the clean phase
(Supplementary Figure S4A), it can be seen that nearly all
air masses originated from Mongolia, passed through the
Yellow Sea and the East China Sea with fast speed before
reaching Changzhou. Comparatively, during the polluted
phases (Supplementary Figure S4C), the air masses mainly
came from local areas (Cluster 3, 36.4%), or the nearby
provinces (cluster 4 from the southwest: 24.2%; cluster 1
from the northwest: 33.3%). These slow air masses
represent the stable synoptic conditions these days, which
limited the vertical and horizontal diffusions of pollutants,
trapped the gas precursors and primary emission pollutants,
and finally favored the secondary formation and the
accumulation of atmospheric pollutants. Only 6.1% of
clusters came from the north with relatively fast speed.
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4.2 Conversion of Secondary Species
4.2.1 Characteristics of Secondary Formation
Indicators
In general, direct emissions from the sources as well as reactions
between primary pollutants in the atmosphere contribute to the
generation of ambient PM (Chang et al., 2011). In Section 3.3.2,
we found that the secondary inorganic ions drove the haze
formation in Changzhou, consistent with the findings in the
previous local studies (Li et al., 2017; Seo et al., 2017). Sulfate and
nitrate are the major constituents of PM2.5 which are mainly
formed through atmospheric oxidation of SO2 emitted mainly
from coal burning, and NOx emitted from vehicle exhaust and
power plants in urban areas, respectively (Huang et al., 2014; Ye
et al., 2019). To evaluate the gas-to-particle partitioning and
secondary conversion degree, NOR (nitrogen oxidation ratio)
and SOR (sulfur oxidation ratio) were used the conversion degree

of NO2 and SO2 (Xu et al., 2017; Tang et al., 2021). Literature
reported that SOR and NOR less than 0.1 represent primary
emissions, and greater than 0.1 represent the significant oxidation
of primary pollutants (NO2 and SO2) (Zhang et al., 2013; Liu
et al., 2020). The average NOR and SOR were 0.20 ± 0.10 and
0.35 ± 0.12 respectively, suggesting sulfate and nitrate mainly
formed from the secondary transformation. As shown in
Figure 5, the NOR during the high PM level period was twice
that during first week in lockdown period, whereas SOR only
showed a slight increase from 0.30 to 0.39, indicating the higher
oxidation rate of NO2 in more polluted airs. During the special
period, NOR increased gently to 0.30 and SOR surged to 0.48.
This could be explained by that SO2 and NOx competed to react
with OH radicals to form sulfate and nitrate, respectively, in the
photochemical reaction system. During the special period, a
substantial decrease in NOx emissions resulted in a large

FIGURE 5 | Box and whisker plots of variation of (A) NOR, (B) SOR, (C) NO3
−/EC, (D) SO4

2-/EC and (E) SOC/OC in different phases. The mean (the small box),
median (horizontal line), 25th and 75th percentiles (lower and upper box), and the 10th and 90th percentiles (lower and upper whiskers) are shown in the plots.
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increase of O3 as well as the atmospheric oxidizing capacity (Chen
H. et al., 2020; Chang et al., 2020). When NOx is reduced but the
oxidation capacity is kept constant, SO2 could participate more
in photochemical reactions and form sulfate (Chen H. et al.,
2020).

Besides, considering the variability of EC only controlled by
emission intensity and atmospheric physical processes (such as
the dilution/mixing effects at different boundary layer height), the
EC-scaled concentrations of chemical species were used to isolate
chemical processes from physical processes (Zhang et al., 2018).
To assess the role of chemical outputs, the EC-scaled NO3

− and
SO4

2 were calculated and shown in Figures 5C,D. The EC-scaled
NO3

− showed obvious differences from that of SO4
2- during

different periods. Along the low PM concentration to high PM
concentration period, NO3

−/EC ratio showed a rise from 4.6 to
7.5, while SO4

2−/EC ratio reduced mildly from 3.9 to 3.4,
illustrating the increasing chemical production of NO3

− but
constant chemical production of SO4

2−. The phenomenon
could be explained by the limited and low SO2 levels in
Changzhou. However, during the special period, NO3

−/EC
ratio remained constant, but SO4

2−/EC ratio rose sharply to
10.4. Significantly reduction of NO2 from the large decrease of
vehicle emissions and the closure of small and middle-sized
enterprises. Different mechanisms of sulfate and nitrate
formation might be the major reason for their variations of
EC-scaled concentrations. Here, the contributions of SOC to
OC during different periods were also discussed. The trend of
SOC/OC was close to that of SO4

2−/EC, with a slight decrease
from the clean (0.51) to polluted (0.44) periods, and a leap during

the lockdown (0.64) period. The weakening of photochemical
reactions caused by the aggravation of haze led to the reduction of
SOA in PM2.5 (Zhang et al., 2018).

4.2.2 Formation Mechanisms of Secondary Species
As discussed above, the secondary conversion of gaseous
precursors contributed a lot to the pollution events. Nitrate
and sulfate form chemically from the oxidation of SO2 and
NO2 through two major pathways: 1) homogeneous gas-phase
oxidation of SO2 and NO2 by OH radicals, and 2) heterogeneous
reactions on the particle surfaces (Cheng et al., 2016; Tian et al.,
2016; Chen X. et al., 2020). RH was generally regarded as one of
the main factors facilitating the formation of haze through
heterogonous reaction (Cheng et al., 2016), while O3 was
commonly regarded as an indicator of the atmospheric
oxidation capacity or photochemical reaction (Ye et al., 2019;
Chen H. et al., 2020).

We conducted further analysis of NOR, SOR, and SOC/OC as
functions of RH and O3 concentrations to explore the underlying
mechanism. As shown in Figure 6, SOR and NOR showed a
positive relationship with RH, reached the maximum at 86–90%,
and then decreased when RH exceeded 90%. It is noted that SOC/
OC oscillated with RH increased. This suggests the contributions
of aqueous-phase reaction on both the sulfate and nitrate
formations under humid conditions because the heterogeneous
reaction positively correlated with high RH. In contrast, no
obvious relationship was found between SOC formation and
RH. In addition, the increasing trend of SOR was more
pronounced than that of NOR, indicating more importance of

FIGURE 6 | Variations of species (NOR, SOR and SOC/OC) as functions of RH andO3 concentrations. The solid lines represent the average values, and the shaded
areas indicate the variation range.
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heterogeneous reactions to the secondary transformation of
SO4

2−. Previous studies suggested that high levels of NO2 and
transition metals promoted the conversion of SO2 to SO4

2− by
aqueous-phase oxidation during winter haze rather than gas-
phase oxidation (Sun et al., 2013; He et al., 2014; Ma et al., 2018).
This could be ascribed with the weak photochemical activities
resulting in insufficient production of oxidants (e.g., OH and
H2O2 radicals) for gas-phase oxidation (Zheng et al., 2015). Those
days with RH exceeded 90% were always associated with rainy,
reversibly reducing the particulates concentrations efficiently,
and thus led to the decreases of SOR and NOR.

It is found that SOC/OC was more sensitive when O3 was in
relatively low concentrations (ranged from <20 to 40 μg m−3). It
stayed at a stable level when O3 concentration levels rose
>40 μg m−3. Comparatively, the NOR remained stable under a
low O3 environment and rose substantially when O3 was higher
than 40 μg m−3, while the SOR did not show obvious dependence
with the variation of O3 concentrations. This suggests important
contributions of photochemical reaction to SOC formation under
relatively low O3 conditions, and the nitrate formation was driven
by both photochemistry reaction and heterogeneous reaction
during our sampling campaign.

4.2.3 Important Role of Ammonium
Ammonia is an important alkaline gas in the atmosphere which
could react with acidic compounds including H2SO4, HNO3, and
HCl to generate ammonium sulfate, ammonium nitrate, and
ammonium chloride through gas phase and aqueous phase
reactions (Zhao et al., 2015). As discussed in Section 3.3.2,
from the clean to the polluted periods, the fractions of
ammonium and nitrate increased from 18.3 to 27.4% and
3.57–9.37%, respectively (Figure 4), indicating that the co-
increase of these two species had contributed to the
aggravation of atmospheric pollution in Changzhou.

The formations of sulfate and nitrate were related to the
existed amount of ammonium, namely, ammonia-rich (AR) or
ammonia-poor (AP) conditions (Zhao et al., 2015), which
estimated by ammonium to sulfate molar ratio (AR
conditions: [NH4

+]/[SO4
2−]> 1.5; AP conditions: [NH4

+]/
[SO4

2−]<1.5). It assumes that in AP conditions, all the NH3 is
used to neutralize H2SO4 formed NH4HSO4 and (NH4)2SO4.
Under AR conditions, the excess NH4

+ could transfer HNO3 to
NH4NO3 (Li et al., 2013; Griffith et al., 2015). In Changzhou, the
average molar ratio of ammonium to sulfate was 1.4 ± 0.7,
suggesting that the aerosol environment was generally at AP
condition. About 61.7% of the samples in Changzhou in winter
were ammonia-poor, indicating sulfate and nitrate were not
neutralized by ammonium completely. Hence, sulfate and
nitrate might have other ways to be chemically formed such as
the heterogeneous reactions with crustal and marine species in
PM2.5 (Li et al., 2013). Secondly, the comparisons among the
different periods reveal that the [NH4

+]/[SO4
2−] molar ratios

were 0.6 ± 0.1, 1.1 ± 0.4, 2.1 ± 0.5, and 0.8 ± 0.4 during the low,
moderate, high PM concentration levels, and the special periods,
respectively. The higher value during the polluted periods
represents that SO4

2− and NO3
− could be neutralized by NH4

+

and particulate sulfate and nitrate could be formed by gas-phase

reactions of acid precursors with NH3. In addition, the in-situ
acidity were 100.83 nmol m−3 (69.5% of the [H+]total),
90.68 nmol m−3 (60.4% of the [H+]total), 79.90 nmol m−3

(46.0% of the [H+]total) and 116.04 nmol m−3 (52.8% of the
[H+]total) in low PM, moderate PM, high PM and the special
period, respectively, as shown in Supplementary Figure S5. The
lower concentrations [H+]total and [H+]in-situ obtaining in the
polluted period indicated the important role of ammonium in
neutralization in this period.

We further calculated the excess ammonium during the high
PM concentration period using the below equation (Tian, et al.,
2016).

[NH+
4 ]excess � ([NH+

4 ]/[SO2
4] − 1.5) × [SO2

4] (3)
The concentration is of excess ammoniumwell correlated with

the nitrate concentrations (R2 = 0.61) as shown in Supplementary
Figure S6. This indicates that the formation of nitrate was
strongly associated with ammonium formation. Previous
studies revealed that with the participation of ammonia during
the daytime, NO2 reacts with OH radicals to form nitric acid,
which is efficiently converted into particulate NO3

−. O3 produced
by NO2 photolysis during the daytime is consumed by the
nighttime oxidation of NO2 to N2O5, which advances nitrate
formation in the particle phase (Lu et al., 2019; Chen X. et al.,
2020). This could be a possible reason for the high NO3

−

formation and contributions during the polluted periods.

4.4 Air Pollution Control Strategies in
Changzhou
The four months observation in winter 2019 offers an
opportunity to obtain the chemical compositions during
different periods in Changzhou. And the CNY overlapped
lockdown period provided a precious window to study how
the air quality responds to the quick decline of anthropogenic
emissions, which would be the critical basis to make atmospheric
governance policies in the future (Pei et al., 2020).

For the elaboration and discussed in the above sections, the
secondary inorganic ions were the most abundant species in
PM2.5 in urban Changzhou, accounting for 37 to ~50% during the
clean and the polluted periods, respectively. Since NO3

−

contributed to a majority of the secondary inorganic ion
formation during the high PM period in winter, reducing
nitrate formation should rank as the highest priority for air
pollution mitigation. Thus, the NOx emission control needs to
be strengthened. Improvements on the denitrification technology
for both industries and motor vehicle exhausts must be advocated
(Niu et al., 2016). In addition, excess ammonium promoted the
formation of nitrate during the high PM concentration period,
indicating the critical role of NH3 in regulating atmospheric
nitrate. Given NH4

+ plays a vital role in the formation of fine
inorganic secondary particles, particularly in the winter season
(Sharma et al., 2007), there is a need to identify and regulate the
ammonia emissions in Changzhou.

The SO2 emissions as well as ambient sulfate formation have
shown a considerable drop since 2006 due to the nationwide
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implementation of flue gas desulphurization controls (Wang
et al., 2013). After the execution in Changzhou, the sulfate
contributions to PM2.5 are usually limited to ~15% during the
normal period. However, during the CNY covered lockdown
period, the plummet of NOx emissions led to the rapid increase of
O3 and the atmospheric oxidizing capacity, resulting in a leap of
sulfate formation through photochemical reactions. This is
similar to a “seesaw effect” between nitrate and sulfate. The
benefit of nitrate reduction completely could be offset due to
the significant increase of sulfate. Therefore, more attention
should be paid to the impacts with the elevation of O3 while
NOx emissions are reduced.

5 CONCLUSION

In this study, we evaluated the air quality and chemical
compositions in the atmosphere of urban Changzhou, China
during periods with different PM2.5 levels and the first week of
city lockdown due to the outbreak of COVID-19. The analyses of
NOR, SOR as functions of RH and O3 concentrations reveal that
sulfate formation mainly from the aqueous-phase reaction, while
nitrate formation was driven by both photochemistry and
heterogeneous reaction. In addition, the concentrations of
excess ammonium linearly correlated with nitrate
concentration, indicating that the formation of nitrate was
strongly associated with ammonium.

Under the low PM2.5 emission scenario during the CNY
overlapping city lockdown, NO2 plummeted 65% due to the
traffic sector being markedly reduced. However, there were gentle
to moderate declines in SO2 and CO, as well as PMs. For the
chemical compositions in PM2.5, POM and EC dropped
significantly, well representing the remarkable reduction of
primary emissions. The proportion of sulfate increased
obviously and became dominant in PM2.5, whereas nitrate
decreased observably. The declines of NOx emissions led to
the rapid increase of O3 and the atmospheric oxidizing
capacity, promoting sulfate formation through photochemical
reactions. This finally offset the benefit of nitrate reduction. Our

study illustrates a clear picture of the characteristics and
responses of chemical compositions in PM2.5 during different
periods in Changzhou in winter. The findings would serve as a
critical basis for the establishment of atmospheric governance
policies in the future.
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Baseline of Surface and
Column-Integrated Aerosol Loadings
in the Pearl River Delta Region, China
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Much attention has been paid to the rapid variation of aerosol loading in the urban areas of
the Pearl River Delta (PRD) region. The baseline of aerosol loading in this rapidly developing
region is critical in evaluating how and why the aerosol level has evolved, which absolutely
requires long-term observations. Based on long-term observations of aerosol optical
depth (AOD), visibility, and particulate matter (PM) mass concentrations at Xichong
(114.56°E, 22.49°N), a background site in the PRD region, the variabilities of aerosol
loading at multiple temporal scales are revealed. The means (±σ) of AOD, visibility, PM10,
PM2.5, and PM1 are 0.38 ± 0.07, 12.6 ± 2.3 km, 23.7 ± 12.6 μg/m3, 19.7 ± 11.0 μg/m3,
and 16.1 ± 10.1 μg/m3, respectively, which show that aerosol loading at the Xichong site is
much lower than that in urban and suburban sites. Significant decreases in PM10, PM2.5,
and PM1 mass concentrations are observed with magnitudes up to −2.13, −1.82, and
−1.37 yr−1, respectively, at a 95% confidence level. The decrease in aerosol loadings at
Xichong is attributed to the strict environmental regulations for improving air quality. Higher
AOD and PM (lower visibility) values are observed during the early springmonths as a result
of long-range transport of biomass burning from Southeastern Asia. Diurnal variations of
PM and visibility are dominantly determined by those of boundary layer height and relative
humidity. PM mass concentrations show a generally negative (positive) correlation with
visibility (AOD) at Xichong, but the correlations are weak with the R2 of 0.22 and 0.54,
respectively. Low visibility and high aerosol loading are generally associated with very weak
easterly and southerly winds. Understanding of variability of surface particle concentration
and column-integrated aerosol loading at this background site in the PRD region would
provide a scientific basis for the adoption of pollution prevention and control measures.

Keywords: air quality, visibility, PM mass concentration, AOD, background site, Pearl River Delta

INTRODUCTION

The Pearl River Delta (PRD) region has experienced a rapid urbanization process for the past
40 years. High population densities and developed industries have resulted in severe air pollution in
the PRD region. Analysis of the long-term (1954–2006) trend of visibility in an urban site in the PRD
region showed that visibility has dramatically deteriorated since the 1980s as a result of a rapid
increase in fine particle loading (Wu et al., 2007; Deng et al., 2008a).
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To characterize the air pollution and improve the
understanding of chemical and radiative processes in the
atmosphere of the PRD, a couple of intensive field campaigns
were performed, for example, the Program of Regional Integrated
Experiments on Air Quality over the PRD of China (PRIDE-
PRD) was conducted in 12 urban sites and 2 super sites from 4
Oct. to 5 Nov. 2004 (Hu et al., 2008; Liu et al., 2008; Zhang et al.,
2008), in Jul. 2006 (Liu et al., 2010; Yue et al., 2013), and from 19
Oct. to 18 Nov. 2008 (Ma et al., 2017). The major contributor to
air pollution is particulate matter (PM) in PRD, mainly fine
particulate matter (PM2.5) emitted from fossil fuel, biomass
burning, and urban construction (Cao et al., 2003; Wu et al.,
2007). In addition to local anthropogenic emissions which are
major driving forces for poor air quality, the smoke plume of
agricultural residue burning in Southeastern Asia is also
transported to the downwind PRD that often occurs during
dry seasons such as early spring (Deng et al., 2008b).

The air pollution in the PRD region has attracted attention
from both the scientific community and policymakers. A series of
air pollution control measures have been undertaken, and the air
quality has been improved since 2014 (Yu et al., 2009; Wang G.
et al., 2019; Wu et al., 2019). These previous studies mainly
focused on observations of surface PM mass concentration (Xia
et al., 2017; Kong et al., 2020), carbonaceous aerosol properties
(Cao et al., 2003; Lan et al., 2011), and related chemical
apportionment (Liu et al., 2008; Huang et al., 2011) based on
some short-term intensive campaigns. Recently, Fang et al. (2019)
investigated the spatial-temporal characteristics of PM
concentrations in the Guangdong–Hong Kong–Macao Greater
Bay Area (GBA) of China using daily observations data during
2015–2017. It was emphasized that there are different major air
quality issues in the GBA cities due to the differences in pollution
sources, meteorological factors, and synergic pollution control
policy.

Previous studies are mainly based on observations of short-
term field campaigns (Ansmann et al., 2005; Cheng et al., 2008;
Hu et al., 2008; Xiao et al., 2011; Yue et al., 2013; Kong et al.,
2020), which shed new light on the processes of the formation,
maintenance, and dilution of air pollution as a result of
comprehensive observations of air quality. Long-term
operational observation is also of high significance in showing
how air quality evolves as a result of anthropogenic and natural
processes, especially recording potential changes in air quality as
a result of the implementation of air pollution control measures.
Strict implementation of the “Air Pollution Prevention and
Control Action Plan” took effect in China in 2013, which
provided us a good opportunity to study how PM
concentration was impacted by this huge change in
anthropogenic emissions. PM2.5 concentration in the PRD
region was observed to gradually decrease with an average
reduction rate of 21% from 2013 to 2017 (Zhang et al., 2019;
Lu et al., 2021). The objective of this study is to present a closer
look at aerosol evolution during 2011–2018. In order to fulfill this
goal, we used three aerosol datasets, i.e., aerosol optical depth
(AOD), PM concentration, and visibility at a background site in
the PRD. A detailed analysis of variation of AOD, PM, and
visibility was presented. Furthermore, we also investigated the

influence of meteorological factors and estimated the
relationships of AOD, PM, and visibility. The results are
necessary for the understanding of the baseline of aerosol
properties in PRD and will provide the scientific basis for the
adoption of pollution prevention and control measures.

SITE, DATA, AND METHOD

Site
Shenzhen is a rising urban metropolis in the PRD region, with a
total area of 1997.47 km2 and a population of 17.56 million by the
end of 2020. It lies along the coast of the South China Sea and is
located immediately to the north of Hong Kong. Shenzhen has
been experiencing rapid economic development and population
growth that probably results in complicated air pollution
problems. The sampling site in the study is located at the
Shenzhen Xichong Astronomical Observatory (114.56°E,
22.49°N), at the top of a seaside hill with an elevation of
155 m above sea level (ASL). The Xichong observatory is far
away from the urban and industrial regions of the PRD, therefore,
representing the background level of air quality in the PRD
(Figure 1).

Observation Data
Aerosol optical depth data are derived from the direct and diffuse
solar spectral radiance measured by a CIMEL CE318 sun
photometer. The sun photometer measures direct sun and
diffuse sky radiances in 15 and 30 min intervals between the
spectral ranges of 340–1020 nm, respectively, with a 1.2° field of
view (Holben et al., 1998). The AOD products are automatically
cloud cleared and quality assured, and have a low uncertainty of
0.01–0.02 in the visible and near-infrared wavelengths (Dubovik
et al., 2000). The AOD at 550 nm used in the study was computed
using the quadratic fit of AOD to wavelength on a log-log scale.
Hourly PM mass concentration is observed by the beta-ray
method. An automatic meteorological station is equipped with
a set of sensors measuring 1-min visibility (km), temperature (T,
°C), relative humidity (RH, %), wind speed (WS, m·s−1), and
precipitation (PR, mm). To eliminate the contamination of
precipitation, data obtained under rainy conditions (PR > 0)
are removed.

European Centre for Medium-Range
Weather Forecasts Atmospheric Reanalysis
Data
The boundary layer heights (BLH) and wind vectors at pressure
levels from European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis data (ERA5) are used to
analyze the impacts of BLH and wind on the suspended
particulate matter and the horizontal visibility. ERA5 is the
fifth generation ECMWF atmospheric reanalysis of the global
climate, covering the period from January 1950 to the present
(https://cds.climate.copernicus.eu/). The data resolve the
atmosphere using 137 levels from the surface up to a height of
80 km and has been regreded to a regular grid of 0.25 degrees. The
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u- and v-components of wind are the eastward and northward
components at pressure levels, which indicate the horizontal
speed of air moving toward the east and north, respectively.
The wind speed (s) in meters per second is calculated using s =������
u2 + v2

√
. The BLH (unit: m) is the depth of air next to the Earth’s

surface which is most affected by the resistance to the transfer of
momentum, heat, or moisture across the surface. The BLH
calculation is based on the bulk Richardson number
(Vogelezang and Holtslag, 1996).

RESULTS AND DISCUSSIONS

Temporal Variability of Aerosol Optical
Depth, PM, and Visibility
The temporal variations in daily PM mass concentrations are
presented in Figure 2A. Daily averaged PM10 (PM2.5, PM1) in
Figure 2A varies from 1.14 (1.06, 0.22) to 138 (90.8, 80.02) μg/m3.
According to the Chinese ambient air quality standards (GB
3095-2012), the first-level (second-level) limits of daily PM10 and
PM2.5 are 50 μg/m3 (150 μg/m3) and 35 μg/m3 (75 μg/m3),
respectively. It is shown that almost all the daily PM10 and
PM2.5 at Xichong are below the second-level limit but the days
over the first-level limit of PM10 and PM2.5 account for about
8.7% (228 days) and 15.2% (399 days) of the entire study period
(2641 days). It is remarkable that a significant reduction in the
daily PM mass concentrations occurs after Apr. 2015 at Xichong.
Since then, the number of days over the first-level limit of PM10

and PM2.5 is 22, and 60, respectively, mostly occurring during the
winter and spring months.

Figures 2B–G depict the variability of monthly PM mass
concentrations, AOD, visibility, and the ratio of PM1, PM2.5, and
PM10. Annual means of PM concentrations reached the
minimum in 2016, and the values of PM10, PM2.5, and PM1

are 16.5 ± 11.0 μg/m3, 13.3 ± 10.1 μg/m3, and 10.8 ± 9.7 μg/m3,
respectively. According to the observational data during
2015–2017 in the PRD, the minima of yearly mean PM2.5

(<28 μg/m3), PM10 (<46 μg/m3), and AQI (<56) were also
found in Shenzhen in 2016 (Fang et al., 2019). The mean
AOD in 2016 is 0.30 ± 0.14, lower than in other years
possibly because of the following reasons: First, the
observation data is not available in April when the highest
aerosol loading of the year generally occurs (Figure 3A).
Second, the higher wind speed (>3.5 m/s) at 850 hPa
(Supplementary Figure S2B) lasted throughout the spring and
summer except August and September, which are favorable for
the dispersion of aerosols and result in a lower AOD. Finally, the
precipitation amount (>200 mm) during the wet season except
July is larger than that in other years (Supplementary Figure
S2A), which implies a stronger wet removal of aerosols.

The linear trends in PM mass concentrations, visibility, and
AOD during the study period are also given in Figures 2B–F.
Negative trends in PM10, PM2.5, and PM1 are significant at a 95%
confidence level with the magnitudes of −2.13, −1.82, and
−1.37 yr−1, respectively. Moreover, a downward trend of
−0.038 yr−1 in AOD is also found in Figure 2F although it is
statistically insignificant. The decrease in aerosol loadings at
Xichong is attributed to the strict environmental regulations
for improving air quality (http://www.mee.gov.cn/ywgz/fgbz/fl/
201404/t20140425_271040.shtml), including the regulations and

FIGURE 1 | Topography map of the Pearl River Delta region with 11 cities [Zhaoqing (ZQ), Guangzhou (GZ), Huizhou (HZ), Foshan (FS), Dongguan (DG), Jiangmen
(JM), Zhongshan (ZS), Shenzhen (SZ), Hong Kong (HK), Zhuhai (ZH), and MC (Macau)] and the location of the Xichong site.
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measures of emission reduction in power plants, combustion
facilities, vehicles, ports, and ships (http://www.sz.gov.cn/zfgb/
2013/gb852/201309/t20130929_2217840.htm). The relatively
short-term observations of visibility might not be enough to
handle the interannual variation. The trend in visibility cannot
be derived from the study.

Table1 listed the means of PM mass concentrations at
different sites in the PRD during the same period. The data of
PM mass concentration are available from Dec.2013 to Jun. 2018
(https://www.aqistudy.cn/historydata). The multi-year averaged
mass concentrations of PM10, PM2.5, and PM1 at Xichong during
the study period are 23.7 ± 12.6 μg/m3, 19.7 ± 11.0 μg/m3, and 16.
1 ± 10.1 μg/m3, respectively. The averaged mass concentrations of
PM10 and PM2.5 observed in 19 ground-based monitoring sites
around Shenzhen duringMar. 2013–Feb. 2014 were 85 and 43 μg/
m3, respectively (Xia et al., 2017). The averaged mass
concentrations of PM10 and PM2.5 during the same period at
Xichong were 26.7 ± 13.0 μg/m3 and 23.2 ± 11.9 μg/m3, which
indicate that the polluting levels of particulate matters at Xichong

were much lower than those of urban sites in Shenzhen. The PM
mass concentrations at Xichong are the lowest in all the sites in
the PRD region (Table 1), which suggested that the air masses are
relatively clean because the Xichong site is far away from the
urban and industrial emission.

The averaged PM1/PM10, PM1/PM2.5, and PM2.5/PM10 ratios
from Jan. 2011 to Jun. 2018 are 0.65, 0.78, and 0.82, respectively.
The extents of variation in the monthly mean of PM1/PM10, PM1/
PM2.5, and PM2.5/PM10 ratios are 0.33–0.91, 0.47–0.93, and
0.69–0.98. The mean ratio of PM2.5 to PM10 at the Xichong
site is the highest in all the observations in the PRD (Table 1). In
addition to primary emission sources, the ratio of PM10 and
PM2.5 can be significantly affected by secondary aerosol
formation in the atmosphere (Kong et al., 2017; Munir, 2017;
Fan et al., 2021). Secondary aerosols contribute significantly to
PM mass concentrations, especially PM2.5 concentrations (Zhao
et al., 2018; Fan et al., 2020; Spandana et al., 2021). The high ratios
of PM2.5 to PM10 suggest that aerosol pollution at Xichong is
mainly caused by fine particles more from anthropogenic sources

FIGURE 2 | Time series of daily PM10 and PM2.5 mass concentrations from Jan. 2011 to June 2018 (A), variability of monthly PM concentrations (B–D), visibility (E),
AOD (F), and ratios of PM (G) at Xichong site. The statistical parameters in the figures are linear trends of monthly PM, visibility and AOD. Bold font indicates trends are
statistically significant at the 95% confidence level.
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(Chu et al., 2015; Kong and Yi, 2015). The site is relatively far
away from the downtown of Shenzhen, but the air quality at
Xichong is still affected by human activities. The PM1/PM10 and

PM1/PM2.5 ratios exhibit a remarkable reduction in summer
because the hygroscopic growth of a large fraction of
submicrometer particles under higher RH may increase the
proportion of PM2.5 (Zhao et al., 2018; Wang et al., 2020; Fan
et al., 2021).

All the PM ratios in Figure 2G have distinct seasonal
characteristics, with lower values in the summer but higher
values during the autumn and winter months. The mean
ratios of PM1 to PM2.5 are greater than 0.83 during the
autumn and winter months, which means the mass of PM2.5 is
dominated by particles with a diameter of <1.0 μm. The PM1/
PM10, PM1/PM2.5, and PM2.5/PM10 ratios exhibit a remarkable
reduction in summer with the seasonal means of 0.52, 0.67, and
0.76 due to the hygroscopic growth of a large fraction of
submicrometer particles under higher RH.

Figure 3 exhibits the statistical distribution of AOD 1) from
Jan. 2011 to Jun. 2017, visibility 2) from Jul. 2015 to Jun. 2018,

FIGURE 3 | Boxplot of monthly averaged AOD (A) from Jan. 2011 to Jun. 2017, visibility (B) from Jul. 2015 to Jun. 2018, and PM mass concentrations (C) from
Jan. 2011 to Jun. 2018 at Xichong. The ends of the boxes, the ends of the whiskers, and the short line across each box represent the 25th and 75th percentiles, the 5th
and 95th percentiles, and the median, respectively. The means are represented by the circles.

TABLE 1 | Mean PM mass concentration values observed in PRD during Dec.
2013 to Jun. 2018.

City PM10 (μg/m3) PM2.5 (μg/m3) PM2.5/PM10

Dongguan 53.8 ± 16.5 38.8 ± 14.2 0.72
Foshan 62.3 ± 22.0 40.8 ± 16.1 0.65
Guangzhou 60.5 ± 16.8 40.0 ± 13.9 0.66
Huizhou 51.8 ± 13.8 30.4 ± 10.4 0.58
Shenzhen 48.7 ± 17.4 29.9 ± 12.6 0.61
Zhuhai 48.6 ± 20.5 30.8 ± 16.0 0.63
Zhaoqing 62.6 ± 19.9 43.1 ± 17.9 0.69
Zhongshan 50.1 ± 20.7 33.9 ± 15.9 0.68
Xichong 19.4 ± 10.5 16.3 ± 9.5 0.84
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and PM mass concentrations 3) from Jan. 2011 to Jun. 2018 at
Xichong. AOD reached its maximum during the spring months
with the mean values of 0.61, 0.59, and 0.49 in March, April, and
May, respectively. The monthly mean visibility varies from 6.3 ±
4.3 to 17.3 ± 2.9 km. The mean (±σ) of visibility during the study
period is 12.6 ± 2.3 km at Xichong. The PM concentrations were
higher in the winter and spring months but lower during the
summer and autumn months. The peak values of PM mass
concentrations were observed in January when the monthly
mean of PM10, PM2.5, and PM1.0 was 37.8, 33.0, and 29.4 μg/
m3, respectively. The PM concentrations reached the lowest
values in June when the monthly mean of PM10, PM2.5, and
PM1.0 was 11.6, 8.8, and 5.6 μg/m3, respectively.

The seasonality of the visibility is inversed to those of PMmass
concentrations and AOD. The visibility was higher during the

summer and autumn months and lower during the winter and
spring months. The highest AODs in spring correspond to the
lowest visibility in March and April with the monthly means of
10.1 and 8.9 km. The highest visibility appeared in July with a
monthly mean value of 15.7 km, which corresponds to the lowest
AOD of 0.29 and the lowest PM1 and PM2.5 concentrations.

Diurnal Variation of PM, Visibility, RH, and
Boundary Layer Heights
The height of the boundary layer (BLH) determines the volume
available for pollution dispersion and transport in the atmosphere
(Yang et al., 2012). Figure 4 shows the diurnal variations inmulti-
year averaged visibility, PM10, PM2.5, PM1, RH, and BLH for four
seasons at Xichong. The visibility, relative humidity, and BLH

FIGURE 4 | The diurnal variations in multi-year averaged visibility (A), PM10 (B), PM 2.5 (C), PM1 (D), RH (E), and BLH (F) for four seasons at Xichong.
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show significant diurnal cycles. The visibility reaches the
maximum value (13.6 km) at noon and then decreases from
14:00 LT and drops to the minimum (11.8 km) during the
night. Relative humidity shows an opposite diurnal cycle to
that of visibility, with a higher RH (~86%) during the night
and a lower RH at noon (76%). Most atmospheric aerosols are
externally mixed with respect to hygroscopicity and consist of
more and less hygroscopic sub-fractions (Cheng et al., 2008;
Cubison et al., 2008; Swietlicki et al., 2008; Meier et al., 2009; Yan
et al., 2009). Water, absorbed by hygroscopic or deliquescent
aerosols, makes a substantial contribution to visibility reduction
(Swietlicki et al., 2008; Chen et al., 2014; Li et al., 2017). Therefore,
in addition to the chemical composition of the particulate matter,
the ambient RH also has a substantial impact on visibility (Deng
et al., 2008a; Yang et al., 2015; Wang X. et al., 2019).

The diurnal variations of PM concentrations show a two-peak
pattern. The first peak occurs at 6:00 LT, and the mean values of
PM10, PM2.5, and PM1 are 23.4, 20.1, and 16.6 μg/m3,
respectively; the second peak occurs at 18:00 LT, and the
mean values of PM10, PM2.5, and PM1 are 24.9, 20.3, and
16.5 μg/m3. The diurnal variation of PM pollutants can be
controlled by many factors, including emission, chemical

reactions, and meteorological conditions (Sun et al., 2015; Tao
et al., 2015; Du et al., 2020). Zhang and Cao (2015) used a long-
term dataset of surface PM2.5 concentrations measured at 190
cities of China and found that the diurnal variation of the PM2.5-
to-CO ratio (an excellent tracer for excluding the influence of
primary combustion emissions) consistently displayed a
pronounced peak during the afternoon (about 16:00 LT). This
indicates that the secondary formation process plays an
important role in PM concentrations, especially in the
afternoon when the photochemical activities are relatively
strong (Huang et al., 2011; Zhou et al., 2014; Du et al., 2020).
A more detailed explanation of the diurnal variation of PM
concentrations is subject to further studies including more
comprehensive observations of the chemical of PM and its
precursors. The diurnal variations of PM2.5 and PM1

concentrations are flattened in summer compared to those of
other seasons.

In addition to pollutant emissions and topographic conditions,
the spatial and temporal distribution of PM is mainly affected by
meteorological conditions in the troposphere, especially in the
atmospheric boundary layer (ABL) (Li et al., 2017; Song et al.,
2017; Chen et al., 2018; Su et al., 2018;Wei et al., 2018). Pollutants

FIGURE 5 | Scatter plots of AOD vs. PM2.5 (A,B) and PM2.5 vs. visibility (C,D) at Xichong. The left panel is before the corrections of RH and BLH; the right panel is
after the corrections of RH and BLH.
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within this layer are fully mixed and vertically dispersed due to
convection or mechanical turbulence (Seibert et al., 2000). The
BLH begins increasing after sunrise (7:00 LT) and reaches a peak
with a value of 640 m at 14:00 LT and then decreases to 370 m at
20:00 LT. The BLH determines the volume available for pollution
dispersion and transport in the atmosphere. Low BLH and weak
turbulence strengthen the accumulation of air pollutants (Petaja
et al., 2016; Miao et al., 2018). When the BLH is lower, higher
concentrations of pollutants can accumulate, which result in
lower visibility. So the diurnal cycles of the BLH exhibit
similar patterns to those of visibility.

Relating Aerosol Optical Depth, Visibility,
and PM Concentrations
The increase in PM concentration generally leads to reduced
visibility (Deng et al., 2008a; Cheng et al., 2008; Li et al., 2017;

Wang G. et al., 2019; Kong et al., 2020) and rising AOD (Xiao
et al., 2016; Shahzad et al., 2013; 2018). However, the relationship
between PM concentration and visibility as well as AOD is
complex and nonlinear because of the variability in the
particle size distribution, mixing state, and chemical
composition of aerosols (Wang X. et al., 2019). The
relationship between the AOD and PM can be used to derive
the PM concentrations from satellite observations of AOD (Li
et al., 2005; Green et al., 2009; van Donkelaar et al., 2010).
Figure 5A showed the scatter plots of hourly-averaged AOD
vs. PM2.5. The correlation between AOD and PM is very low, with
the coefficients of determination being only 0.11. AOD is the
column-integrated aerosol extinction coefficient, while PM
observations represent near-surface PM concentration. The
relationship between AOD and PM concentrations is,
therefore, influenced by the relative humidity, the BLH, and
the vertical distribution of aerosol (Dehghan et al., 2017;

FIGURE 6 | The exponential function fitting between visibility and PM mass concentrations in different RH ranges at Xichong.
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Shahzad et al., 2018; Filonchyk et al., 2019). The vertical and
humidity corrections should be carefully considered in order to
better characterize the relationship between AOD and PM.
Following the previous studies (Wang et al., 2010; Zheng
et al., 2013; Zheng et al., 2017), the column-integrated PM
concentrations are first corrected by the BLH as follows:

PMcolumn � PM × BLH. (1)
In addition, PM concentrations are measured under a dry

condition with the RH <35%. But the hygroscopic growth of
particles significantly affects AOD. The effect of relative humidity
on AOD has to be considered in order to get a more reliable AOD
and PM relationship. Hygroscopic growth factor, f (RH), is one of
the most used parameters in describing variations of the aerosol
sizes at different ambient RHs (Kotchenruther et al., 1999; Zheng
et al., 2013). So, a dehydration adjustment proposed by Zheng
et al. (2017) is applied to get the dry condition AOD as follows:

AODdry � AOD
f(RH). (2)

f (RH) can be expressed as follows:

f(RH) � 1 + a(RH
100

)
b

, (3)

where a and b are empirical coefficients determined by the
aerosol types. The empirical coefficients are based on the
previous studies of hygroscopic growing factors in the PRD
region (Liu et al., 2008). In the atmosphere, the RH often
increases with height within PBL (Zheng et al., 2017; Zhou
et al., 2020). This could definitely affect the dehydration
adjustment of AOD in Eqs 2, 3. Currently, the surface RH
is used to do the adjustment, and the vertical variation in RH
has not been considered, which could cause the dry condition
AOD to be somehow overestimated compared to its
true value.

Figure 5B exhibited the linear regression between hourly-
averaged AOD and PM2.5 mass concentrations with the vertical
and humidity corrections. There is amoderate correlation with an
R value of 0.47 between PM2.5 and AOD after these corrections,
with the coefficients of determination ~0.22 at a 95% confidence
level. The RMSE decreased from 14.7 (without corrections) to 8.8
(with correction). There are several factors resulting in the weak
correlation between PM and AOD at Xichong. The aerosol
loading is relatively low in the background site, and the
variation ranges of PM and AOD are narrower compared to
those in the urban sites. Generally, higher correlation coefficients
were observed at urban sites than at suburban sites (Zheng et al.,
2013). In addition, the AODdry is adjusted based on surface RH,
and the vertical variation in RH has not been considered. The
AODdry obtained here could somehow deviate from its true value
(Zheng et al., 2017). After the vertical and humidity corrections,
the correlative coefficients R between PM10, PM1, and AOD are
0.44, and 0.46 at a 95% confidence level, respectively.

PM mass concentrations are also corrected using the
hygroscopic growth factor in order to consider the effect of
humidity on the PM mass concentrations. Figures 5C, D
showed the scatter plots of PM2.5 vs. visibility before and after
humidity correction. There is a significant anti-correlation
between PM and visibility because the increase of surface PM
concentrations impairs the horizontal visibility. There are
significant improvements in the correlations between PM and
visibility after humidity corrections. The data points are more
compact with the determination coefficient R2 increasing from
0.34 (without correction) to 0.54 (with correction). The
relationship between PM10, PM1, and visibility is similar to
that of PM2.5 and visibility.

It is known that relative humidity is the most influencing
factor on the visual impairment in the context of high aerosol
mass loading (Chen et al., 2014). The formation of secondary
aerosol species could be enhanced under high-humidity
conditions (Yu et al., 2005; Hennigan et al., 2008).
Additionally, fine hydrophilic aerosols could increase to a
larger size by taking ambient water vapor, resulting in a
higher extent of light extinction and visibility deterioration
(Xiao et al., 2011; Liu et al., 2012). Figure 6 shows the
variation of visibility with relative humidity and the PM mass
concentrations. RH was classified into three ranges: RH ≥90%,
90% > RH ≥ 80%, and RH <80%. It can be seen that the visibility
decreases significantly with increasing RH. Moreover, the
visibility decreases in a nonlinear tendency with the increase
of PM mass concentrations. The highest correlation between
visibility and PM concentrations is observed in the RH range of
80–90%, with the coefficients of determination being 0.49, 0.54,
and 0.60 for visibility vs. PM10, PM2.5, and PM1, respectively.
Under excessively high RH (>90%), the variation of visibility
becomes not significant when the mass concentrations of PM10,
PM2.5, and PM1 are greater than 40, 30, and 20 μg/m3.

The relationship between AOD and visibility is illustrated in
Figure 7. There is a clear anti-correlation between AOD and
visibility, although the coefficient of determination of exponential
fitting was only 0.17. The higher aerosol loading in the
atmosphere results in increased extinction of light and hence

FIGURE 7 | Nonlinear regression fit between AOD and visibility at
Xichong.
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decreases visibility. In addition to the aerosol loading, the effect of
meteorological conditions on visibility is also very important (Wu
et al., 2007; Deng et al., 2008b). The effects of humidity and BLH
on visibility are significant as previous discussion. We also
investigated the effects of ambient temperature and surface
pressure on visibility, AOD, and PM mass concentrations.
Visibility, AOD, and PM mass concentrations show strong
independence on ambient temperature and surface pressure
with R2 less than 0.03 at a 95% confidence level.

Effect of Wind on Aerosol Optical Depth,
PM, and Visibility
Wind direction and speed have an important effect on the
transport of air pollutants (Yang et al., 2017; Meng et al.,
2019; Liu et al., 2020). The influence of surface wind speed
and direction on AOD, PM, and visibility is investigated in
the section. Figure 8 shows the relationships of surface wind
speed, direction, and daily visibility (a), AOD (b), PM10 (c), and
PM2.5 (d). At Xichong, low visibility and high aerosol loading
tend to appear at a low wind speed. About 80% of the low
visibility (VIS <5 km), high PM mass concentrations (PM10 >
50 μg/m3, PM2.5 > 50 μg/m3) and 100% of high aerosol loading

(AOD>1.0) occur on days when the wind speed is less than 5 m/s.
The dominant wind direction is concentrated at easterly and
southerly wind on low-visibility and high-AOD days.

Backward trajectory analysis is an effective method to clarify
the transport of air parcels in the atmosphere (Cheng et al., 2015).
We calculated and clustered backward trajectories of air mass
using the Hybrid Single-Particle Lagrangian Trajectory
(HYSPLIT) model developed by the Air Resources Laboratory
of the National Oceanic and Atmospheric Administration
(NOAA), United States (Stein et al., 2015). Figure 9 shows the
clustered 72-h backward trajectories ending at 1500 m, 1000 m,
and 500 m in January (a–c), April (d–e), July (f–h), and October
(i–l) calculated by the HYSPLIT model. The airflows from the
west and northwest directions occupy about 80% at Xichong in
winter. The airflows from the south directions increase to over
50% during the spring and summer months. The airflows from
the southwest increase significantly in spring and summer,
especially at higher heights (1000 m and 1500 m), which verify
the effects of air pollutants transported from Southeastern Asia
on the air quality at Xichong. The air mass mainly from northeast
directions in autumn, especially at lower heights (500 m),
contributes to the degradation of visibility and enhancement
of PM mass concentrations at Xichong.

FIGURE 8 | Wind rose as scatter plots with different ranges of daily visibility (A), AOD (B), PM10 (C), and PM2.5 (D) at Xichong.
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CONCLUSION

Based on the observations of AOD, visibility, and PM mass
concentrations during the period of 2011–2018 at Xichong, a
long-term analysis of the parameters relative to the air quality is
performed. The mean (±σ) of visibility and AOD during the study
period is 12.6 ± 2.3 km and 0.38 ± 0.07, respectively. The multi-
year averaged mass concentrations of PM10, PM2.5, and PM1

during the study period are 23.7 ± 12.6 μg/m3, 19.7 ± 11.0 μg/m3,
and 16.1 ± 10.1 μg/m3, respectively. The daily PM10 and PM2.5 at
Xichong are lower than those in other sites in the PRD because
the air masses are relatively cleaner; almost all the daily PM
concentrations are below the second-level limit of Chinese
ambient air quality standards (GB 3095-2012), which
suggested that they may represent the air quality of the
background level in the PRD region. Negative trends in PM10,
PM2.5, and PM1 are significant at a 95% confidence level with the

magnitudes of −2.13, −1.82, and −1.37 yr−1, respectively. The
decrease in aerosol loadings at Xichong is attributed to the strict
environmental regulations for improving air quality.

AOD reached its maximum during the spring months with
the mean values of 0.61, 0.59, and 0.49 in March, April, and
May, respectively. The peak and the lowest values of PM mass
concentrations were observed in January and June, respectively.
The averaged PM1/PM10, PM2.5/PM10, and PM1/PM2.5 ratios
during the study period are 0.65, 0.78, and 0.82, respectively.
The ratio of PM10 and PM2.5 can be significantly affected by
secondary aerosol formation in the atmosphere (Kong et al.,
2017; Munir, 2017; Fan et al., 2021). Secondary aerosols
contribute significantly to PM mass concentrations, especially
PM2.5 concentrations (Zhao et al., 2018; Fan et al., 2020;
Spandana et al., 2021). The high ratios of PM2.5 to PM10

suggest that aerosol pollution at Xichong is mainly caused by
fine particles more from anthropogenic sources (Chu et al.,

FIGURE 9 | Clustered 72-h backward trajectories of air mass ending at 1500 m (left panel), 1000 m (middle panel), and 500 m (right panel) in January (A–C), April
(D–F), July (G–I), and October (J–L) 2012, calculated by the Hybrid Single-Particle Lagrangian Trajectory (HYSPLIT) model.
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2015; Kong and Yi, 2015). The PM1/PM10 and PM1/PM2.5 ratios
exhibit a remarkable reduction in summer because the
hygroscopic growth of a large fraction of submicrometer
particles under higher RH may increase the proportion of
PM2.5 (Zhao et al., 2018; Wang et al., 2020; Fan et al., 2021).
The seasonality of the visibility is inversed to those of PM mass
concentrations and AOD at Xichong. The visibility was higher
during the summer and autumn months and lower during the
winter and spring months.

The visibility and PM concentrations show significant diurnal
cycles. The visibility reaches its maximum values at noon and
then drops to its minimum during the night, which is similar to
the diurnal variation of BLH. The diurnal variations of PM
concentrations show a two-peak pattern possibly caused by
the more active photochemistry process due to the increasing
solar radiation during the daytime. A more detailed explanation
of the diurnal variation of PM concentrations is subject to further
studies including more comprehensive observations of the
chemical of PM and its precursors.

AOD, visibility, and PM mass concentrations are physically
related. There is a clear anti-correlation between AOD and
visibility at the Xichong site, although the coefficient of
determination of exponential fitting was only 0.17. The
highest correlation between visibility and PM concentrations
is observed in the RH range of 80–90%, with the coefficients of
determination being 0.49, 0.54, and 0.60 for visibility vs. PM10,
PM2.5, and PM1, respectively. Under excessively high RH
(>90%), the variation of visibility becomes insignificant when
the mass concentrations of PM10, PM2.5, and PM1 are greater
than 40, 30, and 20 μg/m3.

At Xichong, low visibility and high aerosol loading tend to
appear with a low wind speed. About 80% of the low visibility
(VIS <5 km), high PM mass concentrations (PM10 > 50, PM2.5

> 50) and 100% of high aerosol loading (AOD >1.0) occur on
days when the wind speed is less than 5 m/s. The dominant
wind direction is concentrated at easterly and southerly wind
in low-visibility and high-AOD days. Understanding of
variability of surface particle concentration and column-
integrated aerosol loading at multiple temporal scales at this
background site in the PRD region would provide a scientific
basis for the adoption of pollution prevention and control
measures.
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An Integrated Approach to
Characterize Temporal–Spatial
Variations in PM2.5 Concentrations at
the Ground Level and Its Implication
on Health Impact Assessments
Ming-Shing Ho1,2, Ming-Yeng Lin1, Jung-Der Wang3, Li-Hao Young4, Hui-Tsung Hsu4,
Bing-Fang Hwang4 and Perng-Jy Tsai1*
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Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan,
Taiwan, 4Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan

Although PM2.5 concentrations measured by the governmental air quality monitoring station
(AQMS) have been widely used for conducting exposure assessments, it might be not able to
reflect the residents’ exposures, especially for those associated with ground emissions. The
present study was conducted in a city area for 1 year. A mobile monitoring station (MMS) was
established to measure the PM2.5 concentrations at the ground level. A significant linear
relationship (R2 = 0.53) was found between the MMS-measured concentrations and the
corresponding concentrations obtained from the AQMS (15m above the ground level), and
the former was ~ 1.11 times (95% CI: 1.08-1.15) in magnitude higher than that of the latter. To
characterize the spatial variation of the area, the MMS-measured values were further classified
into three different regions. A consistent trend was found in the present study for all collected
data as industry regionjurban region > harbor region. The aforementioned results clearly
indicate that the residents’ ambient PM2.5 exposures do have spatial differences. Seven-year
AQMS-measured concentrations (i.e., AQMS7-yr) were used to establish the long-term PM2.5

concentrations at the ground level (i.e., MMS7-yr) of the three different regions using the linear
regression equations obtained from the MMS and AQMS. Health impact functions and local
health data were used to quantify the PM2.5-attributable health burden for both AQMS7-yr and
MMS7-yr, respectively. Results show that the former is ~ 10.4% lower inmagnitude than the latter
in the estimated lung cancer death attributed fraction (AF). In particular, the decrease of unit
PM2.5 (μg/m

3) would lead to a 0.75 and 0.71% decrease in the estimated AF of lung cancer
death for AQMS7-yr andMMS7-yr, respectively. As a result, directly using AQMS7-yr would lead to
an underestimation of ~ 1,000 lung cancer deaths annually in Taiwan in comparison with those
using MMS7-yr. The aforementioned results clearly indicate the importance of characterizing
ground-level exposures for assessing the health impact of residents, and the methodology
developed by the present study would be helpful for solving the aforementioned problem.

Keywords: PM2.5, mobile monitoring station, air quality monitoring station, exposure assessment, health impact
assessment
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INTRODUCTION

It has been reported that air pollution is responsible for ~ 2.9
million deaths per year accounting for ~ 35% of all
environmental pollution-related deaths (Fuller et al., 2019).
The International Agency for Research on Cancer (IARC)
has classified outdoor air pollution as Group 1 carcinogen
(i.e., carcinogenic to humans) (Straif et al., 2013). Among
various particulate matters (PMs), many pieces of evidence
have shown that PM2.5 (i.e., PM with a particle size less than
2.5 μm) has a much stronger impact on human health than
those with greater particle sizes (Environmental Protection
Agency U.S, 2019). PM2.5 is responsible for many adverse
health effects, including lung cancer, chronic obstructive
pulmonary disease (COPD), ischemic heart disease (IHD),
strokes, and acute lower respiratory infections (ALRIs).
(Mustafic et al., 2012; Forouzanfar et al., 2016; Monrad et al.,
2017). Therefore, the control of atmospheric PM2.5

concentrations has been considered as the primary concern
in many countries. However, it should be noted that the
initiation of appropriate abatement strategies for PM2.5

should start with knowing the correct PM2.5 exposure levels
and health impact on the residents in the target area.
Considering the existence of the intrinsic spatial and
temporal variations in residents’ PM2.5 exposure
concentrations, developing suitable exposure assessment (EA)
methodologies has become an important issue in the
environmental health science field.

At present, the methodologies used for conducting PM2.5 EA
can be classified into two categories: the non-ground level (also
called macroenvironment) and ground level (microenvironment)
(Straif et al., 2013; Dias and Tchepel, 2018; Li et al., 2018; Caplin
et al., 2019; Environmental Protection Agency U.S, 2019). For
non-ground-level EA methods, exposure data can be obtained
from governmental air quality monitoring stations (AQMS)
(i.e., fixed monitoring stations), model estimation, satellite
remote sensing, etc. (Ozkaynak et al., 2013; Environmental
Protection Agency U.S, 2019). The aforementioned
methodologies are widely used in conducting EA on a large
scale (such as on the whole country level, or even across-
country level) and assuming the uniformity of PM2.5

concentrations in each divided subarea. For example, PM2.5

AQMS data from many countries were collected by the World
Health Organization (WHO) for assessing the global exposure
and health burden assuming the uniformity of PM2.5

concentrations at a city level (W.H.O., 2012). However, the
aforementioned methods might not be feasible for conducting
PM2.5 EA in a small area (such as at a city level) because the
spatial heterogeneity might have a significant impact on the
residents’ PM2.5 exposure concentrations (Fishbain et al., 2017;
Malings et al., 2020).

It is known that urban traffic accounts for >50% of the total
PM10 emissions. In comparison with PM10, urban traffic has an
even greater contribution to PM2.5 concentrations at the ground
level (Han and Naeher, 2006). The main traffic emission sources
include road traffic, airport, and port operations (Kingham et al.,
2013; Mazaheri et al., 2018). Among them, urban ground PM2.5

concentrations are mainly influenced by road traffic contributed
by both traffic exhaust and non-traffic exhaust (e.g., brake wear
and road dust) (Jeong et al., 2019). Considering the proximity of
residents to ground PM2.5 emission sources (such as traffic),
higher exposure concentrations at the ground level are expected
than those obtained from the non-ground level (e.g., AQMS).
Therefore, many methodologies have been developed to measure
ground-level PM2.5 concentrations (such as the mobile
monitoring station (MMS) (Hankey and Marshall, 2015;
Okokon et al., 2017; Lin et al., 2018; Cheng et al., 2019; Shen
and Gao, 2019), air box (Lee et al., 2019; Lin et al., 2020), and
modeling estimation (Hu et al., 2016; Jung et al., 2018)) for better
characterizing residents’ exposures in the small area of interest.
Although the air box and modeling methods are less expensive
and provide real-time information, many limitations are involved
if they are used for conducting EA, including the accuracy and
reliability of the collected data (Cabada et al., 2004; Snyder et al.,
2013; Castell et al., 2017; Morawska et al., 2018; Williams et al.,
2019; Li et al., 2020; Zamora et al., 2020; Environmental
Protection Agency U.S, 2021). For the MMS, it has been
found to be more accurate and reliable than the
aforementioned two methodologies. On the condition of the
existence of an AQMS in the target area, the use of the MMS
method provides the possibility for better characterizing
spatiotemporal personal exposures in a given
microenvironment by combining with the AQMS data
(Hankey and Marshall, 2015; Droge et al., 2018; Piotrowicz
and Polednik, 2019).

In Taiwan, at least one AQMS is installed in every city or
township for characterizing PM2.5 concentrations in different
areas. Although concentrations obtained from the AQMS provide
longitudinal information of the area, however, they are
inadequate to characterize the residents’ PM2.5 exposures in
different regions of the area because of their intrinsic spatial
heterogeneity (Borge et al., 2016). Therefore, developing new
monitoring strategies with the aid of long-term AQMS data to
characterize the residents’ both temporal and spatial exposures
has become an important issue for conducting PM2.5 EAs. In
principle, the development of predicting models between PM2.5

concentrations of the AQMS and MMS would be helpful for
establishing the residents’ long-term PM2.5 exposure
concentrations at the ground level in different regions.
However, it should be noted that before the establishment of
the aforementioned predicting models, possible interference
factors should be considered, including meteorological factors
(e.g., temperature, humidity, (RH), wind speed, etc.) (Ye et al.,
2018; Zhang et al., 2018; Lee et al., 2020; Rittner et al., 2020;
Yousefian et al., 2020; Yang et al., 2022) and other co-emission
pollutants (e.g., primary pollutants of NO2, SO2 etc. and
secondary pollutants of O3) (Saraswat et al., 2013; Zhang
et al., 2018; Guo et al., 2019).

Since PM2.5 concentration plays a significant role in human
health, conducting a health impact assessment (HIA) would
provide better evidence to help decision-makers for developing
proper control strategies (W.H.O., 2022). For any given air
pollutant, the calculation of the burden of disease (BOD) is
widely adopted for conducting the HIA (van der Kamp and
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Bachmann, 2015; W.H.O., 2016; Maji et al., 2017; Malmqvist
et al., 2018;Wu et al., 2018). In principle, four components should
be collected for conducting the HIA: the exposure and reference
concentrations of the air pollutant of interest, the resultant health
outcomes, associated concentration–response functions (CRFs)
and attributed fractions (AFs), and incidence rate (IR) of the
health effect. CRFs can be determined using the novel Global
Exposure Mortality Model (GEMM). If the exposure and
reference concentrations of the air pollutant of interest were
measured, the CRF can be determined, and finally, the burden of
disease associated with the given air pollutant can be estimated
(Ostro and WHO, 2004). This process has been widely adopted
by WHO and others for conducting HIAs associated with PM2.5

exposures.
The present study is set out to establish an effective

methodology for assessing PM2.5 exposures at the ground
level in an urban region. Considering the existence of an
AQMS, an MMS was established to collect concentrations of
PM2.5 at the ground level of different regions of the study area to
characterize its spatial variation. Since continuous longitudinal
data were collected by the AQMS, the AQMS data were used to
determine the temporal variation in PM2.5 concentrations in the
study area. By combining the obtained MMS data with AQMS
results, both temporal and spatial variations in PM2.5

concentrations were characterized. Finally, HIAs were
conducted to quantify the PM2.5-attributable health burden
for those data simply considering the temporal variation
(i.e., directly obtained from the AQMS) and those
considering both temporal and spatial variations (i.e., by

combining both those directly obtained from the AQMS and
measured by the MMS) of different regions of the study area.
The obtained PM2.5-attributable health burdens were used for
showing the importance of characterizing temporal and spatial
variations in conducting PM2.5 exposure and HIAs.

MATERIALS AND METHODS

Study Area
The whole study was conducted in the Shalu area (including
Shalu, Wugi, and Longjing districts with a total area of 95 km2),
located in west Taichung City (the second largest city in Taiwan),
with a population of 220,000 residents, 216,000 vehicles
(locomotives accounting for ~ 58%), and five industrial/science
parks (~ 1,300 manufacturing industries) in 2014. From
2014–2019, there were 5.1, 5.7, and 13.7% increases annually
for the number of residents, vehicles, and manufacturing
industries, respectively. The region is adjacent to three main
traffic roads including one highway (Chen et al., 2015),
comprising one coal-fired power plant, one big steel factory,
and one harbor located on the west (Kuo et al., 2014) (Figure 1).

PM2.5 Monitoring Stations
On the north-western side of the Shalu area, one AQMS (latitude:
24.22563, longitude: 120.5688.) operated by the Taiwan EPA has
been installed. In the present study, an MMS was established to
collect concentrations of PM2.5 at the ground level of different
regions of the study area.

FIGURE 1 | Location of Taichung City and the study area, Shalu.
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The Air Quality Monitoring Station
The AQMS is 15 m above the ground level with a sampling
inlet at 19.5 m in height. The main monitoring items include
fine suspended particulates (PM2.5), coarse suspended
particulates (PM10), carbon monoxide (CO), sulfur dioxide
(SO2), ozone (O3), nitrogen dioxide (NO2), and
meteorological data (UVB, rainfall, wind direction and
wind speed, temperature, and humidity). The installed
PM2.5 monitoring instrument (model BAM-1020, Met One
Instruments Inc., Grands Pass, OR) uses beta-rays for
detecting the relative concentration of PM2.5 (detection
range: 0–10 mg/m3, resolution: 2 μg/m3, beta-ray source: C-
14, filter paper: glass fiber, capture efficiency: 0.3 μm
particulate matter> 99.999%, sampling flow rate: 16.7 LPM)
once per hour automatically.

The Mobile Monitoring Station
An electric car (LUXGEN MPV EV+, battery module: lithium-
ion) was chosen as a mobile platform for the MMS to avoid
influences from vehicle self-emissions. The MMS is equipped
with a DUSTTRAK II Aerosol Monitor (model 8,530, TSI Inc.,
St. Paul, MN, United States; detection range: 0.001–150 mg/
m3, resolution: 1 μg/m3, sampling flow rate: 3 L/min, time
resolution: one reading per second) to monitor PM2.5 real-
time concentrations and a GPS to record the
latitude–longitude information. To prevent collected
samples from being affected by road contaminants, the
sampling inlet of the MMS is set at a height of 2.2 m and
air samples are collected isokinetically. Table 1 shows the
information on the station height, monitoring instrument,
data collection frequency, and resolution for both the
AQMS and MMS. Considering the intrinsic differences in
the monitoring instruments of the AQMS and MMS, both
the collected data (i.e., AQMSm and MMSm) were calibrated
(i.e., AQMSc and MMSc) by reference to the Federal Reference
Methods/Federal Equivalent Methods (FRM/FEM)
(Environmental Protection Agency U.S, 2022).

Sampling Campaign
A sampling route ~ 80 km in length was designed for the
MMS to collect PM2.5 concentrations in the study area.
Samplings were conducted from September 2013 to
August 2014 covering the four seasons. For each sampling
day, samplings were conducted approximately from 6:00 to
17:00 and 18:00 to 23:00 during the daytime and nighttime,
respectively. Details of the MMS and its QA/QC can be

found in our previous work (Lin et al., 2018). To compare
with AQMS-collected data (i.e., hourly data), all MMS-
collected data were further processed as the hourly
average values. All collected MMS data in the study area
were classified into three regions as follows based on the
obtained GPS records: the urban region, industrial region,
and harbor region (Figure 2). Table 2 shows the details of
the whole MMS sampling campaign. In the present study,
the corresponding AQMS data were also recorded in
accordance with the aforementioned MMS sampling
campaign.

Statistic Methods
Since the obtained PM2.5 concentrations were lognormally
distributed, logarithmic conversion was applied to both
AQMS and MMS data. One-way ANOVA/paired t/t-tests
were applied to examine the differences between the MMS
and the AQMS in seasons, day/night, commute periods, and
different areas.

To develop predicting models for establishing residents’
long-term PM2.5 exposure concentrations at the ground level
in different regions, MMS-measured data were compared
with those obtained from the AQMS. Before the
establishment of the aforementioned predicting models,
possible interference factors were first identified, including
three atmospheric variables [temperature (TEMP), relative
humidity (RH), and wind speed (WS)], three primary
pollutants (CO, NOx, and SO2), and one secondary
pollutant (O3) according to literature reviews (Cabada
et al., 2004; Borge et al., 2016; Mazaheri et al., 2018;
Adams et al., 2020; Liu et al., 2020). The hierarchical
regression analysis was used to further confirm
interference factors for the final predicting models. All
data aggregation and statistics were performed using the
Excel 365 software (Microsoft), R software (R x64 3.6.2)
(R-Core-Team, 2019), and SPSS17 (IBM SPSS, 2008).

Conducting Health Impact Assessment
In the present study, ground-level PM2.5 concentrations derived
from predicting models were used for deriving the PM2.5

mortality hazard ratio (HR) through the application of the
GEMM as follows:

HR � GEMM(z)
� exp[θ p log(z/α + 1)/(1 + exp[ − (z − μ)/ν])], (1)

TABLE 1 | Basic information for the AQMS and MMS used in the present study for measuring PM2.5 concentrations.

Station AQMS MMS

Station height 15 m above the ground level Ground level
Monitoring instrument BAM-1020 (beta-rays) DUSTTRAK II Aerosol Monitor 8,530 (90° light scattering)
Monitoring frequency per hour real-time (1s–1 h)
Monitoring resolution 2 μg/m3 1 μg/m3

Calibrated concentrations by reference to
FRM/FEMa method

AQMSc = 0.96*AQMSm-9.33 (R2 = 0.92) (Environmental
Protection Administration, T.R.O.C, 2020)

MMSc = 0.33*MMSm + 2.25 (R2 = 0.859) (Yanosky et al.,
2002; TSI_Incorporated, 2013)

aFRM/FEM, Federal Reference Methods/Federal Equivalent Methods.
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where z = max (0, C - Crf), C = the exposed PM2.5

concentration, and Crf = the counterfactual PM2.5

concentration (=2.4 μg/m3).
θ, SEθ, α, μ, and ν = parameters can be determined based on

the cause of death (for the present study: lung cancer) by referring
to Table 3.

Since the mortality probability of lung cancer is quite small,
the resultant HR could serve as a surrogate for the relative risk
(RR) (Burnett et al., 2018). The attributed fraction for the
population (AF) of lung cancer can be calculated as follows
(Ostro and WHO, 2004):

AF � (RR − 1)/RR. (2)

RESULTS AND DISCUSSION

Comparisons of AQMS- and
MMS-Measured PM2.5 Concentrations
PM2.5 concentrations of the whole sampling year, seasonal,
diurnal, and rush/non-rush hour obtained from both the
AQMS and MMS are compared and shown in Table 4. From
the whole sampling year aspect, MMS results (GM = 25.9 μg/m3;
95% CI = 24.8–27.1 μg/m3) are significantly higher than those of

FIGURE 2 | MMS sampling route in the three regions: urban (yellow), industrial (red), and harbor regions (green).

TABLE 2 | Description of the whole MMS sampling campaign classified into the whole sampling days/hours by the season, day/night, rush/non-rush, and area.

n Seasona Day/nightb Rush_or_notc Region

Fall Winter Spring Summer Daytime Nighttime Rush Non-rush Urban Industry Harbor

Days 59 16 19 8 19 56 49 58 41 59 — —

Hours 694 148 233 78 235 465 229 584 110 330 248 116

aFall: Sep. 2013—Nov. 2013; winter: Dec. 2013–Feb. 2014; spring: Mar. 2014-May 2014; summer: Jun. 2014-August. 2014.
bDaytime: am 06–pm 17; nighttime: pm 18–am 05.
cRush hour: am7-9 and pm18-20; non-rush hour: excluding rush hours.

TABLE 3 | Values for the parameter used in the GEMM.

Cause of death Age range Parameters

θ SE θa α μ ν

Lung cancer >25 0.2942 0.06147 6.2 9.3 29.8
LRI >25 0.4468 0.11735 6.4 5.7 8.4
COPD >25 0.251 0.06762 6.5 2.5 32
Stroke >25 0.272 0.07697 6.2 16.7 23.7
IHD >25 0.2969 0.01787 1.9 12 40.2

aSE, standard error of θ, which is used for 95%CI, uncertainty estimation. Parameters
quoted from GEMM, study (with Chinese male cohort) (Burnett et al., 2018).
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the AQMS (GM = 23.3 μg/m3; 95% CI = 22.3–24.3 μg/m3) (t-test;
p < 0.01). The former is 1.23 times (95% CI = 1.18-1.27) higher in
magnitude than the latter. The aforementioned result is not so
surprising since the MMS was much closer to PM2.5 emission
sources (such as traffic) than the AQMS (Wu et al., 2014). In
addition, our results are also consistent with previous studies. For
example, a study conducted in Boston’s Chinatown (near a
highway) shows that the increase of building elevation from 0
to 35 m would result in a decrease of the PM2.5 mass
concentration by 5.1% (Wu et al., 2014). Another study
conducted in Pittsburgh, Pennsylvania, shows that the annual
MMS is higher than the annual average of the AQMS (14.6 and
10.2 μg/m3, respectively) (Li et al., 2016). Here, it should be noted
that the latter study was simply conducted in the 2013 winter and
2014 summer (i.e., does not cover four seasons), and hence no
statistical significance could be found.

For seasonal PM2.5 mass concentrations, MMS results are
statistically significantly higher than those of the AQMS in both
summer (GM = 23.4 and 16.1 μg/m3, 95% CI = 21.8–25.1 and
15.2–17.1 μg/m3, respectively; paired t-test; p < 0.001) and winter
(GM = 33.1 and 29.3 μg/m3, 95% CI = 30.3–36.2 and
27.1–31.7 μg/m3, respectively; paired t-test; p < 0.001).
However, an opposite trend is found in both spring (GM =
32.3 and 38.6 μg/m3, 95% CI = 29.4–35.6 and 35.7–41.8 μg/m3,
respectively; paired t-test; p < 0.001) and fall (GM = 18.5 and
22.3 μg/m3, 95% CI = 17.3–19.8 and 21.0, 23.6 μg/m3,
respectively; paired t-test; p < 0.001). The opposite trend
found in spring and fall might be associated with the lower
atmospheric boundary layer, and more significant temperature
inversions were found in these two seasons (Ye et al., 2018;
Yousefian et al., 2020).

Since the MMS was more proximal to traffic PM2.5 emission
sources than the AQMS, as expected, we found that the MMS
rush hour results (GM = 26.7 μg/m3, 95% CI: 25.4–28.0 μg/m3)

are significantly higher than those of the AQMS (GM =
23.7 μg/m3, 95% CI = 22.6–24.8 μg/m3) (paired sample
t-test; p < 0.001). Although the same trend can also be
found for data collected during non-rush hours, however,
no statistical significance is found in the present study (GM
= 22.4 and 21.4 μg/m3, 95% CI = 20.1–24.9 and 19.4–23.6 μg/
m3 for the MMS and AQMS, respectively; paired t-test; p =
0.234). Obviously, the aforementioned result could be due to
less traffic density during non-rush hours. The
aforementioned reason can also be used to explain the
diurnal sampling results. Here, the daytime sampling results
show that those of the MMS are significantly higher than those
of the AQMS (GM = 26.8 and 23.0 μg/m3, 95% CI = 25.4–28.3
and 21.8–24.2 μg/m3, respectively; paired t-test; p < 0.001)).
Although nighttime sampling results for the MMS are higher
than those of the AQMS, no statistical significance is found in
the present study (GM = 24.3 and 23.9 μg/m3, 95% CI =
22.5–26.2 and 22.3–25.6 μg/m3, respectively; paired t-test; p
= 0.635).

Comparisons of PM2.5 Concentrations of
the Urban, Industry, and Harbor Regions
Obtained From the MMS and Those
Simultaneously Obtained From the AQMS
Table 4 shows the PM2.5 concentrations of the urban, industry,
and harbor regions, and the whole Shalu area data obtained
from the MMS. No significant difference (ANOVA post hoc
test, p =0.978) could be found between PM2.5 concentrations of
the urban region (GM = 27.0 μg/m3, 95% CI = 25.3–28.7 μg/
m3) and industry region (GM = 26.7 μg/m3, 95% CI =
24.8–28.7 μg/m3). Considering that the dimension of the
whole Shalu area is less than 100 km2, the geographical
adjacency of both regions might lead to a similarity in their

TABLE 4 | Comparison of PM2.5 concentrations of the whole sampling year, seasonal, diurnal, and rush/non-rush hour for data obtained from both the AQMS and MMS.

Temporal/spatial Description n MMS AQMS MMS/AQMSa

GM (95% CI) μg/m3 Ratio (95% CI)

Season

Fall Sep. 2013–November. 2013 148 18.5 (17.3-19.8) 22.2 (21.0-23.6) 0.83 (0.79-0.87)
Winter Dec. 2013–February. 2014 233 33.1 (30.3-36.2) 29.3 (27.1-31.7) 1.13 (1.08-1.19)
Spring Mar. 2014–May 2014 78 32.3 (29.4-35.6) 38.6 (35.7-41.8) 0.84 (0.78-0.90)
Summer Jun. 2014–August. 2014 235 23.4 (21.8-25.1) 16.1 (15.2-17.1) 1.45 (1.38-1.53)

Rush hour

Rush (am7-9) and (pm18-20) 584 26.7 (25.4-28.0) 23.7; (22.6-24.8) 1.13 (1.09-1.17)
Non-rush Excluding rush hours 110 22.4 (20.1, 24.9) 21.4; (19.4-23.6) 1.05 (0.97-1.13)
Diurnal
Daytime Hour: 06-17 465 26.8 (25.4-28.3) 23.0 (21.8-24.2) 1.17 (1.12-1.21)
Nighttime Hour: 18-05 229 24.3 (22.5-26.2) 23.9 (22.3-25.6) 1.01 (0.96-1.08)

Region

Urban Dense residential area 330 27.0 (25.3-28.7) 22.3 (20.9-23.7) 1.21 (1.16-1.26)
Industry Factory area 248 26.7 (24.8-28.7) 24.4 (22.8-26.2) 1.09 (1.03-1.16)
Harbor Taichung harbor area 116 21.9 (19.5, 24.5) 23.9 (21.4, 26.6) 0.92 (0.84-1.00)
Whole — 694 25.9 (24.8-27.1) 23.3 (22.3-24.3) 1.11 (1.08-1.15)

aRatio of MMS/AQMS = exp (ln_MMS–ln_AQMS).
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PM2.5 concentrations. On the other hand, both PM2.5

concentrations of the aforementioned two regions were
significantly higher than those of the harbor region (GM =
21.9 μg/m3, 95% CI = 19.5–24.5 μg/m3) ug/m3 (ANOVA post
hoc test; p < 0.01). It could be due to fewer ground-level
pollution sources in the harbor region than that in others. In
addition, its remote location from the other two regions and
the effect of the monsoon wind direction could also be
considered contributors (Cheng and Hsu, 2019).

For the comparison purpose, PM2.5 concentrations of the
urban, industry, and harbor regions obtained from the MMS
were compared with those simultaneously obtained from the
AQMS. For both urban and industrial regions, the MMS
concentration (GM = 27.0 and 26.7 μg/m3, 95% CI = 25.3-
28.7 and 24.8–28.7 μg/m3, respectively) is significantly higher
than that of the AQMS (GM = 22.3 and 24.4 μg/m3, 95% CI =
20.9-23.7 and 22.8–26.2 μg/m3, respectively) (paired t-test; p <
0.001). For the harbor region, however, the MMS
concentration (GM = 21.9 μg/m3, 95% CI = 19.5–24.5 μg/
m3) is significantly less than that of the AQMS (GM =
23.9 μg/m3, 95% CI = 21.4–26.6 μg/m3) (paired t-test; p
=0.046). The aforementioned results might be because of
the existence of fewer ground-level pollution sources in the
harbor region. For both urban and industrial regions, the
PM2.5 concentration of the MMS is respectively 1.21 and
1.09 times higher in magnitude than that of the AQMS. The
aforementioned results might be because the urban region is
proximal to traffic pollution sources, and the industrial region
is mainly affected by pollution sources associated with
manufacturing and heavy truck emission.

Establishing the Relationship Between
PM2.5 Concentrations of the AQMS
and MMS
Multivariate linear regression (MLR) analyses (hierarchical
regression) were conducted to identify variables used for
establishing predicting models through examining the
variability and collinearity of candidate interference factors.
The statistical significance can be found for the four factors,
CO, SO2, WS, and AQMS PM2.5 concentrations. The
aforementioned four factors were first included for
establishing predicting models (R2 = 0.58). Considering
that the total contribution of SO2, CO, and WS to R2 is
less than 7%, they were removed from the prediction
models pragmatically for practical reasons (see
Supplementary Table S1). The ignorance of the
aforementioned factors is consistent with previous studies
conducted in Lubbock, Texas (Kelley et al., 2020), Tianjin,
Beijing, and Hebei provinces in China (Zhang et al., 2018).
Considering the intrinsic difference in PM2.5 concentrations
of the urban, industrial, and harbor regions, predicting
models were established not only based on the data
collected from the whole area but also each individual
region. The resultant predicting models are shown as follows:

Whole area:

ln_MMS � 0.839 + 0.768pln_AQMS, (RMSE � 1.50μg/m3,R2

� 0.54; n � 694). (3)

Urban region:

ln_MMS � 0.691 + 0.839pln_AQMS, (RMSE � 1.42μg/m3,R2

� 0.65; n � 330). (4)

Industrial region:

ln_MMS � 1.037 + 0.703pln_AQMS, (RMSE � 1.55μg/m3,R2

� 0.45; n � 248). (5)

Harbor region:

ln_MMS � 0.714 + 0.747pln_AQMS, (RMSE � 1.55μg/m3,R2

� 0.51; n � 116). (6)

Figures 3A–D show the scatter plots of the MMS and AQMS
for data collected from the whole study area, urban, industrial,
and harbor regions, respectively. The R2 obtained from the
present study is comparable with another study for predicting
outdoor personal exposures using nearby AQMS PM2.5

concentrations (Miller et al., 2019). In the present study, the
ANOVA (post hoc test) was performed to examine if there is a
statistical significance among the four predicting models (See
Supplementary Table S2). Results show that no significant
difference can be found among the three predicting models for
the whole area, urban region, and industrial region; however, the
slope of the predicting model for the harbor region was
significantly lower than that of others (all p < 0.05). The
aforementioned results are consistent with a study conducted
in Guangzhou, China, where the relationship between AQMS
PM2.5 concentrations and personal exposure varies greatly from
district to district (Jahn et al., 2013). Here, it should be noted that
it would be more reasonable to have one predicting model for
both urban and industrial regions from a statistical point of view.
However, considering the intrinsic difference in the emission
sources of the aforementioned two regions, using two separate
predicting models could be feasible to meet practical purposes. In
the present study, the established four predicting models were
adopted for predicting the residents’ exposures and further for
conducting health impact analyses of each individual region and
the whole area.

Health Impact Assessment for Each
Individual Region and the Whole Area
Seven-year (2013–2019) AQMS-measured concentrations
(i.e., AQMS7-yr) were used to establish the long-term PM2.5

concentrations at the ground level (i.e., MMS7-yr) of the whole
area and the three different regions using Eqs 3–6, respectively
(Table 5). Health impact functions and local health data were
used to quantify the PM2.5-attributable health burden for both
AQMS7-yr and MMS7-yr, respectively. The above ground-level
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PM2.5 concentrations together with the parameter values shown
in Table 3 for lung cancer were applied to the GEMM (Eq. 1) for
deriving the PM2.5 mortality hazard ratio (HR). Since the
mortality probability of lung cancer is small, the HR obtained
from the present study was used as a surrogate for the relative risk
(RR) (Burnett et al., 2018). Table 5 also shows the lung cancer-
attributed fraction (AF) of the population using Eq. 2. Results
show that both AQMS7-yr and MMS7-yr decreased from
2013–2019, and the former is lower than the latter. As a
result, the same downward trend can also be seen in the
estimated RR and AF over the years.

For the whole area, AQMS PM2.5 concentrations from
2013–2019 are, in total, decreased by 56% (i.e., from 35.4 to
15.4 μg/m3), the resultant decrease for the RR was 20% (i.e., from
1.45 to 1.19) and AF was 48% (i.e., from 0.31 to 0.16). Therefore,
reducing the AQMS PM2.5 concentrations (i.e., AQMS7-yr) has a
high contribution to the lung cancer AF. Here, it should be noted
that even if the yearly average AQMS PM2.5 concentration meets
the government and WHO PM2.5 interim targets 3 and 4 (i.e., 15
and 10 μg/m3, respectively) (W.H.O., 2021), the resultant AFs
still cannot be ignored (= 16 and 11%, respectively). Similar
results can also be seen in MMS7-yr [i.e., PM2.5 concentrations

decreased by 47% in total (i.e., from 35.8 to 18.9 μg/m3), RR by
15% (i.e., from 1.46 to 1.24), and AF by 39% (i.e., from 0.31 to
0.19)]. Even if the yearly average AQMS PM2.5 concentration
meets the government and WHO PM2.5 interim targets 3 and 4,
the estimatedMMS7-y (i.e., 18.5 and 13.6, respectively) would lead
to even higher AFs (=19 and 14%, respectively) in comparison
with the corresponding values (= 16 and 11%, respectively)
associated with AQMS PM2.5 concentrations.

Table 5 also shows the estimated annual mean of PM2.5

concentrations at the ground level (MMS7-yr) of the urban,
industrial, and harbor regions, and the corresponding
attributed fraction of the population (AF) for lung cancer. The
trend in the decrease of PM2.5 concentrations from 2013 to 2019
and the decrease in the resultant RR are similar to those found in
the whole area. Moreover, it can also be seen that if AQMS7-yr is
used for estimating the AF for residents in the Shalu area, an
average underestimation of 10.4% was yielded in comparison
with those using MMS7-yr. The decrease of unit PM2.5

concentration would lead to the decrease in the AF of lung
cancer by 0.75 and 0.71% in AQMS7-yr and MMS7-yr,
respectively. By applying Eq. 3 to the whole Taiwan area,
directly using AQMS7-yr would lead to an underestimation of

FIGURE 3 | Scatter plots of the MMS and AQMS for the (A) whole area, (B) urban region, (C) industry region, and (D) harbor region.
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~ 1,000 lung cancer deaths annually in Taiwan during the period
from 2013 to 2019 in comparison with those using MMS7-yr (See
Supplementary Figure S3). The aforementioned results further
strengthen the importance of developing methodologies for
predicting PM2.5 concentrations at the ground level.

Limitations and Future Implications
Considering that there were annual increases in the number of
residents, vehicles, and manufacturing industries from 2014 to
2019, it would be more reasonable to establish predicting
models based on data collected from the same period of
time. In the present study, although before the
establishment of the predicting models, possible interference
factors were identified (including atmospheric variables,
primary pollutants, and secondary pollutants), which would
lead to the developed predicting models becoming more
suitable for complicated pollution scenarios. Nevertheless,
the establishment of the prediction model in the present
study is simply based on data collected from 2013 to 2014
for practical reasons. The aforementioned factor should be

considered a limitation of the present study. Moreover,
possible interference factors in the present study were
considered as those affecting PM2.5 concentrations. The
selection of possible interference factors was based on the
results of literature reviews and available information
collected by the AQMS. Indeed, some VOCs are known to
be associated with the formation of secondary aerosols, which
will also affect the concentrations of PM2.5. However,
considering no VOC information could be obtained from
the AQMS, only three atmospheric variables, three primary
pollutants, and one secondary pollutant were selected. The
aforementioned deficiency might explain the R2 of the
predicting models falling to the range 0.45–0.65. We believe
that the addition of some VOCs might increase the magnitude
of R2 of the predicting models. The aforementioned factor can
also be considered a limitation of the present study.

This study was set out to develop an integrated approach for
effectively predicting PM2.5 exposures for residents at the ground
level via the combination of the concentrations measured across
different seasons and regions using the MMS and those obtained

TABLE 5 | Annual mean of PM2.5 concentrations of AQMS7-yr and the ground level (MMS7-yr) of the whole Shalu area and their derived relative risks (RRs) and the attributed
fraction of the population (AF).

Year WHO interim target d

2013 2014 2015 2016 2017 2018 2019 Target
3

Target
4

PM2.5 (μg/M3)
AQMS7-yr

a 35.4 28.7 19.3 21.5 19.3 18.9 15.4 15 10
MMS7-yr

b

Whole area 35.8 30.5 22.5 24.4 22.5 22.1 18.9 18.5 13.6
Urban 39.8 33.4 23.9 26.2 23.9 23.5 19.8 19.4 13.8
Industry 34.6 29.9 22.6 24.4 22.6 22.3 19.3 18.9 14.2
Harbor 29.3 25.1 18.6 20.2 18.6 18.3 15.7 15.4 11.4

RR (95%CI) c

AQMS 1.45
(1.25, 1.69)

1.37
(1.2, 1.55)

1.24
(1.14, 1.36)

1.27
(1.15, 1.4)

1.24
(1.14, 1.36)

1.24
(1.13, 1.35)

1.19
(1.11, 1.28)

1.19
(1.11, 1.27)

1.12
(1.07, 1.17)

Whole area 1.46
(1.25, 1.7)

1.39
(1.21, 1.59)

1.28
(1.16, 1.42)

1.31
(1.17, 1.46)

1.28
(1.16, 1.42)

1.28
(1.16, 1.42)

1.24
(1.13, 1.35)

1.23
(1.13, 1.34)

1.17
(1.1, 1.25)

Urban 1.51
(1.28, 1.79)

1.43
(1.23, 1.65)

1.3
(1.17, 1.45)

1.33
(1.18, 1.5)

1.3
(1.17, 1.45)

1.3
(1.17, 1.44)

1.25
(1.14, 1.37)

1.24
(1.14, 1.36)

1.17
(1.1, 1.25)

Industry 1.44
(1.24, 1.68)

1.38
(1.21, 1.58)

1.29
(1.16, 1.43)

1.31
(1.17, 1.46)

1.29
(1.16, 1.43)

1.28
(1.16, 1.42)

1.24
(1.14, 1.36)

1.24
(1.13, 1.35)

1.18
(1.1, 1.26)

Harbor 1.37
(1.21, 1.56)

1.32
(1.18, 1.48)

1.23
(1.13, 1.35)

1.26
(1.14, 1.38)

1.23
(1.13, 1.35)

1.23
(1.13, 1.34)

1.2
(1.11, 1.29)

1.19
(1.11, 1.28)

1.14
(1.08, 1.2)

AF (95% CI)
AQMS 0.31

(0.2, 0.41)
0.27

(0.17, 0.36)
0.2

(0.12, 0.26)
0.21

(0.13, 0.29)
0.2

(0.12, 0.26)
0.19

(0.12, 0.26)
0.16

(0.1, 0.22)
0.16

(0.1, 0.22)
0.11

(0.07, 0.15)
Whole area 0.31

(0.2, 0.41)
0.28

(0.18, 0.37)
0.22

(0.14, 0.3)
0.24

(0.15, 0.32)
0.22

(0.14, 0.3)
0.22

(0.14, 0.29)
0.19

(0.12, 0.26)
0.19

(0.12, 0.26)
0.14

(0.09, 0.2)
Urban 0.34

(0.22, 0.44)
0.3

(0.19, 0.39)
0.23

(0.14, 0.31)
0.25

(0.16, 0.33)
0.23

(0.14, 0.31)
0.23

(0.14, 0.31)
0.2

(0.12, 0.27)
0.2

(0.12, 0.27)
0.15

(0.09, 0.2)
Industry 0.31

(0.19, 0.4)
0.28

(0.17, 0.37)
0.22

(0.14, 0.3)
0.24

(0.15, 0.32)
0.22

(0.14, 0.3)
0.22

(0.14, 0.3)
0.2

(0.12, 0.26)
0.19

(0.12, 0.26)
0.15

(0.09, 0.21)
Harbor 0.27

(0.17, 0.36)
0.24

(0.15, 0.32)
0.19

(0.12, 0.26)
0.2

(0.13, 0.27)
0.19

(0.12, 0.26)
0.19

(0.12, 0.25)
0.16

(0.1, 0.22)
0.16

(0.1, 0.22)
0.12

(0.07, 0.17)

aThe annual average concentration of PM2.5 (a large amount of data is assumed to be normal distribution) and the data are from the official annual report of TEPA (Environmental Protection
Administration,T.R.O.C, 2021).
bRegression prediction.
cGEMM prediction.
dWHO global air quality guidelines (2021) (W.H.O., 2021).
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from the nearby fixed-site AQMS. Our results strongly suggest
that using the ground-level concentrations would be more
accurate in assessing residents’ health impacts than those
directly obtained from the AQMS. Since the AQMS has been
intensively installed in many countries, AQMS data have been
widely used for pollution alerts for residents, policy-making for
pollution control strategies, and global disease burden
assessment. Therefore, the methodology developed from the
present study would provide us with a feasible approach for
predicting the ground-level concentrations which will effectively
enhance the value of the AQMS installed in many countries.
Moreover, the approach developed from the present study will be
also beneficial to the epidemiological research field for better
assessing health outcomes associated with residents’ PM2.5

exposures.

CONCLUSION

In this study, we presented a methodology for assessing the PM2.5

exposures of residents and their health impacts at a city level. We
found that there is a significant linear relationship betweenMMS-
measured ground-level concentrations and the corresponding
concentrations obtained from the AQMS of the area, and the
former is higher than that of the latter. A consistent trend in
PM2.5 exposures associated with the spatial difference was found
as industry region � urban region > harbor region. Our results
clearly indicate that residents’ ambient PM2.5 exposures do exist
with spatial differences in both vertical and horizontal spaces. The
health impact assessment results show that the use of AQMS data
would lead to an underestimation of ~ 10.4% in magnitude in the
estimated lung cancer death attributed fraction (AF) in
comparison with those using ground-level exposure
concentrations. Similarly, directly using the former would lead

to an underestimation of ~ 1,000 lung cancer deaths annually in
Taiwan during the period from 2013 to 2019, in comparison with
those using the latter. The present study clearly indicates the
importance of developing methodologies for predicting residents’
ground-level PM2.5 exposure concentrations in conducting
exposure and health impact assessments.
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The technological innovation of horizontal drilling and high-volume hydraulic

fracturing has promoted the development of unconventional natural gas (UNG)

production worldwide, and hence has aroused public concern about the air

pollution it may bring about. In this study, we have provided (1) an overview of

the study on air pollutants fromUNGemissions in theUSA, focusing on both the air

pollutant characterization and their related observation technologies/platforms;

and (2) the potential air quality measurements of UNG development emerging in

China. This study will provide useful information for Chinese environmental

researchers and the local governments to deal with related air quality issues.

KEYWORDS

unconventional natural gas development, air pollution, air quality measurements,
China, United States

Introduction

Nature gas is accounting for more percentage of the world’s energy supply from 20% in

2000 to 23% in 2019 (https://www.iea.org), due to its relatively less environmental impact and

more economic advantages compared to oil and coal (Finkel et al., 2013). To seek “energy

independence,” unconventional natural gas (hereafter referred to as UNG, which originates

from shale, sandstone, etc.) production has been promoted extensively in the USA during

recent years at the major basins containing shale gas (i.e., Marcellus Shale Play at Appalachian

Basin; Fayetteville Shale Play at Arkoma Basin; Barnett Shale Play at Ft. Worth Basin, etc.

Figure 1), benefiting from the significant technological innovation of the horizontal drilling

and the high-volume hydraulic fracturing techniques (Finkel et al., 2013;Wang and Krupnick,

2013; Moore et al., 2014; Allshouse et al., 2017; Helmig, 2020). From 2007 to 2019, the annual

UNG production increased from about 560 × 108 m3 to 7900 × 108 m3 with an enhancement
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factor of about 14 (http://www.eia.gov/naturalgas/). However, the

surge of UNG development is accompanied by a significant increase

in air pollutants emissions (McKenzie et al., 2012, Shonkoff et al.,

2014; Allen, 2016; Kort et al., 2016), including carbon monoxide

(CO), nitrogen oxides (NOx), volatile organic compounds (VOCs,

Gilman et al., 2013; Bunch et al., 2014; Helmig, 2020; Pétron, et al.,

2014), primary particulate matter (PM), and their related secondary

productions (i.e., ozone and secondary organic aerosols (SOA),

Kemball-Cook et al., 2010; Pacsi et al., 2015; Lee et al., 2015;

Liggio et al., 2016; Cheadle et al., 2017; Pozzer et al., 2020).

Public concern about the air pollutants has risen with the growth

of the UNG development, which has expanded into urban

residential areas and has promoted related scientific studies

(Pacsi et al., 2015; Adgate et al., 2014; Field et a., 2014;

Vinciguerra et al., 2015; McMullin et al., 2018; McKenzie et al.,

2019).

China has the most abundant shale gas resources with a total

amount of 31 × 1012 m3, which is about 1.5 times of global shale gas

reserves of the United States (https://www.eia.gov/analysis/studies/

worldshalegas/). Although UNG production has quickly picked up

in China, the annual UNG production of the USA is still about

40 times that of China in 2020 (7900×108 vs 200 × 108 m3 (Sun et al.,

2021). Under the most recent Chinese government energy policy,

UNG production is expected to increase continually and reach

2200 × 108 m3 in 2040 (Zou et al., 2017; IEA, 2020). With the surge

of UNG production, the UNG wells will inevitably expand into

human communities, especially in the Sichuan Basin (Ma and Xie,

2018; He et al., 2020; Nie et al., 2020, Figure 2) which is also a

population cluster with two megacities-Chongqing and Chengdu,

and the subsequent air quality issues could occur. Taking the fact

into consideration, we organized this study to summarize the main

air pollution issues detected during the USA UNG developments

and their related measurement technologies, which can provide

useful guidance for Chinese environmental researchers and the local

governments to better understand the air pollution-related to UNG

developments.

Air pollutants from UNG production
in the USA

The air pollutants caused by UNG production are mainly

focused on VOCs species [including methane and Non-methane

volatile organic compounds (NMVOCs)] and their related

FIGURE 1
The U.S. lower 48 states shale oil and natural gas maps [source: U.S. Energy Information Administration (June 2016)].
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secondary productions (including Ozone and SOA) due to their

clear effect on the radiative forcing (methane) and on the human

health (NMVOCs, Ozone and SOA).

Methane

Methane (CH4) is the second-most anthropogenic

greenhouse gas (after CO2) for its effect on radiative forcing,

with significant emissions from UNG operations (Helmig, 2020).

Methane emissions from UNG operations were shown to be

about 23 times greater than from conventional ones, due to the

larger size and higher production rate of UNG (Omara et al.,

2016). The reportedly estimated annual CH4 emissions from

UNG production of the main shale regions were about 158 Gg

from Denver-Julesburg Basin in 2015 (Peischl et al., 2018),

270 Gg from Bakken Shale Play at Williston Basin in 2014

(Peischl et al., 2015), 131 Gg from Marcellus Shale Play at

Appalachian Basin in 2013 (Peischl et al., 2015), 342 Gg from

the Fayetteville Shale Play at Arkoma Basin (Peischl et al., 2015),

525 Gg from the Barnett at Ft. Worth Basin in 2013 (Karion et al.,

2015), and 700 Gg from the Haynesville Shale Play at Texas-

Louisiana Salt Basin (Peischl et al., 2015). The locations of each

region are shown in Figure 1. Besides the CH4 emissions from the

gathering/processing plants and well pads during UNG

production, CH4 could also be emitted from the gathering

pipeline, which was used to transport gases to a processing

facility or a transmission line (Zimmerle et al., 2017).

Non-methane volatile organic
compounds

NMVOCs from UNG production contain hazardous

compounds (benzene, toluene, ethylbenzene, and xylenes

(BTEX)) and other compounds (Shonkoff et al., 2014; Bolden

et al., 2015), which act as precursors to O3 and secondary organic

aerosol (SOA) (Liggio et al., 2016; McDuffie et al., 2016).

Enhanced NMVOCs mixing ratios near the UNG wells have

been observed with variable VOCs emission rates under different

FIGURE 2
China’s most prospective shale gas basins [Source: U.S. Energy Information Administration (September 2015)].
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well operations (namely, drilling, fracking, coiled tubing, and

flowback) (Hecobian et al., 2019). The concentration of

hazardous BTEX is reported to be as high as 500 ppb

downwind of oil and gas wastewater disposal facilities, which

highlights the importance of monitoring BTEX concentrations

during UNG operations (Helmig, 2020).

O3 and PM2.5

O3 and PM2.5 are classified as two air pollutants on the EPA

list, whose high concentration levels can cause serious harm to

the human health, respiratory system in particular (Anenberg

et al., 2010). The elevated level of VOCs and NOx from the UNG

emissions are precursors to O3 and SOA (Liggio et al., 2016;

McDuffie et al., 2016). A number of studies have linked UNG

production to nearby O3 exceedances, even in winter (Edwards

et al., 2014). The studies at the Denver basin showed about

20 ppb of O3 enhancement (Benedict et al., 2019) and about 38%

of SOA (Bahreini et al., 2018) being associated with VOCs and

NOx emitted from UNG production.

Prospected air quality measurements
in China

Themeasured air pollutants from the US shale plays based on

the previous studies will be useful for narrowing the Chinese

environmental researchers’ focus and comparing the different

emission rates of the air pollutants due to the different types of

the shale basins comparing China and the United States. The

measurements used in the USA also highlighted the necessity of

the integration of multiple platforms for the air pollutants,

including the (1) site observation platform, (2) mobile lab,

drone, and airplane observation platform, and (3) satellite

observation platform, for a better understanding the air

pollutants emissions, while, the platforms and the related

instruments mentioned below will quickly help the

environmental researchers build their suitable platforms.

Site observation platform

Large-sized temporarily fixed observation sites, generally

modified from mobile shelters (EPA, 2017), are most

commonly used, which could support numerous monitors

with a stable power supply for long-term measurements, such

as (1) the commercial on-site instruments for O3, NO/NO2,

PM2.5 (e.g., 2B Model 205 O3 Analyzer, Thermo Model 42C NO/

NO2/NOx Analyzer, GRIMM EDM 180 FEM PM2.5 Monitor),

(2) the mass spectrometry technology-based instruments for

VOCs species [e.g., IONICON Proton-transfer-reaction mass

spectrometry (PTR-MS), Thermo thermal desorption gas

chromatography-mass spectrometry (TD-GC-MS)] and

aerosol species [e.g., Aerodyne Aerosol mass spectrometry

(AMS)], (3) the laser technology-based instruments for VOCs

species [e.g., Aerodyne quantum cascade lasers (QCLs)], (4) the

LiDARs for O3/PM2.5 vertical profiles, (5) VOCs canister

collection system for further high-sensitivity VOC species

analysis, and (6) the meteorological sensors (e.g. temperature,

RH, wind speed, wind direction, solar radiance, precipitation). In

addition to the larger temporarily fixed sites, temporary smaller

sites with low-energy and low-cost sensors have also been

established and widely used (https://www.epa.gov/air-sensor-

toolbox/evaluation-emerging-air-sensor-performance), which

could compensate for the shortcomings of the larger fixed

sites (e.g., lack of mobility, high cost to deploy quick-response

situations or wide range). When equipped with a photoionization

detector (PID) trigger system (Hecobian et al., 2019), the

temporary smaller site can capture the high VOC plume using

small canisters, which could provide useful information for the

VOCs identification from UNG emissions.

Mobile lab, drone, and airplane
observation platform

The mobile lab, generally converted from a van or a truck, can

carry the above instruments to conduct on-road measurements

using a multi-battery system or power generated from the engine

(Boanini et al., 2021). The mobile lab could be used to capture the

transport of air pollutant plumes, estimate the emission flux based

on circle-route measurements, observe the spatial concentration

distribution of air pollutants, act as a fixed site at some high

concentration spots, etc (Mohr et al., 2011; von der Weiden-

Reinmüller et al., 2014; Huang et al., 2020; Zhang J et al., 2020).

However, given the terrain or the UNG factory regulations, the

mobile lab could miss some areas. In this case, an unmanned aerial

vehicle (UAV) carrying light-weight sensors could be used for such

region observations and also for concentration vertical profile

measurements (McKinney et al., 2019). The airplane platform

could be used for large-scale observation, but the number of

flights or aircraft could be limited due to the high cost.

Satellite observation platform

Satellite observations could provide temporary and spatial

concentration variation of some species, such as NOx, CH4, O3,

etc, which could be used to evaluate the influence of UNG

emissions on a large scale (Jacob et al., 2016; Goldberg et al.,

2019; Varon et al., 2019). Combining the model simulation using

existing emission inventories and comparing it with the current

satellite observations, the current species emission rate could be

estimated (Zhang Y et al., 2020), which would be very useful for

updating the existing emission inventories.
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Conclusion

Benefiting from the horizontal drilling and hydraulic

fracturing techniques innovation, the USA has experienced the

boom of the UNG development and reached its goal of “energy

independence.” However, UNG development in China is still in

its infancy and has a great potential for rapid growth, which will

inevitably result in air pollution, as has been seen in the Denver

Basin. These issues should be given top priority due to the clean

air action from the current Chinese government. The studies on

the air quality in the USA for the UNG-related air pollutant

emissions provide solid knowledge, either on the air pollutants

characterization or their related observation technologies/

platforms, which can provide very useful guidance for Chinese

environmental researchers and the local governments to deal

with the air quality issues caused by the further surging of UNG

production.
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Background: The impact of deaths and disability-adjusted life years (DALYs)

caused by air pollution in China has not been well elucidated. We aimed to

analyze the association of air pollution with deaths and DALYs in the Chinese

population.

Methods: We extracted data on burden due to deaths and disability-adjusted

life years attributed to air pollution in the previous 30 years in China from the

Global Burden of Disease (GBD) study 2019 and performed a comprehensive

analysis and summary.

Results: 1.85 (95%UI: 1.57–2.17)million Chinese people lost their lives as a result

of air pollution in 2019, a slight decrease from 1990. In 2019, the disability-

adjusted life years (DALYs) caused by air pollution in China was 42.51 (95% UI:

36.34–49.48) million, a 30.2% decrease from 1990. From 1990 to 2019, both

age-standardized death rate (ASDR) and age-standardized DALYs due to air

pollution in China showed a significant year-on-year downward trend. Air

pollution–related deaths and DALYs occurred mostly in people over the age

of 50 years. Stroke, ischemic heart disease, and chronic obstructive pulmonary

diseasewere attributed themaximumdeath burden due to air pollution in China

in 2019.

Conclusion: Over the past 30 years, air pollution has brought a heavy disease

burden to China, and in the future, joint efforts are required to improve the air

quality.
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Introduction

Air pollution is one of the most severe environmental issues

that threatens public health all around the world (Landrigan

et al., 2018). It is well known that air pollution is associated with

premature death and diseases (Lelieveld et al., 2015). Air

pollution increases the risk of mortality from respiratory

diseases such as chronic obstructive pulmonary disease,

pneumonia, and asthma (Garshick, 2014; Chen et al., 2017;

Pirozzi et al., 2018; Liu Y et al., 2019). Air pollution is also

associated with an increased number of hospital visits for allergic

rhinitis, asthma, and IgE-mediated allergy (Villeneuve et al.,

2007; Hu et al., 2020; Hou et al., 2021). Furthermore, air

pollution exposure increases the risk of young children being

hospitalized for respiratory diseases (Huang et al., 2022), which

lead to increased airway obstruction in adolescence (Milanzi

et al., 2018).

The World Health Organization (WHO) reported that air

pollution kills an estimated 7 million people every year globally

(World Health Organization, 2022). Recent data have shown that

all of the global population (99%) breathe air that exceeds WHO

guideline limits and contain high levels of pollutants (World

Health Organization, 2022). Due to the tremendous increase in

its energy consumption and to emissions of air pollutants as a

result of the extraordinary economic and industrial

developments, China encounters serious air pollution

problems that result in health problems (Watts, 2005; Guan

et al., 2009). According to a 2005 report, a third of its urban

residents are exposed to harmful polluted air, and more than

400,000 people die prematurely every year because of air

pollution in China (Watts, 2005). The air quality of most

regions in China has improved following the release and

implementation of the Air Pollution Prevention and Control

Action Plan in 2013 (The State Council of the People’s Republic

of China, 2013; Guo et al., 2017). However, research on the

disease burden and changing trends in the past decades caused by

air pollution in China is lacking.

The aim of the present study is to better understand the scale

of harm caused by air pollution in China. For this purpose, we

analyzed air pollution–attributable disease burden in China,

based on the data on deaths and disability-adjusted life years

(DALYs) from GBD 2019. We also investigate the different kinds

of disease burden caused by the different kinds of air pollution.

Methods

Study data

Data on deaths, DALYs, and estimated annual percentage

change (EAPC) as a consequence of air pollution in China were

derived from an online data source tool, the Global Health Data

Exchange (GHDx) query tool (http://ghdx.healthdata.org/gbd-

results-tool), which is a global collaboration that uses various

kinds of available epidemiological data to provide a comparative

assessment of health loss from 369 diseases and different health

risks across 204 countries and territories (GBD 2019 Diseases

and Injuries Collaborators, 2020). The details about the study

design and methods of GBD studies have been extensively

described in the existing GBD literature (Global Burden of

Diseases, 2016; GBD 2019 Risk Factors Collaborators, 2020).

Data analysis

Data from the literature reviews and national surveys were

used by GBD collaboration to estimate the non-death burden due

to air pollution. Bayesian meta-regression with DisMod-MR 2.1,

which is a tool evaluating the epidemiology of a disease, was then

used to estimate the incidence and prevalence of different

diseases by location, year, sex, and age in all the sources.

Death burden attributed to air pollution was analyzed using

vital registration and surveillance data from the cause-of-death

database. The deaths were distributed to different causes

according to the ICD code mappings (Global Burden of

Diseases, 2016; GBD 2019 Diseases and Injuries Collaborators,

2020; GBD 2019 Risk Factors Collaborators, 2020).

A secondary descriptive analysis was conducted with regard

to the burden of deaths and DALYs due to air pollution in China

from 1990 to 2019, and the findings were investigated further.

The disease burden for both genders and different kinds of air

pollution were also compared. The uncertainty intervals (UIs)

were defined as the 2.5th and 97.5th values of the posterior

distributions as previously descripted (Barendregt et al., 2003;

Ferrari et al., 2013).

Results

Deaths and disability-adjusted life years
attributable to air pollution in China

The number of deaths due to air pollution in China was 1.90

(95% UI: 1.59–2.19) million in 1990 and 1.85 (95% UI: 1.57–2.17)

million in 2019, which is a slight decrease of 2.6% as compared to

1990. There are certain differences between genders when

comparing between 1990 and 2019. In 1990, air pollution killed

0.98 (95% UI: 0.80–1.16) million men as compared to 0.92 (95%

UI: 0.74–1.08) million women. In 2019, air pollution killed 1.09

(95%UI: 0.87–1.34) million men, an increase since 1990, while the

number of deaths was 0.76 (95%UI: 0.61–0.94)million for women,

which is a moderate drop as compared to 1990 (Table 1).

DALYs represent the total health burden of a disease, which

are the years of lives lost (YLLs) due to premature mortality and

years of healthy lives lost due to disabilities (YLDs). In 2019, the

DALYs caused by air pollution in China was 42.51 (95% UI:
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36.34–49.48) million, a 30.2% decrease from 1990. In 2019, the

DALYs of both males and females had decreased since 1990, with

a larger decrease seen in females (Table 1).

From 1990 to 2019, both age-standardized death and DALYs

rate caused by air pollution in China showed a significant year-

on-year downward trend. The decline was almost the same across

genders (Figure 1).

Disease burden of different age groups
due to air pollution in China

We further analyzed the disease burden caused by air

pollution in the different age groups in China. The age-

standardized death rate and DALYs of four different age

groups (0–14, 15–49, 50–69, and 70+ years) were analyzed.

From 1990 to 2019, air pollution has had a greater impact on

the older age groups, especially those over the age of 70 years.

More than 90% of the ASDR caused by air pollution occur among

people over the age of 50 years (Figure 2).

In the past 30 years, the health burden of air pollution on the

four different age groups has gradually declined, both the age-

standardized DALYs rate and ASDR have decreased year after

year (Figures 2A,B). However, from 1990 to 2019, the proportion

of health burden caused by air pollution to people in the middle

and older age groups (50–69 and 70+ years) has increased year

after year among all the age groups (Figures 2C,D). In particular,

the ASDR caused by air pollution is more prominent in the

middle-aged and older age groups. These data indicate that the

elderly are more vulnerable to air pollution.

Death due to different diseases caused by
air pollution in China

Seven major diseases have been effected by air pollution and

have led to death of patients in China. The ASDR of these

diseases due to air pollution was ranked in 1990 as follows:

chronic obstructive pulmonary disease, stroke, lower respiratory

infections, ischemic heart disease, tracheal, bronchus and lung

cancer, neonatal disorders, and diabetes mellitus. In 2019, the

ranking order of these seven diseases had changed. The ASDR of

the seven diseases caused by air pollution ranked from high to

low was as follows: stroke, ischemic heart disease, chronic

TABLE 1 Deaths and DALYs attributable to air pollution in China in 1990 and 2019.

Death cases (95% UI), million EAPC (95% UI), % DALYs (95% UI), million EAPC (95% UI), %

1990 2019 1990 2019

Both 1.90 (1.59–2.19) 1.85 (1.57–2.17) −0.03 (−0.21 to 0.21) 60.91 (51.58–69.88) 42.51 (36.34–49.48) −0.30 (−0.43 to –0.13)

Male 0.98 (0.80–1.16) 1.09 (0.87–1.34) 0.11 (−0.15 to 0.43) 2.69 (27.03–38.16) 25.61 (14.09–20.06) −0.22 (−0.39 to 0.00)

Female 0.92 (0.74–1.08) 0.76 (0.61–0.94) −0.17 (−0.36 to 0.08) 8.21 (23.28–32.78) 42.51 (20.64–31.21) −0.40 (−0.53 to –0.25)

DALYs, disability-adjusted life years; EAPC, estimated annual percentage change; UI, uncertainty interval. Results are rounded up to two decimal places.

FIGURE 1
Age-standardized disease burden due to air pollution in China from 1990 to 2019. Age-standardized death (A) and DALYs (B) rate. DALYs,
disability-adjusted life years.
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obstructive pulmonary disease, tracheal, bronchus, and lung

cancer, lower respiratory infections, diabetes mellitus, neonatal

disorders (Figure 3). In 2019, the ASDR of all the seven diseases

caused by air pollution had decreased as compared to 1990.

Lower respiratory infections, chronic obstructive pulmonary

disease, neonatal disorders, and stroke had the most

significant declines, by 87.98%, 80.62%, 77.89%, and 51.35%,

respectively. However, the decline rates of diabetes mellitus;

tracheal, bronchial, and lung cancer; and ischemic heart

disease were slightly lower, declining by 0.46%, 3.5%, and

6.48%, respectively (Figure 3).

In the past 30 years, the ASDR of different types of

diseases caused by air pollution in China had shown

different trends. Before 2008, chronic obstructive

pulmonary disease (COPD) was the leading cause of death

due to air pollution. However, stroke rose to be the leading

cause of death after 2008, while COPD declined to be the

second leading cause. Lower respiratory infections were the

third leading cause of air pollution–related deaths from

1990 to 1992, but their ASDR has continued to decline

since then, while that of ischemic heart disease has

ascended becoming the third leading cause of air

pollution–related deaths. It is worth noting that the ASDR

of ischemic heart disease; tracheal, bronchial, and lung

cancers; and diabetes mellitus caused by air pollution has

remained almost unchanged in the past 30 years, while that of

the other four diseases has decreased significantly (Figure 4).

Rates and trends of age-standardized
death and disability-adjusted life years
caused by different kinds of air pollution in
China

As a major type of air pollution, particulate matter

pollution which includes ambient (outdoor) particulate

FIGURE 2
Age-standardized death and DALYs rate of different age groups due to air pollution in China from 1990 to 2019. (A) Age-standardized DALYs
rate of four age groups from 1990 to 2019. (B) ASDR of four age groups from 1990 to 2019. (C) Four age proportions of age-standardized DALYs rate
in 1990, 2000, 2010, and 2019. (D) Four age proportions of the ASDR in 1990, 2000, 2010, and 2019.
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matter pollution and household (indoor) air pollution from

solid fuels led to the topmost health burden in China in both

1990 and 2019. In 1990, age-standardized DALYs rates

caused by particulate matter pollution was 6707.77 (95%

UI: 5652.42–7691.16)/100,000 and had decreased

remarkably to 2214.48 (95% UI: 1908.94–2560.04)/

100,000 in 2019, with an EAPC of −0.67% (95% UI:

−0.73% to −0.59%). In 1990, the ASDR caused by

particulate matter pollution was 272.71 (95% UI:

227.33–317.08)/100,000, and it declined markedly to

102.01 (95% UI: 86.97–119.37)/100,000 in 2019 (Table 2).

Three subtypes of air pollution were included in the GBD

2019 database: ambient ozone pollution, ambient particulate

matter pollution, and household air pollution from solid fuels.

Ambient particulate matter pollution and household air

pollution from solid fuels make up particulate matter

pollution, which is caused by particles with an aerodynamic

diameter less than 2.5 μm. Household air pollution exposure

involves fine particulate matter that comes from burning fuels

inside homes with limited ventilation.

The ASDR caused by household air pollution from solid fuels

had been the largest among the three kinds of air pollution in

1990. However, in 2019, ambient particulate matter pollution led

to the largest ASDR, and it was the only subtype of air pollution

that drove an increase in the ASDR, with an EAPC of 0.05% (95%

UI: −0.37% to 1.06%) (Table 2). The age-standardized DALYs

rates caused by household air pollution from solid fuels were the

largest in 1990 at 4891.23 (95% UI: 3392.98–6308.02)/100,000.

However, it declined dramatically to 471.13 (95% UI:

249.37–789.01)/100,000 in 2019. In 2019, ambient particulate

matter pollution caused the largest age-standardized DALYs rate

among the three subtypes of air pollution, and the age-

standardized DALYs rate was 1743.35 (95% UI:

1438.42–2035.93)/100,000 in 2019, with the smallest decline as

compare to that in 1990 (Table 2).

From the perspective of trend in the past 30 years, age-

standardized death and DALYs rate related to particulate

matter pollution and household air pollution from solid fuels

were dramatically decreased. Age-standardized death and

DALYs rate caused by ambient ozone pollution has slightly

shrunk. However, ambient particulate matter pollution has led

to an increase in age-standardized death and DALYs rate

(Figure 5). Before 2003, household air pollution from solid

fuels accounted for the largest proportion of age-standardized

FIGURE 3
ASDR, ranking, and percent change of top seven diseases caused by air pollution in China in 1990 and 2019 (per 100,000). The ASDR of seven
kinds of diseases caused by air pollution is ranked. Green block shows the diseases with decreased ranking and the orange block shows the diseases
with increased ranking.

FIGURE 4
Trends of ASDR (per 100,000) of different diseases caused by
air pollution from 1990 to 2019 in China.
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death and DALYs rate among the three types of air pollution

(ambient particulate matter pollution, ambient ozone pollution,

and household air pollution from solid fuels), but after 2003,

ambient particulate matter pollution ranked first. This may be

caused by many factors such as changes in human lifestyles,

changes in industrial production, and changes in climatic

conditions and environmental protection.

Discussion

Air pollution is a global public environmental problem,

which poses a major threat to public health. The negative

health effects of air quality are a particular concern for

sensitive populations, such as those with heart and lung

disease, the elderly, and the children (Wang et al., 2022).

Studies have shown that improving air quality has a positive

effect on improving people’s health (Broome et al., 2015; Yang

and Zhang, 2018). In 2013, China passed legislation to further

strengthen environmental protection and improve air quality as

an important measure, and it has achieved positive results

(Huang et al., 2018; Maji et al., 2020).

From the data of GBD 2019, we have concluded that air

pollution creates a huge health burden in China. Around 1.85

(95% UI: 1.57–2.17) million Chinese people had lost their lives as

a result of air pollution in 2019, a slight decrease from 1990.

There is abundant evidence that air pollution not only brings

direct harm to human health, for example, air pollution exposure

directly increases the hospitalization rate (Gu et al., 2020), but

also brings health damage and increases death (Carvalho, 2019;

Verhoeven et al., 2021; Zhao et al., 2021). At the same time, air

pollution also affects human activities. For example, air pollution

limits human outdoor activities and physical exercise (Hu et al.,

2017; Tainio et al., 2021). In addition, air pollution also has a

direct or indirect impact on human economic activities and social

development, thus further affecting human health (Husain Tahir

et al., 2021). Air pollution causes significantly more deaths in

men than in women and in the elderly than the youth. It is

possible that men are more likely to work outdoors and are

therefore more vulnerable to the health damage caused by air

pollution. Furthermore, air pollution is the main risk factor of

human chronic respiratory and cardiovascular diseases, and

these diseases are more likely to occur in men and in the

elderly population (Sierra-Vargas and Teran, 2012; Liu S

et al., 2019; Rajak and Chattopadhyay, 2020).

Thanks to the improvement in air quality and advancement

in medical care in China, the age-standardized death and DALYs

rate caused by air pollution have decreased significantly in the

past 30 years. Air pollution had led to 42.51 (95% UI:

36.34–49.48) million DALYs in 2019 in China, a 30.2%

decrease from 1990. Air pollution can be prevented and

ameliorated despite its enormous negative impact on human

health. Reducing pollution from the source can have a rapid andT
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significant impact on health (Schraufnagel et al., 2019). In the

past few decades, through government legislation, enterprises,

and public participation, China’s air quality has improved to a

certain extent, thus improving people’s health (Zeng et al., 2019;

Zou et al., 2019). But China’s air pollution is still at a high level,

and it is also one of the most polluted countries in the world

(World Health Organization, 2016). Therefore, China still

urgently needs to work on cleaner air and better human

health in the future.

Our research reveals that air pollution mainly provoked

harm in seven kinds of diseases, that is, stroke, ischemic heart

disease, chronic obstructive pulmonary disease; tracheal,

bronchial, and lung cancers; lower respiratory infections;

diabetes mellitus; and neonatal disorders. The ASDR caused

by chronic obstructive pulmonary disease due to air pollution

ranked the first in 1990, but it shifted to stroke in 2019. This

indicates that in China, the damage caused by air pollution with

regard to the cardiovascular system exceeds that caused to the

respiratory system. This may be the reason for the aging of the

population and lifestyle changes in China (Moran et al., 2008).

Particulate matter pollution is the largest source of air

pollution in China and mainly includes pollutants from fossil

fuel consumption, environmental particulate matter pollution,

and environmental ozone pollution. These pollutants are mainly

related to human lifestyle and industrial production. In the past

30 years, the sources of air pollution have also changed greatly,

and its impact on human health is also changing. In recent years,

people have paid more and more attention to the development of

green, clean, and renewable energy. In China, the use of clean

energy is already at the forefront of the world (Hannah Ritchie

et al., 2020). However, due to China’s large base of air pollution,

huge population, and vast territory, improving air quality still

requires a lot of work and investment in China.

Through a comprehensive analysis of the GBD 2019 data,

this article systematically demonstrates the disease burden

caused by air pollution in China over the past 30 years. But

there are some limitations. First of all, we could not obtain

data from different regions of China due to the limitation of

the data sources. Due to China’s vast territory and uneven

development, and huge differences between regions, there

may be large differences in air pollution in different

geographical locations, but we have not been able to

compare and analyze them. Secondly, the composition of

air pollution is extraordinarily complex (Ghio et al., 2012),

such as sulfur dioxide, nitrogen dioxide, ozone, nitric oxide

etc., but we cannot obtain detailed data on the composition

of air pollution in China for research. Finally, there are

various sources of air pollution, such as factories,

automobiles, home life, animal husbandry, etc., and these

are also affected by climate, vegetation coverage,

geographical environment, and other aspects, which our

study fails to cover. Therefore, more detailed and

comprehensive research is needed in the future to assess

the health impact of air pollution in China and to analyze the

sources and causes of specific air pollution in China to

provide better evidence for air pollution prevention and

control. Despite these limitations, our research extracts

the latest GBD data to comprehensively and systematically

analyze the disease and health burden caused by air pollution

in China over the past 30 years. This may provide inspiration

for the formulation of environmental policies and the health

protection strategies for the vulnerable population in China.

FIGURE 5
Age-standardized death and DALYs rate (per 100,000) caused by different kinds of air pollution in China from 1990 to 2019.
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Conclusion

Over the past 30 years, air pollution has brought an enormous

disease burden to China, resulting in a large number of deaths and

health losses. Air pollution mainly damages the respiratory and

cardiovascular systems, and people over the age of 50 years are more

vulnerable. Particulate matter pollution is the main culprit of health

damage caused by air pollution. Although China has made great

efforts to improve air quality in the past few decades,more efforts are

needed to further control air pollution in the future. Especially for

particulate pollution, a long-term mechanism should be established

to effectively curb it. In addition, for the elderly, additional attention

should be given to reduce health damage caused by air pollution.
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Source Apportionment of Elemental
Carbon in Different Seasons in Hebei,
China
Dongli Hou1, Xiang Zhang1*, Jiangwei Zhao1, Jie Qiang1, Jianguo Wang1, Peng Wang1,
Qingxian An1, Yang Wang2,3, Liwei Wang1, Shihui Yuan1 and Feng Zhang1*

1Hebei Province Ecology Environmental Monitoring Center, Shijiazhuang, China, 2School of Geographical Sciences, Hebei
Normal University, Shijiazhuang, China, 3State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing,
China

Black carbon (BC), also termed elemental carbon (EC), is a strong light-absorbing
substance. It can disturb the radiation balance between the earth and atmosphere
resulting in changing regional and global climate conditions. This study conducted a
thorough analysis of EC in Hebei during different seasons and provided comprehensive EC
emission data in the Beijing–Tianjin–Hebei (BTH) region for future policy making connected
with air pollution mitigation and control. The results showed that the concentration of EC
during the sampling period varied from 0.01 to 18.4 μg/m3 with a mean value of 2.6 ±
2.8 μg/m3. The EC source apportionment exercise identified four regular emission sources
for all seasons, including traffic-related emissions, coal combustion, biomass burning, and
mineral dust. Annually, traffic-related emissions were the primary EC contributor with an
annual average contribution of 38%, followed by biomass burning (30%) and coal
combustion (25%). In addition, the EC mass concentration at Shijiazhuang was also
influenced by diverse pollutants from upwind regions. This study shows that traffic
emissions are a major contributor to EC mass concentration in Shangjiazhuang and
highlights that regional joint control of air pollution is important to local air quality.

Keywords: elemental carbon, source apportionment, Hebei, different seasons, online measurement

1 INTRODUCTION

Black carbon (BC), also termed elemental carbon (EC), is a strong light-absorbing substance, and
based on the thermal detection method, it also embraces elemental carbon (EC) (Bond et al., 2013).
BC can disturb the radiation balance between the earth and atmosphere resulting in changes to
regional and global climate conditions (IPCC, 2021). BC can go through an aging process in the
atmosphere, by mixing with other substances and through chemical reactions. It alters optical
properties such as the light-absorbing ability (Bond et al., 2013). At different heights in the
atmosphere, BC exerts different climatic effects. BC heats the atmosphere, while by contrast, it
cools the earth’s surface. This could also impact the planetary boundary height and could, therefore,
worsen regional pollution levels (Wang et al., 2018). Furthermore, BC also could exert adverse
impacts on human health (Geng et al., 2013; Ji et al., 2019a).

The sources of BC can be classified into natural and anthropogenic sources. Natural sources
include natural phenomena such as volcanic eruptions and forest fires, but compared with
anthropogenic sources, natural sources have little effect on the long-term changes in the
concentration of black carbon aerosols due to their low occurrence since the industrial
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revolution. Fossil fuels such as coal and petroleum are the major
fossil fuel sources. Biomass burning in rural regions also plays an
important role in the global BC inventory (Bond et al., 2013).

Two methods are widely used for identifying the emission
sources of BC. One is an offline method, namely, collecting
samples in the field and using laboratory analysis such as the
14C method, to identify the sources (Li et al., 2016). The 14C
method can provide a good level of accuracy in the results, but
limitations, such as high cost and a minimum sample loading
required for analysis, hinder its promotion. Another method uses
mathematical models such as the Aethalometer (AE) model and a
receptor model to apportion BC into its various sources based on
its optical features and chemical composition (Rajesh and
Ramachandran, 2017; Wang et al., 2020; Liu et al., 2021).
Compared with the 14C method, mathematical models are not
restricted by sample loadings because online data are also
applicable. However, regarding the Aethalometer model, the
resultant accuracy heavily depends on the optical parameters
used in the model (Zotter et al., 2017). Most studies’ optical
parameters (Healy et al., 2017; Zhu et al., 2017; Helin et al., 2018)
such as the absorption Ångström exponent (AAE) are based on
the literature. However, optical parameters are highly variable
depending on combustion conditions and the characteristics of
the sources (Tian et al., 2019). Thus, there may be uncertainty in
using the AE model if the specific parameters are unknown.

A quarter of BC emissions in the world was reported from
China (Streets et al., 2001). Previous studies have shown that BC
emissions in the BTH region were high (Zhang et al., 2009). Ji
et al. (2019a) noted that even though a number of policies on
pollution control were active in the BTH region, EC mass
concentrations remained high in 2017. A recent study showed
that the maximum daily PM2.5 in BTH can reach 150 μg/m3

(Zhang et al., 2022), which exceeds the threshold of PM2.5 high
pollution level. BC contribution to PM2.5 pollution was not
negligible (Ji et al., 2017; Ji et al., 2019b). A further analysis of
EC and organic carbon (OC) showed that they were highly
correlated, indicating they were from the same source (Zhang
et al., 2022).

Mao et al. (2020) used a combined method to calculate
different source contributions to BC in the atmosphere from
2013 to 2017. The results showed that most pollution happened
during winter and the most severe cases were found in the heating
season due to residential heating, followed by vehicle emissions.
However, due to the clean energy policies introduced and
replacing coal combustion with clean energy, both OC and EC
have declined since 2017. One study reported that compared with
2017, the mass concentration of EC in the BTH region during
2019 declined from 4.7 μg/m3 to 3 μg/m3, mainly due to banning
coal combustion (Ji et al., 2022). Regarding regional emission
loads in BTH, Liu et al. (2018) found that Hebei was the most
important emission source for BC, which contributed 55% and
49% of the EC mass concentration in Beijing and Tianjin cities,
respectively. Xiao et al. (2021) conducted a BC source
apportionment in Beijing, which revealed that coal
combustion, liquid fuel combustion, and biomass burning
were the top three BC sources. Combustion of coal and liquid
fuel contributed about 82%, with coal combustion making a

higher contribution during winter and spring, while liquid fuel
had a higher contribution during summer and autumn.

Althoughmuch research has been conducted in BTH, few studies
have focused on annual source apportionment in Hebei which has
been found to be a major source of pollution in other cities like
Beijing and Tianjing as noted above. Thus, this study aims to present
a thorough analysis of BC in Hebei during different seasons and
provide comprehensive BC emission data in the BTH region for
future policy-making on air pollution mitigation and control.

2 MATERIALS AND METHODS

2.1 Sampling Site and Data Collection
Hebei Province has 11 cities in total but the urbanization level is
not high compared with other mega cities in BHT, reaching 60%
in 2020, and the rural area infrastructure is not well-developed.
According to the China Energy Statistics Yearbook of 2018,
energy consumption in Hebei was about 67% of the total
energy consumption of the BTH region, indicating a
significant level of pollution in the province. Shijiazhuang City
is the provincial capital city of Hebei which has 18 districts and
counties. The sampling site was at Hebei University of Economics
and Business (114°30′7″, 38°8′23″, Figure 1). River passes by the
sampling site (~1.5 km away) at the Northeast. Major highways
surround the sampling site and the city center is located south of
the city. A total of 2951 data points were collected with an hourly
resolution during 2020, in January, April, July, and October. The
online data include EC, OC, K+, Mg2+, Ca2+, Cl−, and the
elements (Si, K, Ca, Ti, Mn, Fe, As, Se, Br, Ba, Pb, and Zn).

2.2 Online Measurement
2.2.1 Online OCEC Analyzing
OC and EC were analyzed by using a discontinuous thermal-
optical transmittance (TOT) based OC/EC analyzer (RT-4,
Sunset Laboratory Inc., Tigard, Oregon, United States). The
samples were placed on quartz filters and heated step by step
in a non-oxidizing environment of helium (He), where OC is
volatilized. In the process, a portion of OC is carbonized into
pyrolyzed carbon (OP). The EC is oxidized and decomposes into
gaseous oxides under an oxygen mixture (He/O2) environment
where the temperature will be increased gradually. Quantitative
inspection was carried out using the ion flame method (FID) and
the non-infrared dispersion method (NDIR). During this process,
a laser beam was irradiated on the quartz film, so that the
intensity of the transmitted light of the laser gradually
weakens when OC is carbonized. The transmitted light of the
laser will gradually increase when PC and EC decompose in the
He/O2 environment. When the intensity of the transmitted light
returns to the initial value, this moment is defined as the OC/EC
split point, which means that the amount of carbon detected
before this moment is defined as the initial OC and the amount of
carbon detected thereafter corresponds to the starting EC. The
detection ranges of OC and EC are between 5 and 400 µg/cm2 and
1 and 15 μg/cm2. Theminimum detection limit is 0.2 μg/cm2. The
maintenance and calibration were strictly performed according to
a Standard Operating Procedure issued by China National
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Environmental Monitoring Center (http://www.cnemc.cn/jcgf/
dqhj/202112/t20211223_965048.shtml, in Chinese).

2.2.2 Online Ion Analyzing
An ion chromatography analyzer (URG9000D, ThermoFisher
Scientific (China), Shanghai, China) was used to measure the
ions levels in PM2.5 at a sampling flow of 16.67 L/min. The URG
gas sampling device utilizes a wet parallel plate diffusion dissolver
and adopts a gas-selective permeability membrane technology.
Gaseous pollutants in the air can pass through the membrane
into the absorption liquid channel and react with hydrogen
peroxide. The kinetic principle of the process is a redox reaction,
which ensures the complete absorption of gaseous pollutants. Wet
parallel plate diffusion dissolvers can effectively absorb gaseous
pollutants in the atmosphere. Absorption efficiency was tested
using a permeation tube to generate 1 ppmv of SO2, and 5mM
H2O2 was used as the absorption solution in the dissolver. The
maintenance and calibration were strictly performed according to a
Standard Operating Procedure issued by China National
Environmental Monitoring Center (http://www.cnemc.cn/jcgf/
dqhj/202112/t20211223_965048.shtml, in Chinese).

2.2.3 Online Elemental Analyzing
The elements were measured by using an online analyzer for
atmospheric heavy metals (XHAM-2000A, Hebei Sailhero
Environmental Protection High-tech Co., Ltd., Shijiazhuang,
Hebei, China), which was used to measure the element levels in
PM2.5 at a sampling flow of 16.67 L/min. The monitor collects
samples through reel-to-reel (RTR) filter paper strips and
performs non-destructive analysis of particles deposited on the
filter paper strips by X-ray fluorescence spectroscopy (XRF). The
ambient air is sampled by the particle size cutter and drawn onto the
filter paper belt. The collected samples are automatically transported
to the detection position and the selected metal elements are
analyzed using XRF technology. The next sample is taken when
the previous sample is being analyzed. Sampling and analysis are
performed synchronously and continuously, except during filter tape
transport (approximately 20 s). During the study period, daily

automatic quality checks are carried out on a regular basis. The
maintenance and calibration were strictly performed according to a
Standard Operating Procedure issued by China National
Environmental Monitoring Center (http://www.cnemc.cn/jcgf/
dqhj/202112/t20211223_965048.shtml, in Chinese).

2.2.4 Source Apportionment
EC source apportionment in this study was conducted by using the
positive matrix factorization (PMF) model. PMF was developed by
Paatero and Tapper (1994). This method has non-negative
constraints and optimizes the error estimation of the input data.
The input data matrix is divided into a factor profile matrix (F) and
factor contribution (G) matrix through the following equation:

Xij � ∑p

k�1gikfkj + eij, (1)
where Xij is the input data matrix, i represents the ith sample, j
represents jth species, and k represents the kth factor number; gik

represents the source contribution of the kth factor to the ith

sample; fkj is the factor profile of the j
th species in the kth factor;

and eij is the residual between the real value and estimated value.
PMF solves F and G by finding the global minimum Q value

with the following equation:

Q � ∑n

i�1∑
n

j�0[
eij
uij

]
2

, (2)

whereQ is the sum of the squares of the normalized residuals, eij
represents the residual values, and uij represents the
uncertainties of the input data. The United States
Environmental Protection Administration (EPA) PMF
version 5.0 was employed for the EC source apportionment
in this study. The concentrations of chemical species were
inputted into PMF as an input matrix.

2.2.5 Trajectory Cluster Analysis
Trajectories over 72 h and 50 m above the ground over 4 months
were calculated using the Hybrid Single-Particle Lagrangian
Integrated Trajectory model (HYSPLIT). The HYSPLIT model

FIGURE 1 | The sampling site of this study.
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is a widely used air-mass trajectory model (Draxler and Hess,
1998). To understand the regional transport impacts on the study
site, cluster analysis was applied to the 72 h air mass trajectories.
The cluster method used an angle-based distance calculation
method, the calculation equations being as follows (Wang
et al., 2018):

d12 � 1
n
∑n

i�1cos
−1(0.5 ×

Ai + Bi − Ci����
AiBi

√ ), (3)

Ai � (X1(i) −Xo)2 + (Y1(i) − Yo)2, (4)
Bi � (X2(i) −Xo)2 + (Y2(i) − Yo)2, (5)

Ci � (X2(i) −X1(i))2 + (Y2(i) − Y1(i))2, (6)
where d12 represents the averaged angle which varies between 0 and
π between two trajectories; n denotes the total endpoints, X and Y
represent the location of the study site, X1 (Y1) denotes the first
trajectory, and X2 (Y2) denotes the second trajectory. The calculation
software used is TrajStat developed by Wang et al. (2009). The data
used for the calculations were from the Global Data Assimilation
System (GDAS, https://www.ready.noaa.gov/gdas1.php). The
trajectories associated with EC mass concentration over the 75th
percentile were taken as polluted trajectories. The trajectories were
drawn on a grid with a resolution of 0.5°.

2.2.6 Potential Source Contribution
To estimate the potential contribution from regional transport,
the potential source contribution function (PSCF) was applied to
detect the possible contribution regions to EC in Shijiazhuang.
High PSCF values indicate that high EC emissions were
transported to the study site. The PSCF value of every grid
was calculated using the following equation:

PSCFij � mij

nij
, (7)

where mij denotes endpoints associated with EC concentration
which is higher than the criterion set in the model and nij is the
total endpoints of the grid cell. The 75th percentiles of EC from
different sources were set as the threshold value of pollution.

To reduce uncertainties caused by a low nij value, arbitrary
weighting factors (wij) were used during the calculation of PSCF.
The values and criteria were taken from the work of Polissar et al.
(2001):

Wij �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 80< nij
0.7 20< nij ≤ 80
0.42 10< nij ≤ 20
0.05 nij ≤ 10

. (8)

3 RESULTS AND DISCUSSION

3.1 Observed Concentrations of EC
Figure 2 illustrates the concentrations of EC and OC as well as
the ratio of OC/EC in four different months, January, April,
July, and October. The concentration of EC during the
sampling period varied from 0.01 to 18.4 μg/m3 with a

mean value of 2.6 ± 2.8 μg/m3 (Table 1). It was much
lower than the average annual EC concentration in
Shijiazhuang, from December 2016 to November 2017
(5.4 ± 6.5 μg/m3, Ji et al., 2019a). It could be due to a
positive effect of air pollution control actions launched in
the BTJ region. The concentration is close to the EC
concentration measured in Beijing (3.4 ± 2.3 μg/m3) from
September 2017 to August 2018. Similar to EC, OC in
Shijiazhuang was significantly lower compared with the
value reported from December 2016 to November 2017.
The concentration of OC during the sampling period varied
from 0.04 to 50.7 μg/m3 with a mean concentration of 9.5 ±
9.4 μg/m3, which was about 58% lower than the OC measured
in December 2016—November 2017 (22.8 ± 30.6 μg/m3, Ji
et al., 2019a) and also was lower than that established in the 4-
month average. The ratio of OC/EC was 4.7 ± 2.4 from 2016 to
2017. The reduced ratio of OC/EC (4.2 ± 3.0) indicates that
from 2017 to 2020, OC in Shijiazhuang has decreased slightly
faster than EC. This could be caused by the changed
contribution ratios of different emission sources.

Focusing on the variation among different seasons, the
concentrations of OC and EC were 22.5 ± 8.7 μg/m3 and 5.8 ±
3.4 μg/m3 in January; 3.1 ± 2.9 μg/m3 and 0.9 ± 0.8 μg/m3 in
April; 4.2 ± 1.9 μg/m3 and 1.1 ± 0.8 μg/m3 in July; and 7.4 ±
4.6 μg/m3 and 2.3 ± 1.5 μg/m3 in October. The data showed that
OC and EC in January were much higher compared with those
measured in other seasons. The mass concentration of OC and
EC displayed a similar variation pattern over the 4-month period,
in the order January >October > July >April, representing higher
concentrations in winter and autumn, while lower concentrations
occurred in spring and summer. This is consistent with the
pattern reported in a previous study (Ji et al., 2019a). Even
though the concentrations in winter in 2020 were still the
highest of all seasons, the concentration of both OC and EC
has been declining significantly, by 52% and 49%, respectively
(Table 1), compared with winter in 2016–2017. Immediately after
the concentration decrease in winter, the decrease in OC and EC
in spring was the second largest among the four seasons with a
reduction of 7.1 μg/m3 and 1.8 μg/m3, respectively. This was
followed by decreases in summer and autumn, the
concentrations of OC and EC declining by varying degrees,
suggesting that the Three-Year Action Plan to Fight Air
Pollution since 2018 has worked well in terms of improving
air quality.

The diurnal variations over the four seasons demonstrate
different patterns. As shown in Figure 3A, during winter, the
diurnal variation in OC presented high values in the morning and
night and low values in the afternoon. EC showed a similar
diurnal pattern to OC during winter and a good correlation
between OC and EC (R2 = 0.54, p < 0.1) during winter. This
indicates that the majority of OC and EC emissions were likely
from the same sources during the winter. However, although the
patterns were similar, the hourly mass concentration changes in
OC and EC were not in proportion, therefore the ratio of OC/EC
varied greatly on a daily basis. The ratio was high in the afternoon
and much lower at night. This phenomenon was possibly
influenced by meteorological conditions, and less secondary
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OC was generated at night due to the weak solar radiation and
temperature.

Unlike the variation patterns in winter, a clear OC rise was
found in spring from 7 to 10 am (Figure 3B) which could be
caused by traffic emissions. Another rise was found from 18:
00 h to 23:00 h which was likely caused by the evening traffic peak
and nocturnal planetary boundary layer height (PBLH). With
residential heating demand declining in spring, the mass
concentration of EC was low at night which is opposite to that
in the winter season. The fluctuation of the OC/EC ratio was
more frequent than in winter, particularly during daytime, which
could be caused by a combination of more varied meteorological
conditions and more diverse emission sources. In addition, OC
and EC were found weakly correlated (R2 = 0.25, p < 0.1) in
spring.

In summer, as presented in Figure 3C, OC decreased from
midnight to 6:00 h then rose dramatically to 9:00 h and
remained stable to 15:00 h. From 16:00 h to 20:00 h, OC
decreased again and then rose to 23:00 h. By contrast, the
diurnal variation in EC only fluctuated slightly except from
10:00 h to 14:00 h. This indicates that large quantities of OC and
EC emissions may not be from the same source, which can also
be confirmed by the weak correlation between OC and EC (R2 =
0.14, p < 0.1).

Similar to winter, the correlation between OC and EC was
relatively higher (R2 = 0.57, p < 0.1) in the autumn season,
indicating that the majority of OC and EC were from the same
source. The diurnal variations in OC and EC were almost
identical (Figure 3D), showing a continuous decrease from
midnight to 17:00 h with a small peak at 9:00 h, which was
likely formed by the morning traffic peak. From 18:00 h to 23:
00 h, the concentration of OC and EC kept rising. This could be
caused by the pollution accumulation due to the poor dispersion
conditions at night and the evening traffic peak around 19:00 h.

3.2 Source Apportionment of EC in Different
Seasons
Five sources of EC were identified by PMF during wintertime
shown in Figure 4. The first factor was characterized by high
loadings of Ca2+ (86%), Si (48%), and Ti (43%), widely recognized
as associated with mineral dust (Tao et al., 2017; Liu et al., 2021).
This factor barely contributed to EC during winter. The second
factor showed relatively high loadings of K+ (32%) and Br (51%).
K+ is a widely recognized marker of biomass burning (Zhao et al.,
2021) and a considerable amount of Br is found in biomass
burning due to the CH3Br generated in the combustion process
(Manö and Andreae, 1994; Artaxo et al., 1998). Thus, this factor

FIGURE 2 | Time series over 4 months for EC, OC, and the OC/EC ratio.

TABLE 1 | Concentrations of OC, EC, and the ratio of OC/EC.

OCa

(μg/m3)
ECa

(μg/m3)
Ratioa OCb

(μg/m3)
ECb

(μg/m3)
Ratiob OCc

difference
ECc

difference

Spring 3.1 ± 2.9 0.9 ± 0.8 3.4 10.2 2.7 3.8 7.1 1.8
Summer 4.2 ± 1.9 1.1 ± 0.8 3.8 8.5 2.0 4.3 4.3 0.9
Autumn 7.4 ± 4.6 2.3 ± 1.5 3.2 10.7 3.3 3.2 3.3 1.0
Winter 22.5 ± 8.7 5.8 ± 3.4 3.9 53.3 11.6 4.6 30.8 5.8
Annual 9.5 ± 9.4 2.6 ± 2.8 3.7 22.8 ± 30.6 5.4 ± 6.5 4.2 13.3 2.8

aNote: This study
bJi et al., 2019a
cDifference between data in 2020 and 2017.
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was considered to be biomass burning which contributed 19% of
EC during winter. The third factor presented a large amount of
Mn (81%), Fe (49%), and Zn (43%). Mn is often used as a smoke
suppression agent and an additive in vehicles to protect the
engine (Lewis et al., 2003). Zn and Fe are widely found in
braking and lubricating oil (Alander et al., 2005; Thorpe and
Harrison, 2008). In addition, as shown, this factor contributed a
noticeable amount of EC (36%), which is consistent with previous
studies (Cao et al., 2013). In addition, the diel variation in EC
from this factor showed two peaks in morning and evening in
traffic busy hours (Supplementary Figure S1). Thus, this factor
was identified as traffic-related emissions. The fourth factor
showed high loadings of K+ (53%), Mg2+(72%), Ti (50%), and
Ba (64%). K+, Mg, and Ba are abundant in fireworks (Li et al.,
2013; Yadav et al., 2019). Furthermore, EC contributed by this
factor was only found to be significant from 24 January 2020 to
29 January 2020, which happened to be the Chinese New Year.
Thus, this factor was likely to be the result of firework displays.
The last factor was characterized by high loadings of As (43%)
and Pb (30%). According to previous studies, high loadings of As
and Pb are found in coal combustion (Tan et al., 2017; Liu et al.,
2021). Thus, this factor was recognized as resulting from coal
combustion which contributed 35% of EC.

Different from the January results, four factors were identified
in spring (Figure 5). The first one is associated with high loadings
of Si (49%), Ca (66%), Ti (55%), and Fe (58%). Thus, this factor
stemmed from mineral dust. The second factor showed high
loadings of Cl− (64%), Br (87%), and K (43%). Previous research

has reported that Cl− is also considered a marker of biomass
burning (Urban et al., 2012; Zhao et al., 2021). At the same time,
levels of OC and EC were also high in this factor with
contributions of 38% and 48%, respectively. Thus, this factor
was identified as stemming from biomass burning. The third
factor is characterized by high loadings of Mn (48%), Zn (90%),
and Pb (59%). As explained before, Mn and Zn are commonly
found in traffic-related emissions. Although China phased out
Pb-containing petroleum, research still finds an alarming amount
of Pb associated with vehicular emissions (Xu et al., 2016), and
the diel variation showed two peaks in morning and evening in
traffic busy hours (Supplementary Figure S1). Therefore, this
factor is deemed to be caused by traffic-related emissions, the
factor contributing 16% of total EC. The last factor contained
relatively higher amount of As (41%), Ti (39%), and EC (35%). As
mentioned above, As is widely considered as a marker of coal
combustion. Previous studies (e.g., Ji et al., 2019a) showed that
coal combustion contributed a considerable amount of EC in
Shijiazhuang City. In addition to the abundant amount of Ti
found in mineral dust, in urban areas, Ti is also found in
manufacturing industries. This factor is likely to be coal
combustion for industrial activities, the factor contributing
35% of EC.

Source apportionment for EC during summer also showed
four major contributors (Figure 6). The first source showed high
loadings of Cl− (62%), K+ (67%), and Br (59%). Meanwhile, this
factor contains moderate loadings of OC (39%) and EC (41%),
which are commonly found in the emissions from biomass

FIGURE 3 | Diurnal variations in OC, EC, and the OC/EC ratios in the four seasons of the year.
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burning (Cao et al., 2013). Thus, this factor was identified as
biomass burning. The second factor demonstrated a considerable
amount of As (66%) and Se (45%). According to Tan et al. (2017),
high loadings of Se are also found in coal combustion. As a result,
this factor was identified as coal combustion, contributing 10% of
EC. The third factor is characterized by a high loading of Mn
(78%) and Zn (54%) with a moderate loading of Fe (38%).
Furthermore, moderate amounts of OC and EC were found in
this factor and the loading of EC was higher than that for OC,
which fits the feature of vehicle emissions (Cao et al., 2013), so
does the EC diel variation in this factor (Supplementary Figure
S2). Thus, this factor was recognized as traffic-related emissions
with 35% contributed as EC. The last factor showed high loadings
of Ca2+ (71%), Si (46%), and Ti (50%), thus, this factor was
interpreted as mineral dust. Some 14% of EC was found in this
factor which could be due to the resuspension of the deposited EC
from other perturbations such as vehicle driving and wind.

Similar to the source apportionment results in summer, source
apportionment of EC during autumn showed four major
contributing factors (Figure 7). The first factor profile showed
high loadings of Mg2+ (80%), Ca2+ (93%), and Si (67%), which
indicate mineral dust for this factor. This factor only contributed 6%
of EC. The second factor presented a high amount of As (44%), Se
(59%), and Pb (59%). As mentioned earlier, these are widely used
markers of coal combustion. Thus, this factor is coal combustion,
which contributed 19% of EC. The third factor is characterized by

high loadings of OC (71%), EC (65%), Mn (48%), Fe (39%), and Zn
(56%). These are typical elements reflecting vehicular emissions
which can be verified by the EC diel variation (Supplementary Figure
S2). The last factor contained high loadings of Cl− (64%) and K+

(71%) and a moderate amount of Br (41%), and is recognized as
biomass burning with a 10% contribution to EC.

The contributions of the regular four sources varied in different
seasons possibly due to the change in meteorological conditions
and the variation in emission intensity, although there was a
variation in the contribution of different sources in different
seasons, traffic-related emissions were the primary EC
contributor with an annual averaged contribution of 38%
followed by biomass burning (30%) and coal combustion (25%).
The contribution of the same source varied greatly in different
seasons. As listed in Table 2, a significant amount of EC was
contributed by traffic-related emissions in autumn (65%), but
much less in spring (16%). Biomass burning contributed a
considerable amount of EC in spring (48%) and summer (41%),
but a relatively small amount in autumn (10%) and winter (19%).
This indicates open fires (Supplementary Figure S2) might be the
primary emission source for biomass burning instead of residential
combustion. By contrast, coal combustion was a major contributor
of EC in spring (35%) and winter (35%), which suggests coal
combustion could be the primary energy source for residential
heating. The contribution from mineral dust varied less
dramatically compared with other identified sources, and

FIGURE 4 | Source apportionment of EC in winter.
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FIGURE 5 | Source apportionment of EC in spring.

FIGURE 6 | Source apportionment of EC in summer.
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comparatively speaking, it contributed more in summer. Fireworks
were only found to contribute to EC in winter during the Chinese
New Year.

3.3 Trajectory Cluster Analysis
Air flow on the one hand can disperse pollutants but on the other,
can carry pollutants from upwind regions. Thus, to establish the
influence of air masses from different directions in different
seasons, 72 h back trajectories of air masses were calculated
during the study period on an hourly basis. A cluster analysis
was then conducted based on those calculated trajectories. The
results showed (Figure 8) that air masses were mainly from four
clusters but the trajectory contribution ratios varied across the four
seasons. As shown in Figure 8A, during winter, Cluster No.
3 contains 33% of the total trajectories from a northerly
direction. The origin of the air mass 72 h earlier was near the
boundary of inner Mongolia. Cluster No. 2 contains 27% of the
total trajectories. The origin of Cluster No. 2 was in Shanxi

Province and Cluster No. 4 (25%) originated in Hebei Province,
passing through Tianjin city. Cluster No. 1 (15%) was also from
Hebei Province but the cluster trajectory showed that it was from a
northerly direction and close to that province.

In contrast with winter, most of the trajectories in spring were
from a northerly direction. As shown in Figure8B, 77% of total
trajectories were from the north, and 38% of total trajectories
originated from outside of China (Cluster No. 3). Of the total
trajectories, 39% originated from inner Mongolia (Cluster No.
1 and No. 4). The remaining 23% of trajectories were from
Shandong Province (Cluster No.2), passing through Henan
Province. During summer, the air mass trajectories were mainly
from an easterly direction. As presented in Figure 8C, three of four
clusters originated in Shandong Province, clearly an important
source region. The origin of Cluster No. 1 was very close to the
Huanghai Sea coastline. This cluster contains 13% of the total
trajectories. Cluster No. 4 has 37% of the total trajectories and
Cluster No. 3 has 13%. The remaining cluster (Cluster No. 2) was

FIGURE 7 | Source apportionment of EC in autumn.

TABLE 2 | Source contributions to EC in different seasons.

Traffic-related emissions
(%)

Biomass burning
(%)

Coal combustion
(%)

Mineral dust
(%)

Fireworks (%)

Spring 16 48 35 1
Summer 35 41 10 14
Autumn 65 10 19 6
Winter 36 19 35 6 4
Average 38 30 25 7
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from Jiangsu Province containing 37% of the total trajectories.
Similar to winter, in autumn, the major trajectories were from a
northwest direction, originating outside China (Figure 8D).
Mongolia accounted for 72% of the total trajectories (Cluster
No. 2 and No. 3). Some 25% of the total trajectories originate
from Shandong Province (Cluster No. 4) and 13% of total
trajectories originated from Beijing City (Cluster No. 1).

3.4 Potential Source Region Identification
EC mass concentration is not only influenced by local emissions
but also by regional transport. Given the different air mass
directions in different seasons, the variations in EC
concentration throughout the seasons can be partially ascribed
to regional transport. Thus, potential contribution sources were
analyzed based on the PSCF results shown in Figure 9.

FIGURE 8 | The cluster analysis of the trajectories in (A) winter, (B) spring, (C) summer, and (D) autumn.

FIGURE 9 | Potential source regions for EC in Shijiazhuang in (A) winter, (B) spring, (C) summer, and (D) autumn. The color bar represents PSCF probability. The
color circles denote the sampling site.
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As shown in Figure 9A, in winter, the highest potential sources
were mainly in the northeast, particular in Beijing and its western
region. Although there were policies launched to mitigate air
pollution in the BTJ region, as indicated by PSCF, the
surrounding regions of Beijing were still potential EC sources.
In addition, near the sampling site, Shanxi province also has
moderate potential to contribute EC in Shijiazhuang. This could
be due to the high consumption and production of coal in Shanxi
province, particularly in winter due to the demand for residential
heating (Zhang et al., 2014). Much further away, Liaoning and
Inner Mongolia could also be potential source areas in winter since
coal-fired power plants in north China are mainly located in Inner
Mongolia, Shanxi, and Shaanxi provinces (Ji et al., 2019a). In
comparison with the surrounding regions, the contribution of EC
from Shijiazhuang, itself, showed a moderate potential in winter.

Different from the distribution of the potential EC sources
identified in winter, the strongest potential contribution of EC to
the sampling site changed to the southern regions, mainly from
Hubei, Hunan, and Guizhou provinces in spring (Figure 9B). In the
north, Shanxi province and InnerMongolia could also contribute EC
to Shijiazhuang when the air mass flow is from a northerly direction.
Zhang et al. (2014) conducted an energy survey in Guizhou
households and found about 60% of the rural households in
Guizhou burned crops on the farmland for fertilizing the land.
Coal and firewood were the primary energy sources for residential
use in Guizhou. In addition, burning on non-cultivated land was
found to be high during spring in north, northeast, and southeast
Hubei (Shen et al., 2021). Thus, the high potential contribution to
Shijiazhuang from the north in spring could be caused by rural
residential energy consumption and open fires (Supplementary
Figure S2). This, to a degree, could also explain the high biomass
burning levels and coal combustion contributions found in source
apportionment in spring, compared with those in other seasons.

In summer, the potential contribution sources changed toHenan,
Anhui, and Jiangsu provinces (Figure 9C). This is likely associated
with the southeast prevailing wind in summer and is consistent with
the increased nitrate concentration in Beijing in August found in
East China (Ying et al., 2014). Based on Yao et al. (2021), this could
be attributed to Henan, since it is one of the largest energy-
consuming provinces in China, where coal combustion and
biomass burning are the major sources of pollution. Additionally,
according to the emission inventory for Jiangsu (Zhou et al., 2017),
on-road and non-road transportation contributed notable amounts
of EC. Similar to the PSCF revealed in summer, Henan and Aihui
were identified as the most likely source of the high contribution to
EC concentrations in Shijiazhuang during autumn (Figure 9D).

4 CONCLUSION

The concentration of EC during the sampling period varied from
0.01 to 18.4 μg/m3 with a mean value of 2.6 ± 2.8 μg/m3. The
concentration of OC during the sampling period varied from 0.04 to
50.7 μg/m3 with a mean concentration of 9.5 ± 9.4 μg/m3. Both EC
and OC were found to be higher in winter and autumn while lower
concentrations occurred in spring and summer. The diurnal

variations in OC/EC in different seasons indicate the varied
contributions from different sources in the four seasons. Winter
and autumn presented high mass concentrations of EC and OC
during the night, likely due to residential heating and nocturnal
PBLH. The EC source apportionment identified four regular
emission sources for all seasons: traffic-related emissions, coal
combustion, biomass burning, and mineral dust. However, due to
the celebration of Chinese New Year Festival, one more emission
source was found in winter, which was fireworks. The contributions
of the regular four sources varied in different seasons possibly due to
changes in meteorological conditions and variations in emission
intensity. Annually, traffic-related emissions were the primary EC
contributor with an annual average contribution of 38% followed by
biomass burning (30%) and coal combustion (25%). The primary
source of EC differed according to the season. A significant amount
of EC was contributed by vehicle emissions in the autumn (65%)
while a considerable amount of EC originated from biomass burning
in spring (49%) and summer (41%). Coal combustion was a major
contributor of EC in the spring (35%) and winter (35%). In addition
to local emission changes, the trajectory cluster analysis and PSCF
results indicated that the ECmass concentration in Shijiazhuang was
also influenced by a variety of pollutants from upwind regions. In
winter, the north China region showed high PSCF values likely due
to the coal-fired power plants located there. In spring, high values of
PSCF were found in the southwest region near to Shijiazhuang
because of extensive firewood burning and open fires
(Supplementary Figure S2) in the rural regions. In summer and
autumn, high PSCF values were found in the south and southeast
area of Shijiazhuang, where transportation contributed notable
amounts of EC. This study shows that in general, traffic-related
emissions are a major contributor to EC mass concentration in
Shangjiazhuang, with emissions in the surrounding cites likely
worsen EC pollution in the receptor site. It thus highlights how
important regional joint control of air pollution is to local air quality.
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