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Editorial on the Research Topic
Physics and modelling of land slides

Disasters triggered by landslides cause life losses and substantial devastation to
communities in terms of effects on the economy, livelihoods, and infrastructure every year
across the world. However, the causative factors and mechanisms underlying landslide
initiation and dynamics must be better understood, as accurate modelling of landslide risk
is an essential prerequisite for developing reliable control and mitigation strategies [1].
Landslide susceptibility is influenced by a broad range of factors [2], such as soil physics
and geochemistry, geological setting, climate, atmospheric dynamics, biogenic feedbacks, and
anthropogenic influences, which have profound interlinkages with each other over a broad
period- and length-scales. Moreover, landslide risk assessment further hinges on correctly
understanding communities’ local vulnerability and exposure [3].

This Research Topic of articles on the Physics and Modelling of Landslides presents leading-
edge work into the quantitative understanding of landslide processes and dynamics.

A series of numerical simulations were carried out byWang et al. for a better understanding
of the dynamic response and failure modes of rock slopes containing weak interlayers subjected
to earthquake excitation. They used the continuum-discontinuum element method considering
the influence of seismic amplitude and weak interlayer inclination, to shed light on the
formation mechanism of rock landslides with weak interlayers. Accordingly, the
acceleration waveform and peak ground displacement amplification coefficient
characteristics strongly contradict the landslide failure process. The combination of weak
interlayers and seismic load causes multiple failure landslide modes.

Aiming at understanding the influence of water content on the characteristics of long-term
deformations and stability of soil-rock mixtures of the Dahua landslide located on the right
bank of Lancang River, China, Jiang et al., and Wang et al. performed multi-stage shear creep
tests of SRM samples with different water contents. Based on their analysis, it was suggested that
there are three stages of creep deformation: transient, steady-state, and accelerated. Moreover,
shear-creep deformation is controlled by fractures of large particles at low water content but by
large particles at high water content rotations.

By looking at the combined effects of the debris-flow impact force and lateral Earth pressure
through finite element analysis, Eu et al. modelled internal stresses experienced during debris
flow and sediment deposition from the 2011 Mt. Umyeon landslide, Seoul, the Republic of
Korea. This approach provided valuable insights for the structural analysis and safety
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assessment of check dams. It offered practical guidance for check-dam
design and maintenance, considering sediment deposition and debris-
flow impact force.

Zhang et al. used the Drucker–Prager model and the smooth
particle hydrodynamics method to simulate soil slope failure and
determine the slip surface with and without the effect of potential
earthquakes. This study contributed to this growing area of research by
exploring the relationships between sliding material volume, influence
range, and slope angle. That being the case, the horizontal
displacement of the slope under the effect of an earthquake
increased non-linearly with the increase of slope incline angle.

He et al. and colleagues examined the mechanical property of
typical residual soils from a landslide zone in Chenzhou city, China, by
conducting direct shear tests. Mineral composition and
microstructures of soil samples analysis through X-ray diffraction
and scanning electron microscope tests showed rich clay minerals,
including pyrophyllite, illite, kaolinite, and montmorillonite. The
shear strength of soils gradually decreased with increasing water
content under constant vertical load by a linear function, but the
soil types influenced the trend of shear strength.

The fuzzy point estimation method and physical-based model
were combined with the local factor of safety theory by Yang et al. to
calculate the hillslope’s internal local factor of safety for the hillslope of
the Babaoliao collapse site in Chiayi County, Taiwan. The results
indicated that the boundary flux controls the overall infiltration of
water into the slope and affects the change in soil water content, which
in turn causes slope instability. Moreover, delayed rainfall causes early
slope instability; thus, evaluating shallow soils’ hydraulic behavior and
failure mechanisms is critical.

Li et al. used the fuzzy set assessment method to assess the risk
level of landslide hazards in the Badong section of Three Georges in
China. The stratigraphic lithology, degree of weathering, relationship
between the structural plane and slope direction, cohesive force, angle

of internal friction, severity, average slope degree, the height of slope,
and type of landslide were considered as the assessment indices.
Despite drawbacks, such as complicated calculation and necessary
multiple variable parameters, results suggested that the variable fuzzy
set model could offer an alternate route to evaluate the landslide
hazards.

Conventional Machine Learning and Multi-Criteria Decision-
Making techniques were used to compare performance for the
development of susceptibility mapping of landslides in
Muzaffarabad district, lower Himalayas of Northern Pakistan.
Following this perspective, Khalil et al. found 85% accuracy when
using Support Vector Machine, 83% with Linear Regression, 80% with
Analytical Hierarchy Process, 79% with Logistic Regression, and 78%
with Technique for Order of Preference by Similarity to Ideal Solution.
The study offered a baseline for decision-makers for effective landslide
countermeasures and long-term monitoring.

Yildiz et al. drew attention to uncertainty quantification, a
computationally demanding task for designing and developing a
model-based landslide risk assessment. Using a synthetic case
involving simple topography and the Acheron rock avalanche near
Canterbury, New Zealand, they demonstrated how uncertainty
quantification workflow can be set up effectively and how this
affects the model-based landslide risk assessment. GP emulation-
based Monte Carlo Simulations can significantly improve
computational efficiency, making GP-integrated MCS applicable for
landslide run-out modelling.

A significant contemporary Research Topic of landslide hazard
assessment is that socioterritorial drivers, particularly in urban areas,
have intensified their impact [4,5]. Non-etheless, inter and
multidisciplinary efforts [6] that combine physical, engineering,
and computer sciences with geological, geographical, and social
sciences required to advance the quantitative understanding of
landslide processes, are still incipient.

FIGURE 1
Landslide disaster risk reduction requires a sustained dialogue between the various disciplines on the physics of landslides, their causes and dynamics,
and their socio-environmental interactions (Cartoon courtesy of Irasema Alcántara-Ayala).
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This Research Topic focused on the physics and modelling of
landslides. It provided a platform for the dialogue between the various
disciplines on the physics of landslides, their causes and dynamics, and
their socio-environmental interactions (Figure 1). This dialogue is
essential to enhance landslide forecasting and management
capabilities and produce novel insights by the science and
technology community to contribute to implementing the Sendai
Framework through future integrated disaster risk reduction policy
formulation and practice [7].
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Numerical Investigation on Dynamic
Response and Failure Modes of Rock
Slopes with Weak Interlayers Using
Continuum-Discontinuum Element
Method
Chengwen Wang, Xiaoli Liu*, Danqing Song, Enzhi Wang and Jianmin Zhang

Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China

In order to better understand the dynamic response and failure modes of rock slopes
containing weak interlayers subjected to earthquake excitation, a series of numerical
simulations were carried out using the continuum-discontinuum element method (CDEM),
considering the influence of seismic amplitude andweak interlayers inclination. The seismic
response characteristics of slopes were systematically analyzed according to the
waveform characteristics, amplification effect, equivalent crack ratio, etc. The numerical
results show that the acceleration waveform characteristics and peak ground
displacement (PGD) amplification coefficient have good correspondence with the
dynamic failure process of landslides. Comprehensive analysis of waveform
characteristics and PGD amplification coefficient can determine the damage time,
damage location, and damage degree of landslides. The landslide process can be
divided into three stages according to the equivalent crack ratio: rapid generation of a
large number of microcracks, expansion and aggregation of microcracks, and penetration
of micro-cracks and the formation of slip surfaces. The equivalent crack ratio provides a
new idea for evaluating slope stability. In addition, under the combination of different
amplitudes and weak interlayers, these earthquake-induced landslides exhibit different
failure modes: the failure of the gentle-dip slope is mainly local rockfall; The mid-dip and
steep-dip slopes with small amplitudes experience “tensile cracking-slip-collapsing”
failure; The steep-dip slopes under strong earthquake failed in the form of “tensile
cracking-slip-slope extrusion-collapsing”. The research results are of great significance
for a deeper understanding of the formation mechanism of rock landslides with weak
interlayers and the prevention of such landslide disasters.

Keywords: earthquake, dynamic response, failure modes, weak interlayers, continuum-discontinuum element
method (CDEM)
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INTRODUCTION

Rock landslide is one of the most common geological disasters in
mountainous areas (Wasowski et al., 2011; Kawamura et al., 2019;
Luo et al., 2019). Earthquake-induced landslides pose huge
threats to human activities and facility construction (Song
et al., 2021). Take the Wenchuan earthquake in Sichuan
Province, China in 2008 as an example, this earthquake
caused 3314 landslides and 1656 unstable slopes (Dai et al.,
2011). The volume of Daguangbao landslide induced by the
Wenchuan earthquake reached 1.16 × 109 m3, which is by far
the largest earthquake-induced landslide recorded in the world
(Cui et al., 2020). Therefore, special attention should be paid to
the dynamic response of rock slopes under earthquakes.

Among the many landslide-inducing factors, weak interlayers
are one of the most prominent (Huang et al., 2007). The slope
with weak interlayers is a common geological body. The weak
interlayers in the rock mass often have an unfavorable influence
on the engineering projects due to their relatively weak
mechanical properties, which is an important factor affecting
the deformation and instability of slopes. In recent years, scholars
have paid great attention to the seismic stability of weak sandwich
slopes (Huang et al., 2013; Huang et al., 2017). At present, the
research on the dynamic stability of weak sandwich slopes is only
carried out from one aspect (Xu et al., 2020). However, the
complexity of weak interlayers in actual landslides and the
immeasurability of their influence on the stability of slopes
require confirmation and analysis from many aspects. The
rock slopes slid suddenly and quickly along the weak
structural plane under the action of the earthquake, which
induced huge disasters, causing traffic paralysis, economic
losses, and casualties. However, the failure mechanism of rock
slopes with weak interlayers under earthquake action is still
unclear. Therefore, it is necessary to reveal the dynamic
response and failure modes of rock slopes with weak
interlayers under seismic excitation to provide guidance for
the prevention and control of landslides.

At present, the methods of investigation on earthquake-
induced landslides mainly include theoretical analysis, field
investigation, geological model test and numerical simulation
methods (Tang et al., 2009; Lin et al., 2018). The quasi-static
method (Terzaghi and Paige, 1950) and the Newmark method
(Newmark, 1965) are commonly used in theoretical analysis. The
theoretical analysis methods are simple and practical, and can
give clear evaluation indicators, so they are widely used in the
analysis of landslide engineering (Xu and Yang, 2018; Delgado
et al., 2020; Yiğit, 2020), but it is difficult to analyze complex
geological structures (Lin et al., 2018). Field investigation and
geological model test are the most commonly used methods to
study the dynamic stability of slopes. Based on field
investigations, the characteristics of landslides can be observed
(Zhao et al., 2018; Montgomery et al., 2020), but the gradual
failure process of landslides is lacking and it is time-consuming
and expensive (Tang et al., 2020). To supplement the
shortcomings of field investigations, geological model tests
have become a hot topic in the research field of slope dynamic
stability. As an important method of slope stability evaluation, the

geological model test has been widely recognized for its
practicality and professionalism (Seisdedos et al., 2012; Yang
et al., 2018). The geological model test can directly reflect the
stability of the rock slopes under earthquake, and provide a basis
for the verification of the results (Li et al., 2016). However, this
method is affected by factors such as size effect, a similar design of
the model structure, boundary conditions, and the level of
experimenters. There is a certain gap of dynamic response
between the test results and the actual landslides (Xu and
Dong, 2021). Therefore, numerical simulation has been
becoming a powerful method to research rock landslides
under earthquakes (Deng et al., 2020). Numerical simulation
has become the mainstream method for the stability analysis of
earthquake-induced landslides under complex geological
structures due to its advantages such as realistic reflection of
the landslide process, easy modeling of complex geological
structures, and reproducibility (Zhu et al., 2011; Liu et al.,
2018; Song et al., 2020). The common numerical simulation
methods are mainly based on the continuum and
discontinuum-based methods. Continuum-based methods can
simulate the actual dynamic motion of landslides. For example,
the finite element method (Martino et al., 2018; Yu et al., 2019;
Sangirardi et al., 2020) and finite difference method (Marcato
et al., 2012; Yu et al., 2014) are applied to the study of slope
dynamic stability. However, the continuous method is difficult to
simulate large deformation and cracking, and cannot give the
failure evolutional process of sliding initiation and expansion to
large-scale sliding. For discontinuous geological bodies, large
deformation, and stress concentration, the continuum-based
method has great limitations (Chen and Song, 2021).
Discontinuum-based methods, since the separation and
displacement of the elements are not restricted, can simulate
the gradual progressive development process of landslides.
Benefiting from the above advantages of the discontinuous
method, the application of it to landslides simulation has
received widespread attention. The discrete element method
(Wu et al., 2018; Donati et al., 2020) and discontinuous block
analysis method (Lin et al., 2016; Liu et al., 2019; Do and Wu,
2020) have been extensively used in the field of rock slope
dynamic failure research. However, discontinuum-based
methods can not reflect the continuous state of material before
failure. And the low computational efficiency is a common
problem with discontinuum-based methods, which makes it
time-consuming to perform large-scale simulations (Bao et al.,
2019). The whole failure process of rock slope from continuum to
discontinuum needs more in-depth study. Continuum-
discontinuum element method (CDEM) is a new numerical
method suitable for the analysis of geological hazards that has
emerged in recent years (Feng et al., 2014). CDEM method can
not only simulate the deformation and movement characteristics
of the material but also realize the transformation of the material
from the continuum to the discontinuum. Previous studies have
shown that the CDEM method has unique advantages in
simulating geological disasters such as landslides (Feng et al.,
2014; Li et al., 2015).

In this study, based on field investigations and laboratory rock
mechanics tests, accurate rock physicomechanical parameters
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were obtained, which provides a basis for numerical simulation.
Considering the influence of the amplitudes and the weak
interlayers dips, we carried out a series of numerical tests with
the CDEM method. The waveform characteristics, PGD
amplification effect, and equivalent crack ratio are analyzed
according to the numerical simulation results, and the failure
modes and dynamic development process of rock slopes with
weak interlayers under earthquake action are studied, which
provides a scientific basis for a deeper understanding of the
dynamic characteristics of rock landslides with weak
interlayers. As such, the simulation results presented here can
provide a reference for related future research and guidance for
the seismic design of this type of landslide.

Study Area
The study area is located in the northwestern part of Yunnan
Province, China (Figure 1A). Due to the close proximity to the
suture zone where the Indian plate and the Asia-Europe plate
collide, the tectonic movement in this area is unusually intense,

and many active faults have developed as a result. Under the
influence of violent tectonic movement and surface
biodynamics, various geological phenomena such as
landslides, avalanches, and rock weathering have appeared
here. As shown in Figure 1B, the rock slope in this area is
stepped with a gradient of 30–40°. The surface is exposed to tight
basalt, almond basalt, and volcanic breccia lava. There are many
weak tuff layers, which are broken owing to structural
dislocation, scattered in the rock mass. The rock slope
studied is a bedding slope, mainly composed of basalt. And
there are three sets of weak tuff interlayers with steep dip angles
on the slope. Based on the surveyed engineering geological
conditions, the main factors affecting the stability of slopes
are topographic conditions, rock properties, rock mass
structural planes, weak interlayers, and external loads. The
slope remains relatively stable under natural conditions, but
the stability under seismic loads needs further research.
Especially the combined effect of seismic load and weak
interlayers is the principal factor controlling slope stability.

FIGURE 1 | (A) Location of the landslide, Yunnan Province, China, (B) The longitudinal geological profile of the landslide.
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NUMERICAL MODEL

Principle of CDEM
Continuum-Discontinuum Element Method (CDEM) is a new
type of numerical method developed on the basis of the rigid
block discrete element method. In the numerical simulation, the
computational domain is generally discretized into units for

calculation. For these elements, they can be
continuous(corresponding to the finite element method),
discontinuous(corresponding to the discrete element method),
and partially continuous(corresponding to the CDEM method),
as shown in Figure 2A (springs include normal and tangential
springs). The finite element method is used to solve completely
continuous problems, while the discrete element method is

FIGURE 2 | (A) Comparison of computational domains FEM, DEM, and CDEM; (B) 2D contacts in CDEM contacts A2 - B1 and A4 - B3.

FIGURE 3 |Relationship between the bonding stress and opening sliding displacement (A) under compression and tension conditions; (B) under shear and sliding
conditions.
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suitable for fully discontinuous problems, generally. CDEM
combines the advantages of continuous calculation and discrete
calculation, that is, finite element calculation in the block and
discrete element calculation at the boundary to realize the
progressive failure process of the rock mass. As shown in
Figure 2B, the computational domain in CDEM is composed of
blocks and virtual interfaces. The blocks, composed of finite element,
is used to calculate the elastic, plastic and other continuous
properties of rocks. The virtual interfaces refer to the common
boundaries between blocks, which are composed of normal penalty
springs and tangential penalty springs, and their cracking and
sliding can characterize the discontinuous features of rocks.

In the CDEM calculation, the constitutive of the tensile-shear
composite interface based on the fracture energy is used to
calculate the fracture of the rock virtual interface. Use the
following equations to calculate the contact forces at the next
time step on the interface:

Fn(t1) � Fn(t0) − knAcΔun (1)

Fs(t1) � Fs(t0) − ksAcΔus (2)

where Fn and Fs are contact forces of the normal and tangential
penalty spring, respectively; kn and ks are contact stiffness of the
normal and tangential penalty spring (Pa/m), respectively; Ac is

the contact area; Δus and Δun are the relative displacement
increment in tangential and normal directions, respectively.

The tensile failure criterion is expressed as follows:

If − Fn(t1)≥ σ t(t0)Ac (3)

thenFn(t1) � −σ t(t0)Ac (4)

σt(t1) � −(σt0)2Δun/(2Gft) + c0 (5)

where σt0, σt (t0) and σt (t1) are the tensile strengths at the initial
moment, this moment and the next moment, respectively; Gft is
the tensile fracture energy (Pa·m).

The shear failure criterion is expressed as follows:

If Fs(t1)≥Fn(t1) tanΦ + c(t0)Ac (6)

thenFs(t1) � Fn(t1) tanΦ + c(t0)Ac (7)

c(t1) � −c20Δus/(2Gfs) + c0 (8)

where c0, c (t0), and c (t1) are the cohesion at the initial moment,
this moment and the next moment, respectively; Φ is the internal
friction angle of the virtual interface; Gfs is the shear fracture
energy (Pa·m).

According to the above description, the tensile-shear
constitutive curve considering the fracture energy is drawn as
shown in Figure 3.

FIGURE 4 | Flowchart of the iteration process in CDEM.
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CDEM is a dynamic explicit solution algorithm based on
breakable elements under the Lagrangian system, and is solved
by the explicit Euler forward difference method based on the
incremental method. The solution is divided into three steps: (1)
calculate the deformation force and damping force of the blocks
by cycling each finite element; (2) cycle each contact surface to
calculate the connection force and damping force of the contact
surface; (3) cycle all nodes to calculate the joint external force,
acceleration, velocity, and displacement. The specific calculation
process is shown in Figure 4.

Numerical Modeling
In the numerical simulation, the effects of different weak
interlayer dip angles and amplitudes are considered. Three
groups of weak interlayer dip angles, i.e. 15°, 30°, and 45°, are
analyzed; and four groups of input amplitudes, i.e. 0.3, 0.5, 0.8,
and 1.0 g, are studied. Table 1 shows the specific calculation
scheme.

Figure 5 shows the slope geometry, monitoring point layout,
and grid division in the numerical simulation. All of the slope
height is 450 m. For dynamic calculations, to eliminate the
influence of artificial boundaries, the bottom of the model
adopts a viscous boundary, and the normal displacement of
the bottom is fixed. Use free field boundaries on the left and
right sides of the model to absorb false vibrations. Apply sine
waves of different amplitudes at the bottom of the model, and
Figure 6 shows the amplitude time history curve. In CDEM, to
impose a dynamic load of stress-time history on the viscous
boundary, it is necessary to integrate the acceleration time history
into a velocity-time history and then convert it into a stress-time
history. The conversion expression is as follows:

σn � 2(ρ · Cp)vn (9)

σs � 2(ρ · Cs)vs (10)

where Cp is P-wave velocity and Cs is S-wave velocity; vn and vs
represent normal and tangential velocity, respectively. In the
numerical calculation, 12 monitoring points are set up on the
slope surface and in the slope, to monitor the acceleration of the
slope. The test results can be used to study the acceleration change
characteristics and amplification effects, so as to analyze the
dynamic response.

In CDEM, the selection of material parameters is important
content. The material parameters in CDEM include bulk
parameters that characterize continuity and numerical spring
parameters that characterize discontinuity. In this study, the
block parameters are obtained based on experiments. Table 2
shows the rock block parameters used in numerical simulation,
and Table 3 gives the numerical springs parameters. The micro-
parameters parameters used in the numerical modelling can be
determined by the method in the published papers (Li et al.,
2006; Feng et al., 2014; Li et al., 2015). Among them, use the
following equation to calculate the normal stiffness and
tangential stiffness:

K � AEr/(2T0) (11)

where A is the contact area, Er denotes the young’s modulus, T0
denotes the thickness of the structural layer, and its size is usually
1% of the size of the block.

The expressions of tensile fracture energy and shear fracture
energy are as follows:

Gft � K2
IC/E (12)

Gfs � (1 − v2)K2
IIC/E (13)

where KⅠC and KⅡC are tensile and shear fracture toughness.
To ensure the correctness of the numerical calculation results,

the validity of the parameters used is verified by a uniaxial
compression test. Figure 7 shows the geometric model and
results of the uniaxial compression test.

ANALYSIS OF SIMULATION RESULTS

The failure modes of landslides are studied by analyzing the
failure process, waveform characteristics, amplification effect, and
crack ratio in this section.

Analysis of Landslide Failure Process
The dynamics failure process of the landslide is shown in
Figure 8. Figure 8A; Figure 8B show the displacement
distributions ((A) 0.5 g amplitude; (B) 1.0 g amplitude) of the
failure process of the slope with 15°-dip-angle weak interlayers.
Figure 8A; Figure 8B shows that the slope with 15° inclination
angle weak interlayers is only partially damaged under the action
of earthquakes with different amplitudes, but does not reach the
overall instability slip. This kind of slope has similar failure
disciplines under the effect of earthquakes of different
amplitudes: (1) The contact surface of weak interlayers was
damaged and broken (t � 0.1–4.0 s); (2) Vertical tension
cracking occurred on the back edge of the slope. The rock
mass on the slope surface, meanwhile, was damaged to
generate micro-cracks since the amplification effect of the
seismic wave (t � 8.0-12.0 s); (3) The tensile crack at the
trailing edge of the slope widened and continued to spread
downward, but it never penetrated the fracture surface
produced by the weak interlayers. This is the reason why the
overall slip failure did not occur under these conditions. In
addition, for the damaged weak interlayers that have a

TABLE 1 | Calculation conditions in numerical simulation.

No Weak interlayer dip
angles (°)

Amplitude (g)

1 15 0.3
2 0.5
3 0.8
4 1.0
5 30 0.3
6 0.5
7 0.8
8 1.0
9 45 0.3
10 0.5
11 0.8
12 1.0
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downward sliding trend, the broken rock blocks were driven to
slide downward, forming a small number of falling rocks (t �
16.0-19.8 s). It is noted that when the amplitude is small
(0.3–0.8 g), the slope failure mainly occurs above the third

weak interlayer, and the weak interlayers play a principal role
in slope failure. As for large amplitude (1.0 g), the slope toe was
damaged (Figure 8B), indicating that the effect of strong
earthquakes is greater than that of weak interlayers. The toe of

FIGURE 5 |Model geometry, monitoring point layout and grid division (A) weak interlayers dip is 15°, (B) weak interlayers dip is 30°, (C) weak interlayers dip is 45°.
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the slope was squeezed out under the action of strong earthquakes
due to stress concentration.

Figure 8C; Figure 8D show the displacement distributions
((C) 0.5 g amplitude; (D) 1.0 g amplitude) of the failure process of
the slope with 30° dip angle weak interlayers. From Figure 8C;
Figure 8D, the slopes with 30°-dip-angle weak interlayers are
completely destroyed under the action of earthquakes, and the
final slip surface is mainly controlled by the third weak interlayer.
Under different amplitudes, the failure process of slopes shows
similar disciplines: (1) Damage and cracking occurred on the
contact surfaces of the weak interlayers (t � 0.2 s); (2) Vertical
tension cracks occurred on the back edge of the slope. At the angle
between the fractured surfaces and the weak interlayers, the rock
masses were destroyed due to stress concentration, and a small
amount of rock fell (t � 4.0 s); (3) The tensile cracks on the back
edge widened and expanded downwards, intersecting with the
first weak intercalation, and the rock masses above the first weak
interlayer slipped downward (t � 8.0 s); (4) The trailing edge
cracks continued to propagate downward, and successively
penetrated the second and third weak interlayers (t � 12.0 s
and t � 16.0 s), causing the rock masses above the third weak
interlayer to collapse. Finally, the overall collapse was formed (t �
19.9 s). It is worth mentioning that when the amplitude is small
(0.3 and 0.5 g), no damage occurs at the slope toe, and the third
weak interlayer is the control sliding surface, where in the case of
large amplitude (0.8 and 1.0 g), the slope toe is damaged. The rock
mass below the third weak interlayer appears buckling failure, but
no new slip surface is formed.

Figure 8E; Figure 8F show the displacement distributions ((E)
0.5 g amplitude; (F) 1.0 g amplitude) of the failure process of the
slope with 45°-dip-angle weak interlayers. From Figure 8E;
Figure 8F, the slope with weak interlayers with an inclination
angle of 45° has overall instability and destructiveness. The failure
process is expressed: (1) The contact surfaces of the weak

interlayers were damaged and cracked (t � 0.4 s); (2) Vertical
tension cracks occurred on the back edge of the slope. The rock
mass above the third weak interlayer, meanwhile, slipped as a
whole (t � 2.6 s); (3) The cracks on the trailing edge were widened
and extended downwards to penetrate the weak interlayers. The
slope top blocks collapsed (t � 6.1–8.6 s); (4) Under the control of
the weak interlayers, the slope fell as a whole. There are different
final failure modes under different amplitudes. Under the
condition of an amplitude of 0.3 g, the slope toe does not
damage, and the final slip surface is controlled by the third
weak interlayer; In the case of an amplitude of 0.5 g, the slope
toe undergoes extrusion failure and the rock masses below the
third weak interlayer buckle, but no new slip surface is formed;
The rock masses below the third weak interlayer are destroyed as
a whole and penetrates through the upper slip surface to form a
new integral slip surface when the amplitude is above 0.8 g.

Analysis of Waveform Characteristics
In the numerical simulation, 12 monitoring points are arranged
(Figure 5). Obtain the acceleration time-history curve from the
acceleration data of the monitoring points. Figure 9 shows the
acceleration time-history curves with weak interlayers inclination
of 15° under the input wave of amplitude 0.5 g. According to
Figure 9, the waveform fluctuates uniformly throughout the
entire process without obvious discrete points at the two
monitoring blocks A1 and A2, indicating that there is no
damage at the two places, that is, no damage occurs below the
third weak interlayer. The waveforms of A3-A6 produced
different degrees of fluctuation dispersion phenomenon at
different moments. After the first fluctuation dispersion, there
will still be multiple wave dispersion phenomena in a relatively
short period, and then enter the relatively uniform fluctuation
phase. The reason for this phenomenon is that: when discrete
fluctuations appear for the first time, it indicates that the
connection of the monitoring block is broken and microcracks
are generated, which leads to a sharp change in acceleration.
However, the constraints between the monitoring block and the
adjacent blocks have not been completely lifted, and the collision
between the blocks makes the acceleration change drastically.
After the connection between the monitoring block and the
adjacent blocks is completely broken, the monitoring block

FIGURE 6 | Harmonic waves used as input base excitations.

TABLE 2 | Parameters of block elements in the numerical calculation.

Name ρ (kg/m3) E (GPa) ν (-) c (MPa) T (MPa) Φ (°)

Basalt 3000 20 0.23 1.5 1.3 43
Tuff 2500 8 0.3 0.5 0.45 38
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slides out or flies out, and the acceleration fluctuates uniformly,
that is, the waveform is uniformly distributed. As shown in
Figure 9, A7-A12 monitoring blocks all have discrete
waveform fluctuations at different times, indicating that
damage occurs inside the slope at different times. After
damage, the waveform fluctuates uniformly or discretely again.
The reason is that: the A7-A12 monitoring blocks are located
inside the slope. After the damage occurs, the damaged
monitoring block cannot slide due to the constraints of the
surrounding blocks, so the waveform is evenly distributed.
However, the damaged block may suffer connection damage
again, causing discrete fluctuations in the waveform again.

According to the above analysis, for the calculation condition
with weak interlayers inclination of 15° and an amplitude of 0.5 g,
no damage occurs at A1-A2, that is, no damage occurs below the
third weak interlayer. The different degrees of damage occurred at
A3-A6, indicating that under the influence of the weak
interlayers, the upper part of the slope appears to be damaged
and slipped, and the weak interlayers are the key cause of slope
instability. Different degrees of damage occurred in A7-A12,
indicating that the earthquake will cause internal damage to
the slope and produce more micro-cracks. These micro-cracks
are unstable factors that threaten the safety of the slope. More, the
sequence of a slope failure can be determined by using the time
when the discrete waveform appears. The time sequence of slope
failure is A6, A5, A4, A3 at the slope surface, indicating that with
the effort of the weak interlayers, the upper weak interlayer is
destroyed first, driving the rock above the upper weak interlayer
to slip, and then the lower rock layer is successively destroyed. In
the interior of the slope, A7-A10 are destroyed first, A11 and A12

are destroyed in sequence, and the order of destruction is from
the top to the bottom of the slope.

Other calculation conditions show similar disciplines. It is
worth mentioning that under these two conditions, the slope toe
(A1) and the lower part of the weak interlayer (A2) were
damaged, and the third weak interlayer (A3) was the first to
fail and slip. This is because when the inclination angle is
relatively large, seismic action is no longer the only dominant
factor in slope failure. The combined effort of the earthquake and
geological structure makes the third weak interlayer break out
first, and then drive the upper rock formation to slide.

Dynamic Amplification Effect Analysis
The amplification effect of the slopes takes into account the
influence of the weak interlayers dip and the amplitude of the
seismic load. Here use the peak ground displacement (PGD) to
describe the dynamic response of the slopes. Introduce the PGD
amplification coefficient, i.e. the ratio of the PGD of any
monitoring point to the PGD at the slope toe (A1), and the
relative height (h/H), i.e. the ratio of the height of any monitoring
point to the height of the slope. Figure 10 shows the PGD
amplification coefficient under various calculation conditions.
As the height increases, the PGD amplification coefficient
increases first and then decreases overall.

From Figure 10A, for a slope with weak interlayers inclination
of 15°, the PGD amplification coefficient increases sharply in the
middle of the slope (A3, A4, and A5), indicating that this is the
main area of slope failure, that is, the slope failure is mainly
controlled by the weak interlayers under this calculation
condition. Note that the slope toe is not damaged when the

FIGURE 7 | Numerical verification for uniaxial compression testing in CDEM (A) model geometry and (B) failure curve and failure state.

TABLE 3 | Parameters of the contact elements in the numerical calculation.

Name kn (GPa/m) ks (GPa/m) Φ (°) c (MPa) T (MPa) GfI (Pa·m) GfII (Pa·m)

Basalt 200 20 43 1.5 1.3 120 40
Tuff 80 8 38 0.5 0.45 600 130
Interface 1.2 0.12 35 0.15 0.15 3 11
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amplitude is below 0.5 g, and the PGD amplification coefficient of
the slope lower part (A2) is very small; and when the amplitude is
above 0.8 g, the slope toe is damaged. The slope lower part (A2)

produces a large displacement, and its PGD amplification
coefficient also increases. Figure 10B shows the PGD
amplification coefficient of slopes with weak interlayers

FIGURE 8 | The failure process of the slope (A) 0.5 g-15°, (B) 1.0 g-15°, (C) 0.5 g-30°, (D) 1.0 g-30°, (E) 0.5 g-45°, (F) 1.0 g-45°.
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inclination of 30°. Similar to the inclination angle of 15°, the
amplification coefficient of PGD in the middle and upper part of
the slope increases sharply. The slope toe is not damaged when
the amplitude is 0.3 g, and the PGD amplification coefficient is
small, and when the amplitude is greater than 0.5 g, the PGD
amplification coefficient of the lower slope is increased due to the
damage of the slope toe. The slope with an inclination angle of
30°, different from the slope with an inclination angle of 15°, has

an overall slippage above the weak interlayers, so the overall PGD
amplification coefficient is very large. And the slope top (A6) has
a large slippage, where the PGD amplification coefficient is large.
Figure 10C shows the PGD amplification coefficient of the slope
with weak interlayers inclination angle of 45°. Under these
conditions, the slope toe is damaged. Because the slope toe
does not have a large slip as the amplitude of the slope is
below 0.5 g, its PGD is small, making the middle and upper

FIGURE 10 | Variation of PGD amplification coefficient with relative height (A) weak interlayers dip is 15°, (B) weak interlayers dip is 30°, (C) weak interlayers dip
is 45°.

FIGURE 9 | Acceleration time-history curve of calculation condition with weak interlayers of 15° and amplification of 0.5 g.
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PGD amplification coefficient very large. When the amplitude is
greater than 0.8g, the slope toe slides out, and its PGD is larger,
making the overall PGD amplification factor smaller. From
Figure 10C, the slope damage is mainly concentrated in the
middle and upper part for the effect of the weak interlayers.

Comparing the above results, the slope damage, when the
inclination angle is small (15°), mainly occurs in the middle and
upper part, especially in the middle part, indicating that the
failure of this type of slopes is mainly controlled by the weak
interlayers, and the third weak interlayer has the most obvious
effect. When the inclination angle is large (30° and 45°), the slopes
are damaged by sliding as a whole, even the slope toe fails, too. In
terms of the damage degree, the middle part of the slope is the
most serious, followed by the top and toe of the slope, indicating
that the weak interlayers still play an important part in the
damage to this type of slope. However, with the increase of
inclination angle and amplitude, the slope toe is squeezed out
under the dynamic loads, and the failure control surface of the
slopes change from the weak interlayers to the combination of
weak interlayers and slope toe.

Equivalent Crack Ratio Analysis
The concept of spring equivalent crack ratio is introduced to
characterize the slope failure degree. The definition formula of
spring equivalent crack ratio is:

R � S1/S0 (14)

where R is the spring equivalent crack ratio, S1 is the cumulative
value of the product of the spring damage factor and the area, and
S0 is the total contact area of the blocks. The equivalent crack ratio
under different calculation conditions is shown in Figure 11. As
the loading time increases, the equivalent crack ratio first
increases sharply and then gradually stabilizes. According to
Figure 11, the development of the equivalent crack ratio is
divided into three stages: (1) Rapid growth stage (t � 0–4.0 s).

At this stage, a large number of micro-cracks are rapidly
generated under seismic loads, providing basic conditions for
the subsequent failure of the slope. (2) Slowly increasing stage (t �
4.0–12.0 s). The increase in the equivalent crack ratio at this stage
is mainly due to the aggregation of the microcracks generated in
the previous stage, accompanied by a small number of new
micro-cracks, and the growth rate slows down. The
aggregation of micro-cracks promotes the failure of slopes. (3)
Stable stage (t � 12.0–20.0 s). The equivalent crack ratio increases
little at this stage, mainly because the aggregated cracks in the
previous stages gradually penetrate and form slip surfaces, which
makes the slope instability and failure. After the landslide failure
occurs, the accumulated energy is released, and no new
microcracks are generated, so the equivalent crack ratio
gradually stabilizes.

Figure 12A shows the variation of the final spring equivalent
crack ratio with the weak interlayers dip. When the amplitude is
small (0.3 and 0.5 g), as the inclination angle increases, the final
spring equivalent crack ratio gradually increases, and when the
amplitude is large (0.8 and 1.0 g), the final spring equivalent crack
ratio changes little as the inclination angle increases. This is
because when the amplitude is not large, the weak interlayers
have an important influence on slope failure. The seismic load,
with the amplitude increasing, becomes the dominant factor for
slope failure. As shown in Figure 12B, the final spring equivalent
crack ratio has a positive correlation with the amplitude. When
the amplitude is greater than 0.8 g, the final spring equivalent
crack ratio reaches about 0.7, and the slope reaches failure. It can
be seen that earthquakes, especially strong earthquakes, have a
devastating effect on slopes.

Seismic Failure Mechanism of Landslides
Based on the previous analysis, the numerical results reveal the
failure mechanism of landslides with different inclination angles
and amplitudes. When the inclination angle of the weak
interlayers is 15°, the slope is partially damaged without
overall slippage. The main form of slope failure is local
rockfall. When the inclination of the weak interlayers is 30°,
the slope will slip as a whole. The failure process of the slope can
be described as the weak interlayers cracking - tensile cracks
appearing on the trailing edge - the tensile cracks widening and
expanding downward - the tensile cracks penetrate the weak
surfaces and the sliding surface formed, and the landslide is
destroyed as a whole. The failure mode can be summarized as
“tensile cracking-slip-collapsing”. It is noticed that the slope toe
undergoes extrusion failure, but the overall slip surface is not
formed as the amplitude reaches 1.0 g. The failure mode of a slope
with weak interlayers inclination angle of 45° and an amplitude of
less than 0.5 g is akin to that of a slope with an inclination angle of
30°. When the amplitude is equal to or greater than 0.8 g, the
failure process is weak interlayer cracking–tensile cracks on the
trailing edge–tensile cracks widening and extending downwards -
slope toe extrusion–slipping surface penetration, and the overall
failure of the landslide. The failure mode can be summarized as
“tensile cracking-slip-slope extrusion-collapsing”. Therefore, it
can be seen that under different geological conditions, the leading
factors of landslide are different, and the combination of weak

FIGURE 11 | Variation of spring equivalent crack ratio with amplifications
(weak interlayers dip is 45°).
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interlayers and seismic load creates complex landslide
failure modes.

DISCUSSION

Research on the stability of weak interbedded rock slopes is a hot
issue. Many scholars have carried out research on this issue
through field investigation, geological model test, and
numerical simulation. Field investigation and geological model
test have their own limitations. As computer technology
developing rapidly, numerical simulation has become a good
choice for studying the progressive failure process of landslides
with complex geological structures.

The traditional numerical simulation methods, including the
finite element method (FEM) and discrete element method
(DEM), are widely used in calculating slope stability. The
finite element method usually cannot simulate the large
deformation and failure of rock slopes, especially the dynamic
slip process accompanied by the seismic load of complex
geological structures. The discrete element method can
simulate the large deformation and the entire failure process
of the slope, but due to its complex contact detection and low
calculation efficiency, large-scale calculations are time-
consuming. The CDEM method combines the advantages of
the two traditional numerical methods and can realize the
transformation of rock materials from continuum to
discontinuum. Studies have shown that it is an effective
method for simulating geological disasters such as landslides.

The CDEM simulation results show that different failure
modes occur under different weak interlayers and seismic load
combinations: local rockfall occurs in a gentle slope, “tensile
cracking-slip-collapsing” failure occurs in mid-dip slope, and
“tensile cracking-slip-slope extrusion-collapsing” failure occurs
in a steep slope. Besides, the waveform characteristics, PGD
amplification coefficient, and spring equivalent crack ratio

have consistent correspondence with the failure process of
landslides. The discrete fluctuations of the acceleration
waveform indicate the cracking failure of the rock blocks, and
the characteristics of the waveform reveal the failure location and
failure time of landslides. The sudden change of the PGD
amplification coefficient reflects the damaged location and
damage degree of landslides. It is worth mentioning that the
slope failure process can be divided into three stages according to
the spring equivalent crack ratio: equivalent crack ration rapid
increase stage, equivalent crack ration slow increase stage, and
equivalent crack ration stable stage. This reveals the failure
mechanism of landslides: under the action of the earthquake, a
large number of micro-cracks are rapidly generated first, and then
the micro-cracks are expanded and aggregated, and finally the
cracks penetrate to form a slip surface and cause a landslide. The
failure process of landslides can be divided and the failure
mechanism of landslides can be explained based on the
analysis of the equivalent crack ratio, which provides a
reference for the criterion of landslides.

However, CDEM numerical simulation in this study has its
own limitations. The real geological structure is in a three-
dimensional state, and it is difficult for two-dimensional
numerical simulation to accurately reflect the three-
dimensional motion characteristics of landslides. Also, the
variation of parameters that is not considered in this paper
will be an important factor for the failure modes. We will try
to carry out three-dimensional related research and parameters
discussion in future work. In addition, some laboratory
experiments contain important information for understanding
the mechanism of earthquake-induced landslides, which are of
high value for simulation and verification(Burridge and Knopoff,
1967; Parteli et al., 2005). We will consider these experimental
information in the future research. Although the simulation has
limitations, a reference to reveal the failure process and failure
mechanism of rock slopes under the combined action of weak
interlayers and earthquakes is provided. In addition, CDEM

FIGURE 12 | Variation of final spring equivalent crack ratio (A) with weak interlayers dips, (B) with amplitudes.
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method is not only suitable for earthquake-induced landslides
simulation, but also applied to model a broader range of landslide
types, for example, cumulative perturbations due to soil
instability processes(Feng et al., 2014; Yongbo et al., 2016).
CDEM method provides new ideas for studying geological
disasters such as landslides.

CONCLUSIONS

The CDEM method is used to numerically simulate the failure
modes and dynamic response of weak interbedded rock slopes
under earthquakes. Some conclusions can be drawn as follows:

1. The characteristics of acceleration waveform and PGD
amplification coefficient have strong consistency with the
landslide failure process. The discrete fluctuation of the
waveform reflects the damage location and time of the
landslide. The sharp change of the PGD amplification
coefficient reveals the landslide damage location and
damage degree.

2. The concept of spring equivalent crack ratio is introduced, and
the landslide development process can be divided into three
stages by using the change of spring equivalent crack ratio over
time: rapid generation of a large number of microcracks,
expansion, and aggregation of microcracks, and penetration
of micro-cracks and the formation of slip surfaces.

3. The combination of weak interlayers and seismic load causes
multiple failure modes of the landslide. For the gentle slope
(15°), local damage occurs on the slope, and the main form of
damage is rockfall. For a mid-dip slope (30°), the slope has an
overall failure, and the failure mode is “tensile cracking-slip-
collapsing”. For the steep slope (45°), “tensile cracking-slip-

collapsing” failure occurs when the amplitude is small, and
“tensile cracking-slip-slope extrusion-collapsing” failure
occurs when the amplitude is large.
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Effects of Rainfall on Mechanical
Behaviors of Residual-Soil Landslide
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Rainfall-induced landslides commonly occur in residual-soil layers of Chenzhou city, China.
Slope failure induced by rainfall is intimately related to changes in the mechanical property
and microstructures of residual soils. In this study, series of direct shear tests were
respectively conducted on four typical residual soils from the area of Chenzhou to study
influences of rainwater on their mechanical behaviors. Meanwhile, X-ray diffraction (XRD)
tests and scanning electron microscope (SEM) tests were also performed to investigate
microstructure characteristic of several types of soils. Experimental results revealed that
the shear strength of soils decreased with increasing water content and its development
trends were obviously influenced by the types of residual soils. Meanwhile, the shear
strength of soils increased with the increase of vertical loads, and the relationship between
them could be well expressed by a linear function. As water content increased, the
calculated cohesions and internal friction angles both decreased. XRD observations
implied that several residual soils showed rich clay minerals, including pyrophyllite, illite,
kaolinite and montmorillonite, etc. Microstructures of these soils presented a sheet-
structure system which was composed of various-sized clay particles. During
hydration, these clay minerals gradually transferred from a face-face arrangement to
face-edge or even edge-edge one, leading to the softening of clay particles and the
reduction of the contact force between soil particles.

Keywords: landslide, shear strength, residual soil, microstructure, mechanical behavior

1 INTRODUCTION

China is a country with frequent landslide activities. Landslide will seriously threaten the safety of
human life and property, e.g., Sugarwumei landslide in 2018, Shuicheng landslide in 2019 and
Manisales landslide in 2019, etc. The occurrence of landslides is normally related to mechanical
properties of sliding-surface soils, especially for the soil layers with poor properties (Zhang et al.,
2016; Xiao et al., 2021; Yin et al., 2022). Large number of studies demonstrated that landslides
commonly happen in rainy seasons because the rainfall causes the deterioration in the mechanical
property of slope soils. Wen et al. (2019) studied the triggering mechanism of rainfall on slow-dip
red-bed rock landslide and concluded that the formation process of landslides could be closely
classified into four stages: 1) the fracture development stage resulted from the rainfall infiltration; 2)
the shear-strength decreasing stage in the weak zone; 3) the rising stage of the pore water pressure
and uplift pressure; and 4) the instability and sliding process of slopes. Zhu et al. (2019) conducted
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laboratory model tests on the loess-mudstone slope under two
heavy rainfall patterns, and results revealed that the slope
instability both occurred on the loess-mudstone contact
surface. The creeping-fracturing instability happened under a
continuous strong rainfall, while a sliding-fracturing instability
occurred in an intermittent strong rainfall, which depended on
the infiltration rates of rainwater. Moreover, Miščević and
Vlastelica (2014) investigated the influences of weathering on
the stability of soft-rock slope and pointed out that the instability
modes of marl slope were primarily controlled by a weak surface
generated during the weathering process. Khan et al. (2017)
explored the failure mechanism of the shallow expansive soil
slope. Experimental results demonstrated that as rainwater
infiltrated along the surface cracks, shear strength of the soils
in the sliding zone obviously decreased, which was the main
reason of landslides. Therefore, it is necessary to study the
mechanical behavior of sliding-zone soils and its sensitivity to
water changes for assessment of the slope stability.

It is well recognized that the rainfall infiltration can cause a
dissipation of the soil suction and a reduction of the shear
strength when the unsaturated soil slopes are subjected to
rainfall (De Vita et al., 1998; Patuti et al., 2017). Farooq et al.
(2004) and Orense et al. (2004) pointed out that the pore pressure
inside slope soil gradually increased from a negative value to a
higher one with the infiltration of rainwater, and the effective
stress accordingly decreased until the failure occurred. The
strength of soil actually originates from frictional resistance
and bonding force between soil particles, which are associated
with fabric changes. Studies demonstrated that the shear strength
of unsaturated soils normally decreased with increasing water
content, and its reduction was intimately related to the soil
property, e.g., microstructure, mineral composition, the stress
history and the original fabric (Fredlund et al., 1996; He et al.,
2020, 2021; Zhang et al., 2021). For unsaturated sandy soils, the
capillary force between soil particles reduces and the cohesion
generated by the capillary water decreases during the infiltration
of rainwater. Meanwhile, small sand particles are likely to
transport through large inter-particle pores under high
groundwater pressure (Bai et al., 2021a; 2021b). While for
unsaturated clayey soils, the interaction between clay particles
was controlled by the absorptive force of absorbed water and the
capillary force of capillary water. The shear strength of soil was
dominated by the absorptive force in low water contents (or high
suctions), while in high water contents (or low suctions), the
change of shear strength was primarily influenced by the capillary
water (Mitchell and Soga, 2005; Lu, 2016). Therefore, the rainfall-
induced strength changes for clayey soil appear to be more
complicate due to complex mineral composition and fabric
changes.

In this study, several typical residual soils were extracted from
the landslide zones in Chenzhou, Hunan province. Series of shear
tests, X-ray diffraction (XRD) tests and scanning electron
microscope (SEM) tests were carried out to investigate
mechanical property and microstructures of several soils at
varied water contents, respectively. The changes of strength
parameters (e.g., shear strength, cohesion and internal friction
angle) with water content were analyzed and the corresponding

mechanisms were clarified through microstructural observations.
These findings provide useful information for deeply
understanding the failure mechanism of residual-soil slopes.

2 MATERIALS AND METHODS

2.1 Materials
A western North Pacific Ocean severe tropical storm “Bilis”made
landfall on the southeastern coast of mainland China on 14 July
2006. The heavy rainfalls induced by Bilis attacked the Chenzhou
city in Hunan province and caused more than 8,000 landslides
and mudslides, which killed at least 394 people and left 97 people
missing (Ma and Tan, 2009). Field investigation found that most
of the landslide sliding zones are in residual soil layers. Figure 1
presents several typical residual soils widely distributed in this
area, including white silty-clay layer (WSC), gray coal-soil layer
(GCS) and red-clay layers (RC-I and RC-II). These soil layers are
normally considered as the main slip formations of landslides. In
this work, four types of residual soils above were selected and
remolded. Basic physical properties of these soils are listed in
Table 1. It can be seen that the natural water contents of four
types of soils are all lower than their liquid limits, with a highest
water content for the gray coal soil. Two kinds of red clay had
high liquid limits and initial void ratios. Figure 2 shows particle
size distribution curves of several soil samples. It can be found
that the fine-particles (<0.075 mm) content for all samples is over
than 80 %. Red clay sample has the highest clay content,
corresponding to a high specific surface area.

The preparation procedure of remodeled samples was carried
out with reference to the method proposed by GB/T 50123-2019.
The dry density of soil samples was 1.72 ± 0.2 g/cm3 and the
designed moister content range was between 16%–41%.

2.2 Test Instrument and Method
2.2.1 Direct Shear Test
According to the test method (Ministry of Housing and Urban-
Rural Development of the People’s Republic of China, 2019), a
strain-controlled direct shear apparatus was employed for
conducting direct shear tests. Four vertical loads (i.e., 100, 200,
300, and 400 kPa) were respectively applied on the soil samples
and a shear rate of 0.8 mm/min was adopted for a fast direct
shear. Meanwhile, direct shear tests were separately performed on
soil samples at various water contents to study effects of water
content on shear behavior. There were totally 84 samples for four
types of soils in the direct shear test, where 24 for WSC samples,
16 for GCS samples, 20 for RC-I samples and 24 for RC-II
samples.

2.2.2 X-Ray Diffraction Measurement
The soil samples were dried at 50°C in oven, finely ground and
screened through a 200-mesh sieve to obtain powders for
mineralogy characterizations. Characterization by XRD was
carried out using the random powder method (Sun et al.,
2019). The XRD measurement was carried out by D8 FOCUS
(Germany, Bruker) with CuKα radiation (λ = 0.15418 nm) at the
ambient temperature of 25°C, operating at 30 mA and 40 kV. The
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measured range was 3°–70° and the 2θ-scanning rate was 2°/min.
The JCPDS PDF database was used for the phase identification of
the XRD results.

2.2.3 Scanning Electron Microscope Test
To prepare samples of SEM tests, the soil samples were firstly cut
into small pieces with dimensions of 10 × 10 × 5 mm (length ×
width × height) and then rapidly immersed in the previously
vacuum-cooled liquid nitrogen. After that, the frozen samples
were freeze-dried for 24 h in a vacuumed chamber. SEM tests
were performed on the freeze-dried samples using a JSM-6490LV
electron microscope scanner.

3 RESULTS AND DISCUSSION

3.1 Shear Property of Residual Soils
Figure 3 shows the changes of shear strength with water content
for four soil samples. On the whole, the shear strength of all soil

FIGURE 1 | Typical residual soils in Chenzhou area: (A) WSC; (B) GCS; (C) RC-I and (D) RC-II.

TABLE 1 | Basic physical properties of typical residual soils.

Number Sample name Specific gravity Water content
(%)

Void ratio Liquid limit
(%)

Plastic limit
(%)

1 White silty clay 2.69 17.7 0.476 32.3 16.2
2 Gray coal soil 2.72 25.7 0.536 32.9 20.3
3 Red clay I 2.73 20.6 1.098 54.1 19.4
4 Red clay II 2.69 22.4 1.379 49.6 20.2

FIGURE 2 | Particle size distribution curves of several residual soils.
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samples decreased with increasing water content, but the shear
strength for each soil shows different developing trends. ForWSC
samples, the shear strength firstly decreased quickly with
increasing water content and then gradually tended to a
stabilization, as shown in Figure 3A. At a given water content,
the shear strengths of samples increased with the increase of
vertical loads. Similar phenomenon was also observed from the
curves of gray coal soil (Figure 3B). Results in Figure 3C
demonstrated that the shear strength of RC-I samples slightly
reduced as water content increased from 16% to 26%, whereas it
obviously decreased with a further increase of water content.
Different from RC-I samples, the strength changes for RC-II
samples were significant in low water contents, whereas the
reducing rate of shear strength became slower in high water
contents. According to the natural water contents of several soils,
the increases of water content nearby the natural value will cause
an obvious reduce of shear strength for WSC, GCS and RC-II
samples, excepting for RC-I sample.

Figure 4 presents changes of shear strength with vertical load
for soil samples at different water contents. Generally, the
relationship between shear strength and vertical load can be
described by a linear equation in Eq. 1. According to

experimental results in Figure 4, the fitting curves between
shear strength and vertical load could be obtained, and the
corresponding parameters ϕ and c are listed in Table 3,
respectively.

τs � σ tan ϕ + c (1)
where τs is the shear strength (kPa) of soil samples; σ is the applied
vertical load (kPa) on samples; ϕ is internal friction angle (°) and c
is cohesion (kPa). It is noted that for unsaturated soils, the
parameters ϕ and c in Eq. 1 are influenced by the water
contents, which is also confirmed from Table 2.

Figure 5 shows variations of cohesion c and internal friction
angle ϕwith water content, respectively. Results indicated that the c
values for WSC, GCS and RC-II samples firstly reduced obviously
and then gradually tended to a stable state, but it appeared that the
opposite developing trend was observed in RC-I samples. An
exponential function (Eq. 2) can be tried to describe the
relationship between the cohesion and water content, and the
corresponding fitting parameters are summarized in Table 3.
Comparison reveals that this fitting function could give high
correlation coefficients (R2), suggesting a good fitting

FIGURE 3 | Variations of shear strength with water content for (A) WSC samples; (B) GCS samples; (C) RC-I samples and (D) RC-II samples.
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relationship. Observations from Figure 5B showed that the
internal friction angle ϕ nearly decreased linearly with the
increase of water content. A linear function (Eq. 3) was used to
represent the relationship between ϕ and water content. Results in
Table 4 implied that this linear equation can well describe the

variation of ϕ values with water content, excepting for RC-I
samples.

c � αeβw + χ (2)
ϕ � aw + b (3)

FIGURE 4 | Relationships between shear strength and water content for (A) WSC samples; (B) GCS samples; (C) RC-I samples and (D) RC-II samples.

TABLE 2 | Fitting results for relationship between shear strength and vertical load.

Samples Water
content

(%)

ϕ C R2 Samples Water
content

(%)

ϕ c R2

WSC 16 12.298 72.403 0.986 RC-I 16 8.306 90.710 0.997
18 10.979 33.786 0.990 20 9.146 83.287 0.987
21 9.425 23.514 0.994 27 9.592 76.624 0.999
25 8.531 11.996 0.992 31 5.086 43.693 0.993
26 8.475 8.707 0.999 40 1.318 17.995 0.824
31 6.504 8.596 0.989 RC-II 21 11.860 106.600 0.943

GCS 25 17.589 57.42 0.980 23 12.462 71.828 0.956
30 15.855 33.713 0.963 24 11.034 55.330 0.992
32 16.066 25.805 0.980 27 7.970 32.279 0.983
41 13.604 13.585 0.998 29 8.419 21.573 0.993

37 5.370 5.830 0.918
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where α, β, χ, a and b are fitting parameters, respectively; w is
water content.

3.2 Mineral Composition and
Microstructure of Residual Soils
3.2.1 Mineral Composition Analysis
Figure 6 shows X-ray diffraction results of WSC, GCS and RC-I
samples. The mineral contents of soils are summarized in
Table 5. It can be seen from Table 5 and Figure 6 that the
white silty clay sample include rich clay minerals, especially
pyrophyllite and illite. Similar observations were also found in
gray coal soil, corresponding to 36% for pyrophyllite and 27% for
illite. Differently, the main mineral compositions of red clay were
kaolinite and quartz, as well as low montmorillonite (12%).
Moreover, X-ray diffraction spectra implied that the mineral

diffraction peaks for WSC and GCS soils were sharp due to a
high content of pyrophyllite, while those of RC-I soil were
relatively flat.

3.2.2 Microstructural Analysis
The SEM photos of white silty clay, gray coal soil and red clay
(RC-I) are illustrated in Figure 7. The microstructure of WSC
sample was composed of various-sized aggregates (1–30 μm),
which were consisted of clay particles. These clay particles
exhibited a loose arrangement with identified inter-particle
pores and a poor orientation with face-face and face-edge
connections, as shown in Figure 7B. Meanwhile, these large-
size pores (1–10 μm) between clay particles promoted the
connection of air or fluid inside soil, thus resulting in a high
permeability. Observations from Figures 7C,D revealed that the

FIGURE 5 | Variations of cohesion c and internal friction angle ϕ with water content for several residual-soil samples.

TABLE 4 | Fitting results for relationship between internal friction angle and water
content.

Samples Fitting parameters R2

A B

WSC −0.361 17.619 0.960
GCS −0.242 23.514 0.951
RC-I −0.314 15.092 0.625
RC-II −0.449 21.574 0.866

FIGURE 6 | X-ray diffraction spectra of soils in the study area.

TABLE 3 | Fitting results for relationship between the cohesion and water content.

Samples Fitting parameters R2

A B Χ

WSC 34945.338 −0.396 9.599 0.972
GCS 1,583.817 −0.139 8.035 0.994
RC-I -26.089 0.039 140.964 0.888
RC-II 9,309.764 −0.214 2.663 0.998
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coal-soil structure exhibited a sheet-structure system with an
orderly face-face arrangement and a strong orientation between
clay particles. Compared with WSC samples, the GCS samples
had smaller sized pores and a tighter structure. Thus, the
permeability for GCS samples was lower and the anisotropy in
mechanical property was more obvious. Similarly, red clay also

possessed a face-face structure. The soil particles were arranged in
an orderly manner with an obvious orientation. The stratification
between particles was discernible, but the boundaries and edges
between clay particles could not be clearly identified.

The residual-soil landslide induced by rainfall is substantially
due to the reduction in shear strength of the sliding-zone soils.
Results in Figure 3 have demonstrated that the shear strength of
soils decreased with increasing water content, indirectly
confirming that the rainfall process will cause a decrease in
shear strength of slope soils in the field environment. Actually,
the reduction of shear strength was actually attributed to
microstructural changes inside the soils. Several residual soils
studied in this study contained abundant clay minerals, e.g., illite,
kaolinite and montmorillonite. During hydration process, these
clay minerals would absorb water molecules, generating water
films on the surface of clay particles (He et al., 2019; Zhang et al.,
2020; He et al., 2022). As the thickness of water films increased,

TABLE 5 | Mineral compositions of typical residual soils.

Samples A V (%) O (%) H M W L N

WSC 41% 17 20 12% 4% — — Rest
GCS 36% 21 27 — — — — Rest
RC-I — 25 7 32% 12% 11% 3% Rest

A, pyrophyllite; V, quartz; O, illite; H, kaolinite; M, montmorillonite; W, limonite; L, anatase;
N, others.

FIGURE 7 | SEM photographs for (A) (B) WSC samples; (C) (D) GCS samples and (E) (F) RC-I samples.
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clay particles separate from each other and the cohesiveness
between them gradually reduced. Correspondingly, the clay
structure underwent softening and degradation, and the clay
minerals transferred from a tightly face-face arrangement to a
loosely face-edge or even edge-edge one, leading to a reduction in
mechanical strength (Zhang et al., 2016; Lu et al., 2021).

4 CONCLUSION

In this study, the mechanical property of typical residual soils
from a landslide zone was investigated by conducting direct shear
tests. Meanwhile, mineral composition and microstructures of
soil samples were also analyzed through XRD and SEM tests. The
obtained results allowed the following conclusions to be drawn:

The shear strength of soils gradually decreased with increasing
water content under constant vertical load, but the developing
trends of shear strength were influenced by the soil types. At a
given water content, the shear strength of all soil samples nearly
linearly increased with the increase of vertical loads. The soil
cohesion reduced with increasing water content and this change
could be well described by an exponential function.
Simultaneously, as water content increased, the internal
friction angle of soils nearly linearly decreased.

XRD analysis results implied that the main mineral
components for white silty clay and gray coal soil were
pyrophyllite and illite, corresponding to sharp mineral
diffraction peaks. Different from these two samples, red clay
had rich kaolinite and montmorillonite and its mineral
diffraction peaks were low. SEM observations revealed that
white silty clay was consisted of various-sized aggregates. The
clay particles inside aggregates exhibited a loose arrangement and
a poor orientation. Compared with white silty clay samples, the
gray coal soil samples showed an orderly face-face arrangement
and a strong orientation between clay particles. In red clay, the
soil particles were arranged in an orderly manner, but the

boundaries and edges between clay particles could not be
clearly identified. The clay minerals inside residual soils
absorbed water molecules upon hydration, generating water
films on the surface of clay particles. Clay particles separated
from each other and gradually transferred from a tightly face-face
arrangement to a loosely face-edge or even edge-edge one,
resulting in a reduction in the cohesive force between them.
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Influence of Debris-Flow Impact on
the Structural Stability of Check Dams
Song Eu1 and Sangjun Im2*

1Division of Forest Fire and Landslide, Department of Forest Environment and Conservation, National Institute of Forest Science,
Seoul, South Korea, 2Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences,
Seoul National University, Seoul, South Korea

Small check dams are widely used in the Republic of Korea to mitigate and prevent
sediment-driven damages by mountain torrents. This study aimed to quantify the
combined effects of debris-flow impact forces and earth pressures from dam
sedimentations on the structural stability of a dam by incorporating the change in the
longitudinal profile of the channel bed owing to sediment deposition. A debris-flow
simulation model (Hyper Kanako) was used to reproduce the debris-flow behavior
from the 2011Mt. Umyeon landslide (Seoul, The Republic of Korea). Finite element
analysis was conducted to analyze the structural stability of the check dam under
various debris discharge and sedimentation scenarios. The magnitudes of impact
forces that were exerted on the check dam ranged from 81.76 kPa under a non-
deposition scenario to 123.04 kPa under a 100% deposition scenario. The resultant
tensile and compressive stresses were found to be up to 0.80 and 0.35MPa, respectively,
which were lower than the maximum allowable strengths of the dam, securing sufficient
strength for the dam stability. Overall, the proposed approach can be applied to obtain a
better understanding of the resultant internal stresses experienced during debris flow and
sediment deposition, thereby providing valuable information for the structural analysis and
safety assessment of check dams.

Keywords: check dam, debris-flow impact force, structural stability, sediment deposition, finite element method

1 INTRODUCTION

Debris flows, which are fast-flowing and sediment-laden flows, represent a severe geological hazard
that occur in mountain streams worldwide. In the Republic of Korea, sediment-related disasters can
occasionally occur in high-gradient mountain streams, which cause catastrophic consequences and
thereby, threatening people living in downstream regions (Chae et al., 2017). Sediment-related
hazards can usually be managed by the establishment of sediment-retaining structures in the upper
or intermediate reaches of the stream of interest. In terms of torrent control structures, check dams
are basic transversal structures that effectively control the sediment and debris discharges of
mountain torrents over long periods of time (Hübl and Fiebiger, 2005; Marchelli and De Biagi,
2019). Dams perform an additional function of stabilizing a channel by trapping coarse sediment
particles and weakening the longitudinal gradient of streams (Seo et al., 2016; Bernard et al., 2019).

Check dams require special consideration from the perspective of structural stability to be
implemented successfully in steep terrains. According to previous studies of geomorphic changes
around check dams (Victoriano et al., 2018; Cucchiaro et al., 2019a; Cucchiaro et al., 2019b),
inadequate design of check dams can accelerate stream erosion, especially around the foundations
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and wings of the dams, and can result in long-term instability of
debris flow barrier structures. Thus, forest engineers or
professionals should consider sliding and overturning failure
modes in the stability assessment of check dams (Hübl et al.,
2009).

Additionally, a certain level of safety in check dams is
necessitated in their response to the external forces exerted by
the direct impact of debris flows. However, check dams often
experience structural failure or damage as a result of fast debris
flows accompanied by large stones, as highlighted by Baggio and
D’agostino (2022). Therefore, check dams must be designed to
endure high impact forces from debris flows (Chen et al., 2019).

Engineering concerns regarding the impact of debris flows on
structural design of check dams have increasingly attracted the
attention of researchers over recent decades (Hungr et al., 1984;
Hübl and Holzinger, 2003; Chen et al., 2019). Many studies have
been conducted to elucidate the dynamic interaction between
debris flows and check dams, including flow dynamics and
corresponding impact-force studies using real-time
observations (Hu et al., 2011) or flume experiments (Hübl and
Holzinger, 2003; Scheidl et al., 2013; Rossi and Armanini, 2019;
Sanvitale et al., 2021).

Some countries, such as Japan, Austria, and Hong Kong, have
formulated technical guidelines on considering the impact force
of debris flows in engineering design. Austria has established a
simple design method (ONR 24801 and 24802) that accounts for
the impact force, which is empirically derived from the debris-
flow velocity and its density (Huebl et al., 2017). Japan (NILIM,
2016a) considered both overflow and non-overflow conditions in
dam designing and proposed check criteria for the potential of
sliding failure due to internal and external forces, which are
exerted by hydrostatic pressure, earth pressure, and debris-flow
impact force. Similarly, Hong Kong (Kwan, 2012) evaluated
structural stability against sliding, overturning, and distress
failure. Hong Kong regulations imply that the lateral earth
pressure, derived from sediment deposition, is regarded as an
additional external force in the stability analysis. However, the
influence of debris flows on dam stability in the Republic of Korea
is poorly understood.

Japan (NILIM, 2016a) and Austria (Huebl et al., 2017) have
used empirical approaches to reflect the influence of debris flows,
which provide efficient solutions for robust check-dam designs.
Hong Kong (Kwan, 2012) used numerical models to simulate
flow behavior and quantified impact forces based on the
simulated flow characteristics. The maximum stress, driven by
debris-flow impact, represents an essential variable for dam
stability. Notably, the maximum stress varies because the
location of debris collisions can change with ongoing sediment
deposition. Moreover, changing spatiotemporal patterns of
sedimentation hamper the accurate estimation of the location
and magnitude of the maximum stress, which are often induced
by debris flows over the lifespan of the dam.

Various numerical approaches have been applied previously to
examine the structural behavior of debris-flow barriers under
different external forces (Bernard et al., 2019; Chen et al., 2019;
Song et al., 2019;Wendeler et al., 2019; Leonardi and Pirulli, 2020;
Brighenti et al., 2021). Recently, finite element analysis has been

applied to estimate changes in sediment discharge and deposition
near check dams by examining debris-flow behavior (Law et al.,
2016; Shen et al., 2020). Chen et al. (2019) conducted a study on
dam stability by analyzing the collapse of a dam, given that the
structural displacement was caused by a debris flow. However,
their analysis did not examine the stability of individual dams and
only focused on determining the most suitable location and
number of dams. Bernard et al. (2019) used hydraulic analysis
to quantify the influence of debris-flow discharge and its
corresponding impact force on an open-type check dam. They
analyzed the debris-flow impact force on the fins of a check dam,
but the structural behavior of the check dam was rarely discussed
in terms of variable debris-flow discharges.

Meanwhile, closed-type check dams are characterized by a
higher risk of damage when subjected to unplanned external
forces compared to open-type structures; such forces are inflicted
by debris-flow impact and sedimentation (Mizuyama, 1979).
Owing to this, an accurate design of check dams requires a
precise investigation of the distribution and magnitude of
potential internal stresses in the context of debris-flow
behavior and sediment deposition conditions.

This study examined the structural stability of check dams,
subjected to external forces that were induced by debris flows and
lateral earth pressure from sediment deposition. To this end, a
debris-flow simulation model (Hyper Kanako) was used to
reproduce the debris-flow behavior in the 2011 Mt. Umyeon
landslide (Seoul, The Republic of Korea). To pursue the main
aim of the study, we 1) incorporated the impact force, derived
from the hydraulic characteristics of the simulated debris flow,
and 2) analyzed the dam stability using different
sedimentation scenarios.

2 MATERIALS AND METHODS

2.1 Study Site
Before assessing the stability of the check dam, we simulated the
debris flow in the Hyoungchon watershed of Mt. Umyeon (Seoul,
the Republic of Korea), as shown in Figure 1. The area of the
analyzed watershed was 34.1 ha, while the main channel was
approximately 663 m long with an inclination of 13.6° of the
mean longitudinal slope (SMG, 2012). A fatal debris-flow event
occurred on 27 July 2011, in Mt. Umyeon and its surrounding
areas, resulting in 17 fatalities and causing extensive damage,
including mud flooding and the collapse of houses.

A field investigation shortly after this 2011 event revealed that
the debris flow in the watershed was a runoff-generated debris
flow, the type of which was reported by Imaizumi et al. (2006) and
Coe et al. (2008). It was initiated by surface runoff, which caused
the erosion of soil materials on a steep slope at the uppermost part
of the channel (SMG, 2012). The eroded soil mixtures were
transported down steep channels and entrained sediments in
the channel bed. The initiation process is similar to that of runoff-
generated debris flow reported by Simoni et al. (2020).
Approximately 3,800 m3 of sediment was discharged from
eroded slopes in the source area and several tributary
branches. After the debris-flow disaster, various
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countermeasures, including a series of check dams, were
implemented to protect steep streams and unstable hillslopes
from subsequent rainfall.

2.2 Debris-Flow Simulation
2.2.1 Debris-Flow Simulator
An accurate debris-flow simulation is essential for quantifying
debris-flow behavior and for assessing its influence on structural
stability with countermeasures designed in areas prone to
sediment-related disasters. The debris-flow event in the
Hyoungchon watershed in 2011 was quantitatively reproduced
using a debris-flow simulation model. Although various models
have been developed, Hyper Kanako (Horiuchi et al., 2012) was
utilized in this study to simulate the debris-flow behavior.
Kanako, initially developed in Japan, is a physical-based one-
dimensional computational model that evaluates the influence of
engineering structures on debris-flow propagation with a
graphical user interface (GUI) (Nakatani et al., 2008). The
updated release of Kanako, Hyper Kanako, embeds an
integrated system with one- and two-dimensional (2-D)
models to simulate debris flows with a GUI in a geographic
information system (Uchida et al., 2013).

Kanako simulates debris-flow propagation in a channel and
deposition forming an alluvial fan by using the mass and
momentum conservation and entrainment rates. Notably,
Kanako is advantageous because it can simulate the flow
characteristics of a debris flow, which are affected by the
installation of check dams (Nakatani et al., 2008; Nakatani,
2010). The model is fundamentally based on the following
governing equations: the continuity equation (see Eq. 1), the
mass conservation equation of sediment concentration (Eq. 2),
the momentum conservation equation in the x-(Eq. 3) and
y-directions (Eq. 4), and the entrainment sub-model (Eq. 5).
The expressions for each equation in the 2-D simulations are
shown below:
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where h is the flow depth, z is the height of the channel bed, H is
the flow elevation (h + z), C is the volumetric sediment
concentration, t is time, g is the gravitational acceleration, and
ρ is the density of the interstitial fluids comprising the debris flow.
u is the flow velocity in the flow direction, denoted as x, and v is
the flow velocity in the lateral direction, represented by y.

The component i in Eq. 5 reflects the entrainment rate,
proposed by Takahashi and Nakagawa (1991). They assumed
that the entrainment of debris flows was mainly governed by
sediment concentration and mobility, and the empirical formula
for the entrainment was derived through a flume experiment; δd
and δe are empirically derived coefficients of deposition and
erosion, respectively.

C* is the sediment concentration in the movable bed layer, and
C∞ is the equilibrium sediment concentration of the debris flow
on the current channel slope, determined by Eq. 6:

C∞ � ρ tan θ

(σ − ρ)(tan ϕ − tan θ)
(6)

where ϕ is the internal friction angle, and the range of C∞ is 0.3 ≤
C∞ ≤ 0.9C*.

The rheological terms, τx and τy, reflect the shear stress that
acts on the channel bed in the respective direction based on the
dilatant model, introduced by Takahashi and Nakagawa (1991).
The dilatant model, commonly used for stony debris flows where

FIGURE 1 | (A) Location of the Hyoungchon watershed. (B) Boundary (yellow line) and debris flow channel (blue line) network of the watershed. The gray block in
the downstream region is the check dam analyzed in this study.
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shear stress is dominated by the inertial grain stress (Takahashi,
2014), stipulates that the dissipation of kinetic energy, expressed
as the shear stress, is dramatically increased due to particle
collision in the debris flow when its velocity increases.
Takahashi et al. (1992) conducted field investigations alongside
flume experiments and introduced a 2-D rheological model with
the coefficient Kd, dependent on the grain size and sediment
concentration, as indicated by Eqs 7, 8:

τx � ρd2

8{C + (1 − C) ρσ}{(Cp

C )
1
3 − 1}

2

u
������
u2 + v2

√
h2

(7)
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2.2.2 Model Parameters
Model parameters that describe debris-flow behavior should be
adjusted to reconstruct the given debris-flow phenomenon. In
this study, parameters were determined by referring to the
geological and soil characteristics, such as density, internal
friction angle, and mean coarse particle diameter, retrieved
from the field investigation at the time of the debris-flow
incident (SMG, 2014). As the values of the erosion and
deposition coefficients were not obtained directly from the

field investigation, we used estimates from previous studies.
The parameters used in Hyper Kanako execution are listed in
Table 1.

2.2.3 Channel Geometry
One of the important datasets for debris-flow simulation is the
topographic features of channels. However, due to the lack of
topographic data prior to the 2011 debris-flow event, the channel
geometry of the Hyoungchon watershed was derived from the
10 m × 10 m digital elevation model (DEM) extracted from the
2009 National Digital Topographic Map of the National
Geographic Information Institute (NGII, 2019). The National
Topographic Map was generated by combining aerial
photographs and ground survey data, and had a 1:5000 scale
(NGII, 2019). The geometry of the channel used in this study is
shown in Figure 2. Meanwhile, Hyper Kanako assumes a uniform
channel with a rectangular cross-section in a given portion of
stream. The debris-flow channel width was set to 10 m according
to the average width of the field investigation results (SMG, 2014).
As the erodible layer depth had a broad range of 0.5–2.0 m
according to field measurements, an average value of 1.5 m
was applied to all sections for the simulation.

2.2.4 Input Hydrograph
The empirical formulae, expressed in Eqs 9–11 (NILIM, 2016b),
derived from the initial volume of discharged sediment were
utilized to generate the input hydrograph of the debris flow, as
shown below:

∑Q � Vdpq · C*

Cd
(9)

Qsp � 0.01 ·∑Q (10)
Cd � ρ · tan θ0

(σ − ρ)(tanΦ − tan θ0) (11)

where Q is the total discharged amount of debris flow (m3), Vdpq

is the initial volume (m3), C* is the volumetric sediment
concentration of the channel bed, and Qsp is the maximum
discharge rate of the debris flow (m3 s−1). Cd, the volumetric
sediment concentration of debris flow on the mean channel slope

TABLE 1 | Summary of parameters and values used in Hyper Kanako.

Input parameter [unit] Value

Number of nodes along the channel 42
Spacing between nodes along the channel [m] 14.74
Simulation time [s] 1,200
Calculation time interval [s] 0.1
Mean debris particle diameter [m] 0.2
Particle density of channel bed sediments [kg m−3] 2,665
Density of interstitial fluids [kg m−3] 1,260
Internal friction angle [°] 29.2
Sediment volumetric concentration of channel bed (C*) 0.600
Erosion rate constant 0.0007
Deposition rate constant 0.05

FIGURE 2 | Schematic design of the debris flow channel. The black solid
line is the fixed channel bed, and the brown dashed line is the erodible layer.
The location of the check dam is represented as a black trapezoid.

FIGURE 3 | Hydrograph of simulated debris flow discharge.
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(θ0), was proposed by Takahashi and Nakagawa (1991), with the
range of 0.3 ≤Cd ≤ 0.9C*. Here, θ0 is the mean slope of the channel
that is calculated on the portion of the channel from the dam
location to 200 m upstream (NILIM, 2016b), and specified as
8.39°. ρ is the density of the interstitial fluid of the debris flow (kg
m−3), σ is the particle density of the debris in the debris flow (kg
m−3), and ϕ is the internal friction angle.

Figure 3 shows how the hydrograph was set, representing a Cd

of 0.32,Q of 7,127.49 m3, and Qsp of 71.27 m
3 s−1, with a duration

of 200 s. These estimates were based on the initial volume of the
debris flow (3,800 m3), approximated at the contributing source
area in the Hyoungchon watershed.

2.3 Estimation of Debris-Flow Impact Force
The external force exerted by a debris flow is generally considered
as a temporally variable dynamic load. Note that the time-
dependent interaction between debris flow and structure is a
significant concern in stability analysis. Specifically, some studies
on a single debris-flow surge (Scheidl et al., 2013; Lee et al., 2019;
Wang et al., 2020) have reported that the impact force was
substantially triggered by the collision of the first flow surge.
Subsequently, the preceding surge of debris flow was sequentially
deposited along the upstream reach of a dam, which acted as a
buffering barrier against the following sediment flow (Shen et al.,
2018; Ng et al., 2021). These results indicated that the maximum
impact force exerted by the debris-flow surge seemingly
represents the most important trigger for dam stability.

Various estimation methods have been used to quantify
debris-flow impact force (Hungr et al., 1984; Armanini, 1997;
Hübl and Holzinger, 2003; Scheidl et al., 2013). In this study, the
empirical model, developed by Hübl and Holzinger (2003), was
applied to quantify the debris-flow impact force (Eq. 12). This
model reflects the hydrodynamic behavior of debris flows (Proske
et al., 2011; Scheidl et al., 2013; Koo et al., 2017) and, most
importantly, it can be applied to a wide range of Froude number
conditions (Hübl et al., 2009; Suda et al., 2009), thereby reflecting
variations in the empirical coefficient in the model according to
Froude numbers (Proske et al., 2011; Scheidl et al., 2013). The
maximum debris-flow impact force was estimated from the

maximum velocity and depth of the debris flow approaching
the check dam using Eq. 12:

Pmax � 4.5ρmu
0.8(gh)

0.6 (12)
where Pmax is the maximum impact force (kN m−2), ρm is the
density of the debris-flow mixture (kg m−3), u is the debris-flow
velocity in the flow direction (m s−1), g is the gravitational
acceleration (9.807 m s−2), and h is the flow depth (m). To
calculate the impact force on the check dam, ρm, u, and h are
taken at the position of the check dam where the impact force
reaches the maximum value.

2.4 External Load Scenarios With
Sedimentation
As sediment particles are continuously deposited in the upstream
reaches of check dams over a long period, the stress distribution
applied on a check dam varies with sediment deposition. In this
study, five sedimentation scenarios were introduced, ranging
from the no-deposit condition immediately after dam
construction to the entire-deposit condition. In other words,
this study considered heights of sediment deposits of 0%, 25%,
50%, 75%, and 100% in relation to the dam height. Sediment
deposition in the upstream reach causes a change in the
longitudinal profile of streams, thereby modifying the flow
characteristics, such as flow velocity. Seo et al. (2016)
indicated that the channel bed slope became gentle at one-half
to two-thirds of the mean channel slope gradient (in percent) due
to the sediment storage effect of the check dam. Given this
concept, we assumed that the channel bed slope decreased to
half of the mean channel bed slope in the 200 m section upstream

FIGURE 4 | Changes in the gradient of the upstream reaches of the dam
according to the deposit scenario. The location of the check dam is
represented as a black trapezoid.

FIGURE 5 | Geometry of the central cross-section of the check dam.
The height to crest is 5 m. The upstream face has a slope of 1:0.2, and
downstream face 1:0.3. The base width is 4.05 m, and the width at the crest is
1.55 m.
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of the dam (Figure 4). Consequently, the debris-flow impact force
was quantified by considering the mitigated channel bed slope for
each deposit scenario.

2.5 Structural Stability Analysis
A finite element analysis was applied to examine the structural
stability of the Hyoungchon watershed check dam against
simulated debris flows, where the sediment deposition and
debris-flow impact force were considered. The check dam
stability was estimated using a 2-D plane for the central cross-
section under a prismatic debris-flow impact force. The
geometry of the central cross-section of the check dam is
shown in Figure 5.

Two-dimensional finite element analysis was performed using
the COMSOL Multiphysics 5.3 software (COMSOL AB, 2017).
COMSOL is a finite element solver, which is widely used in single
and multi-physics simulations. We further utilized the Structure
Mechanics Module in COMSOL to perform a principal stress
analysis. In this way, the tensile and compressive stresses were
quantified using the linear elastic model.

Furthermore, the structural stability was scrutinized by
comparing the estimated tensile and compressive stresses with
the allowable strengths of the check dam. The allowable strength
(21 MPa, Table 2) of the concrete material (KMLIT, 2012) was
applied as the compressive strength. As the analyzed dam is a
plain concrete structure without rebars, the tensile strength
induced by debris-flow impact force should be considered in
stability analysis. The tensile strength of the check dam was
estimated to be 2.89 MPa (Table 2) by considering the
relationship between the compressive strength and the tensile
strength (ft � 0.63

���
fck

√
, where ft is the tensile strength and fck is

the compressive strength) from KMLIT (2012). Moreover, the
common properties of concrete materials were applied by
referring to KFS (2014) for assigning the physical properties of
density, modulus of elasticity, and Poisson’s ratio.

We compared the allowable strengths and maximum stresses
acting on check dams through structural analysis. The
uncertainty in the load estimation was considered by
multiplying the respective factors of predefined loads. The
load factors of 1.2 and 1.6 were utilized for the dead and live
loads, respectively. The hydrostatic pressure, sediment earth
pressure, and debris-flow impact force were regarded as live
loads (KMLIT 2012).

Generally, concrete structures, including check dams, suffer
from time-dependent degradation of their mechanical properties.
However, it is difficult to define the age degradation rate of
strength induced by various environmental conditions.

Therefore, this study simply considered structural stability
with the strength reduction set at 0%, 25%, and 50% to ensure
the long-term stability of the structure.

3 RESULTS

3.1 Simulation of Debris Flow and Impact
Force
Figure 6 shows the overall profiles of simulated flow velocity
and depth at 200, 400, and 600 m. Simulations revealed a
maximum flow velocity of 14.15 m s−1 that occurred 177 m
from the source area after 42 s of flow. The maximum flow
depth of 1.81 m was found to be 236 m from the source area at
46 s of runtime. On the channel reaching 200 m downstream
from the source area, where the channel slope dramatically
changed (from 33% to 16%), the flow velocity decreased, and
sediment deposition occurred owing to the gentle slope
(Figure 7A). The design input for the sediment discharge
exhibited a peak discharge of 71.27 m3 s−1, resulting in the
highest flow 400 m downstream from the source area, with a
velocity of 9.72 m s−1 and depth of 1.32 m. It was found that,
after the peak flow passed, sediment mixtures started to deposit
in the 200–250 m reach and consequently accumulated in the
dam reservoir and deposit fan (Figure 7B).

TABLE 2 | Summary of parameters and values used in COMSOL Multiphysics.

Parameter [unit] Value

Density [kg m−3] 2,350
Modulus of elasticity [GPa] 25
Poisson’s ratio 0.2
Compressive strength [MPa] 21
Tensile strength [MPa] 2.89

FIGURE 6 | Time-series profiles of flow velocity (A) and depth (B) at
200 m (blue solid line), 400 m (orange dotted line), and 600 m (gray dashed
line) from the source area.
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The simulated debris flow entirely eroded the active layer in
the upper reach, and in-stream sediment was deposited 280 m
upstream from the dam site (Figure 7C). Note that the 2011
field observations had previously indicated that sediment
deposition occurred approximately 300 m upstream of the
dam (SMG, 2012). Therefore, Hyper Kanako can accurately
reproduce the location and the type of sediment deposition

along the stream. Moreover, the model is applicable for
simulating the entrainment pattern of debris flow in steep
mountain streams. Close agreement of the observed and
simulated debris volumes was discerned for the 2011 event.
The simulation results revealed that the debris flow
immediately filled the dam reservoir and then overflowed to
the downstream channel. This was identical to the debris-flow
tracks, estimated by the airborne image taken after the disaster,
as shown in Figure 8. Moreover, although the simulated
deposit area was discontinuous because of the coarse spatial
resolution (10 m × 10 m) of the computations, the extent of the
deposit pixels was comparable to that of the actual deposit area
in the 2011 event (Figure 9). During the simulation with
3,800 m3 of sediment input, 4,898.21 m3 of sediment was
eroded along the channel. The total deposit amounts of
sediments were estimated to be 8,434.13 m3, comprising
4,216.43 m3 deposited in the channel and 4,217.70 m3 in the
deposit fan. Reflecting that some parts of the debris flow were
discharged beyond the simulation boundary, the simulated
debris flow satisfied the sediment balance within the dam‒
channel network.

Regarding the trace of the debris flow, the Hyper Kanako result
seemingly exhibited close comparison to the actual 2011 debris-
flow event, despite some parameters being indirectly derived from
previous studies without adjustment. However, due to the lack of
data on the volume and area of erosional and depositional areas,
the model results could not be validated quantitatively against the
observed data.

The flow characteristics and impact force exhibited
considerable differences across the different deposit
condition scenarios (Table 3). The simulations with no dam
condition revealed that the maximum impact force was
approximately 132 kPa at a depth of 0.81 m, and the
velocity was 7.17 m s−1. When the check dam was installed
along the reach, the simulated depth, velocity of debris flow,
and associated impact force all decreased, to 0.59 m,
5.36 m s−1, and 81.76 kPa, respectively, for the no-deposit
scenario. The simulation under the entire-deposition (100%)
scenario indicated that the flow depth, velocity, and resultant
maximum impact force increased, to 0.77 m, 6.99 m s−1, and
123.04 kPa, respectively (Figure 10).

Under the no-deposit condition, sedimentation occurred at
two gentle sections with a gradient of less than 4%. Because of
the deposition in these sections, the sediment concentration
could have been decreased, which potentially affected the flow
characteristics of the debris flow. However, when
sedimentation scenarios were applied, the gradient of these
sections was 7%, which was steeper than the initial slope due to
sedimentation, as shown in Figure 4 in Section 2.4. As a result,
the debris flow could run downstream with a faster flow
velocity and less sediment deposition.

The flow depth was also affected by the deposition induced by
a gentle slope gradient. If sediment deposition in the check dam
reservoir was suppressed owing to a steeper slope, compared with
the original channel slope, the debris flow would contain more
sediment with increased flow rate, thereby deepening the flow.

FIGURE 7 | Change in the erodible layer after debris flow simulation
without a dam after (A) 80 s, (B) 140 s, and (C) post-simulation. The black line
is the fixed channel bed; the brown dashed and red dotted lines represent the
movable layer before and after debris flow, respectively. Note that
movable layers (brown dashed and red dotted lines) are not drawn at a realistic
scale; they are exaggerated by five times their actual values for visibility.
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Moreover, increasing the deposit height seemingly induces
changes in the flow characteristics and sediment
concentration, thereby affecting the debris-flow impact force.

3.2 Check Dam Stability
The results of the dam stability analysis, which elucidates the
influence of sedimentation and debris flow, are shown in Table 4.
This shows that the maximum tensile and compressive stress
values were lowest in the no-deposit condition, at 0.38 and
0.14 MPa, respectively. As the deposited depth increased, the
resultant tensile and compressive stresses increased to 0.80 and
0.35 MPa, respectively. The point at which the maximum
compressive stress was produced varied with the sediment
deposition; it was exerted on the middle of the collision
section in the face of the dam until 50% deposition was
achieved; under deposition conditions of more than 75% it
was exerted at the collision section of the debris flow and the
bottom of the downstream face (Figure 11).

Figure 11 shows that the maximum tensile stress occurred at
the bottom of the upstream face for all the deposition scenarios.
Our results demonstrated that the check dam had sufficient
strength against the maximum compressive and tensile
stresses, even under a 50% strength reduction by aging
degradation. Notably, this finding indicates that the check dam
satisfies the stability criteria for distress failure under the
combined conditions of sediment deposition and debris-flow
impact (Table 4).

4 DISCUSSION

Sediment deposition and debris-flow discharge are essential for
producing the external load to check dams; however, it is
inherently challenging to accurately reproduce debris-flow
characteristics by using numerical models. As a debris flow
approaches a dam, the flow velocity is attenuated because of
the rip current of the debris flow. When a debris flow reaches a
rigid wall, such as a check dam, it immediately runs up in the
vertical direction along the slope of the dam body (Iverson et al.,
2016; Koo et al., 2017; Shen et al., 2018; Ng et al., 2021).

FIGURE 8 | Result of debris flow simulation using Hyper Kanako. Flow depth at (A) 200 s, (B) 300 s, and (C) 400 s shows that the simulated flow path in the
deposit fan is similar to the observed damaged area (orange line).

FIGURE 9 | Result of simulated sediment using Hyper Kanako at
1,200 s. Although the simulated deposit fan is discontinuous, the sediment
deposition in the reservoir (yellow deposition pixels) was well simulated; the
total extent of deposition is also comparable to the actual deposit area in
the 2011 event (orange line).
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According to Sanvitale et al. (2021), the vertical jet of debris
discharge might overflow the check dam in an inertial-dominated
condition (higher Froude number); it falls down and becomes a
reflected wave into the upstream direction in a low Froude
number condition. This reflected wave induces a reduction in
the kinetic energy of the subsequent flow. Consequently, debris
materials are sequentially deposited in the upstream face of check
dams, which acts as a buffering barrier to reduce subsequent
debris-flow impact forces. However, as the deposit depth
increases, the piled-up debris extends to the top of the check
dam, and subsequent debris flows can overflow the dam.
Reflected wave and debris buffer effects can be somewhat
prolonged until the overflow occurs. Sediment deposition in

the check dam reservoir decreases the effective height of the
dam on the upstream side, thereby reducing the storage capacity
for sediment trapping and shortening the time to overflow.
Therefore, the dissipated impact energy may be weakened as
the deposit height increases, thus exacerbating the debris-flow
impact force.

This study had several limitations, including: 1) the
reproducibility of Hyper Kanako; 2) coarse spatial resolution;
3) simplicity of the entrainment model; and 4) difficulties in
simulating strict physical processes.

In terms of the reproducibility, the results of numerical
simulations should be quantitatively validated by comparisons
with observed data, including the area and volume of entrainment
(Gregoretti et al., 2019). This comparison was achieved with the
help of 3-D topographic data obtained from airborne
photogrammetry or LiDAR (Cucchiaro et al., 2019a;
Cucchiaro et al., 2019b; Gregoretti et al., 2019). In this study,
only airborne orthoimage was available to trace debris-flow
movement; therefore, the erosional and depositional areas in
the channel could not be quantified. Although a digital
topographic map was taken within a month of the debris-flow
event, most debris‒sediment mixtures in the deposit fan had
already been removed because they covered public roads and
residence areas.

The spatial resolution of the DEM obtained from the digital
topographic map was also a critical limitation of this study.
When a debris-flow impacts a check dam, the impact force
distribution continuously varies owing to the debris-flow
impact dynamics, such as the hydraulic processes of run-up

TABLE 3 | Simulation result for debris flow characteristics and impact force in each deposit scenario.

Deposit condition Flow depth [m] Flow
velocity [m s−1]

Maximum
impact force [kPa]

No dam 0.81 7.17 132.64
0% deposit 0.59 5.36 81.76
25% deposit 0.58 6.61 96.02
50% deposit 0.65 6.00 95.68
75% deposit 0.65 6.88 105.96
100% deposit 0.77 6.99 123.04

FIGURE 10 | Changes in debris flow impact force according to different
deposit scenarios.

TABLE 4 | Results of structural stability analysis.

Stress type Deposit condition Maximum stress [MPa] Factor of safetya (FS) considering strength reduction

100% strength 75% strength 50% strength

Tensile 0% deposit 0.38 7.63 5.72 3.81
25% deposit 0.25 11.75 8.81 5.87
50% deposit 0.45 6.48 4.86 3.24
75% deposit 0.73 3.94 2.96 1.97
100% deposit 0.80 3.61 2.71 1.80

Compressive 0% deposit 0.14 151.71 113.78 75.86
25% deposit 0.16 127.78 95.83 63.89
50% deposit 0.19 111.52 83.64 55.76
75% deposit 0.35 60.27 45.21 30.14
100% deposit 0.31 66.87 50.15 33.44

aFactor of Safety (FS) = Strength/Stress (stable when FS > 1.0).
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or reflected waves. As these dynamic phenomena only occur
locally, the spatial resolution for addressing the impact
dynamics should be sufficiently high to consider the

interaction between the debris flow and the check dam.
However, the spatial resolution of the DEM used in this
study was 10 m × 10 m, and the interval between spatial

FIGURE 11 | Results of tensile and compressive stress for each deposit scenario. Tensile stress distribution at (A) 0%, (B) 25%, (C) 50%, (D) 75%, and (E) 100%
deposition conditions; compressive stress distribution at (F) 0%, (G) 25%, (H) 50%, (I) 75%, and (J) 100% deposition conditions.
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nodes in the channel area was approximately 15 m. Given a
dam width of 4 m and height of 5 m, the data used in the
simulation were insufficient to reproduce the local dynamics
of debris-flow impact. Owing to this, we suggest that further
studies should analyze the debris-flow impact force exerted on
the check dam with higher precision and at a higher spatial
resolution, using data taken before and after a debris-flow
event, compared to those herein.

Moreover, the entrainment process in Hyper Kanako, which is
represented as an empirical relationship between the flow velocity
and sediment concentration, is likely insufficient to simulate the
impact dynamics. When Hyper Kanako simulates a debris flow
under the installation of check dams, this model assumes that the
momentum of the debris flow instantaneously becomes zero with
rapid sediment deposition until overflow occurs to avoid
numerical errors induced by discontinuous flow phenomena,
such as run-up or hydraulic jump when debris-flow impacts
(Nakatani, 2010). This simplification ensures stable numerical
solutions for deposit fans situated downstream of check dams.
However, it could reduce the accuracy of the estimation of the
debris-flow impact load.

Further analysis is needed to ensure the long-term stability
of a check dam by considering several factors. First, the impact
force can be set to reflect an extreme debris-flow event in the
watershed. In this context, KFS (2014) and NILIM (2016a)
suggest that design flood discharge should be quantified based
on a return period of 100 years. The debris-flow evidence from
2011 has a 20-years recurrence interval, which is rather short
to embrace an extreme disaster within the Hyoungchon
watershed. Second, check dams suffer from aging and lose
their strength over time (Lee, 2015). Thus, check dams with
reduced strength are vulnerable to debris-flow impact forces.
To address this issue, check dams need to be designed
considering time-dependent strength reduction for
providing long-term protection against debris flows.

5 CONCLUSION

In this study, we simulated a debris flow and the associated impact
force in a small mountain stream to examine the structural stability of
a check dam. The combined effects of the debris-flow impact force
and lateral earth pressure were considered through finite element
analysis. This analysis revealed that the check dam would be stable
under all the simulations considering sediment deposition on the
upstream face and debris-flow impact force. The debris-flow impact
force resulted in concentrated tensile stress on the upstream face of
the dam foundation.

These results were achieved for a specific debris-flow event,
thereby constraining us from providing a broader conclusion that
similar stress distributions can be observed in various other
watershed environments. Nevertheless, our proposed
framework for distress stability analysis of check dams will be
more widely applicable. With a reasonable estimation method for
debris-flow magnitude, the methods and results of this study can
provide practical guidance for check-dam design and
maintenance, taking into account sediment deposition and
debris-flow impact force.
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Study on Shear Creep Characteristics
and Creep Model of Soil-Rock Mixture
Considering the Influence of Water
Content
Zihua Jiang and Huanling Wang*

Geotechnical Research Institute, Hohai University, Nanjing, China

Water content has a significant effect on the creep properties of soil-rock mixtures
(SRM). Multi-loading shear creep tests are carried out on SRM samples with different
water contents. The test results show that deformation gradually increase with
increasing water content, while long-term strength gradually decrease with
increasing water content. The deformation mechanism shows that increasing of
water content causes the change of rock particles at on the shear surface from
fracture to rotation. Based on the creep test results, a modified Burgers model
considering the water content is proposed by the empirical relationship between the
parameters of the traditional Burgers model and the water content. And the results
predicted by the modified Burgers model agree well quite well with the experimental
creep data.

Keywords: deposit landslide, soil-rock mixture, moisture content, time-dependent deformation, creep constitutive
model, long-term strength

INTRODUCTION

A large number of deposit landslides of soil-rock mixtures (SRM) exhibit the characteristics of long-
term and creep deformation under the action of rainfall and other internal and external geological
forces [1,2]. The creeping deposit landslide in the reservoir area is a threat to the long-term safe
operation of power stations. Therefore, it is necessary to study on the creep characteristics and long-
term stability of large-scale deposit landslides.

There have been many studies on the mechanical properties of SRM, mainly through
laboratory tests[3,4], numerical simulations [5,6], and in-situ tests [7,8]. Furthermore, there
are a number of studies on the creep properties of SRM strength [9,10], which were not
considering the effect of water content on the creep properties of SRM. However, water content
of SRM in the deposit landslide changes under the action of rainfall or reservoir water. Although
there is a body of work which focused on the effect of rainfall and other environmental factors
from remote sense observations and statistical modelling [11,12], the effect of creep behavior on
the SRM in the deposit landslide evolutional process under different water contents is poorly
understood.

In order to study the influence of water content on the characteristics of long-term deformations
and stability of SRM, multi-stage shear creep tests of SRM samples with different water contents are
conducted. The creep characteristics of SRM are analyzed, the long-term strengths of SRM with
different water contents are obtained, and a modified Burgers model considering water content is
developed based on the results of the shear creep test.

Edited by:
Eric Josef Ribeiro Parteli,

University of Duisburg-Essen,
Germany

Reviewed by:
Bei Han,

Beijing University of Technology,
China

Fuguo Tong,
China Three Gorges University, China

*Correspondence:
Huanling Wang

wanghuanling@hhu.edu.cn

Specialty section:
This article was submitted to

Interdisciplinary Physics,
a section of the journal

Frontiers in Physics

Received: 22 November 2021
Accepted: 01 June 2022
Published: 21 June 2022

Citation:
Jiang Z and Wang H (2022) Study on

Shear Creep Characteristics and
Creep Model of Soil-Rock Mixture

Considering the Influence of
Water Content.

Front. Phys. 10:819709.
doi: 10.3389/fphy.2022.819709

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8197091

BRIEF RESEARCH REPORT
published: 21 June 2022

doi: 10.3389/fphy.2022.819709

44

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.819709&domain=pdf&date_stamp=2022-06-21
https://www.frontiersin.org/articles/10.3389/fphy.2022.819709/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.819709/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.819709/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.819709/full
http://creativecommons.org/licenses/by/4.0/
mailto:wanghuanling@hhu.edu.cn
https://doi.org/10.3389/fphy.2022.819709
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.819709


TESTING PROCEDURE

The Dahua landslide located on the right bank of Lancang
River is a typical deposit landslide[13]. The main components
of the landslide are a mixture of soil and rock debris. The filed
displacement monitoring data show that the landslide is still in
the creeping state and has the characteristics of time-
dependent deformation. The density of the selected SRM is
2.2 g/cm3, the distribution of particle size is shown in Figure 1.
The water contents of SRM samples are determined to be
ranging from 3.9% to 16.4%.

Shear creep tests are conducted using a shear creep test
system. The sample is a cube with a side length of 150 mm.
Tests are conducted in the laboratory environment with
constant temperature (20 ± 0.5°C) and humidity.
Considering the depth of SRM at the sampling site, a
normal pressure of 300 kPa is applied to represent the
confining pressure at the sampling site. The shear stress
loading scheme for the creep test is listed in Table 1.
Procedure of shear creep test is as follows:

1. Place the sample into the test platform and adjust the initial
setting of the LVDTs.

2. Apply the normal pressure to the desired value (300 kPa)
under displacement-controlled conditions with a rate of
0.2 mm/min and keep it constant throughout the test.

3. Increase the shear stress to the desired value under
displacement-controlled conditions with a rate of 0.2 mm/
min and keep it for approximately 72 h.

4. Apply multiple shear stress loadings following the loading
scheme in Table 1 until the sample fails.

SHEAR CREEP TEST RESULTS AND
ANALYSIS

Creep Strain Behavior
The multi-loading deformations of the samples with water
contents of 3.8%, 7.9%, 12.2%, and 16.4% are presented in
Figure 2. It can be seen that shear creep deformations are
observed from all SRM samples. For the same shear stress, the
higher the water contents, the greater the creep deformation.
Taking shear stress of 80 kPa as an example, the strains after
stabilization of the SRM samples with water contents of 3.8%,
7.9%, 12.2%, and 16.4% are 2.14%, 3.52%, 4.25%, and 5.08%,
respectively. The presence of water has a significant softening
effect on SRM, weakening the mechanical properties of SRM and
increasing the SRM deformability [14].

It is also seen that the creep deformation of SRM experiences
three creep stages: transient creep, steady-state creep, and accelerated
creep. Instantaneous deformation occurs at the beginning of each
loading process. The higher water content, the greater instantaneous
deformation. The strain then remains constant in the steady-state
creep stage. Before the final shear stress level, the SRMundergoes the
transient creep and steady-state creep stages. In the transient creep,
the strain rate is relatively high but decreases with time, showing that
strain rate approaches a fixed value. Accelerated creep occurs at the
final shear stress level.

The shear strain and strain-rate versus time at the final shear
stress level are shown in Figure 2. Compared to the results of
preceding stress levels, the transient creep stage at the final stress
level is less apparent. During this stage, the strain-rate decreases
rapidly in a very short time, then remains almost constant, and
finally increases rapidly. The final stress levels of SRM samples
with four levels of water content are maintained for 54.73, 51.02,
39.33, and 32.86 h, respectively. The higher the water content, the
longer the duration of the accelerated creep.

Long-Term Strength
The isochronic curve method is an effective method to determine
the long-term strength [15,16]. The isochronic curves are drawn
by the following method:

FIGURE 1 | Particle size distribution of SRM.

TABLE 1 | Shear stress loading scheme for the creep test.

Sample Number Water Content (%) Normal Stress (kPa) Shear Stress (kPa) Creep Time (h)

S-1 3.8 300 80-120-140-160-180-200-240-280-320 72-72-72-72-72-72-72-72-54.73
S-2 7.9 300 80-120-140-160-180-200-240-280-320 72-72-72-72-72-72-72-72-51.02
S-3 12.2 300 80-120-140-160-180-200-240-280-320 72-72-72-72-72-72-72-72-39.33
S-4 16.4 300 80-120-140-160-180-200-240-280-320 72-72-72-72-72-72-72-72-32.86
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• Draw the shear creep strain versus time under various
loading conditions according to the Boltzmann linear
superposition principle.

• Select a series of time points in the creep curves under
different shear stresses. Draw vertical lines at the selected
time instances, which intersect the creep strain curves to

FIGURE 2 | Shear creep of samples with different water contents (A) 3.8%, (B) 7.9%, (C) 12.2%, and (D) 16.4%.
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give a series of shear stress and strain values. The shear
strains are then plotted versus the shear stresses.

The isochronous curves are shown in Figure 3. The shear stress
corresponding to the inflection point on the isochronous curve is
considered to be the long-term strength [16]. Furthermore, inflection
point may not be unique [17]. When there are two inflection points
in an isochronous stress-strain curve, the shear stress value
corresponding to the second inflection point is considered to be
long-term strength. That is because, within a period of time after the
second inflection point, the sample will be more likely to fail. From
Figure 3, the long-term strengths of the four SRM samples are
approximately 280, 266, 240, and 220 kPa, respectively, which show
a trend of decrease with the increase of water content.

CREEP CONSTITUTIVE MODEL
CONSIDERING WATER CONTENT

A modified Burgers model, which considers the effect of water
content but not the accelerated creep phase, is developed.

Burgers Model
A Burgers model consists of a Kelvin model and a Maxwell model
in series [17]. It is capable of describing the characteristics in the
attenuation and steady-state creep stages of SRM.

The total creep strain ε of a Burgers model consists of the
instantaneous elastic strain ε1 corresponding to the spring in

Maxwell model, the constant velocity strain ε2 corresponding to
the viscous damper in Maxwell model, and the creep strain ε3
corresponding to the Kelvin model:

ε � ε1 + ε2 + ε3 � σ

E1
+ σ

η1
t + σ

E2
[1 − exp( − E2

η2
t)] (1)

In a shear creep test, for each fixed shear stress τ, Eq. 1 can be
rewritten as

ε � τ

G1
+ τ

η1
t + τ

G2
[1 − exp( − G2

η2
t)]

� A + B × t + C × [1 − exp(−D × t)] (2)
where A � τ/G1, B � τ/η1, C � τ/G2, D � τ/η2.

FIGURE 3 | Isochronous curves with different water contents (A) 3.8%, (B) 7.9%, (C) 12.2%, and (D) 16.4%.

TABLE 2 | Parameters of the Burgers model.

Shear Stress
(kPa)

G1 (kPa) η1 (kPa h) G2 (kPa) η2 (kPa ? h) R2

80 80836.35 1.78×106 4430.78 4.58×103 0.937
120 4847.82 2.44×106 15092.82 2.34×104 0.966
160 4077.23 2.21×106 40959.48 3.47×105 0.993
200 3619.06 3.08×106 65591.81 4.49×105 0.996
240 3946.91 5.32×106 48371.49 5.94×105 0.930
280 4073.68 5.28×106 87265.47 3.18×105 0.952

Note: R2 is the coefficient of determination.
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Parameters in the Burgersmodel ofEq. 2 can be determined from
regression analysis by fitting the creep process curves. Results for the
case with water content of 3.8% are listed in Table 2.

Modified Burgers Model Considering Water
Content
Having obtained the four parameters G1, η1, G2, and η2 of the
Burgers model given by Eq. 2, the relationships between these
model parameters and water content are shown in Figure 4. It
can be seen that parameters G1, η1 and the water content
follow an exponential relationship, whereas parameters G2, η2
and the water content follow a parabolic relationship.
Regression analysis is performed to obtain the following

empirical relationships between the four parameters and
the water content. Substituting Eq. 3 into Eq. 2, the
Burgers model considering the effect of water content can
be obtained.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G1 � 1897.751 + 4897.948 × 0.808w

η1 � −2.11459 × 108 + 2.14171 × 108 × 0.99942w

G2 � 27919.429 + 3956.2913 × w − 142.624 × w2

η2 � −74626.710 + 139018.700 × w − 7121.986 × w2

(3)

In order to verify the accuracy of the proposed Burgers model,
the model is applied to predict the shear creep curves of SRM and
the results are shown in Figure 5. As can be seen, the results
obtained using the Burgers creep model agree very well with the
shear creep test data.

FIGURE 4 | Correlation between model parameters and water content.

FIGURE 5 | Prediction results of the Burgers model (A) w = 3.8%, (B) w = 16.4%.
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DISCUSSION

There are mainly two mechanisms affecting the shear
deformations of SRM:

1. Rock particles continue to rotate and shift with time under the
action of the shear load (Figure 6A). In this case, rock particles
on the shear surface will rotate and squeeze the surrounding
soil particles under the action of the shear stress;

2. Rock particles, especially the flake rock particles on the shear
surface, undergo time-related fatigue fracture under the
continuous application of loading (Figure 6B).

In the shear creep tests, it is observed that many of the flake
rock particles on the shear surface are fractured in SRM sample
with low water content, as shown in Figure 7A. Rock particles
rotate with time under the action of shear stress in SRM sample
with high water content, as shown in Figure 7D. In shear creep
test of SRM, the deformation of the SRM is contributed by both
deformation mechanisms. Mechanism one can affect the creep

properties of soil at high and low shear stress values, while
Mechanism 2 characterizes the creep deformation of SRM
with low water content. Similar phenomena are also observed
by Hu et al. [9] andWei et al. [19]. Discrete elementmethod could
resolve the motion of every single grain in the system under
consideration of a model for the inter-particle forces [20–22].
Therefore, focusing on particle-based simulations of the processes
that are investigated in our experiments is necessary in future
work [23].

CONCLUSION

Multi-loading shear creep tests are performed on SRM samples
obtained from the Dahua landslide with different water
contents. Based on the test results, the following
conclusions can be drawn:

1) There are three stages of creep deformation in a shear creep
test of SRM including transient creep, steady-state creep, and

FIGURE 6 | Schematic diagram of deformation mechanisms (A) low water content, (B) high water content.

FIGURE 7 | Deformation characteristics of SRM samples (A) w = 3.9%, (B) w = 7.8%, (C) w = 12.2%, (D) w = 16.4%.
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accelerated creep. The shear strain accumulated after
stabilization increases with water content under the same
shear stress.

2) The long-term strength of SRM can be obtained using
the isochronous curve method. The long-term
strength of SRM decreases with the increase of water
content.

3) Based on the results of the shear creep tests, a modified
Burgers model is proposed, which takes into account of the
effect of water content on the creep behavior of SRM. The
creep curves of SRM with different water contents predicted
using the Burgers model developed agree well with the
test data.

4) Shear creep deformation is dominated by fractures of large
particles at low water content, but by rotations of large
particles at high water content.
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SPH Analysis of Sliding Material
Volume and Influence Range of Soil
Slope Under Earthquake
Weijie Zhang1, Ruihua Yu2*, Yu Chen2 and Shuxin Chen2

1Key Laboratory of Geomechanics and Embankment Engineering of Ministry of Education, Hohai University, Nanjing, China,
2College of Civil and Transportation Engineering, Hohai University, Nanjing, China

The post-failure process of soil slope triggered by earthquake is usually characterized by
large deformation, which can be properly addressed by SPH simulation. Meanwhile, it is of
engineering significance to evaluate the sliding volume and influence range after the failure
of soil slope. The simulation method is based on the Drucker–Prager constitutive model
and the SPH method. The fixity boundary and free boundary particles are adopted to
realize the application of ground motion and the simulation of free field boundary, and this
study proposes a dynamic analysis model for the whole-failure process simulation of soil
slope under earthquakes. By comparing the PGA amplification coefficients obtained from
the model test and numerical simulation, the accuracy of ground motion input and ground
motion response simulation is verified. Then, the proposed dynamic analysis method is
used to simulate a shaking table test of soil slope in the literature. The results of the
deformation of the soil slope after the test are compared to verify the accuracy of the
analysis method in the soil slope displacement and the influence range under the
earthquake action. Finally, by comparing the SPH results of slopes under different
angles with and without vibration, this study obtains the variation rules of sliding
material volume and the influence range of soil slope under seismic vibration. The
greater the slope angle is, the greater the displacement of the slope will be with
vibration, and the sliding material volume will present different trends under different
displacement thresholds. Moreover, the horizontal displacement of the slope under the
effect of an earthquake increases nonlinearly with the increase of slope incline angle.

Keywords: SPH, soil slope, earthquake, sliding material volume, influence range

INTRODUCTION

Landslide disaster is a very important part of the post-earthquake disaster, which has brought
significant threat to peoples life and property safety. For example, theML 8.0 Wenchuan earthquake
in 2008 triggered more than 60,000 landslides [1], among which the sliding distance of the
Tangjiashan landslide reached 900 m [2], the Wangjiayan landslide reached 550 m [3], and the
Donghekou landslide reached 2,400 m [4]. In 2017, the ML 7.0 earthquake in Jiuzhaigou County,
Sichuan Province, triggered more than 4,800 landslides, affecting a total area of 9.6 km2, including a
typical landslide in the Wuhuahai–Shamo section with a horizontal distance of about 200 m and the
influence area about 12,000 m2 that completely blocked the road with a blocking length about 70 m
[5]. According to the investigation, these landslides have the characteristics of fast speed, long sliding
distance, and large impact [6], showing the characteristics of large deformation. Previous studies [7,
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8] have found that the catastrophic consequences caused by
landslides are often quantified by the volume of sliding soil
[7], and the number of affected bodies and possible damage
degree can be quantitatively determined only by determining the
size of the influence range [8]. Therefore, it is of great significance
to analyze the sliding material volume and influence range of soil
slope failures caused by the earthquake.

From the historical perspective, there have been some
experiments on the sliding of blocks on surfaces subjected to
different types of excitation aiming at modeling the input of
energy from earthquakes. Such experiments used a slider on a
hard surface and have both reproduced the Gutenberg–Richter’s
law or the Omori’s law and brought groundbreaking insights into
the physics of landslides triggered by earthquakes [9, 10]. In
addition to these experiments, some numerical methods have also
been developed to simulate the physical process of slope failure
under the energy from earthquakes. The commonly used
methods for slope analysis under earthquakes in geotechnical
engineering include limit analysis, the permanent displacement
method (Newmark method), the finite element analysis (FEM),
the finite difference method (FDM), and so on. However, the
limit analysis method [11, 12] relies on the location of the
assumed slip surface and cannot determine the influence range
of landslides after slope failure. The permanent displacement
method (Newmark method) [13, 14] is only used to judge
whether the slope fails under an earthquake, and the
calculated displacement is not the real flow distance of the
slope. In addition, the slope failure process triggered by
earthquakes is often characterized by large deformation.
Therefore, it is difficult to use the FEM [15, 16] and FDM [17,
18] to simulate the post-failure process of soil slope. At the same
time, the FEM and FDM combined with the shear strength
reduction procedure produce misleading results for the
determination of slope slip surface [7]. Therefore, it is
necessary to adopt appropriate approaches to simulate soil
slope failure and determine the slip surface [7]. The newly
developed meshless method is one of the means to address
this problem, among which the smooth particle
hydrodynamics (SPH) method is the most widely used [19].
The SPH method has some unique advantages in simulating
the large deformation process, the free interface problem, and the
deformation boundary of materials, so it has been widely applied
in geotechnical engineering [20].

Some researchers have adopted the SPH method in the
dynamic stability analysis and post-failure process simulation
of slopes under the action of an earthquake. For example, Huang
Yu et al. [21, 22] conducted the flow process simulations for
landslides induced by the Wenchuan earthquake. He et al. [23]
studied the influence of initial slope shape on the convection-slip
process by using the SPH model. Chen et al. [24] simulated the
deformation of soil slope under the earthquake action with the
three-dimensional SPH model. Bao et al. [6, 25] used an SPH
method based on the elasto-plastic model and the fluid model to
simulate the startup process, solid–liquid change process, and
large deformation sliding process of landslides. These research
studies mainly focused on the failure process simulation of soil
slopes under the earthquake, the verification of the dynamic

analysis methods, and their applicability. However, the influences
of related parameters, such as slope size and slope angle, on the
sliding material volume and the influence range are not clearly
revealed.

In this article, based on the Drucker–Prager model and the
SPH method for the solid phase, the fixity boundary particles and
free boundary particles were used to apply the groundmotion and
simulate the free-field boundary, and a dynamic analysis method
was proposed for the soil slope under earthquake. In addition, the
Linked list searching method was used as the Nearest Neighbor
Particle Search (NNPS) method, and the SPH dynamic analysis
method is established based on the OpenMP parallel framework
that can improve computational efficiency. The proposed method
was used to analyze a model test and a shaking table test of a soil
slope in literature, and herein, the results were compared to
validate the accuracy of the proposed method. Finally, by
comparing the SPH simulation results of slopes with different
angles and with or without earthquakes, the variation rule of
sliding material volume and the influence range of soil slope
under the earthquake were analyzed and discussed.

PRINCIPLE OF THE SPH DYNAMIC
ANALYSIS METHOD

SPH Fundamentals
The basic idea of SPH is to discretize a continuous entity in the
space into a series of particles. All information, such as mass,
velocity, stress, and deformation, is carried by these particles
without any link between them. During the whole simulation
process, the SPH method tracks the movement information of
each particle at each moment. The characteristics of no mesh and
interaction between particles make it easier to deal with the large-
deformation problem by eliminating the mesh distortion and
distortion in the traditional Lagrangian methods [26].

The core ideas of the SPH method include the smooth
approximation and particle approximation of a function. The
smooth approximation means that a macroscopic physical
function is represented by the integral form. Particle
approximation means that the movement information of a
particle is replaced by the weight-averaged summation of the
movement information of all nearby particles within the
influence domain. The radius of the influence domain, defined
as the smooth length, is determined artificially according to the
accuracy of a specific problem [27]. The smooth approximation
can be expressed in the following form

<f(x)> � ∫
Ω
f(x′)W(x − x′, h)dx′, (1)

where W is the smooth kernel function, h is the smooth length,
and x is the coordinate of a particle.

The smooth particle approximation of a physical function and
its derivatives can be expressed as

<f(x)> � ∑
N

j�1mj

fi(x′)
ρj

W(x − x′, h), (2)
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z<f(x)>
zx

� ∑
N

j�1mj

fi(x′)
ρj

zW(x − x′, h)
zx

, (3)

wherem is the mass, ρ is the density, and j is the particle number.
In this study, the cubic B-spline function was selected as the
smooth function to calculate the value of W [6].

Governing Equations and Constitutive
Model
For the geotechnical engineering problem, the governing
equations in the SPH method include the continuity equation
and the momentum conservation equation, combined with a
specific elasto-plastic constitutive model [27]. According to the
conservation of mass, the SPH approximate format of the
continuous equation is as follows

dρi
dt

� ρi∑
N

j�1
mj

ρj
(vai − vaj)

zWij

zxa
i

, (4)

where t is time, Wij is the smooth kernel function of particle j
evaluated at particle i, v is the velocity, a is the coordinate index,
and i and j are particle numbers.

The momentum equation is derived from Newton’s second
law as follows,

dvai
dt

� ∑
N

j�1mj(
σabi
ρ2i

+ σab
j

ρ2j
− δabΠ ij)

zWij

zxb
i

+ Fa
i

ρi
, (5)

where σ is the stress of soil particles, a and b are coordinate
indexes, δab is the Dirac function, and Fi is the external force. The
artificial viscosity term Πij is used to prevent the non-physical
penetration of particles. The calculation method of Πij is given in
Ref. [28].

The stress–strain relationship of soil can be described by a
specific constitutive model. Currently, many constitutive models
have been introduced into the framework of the SPH method,
such as the elastic model [29], the Drucker–Prager model [30],
the unsaturated soil model [28], and the unified constitutive
model of granular materials [31]. Among them, the
Drucker–Prager model is a widely used model in the SPH
method. Therefore, it is adopted as the constitutive model of

soil in this study. Bui and Fukagawa described this model with
unassociated flow rules in detail in the literature [32]. According
to their work, the incremental form of this model is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dσxx

dσyy

dσzz

dσxy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λe + 2μe λe 0
λe λe + 2μe 0
λe λe 0
0 0 μe

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ag
xxA

f
xx Ag

xxA
f
yy Ag

xxA
f
xy

Ag
yyA

f
xx Ag

yyA
f
yy Ag

yyA
f
xy

Ag
zzA

f
xx Ag

zzA
f
yy Ag

zzA
f
xy

Ag
xyA

f
xx Ag

xyA
f
yy Ag

xyA
f
xy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎛⎜⎜⎝
dϵxx
dϵyy
dϵxy

⎞⎟⎟⎠, (6)

where λe and μe are Ramet constants, which can be calculated by
the elastic modulus E and Poisson’s ratio υ, and dεij is the total
strain increment. Other components can be calculated as follows:

Af
ij � λefkk + 2μefij. (7)

Ag
ij � λegkk + 2μegij. (8)

C � λefkkgll + 2μefklgkl + gkk. (9)
f is the yield function that can be found in the work of Bui et al
[32], as shown in the formula below

f(I1, J2) �
��
J2

√ + αϕI1 −Kc � 0, (10)
where Ix � σxx + σyy + σzz and J2 � 1

2s
αβsαβ are the first and

second invariants of the stress tensor, respectively. The
constants αϕ and Kc can be obtained from the internal friction
angle and the cohesion [33].

FIGURE 1 | Slope dimension and monitoring point locations.

FIGURE 2 | Acceleration time series of KOBE wave.

TABLE 1 | Table of parameters in SPH simulation of the model test.

Parameter Value Parameter Value

Elastic module (MPa) 5.0 Cohesion (Pa) 1,800
Poisson’s ratio 0.25 Friction angle (°) 32.0
Soil skeleton density (kg/m3) 2,650 Initial void ratio 0.75
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Boundary Treatment Approach
The boundary in this study comprises several layers of virtual
boundary particles, which have different particle types
compared with the moving particles (soil particles). It is
assumed that the boundary particle has a virtual velocity, and
the influence of the boundary particle on the moving particle is
determined according to the relative distance between the
boundary particle and the moving particle. In addition, the
boundary effect is calculated only when the moving particle
approaches the boundary particle. The dynamic load is applied
by applying acceleration to the bottom boundary particles. The
principle is similar to the fixity boundary proposed by Hiraoka
et al. [34], where the virtual velocity of boundary particles can be
expressed as follows:

VB � (1 − β)VA + βVseismic, (11)
where VA, VB, and Vseismic are the soil particle velocity, the
boundary virtual velocity, and the seismic wave velocity,
respectively. β � min(β max, 1 + dB/dA) is related to the
distance between the soil particle and the boundary particle.

In order to reduce the reflection of seismic waves, the left and
right boundaries are set to the free-field boundary and the
particles are assigned to a different particle type. In the SPH
simulation, the free-field boundary is forced to move, and the
outward waves generated by soil particles in the calculation area
are appropriately absorbed. To achieve this goal, soil particles
and free-field particles are simultaneously calculated under the
earthquake and gravity, and at the same time, the unbalanced
force of free-field particles is applied to soil particles for

satisfying the displacement and stress conditions in the
lateral boundary.

Implementation of the Dynamic Analysis
Method
The linked-list searching method is used as the Nearest Neighbor
Particle Search (NNPS) method [35]. At first, grids or cells are
placed in the problem domain. Then, given the total number of
cells at each coordinate (nXm, nYm, and nZm), the adjacent cell
ID can be determined. When searching, only particles in the
adjacent grids or cells are selected as candidate particles. For
efficiency improvement, the initialization of global linked-list grid
variables and the searching of adjacent grids are only performed
in the first step, without repeated calculations. In addition, the
subroutines of neighboring particle search are carried out at the
beginning of each loop so that each step only needs to perform the
neighboring particle searching once. These two improvements
greatly improve computational efficiency.

Combined with the characteristics of this study, the OpenMP
parallel framework [36] was used to optimize the SPHmodel. The
difficulties of parallel optimization rely on the reasonable
allocation of data storage, the reasonable storing of the
physical quantities of particles to avoid excessive memory
accessing, and the scheduled control of data access to avoid
access conflict between different threads. Aiming at the first
difficulty, the class in object-oriented programming is used to
abstract the particle data, which simplifies the process of memory
access. Aiming at the second difficulty, this study sets some local
variables belonging to different threads in the linked-list search
method and performs the local threads in parallel. Then, a global
function is used to realize the summarization of local variables on
different threads, complete the updating of global variables, and
avoid access conflict. Zhang et al. [27] have verified the high
efficiency of this parallel scheme by comparing the calculation
time of slope stability analysis with different number of threads.

FIGURE 3 | Comparison of PGA amplification coefficient between SPH
simulation and the model test.

TABLE 2 | Table of parameters in SPH simulation of a soil slope vibration table
test.

Parameter Value Parameter Value

Elastic module (MPa) 5.0 Cohesion (Pa) 500
Poisson’s ratio 0.25 Friction angle (°) 40.0
Soil skeleton density (kg/m3) 2,650 Initial void ratio 0.80

FIGURE 4 | Final shape comparison of slope (unit: m).
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VALIDATION OF THE DYNAMIC SPH
METHOD
Validation of the Seismic Response of Soil
Slope
In order to verify the applicability of the dynamic SPHmethod in the
seismic response analysis that is an outcome of the vibration applied,
this study applies it to the seismic analysis of a conceptual slope in
the research of Tang et al [37]. The size and monitoring point’s
location of the two-dimensional slope are shown in Figure 1. In this
case, the total number of particles is 4,167, with an initial spacing of
0.01m, including 438 free-field boundary particles, 315 fixity
boundary particles, 3,412 soil particles on the soil slope, and two
particles used to define the vibration space. In the initial state, the
slope particles are stationary and can move under the action of
gravity and earthquake after the calculation begins. The incremental
time step in the SPH simulation is 4.0 × 10–5 s, and the total number
of steps is 1.0 × 106 steps, so the total simulation time for slope is 40 s.
In this simulation, the time for the initialization of geostatic stress is
set as 5 s, and the applying time of ground vibration is 30 s. In
addition, after the application of ground vibration, the slopemodel is
still moving, and it takes 5 s for the slope to reach the static state.

Herein, the KOBE wave with a peak acceleration of 2.5 m/s2 is used
for dynamic analysis, and the loading time is 30 s, from 5 to 35 s in
the simulation. The specific time history of ground acceleration is
shown in Figure 2. The specific calculation parameters are shown in
Table 1. On the workstation equipped with a dual Intel Xeon E5
2520V4 processor, 64 GB DDR4 memory, and Windows Server
2016 operating system, it takes nearly 2.3 h to finish one simulation
by using eight threads.

Figure 3 shows a comparison of the PGA amplification
coefficient between the SPH simulation and the model test. At
the elevation of 10 cm, the amplification coefficient of PGA
obtained by SPH simulation is around 1.2, which is slightly
smaller than 1.4 in the model test. In addition, both the PGA
amplification coefficient increases with the height and the PGA
amplification coefficient of the SPH simulation is increased from
1.2 to 2.0, which is close to the model test. Although the results of
the numerical simulation have a few differences from the results
of the test, which is because the soil model used in the SPH
simulation is the elastic model, the PGA amplification coefficient
of the slope at the top is close to 2.0, which is consistent with
existing research studies [38–40]. Therefore, the method in this
article can well-input the ground motion and analyze the
dynamic response of soil slope.

Validation of the Slope Deformation Under
the Earthquake
In order to validate the applicability of the dynamic SPH method
in the deformation analysis of soil slope, it is applied to a shaking
table test, and the results are compared with the test results [41].

TABLE 3 | Table of SPH simulating cases of conceptual slope.

Case Angle (°) Working condition Case Angle (°) Working condition

1–1 30 Without vibration 1–2 30 With vibration
2–1 40 Without vibration 2–2 40 With vibration
3–1 50 Without vibration 3–2 50 With vibration
4–1 60 Without vibration 4–2 60 With vibration

FIGURE 5 | Size chart of different slopes.

TABLE 4 | Table of parameters in SPH simulation of soil slopes.

Parameter Value Parameter Value

Elastic module (MPa) 5.0 Cohesion (Pa) 500
Poisson’s ratio 0.25 Friction angle (°) 20.0
Soil skeleton density (kg/m3) 2,650 Initial void ratio 0.80

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 8925665

Zhang et al. SPH; Sliding Material Volume; Influence Range; Soil Slope; Earthquake

55

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


The total number of particles in the numerical model was 6,977,
with 2,118 boundary particles and 4,857 soil particles. The initial
spacing of the particles was 0.01 m. Meanwhile, the left boundary is
set to the free-field boundary. At the initial stage, the soil slope is still
and begins to move under the action of gravity and earthquake. The
incremental time in the SPH simulation is 2.5 × 10–5 s, and the total
steps are 1.21 × 107; thus, the total time is 302.5 s. In this simulation,
the time for the generation of initial geostatic stress is set as 1 s, and
the applying time of ground vibration is 300 s. In addition, after the
application of ground vibration, the slope model is still moving, and
it takes 1.5 s for the slope to reach the static state. The model
parameters are shown in Table 2. Figure 4 shows the final deposit
form between the SPH simulation and the shaking table test. The

final shapes are basically consistent, and the maximum sliding
distance of SPH simulation is very close to the test result.
Therefore, the method in this article has high accuracy in the
deformation analysis of soil slope under vibration loads.

APPLICATION EXAMPLE—DYNAMIC
ANALYSIS OF SOIL SLOPES WITH
DIFFERENT SLOPE ANGLES
Simulating Case
In order to analyze the sliding material volume and the influence
range of soil slope failure with different angles under the action of

FIGURE 6 | Horizontal deformation diagram of 40°and 60°slopes with or without vibration (unit: m).

FIGURE 7 | Cloud image of shear strain and a total displacement of 40° and 60° slope with vibration.
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the earthquake, this section shows four conceptual soil slopes with
different angles, including 30°, 40°, 50°, and 60°. The simulating cases
are shown in Table 3. The slope size is shown in Figure 5, and the
locations of fixity boundary particles and free-field boundary
particles are also shown in Figure 5. The safety factors of each
slope calculated by the stability analysis method are all greater than
1.0, that is, each slope can remain stable under gravity. In this part,
the total number of particles changes with slope angles, and the
initial spacing of particles is uniformly set as 0.20 m. At the initial
stage, the soil slope particles are stationary and can move under the
action of gravity and earthquake after the calculation begins. The
incremental time spacing in the SPH simulation was 5.0 × 10–5 s, the
total number of steps is 6.4 × 105 steps, and the simulation time was
32 s. In this simulation, the time for the generation of initial geostatic
stress is set as 1 s, and the applying time of ground vibration is 30 s.
In addition, after the application of ground vibration, the slope
model is still moving, and it takes 1 s for the slope to reach the static
state. As a summary, the calculation parameters are shown in
Table 4.

In the simulation, the geostatic stress is generated by the elastic
model within 1.00 s, and thereafter, the behavior of soil is
described by the Drucker–Prager model. Here, the KOBE wave
as shown in Figure 2 is used for the dynamic analysis, and the
loading time is 30 s, from 1.00 to 31.00 s. It takes about 2.0 h to
complete a simulation using 16 threads on the same computing
platform as in the previous section.

Discussion of Sliding Material Volume and
Influence Range
The SPH simulations obtained the deformation of slopes with
different angles under static and seismic conditions. Due to space
limitation, Figure 6 only shows the total displacement
distributions of slopes with 40° and 60°. It can be seen that
each slope has no obvious displacement under the geostatic
condition. Under the action of the earthquake, the slope
surface has obvious deformation and eventually forms an
obvious slip surface. In addition, with the increase of slope

FIGURE 8 | Sliding material volume comparison when the threshold is 0.20 m.

FIGURE 9 | Sliding material volume change curves of slopes with slope
angles under different deformation thresholds (The longitudinal length of the
slope is assumed to be 1.00 m).

FIGURE 10 | Change curves of the influence range of slopes with slope
angles.
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angle, the total displacement also increases, so with the same soil
parameters, the greater the slope angle, the worse the stability.

At present, the shear strain is commonly used to determine the
potential slip surface, while Li et al. [7] have checked the accuracy of
using a displacement threshold to determine the slip surface of the
slope.Herein, this study compares the potential slip surfaces of 40° and
60° slopes under the seismic action determined by shear strain and
total displacement, as shown in Figure 7. The potential slip surface of
the slope determined by the maximum shear strain has a certain
degree of coincidencewith the potential slip surface determined by the
total displacement. The slip surface starts from the toe of the slope, and
the sliding surface area determined by the two is similar. Therefore, it
is proved once again that the displacement threshold can be used to
determine the potential slip surface of soil slope.

In addition, 0.10, 0.20, 0.30, and 0.40 m are selected as the
displacement thresholds in this study. By simplifying the
deformation distribution map with the displacement threshold,
a clearer distribution of the slide material can be obtained.
Figure 8 shows the sliding material volume of each slope with
a displacement threshold of 0.20 m, which indicates that each
slope has an obvious and regular sliding material volume.

Then, the sliding material volume of each slope under different
displacement thresholds is calculated in detail, and the change
curve of sliding material volume with slope angles was drawn, as
presented in Figure 9. It can be seen that the potential sliding
volume will decrease with the increase of slope angles at a small
displacement threshold, but the potential sliding volumes are very
close. Under the larger displacement threshold, the sliding area
will increase with the increase of slope angles, but the increase is
very slow. The sliding material volume decreases greatly with the
increase of slope angles, but the potential sliding volume of the 60°

slope still increases with a larger displacement threshold.
The maximum horizontal displacement of soil slope is regarded

as the sliding distance of soil slopes under an earthquake, namely,
the influence range, and the variation curve of influence range with
slope angles is plotted in Figure 10. It can be seen that the influence
range of soil slope increases linearly with the slope angle, and the
angle has a significant effect on the sliding distance.

CONCLUSION

In this study, a dynamic SPH method is applied to a model test
and a shaking table test of soil slopes in literature. By setting
slopes of different angles and comparing the results of SPH
simulation with or without an earthquake, the sliding material
volume and influence range of soil slope under the action of the
earthquake are analyzed, and the relationships between sliding

material volume, influence range, and slope angle are obtained
and discussed. Some conclusions can be derived as follows:

1) The acceleration time history and PGA amplification
coefficient obtained from the dynamic SPH simulation are
compared with the test results, which proves that the proposed
dynamic SPH method can be used to analyze the dynamic
response of soil slope.

2) Aiming at the deformation analysis of soil slope under
earthquakes, the SPH simulation results of a shaking table
test are compared with the test results, and the proposed
method can be applied to the deformation analysis of slope
under earthquakes.

3) In the analysis of slidingmaterial volume under different slope
angles, the sliding volume of the slope will decrease with the
increase of slope angles at a small displacement threshold, but
the sliding material volume of each slope is very similar. At the
larger displacement threshold, the slidingmaterial volume will
increase with the increase of slope angles, but the increase is
very slow.

4) In the analysis of influence range with different slope angles,
the maximum horizontal displacement of slope under
earthquakes presents a trend of nonlinear increase with the
increase of slope angles.
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Landslides are natural disasters deliberated as the most destructive among the

others considered. Using the Muzaffarabad as a case study, this work compares

the performance of three conventional Machine Learning (ML) techniques,

namely Logistic Regression (LGR), Linear Regression (LR), Support Vector

Machine (SVM), and two Multi-Criteria Decision Making (MCDM) techniques,

namely Analytical Hierarchy Process (AHP) and Technique for Order of

Preference by Similarity to Ideal Solution (TOPSIS) for the susceptibility

mapping of landslides. Most of these techniques have been used in the

region of Northern Pakistan before for the same purpose. However, this

study for landslide susceptibility assessment compares the performance of

various techniques and provides additional insights into the factors used by

adopting multicollinearity analysis. Landslide-inducing factors considered in

this research are lithology, slope, flow direction, fault lines, aspect, elevation,

curvature, earthquakes, plan curvature, precipitation, profile curvature,

Normalized Difference Water Index (NDWI), Normalized Difference

Vegetation Index (NDVI), roads, and waterways. Results show that SVM

performs better than LGR and LR among ML models. On the other hand,

the performance of AHP was better than TOPSIS. All the models rank slope,

precipitation, elevation, lithology, NDWI, and flow direction as the top three

most imperative landslide-inducing factors. Results show 80% accuracy in

Landslide Susceptibility Maps (LSMs) from ML techniques. The accuracy of

the produced map from the AHP model is 80%, but for TOPSIS, it is less

(78%). In disaster planning, the produced LSMs can significantly help the

decision-makers, town planners, and local management take necessary

measures to decrease the loss of life and assets.
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1 Introduction

Considerable life and economic losses, and harmful

influences on communities, environment, and infrastructure,

relentlessly disturbing land use and urban development are

caused by landslides, which are common natural hazards

(Shahabi and Hashim, 2015; Flentje and Chowdhury, 2018;

Zhu et al., 2018; Bragagnolo et al., 2020). Due to the

increasing deforestation rates, unrestrained urbanization, and

rising population density, the dangers of landslides have grown

(Flentje and Chowdhury, 2018; Froude and Petley, 2018;

Bragagnolo et al., 2020). To reduce and manage disasters

related to landslides, it is vital to appraise zones susceptible to

landslides (Hong et al., 2016a; Chen et al., 2018b). A widespread

assumption that future landslide locations are linked to past and

present landslides is based on all the prediction-related studies

involving different techniques (Capitani et al., 2013). In other

words, the failures of slopes are ascertained by a specified set of

regulating factors, and impending failures are anticipated to

happen under identical circumstances.

Landslides usually occur in those areas where few factors,

such as mountains, steep slopes, higher precipitations, and higher

seismicity, are substantially found (Hong et al., 2016a; Chen et al.,

2018b; Maqsoom et al., 2021; Aslam et al., 2022). Mapping of

landslide susceptibility is also of eminent value for land use

planning and facilitates planners in making potential

development-related decisions (Erener et al., 2016; Bragagnolo

et al., 2020; Aslam et al., 2022). Consequently, in current times,

appraising different models for landslide susceptibility has

become a key research topic globally.

Formerly many studies have used several methods aiming at

the susceptibility mapping of landslides in different regions of

the world. These different methods can be largely categorized as

Qualitative and Quantitative methods. Different researchers

extensively utilized qualitative methods until the late 1970s.

Qualitative techniques weigh each landslide-causing factor

based on researchers’ expertise. These methods have been

utilized broadly to evaluate landslide susceptible areas

(Yoshimatsu and Abe, 2006; Abella and Van Westen, 2007)

and are considered subjective in nature (Fall et al., 2006).

Quantitative techniques, which have been developed and

used frequently in recent years, comprise approaches to

evaluate the associations among causes of landslides based

on probabilistic models (Raghuvanshi et al., 2014). They are

considered objective in nature (Girma et al., 2015). The

development of computer and Geographic Information

System (GIS) technology has assisted in the application of

these approaches, and they have become prevalent in recent

times (Shano et al., 2020).

Additionally, methods to map landslide susceptibility can be

classified into four groups, namely statistical, physical-based,

heuristic, and data-driven or Machine Learning (ML) methods

(Chen et al., 2018b; Zhang et al., 2018). Statistical methods are

used to choose and examine landslide-causing factors in areas

with environmental situations like those where past landslides

have been reported. Statistical methods such as the Weight of

Evidence (Baeza et al., 2010; Tsangaratos et al., 2017), the

Certainty Factors (Devkota et al., 2013; Azareh et al., 2019),

the Frequency Ratio (Youssef et al., 2015; Chen et al., 2016a), the

Analytical Hierarchy Process (AHP) (Pourghasemi et al., 2012;

Shahabi et al., 2014; Kanwal et al., 2017), the Evidential Belief

Function (Chen et al., 2019a), and the Technique for Order of

Preference by Similarity to Ideal Solution (TOPSIS) (Najafabadi

et al., 2016; Razavi and Shirani, 2019), are easy to manage and

simple to comprehend and therefore have been used frequently

for mapping landslide susceptibility in different areas of the

world. The physical-based models handle complex parameters

effectively, but these parameters can only be established by

executing problematic experiments to apply to larger areas

(Pradhan and Kim, 2016; Bui et al., 2017). Heuristic

approaches are used by geomorphologists to examine aerial

photographs or to perform site surveys. Heuristic models are

usually indelicately scaled (Ruff and Czurda, 2008).

Due to the enhancement of GIS technology and easier access

to land surface remote sensing images and digital earth surface

elevation models, data-driven or ML models are extensively

applied in landslide susceptibility mapping. The most

frequently used models include the Multivariate Adaptive

Regression Spline (Wang et al., 2015), the Naïve Bayes Tree

(Tsangaratos and Ilia, 2016), the Adaptive Neuro-Fuzzy

Inference System (Chen et al., 2019b), Random Forests (Hong

et al., 2016b), Kernel Logistic Regression (Bui et al., 2016),

Artificial Neural Networks (Pradhan and Lee, 2010; Pham

et al., 2016b; Wang et al., 2016), Logistic Regression (LGR)

(Süzen and Kaya, 2012; Umar et al., 2014; Trigila et al., 2015),

Decision Trees (Saito et al., 2009; Pradhan, 2013), Support Vector

Machine (SVM) (Yao et al., 2008; Marjanović et al., 2011; Xu

et al., 2012; San, 2014; Pham et al., 2016b; Shirzadi et al., 2017;

Pawluszek et al., 2018), and Linear regression (LR) (Onagh et al.,

2012a; 2012b). Analysis of the literature reveals that every model

has its benefits and limitations conditional on the characteristics

of the study area and the variation of used datasets. The behavior

also fluctuates accordingly among different models. Therefore,

comparisons among different models are highly desired to assess

landslide susceptibility.

Muzaffarabad district, situated in the state of Azad Jammu

and Kashmir and falls in the lower Himalayas of Northern

Pakistan, is encompassed geologically by Hazara–Kashmir
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Syntax. The main boundary thrust (MBT) and Bagh-Balakot and

Fault, recognized for tectonic uplift and crustal deformation,

dissect this region (Kazmi and Jan, 1997; Saba et al., 2010). In

Muzaffarabad city and the areas around the city, the

2005 earthquake disrupted several slopes and prompted

158 landslides (Kamp et al., 2008; Khan et al., 2011).

Previously, the region has been subjected to numerous

earthquakes of various extents (Rossetto and Peiris, 2009). In

the future, there is a chance for a high-magnitude earthquake

(Wallace et al., 2005; Raghukanth, 2008). Therefore, for

activating the landslides in this region, rainfalls and

earthquakes are regarded as the two major contributory

processes (Owen et al., 2008).

There have been a few studies targeting this region in the past

concerning the mapping of landslides. Most of the studies are

confined to the landslides that resulted from the 2005 earthquake,

or they just targeted the 2005 earthquake region. Moreover, most

of these studies have used conventional statistical or decision-

making methods to map landslide susceptibility. For example,

Kamp et al. (2008) conducted a study for mapping landslide

susceptibility in the 2005 earthquake region using a GIS-based

multi-criteria evaluation method by exploiting eight landslide

triggering factors. A few other studies that involved the

assessment of landslide hazards targeting the same area are

Owen et al. (2008); Khattak et al. (2010); Saba et al. (2010).

Therefore the present study tried to fill the research gap by using

conventional decision-making techniques and compared them

with the most prevalent ML techniques.

The current research aims to present the landslide

susceptibility analysis of the Muzaffarabad district using

Multi-Criteria Decision Making (MCDM) and Machine

Learning (ML) techniques. The methods used involves two

MCDM techniques, AHP and TOPSIS, and three ML

techniques, explicitly LGR, LR, and SVM. The purpose of

using these various techniques is to assess the performance of

each technique for the designated area. So far, several studies

have been carried out using a single or two techniques, and no

comparative studies have been carried out using five techniques

in the targeted area. Also, this study used a set of multiple datasets

derived from the latest available data; hence it provides the latest

landslide susceptibility mapping. Ultimately, this research

provides novel Landslide Susceptibility Maps (LSMs) and

identifies the results to see how much aerial overlap between

the models by susceptibility type. How much do these models

geographically agree? Do these areas overlap at all?

2 Study area

Muzaffarabad district is situated in the Pakistan-

administered territory of Azad Jammu and Kashmir. The

district has a very hilly terrain and is located on the banks of

the Neelum and Jhelum rivers. Muzaffarabad is the capital city of

the state of Azad Jammu and Kashmir having geographical

coordinates as 34° 21ʹ 30ʹʹ N and 73° 28ʹ 20ʹʹ E and covers an

area of 20665 m2. The Mansehra and Abbottabad district of

Khyber Pakhtunkhwa bounds the district on the Western side,

the Baramullah and Kupwara districts of the Indian-

administered Jammu and Kashmir are on the East, and the

North and South sides face the Neelum and Bagh Districts of

Azad Kashmir. The district of Muzaffarabad geologically lies in

the lower Himalayan region of Pakistan. The district is well

known for its deadliest 7.5 magnitude earthquake in 2005, killing

more than 80000 people (Kamp et al., 2008; Owen et al., 2008;

Saba et al., 2010). The climate of the district varies considerably.

December, January, and February happen to be cold months.

While June, July, and August are relatively warmer. The mean

maximum and minimum temperatures during January are 16°C

and 3°C, respectively, and the mean maximum and minimum

temperature during July are about 35°C and 23°C, respectively.

The annual average high and low temperatures are 22.3°C and

11.1°C, respectively. The average annual precipitation of the

district is 1,242.8 mm. During the monsoon spell from June to

September, the region receives the highest amount of

precipitation as in the rest of the months. July is the wettest,

with an average precipitation of 328.7 mm, followed by August,

which has an average of 229.9 mm. The region receives slight

rainfall from October to December, with the lowest average

observed in November (37.2 mm). The Muzaffarabad region

has experienced plenty of landslides yearly, especially after the

Kashmir 2005 earthquake, especially during the rainy monsoon

season in July and August (Kamp et al., 2008; Owen et al., 2008;

Khattak et al., 2010). Thus, taking immediate and effective

measures to counter landslide happenings is imperative.

Therefore, this study tried to focus on assessing landslide

susceptibility in the area, thus, paving the way for

policymakers to take precautionary measures to alleviate the

destruction caused by landslides (Figure 1).

3 Materials

3.1 Constructing a database of landslide
conditioning factors in Muzaffarabad

Because of the development and the complex nature of

landslides, there is no explicit agreement on their exact origins

(Hong et al., 2016a; Bui et al., 2016). However, several

conditioning factors, such as geological and topographical,

besides climatic conditions, and their association with

landslides have been studied by many scientists in the past

(Hong et al., 2017). Anthropogenic activities also greatly

influence the geological environment (Yang et al., 2017).

Consequently, established on former landslide susceptibility

investigations (Saha et al., 2005; Owen et al., 2008; Khattak

et al., 2010; Saba et al., 2010; Pourghasemi et al., 2012;
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Kanwal et al., 2017; Ali et al., 2019) and examination of the

features of the Muzaffarabad region (Kamp et al., 2008; Owen

et al., 2008; Khan et al., 2019), 15 landslide inducing factors

including slope, aspect, elevation, lithology, curvature, plan

curvature, profile curvature, flow direction, fault lines,

precipitation, Normalized Difference Water Index (NDWI),

Normalized Difference Vegetation Index (NDVI), distance

from roads, earthquake, and distance from waterways were

considered in this study.

In this study, the ASTER DEM with 30 m × 30 m resolution

was used. Six geomorphometric factors, like curvature, slope,

aspect, plan curvature, profile curvature, and elevation, were

extracted using the DEM. The factors of NDVI and NDWI

were extracted from Landsat 8 images with a spatial

resolution of 30 × 30 m. Landsat 8 images were downloaded

from https://earthexplorer.usgs.gov/(June 2022). NDVI was

calculated using infrared (IR) and red (R) bands with the help

of the following formula (Hong et al., 2016a; Chen et al., 2018b):

NDVI � IR − R
IR + R

(1)

NDWI was derived from green (G) and near-infrared (NIR)

channels. NDWI was calculated using the formula (Xu, 2006):

NDWI � G −NIR
G +NIR

(2)

Geological maps of Pakistan, at a scale of 1:2,000,000, were

used to produce the thematic maps of faults, earthquakes, and

lithology, and fault distance was calculated using proximity

analysis (Pavelsky and Smith, 2008). Pakistan Meteorological

Department (PMD) station data was used to construct the

precipitation map. The precipitation from the available data

was calculated using the following formula (Arnoldus, 1980):

P � ∑
12

i�1
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1.735 × 101.5×log

p2
i
p −0.8188⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

Where p is the average yearly rainfall while pi represents average

monthly rainfall. The annual precipitation was used to calculate

rainfall erosivity in this research. The reason for using rainfall

erosivity instead of direct rainfall was because rainfall erosivity

highlights the area whichmay be affected themost due to rainfall.

Topographic maps of Pakistan were used for the thematic maps

of distance to roads and distance to the waterway.

The standardization and normalization of all the factors were

done. All the maps of landslide trigging factors were transformed

into raster format with a resolution of 30 m × 30 m Lastly, all the

rasterized maps were reclassified based on the level of

susceptibility for inducing landslides into five categories. To

each category, a value was assigned, such as very high

influence was ranked as 5, the high influence was ranked as 4,

the medium influence was ranked as 3, the low influence was

ranked as 2, and very low influence was ranked as 1. For

categorical data like lithology, the reclassification was still

based on the rating of 1–5 in such a way that every class was

assigned a score based on their influence. Since all the factors

were reclassified into 1 to 5 classes, the weights were obtained for

each factor from the methods multiplied by its subclass weight to

get the total landslide susceptibility score to produce the LSMs.

3.2 Landslide inventory and data
distribution

The formulation of the aerial distribution of present landslide

areas is the primary phase in landslide susceptibility mapping

(Cevik and Topal, 2003). For probabilistic analysis of landslide

susceptibility, precise recognition of the landslide’s locality is very

significant. To find the landslide distribution over the area and to

produce a statistical database of landslides for the individual

division of the landslide activating factors, a landslide inventory

map was generated. Several researchers’ used satellite and aerial

photographs to prepare the landslide inventory map (Pradhan

et al., 2009; Pradhan, 2010; Choi et al., 2012; Umar et al., 2014). In

the current study, the past landslide areas (from 2000 to 2021)

were marked using satellite data (Landsat), and historical records

from official data of Pakistan. A similar methodology as of Aslam

et al. (2022) was adopted for the inventory preparation.

To implement the ML techniques, both landslide and non-

landslide locations are needed to produce the LSMs (Ballabio and

Sterlacchini, 2012; Chen et al., 2017). Therefore, 606 past landslide

locations (the center points of landslide polygons) were marked as

“1,” and the same number of randomly sampled non-landslide

locations was marked as “0”. Moreover, for the implementation of

ML models, landslide inventory is split into testing and training

datasets. The training dataset is used to build the model. The

models examine the factors such as topographical, lithological, and

hydrological from the training dataset. The testing data is used to

validate the training of the model. This whole procedure, as a

result, assists in proposing the weightage of individual factors. A

total of 1212 datasets were used, which were randomly divided into

the ratio of 2/3 and 1/3, which means 70% of the dataset was

arbitrarily designated as training samples. The remaining 30% was

used for testing purposes. The ratio of 70/30 is a generally accepted

way of splitting data (Wang et al., 2016; Chen et al., 2018a; Wang

et al., 2019).

4 Methodology

For the specified objective various topographical,

geomorphological, lithological, and hydrogeological factors were

used, which were selected relying on the studies that were

conducted formerly and the study area’s characteristics.

Historical data, satellite images, and official data from the state

departments were exercised to formulate a landslide conditioning
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factors database for the study area. The LR, SVM, and LGR models

were constructed using the training dataset. R programming

language was used for the implementation of ML techniques.

The models were constructed using 10 cross folds to prevent

over-fitting and reduce inconsistency. Tuning of models was

done to increase the accuracy of models. The accuracy was

calculated among the predicted and actual points in testing

datasets for all three ML models. The weights of individual

factors were the outcome of the ML models. The weights were

also obtained from the two MCDM methods. These weights were

then used to prepare the final LSMs in ArcGIS using weighted

overlay analysis. The produced LSMs were reclassified into five

susceptibility classes, i.e., very high, high, moderate, low, and very

low. These classes were generated based on equal intervals for each

class. This was done based on the field visit and considering the

landslides from the past. A correlation was also computed between

the LSMs and the historical landslide locations to check for the

accuracies of LSMs. A comprehensive overview of the methodology

is shown in Figure 2. The practicedmethods are discussed as follows:

4.1 Multicollinearity analysis

Multicollinearity analysis was used to evaluate the correlation

among landslide conditioning factors. It is a statistical

phenomenon in which a high-level relationship exists between

two or more variables in a multiple regression model (O’brien,

2007). To detect multicollinearity among conditioning factors,

the tolerance (TOL) and variance inflation factor (VIF) was

utilized in this study. Let X = {X1, X2, . . ., XN} describe a

given independent variable set and R2
j signify the coefficient of

determination when the jth independent variable Xj is regressed

on all other variables in the model. The following Eq. 2 was used

for the computation of the VIF value:

VIF � 1
1 − R2

j

(4)

The reciprocal of the VIF value gives the TOL value. The TOL

value signifies the degree of linear correlation between

FIGURE 1
Map of the study area showing the elevation and the rivers of the area.
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independent variables. If the TOL value is less than 0.1 and the

VIF value is greater than 10, the corresponding factors show

multicollinearity and ought to be eliminated from further

analysis (Wang et al., 2019).

4.2 Support vector machine

The basic theory for SVM is the statistical learning theory

(Cortes and Vapnik, 1995). The SVM reduces together model

complications and the error test. SVM uses support vectors to

define the margin of the hyperplane. The number of support

vectors held from the first dataset is information subordinate. It

differs, considering the information unpredictability caught by

the information dimensionality and class distinguishableness.

SVM used different kernel functions to map the data into higher

dimensional space. The most popular kernel functions are linear,

polynomial, radial, and sigmoid kernel functions. However, the

present study used the radial basis function. The used kernel

function is shown in Eq. 3 below:

Radial basis Function: K(xiyi) � e−γ(xi−x
2
j ) (5)

Where, r is the bias term, d is the polynomial degree, and r is the

gamma term.

FIGURE 2
Methodology flow chart.
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4.3 Logistic regression

It is a classification algorithm that assigns observations to a

discrete set of classes using the logistic or sigmoid function to

transform its output. Its concept is based on probability and

predictive analysis algorithms. A relationship between some

dependent factors and a categorical variable is clarified by this

model, which might be categorical, binary, or continuous

variables (Hong et al., 2016a). Using the algorithm has the

advantage that there is no need for the normal distribution of

variables (Pradhan and Lee, 2010). Binomial, multinomial, and

ordinal are types of LGR. Independent variables that denote the

landslide presence and absence in the LGR were designated as

1 and 0, respectively. The equation used for LGR is shown below

(Hong et al., 2016a; Aslam et al., 2022):

Y � b0 + b1x1 + b2x2 + . . . + bnxn (6)

where, Y is the dependent variable (landslide occurrence), b0 is

the intercept, all the b’s are expectation of the target variable

(weights), and all the x’s are the independent variables. This study

used a sigmoid activation function.

4.4 Linear regression

It is a supervised ML algorithm with a constant slope and is

used to predict a continuous output. It reveals how the changing

standard deviation of predictors and independent variables

changes the dependent variable. The used equation for LR is

shown below (Onagh et al., 2012a; Aslam et al., 2022):

L � b0 + b1X1 + b2X2 + b3X3 . . . + bmXm + ε (7)
where, L is the occurrence of landslides, all the X’s represent the

independent variables (factors), all the b’s represent the estimated

coefficients (weights), and ϵ represents the model error. The used

LR type in this study was multiple linear regression. The best fit

line during the implementation of LR was computed using mean

squared error.

4.5 Analytical hierarchy process

AHP is an MCDM technique comprising a pair-wise

assessment of numerous factors contributing towards a

certain cause and establishing ranks of these factors. A

pair-wise comparison matrix is developed as proposed by

Saaty (1990) and Saaty and Vargas (2001) for estimating the

weights of different factors for solving a problem. Another

tempting attribute of the AHP is the aptitude to appraise pair-

wise rating variation. It allows the pair-wise relative

comparison between every factor, and afterward values

from 1 to 9 are assigned based on the relative importance.

The following steps are very important to execute AHP: 1) to

break the composite problem into different parts; 2) to

assemble the conditioning factors into hierarchic order; 3)

to allocate the numerical values to evaluate the comparative

significance of each conditioning factor; 4) to constitute a

comparison matrix and provide weights to every factor (Saaty,

1990). The implementation of the AHP was adopted from

Maqsoom et al. (2021).

4.6 Technique for order of preference by
similarity to ideal solution

Hwang and Yoon (1981) introduced TOPSIS, an MCDM

technique that assesses the dilemma in an n × m matrix (m

criteria and n alternatives). This method is founded on the

notion that each designated factor must have the maximum

detachment from the negative ideal (the least important factor)

and the least detachment from the positive ideal (the most

critical factor) (Lin and Wu, 2004). The basic principle of

TOPSIS is that the decision would be the nearest to the best

result and remotest from the non-ideal result. It assumes that

each factor is uniformly increasing or decreasing, making it

visually easy to locate the best and worst selection.

Normalization is important because the factors are

inconsistent in dimensions. After normalization, positive and

negative ultimate results are measured. Then the detachment

from the ultimate result is calculated. Lastly, the preference

value is assigned to each factor (Rao and Davim, 2008; Krohling

and Pacheco, 2015; Najafabadi et al., 2016; Razavi and Shirani,

2019). The implementation of the TOPSIS method was adopted

from Najafabadi et al. (2016).

4.7 Model validation

It is essential to evaluate the validity of the used models in

landslide susceptibility analysis since they, without validation,

lack scientific significance (Pradhan and Kim, 2016). The ML

models were validated by calculating their accuracy using their

confusion matrixes (Deng et al., 2016; Maria Navin and Pankaja,

2016). However, for checking the logical consistency in pair-wise

comparisons, the AHP method integrates an operative practice.

Consistency Ratio (CR) (Saaty, 1980) is a tool that articulates the

compatibility of the matrix of paired comparisons of all the

parameters involved. The CR value less than 0.1 indicates that the

matrix outcomes are satisfactory (Saaty, 1980); otherwise, the

judgments need to be reviewed. Moreover, a logical procedure

was adopted for the performance assessment of the TOPSIS

method. The relative closeness coefficient (cli+) to the ideal

solution was calculated for each alternative. The best

alternatives are those with higher values (Krohling and

Pacheco, 2015; Najafabadi et al., 2016).
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5 Results

5.1 Relative importance analysis of
conditioning factors

The importance of all the landslide conditioning factors

was assessed utilizing the training set centered on

multicollinearity analysis. The outcomes of the

multicollinearity analysis of landslide conditioning factors

are presented in Table 1. The factor of roads was found to

have a VIF value that is considerably larger than the rest of the

factors, but still, it is less than 10. None of the factors were

found to have a VIF value larger than the threshold value of 10.

Therefore, none of the factors was removed from the further

processes.

5.2 Thematic maps of conditioning factors

The aspect was classified into Flat, North, Northeast, East,

Southeast, South, Southwest, West, and Northwest (Figure 3A).

Most of the exploratory area lies in the Northern and Southward

orientations. The value of −0.0000001 is all the flat or no aspect

pixels, 45 breaks between North and East, 135 breaks between

East and South, 225 breaks between South and West, and

315 breaks between West and North. These orientations were

reclassified into five categories to understand better the

contribution level in triggering landslides. Based on the

reclassification, the class intervals of −1 to −0.00000001 were

weighted as 1, 0–45, and 315–360 equal to 2, 45–135 equivalent to

3, 135 to 225 equal to 4, and 225–315 equal to 5. Furthermore, the

elevation was divided into five classes, from the lowest class of

575–1000 m to higher elevated areas of 1000–2000 m,

2000–3000 m, 3000–4000 m, and 4000–4438 m (Figure 3B). It

can be observed that the Southwest area is low elevated while the

Northeast has a higher elevation.

This region is seismically very active and has several faults

in the region. Areas nearer to the fault lines have a higher

potential for landslides, while as the remoteness from the fault

line increases, the level of landslide susceptibility also

decreases gradually. So, a buffer of 0–300 m was ranked as

5 since this region has a higher potential of landslide

susceptibility while 300–600 m as 4, 600–900 m as 3,

900–1200 m as 2, 1200–1500, and >1500 m as 1

(Figure 3C). In addition to the faults, the flow direction is

also among the key contributing factors in landslide

susceptibility because it shows which direction the soil

slush will flow. The higher the flow direction value, the

higher the susceptibility potential, and vice versa. So based

on this fact, it was divided into five categories depending on

the possibility of susceptibility. 64–128 was ranked as 5 while

32–64 as 4, 8–32 as a 3, 2–8 as 2, and 1–2 as 1 (Figure 3D). The

Northward flow has a higher susceptibility. In the considered

study area, the flow is from North to South. Thus, more slopes

are cut to Northward flow, resulting in higher landslide

susceptibility.

The slope is also a foremost contributing factor in the

landslide because steeper slope areas have a higher chance of

rockfall than the gentle slope area. Hence five categories

depending on the potential of susceptibility were

established. >16° slopes were ranked as 5 while 12°–16° as 4,

8°–12° as 3, 4°–8° as 2, and <4° as 1 (Figure 3E). Additionally, the
level of precipitation in the area increases gradually from North

to South. Since higher levels of precipitation have a greater

potential of triggering landslides than lower levels of

precipitation, therefore the region was categorized based on

the precipitation potential as 1259–1323 mm is ranked as

5 while 1203–1259 mm as 4, 1136–1203 mm as 3,

1070–1136 mm as 2, and 983–1070 mm as 1 (Figure 3F).

Moreover, just like faults, areas nearer to the roads have a

higher potential for landslides because the roads are

constructed by cutting the toes of slopes, making them

unstable. As the remoteness from the roads increases, the level

of susceptibility also declines gradually. So, a buffer of 0–300 m

was ranked as 5 while 300–600 m as 4, 600–900 m as 3,

900–1200 m as 2, and 1200–1500 and >1500 m as 1 (Figure 3G).

Soil moisture has a direct influence on soil compactness and

rock strength. Higher soil moisture has the potential to cause

landslides as compared to lesser moisture. Thus, the area with a

higher NDWI value was ranked the highest (a rating of 5) and

vice versa (Figure 3H). Like faults and roads, areas nearer to the

water bodies have a higher potential for landslides. At the same

time, as the distance increases from the water bodies, the level of

TABLE 1 Outcomes of Multicollinearity analysis.

Landslide
conditioning factors

Statistics

TOL VIF

Aspect 0.276 3.623

Curvature 0.962 1.04

Earthquake 0.892 1.121

Elevation 0.722 1.385

Flow 0.803 1.245

Lithology 0.727 1.376

NDVI 0.596 1.678

NDWI 0.753 1.328

Plane Curvature 0.587 1.704

Precipitation 0.793 1.261

Profile Curvature 0.817 1.224

Slope 0.275 3.636

Faults 0.316 3.165

Roads 0.243 4.115

Waterways 0.461 2.16
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FIGURE 3
Input derived datasets: (A) aspects, (B) elevation, (C) faults, (D) flow direction, (E) slope, (F) precipitation, (G) roads, (H) NDWI, (I) waterways, (J)
earthquake, (K) lithology, (L) NDVI, (M) plan curvature, (N) profile curvature, (O) curvature.
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susceptibility also decreases gradually. So, a buffer of 0–300 m

was ranked as 5 while 300–600 m as 4, 600–900 m as 3,

900–1200 m as 2, and 1200–1500 and >1500 m as 1

(Figure 3I). Furthermore, earthquakes have a direct role in
causing landslides, as landslides occur after ground shaking.
The region is in a subduction zone where seismicity is very
high. The Northern portion of the exploratory area lies in a
highly high seismic zone. Since this region receives larger
magnitude earthquakes hence this region was classified as very
high (a rating of 5), high (a rating of 4), and medium only (a
rating of 3) (Figure 3J).

A larger part of the study area comprises limestone, and other

prominent lithologies are slate, volcanic rock, and quartzite

(Figure 3K). Limestone and slate are an example of weak

lithologies. Based on the strength, these lithologies were

ranked from 1 to 5 during the reclassification. The positive

NDVI value shows a high concentration of vegetation, while

the negative value depicts no vegetation. High vegetation covers

on the slope surface reduce soil erosion and slope failure. In

contrast, no vegetation on the slope increases the chances of

failure as it is exposed to the atmosphere. This logic was adopted

FIGURE 4
Landslide susceptibility derived from LGR.

TABLE 2 Resulted weights of the contributing factors from different
techniques.

Dataset SVM LGR LR AHP TOPSIS

Aspect 5 4 6 8 4

Curvature 8 10 9 5 8

Earthquake 3 5 4 6 7

Elevation 11 12 12 12 12

Flow direction 10 9 11 8 10

Lithology 10 8 10 12 11

NDVI 5 7 6 5 9

NDWI 8 10 9 8 7

Plane Curvature 4 6 5 4 3

Precipitation 13 10 10 11 14

Profile Curvature 2 1 1 1 1

Slope 12 13 9 13 10

Faults 5 2 4 3 1

Roads 2 2 2 2 2

Waterways 2 1 2 2 1

Total 100 100 100 100 100
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TABLE 3 Division of different landslide susceptibility classes for different methods.

Model type Susceptibility class

Very low Low Moderate High Very high

LGR Area m2 834 4726 8892 4819 1394

Area % 4.04% 22.87% 43.03% 23.32% 6.75%

LR Area m2 404 3457 9431 6164 1209

Area % 1.95% 16.73% 45.64% 29.83% 5.85%

SVM Area m2 219 2624 8713 7446 1663

Area % 1.06% 12.70% 42.16% 36.03% 8.05%

AHP Area m2 1892 5353 7538 4275 1607

Area % 9.16% 25.90% 36.48% 20.69% 7.78%

TOPSIS Area m2 1786 6465 7204 4030 1180

Area % 8.64% 31.28% 34.86% 19.50% 5.71%

FIGURE 5
Landslide susceptibility maps derived from (A) LR (B) SVM (C) AHP and (D) TOPSIS.
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during the reclassification process. The NDVI value for most of

the study area is high, which is consistent with the high

vegetation coverage observed for the mountainous area

(Figure 3L).

The curvature value represents the morphology of

topography. The curvature proposes information about the

flow’s divergent or convergent and accelerated or

deaccelerated character. The convexity (positive curvature) or

concavity (negative curvature) of the earth’s surface greatly

influences the soil’s moisture-holding capacity, which in turn

affects the slope stability. This fact was based for the

reclassification of different curvature types. For plan

curvature, the concave surfaces are shown by the positive

values, and the convex character of the surfaces is signified by

the negative values (Figure 3M). However, for profile curvature,

the negative curvature value relates to the concave slope, and the

positive curvature value relates to the convex slope (Figure 3N).

The research area is diversely dominated by convex, straight, and

concave slopes. The convex slope is related to the positive

curvature value, and the concave slope is associated with the

negative curvature value (Figure 3O).

5.3 The comparative significance of
conditioning factors for considered
models

From Table 2, it can be perceived that a similar controlling

element can have a varied influence according to distinct models.

For the SVM model, flow direction, elevation, and precipitation

have the highest contributions of 13%, 12%, and 12%. As per the

SVM model, the remaining conditioning factors contribute less.

For the LGR, LR, AHP, and TOPSIS models, the influences of the

landslide controlling elements are very much alike. Flow

direction, elevation, lithology, precipitation, and slope have

extreme impacts based on these four models, but the effects of

the remaining factors varied slightly.

5.4 Landslide susceptibility maps

The developed LSM (Figure 4) of the considered area after

the application of the LGRmodel illustrates that an area of 4.04%

is classed as very low and 22.87% as low susceptible zones,

predominantly located on the Northeast side of the region.

The moderate susceptible area covers 43.03% of the total area,

and 23.32% of the total area is sorted as a high susceptible zone, as

evident from Table 3. The very high susceptible area is 6.75%, and

these zones are mainly located in the Southwest of the region.

Whereas the LR model’s generated LSM (Figure 5A) shows that

the very low susceptibility class encompasses 1.95%, and the low

susceptibility class covers 16.73% of the considered area, which is

less than the LGRmodel’s respective classes. 29.83% and 5.85% of

the explorative area come under the high and very high

susceptibility classes, respectively, and these zones are

primarily located in the central and southwest parts of the

area. An area of 45.64% falls in the moderate susceptibility

class, which is slightly higher than the moderate class area of

both other ML models, as can be seen from Table 3. SVM-based

susceptibility map shows that 42.16% of the area is under

moderate susceptibility (Figure 5B). It can be viewed from the

SVMmodel generated LSM that the very high susceptibility class

comprises 8.05% of the considered area, and it is more as

compared to all other used models. The high and low

susceptibility classes encompass 36.03% and 12.70% of the

explorative area. The percentage of the research area that

accounts for very low susceptibility is 1.06%, and it is the least

percentage of area in this class than other models, as shown in

Table 3. The zones in the extreme North of the region have the

lowest susceptibility. The spatial distribution of the susceptible

areas according to the ML models produced LSMs is somewhat

the same, but it differs in proportions of area.

The LSM (Figure 5C) generated by exercising the AHP

technique illustrates that 9.16% of the area is very low,

whereas 25.90% is under low susceptibility. These two classes

are mainly concentrated on the Southeast side of the region,

TABLE 4 Confusion matrixes for Machine Learning models.

Confusion matrix for logistic regression

0 1

0 481 111

1 125 495

Confusion matrix for linear regression

0 1

0 435 135

1 171 471

Confusion matrix for support vector machine

0 1

0 445 161

1 116 490

TABLE 5 Validation results of Machine Learning models.

Model type Validation accuracy

LGR 80%

LR 75%

SVM 84%
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which is different from the results of ML models in which these

two classes are majorly positioned in the extreme North. The

moderate susceptibility class encompasses 36.48% of the

deliberated area. Besides this, 20.69% of the research area

accounts for the high susceptibility, and the very high

susceptibility represents 7.78% of the total area. Both these

classes are concentrated on the central and Northwest sides of

the region. The pattern of susceptibility classes is comparatively

different from the results of ML models. As portrayed in Table 3,

the results of the AHP show that the percentage of the

exploratory area subjected to high susceptibility is more than

the results of the TOPSIS. The generated LSM (Figure 5D) by the

TOPSIS technique also exhibits similar trends as the AHP

method LSM. The very low susceptibility class represents

8.64% of the research area. The low and moderate

susceptibility classes comprise 31.28% and 34.86% of the study

area, respectively. Finally, 19.50% of the considered area comes

under the high susceptibility class, and the portion of the

investigative area falls into the very high susceptibility class

is 5.71%.

5.5 Validation of models

In the current research, the obtained value of CR was less

than 0.1, which validated the AHP technique. For TOPSIS

technique, the values of cli + ranged from 0 to 1. An option

with a score close to 1 was considered the best. For all three ML

models, SVM, LGR, and LR, the accuracy was calculated using

the predicted and actual results for the testing dataset. The higher

accuracy value demonstrates that the model calculations are

precise. The confusion matrixes used to calculate the accuracy

of all three models are shown in Table 4.

The results of the LGRmodel showed that out of 1212 points,

481 non-landslide and 495 landslide points were accurately

predicted. In comparison, 125 non-landslide and 111 landslide

points are wrongly predicted by the model. As seen from Table 4,

out of 1212 points, the LR model accurately predicted 435 non-

landslide and 471 landslide points, while 135 non-landslide and

171 landslide points were wrongly predicted. The confusion

matrix for the SVM model reveals that, out of 1212 points,

the SVM model accurately predicted 445 non-landslide and

490 landslide points, while 161 non-landslide and

116 landslide points were wrongly predicted. The calculated

accuracy of the models based on the confusion matrix is

presented in Table 5. The accuracy of the SVM model (84%)

is more than the remaining two models, followed by LGR with

80% and LR with 75% accuracy (Table 5).

6 Discussion

The Muzaffarabad district of Azad Kashmir in Pakistan has

been subjected to devastating landslides. There is a risk of future

landslides due to the high precipitation levels, steeper slopes, high

mountains composed of weaker lithology, etc. Therefore, it is

vital to assess the landslide susceptibility of the region. In this

study, for mapping the landslide susceptibility in the area, the

landslide susceptibility maps (LSMs) were generated by

exercising three ML techniques: SVM, LR, and LGR, besides

two MCDM techniques: TOPSIS and AHP. Based on the

literature review and the geographical setting of the area,

15 influencing factors were selected for mapping the landslide

susceptibility.

Insights into the relative importance of inducing factors as a

landslide susceptibility indicator are essential. Table 2 shows that

all the models have marked slope and elevation as the most

significantly impacting factors on landslide occurrence, followed

by lithology, precipitation, flow direction, and NDWI. The

elevation of an area controls the profile curvature, slope angle,

and aspect of a geographical area. Thus, it is an important

parameter. Slope plays an essential role in initiating landslides.

Therefore, it is used frequently to prepare LSMs (Lee, 2005; Saha

et al., 2005; Pourghasemi et al., 2012). According to the produced

LSMs, landslide susceptible regions are majorly those with

elevations ranging from 575 to 2000 m and steep slopes.

Precipitation is a crucial landslide triggering factor, and this

region receives a significant amount of precipitation over a year,

varying from an average of 983–1323 mm at different places.

Precipitation triggers unexpected floods, which also produce

shallow landslides. Water infiltrates rapidly into the soil due

to higher levels of precipitation and thus increases the degree of

saturation of the soil (Mandal and Mandal, 2018). Saturated soil

has the potential to slide easily. NDWI is the amount of moisture

in the soil which has a more significant role in initiating

landslides. Soil water content disturbs soil cohesion and thus

changes the shear strength of the soil (Del Gaudio et al., 2013; von

Ruette et al., 2013). When the moisture increases, the material

composition of the slope becomes loose, and the risk of slipping

increases.

Lithology offers material support for the incident of

landslides and forms the foundation of landslide development.

Many studies have considered lithological features as an

influencing factor for landslide susceptibility mapping

TABLE 6 Accuracy assessment of produced landslide susceptibility
maps.

Model type Map accuracy (%)

LGR 79

LR 83

SVM 87

AHP 80

TOPSIS 78
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(Pourghasemi et al., 2012; Chen et al., 2016b; Wang et al., 2016).

The weaker lithologies are responsible for causing landslides

because they do not possess enough strength to withstand the

higher precipitations and can easily slip away. The pondered area

in this research receives a considerable amount of rainfall, and

most of the landslides that have occurred were positioned near

the rivers and were debris flow (Saba et al., 2010). The Jhelum

river drains the study area and its two tributaries, the Neelum and

Kunhar rivers. These rivers flow North to the West, developing

profound antecedent valleys before gushing Southwards

alongside wider ones valleys to the Indo-Gangetic Plain

(Kamp et al., 2008). The flow of the rivers is very swift owing

to the area’s topography, thus cutting the slopes and causing

debris flow while flowing from North to South. This makes the

flow direction a critical factor for mapping landslide

susceptibility. All these factors are related, and their combined

effect can cause landslides in areas where they are present.

For every produced map as an application of the five

methods, it can be seen that for landslide susceptibility, the

categorized five classes vary in their percentages and locations

in the area (Figures 4, 5). Overall, the spatial distribution of

landslide susceptibility zones reveals vital training data selection.

Table 3 displays the comprehensive outcomes of all the practiced

models in statistical form. The accuracy of the produced LSMs

was assessed using the data of previous landslide locations. The

established data of landslide locations were compared with the

LSMs for performing the accuracy assessment. The results

disclosed acceptable conformity amid the LSMs and the

previously present data on landslide positions, as evident from

Table 6. For the landslide susceptibility mapping, the SVMmodel

based LSM outperformed the other models. The SVM model

based LSM accomplished the maximum implementation

accuracy, which is 87%, followed by the LR model (83%),

AHP (80%), LGR model (79%), and lastly, TOPSIS (78%).

In general, the performance ofML techniques was better than

the performance of MCDM techniques. The results are quite like

the results of different studies carried out previously in different

parts of the world using a range of ML and MCDM models. For

mapping landslide susceptibility at the Haraz watershed, Iran

Pourghasemi et al. (2012) applied two MCDM techniques, Fuzzy

Logic, and AHP, and evaluated the performance of both models.

The results showed that the Fuzzy Logic model, with an accuracy

of 89.7%, performed better than AHP, which showed an accuracy

of 81.1%. The results of bothMCDM techniques are considerably

different in the mentioned study. But in the present case, there is

a marginal difference between the two practiced MCDM

techniques. This can be due to conditioning factors, as the

study area’s geographic location controls them. Erener et al.

(2016) used the GIS-based MCDM method (AHP), Association

Rule Mining (ARM), and LGR to carry out a comparative study

for landslide susceptibility mapping for Şavşat in Artvin Province

(NE Turkey). The authors found that ARM and LGR methods

are more accurate than GIS-based MCDM for landslide

susceptibility mapping. These results are as per the results of

this study. In the present study, the LGR model also performs

better than AHP. Razavi and Shirani (2019) used Frequency

Ratio (FR), entropy methods, and an MCDM method (TOPSIS)

for landslide hazard zoning for the Fahliyan basin, Fars. The

results exhibited that the statistical methods entropy (91%) and

FR (87.7%) have better accuracy than TOPSIS (84%). In the

current analysis the accuracy of TOPSIS also turns out to be the

least as compared to the other models.

In another study by Tsangaratos and Ilia (2016), a

comparison between the performances of NB and LGR was

made for the landslide susceptibility mapping in Greece, and

the validation results showed an accuracy for NB at 82.61% and

LGR at 87.50%. The study conducted by Pham et al. (2016a) for

the evaluation of the performance of five ML methods SVM,

LGR, NB, Fisher’s Linear Discriminant Analysis (FLDA), and

Bayesian Network (BN) applied for landslide susceptibility

assessment demonstrated that SVM has the highest accuracy

compared to the other methods. Goetz et al. (2015) used multiple

statistical andML techniques for the landslide hazard mapping of

the province of Lower Austria. They used LGR, SVM, WOE, RF,

Bootstrap Aggregated Classification Trees (bundling) with

Penalized Discriminant Analysis (BPLDA) and Generalized

Additive Model (GAM) method. The authors found that all

methods gave similar accuracy and results, but the BPLDA,

WOE, and RF had marginally better accuracy.

In these previously mentioned two studies, SVM performed

better in one, but in the other study, the accuracy of SVM was

marginally less. So, it can be concluded that the performance

varies from location to location and depends on the conditioning

factors. The results of previous studies also show that the ML

techniques perform better than the MCDM techniques. Thus,

indicating that the generated results of this study are acceptable.

Even though the employed models in this research produced

reasonable results; however, it must be perceived that the

landslide position statistics, that is, the landslide inventory

map, directly affect the reliability of the results.

An essential aspect of data-driven methods is that they are

most prevailing for landslide susceptibility mapping since they

contain less subjectivity. The accuracy of the SVM can be affected

by the training sample selection, indicated by the fact that the

best hyperplane is fitted by the SVM model that can detach non-

landslides from landslides efficiently, even though specific

complexity could come across for non-detachable landslide

factors in fitting the hyperplane (Ballabio and Sterlacchini,

2012; Bui et al., 2016). High-dimensional data does not affect

the workability of SVM, which means that it can handle the high

number of landslide conditioning factors (Mountrakis et al.,

2011; Kavzoglu et al., 2014). SVM accuracy is less affected by

categorical influences, for instance, lithology and land use. The

purpose is that the number of designated landslides might not

differ among different classes when deciding on different

landslide training data subsets. However, more effects can be
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witnessed in continuous elements such as slope and altitude as

the values differ relentlessly.

In contrast, for training data selection, the LGR model was

observed to be less complex. To the landslide inventory data,

the LGR model strives to fit a linear location and might usually

place the landslide sites among classes as high and very high

susceptibility. It was determined that the LGR model

undoubtedly highlights the interrelation present between the

occurrence of landslides and instability factors. Besides the

SVM and LGR, the LR method has been used due to the

ease of data attainment and examination and less time

consumption.

TOPSIS and AHP are the most rational and extensively used

among all the MCDM methods (Rao and Davim, 2008; Achour

et al., 2017; RAZAVI and Shirani, 2019; Bahrami et al., 2020;

Maqsoom et al., 2021). An optimal result can be produced by

their combination, provided that the strengths of one model can

offset the weaknesses of another model (Rao and Davim, 2008).

Unfortunately, TOPSIS is unreliable in its valuation of decisions

and lacks weights, according to the stated purpose, to determine

the relative importance of different indicators; this technique

requires a workable procedure. The AHP method also delivers

such a practice (Rao and Davim, 2008). A rating system based on

expert opinion is used for the conventional AHP model. In fact,

for solving composite problems like landslides, expert opinion is

very beneficial. However, to some extent, views may be imperiled

by cognitive restrictions with partiality and vagueness. They may

vary for every individual expert. Therefore, the analysis of spatial

relationships is important amongst landslide locations and the

landslide activating factors. Though the AHP technique is

primarily centered on professional judgment, it is supposed

that the choice of landslide activating factors based on

landslide incidences can neutralize the partiality perception in

this technique (Achour et al., 2017; Maqsoom et al., 2021).

A detailed comparison of the results in terms of area under

different susceptibility classes, as shown by the susceptibility

maps, is provided in Figure 6. In contrast with all the other

methods, the LR model’s generated LSM shows that the

maximum area is in the moderate susceptibility class

(>9000 m2). The SVM model outcomes show that the least

area is under the very low susceptibility class compared to the

other models. The representation shows that the area under low

susceptibility is higher for the TOPSIS model (>6000 m2) than

the area of other models. However, the area under the high and

very high susceptibility class of SVM is considerably higher than

the results of TOPSIS and AHP. The overall results of the models

indicate that primarily the investigative area has moderate

landslide susceptibility, which comprises approximately 40%

of the considered area.

All the LSMs (Figures 4, 5) show that the high and very high

susceptibility classes are in the lower elevation areas, including

the floodplains of the main rivers. This is because most of the

landslides in the study area occur along the rivers and are debris

flows. Due to this, the models have predicted high susceptibility

in the lower elevation areas, including the floodplains of main

rivers. Moreover, the practiced models in this research have

computed very low or low susceptibility in the Northern region

with a cluster of landslide points. This shows the limitation of the

practiced conventional ML and MCDM techniques. Therefore, it

is suggested that future researchers should practice

contemporary deep learning techniques the evaluate the

landslide potential in this study area.

7 Conclusion

There are several advised practices for landslide

susceptibility mapping. However, in this study, to assess the

FIGURE 6
Landslide susceptibility class division in terms of area for different methods.
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landslide susceptibility of the Muzaffarabad district, a

comparison was made between the results of three ML

techniques, LGR, LR, and SVM, and the results of two

MCDM techniques, TOPSIS and AHP. Based on the

landslide’s physical mechanics in the study area and other

related knowledge, selected slope, profile curvature, aspect,

plan curvature, elevation, lithology, curvature, flow direction,

fault lines, precipitation, NDWI, NDVI, distance from roads,

earthquake, and distance from waterways as landslides

inducing factors for this study. A total of 1212 data points,

606 landslide locations, and 606 randomly selected non-

landslide locations were used for the analysis. 70% of the

data was used as training and 30% as testing data. The

training data was used to train the ML models, and the

testing data was used for checking the validity of trained

SVM, LGR, and LR models. All the methods ranked slope,

precipitation, elevation, flow direction, and lithology as the

most critical landslide-inducing factors, but the assigned

weights differed. The accuracy assessment of produced maps

showed that the performance of all the methods was relatively

decent. Still, the accuracy of the SVMmodel-produced map was

somewhat higher (85%), followed by LR (83%), AHP (80%),

LGR (79%), and TOPSIS (78%). By offering the LSMs, this

study provides a baseline for decision-makers for effective

countermeasures that can be practiced for the study areas’

susceptible zones, including drainage measures, revetments,

stabilizing piles, anchor bolts, and long-term monitoring.

This can, as a result, help reduce the loss of life and

property in diverse situations.
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Shallow hillslope failure caused by rainfall is characterized by complex soil

hydrology and mechanical behavior. It is important to understand the hydraulic

behavior of hillslopes and quantify the effect of the uncertainty of mechanical

parameters on hillslope stability for forewarning and hillslope management.

Intra-hole deformation and displacement were record for the hillslope of the

Babaoliao collapse site in the Chiayi County, as a case study. The fuzzy point

estimation method and physical-based model were combined with the local

factor of safety (LFS) theory to calculate the internal local factor of safety of the

hillslope. A reliability analysis was then performed to determine the failure

probability at different depths. Historical rainfall events were used to validate the

model and predict the development of the failure probability for different rainfall

patterns with the same warning rainfall. The results revealed that the failure

probability model could effectively predict the area of hillslope instability and its

changes over time and space. Different rainfall patterns affected the infiltration

flux, leading to the difference in hillslope failure time. The delayed rainfall

pattern had a significant impact on the time of slope instability, and shallow

collapse was most likely to occur earlier. This study can be used as a reference

for developing future hillslope warnings.

KEYWORDS

shallow landslide, fuzzy point estimation method, physical-based model, local factor
of safety, failure probability

Highlights

• Uncertainty propagation is handled through physical-based model

• Fuzzy method can respond to the uncertainties inherent in practical landslide

• The proposed framework was applied to practical hillslope to verify its feasibility
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Introduction

Landslides are geomorphic processes occurring globally in

areas with hillslopes, covering different climatic zones and soil

materials, and can potentially result in environmental and

economic loss (Tiranti and Cremonini 2019). Rainfall is the

most common landslide trigger (Iverson 2000). When rainfall

infiltrates into the unsaturated soil of a hillslope, the increased

water content of the soil leads to a loss of matric suction and an

increase in soil weight (Lacerda 2007; Godt et al., 2009; Augusto

Filho and Fernandes 2019), leading to hillslope instability and

failure. Usually, rainfall-induced hillslope failure occurs

preferentially at shallow depths. In contrast, a single high-

intensity rainfall event may cause rapid and deep failure,

while slow and deep hillslope failure requires long

hydrological processes (Sidle and Bogaard 2016). The internal

hydrological processes, timing, and location of failures caused by

rainfall on hillslopes remain a complex and ongoing research

problem. Bogaard and Greco (2016) defined the hydrological

processes that trigger hillslope failure as landslide hydrology and

noted that storage and flux measurements are essential for

understanding and quantifying landslide failure. The evolution

of transient unsaturated groundwater flow and local stress can be

considered based on physical models to effectively describe

rainfall-induced internal hydrological and mechanical changes

and failure mechanisms of hillslopes (Zhang J. et al., 2018).

As the physical model can combine hydrological and

mechanical mechanisms, it can describe the internal

hydrological and mechanical changes and the failure

mechanisms of hillslopes caused by transient rainfall.

Moreover, the model has a high predictive capability for

quantifying the effects of various parameters on the hillslope

stability (Corominas et al., 2014). Common hillslope stability

analysis usually based on limit equilibrium analysis (e.g.,

Fellenius, 1936; Janbu, 1954; Bishop, 1955; Morgentern and

Price, 1965) or shear strength reduction techniques (Matsui

and San 1992; Dawson et al., 1999; Cai and Ugai 2004; Cheng

et al., 2007). In addition, research on developed constitutive

models that consider soil stress state variables, such as suction

stress (Lu and Likos 2006; Lu 2020) and thermal and chemical

processes (Nuth and Laloui 2008; Zhang et al., 2012; Bai et al.,

2019; Bai et al., 2021), has gradually become prevalent. However,

using a single stability index (factor of safety, Fs) for the hillslope

makes it challenging to describe the spatiotemporal evolution of

the hillslope unstable surface. Recently, Lu et al. (2012) proposed

the local factor of safety (LFS) theory. Based on the Mohr-

Coulomb failure criterion, the finite element method was used

to solve the transient variably saturated flow and stress state,

thereby analyzing the local safety factor of each position inside

the hillslope. This method can capture the evolution of the stress

state and failure surface with rainfall infiltration without the prior

condition of the potential failure surface, thereby overcoming the

challenges of limit equilibrium analysis. This method has also

been applied to study the evolution of hillslope failure surfaces

caused by changes in water content dynamics (Moradi et al.,

2018) and the change in infiltration characteristics on

embankment stability over time and space (Hinds et al.,

2019). However, because the physical model relies on an

extensive database of in situ or laboratory parameters, the

quality and quantity of the database are major issues in this

analysis, indicating that the model is susceptible to uncertainties

arising from measurement errors, spatial variability, and

incomplete data (Phoon and Kulhawy 1999). The geotechnical

parameters of hillslope material, such as cohesion and friction

angle, are inherently heterogeneous in space and these data are

often limited in acquisition (Baecher and Christian 2005). The

uncertainty of the input model parameters is the main factor that

causes the deviation of the hillslope stability analysis results from

reality (Burton et al., 1998).

Probabilistic analysis has been widely applied to quantify the

uncertainty in hillslope stability analysis (El-Ramly et al., 2002;

Griffiths and Fenton 2004; Xiao et al., 2017; Zhang L. et al., 2018;

Li et al., 2020). As physical-based slope stability analysis is highly

dependent on reliable estimates of soil parameters, the reliability

of slopes for soil variables has been increasingly investigated

(Jiang et al., 2014; Liu et al., 2019; Johari & Fooladi 2020).

However, Nawari and Liang (2000) and Giasi et al. (2003)

suggested that probability analysis requires a sufficient

number of reliable observations to construct a reasonable

probability density function. In addition, the uncertainty of

the parameters may be non-stochastic (Juang et al., 1998;

Nawari and Liang 2000). When data are limited and

insufficient to define the probability density function, fuzzy set

theory based on cognitive origin seems to be more suitable for

analyzing the uncertainty of geotechnical parameters (Luo et al.,

2011; Beer et al., 2013). In some case, this theory has been applied

to hillslope stability analysis (Dodagoudar and Venkatachalam

2000; Park et al., 2012; Gong et al., 2014; Xu et al., 2014; Park

et al., 2017, 2019; Zhou et al., 2019; Habibagahi et al., 2021).

In this study, by combining the fuzzy theory and hydraulic

coupling model to quantify the uncertainty of mechanical

parameters (cohesion and internal friction angle), we

evaluated the internal hydrological and mechanical processes

of hillslopes under rainfall conditions, the two-dimensional

spatial distribution of hillslope stability and failure probability,

and the impact and evolution of different rainfall patterns on the

failure surface using the existing hillslope as an example.

Study methods

The fuzzy theory was used to establish the dependence

functions of the soil mechanics parameters, namely cohesion

and internal friction angle. The fuzzy point estimation method

combined with the finite element analysis model HYDRUS2D

and the Slope Cube Module effectively described the changes in
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the soil hydraulic behavior of the unsaturated layer affected by

rainfall infiltration. HYDRUS 2D is a hydrological model that is

widely used to simulate the movement of soil water (Bufon et al.,

2012; Dabach et al., 2013; Kanda et al., 2020), heat (Wang et al.,

2013; Nakhaei and Šimůnek, 2014), and solute (Pang et al., 2000)

in variably saturated soils. The Slope Cube Module is a

supplemental package of HYDRUS 2D to simulate the

transient fields of soil suction, suction stress, and local factor

of safety (LFS). Finally, the failure probability was calculated

using reliability analysis. The hydraulic analysis process is

illustrated in Figure 1, and each method is explained as follows.

Hydrological model

The two-dimensional HYDRUS2D seepage control equation

is a transient unsaturated layer seepage control equation

developed by Šimůnek et al. (2008) based on Richards’

equation (Richards 1931).

zθ(h)
zt

� ∇ ·K(h)∇H +W (1)

where t denotes the time [T];W, the source or sink [T−1];H, the

total head [L]; K(h), the hydraulic conductivity function (HCF)

[LT−1]; and θ(h), the volumetric water content [L3L−3]. Soil water

characteristic curve (SWCC) links the relationships between

matric suction and volumetric water content, and is of great

importance for exploring the hydraulic and mechanical behavior

of unsaturated soils. In this study, the SWCC model proposed by

van Genuchten (1980) and the HCF proposed by Mualem (1976)

were used to describe the water retention capacity and hydraulic

conductivity coefficients of unsaturated soil, as shown in Eqs 2, 3:

θ(h) � θr + θs − θr

[1 + (α|h|)n]1−1
n

(2)

K(h) � Ks
{1 − (α|h|)n−1[1 + (α|h|)n] 1

n − 1}
2

{1 + [α|h|]n}12− 1
2n

(3)

where θs denotes the saturated soil water content [L3L−3]; θr, the

residual soil water content [L3L−3]; h, the pressure head [L]; α [1/

L] and n [-], the fitted parameters of SWCC [-]; andK, the

saturated hydraulic conductivity [LT−1].

Stress-strain deformation model

The Hillslope Cube Module adopts the two-dimensional

finite element code FEM2D (Reddy 1985) to solve the stress

distribution at each point within the hillslope based on the

momentum balance. The method is based on plane stress

linear elasticity to simulate the stress change caused by the

change in transient unit weight, and applies suction stress in

the computation of effective stress and displacement. The control

equation is expressed as follows:

∇ · (σ) + γb � 0 (4)

FIGURE 1
Flowchart of one way coupled hydro-mechanical calculation in this study.
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where σ denotes the three independent stress variables (i.e., σxx,

σyy, σxy) [ML−1T−2]; γ, the bulk unit weight of the hillslope soil

material [ML−2T−2]; and b, the unit vector of body forces [-].

Therefore, the elastic modulus E � σ/ε [ML−1T−2] and Poisson’s

ratio ] [-] can be used to solve the stress and displacement.

The unified effective stress developed and validated by Lu

and Likos (2004,2006), and Lu et al. (2010) was adopted.

σ′ � σ − ua − σs (5)

where ua is the pore-air pressure [ML−1T−2] and σs is the suction

stress [ML−1T−2], representing all the physical and chemical

mechanisms that can occur between soil particles, expressed

as follows:

σs � −σc � −σcap−σpc − S(ua − uw) (6)

where σc is the Born repulsive force [ML−1T−2]; σcap, the capillary

force [ML−1T−2]; σpc, the combination of van der Waals attractive

force and electric double-layer force [ML−1T−2]; S, the soil saturation

[-]; and (ua − uw), the matric suction [ML−1T−2], where uw is the

pore-water pressure [ML−1T−2]. The matric suction, capillary, van

der Waals, and electric double-layer force of the soil balance each

other out with the Born repulsive force, but the effects of van der

Waals and electric double-layer force can be neglected as the grain

size of the soil increases. Lu et al. (2010) used thermodynamic theory

to consider suction as the energy stored in a unit soil as each stress

component of soil can be expressed as a function of matric suction,

saturation, and water content, and since soil suction is mainly

controlled by soil water content. The suction stress characteristic

curve can be estimated from the same set of parameters from the

SWCC model. The formula can be expressed as follows:

σs � −(ua − uw) ua − uw ≤ 0

σs � − (ua − uw)
{1 + [α(ua − uw)]n}(n−1)/n

ua − uw > 0 (7)

Hillslope stability model

The LFS theory developed by Lu et al. (2012) was used to

assess the internal stability of the hillslopes. The LFS is based on

the Mohr-Coulomb failure criterion and represents the process

of changing the soil stress state toward the direction of failure

owing to rainfall infiltration. LFS is defined as the ratio of shear

strength to shear stress at any point inside the slope, as follows:

LFS � τ*
τ
� cos ϕ′

σII′
(c′ + σ′I tan ϕ′) (8)

where τ* is the shear strength, also known as potential Coulomb

stress [ML−1T−2]; τ, the shear stress, also known as current

Coulomb stress [ML−1T−2];c′, effective cohesion [ML−1T−2];

andϕ′, the effective internal friction angle [°]. σ ′I [ML−1T−2]

and σII′ [ML−1T−2] are the positions of the center and radius of

the Mohr circle in two dimensions and can be expressed as

follows:

σI � σ1′ + σ3′
2

� σ1 + σ3
2

− σs

σII � σ1′ + σ3′
2

� σ1 − σ3
2

− σs
(9)

Substituting Eq. 9 into Eq. 8, LFS can be expressed as follows:

LFS � cos ϕ′
σ1 − σ3

[2c′ + (σ1 + σ3 − 2σs) tan ϕ′] (10)

This study calculated the suction stress by combining the water

content, matric suction, and total stress changes. The LFS was then

calculated using the unified effective stress based on suction stress.

This linear theory-based computational mechanics framework

solves the stresses and displacements of statically admissible

fields, regardless of the complex elastoplastic theory. The

redistribution of pressure or displacement caused by a hillslope

failure is defined by the static allowable stress field as that satisfies the

equilibrium differential equation (Malvern 1969). Therefore, an LFS

of less than one indicates the location of potential hillslope failure

(Lu et al., 2012), which can be used to indicate the location of

potential failure areas. This model and finite element analysis can be

used to analyze the stability of soil elements at different locations or

depths of the hillslope affected by changes in water content or

suction stress, overcoming the challenges of conventional hillslope

stability analysis.

Fuzzy set theory

The traditional set rationality defines whether an element x

belongs to set A, and its characteristic function is expressed as

follows:

μA(x) � {
1, x ∈ A
0, x ∉ A

(11)

When x belongs to A,μA(x) � 1; when x does not belong to A,

μA(x) � 0. There are only two cases of 0–1. Zadeh (1965)

proposed the fuzzy theory to represent the uncertainty and

fuzzy phenomenon, also known as the fuzzy set theory. The

characteristic function is extended into a continuous value

function μA(x) in the interval [0,1], called the membership

function. The value of the membership function indicates the

degree to which element x belongs to set A. The most significant

difference between a fuzzy set and a traditional set is that a

traditional set has only a unique characteristic function. In

contrast, a fuzzy set has an infinite number of membership

functions to represent. Common membership functions

include a triangular shape, trapezoid shape, Gaussian shape, S

function, and Z function. Triangular and trapezoid functions are

less computationally intensive and highly adoptable
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(Dodagoudar and Venkatachalam 2000). Fuzzy theory is also

known as fuzzy set theory, and the fuzzy number is a special case

of fuzzy set, its characteristic is that the shape of the membership

function is unimodal, and at least one degree of membership is 1.

If there is no specific assumption (under the condition of lack of

data), the fuzzy number can be assumed to be a triangle,

expressed as TFN[a,m, b], including upper bound (a), lower

bound (b), and peak value (m). In general, the peak value is

usually estimated from the average of the available data (Luo

et al., 2011). This study used cohesion and internal friction angle

as analysis variables. We used the mean value of cohesion and

friction angle from the laboratory test as the peak value of their

fuzzy numbers. Upper and lower bounds were determined using

an estimated approach of the standard deviation of uncertain

parameters. Therefore, the triangular fuzzy number of cohesion

and friction angle can be expressed as follows:

xc � TFN[mc − kσc, mc, mc + kσc]
xϕ � TFN[mϕ − kσϕ, mϕ, mϕ + kσϕ]

(12)

The value of k depends on the actual conditions of the

hillslope project and ranges from 0.5 to 3. When the value of k

is larger, the distribution of the mechanical parameters is

larger and the selected parameter is less reliable, and vice

versa. Luo et al. (2011) and Park et al. (2017) considered it

reasonable to estimate the upper and lower bounds using the

mean value of ± 2σ. Therefore, the value of k in this study was

considered to be 2 cv is the coefficient of variation, which

indicates the degree of parameter variation (cv � σ/μ):cvof

cohesion is 25–30%, and that of the internal friction angle

is 10–20% (Phoon & Kulhawy 1999; Hsiao et al., 2008; Park

et al., 2013).

The fuzzy point estimation method combines the fuzzy

vertex and the point estimation methods. The fuzzy vertex

method was proposed by Dong and Shah (1987) and is based

on α- intercept set and interval analysis to obtain the vertex

combinations of variables and replace the membership

functions as input variables. Thus, there are vertex

combinations for N membership functions as the input

variables2N. Rosenblueth (1975) proposed a point

estimation method to evaluate the uncertainty parameters

of a performance function. Two points estimate the mean

and standard deviation of the performance function, and the

upper bounds of the variables obtained through α- intercept

set are (cαi− , cαi+ ) and (ϕαi− , ϕαi+ ), respectively. In this study, the α-

intercept set took nine membership degrees from 0.1 to 0.9 to

reduce the dispersion of the analysis results. Each α- intercept

set can cut out a range of two points and obtain four sets of

vertex combinations, and four sets of output values were

obtained through simulation (LFS−−, LFS−+, LFS+−, LFS++).
When considering the difference in the contribution of

each α- intercept set to the results, this study used the

concept of fuzzy weighted average, and the mean and

standard deviation of the fuzzy weighted factor of safety is

expressed as follows.

E[LFS] � ∑M
i�1αiLFSαi
∑M

i�1αi
(13)

σLFS �



















E[LFS2] − (E[LFS])2

√
(14)

Mis the number of α- intercept sets. The failure probability is

obtained from the reliability index. Assuming that the factor of

safety is normally distributed, the reliability index is a standard

normal distribution. The reliability indexβ and failure probability

(Pf) are expressed as follows:

β � E[LFS] − 1
σLFS

(15)
Pf � 1 − Φ(β) � Φ(−β) (16)

Study site

Background of the study site

Located at the collapse site of Babaoliao in the Dongxing

Village, Zhongpu Township, Chiayi County, the topography of

the study site is low-altitude hilly terrain with elevations

ranging from 420–580 m. The slopes of the area are Grade

5 and Grade 6 (slope >40°), and the slope direction decreases

from north to south, followed by southeast, southwest, and

west. The rocks belong to the western piedmont belt geological

area, and the exposed strata are of Miocene to Pleistocene age.

As shown in Figure 2, the regional geological unit contained the

main stratum of the collapse site—the beak layer (Niaotsui

Formation, Nt), with a lithology of muddy sandstone, sandy

shale, and thick sandstone. The Yunshuichi Formation (Yh)

was first exposed and was composed to shale, sandy shale, and

mudstone on the west side of the collapse site. The Liuchungchi

Formation (Lu), with silt-layered shales, sandy shales, or

interbedded muddy sandstones, is exposed on the west side

of the collapse site. Tangenshan sandstone (Tn), located on the

eastern side of the collapse site, is dominated by thickly bedded

gray to massive mudstone sandstone, occasionally interbedded

with sandstone or thin shale. The Changchikeng Formation

(Cc) is dominated by greenish-grey fine-grained sandstone,

muddy sandstone, and thick grey sand shale, commonly

interbedded with mound-like laminations. In the geological

structure, the Liuchungchi Fault passes through the southern

side of the collapsed area, while the Chukou and Lunhou Faults

are the main fault structures in the area. The collapse site was

mainly located on the back-slope axis (anticline axis) and its

eastern flank slope. The northeastern portion of the collapse site

presents a localized oblique structure. This complex geological

condition is one factor contributing to the higher collapse
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potential of the area. Since the formation of the collapse site in

November 2011, the landslide area has continued to expand

owing to heavy rains and typhoons, and there are signs of

continuous sliding. The potential collapse area is 11.31 ha, with

a risk of shallow collapse and deep sliding. Systematic surveys

have been conducted since 2017. To date, the collapse site has

undergone integrated analysis such as field surveys,

geophysical/chemical investigations, sampling and analysis,

observation system construction, UAV interpretation, and

application models. Related observations are ongoing, and

the investigation strategy is being revised in response to

spatiotemporal changes to clarify the sliding mechanism of

the potential landslide and formulate countermeasures

(Branch, 2018).

Hydrogeological assessment

The internal factor of the Babaoliao collapse mechanism

was regional geological fragmentation, and the external

FIGURE 2
Schematic diagram of geology and geological structure in Babaoliao area.
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triggering factor was mainly rainfall. When rainfall infiltrates

into shallow soil or generates fracture -advantageous water

flow on the sliding surface, it may cause hillslope instability.

Therefore, we conducted soil sampling and indoor test

analysis on the collapse site to understand the internal

hydraulic behavior of hillslope soils due to rainfall and its

effect on stability. The test items included the general physical

property test of soil (unit weight, porosity ratio, specific

gravity, and saturation), general physical property test of

rock (water content, porosity, durability, unit weight, and

specific gravity), triaxial water permeability test of soil,

pressure cooker test of soil, and direct shear test of rock.

The tests were performed by the geotechnical engineering test

laboratory of Sinotech Engineering Consultants with TAF

certification. The hydro-mechanical properties of geological

materials are listed in Table 1 and reported in detail in SWCB

(2018). The results and parameters of the tests were used as

references for subsequent conceptual modeling of the collapse

site. The soil composition of the fine particles was mainly fine

sand to powder soil, whereas the coarse particles with

relatively high content are mainly medium sand. The

results of the soil permeability test showed that the

permeability values ranged from 1.64×10−7–8.99×10–6 cm/s

at 20°C under different compression pressure. The test

TABLE 1 Hydraulic and mechanical parameters of three geological materials.

Hydraulic parameters

Materials θr [-] θs [-] α [m−1] n [-] e [-] Ks [mm/h]

Soil 0.00001 0.350 0.21 1.158 0.56 32.4

Regolith 0.0000124 0.486 0.63 1.125 1.05 3.24

Bedrock 0.031 0.467 3.64 1.121 0.19 5.90×10−03

Mechanical parameters

Materials Gs[-] c’[kPa] ϕ’[degree] E[kPa] possion ratio[-]

Soil 2.72 17.16 23 20000 0.33

Regolith 2.61 34.33 23 20000 0.33

Bedrock 2.64 68.65 23 40000 0.33

FIGURE 3
Conceptual model of slope geometry and boundary conditions.
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results showed that the unit weight of the rock sample was

2.37–2.69 t/m3, water content was 1.9–8.7%, specific gravity

was 2.68–2.73, porosity was 0.08–0.19, and water absorption

rate was 2.7–12.8%.

Conceptual modeling of hillslopes

This study used the section from BH05-CI to BH-02 on the

upper slope of the disaster-prone area at the Babaoliao collapse site

as an example. The soil thickness of this section ranges from 3.8 to

7.2 m, and the rock plate is muddy sandstone. On-site surveys have

shown that the surface soil has undergone erosion caused by rainfall

events, forming several eroded pits and trenches, and is prone to

disasters such as rock chippings. BH-05CI established an automatic

observation record of in-hole deformation in July 2018, and obvious

deformation was observed during the rainfall period from 08/23/

2018 to 08/24/2018. This study adopted a rainfall event (hereafter

referred to as the 0823 rainfall event) for subsequent numerical

simulations. In this study, the geological conceptual model from

BH05-CI to BH-02 was first established based on the results of

previous field surveys and tests, as shown in Figure 3, and the actual

elevation of the slope before the rainfall event was used for the

surface elevation. According to the experimental parameters of the

test (Table 1), we adopted the best-fitting SWCC, HCF, and

estimated SSCC through Eq. 7, as shown in Figure 4.

Stratification was used as the mesh refinement unit in this

study. The soil layer was set to 0.8 m, and the weathered rock

FIGURE 4
Hydraulic properties of materials (A) SWCC (B) SSCC (C) HCF.

FIGURE 5
Validation of simulated value against observed values at
BH05-CI.
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debris layer was 1.6 m. The farther the grid distance from the

set stratification, the larger the size, and the system

automatically optimizes the target grid size to 5.6 m; that

is, the grid distribution to the target grid size stops. The overall

grid was divided into 2,453 nodes and 5,032 elements. The

hydrological boundary is the atmospheric boundary on the

slope, seepage surface boundary on the slope below BH-02,

constant head boundary on the right side, time-varying head

boundary on the left side, and zero-flow boundary at the

bottom. The mechanical boundary is the free displacement

boundary on the slope, the zero-displacement boundary in the

x-direction on the left and right sides, and the zero-

displacement boundary in the z-direction at the bottom.

The simulation of the 0823 rainfall events included the

complete rainfall events. To include the complete rainfall

event, the simulation time used in this study was 60 h, and

the iterative convergence conditions are 0.001 water content

tolerance and 0.01 m pressure head tolerance. The simulation

results showed that the root mean square error of water level

was ~0.35 m, and the coefficient of determination R2 was

~0.95 at the BH05-CI, as shown in Figure 5, indicating the

reasonableness of the model.

Establishment of cohesion and internal
friction angle fuzzy numbers

In this study, the cohesion force and internal friction angle

were considered triangular fuzzy numbers, and the values in

Table 1 were considered the mean values. The maximum

coefficient of variation was used to establish the

triangular fuzzy numbers, which were 30% of the cohesion

coefficient of variation and 20% of the internal friction

angle coefficient of variation. The top sets of cohesion and

internal friction angle were obtained by intercepting nine

affiliations from 0.1 to 0.9. A total of 36 input variables

were obtained, as listed in Table 2. After the model

calculation, 36 sets of output variables were obtained,

subsequently, the hillslope failure probability was obtained

by calculating Eqs 13–15.

Results and discussion

Analysis of failure probability of historical
rainfall events

This study used the 0823 rainfall event as the analysis period.We

obtained different combinations of parameters with varying degrees

of affiliation through the intercept set without considering the

correlation between cohesion and angle of internal friction. We

considered an observation point at a depth of 1 m for BH-05CI

and the 48th hour of rainfall as an example. The results show that the

reliability index increased as the degree of affiliation increased. The

TABLE 2 The value of cohesion and friction angle of three geological materials in this study.

α-cut Soil Regolith Bedrock

c- c+ ϕ- ϕ+ c- c+ ϕ- ϕ+ c- c+ ϕ- ϕ+

0.1 7.89 26.43 14.72 31.28 15.79 52.87 14.72 31.28 31.58 105.72 14.72 31.28

0.2 8.92 25.40 15.64 30.36 17.85 50.81 15.64 30.36 35.70 101.60 15.64 30.36

0.3 9.95 24.37 16.56 29.44 19.91 48.75 16.56 29.44 39.82 97.48 16.56 29.44

0.4 10.98 23.34 17.48 28.52 21.97 46.69 17.48 28.52 43.94 93.36 17.48 28.52

0.5 12.01 22.31 18.40 27.60 24.03 44.63 18.40 27.60 48.06 89.25 18.4 27.6

0.6 13.04 21.28 19.32 26.68 26.09 42.57 19.32 26.68 52.17 85.13 19.32 26.68

0.7 14.07 20.25 20.24 25.76 28.15 40.51 20.24 25.76 56.29 81.01 20.24 25.76

0.8 15.10 19.22 21.16 24.84 30.21 38.45 21.16 24.84 60.41 76.89 21.16 24.84

0.9 16.13 18.19 22.08 23.92 32.27 36.39 22.08 23.92 64.53 72.79 22.08 23.92

FIGURE 6
Variation of average LFS, reliability index with the degree of
membership.
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average local safety coefficient at this location varied from [1.064,

1.075] to [0.217, 2.278], as shown in Figure 6. The fuzzy weighted

average local safety factor considering the degree of membership was

1.073. The change in the fuzzy weighted average local safety factor

over time is shown in Figure 7. According to the rainfall data,

continuous heavy rainfall began at the 15th hour. The BH-05CI

observation deformation records in the wellbore show that the

position started to deform by 0.54 mm at the 23rd hour, the

FIGURE 7
Temporal variation in accumulation rainfall, fuzzy weighted average LFS and probability of failure at observation point.

FIGURE 8
Distribution of probability of failure at 23, 48, and 60 h at the top of slope.
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FIGURE 9
Four rainfall patterns with the same accumulated rainfall, 200 mm: (A) uniform rainfall pattern, (B) delayed rainfall pattern, (C) normal rainfall
pattern, (D) advanced rainfall pattern.

FIGURE 10
Result of flux analysis on atmospheric boundary condition under four rainfall pattern(A)cumulative infiltration flux and (B) cumulative surface
runoff flux.
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deformation increased by more than 1mm per hour, and the

maximum deformation was 25.04 mm at the 32nd hour.

Therefore, the LFS (LFS = 1.258) at the 23rd hour was considered

a critical value in this study. The change in the failure rate of this

observation point with time showed that the LFS decreased with the

increase in cumulative rainfall, and the failure rate increased with it.

The failure rates were 50% at the 23rd hour, 90% at the 48th hour,

and 94% at the 60th hour. The spatial distribution of the failure rate

was mainly concentrated around BH-05CI, indicating that the

unstable area of the slope extended from the surface to the

bottom as the rainfall infiltration increased. A failure rate of 50%

was used as an indicator of instability. The instability depth was

~1.5 m at the 23rd hour, 1.8 m at the 48th hour, and 2 m at the 60th

hour. As shown in Figure 8, the areas with a failure rate of over 50%

were consistent with the interface of elevation loss, indicating that the

model can predict the area of slope instability and its change over

time and space.

Analysis of rainfall pattern failure
probability

In this study, regarding the warning management benchmark

of Babaoliao, the cumulative rainfall of the yellow warning in the

area was 200 mm, and the average rainfall intensity was 20 mm/h

(SWCB, 2018). Therefore, in this study, four rainfall patterns were

FIGURE 11
Result of (A) volumetric water content and (B) probability of failure change with depth at 6, 12 and 24 h (U: Uniform rainfall pattern; D: Delayed
rainfall pattern; N: Normal rainfall pattern; A: Advanced rainfall pattern).
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designed based on the principle of 24-h cumulative rainfall of

200 mm, namely, uniform, delayed, normal, and advanced rainfall

patterns (Rahimi et al., 2011), as shown in Figure 9, to investigate

the effect of different rainfall patterns on the hydraulic behavior

and stability of the hillslope.

This study first analyzed the cumulative runoff and infiltration

flux of the atmospheric boundary at the surface of the slope under

four rainfall patterns. Surface runoff analysis showed that the

retrogressive rain pattern was third in rainfall time owing to the

strong initial rainfall intensity. Surface runoff occurs in hours, and

surface runoff occurred at the latest in the progressive rain pattern of

~ the 14th hour, as shown in Figure 10A. The cumulative infiltration

flux shows that the overall cumulative infiltration flux of the delayed

rainfall pattern was higher than that of the other rainfall patterns in

each time period, as shown in Figure 10B. This study evaluated the

changes in the volumetric water content of the surface soil with depth

in different time periods under four rainfall conditions on the BH-

05CI vertical profile. The delayed rainfall pattern caused the soil

surface to reach saturation in a short time (the sixth hour as an

example). Furthermore, the wet zone had a deep advancing depth,

and the water content response depth was ~2m. Advanced rainfall

patterns had little initial and accumulated rainfall intensity, so the

water content response depth was ~0.7 m, and the surface layer was

saturated. As shown in Figure 11A, at the 12th hour, the water

content reaction states of the homogeneous and normal types were

similar. After the 24th hour, the surface layer reached a saturated state,

and the depth of the saturation zone was ~0.7 m. The water content

response changed below the saturation zone in the order of delayed

rainfall pattern> uniform rainfall pattern> normal rainfall pattern>
advanced rainfall pattern. The soil water content was affected by the

rainfall pattern and accumulated rainfall. In the process of rainfall

infiltration, rainfall intensity affected the development of the shallow

saturation profile, revealing the important influence of vertical

seepage on shallow hydrological responses. Chinkulkijniwat et al.

(2016) conducted experiments to evaluate the hydrological response

of different shallow slope and showed similar findings. The slope soil

was unstable owing to rainfall infiltration, which was affected by the

change and distribution of soil water content. The analysis of the

probability of failure shows that in the sixth hour, except for the

advanced rainfall pattern, other rainfall patterns caused instability of

the surface soil. Along with the vertically downward direction of the

saturation zone, the instability range also developed in the deep soil, as

shown in Figure 11B; in the 24th hour, the location with a 100%

probability of failure was ~1m below the surface.

Under the four rainfall conditions, the spatial variability of the

hillslope failure probability was affected by the boundary flux and

hillslope topography, as shown in Figure 12. The spatial distribution of

the failure probability of 50% was presented at the end of the rainfall

time (24th hour) as the basis of analysis, which showed that different

rainfall patterns would lead to different degrees of development of the

unstable area for the same cumulative rainfall of 200mm. At the end

of the rainfall event, the delayed rainfall pattern had the largest

instability area, followed by the uniform and normal types. In

contrast, the advancing rain type had the smallest instability area.

The variation in stability over time was evaluated at the observation

FIGURE 12
Distribution of 50% probability of failure at 24 h at the top of
slope.

FIGURE 13
Result of (A) slope stability analysis and (B) probability of failure under four rainfall patterns.
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point of BH-05CI at a depth of 1m. When considering the time

variability, this study considered the observation point at a depth of

1 mat BH-05CI as an example to evaluate the changes in stability over

time under the four different rainfall patterns, as shown in Figure 13.

The average local safety factor of the delayed rainfall pattern had a

large decreasing slope, reaching a failure probability of 100% in the

third hour, followed by a uniform rainfall pattern at the sixth hour, a

normal rainfall pattern at the ninth hour, and an advanced rainfall

pattern at the 13th hour. This shows that even if the accumulated

rainfall over 24-hwas 200mm, depending on the rainfall intensity, the

overall infiltration flux of the slope changes dynamically, affecting the

time of slope instability. Among them, the delayed rainfall pattern

significantly impacted on the time of slope instability, and shallow

collapse was most likely to occur earlier. Rahimi et al. (2011) showed

that the delayed rainfall pattern occurred earlier and exhibited similar

results. It should be noted that this study only considered the effects of

different rainfall patterns on the boundary fluxes, slope hydraulic

behavior, and stability for the same 24-h rainfall. When the rainfall is

of the long-delay, high-intensity continuous type, deeper slope failure

may occur after the shallow collapse, which is not included in the

scope of this study. The type and scale of slope failure are controlled by

slope hydraulic behavior, geomaterial properties, and slope structure.

Shallow failures are usually the priority soil-sand hazards caused by

rainfall, indicating the importance of evaluating shallow soil hydraulic

behavior and failure mechanisms.

Conclusion

This study considered uncertainties in the mechanical

parameters. The fuzzy theory was combined with the hydraulic

coupling model and the LFS theory was used to evaluate the LFS at

different depths of the shallow slope. Reliability analysis was then

used to calculate the failure rate of the slope at different depths. To

verify the rationality of the analytical model, this study used a case

study of the Babaoliao hillslope, which has a record of in-hole

deformation and observed displacements, to simulate the

0823 rainfall event, analyze of the simulation results, calculate the

failure probability, and compare the instability range.

The observation of 1 m underground displacement in BH-05CI,

and the time of the beginning of displacement after the 23rd h was

used as the benchmark. The local safety factor at this time was

regarded as the critical value (LFS = 1.258), and the underground

factor was calculated—the change in the probability of failure with

time. The results showed that the failure rate was 50% at the 23rd

hour, 90% at the 48th hour, and 94% at the 60th hour. Spatial

analysis showed that the change in the failure rate was mainly

concentrated around BH-05CI, and the relative instability area is

consistent with the elevation loss interface, indicating that the model

could effectively describe the development and distribution of the

slope instability area with in situ observation data.

We evaluated the effect of different rainfall patterns on

hillslope stability concerning yellow alert rainfall (24-h

cumulative rainfall of 200 mm), which is the benchmark

value of the Babaoliao alert management. The results

showed that the boundary flux controls the overall

infiltration of water into the slope and affects the change

in soil water content, which in turn causes slope instability.

Delayed rainfall causes early slope instability, therefore,

special attention should be paid to this type of rainfall

pattern. According to the occurrence sequence of soil-

sand disasters, shallow landslides and soil-rock flows are

usually the priority soil-sand disasters. They are influenced

by the internal hydraulic behavior of the slope, the

characteristics of the geological material, and the structure

that controls the type and scale of slope failure, indicating

that shallow failure is one of the precursors of large-scale

collapse. Therefore, evaluating the hydraulic behavior and

failure mechanisms of shallow soils is crucial.
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The risk assessment of landslide
hazards in the Badong section of
Three Gorges using the variable
fuzzy set theory

Y. Li1, Y. H. Wang2, Q. H. Wu1 and X. B. Gu3*
1School of Architecture and Civil Engineering, Chengdu University, Chengdu, Sichuan, China, 2School
of Civil Engineering, Sichuan University of Science and Engineering, Zigong, China, 3School of Civil
Engineering, Nanyang Institute of Technology, Nanyang, Henan, China

The risk assessment of landslide hazards has a tremendous influence on

people’s lives and property safety; therefore, its investigation is significant.

The stratigraphic lithology, degree of weathering, relationship between the

structural plane and slope direction, cohesive force, angle of internal friction,

severity, average slope degree, height of slope, and type of landslide are

adopted as the evaluation factors first. Second, an assessment model is

developed based on the variable fuzzy set theory. In addition, the proposed

model is utilized to assess the landslide hazards in the Badong section of Three

Georges in China. Finally, the results demonstrate that the results derived from

the proposed model are consistent with the current specifications; the

accuracy rate reaches 83%. The method can determine the risk level of

landslide hazards and provide an alternative scheme. Hence, this study can

accurately present a new approach for assessing landslide hazards in the future.

KEYWORDS

risk assessment, landslide hazards, variable fuzzy sets, Three Gorges Reservoir area,
evaluation index

1 Introduction

A landslide is a disaster that frequently occurs [1]. Its area of impact can be extensive

and very destructive [2]. Landslides can cause massive damage to local infrastructure and

even threaten the safety of people [3, 4].

Landslide hazards often occur in the Three Gorges Reservoir area. Until November

2003, landslide hazards occurred 4,638 times, and several thousand landslide hazards

could not be controlled according to the relevant statistics [5, 6]. Therefore, how to lessen

the economic losses and casualties arising from landslide hazards has become an

important issue [2, 7]. The accurate risk level of landslide hazards in the Three

Gorges Reservoir area is significant.

Research on the risk assessment and prediction of landslide hazards has become a

hot issue [8]. For example, slope, precipitation, and human activities are adopted as the

assessment index. Gao et al. [9] assessed the risk level of landslide hazards in the

Wanzhou zone, Chongqing, China. Wang et al. [10] established three nonlinear
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prediction models based on the weight of the joint prediction

model to assess the risk level of the Qinglong landslide in

Guizhou. Liu et al. [11] performed an investigation on the risk

and vulnerability evaluation of landslide hazards in the bank

section of the reservoir. Men et al. [12] investigated the reasons

for and mechanisms of the Baijia Bao landslide based on

geological surveys and rainfall data using numerical

simulations in combination with actual monitoring data. Shi

et al. [13] analyzed the risk assessment of landslide hazards

using GIS technology with existing applications to improve the

precision of the evaluation method. Spatial prediction of

landslide hazards was investigated using the information

model and quantitative analysis, multifactor regression

analysis model, and fuzzy discriminant analysis model by

Huang et al. [14]. Gu et al. [15] analyzed the landslide

hazards in Shiwangmiao, Chongqing, using the intuitionistic

fuzzy set-TOPSIS model.

With the development of science and technology, many

methods have been used to evaluate landslide hazards, such as

the catastrophe theory model [16, 17], neural network model

[18], fuzzy comprehensive evaluation, and gray correlation

analysis model [19]. The aforementioned methods have

fostered the development of an evaluation model for landslide

hazards. However, deficiencies still exist [20, 21], such as the

complex calculation process and the quantitative or qualitative

analytical results [22–24].

To conquer the insufficiency of the aforementioned

theories, the variable fuzzy set theory is introduced to

assess the risk level of landslide hazards. The method has

many merits, such as its algorithm is precise, its operability is

very strong in reality, and the grading standards, which are

interval forms, can be solved well. For the proposed model, the

construction of the relative difference function is depicted as

quantitative tools of variable fuzzy sets. It describes the

essence for contradictions and unity of opposites of

movement and the change criterion about the objective

things. The theory confirms the principle of dialectics of

nature; therefore, the model improves the traditional fuzzy

set model enormously.

This paper is organized as follows: in Section 2, the study area

is correlated first; Section 3 presents a new assessment model

based on the proposed method ; Section 4 explores the

construction of the evaluation model of landslide hazards;

Section 5 presents the analysis of the evaluation results

derived from the proposed method; and Section 6 summarizes

the conclusions.

FIGURE 1
Survey area.
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2 Study area

The Three Gorges Reservoir area is located at 28°32′~31°44′
North and 105°44′~31°44′ East. The total length of backwater in
the mainstream is 662.9 km. It includes Badong County on the

Yangtze River. Badong County is located in southwestern

Hubei Province in China and contains the middle and upper

streams of the Yangtze River watershed. It is located in Enshi

Tujia and Miao Autonomous Prefecture. Its width from east to

west is 10.3 km; its length from north to south is 135 km; its

total area reaches 3,354 km2; and the survey area is shown in

Figure 1.

The soil material in the landslide is mainly silty clay with

crushed stone and crushed stone soil distributed in the whole

slide body. The slippage soil is mainly silty clay with gravel

breccia. The thickness of the slip band is 0.2 cm. The

extraordinary phenomenon of deep slip zone soil is not

apparent, but it has less breccia.

The material of the slide bed consists mainly of

feldspar quartz sandstone and mudstone of the

Jurassic Badong Formation. The occurrence of the bedrock

is 260° < 30°. The bedrock surface undulates little and is

close to the ground. According to the strata, the slope is

reversed.

3 Methodology

Entropy theory and the variable fuzzy set assessment method

are combined to develop a comprehensive approach for land

hazard assessment. It can depict the inconsistent conception and

implication of membership and non-membership functions

dynamically; therefore, it is the significant optimization of

traditional fuzzy sets.

3.1 The basic definition

Assuming that F belongs to the domain U, at any u ∈ U, the

number μ0F(u) can be determined in the closed interval. The

absolute membership relationship is defined as the relation

between U and F, which can be expressed as follows [25]:

μ0F: U → [0, 1].
u|→μ0F

(1)

In the domain U, u ∈ U, there are two opposite fuzzy

numbers: F and Fc. For any variable u, there are two

determined numbers, μF(u) and μFc(u), and the relative

membership degree of u to F and Fc is defined as

μF, μFc : U → [0, 1]
u|→μF(u), μFC(u) ∈ [0, 1] . (2)

Figure 2 depicts the dynamic variable of any number in any

closed interval as follows:

The relative membership degree of F and Fc meet with

μF(u) + μFc � 1, 0≤ μF(u)≤ 1, and 0≤ μFc(u)≤ 1, and they can

be expressed as follows:

F
~
� {u, μF(u), μFC(u)|u ∈ U}, (3)

where F
~
is the opposite fuzzy set. Figure 3 shows its definition.

The attractive and repelled sets μF(u) and μFc(u) can likewise
be defined as follows:

DF(u) � μF(u) − μFc(u). (4)

When μF(u)> μFc(u), 0≤DF(u)≤ 1, and when μF(u) � μFc ,

DF(u) � 0, but when μF(u)< μFc(u), −1≤DF(u)≤ 0. The

mapping of the relative difference function DF(u) can be

expressed as follows:

D: U → [0, 1]
u|→DF(u) ∈ [−1, 1]. (5)

Figure 4 shows the relative difference function of u to F.

3.2 Determining the relative membership
degree

X is a sample set, which is expressed as follows :

X � (xij), (6)

FIGURE 2
Dynamic variables.

FIGURE 3
Diagram of opposite fuzzy sets.
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where xij is the eigenvalue of the index i of sample j,

i � 1, 2, ..., m; j � 1, 2, ...c. c represents the grade of the index;

the attractive domain Iab can be obtained in Eq. 7.

Iab � (
∣∣∣∣aij, bij

∣∣∣∣). (7)

When we enlarge the set Iab according to the upper and

lower bounds of its adjacent intervals, set Ide is expressed as

follows:

Ide � (
∣∣∣∣dij, eij

∣∣∣∣). (8)

Based on the relevant Ref. [26], the level standard F of the

index is depicted as follows:

F � ⎡⎢⎢⎢⎢⎢⎣
F11 ... F1j

... ... ...
Fi1 ... Fij

⎤⎥⎥⎥⎥⎥⎦, (9)

where the element Fij is depicted as follows:

Fij � c − j

c − 1
aij + j − 1

c − 1
bij, (10)

when j � 1, Fi1 � ai1; when j � c, then, Fij � bic; and when

j � c+1
2 , then, Fij � aij+bij

2 .

X0(a, b) is defined as the attractive domain, namely, when

0≤DF(u)≤ 1, X � [d, e], and it belongs to the upper and lower

domain intervals of X0(X0 ⊂ X). Figure 5 shows their position

relationship.

Therefore, their relative membership degree is depicted in

Eqs. 11, 12.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μF(u) � 0.5[1 + (x − a

F − a
)
β

];x ∈ [a, F]

μF(u) � 0.5[1 − (x − a

d − a
)
β

]; x ∈ [d, a]
. (11)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μF(u) � 0.5⎡⎣1 + (x − b
F − b

)
β

⎤⎦;x ∈ [F, b]

μF(u) � 0.5⎡⎣1 − (x − b

e − b
)

β

⎤⎦; x ∈ [b, e].
(12)

3.3 Determining index weights

(1) It is assumed that sample set X can be depicted as follows:

X �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 ... x1m

x21 x22 ... x2m

... ... ... ...
xn1 xn2 ... xnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

(2) Sample set Xij is normalized.

3.3.1 The positive index:

xij
′ � xij −min {xij, ..., xnj}

max {x1j, ..., xnj} −min {xij, ..., xnj}
(14)

3.3.2 The negative index:

xij
′ � min {xij, ..., xnj} − xij

max {x1j, ..., xnj} −min {xij, ..., xnj}
(15)

where i is the number of evaluation schemes, j is the number of

evaluation indices, and xij is the corresponding magnitude.

(3) Determining the proportion of the assessment index.

bij � xij

∑
n

i�1
xij

. (16)

(4) The entropy is calculated in Eq. 17:

sj � −k∑
n

i�1
bij ln(bij). (17)

(5) The final weight can be depicted in Eq. 18:

FIGURE 4
Relative difference function.

FIGURE 5
Drawing of the position relationship.
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ωj � 1 − sj

n − ∑
n

j�1
sj.

(18)

3.4 Determining the evaluation grade

According to Eqs. 11, 12, and 18 and in combination with the

relevant Ref. [26], a synthetic membership degree is shown in

Eq. 19:

vF(u)j � 1

1 +⎛⎜⎜⎜⎜⎜⎝
∑
m

i�1
[ωi(1−μF(u)ij)]l

∑
m

i�1
[ωiμF(u)ij]l

⎞⎟⎟⎟⎟⎟⎠

k
l

. (19)

Based on Eq. 19, the synthetic membership degree is

calculated as follows:

V � (v′), (20)
where

v′ � vF(u)j
∑
m

j�1
vF(u)j

. (21)

The evaluation grade R is expressed in Eq. 22.

R � (1, 2, ..., c)•V. (22)

3.5 The calculative step and the flow chart

Its calculative process is correlated as follows:

(1) According to the specific data and evaluation standard, the

eigenvalue matrix X and classification matrix Y are

constructed.

(2) The attractive domain Iab, range matrix Ide, and point value

matrix F are constructed.

(3) Based on Eqs. 11, 12, the relative membership degree is

calculated.

(4) The weights of the landslide hazards using the proposed

model are calculated.

(5) The grade eigenvalues R based on the relevant equations are

calculated. If n − 0.5≤H≤ n + 0.5, then the risk grade is n (n

is a nonnegative integer).

Its flow chart is plotted in Figure 6. First, a complete

evaluation index system should be constructed before the risk

level of landslide hazards is evaluated. Second, entropy–weight

theory is adopted to calculate the weight of each evaluation index.

Third, the relative membership degree is defined based on the

proposed model. Then, the proposed model can determine the

risk level of landslide hazards.

4 Construction of the evaluation
model

4.1 Determining evaluation indices

The Caofang River landslide, Leijia Ping landslide, Daping

landslide, Lijia Wan landslide, Zhujia Dian landslide, and Jiaojia

Wan landslide in the Badong sections of the Three Gorges

Reservoir area are selected as the assessment objects.

According to the characteristics of landslides in the Three

Gorges Reservoir area, the stratigraphic lithology (X1), degree

of weathering (X2), relationship between the structural plane and

slope direction (X3), cohesive force (X4), angle of internal friction

(X5), severity (X6), average slope degree (X7), height of slope (X8),

and type of landslide (X9) are selected as assessment indices.

Their original values are shown in Table 1 [27].

It can be found in Table 1 that X1, X2, X3, and X9 are

qualitative and the other indices are quantitative. To assess

FIGURE 6
Risk assessment process of landslide hazards.
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the risk level of landslides, the quantitative indices should be

transformed into qualitative indices. According to the hierarchy

method, the quantitative indices are divided into five groups:

excellent, good, moderate, bad, and very bad. The five grades are

5, 4, 3, 2, and 1, respectively. Table 2 is as follows:

According to extensive statistics and analysis and in

combination with the geological conditions of assessment

objects [16, 28], the risk level of landslides is classified into

five classes: safe (I), mildly dangerous (II), dangerous (III), more

dangerous (IV), and hazardous (V). Their classification

standards are shown in Table 3.

4.2 Determination of the risk level of the
landslide hazard

(1) The construction of the attractive domain, range matrix, and

point value matrix.

TABLE 1 Data of different assessment indices.

Name
of the
landslide

Assessment index

X1 X2 X3 X4 X5 X6 X7 X8 X9

Caofang River
landslide

Semihard rocks A slight or moderate weathering 162° < 34°,
consequent slope

25.0 18 22.5 12.5 160 Hydrodynamic pressure

Leijia Ping
landslide

Semihard rocks A slight or moderate weathering 172° < 48°, reverse
slope

33.0 17.75 21.70 33 210 Hydrodynamic pressure

Daping landslide Softer–harder rocks Strong weathering–moderate
weathering

350° < 20°, reverse
slope

14.0 20.0 21.5 17 240 Hydrodynamic pressure +
rainfall

Lijia Wan
landslide

Softer–harder rocks A slight or moderate weathering 222° < 35°,
consequent slope

25.5 18.2 21.7 32.5 200 Hydrodynamic pressure

Zhujia Dian
landslide

Hard and semihard
rocks

Moderate weathering–weak
weathering

276° < 61°, reverse
slope

24.0 18.0 20.46 37.5 420 Hydrodynamic pressure +
rainfall

Jiaojia Wan
landslide

Softer–harder rocks A slight or moderate weathering 160° < 30°,
consequent slope

34.5 17.5 21.7 32.5 150 Hydrodynamic pressure

TABLE 2 Comparison sequence of the evaluation index.

Name
of the
landslide

Assessment index

X1 X2 X3 X4 X5 X6 X7 X8 X9

Caofang River landslide 4.5 4.0 3.0 25.0 18 22.5 12.5 160 3

Leijia Ping landslide 4.5 3.5 4.5 33.0 17.75 21.70 33 210 3

Daping landslide 2.0 3.0 4.0 14.0 20.0 21.5 17 240 2

Lijia Wan landslide 2.5 3.5 2.5 25.5 18.2 21.7 32.5 200 3

Zhujia Dian landslide 4.5 2.5 5.0 24.0 18.0 20.46 37.5 420 2

Jiaojia Wan landslide 3.0 4.0 2.0 34.5 17.5 21.7 32.5 150 3

TABLE 3 Classification of the assessment index.

Risk
level

X1 X2 X3 X4 X5 X6 X7 X8 X9

I [4.5) [4.5) [4.5) [30.35] [33.38) [23.24) [0.15) [0.170) [4.5)

II [3.4) [3.4) [3.4) [25.30) [28.33) [22.23) [15.25) [170,200) [3.4)

III [2.3) [2.3) [2.3) [20.25) [23.28) [21.22) [25.35) [200,230) [2.3)

IV [1.2) [1.2) [1.2) [15.20) [18.23) [20.21) [35.45) [230,260) [1.2)

V (0.1) (0 1) (0.1) [0.15) [0.18) [0.20) [45.90) [260,500) [0.1)
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According to Table 3 and in combination with Eq. 7, the

attractive domain Iab is depicted as follows:

Iab �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ 5 4 ] [ 4 3 ] [ 3 2 ] [ 2 1 ] [ 1 0 ]
[ 5 4 ] [ 4 3 ] [ 3 2 ] [ 2 1 ] [ 1 0 ]
[ 5 4 ] [ 4 3 ] [ 3 2 ] [ 2 1 ] [ 1 0 ]
[ 35 30 ] [ 30 25 ] [ 25 20 ] [ 20 15 ] [ 15 0 ]
[ 38 33 ] [ 33 28 ] [ 28 23 ] [ 23 18 ] [ 18 0 ]
[ 24 23 ] [ 23 22 ] [ 22 21 ] [ 21 20 ] [ 20 0 ]
[ 0 15 ] [ 15 25 ] [ 25 35 ] [ 35 45 ] [ 45 90 ]
[ 0 170 ] [ 170 200 ] [ 200 230 ] [ 230 260 ] [ 260 500 ]
[ 5 4 ] [ 4 3 ] [ 3 2 ] [ 2 1 ] [ 1 0 ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Based on Eq. 8, the matrix Ide can be expressed as follows:

Ide �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ 5 3 ] [ 5 2 ] [ 4 1 ] [ 3 0 ] [ 2 0 ]
[ 5 3 ] [ 5 2 ] [ 4 1 ] [ 3 0 ] [ 2 0 ]
[ 5 3 ] [ 5 2 ] [ 4 1 ] [ 3 0 ] [ 2 0 ]
[ 35 25 ] [ 35 20 ] [ 30 15 ] [ 25 0 ] [2 0 0 ]
[ 38 28 ] [ 38 23 ] [ 33 18 ] [ 28 0 ] [ 23 0 ]
[ 24 22 ] [ 24 21 ] [ 23 20 ] [ 22 0 ] [ 21 0 ]
[ 0 25 ] [ 0 35 ] [ 15 45 ] [ 25 90 ] [ 35 90 ]
[ 0 200 ] [ 0 230 ] [ 170 260 ] [ 200 500 ] [ 230 500 ]
[ 5 3 ] [ 5 2 ] [ 4 1 ] [ 3 0 ] [ 2 0 ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Based on Eq. 10, the point value matrix F can be depicted as

follows:

F �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 3.75 2.5 1.25 0
5 3.75 2.5 1.25 0
5 3.75 2.5 1.25 0
35 28.75 27.5 16.25 0
38 31.75 25.5 19.25 0
24 22.75 21.5 20.25 0
0 19.5 30 42.5 90
0 177.5 215 252.5 500
5 3.75 2.5 1.25 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2) Determining the relative membership degree

Based on Table 2 and in combination with Eqs. 11, 12, we

should decide whether the evaluation magnitudes are to the left

or the right of point F. The data of the Caofang River landslide are

adopted for an examination. If i � 1, then, [ a b ]1j, [ d e ]1j, and
F can be depicted as follows:

[ a b ]1j � ( [ 5 4 ] [ 4 3 ] [ 3 2 ] [ 2 1 ] [ 1 0 ] ),

[ d e ]1j � ( [ 5 3 ] [ 5 2 ] [ 4 1 ] [ 3 0 ] [ 2 0 ] ),

F1j � [ 5 3.75 2.5 1.25 0 ].

When x1 � 4.5, a11 � 5, b11 � 4, d11 � 5, e11 � 3, and

F11 � 5, then x1 is located in the interval [F11 b11 ]; thus,

μF(u11) � 0.75; when a12 � 4, b12 � 3, d12 � 5, e12 � 2, and

F12 � 3.75, then x1 is located in the interval [ d11 a11 ]; thus,
μF(u12) � 0.25; when a13 � 3, b13 � 2, d13 � 4, e13 � 1, and

F13 � 2.5, then x1 is located in the out of intervals; thus,

μF(u13) � 0.

In the same way, the relative membership degree matrix of

the Caofang River landslide can be obtained as follows:

μF(u1j) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.75 0.25 0 0 0
0.5 0.5 0 0 0
0 0.5 0.5 0 0
0 0.5 0.5 0 0
0 0 0 0.5 0.5

0.25 0.833 0.25 0 0
0.583 0.417 0 0 0
0.529 0.471 0 0 0
0 0.5 0.5 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3) Determining weight coefficients

Based on Table 2 and in combination with Eq. 16, Table 4

shows the parameter matrix.

According to Table 4 and Eq. 17, the entropy matrix can be

shown in Table 5.

According to Eq. 18, the weight coefficients are shown in

Table 6.

(4) Determination of the comprehensive relative membership

degree

Based on Eq. 19 and μF(μ1j), the results are calculated in

Table 7.

Based on Eqs. 20, 21, the comprehensive relative membership

degree matrix is normalized in Table 8.

(5) Determining the risk level of the landslide hazards.

According to Eq. 22 and Table 8, the ranking value of the

Caofang River landslide is shown in Table 9.

Similarly, the feature values of the other five landslides are

shown in Table 10.

The results obtained from different methods are contrasted

in Table 11.

The variable fuzzy set assessment method is used to evaluate

the risk level of landslide hazards. Their complete results are

shown in Table 10. Table 10 shows that the risk levels of landslide

hazards of six different landslides are different. The risk level of

the Daping landslide and Lijia Wan landslide is III and that of the

rest of the landslides is II. This indicates that the risk level of the

Daping landslide and Lijia Wan landslide is dangerous and that

of the rest of the landslides is mildly dangerous. Therefore, the

necessary consolidation measurements should be performed at

the Daping landslide and Lijia Wan landslide. The qualified rate

of landslide hazards in all the Badong section of Three Gorges

is 67%.

Based on the analytical results of the evaluation method in

Table 11, the conclusions obtained from the proposed model are

consistent with the site investigations of the five landslides,

except for the Zhujia Dian landslide. Its accuracy is 83% in

the proposed model, which is higher than that (50%) while using

the gray fuzzy comprehensive evaluation theory [27] and that
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while using level-based weight assessment (67%). In comparison

with gray fuzzy comprehensive evaluation theory, the variable

fuzzy set assessment method can accurately transmit the risk

degree of landslide hazards. Therefore, the conclusions indicate

that estimating the risk level of landslide hazards is feasible using

the proposed method. Accurate results and details of landslide

hazards were obtained. For example, the cohesive force of the

Lijia Ping landslide is 33, which should be Grade I based on

Table 3. In addition, the membership degree of the other indices

obtained by the proposedmethod is Grade II; therefore, the grade

probability of the Lijia Ping landslide at Grade II is more

extensive than that at Grades I, IV, III, and V. The risk level

probability of the Lijia Ping landslide must be Level II and almost

impossible is Level I, IV, III, and V. The risk grade of the Zhujia

Dian landslide possibly belongs to Grade III, which is more than

that of the Lijia Wan landslide, because the mean ranking feature

value (3.1773) of the Zhujia Dian landslide, Level III, is higher

than that of the Lijia Wan landslide (2.8162). The conclusions

obtained using the proposed method demonstrate the accuracy

of the risk level and further determine the ranking of landslide

hazards for different landslides at the same grade.

5 Discussion

5.1 Comparison with existing studies

The variable fuzzy set method is provided to assess the risk

level of landslide hazards, and the results are good. However, due

TABLE 4 Synthetic parameters of landslide hazards.

Name
of the
landslide

X1 X2 X3 X4 X5 X6 X7 X8 X9

Caofang River landslide 0.2143 0.1951 0.1429 0.1603 0.1645 0.1737 0.0758 0.1159 0.1875

Leijia Ping landslide 0.2143 0.1707 0.2143 0.2115 0.1622 0.1675 0.2 0.1522 0.1875

Daping landslide 0.0952 0.1463 0.1905 0.0897 0.1827 0.1659 0.103 0.1739 0.125

Lijia Wan landslide 0.119 0.1707 0.119 0.1635 0.1663 0.1675 0.197 0.1449 0.1875

Zhujia Dian landslide 0.2143 0.122 0.2381 0.1538 0.1645 0.1579 0.2273 0.3043 0.125

Jiaojia Wan landslide 0.1429 0.1951 0.0952 0.2212 0.1599 0.1675 0.197 0.1087 0.1875

TABLE 5 Entropy weight matrix.

Index X1 X2 X3 X4 X5 X6 X7 X8 X9

Weight coefficients 0.9742 0.993 0.9727 0.9801 0.9995 0.9998 0.9646 0.962 0.9908

TABLE 6 Weight coefficient matrix.

Index X1 X2 X3 X4 X5 X6 X7 X8 X9

Weight coefficients 0.1587 0.0431 0.1669 0.1219 0.0034 0.0013 0.2169 0.2325 0.0561

TABLE 7 Comprehensive relative membership.

kandl vF(u)1

k � 1, l � 1 0.39 0.4344 0.1726 0.0017 0.0017

k � 1, l � 2 0.4505 0.4341 0.2227 0.0041 0.0041

k � 2, l � 1 0.2902 0.371 0.0417 0 0

k � 2, l � 2 0.4019 0.3705 0.0759 0 0

TABLE 8 Normalization of the comprehensive relative membership
degree vector.

kandl v’

k � 1, l � 1 0.3899 0.4342 0.1726 0.0017 0.0017

k � 1, l � 2 0.4038 0.3892 0.1997 0.0036 0.0036

k � 2, l � 1 0.4129 0.5278 0.0594 0 0

k � 2, l � 2 0.4738 0.4367 0.0895 0 0
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to a lack of information, the uncertain human mind, and time

complexity, decision experts (DEs) cannot provide accurate

results for subjective methods such as the gray fuzzy

comprehensive evaluation method and level-based weight

assessment (LBWA). While the proposed model addresses this

concern, it not only considers the unreliability or reliability of the

problem but also solves some degrees of uncertainty and

ambiguity of the data. Therefore, it has significant advantages

over these subjective methods.

5.2 The advantages and limitations of the
proposed model

In comparison with the traditional models, the advantages of

the variable fuzzy set theory are analyzed as follows:

(1) The variable fuzzy set method can accurately demonstrate

the risk degree of landslide hazards using the eigenvalue of

level H.

(2) Interval-oriented evaluation, not point assessment, is applied

in the proposed model; therefore, the reliability of evaluation

outcomes is enhanced, and the quality state of landslide

hazards can be discovered with effect.

6 Conclusion

Considering the stratigraphic lithology (X1), degree of

weathering (X2), relationship between the structural plane

and slope direction (X3), cohesive force (X4), angle of

internal friction (X5), severity (X6), average slope degree

(X7), height of slope (X8), and type of landslide (X9), the

TABLE 9 Feature values.

Sample number Ranking feature value

k � 1, l � 1 k � 1, l � 2 k � 2, l � 1 k � 2, l � 2 Mean value

1 1.7912 1.814 1.6465 1.6158 1.7169

TABLE 10 Values of the assessment model for the other five landslides.

Name
of the landslide

Ranking feature value

k � 1, l � 1 k � 1, l � 2 k � 2, l � 1 k � 2, l � 2 Mean value

Caofang River landslide 1.7912 1.814 1.6465 1.6158 1.7169

Leijia Ping landslide 2.315 2.4558 2.194 2.426 2.3477

Daping landslide 3.0176 2.9759 3.1403 2.9991 3.0332

Lijia Wan landslide 2.7825 2.8046 2.8213 2.8564 2.8162

Zhujia Dian landslide 3.1051 3.1683 3.1211 3.3146 3.1773

Jiaojia Wan landslide 2.4033 2.4402 2.38 2.384 2.4019

TABLE 11 Comparison of results from the different models.

Name
of the landslide

Method in the text Current specification Gray fuzzy comprehensive
evaluation method

Level-based weight assessment

Caofang River landslide II II II II

Leijia Ping landslide II II I I

Daping landslide III III III III

Lijia Wan landslide III III III III

Zhujia Dian landslide III II I II

Jiaojia Wan landslide II II I I
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variable fuzzy set theory is applied to evaluate the risk level of

landslide hazards in the study.

The conclusions demonstrate that the outcomes obtained

using the proposed model are consistent with the site

investigations; its accuracy rate reaches 83%. The acceptance

rate of landslide hazards for all landslides in the Badong section

of Three Gorges is 67%. The proposed method further determines

the risk ranking of landslide hazards of different landslides at the

same grade. It can accurately demonstrate the risk degree of

landslide hazards. Relative to the conventional model, its

evaluation process is more reliable and efficient. However, it

still has some drawbacks, such as complicated calculation and

necessary multiple variable parameters; therefore, it still has

significant room for improvement in the future.

In summary, the variable fuzzy set model could offer an

alternate route to precisely evaluate the risk grade of landslide

hazards.
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Introduction: Increasing complexity and capacity of computational physics-based
landslide run-out modelling yielded highly efficient model-based decision support
tools, e.g. landslide susceptibility or run-out maps, or geohazard risk assessments.
A reliable, robust and reproducible development of such tools requires a thorough
quantification of uncertainties, which are present in every step of computational
workflow from input data, such as topography or release zone, to modelling
framework used, e.g. numerical error.

Methodology: Well-established methods from reliability analysis such as Point
Estimate Method (PEM) or Monte Carlo Simulations (MCS) can be used
to investigate the uncertainty of model outputs. While PEM requires less
computational resources, it does not capture all the details of the uncertain output.
MCS tackles this problem, but creates a computational bottleneck. A comparative
study is presented herein by conducting multiple forward simulations of landslide
run-out for a synthetic and a real-world test case, which are used to construct
Gaussian process emulators as a surrogate model to facilitate high-throughput
tasks.

Results: It was demonstrated that PEM andMCS provide similar expectancies, while
the variance and skewness differ, in terms of post-processed scalar outputs, such
as impact area or a point-wise flow height. Spatial distribution of the flow height
was clearly affected by the choice of method used in uncertainty quantification.

Discussion: If only expectancies are to be assessed then one can work with
computationally-cheap PEM, yet MCS has to be used when higher order moments
are needed. In that case physics-based machine learning techniques, such
as Gaussian process emulation, provide strategies to tackle the computational
bottleneck. It can be further suggested that computational-feasibility of MCS used
in landslide risk assessment can be significantly improved by using surrogate
modelling. It should also be noted that the gain in compute time by using
Gaussian process emulation critically depends on the computational effort needed
to produce the training dataset for emulation by conducting simulations.
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1 Introduction

Computational landslide run-out models can predict the spatial
evolution of depth and velocity of the failed mass, which is crucial
for landslide risk assessment and mitigation, especially for flow-like
landslides due to their rapid nature (Cepeda et al., 2013; McDougall,
2017). Utilising computational landslide run-out models for model-
based decision support requires a well-defined, transparent and
modular setup of the complete computational value-chain. Such a
chain consists of many links, including a digital representation of the
topography, the underlying physics-based process model, a numerical
solution scheme, the approach to parameter calibration along with the
training data it relies on, and concepts used for sensitivity analyses
and uncertainty quantification. Challenges in the technical realisation
of such integrated workflows have been successfully addressed in
the past (Dalbey et al., 2008; Aaron et al., 2019; Sun X. P. et al., 2021b;
Zhao et al., 2021; Aaron et al., 2022; Zhao and Kowalski, 2022). It
will be of crucial importance in the future to increase the efficiency,
sustainability and, hence, acceptance of such orchestrated workflows
for landslide risk assessment by improving their robustness, reliability
and computational-feasibility.

It will be particularly important to assess the reliability of
landslide risk assessment by quantifying and managing uncertainties
throughout the workflow. This is a challenging task, which requires
to consider and structure the landscape of uncertainties affecting
various steps of the decision-making process. Relevant uncertainty
originates from uncertain model input—such as the digital
elevation model representing the topography (Zhao and Kowalski,
2020) or release area and volume—and rheological parameters
(Quan Luna et al., 2013). Furthermore, process uncertainty can
result from numerical modelling schemes (Schraml et al., 2015)
or calibration methods (Aaron et al., 2019; 2022). All relevant
uncertainties in the computational workflow include aleatoric aspects
due to the intrinsic randomness of the process, as well as epistemic
uncertainty that is of systemic nature, and might be due to a lack
of data. A comprehensive, integrated uncertainty analysis within
a georisk assessment framework is an important reminder of the
limitations of the knowledge about processes involved, and the need
to improve data collection and quality (Eidsvig et al., 2014).

Different methods of reliability analysis have been used in
the recent decades both in geohazards research and its practical
implementation, to assess the output uncertainty in landslide run-
out models due to uncertain input parameters, or to quantify the
uncertainty of derived metrics such as the Factor of Safety (FoS).
Point Estimate Method (PEM) (Przewlocki et al., 2019), First Order
Second Moment method (FOSM) (Kaynia et al., 2008), First Order
Reliability Method (FORM) (Sun X. et al., 2021a), and Monte Carlo
Simulations (MCS) (Cepeda et al., 2013; Liu et al., 2019; Brezzi et al.,
2021) are examples of such methods. Dalbey et al. (2008) presented
several standard andnewmethods for characterising the effect of input
data uncertainty on model output for hazardous geophysical mass
flows.

PEM is a simple way to determine the expectation (mean),
variance, and skewness of a variable that depends on a random
input, by evaluating the function at a low number of pre-selected
values. Additionally, MCS grants access to the complete probability
distribution even in complex problems (Fenton and Griffiths, 2008).
However, it requires a large number of model evaluations, so-called

realisations, at randomly selected inputs following a pre-determined
statistical distribution. Przewlocki et al. (2019) used PEM to conduct
a probabilistic slope stability analysis of a sea cliff in Poland, and
compared the moment estimates with results from MSC. Mean and
standard deviation values of FoS yielded similar results, and PEM
was favoured as it required a lower number of model realisations,
hence lower computational costs for a seemingly similar information
outcome. Tsai et al. (2015) also obtained similar estimations by
comparing PEM and MSC, but pointed out the effects of correlation
between input variables. Earlier works also highlighted the limited
feasibility of PEM for an increasing number of input variables, as
2n estimations are required for n input variables (Christian and
Baecher, 1999; 2002).Therefore, it is more feasible to handle problems
characterised by a low-dimensional input parameter space with PEM,
while high-dimensional problems quickly become computationally
infeasible.

MCS has also been widely used for practical uncertainty
quantification owing to its simplicity of implementation. Liu et al.
(2019) and Ma et al. (2022) used MCS to quantify uncertainty
in landslide run-out distance due to uncertain soil properties.
Brezzi et al. (2021) performed uncertainty quantification of the
Sant’Andrea landslide using MCS. They assumed the two friction
parameters (Coulomb friction and turbulent friction) in a depth-
averaged Voellmy-Salm type approach to follow independent
Gaussian distributions, and then studied the induced uncertainty
in deposit heights. The major challenge of using MCS for
uncertainty quantification in landslide run-out modelling is the high
computational cost, as pointed out by many researchers (Dalbey et al.,
2008; McDougall, 2017; Aaron et al., 2022; Zhao and Kowalski, 2022).

As PEM relies on a much lower number of sampling points
compared to MCS, the probability distribution function (PDF) of
the output cannot be reliably approximated for a general non-
linear process model, such as a landslide run-out model in complex
topography. MCS provides an approximation of the PDF, but it creates
a computational bottleneck when the forward-model is complex and
subject to long runtimes. Physics-basedmachine learning, i.e. creating
a surrogate by training a data-driven model with results from a
physics-based simulation, can overcome the computational bottleneck
of highly-throughput tasks such as uncertainty quantification. The
surrogate model can be sampled, instead of the sampling from
the forward model, and hence the PDF of the quantity of interest
can be calculated efficiently. An example of physics-based machine
learning techniques proven to be effective in many applications
related to geohazards is Gaussian Process Emulation, with successful
demonstrations in landslide run-out models (Zhao et al., 2021;
Zhao and Kowalski, 2022) and stability of infrastructure slopes
(Svalova et al., 2021).

This study aims at demonstrating how an uncertainty
quantification workflow can be set up effectively, and how this affects
themodel-based landslide risk assessment. A test case with a synthetic
topography and a test case with a real world problem are designed.
Multiple forward simulations of both cases are conducted to construct
Gaussian process emulators to facilitate MCS. The objectives are (i)
comparing the results of PEM-based simulations andMCS conducted
with emulators trained based on datasets from a limited number
of simulations in terms of three moments, (ii) investigating the
effects of topographic complexity, i.e. synthetic topography vs. the
topography of a real-world problem, on the PEM - MCS comparison,
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and (iii) demonstrating the applicability of emulation techniques for
uncertainty quantification.

2 Materials and methods

2.1 Modelling approach

Existing physics-based landslide run-out models can be divided
into three groups: lumped mass models, particle models, and
continuum models. Lumped mass models treat the flow mass as
a condensed mass point without spatial variation. This process
idealisation greatly reduces the complexity of the problem, but
the trade-off is losing spatial variation of flow dynamics, such as
internal deformation of the flowing mass. Particle models treat the
flow mass as an assembly of particles and simulate the movement
of each particle and their interactions in order to characterise
flow dynamics. They can directly account for three-dimensional
flow behaviours, including an internal re-distribution of mass.
Computational realisation of a particle model relies on the definition
of conceptual particles, whose size is chosen based on available
computational resources, and is oftenmuch larger than actualmaterial
particles in the landslide. This is beneficial from an implementation
point of view, yet requires special attention, when formulating
necessary interaction forces which are often challenging to justify
and validate. Continuum models treat the flow mass as continuum
material, for which governing equations are derived from balance
laws closed by tailored, complex constitutive relations. Implementing
these in a general three-dimensional context is very challenging and
uses a lot of computational resources. A majority of particularly
relevant continuum models for practical landslide run-out modelling
are formulated within a depth-averaging framework. Depth-averaged
continuum models balance computational efficiency, accuracy and
interpretability. They can account for internal deformation of the
flow material, and provide spatial variation of flow dynamics.
Eqs. 1–3 describe the governing systemof an idealised depth-averaged
landslide run-out model:

∂th+ ∂x (hux) + ∂y (huy) = 0, (1)

∂t (hux) + ∂x(hu
2
x + gn

h2

2
)+ ∂y (huxuy) = gxh− S fx, (2)

∂t (huy) + ∂x (huxuy) + ∂y(hu
2
y + gn

h2

2
) = gyh− S fy. (3)

The equations are derived from the mass balance (Eq. 1)
and momentum balance (Eqs. 2, 3). The flow height h and the
depth-averaged surface tangent flow velocities ux and uy are the
state variables. gx, gy, and gn are components of the gravitational
acceleration along surface tangent and in normal directions. The
friction terms Sfx and Sfy depend on the chosen basal rheology. In
terms of the Voellmy rheological model, they are defined as:

S fi =
ui
‖u‖
(μgnh+

g
ξ
‖u‖2), i ∈ {x,y} , (4)

where ‖u‖ denotes the magnitude of the flow velocity; μ and ξ are
the dry-Coulomb friction coefficient and turbulent friction coefficient
respectively.

Many numerical solvers for depth-averaged landslide run-out
models have been developed in the past decades, and McDougall
(2017) provides a comprehensive review. A GIS-based open source
computational tool developed by Mergili et al. (2017), r.avaflow
v2.3, is used in this study. It implements a high-resolution total
variation diminishing non-oscillatory central differencing scheme
to solve Eqs. 1–4 given topographic data, initial mass distribution,
and Voellmy parameters. It runs on Linux systems, and employs
the GRASS GIS software, together with the programming languages
Python and C, and the statistical software R. A Digital Elevation
Model (DEM) and a release height map are given as input as raster
files.

2.2 Case studies

2.2.1 Synthetic case
A simple topography has been created in Python—similar to the

topography generation inAvaFrame (D’Amboise et al., 2022)—which
is denoted as synthetic case herein. Topography consists of a parabolic
slope starting at x = 0 at an altitude of 1332 m, and connecting to a
flat land at x = 3000 at an altitude of 0 m. Extent of the area in x and y
directions are 5000 m and 4000 m, respectively, whereas the resolution
is 20 m. Release zone was defined as an elliptic cylinder, of which the
centre is located at (x,y) = (600, 2000) with aminor axis of 100 m and a
major axis of 200 m.Height at each point within the ellipsewas defined
as 20 m, which generates a total release volume of 1.432 x 106 m3.
Figure 1A illustrates themaximumflowheightmap from a simulation
of synthetic case, while Figure 1B shows the deposit height from the
same simulation.

2.2.2 Acheron rock avalanche
A real-world case is chosen to compare the differences in

uncertainty quantification with the synthetic case. Radiocarbon
testing dates the occurrence of Acheron rock avalanche—located near
Canterbury, New Zealand—approximately 1100 years before present,
and it may have been triggered by seismic activity (Smith et al., 2006).
The deposit area was estimated to be .72 x 106 m2 using a GPS
outline of the deposit, while the deposit volume was estimated as 8.9
x 106 m3 using an estimated mean depth derived from observed and
estimated thicknesses for different morphological zones (Smith et al.,
2012). DEM file and the release height map are obtained fromMergili
and Pudasaini (2014–2021)1, which gives an initial release volume of
6.4 x 106 m3. Figure 2 presents the shaded relief of the area, together
with a map of maximum flow height (see Figure 2A) and deposit
height (see Figure 2B) from a random simulation of Acheron rock
avalanche.

2.3 Gaussian process emulation

Themain problem of applyingMCS for uncertainty quantification
in landslide run-out modelling is its high computational cost. The
runtime of the landslide run-out model is one of the key drivers of
computational cost in classical MCS, as it scales with the number of

1 Mergili, M., Pudasaini, S.P., 2014–2021. r.avaflow—The mass flow simulation tool.
https://www.avaflow.org. Accessed on 2022-07-12.
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FIGURE 1
(A) Maximum flow height and (B) deposit height from a simulation of the synthetic case.

FIGURE 2
(A) Maximum flow height and (B) deposit height from a simulation of Acheron rock avalanche.

forward evaluations. Gaussian process emulation has been used in
recent years to build cheap-to-evaluate emulators to replace expensive-
to-evaluate computational models in the framework of uncertainty
quantification, such as Sun X. P. et al. (2021b), Zeng et al. (2021), and
Zhao and Kowalski (2022). A Gaussian process emulator is a statistical
approximation of a simulation model, built based on input and output
data of a small number of simulation runs. Once an emulator is

constructed, it provides prediction of simulation output at a new input
point almost instantly, together with an assessment of the prediction
uncertainty. This emulator-induced uncertainty can be taken into
account in the framework of uncertainty quantification.

Let y = f(x) denote a simulator where y represents a scalar output
depending on a p-dimensional input x. Assuming that the simulator
is a realisation of a Gaussian process with a mean functionm(⋅) and a
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kernel function k(⋅, ⋅), namely

f (⋅)∼N (m (⋅) ,k (⋅, ⋅)) , (5)

A Gaussian process emulator can be built based on the input-
output data D of n simulation runs, namely D = {xi,yi}

n
i=1. At any

new input point x*, the approximated output y* follows a Gaussian
distribution given by

y*∼N (m′ (x*) ,k′ (x*,x*)) , (6)

m′ (x*) =m(x*) + kT (x*)K−1(y1 −m (x1) ,…,yn −m(xn))
T, (7)

k′ (x*,x*) = k(x*,x*) − kT (x*)K−1k(x*) . (8)

The symbol K denotes the n× n covariance matrix of
which the (i, j)-th entry Kij = k(xi,xj) and the symbol k(x*) =
[k(x*,x1),…,k(x

*,xn)]
T.

RobustGaSP package developed by Gu et al. (2019) is used in
this study to build emulators. It provides robust Gaussian process
emulation for both single-variate (Gu et al., 2018), i.e. one simulation
producing one scalar output, and multi-variate simulators (Gu and
Berger, 2016), i.e. one simulation producing high-dimensional output.
Training and validation datasets of each case were generated from
outputs of both cases simulated with r. avaflow 2.3. 100 simulations
for training, and 20 additional simulations for validation of vector
emulators were run for synthetic case and Acheron rock avalanche
separately. Dry-Coulomb friction coefficient (μ), turbulent friction
coefficient (ξ), and release volume (vo) were chosen as uncertain
input variables. The friction coefficients are rather conceptual than
physical (Fischer et al., 2015) and rely on back-analysing past events
where field data are available. The calibrated results are often ranges
(Zhao et al., 2021) or probability density functions (Quan Luna et al.,
2013). In this study, ranges of friction coefficients were chosen as
μ = [.02, .3], ξ = [100,2200] m/s2 according to Zhao et al. (2021). The
release volume of a future landslide event is hardly predictable.
Uncertainty in vo were defined by multiplying the release height map
with a coefficient k, which is assumed to vary between .5 and 1.5
in this study. Parameter combinations were generated using Latin
Hypercube sampling by maximising the minimum distance between
points. Datasets were extracted from simulation results after training,
and scalar outputs, e.g. impact area, deposit area, deposit volume, and
vector outputs, e. g flow height or flow velocity in each cell, were
defined.

2.4 Uncertainty analysis

2.4.1 Point estimate method
Any scalar output y(s, t)— either aggregated, such as impact area,

deposit area or deposit volume, or point-wise flowheight, flowvelocity,
or flow pressure—in space (s) and time (t), from the landslide run-out
simulations can be expressed as a function of three uncertain input
variables as shown in Eq. 9.

y (s, t) = f (μ,ξ,vo) (9)

Assuming that the input variables are not correlated and skewness
is 0, locations of sampling points of each variable correspond to mean

± standard deviation. This results in eight sampling points with equal
weights for three input variables to evaluate the output function y
and calculate the three moments of the output, i.e. mean, variance,
skewness. PEM were executed three times with different coefficient of
variation (COV), i.e. 10%, 25% and 50%. Table 1 shows the assumed
mean, which was chosen as the central point of the ranges defined in
Section 2.3, and standard deviations for the input variables used in the
analyses, PEM 1, PEM 2, and PEM 3.

2.4.2 Monte Carlo Simulations
Parameter combinations for MCS were sampled from truncated

multivariate normal distribution using the R package, tmvtnorm
(Wilhelm and Manjunath, 2010). Points of truncation were chosen as
the ranges given in Section 2.3. Three sets of MCS were conducted
similarly to the PEM, i.e. mean value is the central point of the range
andCOV is chosen arbitrarily as 10% (MCS 1), 25% (MCS 2), and 50%
(MCS 3) to represent different levels of uncertainty in input variables.
10,000 parameter sets were generated for each MCS analysis, and the
outputs are estimated using the emulators defined in Section 2.3.

3 Results

Simulation outputs used in this study can be found in Yildiz et al.
(2022a), and the general workflow, as well as the scripts to reproduce
the figures can be found in the Git repository presented in Yildiz et al.
(2022b).

3.1 r.avaflow simulations

A total of 100 simulations of the synthetic case and a separate 100
simulations for Acheron rock avalanche have been used to calculate
the scalar outputs, and to extract vector outputs. Quantities of interest
(QoI) derived from the simulations are impact area, deposit area and
deposit volume. In addition to the derived ones, direct simulation
outputs, i.e. maximum flow height (hmax) and maximum flow velocity
(vmax) at a predefined cell, are extracted from the simulations. Point
of extraction was chosen arbitrarily as (x,y) = (1000, 2000) for the
synthetic case, and as (1490100, 5204100) for Acheron rock avalanche.
These points were picked among those which had a value higher than
a threshold, e.g. a maximum flow height of .1 m, from all simulations.

Evolution of a simulation in synthetic case can be summarised as
a rather constrained flow, with a limited lateral spread at the upper
section of the slope, and a more pronounced lateral spread close to the
transition to the flat land (See Figure 1A). As no stopping criteria was
defined, the failedmass accumulatesmostly around the toe of the slope
(SeeFigure 1B).Mean values± standard deviations of the impact area,
deposit area and deposit volume were (2.39 ± .37) x 106 m2, (1.22 ±
.22) x 106 m2 and (1.37 ± .41) x 106 m3, respectively. Ranges of vmax
and hmax at (x,y) = (1000, 2000) are 24.9–63.4 m/s and 7.18–14.4 m,
with mean values of 47.7 m/s and 11.0 m, respectively.

Flow path of Acheron rock avalanche can be generalised based
on the simulations conducted in this paper as an initially relatively
straight path, followed by a sharp turn and extending into the valley
(See Figure 2A). Similar to synthetic case, 100 simulations of Acheron
rock avalanche were run, and the same scalar outputs were calculated
or extracted. Mean values ± standard deviations of the impact area,
deposit area and deposit volume were (2.78 ± .91) x 106 m2, (1.45 ±
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TABLE 1 Mean and standard deviation values of the input variables used in the Point EstimateMethod (PEM) analysis of the synthetic case and Acheron rock
avalanche. Same values of Dry-Coulomb and turbulent friction coefficients are used for both cases.

Unit PEM 1 (COV = 10%) PEM 2 (COV = 25%) PEM 3 (COV = 50%)

mean Std. dev. mean Std. dev. mean Std. dev.

Dry-Coulomb friction coefficient - .160 .016 .160 .040 .160 .080

Turbulent friction coefficient m/s2 1150 115.0 1150 287.5 1150 575.0

Release volume - Synthetic x 106 m3 1.432 .143 1.432 .358 1.432 .716

Release volume - Acheron x 106 m3 6.40 .64 6.40 1.60 6.40 3.20

TABLE 2 Coefficient of determination, R2, mean absolute percentage error,MAPE, and normalised root mean squared error nRMSE for the emulators trained with
scalar outputs from synthetic case and Acheron rock avalanche.

Output Synthetic case Acheron rock avalanche

R2 [-] MAPE [%] nRMSE [%] R2 [-] MAPE [%] nRMSE [%]

Impact area .999 .468 .606 .997 1.294 1.900

Deposit area .996 .864 1.173 .988 2.530 3.100

Deposit volume .999 .553 .717 .999 .541 .752

Maximum velocity .999 .592 .731 .967 2.802 3.473

Maximum height .989 1.609 1.996 .965 2.084 2.828

.42) x 106 m2 and (6.28 ± 1.83) x 106 m3, respectively. vmax and hmax at
(x,y) = (1490100, 5204100) have mean values of 32.2 m/s and 42.2 m,
with standard deviations of 6.2 m/s and 6.4 m.

3.2 Emulation

Gaussian process emulation has been used in this study in order
to facilitate the prediction of many scalar outputs for MCS analysis.
Once the training datasets consisting of scalar outputs described in
Section 3.1 are generated, the trained emulators are first validated
with leave-one-out cross-validation technique. Table 2 presents the
validation results of scalar emulators, i.e. mean absolute percentage
error (MAPE), normalised root-mean-square error (nRMSE), and
coefficient of determination (R2) values for both cases. Emulators
trained for synthetic case produced very low percentage-based
errors, i.e. maximum MAPE and nRMSE was 1.609% and 1.996%,
respectively, while theR2 valueswere around .99.The lowest prediction
quality was obtained for maximum flow height at (x,y) = (1000,
2000) in synthetic case. Emulators trained with derived scalar outputs,
i.e. impact area, deposit area and deposit volume, of Acheron rock
avalanche yielded similar model performance as the synthetic case.
Relatively lower R2 values, approximately .97, and higher MAPE and
nRMSE values were obtained for vmax and hmax at (x,y) = (1490100,
5204100). Lowest prediction performance for Acheron rock avalanche
was for maximum flow velocity at the given point.

Prediction quality of the vector emulators both for synthetic
case and Acheron rock avalanche has been evaluated using
testing data from additional 20 simulations. PCI(95%), defined
by Gu and Berger (2016), is chosen as the diagnostic for vector
emulators. It represents the proportion of testing outputs that lie in
emulator-based 95% credible intervals. PCI(95%) of the vector
emulator for point-wise maximum flow height is 83.8%

and 85.3% for synthetic case and Acheron rock avalanche
respectively;PCI(95%) of the vector emulator for point-wisemaximum
flow velocity is 86.3% and 89.1% for synthetic case and Acheron rock
avalanche respectively.

3.3 Uncertainty analysis

Uncertainty of model outputs were investigated by conducting
PEM andMCSwith three differentCOV, a comparison has beenmade
in terms of the three moments, i.e. mean, variance, and skewness, of
the scalar outputs. Figure 3 presents the comparison for the synthetic
case. If the uncertainty of the model outputs is assessed via PEM,
similar mean values are obtained even though the COV is varied
from 10% up to 50%. Differences were higher for vmax and hmax
(See Figures 3D, E). An increase of variance with increasing COV is
evident for all outputs produced by PEM,whereas no clear relationship
can be defined for skewness. For example, the skewness of impact
area and deposit area increased with increasing COV, whereas the
deposit volume, vmax and hmax had nearly no skewness if analysed
by PEM.

Similar to PEM, MCS at all COV produced similar mean values
and increasing variance with increasing COV for all scalar outputs.
No overall trend can be observed in skewness of the outputs generated
via MCS. If both techniques are compared, no significant difference
is present in mean values. PEM produced higher variances especially
at the highest COV, while—similar to previous comparisons—no
generalisations can bemade for skewness. It should be noted that there
is a change from a slightly positive skewness to negative skewness for
vmax and hmax, if the method is switched from PEM to MCS. Other
scalar outputs had rather arbitrary changes between methods, even
though slightly lower values are observed for impact area and deposit
area.

Frontiers in Earth Science frontiersin.org111

https://doi.org/10.3389/feart.2022.1032438
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yildiz et al. 10.3389/feart.2022.1032438

FIGURE 3
Three moments (mean, variance and skewness) of (A) impact area (in x106 m2), (B) deposit area (in x106 m2), (C) deposit volume (in x106 m3), (D) maximum
flow velocity (in m/s) and (E) maximum flow height (in m) at (x,y) = (1000, 2000) obtained from synthetic case with Monte Carlo simulations (MCS) and
point estimate method (PEM).

Figure 4 presents three moments of the same scalar outputs
from Acheron rock avalanche. Similar patterns to data from
synthetic case are observed in Figure 4. Mean values of the
outputs are similar between different methods and levels of
COV. Variance increases in both methods with increasing COV,
while the values obtained from MCS is lower than those from
PEM.

Figure 5 illustrates the synthetic case results of the MCS
analysis at COV of 50% in terms of the five scalar outputs–the
impact area, deposit area, deposit volume, vmax and hmax at (x,y) =
(1000, 2000). The first three columns show the relationships of
the scalar outputs with respect to the three uncertain parameters.

The last column shows the histograms of each scalar output.
Figure 6 presents the corresponding results of Acheron rock
avalanche. Observations from Figures 5, 6 can be generalised as
follows.

• the impact area and deposit area decrease with
increasing dry-Coulomb friction coefficient and increases
with increasing release volume (see Figures 5A, B,
6A, B),
• the deposit volume is proportional to the release volume and
has almost no dependence on the dry-Coulomb and turbulent
friction coefficients (see Figures 5C, 6C),
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FIGURE 4
Three moments (mean, variance and skewness) of (A) impact area (in x106 m2), (B) deposit area (in x106 m2), (C) deposit volume (in x106 m3), (D) maximum
flow velocity (in m/s) and (E) maximum flow height (in m) at (x,y) = (1490100, 5204100) obtained from Acheron rock avalanche with Monte Carlo
simulations (MCS) and point estimate method (PEM).

• the point-wise maximum flow velocity decreases with increasing
dry-Coulomb friction coefficient and has little dependence on the
release volume (see Figures 5D, 6D),
• the point-wise maximum flow height increases with increasing
release volume and has little dependence on the dry-Coulomb
and turbulent friction coefficient (see Figures 5E, 6E).

Differences between the two cases can be noted as (1) the
deposit area has a clear negative relationship with the dry-Coulomb
friction coefficient in Acheron rock avalanche, but the trend is
hardly visible for the synthetic case; (2) the point-wise maximum

velocity increases with the turbulent friction coefficient in the
synthetic case, but the relationship is vague in Acheron rock
avalanche.

Figures 7, 8 show the comparison of spatial distribution of
maximum flow height from synthetic case and Acheron rock
avalanche, respectively. Results given in the figures,mean and standard
deviation of hmax in each cell as well as their differences, are from
the PEM and MCS analyses conducted at COV = 50%. A visual
comparison of mean values (See Figures 7A, B, 8A, B) look nearly
identical, but the difference map shows that flow heights at the central
section of the flow path in both cases are higher inMCS analysis, while
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FIGURE 5
Relationships and histograms of (A) impact area, (B) deposit area, (C) deposit volume, (D) maximum flow velocity and (E) maximum flow height at (x,y) =
(1000, 2000) from synthetic case with uncertain parameters used in the Monte Carlo analysis with coefficient of variation of 50%.
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FIGURE 6
Relationships and histograms of (A) impact area, (B) deposit area, (C) deposit volume, (D) maximum flow velocity and (E) maximum flow height at (x,y) =
(1490100, 5204100) from Acheron rock avalanche with uncertain parameters used in the Monte Carlo analysis with coefficient of variation of 50%.

Frontiers in Earth Science frontiersin.org115

https://doi.org/10.3389/feart.2022.1032438
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yildiz et al. 10.3389/feart.2022.1032438

FIGURE 7
Spatial distribution of mean and standard deviations of maximum flow height (hmax) from synthetic case obtained with (A, D) Point Estimate Method (PEM)
and (B, E) Monte Carlo Simulations (MCS) at 50% coefficient of variation. Differences of (C) mean value and (F) standard deviation are plotted by subtracting
MCS results from PEM results.

TABLE 3 Correlation of input variables with location (xL) and the length (Lmax)
of maximum lateral spread in synthetic case.

xL Lmax

Dry-Coulomb friction
coefficient

.99*** .33***

Turbulent friction
coefficient

No correlation .50***

Release volume No correlation .80***

***p < .001

the edges of the flowpath have higher flowheights in the PEManalysis.
Similar to the results in Figures 3, 4, MCS produced lower standard
deviation than PEM at the majority of cells, i. e approximately 200
cells out of 6600 for synthetic case, and 830 cells out of 9800 cells for
Acheron rock avalanche.

4 Discussion

Risk for a single landslide scenario has three main components:
the landslide hazard, the exposure of the elements at risk, and
their vulnerability. Conducting a quantitative risk analysis enables
the researchers or practitioners to obtain the probability of a
given level of loss and the corresponding uncertainties of these
components (Corominas et al., 2014; Eidsvig et al., 2014). The
hazard in a model-based landslide risk assessment is generally
evaluated by simulating various scenarios with an underlying
physics-based computational model. A probabilistic approach to

this assessment and the quantification of associated uncertainty
inevitably create a computational bottleneck—especially for large-
scale applications (Strauch et al., 2018; Jiang et al., 2022). One can
opt for a simple technique to quantify uncertainty, i.e. PEM in
this study, to reduce the number of simulations required, or use a
technique necessitating high number of simulations, for instanceMCS
techniques.

The computational challenge of MCS has been well-recognised in
the field of landslide modelling, which results from the large number
of model realisations at randomly selected input values (Dalbey et al.,
2008; McDougall, 2017). MCS can be very computationally intensive,
since it typically requires tens of thousands of model runs to achieve
reasonable accuracy (Salciarini et al., 2017). This is often not feasible
in model-based landslide risk assessment, as a single model run
may take minutes to hours. A solution to overcome this problem
has been demonstrated in this study by utilising recent development
of GP emulation (Gu and Berger, 2016; Gu et al., 2018; Gu et al.,
2019). GP emulators are built for each case based on only 100
model runs. Then, MCS with 10,000 randomly generated inputs is
conducted using the emulators, which means no further model runs
are needed. Moreover, diagnostics of built GP emulators are analysed
to evaluate their performance. High R2 values and low MAPEs and
nRMSEs (See Table 2) suggests that the scalar emulators can be
used with confidence for predictions of a singular output from an
input parameter combination. All PCI(95%) values for the vector
emulators are close to 95%, which justify their usage as a surrogate
to the computational model (Gu et al., 2019). The corresponding
results of GP emulation-based MCS are therefore close to results
of a classical MCS, but the computational time is significantly
reduced by introducing GP emulation. This demonstrates the
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FIGURE 8
Spatial distribution of mean and standard deviations of maximum flow height (hmax) from Acheron rock avalanche obtained with (A, D) Point Estimate
Method (PEM) and (B, E) Monte Carlo Simulations (MCS) at 50% coefficient of variation. Differences of (C) mean value and (F) standard deviation are plotted
by subtracting MCS results from PEM results.

applicability of GP emulation for uncertainty quantification of
landslide run-out models. A similar methodology applied to
landslide generated waves was also found promising to perform
probabilistic hazard analysis based on computationally intensive
models (Snelling et al., 2020).

Comparative studies in landslide research showed that similar
mean values of the QoI can obtained with PEM or MCS (Tsai et al.,
2015; Przewlocki et al., 2019). As shown in Figures 3, 4, when an
aggregated (e.g. impact area, deposit area, deposit volume) or point-
wise (velocity and height at a predetermined coordinate) output
is calculated, PEM and MCS yielded similar expectancies (mean
values) in this study. In addition, both PEM and MCS lead to

similar variance values for relatively low COV, i.e. 10% and 25%.
This implies that if one only aims at computing low-order moments
in comparative topographic settings, PEM can achieve reasonable
results (Fanelli et al., 2018). PEM is particularly computationally
appealing for low-dimensional problems due to the requirement of
2n realisations, where n is the dimension of the input parameter
space. However, as pointed out by Christian and Baecher (2002),
caution should be used in approximating skewness or other higher
order moments based on PEM. This is supported by the large
difference between PEM- and MCS-based skewness results as shown
in Figures 3, 4. Christian and Baecher (2002) also pointed out that
the results deviate significantly, when the COV of uncertain inputs is
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large, which is confirmed by the large difference between the variance
computed by PEM and MCS in the cases of COV = 50% as shown
in Figures 3, 4. Comparing Figures 3, 4, it can be seen that the
complexity of topography, which refers to the real topography of
Acheron rock avalanche in comparison to the parabolic slope of the
synthetic case, seems to have limited impact on the general trend of
moments based on PEM and MCS, especially mean and variance. It
may imply the transferability of the trends described above to different
topographies.

When input uncertainty is high and the input parameter space is
high-dimensional, MCS is clearly favourable over PEM to compute
desired statistics of the output of interest.The benefit of GP-integrated
MCS is that it can not only compute the desired statistics, but it
also provides the PDF (Marin and Mattos, 2020). Cepeda et al. (2013)
recommends a stochastic approach for uncertainty quantification
such as MCS to be part of the routine of any landslide hazard
risk assessment, and Hussin et al. (2012) denotes the frequency
distributions of model outputs important as a first step to assess
the spatial probability in future debris flow hazard assessments. The
workflow of GP emulation-based uncertainty quantification in this
study is therefore expected to improve landslide risk assessment. It
should be noted that the number of model runs to train GP emulators
are effected by the dimension of input parameter space even though
the number of model runs of MCS is independent. Due to this
limitation, the gain of computational efficiency by using GP emulation
decreases with increasing dimension of input parameter space. If
the dimension is too high, other emulation techniques or dimension
reduction can be considered (Liu and Guillas, 2017).

Histograms plotted in Figures 5, 6 can be used to infer on the
complexity of the output functions, see Eqs. 9. Input parameters
were assumed to be normally distributed in MCS analysis. It can
be seen that the deposit volume (see Figures 5C, 6C) is the only
parameter that has the shape of the truncated normal distribution
with nearly no skewness. Other scalar outputs result in skewed
and even bi-modal distributions that clearly deviate from the initial
Gaussian distribution of the corresponding input parameter. Both
cases show a nearly perfect correlation between deposit and release
volume with no effects of the friction coefficient indicating parameter-
independent mass conservation. It should be noted that the deposit
volumewas calculated considering cells in which height exceeded .1 m
at the last simulation time step. As there was no stopping criteria
defined and no entrainment was considered, the deposit volume was
nearly equal to the release volume. Highly linear function of deposit
volume and release volume translates into the deposit volume having
a Gaussian distribution, as the linear transformation of a Gaussian
distribution is also aGaussian distribution.However, the non-linearity
of the other functions that can be used the express the scalar
outputs—except deposit volume—results in distributions different
than those of the input parameters. For example, Cepeda et al. (2013)
fittedGammadistributions for flowheight and velocity in twodifferent
cases.

Patterns observed in Figures 7C, 8C can be explained by analysing
the effects of input variables on the general shape of the flow path.
Hence, the simulation in a synthetic topography is an ideal example
due to its simplicity. As explained in Section 3.1 and shown in
Figure 1A, the flow path of the synthetic case can be described as a
concentrated central flow superposed by lateral spread at the toe of
the slope. It can be seen in Figure 7A that the mean flow height has

two pronounced dents in its spatial distribution obtained with PEM.
These correspond to the initiation of the lateral spread at different
configurations of the input variables are considered. More specifically,
PEM analysis is run only at few discrete values in parameter space
chosen at a distance of one standard deviation away from the mean.
When the friction coefficient is chosen at a COV = 50% with a mean
of .16, PEM simulations are characterised by a lateral spread very
early in the flow path, or a lateral spread that kicks in much further
downstream. Therefore, the dents in the maximum flow height map
(See Figure 7A) is a direct consequence of the coarse discretisation of
the parameter space in the PEM approach. In contrast, MCS yields a
homogeneously distributed maximum flow height map at the toe of
the slope as expected in this almost linear setting. As a consequence,
flow heights at the upper sections of the lateral spread are higher in
PEM, whereas MCS yields higher values at the mid-section of the
lateral spread (See Figure 7C).

To recognise patterns between the location (xL) and themagnitude
(Lmax) of the maximum lateral spread with the input variables, linear
regression analysis was conducted. Table 3 shows that the location is
controlled dominantly by the dry-Coulomb friction coefficient with
a negative correlation, i.e. higher the friction coefficient earlier the
lateral spread starts, and howmuch the flow spreads in y-axis is mostly
controlled by the release volume, even though the friction coefficients
affect to a certain extent.

5 Conclusion

Uncertainty quantification is a computationally demanding task
for designing and developing amodel-based landslide risk assessment.
Classical MCS is often computationally infeasible due to the large
number of required forward evaluations of the computational
model. It has been demonstrated that GP emulation-based MCS
can greatly improve the computational efficiency which makes GP-
integrated MCS applicable for landslide run-out modelling. One
clear advantage of using GP emulation-based MCS is the ability to
sample parameter uncertainty in a dense way, as evaluation time
of the forward simulation is no longer a computational bottleneck.
As a consequence, the output’s probability distribution reflecting the
propagated uncertainty is captured at high accuracy and provides
additional information about skewness and possible multi-modality.
In contrast to this PEM provides only limited information on the
output’s probability distribution. A comparative study between PEM
and GP emulation-based MCS has been conducted based on the
three moments of the probability distribution, i.e. mean, variance, and
skewness. The simpler approach, PEM, yielded a similar expectancy
values to GP emulation-based MCS. However, PEM and MCS
differed in higher order moments, such as variances and skewness,
hence also in the respective spatial distribution of the flow path,
and the subsequent hazard map. This finding is of high practical
relevance: While a computationally cheap PEM based workflow
predicts the mean of a probabilistic landslide risk assessment well,
it is in general cases not suitable to assess the reliability of the
prediction, for instance in the sense of a probabilistic simulation’s
standard deviation. The latter requires a MCS approach, which
often is computationally infeasible. GP-emulated MCS overcome this
limitations by introducing a surrogate model trained based on an
empirical error control. It can be suggested that highly uncertain and
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high-dimensional input parameter spaces, e.g. complex topographies,
advanced material models, models with empirical parameters,
inevitably requires an uncertainty quantification workflow that is able
to account for non-Gaussian, potentially multi-modal distributions. It
should be noted that the gain in compute time by using GP emulation
critically depends on the computational effort needed to train the
GP emulator. This means that computational resources significantly
increase, as the dimension of the input parameter space increases.
Alternative techniques will have to be incorporated if the input
dimension is too high.
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