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Editorial on the Research Topic 


Use of barley and wheat reference sequences: Downstream applications in breeding, gene isolation, GWAS and evolution, volume II


Cereal grains are the most important food source consumed by human beings. Among these, bread wheat is the most widely grown crop in the world, ranking 2nd only to rice from total production point of view, whereas barley is ranked as the 4th most important cereal. The inherent narrow genetic diversity present within modern cereal crops combined with their large complex genomes had previously created a genetic bottleneck hampering breeding progress as well as applying newly developed applications in biotechnology. Improvements to long-read sequencing technologies continue to enhance our ability to generate ultra-contiguous chromosome scale assemblies, thus further improving the efficacy of gene isolation and unravelling the mechanisms of evolution in cereal crop species. Despite the continual decline in sequencing costs and bioinformatic innovation, genotyping by sequencing (GBS) using targeted enrichment protocols and allele re-sequencing is currently the most cost-efficient approach to generate large SNP datasets. This Frontiers in Plant Science research collection comprises 16 articles highlighting the broad utility derived from combining multiple chromosome scale genome reference assemblies with new approaches in quantitative genetics to best exploit favourable genetic trait variation.

Rajendran et al. outlines the different GBS protocols and both their current and future applications established for cereals focussing on barley as a diploid model crop species. The review highlights the utility derived from GBS genotyping approaches to mine global GeneBanks and exploit trait genetic diversity using genome wide association studies (GWAS) and genomic selection (GS).

The recent optimisation of the GBS approach has led to larger scale population genomic approaches in preference to smaller biparental populations to identify the causal genetic variation underlying traits of interest and is largely amenable to complex traits such as yield (Rajendran et al.). Eight studies mainly in wheat used GWAS as an approach to define the genetic architecture of largely uncharacterised complex agronomic traits of interest including nutrient content (Jin et al.; Juliana et al.), herbicide resistance (Kurya et al.), lodging resistance (Bretani et al.), yield related traits (Miao et al.; Sheoran et al.; Yu et al.), flowering time and phenology (Bhati et al., Hu and Zuo 2022) and disease resistance (Juliana et al.; Mehnaz et al.; Wang et al.). Except for flowering time, phenology and molybdenum content, these studies highlighted the complex genetic basis of the agronomic traits assessed and the potential to use the GWAS data for a subsequent GS approach.

Juliana et al. investigated the genetic control of grain zinc and iron content in a large collection of wheat breeding lines (n= 5,585) from CIMMYT. The lines were genotyped using 20,556 GBS markers and evaluated for both zinc and iron content between 2018 and 2021 in Mexico. The study identified 141 marker-trait associations on all 21 chromosomes except for chromosomes 3A and 7D. Among them, 29 markers were associated with both iron and zinc content suggesting a shared mechanistic basis. The complex genetic control of these traits highlights the need for GS to efficiently improve nutrient content in wheat.

Similarly, Jin et al. determined the genetic control of grain molybdenum content in bread wheat using 207 accessions and a set of 224,706 SNP markers from the 660k wheat array. The study identified 77 significantly associated SNPs, 52 of which were detected in at least two datasets and 48 out of the 52 were distributed in a small region of 1.37 Mb located in the distal part of the long arm of chromosome 2A. In the region spanning the 2A QTL three plausible candidates including a molybdate transporter 1;2, molybdate transporter 1;1 and molybdopterin biosynthesis protein CNX1, were identified for further functional analysis.

Kurya et al. identified resistance to metribuzin to improve the productivity of bread wheat grown in dryland regions. The 150 diverse accessions were genotyped using the 50K SNP array and phenotyped by measurement of chlorophyll content relative to the untreated control plants. The analysis identified 19 genomic regions including 10 on chromosome 6A, three on 2B and one on 3A, 5B, 6B 6D, 7A, and 7B, respectively. Using the wheat genome assembly, several candidate genes were identified that were involved in herbicide resistance including cytochrome P450 pathways and ATP Binding Cassette superfamilies.

Bretani et al. developed an image-based analysis protocol to accurately phenotype for culm wall thickness and diameter that facilitated a multi-environment analysis to determine the genetic control of culm morphology and lodging in barley. A collection of 261 barley accessions were genotyped using the 50k iSelect SNP array and phenotyped across seven different environments. Most culm morphology traits were highly heritable (>50%) and affected by several genotype-by-environment interactions. The data highlighted the possibility of improving lodging independently from plant height and identified candidate genes involved in hormone and cell wall related pathways.

Bhati et al. investigated the genetic control of phenology and heading date traits in bread wheat across three representative wheat growing regions in India. A large collection of spring wheat breeding lines (n= 4,680) were phenotyped at multiple locations for days to heading and maturity. The phenotypic variation highlighted the importance of the photoperiod associated gene (Ppd-B1) and the Vrn-B1 gene for adaptation of bread wheat across the different environments.

Sheoran et al. combined a large-scale GWAS and artificial intelligence (AI) with genotype-phenotype networking to understand the complex genetic control of spike fertility in bread wheat. GWAS was performed on 200 diverse wheats using the Breeders’ 35K Axiom Wheat Breeders' Array and multiple years of phenotypic data. The study identified 255 significant marker-trait associations (MTAs) with MTAs on chromosome 3A, 3D, 5B and 6A being the most promising for enhancing spike fertility and grain yield.

Juliana et al. used varying numbers of GBS based markers and performed a large-scale study to identify spot blotch resistance in a panel of 6,736 (separated into seven specific panels) advanced bread wheat breeding lines. Ninety-six significant markers were common amongst the seven panels mapping to chromosomes 1A, 1B, 1D, 2A, 3B, 4A, 5B, 5D, 6B, 7A, 7B, and 7D, and included possible linkage to previously known disease resistance loci including the Lr46, Sb1, Sb2 and Sb3 genes. Importantly the study identified favourable alleles for spot blotch resistance on the same 2NS translocation from Aegilops ventricosa where two markers were associated with increased grain yield across multiple environments in India and Mexico.

Hu and Zuo combined GWAS and an expression profiling approach to identify a promising candidate for the Hg1 gene controlling glume pubescence on chromosome 1AS encoding a glycosyltransferase-like ELD1/KOBITO 1 in bread wheat. The candidate was identified using the most recent iteration of the wheat reference genome assembly based on tissue specific expression patterns and functional SNP haplotype analysis. The study demonstrated the importance of utilising the latest reference genome data, expression patterns and GWAS data to clone genes in bread wheat.

The availability of a pan-genome for both bread wheat and barley addresses the most common limiting bottleneck in gene cloning projects which is the over-reliance on both the gene order and representation in the available reference genome. Hussain et al. reviewed the status and future directions of wheat improvement in the pan genomic era with respect to important agronomic traits such as yield, quality and both biotic and abiotic stresses.

The utility of the barley and wheat pan-genome lies in being able to use the information either from the most closely related or directly from the sequenced genotype either carrying or lacking the trait of interest as a reference genome thus limiting the number of SNPs, presence absence variations (PAVs), and inversions. This is especially important to improve the efficiency and accuracy of QTL mapping, fine mapping, identify recombination events and gene annotation.

Two studies in wheat reported on utilising the wheat reference genome to dissect yield related traits using a combination of QTL analysis and bulk segregant exome sequencing (BSE-Seq) and meta-QTL (MQTL) analysis, respectively.

Yu et al. investigated the genetic architecture of yield-related traits (spike compactness and length) using a QTL mapping approach in a recombinant inbred line (RIL) population. Three genomic regions were identified on chromosomes 2A and 2D using BSE-Seq. Subsequent linkage map construction and QTL analysis identified six major QTL across more than four environments explaining 7.00-28.56% of phenotypic variation with LOD values varying from 2.50 to 13.22. Three promising candidates were identified based on genomic and expression data for further functional analysis.

Miao et al. performed QTL analysis for thousand grain weight (TGW) in a bread wheat RIL population and identified 45 TWG QTLs, where 10 loci were highly stable across multiple environments. To refine the relatively large TGW QTL intervals the Chinese Spring reference genome was used to perform a MQTL analysis. A total of 267 previously reported QTLs were consolidated and refined to 67 MQTLs. Importantly, five key core MQTLs were refined to <1cM regions corresponding to <20Mb in Chinese Spring enhancing the prospects of candidate gene discovery, validation, and improved marker design.

In barley, reference genomes have undoubtedly enhanced fine mapping studies, candidate validation based on chromosome scale gene annotation and direct comparison of resistant and susceptible haplotypes.

Mehnaz et al. firstly mapped a novel leaf rust resistance gene from an Israeli landrace (AGG396) to chromosome 2HS at the previously characterised Rph14 locus in barley. Both medium and high-resolution fine mapping narrowed the genetic interval to 0.7cM (corresponding to a 1.17 Mb physical interval) where two annotated NLR (nucleotide-binding domain leucine-rich repeat) genes were identified using the Morex v2 reference genome and deemed the most promising candidates for RphAGG396. A closely linked co-dominant marker was designed for marker assisted selection.

Wang et al. fine mapped the barley mild mosaic virus resistance locus rym15 located on chromosome 6H. A set of 32 KASP markers designed from the barley 50K Illumina Infinium iSelect SNP array, GBS and WGS data were used as a backbone to construct two high-resolution genetic maps based on the resistant donor Chikurin Ibaraki. The locus was resolved to 0.036 cM in the Chikurin Ibaraki 1 × Uschi cross corresponding to a 281kb physical interval. Pan genomic data for susceptible Igri and Golden Promise was compared to a Pac Bio assembly of Chikurin Ibaraki to determine that only two candidate genes contained functional SNPs between resistant and susceptible lines.

Two studies used next generation sequencing technologies to develop a method to track recombination in barley (Schreiber et al.) and determine the structural variants responsible for increased yield in bread wheat (Makhoul et al.) respectively.

Schreiber et al. devised and optimised a method to accurately identify crossover events in the genomes of diploid homozygous inbred barley lines by combining chemical mutagenesis and low-level whole genome shotgun sequencing. The study determined that low-level EMS treatment induced variants in M3 populations and can be used to determine recombination rate and frequency. The efficiency of the study was enhanced by direct comparison of the wild type, Bowman and the near isogenic line carrying a mutation in the HvMLH3 gene (BW230) which the authors had previously shown to reduce the genome wide recombination by up to 50%.

Makhoul et al. used single molecule sequencing of barcoded long amplicons to assess sequence polymorphisms in the VERNALIZATION1 (Vrn1) gene between homoeologous gene copies on chromosomes 5A, 5B and 5D in a panel of 192 winter wheat cultivars. Both haplotypic and structural variations were subsequently associated with economically relevant agronomic traits including yield, nodal root-angle index, and quality related traits. Structural variations and increased copy-number variation were associated with reduced quality and yield. Furthermore, a novel SNP polymorphism within the G-quadruplex region of the promoter of Vrn1-5A was associated with deeper roots in winter wheat.


Future perspectives

Undoubtedly, third generation sequencing technologies and the increased availability of chromosome scale reference genomes has increased the capabilities of crop scientists to better exploit genetic variations in agronomic traits of interest. This is especially true for complex quantitatively inherited traits such as yield and resistance to abiotic and biotic stress that were previously too difficult to accurately resolve using trait specific biparental populations. Subsequent genetic gain is likely to occur by exploiting the large volume of GWAS datasets using advanced breeding tools such as artificial intelligence and developments in GS.

In parallel, the ability to continually improve genome assemblies for wheat and barley accessions carrying the desired allele of interest is leading to an improved understanding of the biological mechanisms controlling traits such as resistance to disease. Despite the availability of first generation pan genomes for both barley ad bread wheat, due to its simpler diploid genetic structure, the current status of barley genomics is further advanced relative to bread wheat. Further genomic and biological advances in bread wheat are likely to come from developing pan genomic information utilising diverse diploid representative accessions from progenitor species. To best exploit pan genomic data, further opportunities also lie in accurately phenotyping the currently sequenced barley and wheat accessions for a wider array of traits.
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Grain weight is a key determinant for grain yield potential in wheat, which is highly governed by a type of quantitative genetic basis. The identification of major quantitative trait locus (QTL) and functional genes are urgently required for molecular improvements in wheat grain yield. In this study, major genomic regions and putative candidate genes for thousand grain weight (TGW) were revealed by integrative approaches with QTL linkage mapping, meta-analysis and transcriptome evaluation. Forty-five TGW QTLs were detected using a set of recombinant inbred lines, explaining 1.76-12.87% of the phenotypic variation. Of these, ten stable QTLs were identified across more than four environments. Meta-QTL (MQTL) analysis were performed on 394 initial TGW QTLs available from previous studies and the present study, where 274 loci were finally refined into 67 MQTLs. The average confidence interval of these MQTLs was 3.73-fold less than that of initial QTLs. A total of 134 putative candidate genes were mined within MQTL regions by combined analysis of transcriptomic and omics data. Some key putative candidate genes similar to those reported early for grain development and grain weight formation were further discussed. This finding will provide a better understanding of the genetic determinants of TGW and will be useful for marker-assisted selection of high yield in wheat breeding.

Keywords: wheat, thousand grain weight, quantitative trait loci, meta-analysis, candidate genes


INTRODUCTION

Wheat (Triticum aestivum L.) is one of the leading cereal crops and is vital for global food and nutrition security, providing approximately 20% of total calories and proteins for more than 35% of the human population (FAO)1. However, the sustainable production of wheat will be confronted with great challenges in the future, owing to ever-growing populations, extreme climate changes and arable land reductions (Curtis and Halford, 2014). It has been estimated that wheat yield must grow at least 2.4% per year to meet food demands in the next 30 years (Ray et al., 2013). In this context, the genetic improvement in grain yield potential is urgently required to achieve future increases in wheat productivity. Grain yield is a complex quantitative trait determined by three components, thousand grain weight (TGW), grain number per spike, and reproductive tiller number (Duan et al., 2020). Among them, TGW is an important trait due to its phenotypic stability with moderate to high heritabilities of 0.6-0.8, and thus serves as a practical selection criterion for increasing grain yield in the wheat breeding process (Wang L. et al., 2012; Avni et al., 2018; Duan et al., 2020). For example, based on the linear regression analysis applied to more than 1850 Chinese wheat varieties released since the 1920s, the average TGW increased from 30.16 g in the 1920s to 38.43 g in the 2010s. The corresponding grain yield increased from 2.01 to 6.58 t ha–1, where selection for higher TGW showed a significant contribution to yield improvement (Qin et al., 2015).

Thousand grain weight is a complex quantitative trait governed by polygenes and significantly interacted with environmental factors (Wang L. et al., 2012; Avni et al., 2018; Duan et al., 2020). It is essential to identify major TGW quantitative trait loci (QTL) and further exploit elite genes in the genetic improvement of modern wheat breeding programs. In the last two decades, a large number of QTLs underlying TGW have been successfully identified by traditional bi-parental linkage mapping (Cheng et al., 2015; Hu et al., 2015; Krishnappa et al., 2017; Kumari et al., 2018; Xin et al., 2020; Qu et al., 2021) and genome-wide association approaches (Mir et al., 2012; Yang et al., 2020; Gao et al., 2021). These loci provide a great convenience for revealing the genetic basis of wheat TGW formation. However, the discovery of major and robust QTLs with closely associated markers as a high potential for developing new varieties by the marker-assisted selection (MAS) remains a challenge (Kumar et al., 2020). Most of the reported QTLs showed minor effects and were located in larger QTL intervals, and their expressions were significantly affected by genetic backgrounds and environments (Acuña-Galindo et al., 2015; Kumar et al., 2020; Liu Y. et al., 2020). In addition, some independent or co-localized QTLs did not always have similar loci in different studies, which was usually verified by comparing the flanking markers or comparing with a reference map when co-localized QTLs had a large confidence interval (CI) and might not be identical (Semagn et al., 2013).

As an alternative method of QTL mapping, meta-QTL (MQTL) analysis provides an effective strategy for validating consistent QTLs by integrating independent QTLs from different trials on a consensus or reference map (Goffinet and Gerber, 2000; Semagn et al., 2013; Acuña-Galindo et al., 2015; Soriano and Alvaro, 2019; Kumar et al., 2020; Liu H. et al., 2020; Liu Y. et al., 2020; Yang et al., 2021). The statistical power of MQTL analysis can refine genomic regions that are most frequently involved in trait variation and narrow down the QTL confidence intervals (CI) (Goffinet and Gerber, 2000; Soriano and Alvaro, 2019). Consequently, the integrated MQTLs are not affected by the genetic background, population type, and planting environment in the previous independent experiments. It is facilitated to discover more reliable and consistent QTLs/markers and further identify candidate genes for map-based cloning and MAS in breeding application (Goffinet and Gerber, 2000; Semagn et al., 2013; Acuña-Galindo et al., 2015; Soriano and Alvaro, 2019; Kumar et al., 2020; Liu H. et al., 2020; Liu Y. et al., 2020; Yang et al., 2021). Genome-wide MQTL analysis has been successfully applied in wheat genetic breeding. It has also achieved good insights into the QTL-integration of various quantitative traits in wheat, such as yield-related traits (Acuña-Galindo et al., 2015; Tyagi et al., 2015; Quraishi et al., 2017; Avni et al., 2018; Kumar et al., 2020; Liu H. et al., 2020; Yang et al., 2021), grain quality traits (Quraishi et al., 2017; Soriano et al., 2021), root-related traits (Soriano and Alvaro, 2019), flowering date (Hanocq et al., 2007), pre-harvest sprouting tolerance (Tyagi and Gupta, 2012), drought and heat tolerance (Acuña-Galindo et al., 2015; Kumar et al., 2020; Soriano et al., 2021), disease resistance (Soriano and Royo, 2015; Cai et al., 2019; Liu Y. et al., 2020). The MQTL analysis surveyed relevant QTL studies and refined the CIs of QTLs or QTL clusters to mine more reliable QTLs. However, most of those studies did not investigate the candidate genes behind the MQTL, due to the limitations of the wheat genome sequence. The step-change made recently in wheat genomes is the release of hexaploid wheat Chinese spring high-quality reference genome (International Wheat Genome Sequencing Consortium [IWGSC] et al., 2018). In the same way, a large number of wheat transcriptomic data has been made available in a user-friendly platform (Borrill et al., 2016; Ramírez-González et al., 2018). All these genomic resources present an unprecedented opportunity to unveil the genetic architecture and to mine candidate genes of grain yield and its components in wheat at the levels of physical map and functional genes (Liu H. et al., 2020; Yang et al., 2021). For instance, Kumar et al. (2021) conducted an MQTL analysis of drought tolerance in wheat and identified 13 MQTLs, four of which related to yield and yield-related traits. Interestingly, MQTL4 was a major MQTL with potential for MAS breeding, and three major candidate genes were identified within the MQTL. Likewise, 86 MQTLs were revealed from 381 QTLs for yield and its components, and finally 18 candidate genes or gene clusters were validated by Liu H. et al. (2020). Based on the large-scale integration of meta-QTL and genome-wide association study, Yang et al. (2021) discovered 76 high-confidence MQTL regions and 237 candidate genes that affected wheat yield and yield-related traits. All these candidate genes as reviewed were classified functionally into five groups by Nadolska-Orczyk et al. (2017), including (1) transcription factors regulating spike development; (2) genes involved in metabolism or signaling of growth regulators; (3) genes determining cell division and proliferation mainly impacting grain size; (4) floral regulators influencing inflorescence architecture and in consequence seed number; and (5) genes involved in carbohydrate metabolism affecting plant architecture and grain yield. In particular, many key genes cloned via a homology-based approach were also confirmed within yield-related MTQTL regions (Quraishi et al., 2017; Kumar et al., 2020; Liu H. et al., 2020; Soriano et al., 2021; Yang et al., 2021), such as TaVrn1 (Yan et al., 2003), TaVrn2 (Yan et al., 2004), TaVrn3 (Yan et al., 2006), TaPpd (Beales et al., 2007; Díaz et al., 2012), TaRht (Díaz et al., 2012), TaGSD1 (Zhang et al., 2014), TaCKX2 (Zhang et al., 2011), TaGW2 (Yang et al., 2012), TaTGW6 (Hanif et al., 2015), and TaSus (Jiang et al., 2011), etc. This thus suggested that MQTL analysis combined with the wheat reference genome is one of desirable strategies for discovering functional genes underlying grain yield-related traits in wheat (Liu H. et al., 2020; Liu Y. et al., 2020; Yang et al., 2021). However, only a few key genes for TGW in wheat have been isolated by map-based cloning (Xu et al., 2019; Chen et al., 2020; Zhao et al., 2021). The molecular basis of QTL/genes governing TGW is still limited. Owing to a narrow genetic background of the biparental populations analyzed or a lack of tight linkage to functional genes, some markers are not efficiently applied for MAS or molecular breeding design in wheat (Duan et al., 2020).

In this study, major genomic regions and putative candidate genes for wheat grain weight were revealed by QTL linkage mapping and meta-analysis. The objective was to (i) identify QTLs for TGW using a RIL (recombinant inbred line) population under multi-environmental conditions; (ii) conduct a reference-based MQTL analysis of TGW QTL data published in recent years and the present mapping results; (iii) further integrate the MQTL analysis and transcriptome evidence to discover the key genomic regions and essential putative candidate genes governing TGW trait in wheat. This finding will provide a well-understanding of the genetic determinants of TGW and lay a foundation for the identification of the reliable QTLs and the prediction of putative candidate genes in wheat genetic improvement.



MATERIALS AND METHODS


Plant Materials and Field Trials

A set of 120 F8-derived recombinant inbred lines (RILs) was developed from the cross between two Chinese winter wheat varieties, Longjian 19 and Q9086 (Yang et al., 2016a,b; Li et al., 2020). The male parent Longjian 19 is an elite drought-tolerant cultivar widely grown in rainfed areas (300-500 mm annual rainfall) in northwestern China. The female parent Q9086 is a high-yielding cultivar suitable for cultivation under sufficient water and high fertility conditions but is prone to premature senescence under terminal drought stress. The two parents differed significantly from TGW and other grain yield components (Hu et al., 2015; He et al., 2020; Li et al., 2020; Zuo et al., 2020). Field trials were carried out at Yuzhong farm station, Gansu, China (35°48′N, 104°18′E, 1860 m ASL) in six years from 2013 to 2018, denoted in turns as E1 to E6, respectively, and at Tongwei farm station, Gansu, China (35°110′N, 105°190′E, 1740 m ASL) in 2017 and 2018, denoted as E7 to E8, respectively. The two growing sites are characterized by a typical arid inland climate of northwest China, where the annual average temperature is about 7.0°C, the annual rainfall is below 400 mm with nearly 60% occurring from July to September, but the annual evaporation capacity is more than 1,500 mm. All progenies and parents were sown in late September and harvested in early July of the following year. Field trials at each site were managed under rainfed conditions with the rainfall from 128 (E3) to 236 mm (E8) in each growing season (Supplementary Figure 1). Before sowing, a total of 180 kg nitrogen (N) ha–1, 150 kg P2O5 ha–1, and 75 kg K2O ha–1 were uniformly applied to the soil surface of the entire experimental site, and all wheat plants were no longer fertilized during the growing periods. Field experimental designs were randomized complete blocks with three replications for each line and parent. Each plot was 1 m long with six rows spaced 20 cm apart. Approximately 60 seeds per row were sown. Field management aspects followed the local practices during wheat production.



Phenotypic Evaluation and Statistical Analysis

At the grain maturity stage, five plants per plot were randomly sampled in each of the environments. After threshing, grains were air-dried and weighed to obtain TGW. TGW was measured by the SC-G2 kernel testing equipment developed by Wanshen Science and Technology Ltd. (Hangzhou, China). TGW phenotypic values from the eight environments were determined as the mean of each family from three replicates. The calculations of descriptive statistics, correlation analysis, analysis of variance (ANOVA), and the best linear unbiased prediction (BLUP) value for TGW in different environments were performed using SPSS 19.0 software by IBM, Armonk, NY United States. The broad-sense heritability (h2B) for TGW was estimated with the formula proposed by Toker (2004). Here, h2B = σg2/(σg2 + σge2/r + σe2/re), where σg2, σge2 and σe2 were estimates of genotype, genotype × environment interaction (GEI) and residual error variances, respectively, and e and r were the numbers of environments and replicated per environment, respectively.



Genetic Map and Quantitative Trait Loci Analysis

The genetic linkage map employed in this study was previously developed using a RIL population (Hu et al., 2015; Yang et al., 2016a,b; He et al., 2020; Li et al., 2020; Zuo et al., 2020). The genetic map consisted of 524 simple sequence repeat (SSR) markers covering 21 chromosomes of wheat. The total length was 2266.7 cM with an average distance of 4.3 cM between adjacent markers. The BIP (Biparental populations) module of the software QTL IciMapping version 4.1 (Li et al., 2010) was utilized to identify QTLs for TGW traits based on phenotypic values from eight single environments and the BLUP dataset. The probability in stepwise regression (PIN) parameter value was set at the level of 0.001 with the scanning step size of 1 cM, and the logarithm of odds (LOD) threshold was set at 2.5 to detect the presence of a significant QTL. The QTL interval on the genetic map was defined as the genetic distance between the two flanking markers of the QTL peak. A QTL detected repeatedly across more than four individual environments was considered as a stable QTL. The locations of individual QTLs were drawn on genetic maps using MapChart 2.32 (Voorrips, 2002).



Initial Quantitative Trait Locus Projection and Meta-QTL Analysis

The initial QTLs for TGW collected from earlier studies and the present QTL mapping results were integrated to conduct QTL projection and MQTL analysis further. For each study, the necessary information was collected as the type of QTL mapping population (F2, DH, RIL and Backcross), size of the mapping population, LOD value, QTL position, flanking or closely linked marker, CI and phenotypic variance explained (PVE) value (Yang et al., 2021). After collection of QTL database, all individual QTLs were projected onto a reference genetic map by BioMercator v4.2.3 (Sosnowski et al., 2012). The reference genetic map from two identified genetic maps (Maccaferri et al., 2015; Soriano and Alvaro, 2019) were integrated as high-density reference maps (Bilgrami et al., 2020). This map contained 14548 markers, including SSR, DArT, SNP and other types of markers. The total length is 4813.72 cM with a range of 155.6 cM to 350.11 cM across the 21 linkage groups. The initial QTL data and related individual genetic maps from earlier studies and the reference genetic map were used as input files to construct a consensus map and to further perform MQTL analysis (Yang et al., 2021). For those QTL lacking flanking markers and Cis, the 95% CI was calculated by Darvasi and Soller (1997) and Guo et al. (2006). Of each equation, CI = 530/(N × R2), 163/(N × R2) and 287/(N × R2) were applied for F2/Backcross, RIL and DH population, respectively, where N was the size of the mapping population used for QTL analysis, and R2 was the PVE of each initial QTL. The QTLs that could not be localized to the consensus map and those localized outside the consensus map were discarded. MQTL analysis was carried out using BioMercator V4.2.3 (Sosnowski et al., 2012). On each chromosome, MQTL analysis were calculated using the two-step algorithm (Veyrieras et al., 2007). An estimator of model fitting, was used to select the best model for the representing the number of MQTL or “real” QTL by five statistical methods, such as the Akaike Information Criterion (AIC), AIC correction (AICc), AIC3 candidate models (AIC3), Bayesian information criterion (BIC) and average weight of evidence (AWE). The algorithms and statistical procedures in the software were well-described previously (Veyrieras et al., 2007; Sosnowski et al., 2012). As a requirement of the method proposed by Venske et al. (2019), the meta-analysis was performed with chromosomes including as a minimum of 10 projected QTLs. Otherwise, attempts to run analysis when < 10 QTLs were projected returned in error (Venske et al., 2019).



Mapping of Meta-Quantitative Trait Locus on the Wheat Genome

Putative candidate genes were the genes localized within MQTL regions, which were detected based on the positions of flanking marker regions of the MQTL CIs (or the marker closest to the flanking markers). The flanking markers within target MQTLs were searched by the function of ‘‘Marker information’’ in the Triticeae Multi-omics Center2 to determine the physical locations. If the physical locations of flanking markers were not found, the sequences of flanking markers were searched from GrainGenes database3 or DArT database4. And the most likely physical location was further identified by the Blastn program, based on Chinese Spring RefSeq V1.0 chromosomes in the Triticeae Multi-omics Center (See Text Footnote 2).



Identification of Putative Candidate Genes

Putative candidate genes within MQTL regions were identified by two following methods. (i) The homology-based candidate gene mining (Yang et al., 2021) was given with the close evolutionary relationship between the genomes of Gramineae species (Gaut, 2002). Homology analysis of wheat with model crop rice could broaden our understanding of wheat genes. Key putative candidate genes within the MQTL region were mined using wheat-rice orthologous comparison strategy. Basic information of all grain weight genes in rice was obtained from the China Rice Data Center5. The homologs genes in wheat were found using Triticease-Gene Tribe6, based on IWGSC RefSeqv1.1. The genes located within the MQTL region were considered to be important putative candidate genes affecting wheat grain weight (Yang et al., 2021). (ii) When the MQTLs were available, the preferred criteria of MQTL proposed by Venske et al. (2019) were conducted as follows: (1) the MQTL was generated through the projection of at least two overlapping QTLs; (2) the physical interval corresponding to the 95% CI was less than 20 Mb at the Chinese Spring wheat reference genome; (3) the genetic distance was shorter than 1.0 cM. For that, high-confidence genes within each highly refined MQTL were then listed and thereafter called putative candidate genes using the Triticeae Multi-omics Center (See Text Footnote 2), based on IWGSC_v1.1_HC_gene annotated genomic features.



Expression Analysis of Putative Candidate Genes

The transcriptomic data of multiple tissues in bread wheat var. Chinese Spring from expVIP platform7 was obtained to identify the differential expression characteristics of putative candidate genes within the target MQTLs (Borrill et al., 2016). The transcriptomic data included five tissues at different growth stages, such as grain at 2, 14, and 30 days after anthesis (DAA); spike at two nodes detectable, flag leaf and anthesis stages; leaf at the seedling, tillering stages and two DAA; stem at the 1 cm spike, two nodes detectable, and anthesis stages; root at the seedling, three leaf and flag leaf stages. Expression levels of putative candidate genes were evaluated by transcripts per million (TPM) values (See Text Footnote 7) and displayed using the TBtools8 of TPM, based on normalized scale method. Gene Ontology (GO) term analysis within MQTL intervals was conducted with the GENEDENOVO cloud platform9.




RESULTS


Phenotypic Variation and Correlation Analysis

The phenotypic values of the RILs and two parents were shown in Table 1. In eight tested environments and BLUP analysis, the parent Q9086 had higher TGW than that of the parent Longjian 19, which differences reached a significant (P < 0.05) or very significant level (P < 0.01). The mean values of the RILs were intermediate between two parents. The corresponding coefficients of variation ranged from 6.08 to 12.80% in response to different environments. Some progenies had extreme values more than either parent. The absolute values of skewness and kurtosis were less than 1.0. This suggested that TGW traits showed wide phenotypic variability with continuous variation and transgressive segregation in the RILs. The correlation analysis exhibited a very significant and positive correlation among TGW traits in different environments (P < 0.01). The correlation coefficients ranged from 0.62** to 0.92**, and rainfall for each year was significantly and positively associated with TGW (r = 0.54, P < 0.05) (Figure 1 and Supplementary Figure 2). The variance component analysis showed that all the variance values in the RILs reached a very significant level (P < 0.01), where the phenotypic variation of TGW was highly influenced by the environment, genotype, and GEI (Supplementary Table 1). However, the high value of broad-sense heritability (h2B = 0.77) indicated that TGW was mainly determined by the genetic factor.


TABLE 1. Summary statistics of TGW in the parents and the wheat RIL population under eight environments.
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FIGURE 1. Heatmap depicting the significant correlation of TGW traits under eight tested environments and BLUP analysis. TGW, thousand grain weight; E1-E6, experimental environments at Yuzhong farm station in six years from 2013 to 2018, respectively; E7 and E8, experimental environments at Tongwei farm station in 2017 and 2018, respectively; BLUP, best linear unbiased prediction; **P < 0.01.




Quantitative Trait Locus Mapping for Thousand Grain Weight

A total of 45 additive QTLs for TGW were detected in eight tested environments and BLUP analysis. These loci were distributed on almost all chromosomes except for 1D, 2D, 3D and 6D and exhibited individual PVE of 1.76-12.87% (Figure 2 and Supplementary Table 2). Of these, 22 QTLs (48.89%) had negative effects with -0.24 to -1.72, indicating favorable allele contribution from the parent Longjian 19. The other 23 loci (51.11%) showed positive effects with 0.37 to 1.50 conferred by favorable alleles from Q9086. This indicated that favorable alleles controlling the TGW trait were almost evenly contributed by the parents. In addition, 25 QTLs (55.56%) were identified in single environments, implying that these QTLs were expressed as an environment-dependent pattern. Most of these loci individually explained lower PVE from 1.76% to 8.79%, and only three loci (Qtgw.acs-4D.1, Qtgw.acs-4D.2 and Qtgw.acs-5A.1) had higher PVE from 9.76 to 10.96%. The rest 20 of 45 QTLs (44.44%) were detectable repeatedly across two or more environments and BLUP analysis, indicative of the features of stable expressions. In particular, three stable QTLs (Qtgw.acs-2B, Qtgw.acs-5B.1, and Qtgw.acs-5B.3) were identified across four individual environments, with individual PVE of 6.65-12.23%. Other seven stable QTLs, such as Qtgw.acs-1A.3, Qtgw.acs-1B.1, Qtgw.acs-2A.1, Qtgw.acs-4A.2, Qtgw.acs-6B.1, Qtgw.acs-7B.1, and Qtgw.acs-7D.1, were frequently expressed in four to six individual environments and BLUP analysis, accounting for individual PVE of 6.74-12.87%. This suggested that these ten loci were significantly stable QTLs for TGW.
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FIGURE 2. Genetic map with additive QTLs for TGW under eight tested environments and BLUP analysis. The squares represent the locations of QTLs. The black squares are QTLs expressed only in one environment and red squares are expressed repeatedly in at least two environments.




Characteristics of Initial Quantitative Trait Locus for Thousand Grain Weight

The reported QTLs for TGW were collected from 45 earlier studies published from 2003 to 2020 that were employed in 39 bi-parental mapping populations, including 22 RIL populations, ten double haploids (DH) populations, five F2 populations and two backcross populations (Supplementary Table 3). By integrating these earlier reported 349 QTLs and 45 QTLs detected in this study, a total of 394 initial QTLs for TGW were employed for meta-analysis. These loci were distributed on all 21 chromosomes belonging to seven homoeologous groups (1-7) and three sub-genomes (A, B, and D). However, QTL distributions greatly varied from different homoeologous groups, sub-genomes and individual chromosomes (Figure 3A). For instance, the number of initial QTLs ranged from 45 (11.42%) on the homoeologous group 3 to 68 (17.26%) on the group 2, and from 6 (1.50%) on chromosome 1D to 35 (8.89%) on 2A. By comparison, more QTLs were distributed on A (165/394, 41.88%) and B sub-genomes (159/394, 40.36%), but fewer were harbored on the D sub-genome (70/394, 17.77%). In addition, these QTLs had initial CIs varying from 0.10 to 45.50 cM, with an average of 11.85 cM. There were 55.08% (217) of these 394 loci with initial CIs lower than 10 cM and 80.71% (318) with initial CIs lower than 20 cM (Figure 3B). Correspondingly, the individual PVE ranged from 1.00% to 39.70%, with an average of 9.38% (Figure 3C). Only 36.04% of loci showed the PVE values higher than 10%, indicating that most of them were minor QTLs.
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FIGURE 3. (A) Number of QTLs on seven homoeologous groups (1-7) and three sub-genomes (A,B,D) from the collected QTL studies. (B) supporting intervals estimated from the initial QTLs. (C) the individual PVE from QTLs. PVE, phenotypic variance explained.




Initial Quantitative Trait Locus Projection and Identification of Meta-QTL for Thousand Grain Weight

Based on the above TGW QTL collection, a total of 394 initial QTL data were used to project onto the consensus map developed by integrating individual maps from 45 earlier studies into a reference genetic map. As a result, 286 QTLs were successfully mapped, while the remaining QTLs were eliminated due to the absence of their flanking markers on the consensus map. For the requirements of both the lowest model value and the minimum of ten QTLs projected on each chromosome for an accurate MQTL analysis, 274 of 286 projected QTLs were finally grouped into 67 MQTLs on chromosomes 1A, 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 5B, 5D, 6A, 6B, 7A and 7B (Figure 4, Supplementary Table 4, and Supplementary Figure 3). The 95% CI varied from 0.04 (MQTL-2B-3) to 30.76 cM (MQTL-3D-3), with an average CI of 3.18 cM, which was 3.73-fold less than that of initial QTLs (11.85 cM). This suggested that these MQTLs were mapped more precisely. Considering QTL distributions, each chromosome at least harbored two MQTLs and eight (5D) to 29 initially projected QTLs (2A). Based on the flanking marker sequence comparison, 65 MQTLs had definite physical positions on the wheat genome reference sequence of Chinese Spring, while the positions of two MQTLs, MQTL-1A-3 and MQTL-2A-1, were not well matched (Supplementary Table 4). The physical intervals of these 65 MQTLs ranged from 1.13 to 259.05 Mb. In particular, five core MQTLs, such as MQTL-1B-6, MQTL-2D-2, MQTL-3B-2, MQTL-6A-4, MQTL-7B-5, were positioned with the narrower physical intervals less than 20 Mb and genetic distance shorter than 1.0 cM, which fulfilled the established selection criteria for further mining putative candidate genes.
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FIGURE 4. The chromosome distribution of 65 MQTLs for TGW by MQTL analysis. The circles from outside to inside represent the chromosome physical distance (Mb), 65 MQTLs position, density of high confidence genes and wheat chromosome, respectively. The connecting lines in the center of the circular diagram represents wheat genomic collinearity (gray).




Putative Candidate Genes Mined Within Meta-Quantitative Trait Locus Regions

To further mine the putative candidate genes affecting wheat grain weight, a detailed search for cloned genes affecting grain weight in rice was conducted, and 180 functional genes were finally obtained. Of these, 85 genes were found in 32 MQTLs regions, with an average of 2.6 genes per MQTL (Supplementary Table 4). These genes were early reported to affect grain weight in rice through a variety of pathways, such as MYB transcription factor, zinc finger protein, gibberellin, kinase family protein, UDP-glycosyltransferase, and so on. In general, these putative candidate genes were of high confidence, and the effects of their orthologous on grain weight in rice were investigated intensively. Meanwhile, five core MQTLs, such as MQTL-1B-6, MQTL-2D-2, MQTL-3B-2, MQTL-6A-4 and MQTL-7B-5, showed a genetic distance between 0.16 and 0.66 cM; a physical distance between 1.39 and 13.9 Mb and were supported by three or seven initial QTLs. All of them fulfilled the established criteria to mine candidate genes, i.e., simultaneously obtained from analysis of at least two initial QTLs, and being shorter than 1.0 cM and 20 Mb in genetic length and physical length, respectively. Using the annotation of wheat reference genome sequence of Chinese spring, there were 513 putative candidate genes mined within five core MQTLs (Supplementary Table 5). Those genes were associated with E3 ubiquitin-protein ligase, cytochrome P450 family protein, F-box family protein and zinc finger protein. To further identify more reliable genes by combining transcriptomic data, 134 putative candidate genes were found as highly and specifically expressed in the grain and/or spike (TPM > 2), with higher expression values than in other tissues (Figure 5 and Table 2). The expression patterns of these putative candidate genes could be further divided into three classes (Figure 5). Putative candidate genes in Class I was mostly expressed in the spike at the anthesis and 2-DAA grain stages. Putative candidate genes in Class II were mainly expressed in the spike at the two nodes detectable and flag leaf stages. Putative candidate genes in Class III were highly expressed in the grain at the 14 DAA and 30 DAA stages. Even in the same organ, the gene expression patterns significantly varied from different growth stages, e.g., TraesCS3B02G039000, TraesCS2D02G571500, TraesCS3B02G049800, and so on. This implied that these putative candidate genes showed tissue- and development-dependent expression patterns. As a result, these crucial genes were highly and specifically expressed in grains and spikes, which could highly affect the TGW trait in wheat.
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FIGURE 5. Expression characteristics of 134 putative candidate genes in five tissues. The transcriptome data was downloaded from expVIP (http://www.wheat-expression.com), and TPM value was used to characterize the expression level based on normalized scale method.



TABLE 2. Summary of 134 putative candidate genes exhibiting significant expression (TPM > 2) within MQTLs.
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By the GO and KEGG analysis, these genes were mainly associated with biological process (17 sub-functions), cellular component (9 sub-functions) and molecular function (8 sub-functions) (Figure 6). The most significantly enriched GO terms associated with biological process were for cellular (51/134, 38.06%) and metabolic (51/134, 38.06%). In terms of cellular component, the genes were enriched mainly in cell (40/134, 29.85%) and cell part (40/134, 29.85%). In KEGG pathways, these putative candidate genes were highly involved in the pathways of ubiquitin mediated proteolysis, amino sugar and nucleotide sugar metabolism and starch and sucrose metabolism (Figure 7).
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FIGURE 6. Level 2 GO terms for 134 putative candidate genes from MQTL regions.
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FIGURE 7. Top 20 KEGG enrichment pathways for 134 putative candidate genes from MQTL regions.





DISCUSSION


Quantitative Trait Locus Identification and Stable Quantitative Trait Locus Comparisons for Thousand Grain Weight

Thousand Grain Weight is a key determinant that is related to grain yield potential in wheat and is influenced by both genetic and environmental factors (Wang L. et al., 2012; Avni et al., 2018; Duan et al., 2020). Compared with other yield components, TGW had more stable phenotypic variation and higher heritability (Mir et al., 2012; Wang L. et al., 2012; Cheng et al., 2015; Hu et al., 2015; Krishnappa et al., 2017; Avni et al., 2018; Kumari et al., 2018; Duan et al., 2020; Xin et al., 2020; Yang et al., 2020; Gao et al., 2021; Qu et al., 2021). Likewise, TGW trait in the present study also showed a prominent main-effect of genotype, with a high heritability (h2B = 0.77), relatively lower CV% (6.08-12.80%), and significant correlations (r = 0.62**−0.92**) in the performance of the RILs under eight different environments. This confirmed that TGW was predominantly controlled by the genetic factor, and suggested the role of QTLs expressed across environments (Figure 1 and Table 1). Indeed, some stable QTLs with relatively higher PVE (6.65-12.87%) were identified in the present RIL population (Figure 2 and Supplementary Table 2). However, in this study, 25 of 45 QTLs were identified in specific environments and most of them explained lower PVE (1.76-8.79%), implying that these QTLs were expressed sensitively to individual environments. Similar results have also been found in other early studies, where GEI effects and epistatic effects significantly influenced TGW genetic variation to some extent (Hu et al., 2015; Kumari et al., 2018; Qu et al., 2021). It was also interpreted why some loci identified with minor-effects were always erratic and highly responsible for individual environments. This suggested that in addition to additive effect, GEI and epistatic effects should not be ignored in TGW genetic improvement.

In this study, ten stable QTLs were significantly expressed in at least four environments (Supplementary Table 2). These crucial QTLs were distributed on chromosomes 1A, 1B, 2A, 2B, 4A, 5B, 6B, 7B and 7D, accounting for the PVE from 6.65% to 12.87% higher than other identified loci explained. In particular, several stable QTLs detected in this study shared similar chromosomal positions or regions with other detected earlier. For example, a present stable QTL, Qtgw.acs-1A.3, highly adjacent to the marker Xgwm99 on 1A, was identified and verified earlier as a major and stable QTL for grain weight (QGw.ccsu-1A.3) by combining linkage mapping and association mapping methods. The marker Xgwm99 was also suggested as a functional marker to be used in MAS for TGW (Mir et al., 2012). The marker intervals of three stable QTLs, Qtgw.acs-4A.2, Qtgw.acs-5B.3, Qtgw.acs-6B.1, were overlapped to those of some minor-effect QTLs for TGW identified earlier (Groos et al., 2003; Wang et al., 2009; Wang et al., 2010; He et al., 2020), while Qtgw.acs-5B.1 was highly adjacent to the marker interval with a stable QTL cluster for TGW and grain width reported by Ramya et al. (2010). The location of a stable QTL, Qtgw.acs-1B.1, in the marker interval Xgwm413-Xwmc419 on 1B, was similar to the location of several clustered QTLs for grain yield-related traits reported by Peng et al. (2003). Similarly, Qtgw.acs-2A.1 and Qtgw.acs-2B were mapped to a similar position to other reported loci for heading time (Fayt et al., 2011), plant height and spike traits (Wang et al., 2014; Hu et al., 2019), owing to proximity to Xgwm512 on 2A and Xgwm429 on 2B, respectively. A stable QTL, Qtgw.acs-7D.1, located in the marker interval of Xgwm635-Xgwm428 on 7D, was highly overlapped to the positions of several major and stable loci for grain size (Yan et al., 2017) and sterile spikelet number identified earlier (Ma et al., 2007). This indicated that above-mentioned QTLs for TGW seemed highly collocated or adjacent to those for some grain yield-related traits. Indeed, it still remains a puzzling question whether these clustered QTLs represent close linkages of multiple genes affecting different traits or have pleiotropic effects of regulatory genes that affect the related traits. Besides, a stable QTL, Qtgw.acs-7B.1, was detected only in this study and could be a novel locus. These stable and common QTL, as well as closely linked molecular markers, were therefore suggested with a great potential in MAS to improve TGW, along with yield potential in wheat.



Genetic Architecture of Thousand Grain Weight Revealed by Meta-QTL Analysis

To further dissect the genetic architecture of TGW trait in the present study, MQTL analysis was performed using reported QTLs from previous mapping studies and identified QTLs in the present study. As a result, 394 initial QTLs were successfully collected and further employed for MQTL analysis (Figure 3 and Supplementary Table 3). These loci were unevenly distributed on 21 chromosomes, varying from six QTLs on 1D to 35 QTLs on 2A. By comparison, about 82.2% of initial QTLs were harbored on A and B sub-genomes. The result was consistent with previous MQTL analysis for grain yield and yield-related traits, where 72.1%-86.2% of initial loci were reported in A and B sub-genomes (Acuña-Galindo et al., 2015; Tyagi et al., 2015; Kumar et al., 2020; Liu H. et al., 2020; Yang et al., 2021). This implied that these QTLs were located more on the A and B sub-genomes, but fewer were on D sub-genome. It could be attributed to the low level of polymorphism in the D sub-genome of hexaploid wheat. Since the D-genome is a recent evolutionary addition to the hexaploid wheat genome, there has been limited gene flow from Aegilops tauschii to cultivated wheat, resulting in a relatively narrow genetic variation (Kumar et al., 2012). Although fewer TGW QTLs and MQTLs were identified on chromosomes 2D, 3D, and 5D in this study, it was still noteworthy that some useful QTL/genes mainly controlling desirable traits have been discovered on the D sub-genome, including abiotic and biotic stress tolerance and TGW-related traits in wheat (Kumar et al., 2012; Yan et al., 2017).

Meta-QTL analysis can refine QTL locations in different genetic backgrounds and environments, providing more accurate genomic regions associated with target traits (Goffinet and Gerber, 2000; Semagn et al., 2013; Acuña-Galindo et al., 2015; Soriano and Alvaro, 2019; Kumar et al., 2020; Liu H. et al., 2020; Liu Y. et al., 2020; Yang et al., 2021). In this study, 274 initial QTLs were finally grouped into 67 MQTLs on chromosomes 1A, 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 5B, 5D, 6A, 6B, 7A and 7B (Figure 4 and Supplementary Table 4). The average 95% CI of MQTLs (3.18 cM) was 3.73-fold less than that of initial QTLs (11.85 cM). A similar result was reported earlier by Yang et al. (2021), where the average CI of identified MQTLs for yield-related traits was 2.9 times less than that of initial QTLs. By the peak marker sequences compared with the wheat genome reference sequence of Chinese Spring, 65 MQTLs had definite physical positions and the physical intervals ranged from 1.13 to 259.05 Mb. However, some MQTLs were excluded from further elucidation, because they only harbor singular QTL. For these under-represented QTLs, more loci should be added to analyze the responsibility of these regions for TGW (Venske et al., 2019).

Among 67 MQTLs identified, five core MQTLs, such as MQTL-1B-6, MQTL-2D-2, MQTL-3B-2, MQTL-6A-4 and MQTL-7B-5, fulfilled the criteria with narrower physical intervals (< 20 Mb) (Supplementary Table 4), shorter genetic distance (< 1.0 cM) and more initial QTLs (n ≥ 2) (Venske et al., 2019). Therefore, these MQTLs will be highly favorable for future MAS in TGW improvement, and for isolating key genes by the map-based cloning approach in wheat (Kumar et al., 2020; Liu H. et al., 2020). In addition, since five core MQTLs comprised initial QTLs detected in quite diverse and various segregating populations, the probability of involvement of the genomic regions in the regulation of target phenotype in new genetic backgrounds increases (Ribaut and Ragot, 2007; Löffler et al., 2009). For example, MQTL-2D-2 was formed by seven initial QTLs with average PVE of 8.29% from five different populations (Huang et al., 2003; Cuthbert et al., 2008; Wang et al., 2009; Wu et al., 2011; Zhang et al., 2019). MQTL-3B-2 covered five initial QTLs with average PVE of 5.68% from four different populations (Huang et al., 2006; Cuthbert et al., 2008; Wu et al., 2015) (including the population in this study). MQTL-7B-5 contained two initial QTLs with average PVE of 8.20% from two different populations (Shukla et al., 2015; Guan et al., 2018). In particular, the accuracy and validity of MQTL-1B-6 and MQTL-6A-4 would be further increased when the number of observed QTL was at least five (Zhang et al., 2017) and had high PVE (Löffler et al., 2009). MQTL-1B-6 was comprised of five initial QTLs with average PVE of 13.11% from five different populations (Yu et al., 2014; Roncallo et al., 2017; Guan et al., 2018; Goel et al., 2019) (including the population in this study). MQTL-6A-4 was composed of five initial QTLs with average PVE of 12.44% from four different populations (Peleg et al., 2011; Mir et al., 2012; Guan et al., 2018; Goel et al., 2019). They contained more QTL from different populations with high PVE, indicating that these crucial MQTLs had more extensive adaptability in TGW improvement (Kumar et al., 2020; Yang et al., 2021). In addition, MQTL-1B-6 and MQTL-3B-2 overlapped the physical positions of MQTLs for wheat yield-related traits detected in recent studies (Liu H. et al., 2020; Yang et al., 2021). This further confirmed the reliability of present MQTLs, which would be highly favorable for future MAS in TGW improvement, and for isolating key genes by the map-based cloning approach in wheat (Kumar et al., 2020; Liu H. et al., 2020).



Putative Candidate Genes for Thousand Grain Weight Mined in Meta-QTL Regions

In order to obtain reliable candidate genes, two strategies were combined to screen for candidate genes. On the one hand, it was feasible to screen important candidate genes by the interspecific homology analysis. In this context, candidate genes might be confirmed to have rice homologs with similar function in wheat, because these development pathways were conserved among related grass species (Li and Li, 2016; Liu et al., 2017). On the other hand, given the fundamental differences in seed development, not all gene functions were conserved (Brinton and Uauy, 2019). Thus, the method proposed by Venske et al. (2019) was used as a supplement to fully mine candidate genes. Among 67 MQTLs identified in this study, five core MQTLs, such as MQTL-1B-6, MQTL-2D-2, MQTL-3B-2, MQTL-6A-4, and MQTL-7B-5, meet the above-mentioned criteria (Supplementary Table 4).

Whilst most stages of grain development had been widely characterized phenotypically, the genetic basis how these processes were controlled and how they affected final grain weight was not well known in wheat. (Brinton and Uauy, 2019). Understanding gene expression patterns were favorable to narrow down candidate genes within a defined genetic interval (Borrill et al., 2016). Meanwhile, transcriptomic and omics studies provided a global overview of the types of genes involved in grain development (Brinton and Uauy, 2019). Therefore, the data from expVIP platform would facilitate the meta-analysis and easily allow integration of data for candidate gene expression analysis (Borrill et al., 2016). Analysis of putative candidate genes in the MQTL intervals were conducted, including diverse developmental time courses and tissues underlying expVIP platform, GO and KEGG enrichment. Those can deepen our understanding of differential expression and regulative mechanisms, in order to prioritize candidate genes (Zheng et al., 2020). Herein, putative candidate genes presenting over 2 TPM were only considered (Wagner et al., 2013; Venske et al., 2019). A total of 134 genes were found with high and/or specifical expression patterns in the grain and/or spike (TPM > 2) (Figure 5). Herein, these putative candidate genes showed tissue- and development-dependent expression patterns, which could highly affect the TGW trait in wheat. For example, TraesCS3A02G077900, encoding NAC domain-containing protein, was specifically expressed in grain 14 DAA. In rice, its homologous genes OsNAC20, as a NAC transcription factor, significantly decreased starch and storage protein content by OsNAC20/26 double mutant, and the phenotype was characterized by a significant reduction in TGW (Wang et al., 2020). TraesCS3B02G051700, encoding a B3 domain-containing protein from a large B3 transcription factor superfamily, was highly expressed in spike two nodes detectable stage. It has been demonstrated that B3 superfamily plays a central role in the embryogenesis to seed maturation and dormancy of the plant (Wang Y. et al., 2012). TraesCS2D02G571200, encoding EamA-like transporter family protein, was widely expressed in wheat tissue. Li et al. (2018) found that EamA-like transporter as an auxin transporter required for auxin homeostasis was significantly associated with yield and yield-related traits by GWAS. Those genes deserved further study to unveil their possible role in TGW and their application in breeding programs. Although the relationship between these genes with grain development in wheat has not been reported, several homologous genes have been shown to participate in the regulation of TGW in rice, such as OsSec18, OsBADH1, and OsLHT1, indicating that these 134 putative candidate genes could be involved in TGW regulation in wheat (Tang et al., 2014; Sun et al., 2015; Guo et al., 2020).

GO enrichment and KEGG analysis for differentially-expressed genes in MQTL intervals provided new insights into the genetic control of TGW (Zheng et al., 2020). Herein, these putative candidate genes were highly involved in the pathways of ubiquitin mediated proteolysis, amino sugar and nucleotide sugar metabolism and starch and sucrose metabolism (Figure 7). Likewise, early studies had found that the ubiquitin proteolytic system played an important role in a broad array of basic cellular processes. For instance, Zhang et al. (2018) reported TaGW2 encoded an E3 ubiquitin ligase and had two homeologs, TaGW2-B1 and TaGW2-D, both of which were highly associated with the genetic control of grain weight in wheat. Starch was the main component of wheat grains, so it was considered as a key determinant of wheat yield, and sucrose and starch metabolism might be correlated with increasing grain yield (Guan et al., 2019).

In summary, this implied that these above-mentioned genes could directly or indirectly participate in the regulation of wheat grain development, and ultimately affect grain weight formation. Once these putative candidate genes were successfully cloned and verified in the future, they would increase our understanding of the complex molecular mechanisms underlying TGW and provide a great application potential in the molecular breeding for TGW in wheat.




CONCLUSION

In this study, a total of 45 TGW QTLs were identified using a RIL population, where ten loci were highly stable across more than four environments. By the MQTL analysis, 274 of 394 initial QTLs were successfully refined into 67 MQTLs for TGW. The average confidence interval of these MQTLs was 3.73-fold less than that of initial QTLs. This suggested that the present MQTLs were mapped more precisely. In particular, five core MQTL regions were positioned in narrower genetic distance (< 1 cM) and physical distance (< 20 Mb). Putative candidate genes were mined by genomic sequence comparison to that of Chinese Spring wheat reference genome. Crucial genes were involved in three pathways of ubiquitin mediated proteolysis, amino sugar and nucleotide sugar metabolism, and starch and sucrose metabolism. Some of the genes had similar functions to those reported earlier for grain development and gran weight formation. This suggested that the key genes would have a great application potential in the molecular breeding for TGW in wheat.
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Spike fertility and associated traits are key factors in deciding the grain yield potential of wheat. Genome-wide association study (GWAS) interwoven with advanced post-GWAS analysis such as a genotype-phenotype network (geno-pheno network) for spike fertility, grain yield, and associated traits allow to identify of novel genomic regions and represents attractive targets for future marker-assisted wheat improvement programs. In this study, GWAS was performed on 200 diverse wheat genotypes using Breeders’ 35K Axiom array that led to the identification of 255 significant marker-trait associations (MTAs) (–log10P ≥ 3) for 15 metric traits phenotyped over three consecutive years. MTAs detected on chromosomes 3A, 3D, 5B, and 6A were most promising for spike fertility, grain yield, and associated traits. Furthermore, the geno-pheno network prioritised 11 significant MTAs that can be utilised as a minimal marker system for improving spike fertility and yield traits. In total, 119 MTAs were linked to 81 candidate genes encoding different types of functional proteins involved in various key pathways that affect the studied traits either way. Twenty-two novel loci were identified in present GWAS, twelve of which overlapped by candidate genes. These results were further validated by the gene expression analysis, Knetminer, and protein modelling. MTAs identified from this study hold promise for improving yield and related traits in wheat for continued genetic gain and in rapidly evolving artificial intelligence (AI) tools to apply in the breeding program.

Keywords: GWAS, 35K, MTAs, spike fertility, yield, wheat


INTRODUCTION

Wheat is an important cereal providing 20% of calories and protein for the human diet globally (Shiferaw et al., 2013). With the predicted global population of approximately 9 billion in 2050, the demand for wheat is expected to increase by close to 70% (Su et al., 2016). However, in contrast to the required growth rate of 2.4% increase in grain yield per year, we are having merely a rate of.9% and at this rate, we can achieve only a 38% increase in the present yield by 2050 (Ray et al., 2013). Moreover, adverse impacts of climate change, diminishing natural resources, rapidly evolving new threats of pests and pathotypes, and genetic erosion would further add obstacles to the achievement of doubling the yield potential in the stipulated time. Thus, there is a clear need to improve our understanding of the genetic architecture of grain yield in our working gene pool and to search for the efficient utilisation of available genetic resources.

Grain yield has a complex underlying genetic architecture that depends on several related traits. Furthermore, high genotype x environment (GxE) interaction and low heritability of this ultimate trait in most cases, make the selection process most challenging. In such a situation, indirect selection of grain yield via highly heritable (h2) correlated traits would be practically more feasible. One of the key contributing traits for keeping the high yields are spike-related traits such as spike fertility.

Spike fertility is an index defined by the number of grains produced over the chaff weight which can be attributed to siphoning assimilates to the grains in the florets than to the other parts of the spike. Acreche et al. (2008) reported an increase in grain number was related to improvement in both spike weight and fruiting efficiency (SF). This becomes important in the light of the observation that an increase in the number of fertile florets per gram of spike was not at the cost of a reduction in the grain weight in improved cultivars. It is also well known that the number of grains per meter square directly correlates with yield enhancement (Acreche et al., 2008). The effect of various agronomic and physiological traits on grain yield was recently reviewed by Tshikunde et al. (2019). These traits affect grain yield through photosynthetic efficiency, input use efficiency, grain filling rate, and dry matter translocation (Li et al., 2019). Extensive use of limited genetic resources with semi-dwarf stature and wheat-rye translocations (e.g., 1BL.1RS), in global wheat breeding programs, have caused a near fixation of these genes as well as significant genetic erosion (Girma, 2017; Würschum et al., 2017). This indicates the need of improving our knowledge on the genetic architecture of grain yield and other attributing traits jointly with the exploration of causal variants in genetic resources for their efficient utilisation in wheat grain yield improvement programs.

High throughput genotyping using NGS-derived markers such as single nucleotide polymorphisms (SNPs) leads to dense and uniform coverage of all the chromosomes receiving impetus. The future genetic gain is more likely from a genomics-driven breeding program which requires an in-depth understanding of all the major/minor quantitative trait loci (QTLs) segregating in the elite germplasm pools. GWAS has been found a powerful tool for dissecting complex traits by finding causative allelic variation at individual SNP markers or associated with natural phenotypic variation (Alqudah et al., 2020) which can be used effectively to fine map these traits (Garcia et al., 2019; Sheoran et al., 2019; Alqudah et al., 2020; Kumar et al., 2020; O’Connor et al., 2020; Sehgal et al., 2020). This approach has been widely used to predict phenotypically related candidate genes in many crops (Si et al., 2016; Wang et al., 2016; Liu et al., 2018). GWAS revealed common QTLs between floret fertility, spike morphology, assimilate partitioning efficiency, and yield, suggesting genetic association controlling these complex traits (Guo et al., 2017). It overcomes the limitation of bi-parental mapping by using a population of unrelated diverse genotypes representing all possible recombination events. The widespread availability of cost-effective genotyping techniques such as genotyping by sequencing (GBS) and SNP arrays (35K Breeder array, 90K iSelect gene chip, etc.) have further improved the resolution of GWAS as well as accuracy and predictability of candidate genes and QTL regions while accounting the causal variants in the population. Now, the reference genomes of hexaploid wheat (Triticum aestivum L., International Wheat Genome Sequencing Consortium [IWGSC], 2018), wheat A sub-genome (T. urartu, Ling et al., 2018), and D-subgenome (Aegilops tauschii, Luo et al., 2017) have been made available which facilitates the fine mapping, gene discovery and cloning in wheat (Pang et al., 2020; Tura et al., 2020).

Keeping this in mind, GWAS was performed using Axiom Wheat Breeder 35K Genotyping Array on a panel of 200 wheat genotypes consisting of indigenous collections, elite lines, released varieties, genetic stocks, and exotic lines. Genotypes were characterised for spike fertility, yield, and related traits for three consecutive years. The objectives of the study were (i) to identify novel MTAs linked to grain yield and yield-related traits, (ii) to identify candidate genes of these MTAs and to investigate their underlying functions, and (iii) to construct a genotype-phenotype network (geno-pheno network) for yield improvement to further narrow down the promising SNPs associated with trait (Pradhan et al., 2019).



MATERIALS AND METHODS

The experiment was conducted at the ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal (290 42′ N, 770 2′ E) over three consecutive years viz., 2016–2017, 2017–2018, and 2018–2019 using the recommended agronomic practices. An alpha-lattice design with three replications was followed where the planting was done in plots using a handheld IIWBR dibbler (Sharma et al., 2016) in four rows each. A subset of 200 diverse bread wheat (T. aestivum L.) genotypes was chosen for the present GWAS (Supplementary Table 1) from the plant material used by Sheoran et al. (2019). Each year seeds were planted under timely sown condition (1st week of November) in a plot size of 1m2. Each genotype occupied a single plot of dimension 1.25 m ×0.8 m. In each locus, two seeds were planted and after 15 days of sowing, one plant was maintained per locus hence 48 plants were finally retained in each plot. Each plot had four rows with 12 plants per row. Row to row spacing was 20 cm and plant to plant spacing was 10 cm with seedling depth at 5 cm.


Phenotyping

In the phenotyping experiment, 200 genotypes were evaluated for 15 agro-morphological traits including some less explored traits viz., days to heading (DH), days to anthesis (DA), days to maturity (DM) were recorded as number of days taken from sowing to the days when 75% plants shown spike emergence, anthers emergence, browning of spikes respectively. Plant height (PH) was measured from the base of the plant to the tip of the spike (excluding awns), and spike length (SL) was measured from the tip of the apical spikelet (excluding awns) to the base of the spike at the time of physiological maturity. Other considered traits were spike dry weight (SDW), grain number per spike (GNS), grain weight per spike (GWS), thousand-grain weight (TGW), grain yield (GY), spike chaff weight (CW), and spike fertility (SF). Tillers per plant (TP) were calculated as the largest number of tillers produced by a plant. Biomass (BM) was the total weight of plants per plot and harvest index (HI) was calculated as (GY/BM)*100. All the observations were recorded on the main tillers of nine plants per plot randomly tagged at the booting stage, except for TGW, GY, and BM that were recorded on a per plot basis.



Statistical Analysis

ANOVA and estimates of repeatability were calculated using the mixed procedure in SAS 9.3 software, 20111. Best linear unbiased predictions (BLUP) were made for each genotype for each trait by combining data from three environments using mixed linear models (MLM) fitted with restricted maximum likelihood (REML) methods where the effect of blocks is considered random. Heritability for each trait over the environments was estimated using META-R (Alvarado et al., 2020). The phenotypic data were later divided into four datasets each coming from three environments viz., E1 (2016-17), E2 (2017-18), E3 (2018-19), and BLUP. The R software2 was used to calculate descriptive statistics and summarisation of data for each data set using command summary() and ggplot2 package, respectively whereas, the correlation matrix among BLUP values of studied traits was calculated using command cor() and visualised with ‘corrplot’ package.



Single Nucleotide Polymorphisms Calling and Linkage Disequilibrium

Genotypic data with 35K Axiom Wheat Breeders Array were obtained from the IIWBR database, details of which are mentioned in Sheoran et al. (2019). Markers with minor allele frequency (MAF) of less than 5%, more than 10% missing values, and individuals with more than 15% missing SNP calls were removed from the dataset. Markers with no chromosomal position based on a high-density consensus map generated by using the mapping population (Allen et al., 2017) were also removed. For association analysis, three environments, namely E1 (2016–2017), E2 (2017–2018), E3 (2018–2019) in three replications and BLUP were considered. Linkage disequilibrium (LD) analysis was performed across A, B, and D genomes. Intra-chromosomal pairwise marker LD as squared allele-frequency correlations (r2) values were calculated in TASSEL v5.2 (Bradbury et al., 2007) using a sliding window approach with default parameters. As a function of genetic distance, the estimated r2 values for significant SNP marker pairs were plotted to understand the extent of LD. A second-degree “loess” function (Cleveland, 1981) in the R statistical program was fitted to estimate the rate of LD decay over genetic distance (cM).



Population Structure

Population structure analysis was performed on 15,178 markers from 200 genotypes. The input file was prepared using the Perl script. Parallelisation of STRUCTURE 2.3.1 (Chhatre and Emerson, 2017) run was done based on command line in-house C++ MPI programming in Linux reducing the computation load many-folds. The parameters used for running were 100,000 iterations of burn-in and 100,000 Monte Carlo Markov Chain (MCMC) iterations. K values tested were from 2 to 10 with five iterations run for each K. Number of subpopulations (K) that are more likely, i.e., ΔK statistics which relies on the rate of change in log probability [LnP(D)] between successive K values were analysed using STRUCTURE HARVESTER (Earl and vonHoldt, 2012). Based on the best K value bar plot and fixation index (Fst) of each sub-population was generated using STRUCTURE run.



Genome-Wide Association Study and Genotype-Phenotype Network

Association analysis was performed using a compressed mixed linear model (CMLM) by the GAPIT package, which takes into account the results of population stratification and kinship as a covariate to minimize false positives (Lipka et al., 2012). GWAS analysis was conducted between SNP markers and phenotypic data in individual environments and BLUP values across all environments. A threshold P-value of.001 (–log10P = 3) was used to declare significant SNPs for GWAS results. VanRaden kinship (K) matrix (VanRaden, 2008) for the 200 genotypes was also generated using GAPIT.

To identify the key SNPs associated with one or more traits, genotype-phenotype network analysis has been carried out using the Network-Based Genome-Wide Association Studies in (netgwas) R package (Behrouz et al., 2017). netphenogeno reconstructs the conditional dependence network among genetic markers, phenotypes, and between genetic markers and phenotypes. The intra- and inter-chromosomal conditional interactions among genetic loci were also calculated using the ‘netsnp’ of the ‘netgwas’ package.



Candidate Gene Prediction and Homology Modeling

Genes associated with the stable loci detected in this study were identified using the EnsemblPlants database3 and the International Wheat Genome Sequencing Consortium (IWGSC)4 RefSeq v1.1 annotations. Nearby regions (1.5 kb upstream and downstream) of stable MTA were also selected to find out candidate genes. Expression analysis has been done using the RNA-seq expression database of polyploid wheat5 which includes RNA-seq datasets of multiple tissues and developmental time courses. Expression values are represented in Fragments per kilobase of transcript per million mapped reads (FPKM).

Homology modeling was carried out to deduce the proteins translated by candidate genes of selected SNPs. For this purpose, query sequences were subjected to position-specific iterative (PSI) BLAST against protein data bank database (PDB)6. The top three templates showing minimum E-value and highest similarity percentage were selected for 3D structure prediction in the SwissModel server7. Values from ERRAT, Verify3D, Ramachandran plots, and FATCAT tools were used to predict and validate the best 3D structure.




RESULTS


Phenotypic Analysis and Population Structure

The phenotypic performance of 200 genotypes based on investigated traits in three environments and BLUP is summarised in Figure 1A and Supplementary Table 2. The coefficients of variation (CV) for these 15 traits ranged from 1.6 to 43.8%, showing broad phenotypic variation and considerable improvement potential. Substantial phenotypic variations among genotypes and datasets were reported for all the studied traits excluding SL, CW, SDW, GWS, GNS, and BM for which the mean sum of squares (MSS) for the environments and BLUP was non-significant at P < 0.001 (Supplementary Table 3). GxE interaction was also significant (at P < 0.001) for studied traits except for TP. Heritability of all 15 traits ranged from 0.3 (BM) to 0.97 (DH), indicating that both genetic and environmental factors played important role in the phenotypic expression of these measured traits (Supplementary Table 3). Besides, broad-sense heritability estimates were found highest for CW (0.92) followed by SDW (0.87) and GNS (0.86). Furthermore, the genotype-trait biplot indicated sufficient contribution of different genotypes from various sub-populations to the diversity of studied traits (Figure 1C). Pearson’s correlation coefficients, based on BLUP values of fifteen agronomical traits, ranged from –0.83 (CW vs. SF) to 0.99 (DH vs. DA) at P < 0.05 (Figure 1B). GY showed a positive correlation with GWS, GNS, SDW, SL, BM, TGW, and HI which ranged between 0.18 (SL) to 0.49 (GWS) besides HI (0.84). SF showed a significantly positive correlation with HI and GNS whereas, a significant but negative correlation with SDW, CW, and PH. The correlation between SF and GY was positive but non-significant (Figure 1B).
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FIGURE 1. (A) Summary of data observed for 15 agro-phenological traits, (B) correlation among studied traits, and (C) genotype-trait biplot summarizing the genetic variability. In figure, BLUP, Best Linear Unbiased Prediction; E1, the year 2016–2017; E2, the year 2017–2018; E3, the year 2018–2019; DH, days to heading; DA, days to anthesis; DM, days to maturity; PH, plant height; SF, spike fertility; CW, chaff weight; SDW, spike dry weight; SL, spike length; GNS, grain number per spike; GWS, grain weight per spike; TGW, thousand grains weight; GY, grain yield; TP, tiller per plant; HI, harvest index; BM, biomass.




Genomic Coverage, Population Structure, and Linkage Disequilibrium

A total of 15,178 SNP markers covering 4529.51 cM map distance with an average distance of 0.5 cM were found polymorphic after filtering data according to Sheoran et al. (2019). No genotype was removed for low genotypic data (MIND > 0.01). Among polymorphic markers, 39.45, 50.2, and 10.2% were reported on the A, B, and D genomes, respectively (Supplementary Table 4). Chromosome 2B had the highest number of markers (1412) while the 4D chromosome spanned the lowest number of markers (58). The average genetic diversity (GD) and the polymorphism information content (PIC) for the whole genome were found at 0.35 and 0.28, respectively. The average GD and PIC across the genome were observed highest for the B genome (0.36 and 0.29) and lowest for the D genome (0.34 and 0.27) (Supplementary Table 4). Population STRUCTURE analysis stratified the present GWAS panel into four optimum sub-populations comprising 67, 30, 48, and 55 genotypes respectively falling in subgroups I, II, III, and IV with admixture (Figures 2A–C). The first subgroup (I) has predominantly released varieties and improved genotypes (∼80%), mostly post-green revolution high-yielding varieties with complex pedigree. Subgroup II consists of the indigenous collection and tall traditional type genotypes possessing tolerance to heat and drought conditions. Subgroup III has major components as genotypes suited for hills, warmer areas, and disease-resistant lines while subgroup IV has genotypes adapted to varying environments. Principal component and kinship analyses also showed four groups, which corresponded to the four sub-populations revealed by Structure (Figures 2A–C). LD was estimated by calculating the squared allele frequency correlation (r2) among all possible pairs of markers for each of the 21 chromosomes. Obtained r2 values were then plotted against genetic distance (cM) for each of the three genomes separately and across the whole genome (Figure 2D). LD decayed at 1, 1.3, and 5.8 cM for A, B, and D genomes, respectively at cut-off r2 = 0.2, while for the whole genome, decay was observed at 1.3 cM. Based on this average LD decay, the size of QTL was estimated, i.e., all significant SNPs within 1.3 cM were considered as part of the same QTL.
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FIGURE 2. Population structure of genome-wide association study (GWAS) panel consisted of 200 bread wheat genotypes (A) PCA plot, (B) Bar plot showing the number of optimum sub-population in GWAS panel, (C) Van Raden kinship matrix, and (D) Scatter plot showing LD decay in three sub-genomes and whole genome.




Significant Loci Associated With the Traits

The main objective of this study was to identify the major MTAs for the traits associated to improve grain yield and adaptability in wheat. Accordingly, for all 15 traits, a total of 255 significant MTAs were identified across three environments (E1, E2, and E3) and BLUP in the present study (Figure 3). False discovery rate (FDR) was significantly controlled with MLM statistics as seen in Q-Q plots (Supplementary Figure 1). A maximum of 52 MTAs was reported on chromosome 6A for eight traits viz., DA, DH, PH, SDW, GWS, GY, BM, and HI whereas, only one MTA each was reported on chromosome 4D and 6B for TGW and CW, respectively. The distribution of MTAs on three subgenomes was 154 (A), 75 (B), and 25 (D). Significant loci from chromosome 1D and 6B from this study were exclusively associated with SL and CW, respectively. Likewise, loci reported on chromosomes 4D and 5D were associated with TGW. All the MTAs consistently associated with the trait in at least one environment and BLUP were considered stable loci for the respective trait. Among traits, a maximum of 36 MTAs was detected for DH and a minimum of 6 for BM. Phenotypic variations explained by these traits ranged from 5% (DM) to 45% (PH). The highest –log10P value 7.25 was reported for the marker AX-94407346 (3A: 74.06 cM) associated with PH having a negative allelic effect of –12.69. Detailed results on MTAs are given in Supplementary Table 5.
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FIGURE 3. Manhattan plot summarizing the significant MTAs reported for fifteen traits in four datasets. In figure, BLUP, Best Linear Unbiased Prediction; E1, the year 2016–2017; E2, the year 2017–2018; E3, the year 2018–2019; DH, days to heading; DA, days to anthesis; DM, days to maturity; PH, plant height; SF, spike fertility; CW, chaff weight; SDW, spike dry weight; SL, spike length; GNS, grain number per spike; GWS, grain weight per spike; TGW, thousand grains weight; GY, grain yield; TP, tiller per plant; HI, harvest index; BM, biomass.




Phenological Traits

A total of 98 loci were found associated with four phenological traits (DH, DA, DM, and PH) (Supplementary Table 5). For DH, 36 significant MTAs were detected on chromosomes 1A (1), 2B (4), 3A (3), 5A (6), 6A (19), 7B (2), and 7D (1). Three MTAs (AX-94712794, AX-94805904, AX-94842717) on chromosome 3A and two MTAs (AX-94724484, AX-95136668) on chromosome 6A for DH were found stable across the three environments and BLUP explaining phenotypic variation ranging from 26.2 to 33.4%. For DA, 26 significant MTAs were observed on chromosomes 1A (1), 2B (4), 3A (3), 5A (6), 6A (10), and 7B (2) accounting for 23.0–33.0%. However, two stable and consistent MTAs were found on chromosome 3A (AX-94842717, 209.17 cM) and chromosome 6A (AX-94724484, 47.56 cM) for DA (Supplementary Table 5). Out of 16 MTAs associated with DM, only 2 MTAs on chromosome 1B (AX-95161998) and 2B (AX-94853276) were observed in an environment and BLUP explaining 5–10.2% of the phenotypic variations. A total of 20 MTAs for PH on chromosomes 1A (14), 2B (1), 3A(2), 3B (2), and 6A (1) were detected. Interestingly, 14 SNPs were mapped on chromosome 1A within the map position of 74.11–74.86 cM that collectively explained 43% of phenotypic variation for PH. Another most stable region for PH was observed on chromosome 3A at an interval of 0.75 cM and was found consistent explaining phenotypic variation ranging from 36.8 to 45.4%.



Yield Contributing Traits

For TP, 21 loci were reported on chromosomes 1A (16), 2B (1), 5A (1), 7A (2), and 7B (1). Two MTAs, AX-94757176 (1A) and AX-94446620 (7A) were consistent in E2 and BLUP whereas, the rest was reported only with BLUP values (Supplementary Table 5). These SNPs accounted for 8–11% variation for TP. All the markers reported on chromosome 1A and 7A belong to the same genetic position 74.11 and 201.13 cM, respectively. For SL, 10 loci accounting for the phenotypic variation of range between 7 and 28% were found on chromosomes 1B (2), 1D (3), 3B (1), 5B (2), and 7A (2). Marker AX-94629635 (95.7 cM) on chromosome 1D was found to be most stable for SL among all due to its consistency over two environments (E2, E3) and BLUP with a negative allelic effect (–0.48).

For GWS, a total of 15 significant MTAs were identified on chromosome 1A (5), 3B (3), and 6A (2), and one each on 1B, 2B, 3D, 4B, and 5A accounting for 12–19.4% of the phenotypic variance (Supplementary Table 5). Five MTAs were detected at position 54.04 cM on chromosome 1A in an environment and BLUP. A stable locus on chromosome 3B for GWS was identified in this study and had a pleiotropic effect on GY in an environment and BLUP. Two important and stable loci for GWS, one on chromosome 5A (AX-95001743 at 12.25 cM) and another on chromosome 6A (AX-94544731 at 6.84 cM) were identified in the present investigation in an environment and BLUP. Ten significant MTAs were detected for the trait GNS on chromosomes 1B (2), 3B (4), and one each on 1A, 2A, 3D, and 5A which explained phenotypic variation of 15.5–24.9%. Marker AX-94494277 (29.49 cM) on chromosome 3D was found consistent for GNS over two environments (E1 and E2) and BLUP in contrast to other markers which were reported in an environment and BLUP. For TGW, 24 MTAs were identified on chromosomes 2A (1), 3A (4), 3B (3), 4A (1), 4B (1), 4D (1), 5A (1), 5D (8), 7A (2), and 7B (2). A stable QTL region on chromosome 5D at 4.8 cM (554.47–555.92 Mb) was associated with TGW in E1 and BLUP. These loci were accountable for 5–15% phenotypic variations for TGW in the present GWAS panel. Marker AX-94732225 (45.96 cM) on chromosome 3B showed maximum positive allelic effect (2.86) and marker AX-94823297 (45.84 cM) on chromosome 3A showed maximum negative allelic effect (–2.42). These two loci explained 7–12 and 8–14% phenotypic variations.

We identified a total of 21 MTAs associated with GY, distributed on chromosome 2B (2), 3D (5), 4B (2), 6A (8), and one each on 1B, 2A, 3A, and 5A (Supplementary Table 5). Two MTAs AX-94784245 (1B) and AX-94407346 (3A) were more significant as these were consistent across two environments and BLUP explaining the phenotypic variation of 22.23–30.51%. A QTL on chromosome 3D was detected for yield spanning an interval of 191.16–203.34 cM. The MTA, AX-94407346 on chromosome 3A was found most promising for GY while showing the highest phenotypic variation of 30.19% across two environments and BLUP. Another important MTA (AX-94761935) associated with yield was observed on chromosome 2B accounting for 30.15% phenotypic variance including BLUP. For HI, 18 MTAs were detected on chromosomes 3A (2), 3B (2), 4B (2), 6A (10), and one each on 1B, and 5B in an environment and BLUP. A stable QTL consisting of 10 MTAs was detected for HI on chromosome 6A (103.98 cM, 535.89–538.05 Mb) showing the phenotypic variance ranging from 29.1 to 40.9% in environment E3 and BLUP. AX-94407346 on chromosome 3A was observed with a maximum phenotypic effect of 41.0% in environment E2 and BLUP for HI. Six MTAs were detected for BM on chromosome 2A (1), 3D (4), and 6A (1) explaining phenotypic variation ranging from 6.0 to 9.0%. The genomic region reported on chromosome 3D covered all four markers and was consistent in two environments and BLUP whereas the other two markers from chromosome 2A and 6A were reported with BLUP only. Furthermore, the allelic effect of these markers ranged between –0.09 and 0.09.



Spike Fertility-Related Traits

A GWAS was performed for SF-related traits (SF, CW, and SDW) (Supplementary Table 5). For SF, 14 MTAs were identified on chromosomes 3A (3), 3B (3), 4A (2), 5A (1), and 5B (5) in an environment (either E2 or E3) and BLUP explaining 7.1–11.6% of phenotypic variance. For SDW, nine MTAs were detected on chromosomes 1A (2), 3A (3), and one each on 2A, 2B, 3B, and 6A in two environments along with BLUP which explained 8.0–11.0% phenotypic variation. A total of nine MTAs were identified for CW on chromosomes 3A (3), 5B (5) and one on 6B in two or more environments and BLUP explaining 4.2–9.9% phenotypic variation. Three SNPs on chromosome 3A and two SNPs on chromosome 5B were found most stable as detected across three environments and BLUP.



Pleiotropic Loci

A total of 56 pleiotropic markers were identified, common for highly correlated traits in one or more environments (Supplementary Table 6). Twenty-three loci were found associated with both DH and DA whereas, only one locus AX-94508292 (127.78 cM) on chromosome 7D was found common for DH and DM. Two common SNPs for three phenological traits (DH, DA, and DM) were reported on chromosome 5A at 11.38cM. One marker each on chromosome 1A, 1B, 3B, and 3D showed an association for GWS and GNS. A region between markers AX-94473921 (73.31 cM) and AX-94407346 (74.06 cM) on chromosome 3A was found associated with PH, GY, and HI. Two stable markers viz., AX-94544731 on chromosome 6A (6.84 cM), and AX-94475572 on chromosome 2B (102.12 cM) showed a pleiotropic effect on SDW and GWS whereas, another marker AX-94452286 (3B: 83.69 cM) was associated with SDW, GWS, and GNS. Four markers on chromosome 5B anchored at 46.94 cM (AX-94706906 and AX-95632529), 51.91 cM (AX-95131153), and 55.29 cM (AX-94439232) were associated with SF and CW. Marker, AX-94823192 (4A: 45.84 cM) was controlling SF and TGW. Two markers (AX-94823297 and AX-94526152) anchored at 209.17 cM of chromosome 3A were consistently associated with SF, SDW, CW, and TGW. Another marker AX-94842717, anchored to the same position was found associated with DH and DA including SF, CW, and TGW. Likewise, AX-94732225 (3B: 45.96 cM) was found common for SF, GNS, and TGW. One marker on chromosome 1B (AX-94784245), two markers on 4B (AX-94589857 and AX-94461604), and 7 markers anchored at 103.98 cM of chromosome 6A were associated with GY and HI. Three markers from chromosome 3D one at 194.61cM (AX-94598770) and two at 203.07cM (AX-94493158 and AX-94464974) were consistently associated with GY and BM.



Genotype-Phenotype Network

The ‘netgwas’ efficiently estimate pairwise interactions between different loci in a genome while adjusting for the effect of other loci. Network analyses due to the conditional dependence feature reduce the number of possible SNPs and provide an interaction network of key SNPs associated with studied traits. Development of the geno-pheno network (Figure 4A) with 77 key SNPs, associated with 10 traits (SF, SL, CW, SDW, TGW, GNS, GWS, GY, BM, and HI) indicated the inter- and intra- chromosomal genetic control of these traits. Inter-chromosomal connections were identified between 26 SNPs belonging to chromosomes 1A, 1B, 2A, 3A, 3B, 3D, 5A, and 6A (Supplementary Table 8) indicating the importance of these chromosomes in the phenotypic variation of the studied traits. Here, we identified 11 key SNPs (SNP 3, SNP 10, SNP 11, SNP 13, SNP 14, SNP 16, SNP 23, SNP 24, SNP 25, SNP 29, SNP 35) distributed across 5 chromosomes (1A, 2A, 3A, 3D, and 6A) interacting with multiple traits (Figure 4B). The geno-pheno network describes the complex genetics of phenotypic correlations between studied traits. Furthermore, these SNPs can be used as a minimal marker system for the simultaneous improvement of the studied traits.
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FIGURE 4. (A) Intra- and inter-chromosomal conditional interaction network among 77 significant SNP markers across bread wheat genome where each colour represents a different chromosome and (B) a genotype-phenotype network showing interaction among traits and associated SNPs where traits are highlighted in green and other colours designates different chromosomes.




Favourable Alleles

Increasing numbers of favourable alleles showed a significant effect on the increase in phenotypic values of SF, GNS, GWS, SDW, TGW, HI, and GY whereas, a decrease in CW and PH (Supplementary Figure 2). In the above-mentioned traits, the number of favourable alleles ranged between 5 (SDW) and 16 (PH). The r2 further ranged between 0.02 (CW) and 0.22 (GNS). These results indicated that the increase in GY depends on the increasing number of favourable alleles associated with GY and other correlated traits. The genotype WH1080 carried the highest 12 favourable alleles for GY. Likewise, for SF maximum of 12 favourable alleles were carried by HD3086, MACS6222, MP1201, MP3211, and VL738, each. Furthermore, genotype PBW373 contained the maximum number (63) of favourable alleles for the traits PH, GY, HI, GNS, GWS, TGW, SDW, and CW whereas, L25AMB carried the least numbers (8) of favourable alleles for traits SDW and CW. The genotype with the highest overall grain yield of 117.56 g, PBW396 carried 37 favourable alleles for the traits PH, GY, HI, GNS, GWS, TGW, and SDW. Thus, these genotypes can prove as efficient sources of favourable alleles for improving the desirable traits.



Candidate Gene Prediction and Homology Modeling

In total, 102 SNPs were physically mapped to IWGSC RefSeq v1.1 with high confidence. To identify the putative candidate genes, 1.5 kb upstream and downstream regions of the mapped SNPs were annotated using EnsemblPlant biomart. It led to the identification of 81 putative candidate genes. Among these, 69 were overlapping, and 11 were within 1.5 kb window (Supplementary Table 5). Furthermore, in silico expression analysis was carried out using a publically available RNA-seq expression database of polyploid wheat (see footnote 3). Of 81 putative candidate genes, 61 showed growth stage-specific differential expression reported in the Chinese Spring cultivar’s spikes, grains, stem, and leaf tissues (Supplementary Table 7). The range FPKM value was between 0.68 (TraesCS3B02G105100) and 301.43 (TraesCS1B02G380800). Detection of the underlying genes related to the trait provides further reliability of the identified MTAs.

Based on the literature survey and to the best of our knowledge, 22 novel SNPs were identified in the present investigation (Supplementary Table 9) that were associated with GY, GNS, GWS, SDW, SF, TGW, and CW. However, 18 of these SNPs physically mapped to IWGSC RefSeqv1.1 with high confidence; 11 SNPs overlapped by candidate genes for which no reliable GO term was found in the database. Therefore, protein modeling was carried out with the translated amino acid sequences. Excellent 3D structures of translated proteins were projected using a template searched by PSI-BLAST (Supplementary Figure 3 and Table 1). For gene TraesCS5D02G545100 no suitable template was obtained within our cutoff value of identity percentage (≥25%). Identity between query sequences and their respective templates ranged from 26.26 to 47.94% whereas, GMEQ ranged between 0.27 and 0.6. A range of 349.03–1978.18 and 0.26–1.72 Å was reported for FATCAT and root to mean square deviation (RMSD) respectively. Furthermore, values from ERRAT and Verify3D ranged from 58.93 to 95.83% and 64.18 to 95.22%, respectively (Supplementary Table 9). Ramachandran plots indicated that among the predicted 3D models 81–95% amino acids were in favoured regions.


TABLE 1. A list of predicted proteins translated by the IWGSC genes overlapping 10 novel SNPs.
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DISCUSSION


Adaptation Related Traits

Considering the diversity of agro-climatic zones in India, DH plays a major role in the wider adaptability of the wheat genotypes. Earlier findings reported that genes associated with flowering are mainly located on chromosomes 1A, 2B, 3A, 3B, 5A, 6A, 6B, 7A, 7B, and 7D (Kobayashi et al., 2016; Lozada et al., 2017; Ogbonnaya et al., 2017; Hassouni et al., 2019; Sheoran et al., 2019). In the present study, two stable clusters associated with DH, DA, and DM were identified on chromosome 3A at locus 127.08–127.87 cM and the other at 209.17 cM across all the studied environments. However, on chromosome 5A, we obtained two highly stable regions associated with phenological traits (DH, DA, and DM) one at locus 11.38 cM (586.60–588.37 Mb) that may be marked within the boundaries of gene TraesCS5A02G391400 and TraesCS5A02G392000 and the second, at an interval of 89.02–92.18 cM (533.27–546.30 Mb) which can be marked in the limits of three genes, namely TraesCS5A02G320100, TraesCS5A02G320300, and TraesCS5A02G392000. Pleiotropic SNP AX-94796479 of the first region (588.37 Mb) on chromosome 5A identified within gene TraesCS5A02G392000 at 3′ UTR encodes COBRA-like protein. This protein is involved in the cellulose deposition in mucilage secretory cells in Arabidopsis (Ben-Tov et al., 2015). The region (586.60-588.37Mb) identified in this study, overlapped with the vernalisation gene Vrn-A1 (587.4 Mb) and TaAGLG-5A gene (588.0 Mb) on chromosome 5A, the core regulators in the vernalisation pathway which regulates plant development (Yan et al., 2003; Wang et al., 2017). Another promising region on chromosome 6A in an interval of 33.79–47.56 cM was detected associated with DH and DA.

In the case of PH, significant MTAs were identified on chromosomes 1A, 2B, 3A, 3B, and 6A. The marker AX-95099974 mapped at 104.59cM on chromosome 2B is in close proximity to Rht4 (Ellis et al., 2005; Sheoran et al., 2019). On chromosome 1A, we detected a stable genomic region for PH spanning in an interval of 74.11–74.86 cM (320.22–439.07 Mb) within two genes is likely to be a new region for the trait. Another stable region for PH was identified on chromosome 3A spanning the region between 73.31 and 74.06 cM (435.80–457.79 Mb) within TraesCS3A02G233300 gene annotating ADP, ATP carrier protein (Figures 5A,B). This protein is responsible for the lower shoot weight and less tolerant to high light conditions in Arabidopsis (Yin et al., 2010). The gene, TraesCS3A02G233300 further showed the significant (p < 0.05) regulatory association (Figure 5D) with phenotypes that closely affect the PH and HI such as sensitivity to growth inhibitors, primary and lateral root development, turgor pressure, and leaf, flower, and fruit development, in Knetminer network that further validates the results (Figure 5C,E).
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FIGURE 5. (A) Local Manhattan plot and linkage disequilibrium (LD) heatmap of stable SNPs associated with grain yield (GY), harvest index (HI), plant height (PH), spike fertility (SF), chaff weight (CW), spike dry weight (SDW), and thousand-grain weight (TGW) on chromosome 3A. (B) Effect of different alleles of associated SNP markers on the phenotypic values of GY, HI, and PH. (C) Effect of different alleles of marker AX-94526152 on phenotypic values of SF, SDW, CW, and TGW. (D) Network generated for gene TraesCS3A02G233300 (AATP2). (E) Structure of two candidate genes and their in silico tissue and growth specific expression profile.




Spike Fertility and Related Traits

Hotspots for SF were identified on chromosomes 3A, 3B, 4A, 5A, and 5B harbouring genomic regions with multiple traits. A potential genomic region for SF was identified at 209.17 cM (721.66 Mb) on chromosome 3A within gene TraesCS3A02G496200 co-located with additional three traits, namely, CW, SDW, and TGW. This region aligned with the reported region (714.4–725.8 Mb) on chromosome 3A by Li et al. (2019), significantly associated with GY, kernel number per spike (KNS), kernel width (KW), SDW, PH, uppermost internode length (UIL), and flag leaf length (FLL) showing a significant effect on GY. It is also co-localised with thousand kernel weight (TKW) QTL, namely QGw.nau-3A (720.59 Mb) and QTgw-3A1 (721.22 Mb) (Jia et al., 2013; Liu et al., 2014) and AX-108992368 (721.32 Mb) for GNS (Li et al., 2019). Here, it is noteworthy that the discovery of a stable genomic region for SF with a significant pleiotropic effect on SDW, CW, and TGW might be valuable for breeding purposes. Recently, Pretini et al., 2020 also identified and validated a promising QTL (QFE.perg-3A, 51.6 cM, 685.12 Mb) associated with FEm (Fruiting efficiency at maturity) on chromosome 3A which is about 36.55 Mb apart from SNP reported in this study. Therefore, this region could be a promising breeding target for genetic improvement of sink strength. PC biplot analysis also supported these findings which showed clustering of SF with SDW, CW, and TGW. We detected a co-localised locus AX-94732225 (45.96 cM, 29.61 Mb) on chromosome 3B for SF, GNS, and TGW within gene TraesCS3B02G056100 near the same position as a FEh haplotype/SNP reported by Basile et al. (2019).

Furthermore, a stable genomic region for SF was observed on chromosome 4A (45.84 cM, 29.07 Mb) within gene TraesCS4A02G036600. On chromosome 4A, we identified an MTA AX-94582600 at locus 66.89 cM (41.91 Mb) that was not considered significant as it was detected in only one environment. It was found within the gene TraesCS4A02G050800 encoding Gibberellin_3-beta-dioxygenase_4 plays a pivotal role in controlling growth and development especially known for its importance in spikelet fertility of crops (Kwon and Paek, 2016; Alqudah et al., 2020). Another MTA (AX-94950716) at locus 210.24 cM (726.44 Mb) was detected in environment E2 and BLUP within gene TraesCS4A02G462300 which was located near the reported position by Pradhan et al. (2019) annotating Haloacid dehalogenase-like hydrolase domain-containing protein Sgpp which enhanced phosphatase activity and biomass in rice (Pandey et al., 2017). It is noteworthy, that these genes were also strongly expressed in the grain (Grain_Z71, FPKM-49.49) and spike (Spike_Z39, FPKM-13.61) revealing the importance of these regions which could further be dissected to prove their role in trait improvement. Comparing with the previously reported region for SF on chromosomes 1A, 2A, 3B, 4A, 5A, 6A, 6B, 7A, and 7D (Basile et al., 2019; Pradhan et al., 2019; Pretini et al., 2020), we discovered five MTAs for SF co-located with CW on chromosome 5B which might be considered as a novel region indicating the significance of assimilate distribution in CW in the improvement of SF.



Yield and Component Traits

In the present study, a significant genomic region associated with GY, SL, and HI has been identified on chromosome 1B at loci 8.24 cM, which is in proximity to yield QTL (QYld.aww-1B.1) from RAC875/Kukri and QTL for yield components and relative leaf expansion rate from Drysdale/Gladius8. This validates the stability of the genomic region for use as potential QTLs for marker-assisted selection aiming high yielding wheat lines. In previous studies, chromosome 3A is known to be a hotspot that contains valuable QTLs for GY and yield-related traits in wheat9 (Mengistu et al., 2012; Rustgi et al., 2013). Many cloned yield and component-related genes viz., TaTAR2.1-3A, TaGS5-A1/3A, TaTGW6-A1 are mapped on chromosome 3A (Wang et al., 2015; Hanif et al., 2016; Ma et al., 2016; Shao et al., 2017). The present study also reports important clusters on chromosome 3A, most stable on position 457.79 Mb (SNP AX-94407346, 74.06 cM) for GY observed in two environments and BLUP. However, this region is 75.64 Mb away from the gene Ta-TGW6-A1 associated with TGW (Hanif et al., 2016). This SNP also had a pleiotropic effect with PH and HI, thus could be considered as a potential genomic region for future functional validation studies. Recently, Martinez et al. (2021) also reported that PH, DH, and GY are interrelated traits in wheat. Another potential genomic region identified in this study for GY was on chromosome 5A at locus AX-94472479 located at 417.88 Mb (72.2 cM). This is within the intron variant of the gene TraesCS5A02G207000 which falls within the confidence interval of Q.Gnu.uwa-5A-1 detected in the Synthetic W7984 x Opata M85 population by Onyemaobi et al. (2018). This gene encodes for the Transcription Initiation factor TFIID subunit 2. This protein along with POW1 (put on weight 1) is involved in the functioning of grain size regulation by repressing the transcription activity of the interacting protein TAF2, a highly conserved member of the transcription initiation complex TFIID in rice (Zhang et al., 2019). Two potential genomic regions were identified in this study on chromosome 3D, one at 29.49 cM governing GWS and GNS and the other at locus 203.07 cM (611.14–611.16 Mb) associated with GY and BM within two genes TraesCS3D02G538400 and TraesCS3D02G538500 respectively are likely to be new. Moreover, TraesCS3D02G538400 showed high expression in spike (FPKM-9.9 at Zadok stage 39) and both the genes encode a protein pectin acetylesterase (PAE) which has an important role in plant tissue development (reduce inflorescence, stem height) in Arabidopsis (de Souza et al., 2014). Thus, it can be hypothesised that in the present study these two PAE genes (TraesCS3D02G538500 and TraesCS3D02G538400) might have affected GY by affecting SF, GNS, and TGW.

On the genetic map, a genomic region at 103.98 cM (536.25–538.05 Mb) on chromosome 6A associated with GY and HI appeared to be another important region in the current study (Supplementary Table 6 and Figures 6A–D). This region harboured three candidate genes viz., the first gene TraesCS6A02G303000 encodes a membrane-anchored ubiquitin-fold protein, second candidate gene, TraesCS6A02G303100, located at 536.25 Mb encodes a protein tRNA [(carboxymethyl uridine(34)-5-O)-methyltransferase] which plays a role in stress-response and a third candidate gene TraesCS6A02G302500 associated with GY and HI annotates a protein Peptidylprolyl cis-trans isomerase (PPIases). PPIase is reported essential for stabilisation of photosystem II and their upegulation leads to a higher photosynthesis rate in wheat (Wang et al., 2014). In an earlier report, Lee et al. (2014) identified a QTL QTKW-6A.1 in the same region for TGW indicating that this should be the potential novel locus for determining GY and its component. Furthermore, the Knetminer network (Figure 6C) revealed that homologues of these genes in Arabidopsis have a regulatory association with the similar traits for which these genes have been found associated in this study. For instance, the gene Traes6A02G305400 that overlapped the SNP AX-94663736 associated with GY and HI showed a regulatory association with traits seed length and seed weight, at p < 0.05, which are the key factors for deciding GY and HI in any cereal crop.


[image: image]

FIGURE 6. (A) Local Manhattan plot and linkage disequilibrium (LD) heatmap of stable SNPs associated with grain yield (GY) and harvest index (HI) on chromosome 6A. (B) Effect of different alleles of associated SNP markers on the phenotypic values of GY and HI. (C) Network generated for three candidate genes. (D) Structure of three candidate genes and their in silico tissue and growth specific expression profile.


Spike length plays a significant role in improving wheat yield (Guo et al., 2017). Earlier studies have reported stable QTLs/MTAs for SL on chromosomes 1A, 1B, 3A, 3B, 4A, 4B, 4D, 5A, 5B, 6A, 6B, 6D, and 7A (Liu et al., 2018; Hu et al., 2020; Pretini et al., 2020). The three stable MTAs associated with SL, one on chromosome 1D at locus 95.7 cM within TraesCS1D02G147600 and the other two at locus 209.9cM (634.27 Mb) on chromosome 5B have not been reported earlier and are potentially novel MTAs responsible for SL (Supplementary Table 5).

For TGW, we observed a stable MTA AX-94747224 (13.4, 613.47 Mb) on chromosome 5A within gene TraesCS5A02G428800 located 32.2 Mb away from the reported gene TaNAC2-5A associated with yield (He et al., 2015) and 8.06 Mb distal from QTKW.ndsu.5A.2 for TGW (Kumar et al., 2016) indicating this region is highly significant for TGW and has the potential for improving GY. We detected a stable genomic region for TGW on chromosome 5D harbouring seven MTAs spanning an interval of 554.47–555.92 Mb. This region is very near to the candidate gene TaCWI-5D (557.9 Mb) for TGW (Jiang et al., 2015). Notably, the MTA AX-94389673 within gene TraesCS7A02G512300 on chromosome 7A (163.4 cM, 699.74 Mb) associated with TGW lies in close vicinity to the gene TaAPO-A1 (673.1–868.2 Mb) and overlapped with the QTL QTKW-7AL-AN for TGW reported by Quarrie et al. (2005) and Muqaddasi et al. (2019), respectively, which reveals the importance of this genomic region in wheat improvement. Similarly, in the present study, significant MTA for TGW on chromosome 7B was detected at locus 643.29 Mb (96.68 cM) within the gene TraesCS7B02G378700 which is only 4.0 Mb proximal to QTL qSn-7B.2 for spike number (Fan et al., 2019) and 42.2 Mb distal to QTL QTKW.caas-7BL for TGW (Gao et al., 2015).

For GNS, 10 significant MTAs distributed on chromosomes 1A, 1B, 2A, 3B, 3D, and 5A were found consistent in two environments and BLUP. A genomic region identified on chromosome 1B at 555.29 Mb (35.34 cM) was almost at the same position as QTL QKNS.caas-1BL.2 reported by Li et al. (2018). A GNS QTL (KNS-gwm312) mapped on chromosome 2A reported by Wang et al. (2012) is near to the position of MTA AX-94463225 within the synonymous variant of gene TraesCS2A02G563400. This locus is close to the gene TaFlo2-A1 (23.73 Mb) (Sajjad et al., 2017) associated with TGW showing the causal effect of the gene. It is also noticeable that an important genomic region at 83.69 cM (70.27–71.14 Mb) within gene TraesCS3B02G104700 co-localised for SDW, GNS, and GWS on chromosome 3B is likely to be novel. Literature survey suggests that another consistent loci identified in the study for GNS and GWS on chromosome 3D at 29.49 cM across environments and BLUP have no previous reference. Therefore, these two regions on chromosomes 3B and 3D represent two novel loci governing GNS and GWS in wheat.

Little information is available in various databases on the functionality of candidate genes associated with novel SNPs identified in the present GWAS. Therefore, homology modeling was opted to identify proteins translated by these candidate genes and their role in the expression of associated traits. For this purpose, we searched for a homologous template across the NCBI database and selected the top three hits for modeling purposes. Templates that showed high similarity with our protein sequences belonged to A. thaliana, Homo sapiens, Chaetomium thermophilum (a thermophilic filamentous fungus), Stenotrophomonas maltophilia (an aerobic, non-fermentable, Gram-negative bacterium), and Staphylococcus aureus (a Gram-positive, round-shaped bacterium). Values of FATCAT and RMSD indicated significant similarity between query sequences and corresponding PDB templates at p < 0.05. The accuracy of predicted models was evaluated on the basis of ERRAT, Verify3D, and Ramachandran plot. In all the predicted structures we reported that >80% of amino acids were in favoured regions of the Ramachandran plot which is an acceptable range for an accurate model (Gautam et al., 2019). However, for gene TraesCS5D02G545100 values of ERRAT and 3D were not in the acceptable range hence the structure of this gene was not considered accurate. Thus, we rebuilt accurate models for the rest ten IWGSC high confidence genes and submitted them to the protein model database (PMDB). Three genes TraesCS5D02G548200, TraesCS5D02G548300 and TraesCS5D02G547200 were translated into Recognition of Peronospora parasitica 13 (RPP-13)- like gene. This protein has been found to be crucial for host-pathogen interaction in various plant diseases and subjects to defence mechanisms mainly in the case of downy mildew (Bittner-Eddy et al., 2000). Bouchabke-Coussa et al. (2008) demonstrated the association between ESKIMO-1 protein and improved water use efficiency (WUE) speculating that GY can be improved through allele selection or manipulation of the ESKIMO-1 gene. In our study, SNP AX-94452286 producing a significant association with three traits GWS, GNS, and SDW was reported in a gene (TraesCS3B02G104700) encoding ESKIMO-1 protein. All of these traits are highly correlated with WUE (Shang et al., 2020). Trait TGW was found to be associated with SNP AX-94747224 of gene TraesCS5A02G428800 encoding Coat protein complex II (COPII) of type Sec23a/24a complexed with SNARE. COPII proteins are crucial in maintaining the integrity of the Golgi complex and endoplasmic reticulum, and vacuolar transportation of storage proteins. Storage proteins play an important role in the development of grain and its final weight. Mutation in the COPII type gene has been found responsible for reduced TGW in rice due to defects in vacuolar protein (Wang et al., 2016). An SNP AX-94389673 affecting the TGW in our study was found in a gene TraesCS7A02G512300. This gene translates into Indole-3-glycerol phosphate synthase (IGPS) which is a key enzyme in the pathway of indole acetic acid (IAA) biosynthesis (Ouyang et al., 2000) and plays an important role in determining grain weight by affecting grain size (Nadolska-Orczyk et al., 2017). Two genes (TraesCS3D02G538500 and TraesCS3D02G538400) encoding Notum protein are found to be associated with GY. Instead, it is well-known that notum deacylates Wnts to suppress signalling activities (Kakugawa et al., 2015). Wnt is a family of highly conserved signalling proteins regulating various developmental processes. The existence of Wnt protein-mediated signalling in plants is still less explored. These two genes further showed more than 65% similarity with Pectinacetylesterase/NOTUM (PAE/NOTUM: IPR004963) genes of A. thaliana (AT3G09405 and AT4G19420) and Oryza sativa indica (BGIOSGA000013 and BGIOSGA003380) in EnsmblePlant PBLAST search. PAE catalyses the deacetylation of pectin which is a key component of the primary cell wall in plants. Previously, Gou et al. (2012) demonstrated reduced cell elongation, pollen formation, and increased sterility due to overexpression of the PAE gene in tobacco. Thus, it can be hypothesised that in the present study these two PAE genes (TraesCS3D02G538500 and TraesCS3D02G538400) might have affected GY by means of affecting SF, GNS, and TGW.

Thus, we identified 22 novel loci in the present GWAS that produce 32 MTAs, 11 of which overlapped by high-confidence IWGSC genes (Supplementary Table 9). Furthermore, with the help of a stringent modelling framework of ‘netgwas,’ which provides a discrete and complex graphical network, we studied the complex interaction between the: (1) significant SNPs, (2) phenotypes, and (3) SNPs and phenotype. As a result, the ‘netgwas’ empowered us to narrow down the number of significant markers to the eleven most promising SNPs (Supplementary Table 8) for the simultaneous improvement of SF, GY, and closely related traits. Previously, Alqudah et al. (2020) also adopted a similar strategy to identify the most promising SNPs for the simultaneous improvement in SF and associated traits. However, the information available on various databases was insufficient to confirm the functionality of these genes. In this situation, the homology modeling of these genes proved to be a potential tool not only for validation of the function of these genes but also for identifying their importance in future wheat improvement programs.




CONCLUSION

Spike fertility and GY are closely associated therefore, improving spikelet fertility can be a possible way of improving the yield potential of a genotype. Although these traits are normally sensitive to the environment and show high GxE interaction, their considerable heritability across the environments in this study indicates possibilities of their exploitation toward improving grain yield. Based on the GWAS result, 255 MTAs identified for 15 traits were further narrowed down to 11 key MTAs using the geno-pheno network. In total, 22 novel MTAs were detected that have been validated with gene expression analysis and homology modelling. MTAs found in the study with the corresponding favourable allele shall be converted into breeder friendly marker system such as KASP (Kompetitive Allele-Specific PCR). A panel of the selected KASP markers shall be utilised to screen the crossing block genotypes. This will not only help in prioritizing the identified genotypes in the crossing program but also for early generation screening of the segregating lines. These loci will add on precision in future breeding programs through marker-assisted selection. Additionally, functional annotation of the genomic region within the 1.5 Kb window of each identified SNP allows us to recognize candidate genes. Upstream analysis of these genes will help to improve the understanding of key regulatory networks and the underlying mechanism of the studied traits.
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Molybdenum (Mo) is an essential micronutrient for almost all organisms. Wheat, a major staple crop worldwide, is one of the main dietary sources of Mo. However, the genetic basis for the variation of Mo content in wheat grains remains largely unknown. Here, a genome-wide association study (GWAS) was performed on the Mo concentration in the grains of 207 wheat accessions to dissect the genetic basis of Mo accumulation in wheat grains. As a result, 77 SNPs were found to be significantly associated with Mo concentration in wheat grains, among which 52 were detected in at least two sets of data and distributed on chromosome 2A, 7B, and 7D. Moreover, 48 out of the 52 common SNPs were distributed in the 726,761,412–728,132,521 bp genomic region of chromosome 2A. Three putative candidate genes, including molybdate transporter 1;2 (TraesCS2A02G496200), molybdate transporter 1;1 (TraesCS2A02G496700), and molybdopterin biosynthesis protein CNX1 (TraesCS2A02G497200), were identified in this region. These findings provide new insights into the genetic basis for Mo accumulation in wheat grains and important information for further functional characterization and breeding to improve wheat grain quality.

Keywords: common wheat, molybdenum, GWAS, SNP, candidate genes


INTRODUCTION

As a critical component of enzymes that catalyze key reactions in nitrogen, carbon, and sulfur metabolism, molybdenum (Mo) is an essential micronutrient required for the growth and development of plants and animals (Arnon and Stout, 1939; Turnlund, 2002; Mendel and Bittner, 2006). Higher plants and animals absorb or take in Mo as oxyanion molybdate, which becomes biologically active by binding to pterin to form Mo cofactor (Moco; Mendel and Bittner, 2006; Mendel, 2013). Thereafter, Moco participates in the synthesis of molybdate-dependent enzymes (Molybdoenzymes), including nitrate reductase, sulfite oxidase, xanthine oxidoreductase/dehydrogenase, aldehyde oxidase, and mitochondrial amidoxime reducing component (Hille et al., 2011; Bittner, 2014). To date, a number of molybdate transporters have been identified in plants, including AtMOT1;1 and AtMOT1;2 in Arabidopsis thaliana (Tomatsu et al., 2007; Baxter et al., 2008; Gasber et al., 2011), OsMOT1;1 and OsMOT1;2 in Oryza sativa (Yang et al., 2018; Huang et al., 2019; Ishikawa et al., 2021), FaMOT1 in strawberry (Liu et al., 2020b), LjMOT1 in Lotus japonicus (Gao et al., 2016; Duan et al., 2017), and MtMOT1.2 and MtMOT1.3 in Medicago truncatula (Tejada-Jimenez et al., 2017; Gil-Diez et al., 2019).

Mo deficiency frequently occurs in plants when grown in acidic soils with low Mo bioavailability. Mo-deficient plants generally show overall impaired plant growth and decrease in productivity (Kaiser et al., 2005). Moreover, Mo content in seeds may positively affect seedling vigor in acidic soils (Modi and Cairns, 1994; Modi, 2002; Norton et al., 2014). In humans, Moco deficiency (MoCD) will lead to metabolic defects in molybdoenzymes, giving rise to the accumulation of sulfite, taurine, S-sulfocysteine, and thiosulfate. MoCD is a rare genetic disease, which causes neurological disorders and ultimately early death (Johnson and Duran, 2001; Atwal and Scaglia, 2016). In addition, a molybdenum compound, tetrathiomolybdate, has been clinically used to treat the Wilson’s disease, a genetic disorder of copper metabolism (Brewer et al., 2009).

Wheat (Triticum aestivum L.) is a major staple food crop worldwide, providing ~25% of calories and nutrients in human diet (Zhou et al., 2021b). Food products of wheat grains are one of the primary sources of dietary Mo for adults (Novotny, 2011; Novotny and Peterson, 2018). However, Mo deficiency is a widespread problem of micronutrient deficiency in agriculture. In Australia, Mo deficiency generally occurs in large areas of cropland with acidic soils and has been identified as the second most common micronutrient deficiency after Zinc (Holloway et al., 2008). In China, more than 44.6 million ha of arable land is Mo-deficient (Zou et al., 2008; Nie et al., 2014). Wheat plants grown in these Mo-deficient soils exhibit severe Mo deficiency symptoms such as pale green leaves, chlorosis of seedlings, and lower yields (Yu et al., 2010). Therefore, dissecting the genetic basis and the molecular mechanism for Mo accumulation in wheat grains will greatly help to improve wheat yield and quality.

In previous studies, to understand the genetic mechanism for Mo accumulation in plants, a number of loci and genes related to Mo accumulation have been identified in several species using the genome-wide association study (GWAS) strategy. For example, molybdate transporter 1 (MOT1), which controls the natural variation of Mo concentration in A. thaliana leaves, was identified by GWA mapping (Shen et al., 2012; Forsberg et al., 2015). In rice, Norton et al. (2014) found a significant locus for Mo accumulation in grains on chromosome 8, which contains the MOT1 orthologue. Yang et al. (2018) analyzed the Mo concentration in rice grains by GWAS and demonstrated that variations of Mo concentration in rice grains can be attributed to variable expression of OsMOT1;1. Furthermore, Cobb et al. (2021) also found strong genetic signals for Mo concentration in the shoot in the genomic region of the OsMOT1;1 gene on rice chromosome 8 by GWAS analysis. In wheat, GWAS has been employed to analyze the concentrations of several minerals in the grains, such as zinc (Alomari et al., 2018; Velu et al., 2018; Cu et al., 2020; Zhou et al., 2020), iron (Alomari et al., 2019; Cu et al., 2020), and calcium (Alomari et al., 2017). However, no GWAS has been carried out on grain Mo concentration (GMoC) in wheat to our knowledge.

In this study, by using a panel of 207 wheat accessions, we aimed to: (i) explore the genetic variation of GMoC in wheat; (ii) identify the genomic regions associated with wheat GMoC using the GWAS approach; and (iii) identify the candidate genes for the variations of wheat GMoC. The results of the present study may facilitate the development of wheat varieties with improved nutritional quality.



MATERIALS AND METHODS


Plant Materials and Growth Conditions

A total of 207 common wheat accessions were used in this study, including both elite cultivars and landraces mainly from China and seven other nations (Supplementary Table 1). These accessions were grown in Yuanyang (35°5′N, 113°97′E), Henan province, a main wheat growing area of China during the 2018–2019 and 2019–2020 cropping seasons in a randomized complete block design. Each genotype was planted in two rows of 2 m length with a 0.3 m row spacing. Field management was conducted based on standard agronomic practices.



Determination of Grain Mo Concentration

At maturity, wheat grains were harvested, dried at 55°C for 24 h, and milled to fine powders. Then, the milled samples were dried at 55°C for another 24 h. After that, 200 mg of dried powder for each sample was digested in 8.0 ml HNO3 in a microwave reactor with a gradient of temperature from 120°C to 180°C for 30 min. After dilution in deionized distilled water, the Mo concentration was measured by inductively coupled plasma mass spectrometry (ICP-MS, NexION 1,000, Perkin Elmer, United States).



Statistical Analysis

The best linear unbiased predictor (BLUP) of Mo concentration for each accession across the 2 years was calculated using the R package lme4 (Bates et al., 2015). The broad-sense heritability (H2) was calculated using the equation [image: image], where σ2g is the variance of genotype, σ2e is the variance of environment, and e is the number of years (e = 2 in this study). Pearson’s correlation coefficient (r) for the grain Mo trait across the 2 years was calculated in R version 4.1.1.



SNP Genotyping and GWAS

All wheat accessions were genotyped using the Wheat 660 K SNP array. To avoid spurious SNPs, the SNPs with minor allele frequency (MAF) < 0.05 and missing data >10% were removed. After filtering, a total of 224,706 SNPs were used for GWAS. The population structure and kinship matrix of the association panel were calculated as described in a previous study (Liu et al., 2020a).

GWAS for grain Mo concentration was performed by a mixed-model approach with the FaST-LMM (factored spectrally transformed linear mixed models) program (Lippert et al., 2011). The effective number of SNPs (n = 37,350 in this study) was calculated with the GEC software (Li et al., 2012). Accordingly, the Bonferroni value of p threshold of 2.68E-05 (p = 1/n; n is the effective number of SNPs) was used to determine significant SNPs. R package CMplot1 was used to visualize the Manhattan and quantile-quantile (QQ) plots.



Candidate Gene Identification

To explore the candidate genes responsible for GMoC, genes in the genomic region of 500 Kb upstream and downstream of each significant SNP consistently identified in two or more sets of data were screened based on published slow LD decay in common wheat (Sun et al., 2017; Zhou et al., 2021a). The potential candidate genes were selected based on their annotation information of IWGSC RefSeq v1.1 and functions of homologous genes in Arabidopsis and Oryza sativa. The phylogenetic tree was constructed by using the Neighbour-Joining (NJ) method in MEGA 11 with a bootstrap of 1,000 replicates (Tamura et al., 2021).



Gene Expression Level Analysis

As described in a previous study (Liu et al., 2020a), the grains at 20 days after pollination of each wheat accession were collected for RNA-sequencing. The expression levels (FPKM) of the potential candidate genes were extracted for gene expression level analysis. Moreover, the expression levels of these candidate genes in different tissues were downloaded from the Wheat Expression Brower,2 which was powered by expVIP platform (Borrill et al., 2016; Ramirez-Gonzalez et al., 2018). Heatmap of the expression levels of the candidate genes was visualized by R package pheatmap.




RESULTS


Phenotype Variation of Grain Mo Concentration in Wheat

Two hundred and seven wheat accessions, including elite cultivars and landraces from eight nations representing abundant genetic diversity, were grown at Yuanyang, China in the year of 2019 and 2020 to evaluate the Mo concentration in mature grains (Supplementary Table 1). As a result, continuous and extensive variations in grain Mo concentration were observed among different accessions in the 2 years. As shown in Figure 1A, the GMoC in wheat ranged from 496.00 to 1941.58 ng/g, with an average of 1072.67 ng/g and a coefficient of variation (CV) of 24.05% in 2020 (Table 1 and Figure 1A). In the year of 2019, the GMoC ranged from 293.36 to 1324.41 ng/g, with an average of 729.66 ng/g and a CV of 24.67% (Table 1 and Figure 1A). In addition, the BLUP analysis revealed that the average GMoC was 901.16 ng/g and ranged from 528.13 to 1329.19 ng/g across the 2 years. GMoC in 2 years and the BLUP value all showed continuous variations and approximately normal distributions (Figure 1B; Supplementary Figure 1). In addition, the broad-sense heritability (H2) of GMoC across the 2 years was 0.497, and the Pearson’s correlation coefficient was 0.62 (p < 0.001; Figure 1C).

[image: Figure 1]

FIGURE 1. Grain Mo concentration of 207 wheat accessions in 2019 and 2020, and BLUP values. (A) Boxplots of grain Mo concentrations for two single years and BLUP values. (B) Phenotype distribution of grain Mo concentration (ng/g) in the single season (2019 and 2020) and BLUP value. (C) Pearson’s correlation between the two years.




TABLE 1. Summary of grain Mo concentration in 207 wheat accessions.
[image: Table1]



Genome-Wide Association Study of GMoC

The GMoC data of 207 wheat accessions in 2019 (E1), 2020 (E2), and their BLUP values (B) were employed for GWAS with the 224,706 SNPs using the FaST-LMM program. The Bonferroni value of p threshold of 2.68E-05 (−log10 (p) = 4.57) was used to determine significant SNPs. A total of 45, 51 and 71 SNPs were determined to be significantly associated with GMoC in E1, E2, and BLUP, respectively (Figure 2; Supplementary Table 2). Interestingly, 39, 47, and 66 SNPs associated with GMoC in three analyses (E1, E2, and BLUP) were located in the region of 726,761,412–728,409,806 bp on chromosome 2A, which could explain 7.23–15.94% of the phenotypic variation (PVE). The remaining significantly associated SNPs were located on chromosome 7A, 7B, and 7D, explaining 4.46–13.88% of the phenotypic variation. In BLUP dataset, AX-108792390, AX-111609105, and AX-109440948 were the most significant SNPs on chromosome 2A, 7B, and 7D, respectively. The GMoC was significantly different among wheat accessions carrying different homozygous genotypes of these SNPs (Figure 3; Supplementary Table 3).

[image: Figure 2]

FIGURE 2. Manhattan plots and QQ plots based on GWAS of GMoC by FaST-LMM model. (A) 2019, (B) 2020, and (C) BLUP values.


[image: Figure 3]

FIGURE 3. Phenotypic differences in grain Mo concentration of wheat accessions carrying different genotypes of three most significant SNPs on chromosome 2A, 7B, and 7D, respectively. (A) AX-108792390 at the position of Chr2A: 727,180,360 bp. (B) AX-111609105 at the position of Chr 7B: 611,944,380 bp. (C) AX-109440948 at the position of Chr 7D: 611,243,842 bp.


The significant SNPs detected in at least two analyses were defined as common SNPs and used for further exploration of candidate genes. Finally, 52 common SNPs were screened, which were distributed on the chromosome of 2A (48 SNPs), 7B (two SNPs), and 7D (two SNPs) with PVE of 5.76–15.94% (Table 2). The significant SNPs detected in the three sets of data were all located on chromosome 2A. The two common SNPs (AX-111609105 and AX-111031595) on chromosome 7B were detected in E2 and B, while the two common SNPs (AX-109440948 and AX-94482751) on chromosome 7D were identified in E1 and B. The GMoC was significantly different among wheat accessions carrying different genotypes at the 52 SNPs (Figure 3; Supplementary Figure 2).



TABLE 2. Summary of common SNPs significantly associated with GMoC by GWAS.
[image: Table2]



Prediction of Candidate Genes for Grain Mo Concentration in Wheat

The genomic regions of 500 kb upstream and downstream of the 52 common significant SNPs were defined as candidate regions and used to explore the candidate genes for GMoC. Genes in three candidate regions on chromosomes 2A, 7B, and 7D were screened, which were located in the intervals of 726.26–728.63 Mb (2A), 611.44–612.46 Mb (7B), and 610.74–612.09 Mb (7D). The potential candidate genes were selected based on their annotation information and functions of the homologous genes in Arabidopsis and Oryza sativa. Finally, three potential candidate genes associated with GMoC were screened out, which were all distributed in the candidate region of chromosome 2A, including TraesCS2A02G496200, TraesCS2A02G496700, and TraesCS2A02G497200 at the position of 727,244,098–727,245,793 bp, 727,914,334–727,918,774 bp, and 728,067,465–728,072,317 bp, respectively (Table 3).



TABLE 3. Potential candidate genes underlying GMoC trait in wheat.
[image: Table3]

The gene TraesCS2A02G496200 encodes a molybdate transporter 1;2 protein associated with GMoC and was only 132 bp from the significant SNP marker AX-109360792 (Chr 2A: 727,245,925 bp). The gene TraesCS2A02G496700 is annotated as a molybdate transporter 1;1 associated with the GMoC and was close (37.1 kb) to the SNP marker AX-109290174 (Chr 2A: 727,955,888 bp). The SNP marker AX-111628949 (Chr 2A: 728,070,767 bp) on chromosome 2A was located in the intron of the TraesCS2A02G497200 gene encoding a molybdopterin biosynthesis protein CNX1, and the SNP marker AX-111044883 (Chr 2A: 728,072,564 bp) was close (247 bp) to the 5′-untranslated region.

We then analyzed the expression levels of these candidate genes in grains at 20 days after pollination in 207 wheat accessions. Surprisingly, TraesCS2A02G496700 showed extremely low expression in grains (Supplementary Figure 3) and exhibited no significant difference in expression among wheat accessions carrying different genotypes of the SNP AX-109290174 (Figure 4B; Supplementary Table 4). In contrast, both TraesCS2A02G496200 (AX-109360792) and TraesCS2A02G497200 (AX-111628949 and AX-111044883) showed significant differences in expression among different genotypes of the closely associated SNPs (Figure 4; Supplementary Table 4). GMoC tended to be consistent with TraesCS2A02G496200 expression at the AX-109360792 site and inverse to TraesCS2A02G497200 expression at the AX-111628949 and AX-111044883 site (Figure 4; Supplementary Figure 2).

[image: Figure 4]

FIGURE 4. The average expression levels of three candidate genes of wheat accessions with different genotypes of its closely associated SNPs. (A): The expression level of TraesCS2A02G496200 between accessions with different genotypes at SNP AX-109360792; (B): The expression level of TraesCS2A02G496700 between accessions with different genotypes at SNP AX-109290174; and (C,D): The expression level of TraesCS2A02G497200 between accessions with different genotypes at SNPs AX-111628949 and AX-111044883.





DISCUSSION

As an essential element, Mo is indispensable for nearly all living organisms (Mendel and Bittner, 2006). Several genes have been identified to be responsible for natural variations of Mo level in plants (Huang and Salt, 2016; Yang et al., 2018; Huang et al., 2019; Whitt et al., 2020). However, the genetic basis for natural variation of Mo level in wheat is still poorly understood. Thus, we carried out a GWAS analysis on the Mo concentration in grains among 207 wheat accessions grown in two consecutive years to dissect the genetic basis for Mo accumulation in wheat grains.


Wide Variations of Mo Concentration in Wheat Grains

When grown in acidic soils, wheat tends to have low grain yield, quality, and Mo content due to Mo efficiency (Yu et al., 1999; Chatterjee and Nautiyal, 2001; Modi, 2002; Kaiser et al., 2005). Compared with the application of Mo fertilizer, the application of wheat seeds with high Mo concentrations is more economical and environment-friendly to solve the problem of Mo deficiency in acidic soils (Brennan and Bolland, 2007). Therefore, breeding of wheat cultivars with high GMoC may be an effective approach to overcome the Mo deficiency for wheat in acidic soils. Our results showed that GMoC had great variations among the 207 wheat accessions, ranging from 293.36 to 1324.41 ng/g in 2019 and from 496.00 to 1941.58 ng/g in 2020 (Table 1). There was a moderate heritability (H2 = 0.497) between the 2 years, suggesting that GMoC is affected by both genetic and environmental factors. This seems to be consistent with previous findings in Arabidopsis (Baxter et al., 2008). Norton et al. (2014) and Yang et al. (2018) reported an even higher heritability of Mo accumulation in rice grains. Our results revealed that the GMoC between 2019 and 2020 was significantly positively correlated with each other (r = 0.621; p < 0.001), indicating that GMoC is relatively stable across different years and genetic factors are important determinants. Therefore, the wheat varieties with stably high GMoC like Taishan 5, Xinmai 18, and Bainong 160 have the potential to be utilized in future wheat breeding programs.



Identification of Potential Candidate Genes for Grain Mo Concentration in Wheat

The bi-parental QTL mapping in a previous study identified one QTL (Qgmo.tamu.3B.540) associated with GMoC on chromosome 3B (Yu et al., 2021). However, no GMoC-related genes have been identified by GWAS in common wheat so far. In the present study, we identified 52 common SNPs significantly associated with GMoC through GWAS, which are distributed on chromosome 2A, 7B, and 7D. Interestingly, 48 out of the 52 common SNPs were located on chromosome 2A and distributed in the region of 726,761,412–728,132,521 bp. Based on gene functional annotations, TraesCS2A02G496200, TraesCS2A02G496700, and TraesCS2A02G497200 on chromosome 2A were identified as potential candidate genes.

TraesCS2A02G496700 and TraesCS2A02G496200, which are annotated as molybdate transport 1;1 and molybdate transport 1;2, respectively, are two specific molybdate transporters and belong to the Molybdate Transporter 1 (MOT1) family. In eukaryotes, the MOT1 family mediates high-affinity and specific molybdate transport (Tejada-Jimenez et al., 2013). The orthologous genes of MOT1 have been identified in different species, such as Chlamydomonas reinhardtii (Tejada-Jimenez et al., 2007), A. thaliana (Tomatsu et al., 2007; Baxter et al., 2008; Gasber et al., 2011), rice (Norton et al., 2014; Yang et al., 2018; Huang et al., 2019; Wang et al., 2020; Ishikawa et al., 2021), maize (Asaro et al., 2016), strawberry (Liu et al., 2020b), Lotus japonicus (Gao et al., 2016; Duan et al., 2017), and Medicago truncatula (Tejada-Jimenez et al., 2017; Gil-Diez et al., 2019). The phylogenetic tree showed that TraesCS2A02G496700 is the homolog of LOC_Os08g01120 (OsMOT1;1) in rice, while TraesCS2A02G496200 is the homolog of LOC_Os01g45830 (OsMOT1;2) in rice and AT1G80310 (AtMOT1;2) in Arabidopsis (Supplementary Figure 4). MOT1 is responsible for molybdate uptake, translocation, and accumulation (Tomatsu et al., 2007; Baxter et al., 2008; Gasber et al., 2011; Tejada-Jimenez et al., 2013). Yang et al. (2018) attributed the variations of Mo accumulation in rice grains to changes in the expression level of OsMOT1;1. However, TraesCS2A02G496700 showed quite low expression in wheat grains (Supplementary Figure 3), which could be verified by the public transcript data from expVIP platform (Supplementary Figure 5). The public data demonstrate that TraesCS2A02G496700 is highly expressed in roots. Huang et al. (2019) revealed that the expression level of OsMOT1;1 in roots affects the Mo concentration in rice grains. Therefore, TraesCS2A02G496700 is considered as a candidate gene in this study.

In A. thaliana, AtMOT1;2 (formerly named AtMOT2) is a vacuolar molybdate transporter and involved in inter-organ Mo translocation as well as Mo accumulation in seeds (Gasber et al., 2011). Ishikawa et al. (2021) identified OsMOT1;2 as a vacuolar molybdate export protein that plays an important role in inter-organ Mo distribution in rice. The deletion of OsMOT1;2 decreased the grain Mo concentration in the rice mutant osmot1;2. In our study, TraesCS2A02G496200 is considered as the ortholog of MOT1;2 in wheat (Table 3; Supplementary Figure 4). At the AX-109360792 locus (Chr 2A: 727,245,925 bp; close to the upstream of TraesCS2A02G496200), the accessions with the AA genotype had both significantly higher GMoC and TraesCS2A02G496200 expression than those with the GG genotype (Figure 4A; Supplementary Figure 2), suggesting that it is a candidate gene of GMoC. However, the expression of TraesCS2A02G496200 was the highest in leaves and shoots, followed by roots, while the lowest in grains (Supplementary Figure 5). This is similar to the expression pattern of OsMOT1;2 in rice and AtMOT1;2 in A. thaliana, suggesting its role in inter-organ Mo translocation and distribution (Gasber et al., 2011; Ishikawa et al., 2021). Therefore, it is of great significance to explore the molecular mechanism for the regulatory effect of these two candidate genes (TraesCS2A02G496700 and TraesCS2A02G496200) on Mo accumulation in wheat grains in future studies.

The third potential candidate gene TraesCS2A02G497200 is annotated as molybdopterin biosynthesis protein CNX1 (cofactor for nitrate reductase and xanthine dehydrogenase 1), which is involved in Moco biosynthesis in plants by inserting Mo into molybdopterin (Schwarz et al., 2000; Kuper et al., 2003; Llamas et al., 2004, 2006; Tejada-Jimenez et al., 2018). Significant differences in phenotype and expression were observed for the genotypes at two SNPs (AX-111628949 and AX-111044883) closely associated with TraesCS2A02G497200. Interestingly, GMoC tended to have an inverse relationship with the gene expression at the two sites (Figure 4; Supplementary Figure 2). This phenomenon may be attributed to the conversion of more molybdate into Moco under the catalysis of CNX1, which leads to a decrease in GMoC. CNX1 has been found to be constitutively expressed in all organs of Arabidopsis plants (Schwarz et al., 2000). Similarly, the expression of TraesCS2A02G497200 was also found in almost all organs of wheat plants and was higher in roots than in grains (Supplementary Figure 5). This might be due to a large amount of Mo absorbed by roots from the soil, which is then used for MoCo synthesis. Thus, the above-mentioned three genes are considered as potential candidate genes for GMoC in wheat, which may be utilized in wheat breeding. However, further functional studies are required to verify their functions.
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Spot blotch caused by the fungus Bipolaris sorokiniana poses a serious threat to bread wheat production in warm and humid wheat-growing regions of the world. Hence, the major objective of this study was to identify consistent genotyping-by-sequencing (GBS) markers associated with spot blotch resistance using genome-wide association mapping on a large set of 6,736 advanced bread wheat breeding lines from the International Maize and Wheat Improvement Center. These lines were phenotyped as seven panels at Agua Fria, Mexico between the 2013–2014 and 2019–2020 crop cycles. We identified 214 significant spot blotch associated GBS markers in all the panels, among which only 96 were significant in more than one panel, indicating a strong environmental effect on the trait and highlights the need for multiple phenotypic evaluations to identify lines with stable spot blotch resistance. The 96 consistent GBS markers were on chromosomes 1A, 1B, 1D, 2A, 3B, 4A, 5B, 5D, 6B, 7A, 7B, and 7D, including markers possibly linked to the Lr46, Sb1, Sb2 and Sb3 genes. We also report the association of the 2NS translocation from Aegilops ventricosa with spot blotch resistance in some environments. Moreover, the spot blotch favorable alleles at the 2NS translocation and two markers on chromosome 3BS (3B_2280114 and 3B_5601689) were associated with increased grain yield evaluated at several environments in Mexico and India, implying that selection for favorable alleles at these loci could enable simultaneous improvement for high grain yield and spot blotch resistance. Furthermore, a significant relationship between the percentage of favorable alleles in the lines and their spot blotch response was observed, which taken together with the multiple minor effect loci identified to be associated with spot blotch in this study, indicate quantitative genetic control of resistance. Overall, the results presented here have extended our knowledge on the genetic basis of spot blotch resistance in bread wheat and further efforts to improve genetic resistance to the disease are needed for reducing current and future losses under climate change.
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INTRODUCTION

Spot blotch or Helminthosporium leaf blight caused by the hemi-biotrophic fungus Bipolaris sorokiniana (Sacc.) Shoemaker [teleomorph: Cochliobolus sativus (Ito and Kuribayashi) Drechsler ex Dastur], is a major constraint to bread wheat (Triticum aestivum) production in warm and humid wheat-growing regions of the world, threatening the livelihoods of numerous small-holder farmers (Dubin and Van Ginkel, 1991; Duvellier and Gilchrist, 1994; Duveiller et al., 1997; Saari, 1998; Duveiller and Sharma, 2009; Gupta et al., 2018). The disease affects more than 25 million ha of wheat area globally, and is predominant in the intensive rice-wheat cropping systems of eastern India (North-Eastern Plain Zone), Bangladesh, the Terai region of Nepal, South east Asia (Thailand, Philippines, Indonesia, and China), Latin America (Bolivia, warmer regions of Brazil, Paraguay, and northeast Argentina) and Africa (Tanzania and Zambia) (Mehta et al., 1992; Alam et al., 1998; Chang and Wu, 1998; Shrestha et al., 1998; van Ginkel and Rajaram, 1998; Joshi et al., 2002, 2007; Chatrath et al., 2007).

Yield losses due to spot blotch have been substantial and variable depending on the genotypes, sowing time, environmental conditions, soil fertility stresses and soil moisture conditions (Saari, 1998; Sharma and Duveiller, 2004; Duveiller et al., 2005; Duveiller and Sharma, 2009). Estimates of yield losses range from 1 to 20% (Dubin and Van Ginkel, 1991), 2 to 22% in Bangladesh (Siddique et al., 2006), 4 to 43% in the Nepal wheat cultivar Gautam (Sharma and Duveiller, 2006), 43% in Mexico (Villareal et al., 1995), 85% in Zambia (Raemaekers, 1988) etc., but 100% crop loss is also possible under conducive conditions (Mehta, 1985; Saari, 1998). The disease is typically characterized by small dark brown lesions of 1–2 mm length, that extend to form elongated light to dark brown blotches of several centimeters before coalescing and causing leaf necrosis (Mercado Vergnes et al., 2006; Duveiller and Sharma, 2009). This pathogen induced foliar necrosis reduces the photosynthetic area of the leaf and results in premature senescence (Sharma et al., 1997). During favorable conditions, the pathogen can also infect the spikes, resulting in shriveling of the grain, black point of the kernels and deterioration of grain quality (Sharma et al., 1997; Kumar et al., 2002).

Spot blotch management using several agronomic and cultural approaches have been proposed including the use of disease-free seed, optimized sowing time based on the cropping system, timely irrigation, adequate fertilization, crop rotation, removal of infected plant debris, etc., but none of them have been completely effective (Duveiller et al., 2005; Pandey et al., 2005; Sharma and Duveiller, 2006; Sharma P. et al., 2006). While chemical control approaches including seed treatment with fungicides and foliar fungicide application have provided acceptable spot blotch control, their non-affordability by resource poor farmers, the environment and health hazards associated with their use and the possibility of pathogen populations developing resistance to classes of fungicides have limited their usage (Duvellier and Gilchrist, 1994; Duveiller and Sharma, 2009). Hence, the deployment of resistant varieties is the most economical and sustainable spot blotch management strategy, and an integrated approach that combines host-plant resistance as the key component with good agronomic and cultural practices and reasonable chemical control has been recommended (Joshi et al., 2004a; Sharma and Duveiller, 2006; Duveiller and Sharma, 2009).

Genetic resistance to spot blotch and its inheritance has been investigated in several studies that have suggested qualitative and quantitative genetic control of resistance. The first study on the inheritance of seedling resistance to spot blotch in progenies from four inter-varietal crosses indicated the involvement of two dominant complementary genes governing resistance (Srivastava et al., 1971). This was followed by other studies that also suggested the involvement of dominant or partially dominant genes in conditioning spot blotch resistance (Adlakha, 1984; Velázquez Cruz et al., 1994; Sharma and Bhatta, 1999; Neupane et al., 2007). On the contrary, some studies have indicated the involvement of recessive genes in spot blotch resistance (Singh et al., 1998a,2000; Bhushan et al., 2002; Ragiba et al., 2004). Further studies by Sharma et al. (1997) and Joshi et al. (2004b) have well established the quantitative and additive genetic inheritance of resistance to spot blotch, respectively.

A critical component in selecting for spot blotch resistance and accelerating breeding efforts involves identifying molecular markers that are closely linked to the resistance loci (Sharma et al., 2007; Duveiller and Sharma, 2009). In a pioneering study on the associations between spot blotch and microsatellite markers, Sharma et al. (2007) reported markers associated with resistance in a population comprising progenies from the cross between spot blotch resistant genotype G162 and susceptible Sonalika. Subsequently, several quantitative trait loci (QTL) mapping studies have identified spot blotch QTL in biparental mapping populations including: Yangmai 6 × Sonalika (Kumar et al., 2009), Ning 8201 × Sonalika and Chirya 3 × Sonalika (Kumar et al., 2010), Bartai × CIANO T79 and Wuya × CIANO T79 (Singh et al., 2018), Wuya × CIANO T79 and Kath × CIANO T79 (Gahtyari et al., 2021) and Bartai × CIANO T79 and Cascabel × CIANO T79 (Roy et al., 2021). In addition, four spot blotch resistance genes have been identified that include: Sb1 analogous to the durable slow rusting gene Lr34/Yr18/Sr57/Pm38/Ltn1 (Lillemo et al., 2013), Sb2 (Kumar et al., 2015), Sb3 (Lu et al., 2016), and Sb4 (Zhang et al., 2020).

The application of conventional biparental mapping approaches for the identification of trait linked molecular markers and QTL is limited by the significant population development time involved and the ability to identify only the segregating alleles that are different between the parents for resistance (Brachi et al., 2011; Korte and Farlow, 2013). Hence, an effective alternative to biparental QTL mapping that can utilize available diversity populations (requiring no population development time) and all the historical recombination events that have occurred in a population is genome-wide association mapping, which relies on the linkage disequilibrium (LD) between the causal polymorphisms and markers to identify significant marker-trait associations (Risch and Merikangas, 1996; Remington et al., 2001; Flint-Garcia et al., 2003; Yu and Buckler, 2006). However, very few genome-wide association mapping studies for spot blotch resistance in bread wheat have been reported (Adhikari et al., 2012; Gurung et al., 2014; Ahirwar et al., 2018; Jamil et al., 2018; Juliana et al., 2019; Bainsla et al., 2020; Tomar et al., 2021). Hence, the major objective of this study was to identify consistent (repeatable) markers associated with spot blotch resistance using genome-wide association mapping on a large set of 6,736 advanced breeding lines from the International Maize and Wheat Improvement Center (CIMMYT).

A key strategy that can provide important insights into the allelic composition of lines for trait-associated markers and facilitate informed parental choices by combining desired allelic combinations is allelic fingerprinting, where the favorable and non-favorable alleles at trait-associated markers are fingerprinted (Juliana et al., 2019, 2020a,b). Hence, the second major objective of this study was to fingerprint the 6,736 advanced breeding lines for the favorable and non-favorable alleles at the consistent spot blotch associated markers. We also aimed at using the allelic fingerprinting data to gain a better understanding of the proportion of favorable alleles at the consistent spot blotch associated markers in CIMMYT’s advanced breeding lines. Furthermore, we tested the hypothesis that there is no relationship between the percentage of favorable alleles and spot blotch response of the lines, against the alternate hypothesis that there is a relationship. Finally, we also tested the hypothesis that phenotypic selection for spot blotch from the advanced breeding lines to the Helminthosporium Leaf Blight Screening Nurseries (HLBSNs) in each cycle was effective in increasing the spot blotch favorable allele frequencies in the HLBSNs, against the alternate hypothesis that it was ineffective. The HLBSN comprises about 50 lines each year that are selected from the CIMMYT’s advanced breeding lines for good resistance to spot blotch and other agronomic traits and are distributed to several sites in South Asia and South America, where spot blotch is a major biotic stress (Singh et al., 2018).



MATERIALS AND METHODS


Populations, Spot Blotch Phenotyping, and Statistical Analysis of the Phenotypic Data

We used seven different panels in this study each comprising 1,092 different advanced breeding lines from the CIMMYT bread wheat breeding program’s stage 2 yield trial nurseries, that were evaluated in subsequent crop cycles between 2013–2014 and 2019–2020. The panels were named by the harvesting year of the crop cycle (for example, the panel planted in 2013 and harvested in 2014 is indicated as panel 2014) and include panel 2014, panel 2015, panel 2016, panel 2017, panel 2018, panel 2019, and panel 2020. The stage 2 yield trial nurseries were developed using the selected-bulk breeding scheme (Singh et al., 1998c), in which all the selected plants in early generations are bulked until the head-rows stage, where individual plants are derived from the F4, F5, or F6 generations (depending on the type of cross and the breeding shuttle). Selected lines from the head-rows constitute the stage 1 yield trial nursery (about 9,000 lines), from which lines that have high grain yield, acceptable end-use quality, agronomic type, and phenology, and good resistance to stem and stripe rusts are selected and constitute the stage 2 yield trial nurseries. Since the first evaluation for spot blotch in the breeding cycle is done in the stage 2 yield trial stage, the lines are expected to have good variation for the disease and are considered ideal for mapping.

Spot blotch field response in the stage 2 yield trial nursery lines was evaluated at CIMMYT’s spot blotch screening platform at Agua Fria, Mexico (19° 59′ N, 97° 50′ W), during the 2013–2014 to 2019–2020 crop seasons. The lines were planted during November and harvested in March with four checks namely Chirya 3 (resistant check), Francolin #1 (moderately resistant check), Sonalika (susceptible check), and CIANO T79 (susceptible check). Inoculation was done using a mixture of virulent races that were collected from naturally infected leaf samples in Agua Fria. The double-digit scale (00–99) for rating foliar diseases (Saari and Prescott, 1975; Eyal et al., 1987) was used for scoring spot blotch and four to five disease evaluations between the last week of January and the first week of March were done at weekly intervals. The double-digit scores were then used to calculate the disease severity percentages, from which the area under the disease progress curve (AUDPC) values (Simko and Piepho, 2012) were calculated. The AUDPC values in each panel were expressed as relative AUDPC (rAUDPC) values, relative to the most susceptible line, whose rAUDPC was 100. Days to heading (recorded when about 50% of the plants in a plot had fully emerged spikes) and height (measured in cm from the ground level to the spike tips) were also obtained for all the lines in each of the panels and crop cycles in Agua Fria.

Phenotypic data outliers were detected with the Huber’s robust fit outliers method (Huber and Ronchetti, 2009) using the ‘JMP’ statistical software1 and the rAUDPC values that were more than ‘K’ spreads from the center (K was assumed to be 4) were treated as missing. Analysis of spot blotch rAUDPC values in the different panels was done and the mean, standard deviation, median, minimum, maximum, range, and standard error of the mean were obtained. Visualization of the distributions of spot blotch rAUDPC values was done using the ‘R’ package ‘ggplot2’ (Wickham, 2009). Pearson’s correlations between the spot blotch rAUDPC values, days to heading, and height were obtained and p-values for the tests of significance of the correlations were also obtained.



Genotyping

Genome-wide markers were obtained for all the lines in the seven different panels using the genotyping-by-sequencing (GBS) approach (Poland and Rife, 2012; Glaubitz et al., 2014). Single nucleotide polymorphism (SNPs) were called using the Trait Analysis by aSSociation Evolution and Linkage (TASSEL) version 5 and GBS version 2 pipeline (Glaubitz et al., 2014). The SNPs were discovered at a minor allele frequency of 0.01 and Bowtie2 (Langmead and Salzberg, 2012) was used to anchor 6,075,743 unique GBS tags to the first version of the reference sequence assembly of the bread wheat variety Chinese Spring (RefSeq version 1.0) developed by the International Wheat Genome Sequencing Consortium (IWGSC, 2018), with an overall alignment rate of 64% (Juliana et al., 2019). The SNPs were then filtered for those that passed a cut-off of p < 0.001 in Fisher’s exact test, had an inbred coefficient value greater than 80%, and a Chi-squared value less than the critical value of 9.2 (given an alpha value of 0.01 and two degrees of freedom). We obtained 78,606 SNPs that passed at least one of these filters and filtered them further for missing data less than 50%, minor allele frequency greater than 5%, and heterozygosity less than 5%. Similarly, the lines with less than 50% missing marker data were filtered and the following number of lines and markers were used for all the subsequent analyses: (i) panel 2014: 904 lines and 7,918 markers (ii) panel 2015: 949 lines and 7,503 markers (iii) panel 2016: 990 lines and 9,695 markers (iv) panel 2017: 1,011 lines and 9,873 markers (v) panel 2018: 962 lines and 8,130 markers (vi) panel 2019: 943 lines and 11,648 markers (vii) panel 2020: 977 lines and 9,507 markers.



Genome-Wide Association Mapping for Spot Blotch

Genome-wide association mapping for spot blotch was done in all the seven panels using TASSEL version 5 (Bradbury et al., 2007). The mixed linear model (Yu et al., 2006) was fitted, where days to heading, height, and population structure were used as fixed effects, and kinship was used as a random effect. Two principal components accounted for population structure (Price et al., 2006) and kinship was obtained by the centered identity-by-state method (Endelman and Jannink, 2012). For running the mixed linear model, we used the optimum level of compression and the ‘population parameters previously determined’ (Zhang et al., 2010) options in TASSEL.

The p-values for the tests of significance of the marker-trait associations, the marker effects, and the percentage of the spot blotch variation explained by each marker were obtained. To ascertain that none of the spot blotch associated significant markers were associated with days to heading and height, we performed genome-wide association mapping for these traits using the mixed linear model and removed any spot blotch-associated marker that was also significantly associated with these traits at a p-value threshold of 0.001. We obtained Manhattan plots for all traits showing the −log10 p-values and chromosomes using the ‘R’ package, ‘CMplot’ (Lilin-yin, 2018). To identify significant markers associated with spot blotch and correct for testing multiple marker-trait associations, we used the Bonferroni correction for multiple testing with an α level of 0.2. The consistent spot blotch associated markers that were significant in more than one panel were obtained and a reference map with those markers aligned to RefSeq version 1.0 was visualized using Phenogram2. The LD between the consistent markers was analyzed using TASSEL version 5 and the standardized disequilibrium coefficients (D′) (Lewontin, 1964), the correlations between alleles at the two marker loci (r2), and the p-values for the existence of LD using the two-sided Fisher’s Exact test were obtained. Markers with high r2 values, D′ values, and p-values for the test of disequilibrium equal to zero were grouped into LD blocks.



Allelic Fingerprinting of Consistent Spot Blotch Associated Markers

Allelic fingerprinting of the consistent spot blotch associated markers was done for the spot blotch favorable alleles (alleles that had a decreasing effect on the spot blotch rAUDPC values), non-favorable alleles (alleles that had an increasing effect on the spot blotch rAUDPC values), and the heterozygotes in all the 6,736 advanced breeding lines, based on the marker effects that were estimated from the mixed linear model. Since several markers had significant LD amongst themselves, we obtained the consensus allele at an LD block (i.e., the allele that was consistent in at least two markers of the LD block) and all allelic discrepancies among the markers in LD were considered as missing. We then obtained the percentage of lines that had favorable alleles at the spot blotch associated markers or the LD blocks of markers and visualized the allelic fingerprints using the ‘R’ package ‘gplots’ (Warnes et al., 2016).

To understand if there were significant differences between the spot blotch rAUDPC values for the favorable and non-favorable allele at each consistently associated spot blotch marker, we tested the significance of the mean differences in the rAUDPC values for the favorable and non-favorable alleles at each consistent marker and obtained the p-values for the two-tailed t-tests in each panel. The box plots of the spot blotch rAUDPC values for the alleles at the consistently significant markers were visualized using the ‘R’ package ‘ggplot2’ (Wickham, 2009) for the panels where the mean differences were significant. We performed a two-sided t-test to test the hypothesis that there is no relationship between the percentage of favorable alleles at the spot blotch associated markers or the LD block of markers and the spot blotch rAUDPC values of the lines against the alternate hypothesis that there is a relationship. The percentage of favorable alleles in the lines from different panels was plotted against the spot blotch rAUDPC values, using the ‘R’ package ‘ggplot2’ (Wickham, 2009).

To test the hypothesis that phenotypic selection for spot blotch from the advanced breeding lines was effective in increasing the spot blotch favorable allele frequencies in the HLBSNs, against the alternate hypothesis that it was ineffective, we compared the mean rAUDPC values and mean percentage of favorable alleles in the lines from the different panels and the HLBSNs for the following: panel 2014 and 7HLBSN selected from it, panel 2015 and 8HLBSN selected from it, panel 2016 and 9HLBSN selected from it, panel 2017 and 10HLBSN selected from it and panel 2018 and 11HLBSN selected from it.




RESULTS


Spot Blotch Phenotypic Data Analysis

The distributions of the spot blotch rAUDPC values indicated continuous variation and the mean rAUDPC values ranged between 37.5 ± 13.1 (panel 2019) and 58.9 ± 12.8 (panel 2018) in the different panels (Table 1). Considering the lines with good resistance to spot blotch, we observed that 8.9, 14.1, 20.1, 24.4, 0.9, 32.5, and 19.2% of the lines in panels 2014, 2015, 2016, 2017, 2018, 2019, and 2020, respectively had rAUDPC values less than 30 (Figure 1). We also observed that the rAUDPC values were right skewed in several panels, with 2, 3.2, 17.2, 8.4, 16.8, 2.2, and 7.1% of the lines in panels 2014, 2015, 2016, 2017, 2018, 2019, and 2020, respectively, having high rAUDPC values (>70) and being very susceptible (Figure 1).


TABLE 1. Statistical analysis of the relative area under the disease progress curve for spot blotch evaluated in different panels.
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FIGURE 1. Distribution of the spot blotch relative area under the disease progress curve (rAUDPC) values in panel 2014 (904 lines), panel 2015 (949 lines), panel 2016 (990 lines), panel 2017 (1,011 lines), panel 2018 (962 lines), panel 2019 (943 lines), and panel 2020 (977 lines) during the 2014, 2015, 2016, 2017, 2018, 2019, and 2020 evaluations, respectively.


Low to high negative correlations were observed between the spot blotch rAUDPC values and days to heading in the different panels that ranged between −0.18 and −0.66 and were highly significant at a p-value threshold of 0.001. However, spot blotch rAUDPC values and height had moderately negative correlations of −0.26 and −0.4 in two panels, low negative correlations in three panels (ranged between −0.04 and −0.09), and low positive correlations in the other two panels (0.05 and 0.08). The correlations between spot blotch rAUDPC values and height were significant at a p-value threshold of 0.001 in only panel 2015 and panel 2016.



Marker-Spot Blotch Associations in Different Panels

We performed genome-wide association mapping for spot blotch and identified 892 markers in all the panels that were significantly associated at a p-value threshold of 0.001 (Figures 2, 3). This included 98, 30, 170, 47, 261, 87, and 312 significant markers in panels 2014, 2015, 2016, 2017, 2018, 2019, and 2020, respectively. Among them, two markers were significant in four panels, 13 markers were significant in three panels, 81 markers were significant in two panels and 796 markers were significant in one panel only. We then identified markers that were significantly associated with days to heading (Supplementary Figure 1) and height (Supplementary Figure 2) at a p-value threshold of 0.001 and removed spot blotch associated markers that were also significantly associated with these traits.
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FIGURE 2. Manhattan plots showing the marker –log10 p-values and chromosomal positions obtained from genome-wide association mapping for spot blotch in panels 2014, 2015 and 2016. The blue line indicates the p-value threshold of 0.001 and selected markers that were either very significantly associated with spot blotch or associated in more than one panel are indicated.
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FIGURE 3. Manhattan plots showing the marker –log10 p-values and chromosomal positions obtained from genome-wide association mapping for spot blotch in panels 2017, 2018, 2019 and 2020. The blue line indicates the p-value threshold of 0.001 and selected markers that were either very significantly associated with spot blotch or associated in more than one panel are indicated.


After Bonferroni correction for multiple testing, we obtained 194 markers that were significantly associated with spot blotch, among which only 23 markers were significant in more than one panel, including one marker that was significantly associated in three panels and 22 markers that were significantly associated in two panels. Hence, to avoid losing markers that were not significant after Bonferroni correction, but consistently associated with spot blotch in at least two panels at a p-value threshold of 0.001, we have also considered them to be significant. This resulted in 327 significant marker-spot blotch associations in the different panels and 214 unique significant markers (Supplementary Table 1).

In panel 2014, the 29 markers significantly associated with spot blotch were on chromosomes 1B, 2A, 3B, 5B, 5D, 6B, and 7D. Among them, marker 6B_16608512 was the most significant marker that explained 3.1% of the spot blotch variation, followed by markers 7D_8478706, 5B_6873 26022, 5B_680759734, 5B_394982991, 6B_17000615, 5B_68806 3050, and 5B_371889504 that explained 2.5–3% of the variation. In panel 2015, the 15 markers significantly associated with spot blotch were on chromosomes 3B, 5B, 7B, 7D and on unaligned positions. Among them, marker 3B_2280114 was the most significant marker that explained 5.5% of the spot blotch variation, followed by markers 3B_5601689, UN_35809999, UN_35335292, UN_244515182 and UN_40584176 that explained 2.1–4.9% of the variation.

In panel 2016, the 34 markers significantly associated with spot blotch were on chromosomes 1B, 2A, 2B, 5B, 7A, 7D, and on unaligned positions. Among them, marker 2A_2800711 was the most significant marker that explained 2% of the spot blotch variation, followed by markers 2A_17830617, 2A_4942949, 2B_14261851, 2A_18495181, 2A_19902461 and 2A_14418760 that explained 1.9–2% of the variation. In panel 2017, the 18 markers significantly associated with spot blotch were on chromosomes 1B, 1D, 3B, 5B, 6A, and on unaligned positions. Among them, marker 3B_5601689 was the most significant marker that explained 2.1% of the spot blotch variation, followed by markers 1B_673569173, 1B_673174262, 6A_52468949, 1B_677097053, and 1B_673699294 that explained 1.7–2% of the variation.

In panel 2018, the 124 markers significantly associated with spot blotch were on chromosomes 1B, 2A, 3B, 4A, 5B, 5D, 6B, 7B, 7D, and on unaligned positions. Among them, marker UN_35809999 was the most significant marker that explained 7.3% of the spot blotch variation, followed by markers UN_35714518, UN_40584176, 3B_6127880, UN_35335 292, UN_35324004, UN_35565218, UN_34777300, and UN_36 153637 that explained 6.1–7.3% of the variation. In panel 2019, the 31 markers significantly associated with spot blotch were on chromosomes 1A, 2A, 3B, 4B, and on unaligned positions. Among them, marker UN_367803425 was the most significant marker that explained 1.6% of the spot blotch variation, followed by markers 2A_18359259, 4B_8025235, 2A_4942949, 2A_19914469, and 2A_2998843 that explained 1.5–1.6% of the variation. In panel 2020, the 76 markers significantly associated with spot blotch were on chromosomes 1A, 1B, 1D, 2A, 3B, 4A, 5A, 5B, 6A, 6D, 7A, 7B, 7D, and on unaligned positions. Among them, marker UN_35324004 was the most significant marker that explained 4.4% of the spot blotch variation, followed by markers UN_35714518, UN_40584176, 3B_10046843, UN_35714024, UN_34777300, UN_35565218, 3B_5580613, 3B_7237763, and 3B_9107371 that explained 3.1–3.8% of the variation.



Consistent Marker-Spot Blotch Associations in Different Chromosomes

Overall, we have identified 214 markers that were significantly associated with spot blotch in 17 chromosomes, among which 96 markers on 12 chromosomes were significantly associated in more than one panel. This included 28 markers on chromosome 2A, 16 markers on chromosome 3B, 13 markers on chromosome 5B, nine markers on chromosome 1B, eight markers on chromosome 7D, two markers on chromosome 5D and one marker each on chromosomes 1A, 1D, 4A, 6B, 7A, and 7B and 14 unaligned markers. We have also created a reference map (Figure 4) with 76 of the 96 spot blotch associated consistent markers that were significant in more than one panel (excluding the chromosomes that had only one significant marker and the unaligned markers).
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FIGURE 4. A reference map with 76 spot blotch associated markers significant in two or more panels on chromosomes 1B, 2A, 3B, 5B, 5D, and 7D.


On chromosome 1BL, nine markers between 673174262 and 683306760 bps were significantly associated with spot blotch, among which markers 1B_673569173 and 1B_673961339 were significant in three panels. Among these, significant LD was observed among markers 1B_673174262, 1B_673569173, 1B_673699294, and 1B_673961339 (D′ values ranged between 0.91 and 0.99), markers 1B_676260482, 1B_676812644 and 1B_677097053 (D′ values ranged between 0.98 and 0.99) and markers 1B_683266424 and 1B_683306760 (D′ value was 1) (Supplementary Figure 3).

On chromosome 2AS, 21 markers between 718152 and 24002740 bps were significantly associated with spot blotch. Analysis of LD among these markers indicated a single LD block (henceforth this LD block is referred to as 2A_718152-2A_24002740), with significant LD among all the markers (D′ values ranged between 0.94 and 1) except marker 2A_9121927 (Supplementary Figure 4). In addition, three other markers on chromosome 2AS (2A_35786664, 2A_36036421 and 2A_362 34797) formed an LD block (D′ values ranged between 0.94 and 0.99) among which markers 2A_35786664 and 2A_36234797 were significantly associated in three panels. Furthermore, markers 2A_59378923, 2A_59729258, and 2A_60119622 on chromosome 2AS also formed an LD block (D′ values ranged between 0.89 and 1).

On chromosome 3BS, 16 markers were significantly associated with spot blotch in more than one panel, among which markers 3B_2959834 and 3B_10656866 were significantly associated in three panels. Among these 16 markers, we observed that markers 3B_7237763, 3B_8521721, and 3B_8737702 had significant LD (D′ values ranged between 0.99 and 1), in addition to markers 3B_10170821, 3B_10249157, 3B_10656866, and 3B_10666450 (D′ values ranged between 0.96 and 1) that also formed an LD block (Supplementary Figure 5). However, besides these seven markers, the other nine consistently significant markers on chromosome 3BS did not have significant LD with other markers.

On chromosome 5BS, six markers between 78260518 and 118965202 bps (henceforth referred to as 5B_78260518-5B_118965202) were significantly associated with spot botch in more than one panel and formed an LD block (D′ values ranged between 0.97 and 1, Supplementary Figure 6). Among them, markers 5B_78260518 and 5B_78260589 were associated with spot blotch in three panels. On chromosome 5BL, the marker pairs that were significantly associated with spot botch in two panels and formed an LD block included 5B_557138254 and 5B_558332429 (D′ = 1) and 5B_586610468 and 5B_586805570 (D′ = 1). On chromosome 5DL, markers 5D_548099301 and 5D_548463404 were significantly associated with spot botch in two panels and formed an LD block (D′ = 0.98). On chromosome 7DS, markers 7D_57903956, 7D_58206696, 7D_58493344, and 7D_58500973 were significantly associated with spot blotch in more than one panel and formed an LD block (D′ values ranged between 0.98 and 1, Supplementary Figure 7), among which marker 7D_58500973 was significantly associated in three panels. We also observed that marker pairs 7D_58928964 and 7D_59096036 (D′ = 0.98) on chromosome 7DS and markers 7D_430924653 and 7D_565651812 (D′ = 1) on chromosome 7DL were significant in more than one panel and formed LD blocks.

Among the 14 unaligned markers that were associated with spot blotch in more than one panel, markers UN_12522200 and UN_367803425 had high LD with the markers between 718152 and 24002740 bps on chromosome 2AS (excluding marker 2A_9121927) and are probably indicating the same QTL (D′ values ranged between 0.96 and 1, Supplementary Figure 8). Among the remaining unaligned markers, UN_35324004, UN_3 4777300, UN_35335292, UN_35565218, UN_35714024, UN_35 714518, UN_35809999, UN_40584176, UN_244515182, and UN _326649097 had significant LD among themselves (Supplementary Figure 8) and with markers on chromosome 3BS. Markers UN_35565218, UN_35714518 and UN_40584176 were in significant LD with marker 3B_2959834 (D′ values ranged between 0.91 and 0.93). Markers UN_35335292 and UN_358 09999 were in significant LD with marker 3B_6127880 (D′ values ranged between 0.95 and 0.99). Markers UN_34777300, UN_35324004, UN_35714024, UN_244515182, and UN_3266 49097 were in significant LD with marker 3B_8737702 (D′ values ranged between 0.86 and 0.98).



Allelic Fingerprinting of Consistent Spot Blotch Associated Markers

Allelic fingerprinting of consistent spot blotch associated markers in the advanced breeding lines (Figure 5 and Supplementary Table 2) indicated that the percentage of favorable alleles at markers 3B_2280114 (88.8%), 3B_5601689 (86.6%), 1A_579403901 (83.9%), 7A_590662568 (83.2%), and 6B_16607814 (83.1%), and the percentage of consensus favorable alleles in the 2A_718152 – 2A_24002740 LD block (82.3%), and the LD block tagged by markers 1B_673174262, 1B_673569173, 1B_673699294, and 1B_673961339 (80.2%) were high. Similarly, the percentage of consensus favorable alleles at LD blocks tagged by markers 1B_676260482, 1B_676812644, and 1B_677097053 (77.5%); 2A_59378923, 2A_59729258, and 2A_60119622 (71.5%); 1B_683266424 and 1B_683306760 (67.4%); 2A_35786664, 2A_36036421, and 2A_36234797 (67.3%) and 7D_57903956, 7D_58206696, 7D_58493344, and 7D_58500973 (64.5%) were greater than 50%. We also observed a range in the percentage favorable alleles of the spot blotch associated markers on chromosome 3BS between 627922 and 10737359 bps (15.8–88.8%). Considering the lines with a high number of spot blotch favorable alleles, we observed that 267 lines had favorable alleles at 67 or more of the 96 markers (Supplementary Table 3).
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FIGURE 5. Allelic fingerprinting of spot blotch associated markers. The percentage values on the left indicate the percentage of lines with favorable alleles at the markers. The green color indicates the favorable allele (allele that has a decreasing effect on spot blotch), the yellow color indicates the non-favorable allele (allele that has an increasing effect on spot blotch), the magenta color indicates the heterozygote, and the white color indicates missing data.




Effects of the Favorable and Non-favorable Alleles on the Spot Blotch Relative Area Under the Disease Progress Curve Values

Tests of significance of the mean differences in the spot blotch rAUDPC values between the lines with the favorable alleles and the non-favorable alleles were performed for all the 37 spot blotch associated markers/LD blocks in the different panels. Among the 259 two-tailed t-tests of significance, only 131 tests of mean differences were significant at a p-value threshold of 0.001 (Supplementary Figure 9). Among them, we observed that the mean rAUDPC values were significantly different in all the seven panels for the favorable and non-favorable alleles at the LD blocks tagged by markers: (i) 5B_557138254 and 5B_558332429, (ii) 5B_586610468 and 5B_586805570, and (iii) 7D_57903956, 7D_58206696, 7D_58493344, and 7D_58500973.



Relationship Between the Percentage of Favorable Alleles at the Significant Spot Blotch Associated Markers and the Spot Blotch Relative Area Under the Disease Progress Curve Values

To test if the percentage of favorable alleles at the spot-blotch associated markers was associated with the spot blotch response of the lines, we obtained a subset of 3,608 lines that had non-missing data in at least 30 of the 37-spot blotch associated markers/LD blocks. This included 240, 285, 508, 521, 499, 766, and 789 lines from panels 2014, 2015, 2016, 2017, 2018, 2019, and 2020, respectively. The two-sided t-test p-values indicated that in all the panels there was a significant relationship between the percentage of favorable alleles in the lines and their spot blotch rAUDPC values, with the p-values ranging between 2.2E-05 in panel 2014 and 3.1E-46 in panel 2020 (Figure 6).
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FIGURE 6. Percentage of favorable alleles (alleles that have a decreasing effect on spot blotch) in the lines from different panels plotted against the spot blotch relative area under the disease progress curve (rAUDPC) values in seven panels. The values on the top right of the panels indicate the two-sided p-values for the test that there is no relationship between the percentage of favorable alleles and the spot blotch rAUDPC values of the lines against the alternate hypothesis that there is a relationship.




Relationship Between Alleles at Selected Significant Spot Blotch Associated Markers and Grain Yield

The association of some of the significant spot blotch associated markers in this study (2A_718152 – 2A_24002740, 3B_2280114, and 3B_5601689) with grain yield has been reported in previous studies (Juliana et al., 2019, 2021). Hence, our objective was to understand the relationship between the spot blotch favorable and non-favorable alleles and grain yield in different environments that have been reported in Juliana et al. (2021). So, for the advanced breeding lines in this study, we used the grain yield data obtained from the following testing environments: (i) stage 1 irrigated-bed planting environment where the CIMMYT bread wheat breeding program’s stage 1 yield testing nursery lines were evaluated at the Norman E. Borlaug Experimental Research Station, Ciudad Obregon, Mexico (27°29′N, 109°56′W) on raised beds and received optimum irrigation of about 500 mm of water in total from five irrigations. (ii) Stage 2 irrigated-bed planting and irrigated-flat planting environments where CIMMYT’s stage 2 yield testing nursery lines were evaluated in Obregon on raised beds and flatbeds, respectively, under optimum irrigation. (iii) Stage 2 moderate-drought stress environment where CIMMYT’s stage 2 yield testing nursery lines were evaluated in Obregon on raised beds under moderate-drought stress, with irrigation of about 200 mm of water in total from two irrigations. (iv) Stage 2 severe-drought stress environment where CIMMYT’s stage 2 yield testing nursery lines were evaluated in Obregon under severe-drought stress in the flat planting system, with a total of about 180 mm of water through drip irrigation. (v) South Asia bread wheat genomic prediction yield trial environments where a subset of CIMMYT’s Stage 2 yield trial nursery lines (540 lines) was evaluated in India at the Borlaug Institute for South Asia stations in Jabalpur, Madhya Pradesh (23° 10′ N, 79° 55′ E), Ludhiana, Punjab (30° 54′ N, 75° 51′ E) and Pusa, Bihar (25° 59′ N, 85° 41′ E) in the flat planting system under optimum irrigation. Further description of the crop cycles of evaluation, trial management conditions, and experimental designs in all these environments is available in Juliana et al. (2021).

For testing the association of the significant spot blotch-associated marker alleles (2A_718152 – 2A_24002740, 3B_2280114, and 3B_5601689) with grain yield, we used combined panels with all the fingerprinted stage 1 yield trial, stage 2 yield trial, and the South Asia bread wheat genomic prediction yield trial lines. The best linear unbiased estimates for grain yield (t/ha) across all the panels and years were obtained as described in Juliana et al. (2021). We also visualized the differences in grain yield (t/ha) between the lines with the spot blotch favorable alleles and the non-favorable alleles at the three genomic regions using the ‘R’ package ‘ggplot2’ (Wickham, 2009), and performed two-sided t-tests of the significance of the mean differences in grain yield between the lines with and without the spot blotch favorable alleles. We observed that the spot blotch consensus favorable allele for the markers in the 2A_718152 – 2A_24002740 LD block had a significant effect on grain yield evaluated in Stage 2 irrigated-bed planting environment, Pusa, Ludhiana, Stage 2 moderate-drought stress environment, and Stage 1 irrigated-bed planting environment, with p-values ranging between 4.9E-12 and 1.8E-106 (Figure 7). The effects of the 2A_718152 – 2A_24002740 LD block on grain yield were 0.49 t/ha (Pusa), 0.31 t/ha (Stage 2 irrigated-bed planting environment), 0.30 t/ha (Ludhiana), 0.18 t/ha (Stage 2 moderate-drought stress environment), and 0.11 t/ha (Stage 1 irrigated-bed planting environment) in different environments.
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FIGURE 7. Spot blotch favorable alleles (alleles that have a decreasing effect on spot blotch) and non-favorable alleles (alleles that have an increasing effect on spot blotch) at linkage disequilibrium block 2A_718152 – 2A_24002740 and markers 3B_2280114 and 3B_5601689 plotted against the grain yield in different environments. The values on the top right of the panels indicate the two-sided t-test p-values for the test that there is no relationship between the spot blotch associated marker alleles and grain yield against the alternate hypothesis that there is a relationship.


Marker 3B_2280114 had a significant effect on grain yield in the Stage 2 irrigated-bed planting environment, Pusa, Stage 2 irrigated-flat planting environment, Ludhiana, and Jabalpur, with p-values ranging between 3.7E-09 and 7.1E-38. The spot blotch favorable allele at marker 3B_2280114 had effects of 0.48 t/ha (Pusa), 0.29 t/ha (Ludhiana), 0.25 t/ha (Stage 2 irrigated-bed planting environment), 0.20 t/ha (Stage 2 irrigated-flat planting environment), and 0.17 t/ha (Jabalpur) on grain yield in different environments. Marker 3B_5601689 had a significant effect on grain yield in the Stage 2 irrigated-bed planting environment, Stage 2 moderate-drought environment, Stage 2 severe-drought environment, Pusa and Ludhiana, with p-values ranging between 3.3E-18 and 6.2E-32. The spot blotch favorable allele at marker 3B_5601689 had effects of 0.37 t/ha (Pusa), 0.25 t/ha (Stage 2 severe-drought stress environment), 0.23 t/ha (Ludhiana), 0.22 t/ha (Stage 2 irrigated-bed planting environment), and 0.22 t/ha (Stage 2 moderate-drought stress environment) on grain yield in different environments.



Mean Relative Area Under the Disease Progress Curve Values and Mean Percentage of Favorable Alleles in the Lines From the Different Panels and the Helminthosporium Leaf Blight Screening Nurseries

Analysis of the mean rAUDPC values and percentage of favorable alleles in the lines from the different panels and HLBSNs derived from the different panels indicated that the HLBSNs selected from all the panels had significantly lower mean rAUDPC values (p-value = 0.002) and also significantly higher mean percentage of favorable alleles (p-value = 0.0001) at a p-value threshold of 0.005 (Figure 8). We also observed that the mean rAUDPC values ranged between 43.2 +12.5 and 58.9 +12.8 in the panels, while they ranged between 27.6 +3.5 and 40.2 +6.3 in the HLBSNs. Similarly, the mean percentage of favorable alleles in the panels ranged from 43 +13.6% (panel 2014) to 47.5 +13.2% (panel 2016), while they ranged from 51.1 +13.7% (8HLBSN) to 58.1 +12.8% (11HLBSN) in the different HLBSNs.
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FIGURE 8. Mean relative area under the disease progress curve (rAUDPC) values and mean percentage of favorable alleles in the lines from the different panels and selections from the panels that constitute the Helminthosporium Leaf Blight Screening Nurseries (HLBSNs).





DISCUSSION

In this study, we analyzed the distributions of spot blotch rAUDPC values in advanced breeding lines from CIMMYT and our results showed that on average 17.2% of the lines had low rAUDPC values (<30) and 8.1% of the lines had very high rAUDPC values (>70). None of the lines had rAUDPC values less than 5 and a majority of the lines in the different panels had intermediate rAUDPC values. These results reaffirm previous reports on the lack of immune genotypes for spot blotch (Mehta, 1998; Duveiller et al., 2005; Khan and Chowdhury, 2011) and also indicate that a large number of advanced lines from the CIMMYT bread wheat breeding program possess moderate resistance to spot blotch, due to extensive breeding efforts (Singh et al., 2015, 2016).

Our results also indicated significant low to high negative correlations between the spot blotch rAUDPC values and days to heading in Agua Fria. These results are consistent with previous studies that have reported negative correlations between spot blotch and days to heading, indicating that late genotypes tend to possibly escape the disease (Sharma et al., 1997; Dubin et al., 1998; Sharma R. C. et al., 2006; Singh et al., 2015). However, CIMMYT breeders evade the association of growth stage with spot blotch in selections, by comparing disease responses to both early and late checks. We also observed mostly non-significant and inconsistent positive to negative correlations between the spot blotch rAUDPC values and height as previously observed (Sharma R. C. et al., 2006; Singh et al., 2015). We attribute the changes in magnitude and direction of correlations between spot blotch and height in different panels to the use of diverse parents in developing the lines in each panel (Sharma et al., 1997) and strong selection for height in early generations of the breeding program, which results in a narrow variation for height in the advanced breeding lines. However, the low negative correlations of days to heading with spot blotch and no correlation of height with spot blotch in some panels also indicate the independence of these traits and suggest that selection for early heading, short and spot blotch resistant lines is possible, as also observed in previous studies (Joshi et al., 2002; Sharma R. C. et al., 2006; Singh et al., 2015).

We have successfully used genome-wide association mapping for dissecting the genetic architecture of resistance to spot blotch in CIMMYT’s advanced bread wheat breeding lines and identified 96 consistent GBS markers associated with spot blotch on twelve chromosomes. A key observation in this study is that among the 214 significant markers in all the panels, only 96 were significant in more than one panel and only two markers were significant in four panels. While this could be partly attributed to the variable allele frequencies and marker missing data in the different panels for some markers, it also indicates a strong effect of genotype × environment interactions (Singh et al., 2015; Mahapatra et al., 2020; Chattopadhyay et al., 2021; Roy et al., 2021) in identifying consistent spot blotch associated markers, and highlights the need for multiple evaluations for spot blotch to identify lines with stable spot blotch resistance (Singh et al., 2015). The positions of all the 96 markers consistently associated with spot blotch in this study were compared to previously reported spot blotch associated markers/QTL, whose positions were either available in the RefSeq v1.0 or obtained using their sequences in the nucleotide Basic Local Alignment Search Tool available in Triticeae Toolbox (Blake et al., 2016).

On chromosome 1AL, we observed that significant marker 1A_579403901 was 2.9 Mbps away from spot blotch associated marker S1A_582293281 (Jamil et al., 2018), and might be possibly indicating it or a novel locus. On chromosome 1BL, considering the marker 1B_673569173 that was significant in three panels, we observed that it was: (i) 4.7 Mbps away from marker hbe248 that was linked to the Lr46/Sr58/Yr29/Pm39/Ltn2 locus and tagged a minor spot blotch QTL (Lillemo et al., 2013), (ii) in the same position as a spot blotch associated region reported by Gahtyari et al. (2021) between 670.6–673.7 Mbps and (iii) 0.78 Mbps away from marker IWB5678 that was distal to the Lr46/Sr58/Yr29/Pm39/Ltn2 locus (Singh et al., 1998b; Kolmer et al., 2019). This indicates that marker 1B_673569173 and the other markers in the LD block are closely linked to the Lr46/Sr58/Yr29/Pm39/Ltn2 locus, thereby providing further evidence to the association of this locus with spot blotch resistance, in addition to partial and durable resistance to rust diseases and powdery mildew (Lillemo et al., 2013). However, we also observed that the markers 1B_673569173 and 1B_673961339 were significant in only three of the seven panels and had average effects of 5.6 and 6.6 on the rAUDPC values, respectively. This is in agreement with Lillemo et al. (2013) who detected the locus in one environment only and designated it as a minor QTL and Singh et al. (1998b) who reported that the Lr46 gene must be present in combination with other slow rusting genes to impart sufficient resistance in an additive manner. We also observed that the favorable alleles for marker 1B_673569173 were present in 76% of the lines, indicating that a large number of advanced breeding lines from CIMMYT have this spot blotch-associated locus.

On chromosome 2AS, the markers in the region between 718152 and 24002740 bps were in the same position as a previously reported spot blotch associated marker S2A_16824871 (Jamil et al., 2018) and QTL (Gahtyari et al., 2021), besides the 2NS translocation from Aegilops ventricosa (Juliana et al., 2019, 2020a,b; Gao et al., 2021). This is a key finding in this study, which is the first report of the association of the 2NS translocation with spot blotch resistance. We have also successfully demonstrated that the spot blotch favorable consensus allele at the 2NS translocation increases grain yield evaluated in the irrigated and moderate-drought stress environment of Obregon, and the irrigated environments of Ludhiana and Pusa. A major implication of this finding is that simultaneous improvement for high grain yield and spot blotch resistance especially in the Indian subcontinent where spot blotch is a serious production constraint can be made by selecting for the 2NS translocation. It is also interesting that the 2NS translocation has been reported to be associated with lodging tolerance, resistance to stripe rust caused by Puccinia striiformis, stem rust caused by Puccinia graminis, leaf rust caused by Puccinia triticina, eyespot caused by Pseudocercosporella herpotrichoides, cereal cyst caused by Heterodera avenae, root-knot caused by Meloidogyne spp. and blast caused by Magnaporthe oryzae pathotype Triticum (Doussinault et al., 1983; Bariana and Mcintosh, 1993; Jahier et al., 2001; Williamson et al., 2013; Juliana et al., 2018, 2019, 2020a,2021; Gao et al., 2021). However, it should be noted that while the markers in the 2NS translocation were significantly associated with spot blotch in only two panels in this study using genome-wide association mapping, the consensus favorable allele at this locus was associated with spot blotch in four of the seven panels and had effects ranging between 4.3 and 6.3 on the spot blotch rAUDPC values. These results indicate that the effect of the 2NS translocation on spot blotch is probably environment-dependent and minor. Nevertheless, the proportion of lines with the spot blotch favorable alleles at the 2NS translocation has increased from 45.2% in panel 2014 to 95.3% in panel 2020, due to the indirect selection for high stripe rust resistance and grain yield (Juliana et al., 2020b,2021).

On chromosome 2AL, the spot blotch associated marker 2A_451012543 was in the same position as the spot blotch QTL, QSb.bhu-2A that was located between markers Xbarc353 (205192882 bps) and Xgwm445 (682622675 bps) (Kumar et al., 2009) and the favorable allele for this marker was present in a moderate frequency (32.9%) in the breeding lines. On chromosome 3BS, we have reported a 10.1 Mbps region between 627922 and 10737359 bps where several markers were significantly associated with spot blotch in more than one panel and were in the same position as spot blotch associated marker wPt-1159 (Adhikari et al., 2012) and QTL, Qcim.3B.1 and Qcim.3B.2 (Juliana et al., 2019). Considering the positions of the Sb3 gene-associated markers (Lu et al., 2016) on the Refseq v1.0 (Xbarc147 – 7104675 bps, XWGGC3957 – 6233346 bps, and XWGGC4320 – 5941271 bps), the markers significant in this study are in the same position as the Sb3 gene. The significant markers that were closest to the Sb3 gene included 3B_5601689, 3B_6127880, 3B_7237763, 3B_8521721, 3B_8737702 and probably the unaligned markers UN_35335292 and UN_35809999. However, a substantial variation in the favorable allele/consensus favorable allele frequencies at these regions ranging from 16.1 to 86.6% made it elusive to estimate the exact frequency of the Sb3 gene in the CIMMYT advanced breeding lines. While the high recombination rates at the telomeric ends of the chromosomes lead to rapid breakdown of LD, it is worth highlighting that the spot blotch favorable allele frequency estimate using marker 3B_2280114 was five times higher than marker 3B_627922 that was only 1.6 Mbps away, thereby emphasizing the need for caution when interpreting marker favorable allele frequencies in such regions of the genome.

An interesting finding in this study was the association of grain yield evaluated in Ludhiana, Jabalpur, Pusa, and the irrigated and drought stress environments of Obregon with spot blotch favorable alleles at markers 3B_2280114 and 3B_5601689. While the association of these markers with grain yield and spot blotch was reported in Juliana et al. (2019), we have further extended the analysis to larger datasets and provide strong evidence of the association, implying that selection for favorable alleles at these markers could help obtain higher grain yield and spot blotch resistance. While it is possible that the Sb3 gene has a favorable pleiotropic effect on grain yield, it is also likely that a closely linked gene is associated with increased grain yield and further studies are needed to provide better insights into this association. However, it should also be mentioned that the markers 3B_2280114 and 3B_5601689 that were associated with a substantial increase in grain yield in Pusa (0.48 and 0.37 t/ha, respectively) had only small effects on the spot blotch rAUDPC values in Agua Fria (highest effects observed were 5.5 and 4.9 on the rAUDPC values, respectively), indicating that they are associated with a minor effect spot blotch locus and further evaluations for both these traits in the same environment are needed.

On chromosome 4AL, significant marker 4A_711331984 was only 2.2 Mbps away from marker BobWhite_c20322_153 that was associated with spot blotch incubation period (Ahirwar et al., 2018) and might be indicating the same locus. On chromosome 5BS, the locus tagged by markers 5B_78260518 and 5B_78260589 that were significant in three panels did not coincide with any previously identified spot blotch associated locus and is indicating a novel spot blotch associated locus. On chromosome 5BL, markers 5B_403782889 and 5B_557138254 significant in this study flanked the Sb2 gene linked to markers Xgwm1043 and Xgwm639 (504301901 bps on the Refseq v1.0) (Kumar et al., 2015). The favorable allele frequency at marker 5B_557138254 which is the significant marker closest to the Sb2 gene was 25.2% and the highest effect of this marker on the spot blotch rAUDPC value was 5.3, indicating that the effect was minor.

On chromosome 7DS, the significant marker 7D_57903956 was 10.5 Mbps away from the Sb1 gene and might be linked to the gene. While the percentage of lines with the spot blotch favorable allele at marker 7D_57903956 was 55.4%, the percentage of lines with the consensus favorable allele at the LD block tagged by markers 7D_57903956, 7D_58206696, 7D_58493344, and 7D_58500973 was 64.5%, indicating a moderately high frequency of lines with favorable alleles at this region. We also observed that the maximum effect of the markers at the LD block tagged by markers 7D_57903956, 7D_58206696, 7D_58493344, and 7D_58500973 on spot blotch rAUDPC values was 4.4, indicating that this locus has a minor effect on spot blotch. This observation is in agreement with Lillemo et al. (2013), who also suggested that the effect of the Sb1 gene on spot blotch is quantitative and it has to be deployed in combination with other resistance genes to confer sufficient levels of resistance.

We have also reported allelic fingerprinting of the spot blotch associated markers, which indicated that although CIMMYT’s advanced breeding lines are quite rich in spot blotch favorable alleles due to extensive breeding efforts (Dubin and Rajaram, 1996), there are opportunities for increasing the proportion of favorable alleles at several markers. One approach that could ideally complement phenotypic selection in increasing the frequencies of favorable alleles for disease resistance is genomic selection, in which dense genome-wide molecular markers are used instead of specific trait-associated markers and selection is done based on the additive effects of multiple loci (Meuwissen et al., 2001; Poland and Rutkoski, 2016; Juliana et al., 2019). Our results also indicated a significant relationship between the percentage of favorable alleles in the lines and their spot blotch, which taken together with the multiple minor effect loci identified to be associated with spot blotch in this study, indicate quantitative genetic control of resistance as also reported previously (Duveiller and Sharma, 2009; Singh et al., 2018). We also observed lower mean rAUDPC values and higher mean percentage of favorable alleles in the HLBSNs compared to the panels in all the cycles, thereby indicating that phenotypic selection for spot blotch resistance was very effective in increasing the mean percentage of favorable alleles in the HLBSNs.

Overall, the genome-wide association mapping and allelic fingerprinting results presented in this study have helped to extend our knowledge on the genetic basis of spot blotch resistance in bread wheat. While we have successfully validated some previously identified spot blotch associated genes/QTL/markers, we have also reported several novel spot blotch associated GBS markers, which could prove very useful for accelerating marker-assisted selection and genomic breeding for spot blotch (Sharma et al., 2007; Duveiller and Sharma, 2009). We have also reported a reference map with the consistent spot blotch associated markers aligned to the reference genome (RefSeq version 1.0) of bread wheat, which will serve as a valuable guide facilitating comparisons with other biparental and association mapping studies for spot blotch. Considering the persistent threat of spot blotch to resource-poor farmers in South Asia, further research and breeding efforts to improve genetic resistance to the disease (Sharma and Duveiller, 2006), identification of novel sources of resistance by screening different germplasms (Kumar et al., 2016a; Bainsla et al., 2020), using high-throughput phenotyping for accurate selection (Kumar et al., 2016b), selecting for and stacking QTL with minor effects (Singh et al., 2018), etc. are essential.
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Supplementary Figure 1 | Manhattan plots showing the marker −log10 p-values and the chromosomal positions for the marker-days to heading associations in genome-wide association mapping in seven panels. The blue line indicates the threshold of 0.001 to declare the significance of markers and selected markers that were significantly associated with days to heading are indicated.

Supplementary Figure 2 | Manhattan plots showing the marker −log10 p-values and the chromosomal positions for the marker-height associations in genome-wide association mapping in seven panels. The blue line indicates the threshold of 0.001 to declare the significance of markers and selected markers that were significantly associated with height are indicated.

Supplementary Figure 3 | Linkage disequilibrium between the markers on chromosome 1B. The standardized disequilibrium coefficients (D′) are shown in the lower-left matrix and correlations between alleles at the two marker loci (r2) are shown in the upper-right matrix.

Supplementary Figure 4 | Linkage disequilibrium between the markers on chromosome 2A. The standardized disequilibrium coefficients (D′) are shown in the lower-left matrix and correlations between alleles at the two marker loci (r2) are shown in the upper-right matrix.

Supplementary Figure 5 | Linkage disequilibrium between the markers on chromosome 3B. The standardized disequilibrium coefficients (D′) are shown in the lower-left matrix and correlations between alleles at the two marker loci (r2) are shown in the upper-right matrix.

Supplementary Figure 6 | Linkage disequilibrium between the markers on chromosome 5B. The standardized disequilibrium coefficients (D′) are shown in the lower-left matrix and correlations between alleles at the two marker loci (r2) are shown in the upper-right matrix.

Supplementary Figure 7 | Linkage disequilibrium between the markers on chromosome 7D. The standardized disequilibrium coefficients (D′) are shown in the lower-left matrix and correlations between alleles at the two marker loci (r2) are shown in the upper-right matrix.

Supplementary Figure 8 | Linkage disequilibrium between the unaligned markers. The standardized disequilibrium coefficients (D′) are shown in the lower-left matrix and correlations between alleles at the two marker loci (r2) are shown in the upper-right matrix.

Supplementary Figure 9 | Boxplots with the spot blotch relative area under the disease progress curve (rAUDPC) values in different panels, for lines with favorable alleles (alleles that have a decreasing effect on spot blotch) and non-favorable alleles (alleles that have an increasing effect on spot blotch) at spot blotch associated markers. The boxplots are only shown for the panels where the mean differences in rAUDPC values for the favorable and non-favorable alleles were significant.

Supplementary Table 1 | Markers significantly associated with spot blotch in panels 2014, 2015, 2016, 2017, 2018, 2019, and 2020 after Bonferroni correction for multiple testing at an α level of 0.2 along with markers that were consistently associated with spot blotch in at least two panels at a p-value threshold of 0.001. The markers that were not significant after Bonferroni correction for multiple testing are indicated along with the number of panels in which the markers were significant.

Supplementary Table 2 | Allelic fingerprinting of markers that were consistently associated with spot blotch in more than one panel (1 = favorable allele that has a decreasing effect on the spot blotch relative area under the disease progress curve values, 0 = non-favorable allele that has an increasing effect on the spot blotch relative area under the disease progress curve values, 0.5 = heterozygote).

Supplementary Table 3 | Lines with 67–83 spot blotch favorable alleles at 96 markers that were consistently associated with spot blotch in more than one panel (1 = favorable allele that has a decreasing effect on the spot blotch relative area under the disease progress curve values, 0 = non-favorable allele that has an increasing effect on the spot blotch relative area under the disease progress curve values, 0.5 = heterozygote).
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Understanding the genetics of metribuzin (a group C herbicide) tolerance in wheat is vital in developing tolerant cultivars to improve wheat productivity in dryland farming systems. This study investigated metribuzin tolerance in wheat by conducting a Genome-wide Association Studies (GWAS) with a panel of 150 wheat genotypes of diverse genetic backgrounds and genotyped them with the wheat 90 K SNP genotyping assay. The phenotyping was conducted in a temperature-controlled glasshouse at the University of Western Australia (UWA). Genotypes were sprayed with a metribuzin dose of 400 grams of active ingredient (g. a.i.) ha−1 as pre-emergent in a specialized spraying cabinet and transferred to the glasshouse where the tolerance level of the genotypes was assessed by measuring the relative reduction in chlorophyll content of the leaves. The decrease in chlorophyll content of the treated plants compared to the control was regarded as the phytotoxic effects of metribuzin. GWAS analysis following a mixed linear model revealed 19 genomic regions with significant marker-trait associations (MTAs), including ten on chromosome 6A, three on chromosome 2B, and one on chromosomes 3A, 5B, 6B 6D, 7A, and 7B, respectively. Sequences of the significant markers were blasted against the wheat genome, IWGSC RefSeq V1.0, and candidate genes having annotations related to herbicide tolerance in wheat, especially in pathways reported to be involved in metribuzin tolerance, such as cytochrome P450 pathways and ATP Binding Cassette (ABC) superfamilies, were identified in these genomic regions. These included TraesCS6A01G028800, TraesCS6A02G353700, TraesCS6A01G326200, TraesCS7A02G331000, and TraesCS2B01G465200. These genomic regions were validated on 30 top tolerant and 30 most susceptible genotypes using the five closest SSR makers to the flanked SNPs. Sufficient polymorphism was detected on two markers (wms193 and barc1036) that were found to differentiate between the susceptible and tolerant alleles and a t-test analysis of the phenotypic data shows a significant (value of p < 0.001) difference suggesting that these markers can be used for marker-assisted selection (MAS) in metribuzin studies and wheat breeding programs.

Keywords: single nucleotide polymorphism (SNP), genome-wide association studies (GWAS), quantitative trait loci (QTL), chlorophyll content index (CCI), marker-assisted selection (MAS), herbicide tolerance, PSII, ROS


INTRODUCTION

Wheat is a valuable cereal crop globally, supplying four billion people with a daily portion of calorie intake (Liu et al., 2019; Venske et al., 2019). In Australia, wheat is a major grain crop, contributing about 12% to global trade (Kleemann and Gill, 2008). Due to the wide adoption of no-till or zero tillage cropping systems in Australia, a major constraint for wheat production is weed infestation which can cause yield loss of up to 50% (Kleemann and Gill, 2008). High weed infestation during the early seedling stage hinders effective tillering in wheat leading to poor yield (Pilcher et al., 2017; Bhoite et al., 2018). Hence, controlling weeds is a critical aspect in sustaining wheat production. A cheap, effective, and convenient method of weed control for agricultural production is the use of herbicides. It is vital that such herbicides are tailored to favor crops and destroy weeds to avoid crop damage (Ponciano, 2018). However, there are genotypic variations in plants for herbicide tolerance, and in particular conditions, herbicides may cause toxicity to plants, especially in susceptible genotypes.

Metribuzin is a broad-spectrum triazine herbicide used in wheat fields for weed control. It is classified under group C, known under the IUPAC name 4-Amino-6-(1,1-dimethylethyl)-3-methylthio-1,2,4-triazine-5(4H)-one (Bhoite et al., 2018). When metribuzin is applied to plants, it is primarily absorbed by the roots via diffusion and translocated to the shoots. The site of action (SOA) of metribuzin in the photosystem II protein complex (Beckie et al., 2019). The absorbed metribuzin inhibits photosynthesis by binding to the D1 quinone protein of the photosystem II (PSII) in the chloroplast and prevents electron transport that is necessary for the conversion of light to energy (Si et al., 2006; Pilcher et al., 2017; Bhoite et al., 2018; Ponciano, 2018). This chain reaction leads to lipid peroxidation, which causes degradation of chlorophyll, carotenoids and cell membrane, and eventual tissue death (Javid et al., 2017; Bhoite et al., 2018; Ponciano, 2018). Metribuzin is commonly used as a pre- and post-emergence herbicide for the control of annual grasses and broad leaf weeds such as bluegrass (Poa annua), corn buttercup (Ranunculus arvensis), brome grass (Bromus diandrus), barley grass (Hordeum glaucum and H. leporinum), and Italian ryegrass (Lolium perenne spp. multiflorum) in different farming systems including dryland systems such as the wheat cropping areas of Western Australia (Pilcher et al., 2017; Bhoite et al., 2018; Ponciano, 2018). Most wheat cultivars tolerate metribuzin at the recommended dose rate, i.e., 225–300 ml/h−1 (Pilcher et al., 2017). However, some cultivars are highly susceptible to metribuzin leading to crop damage and ultimately poor yield (Villarroya and Garcia-Baudin, 2000; Bhoite et al., 2019). Hence, the identification of tolerant sources can facilitate the development of wheat cultivars tolerant to metribuzin.

Many successful investigations in the past have identified wheat cultivars tolerant to metribuzin. For example, Pilcher et al. (2017) reported the outcome of a screening investigation of 86 genotypes and found nine to be highly tolerant. Similarly, Kleemann and Gill (2007) identified four wheat cultivars that showed sufficient tolerance to metribuzin. Bhoite et al. (2017) screened 946 genotypes and identified nine to be highly tolerant to metribuzin application. Identification of metribuzin tolerant cultivars through screening involves testing different dose rates and field screening which can be expensive and time-consuming. Understanding the genetic basis of wheat tolerance to metribuzin could lead to the development of molecular markers with the potential to accelerate genetic gain in breeding programs by at least partially reducing the number of herbicide trials. However, unlike studies on metribuzin sensitivity in wheat, the genetic basis of metribuzin tolerance has received much less attention. Investigations by various authors claimed that the mechanism controlling metribuzin tolerance in wheat is complex and poorly understood because the complexity of herbicide tolerance involves the interaction of different mechanisms relating to the site of action (SOA) and metabolic detoxification (Bhoite et al., 2018).

Different studies have reported the mode of inheritance of metribuzin in soybean and potato controlled by a single recessive gene (Runyan et al., 1982; Fischer, 1983; Ratliff et al., 1991; Villarroya and Garcia-Baudin, 2000; Bhoite et al., 2018). No conclusive outcomes have been reported in wheat. Villarroya and Garcia-Baudin (2000) reported that both nuclear and cytoplasmic inheritance might control metribuzin inheritance in wheat. Bhoite et al. (2019) confirmed that metribuzin tolerance in wheat is additive and identified potential candidate genes for metribuzin tolerance at the seedling stage in wheat based on tolerance segregation in a bi-parental mapping population derived from crosses between a susceptible and tolerant wheat cultivar. The study by Bhoite et al. (2019) sets the foundation for identifying QTLs associated with metribuzin tolerance in wheat, yet it is based on a narrow genetic diversity. However, an investigation focusing on a densely genotyped germplasm set with a wider range of natural variation arising from years of recombination events and fixed alleles would offer a substantial opportunity to develop markers for marker-assisted selection (MAS). In all the previous Genome-wide Association Studies of metribuzin tolerance in wheat (as in Pilcher et al., 2017; Bhoite et al., 2019), metribuzin was used as post-emergent. However, in Australia metribuzin is mainly used as pre-emergent in wheat and so far, no association study has been reported where metribuzin was used as pre-emergent.

GWAS is a well-established approach for the marker-trait association to detect genetic variations associated with a complex trait (phenotype) in an unstructured population (Huang and Han, 2014; Jia et al., 2018; Luo et al., 2019; Alqudah et al., 2020). GWAS was initially introduced for human genomic research about a decade ago (Huang and Han, 2014; Scherer and Christensen, 2016). In the past few years, the introduction and application of GWAS in plants have led to major successes in crop improvement (Luo et al., 2019). The GWAS approach has been used for marker-trait association in many field crops such as maize, rice, sorghum, and soybean (Huang and Han, 2014; Luo et al., 2019), Brassica spp. (Gacek et al., 2017), barley (Alqudah et al., 2020), and wheat (Battenfield et al., 2018). GWAS analysis can be considered as conducting multiple regression analysis between the phenotypic data and the SNP markers to find associations (Burghardt et al., 2017). Therefore, this current investigation aims to use 150 wheat cultivars from diverse backgrounds to perform a GWAS using the wheat 90 K Illumina iSelect genotyping assay to identify and validate genomic regions associated with metribuzin tolerance in wheat.



MATERIALS AND METHODS


Genotypes and Their Backgrounds

Seeds of 150 wheat genotypes used for this study were sourced from the germplasm collection of the Australian Grains Gene (AGG) bank, wheat breeding companies/institutions including InterGrain Pty Ltd., Australian Grain Technologies, LongReach Plant Breeders, Edstar Genetics Pty Ltd., Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, and Gansu Academy of Agricultural Sciences. This panel of 150 accessions originates from 20 different countries across 6 continents of the world. The origin, genus, and species are presented in Supplementary Table S1. Many accessions used for this investigation are among the 946 accessions that were characterized by Bhoite et al. (2017) for metribuzin studies that reported a wide range of variability and response to metribuzin application.



Experimental Design and Treatments

The experiment was carried out in a well-equipped temperature-controlled glasshouse at the University of Western Australia (31°57′S, 115°47′E). The experiment was laid out in a randomized complete block design (RCBD) and replicated four times in both treated and control plots. K30-kwikpot seedling trays were used to screen both treated and control plots. The seedling trays consisted of 5 × 6 uniform cells (30 cell/tray), such that each cell represented one genotype, and five trays accommodated 150 genotypes. The seedling trays were filled with homogenous river sand on a glasshouse bench and watered to 100% field capacity. After 48 h, single seeds were sown at 1.5 cm depth in the middle of each cell. The treated plots (20 trays) were sprayed with a metribuzin dose of 400 g a.i. h−1 in a cabinet spray chamber with a flow rate of 106.9 l h−1 following the procedure described in Bhoite et al. (2018). The trays were returned to the glasshouse and randomized on the bench; watering was suspended for 24 h. The control plots were sprayed with only water and separated from the treated plot but kept on the opposite side of the bench while being monitored together (Figure 1).

[image: Figure 1]

FIGURE 1. Phenotypic screening of 150 wheat genotypes response to metribuzin application showing treated plot (right) and control plot (left).




Phenotypic Data Collection and Analysis

Data collection started when two fully expanded leaves (Zadok’s scale 12) were observed on the germinated seedling, and visible symptoms of phytotoxicity were noticed in some of the plants (Zadoks et al., 1974). Herbicide damage was assessed by measuring the relative chlorophyll content of the leaves using a hand-held Minolta SPAD-502 chlorophyll meter (Spectrum Technologies Inc. Plainfield, IL, United States) from a fully expanded leaf. A chlorophyll content Index (CCI), measured as the per cent reduction in chlorophyll content of the treated plants compared to the control plants, was regarded as the effects of metribuzin. Hence, lower CCI indicated higher tolerance and vice versa. Five genotypes failed to germinate during the experiment, and the final genotypes analyzed at the end of the experiment were 145. The CCI was calculated from the formulae:

[image: image]

Phonotypic data were subjected to a group variance test using the Breusch Pagan test with a null assumption of equal group variance. This was followed by a Shapiro test of normality with the null assumption that data are normally distributed. To understand the variation in metribuzin effect among the accessions, a one-way ANOVA was performed in R software by following a fixed effect model: Y ij = μ + g j + ε ij, where Y ij is observed mean, μ population mean, gj effect due to the jth genotype, and ε ij is random error. The broad sense heritability (H2) of the panel was computed based on the ratio of the phenotypic variance to the genotypic variance using the following formula: H2 = δ2g/(δ2g + δ2e), where δ2g and δ2e are the estimated genotypic and error variances, respectively. The estimated genotypic and error variances were calculated as δ2g = (MSg − MSe)/r and δ2e = (MSg − MSe)/r, where MSg = mean square of the accessions, MSe = the residual error, and r = the number of replicates.



Wheat 90 K SNP Illumina iSelect Assay Genotyping

DNA samples were extracted from individual genotypes on 3-week-old plants using the cetyl trimethyl ammonium bromide (CTAB) method and stored in TE buffer (pH 8.0; Sharp et al., 1988). High-quality DNA was ensured from the agarose gel electrophoresis and NanoDrop 2000C. A Qubit fluorometer (2.0) was used to assess the DNA concentration utilizing the Qubit ds DNA broad range assay. The populations were genotyped using the wheat 90 K Illumina iSelect array and analyzed by genome studio v2.0 software (Illumina Inc.), following the protocol described previously by Wang et al. (2014). Quality control for genotype calling was done by either removing SNP markers with less than 80% call frequency or excluding SNPs with minor allele frequency (MAF) ≤ 5%. SNPs with > 0.25 heterozygous calls were also removed.



Population Structure and Linkage Disequilibrium (LD) Analysis of the Panel

The population structure of the studied materials was determined following a Bayesian clustering model in STRUCTURE V2.3.4 using K (number of subpopulations) values ranging from 2 to 9. For each K value, five independent runs were performed based on an admixture model, where each run was carried out with 10,000 recorded MCMC (Markov-Chain Monte Carlo) iterations and 10,000 burn-in periods. The output was visualized in Structure Harvester software, and the optimal K number was determined using the second-order change rate of the probability function with respect to K (ΔK). NJ trees and kinship matrix were produced with the software Tassel v5.0 and investigated to validate population stratification.

Pairwise LD among the markers was calculated as a squared allele frequency correlation (r2) between SNP marker pairs in Tassel 5.2.71 with a sliding window of 50 markers. Using a custom R script, the obtained r2 values were plotted against the physical position of the SNPs obtained from the IWGSC RefSeq v2.0 reference genome. A locally weighted polynomial regression (LOWESS) curve was fitted to display the LD decay. LD decay rate was measured as the physical distance at which the average pairwise r2 dropped to half of its maximum value. LD decay was calculated for the whole genome, the three sub-genomes, and individual chromosomes.



GWAS Analysis

GWAS, a marker-trait association tool, was used to map associations between phenotypic traits (CCI) and SNP markers using Tassel v5 (Bradbury et al., 2007). GWAS analysis was carried out using a mixed linear model (MLM) and a kinship matrix using five principal components and Bonferroni as correction (α = 0.05; Scherer and Christensen, 2016; Mourad et al., 2018; Xu et al., 2020). The first five principal components accounted for 26.5% of the total variance among the studied materials (Supplementary Table S2; Supplementary Figure S1). The optimal number of PC was determined by investigating respective contribution, elbow point of scree plot, and distribution pattern in the Q-Q plot. The analysis was initially carried out with a general linear model (GLM): Q matrix (Q + PCA), which generated over 100 associations, and then finally with a mixed linear model (MLM): kingship matrix (K, PCA + K; Q + K) to control for any false associations and population structure due to multiple levels of relatedness (Xu et al., 2020). Hence, MLM generated fewer and stronger associations. To reduce the Type II error rate, a threshold of -log10 (value of p) > 4 was set to call significant QTL (Voss-Fels et al., 2017). GWAS analysis output from TASSEL was then used to prepare Manhattan and Q-Q plots using the R package rMVP on R 4.0 (Yin et al., 2021).



Identification of Candidate Genes

Significant SNP makers identified in the initial analysis were then searched in the Grains Genes database,1 where the physical position of markers was identified within the wheat genome IWGSC RefSeq V1.0. Genes spanning the SNPs genomic region or within 2 Mbp (upstream or downstream) of flanked SNPs markers were analyzed for annotations related to herbicides tolerance, as Brodie et al. (2016) theorized that SNPs might be up to 2 Mbp away from their associated genes. The Traes IDs of the putative genes acquired from the reference genome were further searched on the Ensemble database2 to identify gene function utilizing the high confidence gene annotation of wheat reference genome IWGSC RefSeq V1.0.3 Additional information on molecular and biological functions of the identified genes was also investigated on the InterPro website.4 SNPs that were associated with herbicide tolerance or stress response in plants were considered as putative candidate genes controlling metribuzin tolerance in wheat.



Marker Validation

To validate the genomic regions identified through the GWAS, 30 most tolerant genotypes and 30 most susceptible genotypes identified from the experiment were selected, and fresh leaf samples of the individual genotype were collected for DNA extraction. A cetyl trimethyl ammonium bromide (CTAB) method was used for DNA extraction and then suspended in a 50 μl of TE buffer. A 0.2 μm (0.6 μl) mix of forward and reverse primer (primers were sourced from Sigma Aldrich Oceania Pty Ltd. NSW, Australia) was added to 5 μl Takara EmeraldAmp max master mix containing Taq, MgCl2, dNTPs, and a final 1 μl of DNA sample making a total volume of 15 μl. The PCR reaction was performed using an Eppendorf master cycler programmed at 98o C for 2 min, in 30 cycles at 98o C for 1 min and 50°C annealing temperature for 30 s, 72o C for 30 s, and a final extension at 72°C at 7 min (Xu et al., 2020). A 2% agarose and TBE buffer were used for running electrophoresis for 25 min at 200 volts, and the gel images were visualized using an Eppendorf gel documentation system. The polymorphic bands from gel images for tolerant genotypes were scored as “AA” in the validation process, and the susceptible alleles were scored as “aa” alleles.




RESULTS


Phenotypic Response of Wheat Genotypes to Metribuzin Application

SPAD measurement of the leaves showed a wide range of variation in relative chlorophyll content among the studied genotypes (Supplementary Table S1). The minimum leaf chlorophyll content for the control plant was 27.1, and the maximum was 46.2, whereas those for treated plants were 4.8 to 40.9, respectively. Percent reduction in the chlorophyll content in response to the application of metribuzin ranged from 1.1 to 84.5 (Figure 2; Supplementary Table S1). The ANOVA analysis results show a significant difference (p < 0.001) in CCI among the 145 genotypes following metribuzin application and indicate that sufficient genetic variation exists among the genotypes that can facilitate a positive outcome through GWAS. The heritability (H2) of CCI measure for the 145 accessions was 0.74 and a genotypic variance of 28.69 (Supplementary Table S3).

[image: Figure 2]

FIGURE 2. Frequency distribution of 145 wheat genotypes response to metribuzin application based on the assessment of the chlorophyll content index.




Marker Distribution, Genetic Diversity, and LD Decay of the Wheat Panel

After filtering, there are a total of 46,287 SNP markers remained that were used for association studies in this current investigation. Figure 3 and Supplementary Table S4 show genome-wide marker number, density, and distribution. The B subgenome has the highest number of SNP markers (18,940 SNPs) with a density of 3.7 SNP markers/MB. This is followed by the A subgenome having a total of 15,509 SNP markers with a marker density of 3.1 SNP/Mb. The subgenome with the least SNP number and density is the D subgenome. SNPs are distributed across the genome, i.e., across all the 21 chromosomes of wheat. The chromosome with the highest marker density is 2B having a density of 5.6 Mb, harboring over 4,000 SNP markers. The chromosome with the least SNPs is 4D having only 817 SNPs and a density of 1.6 SNP/Mb.

[image: Figure 3]

FIGURE 3. Distribution of SNPs on different chromosomes of the wheat genome.


The genetic diversity of the studied materials is shown in Figure 4. The model-based population structure analysis showed that the highest ΔK peak at K = 5 indicated the presence of five subpopulations in the panel. The neighbor-joining phylogenetic trees also showed that the wheat lines from different countries were randomly distributed across the five major clusters highlighted in five different colors (red, blue, green, yellow, and violet). The degree of allele sharing among the studied lines has been depicted in the kinship matrix. The matrix showed large proportion of yellow with shades of red in the middle indicating a stratified population structure among the genotypes as represented in other analyses.

[image: Figure 4]

FIGURE 4. Genetic diversity of the 146 wheat lines. (A) Population structure inferred by STRUCTURE at K = 5, (B) Neighbor-joining tree, and (C) Heat map of relatedness (kinship) among the studied materials.


The analysis of linkage disequilibrium showed that the LD decayed rapidly with the increasing physical distance. Half decay distance in the studied panel at arbitrary nominal level of r2 = 0.1 was found to be 1.99 Mbp at the whole-genome level (Figure 5). In the case of sub genome A, B, and D, this value was 1.3, 3.17, and 1.47 Mbp, respectively (Supplementary Table S4). Among the individual chromosome, chromosome 1B had the highest LD decay value (6.79 Mbp), whereas 7D had the lowest (0.45; Supplementary Table S4).

[image: Figure 5]

FIGURE 5. Linkage disequilibrium (r2) across the whole genome plotted against the physical distance of the SNPs.




GWAS Outcomes

The result of the GWAS analysis is described using a Manhattan plot showing the distribution of SNPs across the wheat genome (Figure 6). Nineteen SNP-trait associations were found significant based on the estimation of reduction in chlorophyll content using a threshold value of p of -log10 > 4 (Table 1). The chromosome with the most SNP associations was 6A, followed by 2B. Chromosomes 2B and 6A are flanking a total of 13 MTAs, with three MTAs detected on chromosome 2B and 10 MTAs on chromosome 6A. Chromosomes 3A, 5B, 6B 6D, 7A, and 7B have single MTA each. A Q-Q plot shows the performance of observed value of ps against the expected value of p for association, indicating no effect of population structure and multiple relatedness in SNP prediction (Figure 7). The R2 values for the 19 significant SNPs explaining phenotypic variations range between 11 and 16%, suggesting that the SNPs represent genomic regions associated with metribuzin tolerance (Table 1). Genomic regions with R2 > 10% are considered as major QTLs (Xu et al., 2020). Limited information was found on two SNPs located on chromosome 6A (wsnp_Ku_c20866_30535489 and wsnp_Ku_c20866_30535750; Table 2).

[image: Figure 6]

FIGURE 6. Manhattan plot resulting from GWAS for metribuzin tolerance showing the association between chlorophyll content index and SNP data.




TABLE 1. Significant SNPs identified through GWAS of 145 wheat genotypes in response to application of metribuzin by measurement of the reduction in chlorophyll content.
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FIGURE 7. Q-Q plot resulting from GWAS for metribuzin tolerance showing the association between chlorophyll content index and SNP data.




TABLE 2. Candidate genes identified as associated with metribuzin tolerance based on GWAS of chlorophyll content index from 145 wheat genotypes.
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Candidate Genes for Metribuzin Tolerance

Eight candidate genes were identified within proximity of the flanked SNP markers, while 11 genes were identified within 2 Mbp distance to flanked SNPs (Table 2). TraesCS6A01G326200, located on chromosome 6A, is related to cytochrome P450 pathways that are involved in herbicides stress response in many crops, including wheat. TraesCS6A02G353700, located on chromosome 6A, is involved in chlorophyll biosynthesis, and TraesCS7A02G331000, located on chromosome 7A, is associated in stress-related responses. TraesCS2B01G465200, located on chromosome 2B, involved transmembrane transporter activities relating to xenobiotic detoxification. TraesCS6A01G028800, located on chromosome 6A, is associated with many functions in plants, including stress-related responses. Other 14 genes identified from this study are related to protein binding, protein dimerization activities, ion binding, and oxidation-reductive activities which might be related to plant stress metabolism and could provide insight into metribuzin research in the future.



Validation Result

In this study, five SNPs identified through GWAS were validated using the closest SSR markers to the flanked SNPs. SSR primer sequences (Table 3) were retrieved from the Grain Genes database and used to amplify the sequences of 30 tolerant and 30 susceptible genotypes identified from the phenotypic screening experiment. Polymorphism was observed in only two markers (wms193 and barc1036) validated (Table 3). The amplified product from the gel electrophoresis with “aa” and “AA” alleles corresponds with the susceptible and tolerant genotypes, respectively, as observed during the phenotypic screening experiment (Supplementary Figure S2), suggesting that the primers can be used to differentiate wheat genotypes response to metribuzin application. The mean phenotypic performance of the 30 tolerant and 30 susceptible genotypes was also compared using a t-test (α = 0.05). The result shows that there is a highly significant difference (value of p < 0.001) between the tolerant and the susceptible genotypes confirming the outcomes observed with electrophoresis.



TABLE 3. SSR primers used for validation of 30 top tolerant and 30 most susceptible wheat genotypes.
[image: Table3]




DISCUSSION

The current study represents the first report on GWAS that utilized a panel of wheat cultivars with a wide range of genetic variations to identify genomic regions controlling metribuzin tolerance in wheat when used as a pre-emergent. In this investigation, five chromosomes identified through GWAS had been reported to harbor QTLs associated with herbicide tolerance (mostly metribuzin) in wheat by previous investigations. These include chromosomes 5B (Shi et al., 2020) and 2A, 6A, 7A, and 7B (Bhoite et al., 2018; Xu et al., 2020). QTLs that harbor genes associated with photosynthesis are potential genomic regions controlling metribuzin tolerance in wheat (Bhoite et al., 2018; Xu et al., 2020). The QTLs identified in this investigation explained between 11 and 16% of the phenotypic variation and are considered major QTLs. Studies by Shi et al. (2020) also reported the percent of phenotypic variance explained (PVE) ranged from 11.3 to 27.6 where metribuzin was used as a post-emergent. Therefore, these QTLs represent major genomic regions controlling metribuzin tolerance in wheat. For example, in this current study, 10 MTAs are located on chromosome 6A alone. These MTAs are distributed in three blocks: the first block ranges from 14.60 to 14.62 Mbps containing 4 MTAs, two MTAs in close vicinity of 16.03Mbp, and 4 MTAs 55.95–58.38 Mbps.

Therefore, the SNPs found on 6A could be belonging to 3 haplotype blocks stacked on the same chromosome. Xu et al. (2020) reported one major QTL located on the same chromosome. Hence, chromosome 6A may harbor some major genomic regions for metribuzin tolerance in wheat.

Metribuzin tolerance is a quantitative trait involving the contribution of many loci (Bhoite et al., 2019). This suggests that tolerance to metribuzin may be achieved by contribution from different pathways related to PSII, such as activation of defense mechanism in response to harmful foreign material. QTLs identified through the GWAS approach represent a diverse gene pool because of the immense genetic diversity across the panel of genotypes used and could offer a better insight into the underlying genomic region controlling a quantitative trait of interest such as metribuzin tolerance. The various gene annotations within these loci are critical in understanding the functions of the genomic regions and how they can facilitate the genetics of metribuzin in wheat. The current investigation led to identifying 19 genomic regions, harboring genes with known and unknown functions associated with herbicide tolerance pathways. Pathways containing genes that encode proteins, such as the cytochrome P450 superfamilies, are involved in xenobiotic detoxification in many field crops. Likewise, genes encoding ATP binding cassette (ABC) transporters proteins were reported to perform the function of detoxification in plants. Five of the 19 genomic regions identified in this study were associated with pathways relevant to metribuzin tolerance in wheat (Table 3) as reported by previous investigations. These QTLs are distributed across five wheat chromosomes, with candidate genes having annotations across different pathways related to herbicides, stress, and photosynthesis, including genes with unknown functions. Supplementary Figure S3 shows the distribution of different pathways identified in this study.


Candidate Genes With Annotations Related to Xenobiotic Detoxification

Xenobiotic detoxification of toxic materials, either by modifying the chemical substrate or isolating the chemical from metabolic pathways, is one mechanism that plants adapt to control herbicide stress and develop selectivity (Siminszky, 2006; Xu et al., 2015; Del Buono et al., 2020). This mechanism has been characterized in many field crops, including wheat (Xu et al., 2020). A widely reported herbicide detoxification pathway in plants is the cytochrome P450 (CYP; Siminszky, 2006; Xu et al., 2015, 2020; Bhoite et al., 2019; Nguyen and Dang, 2021). Recently, Bhoite et al. (2019) and Xu et al. (2020) reported CYP superfamilies as one of the major pathways involved in detoxifying metribuzin in wheat and suggested that this superfamily is the pathway implicated most with metribuzin detoxification. Our investigation also revealed that a candidate gene located on chromosome 6A, TraesCS6A01G326200, is involved in cytochrome P450 activities. These results confirm the contribution of this genomic region in herbicide resistance. Moreover, the CYP pathway has been reported to be involved in metabolic detoxification of herbicide in weeds such as black grass (Bhoite et al., 2019) and attributed as the source of herbicide resistance mechanism of Lolium rigidum (Xu et al., 2020). Identifying this gene in this study resulted from the damage inflicted by metribuzin on the PSII through oxidative stress and suggests that this genomic region may be involved in detoxifying metribuzin molecules. Future research on this topic could focus on studying gene expression through transcriptome analysis to pinpoint the regions associated with CYP in wheat accurately.

Another candidate gene located on chromosome 2B, TraesCS2B01G465200, encoding ATP binding cassettes (ABC), has been reported to carry out various functions in living organisms, including xenobiotic detoxification (Davidson et al., 2008; Bhati et al., 2015; Lara et al., 2015). In plants, ABC protein’s primary function is to detoxify harmful materials such as herbicides (Chauhan et al., 2009; Lane et al., 2016). Many ABC proteins have been used to characterize various traits of agricultural importance, including herbicide tolerance (Ezzaldin et al., 1985; He et al., 2018; Do et al., 2021). For example, overexpressed AtPgpl protein from the ABC family was utilized by Lloyd et al. (2003) to facilitate a multi-herbicide resistance in A. thaliana. A similar approach was also used to confer paraquat tolerance in A. thaliana (Xi et al., 2012). In wheat, ABC proteins extracted from seedlings display differential expression for glutathione-mediated detoxification and indicates potential for stress tolerance (Lim et al., 2003; Bhati et al., 2015). Different reports have implicated ABC transporters as metribuzin detoxification pathways in wheat. For instance, Bhoite et al. (2018) reported the involvement of ABC transporters in metribuzin tolerance in wheat and identified genomic regions linked to this superfamily. Xu et al. (2020) also identified genomic regions (QTLs) using bi-parental populations and indicated ABC transporters as a metribuzin detoxification pathway. Current and previous studies indicated that targeted breeding focusing on the genes related to xenobiotic detoxification for developing metribuzin tolerant cultivars would be an essential improvement in dryland farming systems like Western Australia, which depends mainly on herbicides for weed management in wheat paddocks.



Candidate Gene With Annotation Related to Plant Stress Responses

Stress in plants creates hormonal imbalances, leading to distorted metabolic function and interfering with plant growth and development. In response to stress, plants often adjust various physiological functions to accommodate or compensate for the affected hormone and adapt to harsh environmental conditions (An et al., 2019). A candidate gene, TraesCS6A01G353700, located on chromosome 6A, codes for Chlorophyllide a oxygenase (CAO), which plays a critical role in stress-related responses. CAO is the enzyme responsible for catalyzing chlorophyll biosynthesis through oxidation of methyl group from chlorophyll a to chlorophyll b. Hence, CAO is necessary for chlorophyll synthesis in green plants (Yang et al., 2016). The increased chlorophyll content is linked to higher photosynthetic efficiency in crops (Yang et al., 2016), whereas a decrease in chlorophyll content would decrease photosynthetic ability leading to leaf senescence (Pilcher et al., 2017). Herbicides interfere with photosynthesis by decreasing the synthesis of green pigments in chloroplast and eventually reducing chlorophyll content (Yang et al., 2016; Sharma et al., 2020). This suggests that oxidative stress caused by metribuzin application can cause similar effects of chlorophyll degradation. Hence, genotypes with CAO would be expected to have the stay-green phenotype indicative of tolerance to metribuzin. For example, Biswal et al. (2012) used an overexpressed CAO enzyme to improve the photosynthetic efficiency of tobacco plants, thereby improving their potential to withstand prolonged stress. More importantly, a recent transcriptome analysis by Bhoite et al. (2021) implicated chlorophyll a and b as contributors to metribuzin tolerance in wheat, consistent with the current findings.



Candidate Genes With Annotations Related to Photosynthesis

Two candidate genes (TraesCS7A02G331000 and TraesCS6A01G028800) identified from this study with functional annotations related to serine, and cysteine-type peptidase activities are known to be involved in defense against pest and pathogen, and in the regulation of plant transition from development through senescing (Jamal et al., 2012; Clemente et al., 2019). As mentioned earlier, herbicide application affects the functioning of the PSII and results in ROS production, leading to degradation of the chlorophyll content and eventual leaf senescing. The endopeptidase role in the PSII reaction center is linked to the D1 protein, consisting predominantly of serine-type endopeptidase (Misra et al., 1991). Genomic regions with functional annotations related to photosynthesis either through control of chlorophyll degradation or control of the activity of the PSII presents excellent potentials for herbicide tolerance in plants. Zhang et al. (2007) showed that leaf senescing in cucumber is directly correlated to increased activity of endopeptidase activities, while peptidase activities are influenced by the reduction in leaf chlorophyll content, suggesting that endopeptidases are a major part of leaf senescing. Pilcher et al. (2017) studied gene expression of susceptible and tolerant wheat cultivars in response to metribuzin application and found out that highly regulated genes under the effects of metribuzin had six times higher senescing associated proteins in tolerant lines compared to susceptible lines. Therefore, during herbicide stress, the underlying factor leading to leaf senescing has to do with the prevention of peptidase activity which is critical for transferring and converting light into energy in the PSII. Hence, a photosynthetic inhibition of the PSII with herbicides such as metribuzin can influence endopeptidase activities, leading to disruption of electron transfer and chlorophyll degradation, as observed in this current study. This outcome is consistent with Bhoite et al. (2018) that proteins associated with the regulation of leaf senescing were found responsible for metribuzin tolerance in wheat. Even though endopeptidase activities and functions are complex and not well understood, and not all endopeptidase proteins are involved in leaf senescence, serine-type endopeptidase is involved with leaf senescing and photosynthesis (Zhang et al., 2007).



Other Candidate Genes Identified

Other candidate genes identified in this study with annotations related to protein dimerization and binding activities (Traes CS2B01G463800, Traes CS6A02G028500, Traes CSU01G079600, Traes CS3A02G320200, Traes CS3A02G320300, and Traes CS6B01G040400) and metal ion binding activities (Traes CS6A02G028700 and Traes CS3A02G32020) are not implicated in herbicide or stress-related activities yet. However, they could indirectly be involved in metabolic activities that impact the activities of the genomic regions responsible for metribuzin tolerance (Xu et al., 2020). For example, in wheat, the mutated NAC protein binding domain required for protein dimerization has shown positive regulation of leaf senescing (Harrington et al., 2019). Some genes identified from this investigation had annotation of unknown functions, while others had limited information available or unrelated to herbicide tolerance mechanism and, therefore, offer limited potentials.

The approach used in this investigation to identify genomic regions responsible for metribuzin tolerance through GWAS by measuring the relative chlorophyll content index has proven to be very effective in identifying candidate genes for metribuzin tolerance in wheat. However, use of only one parameter for assessing the effect of metribuzin herbicide may limit the number of potential metabolic pathways that can be identified. This, however, did not reduce the validity of the candidate genes identified, only signals that future research may focus on investigating GWAS of metribuzin tolerance in wheat by assessing both the reduction in leaf chlorophyll content through SPAD assessment and leaf damage assessment through visual scoring as done by other investigators such as Bhoite et al. (2019) and Xu et al. (2020).
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Spike compactness (SC) and length (SL) are the components of spike morphology and are strongly related to grain yield in wheat (Triticum aestivum L.). To investigate quantitative trait loci (QTL) associated with SC and SL, a recombinant inbred lines (RIL) population derived from the cross of Bailangmai (BLM, a Tibet landrace) and Chuanyu 20 (CY20, an improved variety) was employed in six environments. Three genomic regions responsible for SC and SL traits were identified on chromosomes 2A and 2D using bulked segregant exome sequencing (BSE-Seq). By constructing genetic maps, six major QTL were repeatedly detected in more than four environments and the best linear unbiased estimation (BLUE) datasets, explaining 7.00–28.56% of the phenotypic variation and the logarithm of the odd (LOD) score varying from 2.50 to 13.22. They were co-located on three loci, designed as QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D, respectively. Based on the flanking markers, their interactions and effects on the corresponding trait and other agronomic traits were also analyzed. Comparison analysis showed that QSc/Sl.cib-2AS and QSc/Sl.cib-2AL were possibly two novel loci for SC and SL. QSc/Sl.cib-2AS and QSc/Sl.cib-2D showed pleiotropic effects on plant height and grain morphology, while QSc/Sl.cib-2AL showed effects on spikelet number per spike (SNS) and grain width (GW). Based on the gene annotation, orthologous search, and spatiotemporal expression patterns of genes, TraesCS2A03G0410600 and TraesCS2A03G0422300 for QSc/Sl.cib-2AS, and TraesCS2D03G1129300 and TraesCS2D03G1131500 for QSc/Sl.cib-2D were considered as potential candidate genes, respectively. These results will be useful for fine mapping and developing new varieties with high yield in the future.
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INTRODUCTION

Hexaploidy wheat (Triticum aestivum L.), one of the most widely planted food crops, provides approximately 20% of the dietary calories in food products consumed worldwide. To satisfy the demand of the rapidly expanding global population, wheat production needs annual growth of approximately 2% during the next three decades, but the actual growth rates are generally not more than 1% each year (Gao et al., 2016a; Cao et al., 2020; Saini et al., 2022). Therefore, genetic improvement in yield potential combined with a better field management system may be a feasible strategy to increase the grain yield (Yang et al., 2020). The spike is the reproductive organ of the wheat plant and is an essential component to produce and hold grains (Faris et al., 2014). The morphological traits of a spike, including spike compactness (SC), spike length (SL), and spikelet number per spike (SNS), have been found to be greatly associated with grain yield in previous studies (Chai et al., 2019; Wolde et al., 2019; Li et al., 2021a; You et al., 2021). Therefore, the identification of major and stable quantitative trait loci (QTL)/genes for SC and SL is an efficient strategy to cultivate and domesticate high-yield varieties with the ideal plant architecture in wheat for breeders (Ma et al., 2007; Faris et al., 2014).

Three major genes are associated with spike morphology: Compactum (C), Sphaerococcum (S), and Q (Fan et al., 2019). The C gene, anchored on the long arm of chromosome 2D near the centromere, shows pleiotropic effects on spike compactness, grain size and shape, and the grain number per spike (Johnson et al., 2007). The S gene is located on chromosome 3D and defines a loose spike and semispherical grains (Faris et al., 2014). The Q gene, located on the long arm of chromosome 5A, is a member of the AP2 class of transcription factors and shows pleiotropic effects on rachis fragility, glume shape and tenacity, spike length, plant height, and heading date (Fa Ris and Gill, 2002; Faris et al., 2003; Simons et al., 2005; Xu et al., 2018). Meanwhile, three groups of genes, vernalization (Vrn, vernalization requirement), photoperiod (Ppd, photoperiod sensitivity), and earliness per se (Eps), control life-cycle duration which affects the SC and SL in wheat (Kato and Yamagata, 1988; Wang et al., 2014). Vrn and Ppd genes commonly regulated the transition from the vegetative to reproductive growth phase, thus affecting heading, flowering, and maturity time (Laurie et al., 1995; Kane et al., 2005; Dubcovsky et al., 2006; Hemming et al., 2008). The earliness per se gene Eps-Am1 from diploid wheat Triticum monococcum affects the heading time, spike development, and spikelet number (Faricelli et al., 2016). However, Earliness per se 3 (Eps-3) may have functions in the initiation of spikelet meristem in wheat (Li et al., 2018). Furthermore, MADS-box genes, FUL2 and FUL3, play critical and redundant roles in the development of spikelets and spikes and also affect flowering time and plant height in wheat (Li et al., 2019a). Moreover, Rht5 (Chen et al., 2018a), Rht8 (Kowalski et al., 2016), Rht22 (Peng et al., 2011), Rht24 (Tian et al., 2017), and Rht25 (Mo et al., 2018) are GA-responsive and all exhibit pleiotropic effects on SC and SL in addition to reducing height. TasgD1, a grain-shaped gene, is identified by the positional cloning approach and shows pleiotropic effects on spike morphological traits (Cheng et al., 2020).

Similar to other yield-related traits, SC and SL are complex quantitative traits that are influenced by the interaction between genetic and environmental factors. QTL for SC and SL were found to be distributed on all the 21 chromosomes, which was based on genetic linkage analysis in bi-parental genetic populations and genome-wide association study (GWAS) over the past decades (Kumar et al., 2006; Marza et al., 2006; Deng et al., 2011; Cui et al., 2012, 2014; Jia et al., 2013; Patil et al., 2013; Katkout et al., 2014; Lee et al., 2014; Liu et al., 2014; Fan et al., 2015; Li et al., 2016, 2019b; Zhai et al., 2016; Chen et al., 2017; Sheoran et al., 2019). However, only a few of them were identified to be stable in multiple environments and were validated in different genetic backgrounds, which restrict the favorable allele usage in wheat breeding programs.

In the present study, a recombinant inbred lines (RIL) population obtained by the crossing of Bailangmai (BLM) and Chuanyu 20 (CY20) was utilized for the dissection of the genetic determinants of SC and SL. The exome capture sequencing of bulked segregant analysis (BSE-Seq) was used to identify the genomic regions that are responsible for the two traits and polymorphic SNPs and InDels for marker development, which was further used to construct the genetic map. Herein, the objectives of this study were to: (i) phenotypically evaluate the performance of SC and SL in the BC20 population in multiple environments; (ii) dissect the genomic regions controlling SC and SL by BSE-Seq; (iii) identify stable and major QTL, and analyze their effects and interactions; and (iv) predict candidate genes for gene cloning.



MATERIALS AND METHODS


Plant Materials and Field Experiments

A RIL (F10) population with 182 lines was developed from an F2 population derived from the cross of Bailangmai × Chuanyu 20 (BLM/CY20, BC20) by the single-seed descent method. BLM is a Tibet landrace that can resist extreme stress conditions, such as cold and drought, and shows strong tillering capacity. CY20 is an improved variety with high yield.

The parents and lines of the BC20 population were grown at a conventional sowing time across two different sites over three growing seasons (that is, six environments), including Shuangliu (103°52′E, 30°34′N) in 2019–2020 (E1), Shifang (104°11′E, 31°6′N) in 2019–2020 (E2), Shifang in 2018–2019 (E3), Shuangliu in 2018–2019 (E4), Shuangliu in 2017–2018 (E5), and Shifang in 2017–2018 (E6). A randomized complete block design was adopted for all of the trials. Each line was represented by a single 1-m row plot with a sowing rate of 11 seeds and a spacing of 20 cm between the rows. Two replicates were used in this study. Field management was performed according to the local standard practices for wheat production.



Phenotypic Evaluation and Statistical Analysis

After harvesting the whole plants at maturity, eight representative plants of each line and parents were selected randomly to measure the phenotype of agronomic traits, including plant height (PHT), productive tiller number (PTN), spike length (SL), spikelet number per spike (SNS), spike compactness (SC), grain number per spike (GNS), 1,000-grain weight (TGW), grain length (GL), grain width (GW) and grain roundness (GR). PHT was measured from the plant base to the tip of the main spike excluding the awns. SL was the length from the base of the stalk to the top of the main spike excluding the awns. SNS was determined by counting the number of spikelets in the main spike. SC was calculated by dividing SNS by SL. The traits of grains were evaluated by using the software SC-G (WSeen, Hangzhou, China).

Basic statistical analyses, frequency distribution, Pearson’s correlations analyses among different traits, and Student’s t-test (P < 0.05) for evaluating the significance of difference were performed using the software SPSS 20 (IBM SPSS, Armonk, NY, United States). The best linear unbiased evaluation (BLUE), combined QTL detection and effect analyses were performed using QTL IciMapping 4.21. The broad-sense hereditary capacity (H2) of each trait was estimated according to the method described by Smith et al. (1998) and Muqaddasi et al. (2019).



Bulked Segregant Analysis and Exome Sequencing

The genomic DNA of each line and the parents was isolated from 14-day-old seedlings using the modified cetyl trimethyl ammonium bromide (CTAB) method, followed by RNase-A digestion. The integrity of DNA was checked and confirmed on the agarose gels, and the concentration of DNA was calculated using a spectrophotometer. Based on the phenotypic values obtained in six environments and the BLUE datasets, all the lines in each environment were arranged in order from small to large separately. The lines within two tails (20%) in the BLUE datasets and simultaneously in at least five of the six environments were selected to bulk pools. The genomic DNA was bulked into four extreme pools by collecting equal quantities (1 μg) of DNA from 30 individuals with extremely high SC value (SC-H), low SC value (SC-L), high SL value (SL-H), and low SL (SL-L) value in the BC20 population, respectively. Preparation and resequencing of six DNA libraries from BLM, CY20, SC-H, SC-L, SL-H, and SL-L pools were conducted by Bioacme Biotechnology Co., Ltd. (Wuhan, China2).

Clean data, without the reads containing sequencing adapters, low-quality bases, or undetected bases, were used for the subsequent analysis (Chen et al., 2018b). The alignment tool BWA (alignment of burrows-wheeler) was used to align the clean data to the Chinese Spring (CS) reference genome sequence (RefSeq) v1.0 released by the International Wheat Genome Sequencing Consortium (IWGSC) (Li, 2013). BCFtools were used to detect and extract the single nucleotide polymorphism (SNP) and InDel sites (Danecek et al., 2016). The SNP and InDel sites were annotated using ANNOVAR, which mainly included different regions of the genome and different types of exon regions (Kai et al., 2010). Euclidean distance (ED) and SNP-index methods were used to screen the SNP and InDel sites with significant differences between the progeny mixed pools of two traits in this study (Abe et al., 2012; Hill et al., 2013; Takagi et al., 2013; Li et al., 2020).

Axiom®Wheat 660K Genotyping Arrays, a high-density SNP chip for wheat, was also used for detecting the polymorphic SNPs between the two parents and was carried out by China Golden Marker (Beijing, China).



Development of Molecular Markers

Based on the BSE-Seq analysis and wheat 660K SNP assay, SNPs and InDels in the target genomic regions between BLM and CY20 were screened to design Kompetitive Allele-specific PCR (KASP) markers and simple sequence repeat (SSR) markers using the online websites of Triticeae Multi-omics Center3 and Galaxy4, respectively. In the primer designing of KASP markers, the FAM and HEX probe sequences were added to the 5′ terminal of the primers. The KASP assays were performed in QuantStudio™ 3 Real-Time PCR System designed by Thermo Fisher Scientific with the reaction mixture containing 5 μl of 2 × master mix, 0.8 μl of primer mix, 3 μl of ddH2O, and 2 μl of DNA template (50–100 ng/μl). Touchdown PCR conditions were hot-start activation at 95°C for 15 min, followed by a touchdown phase of 10 cycles (95°C for 20 s, initial touchdown at 61°C, and then decreased by 0.6°C per cycle for 1 min), and finally 26 cycles of regular PCR (95°C for 20 s; 55°C for 40 s). The final fluorescence was read at 35°C for 30 s. If the clustering was not significant, more cycling and resting steps were required at the following conditions: 94°C for 20 s, followed by 55°C for 40 s (2–5 cycles per step).

The regular PCR for SSR primers was conducted in a 20 μl reaction volume consisting of 10 μl of 2 × Taq Master Mix, 1 μl of primer mixture (10 μM), 0.5 μl of DNA template (∼100 ng/μl), and 8.5 μl of ddH2O. The conditions followed for SSR PCR were similar to those followed for PCR. Polyacrylamide gel (8%) electrophoresis was used for separating the amplification products.



Genetic Map Construction and Quantitative Trait Loci Detection

JoinMap 4.1 and QTL IciMapping 4.2 were used for genetic map construction and QTL detection in this study separately (Meng et al., 2015). First, the markers that were redundant and had a missing rate >20% were discarded. Then, the function of “Population” in JoinMap 4.1 was used to create groups with LOD score values ranging from 2 to 10. Finally, the Kosambi mapping function was used to order the markers with the parameters being set as LOD ≥ 5 and round = 3 in JoinMap 4.1. QTL detection in each environment was performed by IciMapping 4.2 based on the Biparental Populations (BIP) module with the inclusive composite interval mapping (ICIM), and a test of 1,000 permutations was performed to identify the LOD threshold that corresponded to a genome-wide false discovery rate (FDR) of 5% (P < 0.05). The missing phenotype was represented as −100 in the QTL analysis (Li et al., 2021c). The QTL with overlapping intervals were considered to be equivalent and named according to the rules of International Rules of Genetic Nomenclature5.



Prediction of Candidate Genes

The physical positions of the markers, derived from the genetic map, were converted from IWGSC RefSeq v1.0 to RefSeq v2.1 using the tools of GetSequence and BLAST of the WheatOmics (see Text Footnote 3) (Zhu et al., 2021). Genes between the flanking markers were extracted using the Interval Tools of the WheatOmics. The annotations and functions of the given gene were analyzed using UniProt6. The expression pattern analysis of candidate genes was performed by using GeneExpression of WheatOmics. The expression data of each gene in different tissues were normalized using the ZeroToOne method and then presented in the HeatMap drawn by TBtools (Chen et al., 2020a). Meanwhile, to analyze the potential candidate genes, non synonymous SNPs in the exon region of genes in the target regions were collected using the BSE-Seq result.




RESULTS


Phenotypic Variation and Correlation Analysis

Significant differences in SC and SL between BLM and CY20 were detected in multiple environments and the BLUE datasets (Figure 1 and Table 1). As observed, CY20 had a longer and less compact spike than BLM. In the BC20 population, both SC and SL showed wide and significant variations, with SL ranging from 7.12 to 18.33 cm and SC ranging from 1.13 to 3.04 (Table 1). According to the perspective of skewness, kurtosis, and the pattern of continuous distribution for SC and SL, both traits showed typical normal distribution and obvious bidirectional transgressive segregation appearance in multiple environments and the BLUE datasets, indicating that they are common quantitative traits controlled by multiple genes (Figure 2 and Table 1). The broad heritability (H2) of SC and SL was 93.46% and 93.49%, and the coefficient of variation was 13.89–16.47% and 14.53–17.81% for SC and SL, respectively. These results indicated that both SC and SL were environmentally stable and mostly controlled by genetic factors (Table 1). Moreover, the results of the phenotypic evaluation, combined analyses of variance (ANOVA), and broad-sense heritability (H2) estimates for other agronomic traits, such as PHT, PTN, SNS, GNS, TGW, GL, GW, and GR, showed typical normal distribution and obvious bidirectional transgressive segregation appearance in the BLUE datasets, which was similar to those observed for SC and SL (Table 1 and Supplementary Tables 1, 2). Furthermore, significant positive correlations for SC and SL were also detected between six different environments in the BC20 population, with the Pearson’s correlation (r) value of 0.55–0.92 and 0.64–0.89 for SC and SL, respectively (Supplementary Table 3).
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FIGURE 1. Spike morphology of the parental lines BLM and CY20 growing in the Shuangliu region (2019–2020 growing season). The bar represents 1 cm.



TABLE 1. Phenotypic variation and heritability (H2) of spike compactness (SC) and spike length (SL) for parents and BC20 lines in different environments and the BLUE datasets.
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FIGURE 2. Frequency distribution of BC20 lines for spikelet compactness (SC) and spike length (SL) in six environments and the BLUE datasets.


The coefficients of pair wise Pearson’s correlations between SC, SL and other yield-related traits were determined to evaluate trait correlations using the BLUE datasets. A significant and negative correlation was detected between SC and SL, with r = −0.76 and P < 0.001 (Figure 3). SL was strongly positively correlated with PHT and weakly negatively correlated with PTN. In contrast, SC was significantly negatively correlated with PHT and positively correlated with PTN. SNS was the only trait that was significantly positively correlated with SL and SC, with P < 0.001 (Figure 3). Moreover, SC negatively correlated with the grain traits TGW (r = −0.22) and GW (r = −0.25) at a significance level of P < 0.01. However, no significant correlation was observed between SC, SL and GNS, GL/GW, GL, GR, and between SL and TGW, GW (Figure 3).


[image: image]

FIGURE 3. Coefficients of pair-wise Pearson’s correlations between spike compactness (SC), spike length (SL), plant height (PHT), productive tiller number (PTN), spikelet number per spike (SNS), grain number per spike (GNS), thousand-grain weight (TGW), grain width (GW), grain length (GL), GL/GW ratio, and grain roundness (GR) in the BC20 population. *, **, and *** represent significance at P < 0.05, P < 0.01, and P < 0.001, respectively.




The Exome Capture Sequencing of Bulked Segregant Analysis for Spike Compactness and Spike Length

The exome capture sequencing of bulked segregation (BSE-Seq) analysis was performed to identify the genomic regions for SC and SL, and the results were compared with the Chinese Spring (CS) reference genome v1.0 by IWGSC. Then, we invented the final physical regions from CS RefSeq v1.0 into CS RefSeq v2.1.

The total number of clean reads after filtering was 795,072,196, and the number of clean bases obtained from a total of six pools was 112.00 Gb, with clean reads ranging from 83,760,834 to 161,211,222 for a single pool, which indicated that the sequencing data were available for the subsequent analysis. At least 99.78% of the captured sequence fragments could be aligned to the CS RefSeq v1.0 by IWGSC, and the mean sequencing depth varied from 28.19 to 61.75×, with the exome region occupying more than 77.43% in each pool. These results indicated that the BSE-Seq assays among the pools were efficient in the present study. After SNP/InDel calling with BCFtools, a total of 3,980,637 SNPs and 231,018 InDels were obtained within all the six pools, of which 4,425,722 SNPs and 199,018 InDels were inconsistent with the reference sequence (Supplementary Table 4).

The genomic regions for SC were discovered on the chromosomes 2A and 2D based on the ED and SNP-index methods (Figure 4 and Supplementary Table 5). In addition, the genomic regions for SL were detected on the chromosomes 2A, 2B, 2D, 3B and 5A by ED method, and only on 2A by SNP-index method (Figure 4 and Supplementary Table 5). When two methods were taken into account at the same time by IWGSC RefSeq v2.1, two genomic regions associated with SL were identified in the regions of physical interval 182.16–194.35 and 581.7–660.76 Mb on chromosome 2A with 220 SNPs and 737 SNPs, and three genomic regions associated with SC were identified in the regions of 142.57–206.6 and 620.87–656.65 on chromosome 2A and 603.08–606.63 Mb on chromosome 2D with 602, 219, and 199 SNPs, respectively (Figure 4 and Supplementary Table 5). To investigate the polymorphism between two parents, a total of 2,463 SNP variant sites were discovered in the interesting regions of the chromosomes 2A and 2D between BLM and CY20 based on the Wheat 660K SNP array assay (Supplementary Table 6).
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FIGURE 4. Locally weighted scatterplot smoothing (LOESS) fitting Manhattan for spikelet compactness (SC) and spike length (SL). Panels (A–D) were the LOESS fits of ED4 and | Δ(SNP-index)| for SL and SC, respectively. The cutoff of the two methods for SL and SC are shown by the dotted lines, and the threshold values for (A–D) were 0.0935, 0.3734, 0.3095, and 0.5107, respectively.




Genetic Map Construction and Quantitative Trait Loci Identification

To confirm the preliminarily identified genomic regions responsible for SC and SL, SNPs and InDels in the target regions were converted into KASP and SSR markers to construct the genetic map. In total, 40 KASP markers and two SSR markers were used for the construction of the genetic maps by genotyping 182 lines of the BC20 population (Supplementary Table 7). The resulting linkage maps of the interesting regions on chromosomes 2AS, 2AL, and 2D spanned 13.6, 16.7, and 1.65 cM in length, and contained 21 KASP and one SSR markers, 11 KASP markers, eight KASP and one SSR markers, respectively (Figure 5 and Supplementary Table 7). The phenotypic data of SC and SL evaluated in the six environments and their corresponding BLUE datasets were used for QTL mapping, and the BLUE datasets were treated as an additional environment. A total of six QTL, three for SC and three for SL, were repeatedly detected in at least four environments and the BLUE datasets, indicating that they were environmentally stable (Table 2).
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FIGURE 5. Genetic maps of three major QTL, QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D, and their effects on spike compactness (SC) and spike length (SL) in BC20 populations. (A) Integrated genetic map containing the marker Kasp_AX-158596649 and Kasp_AX-110617782 and the effect of QSc/Sl.cib-2AS on SC and SL in the BC20 population. (B) Integrated genetic map containing the marker Kasp_2A-991 and the effect of QSc/Sl.cib-2AL on SC and SL in the BC20 population. (C) Integrated genetic map containing the marker Kasp_A014484 and the effect of QSc/Sl.cib-2D on SC and SL in the BC20 population. BLM and CY20 indicate the lines with the homozygous alleles from BLM and CY20, respectively. *, **, and *** represent significance at P < 0.05, P < 0.01, and P < 0.001, respectively.



TABLE 2. Quantitative trait loci (QTL) for spike compactness (SC) and spike length (SL) identified from the candidate region using BSE-Seq in different environments and the BLUE datasets.
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Three QTL, QSc.cib-2AS, QSc.cib-2AL, and QSc.cib-2D, were detected for SC. QSc.cib-2AS was detected in all the environments and the BLUE dataset showed the LOD values ranging from 2.58 to 5.34 and explained 7.00–13.24% of the phenotypic variance. QSc.cib-2AL was also detected in the six environments and the BLUE dataset and explained 9.32–15.26% of the phenotypic variance, together with the LOD values ranging from 3.56 to 6.71. QSc.cib-2D was detected in the BLUE dataset and five environments with LOD values in the range of 7.61–13.22, which explained 18.44–28.56% of the phenotypic variance. All the favorable alleles of the three loci were contributed by BLM (Table 2).

Three QTL, QSl.cib-2AS, QSl.cib-2AL, and QSl.cib-2D, were detected for SL in the BC20 population. QSl.cib-2AS was stably detected in four environments and the BLUE dataset, and it explained 6.16–9.08% of the phenotypic variance with LOD values ranging from 2.5 to 4.01. QSl.cib-2AL was detected in five environments and the BLUE dataset, with the LOD values varying from 2.85 to 5.12 and explaining 7.37–12.53% of the phenotypic variance. QSl.cib-2D was detected in all the environments and the BLUE dataset with the phenotypic variance explained (PVE) ranging from 11.36% to 22.26% and the LOD values varying from 4.51 to 9.95. CY20 contributed all the favorable alleles of the three loci.

Moreover, several QTL for PHT, TGW, and GL were detected on chromosome 2A (Supplementary Table 8). Among them, QPht.cib-2AS and QPht.cib-2AL were detected in at least three environments and explained 7.06–10.16% and 8.29–10.80% of the phenotypic variance, respectively.

Although the intervals of QSl.cib-2AS and QSc.cib-2AS on the chromosome arm 2AS showed different genetic positions, analyses of the corresponding physical locations revealed that the genomic region of QSc.cib-2AS contained the region of QSl.cib-2AS. Moreover, two QTL QSl.cib-2AL and QSc.cib-2AL on chromosome arm 2AL shared the same flanking marker Kasp_2A-991. In addition, the two QTL (QSl.cib-2D and QSc.cib-2D) on chromosome 2D had the same flanking markers of KASP_A014486 and KASP_A014484 with identical genetic intervals and physical regions (Figure 5 and Table 2). Thus, the three loci were temporarily designed as QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D.



Effects of QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D on Spike Compactness and Length in BC20 Population

For QSc/Sl.cib-2AS and QSc/Sl.cib-2D, significant differences (P < 0.001 in all environments and BLUE except E6, P < 0.01 only in E6) in SC and SL were detected between the two groups among all the environments and the BLUE datasets. For QSc/Sl.cib-2AL, significant differences (P < 0.001 in BLUE and E1, P < 0.01 in E2 and E3, and P < 0.05 in E4 and E6) in SL were detected between the two groups, and no significant difference in SL was observed in E5, with the spike length increased by 4.97% of the group of lines with homozygous alleles from BLM; however, strong differences (P < 0.001) in SC were detected in all the environments and the BLUE dataset (Figure 5).

Since the effects of QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D on SC and SL could be detected at the same time, their additive effects on the corresponding traits were analyzed. Based on the genotyping data of tightly linked markers of three QTL, the lines from the BC20 population were divided into the following eight groups: A, lines carrying the alleles from CY20 at all the three loci; B, lines only carrying the alleles from BLM at QSc/Sl.cib-2AS; C, lines only carrying the alleles from BLM at QSc/Sl.cib-2AL; D, lines only carrying the alleles from BLM at QSc/Sl.cib-2D; E, lines carrying the alleles from BLM at QSc/Sl.cib-2AS and QSc/Sl.cib-2AL; F, lines carrying the alleles from BLM at QSc/Sl.cib-2AS and QSc/Sl.cib-2D; G, lines carrying the alleles from BLM at QSc/Sl.cib-2AL and QSc/Sl.cib-2D; H, lines carrying the alleles from BLM at QSc/Sl.cib-2AS, QSc/Sl.cib-2AL and QSc/Sl.cib-2D (Figure 6). Compared with the lines carrying the alleles from CY20 at QSc/Sl.cib-2AS, QSc/Sl.cib-2AL and QSc/Sl.cib-2D, the lines carrying alleles of BLM at one of the two loci QSc/Sl.cib-2AS and QSc/Sl.cib-2D, thus group B and D, decreased SL by 11.17% and 12.67%, respectively, and the loci QSc/Sl.cib-2D alone increased SC by 12.45% (P < 0.01). The lines with homozygous alleles of BLM at two of the three loci, for example group E and F, significantly reduced SL by 9.14% and 20.6%, respectively, and simultaneously group E significantly increased SC by 11.24%. Interestingly, the combination of lines with alleles from BLM at all three loci contributed to a 21.22% decline in SL and a 28.76% increase in SC with P < 0.001, which were higher than the combination lines with one or two loci from BLM (Figure 6).


[image: image]

FIGURE 6. Additive effects of three QTL on spike compactness (SC, B) and spike length (SL, A), respectively. Symbols + and – represent lines with and without the positive alleles for the target quantitative trait loci (QTL) based on the flanking marker of the corresponding QTL, respectively. *, **, and *** represent significance at P < 0.05, P < 0.01, and P < 0.001, respectively.




Effects of QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D on Yield-Related Traits in BC20 Population

The BLUE datasets were further used to analyze the effects of QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D on other yield-related traits in the mapping populations. For QSc/Sl.cib-2AS, the lines with homozygous alleles from BLM had lower PHT (P < 0.001) and GL (P < 0.05) when compared to the lines carrying the alleles from CY20 (Figure 7). At the locus QSc/Sl.cib-2AL, the lines with alleles from BLM had lower SNS and higher GW (P < 0.05) when compared to the lines carrying the alleles from CY20 (Figure 7). For QSc/Sl.cib-2D, lines possessing the alleles from BLM showed a significant decrease in PHT and GR (P < 0.01) and a strong increase in GLW (P < 0.05) and GL (P < 0.01). No significant effects were observed on the traits of PTN, GNS, and TGW between the two groups in the BC20 population (Figure 7). Moreover, no significant difference was detected in SNS, GLW, GW, and GR between the two groups at QSc/Sl.cib-2AS, no significant difference in PTN, GLW, GL and GR at QSc/Sl.cib-2AL, and no significant effects in SNS and GR at QSc/Sl.cib-2D (Figure 7). In addition, for QSc/Sl.cib-2AS and QSc/Sl.cib-2D, lines carrying alleles from BLM simultaneously and significantly reduced PHT, but had opposite effects on GL (Figure 7).
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FIGURE 7. Effects of QSc/Sl.cib-2AS (A), QSc/Sl.cib-2AL (B), and QSc/Sl.cib-2D (C) on plant height (PHT), productive tiller number (PTN), spikelet number per spike (SNS), grain number per spike (GNS), thousand grain weight (TGW), GL/GW (GLW) ratio, grain length (GL), grain width (GW), and grain roundness (GR) in the BC20 population. BLM and CY20 represent lines with the alleles from BLM and CY20, respectively. *, **, and *** represent significance at P < 0.05, P < 0.01, and P < 0.001, respectively.




Potential Candidate Genes for QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D

According to the CS reference genome v2.1 (Zhu et al., 2021), there were 88, 368 and 60 annotated high-confidence genes within the candidate intervals of QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D, respectively (Figure 8, Supplementary Figure 1, and Supplementary Tables 9–11). Analysis of the spatiotemporal expression patterns (Borrill et al., 2016; Ramirez-Gonzalez et al., 2018) showed that there were 13, 45 and nine genes in QSc/Sl.cib-2AS, QSc/Sl.cib-2AL and QSc/Sl.cib-2D regions that were highly or specifically expressed in spike, which might be probably involved in spike growth and development (Figure 8 and Supplementary Tables 9–11). Combining the annotations of homolog gene functions in rice and Arabidopsis, four potential candidate genes, TraesCS2A03G0410600 and TraesCS2A03G0422300 for QSc/Sl.cib-2AS, and TraesCS2D03G1129300 and TraesCS2D03G1131500 for QSc/Sl.cib-2D, were likely associated with the spike compactness and length in the study (Supplementary Tables 9–11). Based on the BSE-Seq data, nonsynonymous SNPs were detected in the coding region of TraesCS2A03G0410600, TraesCS2A03G0422300, TraesCS2D03G1129300 and TraesCS2D03G1131500 (Supplementary Table 12).
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FIGURE 8. Expression pattern of genes within the QSc/Sl.cib-2AS (A) and QSc/Sl.cib-2D (B) intervals. Expression data originated from the WheatOmics GeneExpression (http://202.194.139.32/expression/index.html). The arrows 1, 2, 3, and 4 represent the predicted candidate genes TraesCS2A03G0410600, TraesCS2A03G0422300, TraesCS2D03G1129300, and TraesCS2D03G1131500. A, B, C, D, and E (A,B) represent root, stem, leaf, grain, and spike, respectively.





DISCUSSION


Comparison of QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D to Those Reported in Previous Studies

In the present study, six QTL for SC and SL were identified in at least four environments and in the BLUE datasets, indicating that they were environmentally stable (Table 2). We compared their physical intervals with those detected previously. Only major and stable QTL have potential use in marker-assisted selection (MAS) in breeding programs. Therefore, the subsequent discussion was based on the major and stable QTL reported previously.

QSc/Sl.cib-2AS, comprising QSc.cib-2AS and QSl.cib-2AS loci, was physically co-localized in the interval of 167.65–183.91 Mb on the short arm of chromosome 2A (Table 2). Comparison analysis revealed that there were 13 loci for SC or/and SL on the chromosome 2AS identified previously, but among them, no major and sable QTL was overlapped or close to QSc/Sl.cib-2AS in the present study (Yao et al., 2009; Zhang et al., 2009; Li et al., 2016, 2019b, 2021a; Fu et al., 2017; Liu et al., 2018, 2019) (Supplementary Table 13). QSc/Sl.cib-2AS showed a significant effect on PHT and GR, but no effect on SNS in our study. Thus, QSc/Sl.cib-2AS was likely a novel QTL simultaneously for both SC and SL.

Thus, QSc/Sl.cib- 2AL was probably a novel QTL for SC and SL. QSc/Sl.cib-2AL, containing QSc.cib-2AL and QSl.cib-2AL loci, was identified within the interval of 575.17–620.94 Mb on the long arm of the chromosome 2A (Figure 5, Table 2, and Supplementary Table 7). There were 13 QTL for SC and/or SL reported previously. Among them, no major and stable locus for spike compactness and length was reported (Supplementary Table 13) (Yao et al., 2009; Faris et al., 2014; Lee et al., 2014; Gao et al., 2015; Li et al., 2019b, 2021a; Sheoran et al., 2019; Chen et al., 2020b). QSc/Sl.cib-2AL had a significant (P < 0.05) effect on reducing the spikelet number but had no effect on the plant height, which was different to QSc/Sl.cib-2AS and QSc/Sl.cib-2AD.

QSc/Sl.cib-2D, including QSc.cib-2D and QSl.cib-2D, was identified in the interval of 603.08–606.63 Mb on the long arm of the chromosome 2D. Based on BSE-Seq and Wheat 660K SNP array assay results, no extra SNP and InDel sites on the chromosomal fragments of each 50 Mb upstream and downstream of the region 603.08–606.63 Mb could be converted into SSR or KASP markers. According to the results from BSE-Seq and genetic linkage analysis, a major and stable QTL for SC and SL located nearby the marker Kasp_A014484 is reliable. However, this interval (603.08–606.63 Mb) may be incomplete and unreliable for QTL mapping and potential gene prediction for SC and SL, and have no influence on the results of SC and SL interactions and effects on the corresponding trait and other agronomic traits (Figures 4, 5 and Supplementary Tables 5, 7). Comparative analysis revealed that there were six QTL for SC reported previously were overlapped with this region (Supplementary Table 13). For instance, QSD.SAU-2N.2 and QSc.cau-2D.1 for SC were located in the interval of 405.73–654.34 and 423.69–654.34 Mb, which were much larger than QSc/Sl.cib-2D (Gao et al., 2016b; Zhai et al., 2016). Qsd.sac-2D, QSd.sau-2SY-2D, QSd.sicau-2D.3 and the marker IWB26541 for SC reported previously located within 588.68–612.82, 602.76–610.04, 605.12–609.88 and 611.14 Mb were overlapped and covered the interval in the present study (Luo et al., 2016; Liu et al., 2018, 2019; You et al., 2021). Among them, QTL for SL and SNS were detected at the locus QSc.cau-2D.1 in the interval of 423.69–654.34 Mb, indicating that it was a multiple effect locus (Zhai et al., 2016). In addition, previous studies revealed that QSd.sau-2SY-2D exerted pleiotropic effects on SL, SNS and TKW (You et al., 2021). Moreover, QSc/Sl.cib-2D had pleiotropic effects on PHT, GLW, GL and GR (Figure 7). Thus, QSc/Sl.cib-2D was a major and stable QTL overlapped with those reported previously.



Pyramiding of QSc/Sl.cib-2AS, QSc/Sl.cib-2AL and QSc/Sl.cib-2D for Trait Improvement

Integrating multiple favorable alleles into a genetic background was considered to be an effective strategy to optimize traits for yield increasing in wheat (Fan et al., 2019; Li et al., 2021a,b; Tu et al., 2021; You et al., 2021). QSc/Sl.cib-2AS or QSc/Sl.cib-2AL alone had no significant effect on SC and SL, but QSc/Sl.cib-2D alone could strongly decrease SL by 12.76% and increase SC by 12.45%, respectively (Figure 6). The combination of two or three favorable alleles had significant additive effects on SC and SL. Interestingly, compared with single QSc/Sl.cib-2AS or QSc/Sl.cib-2AL alone, the combination of QSc/Sl.cib-2AS and QSc/Sl.cib-2AL and any combination containing QSc/Sl.cib-2D could significantly increase SL. Therefore, QSc/Sl.cib-2D showed the strongest effect on SC and SL in the present study (Figure 6). The significant aggregation effect indicated that the pyramiding of no matter what two or three loci had the potential to optimize the ideal architecture of spike morphology.



Potential Candidate Genes for QSc/Sl.cib-2AS and QSc/Sl.cib-2D

On the CS genome, there are 88 and 60 annotated high-confidence genes in the physical interval of QSc/Sl.cib-2AS and QSc/Sl.cib-2D. Based on the gene annotation, expression analysis and orthologous gene analysis, two genes TraesCS2A03G0410600 and TraesCS2A03G0422300 for QSc/Sl.cib-2AS, and two genes TraesCS2D03G1129300 and TraesCS2D03G1131500 for QSc/Sl.cib-2D were found to be likely involved in the growth and development of spike (Figure 8 and Supplementary Tables 9, 11).

TraesCS2A03G0410600, expressed specifically in spike, encodes a member of the plant-specific YABBY transcription factor family, which was reported to play important roles in the formation and development of reproductive organs in plants (Zhang et al., 2020). TraesCS2A03G0422300, encoding a putative NAC domain-containing protein, is an ortholog of AT1G61110, which was reported to be involved in the embryo development and expressed during the growth and developmental stages of flowering, petal differentiation and expansion stage in Arabidopsis (Sánchez-Montesino et al., 2019). TraesCS2D03G1129300 was annotated to APETALA 2 (AP2)-like ethylene-responsive transcription factor that was reported to be the key factors in inflorescence branching and rice domestication (Harrop et al., 2019). The famous gene Q (AP2L5), belonging to the AP2-like protein family, and its related paralog AP2L2 were reported to play critical and redundant roles in the specification of axillary floral meristems and lemma identity in wheat (Debernardi et al., 2020). TraesCS2D03G1131500 was annotated to the Jasmonic acid (JA) signaling repressor to regulate spikelet development (Wang et al., 2008). The sequence analysis revealed that TraesCS2A03G0410600, TraesCS2A03G0422300, TraesCS2D03G1129300 and TraesCS2D03G1131500 have nonsynonymous SNPs in the coding region (Supplementary Table 12). These four candidate genes for QSc/Sl.cib-2AS and QSc/Sl.cib-2D would be the focus of fine-mapping analyses in the future.
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Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), which are transmitted by the soil-borne plasmodiophorid Polymyxa graminis, cause high yield losses in barley. In previous studies, the recessive BaMMV resistance gene rym15, derived from the Japanese landrace Chikurin Ibaraki 1, was mapped on chromosome 6HS of Hordeum vulgare. In this study, 423 F4 segmental recombinant inbred lines (RILs) were developed from crosses of Chikurin Ibaraki 1 with two BaMMV-susceptible cultivars, Igri (139 RILs) and Uschi (284 RILs). A set of 32 competitive allele-specific PCR (KASP) assays, designed using single nucleotide polymorphisms (SNPs) from the barley 50 K Illumina Infinium iSelect SNP chip, genotyping by sequencing (GBS) and whole-genome sequencing (WGS), was used as a backbone for construction of two high-resolution maps. Using this approach, the target locus was narrowed down to 0.161 cM and 0.036 cM in the Igri × Chikurin Ibaraki 1 (I × C) and Chikurin Ibaraki 1 × Uschi (C × U) populations, respectively. Corresponding physical intervals of 11.3 Mbp and 0.281 Mbp were calculated for I × C and C × U, respectively, according to the Morex v3 genome sequence. In the 0.281 Mbp target region, six high confidence (HC) and two low confidence (LC) genes were identified. Genome assemblies of BaMMV-susceptible cultivars Igri and Golden Promise from the barley pan-genome, and a HiFi assembly of Chikurin Ibaraki 1 together with re-sequencing data for the six HC and two LC genes in susceptible parental cultivar Uschi revealed functional SNPs between resistant and susceptible genotypes only in two of the HC genes. These SNPs are the most promising candidates for the development of functional markers and the two genes represent promising candidates for functional analysis.

Keywords: barley, BaMMV resistance, high-resolution mapping, rym15, candidate gene


INTRODUCTION

Barley (Hordeum vulgare ssp. vulgare), the fourth most cultivated cereal in the world (FAOSTAT, 2022), is mainly used for animal feed and malting. The soil-borne barley yellow mosaic disease, caused by Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), significantly affects the yield of winter barley in large parts of Europe and East Asia (Kühne, 2009). Due to transmission of BaMMV and BaYMV via the soil-borne plasmodiophorid Polymyxa graminis (Adams et al., 1988; Kanyuka et al., 2003), it is of prime importance to improve the genetic resistance in modern cultivars to ensure winter barley cultivation despite the increasing frequency of infested fields.

A total of 22 resistance genes against BaYMV and/or BaMMV were reported up to now, of which the two recessive genes rym1/11 and rym4/5 have been the predominant sources of breeding for commercial BaMMV/BaYMV resistant barley cultivars (Jiang et al., 2020). However, a predominant European isolate BaYMV-2 became virulent on rym4-carrying barley varieties (Kühne et al., 2003; Rolland et al., 2017). Another widespread BaYMV-2 resistance gene rym5 is overcome by the European isolates BaMMV-Teik and BaMMV-SIL (Kanyuka et al., 2004; Habekuß et al., 2007), the Japanese isolate BaYMV-III (Nishigawa et al., 2008) and isolates of BaMMV in France (Rolland et al., 2017). In addition, in China, BaYMV isolates BaYMV-CN_NY and BaYMV-CN_YZ were virulent to rym4, and rym5 was overcome by BaYMV isolates BaYMV-CN_DZ and BaYMV-CN_NY, as well as BaMMV isolates BaMMV-CN_NY and BaMMV-CN_YZ. Remarkably, the isolate BaYMV-CN_NY was also virulent to accessions, which carried rym1/11 and rym5 (Jiang et al., 2022). Thus, it is critical to search for alternative BaMMV/BaYMV resistance resources and identify diagnostic markers for marker-assisted selection.

During recent decades, in addition to SNP arrays (Bayer et al., 2017), next-generation sequencing (NGS) technologies have been widely applied in plant breeding. For instance, using NGS technology, cost-effective genotyping-by-sequencing (GBS) approaches have been developed and widely used in barley genetic studies (Poland et al., 2012). SNPs assayed with high-density SNP arrays and GBS enable navigation between genetic maps and physical genome positions. Using both kinds of markers in tandem can be advantageous because polymorphisms of GBS-derived SNPs and SNPs included in arrays tend to target complementary haplotypes or genome regions (Darrier et al., 2019; Negro et al., 2019). Furthermore, GBS-derived SNPs have more power to detect rare alleles in diverse germplasm collections, while SNP arrays are prone to ascertainment bias. On the other hand, array-derived SNPs have the advantage of highly robust calling of alleles at the same SNPs across multiple populations (Darrier et al., 2019).

Third-generation sequencing technologies, such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies, operate on different principles (Eid et al., 2009; Jain et al., 2015). Compared to the short-read approaches, the assembly data obtained by using long-read sequencing methods can provide more information regarding variants residing in the repeat-rich intergenic space or copy-number variants at complex loci (Mascher et al., 2021). However, until very recently, error rates of both sequencing platforms were significantly higher than short-read NGS methods (Hu et al., 2021). Depending on the DNA fragment length and quality, Oxford Nanopore Technologies MinION/GridION can provide reads longer than 1 Mb, with read accuracy of 87–98% and reads for an N50 of 10–60 kb, and the newest PacBio sequencing improvement Sequel 2 can generate high-fidelity (HiFi) reads up to 20 kb with more than 99% accuracy with N50 of 10–20 kb using the single-molecule circular consensus sequence technology (Wenger et al., 2019; Logsdon et al., 2020; Miga et al., 2020).

Recently, a barley pan-genome was assembled comprising 19 cultivated accessions and one wild barley (Jayakodi et al., 2020). Furthermore, the updated barley reference genome Morex v3 was released by the use of accurate circular consensus long-read sequencing, and a set of 35,827 high confidence (HC) and 45,860 low confidence (LC) genes was identified (Mascher, 2020; Mascher et al., 2021). The availability of those online resources facilitates the study of the genome and its relationship with target traits in barley. For the present study, the assembly of our susceptible parental line Igri is of particular relevance as a sequence resource for narrowing down and annotating the rym15 target region.

In the past 20 years, map-based cloning turned out to be efficient for the isolation of candidate genes for important traits (Jaganathan et al., 2020). Up to now, two BaMMV/BaYMV resistance loci were cloned through map-based cloning: rym4, rym5, and rymHOR3298, as allelic variants of the eukaryotic translation initiation factor 4E (eIF4E; Kanyuka et al., 2005; Stein et al., 2005; Shi et al., 2019), and rym1/11 encoding a protein disulfide isomerase like 5–1 (PDIL5-1; Yang et al., 2014). The updated and improved genomic resources for barley have simplified marker saturation and accelerated gene isolation (Perovic et al., 2018). The availability of public reference genome assemblies and low-cost, high throughput sequencing platforms, which can generate millions of polymorphisms for genetic mapping, provide a great opportunity for genetic mapping studies (Jaganathan et al., 2020).

Chikurin Ibaraki 1 is susceptible to BaYMV in Japan (Ukai and Yamashita, 1980). Interestingly, this Japanese cultivar was found to be resistant to three European strains, that is, BaMMV, BaYMV-1, and BaYMV-2 (Götz and Friedt, 1993; Lapierre and Signoret, 2004). The first genetic mapping of the Chikurin Ibaraki 1 derived BaMMV resistance locus rym15 revealed that it is inherited recessively and located on chromosome 6HS (Le Gouis et al., 2004). In a previous publication (Wang et al., 2021), two medium-resolution maps were constructed by using a set of 180 (I × C) and 342 (C × U) F2 plants. In this publication mapping was done by the use of six SSR markers and eight KASP markers (rym15_1 to rym15_17) that were developed based on a 50 K Illumina Infinium iSelect screen of three parental lines and phenotyping of corresponding F2-F3 families, the gene was fixed between KASP markers rym15_1 and rym15_8 in an interval around 137 Mb according to the barley reference assembly Morex v2 (Wang et al., 2021). Based on this information, in a current study, two high-resolution mapping populations comprising 2,218 (I × C) and 5,870 (C × U) F2 plants were developed and corresponding F4 segmental RILs were phenotyped using the BaMMV-ASL isolate, the present study aimed to (1) construct a high-resolution mapping population of rym15, (2) narrow down the target region, and (3) predict potential candidate genes for BaMMV resistance gene rym15.



MATERIALS AND METHODS


Plant Material and Construction of the High-Resolution Mapping Populations

To construct high-resolution mapping populations for rym15, two segregating F2 populations comprising 2,218 and 5,870 F2 plants were produced based on the crosses between the resistant cultivar Chikurin Ibaraki 1 and the susceptible cultivars Igri and Uschi, respectively. DNA of F2 plants was extracted at the two-leaf stage using the efficient 96-sample multiplex DNA extraction protocol described by Milner et al. (2019). All F2 plants were analyzed using the co-dominant flanking markers rym15_1 and rym15_8 which we identified in a previous study (Wang et al., 2021). Those F2 plants carrying a recombination event within the target interval were self-pollinated and selfed seeds were harvested. For each recombinant F2 plant, a set of 12 seeds was sown in 96 Quick pot trays (8 × 12). DNA of F3 plants was extracted as described above and subsequently analyzed with the same markers, that is, rym15_1 and rym15_8, in order to identify segmental homozygous recombinants. Homozygous recombinant F3 plants were selfed and corresponding F4 plants were subsequently used for the construction of a high-resolution mapping population. By this approach, two high-resolution mapping populations of 139 (I × C) and 284 (C × U) F4 segmental RILs were developed and subsequently used for resistance testing (Table 1).



TABLE 1. Screening of F2 plants for the construction of rym15 high-resolution mapping populations.
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Resistance Test

All 423 RILs were mechanically inoculated with a predominant isolate BaMMV-ASL (derived from Aschersleben, Germany) under controlled growth chamber conditions according to Perovic et al. (2014). A set of 6 plants per segmental RIL were sown randomly in 60 Quick pot trays (6 × 10). In each tray, a set of 6 plants of cultivar Maris Otter was used as positive control, and three plants of the resistant parent Chikurin Ibaraki 1 and three plants of the susceptible parent Igri or Uschi were sown. Five to six weeks after the first inoculation, the mosaic symptoms on the plants were estimated visually and the double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was carried out according to Clark and Adams (1977), using polyclonal antibodies and conjugate IgG (Loewe Biochemica, Sauerlach, Cat. No.07006S). The virus titer was estimated via extinction at 405 nm using a Dynatech MR 5000 microtiter-plate reader at 45 min and 90 min after addition of p-Nitrophenyl Phosphate (PNPP). Plants with an extinction E405 > 0.10 were qualitatively scored as susceptible. Segregation of resistant and susceptible F4 RILs was analyzed using the chi-square tests for goodness of fit to the expected segregation ratios (1r:1 s).



GBS Library Construction, Sequencing, and Data Analysis

Genomic DNA of the parental lines (Chikurin Ibaraki 1, Igri, and Uschi) was extracted using the CTAB (cetyl trimethylammonium bromide) method according to Stein et al. (2001) and digested with PstI and MspI (New England Biolabs) according to Wendler et al. (2014). GBS libraries were loaded on 2% Ultra PureTM Agarose Gel from Invitrogen stained with SYBRGold. Size selection from 250 bp to 600 bp was performed visually and gel extraction of cut gel pieces was performed using MinElute Gel Extraction Kit from Qiagen. The GBS libraries were sequenced in loading concentration of 10pM on Illumina® MiSeq™ (Illumina, San Diego, United States) with 150 cycles, single-end reads, using a custom sequencing primer. Sequence data were analyzed using a Galaxy web server (Giardine et al., 2005; Blankenberg et al., 2010; Goecks et al., 2010). The sequencing reads were trimmed by using the tool Trim Galore (version 0.4.0) with a quality threshold of 30 to remove the low-quality reads and also the reads shorter than 50 bp. Alignment was performed against the genome assembly Morex v3 (Mascher, 2020) by using the trimmed sequencing reads of three parental lines. This step was conducted using BWA-MEM (version 0.7.17; Li, 2013) with default parameters. SNP calling was performed using MPileup version 1.8 (Li and Durbin, 2009) and the polymorphisms between resistant (Chikurin Ibaraki 1) and susceptible (Igri and Uschi) parental lines were filtered in the resulting VCF file (Danecek et al., 2011). Variant sites were retained in case they presented a minimum SNP quality score of 40, minimum genotype quality of 5, and minimum number of homozygous/heterozygous reads covering a position per sample of 2/4.



Whole-Genome Re-Sequencing of Chikurin Ibaraki 1 and Data Analysis

In order to obtain the whole-genome sequencing data of resistance donor line Chikurin Ibaraki 1, a seed bulk of Chikurin Ibaraki 1 was grown for 7 days and dark treated for 48 h (INRA-CNRGV Plant Genomic Center, Toulouse, France). High molecular weight (HMW) DNA was isolated using a Qiagen G-100 DNA extraction kit following the manufacturer’s protocol (https://www.qiagen.com/us/products/discovery-and-translational-research/dna-rna-purification/dna-purification/genomic-dna/qiagen-genomic-tips/). The DNA was quantified on a QBit (Invitrogen) and the quality was checked by using NanoDrop One (Thermo Scientific) according to the A260/A280 and A260/A230 ratios. The fragment size estimation was conducted by using the FEMTO pulse (Agilent). Subsequently, lyophilized DNA samples were used for PacBio SMRT sequencing (Center for Genomic Analysis, University of Kiel). Library preparation was conducted using the HiFi SMRTbell Express 2.0 kit (Pacific Biosciences, Menlo Park, USA) including BluePippin (Sage Science Inc., Beverly Massachusetts) size selection with a lower cutoff of 10 kb. Sequencing was performed on the Sequel II instrument on 6 SMRTcell 8 M, movie time of 30 h (Pacific Biosciences, Menlo Park, USA). PacBio HiFi data was assembled with the HiFi read assembler hifiasm (Cheng et al., 2021). The HiFi reads were deposited under project ID PRJEB50079 at the European Nucleotide Archive (ENA).



Marker Saturation

Genomic DNA of the constructed 423 segmental homozygous F4 RILs was extracted using the CTAB method according to Stein et al. (2001). DNA samples of RILs were adjusted to a final concentration of 20 ng/μl and subsequently used for marker saturation.

Based on the physical position of the previous flanking markers rym15_1 and rym15_8, a set of 28 SNPs derived from the 50 K Illumina Infinium iSelect SNP chip (8 SNPs), GBS (8 SNPs) and assembly data (12 SNPs) located in the target interval was converted to KASP markers using BatchPrimer3 and PolyMarker (You et al., 2008; Ramirez-Gonzalez et al., 2015) algorithms. Furthermore, another two KASP markers located between markers rym15_1 and rym15_8 were selected from a previous study (Wang et al., 2021; Supplementary Table S1).

The high-resolution mapping populations derived from crosses I × C and C × U were genotyped using 32 and 29 KASP markers, respectively (Supplementary Table S1). PCR amplification was conducted in a 5 μl reaction volume consisting of 2.5 μl PACE™ (PCR Allele Competitive Extension) Genotyping Master Mix (Part. No.001–0002, 3CR Bioscience), 0.08 μl of each allele-specific primer 1 and allele-specific primer 2 (10.0 pmol/μl), 0.2 μl common primer (10.0 pmol/μl) and 2.2 μl template DNA (20 ng/μl). For KASP analysis, DNA was amplified in the CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) with the following conditions: 94°C for 15 min; followed by PCR with 9 cycles of 20 s at 94°C, 1 min at 61°C; and then 25 cycles with 20 s at 94°C, 1 min at 55°C, and a final cool down at 37°C for 1 min. If necessary, a re-cycle with the following conditions was performed: 94°C for 3 min; followed by PCR with 9 cycles of 20 s at 94°C, 1 min at 57°C and a final cool down at 37°C for 1 min. The fluorescence signals from HEX and FAM for the specific alleles were detected using the same Detection System (Bio-Rad, Hercules, CA, USA) at 37°C after thermal cycling was complete. The physical position of the KASP markers was determined by blasting primers against the barley reference genome sequences (Mascher et al., 2017, 2021; Monat et al., 2019) using blastN at the IPK barley blast server (https://galaxy-web.ipk-gatersleben.de).



Linkage Analysis

Linkage analysis was performed by setting the number of recombinant gametes in relation to the number of gametes analyzed (Pellio et al., 2005). The genetic resolution of the population (% recombination) was calculated by dividing the number 1 by the number of gametes. To correct for those plants which died during cultivation, a “Corrected genetic resolution” for the remaining RILs was applied by dividing the % recombination identified for the F2 generation by the number of those remaining RILs (Lüpken et al., 2013).



Collinearity of the Target Region Between Resistant and Susceptible Cultivars

The physical position of the new flanking markers identified in the present study was determined according to the sequence assembly of Morex v3. In order to visually compare the target region between the genotypes Chikurin Ibaraki 1, Igri, and Morex (Jayakodi et al., 2020; Mascher, 2020), the flanking markers were blasted against the whole-genome sequence of Chikurin Ibaraki 1 and Igri by using the tool Multiple Alignment using Fast Fourier Transform (MAFFT; Katoh and Standley, 2013) in the Galaxy web server (Giardine et al., 2005; Blankenberg et al., 2010; Goecks et al., 2010). The target region was identified in these two genotypes according to the best hits of both flanking markers, and the alignments of the target region between the three genotypes were plotted and visualized as a dot-plot with D-GENIES webpage (Cabanettes and Klopp, 2018) by using the Minimap2 aligner (Li, 2018).



Identification and Re-Sequencing of Candidate Genes

In the target region, the HC and LC genes were identified according to the gene annotation of Morex v3 (Mascher, 2020).1 In order to extract the corresponding genes from Chikurin Ibaraki 1 assembly data, the sequences of HC and LC genes in the target interval of Morex were used as query for a BLASTN (Altschul et al., 1997) search against the target region of Chikurin Ibaraki 1. For the susceptible parental line Igri, annotated genes in the target interval were identified according to the pan-genome database available on the IPK Galaxy Blast Suite (Deng et al., 2007; Jayakodi et al., 2020).2

In order to obtain the gene sequence of 6 HC and 2 LC genes in the second susceptible parental line Uschi, based on the gene sequences of Morex v3 and Igri, the corresponding primers for re-sequencing of all identified genes were developed by using the online tool primer3 (Supplementary Table S2).3 PCR amplification was conducted in a 30 μl reaction volume consisting of 3 μl of template DNA (25-30 ng/μl), 3 μl of 10 × buffer BD (detergent-free buffer), 3 μl of 25 mM MgCl2, 0.6 μl of 10 mM dNTP-Mix, 0.75 μl of each forward primer (10.0 pmol/μl) and reverse primer (10.0 pmol/μl), 0.6 μl of HOT FIREPol DNA polymerase (Solis BioDyne, Tartu, Estonia) and 18.3 μl double distilled water. The DNA was amplified in a GeneAmp PCR System 9,700 (Applied Biosystems) under the following conditions: 94°C for 5 min; followed by touchdown PCR with 12 cycles of 30 s at 94°C, 30 s at 62°C, 30 s at 72°C; and then 35 cycles with 30 s at 94°C, 30 s at 56°C, 30 s at 72°C; and a final extension at 72°C for 10 min. Amplified products (1 μl) were checked on an agarose gel (1.5%) and analyzed using the imaging system Gel Doce™ XR and the Quantity One® 1-D analysis software (4.6.2; Bio-Rad, Hercules, CA, USA). PCR products were purified and sequenced by the company Microsynth AG (Balgach, Switzerland). Obtained sequences were edited and the polymorphisms between parental lines (Chikurin Ibaraki 1, Igri, and Uschi) were identified using Sequencher 5.1 software (Gene Codes, Ann Arbor, MI, United States).




RESULTS


High-Resolution Mapping Populations for rym15

Two crosses were used for the construction of the high-resolution mapping populations. In total, 2,218 and 5,870 F2 plants derived from I × C and C × U were sown, of which 2,174 and 5,728 germinated and were analyzed subsequently. From these, 162 (3.725% recombination) and 288 (2.514% recombination) segmental recombinant F2 plants were identified, respectively (Table 1). Initially, for the population I × C, a total of 2,174 F2 plants providing a genetic resolution of 0.0230% recombination was screened for recombination events between the previous flanking markers rym15_1 and rym15_8 and a genetic distance of 3.725% recombination was determined. Due to the non-survival of recombinant plants, the corrected genetic resolution provided by 139 remaining RILs equaled 0.02679% recombination. For population C × U, a total of 5,728 F2 plants providing a genetic resolution of 0.0087% recombination were screened for recombination events between the flanking markers rym15_1 and rym15_8 and a genetic distance of 2.514% recombination was determined. Due to the non-survival of recombinant plants, the corrected genetic resolution provided by 284 remaining RILs equaled 0.00885% recombination.



BaMMV Phenotyping

The BaMMV infection experiment showed a segregation of 67 resistant and 72 susceptible, as well as 140 resistant and 144 susceptible RILs in the population I × C and C × U, respectively, which fit to the expected 1r:1 s ratio. Chi-square test in the population I × C (χ2 1r:1 s = 0.180, df = 1, p = 0.6714) and C × U (χ2 1r:1 s = 0.056, df = 1, p = 0.8129) for goodness of fit indicated that the resistance against BaMMV is controlled by a single gene (rym15) in both populations (Table 1).



Marker Saturation of the rym15 Locus

GBS analysis of three parental lines identified 27,017 (Chikurin Ibaraki 1 and Igri) and 29,197 (Chikurin Ibaraki 1 and Uschi) polymorphisms. In total, 20,099 polymorphisms (74.39%) were identical among both comparisons. On the target chromosome 6H, a set of 3,388 (Chikurin Ibaraki 1 and Igri) and 3,813 (Chikurin Ibaraki 1 and Uschi) polymorphisms was identified, of which 2,488 (73.44%) were in common. In the target region between the previous flanking markers rym15_1 and rym15_8, a set of 365 (Chikurin Ibaraki 1 and Igri) and 396 (Chikurin Ibaraki 1 and Uschi) polymorphisms was identified, of which 301 (82.47%) were in common (Supplementary Table S3).

The rym15 target region was saturated with a set of 32 KASP markers that span a 133 Mb interval on chromosome 6H in Morex v3. Out of these 32 markers, three polymorphisms (QBS134, QBS135, and QBS140) could not be reproduced in the population C × U (Supplementary Table S1). In the population I × C, mapping of all 32 markers reduced the target interval of rym15 from 3.5 cM to a smaller region of 0.161 cM between markers QBS140 and QBS159, and 18 markers co-segregated with the target locus (Figure 1). In the population C × U, analysis of all 29 markers reduced the interval harboring rym15 from 3.7 cM to 0.036 cM between markers QBS143 and QBS151, and 7 markers co-segregated with the target gene rym15 (Figure 1).
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FIGURE 1. Genetic maps of rym15 and collinearity of common molecular markers. (A) An initial genetic map of rym15 based on a set of 217 DH lines derived from the cross of Chikurin Ibaraki 1 × Plaisant (Le Gouis et al., 2004). (B) Medium-resolution map of rym15 based on a set of 180 F2 lines derived from the population Igri×Chikurin Ibaraki 1 (Wang et al., 2021). (C) High-resolution map of rym15 based on a set of 139 F4 segmental RILs in the population Igri ×Chikurin Ibaraki 1. (D) Medium-resolution map of rym15 based on a set of 342 F2 lines derived from the population Chikurin Ibaraki 1 × Uschi (Wang et al., 2021). (E) High-resolution map of rym15 based on a set of 284 F4 segmental RILs in the population Chikurin Ibaraki 1 × Uschi. The target gene rym15 is highlighted in red, the bold font indicates previous flanking markers from the initial and medium-resolution maps, while the new flanking markers identified from high-resolution mapping are shown in blue.


BLASTN comparison of marker sequences against the barley reference sequence Morex v3 revealed that all mapped markers are co-linear genetically and physically in both mapping populations, and the physical size of the target region in the population I × C and C × U is 11.3 Mb and 0.28 Mb, respectively (Figure 2). The marker saturation revealed a large difference of recombination distribution between the two populations (Figure 2). In the population C × U, the recombination frequencies have been estimated from 1.51 to 190.19 Mb/cM, while the population I × C shows suppressed recombination, of which the physical/genetic ratio varies from 7.95 to 686.07 Mb/cM. In the population C × U, the recombination event between markers QBS143 and QBS144 (1.51 Mb/cM), as well as QBS150 and QBS151 (7.91 Mb/cM) are crucial for mapping the target gene rym15 to a smaller interval of 0.28 Mb. In contrast, those markers co-segregated with rym15 in the population I × C (Figure 2).
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FIGURE 2. High-resolution genetic maps of rym15 and physical map of barley chromosome 6HS. (A) High-resolution map of rym15 based on a set of 139 F4 RILs in the population Igri×Chikurin Ibaraki 1. (B) Physical map of Morex on chromosome 6HS according to Morex v3. (C) High-resolution map of rym15 based on a set of 284 F4 RILs in the population Chikurin Ibaraki 1 × Uschi. The recombination rates (Mb/cM) are listed left of the genetic maps for both populations. The target gene rym15 is highlighted in red and the flanking markers are shown in orange (Igri×Chikurin Ibaraki 1) and blue (Chikurin Ibaraki 1 × Uschi). Crucial recombination events in the population Chikurin Ibaraki 1 × Uschi are highlighted in blue.




Similarity of Target Region Between Parental Lines

Taking advantage of the second population C × U, the physical size of the target region between markers QBS143 and QBS151 encompassed 281 kb according to Morex v3 (Figure 2). Blasting the flanking marker sequences against the Chikurin Ibaraki 1 and Igri genome assemblies revealed that the corresponding physical size of the target region is around 282 and 285 kb, respectively (Supplementary Figure S1). A dot-plot analysis comparing the target region between the parental lines Chikurin Ibaraki 1 and Igri, and between Chikurin Ibaraki 1 and Morex v3, revealed a substantial co-linearity and similarity with identity ranging from 75 to 100% (Supplementary Figure S1). The micro co-linearity between physical and genetic order of all used markers was consistent. In the other pan-genome accessions, the physical size of the target region ranged from 0.26 (Golden Promise) to 0.34 Mb (HOR3365; Supplementary Table S4).



Candidate Gene Analysis at the rym15 Locus

In our previous medium-resolution maps of rym15, the interval was mapped between the two markers rym15_1 and rym15_8 with a physical size of 133 Mb according to the Morex v3 reference genome. In this region, 620 HC genes and 1,025 LC genes are located (Wang et al., 2021). Due to extensive marker saturation in the present study, the physical size of the target region was reduced to 281 kb in the population C × U. In this region a set of 8 genes was identified, of which 6 are HC and two are LC genes. The annotation of two LC genes HORVU.MOREX.r3.6HG0573640 and HORVU.MOREX.r3.6HG0573660 are ATP-dependent DNA helicase and Retrovirus-related Pol polyprotein from transposon TNT 1–94, respectively. Out of the 6 HC genes, four encode zinc finger CCCH domain-containing proteins (HORVU.MOREX.r3.6HG0573600, HORVU.MOREX.r3.6HG0573610, HORVU.MOREX.r3.6HG0573620 and HORVU.MOREX.r3.6HG0573650). The other two HC genes are coding for non-structural maintenance of chromosome element 4 (NSE4) and D-alanine-D-alanine ligase family (HORVU.MOREX.r3.6HG0573590 and HORVU.MOREX.r3.6HG0573630; Figure 3). Meanwhile, according to the annotation data of Igri, in the target region, the same number of the HC genes was found with the same order and description as in Morex v3 (Horvu_IGRI_6H01G211100.1, Horvu_IGRI_6H01G211200.1, Horvu_IGRI_6H01G211300.1, Horvu_IGRI_6H01G211400.1, Horvu_IGRI_6H01G211500.1, and Horvu_IGRI_6H01G211600.1). Furthermore, the order of those 6 HC and two LC genes in Chikurin Ibaraki 1 was revealed to be the same as in Morex and Igri. Finally, the alignment analysis of the coding region of the 6 HC and two LC genes from three parental lines shows that three HC genes (HORVU.MOREX.r3.6HG0573620, HORVU.MOREX.r3.6HG0573630, and HORVU.MOREX.r3.6HG0573650) and two LC genes (HORVU.MOREX.r3.6HG0573640 and HORVU.MOREX.r3.6HG0573660) are monomorphic between resistant and susceptible genotypes. In contrast, for the remaining three HC genes, one functional SNP was identified for each of the genes (HORVU.MOREX.r3.6HG0573590, HORVU.MOREX.r3.6HG0573600, and HORVU.MOREX.r3.6HG0573610; Table 2).
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FIGURE 3. Candidate genes in the rym15 target region of 281 kb. (A) Graphical genotypes of 284 F4 RILs derived from population Chikurin Ibaraki 1 × Uschi carrying recombination events between rym15_1 and rym15_8. Marked with red color are those located in the coding region of high confidence genes. (B) A set of six high confidence and two low confidence genes positioned in the target interval.




TABLE 2. Functional SNPs between resistant (Chikurin Ibaraki 1) and susceptible (Igri, Uschi and Golden Promise) lines originated from three candidate genes.
[image: Table2]

Further analyses of the sequence of Golden Promise, which is susceptible to BaMMV, revealed the same three HC genes (Horvu_GOLDEN_6H01G188600, Horvu_GOLDEN_6H01G188700, and Horvu_GOLDEN_6H01G188800). The alignment of these three HC genes between Chikurin Ibaraki 1 and Golden Promise revealed that one HC gene (Horvu_GOLDEN_6H01G1887000) has the same coding sequence in both genotypes. For the remaining two HC genes Horvu_GOLDEN_6H01G188600 and Horvu_GOLDEN_6H01G188800, one functional SNP was detected in each gene between Chikurin Ibaraki 1 and Golden Promise. Thus, only two HC genes (HORVU.MOREX.r3.6HG0573590 and HORVU.MOREX.r3.6HG0573610) are promising candidates in the target region (Table 2). Meanwhile, it was shown that the functional SNPs-derived KASP markers QBS146 (located in HC gene HORVU.MOREX.r3.6HG0573590) and QBS148 (located in HC gene HORVU.MOREX.r3.6HG0573610) co-segregated with the target locus rym15 in both populations.




DISCUSSION

In the present study, phenotypic analysis of 423 F4 segmental RILs showed that the BaMMV resistance of Chikurin Ibaraki 1 is controlled by a single gene. This confirms results of previous studies (Le Gouis et al., 2004; Wang et al., 2021). By high-resolution mapping, the target region harboring rym15 was narrowed down to 281 kb and 6 HC candidate genes were identified for the BaMMV resistance locus rym15. Functional SNPs between resistant and susceptible genotypes were detected in only two HC genes, representing a substantial step toward cloning of rym15.

It is well known that recombination rates are not fixed and a significant inter-individual variability has been reported for virtually every species, such as bacteria, fungi, plants, and animals (Simchen and Stamberg, 1969; Brooks, 1988; Fisher-Lindahl, 1991; Petes et al., 1991). Various studies about recombination rates and gene densities in barley show that gene density is not uniform along the chromosome and is usually correlated with recombination frequency (Han et al., 1998; Künzel et al., 2000; Rostoks et al., 2002). On chromosome 6HS, the calculated recombination frequency and gene density are not high in the region between markers rym15_1 and rym15_8 (Muñoz-Amatriaín et al., 2015). In the present study, the use of two different mapping populations reflects the different recombination rates within a defined interval. The population I × C showed a reduced recombination rate in this region compared with the population C × U. A set of 18 and 7 markers co-segregated with the target locus rym15 in the population I × C and C × U, respectively. Four markers, which co-segregated with rym15 in the population I × C revealed crucial recombination events between QBS143 and QBS144 (1.51 Mb/cM), as well as QBS150 and QBS151 (7.91 Mb/cM) in the population C × U, facilitating narrowing of the rym15 interval to 281 kb.

The accuracy of genome sequence information in the target region is key to identifying candidate genes in a resistance donor. Previously, cloning of BaYMV/BaMMV recessive resistance genes rym4/5 and rym1/11 was assisted by bacterial artificial chromosome (BAC) clones, which is a cumbersome and time-consuming process (Stein et al., 2005; Yang et al., 2014). As third-generation sequencing technologies recently become achievable and affordable, a recent study comparing different long-read sequencing methods revealed that the PacBio HiFi sequencing method performed best for sequence assembly of barley (Mascher et al., 2021). In the present study, re-sequencing of the resistant donor Chikurin Ibaraki 1 was conducted using PacBio HiFi reads. Finally, a set of two HC genes was identified with the assistance of the whole-genome assembly of Chikurin Ibaraki 1. In future, this assembly may be used to map another recessive BaYMV resistance gene present in Chikurin Ibaraki 1, which is located on chromosome 5HS (Werner et al., 2003). The availability of the barley pan-genome, comprising a set of 20 diverse barley accessions including the population I × C susceptible parental line Igri (Jayakodi et al., 2020), was critically important for the rym15 candidate gene identification.

It is well known that new pathogen variants may be virulent to major resistance genes. For example, the isolated resistance gene rym4/5 has been overcome in different regions of Europe and East Asia, and another resistance gene rym1/11 became susceptible to isolate BaYMV-CN_NY in China as well (Kühne et al., 2003; Kanyuka et al., 2004; Habekuß et al., 2007; Nishigawa et al., 2008; Rolland et al., 2017; Jiang et al., 2022). These examples highlight the importance of identifying new genetic resources that are resistant to new virulent virus isolates. The two HC genes carrying functional SNPs between resistant and susceptible cultivars are NSE4 (HORVU.MOREX.r3.6HG0573590) and a zinc finger CCCH domain-containing protein (HORVU.MOREX.r3.6HG0573610), which have not yet been reported as resistance genes against BaMMV/BaYMV. According to the information obtained from UniProt (https://www.uniprot.org/), the candidate gene HORVU.MOREX.r3.6HG0573590 promotes sister chromatid alignment after DNA damage and facilitates double-stranded DNA break (DSBs) repair via homologous recombination between sister chromatids (Watanabe et al., 2009). In contrast, the other candidate gene HORVU.MOREX.r3.6HG0573610 encodes a zinc finger CCCH domain-containing protein. This kind of protein was reported to be involved in cell fate specification and developmental processes in plants, as well as in the response to biotic and abiotic stress (Ai et al., 2022). Several studies confirmed that the CCCH-type zinc finger protein is responsible for resistance against different pathogens in different plant species. For example, a novel CCCH-type zinc finger protein GhZFP1 derived from cotton (Gossypium hirsutum) positively regulates resistance to the fungal pathogen Rhizoctonia solani in tobacco (Guo et al., 2009). The study of rice CCCH-type zinc finger protein C3H12 concluded that this gene is positively regulated to mediate resistance against the bacterial pathogen Xoo (Deng et al., 2012). Another study shows that the pepper TZnF protein CaC3H14 is involved in the defense response of pepper to infection by Ralstonia solanacearum (Qiu et al., 2018). Furthermore, an Arabidopsis CCCH protein C3H14 is a positive regulator for basal defense against Botrytis cinerea mainly by WRKY33 signaling (Wang et al., 2020). Moreover, the predicted K homology (KH) domain in the gene HORVU.MOREX.r3.6HG0573610 usually has an RNA-binding function (Burd and Dreyfuss, 1994). Considering all the evidence, it seems that the gene HORVU.MOREX.r3.6HG0573610 is the most likely candidate for BaMMV resistance encoded by rym15. Functional analysis of the two candidate genes, for example by gene editing (Hoffie et al., 2021) will likely lead to cloning of the causal gene for rym15.



CONCLUSION

In the present study, two high-resolution mapping populations were constructed, comprising 423 F4 segmental RILs from the crosses of I × C (139 RILs) and C × U (284 RILs). Phenotypic analysis revealed that the resistance against BaMMV encoded by rym15 is controlled by a single gene. Using combinations of different whole-genome and targeted sequencing methods, detected polymorphisms between parental lines were converted to KASP markers and subsequently analyzed on all RILs. Combining the genetic and phenotypic data, two high-resolution maps were constructed. The physical size of the target region was reduced to a 0.28 Mb region containing six HC and two LC genes. Taking advantage of public genome assemblies including the susceptible cultivar Golden Promise and Igri assembly data, functional SNPs between resistant and susceptible parental lines were detected in only two HC genes. However, the functional analysis of these two genes is still needed to identify the causal gene for rym15.
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Accelerating breeding efforts for developing biofortified bread wheat varieties necessitates understanding the genetic control of grain zinc concentration (GZnC) and grain iron concentration (GFeC). Hence, the major objective of this study was to perform genome-wide association mapping to identify consistently significant genotyping-by-sequencing markers associated with GZnC and GFeC using a large panel of 5,585 breeding lines from the International Maize and Wheat Improvement Center. These lines were grown between 2018 and 2021 in an optimally irrigated environment at Obregon, Mexico, while some of them were also grown in a water-limiting drought-stressed environment and a space-limiting small plot environment and evaluated for GZnC and GFeC. The lines showed a large and continuous variation for GZnC ranging from 27 to 74.5 ppm and GFeC ranging from 27 to 53.4 ppm. We performed 742,113 marker-traits association tests in 73 datasets and identified 141 markers consistently associated with GZnC and GFeC in three or more datasets, which were located on all wheat chromosomes except 3A and 7D. Among them, 29 markers were associated with both GZnC and GFeC, indicating a shared genetic basis for these micronutrients and the possibility of simultaneously improving both. In addition, several significant GZnC and GFeC associated markers were common across the irrigated, water-limiting drought-stressed, and space-limiting small plots environments, thereby indicating the feasibility of indirect selection for these micronutrients in either of these environments. Moreover, the many significant markers identified had minor effects on GZnC and GFeC, suggesting a quantitative genetic control of these traits. Our findings provide important insights into the complex genetic basis of GZnC and GFeC in bread wheat while implying limited prospects for marker-assisted selection and the need for using genomic selection.
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INTRODUCTION

Malnutrition, an incessant threat to the sustainability and resilience of healthy food systems has been exacerbated by the COVID-19 pandemic (Carducci et al., 2021). Currently, the world is grappling with an alarming increase in the number of undernourished people which was estimated to be about 768 million in 2020, with Asia and Africa being the biggest contributors (FAO et al., 2021). Of particular concern are the staggering numbers of malnourished children and in 2020, it was estimated that 149.2 million children under 5 years of age were stunted, 45.4 million were wasted and 38.9 million were overweight (WHO, 2021). Additionally, “micronutrient malnutrition” that refers to the inadequate intake of vitamins and minerals (zinc, iodine, iron, etc.) essential for the proper growth and development of the body poses a serious threat to both children and pregnant women living in developing countries with low and middle income (Welch and Graham, 2000; Pfeiffer and McClafferty, 2008; HLPE, 2020; WHO, 2020).

Zinc is a key micronutrient, whose deficiency results in increased early childhood mortality, morbidity, and stunting, impairs mental development, and aggravates susceptibility to diseases like diarrhea, malaria, and pneumonia (Hotz and Brown, 2004; Black et al., 2008; Ackland and Michalczyk, 2016). Globally, an estimated 17.3% of the population is fraught with the risk of inadequate zinc intake (Wessells and Brown, 2012), and its deficiency is widely prevalent in developing countries like India (Stein et al., 2007). Iron is another essential micronutrient, whose deficiency impairs cognitive development and physical activity, results in increased mortality rates primarily in children and women, and is a predominant cause of anemia (Stein et al., 2008; Safiri et al., 2021). In 2019, an estimated 29.9% of the women between 15 and 49 years were affected by anemia, which is widespread in Central and Southern Asia and sub-Saharan Africa (FAO et al., 2021; WHO, 2021).

To mitigate micronutrient deficiencies and the disease burden arising from them, several countries have adopted interventions like industrial food fortification and pharmaceutical supplementation. However, these interventions have not been entirely successful because of their inability to reach rural people and the urban poor who do not consume a lot of processed food and the high costs involved in producing and buying fortified food that developing countries cannot afford (Stein et al., 2007, 2008). Hence, “biofortification,” which refers to the breeding of staple crops for higher micronutrient concentrations, has emerged to be a sustainable and cost-effective strategy to combat the micronutrient deficiency challenge concomitantly with other interventions. Biofortified crops have the potential to target low-income households and become part of the food chain even in rural areas where people do not have access to commercially fortified food and heavily consume local food staples (Bouis, 2002; Nestel et al., 2006; Stein et al., 2007, 2008; Pfeiffer and McClafferty, 2008; Bouis and Welch, 2010; Bouis et al., 2011).

Cereal-based foods contribute substantially to the daily diet in countries where micronutrient deficiencies are prevalent (Bouis and Welch, 2010). Wheat, a major cereal that provides 20% of the dietary calories and proteins worldwide (Shiferaw et al., 2013), has been an ideal target for biofortification, as biofortified wheat can significantly ameliorate the consequences of micronutrient deficiencies (Srinivasa et al., 2014; Sazawal et al., 2018). While agronomic biofortification of wheat via soil and foliar application of zinc and iron fertilizers is an option (Cakmak, 2008; Cakmak et al., 2010; Aciksoz et al., 2011; Zou et al., 2012), it is not commonly used. Therefore, genetic biofortification that involves the application of both classical and novel molecular breeding approaches for characterizing and exploiting the genetic variability for grain zinc concentration (GZnC) and grain iron concentration (GFeC) remains to be a viable strategy to develop biofortified wheat (Velu et al., 2012, 2014). While the genetic variation for micronutrient concentration in cultivated wheat is narrow (Monasterio and Graham, 2000; Zhao et al., 2009), high micronutrient concentrations have been reported in wild relatives of cultivated wheat including Triticum turgidum ssp. dicoccoides, T. spelta, T. monococcum, T. boeticum, T. polonicum, Aegilops kotschyi, and A. tauschii, landraces, and synthetic hexaploid wheat (Cakmak et al., 2000, 2004; Monasterio and Graham, 2000; Chhuneja et al., 2006; Gomez-Becerra et al., 2010; Velu et al., 2011, 2019; Suchowilska et al., 2012). Hence, the biofortification program at the International Maize and Wheat Improvement Center (CIMMYT) supported by the HarvestPlus program and more recently by the “Accelerating the Mainstreaming of Elevated Zinc in Global Wheat Breeding” project breeds for biofortified bread wheat varieties by initially crossing micronutrient-rich genetic resources with high-yielding elite cultivated wheat lines. It has successfully developed and disseminated high-yielding zinc and iron biofortified wheat varieties with good resilience to biotic and abiotic stresses, end-use quality, and farmer preferred agronomic traits in South Asia (Ortiz-Monasterio et al., 2007; Velu et al., 2012, 2014, 2015, 2019; Guzmán et al., 2014).

Accelerating breeding efforts for biofortification of bread wheat with grain zinc and iron necessitates understanding their genetic control and identifying closely linked molecular markers for deployment in marker-assisted selection to select lines with favorable alleles (Xu et al., 2012; Velu et al., 2014; Tiwari et al., 2016). Several quantitative trait loci (QTL) mapping studies have dissected the genetic architecture of GZnC and GFeC in biparental populations and reported associated markers (Shi et al., 2008; Xu et al., 2012; Hao et al., 2014; Srinivasa et al., 2014; Crespo-Herrera et al., 2016, 2017; Tiwari et al., 2016; Velu et al., 2017c; Liu et al., 2019; Krishnappa et al., 2021; Rathan et al., 2021). However, QTL mapping studies can only identify the alleles segregating between the parents for the traits and involve significant population development time (Brachi et al., 2011; Korte and Farlow, 2013). Hence, genome-wide association mapping is a valuable alternative approach that can be used for identifying GZnC and GFeC associated markers as it does not require developing mapping populations, allows the use of any available population with diversity for the trait, and harnesses population-level linkage disequilibrium (LD) between markers and causal polymorphisms (Risch and Merikangas, 1996; Remington et al., 2001; Flint-Garcia et al., 2003; Yu and Buckler, 2006; Slatkin, 2008).

Given that only a few genome-wide association studies for GZnC and GFeC in bread wheat have been reported (Guttieri et al., 2015; Alomari et al., 2018; Bhatta et al., 2018; Velu et al., 2018; Tong et al., 2022), our primary objective was to perform genome-wide association mapping for GZnC and GFeC using a large panel of 5,585 elite breeding lines from CIMMYT’s bread wheat (referred to as BW) improvement program and zinc (referred to as ZN) improvement program. The BW improvement program mainly focuses on developing high-yielding varieties along with stress-resilience, whereas the ZN improvement program focuses on developing high GZnC varieties along with high grain yield, high GFeC, and stress-resilience. While most lines were grown in an optimally irrigated environment, we also grew some lines in a water-limiting drought-stressed environment and a space-limiting small plots environment to understand if common marker-trait associations could be identified across these environments. Moreover, we also aimed at identifying markers that were consistently associated with GZnC and GFeC in more than one dataset to understand the stability of the identified associations.



MATERIALS AND METHODS


Populations and Environments for Grain Zinc and Iron Evaluation

For this study, we used the BW and ZN improvement program breeding lines that were developed using the selected-bulk breeding scheme (Singh et al., 1998). In this scheme, all the early-generation progenies were selected visually for agronomic traits, plant health, rust, etc., and then bulk harvested until the individual plants or head-rows derived small plots. The lines were grown at the Norman E. Borlaug Experiment Station, Ciudad Obregon (27°24′N, 109°56′W), Sonora, Mexico and were from the following nurseries and programs.


Parcelas Chicas or Small Plots From the Zinc Improvement Program

This nursery comprised progenies from the F4, F5, or F6 generations in the ZN improvement program, which were in the pre-yield testing stage and were planted in space-limiting small paired-rows plots or parcelas chicas (PCs) of 0.56 m2 for visual selection along with check varieties. The PCZN in each cycle comprise greater than 10,000 small plots from which a subset (about 1,100–1,600 small plots) selected visually for agronomic traits, plant health, grain characteristics, and rust resistance and for larger and plump grains after harvesting is evaluated for GZnC and GFeC. The PCZN lines that were grown in small plots during the 2017–2018 cycle (referred to by the harvest year as PCZN 2018 SP) were evaluated for GZnC, and the lines that were grown during the 2020–2021 cycle (PCZN 2021 SP) were evaluated for GZnC and GFeC.



Yield Trial Lines From the Bread Wheat Improvement Program and the Zinc Improvement Program

Selections from the pre-yield testing plots result in the yield trial (YT) nurseries in both the BW (YTBW) and zinc (YTZN) improvement programs. A subset of the 9,000 YTBW lines comprising about 1,100 lines and all the 1,100 YTZN lines were evaluated for GZnC and GFeC. Both the YTBW and the YTZN lines were grown in the bed-5 irrigations environment (B5IR), where the lines were planted on raised beds during the optimum planting time (late November to early December) and received optimum irrigation of 500 mm of water in total from five irrigations. An alpha-lattice design with two replications and each trial comprising six blocks and two high-yielding check varieties was used for the YT lines. The size of the YT plots was 4.8 m2, and the lines were sown in three rows over each of the two beds that were 80 cm wide. The grains of the YTBW lines and checks that were grown in the B5IR environment during the 2019–2020 cycle (YTBW 2020 B5IR) and the 2020–2021 cycle (YTBW 2021 B5IR) and the YTZN lines and checks that were grown during the 2018–2019 cycle (YTZN 2019 B5IR), 2019–2020 cycle (YTZN 2020 B5IR), and 2020–2021 cycle (YTZN 2021 B5IR) were evaluated for GZnC and GFeC.



Elite Yield Trial Lines From the Bread Wheat Improvement Program and the Zinc Improvement Program

Selections from the YT nurseries for grain yield and other traits result in the elite yield trial (EYT) nurseries in the BW (EYTBW) and the zinc (EYTZN) improvement programs, comprising about 1,100 lines and 250–300 lines, respectively, each year. While the trial design was similar to that in the YT nurseries, the EYTBW lines were grown in space-limiting small plots, the B5IR environment, and a water-limiting moderately drought-stressed environment, where the lines were planted during the optimum planting time in raised beds and received a total of about 200 mm of water in two irrigations (referred to as the bed-2 irrigations or the B2IR environment). The EYTBW lines grown in the B5IR environment, B2IR, and small plots during the 2020–2021 cycle (EYTBW 2021 B5IR, EYTBW 2021 B2IR, and EYTBW 2021 SP) and the EYTZN lines grown in the B5IR during the 2019–2020 cycle (EYTZN 2020 B5IR) and 2020–2021 cycle (EYTZN 2021 B5IR) were evaluated for GZnC and GFeC.

In all the environments, heterogeneity of zinc concentration in the soil was managed by the application of 25 kg ha–1 of ZnSO4 in every crop cycle (Velu et al., 2014, 2018).




Grain Zinc and Iron Phenotyping

For all the environments and populations, when the grains were completely dry in the field after physiological maturity, the plots were harvested. About 20 g of grains from each genotype were sampled and cleaned from any impurities and broken grains. Cleaned grain samples from different environments were used for GZnC and GFeC analysis in a non-destructive bench-top energy-dispersive X-ray fluorescence spectrometry instrument (model X-Supreme 8000, Oxford Instruments, Abingdon, United Kingdom) that was standardized for high-throughput screening of these micronutrients in wheat grains (Paltridge et al., 2012). The GZnC and GFeC in parts per million (ppm) were obtained for one to three replications in different nurseries and environments as shown in Table 1, and outliers in the phenotypic data were removed.


TABLE 1. Populations, number of lines, number of markers, environments where the populations were grown, datasets for each population and environment, and the number of tests of association that were performed for grain zinc concentration and grain iron concentration.
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Across replications, trials, and sub-blocks, the best linear unbiased estimates (BLUEs) for GZnC and GFeC in each of the populations and environments were calculated using the ASREML statistical package (Gilmour, 1997) with the following mixed model:
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where yijkl was the observed GZnC or GFeC, μ was the overall mean, giwas the fixed effect of the line, tj was the random effect of the trial that was independent and identically distributed [image: image]], rk(j)was the random effect of the replicate within the trial that was independent and identically distributed [image: image], bl(jk)was the random effect of the incomplete block within the replicate and the trial that was independent and identically distributed [image: image] and εijkl was the residual that was independent and identically distributed [image: image]. For EYTBW 2021, which was evaluated in three environments, we obtained BLUEs across environments by including the random effect of the environment in model (1), which is referred to as the EYTBW 2021 all environments BLUEs dataset. We also formed a combined panel with the BW and ZN lines that were grown in the B5IR environment in nurseries that had a common check Borlaug100, and we used the GZnC and GFeC expressed as percentages of the check Borlaug100 for GWAS.



Genotyping

The genotyping-by-sequencing (GBS) approach (Poland and Rife, 2012; Glaubitz et al., 2014) was used to obtain genome-wide markers for all the populations. We used the TASSEL v5 (Trait Analysis by aSSociation Evolution and Linkage) GBS pipeline (Glaubitz et al., 2014) to call the marker polymorphisms and a minor allele frequency of 0.01 to discover marker single nucleotide polymorphisms. This was followed by anchoring 8,869,749 unique GBS tags using Bowtie2 (Langmead and Salzberg, 2012) to the first version of the reference sequence assembly of the bread wheat variety Chinese Spring (RefSeq version 1.0) (IWGSC, 2018) and the tags were named by their chromosomal location and physical position in RefSeq version 1.0. We then filtered the GBS tags using cutoffs for Fisher’s exact test values, inbred coefficients, and Chi-squared values as described in Juliana et al. (2019). The 102,619 marker polymorphisms that passed at least one of these filters were filtered further for missing data less than 50%, minor allele frequency greater than 5%, and heterozygosity less than 5%. Similarly, the lines with less than 50% missing genotyping data were removed, and we obtained 2,089 BW lines and 3,492 ZN lines (Table 1) that were used for analyses, along with checks. Missing marker data were imputed using the linkage disequilibrium-k-nearest neighbor genotype imputation method (Money et al., 2015) in TASSEL version 5 (Bradbury et al., 2007).



Statistical Analysis of the Phenotypic Data, Marker Densities, and Population Structure Analysis

Statistical analysis of GZnC and GFeC BLUEs in the different datasets (Supplementary Table 1) was done and the mean, standard deviation, minimum, maximum, median, and range were obtained. Visualization of the GZnC and GFeC distributions within nurseries was done using the “R” package “ggplot2” (Wickham, 2009). To understand the impact of selecting for GZnC in the ZN improvement program, we used the GZnC in the B5IR environment expressed in percentage check Borlaug100 in YTZN 2020, YTZN 2021, and EYTZN 2021 and compared them with the corresponding BW improvement program nurseries, including YTBW 2020, YTBW 2021, and EYTBW 2021, that were not selected for GZnC. To make fair comparisons, we used all the lines in these nurseries instead of only the lines filtered for good genotyping data in Table 1. This included (i) 1,260 lines in YTZN 2020 (ii) 1,008 lines in YTZN 2021 (iii) 277 lines in EYTZN 2021 (iv) 1,500 lines each in YTBW 2020 and YTBW 2021 and (vi) 1,120 lines in EYTBW 2021.

The Pearson’s correlation between the GZnC and GFeC in different replications, environments within years, and environments across years were obtained, in addition to the correlations between GZnC and GFeC in different environments. The density of all the filtered markers in all the populations used in this study was assessed and the number of single nucleotide polymorphisms within a window size of 10 Mb was visualized using the “R” package “CMplot” (Lilin-yin, 2018). The first two principal components obtained in TASSEL v5 were then used to assess the population structure in the different nurseries (EYTBW, EYTZN, PCZN, YTBW, and YTZN) and in the combined panel (Price et al., 2006). Population structure was visualized using the “R” package “ggplot2” (Wickham, 2009) to understand the structure in the nurseries developed in different years and in the combined panel of BW and ZN lines.



Genome-Wide Association Mapping for GZnC and GFeC

Genome-wide association mapping for GZnC and GFeC was done using all the 73 datasets described in Table 1 with the mixed linear model (Yu et al., 2006) using TASSEL version 5 (Bradbury et al., 2007). Population structure accounted for by using the first two principal components and kinship accounted for by the genomic relationship matrix using the centered identity-by-state method (Endelman and Jannink, 2012) were used as fixed and random effects, respectively, in the mixed linear model. We also used the optimum level of compression and the “population parameters previously determined” (Zhang et al., 2010) options for fitting the mixed linear model. The p-values for the tests of significance of the marker-trait associations were obtained along with the additive effects and percentage variation explained and the Manhattan plots with the −log10 p-values for GZnC and GFeC and the chromosomes were plotted using the “R” package “CMplot” (Lilin-yin, 2018). To correct for testing multiple hypotheses and to declare significant marker associations, we used the Bonferroni correction at an α level of 0.2. We also identified markers that were significantly associated with GZnC and GFeC in more than three datasets and visualized them on a reference map with their physical positions on the RefSeq version 1.0 using ‘‘Phenogram.’’1




RESULTS


Phenotypic Data

Analysis of GZnC BLUEs (Supplementary Table 2 and Figure 1) indicated that the ZN lines from YTZN 2021 B5IR (55.2 ±5.4 ppm) and EYTZN 2020 B5IR (55.2 ± 4.7 ppm) had the highest mean GZnC followed by ZN lines from EYTZN 2021 B5IR (54.5 ± 4.5 ppm), YTZN 2019 B5IR (53.5 ± 5.3 ppm), and YTZN 2020 B5IR (52.9 ± 4.7 ppm). The highest GZnC of 74.7 ppm was observed in the ZN line MARASI #1 (GID9079797) from YTZN 2021. The mean GZnC in the ZN lines (51.7 ± 4.6 ppm) was higher than the mean GZnC in the BW lines (42.6 ± 3.9 ppm). Similarly, the mean GZnC expressed as percentage Borlaug100 was higher in the ZN nurseries including YTZN 2020 B5IR (101.2 ± 9.9%), YTZN 2021 B5IR (100.5 ± 9.2%), and EYTZN 2021 B5IR (104 ± 8.5%) compared to the corresponding BW nurseries including YTBW 2020 B5IR (90.7 ± 9.7%), YTBW 2021 B5IR (94 ± 7.7%), and EYTBW 2021 B5IR (91.9 ± 7.3%) (Figure 2). Moreover, we observed that the mean GZnC expressed as a percentage of Borlaug100 was 11.5, 6.7, and 13.2% higher in the ZN lines compared to the BW lines in YT 2020, YT 2021, and EYT 2021, respectively.
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FIGURE 1. Distribution of the grain zinc concentration and grain iron concentration best linear unbiased estimates (BLUEs) in the yield trial bread wheat (YTBW), elite yield trial bread wheat (EYTBW), yield trial zinc (YTZN), and elite yield trial zinc (EYTZN) lines evaluated in the bed planting 5 irrigations environment (B5IR), bed planting 2 irrigations environment (B2IR), or small plots (SP), and the concentrations in the parcela chica (small plots) zinc (PCZN) lines.
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FIGURE 2. Distribution of the grain zinc concentration expressed as percentage check Borlaug100 values in the yield trial (YT) and elite yield trial (EYT) bread wheat (BW) and zinc (ZN) improvement program lines evaluated in the bed planting 5 irrigations environment during the 2020 and 2021 crop cycles.


Analysis of GFeC BLUEs (Supplementary Table 2 and Figure 1) indicated that the ZN lines from EYTZN 2021 B5IR (41.9 ±2.4 ppm) and YTZN 2021 B5IR (41.8 ±2.8 ppm) had the highest mean GFeC, followed by the BW lines from EYTBW 2021 B5IR (39.3 ±2.4 ppm), EYTBW 2021 B2IR (39.3 ±2.2 ppm), and YTBW 2021 B5IR (38.9 ±2.4 ppm). The highest GFeC of 53.4 ppm was observed in the BW line KABUTA #1 (GID8776936), followed by the ZN line SHALIK #1 (GID9295875) with 52.7 ppm. The mean GFeC in the ZN lines (38.3 ±2.9 ppm) was similar to the BW lines (37.8 ± 2.6 ppm).

Among the EYTBW 2021 environments, we observed that the mean GZnC was high in the small plots environment, followed by the irrigated and drought-stressed environments. Similarly, the mean GFeC was high in the irrigated and drought-stressed environments, followed by the small plots environment in EYTBW 2021. The mean correlation across the replications was 0.56 ± 0.08 for GZnC and 0.44 ± 0.07 for GFeC (Supplementary Table 3). Across the irrigated, drought-stressed, and small plots environments in EYTBW 2021, the GZnC correlations ranged between 0.43 and 0.46, while the GFeC correlations ranged between 0.28 and 0.35. Considering the same lines that were analyzed in different years, we observed that the mean across-year correlations were 0.34 ± 0.13 and 0.42 ± 0.07 for GZnC and GFeC, respectively. Within the same year and environments, the mean correlation between GZnC and GFeC was 0.5 ± 0.09.



Genotyping Data and Population Structure Analysis

A total of 20,556 unique GBS markers were used for genome-wide association mapping in different datasets. Considering the densities of the 20,184 markers with positions in the RefSeq version 1.0 within a window size of 10 Mb, we observed high densities in the telomeric ends and good marker coverage in all the chromosomes (Figure 3). We also observed that 38.2, 47.3, and 12.7% of the markers were on the A, B, and D genomes, while 1.8% of the markers were unaligned to any chromosome. Population structure analysis using the first two principal components indicated that the BW and ZN lines did not form clearly distinguishable clusters (Figure 4). Similarly, in the EYTBW, EYTZN, PCZN, YTBW, and YTZN nurseries, we did not observe distinguishable clusters of lines in the different crop cycles.
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FIGURE 3. Densities of 20,184 genotyping-by-sequencing single nucleotide polymorphisms (SNPs) in the reference bread wheat genome (RefSeq v1.0). The color key with marker densities indicates the number of markers within a window size of 10 Mb.
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FIGURE 4. A plot of principal components 1 and 2 indicating the population structure in the (i) combined panel with the bread wheat (BW) and zinc (ZN) lines (ii) elite yield trial bread wheat (EYTBW) lines, (iii) elite yield trial zinc (EYTZN) lines, (iv) parcela chica (small plots) zinc (PCZN) lines, (v) yield trial bread wheat (YTBW) lines, and (vi) yield trial zinc (YTZN) lines. The colors in the combined panel indicate the lines from the BW and ZN improvement programs and the colors in all the other nurseries indicate the lines from different crop cycles (2018, 2019, 2020, and 2021).




Genome-Wide Association Mapping for Grain Zinc Concentration and Grain Iron Concentration

We performed 742,113 association tests in 73 datasets and obtained the marker p-values, additive effects, and percentage variation explained. The genome-wide association mapping results were visualized using Manhattan plots showing the genomic regions significantly associated with GZnC and GFeC in different datasets (Figures 5–8). We identified 81 markers that were significant after Bonferroni correction for multiple testing at an α level of 0.2 (Supplementary Table 4). However, among these 81 markers significant after multiple testing corrections, none of them were significantly associated with GZnC and GFeC in more than one dataset. Hence, to avoid losing markers that were not significant after multiple testing and given the known complex genetic control of these traits, difficulties in phenotyping, and the effect of the environment on GZnC and GFeC, we considered all the markers that were associated with GZnC and GFeC in more than one dataset at a p-value threshold of 0.001 to be significant. So, among the 1,207 markers that were significantly associated with GZnC and GFeC at a p-value threshold of 0.001, only 427 markers were significantly associated in two or more datasets (Supplementary Table 4) and 141 markers in three or more datasets. These 141 markers were added to a reference map (Figure 9) and are highlighted below. In addition, we obtained the LD between the consistent markers using the standardized disequilibrium coefficient (D’) (Lewontin, 1964) and the correlations between alleles at the two marker loci (r2) with TASSEL version 5 and visualized them (Supplementary Data Sheet 2). Markers with high (>0.9) r2 and D’ values were considered as an LD block.
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FIGURE 5. Manhattan plots showing the genomic regions significantly associated with grain zinc concentration in the bread wheat lines. BLUEs, best linear unbiased estimates; YTBW, yield trial bread wheat; EYTBW, elite yield trial bread wheat; B5IR, bed planting 5 irrigations; B2IR, bed planting 2 irrigations; SP, small plots.
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FIGURE 6. Manhattan plots showing the genomic regions significantly associated with grain zinc concentration in the zinc lines. BLUEs, best linear unbiased estimates; YTZN, yield trial zinc; EYTZN, elite yield trial zinc; PCZN, parcela chica zinc; B5IR, bed planting 5 irrigations; B2IR, bed planting 2 irrigations; SP, small plots.
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FIGURE 7. Manhattan plots showing the genomic regions significantly associated with grain iron concentration in the bread wheat improvement program lines. BLUEs, best linear unbiased estimates; YTBW, yield trial bread wheat; EYTBW, elite yield trial bread wheat; B5IR, bed planting 5 irrigations; B2IR, bed planting 2 irrigations; SP, small plots.
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FIGURE 8. Manhattan plots showing the genomic regions significantly associated with grain iron concentration in the zinc improvement program lines. BLUEs, best linear unbiased estimates; YTZN, yield trial zinc; EYTZN, elite yield trial zinc; PCZN, parcela chica zinc; B5IR, bed planting 5 irrigations; B2IR, bed planting 2 irrigations; SP, small plots.
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FIGURE 9. A reference map with 141-grain zinc concentration and grain iron concentration associated markers that were consistently associated in three to seven datasets, with physical positions in the reference sequence of bread wheat (RefSeq v 1.0). The datasets in which the markers were significantly associated include the replications 1 and 2 (Rep 1 and 2) and the best linear unbiased estimates (BLUEs) of grain zinc concentration and grain iron concentration in the yield trial bread wheat (YTBW), elite yield trial bread wheat (EYTBW), yield trial zinc (YTZN), elite yield trial zinc (EYTZN), and parcela chica zinc (PCZN) nurseries that were evaluated in the bed planting 5 irrigations (B5IR), bed planting 2 irrigations (B2IR), and small plots (SP) environments in different crop cycles.




Markers Significantly Associated With Grain Zinc Concentration Only

We observed that 67 markers were significantly associated with GZnC only in different datasets with the maximum additive effect being 1.7 ppm and the maximum percentage of phenotypic variation explained being 7.3% (Supplementary Tables 5, 6). Ten markers on chromosomes 1AS, 1BL, 2AL, 3BL, 4AL, 5DL, 6DS, and 7BS including 1A_4159194, 1A_89590707, 1B_634242993, 2A_760579448, 3B_756626946, 4A_672877364, 5D_385132035, 6D_8758611, 7B_115480504, and 7B_121570273 were associated with GZnC in irrigated environment datasets only. Seven markers on chromosome 7BL including 7B_393314447, 7B_541485456, 7B_541697492, 7B_547714243, 7B_549230804, 7B_558326652, and 7B_572421910 were associated with GZnC in drought-stressed environment datasets only. Marker 5B_571635082 was associated with GZnC in the small plots datasets only.

We also observed that 21 markers on chromosomes 2DS, 6B, 6DS, and 7BL including 2D_19472162, 6B_153561917, 6B_ 172366330, 6B_173653415, 6B_174550372, 6B_226747335, 6B_ 408033582, 6B_471154484, 6D_4726489, 7B_516450006, 7B_52 0632340, 7B_521279280, 7B_523105384, 7B_528946179, 7B_529 147819, 7B_529832236, 7B_530459507, 7B_539879402, 7B_5398 79737, 7B_544032561, and 7B_545991219 were associated with GZnC in the drought-stressed environment datasets and in the EYTBW 2021 all environments BLUEs dataset. Marker 5A_585608055 was associated with GZnC in the small plots datasets and in the EYTBW 2021 all environments BLUEs dataset.

Thirteen markers on chromosomes 2AL, 6DS, and 7B including 2A_428372781, 6D_5945276, 7B_119368300, 7B_555 712338, 7B_557354467, 7B_559631849, 7B_559924996, 7B_56 1277280, 7B_561280142, 7B_564053220, 7B_565054902, 7B_570 182044, and 7B_571588916 were associated with GZnC in the irrigated and drought-stressed environment datasets. In addition, eight markers on chromosome 6BS including 6B_183278496, 6B_188684286, 6B_193334002, 6B_204602976, 6B_209953112, 6B_229054447, 6B_235778775, and 6B_237914579 were associated with GZnC in the irrigated and drought-stressed environment datasets and in the EYTBW 2021 all environments BLUEs dataset.

Three markers on chromosome 5BL including 5B_316011853, 5B_586610468, and 5B_592792409 were associated with GZnC in the irrigated environment and small plots datasets. Marker 4A_558059830 on chromosome 4AL was associated with GZnC in the drought-stressed environment and small plots datasets. Marker 7B_530585647 on chromosome 7BL was associated with GZnC in the drought-stressed environment datasets, small plots datasets, and the EYTBW 2021 all environments BLUEs dataset. Marker 7B_560802461 was significantly associated with GZnC in the irrigated, drought-stressed and small plots datasets, in addition to the EYTBW 2021 all environments BLUEs dataset.



Markers Significantly Associated With Grain Iron Concentration Only

We observed that 45 markers were significantly associated with GFeC only in different datasets with the maximum additive effect being 1.3 ppm and the maximum percentage of phenotypic variation explained being 8.3% (Supplementary Tables 7, 8). Among them, five markers on chromosomes 1AL, 2DS, 4BS, 5DL, and 6AS including 1A_558541135, 2D_69242948, 4B_20567798, 5D_433017840, and 6A_61080142 were associated with GFeC in irrigated environment datasets only. Four markers on chromosome 7A, including 7A_232523043, 7A_495927542, 7A_596685453, and 7A_600556352 were associated with GFeC in the drought-stressed environment datasets only. Marker 2B_242990335 on chromosome 2BS was associated with GFeC in the small plots datasets only.

Eleven markers on chromosomes 1AL, 1BL, 2DL, 4AL, 4BS, 4DL, and 5AS including 1A_551428126, 1A_557314695, 1B_636840957, 2D_284570413, 2D_286384945, 2D_290559279, 4A_646730848, 4B_21378087, 4B_21379808, 4D_360914337, and 5A_6960731 were associated with GFeC in irrigated environment datasets and in the EYTBW 2021 all environments BLUEs dataset. We also observed that 13 markers on chromosomes 1BL, 3BL, 5BS, and 7B including 1B_625077030, 1B_625232015, 1B_631257174, 1B_637901362, 1B_641131482, 3B_794884822, 5B_41097371, 7B_66021438, 7B_126740591, 7B_131374909, 7B_168075214, 7B_196275863, and 7B_377008881 were associated with GFeC in the drought-stressed environment datasets and in the EYTBW 2021 all environments BLUEs dataset.

Seven markers on chromosomes 2AL and 7AS including 2A_755740567, 2A_770713812, 7A_65360952, 7A_68211963, 7A_68774152, 7A_69311409, and 7A_70208197 were associated with GFeC in the small plots datasets and in the EYTBW 2021 all environments BLUEs dataset. Marker 7B_131073897 on chromosome 7BS was associated with GFeC in irrigated and drought-stressed environment datasets. Markers 1B_638944475 and 3D_177038832 on chromosomes 1BL and 3DS, respectively, were associated with GFeC in the irrigated and drought-stressed environment datasets and in the EYTBW 2021 all environments BLUEs dataset. Marker 1D_2430803 on chromosome 1DS was associated with GFeC in the irrigated and small plots environments and in the EYTBW 2021 all environments BLUEs dataset.



Markers Significantly Associated With Grain Zinc Concentration and Grain Iron Concentration

We observed that 29 markers were associated with GZnC and GFeC in different datasets with the maximum additive effect being 1.8 ppm and the maximum percentage of phenotypic variation explained being 7% (Supplementary Tables 9, 10). Among them, marker 5A_608360107 was associated with seven datasets, and markers 1D_2510391, 5A_607673246, and 5A_608344326 were associated with six datasets. Marker 7B_223178621 on chromosome 7BS was associated with GZnC in an irrigated and drought-stressed environment dataset and in the EYTBW 2021 all environments BLUEs dataset, in addition to GFeC in a drought-stressed environment dataset. Marker 5B_559726088 on chromosome 5BL was associated with GZnC in irrigated and small plots environment datasets and in the EYTBW 2021 all environments BLUEs dataset, in addition to GFeC in an irrigated environment dataset. Marker 2B_16863488 on chromosome 2BS was associated with GZnC in an irrigated environment dataset and in the EYTBW 2021 all environments BLUEs dataset, in addition to GFeC in irrigated environment datasets. On chromosome 1DS, markers 1D_2510391 and 1D_2531230 were associated with GZnC and GFeC in irrigated environment datasets and in the EYTBW 2021 all environments BLUEs dataset. Marker 1B_641218839 on chromosome 1BL was associated with GZnC in irrigated environment datasets and with GZnC and GFeC in the EYTBW 2021 all environments BLUEs dataset.

Nine markers on chromosomes 2BL, 4AL, 4B, 5AL, 6DS, and 7AS including 2B_667426036, 4A_703167907, 4A_703167987, 4B_14396319, 4B_665552172, 5A_510211856, 5A_618265845, 6D_8662162, and 7A_25860352 were associated with GZnC and GFeC in irrigated environment datasets. Marker 1A_536664231 on chromosome 1AL was associated with GZnC and GFeC in irrigated environment datasets and GFeC in a drought-stressed environment dataset. Four markers on chromosomes 2BL and 5AL including 2B_602765846, 5A_607673246, 5A_608344326, and 5A_608360107 were associated with GZnC and GFeC in irrigated environment datasets and GFeC in drought-stressed environment datasets and in the EYTBW 2021 all environments BLUEs dataset.

Markers 1A_570615890 and 2D_135478757 on chromosomes 1AL and 2DS were associated with GZnC and GFeC in irrigated environment datasets and GFeC in the EYTBW 2021 all environments BLUEs dataset. Markers 3B_734497793 and 7B_115377252 on chromosomes 3BL and 7BS were associated with GZnC in irrigated environment datasets and GFeC in drought-stressed environment datasets. Markers 1B_635977848 and 7B_196382351 on chromosomes 1BL and 7BS were associated with GZnC in irrigated environment datasets and GFeC in drought-stressed environment datasets and in the EYTBW 2021 all environments BLUEs dataset. Marker 4A_710177715 on chromosome 4AL was associated with GZnC in irrigated environment datasets and with GFeC in the EYTBW 2021 all environments BLUEs dataset. Marker 5B_586715328 on chromosome 5BL was associated with GZnC in the small plots and with GFeC in an irrigated environment dataset and in the EYTBW 2021 all environments BLUEs dataset. Marker 4D_438790257 on chromosome 4DL was associated with GZnC in the EYTBW 2021 all environments BLUEs dataset and with GZnC and GFeC in the irrigated combined panel datasets.




DISCUSSION

In this study, we have analyzed the GZnC and GFeC in wheat breeding lines from CIMMYT’s BW and ZN improvement programs. Our results showed the existence of a large and continuous variation for GZnC and GFeC in the lines from both the programs, with the GZnC ranging from 27 to 74.5 ppm and GFeC ranging from 27 to 53.4 ppm. The nurseries from the ZN improvement program had higher mean GZnC compared to those from the BW improvement program, which is expected given that the ZN improvement program’s primary focus is breeding for higher GZnC by crossing with GZnC rich parents and the BW improvement program’s primary focus is maximizing grain yield (Guzmán et al., 2014). In addition, we have reported 6.7–13.2% higher GZnC in nurseries from the ZN improvement program compared to those from the BW improvement program, indicating significant progress from selecting for high GZnC in the ZN improvement program compared to the BW improvement program lines that were not selected for GZnC. The targeted breeding for high GZnC at CIMMYT has led to the release of more than 20 high zinc wheat varieties in target countries (Table 2) occupying more than 2.2 million households during the 2020–21 period.


TABLE 2. List of high zinc wheat varieties released globally.
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We compared GZnC and GFeC measured in the same set of lines in different EYTBW 2021 environments and observed that the mean GZnC in the irrigated environment (43.3 ppm) was slightly higher than the mean concentration in the drought-stressed environment (39.8 ppm), whereas the mean GFeC in both the environments were similar (39.3 ppm). Our results are contrasting to previous reports of higher GZnC in drought-stressed environments (Genc et al., 2009; Velu et al., 2016b) but are in agreement with that of Magallanes-López et al. (2017), who reported significantly lower GZnC in the reduced irrigation environment. While dry conditions are expected to make the grain smaller and increase the GZnC (Genc et al., 2009; Velu et al., 2016b), we only used a moderately drought-stressed environment in this study, and hence, the concentrations might differ from those in severely drought-stressed environments. In addition, the correlations between GZnC and GFeC measured in irrigated and drought-stressed environments were 0.43 and 0.31, respectively, which is encouraging and points to the feasibility of indirect selection for especially GZnC in either of these environments and the development of biofortified varieties for low rainfall regions where zinc deficiency is prevalent (Genc et al., 2009).

We also observed that the GZnC and GFeC evaluated in the irrigated and small plots environments had moderately high correlations of 0.46 and 0.35, respectively, indicating the possibility of indirect selection in space-limiting small plots, which would be resource and space-efficient compared to full-size yield trial plots and facilitate screening a large number of lines before the yield trial stage. Moderate mean year-to-year correlations of 0.34 and 0.42 were observed for GZnC and GFeC, respectively, which is comparable to previous reports (Velu et al., 2017c; Alomari et al., 2018) and indicates a strong environmental effect on the traits. We also observed a positive and moderate correlation of 0.5 between GZnC and GFeC, indicating that simultaneous improvement for these traits is possible as also observed in previous studies (Velu et al., 2011, 2019; Xu et al., 2012; Guzmán et al., 2014; Srinivasa et al., 2014; Khokhar et al., 2020; Rathan et al., 2021). Analysis of population structure did not show clearly distinguishable clusters of lines from the BW and ZN improvement programs, which is expected given that several high-yielding BW lines with other preferred traits are used as parents in the ZN improvement program through a limited backcross approach (Velu et al., 2015).

We performed a large genome-wide association study for GZnC and GFeC using lines from CIMMYT’s BW and ZN improvement programs that were evaluated in multiple environments and years. Among the 1,207 markers that were significant in 73 datasets at a p-value threshold of 0.001, we observed that only 35% of them were significant in more than one dataset and the highest number of datasets in which a marker was significant was only seven. This could be because of the missing marker data in some datasets, the variable marker allele frequencies in different nurseries owing to the different parents used, and the effects of the environment on GZnC and GFeC (Pfeiffer and McClafferty, 2008; Velu et al., 2012; Guttieri et al., 2015; Crespo-Herrera et al., 2017). The 141 markers that were consistently associated with GZnC and GFeC in three or more datasets in this study were located on all wheat chromosomes except 3A and 7D, with the largest number of significant marker-trait associations on chromosome 7B (44), followed by chromosomes 6B (15), 1B (10), 7A (10), 1A (7), 5A (7), 5B (7), 2D (6), 4A (6), 4B (5), 2A (4), 2B (4), 6D (4), 1D (3), 3B (3), 4D (2), 5D (2), 3D (1), and 6A (1). The positions of these significant markers were compared with positions of previously reported markers for GZnC and GFeC that were either available on the RefSeq v1.0 or obtained from their sequences using the Basic Local Alignment Search Tool available in the Triticeae Toolbox (Blake et al., 2016).

On chromosome 1AL, we identified markers between 551428126 and 558541135 bps with high LD (Mean D′ = 0.99) that were associated with GFeC only and markers 1A_536664231 and 1A_570615890 that were associated with both GZnC and GFeC. Among them, marker 1A_536664231 was only 11.6 kbs away from QGFe.co-1A reported to be associated with GFeC (Liu et al., 2019). Markers 1A_551428126 and 1A_570615890 were in the same position as several GZnC and GFeC-associated markers between 551461626 (Ra_c5683_1762) and 571789571 (CAP12_c3758_112) bps reported by Cu et al. (2020) and are indicating the same locus. Furthermore, marker IWA8135 reported to be associated with GZnC (Baranwal et al., 2022) was only 29.5 kbs away from the marker 1A_558541135 in our study, while GFeC associated markers AX-158569244 (542434057 bps) and AX-109301351 (543618767 bps) (Alomari et al., 2019) were flanked by the markers significant in this study and are all indicating the same locus.

On chromosome 1BL, we observed that, while marker 1B_634242993 was associated with GZnC only, several markers between 625077030 and 641131482 bps were also associated with GFeC only, and markers 1B_635977848 and 1B_641218839 were associated with both GZnC and GFeC. Among them, GZnC-associated marker 1B_634242993 was only 36.7 kb away from marker wpt-1403 that flanked the GZnC QTL QGZn.sar_1Btsk (Velu et al., 2017c). Similarly, marker Excalibur_c66196_256 (625569783 bps) associated with GFeC (Cu et al., 2020) was flanked by GFeC associated markers 1B_625232015 and 1B_631257174 in this study and they indicate the same locus. On chromosome 2AL, we identified GZnC associated markers 2A_428372781 and 2A_760579448 and GFeC associated markers 2A_755740567 and 2A_770713812. Among them, markers 2A_755740567, 2A_760579448, and 2A_770713812 are in the same region as several GFeC-associated markers reported by Alomari et al. (2019) between 729175064 (AX-94482613) and 770007136 bps (AX-109961625).

On chromosome 2BL, markers 2B_602765846 and 2B_667426036 were associated with both GZnC and GFeC in this study and they flanked, (i) the GZnC region tagged by markers Excalibur_c19649_1500, Excalibur_rep_c67411_210, Excalibur_c11392_1193, and wsnp_Ex_c9729_16071358 (Velu et al., 2018) that were between 616955895 and 643684946 bps; (ii) the GZnC region tagged by markers GENE-1125_32 and Tdurum_contig54925_225 (Cu et al., 2020) that were between 637573847 and 637574357 bps; and (iii) the GZnC associated marker BS00012036_51 (Wang et al., 2021) that was at 646215529 bps. On chromosome 2DS, marker 2D_135478757 associated with both GZnC and GFeC in this study was 10.8 Mbs away from GZnC associated marker Kukri_c14902_1112 (Velu et al., 2018). On chromosome 3BL, markers 3B_756626946 and 3B_794884822 associated with GZnC and GFeC, respectively, in this study flanked GZnC associated marker IWB64607 (Baranwal et al., 2022) at 772399720 bps.

On chromosome 4AL, marker S4A_681683160 (Bhatta et al., 2018) reported to be associated with GZnC was flanked by markers 4A_558059830 and 4A_646730848 that were significantly associated with GZnC and GFeC in this study. In addition, GZnC associated marker Kukri_c25823_443 at 631922580 bps (Cu et al., 2020) was flanked by significant markers 4A_672877364 (GZnC) and 4A_703167907 (GZnC and GFeC). On chromosome 4BS, GFeC-associated marker 4B_21379808 was 9.5 Mb away from the Rht-B1 gene that has been previously associated with GZnC and GFeC (Velu et al., 2017b). On chromosome 5AS, marker 5A_6960731 associated with GFeC was 2.1 Mbps away from the GZnC associated marker wsnp_Ex_c16551_25060833 reported by Velu et al. (2018) and 2.9 Mbps away from the GFeC associated marker wsnp_Ex_c28908_37989320 reported by Cu et al. (2020). On chromosome 5AL, GZnC associated marker S5A_552354940 (Bhatta et al., 2018), GFeC associated QTL QGFe.co-5A.1 and QGFe.co-5A.2 (Liu et al., 2019), and GZnC associated marker IWA2365 (Baranwal et al., 2022) were located in the interval tagged by GZnC and GFeC associated markers 5A_510211856, 5A_585608055, and 5A_618265845 and an LD block comprising markers 5A_607673246, 5A_608344326, and 5A_608360107 (Mean D′ = 0.1) that were significant in this study.

On chromosome 5BL, GFeC associated QTL QGFe.cimmyt-5B_P1 (Crespo-Herrera et al., 2017) and several GZnC and GFeC associated markers between 517867135 (wsnp_RFL_Contig1570_778491) and 562970329 (wsnp_Ex_c13485_21225504) bps that were reported by Cu et al. (2020) were in the interval tagged by significant markers 5B_316011853, 5B_559726088, 5B_571635082, 5B_586610468, 5B_586715328, and 5B_592792409 that were associated either with GZnC only or with both GZnC and GFeC in the study. On chromosome 5DL, the GFeC-associated markers AX-158587148 and AX-158543037 (Alomari et al., 2019) were in the interval tagged by markers 5D_385132035 and 5D_433017840 that were associated with GZnC and GFeC, respectively, in this study. On chromosome 6AS, the GFeC associated marker 6A_61080142 was in the location of the GZnC QTL QGZn.cimmyt-6A_P1 (Crespo-Herrera et al., 2017).

On chromosome 6B, several markers between 153561917 and 471154484 bps, some of which were in high LD with few others, were significantly associated with GZnC only in this study. Among them marker 6B_153561917 was 18.9 Mbps away from the GPC-B1 gene that has been previously reported to be associated with GZnC and GFeC (Uauy et al., 2006; Distelfeld et al., 2007; Velu et al., 2017a) and was also associated with grain and flour protein content (Juliana et al., 2019). In addition, GZnC associated QTL QGZn.co-6B.2 (Liu et al., 2019) was flanked by markers 6B_174550372 and 6B_183278496 that were significant in this study.

On chromosome 7B, GZnC associated QTL/markers, (i) QGZn.cimmyt-7B_1P2 between 485838522 and 506414028 bps (Crespo-Herrera et al., 2017) was flanked by the GZnC associated markers 7B_393314447 and 7B_516450006; (ii) QGZn.cimmyt-7B_1P1 (Crespo-Herrera et al., 2017) was in the same position as the GZnC and GFeC associated markers 7B_121570273 and 7B_126740591; (iii) QGZn.cimmyt-7B_2P1 (Crespo-Herrera et al., 2017) was in the same position as the GFeC associated markers 7B_131374909 and 7B_168075214 that were in high LD (D′ = 0.97); (iv) Tdurum_contig65979_289 (539220004 bps), a stable GZnC associated marker (Tong et al., 2022) was only 0.65 Mbps away from GZnC associated marker 7B_530585647 that was significant in this study. In addition, GZnC associated markers reported by Wang et al. (2021) GZnC between 182142433 bps and 190801271 bps were flanked by the GFeC associated markers 7B_168075214 and 7B_196275863 that were significant in this study and constituted an LD block (D′ = 1).

We have validated several previously reported QTL and markers associated with GZnC and GFeC, in addition to reporting many novel associations, which together provide important insights into the genetic basis of these micronutrients. We have also reported several markers that were significantly associated with GZnC and GFeC in more than one environment among the irrigated, water-limiting drought-stressed, and space-limiting small plots environments. These provide strong evidence for the shared genetic basis of these micronutrient concentrations in different environments and indicate the feasibility of indirect selection for GZnC and GFeC in either of the environments depending on the cost and resources (i.e., small plots might be cheaper and space-saving) and the target population of environments where the biofortified lines will be grown (i.e., if the target areas are prone to drought, direct selection for GZnC and GFeC in the drought-stressed environment is essential and it can favor indirect selection for the irrigated environment).

Several markers associated with both GZnC and GFeC have been identified in this study, which is in agreement with previous studies reporting overlapping genomic regions associated with these traits (Xu et al., 2012; Crespo-Herrera et al., 2016; Tiwari et al., 2016; Velu et al., 2017c) and reinstates the possibility of simultaneously improving them. Our results also indicated that the maximum additive effects of the GZnC and GFeC associated markers on the traits were only 1.7 ppm and 1.3 ppm, respectively, which taken together with the large number of marker-trait associations identified in this study suggest a quantitative genetic control of GZnC and GFeC by many loci with small effects as reported previously (Shi et al., 2008; Genc et al., 2009; Hao et al., 2014; Alomari et al., 2018). Overall, our findings provide key insights into the complex genetic basis of GZnC and GFeC in bread wheat and imply limited prospects for implementing marker-assisted selection. Hence, a genome-wide marker-based selection approach like genomic selection that facilitates selection on the additive effects of multiple loci might be more appropriate for increasing the selection accuracy, enriching favorable alleles, and subsequently accelerating genetic gains for these traits (Meuwissen et al., 2001; Heffner et al., 2009; Velu et al., 2016a).
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Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world’s most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public–private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.

Keywords: Wheat, genome-wide association, quantitative trait locus mapping, abiotic-stress tolerance, genomic selection, QTL cloning, disease resistance, CRISPR/Cas9


THE 17 GBP WHEAT GENOME: CHALLENGES AND OPPORTUNITIES

Wheat (Triticum aestivum L.) is the key crop for feeding the Earth’ growing population, remaining a staple food in many regions of the world. It is cultivated on more than 220 million hectares worldwide, and global production exceeds 749 million tons annually.1 Bread wheat is a hexaploid species (2n = 6x = 42, genome AABBDD) that evolved via natural hybridization between tetraploid domesticated wheat T. turgidum ssp. dicoccum (contributed the AA and BB sub-genomes) and the wild grass species Aegilops tauschii (DD sub-genome), followed by the domestication of the resulting hexaploid spelt wheat (T. spelta; Petersen et al., 2006). The wheat genome is ~17 Gbp in size and contains a high degree of complexity, particularly in terms of chromosomal duplications and rearrangements, and the very high percentage of repetitive sequences (IWGSC, 2014; Akpinar et al., 2015).

Wheat breeding targets are numerous and varied, given the wide geographic area across which wheat is grown. However, the principal common targets are grain yield (GY), quality determinants, and tolerance to biotic and abiotic stresses. The complexity of the wheat genome makes improving qualitative and quantitative traits through molecular approaches challenging. An example of this is drought tolerance, which is conferred by diverse signaling molecules, including micro-RNA (miRNA), transcriptional factors, quantitative-trait loci (QTL), transcripts, proteomes, ionomes, and other metabolites, resulting in a complex signaling cascade for the control of traits such as abiotic stress (Budak et al., 2015). Furthermore, multiple genes are involved in the production and regulation of these molecules, which leads to a complex signaling cascade, responsible for conferring abiotic/biotic-stress tolerance. Hence, knowledge of the sequence, as well as the precise location, annotation, and casual polymorphisms of the genes involved is vital for utilizing the genomic data in breeding programs, aimed at achieving specific and desired traits or phenotypes.

Due to its large genome size in comparison with other major crops with smaller genomes, efforts to sequence and annotate the wheat genome have been extremely time-consuming, often involving sequencing of individual chromosomes (Berkman et al., 2011, 2012). Thus, the International Wheat Genome Sequencing Consortium (IWGSC) reported a draft sequence of bread wheat (cv. Chinese Spring; CS) in 2014, derived from sequencing flow-sorted chromosomes/chromosome arms. The draft assembly totaled 12.7 Gbp, comprising 124,201 gene loci distributed across A, B, and D sub-genomes (IWGSC, 2014). However, this assembly contained only approximately three-quarters of the whole wheat genome. Furthermore, the genome sequences of the chromosomes/chromosome arms were fragmented with many gaps as well as many incomplete, absent, or incorrectly assigned genes, making it hard for scientists to find and elucidate specific genes (Berkman et al., 2013; IWGSC, 2014; Lai et al., 2015). Despite the incompleteness of this version, it was highly useful for breeders, as it provided valuable information at the chromosomal/chromosome-arm level. A draft whole-genome sequence of wheat was obtained by combining long Pacific Biosciences (PacBio) reads (>10,000 bases long) with short (150 bp) Illumina reads, with 15.34 Gbp and an average contig size of 0.23 Mbp (Zimin et al., 2017). Low-coverage sequence data for 16 varieties were released in 2012 and used as the basis for the first draft wheat pan-genome (Edwards et al., 2012). This study highlighted the fact that, due to gene presence/absence variation, a single reference does not represent the gene content of the species (Bayer et al., 2020; Danilevicz et al., 2020; Golicz et al., 2020).

The high-quality reference sequence of wheat genome was achieved by the International Wheat Genome Sequencing Consortium in several steps. A whole-genome sequence based on Illumina technology and a draft assembly was released in 2016 (IWGSC WGS v0.4), which was comprised of Illumina short sequence reads assembled with NRGene’s DeNovoMagic (Appels et al., 2018).2 This was then combined with physical maps of the chromosome/chromosome arm and other genomic resources that had been developed over 13 years by numerous laboratories around the world, to develop IWGSC RefSeq v1.0. In 2018, the fully annotated reference-genome assembly was released (IWGSC RefSeqv1.1; Appels et al., 2018), with the precise location and annotation of 107,891 high-confidence genes and more than 4 million molecular markers along the 21 chromosomes. The chromosome-scale assembly covered approximately 94% of the bread-wheat genome (cv. Chinese Spring), with a total assembly size of 14.5 Gbp. A key feature of this new genome assembly was the long scaffolds, of which 90% were larger than 4.1 Mbp, the longest super scaffold being 166 Mbp (i.e., larger than the 135 Mbp Arabidopsis thaliana genome and half the size of the rice genome; Appels et al., 2018). Accordingly, RefSeqv1.0, with the highest sequence contiguity, has become a tool for wheat genomics and breeding activities worldwide. In 2020, the release of genome assemblies for 15 additional wheat accessions, with diverse origins across the globe (Walkowiak et al., 2020), has further consolidated the position of wheat in the genomics era, providing additional resources to underpin breeding strategies. The availability of multiple, high-quality genome assemblies for wheat has highlighted the genomic diversity present in the global breeding program. Introgressions from wild relatives, structural rearrangements, and variation in gene content, originating from various breeding efforts aimed for diverse and multiple traits have contributed to wheat genomic diversity (Walkowiak et al., 2020). An advantage of having multiple assemblies is that it enables the discovery of new sequences and genes that were not present in previous versions of the wheat genome, thus creating new opportunities to identify, characterize, and exploit the beneficial alleles/haplotypes present for wheat improvement. IWGSC RefSeq v2.0 available since 25 July 2019, as shown at “IWGSC RefSeq v2.0 now available at URGI.”3

In summary, these genome assemblies represent an essential, highly efficient resource for wheat researchers and breeders, to identify and clone major genes and QTL, to elucidate regulatory regions, including miRNAs and transcription factors, and gene networks involved in yield, as well as biotic- and abiotic-stress tolerance in wheat, thereby facilitating their use in wheat improvement programs (Figure 1). Capturing phenotypes (as QTL) at the genomic level has brought a sharp focus on the repetitive nature of the gene-coding space in the wheat genome, allowing both copy number variation, as well as sequence variation per se, to be correlated with phenotype variation. The distribution of essentially identical genes on different non-syntenic chromosomes provides for further flexibility, as well as complexity, in fine-tuning phenotypes to specific environments.

[image: Figure 1]

FIGURE 1. Overview of the parallel progress in the analysis of the wheat genome and high throughput phenotyping. The top panel provides the timeline for wheat-genome studies, opening up of the next generation omics; the image on the far right is the modeling of wheat granule-bound starch synthase, using Phyre 2 (Kelley et al., 2015). The lower panel emphasizes the progress of both field-based phenomics (image of drone with spectral-recording equipment, kindly provided by S. Kant, Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia) and laboratory-based high-throughput analyses (part of Figure 6 of Banerjee et al., 2020), showing false-color composite from hyperspectral data of wheat leaves, kindly provided by S. Kant.


In this paper, we consider the potential of current whole-genome assemblies to improve the accuracy and resolution of genetic mapping, QTL mapping, genome-wide association studies (GWAS), and the use of sequence-based markers for efficient MAS and genomic selection. A key focus for the review is the identification and cloning of major candidate genes (CG), for traditional wheat-breeding programs, and modern ones using Clustered Regularly-Interspaced Short Palindromic-Repeats (CRISPR) associated protein 9 (CRISPR/Cas9)-mediated genome editing, and bioinformatics tools for wheat improvement complement the advances in genotyping and phenotyping. They herald the start of what might be considered a golden era of wheat genomics-assisted breeding, promoting the aim of sustainably intensifying global-food production.



WHEAT REFERENCE-GENOME AND IN SILICO BIOINFORMATICS

The so-called next gene generation sequencing (NGS) technologies, as well as high-resolution optical mapping generate large data sets (Dorado et al., 2019). They have driven improvements in bioinformatics tools used to deal with the challenge of analyzing such large data sets. Advancements have been made possible by a dual-strategy approach, focused on hardware and software. They have included clock-frequency increases for the Central Processing Units (CPU) of computers, node reduction, multicore (a few), many core (higher number) and integration through System on a Chip (SoC) with unified memory between the CPU and Graphics Processing Units (GPU). Machine learning, artificial intelligence, dedicated artificial neural network (ANN) analyses, and massive parallelism are enhanced using multi-core architectures (Gálvez et al., 2016, 2021). All this has contributed to our ability to sequence de novo, assemble, and annotate extremely large and complex genomes.

Abundant transcriptome sequence data have been generated in wheat, being freely available in open-access servers such as Wheat Expression,4 which can be utilized to narrow down the candidate genes identified in GWAS analyses, for further validation projects. The availability of sequenced mutant populations has opened doors to conduct validation studies.5 Predesigned single-nucleotide polymorphism (SNP)-based primers are available in the Ensemble database6 for validating mutations, which can then be combined to develop double- or triple-null mutants, for research and breeding applications. Efforts in this direction are expected if “causal” genes are to be identified. Transcriptomics and other expression analyses have generally been combined with QTL and metaQTL (mQTL), to narrow down and validate the candidate genes (Oyiga et al., 2018; Gálvez et al., 2019; Mérida-García et al., 2020). We expect it to be applied more frequently in marker-assisted and genomic selection. Continued advances in fingerprinting genome regions of interest, through improved designs of SNP arrays and associated statistical analyses of imputation, is establishing haplotype analyses as a more appropriate method to represent QTL, rather than relying on single-candidate genes.

A significant challenge that scientists have faced with the availability of the wheat genome reference (IWGSC RefSeq v 1.0) is its integration with the previously published genetic maps harboring QTL for various traits. Large datasets including physical maps, sequence variations, gene expression, markers, and phenomic data have already been integrated on the IWGSC RefSeq v1.0 (Wheat@URGI portal; Alaux et al., 2018). Furthermore, haplotype-based integration of different marker types and the capacity to align early genetic maps with the reference genome are refined, capitalizing on existing information of trait-linked SNP, DArTseq and/or Genotype By Sequencing (GBS) markers (PRETZEL; Figure 2).7
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FIGURE 2. Aligning genome maps for SNP, DArTseq and/or GBS markers with IWGSC RefSeq 1.0 using PRETZEL https://plantinformatics.io. The right most map provides the location of a QTL for the emergence of additional seminal roots (midpoint = 26.6 cM; Golan et al., 2018) from a Svevo x Zavitan map based on a 90K SNP chip. The second map (from the right) is the durum genome sequence for 1B, available at the URGI with the SNPs annotations included. The second map from the left is the IWGSC RefSeq 1.0 with the HC ver1.1 gene annotation, the 90k SNP annotation, the LC ver1.1 gene annotations and the SSR annotations included. The left most map is the genome sequence for the 1RS.1BL sequence from wheat cv Aikan58 (Ru et al., 2020) with three sources of gene annotations included. The red dots identify the gene models predicted to be located in the QTL identified in the Svevo x Zavitan QTL.




CHARACTERIZATION OF GENES AND GENE FAMILIES USING THE WHEAT REFERENCE-GENOME

As indicated above, the availability of reference genome sequences in many crop species, including wheat, has sparked the publication of many works about genomics and breeding of such species, using bioinformatics tools, with special emphasis on previously unknown areas of the genome. For instance, in silico analyses of the published wheat reference genome, IWGSC RefSeq v1 (Appels et al., 2018), have allowed the identification and characterization of the gene families. They include: (i) Domain of Unknown Function (DUF-966, TaDUF966) gene family, involved in salinity-stress tolerance (Zhou et al., 2020); (ii) MADS-Box gene (TaMADS-box) family members, involved in wheat growth, development, and abiotic stresses (Raza et al., 2021); (iii) Gretchen Hagen3 (TaGH3) gene family, important in various biological processes, including phytohormone responses, growth, development, metabolism, defense, and abiotic-stress tolerance, such as salinity and osmotic ones, with polyploidization contributing to their high number (Jiang et al., 2020); (iv) superoxide dismutase (SOD) gene (TaSOD) family, encoding antioxidant enzymes scavenging reactive oxygen species (ROS), also involved in plant growth, development, and abiotic-stress tolerance, including drought and salinity (Jiang et al., 2019); (v) non-specific lipid transfer proteins (nsLTP/LTP) gene (TansLTP/TaLTP) family, involved in transporting phospholipids across membranes, growth, development, and abiotic stresses, such as drought and salinity, showing high numbers, due to gene duplications (Fang et al., 2020a); (vi) REMorin (REM) gene (TaREM) family, involved in vernalization, plant-microbe interactions, hormonal regulation, development, and tolerance to biotic and abiotic stresses, including cold acclimation (Badawi et al., 2019); (vii) S-phase Kinase-associated Protein 1 (SKP1) gene (TaSKP1) family, encoding core subunits of the Ubiquitin Proteasome 26S (UPS) and have expanded through duplications, being involved in development and stress signaling (El Beji et al., 2019); (viii) subtilase or subtilisin-like protease (SBT) genes (TaSBT), involved in many biological functions, such as defense and tolerance to biotic stresses caused by pathogens, among which are Puccinia striiformis f. sp. tritici, which is the fungus generating the wheat stripe-rust disease (Yang et al., 2020); (ix) highly and structurally conserved “Soluble N-ethylmaleimide Sensitive Factor (NSF; SNF) Attachment Protein (SNAP) REceptor” (SNARE) and Novel Plant SNare (NPSN) gene families (TaSNARE and TaNPSN, respectively), involved in growth and development, regulating vesicle trafficking, fusion, and targeting to vacuoles and exocytosis (Gaggar et al., 2020); (x) “DNA binding with one finger” (Dof) gene (TaDof) family, encoding zinc-finger transcription factors (TaDof), involved in phytohormone response, growth, development, metabolism, defense, and stress responses, including both abiotic (such as salinity and drought) and biotic ones, with their high numbers due to polyploidization, showing many segmental duplications and both miRNA and cis-regulators involvement in modulating their gene expression profiles (Fang et al., 2020b); and (xi) basic leucine ZIPper (bZIP) gene (TabZIP) family, encoding transcription factor, being involved in plant growth, development, metabolism, chlorophyll content, photosynthesis, membrane stability, and tolerance to stresses, including abiotic ones such as drought, salinity, and heat, also involving oxidative stress (Agarwal et al., 2019). These gene families complement many gene models identified by highly conserved domains, using model organisms such as rice and Arabidopsis, and provide a matrix across the wheat genome, to associate with phenotypic variation in order to establish a new matrix of functionally, with annotated gene models predicted to affect wheat phenotype.

Bioinformatics analyses of the published wheat reference genome, IWGSC RefSeq v1.0, have also enabled the comparisons of cDNA, identification, and annotation of genes. These comparisons revealed different metabolic pathways, including starch and sucrose, as well as genes related to abiotic- and biotic-stress tolerance, signaling and transportation (Kaur et al., 2019). Delivering the range of bioinformatics outputs from the wheat genome sequence has required innovation in the production of genotyping microarrays, such as the Axiom Wheat high-density Genotyping Array, Axiom Wheat Breeder’s Genotyping Array, and GeneChip Wheat Genome Array from Affymetrix-Applied Biosystems-Thermo Fisher Scientific.8 The efficacy of the SNP arrays can now be evaluated using a three-way classification system, permitting sorting of SNP into three quality groups (Lange et al., 2020).

The concept of having the wheat genome on a chip is currently under development by the Arbor Biosciences IWGSC exome array group, working with the IWGSC, with a first release in 2019 of the Baits Expert Wheat Exome capture panel, based on the complete high-confidence exon-annotated wheat genome. It included two million probes, targeting more than 200 megabases of high-confidence exons.9 An extra level of fine-tuning for gene regulation of different biological processes, including metabolism, growth, development, transport, cell signaling, structural proteins, and abiotic- and biotic-stress tolerance, is afforded by the characterization of new microRNA (miRNA), including polycistronic miRNA, in cultivated and wild species. The genes targeted by these small RNA can be predicted, and some are monomorphic, whereas others are polymorphic, all represented on the Expert Exome capture chip (Singh et al., 2020).

The small RNAs are spatially and temporally regulated, being involved in post-transcriptional gene regulation, including transcription factors, and thus complement the genome-wide transcriptomics approach established to dissect the dynamics and underlying regulation of key processes, such as wheat-spike development. Genes involved are related to meristem maintenance, initiation and transition, development of flowers, and flowering response to stress (Li et al., 2018b).


Grain Yield and Related Traits

Wheat grain yield is controlled by numerous genetic components, most of which are quantitative in nature. Due to this underlying complexity, QTL mapping is commonly used for the dissection of grain yield and yield components, in order to identify markers for MAS. Prior to the 2014 draft sequence, several QTL studies have reported using redundant SSR-markers for QTL mapping of GY and related traits, as recently reviewed (30, see also Supplementary Table S1), but most of these regions were not incorporated into wheat cultivars in breeding programs using MAS. The IWGSC draft sequence published in 2014 (IWGSC, 2014) enabled the use of genotyping arrays and GBS, with deep coverage to construct high-density linkage maps and identify several candidate genes (Addison et al., 2016; Su et al., 2016; Assanga et al., 2017; Cui et al., 2017; Hussain et al., 2017b; Kuzay et al., 2019; Jin et al., 2020). Major and stable QTL for plant height, anthesis date, flag-leaf length and width, as well as spike length, density and spikelet number per spike were mapped on chromosome 2D and 4B, with individual phenotypic variation (PV) range of 10.10%–30.68%. Other QTLs were mapped on chromosomes 4A and 6D. The markers were associated with candidate genes coding for TGTCTC auxin response elements, F-box protein TIR1, flowering locus T-like protein, MADS-box transcription factor 8 and 12 genes encoding SAUR-like auxin-responsive family proteins (Jin et al., 2020). Three independent studies identified haplotype SNP markers and major stable QTL for seed number per pod (SNPP), thousand-grain weight (TGW), grain length, flag leaf length, width, and area on chromosomes 7A (Su et al., 2016; Hussain et al., 2017b; Kuzay et al., 2019) and 5A (Hussain et al., 2017b). These QTL were associated with candidate genes, such as Wheat ortholog of Aberrant Panicle Organization 1 (WAPO1) and TaGASR7. Among these, a well-studied and reproducible yield QTL on the long arm of chromosome 7A has been located to an 87-kbp region (674,019,191–674,106,327 bp, IWGSC RefSeq v1.0), containing two full and two partial genes. The ortholog of one of these genes (TraesCS7A01G481600) was APO1, which is known to significantly affect panicle attributes (Kuzay et al., 2019). This APO1 ortholog was the best candidate for the spikelets per spike phenotype, being associated with two amino acid changes (C47F and D384N) in the coding region. In the genomic region carrying the chromosome 7A APO1 gene, three major haplotypes were associated with the spikelets per spike phenotype, and two of these show enrichment in modern germplasm (Kuzay et al., 2019; Voss-Fels et al., 2019). More recently, genetic analyses were carried out using a wheat multi-founder population genotyped with a 20K SNP array. They found that allelic variation at the homoeologous location on chromosome 7B was associated with haplotype variation at the WAPO-B1 gene (Corsi et al., 2021). Another recent example of the use of high-density SNP arrays for the genetic mapping of yield components was the use of a 660K SNP array that led to the identification of a stable major QTL for grain number per spike on chromosome 4A that corresponded to 65 putative genes (Cui et al., 2017) and contributed 8.0%–21.2% to PV.

Networks linking quality attributes of the grain to the yield of the grain are evident, as genes initially identified in the quality space have been characterized for their roles in the improvement of yield and related traits. Examples of several such genes include TaGW2 (Su et al., 2011), cell-wall invertase TaCwi-A1 (Ma et al., 2012), TaGASR7-A1 (Dong et al., 2014), TaGS-D1 (Zhang et al., 2014), IAA-glucose hydrolase gene, TaTGW6 (Hu et al., 2016a), and TaTGW-7A (Hu et al., 2016b). Marker-trait associations (MTAs) for yield and related traits have been linked to candidate genes/loci such as Rht-B1, Rht-D1, Vrn-A1, Ppd-D1, TaSus1, TaSus2, TaGS-D1, and TaGW2-6B (Lopes et al., 2015; Zanke et al., 2015). Importantly, a GBS-based GWAS for 768 wheat accessions identified 395 QTL for plant height, DH, SNPP, spike length and number, grain length, grain width, and TGW under seven environments (Pang et al., 2020). These QTL were closely linked with several candidate genes including, but not limited to, yield-related genes: APO1, AUX1, Ehd2, GSN1, GL3, Gn1a, MADS14, MADS15, MADS18, MADS57, Rht-D1, Rht12, TaGA2ox8, TaSus1-7B, Vrn-B1, and Vrn-D1.

Within the matrix of the functional wheat genome, projection of yield-related QTL onto a set of well-defined wheat genes (99,386) identified 32 metaQT including 18 grain-yield mQTL associated with 15,772 genes (28,630 SNP), 37 of which were major candidate genes (Quraishi et al., 2017), including ATPase, GIF1, Ppd-D1, Prog1, Gn1-a, NYC1, emp4, DEP1, GW2, GS2, and Rc3 (Pang et al., 2020).



Drought Tolerance

In candidate gene-based association mapping approaches, resequencing of genes with known or predicted biochemical function is performed, and SNP variation identified within a candidate gene is used to investigate associations with traits (Iehisa et al., 2014; Supplementary Table S2). Using this approach, allelic variation in four drought-related genes has been investigated in wheat. Edae and colleagues (Shokat et al., 2020) reported associations of SNP in three genes, DREB1A, ERA1, and 1-FEH, with multiple agronomic and physiological traits. These are known to be drought stress-induced genes in ABA-dependent (ERA1) and ABA-independent (DREB1A, 1-FEH) pathways. In another CG-based association mapping study, allelic variation in TaSnRK2.8 (a SNF-1 type serine–threonine protein kinase) showed association with plant height, flag leaf width, and water-soluble carbohydrates, under drought conditions (Zhang et al., 2013). Other CG involved in wheat AB/ABA-dependent/ABA-independent signaling pathways have been described, including DREB1, WRKY1, DREB1A, HKT-1, DREB2, DREB3, ERA1-B, ERA1-D, 1-FEH-A, and 1-FEH-B (Budak et al., 2015). Finally, a drought tolerance QTL on chromosome 6D was associated with regulation of expression of late embryogenesis abundant (LEA) genes such as TaABA8, OH1, CYCB2, and CDKA1 (Iehisa et al., 2014), suggesting that these genes play a role in drought tolerance. Several clusters of drought-responsive genes (DREG) have been found on the long arm of the group 5 chromosomes, with orthology to a known QTL of rice (Oryza sativa). In particular, this region contains the genes PSY3, NCED, VRN1, UGDH, and the dehydrin DHN38 that increase their expression under field drought stress conditions (Gálvez et al., 2019). Similarly, transcriptomics analyses of high yielding and drought tolerant United States wheat-cultivars TAM 111 and TAM 112 identified several DREG. For instance, under drought stress, aquaporin, dehydrogenase, kinase, phosphatase synthase, phosphorylase, and sugar transporter were downregulated. On the other hand, dehydrin, ABA-inducible protein kinases, LEA protein, heat-shock protein, caleosin, lyase, amylase, and oxidoreductase were upregulated in such environments (Chu et al., 2021). These studies now clearly engage the very broad aspects of wheat biology, providing a subset of genes for more detailed study in characterizing variation in drought tolerance, facilitating the identification of suitable parents for breeding.

Large-scale haplotypes-based GWAS studies, combined with epistatic interactions, have been undertaken to untangle the genetic architecture of grain yield under multiple stress environments (including mild and severe drought stress), using a large panel of 6,333 advanced lines, from the International Maize and Wheat Improvement Centre (CIMMYT; Sehgal et al., 2020a). This study reported haplotype associations with grain yield, under mild (four datasets) and severe (10 datasets) drought stress environments. Most importantly, the authors identified a significant association of a haplotype block close to the Vrn-B1 flowering time gene on chromosome 5B, with GY in more than 70% of the trials under severe drought stress. Vrn-B1 is significantly correlated with adaptation to low temperature, thus indicating a shared tolerance mechanism for both abiotic stresses.



Heat Tolerance

A candidate gene approach to heat tolerance allowed the examination of variation in Fv/Fm, a parameter for assaying the maximum quantum efficiency potential of Photosystem II (Supplementary Table S3). It was linked to three major QTL mapped on chromosomes 3B and 1D (Sharma et al., 2017), involving two light-reaction genes, chloroplastic NAD(P)H-quinone oxidoreductase subunit 2B (ndhB2) and photosystem I iron–sulfur center (psaC). Two other genes, known to control chloroplastic 3-isopropylmalate dehydrogenase 2 (IMDH2), were also suggested to be involved in metal binding during photosynthesis. Other candidate genes, such as beta-glucosidase 26 (βglu26) and fructokinase 2 (frk2; Sharma et al., 2017), were involved in carbohydrate metabolism. Response to thylakoid membrane damage, plasma-membrane damage and SPAD chlorophyll-content QTL were mapped on chromosomes 1B, 1D, 6A, and 7A. Cell membrane stability was on chromosomes 1D, 2B and 7A (Talukder et al., 2014). These QTL were associated with candidate genes such as srg6, calcium/calmodulin-dependent kinase (CDPK), topoisomerase I (Top1), and aquaporins. A GWAS study identified 20 significant MTA for cell membrane stability on chromosomes 1A, 1B, 2A, 4A, 4B, 6B and 7B, 13 of which were situated solely on 6B (ElBasyoni et al., 2017). All these SNP were then annotated as candidate genes, glycerophosphoric-diester phosphodiesterase (GDE1), TRAF-type zinc-finger protein, SWI3B, and ATPase (Supplementary Table S3). The network nature of grain yield, heat, and drought susceptibility indices, as well as yield stability coefficient, were also reported (Sehgal et al., 2017), as being associated with the flowering time genes Vrn-B1, Ppd-D1, and Vrn-D3.



Salinity Tolerance

Salt tolerance is a complex trait (Hussain et al., 2015). In recent years, SNP-based genotyping platforms, including 9K (Asif et al., 2018), 35K (Hussain et al., 2017a; Chaurasia et al., 2020), 90K (Oyiga et al., 2018) and 660K (Yu et al., 2020; Hu et al., 2021) arrays, have been used to identify novel and major QTL, MTA, and CG that can be used in MAS and genomic selection for salinity tolerance (Supplementary Table S4). Wheat F2 lines (WTSD91 × WN-64) were genotyped using an Axiom 35K SNP array, to develop a high-resolution linkage map, and 49 QTL for sodium ion (NAX) and potassium ion (KC) status under salinity stress were mapped (Hussain et al., 2017a). Two NAX QTL on chromosome 2A coincided with a reported major HKT1 (Nax1/HKT1) QTL (Genc et al., 2010), and two NAX QTL on chromosome 7A which contributed 11.2% and 18.8%, respectively, to phenotypic variation. QTL for KC were located on chromosomes 2A, 3D, 4B, and 6A, whereas a novel Zn QTL on chromosome 7A controlled 11.2% of variation for salt tolerance. The most important Ca2+ (chromosome 6B) and Mg2+ (2A) QTL contributed 11.9% and 8.4%, respectively, to salt tolerance. Furthermore, QTL for Cu, Mn, B, P, S, and Fe were mapped for the first time (Hussain et al., 2017a). Based on SNP and expression analyses, Nax1/HKT1, K+ outward-rectifying channel (SKOR), potassium transporter 12 (KUP12), chloride channel protein (CLC-e), transparent testa 12, glutathione S-transferase U6 (GSTU6), peroxidase 12, auxin transport (BIG), auxin-response factor 5-like, ARF21, NAC78, Mg transporter (NIPA4), and Zn transporter 6 were identified as candidate genes (Hussain et al., 2017a). In another study, QTL for shoot growth, NAX and KC were mapped on chromosome 2B, 5A, 6A, and 7A in a wheat DH population. QTL were associated with several candidate genes. They included salt overly sensitive 1 (SOS1) or sodium/hydrogen exchanger 7 (NHX7), potassium transporter 1 (KUP1), HKT2, pyrophosphate-energized proton pump (H+ pyrophosphatase), KUP12, SKOR and two-pore potassium (TPK) channel and proton pump H+-ATPase 4 (Asif et al., 2018). Importantly, both of these studies (Hussain et al., 2017a; Asif et al., 2018) identified major QTL for KC and NAX on chromosomes 6A and 7A, respectively.

GWAS has been used to identify novel MTA and candidate genes for salinity tolerance (Oyiga et al., 2018; Chaurasia et al., 2020; Yu et al., 2020; Hu et al., 2021). The genotyping of 150 wheat accessions using the 90K SNP array, and a subsequent GWAS, identified 187 SNP and 37 QTL for leaf NAX and KC, including four QTL on chromosomes 2A, 3A and the short arm of chromosome 1B, in addition to novel QTL on the short arm of chromosome 1B and the long arm of 1D (Oyiga et al., 2018). Transcriptomics analyses revealed missense mutations responsible for salt tolerance variations in candidate genes, including ZIP7, SAP8, HAK18, GST1, SWEET17, and KeFC. Chaurasia et al. (2020) reported 42 MTA for shoot fresh/dry weight, chlorophyll content, seedling biomass, K+ and Na+ concentration that contributed 2.4%–42.8% to phenotype variation. These genomic regions were associated with 58 candidate genes, including transparent testa 12, chloroplast iron-superoxide dismutase, serine/threonine protein kinase (Nek6), ethylene responsive transcription factor (ERF3), bHLH30, and GDP-mannose transporter (GONST1).

Furthermore, haplotype analyses have also been coupled with GWAS to identify allelic variation for salt tolerance in wheat (Yu et al., 2020; Hu et al., 2021). A significant number of MTA (102 of 117) for germination and salt tolerance indices were found on chromosomes 1A, 3B, and 6B. They were associated with 53 candidate genes, including abscisic acid-insensitive 5-like (TaABI5-like), DUF674 family protein, SUMO-activating enzyme subunit 1A, glutamate formiminotransferase 1, protein KRI1, and NADH-cytochrome b5 reductase. Haplotype variations and expression of candidate genes under salinity have also been validated (Yu et al., 2020). Another GWAS analysis for yield and related traits under salinity found genomic regions and haplotypes for adult-stage salt tolerance on chromosomes 1B, 3B, 4A, 4D, 5A, 5B, an 7A. The markers were linked to several candidate genes, serine/threonine protein kinases, ricin B-like lectin gene, phytochelatin synthase, MADA-box genes, glycerol-3-phosphate acyltransferase (GPAT), U-box E3 ubiquitin ligase, and lipid-transfer proteins (TaLTPs) [73]. Additionally, 19 QTL for Mg2+ and Ca2+ were mapped at the same location as of Cl-QTL (Genc et al., 2014), with potential candidate genes chloride channel (CLC) and cation chloride co-transporter (CCC).



Frost Tolerance

An important limiting factor for wheat production in North America, North and Eastern Europe, and Russia is low temperature (Babben et al., 2018). As polar regions become more unstable due to climate change, the risk of extreme weather events including freezing temperatures increases (Francis and Skific, 2015). Therefore, resilience to frost is an important crop trait to consider. Frost tolerance is a complex biological process, involving pathways encompassing a large number of genes. The main pathway is frost response and a prolonged period of low temperature (vernalization), which can be regarded as an avoidance mechanism to prevent frost damage to sensitive reproductive organs. Two major frost tolerance loci, Frost Resistance 1 (FR1) and FR2, were identified on the long arm of chromosome 5A (Vágújfalvi et al., 2003). Zhao et al. (2013a) described an additional frost tolerance QTL on chromosome 5B in wheat germplasm from central Europe. During the last decade, several QTL associated with frost tolerance were identified on different wheat chromosomes (i.e., 1A, 1D, 2A, 2B, 3A, 5A, 5B, 6A, 6B, 6D, and 7B; Case et al., 2014; Kruse et al., 2017). The majority of genes assumed to be involved in frost tolerance have been identified on chromosome 5 (Vágújfalvi et al., 2003; Zhao et al., 2013a; Würschum et al., 2017; Babben et al., 2018; see also Supplementary S5). Until recently, only a few studies reported the identification of QTL regions associated with frost tolerance by GWAS (Babben et al., 2018; Kandel et al., 2018). Babben et al. (2018) demonstrated the utilization of the IWGSC RefSeq v1.0 in the specific primer development for highly conserved gene families in wheat. It showed that a candidate-gene association genetics approach is a useful tool for identifying new alleles of genes important for response to flowering time. Sequence analyses concluded that C-repeat binding factors (CBF)-A3, 5, 10, 13, 14, 15, and 18, vernalization response genes (VRN-A1, VRN-B3) and photoperiod response genes (PPD-B1 and PPD-D1) were associated with frost tolerance in wheat. In addition to winter hardiness as described above, an additional and critical frost-resistance phenotype relates to damage caused by transient frosts that generally occur on early spring mornings. While this trait is more complex to study, the above genes described for winter hardiness would be expected to contribute to this tolerance as moderators.

During the last decade, several components encompassing messenger molecules, protein kinases, and phosphatases, as well as transcription factors, which are involved in cold-stress signaling pathways, have been reported by studies using wheat sequence information (Wei and Han, 2017; Babben et al., 2018; Jin et al., 2018; Guo et al., 2019). The CBF (C-repeat binding factor), Inducer of CBF Expression (ICE) and cold-responsive (COR) genes or ICE-CBF-COR are part of the main cold-signaling pathway, playing a major role in controlling frost tolerance for crop species (Jin et al., 2018; Guo et al., 2019). ICE genes belong to the MYC family transcription factor and MYC subfamily of bHLH (Basic Helix–Loop–Helix; Guo et al., 2019). ICE factors are known as positive CBF expression regulators, considered to act upstream of the low-temperature signaling pathway. Two ICE homologs such as TaICE41 and TaICE87 have been identified in wheat (Guo et al., 2019). The TaICE41, TaICE87, and five MYC-like bHLHs were positively regulated upstream of the CBF mediated transcriptional cascade, controlling cold tolerance in wheat (Wei and Han, 2017).



Cloning of Multiple Disease and Insect-Resistance Genes

Examples of the positional or map-based cloning of disease resistance-related genes in wheat are arguably more common than for non-disease resistance traits—presumably due to the gene-for-gene interaction of such major resistance genes with specific avirulent factors in the pathogen, or other major effects (Supplementary S6). These include genes such as Lr21 (Huang et al., 2003), Yr36 (Fu et al., 2009), Yr15 (Klymiuk et al., 2018), YrU1 (Wang et al., 2020b), Fhb1 (Su et al., 2019), Fhb7 (Wang et al., 2020a), SuSr-D1 (Hiebert et al., 2020), Yr7, and Yr5/YrSP (Marchal et al., 2018). They have been cloned in wheat, to improve resistance against leaf and yellow rusts, in addition to fusarium head-blight diseases (Supplementary Table S5). Additionally, various genes were cloned for resistance against stem rust (Sr22, Sr33, Sr35, Sr45, Sr46, Sr60; Periyannan et al., 2013; Saintenac et al., 2013; Steuernagel et al., 2016; Arora et al., 2019; Chen et al., 2020), necrotrophic blotches (Tsn1, Snn1, Stb6, Stb6q; Faris et al., 2010; Shi et al., 2016; Saintenac et al., 2018, 2021), powdery mildew (Pm1a, Pm2, Pm3, Pm3b, Pm5e, Pm21, Pm24, Pm38/Lr34/Yr18/Sr57, Pm41, Pm46/Lr67/Yr46/Sr55, Pm60; Yahiaoui et al., 2004; Krattinger et al., 2009; Hurni et al., 2013; Moore et al., 2015; Sánchez-Martín et al., 2016; Xing et al., 2018; Zou et al., 2018; Li et al., 2020; Lu et al., 2020; Xie et al., 2020), being detailed in Supplementary Table S5. Access to a high-quality genome reference of wheat (IWGSC RefSeq v1.0) has also enabled researchers to explore susceptibility factors that may contribute to the onset of disease. For instance, Henningsen et al. (2021) explored the upregulation of wheat genes with orthology to known susceptibility factors in other plant species, in response to stem-rust fungus. They hypothesized genes that may play a conserved role in susceptibility. Similarly, a study by Corredor-Moreno et al. (2021) combined gene expression analyses and the genome reference of wheat (IWGSC RefSeq v1.0) and provided the basis for showing that the branched-chain amino acid aminotransferase gene (TaBCAT1) contributed to susceptibility to both stripe and stem rust. The authors from both studies suggested that manipulation of susceptibility genes can result in novel strategies to control disease. Fine-mapping and leveraging of available wheat pan-genome datasets, together with TILLING resources, have been utilized to analyze these complex situations. For example, a possible gene driving the complex interactions underlying Sm1-mediated resistance to orange wheat-blossom midge (OWBM, Sitodiplosis mosellana Géhin) wheat insect pest has been identified as a canonical NLR, with kinase and major sperm protein integrated domains (Walkowiak et al., 2020).

GBS-based GWAS identified 27 MTA for powdery mildew (7 MTAs), stem rust (5 MTAs), septoria (3 MTAs) and leaf rust (12 MTAs) resistance on all chromosomes (except for 4B and 5D; Bhatta et al., 2019). MTA were associated with several candidate genes for leaf rust; namely GDSL esterase/lipase, vesicle-associated 1-1-like protein, E3 ubiquitin ligase family protein, phosphatidic acid phosphatase, 12-oxophytodienoate reductase-like protein, septoria (F-box/RNI-like/FBD-like domains-containing protein) and stem rust (zinc transporter, putative). Leaf and stem-rust candidate genes associated with MTA were members of the NLR (nucleotide-binding domain leucine-rich repeat) gene family, nuclear monodehydroascorbate reductase 6 (MDAR6), solanesyl-diphosphate synthase 1 (DSDS1), enhancer of AG-4 protein 2 (AG4), phosphatase 2C (PP2C), and importin-9 (IPT9), being listed in Supplementary Table S5.

Advances in wheat genomics have facilitated the cloning of nine stripe-rust resistance genes (Yr5, Yr7, YrSP, Yr15, Yr18/Lr34, Yr36, Yr46, YrAS2388, and YrU1), out of the >80 genes that have been identified and mapped so far in different genetic backgrounds of wheat (Wang et al., 2020b). Cloning of the broad-spectrum stripe-rust resistance (R)-gene (Yr15), derived from wild emmer wheat, has led to the discovery of a novel protein family, the tandem kinase-pseudokinases (TKP) that emerged as a new class of disease-resistance protein family (TKP), providing plant innate immunity, being present not only in wheat, but also across the whole plant kingdom (Klymiuk et al., 2018). Five plant-disease resistance genes have been identified so far to contain a structure with tandem kinase domains, including three wheat genes, i.e., the wheat-stripe-rust R-gene WTK1 (Yr15; Klymiuk et al., 2018, 2020), wheat-stem-rust R-gene WTK2 (Sr60; Chen et al., 2020), and wheat powdery-mildew [Blumeria graminis f. sp. tritici (Bgt)] R-gene WTK3 (Pm24; Lu et al., 2020). More than 20 WTK copies have been found to be scattered across the three wheat genomes, AA, BB, and DD, including the orthologous group in chr 1 and the paralogous groups on chromosome 6 (Klymiuk et al., 2019). WTK1 orthologs, paralogs, and homologs were found also in the diploid wheat relatives, Triticum urartu (AA), Aegilops speltoides (SS), and A. tauschii (DD), representing the ancestral A, B, and D genomes, respectively, as well as in rye (Secale cereale), barley (Hordeum vulgare), and other cereal species. The protein sequences of TKP were obtained from genome assemblies of wild and cultivated wheat species, being used for phylogenetic analyses (Klymiuk et al., 2018), because it is important for successful deployment of R-genes in wheat breeding programs to identify if a cloned gene differed from other genes localized in the same chromosome region, or may represent different alleles of the same gene. For example, it was found that Yr15-, YrG303-, and YrH52-mediated resistances to yellow rust are encoded by a WTK1 as a single locus (Klymiuk et al., 2020). In future, we expect that many more such cases will be revealed, narrowing down the list of designated R-genes in wheat.

Ten powdery mildew (Pm) genes have been cloned so far, alongside with advances in wheat genomics resources (Supplementary Table S5). Pm3/Pm8, Pm2, Pm21, Pm60, Pm5e, Pm41, and Pm1a encode NLR-immune receptors from different wheat relatives (Yahiaoui et al., 2004; Hurni et al., 2013; Sánchez-Martín et al., 2016; Xing et al., 2018; Zou et al., 2018; Li et al., 2020; Xie et al., 2020), while a tandem kinase protein is encoded by Pm24 (Lu et al., 2020). Furthermore, two non-NLR genes—Pm38 and Pm46, showed broad-spectrum multi-adult plant resistance to powdery mildew and rust diseases. An ABC transporter is encoded by the Lr34/Yr18/Sr57/Pm38 multi-resistance gene (Krattinger et al., 2009), and a hexose transporter is encoded by the Lr67/Yr46/Sr55/Pm46 multi-resistance gene (Moore et al., 2015). The cloning of these Pm genes enables the development of high-throughput diagnostic functional markers that can be used in MAS for fungi-resistance breeding programs (Supplementary Table S5). Some of these Pm genes have been widely used for the protection of wheat cultivars for many years. For example, Triticeae grass Dasypyrum villosum (2n = 2x = 14, VV) harbors Pm21, which confers broad-spectrum resistance, and was transferred in China into wheat cultivars (T6AL.6VS wheat-D. villosum translocation line) in 1995 (Chen et al., 2013). Some of these NLR proteins could be overcome by the fast evolution of virulent Blumeria graminis (Bgt) isolates, especially when the gene is widely deployed in wheat fields. For example, wheat-rye 1BL·1RS translocation carrying Pm8 has lost the resistance function for wheat variety production (Zeng et al., 2014). Different alleles of those cloned Pm genes that might be resistant to different Bgt isolates have been identified and could also be used for MAS. For example, 17 alleles of the Pm3 gene have been identified mediating resistance to distinct race spectra of Bgt. Pm3a has a range of resistance that fully encompasses that of Pm3f, but also extends to additional races (Brunner et al., 2010). Therefore, enriching the Pm gene pools is very important for resistance breeding. Pm24 is a rare natural allele of tandem kinase protein (TKP), with putative kinase-pseudokinase domains, conferring broad-spectrum resistance to wheat powdery-mildew disease. However, there are some other Pm genes that have not been cloned yet, such as Pm30, found in ~80% of Chinese cultivars, as detected by closely linked markers (Cheng et al., 2020). The absence of functional molecular markers is limiting the diagnosis of potential Pm alleles, and their deployment in wheat breeding, via MAS and genome editing.

Two independent GWAS analyses utilizing iSelect 9K and 90K Illumina arrays have reported SNP and genes for Soil-Borne Wheat Mosaic Virus (SBWMV) resistance (Liu et al., 2014, 2020). Liu et al. (2020) completed a GWAS analysis of SBWMV resistance using the 90K Illumina array. Thirty-five SNP in 12 wheat genes and one intergenic SNP in the Sbwm1 region were identified on chromosome 5D, being associated significantly with SBWMV resistance. Resistance to SBWMV was strongly associated with a predicted kinase family protein (Liu et al., 2014). Furthermore, GWAS analyses identified major resistance SNP for Wheat Spindle Streak Mosaic Virus (WSSMV) on chromosome 2D, in addition to regions on 5B and 7D. The 2D genomic region was linked with 18 candidate genes, including 11 NBS-LRR ones (Hourcade et al., 2019), being listed in Supplementary Table S6.

Insect resistance (Supplementary Table S7) has been explored, utilizing the wheat stem sawfly (WSS) transcriptome and its interaction with the regulatory elements, microRNA<--abbreviation indicated above-- and long non-coding RNA (lncRNA). Interestingly, the study found that WSS miRNA may target wheat transcripts and vice versa, thereby potentially modulating plant responses against WSS (Cagirici et al., 2017). The solid-stem trait, associated with WSS resistance, was linked to copy-number variation of a putative Dof Transcription Factor (TdDof) within the 3BL QTL, through the use of high-throughput sequencing in different genetic backgrounds. Transgenic lines over-expressing TdDof firmly established that increased expression of TdDof was responsible for solid stemness, likely through regulation of programmed cell death in pith parenchyma cells (Nilsen et al., 2020). Similarly, genome sequencing in resistant and susceptible cultivars revealed a candidate gene in the Sm1 locus that is known to confer resistance to orange wheat blossom midge (OWBM). This time, knockout mutant lines demonstrated that mutations within this gene resulted in susceptibility against OWBM. The candidate gene contains NB-ARC, and LRR motifs, in addition to a serine/threonine (S/T) kinase that is similar to those found in rust resistance proteins, and a major sperm protein (MSP) domain (Walkowiak et al., 2020).



End-Use Quality Traits

Wheat grain markets and food industries demand not only high yielding and resistant varieties, but also those with specific end-use qualities. End-use quality is, therefore, an important focus in breeding programs. Methods, for testing quality, however, require large amounts of grain and are time-consuming and costly. Significant efforts have been made to identify QTL linked to various end-use quality traits such as grain protein content (GPC), dough rheological properties, and baking quality (Supplementary Table S7). Several comprehensive analyses (Sun et al., 2008; Raman et al., 2009; Carter et al., 2012; Simons et al., 2012) of mapping several quality traits related to protein and starch have been conducted. Sun et al. (2008) analyzed GPC, flour protein content (FPC), grain glutenin macropolymer content, wet gluten content (WGC), dry gluten content (DGC), Zeleny sedimentation volume, flour–water absorption (FWA), dough development time (DDT), and mixing tolerance index and flour paste viscosity (Supplementary Table S7). They identified 30 QTL for starch traits and 15 QTL for protein traits, with QTL clusters for starch traits located on chromosomes 3D, 6B, and 7B, and protein traits on 1D and 3B. Raman et al. (2009) analyzed GPC, milling yield, FPC, flour color, FWA, DDT, dough strength (DS), and dough extensibility (DE). They found several QTL associated with DS, DE, DDT, and FWA, close to glutenin (Glu-B1) locus on chromosome 1B. Simons et al. (2012) analyzed 20 end-use quality traits including six grain, seven milling and flour, four dough mixing strength, and three bread-making traits. They found that the 1DL QTL cluster containing Glu-D1 had a large genetic influence on dough mixing strength and bread-making performance. Furthermore, two QTL clusters located on chromosomes 3B and 4D associated with several milling and baking quality traits (Carter et al., 2012) were reported, being associated with the Wx-B1, Glu-B1 and Glu-D1 genes.

Specific attributes of starch contribute unique properties to certain wheat-breeding lines and the genome level characterization of one such property, udon noodle quality, is detailed in (Appels et al., 2018). The Granule Bound Starch Synthase (GBSS; TraesCS4A01G418200) gene on chromosome 4A is absent from some lines, being the null allele for GBSS-4AL (Wx-B1b) that associates with udon noodle quality. Significant sections of TraesCS4A01G418200 were absent from the exome sequences of 3.9% lines of a set of 644 (hexaploid) wheat varieties and landraces, assessed using 10 SNP identified from snapshot exome sequence data (Appels et al., 2018). The specific deletions within the GBSS-4AL gene mean that the respective lines provide new germplasm sources for wheat breeding. The gene-specific deletions would not be expected to show detrimental effects, due to the deletion of adjoining gene models, and thus be expected to perform successfully at the agronomic level, to satisfy the high-value commercial udon-noodle market. Other attributes of starch, such as a high amylose content for an improved source of fiber in the diet, can now be introduced into commercial wheat lines.

Importantly, a metaQTL analysis (Quraishi et al., 2017) identified stable QTL, by combining 27 quantitative genetic studies with four genetic maps. It located 73 and 82 QTL for baking quality and GPC-related traits, respectively, on a consensus map. They reported 8 metaQTL for baking quality and 6 for GPC. The most precise metaQTL having the smallest confidence intervals were located on chromosomes 3D (3.78 cM) for baking quality and chromosome 2B (5.83 cM) for GPC. The candidate genes identified are listed in Supplementary Table S7.

Recently, high-density SNP arrays and GBS have also been utilized to identify QTL for bread-making quality, using biparental populations (Jin et al., 2016; Boehm et al., 2017; Guo et al., 2020b). These high-resolution genetic maps helped to precisely identify major QTL and candidate genes, thus providing a valuable resource for MAS and genomic selection in wheat. Guo et al. (2020b) used GBS1.0 DArT arrays and 90K iSelect SNP array to map QTL for protein and starch-related traits. The authors reported 26 stable QTL, for GPC, sedimentation volume, DDT, DST, FWA, flour viscosity, break down, and peak time, detected in more than two environments on chromosomes 1A, 1B, 1D, 4B, 5D, 6A, 6B, 6D, 7A, and 7D. These genomic regions were linked to several candidate genes, including embryonic flower 1 (EMF1), trehalose-6-phosphate synthase 6 (TPS), nitrate transporter 1:2 (NRT1; 2 transporters), zinc-finger protein 830 (ZNF830), phospholipid-transporting ATPase, transcription factor (TFIIIB), acylamino-acid-releasing enzyme (APEH), F-box protein (SKIP22), and aldehyde dehydrogenase (ALDH). Similarly, Jin et al. (2016) used the 90K iSelect and the 660K SNP arrays to identify QTL for dough rheology and starch-pasting properties (Jin et al., 2016). Subsequently, 119 additive QTL were mapped on 20 chromosomes (i.e., all except 4D), including 55 and 17 novel QTL for mixolab parameters and 17 for Rapid Visco-Analyzer parameters. SNP markers in these regions were located on eight candidate genes, involved in biosynthesis of fatty acids and amino acids, in addition to starch and sucrose metabolism, i.e., anthranilate phosphoribosyltransferase (AnPRT), 3-ketoacyl-CoA, ornithine aminotransferase, lipoxygenase 2 (LOX2), sucrose-phosphate synthase II (SPS2), lysosomal beta glucosidase, and 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (mtnN; Jin et al., 2016). Using the power of GBS, Boehm et al. (2017) identified co-localizing QTL for multiple end-use quality traits (GPC, FWA, and flour yield) on chromosomes 1B, 2D, 7A, and 7B, including allelic variation for the glutenin genes Glu-A1, Glu-B1, Glu-A3, Glu-B3, and Glu-D3.




CURRENT AND POTENTIAL METHODS TO IDENTIFY AND CLONE GENES IN WHEAT

The availability of reference genome in wheat and subsequent construction of several high-density genetic maps developed from the sequence-tagged SNPs (see section Characterization of Genes and Gene Families Using the Wheat Reference-Genome) has opened new opportunities for map-based cloning of the genes. Therefore, here we have discussed the presently used and potential gene cloning methods in bread wheat. Dissecting the genetic and molecular mechanisms regulating grain yield and growth is the key for positional cloning or map-based cloning, as well as wheat breeding and improvement. Traditional forward genetic tools have been widely used to clone genes regulating traits of interest in wheat, e.g., VRN1 (Yan et al., 2003), Gpc-B1 (Uauy et al., 2006), and Lr21 (Huang et al., 2003). Map-based gene cloning, however, usually needs multiple steps such as generating mapping populations, fine mapping to narrow the target region to identify genetic markers co-segregating with the phenotype, screening candidate gene(s) and gene(s) identification by sequencing. This process often requires more time and is labor intensive, especially in wheat. Hence, a limited number of positional cloning studies have been successfully undertaken. Furthermore, BREEDWHEAT program10 summarized 8-year efforts in which novel source of genetic diversity identified and introduced to elite materials to generate superior varieties.

Bulked segregant analysis (BSA) was recommended as a shortcut to identify the linkage of molecular markers with phenotype, being extensively used to map loci that have major effects (Michelmore et al., 1991). In this analysis, DNA of each individual showing extreme phenotype in a segregating population (i.e., F2) are bulked and genotyped, including their parents, with molecular markers (Chhetri et al., 2017). Any marker is considered to be linked with the studied trait if it shows the same allele in the bulk and parent of a similar phenotype. Recently, with the great advances of NGS technologies, several BSA-based modifications have been developed to identify major-effect QTL, regulating quantitative traits. These modifications are based on whole-genome resequencing bulks in a large population, reducing cost of genotyping, time spent, and increasing statistical power of analyses (Zou et al., 2016; Chhetri et al., 2017).

In crops with large genomes such as wheat, complexity reduction is very important to identify and clone target genes more quickly and efficiently. QTL-seq is one such approach that incorporates the potential of BSA. The power of high-throughput whole-genome resequencing to identify genomic regions showed contrasting results of an SNP index in two bulk populations (each with 20–50 individuals), featuring extreme phenotypes (Takagi et al., 2013a). Recently, QTL-seq was used in bread wheat to identify the candidate genomic region tightly linked to the awn inhibitor loci. Diagnostic markers were designed to understand the role of QTL in the awnless trait formation (Wang et al., 2021). Moreover, this approach was applied to identify loci involved in tiller angle in bread wheat, which represents an important factor influencing yield. Also, in this case, functional markers for MAS were developed and validated (Zhao et al., 2020). Multiple QTL-seq (mQTL-seq) used for several mapping populations from crosses with at least one common parent (Das et al., 2015). The use of multiple mapping populations with a broad genetic diversity was critical for the validation of QTL, along with narrowing down the detected QTL. To date, however, this technique has not yet been used in wheat.

Where the cost of whole-genome resequencing becomes prohibitive, bulk segregant RNA sequencing (BSR-seq) can be an alternative strategy for identifying expression QTL (eQTL) regions, generating data of gene expression for genomic loci of interest (Trick et al., 2012). Differential expression of genes in two bulks can be used to identify candidate genes responsible for favorable phenotypes. BSR-seq has been successfully used for mapping of stripe-rust-resistant loci YrMM58 and YrHY1 on chromosome 2AS (Wang et al., 2018b), Yr15 on chromosome 1BS (Ramirez-Gonzalez et al., 2015), and leaf senescence gene (els1) on chromosome 2BS (Li et al., 2018a), in segregating wheat biparental populations. Similarly, BSR-seq enabled fine-mapping of a locus controlling grain-protein content (GPC) in wheat (GPC-B1) to 0.4 cM from the previously reported interval of 30 cM (Trick et al., 2012). This study pinpointed 13–18 candidate genes for GPC in wheat.

NGS platforms have also accelerated the identification and cloning of genes in mutant collections. TEnSeq pipelines are examples of advances that have allowed for rapid gene cloning identification, as recently reviewed (Zhang et al., 2020). Mutagenesis chromosome flow-sorting and short-read sequencing (MutChromSeq) is a recently developed tool (Sánchez-Martín et al., 2016; Hiebert et al., 2020), based on mutagenesis followed by flow sorting of chromosomes and their subsequent sequencing, to identify induced mutations. This rapid approach was successfully described to clone the powdery-mildew resistance locus Pm2 in wheat (Sánchez-Martín et al., 2016). MutChromSeq has the advantage that it does not rely on an assumption that the resistance gene belongs to the NLR class (as for other approaches, see below). Hence, it would be appropriate for identification of non-immune-mediated resistance genes. The most recent application is the cloning of the Med15 protein encoded by SuSr-D1, a suppressor gene of stem-rust resistance (Hiebert et al., 2020) from the wheat cultivar “Canthatch.”

A similar approach to MutChromSeq, which does not require mutagenesis, is the target chromosome-based cloning (TACCA) method. It uses flow-sorted chromosomes, next-generation sequencing, and cultivar-specific de novo assembly. Using this approach, Lr22a, broad-spectrum leaf-rust resistance locus was cloned in wheat. Two SSR markers flanking Lr22a, covering 0.48 cM interval on chromosome 2D, were previously mapped. Sorting chromosome 2D, followed by sequencing and identification of genes, was performed within 4 months (Thind et al., 2017).

Other cloning strategies such as MutMap (mutational mapping) involve mutagenesis, sequencing, and mapping, to identify SNP between wild-type and homozygous mutants, and then zero in on the region containing the gene of interest. Although this approach was initially considered to be applicable only in crops with small genomes, it was successfully utilized to map and clone Ms1 from bread wheat, using F2 plants derived from heterozygous ms1e mutants (Wang et al., 2017). MutMap will be less efficient at identifying the causal mutation, however, if the wild-type reference genome has gaps at the position of the causal mutation. Thus, de novo assembly of the wild-type genome is used in MutMap-Gap (Takagi et al., 2013b), and could be applied to wheat in the future.

Finally, MutRenSeq is a fast gene-cloning tool for the isolation of nucleotide-binding and leucine-rich repeat (NLR) genes (Steuernagel et al., 2016). Chemical mutagenesis, exome capture, and sequencing are required. Most genes associated with disease-resistance encode proteins in the NLR family. Hence, exome capture is necessary to enrich the NLR-specific bait library. Then, resistant wild-type parent and susceptible loss-of-function mutants are sequenced, as a last step. Mutant reads are aligned with the equivalent wild-type pool of the NLR gene family from the parents. This method has been utilized to clone two fungal stem-rust resistance genes (Sr22 and Sr45) and three yellow-rust genes (Yr7, Yr5/YrSP) from bread wheat (Steuernagel et al., 2016; Marchal et al., 2018). This method does not require fine positional mapping and can be applied to isolate NLR-type resistance genes from most crops and their wild relatives. Nevertheless, two major limitations must be taken into account. Firstly, the design of oligonucleotide baits is based on a reference genome sequence. Considering the large-scale presence/absence variations among different accessions, the recent release of pan-genome in wheat is the ideal reference on which to design baits (Walkowiak et al., 2020). Secondly, this approach is limited to isolating only resistance genes, encoding NLR proteins. Therefore, genes that do not belong to the NLR family are missed (Dinh et al., 2020). However, it is possible to add capture baits targeting other classes of genes, thought a priori to be involved in disease resistance, such as wall-associated kinases.

Unlike map-based cloning and MutRenSeq, the association genetics with the R-gene enrichment sequencing (AgRenSeq) method has been developed to align with GWAS platforms (to utilize genome-wide natural variation). Thereby, RenSeq eliminates the need for biparental mapping populations or mutagenesis. This approach was demonstrated successfully to clone the, Sr46 R-gene and to identify the candidate-gene sequence for SrTA1662, using a diverse panel of A. tauschii ssp. strangulata (Arora et al., 2019). It explores a pool of diverse wild relatives, carrying many resistance genes. As a result, it enables cloning of multiple genes at the same time (Dinh et al., 2020). These strategies have many advantages over traditional marker-based mapping. In addition to taking much less time, they find genes or functional nucleotides/haplotypes, responsible for a given agronomic trait. In several cases, genes were rapidly cloned and diagnostic markers were developed. The benefits of cloning genes in wheat, particularly those with a role in disease resistance, have been recently shown (Luo et al., 2021). As demonstrated by Luo et al. (2021), construction of transgene cassettes can simplify breeding bottlenecks, associated with the deployment of multiple genes to be inherited as a single unit. In this case study, a gene cassette containing five previously cloned R-genes (Sr45, Sr50, Sr55, Sr22, and Sr35) provides high levels of resistance to stem rust, suggesting that this could be a viable solution to confer durable multi-pathogen resistance.



GENOMIC SELECTION IN WHEAT TO IMPROVE COMPLEX TRAITS

The relatively recent availability of large numbers of genome-wide molecular markers in wheat genetic resources has led to the application of an alternative marker-assisted approach for wheat genetic improvement, namely genomic selection (Meuwissen et al., 2001; Jannink et al., 2010). For a long time, the lack of high-density markers were a major hindrance to carrying out in-depth genetic and genomic analyses. GS is an advanced form of MAS, wherein genome-wide markers are used to calculate genomic-estimated breeding values (GEBV; Meuwissen et al., 2001). Rather than explicitly identifying and tracking markers associated with genetic loci controlling a given trait, GS aims to use large numbers of genome-wide markers, in conjunction with phenotypic data collected in a collection of lines/varieties (termed the “training set”), to establish parameters that allow forward selection of the progenies derived from the training set over multiple forward generations, in the absence of additional phenotyping (Meuwissen et al., 2001; Jannink et al., 2010). This potentially allows selection to be applied faster and at higher intensities, as more lines can be incorporated for advancing to subsequent generations, without the need for time-consuming phenotyping steps. Additionally, advancement in statistical and bioinformatics methods to deal with high-density marker data for genomic selection has been equally important for plant breeders for the development of GS in wheat. GS is a valuable and attractive plant breeding approach that provides an idea for the conversion of genotypic value to phenotypic value (Nakaya and Isobe, 2012). Although this approach has great potential, plant breeders must carefully consider relationship between training and breeding populations. Additionally, it is important that breeders should investigate all traits of interest during the training phase in order to exclude phenotyping during the breeding cycle.

Since its first use in 2006 (Crossa et al., 2006), GS has been extensively used in wheat, for a wide range of traits with different architectures including grain yield (Crossa et al., 2016; Rutkoski et al., 2016; Saint Pierre et al., 2016; Guo et al., 2020a; Sehgal et al., 2020b), resistances to different diseases as rusts, fusarium head blight, Stagonospora nodorum blotch, Septoria tritici blotch, and tan-spot resistance (Jiang et al., 2017; Juliana et al., 2017a,b), macro- and micro-nutrients (Manickavelu et al., 2017), as well as end-use quality traits (Battenfield et al., 2016; Kristensen et al., 2018). Application of GS for hybrid prediction has also been investigated in wheat (Zhao et al., 2013b; Adhikari et al., 2020), pointing to challenges when predicting hybrids derived from untested parents (Zhao et al., 2015). Using more refined Genotype x Environment (GxE) interaction-based GS models promises to partly reduce this shortcoming (Basnet et al., 2019). The optimization of underlying factors on which genomic selection relies, such as marker density, predictive models, training population size, and the relationship between training and validation population sets, is ongoing (Larkin et al., 2019).

Recent investigations have focused on optimization of GS in genetic resources. In order to harness new diversity from wheat gene banks. Crossa et al. (2016) investigated GS models to predict days to heading and days to maturity, on a large set of wheat landrace accessions (8,416 Mexican landrace accessions and 2,403 Iranian landrace accessions) from CIMMYT gene bank, using two strategies. The first one involved random cross-validation of the data in 20% training (TRN) and 80% testing (TST; TRN20-TST80). In the second strategy, two types of core sets called “diversity” and “prediction,” including 10 and 20%, respectively, of total collections were used. Prediction accuracy of the 20% diversity core set was close to accuracies obtained for 20% training and 80% testing set (0.412–0.654 and 0.182–0.647 for Mexican landraces and Iranian landraces, respectively). For traits controlled by a mix of a few major and many minor genes, it can thus be beneficial to include preexisting knowledge on known candidate genes, to increase accuracy of genome-wide predictions (Bernardo, 2014). The potential of such an approach has been demonstrated when predicting flowering time and plant height for wheat (Zhao et al., 2014). These results suggested a way forward for parental selection in pre-breeding, by predicting the value of all genotyped accessions in a gene bank, followed by pre-breeding programs, based on those genotypes that have the highest predicted value, or harbor promising novel candidate genes or alleles. Once promising parents are identified, efficient pre-breeding programs need to be designed. This is a non-trivial task, mainly depending on diversity of plant genetic resources. Some of the latter have diversity that makes them directly useful as a source of parents for breeding new varieties; however, this tends to be the exception. It is evident that genetic resources must therefore be improved, through appropriate pre-breeding programs, to the point where they can be used as productive parents in breeding programs. Two complementary approaches can be used: (i) pre-breeding of populations created from genetic resources and (ii) pre-breeding of populations created from crosses between plant genetic resources and elite materials. In both cases, genomic prediction enables rapid selection gain, but requires the presence of extensive training populations, related to the base population. Crossing parents selected from agronomic and physiological screening of genetic resources, and advancing through generations, using high throughput phenotyping of physiological parameters, is another approach (Reynolds and Langridge, 2016). Such strategy is complementary to genomic selection of progeny, since many complex physiological traits that may have been used in strategic crossing do not lend themselves to high-throughput progeny screening (Reynolds and Langridge, 2016).

Substantial efforts have shifted to development of high-throughput phenotyping platforms in wheat, which are used to measure different traits, including plant height (Holman et al., 2016), disease resistance (Devadas et al., 2015), growth rate (Holman et al., 2016), and nitrogen deficiency (Devadas et al., 2015). These significant advancements in high-throughput phenotyping have brought a paradigm shift in breeding strategies. Wheat scientists have incorporated high-throughput phenotyping data in GS models, to explore their potential in improving prediction accuracies for complex traits (Rutkoski et al., 2016; Crain et al., 2018). Rutkoski et al. (2016) investigated the role of canopy temperature and green and red normalized difference vegetation index (NDVI), measuring chlorophyll concentration, canopy leaf-area and yield, as secondary traits in GS models, for improving prediction accuracy for grain yield. The authors observed 67% improvement in prediction accuracy, without correcting for days to heading (DTH), and 37% improvement upon correction with DTH. Crain et al. (2018) used over 1.1 million phenotypic data points generated by high-throughput phenotyping on 1,170 advanced CIMMYT lines in drought and heat stress environments, observing an increase in prediction accuracy from 7% to 33%, as compared to the standard univariate model.

Genomic selection has revolutionized animal breeding and will likely be a major source of genetic improvement of crops, including wheat, over the coming decade (Mackay et al., 2021). We envisage that incorporation of additional datatypes and technologies into GS pipelines will open opportunities for further gains to be made. For example, increasing precision of phenotypic characterization in training set via high-throughput phenotyping platforms (Devadas et al., 2015; Holman et al., 2016; Rutkoski et al., 2016; Crain et al., 2018), as well as incorporation of environmental covariates (de los Campos et al., 2020), may lead to improved prediction accuracies. Similarly, incorporating additional molecular or “omics” data may further refine prediction equations. These include: (i) molecular data tagging functionally validated alleles, whether they are natural variants, or novel ones, generated via technologies such as gene editing or TILLING (Krasileva et al., 2017; Hussain et al., 2018) and (ii) integration of transcriptomic and metabolomic data with molecular markers, as has been reported in maize (Schrag et al., 2018). Ultimately, combining these approaches with methods for shortening of wheat generation times will further increase selection intensity. Currently, “speed breeding” methodology, whereby plants are grown under extended photoperiods via the use of supplementary lighting, allows spring wheat generation time to be reduced from four to around 2 months (Watson et al., 2018). Combining speed breeding with “speed vernalization” methods can even more shortened the breeding process. Any further dramatic shortening of cycling times would require development of new approaches, such as generation of recombinant individuals, by in vitro production of gametes and their subsequent fusions (De La Fuente et al., 2013). Combining such in vitro generation-cycling with genomic selection methodologies may well represent an achievable medium-term step-change in genomics-informed breeding.



CRISPR/CAS9-MEDIATED GENOME EDITING FOR WHEAT IMPROVEMENT

Availability of complete genome assemblies of diverse wheat genotypes, originating from different parts of the world, is essential to identify and characterize functions of various wheat genes, for different growth stages and environmental conditions, at the whole-genome level. Furthermore, transcriptomic analyses help to identify genes and gene networks regulating traits in different conditions. Therefore, knockout, knock-in, or activation of such genes through CRISPR/Cas9 gene-editing system provides unique opportunities for wheat genetic improvement (Scheben et al., 2017; Scheben and Edwards, 2017; Hussain et al., 2018). Because of the very large genome size of such species, orthologous gene copies present in the polyploid genome, and the presence of many repetitive sequences, genetic manipulation through CRISPR/Cas9-mediated gene editing system is more challenging in bread and durum wheat, as compared to cereals with smaller genomes. Using wheat-cell suspension cultures which led to InDel mutations, an attempt was made to use the CRISPR/Cas9 method for specific gene modification, in wheat inositol oxygenase (inox) and phytoene desaturase (pds) genes (Upadhyay et al., 2013). The first successful application of CRISPR/Cas9 to generate wheat knockout lines having three homoeoalleles of powdery-mildew resistance locus O gene (TaMLO), by a transient protoplast expression system, was done independently by Shan et al. (2014) and Wang et al. (2014). The latter successfully applied the CRISPR/Cas9 system in bread wheat, for the generation of plants mutated in a single TaMLO-A1 allele, with increased resistance to powdery mildew. A similar strategy has been used to knockout drought-responsive transcription factors in wheat, like dehydration-responsive element-binding protein 2 (TaDREB2) and ethylene-responsive factor 3 (TaERF3), for improved drought signaling (Hussain et al., 2018; Kim et al., 2018).

The knockout of all three homoeoalleles of TaGW2 through the CRISPR/Cas9 system increased the thousand kernel weight (TKW) and seed size (Wang et al., 2018a), implying the utility of the system for crop improvement. Such CRISPR-generated lines can either be exploited as new varieties or used as germplasm. Moreover, recent advances in editing allow simultaneous multiple-gene targeting or genome multiplexing (Xie et al., 2015), opening new horizons for employment of CRISPR/Cas9 in polyploid wheat, carrying many homoeologous and paralogous copies of the same gene, such as α-gliadins. In another study, CRISPR/Cas9 mediated mutations in 35 out of 45 α-gliadin genes, genes controlling gluten content in wheat, generated transgene-free, low-gluten wheat without any off-target mutations (Sánchez-León et al., 2018). Using this genome multiplexing by CRISPR/Cas9, three genes, viz., TaGW2 (grain traits negative regulator), TaMLO (resistance to powdery mildew), and TaLpx-1 (lipoxygenase; offers resistance to Fusarium graminearum), were targeted (Wang et al., 2018a). The first application of zinc-finger nuclease (ZFN)-mediated, non-homologous end joining (NHEJ)-directed loss-of-function gene knockout of acetohydroxyacid synthase (AHAS) in allohexaploid bread wheat through a supplied DNA repair template resulted in resistance to imidazolinone herbicides, due to an amino acid change in the target-gene coding sequence (Ran et al., 2018). Efficient and novel ribonucleoprotein-based (RNP) CRISPR/Cas9 genome editing procedures that required only 7–9 weeks were developed, with no off-target mutations and no transgene integration, implying the efficiency of the system (Liang et al., 2017).

The CRISPR/Cas9 genome editing methodology is also important for pre-breeding, namely, to reduce time to transfer beneficial alleles, increasing success rate. The idea is to directly induce/modify the alleles to beneficial ones in elite wheat germplasm both efficiently and quickly. CRISPR/Cas9-mediated permanent genome integration results in a stable expression of CRISPR/Cas9. However, RNP-based biolistic delivery offers a transient expression of CRISPR/Cas9, and its rapid degradation, which controls off-target mutations (Liang et al., 2017). Thus, RNP-based gene editing has been successfully applied for gene-editing in bread wheat (Liang et al., 2018). Similarly, knockout of three homologs of wheat enhanced disease resistance 1 (TaEDR1), a negative regulator of defense response against powdery mildew, conferred resistance against powdery mildew, without any off-target mutations (Zhang et al., 2017). DNA-virus [e.g., Geminivirus, i.e., wheat dwarf virus (WDV)]-based amplicons were later identified as an efficient construct-delivery method for gene editing, with an enhanced CRISPR/Cas9 expression, as compared to ubiquitin reference gene, proposing that it could be a potential tool for CRISPR-mediated genome editing in wheat (Gil-Humanes et al., 2017). Moreover, CRISPR/Cas9 has been successfully applied by generating heritable, targeted mutations, in wheat male-sterility 1 gene (Ms1), responsible for complete male sterility in commercial wheat cultivars, like Gladius and Fielder (Okada et al., 2019), thus speeding up hybrid-wheat production. These studies demonstrate the utility of the CRISPR/Cas9 system for rapid generation of male sterility in commercial wheat cultivars, for breeding programs. Although CRISPR-mediated genome or gene editing was demonstrated to be successful, its widespread implementation still encounters difficulties, involved in low regeneration efficiency of crops, such as wheat. Recently, growth-regulating factor-grf-interacting factor (GRF-GIF) wheat transformation system has become the game changer by using GRF-GIF chimeric protein construct, which improves regeneration efficiency up to 100% (Debernardi et al., 2020) in the transgenic-wheat lines.

Again, such CRISPR-generated lines can be released either as a variety or can be used as germplasm stocks. Although the utility of this revolutionary technology for crop improvement was demonstrated, regulatory approvals for the use of gene-edited plants still vary among different countries (Jouanin et al., 2018). CRISPR can also be utilized for testing the effect of a mutated allele on the resulting phenotype. If regulations are too strict, like in the European Union, this could be used later on, to search for such alleles in natural populations of wheat progenitors and germplasm stored in gene banks (“natural variation”). Recent initiatives to sequence thousands of gene bank accessions (Milner et al., 2019) can help to facilitate this approach. An additional benefit of using CRISPR/Cas9 is that genome editing for the first time allows direct transfer of favorable alleles into elite breeding material, without typical linkage drag, associated with cross-breeding. Wheat is crossed with maize to induce haploids, and colchicine is applied to get doubled haploid plants that serve as breeding material, or could be introduced as a variety, thus speeding up wheat breeding (Devaux and Cistué, 2016). Taking advantage of the well-established wheat × maize crossing system, maize pollens carrying gRNA for plant height genes (BRI1 and SD1) were crossed to wheat, for inducing site-directed targeted mutagenesis in wheat (Budhagatapalli et al., 2020), without the need of segregating out the transgene. It helped in reducing the genotype-dependent site-directed mutagenesis. This approach can also be used for introducing mutations in multiple genes with one cas9/gRNA-transgenic (pollinator) plant, thus providing an opportunity for multiplex gene-editing in wheat. An important part of genetic analyses is identification of candidate genes and/or diagnostic marker(s) in linkage equilibrium to the trait(s) of selection interest. Many studies for abiotic stresses lack identification of candidate genes, slowing down MAS in wheat.



CONCLUDING COMMENTS

Reviewing the very extensive genome-level analyses undertaken since publication of the CS reference genome sequence has identified the broad importance of considering the network nature of grain yield, heat and drought susceptibility indices and yield stability coefficients (Sehgal et al., 2017). Likewise, their association with flowering time genes (Vrn-B1, Ppd-D1 and Vrn-D3). Observations are consistent with the long history of wheat improvement through breeding at the phenotypic level, and genome-level analyses can now complement this existing knowledge, through refining biological networks and fine-tuning germplasm to micro-environments and defined wavelength environments of LED lighting in speed breeding.

Typically, candidate genes are identified by locating the QTL region on the genome assembly and analyzing the genes residing in the region. If only a few genes are selected to validate their expression under a certain condition, the possibility of human bias (Baxter, 2020) can come into play, slowing down progress of genetic advancement. For example, looking for K+/Na+ transporters for salinity studies could lead to ignoring important genes in tolerance mechanisms. Complementing genomic selection with in silico transcriptomic analyses for all potential genes of interest would cast a wider net to capture a more complete set of genes that are relevant to the phenotype under study or selection.

The role of synthetic wheat in imparting stress tolerance is well known in wheat. Wheat gene banks harbor hundreds of such synthetic wheat lines. In the post reference genome era, extensive genotyping efforts have been undertaken to genotype entire gene bank accessions, generating the so-called “digital gene banks.” For example, CIMMYT has generated GBS data on ~100K accessions stored in its gene bank, in order to bridge the gap between genetic resources and breeding pipelines. Although success has been achieved in quantifying genome contributions of wild germplasm (synthetics and landraces) to the current elite germplasm, it is still unknown how to devise a genome-based strategy to deploy favorable introgressions from synthetic wheat, to enhance breeding value. Development of new genomic selection and machine-learning models and tools will be required to predict the best exotics from gene banks, without having to invest in laborious and costly multi-environmental field testing. These technologies will refine the already-successful breeder pipelines, for establishing new varieties.

Complex metabolic engineering can be exploited to improve cereals like wheat, to produce essential polyunsaturated fatty acids (PUFA), including the healthy omega 3 (ω-3) and omega 6 (ω-6). Genetic engineering and synthetic biology tools can be used to reach such a goal (Kraic et al., 2018). Similarly, these technologies can be used to generate Marker-Free and Transgene Insertion site-Defined (MFTID) transgenic plants. Thus, the lipoxygenase (LOX) gene expression was repressed using an RNA interference (RNAi) cassette reduce lipid peroxidation (improving storability) and increase nutrient quality, such as the amount of healthy fatty acids (e.g., containing linoleic and linolenic residues) of wheat seeds (Cao et al., 2020).

Cereals can also be improved so that their agricultural waste (plant cell wall, being mainly made of cellulose, hemicellulose, and lignin) contains more cellulose and less lignin, thereby allowing its use as feedstock for biofuel or bioproduct production. Currently, high costs and low yields are associated with their use, due to the molecular structure of the natural lignocellulosic biomass. As expected from an evolutionary point of view, it is hard to enzymatically hydrolyze cellulose into glucose, as it is resistant to most microorganism degradation (Rocha-Meneses et al., 2020).

In short, these developments hold interesting potential applications for wheat improvement, within molecular breeding programs, in addition to enhancing yield traits, and biotic- and abiotic-stress tolerance, which are particularly relevant in the present scenario of global warming and climate change.
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Spring bread wheat adaptation to diverse environments is supported by various traits such as phenology and plant architecture. A large-scale genome-wide association study (GWAS) was designed to investigate and dissect the genetic architecture of phenology affecting adaptation. It used 48 datasets from 4,680 spring wheat lines. For 8 years (2014–2021), these lines were evaluated for days to heading (DH) and maturity (DM) at three sites: Jabalpur, Ludhiana, and Samastipur (Pusa), which represent the three major Indian wheat-producing zones: the Central Zone (CZ), North-Western Plain Zone (NWPZ), and North-Eastern Plain Zone (NEPZ), respectively. Ludhiana had the highest mean DH of 103.8 days and DM of 148.6 days, whereas Jabalpur had the lowest mean DH of 77.7 days and DM of 121.6 days. We identified 119 markers significantly associated with DH and DM on chromosomes 5B (76), 2B (18), 7D (10), 4D (8), 5A (1), 6B (4), 7B (1), and 3D (1). Our results clearly indicated the importance of the photoperiod-associated gene (Ppd-B1) for adaptation to the NWPZ and the Vrn-B1 gene for adaptation to the NEPZ and CZ. A maximum variation of 21.1 and 14% was explained by markers 2B_56134146 and 5B_574145576 linked to the Ppd-B1 and Vrn-B1 genes, respectively, indicating their significant role in regulating DH and DM. The results provide important insights into the genomic regions associated with the two phenological traits that influence adaptation to the major wheat-producing zones in India.
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INTRODUCTION

Wheat (Triticum aestivum L.) is one of the most important food crops in the world, consumed by about 40% of the world’s population (Gupta et al., 2008). It provides about 20% of the daily protein and calories requirements for 4.5 billion people worldwide (Wright et al., 2021). Over 776.5 million tons of wheat was produced globally in 2021 (FAO, 2022). In India, wheat production touched a milestone output of 109.5 million tons in 2021 with a record nationwide average productivity of 3.42 t/ha.1 However, population growth, dietary changes, social and policy issues, the recent impact of COVID-19, and global unrest have increased the demand for staple foods such as wheat. Wheat yield is increasing by 0.9% per year, which is significantly lower than the required rate of ∼2.4% per year by 2050 (Ray et al., 2013). In addition, the present trends in wheat production are insufficient to feed the population of 9 billion people predicted for 2050 (Curtis and Halford, 2014; Aslam et al., 2022).

Without effective selection of adapted plants and genetic improvement, a global decrease of 6% in wheat production is estimated for 1°C increase in temperature (Zhao et al., 2017). The performance of a wheat variety is measured by its adaptability and yield potential under target environments, which is dependent on the genetic and environmental factors as well as the interaction between these factors. Wheat cultivation across the globe under different environmental and climatic conditions requires cultivar adaptability to a wide range of growing conditions. This adaptation is achieved by variations in phenology and related traits that affect plant architecture (Hyles et al., 2020). Wheat heading, flowering time, plant stature, and maturity time are important phenological and agronomic traits for adaptation, yield potential, and yield stability. The major genes affecting wheat adaptation include those associated with phenology and plant architecture, such as vernalization (Vrn), photoperiod (Ppd), earliness per se (Eps), and reduced height (Rht), in addition to other minor-effect loci.

Heading time is a vital component of wheat phenology under a complex genetic control. Timely heading is critical for the production to avoid late-season stresses, mainly terminal heat (Joshi et al., 2007). However, this stress can manifest itself at an early stage (Kumar et al., 2021). Three gene groups, including Vrn, Ppd, and Eps, have a major influence on heading and flowering time of wheat (Snape et al., 2001; Distelfeld et al., 2009; Kumar et al., 2012; Khumalo et al., 2017). Early studies reported that the switch from vegetative to reproductive development is promoted by the prolonged cold temperatures of winter (vernalization) (Chouard, 1960). Unlike winter types, spring wheats require little-to-no environmental inducement for flowering. Vernalization requirement is typically combined with day-length-responsive flowering, such that plants that have vernalized over winter will flower rapidly as days subsequently lengthen in spring (Chouard, 1960). Vernalization occurs most rapidly at 4.9°C and requires temperatures between −1.3 and 15.7°C (Porter and Gawith, 1999).

The vernalization requirement of wheat is controlled by the Vrn1 genes located on the long arm of chromosomes 5A, 5B, and 5D (Snape et al., 2001). The Vrn1 gene is the wheat ortholog of the meristem identity gene APETALA1 from Arabidopsis thaliana and plays an important role in floral development by triggering early flowering when expressed at high levels (Yan et al., 2003). It is expressed in both leaves and shoots, and the accumulation of Vrn1 transcripts in the shoot apex is associated with the switch to reproductive development. The vernalization-insensitive alleles of Vrn1 (Vrn-A1, Vrn-B1, and Vrn-D1) shorten both the vegetative and the reproductive/maturity stages (Snape et al., 2001). The Vrn2 gene is a repressor of flowering that plays a key role in blocking the long-day flowering response before winter (Yan et al., 2004). The third gene (Vrn3), which can reduce the vernalization requirement of wheat, was identified to be completely linked to a gene similar to the Arabidopsis FLOWERING LOCUS T (Yan et al., 2006). The Vrn4 found in ancient wheat subspecies accessions from South Asia is located on chromosome 5DS and plays a role in local adaptation (Kippes et al., 2015).

Spring wheat can also have varying levels of sensitivity to day length. Day-length-insensitive spring cultivars can progress to the terminal spikelet stage and flower rapidly, even on short days. Photoperiod sensitivity to day length is largely determined by alleles of the photoperiod-1 (Ppd-1) genes located on chromosomes 2A, 2B, and 2D (Keim et al., 1973). Plants having an increased copy number of Ppd-B1 and Vrn-A1 alleles (Vrn-A1, Vrn-B1, and Vrn-D1) flowered early and showed increased vernalization requirement, respectively, suggesting that copy number variation is important for the adaptation of wheat (Díaz et al., 2012). Alleles of Ppd-D1 (PPD-D1a, PPD-B1a, and PPD-A1a) that confer a strong insensitivity to day length are associated with rapid flowering under all day-length conditions (Wilhelm et al., 2009; Díaz et al., 2012; Bentley et al., 2013). Alleles of Ppd-1 that are associated with reduced day-length sensitivity are also associated with an increased rate of spikelet development and decreased spike fertility (Prieto et al., 2018). A recent study attributed a shorter duration of pre-anthesis stem elongation and a decreased number of fertile florets to Ppd-D1a, highlighting the scope for increased yield potential by selection for photoperiod-sensitive alleles (Pérez-Gianmarco et al., 2019). Genes that influence the duration of the wheat life cycle under conditions where vernalization and photoperiod requirements have been met are described as “Earliness per se” (Eps) genes (Snape et al., 2001). Ochagavía et al. (2019) reported that allelic differences at the Eps-D1 gene on chromosome 1D conferred differing levels of sensitivity to temperature; earliness was associated with an increased sensitivity to temperature during the late reproductive phase of development in hexaploid wheat.

Understanding the genetic basis of phenology and other adaptive traits in spring bread wheat is important for developing varieties adapted to various environmental conditions and stresses. In this regard, a genome-wide association study (GWAS) is a high resolution and an approach to dissect the genetic basis of complex traits. It is preferred over linkage mapping because it accounts for greater allelic diversity at a given locus and exploits the ancestral recombination events that have occurred in an existing diversity panel (landraces, elite cultivars, and advanced breeding lines) at the population level (Yu and Buckler, 2006; Zhu et al., 2008; Ingvarsson and Street, 2011; Waugh et al., 2014; Scherer and Christensen, 2016). Another advantage of GWAS is that they use available germplasm and bypass the time-consuming process of developing segregating populations. Moreover, QTL mapping by bi-parental populations focuses on specific traits, whereas a wider range of germplasm can be used in GWAS to phenotype many traits with one cycle of genotyping (Li et al., 2019). GWASs are more efficient and require less effort in analyzing complex traits under various environmental conditions (George and Cavanagh, 2015). They have been used successfully to dissect several complex traits in wheat (Breseghello and Sorrells, 2006; Crossa et al., 2007; Yu et al., 2011; Maccaferri et al., 2015; Sukumaran et al., 2015; Juliana et al., 2019, 2021). While few GWASs in wheat have identified genomic regions associated with phenological traits including heading and maturity (Zhang et al., 2018; Gahlaut et al., 2021; Muhammad et al., 2021), a comprehensive study to dissect the genetic architecture of these traits in multiple wheat production zones has not been reported. A total of 43 SNPs (single-nucleotide polymorphisms) were consistently detected, including seven across multiple environments by ML-GWAS (Muhammad et al., 2021). Nine significant marker–trait associates were identified for days to anthesis under drought stress by Gahlaut et al. (2021). Hence, the main objective of this study was to use GWAS to identify consistently significant marker–trait associations for heading and maturity, affecting the adaptation of spring bread wheat to three major zones of India where wheat is cultivated in about 25 mha under diverse environmental and management conditions.



MATERIALS AND METHODS


Populations and Field Experimental Design

A total of 4,680 advanced breeding lines from eight South Asia Bread Wheat Genomic Prediction Yield Trial (SABWGPYT) panels were evaluated in eight consecutive crop cycles between 2014 and 2021. In each crop cycle, about 540–600 different genotypes including six high-yielding checks were planted in two replications at the research stations of the Borlaug Institute for South Asia (BISA) in the three main wheat-growing regions of India: (1) Ludhiana, Punjab [30° 59′ N, 75° 44′ E, representing the North-Western Plain Zone (NWPZ)], (2) Jabalpur, Madhya Pradesh [23° 22′ N, 80° 07′ E, representing the Central Zone (CZ)], and (3) Pusa, Samastipur, Bihar [25° 95′ N, 85° 66′ E, representing the North-Eastern Plain Zone (NEPZ)]. The panels were named by the site where they were evaluated followed by the harvest year (e.g., Jabalpur panel, 2014; Ludhiana panel, 2014; Pusa panel, 2014).

The lines were planted in an alpha lattice design (Patterson et al., 1978) during the optimum planting time (the second to third week of November at each location), and they received an optimum irrigation of about 500 mm of water in total from five or more irrigations. The whole experiment was divided into 10 trials with 60 entries per trial, except panel 2014 and panel 2021 (nine trials with 60 entries each). Each replicate was divided into six sub-blocks of 10 plots. The plot size was 5.016 m2, and the lines were sown in six rows, 22 cm apart and 3.8 m in length. Field trials were managed by standard agronomic practices recommended for the location.2 Fertilizer was applied as 150 N/60 P/40 K kg ha–1 at Ludhiana and 120 N/60 P/40 K kg ha–1 at Jabalpur and Pusa as per wheat-growing zone recommendation.



Phenotyping and Statistical Analysis of the Phenotyping Data

The lines at all the sites were evaluated for Days to heading (DH) and days to maturity (DM) using alpha lattice design of field experiment. DH are counted visually as the number of days from planting until 50% of the spikes are visible through the flag leaf sheath. Similarly, DM was recorded as the number of days from planting to the day when 50% of the main tiller peduncles became entirely visible. In each of the 24 environments (three sites and eight panels), the best linear unbiased estimates (BLUEs) for DH and DM were obtained across replications using the META-R v6.03 software (Alvarado et al., 2020). The DH and DM were used as random effects while performing the analysis. Visualization of the trait distributions was performed using the “R” package “ggplot2” (Wickham, 2009).

For the two traits, we also obtained the following statistical measures using the META-R v6.03 software: (i) broad-sense heritabilities across replications to understand the selection response, (ii) coefficients of variation for each dataset to understand whether the field trial was well conducted, (iii) the least significant differences between genotypes for comparison and selection of the best genotypes, (iv) variance components including the genotypic variance and residual variance within each dataset to understand what proportion of the variance can be attributed to the genotypes, (v) genotypic and phenotypic correlations across sites, (vi) biplot based on the genetic correlations showing the relationship between the sites, and (vii) the variance components to understand whether there was a significant difference between the genotypes and sites. Heritability (h2) was estimated following Nyquist (1991) as h2 = 1 − [MS (Genotype × Year)]/MS (Genotype).



Genotyping

Genotyping data for all the eight SABWGPYT panels used in this study were obtained using the genotyping-by-sequencing (GBS) method (Poland et al., 2012). We estimated the SNPs using the Trait Analysis by Association Evolution and Linkage (TASSEL) version 5 GBS pipeline (Glaubitz et al., 2014). This was followed by SNP discovery at a minor allele frequency of 0.01, and the resulting GBS tags were aligned to the reference sequence of bread wheat version 1.0 (RefSeq v1.0) using Bowtie (Langmead and Salzberg, 2012). The tags were then filtered using p-values from Fisher’s exact test, inbred coefficient, and chi-square as described in Juliana et al. (2021), and over 80,000 SNPs that passed at least one of these filters were obtained. We removed the markers that had greater than 50% missing data, less than 5% minor allele frequency, and greater than 10% heterozygosity. In addition, we also removed the lines with greater than 90% missing data in each panel. We obtained the following number of filtered markers and lines for GWAS: (i) panel 2014: 481 lines and 18,351 markers, (ii) panel 2015: 582 lines and 17,764 markers, (iii) panel 2016: 583 lines and 17,094 markers, (iv) panel 2017: 529 lines and 17,620 markers, (v) panel 2018: 540 lines and 16,152 markers, (vi) panel 2019: 528 lines and 16,771 markers, (vii) panel 2020: 540 lines and 16,709 markers, and (viii) panel 2021: 491 lines and 17,851 markers. Marker imputation was performed using Beagle version 4.1 (Browning and Browning, 2016).



Genome Wide Association Mapping

We performed GWAS for DH and DM in all the 24 datasets for each trait using the mixed linear model (Yu et al., 2006) in TASSEL version 5 (Bradbury et al., 2007). The model was fitted using population structure as a fixed effect and kinship as a random effect, which were accounted for using the first two principal components (Patterson et al., 2006; Price et al., 2006) and the genomic relationship matrix obtained using the centered identity-by-state method (Endelman and Jannink, 2012), respectively. In addition, we used the optimum level of compression and the “population parameters previously determined” (Zhang et al., 2010) options for fitting the mixed linear model. We obtained the p-values for the tests of significance of the marker and trait associations, the additive effects of the markers, and the percentage of variation explained by them. The GWAS results were visualized using Manhattan plots using the “R” package “CMplot” (Lilin, 2018). Correction for multiple testing was performed using the Bonferroni correction at an α level of 0.20, and the markers which had p-values lower than the cut-off level (ranging between 1.09E-05 and 1.24E-05 in the different panels) were considered to be significant. In addition, we also obtained markers that were (i) consistently significant in more than one site that could indicate the markers associated with broad adaptation to different sites and (ii) associated with DH and maturity, which could provide insights into the genomic regions that were associated with both these phenological traits. The markers that were significant in more than one dataset were then plotted on a reference map using ‘‘Phenogram.’’3




RESULTS


Phenotyping Data

Large and continuous variation was observed for the phenological traits in all three environments from 2014 to 2021 for the 4,680 advanced breeding lines (Table 1 and Figure 1). The DH (58–98 days) and DM (103–137 days) were shortest at Jabalpur, but longest (87–120 for DH and 138–163 for DM) at Ludhiana. The mean DH ranged from 96 (panel 2017) to 112 (panel 2018) days at Ludhiana, 68 (panel 2021) to 84 (panel 2019) days at Jabalpur, and 76 (2021) to 87 (2016) days at Pusa. For DM, the rage was 143 (panel 2015) to 156 (panel 2020) days at Ludhiana, 116 (2021) to 126 (2020) days at Jabalpur, and 120 (2015) to 134 (2020) days at Pusa.


TABLE 1. Descriptive statistics and variance parameters estimated for days to heading (DH) and maturity (DM) agronomic traits based on best linear unbiased estimate (BLUE) values in association panel grown at three different environments in India from 2014 to 2021.
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FIGURE 1. Boxplots showing the distributions of heading and maturity in Jabalpur, Ludhiana, and Pusa in panels 2014–2021.


We observed high heritability for DH over years, ranging from 0.87 to 0.98 at Ludhiana, 0.76 to 0.98 at Jabalpur, and 0.72 to 0.95 at Pusa (Table 1). Heritability for DM was moderate to high, ranging from 0.56 to 0.89 at Ludhiana, 0.68 to 0.96 at Jabalpur, and 0.44 to 0.82 at Pusa. The coefficient of variation ranged from 0.79 (Ludhiana panel 2019) to 4.13 (Pusa panel 2015) for DH and 0.61 (Ludhiana panel 2015) to 2.01 (Pusa panel 2016) for DM (Table 1).



Phenotypic and Genetic Correlations for Days to Heading and Maturity Across Locations

For DH, the phenotypic Pearson correlations across locations ranged from 0.46 (panel 2017 between Pusa and Ludhiana) to 0.84 (panel 2021 between Pusa and Jabalpur) (Table 2). Similarly, for DM, it ranged from 0.31 (panel 2014 between Pusa and Ludhiana) to 0.72 (panel 2019 between Pusa and Jabalpur). Positive phenotypic correlations ranged from 0.32 to 0.85 between DH and DM between locations. We also observed moderate-to-strong genetic correlations ranging from 0.56 (panel 2017 between Pusa and Jabalpur) to 0.92 (panel 2020 between Pusa and Jabalpur) for DH and from 0.45 (panel 2021 between Pusa and Ludhiana) to 0.83 (panel 2020 between Pusa and Jabalpur) for DM (Table 3). Dendrograms and biplots showing the genetic correlations between different traits in different locations and years were obtained (Supplementary File 1).


TABLE 2. Phenotypic correlations between locations for days to heading (DH) and days to maturity (DM) from 2014 to 2021.
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TABLE 3. Genetic correlations between locations for days to heading (DH) and days to maturity (DM) from 2014 to 2021.
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The variance components of the traits showed that for both DH and DM, the genotypes and sites were significantly different in all the panels (Table 1).



Genotyping Data and Population Structure Analysis

Of 23,979 unique GBS markers used in all the panels for GWAS, 23,581 were mapped to the RefSeq v1.0 and their densities within a window size of 10 Mb were obtained (Figure 2). We observed a good coverage of markers on all chromosomes with a high density on the telomeric end of chromosomes such as 4AL, 6A, 6DS, 7AS, and 7BS. The highest number of markers was on chromosomes 7A (2,227 markers) and 2B (2,148 markers), but the lowest on chromosomes 5D (296 markers), 4D (401 markers), 6D (445 markers), 1D (453 markers), and 3D (454 markers). A plot of the first two principal components in the eight panels indicated a weak-to-moderate population structure (Figure 3). The% variation explained by principal component analysis in each panel from 2014 to 2021 is given in Table 4.
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FIGURE 2. Densities of 23,581 genotyping-by-sequencing (GBS) single-nucleotide polymorphisms (SNPs) in the reference bread wheat genome (RefSeq v1.0). The color key with marker densities indicates the number of markers within a window size of 10 Mb.
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FIGURE 3. Plot of principal components 1 and 2 indicating the population structure in panels 2014–2021.



TABLE 4. Principal component analysis (PCA) of the SABWGPTY panels obtained based on single-nucleotide polymorphism (SNP) genotyping.
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Genome Wide Association Mapping for Days to Heading and Days to Maturity

We performed GWAS for DH and DM using 48 datasets and obtained the p-values, additive effects, and the percentage variation explained by each of the markers in the different panels (Supplementary File 2). After Bonferroni’s correction for multiple testing, we obtained 222 markers that were associated with the traits in the different datasets (Supplementary File 3). Among them, 119 markers were significant in at least two datasets and were considered as consistent significant markers (Supplementary File 4). The highest numbers of these markers were on chromosome 5B (76). The markers significantly associated with DH and DM in the different sites and panels are described in the following.



Markers Significantly Associated With Days to Heading

In Jabalpur, among the 101 markers significantly associated with DH, 43 markers (43%) were consistently significant in more than one panel, and they were all on chromosome 5B, between 556185926 and 596948341 bps. The consistent markers had additive effects ranging between 1 and 1.95 days and explained 4.3–12.3% of the variation. Among them, marker 5B_574145576 was significant in the highest number of panels (panels 2016, 2018, 2019, 2020, and 2021), with additive effects ranging between 1.45 and 1.95 days and explained 7–12.3% of the phenotypic variation. In addition, 58 markers were significantly associated in only one panel in Jabalpur, including 38 markers on chromosome 5B between 447567055 and 689895400 bps, eight markers on chromosome 6B between 185171994 and 229054418 bps, five markers on chromosome 7D between 55486522 and 58633321 bps, and markers 2D_82143828, 3B_777688779, 3D_562906853, 5A_570528289, 5A_580935013, 7A_266640411, and 7B_669973991.

In Ludhiana, among the 77 markers significantly associated with DH, only seven markers (9.1%) were consistently associated in more than one panel which were all on chromosome 2B, between 53667024 and 59584538 bps. These consistent markers had additive effects ranging between 0.7 and 2.1 days and explained 4.6–21.1% of the phenotypic variation. Among them, marker 2B_56134146 was significant in the highest number of panels (panels 2015, 2017, 2018, 2019, and 2021), with additive effects ranging between 0.95 and 2.1 days and explained 4.9–21.1% of the phenotypic variation. We also observed that 70 markers were significantly associated with DH in Ludhiana in one dataset only, which included 27 markers on chromosome 2B, 14 markers on chromosome 7B, 11 markers on chromosome 4D, 10 markers on chromosome 7D, four markers on chromosome 5B, and markers 3A_21112167, 3D_56844252, 4A_684814200, and 7A_174693955.

In Pusa, among the 88 markers significantly associated with DH, 68 markers (77.3%) were consistently associated in more than one panel which were all on chromosome 5B between 549777627 and 596948341 bps. These consistent markers had additive effects ranging between 1 and 2.8 days and explained 4.3–14.1% of the phenotypic variation. We also observed that six markers (5B_574145576, 5B_575270556, 5B_576348143, 5B_586610468, 5B_586805570, and 5B_586862827) were significant in five panels and they had additive effects ranging between 1.2 and 2.7 days and explained 4.5–14.1% of the variation. In addition, 20 markers were significantly associated with DH in one panel only in Pusa, including 16 markers on chromosome 5B between 549730988 and 610372912 bps and markers 5A_481889948, 5A_580935013, 6A_559740187, and 7B_653976952.



Markers Significantly Associated With Days to Maturity

In Jabalpur, among the 67 markers significantly associated with DM, only five markers (7.5%) were consistently significant in more than one panel. This included markers 5B_574145576, 5B_575270556, 5B_592792409, 5B_594614262, and 5B_594913947 that had additive effects ranging between 1 and 1.8 days and explained 4.5–9.5% of the phenotypic variation. Marker 5B_574145576 was significant in the highest number of panels (panels 2018, 2020, and 2021) and had additive effects ranging between 1.4 and 1.75 days and explained 4.6–9.5% of the phenotypic variation. Furthermore, the 62 markers were associated with DM in Jabalpur in one panel only, which included 36 markers on chromosome 5B between 550910513 and 595649946 bps, nine markers on chromosome 7D, eight markers on chromosome 6B, two markers on chromosomes 7A and 7B each, and five markers on other chromosomes.

In Ludhiana, among the 49 markers significantly associated with DM in the different panels after correction for multiple testing, only one marker (2%) was consistently significant in more than one panel. This marker (2B_56134146) had additive effects ranging between 0.6 and 1.4 days and explained 4.4–11.4% of the phenotypic variation. The 48 markers were significantly associated with DM in one panel only in Ludhiana, which included 18 markers on chromosome 2B, 11 markers on chromosome 7A, eight markers on chromosome 4D, five markers on chromosome 7D, two markers each on chromosomes 3A and 3D, and markers 1D_189345725 and 5B_601867021. In Pusa, among the 11 markers significantly associated with DM in the different panels after correction for multiple testing, only one marker (9%) was consistently significant in more than one panel. This marker (5B_574145576) had additive effects ranging between 0.95 and 1.1 days and explained 4.7–6.4% of the phenotypic variation. In addition, we also observed that 10 markers were significantly associated with DM in Pusa in one panel only.



Markers Significantly Associated With Days to Heading in More Than One Site

We observed that three markers (5B_562646635, 5B_569889755, and 5B_574145576) were significantly associated with DH in all the three sites (Figures 4–6) and they explained 4.3–4.7, 4.4–9.7, and 5.2–14.07% of the phenotypic variation in different sites, respectively. In addition, marker 5A_580935013 and 72 markers on chromosome 5B between 549730988 and 597098833 bps were associated with DH in Jabalpur and Pusa. These markers had additive effects ranging between 1 and 2.8 days in Jabalpur and between 1 and 4.4 days in Pusa and explained 4.3–10.3 and 4.3–13% of the phenotypic variation in Jabalpur and Pusa, respectively. Three markers on chromosome 7D including 7D_55920290, 7D_57904794, and 7D_58369927 were significantly associated with DH in Jabalpur and Ludhiana. These markers had additive effects ranging between 0.94 and 0.99 days in Jabalpur and 0.87 and 0.96 days in Ludhiana, while they explained 4.8–6.6 and 4.9–6.2% of the phenotypic variation in Jabalpur and Ludhiana, respectively. Quantile–quantile plots demonstrating the ratios of expected to observe log10 (P) values for DH and DM at each location are presented in Supplementary File 5.


[image: image]

FIGURE 4. Manhattan plots showing the genomic regions significantly associated with days to heading (DH) and maturity (DH) in Jabalpur in panels 2014–2021.
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FIGURE 5. Manhattan plots showing the genomic regions significantly associated with days to heading (DH) and maturity (DM) in Ludhiana in panels 2014–2021.
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FIGURE 6. Manhattan plots showing the genomic regions significantly associated with days to heading (DH) and maturity (DM) in Pusa in panels 2014–2021.




Markers Significantly Associated With Days to Maturity in More Than One Site

We observed that markers 5B_574145576 and 7D_55486522 were associated with DM in Jabalpur and Pusa. Among them, marker 5B_574145576 had additive effects ranging from 1.2 to 1.8 days in Jabalpur and 0.95 to 1.1 days in Pusa and explained 4.6 to 9.5% and 4.7 to 6.4% of the phenotypic variation in Jabalpur and Pusa, respectively. The other marker (7D_55486522) had additive effects of 1.1 and 0.66 days in Jabalpur and Pusa, respectively, and it explained 4.8 and 5% of the phenotypic variation in these sites. Furthermore, three markers on 7D (7D_55529933, 7D_55920290, and 7D_57904794) were found to be significantly associated in Jabalpur and Ludhiana. These markers had additive effects ranging from 1.06 to 1.1 days in Jabalpur and 0.67 to 0.68 days in Ludhiana, while they explained 4.7 to 5.2% and 4.7 to 5.5% of the phenotypic variation in Jabalpur and Ludhiana, respectively.



Markers Significantly Associated With Both Days to Heading and Days to Maturity

Eighty-four markers were significantly associated with both traits DH and DM in different sites and panels (Figures 4–6) including 41 markers on chromosome 5B (between 557138254 and 595649946 bps), 18 markers on chromosome 2B (between 43232877 and 59584538 bps), 10 markers on chromosome 7D (between 55446953, and 58633321 bps), eight markers on chromosome 4D (between 108499424 and 368596770 bps), four markers on chromosome 6B (between 186319977 and 224585504 bps), and one marker each on chromosomes 3D, 5A, and 7B.




DISCUSSION

We have analyzed the variation in DH and DM in three main wheat-producing zones in India, including Ludhiana, representing the NWPZ, Jabalpur, representing the CZ and Pusa, representing the NEPZ. We observed that across all the panels, the mean DH was the highest in Ludhiana (103.8 ± 6 days) and lowest in Jabalpur (77.7 ± 6.7 days), while the mean DM were the highest in Ludhiana (148.6 ± 4.6 days) and lowest in Jabalpur (121.6 ± 4.9). This could be because of local weather conditions, mainly temperature which remains cooler in the northwest India where Punjab (Ludhiana) is located compared with central India which has the state of Madhya Pradesh (Jabalpur). Among the three sites, the mean broad-sense heritabilities for DH were higher in Ludhiana (0.93 ± 0.03) and Jabalpur (0.84 ± 0.09) than in Pusa (0.85 ± 0.07). The high heritabilities that we have observed, along with the high genetic variance compared with the residual variance in all the sites, indicate the high contribution of genetic factors to the phenological traits in the panels and environments analyzed in this study. Our analysis of variance results across sites indicated that both the genotypes and sites were significantly different for both the phenological traits, which indicates the variable performance of the genotypes in the different sites and also the environmental differences in these sites. Our results also indicated that among the three sites, the highest phenotypic correlation for DH (0.69 ± 0.15) and DM (0.61 ± 0.08) was between Pusa and Jabalpur, while the lower correlation was between Pusa and Ludhiana (0.59 ± 0.09, 0.52 ± 0.13) for DH and DM, respectively. This could be due to the fact that wheat-growing seasons at Pusa and Jabalpur are warmer and about 2–3 weeks shorter than Ludhiana. The shorter crop duration at Pusa and Jabalpur had effect on phenological traits such as DH and DM. However, Pusa is more humid compared with Jabalpur and Ludhiana.

We performed GWAS for DH and DM and reported 222 markers significantly associated with the traits in different spring bread wheat panels. On chromosome 2BL, several markers between 43232877 and 59584538 bps were significantly associated with both heading and maturity in Ludhiana with additive effects ranging between 0.62 and 2.1 days. Among them, marker 2B_56134146 that was significant in seven datasets was the closest marker to the Ppd-B1 gene (0.10 Mbs away) and is therefore linked to the gene. However, we also observed that the Ppd-B1 gene was associated with the phenological traits in only Ludhiana representing the NWPZ and not the other sites, indicating that it contributes to specific adaptation to this zone. Díaz et al. (2012) showed that alleles of Ppd-B1 (along with Vrn-A1) were associated with an increased copy number of both genes and resulted in earlier flowering (Ppd-B1a) or increased vernalization requirements (Vrn-A1w). These results, along with a separate study in durum (Würschum et al., 2019), suggest that copy number variation is important for the adaptation of wheat.

On chromosome 4D, we have identified markers between 61853654 and 368596770 bps associated with both DH and DM in Ludhiana with additive effects ranging between 0.2 and 1.6 days. Among them, marker 4D_368596770 was very close to the Vrn-D2 gene (within 141 kb) and appears to indicate a novel locus. Marker 5A_580935013 on 5AL in panel 2016 was associated with DH in Jabalpur and Pusa and DM in Jabalpur. This marker had the additive effects ranging between 2 and 4.4 days and is linked to the Vrn-A1 gene which is only 6.5 Mbps away. However, possibility of some other genes in that region may not be ruled out. Our results indicate that this gene does not play a major role in the phenology and adaptation to the three major wheat-producing zones of India in the lines and environments used in this study. The Vrn-A1 gene, which is known to play a role in frost tolerance, did not appear important as tested in this study, but has shown an increased frequency of its alleles in winter wheat (Eagles et al., 2011; Zhu et al., 2014). A previous study by Juliana et al. (2019) also did not observe a significant effect of the Vrn-A1 gene on phenology in CIMMYT’s advanced spring wheat breeding lines. These results are in contrast to those reported by Santra et al. (2009), which indicated Vrn-A1a as the most frequent allele in spring wheat genotypes from the Pacific Northwest region of the United States.

On chromosome 5BL, several markers between 549730988 and 597098833 were associated with DH in six panels in Jabalpur, two in Ludhiana, and five in Pusa. In addition, they were also associated with DM in three panels in Jabalpur and two in Pusa. While the additive effects of the 5B markers ranged between 0.8 and 2.8 days, the marker 5B_574145576 that was significantly associated in 16 datasets was only 0.33 Mbs away from the Vrn-B1 gene. However, we observed that the Vrn-B1 gene was associated with DH in multiple panels in Jabalpur and Pusa, but only in a few panels in Ludhiana, indicating its strong association with phenology in multiple years at the NEPZ and CZ, compared with the NWPZ of India.

On chromosome 6B, markers between 186319977 and 224585504 bps were associated with both heading and maturity in Jabalpur in panel 2015 and suggest a specific adaptation QTL for Jabalpur, with additive effects ranging between 1 and 1.1 days. These markers flank Qcim.6B.5.2 linked to marker S6B_190376868 that was associated with DH in irrigated and drought-stressed environments of Obregon, Mexico (Juliana et al., 2019), and indicate the presence of the same QTL. On chromosome 7BS, markers 7B_8219840 and 7B_11773800 that were associated with DM in Jabalpur and Pusa with additive effects ranging between 0.9 and 1 days flanked the Vrn-B3 gene but were significant only in panel 2020. On chromosome 7DS, several markers between 55446953 and 58633321 bps were associated with DH and DM in panels 2020 and 2021 in Ludhiana and Jabalpur and DM in only panel 2021 in Pusa and had additive effects ranging between 0.6 and 1.1 days. While marker 7D_58633321 was 9.8 Kbp away from the Vrn-D3 gene and might be indicating this gene, the markers were in the same position as Qcim.7D.2 associated with DM in irrigated and drought-stressed environments in Obregon, Mexico (Juliana et al., 2019).

While this study has validated genomic regions associated with DH and maturity in previous studies, we have also reported novel genomic regions not reported previously. The presence of Ppd-B1 genes in all the well-adapted lines of each panel suggests the importance of those genes in NWPZ, while the Vrn-B1 gene is indicated to be contributed to adaptation in the NEPZ and CZ of India. We observed a maximum variation of 21.1 and 14% explained by markers 2B_56134146 and 5B_574145576 associated with the Ppd-B1 and Vrn-B1 genes’ regions, respectively, that further provide evidence to their significant role in regulating DH and maturity. We also observed that 9.1–77.3% of the markers significantly associated with DH and 2–9% of the markers significantly associated with DM were significantly associated in more than one panel, indicating a large effect of the years and environments on the traits. In addition, this could also be attributed to different lines with variable allelic frequencies that were present in the different panels and because not all the markers used for GWAS were common across all the panels.

The average extent of LD in wheat was approximately 5 × 107 bps (Juliana et al., 2018). Therefore, finding association of candidate genes with significant markers is difficult due to the high LD in many chromosomal regions/gene intervals. Extensive LD in wheat that decays at about 5 × 107 bps poses a huge challenge for delineating candidate gene intervals, and candidates should be further fine mapped, functionally characterized, and validated (Juliana et al., 2018).

The GWAS results for DH indicated that three markers on chromosome 5B (in proximity of Vrn-B1 gene) were constantly significant in all environments, while 72 markers were significant in Jabalpur and Pusa. Similarly, three markers on chromosome 7D were significant in Jabalpur and Ludhiana. This indicates the existence of shared genetic basis for this trait and adaption in different wheat-producing zones of India. However, for DM we observed that no marker was associated with all the three sites, while two to three markers were common between Jabalpur and Pusa, as well as Jabalpur and Ludhiana (Figure 7). While this indicates that there could be a shared genetic basis for DM in these sites, it is also worth highlighting that none of the markers were significantly associated with DM in both Ludhiana and Pusa. Finally, we also observed 84 markers that were associated with both DH and maturity in the different panels and sites with most of them linked to the Ppd-B1 and Vrn-B1 genes indicating the association of these genes with both traits. Adjusting the developmental stages and maturity of wheat through breeding is one of the best ways to develop widely adapted varieties. The combination of Vrn and Ppd genes plays an important role in adaptation to a particular environment. For example, higher productivity is obtained under early sown wheat where mild vernalization gene and relatively significant effect Ppd gene combination is preferred (Farhad et al., 2022). The results of this study are expected to provide valuable insights into the genetic basis of phenology-driven adaptation of bread wheat genotypes in the major wheat-producing zones of India.
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FIGURE 7. Venn diagrams showing the markers significantly associated with days to heading (DH) and maturity (DM) in different sites and the overlapping number of markers across sites and traits.
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Glume hairiness or pubescence is an important morphological trait with high heritability to distinguish/characterize wheat and is related to the resistance to biotic and abiotic stresses. Hg1 (formerly named Hg) on chromosome arm 1AS controlled glume hairiness in wheat. Its genetic analysis and mapping have been widely studied, yet more useful and accurate information for fine mapping of Hg1 and identification of its candidate gene is lacking. The cloning of this gene has not yet been reported for the large complex wheat genome. Here, we performed a GWAS between SNP markers and glume pubescence (Gp) in a wheat population with 352 lines and further demonstrated the gene expression and haplotype analysis approach for isolating the Hg1 gene. One gene, TraesCSU02G143200 (TaELD1-1A), encoding glycosyltransferase-like ELD1/KOBITO 1, was identified as the most promising candidate gene of Hg1. The gene annotation, expression pattern, function SNP variation, haplotype analysis, and co-expression analysis in floral organ (spike) development indicated that it is likely to be involved in the regulation of glume pubescence. Our study demonstrates the importance of high-quality reference genomes and annotation information, as well as bioinformatics analysis, for gene cloning in wheat.

Keywords: wheat, glume hairiness, Hg1, GWAS, haplotype


INTRODUCTION

Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) is an important cereal crop and is used as a staple food all over the world. It originated from two independent hybridization and polyploidization events. The first hybridization between wild einkorn (Triticum urartu, AA genome) and a close relative of Aegilops speltoides (SS≈BB genome) formed the tetraploid wild emmer (Triticum dicoccoides, AABB genomes), and the second hybridization happened between domesticated emmer (Triticum dicoccum, AABB genomes) and the wild goat grass (Aegilops tauschii, DD genome), which formed hexaploid bread wheat (Morris and Sears, 1967; Gill and Friebe, 2002; Matsuoka, 2011). During the evolution and domestication of wheat, many key morphology traits (such as brittle rachis, tough glume, and free-threshing) controlled by single major genes (Br/br, Tg/tg, and Q/q) (Gill et al., 2007) were firstly domesticated to meet the agricultural activities; then, additional quantitatively inherited traits, e.g., grain yield, seed size, plant height, and heading date meeting the human needs, were modified during domestication and the subsequent breeding process.

Hairy glume, also known as pubescent glume, appears in diploid, tetraploid, and hexaploid species in the Triticeae tribe (Tsunewaki, 1966). Hairy glume can be used as a phenotypic trait (or marker) for the evaluation of distinctness, uniformity, and stability of wheat cultivars (T. aestivum L.) due to its characteristics such as easy observation and independence of environmental effects (Parker and Namuth-Covert, 2017). It used to be scored as a trait to study the phenotypic diversity of tetraploid (Eticha et al., 2005; Hailu et al., 2006; Mengistu et al., 2015) and hexaploid wheat (Zeven and Schachl, 1989; Geleta and Grausgruber, 2011). Moreover, hairy glume has shown linkage to important genes/loci such as barley yellow dwarf virus (BYDV) resistant gene (Wu et al., 1999), powdery mildew resistance gene (Pm3) (Briggle and Sears, 1966), leaf rust (Howes, 1986) and Karnal bunt (Warham, 1988), tiller inhibition gene (Tin) (Richards, 1988; Spielmeyer and Richards, 2004), Gli-A1 locus (Howes, 1986), and abiotic stress gene loci (like cold and drought) (Trethowan et al., 1998; Pshenichnikova et al., 2019); therefore, it was frequently used as a morphological marker to assist mapping of these genes/loci. Several pieces of research indicated that the ratio of hairy glume in tetraploid wheat is greater than that in hexaploid wheat (Tsunewaki, 1966; Jain et al., 1975; Zeven, 1990; Ruiz et al., 2002; Hailu et al., 2010), which implied that hairy glume has been under selection for a certain evolutionary extent.

Glume hairiness or pubescence is an important morphological trait with high heritability to distinguish/characterize wheat, and its genetic analysis could date back to the early decades of the 20th century. The hybrid experiment between the felted glume (hairy glume) and glabrous glume wheat performed by Biffen (1905) reported that felted glume was dominant over glabrous glume. The separation ratio of hairiness: glabrous was 3:1 in an F2 population experiment by Kadam (1936), and a separation ratio of 1:2:1 for homozygous hairiness: heterozygous hairiness: glabrous was observed in the F3 population, which concluded that glume hairiness gene is a dominant gene. Most studies indicated that glume pubescence was controlled by a single dominant allele in wheat (Sears, 1954; Tsunewaki and Jenkins, 1961; McIntosh and Bennett, 1978). However, the heavy pubescence in the Italian variety Loro was reported as an incompletely dominant allele in the study of Anderson and Mcginnis (1960), and the glume pubescence in durum wheat cv. Kahla was controlled by a recessive allele (Sheybani and Jenkins, 1961). The location analysis of Hg1 (formerly named Hg) could date back to the 1960s, and the aneuploids of common wheat first identified the location of Hg1 on chromosome 1A (Sears, 1954). Later, Tsunewaki (1962, 1966) confirmed this by the monosomic analysis; then, McIntosh and Bennett (1978) assigned Hg1 to the short arm of chromosome 1A using telocentric mapping. Hg1 was further located on a linkage map of chromosome 1AS in T. monococcum (Dubcovsky and Dvorak, 1995) and T. aestivum (Spielmeyer and Richards, 2004; Khlestkina et al., 2006).

With the development of molecular markers, such as simple sequence repeat (SSR), diversity array technology (DArT), single-nucleotide polymorphism (SNP), and the sequencing technology, the localization of Hg1 in chromosome 1AS was more accurate and efficient using different methods, such as linkage mapping (Luo et al., 2016), transcriptome analysis (Luo et al., 2020), and genome-wide association studies (GWAS) (Sheoran et al., 2019; Wang et al., 2019). Luo et al. (2016) mapped Hg1 in Tibetan semi-wild wheat (T. aestivum subsp. tibetanum Shao) accession Q1028 with SSR markers to a 3.3 cM region [physical region about 5 Mbp in IWGSC RefSeq v1.1 (Iwgsc et al., 2018), Xsaufc2 (1A:1.37 Mbp)- Xgwm136 (1A:6.42 Mbp)] on chromosome 1AS and further analyzed the candidate genes through a transcriptome analysis for glume hairiness in two sets of near-isogenic lines (NILs) of wheat (Luo et al., 2020). Wang et al. (2019) detected a SNP marker IWA4754 [at chr1A: 12,369,432 bp in IWGSC RefSeq v1.1 (Iwgsc et al., 2018) and chr1A: 13,808,758 bp in IWGSC RefSeq v2.1 (Zhu et al., 2021)] that is significantly associated with glume pubescence (Gp). Although these studies provided useful and accurate information for fine mapping of Hg1 and the identification of candidate genes in the wheat genome, the cloning of this gene has not yet been reported for the large complex wheat genome.

The recent release of high-quality genome (Iwgsc et al., 2018) and pan-genome data of wheat (Walkowiak et al., 2020), as well as the high-throughput genotyping projects (He et al., 2019; Guo et al., 2020; Hao et al., 2020; Zhou et al., 2020), provides the basis for a species-wide understanding of genome variations, which also facilitates the cloning of agriculturally important genes. With the fast development of the high-throughput genotyping platform and the substantial reductions in the price of sequencing, it is more approachable and efficient to perform gene mining and function analysis using GWAS and haplotype analysis combined with bioinformatics analysis in different studies (Yano et al., 2019; Abrouk et al., 2021; Hu and Zuo, 2021; Miculan et al., 2021; Tang et al., 2021). Here, we performed a GWAS between SNP makers and glume pubescence (GP) in 352 wheat accessions and further demonstrate the combination of the gene expression and haplotype analyses for isolating the Hg1 gene on chromosome 1AS.



MATERIALS AND METHODS


Materials

A set of 352 hexaploid wheat (T. aestivum) accessions with records in the Germplasm Resources Information Network (GRIN) database1 were selected from 1,026 diverse accessions of hexaploid and tetraploid wheat in the study of He et al. (2019). In the previous study, the 1,026 diverse accessions were sequenced using exome-sequencing technology to identify wild-relative introgression, selection for improvement and environmental adaptation, and mining alleles of agronomic genes explaining a substantial proportion of phenotypic variation. The selected 352 wheat accessions comprised of uncertain collections (58), wild (W:3), landraces (L:130), cultivars (C:75), genetic stocks (G:1), and improved breeding (B:85). Among them, 333, 12, 4, 2, and 1 accessions were of T. aestivum, T. spelta, T. macha, T. sphaerococcum, and T. compactum, respectively. The information of 352 selected hexaploid wheat accessions is listed in Supplementary Table 1.



Phenotyping

Glume pubescence (Gp) is an important morphological trait with high heritability to distinguish/characterize wheat. The phenotype of Gp for the 352 wheat accessions was searched and downloaded from the GRIN database2 according to the accession IDs. The phenotype record of Gp was defined with a score of 1–9 (1 = ABSENT, 9 = LONG) according to the type and extent of glume pubescence in the website https://npgsweb.ars-rin.gov/gringlobal/descriptordetail?id=65010. The 352 accessions in this study were all recorded with four types (1 = ABSENT, 3 = EDGE ONLY, 5 = SHORT (FINE), 9 = LONG, READILY VISIBLE, Supplementary Figure 1) of Gp in the GRIN database. Moreover, the spike figures of the accessions in the website, which are clear enough to easily detect the glume with hairiness or not, were used to check and correct the glume hairiness phenotype of those with obvious wrong records. The details are shown in Supplementary Table 1.



Single-Nucleotide Polymorphism Genotyping and Filtering

The SNP data were initially genotyped by He et al. (2019) in the 1000 wheat exome project using exome-sequencing technology, and the details about DNA isolation, exome capturing and sequencing, SNP calling, and filtering were provided. The reference genome used in their study is IWGSC RefSeq v1.1 (Iwgsc et al., 2018). We downloaded the VCF file (before imputation) from the website of the 1000 wheat exomes project3 and selected the genotype of 352 samples using the “bcftools view” function of BCFtools 1.8 software (Danecek et al., 2021). First, the SNPs with missing data >80% and MAF <1% were filtered by VCFtools 0.1.16 (Danecek et al., 2011). Second, the SNP data were imputed by Beagle (version: 21Apr21.304) (Browning et al., 2018) with the default parameters. Finally, a total of 2,368,251 SNPs with missing data <20% and MAF >0.05 were kept for further study by VCFtools 0.1.16 (Danecek et al., 2011).



Population Genomic Analyses

Principal component analysis was performed using the glPca function of the package adegenet 2.1.5 (Jombart, 2008) in R version 4.0.1 (R Core Team, 2013)4. Structure analyses were performed with Structure 2.3.4 software (Hubisz et al., 2009) using a subset of 17,325 SNPs. This subset was selected by applying the following criteria: SNPs with linkage disequilibrium (LD) above 0.02 were removed using Plink “–indep-pairwise 1000 10 0.02.” A total of 50,000 burn-in periods followed by 100,000 Markov Chain Monte Carlo (MCMC) iterations from K = 1–10 clusters were used to identify the optimal cluster (K). Five independent runs were generated for each K. The results of the analysis were used as input to the Structure Harvester tool (Earl and Vonholdt, 2012) to predict the best K-value based on the Evanno method (Evanno et al., 2005). PHYLIP v3.5 (Felsenstein, 1993) was used to transfer the 17,325 SNPs data for generating the multiple sequence alignment file in PHYLIP format, and a phylogenetic tree was constructed using IQ-TREE (Nguyen et al., 2015) via a maximum-likelihood method with 1000 bootstrap replications. FigTree 1.4.45 was used to optimize the visualization of the phylogenetic tree.



Genome-Wide Association Study of Glume Pubescence

Genome-wide association studies for glume pubescence was conducted by the GAPIT package (Wang and Zhang, 2021) in R version 4.0.1 (R Core Team, 2013) (see text footnote 4) using the general linear model (GLM) (Price et al., 2006), the mixed linear model (MLM) (Zhang et al., 2005; Yu et al., 2006), the compressed MLM (CMLM) (Zhang et al., 2010), and the multiple loci mixed model (MLMM) (Segura et al., 2012). The Kinship (K) and PCA (P) for the methods were calculated using the GAPIT package. The first three principal components (PCs) were included in the GWAS model to correct for the hidden population structure. The threshold for p-value (P < 4.22 × 10–9) was corrected using the Bonferroni correction method (0.01 divided by the number of SNPs) (Li et al., 2012), following the study of Zhang et al. (2018). The significant associations, repeatedly detected in at least two methods, are viewed as reliable. If the associated SNPs revealed a single peak, they will be treated as a common QTN cluster (QTNc). According to the p-value and the effect of the associated SNP, the SNP with the lowest p-value and highest effect represents the peak SNP of the detected QTNc. The QTNc was named as “qtnc” + trait name abbreviation + chromosome + detected QTNc order on chromosome. Besides, the Manhattan plot was used for the visualization of association results by the CMplot package (Yin et al., 2021) in R 4.0.1 (R Core Team, 2013) (see text footnote 4).



Single-Nucleotide Polymorphism Annotation

The genotype of significantly associated SNPs in the candidate gene regions for 352 wheat accessions was extracted from the initial genotype file of GWAS. The genome sequences and annotation file of IWGSC RefSeq v1.1 (Iwgsc et al., 2018) and IWGSC RefSeq v2.1 (Zhu et al., 2021) were downloaded from Wheat@URGI databases6 (Alaux et al., 2018) and used to annotate the SNP via the SnpEff v4 software (Cingolani et al., 2012). Those genes in which SNPs were annotated with loss-of-function mutations described in the study of Torkamaneh et al. (2018) or were located in 5′ UTR, 3′ UTR, and promotor regions will be considered as reliable candidate genes.



Putative Candidate Gene Analysis and Expression Data

To find the candidate gene of Hg1, the associated region of the detected QTNc on chromosome 1AS was considered as the candidate gene region for Hg1. The candidate genes were selected according to the functional annotation (IWGSC RefSeq 1.1) of the genes in the candidate region (Iwgsc et al., 2018), and the transcriptome datasets of IWGSC (2014)I and Li et al. (2018) downloaded from the website of WheatOmics 1.07 (Ma et al., 2021) were used to select the candidate genes with high expression in spikelet and glume.



Haplotype Analysis of TaELD1-1A in Wheat Population

To assess the allelic variation of the TaELD1-1A gene across various wheat cultivars, the haplotype analysis of TaELD1-1A was performed using the SNP data (heterozygosity <0.03) on TaELD1-1A gene sequences among the 352 wheat accessions retrieved from the 1000 wheat exomes project of He et al. (2019) (see text footnote 3) using the “CandiHap” package (Li et al., 2020) of R 4.0.1 (R Core Team, 2013) (see text footnote 4), and the differences of the phenotypes for Gp corresponding to different haplotypes were tested. Moreover, the homologous gene sequences of TaELD1-1A in pan-genomes including 10+ hexaploid wheat (Walkowiak et al., 2020), emmer wheat (Zavitan) (Avni et al., 2017), and durum wheat (Svevo) (Maccaferri et al., 2019) genomes were downloaded from Ensembl Plants8 according to the best-match gene IDs to TraesCSU02G143200 through BLAST. The above SNPs of TaELD1-1A among the pan-genomes were obtained by alignment and were used to analyze the haplotypes of TaELD1-1A among pan-genome accessions.




RESULTS


The Phenotypic Variation of Glume Pubescence

The phenotype of Gp for the 352 wheat accessions was obtained from the Germplasm Resources Information Network (GRIN) database (see text footnote 1) according to the accession IDs (Supplementary Table 1). The spike figures of the accessions in the GRIN database, which are clear enough to easily detect the glume with hairiness or not, were used to check and correct the ones with obvious wrong records. GP was scored on a range of 1–9 (1 = ABSENT and 9 = LONG) according to the type and extent of glume pubescence in the GRIN database9, where only four types (1 = ABSENT, 3 = EDGE ONLY, 5 = SHORT (FINE), 9 = LONG, READILY VISIBLE) (Supplementary Figure 1) of Gp were recorded among 352 accessions in this study. Among 352 wheat accessions, 315, 11, 11, and 15 accessions belonged to type 1, 3, 5, and 9 Gp, respectively. The percentage of type 1 (1 = ABSENT) and type 2 (3 = EDGE ONLY) Gp were increased from landrace to cultivar, while the percentage of type 3 [5 = SHORT (FINE)] and type 4 (9 = LONG, READILY VISIBLE) were decreased (Table 1). This suggested that Gp has been under selection during the improvement from landrace to cultivar on some extent.


TABLE 1. Distribution of different types of Gp among wild, landrace, and cultivar wheat.
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Genotypic Features and Population Structure

After filtering, a total of 2,368,251 SNPs covering the whole genome were obtained for 352 wheat populations. The distribution of SNPs on different chromosomes was visualized by the CMplot package (Yin et al., 2021) in R version 4.0.1 (R Core Team, 2013) (see text footnote 4) (Figure 1A). The SNPs were distributed across the entire genome, with increased frequency in gene-rich, telomeric regions (Figure 1A). Of the 2,368,251 variants, 863,242, 1,083,108, and 356,899 were located on the A, B, and D subgenomes, respectively, whereas 65,002 variants were unanchored (chrUn), and the number of SNPs on chromosomes varies from 18,652 on chr4D to 198,349 on chr2B; the average SNP density (numbers of SNPs per Mbp) ranges from 36.58 (chr4D) to 247.55 (chr2B) (Supplementary Table 2). Principal component analysis (PCA) revealed a separation of 352 wheat accessions into three gene pools comprising accessions as old landraces, a mixture of landraces and cultivar, and modern cultivars (Figure 1B). The phylogeny and structure analyses showed similar results (Figures 1C,D). The first principal component mainly separated the landraces of Middle Asia from the landraces and cultivars of other places, and the second axis mainly separated the wheat accessions into two pools: the landraces of Europe and Latin America, and the modern cultivars. Similarly, a maximum-likelihood tree also provided evidence for three groups: group 1 included mainly landraces from Middle Asia, group 2 consisted of most landraces and a few cultivars mainly from Europe and Latin America, and group 3 were mostly cultivars from different places. In fact, some accessions showed discrepancies between their indicated accession type (or geographical origin) and the PCA cluster. The likely reasons for this are erroneous passport information or mistakes during the dissemination of the GenBank materials. Alternatively, this pattern might reflect the interchange of germplasm between different regions before collection. Moreover, the optimal cluster (K) for population structure was defined as K = 3 (Figure 1C). The PCA, phylogenetic tree, and structure population showed similar results, revealing three gene pools for the wheat populations. The accession type and geographical origin confirmed that the bread wheat originated from Middle Asia, which was then domesticated and spread to Europe, Asia, United States, and Africa (Pont et al., 2019; Zhou et al., 2020).
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FIGURE 1. Genotypic features and population structure of bread wheat. (A) The distribution of SNPs across the entire genome, the color legend indicates the SNP number. (B) Principal component analysis (PCA) across the 352 wheat accessions, the color legend “Type” is for [(B)a], “Other_species” is for the relatives (19 accessions) of T. aestivum, “Unknown” is for missing record for cultivar or landrace, the color legend “origin” is for [(B)b], “Unknown” is for missing record of origin. (C) Population structure for 352 accessions, the optimal cluster (K) was K = 3. (D) Maximum-likelihood tree constructed with IQ-tree, (D) shared the same color legend with (B), and the color legends “Type” and “origin” refer to the branches and the nodes at the end of the branches in the tree, respectively.




Genome-Wide Association Studies to Identify Single-Nucleotide Polymorphisms Associated with Glume Pubescence

To detect the most significant marker–trait associations, four models including three single loci methods (GLM, MLM, and CMLM) and one multiple loci method (MLMM) were employed to conduct the GWAS. A total of 148 significant associations were co-detected among three single loci methods, among which eight QTN clusters (QTNcs) for Gp were detected on chromosomes 1A, 1B, 1D, 2A, 3A, 6A, 7A, and Un (Figure 2 and Supplementary Table 3) (p-value = 0.01/number of SNPs = 4.22 × 10–9). It is worth noting that two obvious single peaks on 1A and Un were co-detected by GLM, MLM, and CMLM. These two peaks were located in the confidence intervals of ∼0.85 Mb (spanning physical positions 1A: 1.24–2.09 Mb) and ∼0.027 Mb (Un: 150.79–150.82 Mb) in the IWGSC RefSeq v1.1, respectively. Through BLAST, the collinear positions for the two peaks (1A: 1.24–2.09 Mb and Un: 150.79–150.82 Mb) were all located on the short arm of chromosome 1A in IWGSC RefSeq v2.1 and WEWSeq_v.1.0 referring to one peak with an interval of ∼1.77 Mb (1A: 1.23–3.00 Mb IWGSC RefSeq v2.1) (Supplementary Table 3). Therefore, these two association peaks should be one QTNc (named qtnc_Gp_1A1) for Gp on chromosomes 1AS, which explained 9.9–51.3% of phenotypic variation (Supplementary Table 3). This physical position coincides with the Hg1 locus of previous reports (Luo et al., 2016, 2020). Moreover, the peak SNP Un_150796716, explaining the highest (51.3%) phenotypic variation, was co-detected among the four model methods, suggesting that a more reliable candidate gene for the Hg1 gene might be near this SNP.
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FIGURE 2. Manhattan plots of GWAS for Gp using GLM, MLM, CMLM, and MLMM methods. The associated SNPs with p-value ≤1 × 10– 28 were tagged on the plots.




Candidate Gene Analysis for Hg1

According to the genome annotations of IWGSC RefSeq v1.1 and IWGSC RefSeq v2.1, we compared the genes in the associated region 1A: 1.24–2.09 Mb and Un: 150.79–150.82 Mb of IWGSC RefSeq v1.1 with that in the collinear region 1A:1.23–3.00 Mb of IWGSC RefSeq v2.1. A total of 58 genes, including 20 high and 38 low confidence genes, were detected in the target region of Hg1 in IWGSC RefSeq v1.1, among which 18 genes were not anchored to the target region of IWGSC RefSeq v1.1 but belong to the region (1A:1.23–3.00 Mb) of IWGSC RefSeq v2.1. These genes may be incorrectly assembled to the wrong positions in IWGSC RefSeq v1.1 and were corrected in IWGSC RefSeq v2.1 (Supplementary Table 4). Moreover, four genes TraesCSU02G231400LC, TraesCSU02G231300LC, TraesCSU02G231200LC, and TraesCSU02G143200 were not annotated in IWGSC RefSeq v2.1 (Supplementary Table 4).

The expression pattern of the genes in different tissues and developing spike period were obtained from the research of IWGSC (2014) and Li et al. (2018) through website tools (see text footnote 7). The results identified six genes, namely TraesCSU02G426100LC, TraesCS1A02G002700, Tra esCS1A02G003000, TraesCS1A02G002500, TraesCS1A02G0052 00LC, and TraesCSU02G143200 with high expression in spike (Figure 3A).
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FIGURE 3. Expression data for candidate genes. (A) The expression pattern of the candidate genes in different tissues and developmental stages: [(A)a] refers to the expression data from IWGSC (2014), [(A)b] refers to the expression data from Li et al. (2018), and KNI-KNVI represent the spikes in different developmental stages. (B) The expression of TraesCSU02G143200 gene in different tissues of wheat from the data of IWGSC (2014). (C) The co-expression data of TraesCSU02G143200 from knetMiner (https://knetminer.com/Triticum_aestivum/).


Function annotation for associated SNPs in the region of Hg1 was conducted by SnpEff software with IWGSC RefSeq v1.1 and IWGSC RefSeq v2.1 annotation files, and the result showed that sixteen associated SNPs on seven genes (TraesCS1A02G002400, TraesCS1A02G002500, TraesCS1A02G002700, TraesCSU02G143200, TraesCSU02G2314 00LC, TraesCSU02G173700, and TraesCS1A02G005300LC) were with function variations (Supplementary Table 3). According to the annotation of associated SNPs and the expression pattern of the genes, TraesCS1A02G002500, TraesCS1A02G002700, and TraesCSU02G143200 may be the candidate genes for Hg1. According to the gene function annotation, TraesCSU02G143200 (TaELD1-1A, encoding glycosyltransferase-like ELD1/KOBITO 1) (Supplementary Table 4), involved in the regulation of cell elongation (Cheng et al., 2000; Pagant et al., 2002), was identified as the most promising candidate gene for Hg1. Two associated SNPs (Un_150794343 and Un_150797000), with function variations present in TraesCSU02G143200, may result in its function changes. TraesCSU02G143200 showed a relatively high expression in spike/spikelet (Figures 3A,B). The co-expression data of TraesCSU02G143200 from knetMiner10 showed that it was co-expressed with MADS6 (TraesCS6A02G259000 and TraesCS6D02G240200) and TaDL (TraesCS4A02G058800) in floral organ (spike) and involved in the regulation of the development of floral organ under the regulation of MADS6 and TaDL (Figure 3C). Moreover, glycosyltransferase-like protein ELD1/KOB1 has been identified to play an important role in the regulation of cell elongation, affecting the development of root hairs, and the root hair density of the mutants was significantly greater than that of the wild type in Arabidopsis (Cheng et al., 2000; Pagant et al., 2002). Therefore, TraesCSU02G143200 (TaELD1-1A) is the most promising candidate gene of Hg1 that may be involved in the regulation of glume pubescence.



Haplotype Analysis of TaELD1-1A

A total of 52 SNPs on the gene sequence of TaELD1-1A among the 352 wheat accessions were retrieved from the 1000 wheat exomes project of He et al. (2019) (Supplementary Table 5), among which 14 SNPs were filtered with heterozygosity <0.03 and used for haplotype analysis by the “CandiHap” package (Li et al., 2020) of R 4.0.1 (R Core Team, 2013) (see text footnote 4) (Supplementary Table 6). Haplotype analysis showed that four main haplotypes (Hap1–4, containing accessions >10) of TaELD1-1A were detected among 352 wheat accessions (Figure 4 and Supplementary Table 7). Moreover, according to the 14 SNPs information, four haplotypes (Hap1, Hap2, Hap3, and Hap5) for TaELD1-1A were detected among 10+ pan-genomes, durum wheat (Svevo), and emmer wheat (Zavitan), and their phenotypes of glume pubescence were consistent with that in the 352 wheat accessions (Figure 4 and Supplementary Table 8). The Hap1 is the haplotype of reference TaELD1-1A without variation, which was presented in CS, Cadenza, CDC Stanley, CDC Landmark, Claire, Jagger, Julius, Lancer, Mace, Norin61, Paragon, Spelt (PI 190962), and Weebill 1 and identified to be with type 1 (1 = ABSENT) glume pubescence (Supplementary Table 8). The Claire, Cadenza, and Paragon were the varieties of United Kingdom that were reported to have the glume with a smooth external surface11, and the CDC Stanley and CDC Landmark were the varieties of Canada that were recorded with glabrous glume and glabrous to very slightly pubescent glume12. The Hap2 is the haplotype of TaELD1-1A with function variants at Un:150794343 (splice region variant: G/A) and Un:150797000 (missense variant: A/C, Tyr/Ser), which include the type 3 [5 = SHORT (FINE)] and type 4 (9 = LONG, READILY VISIBLE) (Figures 4A,B and Supplementary Table 7). Svevo was a durum wheat belonging to Hap2, which has visible glume hairs (rough surface) (personal communication with Assaf Distelfeld and Elisabetta Mazzucotelli)13, 14. Hap3 is the haplotype of TaELD1-1A with function variation Un:150797000 (missense variant: A/C, Tyr/Ser), which is presented in Zavitan (personal communication with Assaf Distelfeld and Elisabetta Mazzucotelli) and Robigus15 with the glume having a smooth external surface (type 1, 1 = ABSENT). Hap4 is the haplotype of TaELD1-1A with synonymous variants at Un:150794126 and Un:150794306, which is presented with type 1 (1 = ABSENT) glume pubescence. Hap5 is a combination of Hap3 and Hap4 missing among 352 accessions, which is presented in SY Mattis and ArinaLrFor (personal communication with Simon Krattinger and Lamia Aouini) with type 1 (1 = ABSENT) glume pubescence. The haplotype analysis suggests that the function variation at Un:150794343 (splice region variant: G/A) on TaELD1-1A may be the key variation that affects the transcript of TaELD1-1A and then affects Gp. Therefore, the haplotype analysis of TaELD1-1A in 352 wheat accessions and the pan-genomes further indicated TraesCSU02G143200 (TaELD1-1A) as the most promising candidate gene of Hg1. Moreover, among 352 accessions, the frequency of Hap1 and Hap4 increased from landrace (81.6 and 5.6%) to cultivar (84.6 and 11.7%), while the frequency of Hap2 and Hap3 decreased from landrace (7.2 and 5.6%) to cultivar (1.9 and 1.9%), suggesting that TaELD1-1A was under selection according to the visible phenotype marker (Gp) during the improvement from landrace to cultivar on some extent (Figure 4B). Some individual discrete points in the haplotypes (such as Hap1) may be incorrectly recorded in the database, although we have revised some incorrect records of the Gp according to the spike images of the accessions in the GRIN database (Figure 4B and Supplementary Table 1). The geographical distribution of the haplotypes of TraesCSU02G143200 showed that Hap2 accessions with visible glume hairs were mainly from Middle Asia (Figure 4C).
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FIGURE 4. Haplotype analysis of TraesCSU02G143200 in 352 wheat accessions and the pan-genomes. (A) The haplotype and sequence analysis of TraesCSU02G143200 among 352 wheat accessions, involving 10+ hexaploid wheat and the tetraploid wheat Zavitan and Svevo reference genomes. The numbers at the top indicate the genomic positions of the SNPs on TraesCSU02G143200 among the population; the numbers and the corresponding base letters with gray color indicate that the SNP variants are in the introns of TraesCSU02G143200; the numbers and corresponding base letters with blue or red color indicate that the SNP variants are in the exons of TraesCSU02G143200, blue means the SNPs with synonymous mutations, red means the two SNPs with function mutations on TraesCSU02G143200, a splice region variant (G/A) at Un:150794343 and a missense variant (A/C, Tyr/Ser) at Un:150797000. (B) The haplotypes of TraesCSU02G143200 and theirs Gp score comparison and frequency distribution among 352 wheat accessions. (C) The geographical distribution and frequency of the haplotypes of TraesCSU02G143200. The size of the pie is proportional to the sample size.





DISCUSSION


TaELD1-1A, the Most Reliable Candidate Gene for Hg1

Because of its striking phenotype and importance for distinguishing/characterizing wheat, the genetic inheritance of glume hairiness or pubescence and the localization of Hg1 were systematically studied after the rediscovery of Mendel’s laws in the early 1900s (Biffen, 1905). With the development of molecular markers and sequencing technology, several studies (Luo et al., 2016, 2020; Sheoran et al., 2019) have provided more accurate and efficient information for fine mapping of Hg1 on chromosome 1AS in wheat in the recent years. However, the cloning for Hg1 has not yet been reported to date. According to the fast development of the high-throughput genotyping platform and the substantial reduction in the price of sequencing, GWAS combined with bioinformatics analysis becomes a powerful and efficient tool for mining genetic loci associated with any trait, including quantitative and qualitative traits. In this study, we performed a GWAS between SNP makers and glume pubescence (Gp) in 352 wheat populations with exon sequencing and further demonstrated the gene expression and haplotype analyses for isolating the Hg1 gene. First, two significantly associated peaks (1A: 1.24–2.09 Mb and Un: 150.79–150.82 Mb, IWGSC RefSeq v1.1) for Gp were detected, and the region of Un: 150.79–150.82 Mb was certificated to be in the region of 1A: 1.24–2.09 Mb as one QTNc (qtnc_Gp_1A1) for Gp through collinearity analysis with the wheat genome IWGSC RefSeq v2.1 and emmer wheat genome WEWSeq_v.1.0, which coincided with the Hg1 locus of previous reports (Luo et al., 2016, 2020); second, according to the annotation, expression pattern, and function SNP variation of the candidate genes in the target region, TraesCSU02G143200 (TaELD1-1A) encoding glycosyltransferase-like ELD1/KOBITO 1 was inferred as the most promising candidate gene of Hg1 that may be involved in the regulation of glume pubescence; third, the haplotype analysis of TraesCSU02G143200 among the GWAS population and its co-expression with MADS6 and TaDL in the regulation of floral organ (spike) development from knetMiner website (see text footnote 10) further inferred that TraesCSU02G143200 was the candidate gene of Hg1. Moreover, glycosyltransferase−like protein ELD1/KOB1 of Arabidopsis has been identified to play an important role in the regulation of cell elongation, affecting the development of root hairs, and the root hair density of the mutants was significantly greater than that of the wild type in Arabidopsis (Cheng et al., 2000; Pagant et al., 2002). Although multiple lines of evidence indicated that TraesCSU02G143200 is a reliable candidate gene for the Hg1, it needs to be further verified through gene overexpression and knockout experiments.



The Importance of High-Quality Reference Genome and Annotation Information for Gene Mining

Since Hg1 was first located on the short arm of chromosome 1A in the 1960s (Sears, 1954; Tsunewaki, 1966), the fine mapping of Hg1 in the telomere region of chromosome 1AS was more accurate and efficient using different methods, such as linkage mapping (Luo et al., 2016), transcriptome analysis (Luo et al., 2020), and genome-wide association studies (GWAS) (Sheoran et al., 2019). However, the gene for Hg1 has not yet been cloned. We speculate that there may be several reasons that limit the fine mapping and cloning of the Hg1 gene. First, many duplicate sequences exist in the region of Hg1, resulting in difficulty for the polymorphism makers exploring and fine mapping; second, the duplicate sequences resulted in miss- or un-assembled sequences for this region, among which TraesCSU02G143200 (located at chrUn:150793569–150797591 of IWGSC RefSeq v1.1) was detected in the region of the Hg1 locus according to the blast results to IWGSC RefSeq v2.1, WEWSeq_v.1.0 genomes, and pan-genomes of wheat (Supplementary Table 3 and Supplementary Figure 2); third, duplicate sequences affect the gene annotation in this region, although some assembly errors such as the contigs on chrUn in IWGSC RefSeq v1.1 were reassembled to the corresponding position in IWGSC RefSeq v2.1, while TraesCSU02G143200 was missing (sequence without gene annotation) in IWGSC RefSeq v2.1 (Supplementary Table 4). Therefore, the high-quality reference genome and annotation information are very important for gene mining, and the un-contig sequences in chrUn should not be neglected.



Possible Selection and Domestication Trend of Glume Pubescence

Glume hairiness or pubescence is an important morphological trait with high heritability and is frequently used as a morphological marker to distinguish/characterize wheat; therefore, Hg1 may have been under selection according to the visible phenotype marker (Gp) during the domestication and improvement of wheat on some extent. The haplotype analysis of TaELD1-1A suggested that a weaker selection existed during the improvement from landrace to cultivar (Figure 4). The genetic diversity, differentiation, and selection parameters such as Fst, Π, Tajima’s D, and XP-CLR among landrace and cultivar wheat and wild and domesticated emmer in some studies (Avni et al., 2017; He et al., 2019) indicated that the region of Hg1 was identified with high genetic diversity, low differentiation, and weak or no selection pressure. This indicated that the region of Hg1 might not been undergone selection. The possible explanations may be as follows: many genes/loci (including genes that are beneficial or unfavorable to production), such as barley yellow dwarf virus (BYDV) resistant gene (Wu et al., 1999), powdery mildew resistance gene (Pm3) (Briggle and Sears, 1966), leaf rust locus (Howes, 1986) and Karnal bunt locus (Warham, 1988), tiller inhibition gene (Tin) (Richards, 1988; Spielmeyer and Richards, 2004), Gli-A1 locus (Howes, 1986), and abiotic stress gene loci to cold and drought (Trethowan et al., 1998; Pshenichnikova et al., 2019) were gathered in or beside the region of Hg1 and shown to be linked to Hg1, and they have been positively or negatively selected during wheat breeding, resulting in counteracting selection pressure in the region of Hg1. For example, hairy glume can be used as a morphological marker for powdery mildew resistance (Pm3) because of its tight linkage with Pm3 (Briggle and Sears, 1966), which leads to the positive selection for Hg1. Meanwhile, the hairy glume phenotype can also be used as a marker for the low tillering gene (Tin) (Richards, 1988; Spielmeyer and Richards, 2004), which leads to the negative selection for Hg1. Many important genes are clustered in this region resulting in a balance between the positive and negative selection in this region, so the selection pressure of this region was too weak to be detected. Therefore, hairy glume is not an obvious domestication trait like brittle rachis (Br), tough glume (Tg), and free-threshing (Q) during the evolution and domestication of wheat. Furthermore, there may be an imbalance in the selection of Hg1 locus in different wheat populations of different origins, and a certain degree of selection signal may be detected.




CONCLUSION

In this study, we performed a GWAS between SNP makers and glume pubescence (Gp) in a wheat population with 352 lines and further demonstrated the gene expression and haplotype analyses for isolating the Hg1 gene. Eight QTNcs were detected significantly associated with Gp, among which one reliable QTNc (named qtnc_Gp_1A1) was detected referring to the Hg1 locus, which can explain 9.9–51.3% phenotypic variation. According to the annotation, expression pattern, and function SNP variation of the candidate genes in the target region, TraesCSU02G143200 (TaELD1-1A), encoding glycosyltransferase-like ELD1/KOBITO 1, was inferred as the most promising candidate gene of Hg1 that may be involved in the regulation of glume pubescence. Moreover, haplotype analysis of TraesCSU02G143200 among the GWAS population and pan-genome accessions and its co-expression with MADS6 and TaDL in the regulation of floral organ (spike) development from knetMiner website (see text footnote 10) also support our prediction. Although multiple lines of evidence indicated that TraesCSU02G143200 is a reliable candidate gene for the Hg1, it needs to be further verified through gene overexpression and knockout experiments. Moreover, our results revealed that many duplicate sequences exist in the region of Hg1, leading to the difficulty in fine mapping and cloning of Hg1. In addition, TraesCSU02G143200 on chrUn was one of the un-assembled genes in chr1AS (Supplementary Figure 2 and Supplementary Table 4), suggesting that the information in chrUn is also very important and should not be neglected. Our study highlights the importance of high-quality reference genome and annotation information, as well as pan-genome information for gene cloning in wheat. Many duplicate sequences in the region of the Hg1 locus were not well assembled which resulted in TaELD1-1A located chrUn in IWGSC RefSeq v1.1 and miss-annotated in IWGSC RefSeq v2.1. The accurate information and allelic variation at this locus would have remained hidden without access to the high-quality pan-genomes and relative genomes. As demonstrated in this study, the completion of these high-quality genomes and annotation information, as well as the bioinformatics analysis, represents a step change for gene cloning in wheat.
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Long-Amplicon Single-Molecule Sequencing Reveals Novel, Trait-Associated Variants of VERNALIZATION1 Homoeologs in Hexaploid Wheat
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The gene VERNALIZATION1 (VRN1) is a key controller of vernalization requirement in wheat. The genome of hexaploid wheat (Triticum aestivum) harbors three homoeologous VRN1 loci on chromosomes 5A, 5B, and 5D. Structural sequence variants including small and large deletions and insertions and single nucleotide polymorphisms (SNPs) in the three homoeologous VRN1 genes not only play an important role in the control of vernalization requirement, but also have been reported to be associated with other yield related traits of wheat. Here we used single-molecule sequencing of barcoded long-amplicons to assay the full-length sequences (∼13 kbp plus 700 bp from the promoter sequence) of the three homoeologous VRN1 genes in a panel of 192 predominantly European winter wheat cultivars. Long read sequences revealed previously undetected duplications, insertions and single-nucleotide polymorphisms in the three homoeologous VRN1 genes. All the polymorphisms were confirmed by Sanger sequencing. Sequence analysis showed the predominance of the winter alleles vrn-A1, vrn-B1, and vrn-D1 across the investigated cultivars. Associations of SNPs and structural variations within the three VRN1 genes with 20 economically relevant traits including yield, nodal root-angle index and quality related traits were evaluated at the levels of alleles, haplotypes, and copy number variants. Cultivars carrying structural variants within VRN1 genes showed lower grain yield, protein yield and biomass compared to those with intact genes. Cultivars carrying a single vrn-A1 copy and a unique haplotype with a high number of SNPs were found to have elevated grain yield, kernels per spike and kernels per m2 along with lower grain sedimentation values. In addition, we detected a novel SNP polymorphism within the G-quadruplex region of the promoter of vrn-A1 that was associated with deeper roots in winter wheat. Our findings show that multiplex, single-molecule long-amplicon sequencing is a useful tool for detecting variants in target genes within large plant populations, and can be used to simultaneously assay sequence variants among target multiple gene homoeologs in polyploid crops. Numerous novel VRN1 haplotypes and alleles were identified that showed significantly associations to economically important traits. These polymorphisms were converted into PCR or KASP assays for use in marker-assisted breeding.
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INTRODUCTION

For temperate crops like winter wheat, vernalization during a prolonged period of low winter temperature is required to induce transition from vegetative growth to flowering in spring. A key regulator involved in this transition process in cereal crops is the gene VERNALIZATION1 (VRN1). VRN1 has also been found to influence numerous other developmental processes and yield-related traits including plant height, spike and spikelet development, seed yield and frost tolerance (Babben et al., 2018; Li et al., 2019; Hyles et al., 2020). VRN1 encodes a MADS-box transcription factor which promotes plant development and flowering by interacting with many downstream target genes including VRN2, VRN3, FT1, and ODDSOC2 (Deng et al., 2015). Thus, detailed analysis of genetic polymorphisms in the key regulator gene VRN1 and correlations with agronomic traits are of high interest for breeding to increase grain yield potential. Hexaploid bread wheat harbors three homoeologous copies of VRN1 located on the 5A, 5B, and 5D chromosomes (Danyluk et al., 2003; Trevaskis et al., 2003; Yan et al., 2003; Cockram et al., 2007a). Illegitimate recombination plays an important role in the creation of novel alleles in VRN1 conferring adaptation to annual cropping systems in barley and wheat (Cockram et al., 2007b). The dominant vernalization-insensitive spring alleles Vrn-A1a and Vrn-A1b on chromosome 5A are characterized by insertions, deletion and single nucleotide polymorphisms (SNPs) within the promoter regions (Yan et al., 2004; Muterko et al., 2016). The dominant vernalization-insensitive spring allele Vrn-B1a on chromosome 5B is characterized by a deletion of 6,850 bp within the first intron (Fu et al., 2005).

Copy number variation (CNV) of VRN1 also has been found to be involved in flowering time and that wheat plants with an increased copy number of vrn-A1 have an increased requirement for vernalization (Díaz et al., 2012). Würschum et al. (2015) showed that vrn-A1 has 1 to 3 copies among cultivars from a global wheat panel, with allele frequencies depending on the geographic origin of the cultivars. However, analysis of the effects of vrn-A1 copy number on heading date in the field revealed contrasting effects for cultivars originating from the United States and some European countries. Kippes et al. (2015) identified a fourth vernalization gene Vrn-D4 located on chromosome 5D in common wheat of South Asian origin. This gene is considered to be a copy of the Vrn-A1 gene on chromosome 5A. Recently, copy numbers for the dominant alleles of VRN-A1 and recessive allele of VRN-B1 have been detected in different species of wheat by Muterko and Salina, 2018, 2019, 2021 and Strejčková et al. (2021).

Rapid progress in the DNA sequencing technologies is providing valuable new insights into the genetic basis of traits. Short-read sequencing approaches like Illumina sequencing have been widely used for high-throughput sequencing with pooled, barcoded samples as an efficient approach for whole-genome resequencing (e.g., Marroni et al., 2012; Fritsch et al., 2016; Hawliczek et al., 2020). However, resolution of copy number variants or structural variants (SVs) can be difficult using short-read technologies, particularly in complex polyploid crop genomes where reads cannot always be unanimously assigned to a single homoeologous gene copy. In contrast, the increasing accuracy of long-read, sequencing approaches make them extremely useful for distinguishing between homoeologs, resolving haplotypes and detecting SVs in complex genomes (e.g., Sedlazeck et al., 2018; Mantere et al., 2019, Chawla et al., 2020). Multiplex approaches for long-read sequencing have been applied in virus and microbial community analyses (e.g., Quick et al., 2017; Calus et al., 2018; Liou et al., 2020), but have not yet been widely tested in plant populations. This study aims at an in-depth analysis of VRN1 homoeologue sequence variability including structural variations (SVs), CNVs, and SNPs based on multiplex next-generation sequencing technology especially in winter wheat and analysis of their correlations with multiple agronomic traits. For this reason, we applied an approach based on Oxford Nanopore Technology (ONT) amplicon-based multiplex sequencing for simultaneous genetic analysis of homoeologous VRN1 genes from 192 hexaploid bread wheat cultivars.



MATERIALS AND METHODS


Phenotyping Data

The diversity panel used in this study comprised of 192 bread wheat cultivars, including 167 elite European winter wheat cultivars (Voss-Fels et al., 2019b) and 25 additional diverse cultivars from Europe, Chile, Mexico, United States, India and Australia (Lichthardt et al., 2020). Part of the phenotype data was published previously as part of a larger dataset for a collection of 191 wheat cultivars by Voss-Fels et al. (2019b). The phenotype data used in this study for a subset of 167 cultivars are provided again, plus phenotype data for 25 additional cultivars in Supplementary Table 1. Wheat cultivars were analyzed in field and laboratory experiments in Germany for grain yield [dt/ha], biomass [t/h], thousand kernel weight (TKW) [g], sedimentation value, falling number [seconds], kernels per spike, kernels per m2, spikes per m2, harvest index, plant height [cm], heading date, nitrogen use efficiency (NUE) [index], stripe rust infection [% of non-infected leaf area], powdery mildew infection [% of non-infected leaf area], crude protein [%], protein yield [kg/ha], radiation use efficiency (RUE) [g per MJ], radiation interception efficiency (RIE) and Green canopy duration (GCD) [°Cd] (Voss-Fels et al., 2019b). RUE is the ratio of above-ground biomass during the growing season to the sum of intercepted effective radiation. RIE is the ratio of total intercepted effective radiation to total effective radiation. Measurement and calculation of RUE and RIE are described in Rose and Kage (2019). GCD is the difference between the temperature at which the green leaf area drops to 50% and the thermal time at heading date. Measurement and calculation of GCD is described in Lichthardt et al. (2020). Phenotyping data represents adjusted means over six locations and two growing seasons for plots fertilized with 220 kg/ha N along with full intensity of fungicides, insecticides and growth regulators, representing standard agrochemical applications under intensive wheat production conditions in western Europe. Powdery mildew and stripe rust scores were recorded in both growing seasons only in the fungicide-free treatments. Phenotyping data for mean values of nodal root-angle index (NRI) for three independent greenhouse experiments was obtained from Supplementary Data 1 in Voss-Fels et al. (2018).



DNA Extraction

Total genomic DNA was extracted from young leaf tissues using the BioSprint 96 DNA Plant kit (Qiagen, Düsseldorf, Germany) according to the manufacturer’s recommendations. DNA concentrations were quantified using the Qubit dsDNA BR Assay kit from Invitrogen and a microplate reader with fluorescence excitation/emission (TECAN infinite 200, Männedorf, Switzerland).



Primer Design and PCR Amplification of VERNALIZATION1

A specific primer pair (VRN1F, VRN1R) targeting the entire full-length coding plus promoter sequence of three homoeologous VRN1 loci on chromosome 5A, 5B, and 5D was developed manually based upon a multiple alignment of VRN1 sequences previously published (including sequences published by the 10 + genome project; IPK Crop Analysis Tools Suite, 2021). The estimated product sizes ranged from 5 to 14 kbp depending on the gene copy and previously known SVs. The target-specific primers were tailed with universal sequences at 5‘ end to attach ONT barcodes in a second PCR reaction (primer sequences are available in Supplementary Table 2). The first-round PCR amplification was performed in 50 μl containing 16.5 μl RNase-free water, 25 μl of GoTaq Long PCR Master Mix, (Promega, Madison, WI, United States), 2.5 μl of each primer (10 μM), and 3.5 μl (60 ng/μl) genomic DNA. PCR reactions were performed in a T100 Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, United States) using the following program: initial denaturing at 94°C for 2 min, followed by 35 cycles of 94°C for 30 s, 64°C annealing/extension for 13 min and 30 s, with a final extension step at 72°C for 10 min. Agarose gel electrophoresis was used to ensure PCR amplification success. Afterward, the PCR products were purified via AMPure XP beads (Beckman Coulter, Brea, CA, United States) to remove salts, primers, primer dimers and proteins. The second round of PCR amplification which aims to add barcode sequences into the amplicons was carried out in 50 μl reaction volumes consisting of 25 μl LongAmp Taq 2X Master Mix (New England Biolabs, City, United Kingdom), 24 μl of the first-round PCR products, and 1 μl of a barcode primer (EXP-PBC096, ONT, Oxford, United Kingdom). PCR conditions used for barcoding were as follows: an initial denaturing step at 95°C for 3 min, followed by 18 cycles of denaturation for 15 s at 95°C, annealing for 15 s at 62°C, and extension for 13 min and 40 s at 65°C, the final extension step was carried out at 65°C for 13 min. PCR was followed by purification of the amplicons using AMPure XP beads, DNA quantity was measured and equal amounts of all 96 samples were pooled into a single sequencing library.



Oxford Nanopore Technology Library Preparation and Sequencing

The MinION library was produced using the Ligation Sequencing Kit 1D (SQK-LSK109, ONT Oxford, United Kingdom) according to the manufacturer’s recommendations, with the following modifications. DNA repair and end-prep reaction was incubated in a PCR thermocycler for 30 min at 20°C followed by 30 min at 65°C. About 28 fmol of pooled diluted library calculated from Qubit measurement was loaded and sequenced on MinION R9.4.1 flow cell for approximately 24 h, until no further sequencing reads could be collected. After the run was completed, the flow cell was washed with Flow Cell Wash Kit (EXP-WSH003, ONT, Oxford, United Kingdom), and was used again for resequencing of the same pooled library.



Reference Based Alignment and Structural Variant Detection

The raw fast5 files obtained by the MinION instrument were processed using the base-caller Guppy version 4.5.4 + 66c1a77 with model “dna_r9.4.1_450bps_hac.cfg” (Oxford Nanopore Technologies, 2020). The guppy_barcoder was used to demultiplex the basecalled reads, with the option detect_mid_strand_barcodes. NanoStat version 1.5.0 was applied to assess the read quality and read statistics (De Coster et al., 2018). Reads with Q-score lower than 8, length less than 2,000 bp and more than 16 kbp were filtered out by using the NanoFilt v.2.8.0 tool (De Coster et al., 2018). Filtered reads were aligned to the VRN1 sequences of Robigus scaffold as reference genome (Walkowiak et al., 2020; Earlham Institute, 2021) using the NGMLR long-read mapper version 0.2.7 (Sedlazeck et al., 2018), with setting min-identity 0.80 and min-residues 0.50. Subsequently, the alignment files in SAM format were converted to sorted BAM files, with map quality q > 50, and indexed using Samtools version 1.7 (Li et al., 2009). SVs were called by the software Sniffles version 1.0.12 (Sedlazeck et al., 2018), with option min_support 10. Afterward, the SURVIVOR v.1.0.7 merge tool was used to merge SV calls per barcode and compare overlaps among SV calls (Jeffares et al., 2017). The aligned reads and SVs were visually inspected by the Integrative Genomics Viewer IGV (Robinson et al., 2011).



De novo Assembly and Consensus Sequence Generation From Oxford Nanopore Technology Data

Three different pipelines were applied to obtain full-length sequences of VRN1 using ONT sequencing data (see scheme in Supplementary Figure 1). The VRN1 sequences resulting from the three pipelines were aligned against a reference database constructed from publicly available wheat reference genome sequence data (IPK Crop Analysis Tools Suite, 2021) and complete VRN1 gene sequences of up to 20 cultivars (NCBI, 2021) using ncbi-blast-2.6.0+ (Camacho et al., 2009). VRN1 sequences showing identity values with the top blast hit of less than 99% were discarded from subsequent analyses.



Single Nucleotide Polymorphisms Calling

Single nucleotide polymorphisms from read alignments stored within bam files were called using Medaka version 1.0.3 (Oxford Nanopore Technologies, 2021). BCFtools merge v1.9 (Danecek et al., 2021) and VCFtools 0.1.16 were used to merge multiple VCF files into one combined file and to filter out SNPs that had a minor allele count less than three and a minimum quality score of 30. Also, the tool SNP-sites (Page et al., 2016) was used to call SNPs from multi-alignment of consensus sequences aligning to a reference sequence with considering only genome regions present in a reference. To reduce the number of incorrect variant calls due to the high error rate of ONT (Rang et al., 2018; Delahaye and Nicolas, 2021), most of SNPs located in homopolymeric regions were excluded from downstream analysis. Detected SNPs and some indels were also visually inspected in the Integrative Genomics Viewer (Robinson et al., 2011) and compared to publicly available reference genomes. The QGRS mapper (Kikin et al., 2006) was used to analyze the G4 motif within the sequences of three homoeologous genes and their promoters using the pattern participating in the G4 structure formation (Capra et al., 2010; Williams et al., 2020).



Sanger Sequencing and Gel Electrophoresis

To validate SVs and SNPs detected in VRN1 genes, 12 locus-specific primer pairs were developed using the program Primer3 v0.4.0 (Untergasser et al., 2012) to amplify the target regions (primer sequences are listed in Supplementary Table 2). PCR amplification was performed in 25 μl containing 8.5 μl RNase-free water, 12.5 μl of GoTaq Hot Start Colorless Master Mix, (Promega, Madison, WI, United States), 1.25 μl of each primer (10 μM), and 1.5 μl (60 ng/μl) genomic DNA. PCR reactions were performed in a T100 Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, United States) using the following program: initial denaturing at 95°C for 2 min, followed by 35 cycles of denaturation at 94°C for 30 s, annealing temperature at 58–65°C (the Ta value depends on the structure of primers and of the amplified region) for 35 s, and extension at 72°C for 45 s up to 7 min (the extension time depends on the length of the sequence to be amplified, usually 1 min for each kbp), with a final extension step at 72°C for 10 mins. Agarose gel electrophoresis was used to separate fragments of PCR products. Sanger sequencing was performed from one or both directions using the same forward and reverse primers applied for PCR amplification by Microsynth Seqlab GmbH (Göttingen, Germany).



KASP Markers

Eight KASP markers were developed from the identified polymorphisms (Supplementary Table 3). The KASP assay procedure was performed following the method outlined in Makhoul et al. (2020). All PCR primers were synthesized at Microsynth Seqlab (Göttingen, Germany) with desalting purification. To obtain distinct clear genotyping clusters from VRN5A-SNP45K KASP marker, we used PCR products resulting from pre-amplification of the SNP45 flanking region instead of genomic DNA in a KASP reaction mixture (Makhoul and Obermeier, 2022).



Statistical Analyses

Statistical analysis was carried out using R software version 4.1 (R Core Team, 2021). The Tukey Honest Significant Difference (Tukey HSD) test was used to make pairwise comparison of means for a set of groups, using the R package agricolae (De Mendiburu, 2021). To estimate statistical significance for differences between two groups, the non-parametric Wilcoxon rank-sum test (Wilcoxon, 1945) and parametric Student’s t-test and Welch’s t-test were applied (Student, 1908; Welch, 1947). The differences at p-value ≤ 0.05 were considered to be significant.




RESULTS


An Amplicon-Based Multiplex Oxford Nanopore Technology Approach Allows Efficient Sequence Analysis of Homoeologs of the VERNALIZATION1 Gene Within a Wheat Population

PCR fragments of the gene copies VRN-A1, VRN-B1, and VRN-D1 with a total length of up to 14 kbp per amplicon were simultaneously amplified using a single primer pair, and multiplexed long-read sequencing libraries were successfully generated using a second round of PCR to attach 96 ONT-compatible barcodes followed by ONT library preparation. All VRN1 gene copies were sequenced from a total of 192 wheat cultivars using two ONT MinION flow cells, producing at total of 11.2 Gb and 14.7 million reads. About 34% (3.8 Gb) of the total data could not be assigned to the barcoded libraries (cultivars) due to a lack of assignable barcode sequences (unclassified reads, Supplementary Figure 2A). About 15.2% (1.7 Gb, 4.2 million reads) of the total data were predicted to be chimeric by the software Guppy, due to barcode sequences located in the middle of reads. Furthermore, data analysis revealed that 4,256 reads were longer than 16 kbp, of which 62% (2,635 reads) were classified as chimeric. After elimination of chimeric and unclassified reads, around 5.7 Gb and 7.1 million reads remained in the respective libraries. Finally, after trimming and filtering for reads with length < 2 kbp or >16 kbp, and a quality score < 7, approximately 3.54 Gb and 641k reads with average length of 6 kbp, were left for downstream analysis (Supplementary Figure 2A). The minimum and maximum data output for the 192 cultivars were 4.7 Mb and 63 Mb, respectively, with a mean of 34 Mb (±29 standard deviation, SD). Only uniquely mapping reads were considered after mapping of these filtered 641K reads against the Robigus VRN1 gene reference consisting of the A, B, and D homoeologous genes. Here, Robigus was used as a reference because it carries the recessive winter alleles (intact alleles) for the three homoeologous VRN1 genes. In total, 261k reads (1.77 Gb) were aligned to one of the three homoeologous VRN1 loci, of which 114k reads (755 Mb) aligned to VRN-A1, 62.4k reads (399 Mb) aligned to VRN-B1, and 84.8k reads (618 Mb) aligned to VRN-D1, (42.5% VRN-A1, 22.5% VRN-B1, 35% VRN-D1).

Some cultivars showed extremely low or high coverage for at least one of the three homoeologous VRN1 genes. The low-coverage outliers consisted of the cultivar Atomic and the cultivars Kraka, Tommi, Hybery, Sonalika and the cultivars Highbury, Lambriego Inia, Triple Dirk S and INTRO 615, with a coverage less than 11x for VRN-A1, VRN-B1, and VRN-D1, respectively. VRN-A1 showed the highest variability in coverage across all cultivars, with a coefficient of variation (CV) of 82% compared to 61% CV for VRN-B1 and 45% CV for VRN-D1. The high variance in VRN-A1 may be due to copy-number variation in VRN-A1 within the wheat haploid genome across cultivars, as described before by Díaz et al. (2012); Würschum et al. (2015); Muterko and Salina (2019). We also found that there is an uneven sequencing depth across the three homoeologous VRN1 genes within different barcoded libraries (cultivars). The ratio of total bases between VRN-A1/VRN-B1 ranged from 0.02 to 5,250 (median = 2), and from 0.00051 to 12,047 (median = 0.50) for VRN-B1/VRN-D1, while for the VRN-A1/VRN-D1 ratio it ranged from 0.1 to 411 (median = 1.4). This variance between VRN1 genes within cultivars might be due to differences in PCR amplification efficiency within one cultivar for the A, B, and D homoeologous genes (e.g., due to sequence divergence in priming sites, GC-poor or GC-rich sequences and amplification of a mixture of PCR products of variable length). For four of the outlier cultivars, it was confirmed that one homoeologous copy contains a large deletion. For example, the cultivar Highbury harbors a large deletion of 6,851 bp within the first intron of gene VRN-B1. This deletion putatively led to preferential PCR amplification of VRN-B1 (small amplicon) relative to VRN-A1 and VRN-D1 (large amplicons), resulting in an extremely high coverage of 4,023× for VRN-B1, in contrast to 0.17× and 41× coverage for VRN-D1 and VRN-A1, respectively. For the outlier cultivar Sonalika, which had low coverage of 10.7× for VRN-B1, Sanger sequencing showed one mismatch (A/C) at position 8 upstream of the 3’ end of the primer binding site for the forward primer (VRN1F), potentially causing a partial failure of PCR amplification. The mean coverage of each VRN1 locus after removal of extreme outlier cultivars (for detailed information see Supplementary Table 4) from the dataset showed the highest mean coverage for VRN-A1 with 306× (±250 SD), followed by VRN-D1 with 258× (±115 SD) and VRN-B1 with 133× (±81 SD; Supplementary Figure 2B). However, in spite of these coverage variations, a sufficient amount of data was still produced to enable accurate population-wide analyses. Thus, our approach based on using a single primer set to simultaneously amplify all homoeologs represents an acceptable and cost-effective way to avoid the use of three or more pairs of homoeolog-specific primer sets for single-molecule amplicon library production.



Dissection of Homoeologs Requires a Combination of de novo Assembly and Reference-Based Alignment

Three different customized pipelines were used to create and evaluate consensus sequences from ONT sequence data. In the first pipeline (A_denovo), a de novo assembly approach was undertaken to avoid generating any bias due to the used reference sequence, while in the other two pipelines (B_align_denovo, C_align), the reads were initially or exclusively mapped to a reference sequence to generate homoeologue consensus sequences using two different approaches (see Supplementary Figure 1). Applying a de novo assembly strategy in the A_denovo pipeline without mapping the reads to a reference allowed us to identify an additional contig resulting from amplification of a non-target region on chromosome 4A (resulting from partial annealing of VRN1 primers). Due to the high similarity between the three homoeologous VRN1 sequences (percentage of identity is approximately 92%), the A_denovo pipeline resulted in the assembly of many erroneous unrelated sequences and generated more fragmented contigs. Pipeline B is less sensitive to de novo assembly artifacts based on high similarity of homoeologous sequences. However, comparison of results of pipeline A with B and C allows to identify translocations and insertions/deletions and examine the accuracy of the produced consensus sequence. Pipeline C_alignments also allow to obtain consensus sequences for cultivars with low coverage. Adding a polishing step can also improve the accuracy of most consensus sequences by reducing the number of indels and correcting errors, but also it caused sometimes other errors for some cultivars in some situations.



VERNALIZATION1 Homoeolog Combinations in Analyzed Cultivars Are Identical to Only Five Reference Genomes

Based on the combined results of all three pipelines 192, 188, and 188 full length sequences of VRN-A1, VRN-B1, and VRN-D1 genes were obtained. These full-length sequences showed a best hit identity in BLASTn analysis of 99.2 to 100% compared to the VRN1 genes of only five reference genomes (see Supplementary Tables 5–7 for further information). For eight other wheat cultivars it was not possible to generate full-length consensus sequences of VRN-B1 or VRN-D1 due to low coverage for both genes. According to the top BLASTn hit outputs, the VRN-A1 sequences were classified into three categories: VRN-A1 Weebill type sequence, Robigus/Claire type sequence and Triple Dirk D type sequence (Figure 1). VRN-B1 consensus sequences were classified into three categories: VRN-B1 Robigus/Claire type sequence, LongReach Lancer type sequence and Weebill type sequence. VRN-D1 sequences were classified into two categories: VRN-D1 Claire type sequence and Robigus type sequence. Based on the combination of full-length sequence types for the three VRN1 homoeologue sequences for each cultivar, the wheat cultivars were classified into nine sequence type groups as shown in Table 1. More than 83% of the studied cultivars carried a VRN-A1-Weebill type sequence and a VRN-B1-Robigus/Claire type sequence combined with a VRN-D1-Claire type sequence (detailed information in Supplementary Tables 8, 9). The reason why the blast best hit showed highest similarity with only five references is due to incompleteness of VRN1 sequences in some of the available reference genomes (e.g., the VRN-A1 sequences for ArinaLrFor, Mattis, and Julius references are fragmented into two or three small pieces located on unknown chromosomes).
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FIGURE 1. Pie graphs showing the classification for full-length VRN1 sequences from 192 wheat cultivars based on the result of top BLASTn hits against a VRN1 reference database (average > 99.9% identity). The numbers represent the number of cultivars in each group. *The VRN-A1 and VRN-B1 sequences are identical in references genomes Claire and Robigus. The VRN-D1 sequences are different in reference genomes Claire and Robigus.



TABLE 1. Grouping of 184 wheat cultivars based on top BLASTn hits of full-length VRN1 sequences against around 30 reference genomes reveal nine groups of A, B, and D homeolog sequence combinations most similar (>99.9%) to only five reference genomes.
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Known and Novel Structural Variants Were Identified in Some Wheat Cultivars

The VRN1 alleles have been classified in the literature into dominant spring alleles and into recessive winter alleles based on structural sequence variations. An insertion or a deletion in the promoter or within the first intron has a strong effect on the vernalization requirement, leading to a spring growth habit or a decreased requirement for vernalization (Yan et al., 2004; Fu et al., 2005; Shcherban et al., 2012; Muterko et al., 2015). We identified five SVs larger than 30 bp across the three homoeologous VRN1 loci using long sequencing reads in 15 diverse cultivars from Europe, Chile, Mexico, United States, and Australia (Figure 2 and Table 2). In VRN-A1, an insertion of a foldback repetitive element of 231 bp was detected within the promoter region in five cultivars (Table 2). This insertion was similar to the one found in the dominant (spring) Vrn-A1a allele (Yan et al., 2004). In VRN-B1, three types of SV were detected. Firstly, a large deletion of 6851 bp was detected within the first intron region of four cultivars. This allele has been detected before and has been designated as dominant (spring) Vrn-B1a allele by Fu et al. (2005). Secondly, a 37 bp deletion located downstream of the large deletion within the first intron was detected in one cultivar (INTRO 615). This allele was referred to as dominant Vrn-B1b allele by Santra et al. (2009). Thirdly, a duplication of 838 bp within the first intron region was found in nine wheat cultivars. The same duplication was also observed in the reference genome of LongReach Lancer (see Supplementary Figure 3). Recently, this duplication was detected in three spring wheat genotypes and referred to as Vrn-B1f by Strejčková et al. (2021). In VRN-D1, a novel allele with a 163 bp insertion in the first intron was identified in two cultivars, Mex. 3 and Mex. 17 bb (hereafter referred to as Vrn-D1x; Supplementary Figure 4). In addition, a 17 bp deletion was detected in the first intron of VRN-D1 in 15 cultivars (hereafter referred to as vrn-D1r). The same deletion also was found in the reference genome for Robigus (Supplementary Figure 5). The authenticity of all SVs identified from ONT reads were confirmed by Sanger sequencing and PCR amplification, followed by agarose gel electrophoresis using a set of primers listed in Supplementary Table 2. SV analysis showed that 4 out of 5 cultivars harboring the dominant Vrn-A1a spring allele combine with other dominant alleles at either VRN-B1 or VRN-D1 genes, or both (Table 2), supporting previous studies which found that spring wheat carries the dominant Vrn-A1a allele, either alone or in combination with the other dominant alleles at the VRN-B1 locus (Goncharov and Shitova, 1999; Shcherban et al., 2012). As expected, we did not detect any known dominant spring alleles at the three VRN1 loci in the subset of the 167 elite winter wheat cultivars released within the last 50 years in Europe (Voss-Fels et al., 2019b).
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FIGURE 2. Scheme of three homoeologous wheat VRN1 genes including complete intron–exon regions and partial promoter region. Exons are represented by numbers above bold boxes. The numbers above the dashed line represent the region length according to the Weebill, Robigus, and Claire reference sequences for VRN-A1, VRN-B1, and VRN-D1, respectively. The triangles represent the SVs detected in this study. The number within the black box indicates the start position of structural variation SV in a sequence (counting from the 3′ end of the forward primer VRN1F). The two arrows indicate the positions of primers used to amplify the full-length sequence of the three homoeologous VRN1 genes (VRN1F and VRN1R).



TABLE 2. Cultivars with structural variations larger than 30 bp at three VRN1 loci.
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Single Nucleotide Polymorphism Calling Revealed Six Genotype Groups for VRN-A1

Based on the full-length sequence similarity of VRN-A1 for the 192 cultivars to reference genomes the cultivars can be divided into three VRN-A1 sequence types, Triple Dirk D, Robigus/Claire, and Weebill (Table 3). For accurate SNP calling we applied strict filtering parameters to eliminate false calls which might be expected due to high error rates of ONT sequencing (Menegon et al., 2017). We identified 48 polymorphisms within the complete VRN-A1 gene and three polymorphisms within the 700 bp of the promoter region. Of these 51 polymorphisms, 49 were also present in reference genomes. Nine detected SNPs were validated and confirmed either by Sanger sequencing or KASP markers in 192 cultivars (Table 3). KASP markers revealed mostly consistent results. However, two known hybrid cultivars were classified as heterozygous for most detected SNP loci (Hyland and Hybery). These two hybrid cultivars were excluded from downstream analysis. Detected high-confidence SNPs were mostly located within the first intron region of VRN-A1. This was expected due to its relatively large size (accounts for 70% of amplified target size). The first intron also has been considered a critical region in VRN1 due to presence of putative regulatory elements (Fu et al., 2005; Distelfeld et al., 2009; Xiao et al., 2014; Muterko et al., 2015; Kippes et al., 2018). Based on SNP calls the cultivars could be further classified into six genotype groups (Table 3). Most cultivars belong to genotype group GT4 (111) and GT6 (55) which all have sequences very similar to the reference Weebill. However, 171 of these 179 cultivars in the Weebill VRN1 sequence type group show for some SNPs heterozygous calls (positions 381, 4,138, 4,757, and 11,109). Genotype group GT1 including five cultivars which carry the dominant Vrn-A1a allele can be assigned to haplotype group Hap1, genotype group GT2 including 6 cultivars can be assigned to haplotype group Hap2 and genotype group GT3 can be assigned to haplotype group Hap3. For 171 cultivars (genotype groups GT4, GT5, and GT6) no haplotype group could be assigned due to heterozygous calls.


TABLE 3. Sequence groups, genotype groups, haplotypes, and SNPs detected in VRN-A1 of 190 wheat cultivars1.
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Haplotype Resolution Based on Oxford Nanopore Technology Long Reads

We detected four SNPs (SNP3, SNP18, SNP22, and SNP45) showing heterozygous alleles in genotype groups GT4, GT5, and GT6 (Table 3). To exclude the possibility that false variant calls were resulting from misalignment of ONT reads to the reference genome and/or differences in coverage between allelic reads, we validated the genotyping calls of these SNPs by Sanger sequencing and KASP markers (Figures 3A,B and Supplementary Figures 6–9). Heterozygous calls in some cultivars could either indicate the presence of multiple copies of VRN-A1 in the genome or the presence of a heterozygous VRN-A1 copy. Because wheat is generally autogamous, the most likely explanation is that multiple copies of VRN-A1 are present in the inbred lines investigated here. For genotype group GT4 harboring one heterozygous SNP45 within VRN-A1, KASP marker analysis and ONT analysis revealed that 111 cultivars carried two haplotypes, Hap3 and Hap4. For genotype groups GT6 and GT5 harboring 2 and 3 heterozygous SNPs within VRN-A1, respectively, we used ONT long reads overlapping the heterozygous SNPs to extract the information from genotype data by phasing the haplotypes (Figure 3C). The results showed that 54 out of 55 cultivars classified as genotype group GT6 harbored four haplotypes of VRN-A1 (Hap3, Hap4, Hap7, Hap8, whereby one cultivar showed very low number of reads supporting each haplotype), and five cultivars classified as genotype group GT5 showed at least 4 haplotypes (Hap3, Hap4, Hap5, and Hap6). We were not able to accurately identify the allele of SNP3 based on ONT reads because this SNP is located between G and C repeats which cannot be clearly resolved by ONT sequencing.
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FIGURE 3. Phasing of the VRN-A1 haplotypes using ONT long reads. (A) scheme shows the location of six SNPs in VRN-A1. (B) Four SNPs with overlapping peaks were detected in Sanger sequencing chromatograms. (C) Haplotypes were deduced from genotypes using ONT long reads. *Due to the SNP3 location between Gs, Cs repeats region and the presence of many indels in this region, it was difficult to identify the allele accurately from ONT reads.




VRN-A1 Copy Number Variation Validated by KASP Assays and Sanger Sequencing

Previous studies reported that the presence of the C allele at SNP within exon 7 (designated SNP51 in this study) in winter bread wheat is associated with a single copy of VRN-A1, while multiple copies of VRN-A1 in wheat haploid genomes are related with the presence of a mutated T allele at SNP51 in exon 7 or the presence of a heterozygous SNP (C/T) in exon 4 (designated SNP45 in this study; Díaz et al., 2012; Würschum et al., 2015; Grogan et al., 2016; Muterko and Salina, 2018; Dixon et al., 2019). In this study, we detected four heterozygous SNPs in VRN-A1 for 171 cultivars (Table 3). SNP18 located in intron 1 and SNP45 located in exon 4 showed an unexpectedly high frequency of heterozygous calls across cultivars, 29 and 90%, respectively. We developed two robust KASP markers (VRN5A-SNP18K and VRN5A-SNP45K) targeting these two SNPs within the VRN-A1 gene. Surprisingly, the cluster plot of VRN5A-SNP45K KASP assay in exon 4 showed two distinct heterozygous clusters (Figure 4B). Cluster 2 (CT) is including all 55 cultivars carrying the combination of two alleles G/A at SNP18 (Figures 4A,B), while cluster 3 (CT) includes 107 cultivars carrying the G allele at SNP18 (Figures 4A,B). Based on this comparison we hypothesized that a dosage effect (gene copy number effect) for the T and C allele at SNP45 within exon 4 could be responsible for the formation of two distinct heterozygous clusters for the VRN5A-SNP45K assay. To investigate the allelic composition at SNP45, we computed the frequency of the mapped ONT reads supporting each allele using Samtools_mpileup tool. The results showed that the frequency of the T allele in cultivars of cluster 3 (∼70% in average) is higher than in those of cluster 2 (∼50% in average), with a strong significant difference (P-value > 2.2e-16). Based on this finding we hypothesize that cultivars of cluster 3 (CT) contain a higher number of VRN-A1 copies with the T allele than those copies with the C allele. This current finding is supported by previous studies that have found different proportions of T and C alleles in exon 4 in hexaploid wheat based on end-point relative quantification of PCR fragments and exome-capture sequencing methods (Dixon et al., 2019; Muterko and Salina, 2019). To validate this hypothesis, we compared the copy number of VRN-A1 of 122 winter wheat cultivars which had been previously reported and identified using TaqMan CNV assay by Würschum et al. (2015) with our findings. We found that 71 out of 72 cultivars reported to carry three copies were grouped in the cluster 3 (CT), while 43 out of 50 cultivars reported to carry two copies were grouped in cluster 2 (CT; detailed information in Supplementary Table 11). Comparison of the number of VRN-A1 copies estimated by Würschum et al. (2015) by TaqMan assay qPCR with the number of haplotypes extracted from long reads in this study, revealed in contradiction that most cultivars with three copies contained two haplotypes, while the vast majority of cultivars with two copies contained four haplotypes (Table 4). Díaz et al. (2012) and other authors including (Zhu et al., 2014; Kippes et al., 2015; Würschum et al., 2015; Guedira et al., 2016; Dixon et al., 2019; Muterko and Salina, 2019; Dreisigacker et al., 2021; Strejčková et al., 2021) measured average fold-change ratio between the target gene VRN-A1 relative to the internal positive control gene CONSTANS2 (probes and primers binding to three homoeologous genes on 6A, 6B, and 6D). Thus, a ratio of 0.33 would represent one copy, 0.66 would represent two copies, 1.0 would represent 3 copies, and 1.3 would represent four copies. However, some of the studies assigned 2 haploid copies from a relative ratio of 0.7–0.9, while they assigned three haploid copies from a relative ratio of 1.1–1.3, instead of 4 haploid copies (Zhu et al., 2014), while other authors use different ranges to assign copy numbers. CONSTANS2, a flowering time regulator gene with a central role in plant growth and development, should not be considered an internal positive control gene, as in the absence of any functional copies of CONSTANS2 heading time is controlled by Photoperiod 1, CONSTANS1, and CONSTANS2 may thus also be affected by CNV in wheat (Shaw et al., 2020). CONSTANS-like genes in cereals are known to be affected by CNV (Cockram et al., 2010). In contrast, assignment of copy numbers by haplotypes allows to estimate a minimum number of present copies more accurately (Table 4). However, to estimate the exact copy number a combination of methods is required. E.g., frequency analysis of ONT allelic reads together with KASP analysis revealed two and three copies for GT4 while ONT haplotype analysis alone revealed only two.
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FIGURE 4. Two genotyping plots of KASP assays used for identifying the copy number of VRN-A1. (A) Plot of KASP assay for SNP18 in the first intron shows that the cultivars carrying the genotype group GT6 (four haplotypes/four copies) were assigned to the heterozygous cluster GA. (B) Plot of KASP assay for SNP45 in exon 4 shows that all cultivars containing three copies of VRN-A1 were assigned to the heterozygous Cluster3.



TABLE 4. Comparison of copy number estimates for VRN-A1 for 166 cultivars based on different methods.
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VRN-B1 Sequence Analysis Revealed Five Haplotypes

Most SNPs called from VRN-B1 ONT sequences were located in homopolymeric regions and/or these SNPs were present in fewer than three cultivars, suggesting that they are not highly reliable. Six SNPs were detected in VRN-B1 from ONT data (Table 5). One SNP is located within intron 2, while the other five SNPs are located in intron 1. Two SNPs at positions 9,080 and 9,387 in intron 1 are heterozygous due to single nucleotide differences between nearly identical tandemly duplicated sequence segments of 838 bp. Based on SNPs and SVs detected in VRN-B1 sequences, the investigated cultivars classified into five haplotype groups as shown in Table 5. Hap1 group includes the majority of 163 cultivars carrying the winter allele, while Hap4 group containing 11 cultivars was distinguished from Hap1 with a single novel SNP at position 8,615 bp in intron 1 (Supplementary Figure 10). The cultivars Benni multifloret (United States) and Sonalika (India) which showed many different polymorphisms within promoter and intron 1 were assigned to Hap3. The cultivars containing a duplication of 838 bp and a deletion of 6,851 bp in their first introns were grouped in Hap2 and Hap5, respectively.


TABLE 5. SNPs and haplotypes detected in VRN-B1 genes of 188 cultivars1.
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VRN-D1 Sequence Analysis Revealed Low Sequence Variation

VRN-D1 sequences showed less variation across the cultivars in comparison with VRN-A1 and VRN-B1 sequences. In addition to the insertion (163 bp) and deletion (17 bp) discovered in the first intron of 2 and 15 cultivars, respectively, only one SNP (A/G) was identified at position 5,607 bp in the first intron of four cultivars (counting from the 3’ end of the forward primer VRN1F based on Claire reference sequence). Four haplotype groups were generated for VRN-D1 sequences, as shown in Supplementary Table 13.



Oxford Nanopore Technology Exhibits Multiple G4 Motifs in VERNALIZATION1

Given the importance of G-quadruplex structures in the regulation of gene transcription (Cagirici and Sen, 2020), we used Quadruplex forming G-Rich Sequences (QGRS) mapper for detecting G4 motifs within the three homoeologous VRN1 genes and their promoters on sense strand. Four G4 motifs within VRN-A1 were found in all tested cultivars, one G4 motif was located within the promoter and three G4 motifs were located within the first intron. Sanger sequencing showed that the G4 motif located within the promoter had one SNP (SNP3) carrying the combination of two alleles (C/G) in five cultivars (GT5), Ivanka, Renesansa, NS 66/92, Premio, and BCD 1302/83 (Supplementary Table 10 and Supplementary Figure 7). For VRN-B1, one G4 motif within the promoter and two G4 motifs within the first intron were identified in all cultivars. However, in four cultivars, INTRO 615, NS 22/92, Cappelle Desprez and Highbury, the G4 motif located 5,099 bp downstream of the start codon was missing due to the presence of a large deletion in their first intron. For VRN-D1, two motifs in the promoter and one in the first intron were detected. With the exception of the SNP3 in the G4 motif in the VRN-A1 promoter, ONT and Sanger sequencing did not show any polymorphism in other G4 motif sequences across the investigated cultivars.



Polymorphisms in VERNALIZATION1 Homoeologs Are Associated With Multiple Agronomic Traits Across Spring and Winter Wheat

The SVs, single nucleotide variation and CNV detected within the three homoelogous VRN1 sequences divide the 190 cultivars into different sequence type groups, genotype groups and haplotype groups. Firstly, we performed an association study between the SVs and the phenotypes for 20 agronomic traits. In this analysis, seven cultivars carrying the known SV spring alleles (Vrn-A1a, Vrn-B1a) were grouped together (SV1 group). Eight cultivars carrying only the novel SV allele Vrn-B1f were grouped together (SV2 group). Three out of eight within group SV2 have been described to show a spring type growth habit and five out of eight have been described to show a winter type growth habit. The remaining 175 cultivars without any SVs were gathered in another group (intact allele group, 173 winter and 2 spring types). The association study showed that both SV groups (SV1 and SV2) are significantly associated with an increase of powdery mildew disease, with decreased grain yield, decreased biomass, decreased protein yield, decreased nitrogen use efficiency (NUE), decreased RUE, decreased RIE, with increased crude protein, increased plant height and early heading date. Furthermore, group SV1 (Vrn-A1a, Vrn-B1a) showed a significant association with, decreased falling number, decreased TKW, and decreased harvest index. Group SV2 (Vrn-B1f allele) showed a significant association with decreased GCD and decreased kernels per m2 (Supplementary Figure 11). For vrn-D1r allele, resulting from 17 bp deletion in intron 1 of the VRN-D1, no significant association with any of the studied traits was found.



Polymorphism in VERNALIZATION1 Homoeologs Are Associated With Multiple Agronomic Traits in Winter Wheat

Next, we analyzed only cultivars which have been described to show the winter type growth habit to find polymorphisms which exist in adapted winter wheat cultivars and are correlated with agronomic traits of interest that are not obviously imparted by a strong difference in plant phenology. For this reason, we excluded twelve cultivars from analysis which either have been described by CYMMT (Genetic Resources Information System for Wheat and Triticale, 2022) or others to display a spring-type growth habit, or cultivars which showed a known spring allele (Vrn-A1a, Vrn-B1a) harboring a promoter insertion or an intron deletion. Five winter-type cultivars which carried a novel Vrn-B1f allele harboring the 838 bp duplication were included in the analysis. The remaining 178 cultivars with a clear winter-type growth habit showed a similarly high phenotypic variation for all traits compared to the complete set of 190 putative spring and winter type cultivars. For VRN-B1, the haplotype Hap4 carrying a novel SNP at position 8615 was not significantly associated with any trait. For VRN-A1 we found that genotype group GT2, which is very different from other genotype groups (GT3, GT4, GT5, and GT6) with 30 polymorphisms, was associated with significantly increased grain yield, increased kernels per spike and increased kernels per m2, and with decreased sedimentation value and crude protein content (which are generally negatively correlated to grain yield; Figures 5E–G). The VRN-A1 sequence type group “Weebill” consists of four genotype groups (Table 3). The genotype group GT3 which carries a homozygous C allele at SNP45 within exon 4 was negatively correlated with grain yield, harvest index, TKW, and positively correlated with sedimentation value, plant height, crude protein content and heading date. The two heterozygous SNPs, SNP3 (CG), and SNP22 (GA), within the promoter and intron 1 region of GT5, were significantly associated with early heading date, increased nodal root-angle index NRI (Figures 5A,B), susceptibility to powdery mildew disease, decreased grain yield, decreased biomass, decreased protein yield, decreased NUE, and decreased RIE. With the exception of GT3 group, the three genotype groups GT4, GT5, and GT6 differ from each other by four heterozygous SNPs. This suggests together with the KASP analysis above and previous reports that gene CNV is in involved in association between these genotype groups and agronomic traits. An association study of four haplotypes (four copies) of GT6 versus two haplotypes (three copies) of GT4 for VRN-A1 (Table 4) with the traits showed that the presence of four copies was significantly associated with an increased green canopy duration, increased kernels per spike (Figures 5C,D), increased harvest index, increased RIE and with decreased crude protein and plant height.
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FIGURE 5. Boxplots showing pairwise comparisons between genotype groups (A,B,E,F,G) and copy numbers (C,D) for VRN-A1 gene and different traits. Columns labeled with different letters represent significant difference at P ≤ 0.05.





DISCUSSION

We showed that long-read sequencing of multiplexed long-PCR amplicons is feasible for simultaneous genetic analysis of the full length of homoeologous VRN1 genes from a hexaploid wheat population. This approach enables cost-effective and simple population-wide analysis of candidate genes based on the use of only two indexed PCR primers to amplify the full-length sequence of multiple homoeologous genes in one PCR reaction. In contrast, in the past, a set of 25 primers has been applied to sequence only one VRN-A1 gene (13,600 bp) using Sanger sequencing technology (Ivaničová et al., 2016). One limitation of the applied ONT multiplexing approach that should be addressed in future research is the presence of the high number of reads lacking an identifiable barcode (unclassified reads) due to high error rate of ONT data and classification limitations of current demultiplexing tools (Wick et al., 2018). Another limitation of ONT multiplexing is the production of a high number of chimeric reads leading to cross-barcode assignment errors. Previous studies reported that chimeric reads are major source of erroneous sequence assignments in ONT data when long PCR amplicons are sequenced. Formation of chimeric reads can originate from PCR amplification, but has been mainly reported to originate from the ONT sequencing process (Ashelford et al., 2006; White et al., 2017; Xu et al., 2018). However, our experiment demonstrated that the amount of data generated through ONT from two flow cells was sufficient for population-wide analysis for VRN1 genes of 192 wheat cultivars. In the past, the low per base-accuracy of ONT data has made reliable SNP calling questionable with tools developed for short read variants (Ameur et al., 2019). However, quality of ONT reads is constantly increasing and new long-read variant callers are being developed (Møller et al., 2020; Ahsan et al., 2021). By comparison with Sanger sequencing data we showed here that reliable SNP calling using the long-read variant caller Medaka is possible for genes sequenced with a coverage above 11x. Similarly, Vollrath et al. (2021) have shown that SNP calling based on the long-read variant caller Clair (Luo et al., 2020) and an average genome-wide coverage rate above 23x allowed calling of high-confidence SNPs from ONT data in a polyploid crop genome.

Using long read sequencing allowed us to reconstruct full-length VRN1 genes and analyze the structure of VRN1 homoeologous genes. We observed that the two known dominant spring alleles Vrn-A1a, Vrn-B1a (Yan et al., 2004; Fu et al., 2005) are present either together or alone in seven cultivars originating from the United States, United Kingdom, Mexico, France, Serbia described in the literature mostly as spring type, but also with some conflicting classifications. All 192 cultivars including these seven survived winter under German growing conditions in six locations and two growing seasons (Voss-Fels et al., 2019b). Winter hardiness or freezing tolerance was reported to be the most important physiological trait next to vernalization requirement used to describe a winter wheat in a survey of international wheat breeders (Crofts, 1989). A major frost tolerance locus is known to co-map with the VRN1 locus on chromosome 5A (Zhao et al., 2013; Zhu et al., 2014; Babben et al., 2018). However, all of these seven diverse cultivars classified by genetics as spring types due to the presence of the dominant Vrn-A1a, Vrn-B1a alleles, showed very poor agronomic performance under German winter growing conditions and are not adapted winter wheat types. Similar findings have been reported before (Kamran et al., 2013, 2014; Kollers et al., 2013). Thus, not all tested cultivars surviving winter in Germany can be classified genetically as winter types.

We found nine cultivars harboring a recently described allele, Vrn-B1f (Strejčková et al., 2021) in four spring and five winter type cultivars released in different geographic regions (Germany, Chile, Mexico, and Australia). Like the dominant Vrn-A1a and Vrn-B1a alleles, this allele is associated with a reduction in many agronomic traits (e.g., grain yield, kernels per m2, protein yield, NUE). Strejčková et al. (2021) detected the Vrn-B1f allele in three spring wheat genotypes. In our study, one of the cultivars which carry this allele showed a combination with the dominant spring allele Vrn-A1a, while the other eight only carried the Vrn-B1f allele. Strejčková et al. (2021) suggested that the new Vrn-B1f allele is a dominant spring allele. However, in the three genotypes where they detected the Vrn-B1f alleles, it was combined with the dominant strong Vrn-A1a spring allele. From eight cultivars which do not show a combination with Vrn-A1a in our study, only 3 behave like spring types and 5 like winter types, suggesting that this allele might be not sufficient to create a spring type growth habit. In the past, using short read sequencing, this allele escaped detection because an 838 bp duplication can only be assayed with long-reads. We also discovered a novel allele we termed Vrn-D1x within the first intron of VRN-D1 in two Mexican cultivars Mex. 3 and Mex. 17 bb. However, because this novel allele was detected in only two cultivars and in combination with the spring allele Vrn-A1a, the effect of the novel allele on agronomic traits could not be estimated. We developed a KASP assay and PCR assays which can be used to detect individuals carrying the Vrn-D1x and Vrn-B1f in marker-assisted breeding.

Chen et al. (2011) reported that cultivars carrying the dominant spring Vrn-A1a polymorphism also carry the C allele at SNP51 in exon 7 in VRN-A1, while those carrying the recessive winter vrn-A1 allele carry the mutated T allele at this position. Our detailed analysis of the molecular polymorphism for VRN-A1 is not completely consistent with this result, as we found that 6 out of 11 cultivars which carry the C allele at this position were harboring the recessive vrn-A1 allele, while the other five cultivars were carrying the dominant Vrn-A1a allele. Similar findings were reported by Muterko and Salina (2018) who showed that most, but not all of hexaploid wheat genotypes carrying the recessive vrn-A1 allele have a T allele in exon 7, while almost all known dominant Vrn-A1 alleles are carrying the C allele in exon 7. We conclude that this polymorphism in exon 7 is not a good predictor for spring/winter type growth habit as reported by Chen et al. (2011).

As expected, due to major effects of phenology, the known dominant SV alleles distinguishing spring from winter ecotypes were found to be correlated with 13 of the 20 tested traits. Cultivars carrying SVs within VRN1 genes showed association with many traits such as lower grain yield, biomass and harvest index compared to those with intact genes. It also has been described before that VRN1 polymorphism is associated with vernalization response, grain yield, spikelet number per spike, spike development, thousand grain weight, stem elongation, heading date, NRI and other developmental traits (Kamran et al., 2013, 2014; Zheng et al., 2013; Zhang et al., 2014; Voss-Fels et al., 2018; Li et al., 2019; Chumanova et al., 2020; Dreisigacker et al., 2021; Sheoran et al., 2022). Analysis of SV spring alleles together with novel SV alleles revealed correlations with seven traits which have not been evaluated before, e.g., powdery mildew infection, kernels per m2, falling number, RUE, NUE, RIE and GCD. This can be expected as VRN1 is known to be a key regulator of reproductive growth and floral initiation and known to be involved in major developmental differences, which in turn can have direct or indirect effects on many agronomic traits. Likely most of the traits listed above found to be correlated with VRN1 polymorphism are due to indirect and not causal effects. E.g., acceleration in development within the VRN1-triggered transition from vegetative to reproductive phase can result in an increase of infection to diseases at the time point of infection. This also has been reported for photoperiod insensitive Ppd-D1a mutants showing decreased resistance against Fusarium infection in wheat (Kollers et al., 2013). The vast majority of previous studies focused on analyzing the effect of dominant Vrn1 alleles on agronomic traits. One likely reason for this was that the known large structural polymorphisms (deletions/insertions) within dominant alleles were easy to screen in germplasm using traditional PCR analysis. Here we describe new SNPs and new deletion/insertion polymorphisms within winter-type cultivars which escaped detection so far and show that they are associated with numerous agronomic traits. SNP variation and CNV within winter types was found to be correlated with 16 of 20 of the tested traits. In addition, to the traits found to be correlated for the complete cultivar panel, sedimentation value, nodal root-angle index NRI and kernels per spike was also found to be correlated when using 178 winter types for analysis. Cultivars classified as genotype group GT2 Haplotyp 2 (Robigus, Claire, Xanthippe, Capone, SUR99820, Sponsor) exhibiting a VRN-A1 gene with very high SNP divergence compared to other winter types show a low sedimentation value, low crude protein content and high grain yield, kernels per spike and kernels per m2.

Previous studies showed that winter wheat was heading and flowering late and that vernalization requirement was increased in biparental crosses carrying three instead of two or one copy of VRN-A1 (Díaz et al., 2012; Guedira et al., 2016). We did not find correlation between copy number and heading in a diverse winter wheat panel. This is in agreement with the study of Würschum et al. (2015) and Dixon et al. (2019) who did not find an effect of VRN-A1 CNV on flowering time. Díaz et al. (2012); Dixon et al. (2019), and Muterko and Salina (2021) showed an effect of CNV on vernalization requirement. We found strong correlations with six other agronomic traits. The presence of four copies (4 haplotypes, GT6) showed positive effects, while three copies (2 haplotypes, GT4) showed negative effects on green canopy duration, kernels per spike, harvest index, and radiation interception efficiency. The negative effect might be due to the presence of the additional copies in mutated forms (T allele). Similarly, Dixon et al. (2019) hypothesized that varieties with different composition of C and T alleles in exon 4 of VRN-A1 are involved in vernalization acting under different temperatures. It was suggested that the variation in expression between the C and T allele in exon 4 has additional functions in the regulation of VRN-A1 expression. Deng et al. (2015) identified over 500 genomic regions as potential VRN1-binding targets in the wheat genome. This suggest that a mutated non-functional copy of VRN1 might impact not just the vernalization response, but also many other pathways involved in developmental processes affecting many different traits. Only 6 of the 178 tested winter type cultivars carried one copy of the non-mutated VRN-A1 allele (C allele at exon 4 and exon 7). These are the same cultivars mentioned above to carry Haplotype 2. Some of them are high-yielding successful cultivars such as Robigus and Claire. One trait with high interest in increasing yield potential of winter wheat is kernels per spike (Li et al., 2019; Voss-Fels et al., 2019a) which showed an average of around 12 percent increase between cultivars from Haplotype 2 and other winter type cultivars. Targeting the Haplotype 2 and CNV by marker-assisted breeding can be a promising approach to introduce these rare positive alleles into winter wheat germplasm. For this we have developed simple breeder-friendly KASP assays for SNP and CNV detection (VRN5A-SNP5K, VRN5A-SNP18K, VRN5A-SNP45K, and VRN5A-SNP51K). Cultivars classified as genotype group GT5 mostly originating from Eastern Europe show earlier flowering time and a higher NRI value. NRI indicates a higher fraction of nodal roots at deeper root angles corresponding to narrower, deeper roots. These cultivars show a strong contrast to all other winter type cultivars (two-fold difference in average NRI value). The correlation with NRI supports the hypothesis of Voss-Fels et al. (2018) that novel molecular variants of VRN1, distinct from the major winter-spring polymorphism, are responsible for modulation of root development in winter wheat germplasm. Genotype group 5 shows two polymorphisms, one of them located in the G4 motif in promoter and another one in intron 1. The G4 motif has been reported to play an important role in gene expression regulation and post-transcriptional regulation (Du et al., 2008; Bugaut and Balasubramanian, 2012). Breeding for wheat resilient to climate change has been suggest to target root architecture and flowering time (Sheehan and Bentley, 2020; Ober et al., 2021; Rambla et al., 2022). Earlier flowering winter wheat cultivars with a deeper root system allowing greater access to soil moisture during water deficit could help to avoid drought stress. We developed a KASP marker (VRN5A-SNP22K) which can be applied in marker-assisted breeding to introduce these traits from these five identified cultivars with extreme root architecture.
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Supplementary Figure 1 | Flowchart for three pipelines applied on ONT sequencing data to generate full-length VRN1 sequences using a combination of different software packages (Okonechnikov et al., 2012; Katoh and Standley, 2013; Koren et al., 2017; Sedlazeck et al., 2018). De novo assembly (Canu) command used in the A_denovo and B_align_denovo pipelines for most barcodes was “canu -p output_filename_prefix -d output_directory_name genomeSize = 80kA_denovo or 25kB_align_denovo -nanopore-raw inputfile.fastq correctedErrorRate = 0.105 minReadLength = 2000 minOverlapLength = 1000 corOutCoverage = 6000 corMhapSensitivity = normal corMinCoverage = 0 “batOptions = -dg 3 -db 3 -dr 1 -ca 500 -cp 50.” For four cultivars showing a large deletion of 6,851 bp within the first intron of VRN-B1 gene, the filtering step “Read > 11 kbp” was skipped from C_align pipeline.

Supplementary Figure 2 | Characteristics of data generated by multiplex ONT sequencing of VRN1 homoeologous copies from 192 wheat cultivars. (A) Distribution of yield (11.2 Gb) of raw sequence data for different types of reads. (B) Mean coverage of VRN1 genes with only uniquely mapping reads, and distribution of reads larger than 10,500 bp on three VRN1 genes. Black bars represent standard deviation.

Supplementary Figure 3 | Multiple alignment of VRN-B1 sequences obtained by ONT sequencing using B_align_denovo pipeline shows a 838 bp duplication in the first intron in nine cultivars. The sequence of LongReach Lancer and Robigus cultivars are published by the wheat 10 + genome project.

Supplementary Figure 4 | Multiple alignment of VRN-D1 sequences obtained by Sanger sequencing shows a 163 bp insertion within the first intron. Bold letters represent the insertion.

Supplementary Figure 5 | Multiple alignment of VRN-D1 sequences obtained by Sanger sequencing shows a 17 bp deletion in the first intron in 15 cultivars.

Supplementary Figure 6 | Multiple alignment of VRN-A1 sequences obtained by Sanger sequencing shows a heterozygous SNP, SNP22 at position 4757 bp in the first intron in five cultivars carrying genotype group GT5.

Supplementary Figure 7 | Multiple alignment of VRN-A1 sequences obtained by Sanger sequencing shows a heterozygous SNP, SNP3 at position 381 bp in the promoter in five cultivars carrying the genotype group GT5.

Supplementary Figure 8 | Multiple alignment of VRN-A1 sequences obtained by Sanger sequencing shows a heterozygous SNP, SNP18 at position 4,138 bp in the first intron in four cultivars carrying the genotype group GT6.

Supplementary Figure 9 | Multiple alignment of VRN-A1 sequences obtained by Sanger sequencing shows different polymorphisms detected in intron 2, exon 4, and intron 4. SNP45 highlighted in yellow color is heterozygous at position 11,109 bp in exon 4.

Supplementary Figure 10 | Multiple alignment of VRN-B1 sequences obtained by Sanger sequencing shows a SNP at position 8,615 bp in the first intron (11 cultivars carrying A allele at this SNP locus assigned to haplotype Hap4).

Supplementary Figure 11 | Boxplots showing pairwise comparisons between groups with different structural variation for VRN1 and different traits. Columns labeled with different letters represent significant difference at P ≤ 0.05.

Supplementary Table 1 | Barcode information and detailed information about origin, country of registration, breeder and seed quality as reported by Lichthardt et al. (2020) and Voss-Fels et al. (2019b) and phenotype data as reported by Voss-Fels et al. (2019b) and Voss-Fels et al. (2018).

Supplementary Table 2 | Primer sequences.

Supplementary Table 3 | KASP primer sequences for VRN1.

Supplementary Table 4 | Characteristics of data generated by multiplex ONT sequencing for three VRN1 homoeologous loci from 192 wheat cultivars.

Supplemenarty Table 5 | Best blast hits of the full-length VRN-A1 sequences generated applying three different pipelines with 32 reference genomes using ncbi-blast-2.6.0+.

Supplementary Table 6 | Best blast hits of the full-length VRN-B1 sequences generated by applying three different pipelines with 29 reference genomes using ncbi-blast-2.6.0+.

Supplementary Table 7 | Best blast hits of the full-length VRN-D1 sequences generated by applying three different pipelines with 22 reference genomes using ncbi-blast-2.6.0+.

Supplementary Table 8 | Percentage identity, number of poymorhisom and structural varaitions within the VRN1 sequences of five wheat references obtained from publicly available wheat reference genome sequence data (IPK Crop Analysis Tools Suite, 2021), and NCBI database (Accession number AY747601.1).

Supplementary Table 9 | Grouping of 192 wheat cultivars based on top BLASTn hits of full-length VRN1 sequences with around 30 reference genomes reveal 9 groups of A, B, and D homeolog sequence combinations most similar (>99.9%) to only five reference genomes.

Supplementary Table 10 | G-quadruplex (G4 motif) identified in promoter and the first intron of the three homoeologus VRN1 genes in 192 wheat cultivars using QGRS Mapper software.

Supplementary Table 11 | Comparison of copy number estimates for VRN-A1 for 190 cultivars based on different methods.

Supplementary Table 12 | Cultivars with structural variations at three VRN1 loci detected in this study.

Supplementary Table 13 | Genotypes and haplotypes of the homoeologus VRN1 loci for 190 bread wheat cultivars.
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Barley is considered an ideal crop to study cereal genetics due to its close relationship with wheat and diploid ancestral genome. It plays a crucial role in reducing risks to global food security posed by climate change. Genetic variations in the traits of interest in crops are vital for their improvement. DNA markers have been widely used to estimate these variations in populations. With the advancements in next-generation sequencing, breeders could access different types of genetic variations within different lines, with single-nucleotide polymorphisms (SNPs) being the most common type. However, genotyping barley with whole genome sequencing (WGS) is challenged by the higher cost and computational demand caused by the large genome size (5.5GB) and a high proportion of repetitive sequences (80%). Genotyping-by-sequencing (GBS) protocols based on restriction enzymes and target enrichment allow a cost-effective SNP discovery by reducing the genome complexity. In general, GBS has opened up new horizons for plant breeding and genetics. Though considered a reliable alternative to WGS, GBS also presents various computational difficulties, but GBS-specific pipelines are designed to overcome these challenges. Moreover, a robust design for GBS can facilitate the imputation to the WGS level of crops with high linkage disequilibrium. The complete exploitation of GBS advancements will pave the way to a better understanding of crop genetics and offer opportunities for the successful improvement of barley and its close relatives.
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INTRODUCTION

Barley, Hordeum vulgare, is one of the earliest domesticated crop species that has played a critical role in the development of human civilization (Pankin and Von Korff, 2017). It is the fourth most important cultivated cereal crop globally (Pham et al., 2019), produced mainly for livestock feeding and the brewing industry (Ullrich, 2010). Barley is an ideal model crop for the tribe Triticeae due to its diploid nature, the low number of chromosomes (n = 7), close relationship with wheat, and a wide diversity with no crossing barriers between cultivated forms and their wild progenitors (Pourkheirandish and Komatsuda, 2007; Romero et al., 2018; Harwood, 2019). There are approximately 400,000 Hordeum accessions registered in various genebanks around the world that serve as a valuable resource for crop breeding to solve the important global challenges in agriculture (Knüpffer, 2009; FAO, 2010; Galluzzi et al., 2020). A robust barley reference genome with high-quality annotation and a pan-genome assembly with novel genetic variations is now publicly available, enabling the analysis of high-throughput sequencing data (Mascher et al., 2017; Jayakodi et al., 2020).

In the wake of unprecedented climate change and decline in the area of arable land, crop improvement has become an uphill task for plant breeders (Wang et al., 2019). Crop management and plant breeding strategies offer large potential to tackle present and future challenges of crop production (Wang et al., 2015). Breeding for combining desirable traits is the most sustainable, economical and efficient way of crop improvement. Integrating precise high-throughput phenotyping approaches with genome sequencing allows the identification of critical genomic regions controlling important agronomic traits. The selection of cultivars for traits of interest based on DNA markers is known as marker-assisted selection (MAS). With the development and easy access to a wide range of DNA markers and genetic maps, it is now possible to carry out MAS for traits governed by major as well as minor genes called quantitative trait loci (QTL) (Babu et al., 2004). Molecular markers are not affected by environmental factors, and selection can be performed at the early stages of plant development (Hasan et al., 2021). For the successful application of MAS, the precise location of QTL, the availability of closely linked markers and the effect of QTL within the genome must be studied in advance (Wang et al., 2016). Once a close linkage disequilibrium between a trait and molecular markers is established, the markers can be used to select desirable traits during breeding cycles (Vafadar Shamasbi et al., 2017; Bhavani et al., 2021). MAS becomes highly unreliable when dealing with complex quantitative traits regulated by many minor QTLs. The effects of these minor QTLs determined by linkage mapping and genome-wide association mapping is limited due to its reliance on statistical power, hence require a very large population to identify the desirable QTL combinations (Bhat et al., 2016).

Molecular markers can be categorized into three classes based on their mechanism of detection: hybridization, polymerase chain reaction (PCR) and sequencing. Hybridization-based molecular markers require a segment of DNA known as a probe to identify an individual. In plants, restriction fragment length polymorphism (RFLP) was the first-generation of hybridization-based molecular markers. The application of RFLP was very limited due to its low-throughput nature, difficulties in performing hybridization and the low polymorphism ratio due to the use of restriction enzymes at random. The hybridization-based markers were gradually replaced by the more efficient and inexpensive PCR-based tags, in which a specific segment of DNA is multiplied millions of times (Singh and Singh, 2015). There are many types of PCR-based markers, including randomly amplified polymorphic DNA (RAPD), sequence characterized amplified region (SCAR), cleaved amplified polymorphic sequence (CAPS), inter-simple sequence repeats (ISSRs), amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSRs). Among these, SSRs have proved to be one of the most efficient markers as they are present in abundance to detect a high level of polymorphism (Deschamps et al., 2012). Most PCR-based molecular markers were traditionally designed or identified based on a minimal set of sequence data. Recently, sequencing-based markers have gained traction since variations at single-nucleotide resolution can be directly selected and effectively utilized as genetic markers, owing to their abundance in all species (Garrido-Cardenas et al., 2018).

Scientists employed Sanger Sequencing method in many projects advancing the era of sequencing-based markers, including expressed sequence tags (ESTs) which proved to be a steppingstone to identify single-nucleotide polymorphisms (SNPs) in the expressed region of the genome (Wang et al., 1998). However, due to high cost and low throughput, Sanger sequencing is replaced by high throughput and more cost-efficient approaches including hybridization-based microarrays and next-generation sequencing (NGS) technologies. The hybridization-based microarrays are performed by designing thousands of probes based on the available sequence data on a small chip to detect polymorphisms. Microarray-based high-throughput SNP genotyping platforms have been developed over the years and many commercial platforms are now available such as, Illumina Infinium II, Axiom BioBank and Ion Torrent (Gupta et al., 2008; Phan and Sim, 2017). In barley, an array-based platform with 1,572 SNP markers was first introduced in 2006 with the development of Illumina GoldenGate assays (Close et al., 2009). The 9 k Illumina Infinium iSelect BeadChip succeeded the GoldenGate assays in 2009 (Comadran et al., 2012). The latest addition to this line of high-throughput genotyping platform is the 50 k Illumina Infinium iSelect SNP array (Bayer et al., 2017). These SNP markers are now being widely used in genome-wide studies (Nielsen et al., 2011).

Researchers often use NGS techniques on a large scale to assess genetic variations in a wide range of crops (Poland and Rife, 2012). Genome sequencing protocols have been developed in combination with bioinformatics procedures, including SNP marker discovery and genotyping. The most popular technologies are multiplexed shotgun sequencing (MSG), restriction enzyme based genotyping by sequencing (GBS) and whole genome sequencing (WGS) to access sequence variation in the studied species (Yang et al., 2017). In general, GBS has been referred to all those approaches aiming to construct a reduced genome representation libraries for sequencing. There has been a growing preference for using reduced genome sequencing protocols rather than whole genome sequencing, especially for crops with large genome size and high levels of linkage disequilibrium due to cost effectiveness, with an efficient sequence analysis performed in crops even without a robust reference sequence, often referred to as de novo sequencing (Lu et al., 2015; Darrier et al., 2019). However, the application of GBS over other genotyping approaches such as, array-based genotyping and WGS depends upon the research objectives, resource availability, timeframe of project and the skillset of the personnel’s involved. The cost effectiveness can be mainly attributed to the simplified genome, the inexpensive barcoding system used for multiplexing in every GBS strategy (He et al., 2014), and the increased sequencing capacity per run in platforms. The SNP data generated by the GBS approach can now be easily analyzed using plenty of well-established bioinformatics pipelines to filter SNP markers with precision (Raman et al., 2014). High-density genetic maps constructed with such SNP markers are better than those built by traditional microsatellite markers (Mayer et al., 2012). SNPs of interest generated by the GBS platforms can be verified by converting them into PCR-based tags, followed by marker validation, which facilitates the genotyping for large populations without the need for repeating the whole GBS assay (Yang et al., 2017). Given the size of the barley genome (5.5GB), it is essential to optimize the sequencing protocols to overcome genome complexity. The primary focus of this review article is to put forward ideas about the GBS based protocols that are currently used and have the potential to be used for barley improvement in the future.



BARLEY GENOMIC RESOURCES


Germplasm Collections

Barley germplasm collection, including cultivars, landraces, advanced breeding materials, genetic stocks, hybrids, induced mutant lines and wild relatives, established in various plant Genebanks, provides precious genetic resources for breeding and research programs worldwide (Table 1). The total number of accessions conserved in Genebanks can be found by browsing through online databases, such as FAO WIEWS1 and Genesys.2 Barley accessions from collected materials, ranks second among the cereal crops, after wheat (Kant et al., 2016). As of March 2022, in the world’s largest Svalbard Global seed vault, managed by Nordic Genetic Resource Center (NordGen), Sweden, there are 106,887 accessions of the genus Hordeum.3 The most extensive collection of barley germplasm accessions is in Plant Gene Resources of Canada, followed by the National Small Grains Germplasm Research Facility in the United States. Another main center of worldwide barley collection is in the International Centre for Agricultural Research in Dry Areas (ICARDA), Lebanon, which maintains wild and cultivated barley accessions originating from different regions across the globe (Kant et al., 2016). Barley genetic resources representing the South and East Asian regions are available in Japan. The University of Okayama in Japan maintains a subset of international barley core collection with 380 lines (Sato, 2020). Additionally, there are mapping populations registered to be used by researchers. For example, three different mapping populations viz., Steptoe × Morex doubled haploids (DHs), Harrington × Morex DHs and Oregon Wolfe Barley DHs (Kleinhofs et al., 1993; Marquez-Cedillo et al., 2000; Szűcs et al., 2009) developed under the North American Barley Genome Mapping Project (NABGMP) have been deposited in the Okayama University. These mapping populations are crucial for the development of high-density consensus genetic maps and identifying QTLs for prioritized traits in barley (Sato, 2020). Apart from these conventional approaches, researchers have produced a cross between cultivated barley and Hordeum bulbosum, a wild self-incompatible relative from the secondary gene pool of barley to develop a set of H. bulbosum introgression lines (Pickering, 1984; Pickering et al., 1995). These introgression lines harbor a wide range of resistant traits that have been used to identify resistant genes for various diseases like leaf rust (Yu et al., 2018), mild mosaic virus (Ruge-Wehling et al., 2006), yellow dwarf virus (Scholz et al., 2009) and powdery mildew (Hoseinzadeh et al., 2020).



TABLE 1. Barley accessions present in major gene banks (FAO WIEWS, 2022; Genesys, 2022).
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The research on barley mutations started in1928 (Ohnoutkova, 2019). The mutants produced are preserved at the Nordic Genetic Resource Centre and the United States Department of Agriculture (USDA) National Small Grain Collection (Lundqvist and Franckowiak, 2003). The mutants are grouped into different phenotypic categories, labeled with a UL prefix (Lundqvist and SvalöfWeibull, 2005), and can be accessed through the International Database for Barley Genes and Barley Genetic Stocks.4 This database currently lists 754 barley genetic stocks with detailed description. Several researchers have used these mutants in genetic studies and for gene identification (Komatsuda et al., 2007; Li et al., 2013, 2017).



Genomic Resources

Since the beginning of 21st century, EST sequencing projects have gained momentum in crops, including barley, allowing functional characterization of genomic sequences (Sato, 2020). High-resolution EST maps with 1,032 EST based loci and 2890 EST based loci were constructed by Stein et al. (2007) and Sato et al. (2009), respectively. The six-row American malting cultivar known as Morex (reference genotype) has been utilized to construct bacterial artificial chromosome (BAC) libraries, that have been helpful in creating the physical map with few gaps (Yu et al., 2000; Schulte et al., 2011). The International Barley Genome Sequencing Consortium (IBSC) was established in 2006 to construct a high-quality genome sequence by consolidating all the available genomic resources (Schulte et al., 2009), and later the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)5 launched a search tool to run BLAST against the barley genome sequence compiled by IBSC. Similarly, the EnsemblPlants portal also allows researchers to browse and blast search on the target sequence. The first generation of chromosome-scale barley pan-genome assembly have been obtained from a core set of 20 diverse barley genotypes (Jayakodi et al., 2020) and this has given the researchers some insights on the effect of structural variants at single base resolution in barley evolution (Kamal et al., 2022). A complete transcriptome profile for the Morex reference genome, which is essential for the annotation of available genome assemblies, is also available, in addition to its genomic sequences. A reference transcript dataset (BaRTv1.0) consisting of 60,444 genes covering various organs and tissues was also developed (Rapazote-Flores et al., 2019) and a set of transcript sequences from RNA-Seq is catalogued in an open-access genome database barleyGenes.6 Recently, a barley expression database known as EORNA7 provided a single-window platform for researchers to visualize variations in gene expression profiles across different barley genotypes (Milne et al., 2021).




GENOTYPING BY SEQUENCING

GBS has become a widely adopted high-throughput sequencing approach to mine the potential high value SNPs and small insertion/deletion variations in species with complex genomes, such as wheat and barley when compared to whole genome sequencing and the array-based SNP genotyping (Bajgain et al., 2016). Though SNPs are efficient, the application of whole genome sequencing for their detection is costly and cumbersome, especially in crops with a complex genome structure. A complex genome has highly repetitive regions, duplicative DNA sequence and polyploidy, posing problems during sequence assembly and SNP detection (Mardis, 2008; Mammadov et al., 2012). Among cereals, wheat (16 GB) and barley (5.5 GB) have large complex genomes with over 80% of repetitive elements (Wicker et al., 2009). Hence, sequencing has not always been a straightforward approach for these crops, and thus a higher sequencing depth is required to achieve SNP calling (Dou et al., 2012; Jighly, 2022). To overcome these challenges in SNP identification, the genome size reduction was introduced as a low-depth sequencing strategy (Huang et al., 2009; Scheben et al., 2017). Also, exponential growth in NGS have simplified GBS protocols to mine thousands of SNPs covering a substantial portion of the barley genome (Alqudah et al., 2020).

The reduced genome representation strategies being successfully adopted in barley are generally divided into two classes. The first class involves techniques that rely on restriction enzyme (RE) cut sites to generate fragments for the construction of sequencing libraries. Genome reduction based on RE cut sites ensures consistency in the sequenced portion of genome in individuals as RE sites are generally conserved across species (Chung et al., 2017). Moreover, the use of methylation-sensitive REs in GBS provides a high SNP coverage in gene-rich regions of the genome rather than in repetitive inter-genic regions (Fellers, 2008). For example, methylation-sensitive REs cannot cleave methylated cytosine residues, and gene-rich regions exhibit very low levels of cytosine methylation in plants (Zhang et al., 2010). In gene-rich regions, SNP markers are usually preferred due to the nature of unique sequences in genic regions and the probability of finding a desirable QTL in the vicinity (Pootakham et al., 2016). The second class of GBS for genome reduction is sequencing targeted regions in the genome, that could involve various approaches, such as multiplex PCR assay for genes or genomic subsets (Tewhey et al., 2009), hybridization-based sequence capture (Gnirke et al., 2009), molecular inversion probes (MIPs) (Hardenbol et al., 2005), RNA sequencing (RNA-Seq) for transcriptome profiling, exome capture to isolate the coding sequence (exon) variants, deoxyribonuclease I (DNase I)-hypersensitive site sequencing (DNase-Seq) to determine chromatin accessibility and chromatin immunoprecipitation sequencing (ChIP-Seq) to analyze protein-DNA interactions. Several target enrichment methods for NGS have also been developed, which provide the highest degree of control for the identification of targeted genomic regions for SNP discovery in a cost-effective and time-efficient manner.

The reduced genome GBS approaches based on REs can also be applied in species without a reference genome (de novo) and also without any prior SNP information (Rasheed et al., 2017). In de novo approaches, first, GBS sequence data is processed based on identical raw reads; a bioinformatic pipeline would then identify other highly similar reads that are probably from the same location. The rest of the sequence reads without high similarity are usually discarded from the analysis. However, in the presence of a robust reference sequence assembly, GBS data is directly aligned against the reference sequence, and most sequence reads could be used to discover polymorphisms (Kim et al., 2019). Currently, reference quality genomes are available for many crops, including barley, alongside extensive data from well characterized collections of SNPs (Chung et al., 2017; Alqudah et al., 2020); thus, making this approach widely applicable for crop genetics and plant breeding research, with high confidence (Figure 1).
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FIGURE 1. Application of GBS approaches for various genetics and plant breeding studies. The high-quality SNPs derived from GBS are being used for diversity analysis, genetic map construction, genome-wide association studies and genomic selection.



Genotyping by Sequencing Based on REs

The first step in GBS is to construct a robust library, the most critical step before any sequencing process, which determines the overall quality and coverage of reads and affects the achieved sequencing depth. The construction of the GBS library involves two major steps, including the RE based genome reduction, followed by multiplexing samples using barcode adapters or oligos. This approach is simple, fast, unique and reproducible that can even reach the genomic regions of interest, which were previously inaccessible to sequence capture approaches (Elshire et al., 2011). The importance of restriction site associated genomic DNA sequencing for SNP discovery and genotyping was first demonstrated by Baird et al. (2008). Multiplex sequencing by adding inexpensive DNA barcodes in species with small genomes like rice (0.43 GB), with a genome size 10 times smaller than that of barley, was suggested by Craig et al. (2008). Since then, it has become a standard practice in most Illumina supported NGS applications. Simple multiplexing is easily accessible for crops with small genome sizes, whereas in crops with large genome sizes, using a combination of two techniques, involving RE for genome reduction and subsequent multiplexing is required to achieve high-throughput and reliable sequencing (Elshire et al., 2011). The RE targets low-copy genomic regions, thereby minimizing repetitive sequences from sequence reads. The GBS based on REs has several versions according to the number of restriction enzymes used, along with the type of adapters ligated to DNA fragments (Figure 2).

[image: Figure 2]

FIGURE 2. Schematic overview of Restriction Enzyme based GBS methodology. (A) Tissue sample collection is followed by DNA isolation from the crop. (B,D,F) DNA digestion by; One enzyme, ApeKI, that makes a cut to produce overhangs (B), classical Two enzyme, a rare cutter PstI and a common cutter MspI produces overhangs (D), and new version of Two enzyme called tGBS, using a different set of restriction enzymes, NspI and BfuCI capable of better digestion produces overhangs in opposite directions (F). (C,E,G) Adapter ligation to the digested sample; One enzyme, ligation of barcode and common adapter (C), classical Two enzyme, ligation of forward barcode and reverse Y adapter (E), tGBS, ligation of barcode and universal oligo. Nucleotide sequence in red possesses the matching bases in selective primer for target specificity (G). (H) Multiplexing; a unique barcode used for each accession allows the pooling of DNA samples before the amplification step. (I) The mixed libraries, uniquely barcoded, and amplified samples will be run in a next-generation sequencer. The sequence reads will be analyzed in various bioinformatic pipelines based on the availability of reference sequence.



One Enzyme GBS

One enzyme GBS approach is one of the first-generation techniques for genome reduction developed by Elshire et al. (2011), with a straightforward protocol widely used in breeding and trait mapping (Goddard et al., 2019). This method was first applied in both maize and barley, with the selection of REs as a key factor in determining coverage. A methylation-sensitive 5 bp cutter, ApeKI was suggested as an ideal RE, which significantly reduced the repetitive sequence in barley and maize genomes (Figure 2B). The overhangs generated by the RE would anchor the adapter ligation to the intended DNA sequence. A double-stranded universal and barcoded adapter were ligated to digested DNA samples (Figure 2C). A different barcoded adapter is considered for each sample, allowing multiplexing of individuals per sequencing lane during a single run to significantly reduce genotyping cost. The adapters were designed to avoid restriction enzyme recognition sites and no regeneration of the recognition site should occur after ligation of genomic DNA fragments. Unlike earlier RE based library construction, where RE generated DNA fragments were too large for sequencing; thus, requiring further fragmentation and size selection, one enzyme GBS generates fragments suitable for NGS. This allows digestion and adapter ligation to proceed in a single well and direct sequencing (Elshire et al., 2011; Wickland et al., 2017). Digested fragments from the libraries were amplified in a PCR reaction with primer sets that are complementary to the ligated adapters before sequencing. The sequencing of the GBS library can be performed in a variety of NGS platforms, such as Illumina Genome Analyzer II (48/96 plex). Using the one enzyme approach, 24,186 sequence tags were mapped onto the Oregon Wolfe Barley genetic map (Elshire et al., 2011). With the consensus read sequence associated with restriction sites as reference from this GBS approach, the mapping can be performed to uncover genetic variations even without a reference genome. In the one enzyme GBS approach, a non-uniform library was constructed due to biases associated with a single RE targeting a single cut site, and there was a scope for further reduction in genome complexity.



Two Enzyme GBS

To construct a library with a greater degree of genome reduction and uniformity, the two enzyme GBS approach was introduced as a successor, which was successfully demonstrated in both barley and wheat (Poland et al., 2012). In this approach, a rare cutter with six base recognition sites (PstI) in combination with a common cutter with four base recognition sites (MspI) were used. Two adapters were designed for PstI and MspI restriction overhangs (Figure 2D); the forward adapter with a barcode for the rare cut site and the universal reverse Y adapter for the common cut site (Figure 2E). In this approach, each fragment in the library has two different adapters, forward and reverse, in the same orientation as the cut sites. The digestion by two enzymes would result in DNA fragments with both rare and common cut sites whereas, fragments with only common cut sites and rare cut sites would be in extremely low frequency. To avoid the amplification of fragments with two common cut sites and adapter dimers, the universal Y shaped adapter was designed as a reverse adapter. The Y adapters introduced by Illumina ensures that each DNA fragment is only ligated to different adapter pairs (Bentley et al., 2008). During the first round of PCR amplification, only the forward primer can anneal to the forward barcode adapter, whereas the reverse primer cannot anneal during this time as the tail sequence of the reverse Y adapter is not a complement of the reverse primer. The complementary sequence of the reverse primer was only generated at the end of the first round of PCR, ensuring the DNA amplification of only PstI–MspI fragments. The fragments with the same adapters on each end of the fragment would inhibit the formation of library clusters on the sequencing flow cell as they cannot undergo bridge amplification, leading to the loss of sequencing efficiency for segments. The two enzyme approach could ensure the uniformity of sequences from forward to reverse direction but not vice versa, which led to an increase in efficiency while representing the subset of a whole genome. The analysis of 82 Oregon Wolfe Barley DH populations using the Illumina Genome Analyzer II (48 plex) identified approximately 34,000 SNPs and 24,159 tags with less than 20% missing data (Poland et al., 2012).

Both one enzyme and two enzyme GBS approaches have been frequently used for linkage mapping analysis to identify QTLs for agronomic traits (Scheben et al., 2017) due to their simplicity, efficiency and cost effectiveness. However, these approaches produced highly skewed coverage of genomic positions (Beissinger et al., 2013). Moreover, they produce low read depth per locus when common cutting REs are used to produce small fragments (Pootakham et al., 2016) and fragmentation is confined to RE sites, with some genomic regions not being sequenced, it leads to more missing data (missing a genotype value at loci). Low read depths are likely responsible for the ineffective representation of heterozygous loci (Torkamaneh et al., 2016). To correct the errors associated with heterozygous loci, SNP calls from these approaches were considered as missing data or as dominant markers during GBS data analysis. However, these errors do not cause major problems in barley or wheat since they are self-pollinated. The GBS missing data had a significant impact during genetic mapping, as specific SNPs were placed in more than one position on a map. Such variable proportions of shared loci would result in low call rates per sample (Dacosta and Sorenson, 2014). One way to deal with missing data is to avoid SNP loci with missing data altogether; however, this would lead to reduction in the number of available SNPs. Another viable option is to use data imputation, in which a predicted allelic dosage would be substituted with the missing data (Torkamaneh and Belzile, 2015). It is interesting to note that though both one and two enzyme GBS approaches appear to have certain drawbacks associated with low read depth, such as missing data and high error rates at heterozygous loci. However, their robustness would increase with the availability of more efficient imputation algorithms to fill in missing data where the algorithms can function well in the presence or absence of reference genomes (Manching et al., 2017; Munyengwa et al., 2021).



Tunable GBS

The shortcomings of both one and two enzyme approaches were addressed by the most recent GBS technology, known as tunable GBS (tGBS®). This approach allows a researcher to manipulate the number of targeted genomic sites by merely modifying a single primer in the protocol. Such flexibility in tGBS libraries resulted in higher read depths for each target site compared to the previously mentioned GBS protocols (Ott et al., 2017). Two new sets of REs capable of generating overhangs in opposite directions on the same target strand were employed: a 4 bp cutter, BfuCI, producing a 5′ overhang, and a 5 bp cutter, NspI, generating a 3′ overhang. These REs achieved a better representation of predicted target sites, and most of the restriction sites were digested in maize (Ott et al., 2017). Two complementary oligos (single-stranded DNA) would be ligated; the oligo complementary to the 3′ overhang possesses a sample-specific barcode sequence, whereas the oligo complementary to the 5′ overhang is universal (Figures 2F,G). After ligation, the samples were subjected to two PCR steps namely, selective PCR and final enrichment PCR. Two primers (selective and non-selective) were specifically designed to ensure their specific annealing to genomic fragments produced during RE digestion. The selective primer was designed to be the reverse complement of the ligated universal oligo, and it can extend up to three nucleotides in the insert sequence at the 3′ end, referred to as selective bases. These selective bases match the digested fragment sequence and enable the primer to precisely select target sites. The non-selective primer was designed to match the region preceding the barcode present in the oligo at the 5′ end. This strategy of ligating unique oligos to overhangs ensure that only the adapter ligated double digested fragments enter the sequencing phase. The replacement of double-stranded adapters with single-stranded oligos in the tGBS® approach enhanced the reliability of library preparation process, as the accurate quantification of oligos is much easier in this method than the quantification of adapters in previous methods. During the final PCR, the sequencing platform-specific primers gets annealed to produce the sequencing library (Ott et al., 2017). To assess the efficiency of tGBS®, a study was conducted using both the maize inbred and segregating populations, and sequencing of the constructed library was performed on the Ion Torrent platform. The results revealed that the tGBS® approach was highly efficient in many aspects, especially for the accuracy of SNP calling (>97–98%) at both homozygous and heterozygous sites, compared to the previous GBS approaches. The same DNA library from tGBS® was sequenced in Illumina platform for comparative analysis by using Illumina-specific oligos, which resulted in a similar level of accuracy as reported with the use of the Ion Torrent platform (Ott et al., 2017).



Nano-GBS

The advancement of sequencing technologies reduced the cost of high-throughput genotyping (Wetterstrand, 2021); however, the construction of GBS libraries is still the costly phase. A miniaturized protocol for GBS library construction, known as nano-GBS was developed with a reduced cost (Torkamaneh et al., 2020). The new improvisation exploited the non-contact liquid transfer technique (acoustic droplet ejection), which facilitated liquid transfer on a nano-liter scale. The study involved nine libraries constructed with three different combinations of REs (ApeKI, PstI/MspI, and SbfI/MspI) and three different multiplexing levels (96 plex, 384 plex, and 768 plex). The library preparation protocol involving one enzyme (ApeKI) and two enzyme (PstI/MspI and SbfI/MspI) was based on the works by Elshire et al. (2011) and Abed et al. (2019), respectively. The cost of sequencing was reduced by more than half for genotyping of 96 soybean lines in Ion torrent platform using nano-GBS. Out of three RE combinations, PstI/MspI produced sufficient number of SNPs with a low percentage of missing data. However, the nano-transfer, automation, and the use of multiple combinations of REs are yet to be standardized in many species. The initial installation cost for the nano-transfer equipment is also very high, and the wider adoption of this method could be limited.




Genotyping by Sequencing Based on Sequence Enrichment

The target enrichment approach offers more specificity and replicable results than the RE based GBS approach (Malmberg et al., 2018). However, prior knowledge of genomic regions of interest is required to design suitable primers/probes for this approach. The most straightforward targeted sequencing protocol for enrichment of small sized genomic targets is the PCR-based method. Moreover, this method provides high efficiency when the targeted regions have highly conserved sequences across cultivars at the primer binding sites (Kaur and Gaikwad, 2019). Nowadays, multiplex PCR products are used to exploit the high-throughput nature of NGS; however, the primer design for a large genome is cumbersome, and amplification often requires specific commercial DNA polymerase enzymes capable of amplifying long genomic DNA (~30 kb) (Ostezan et al., 2021). Additionally, target enrichment can be achieved through hybrid capture by using oligonucleotide probes complementary to the genomic area of interest (Fu et al., 2010). It is also a technically demanding and time-consuming method, which requires library construction before hybridization. The efficiency of this method drops drastically when the targeted regions are small, and the increase in sample size makes the process more time-consuming (Niedzicka et al., 2016). The two methods based on PCR and hybrid capture were combined to develop a hybrid protocol known as molecular inversion probes (MIPs), overcoming the deficiency in both methods. MIPs are single-stranded DNA molecules containing sequences at both ends that are complementary to regions flanking the target sequence and linked by a highly repetitive sequence (linker sequence). First, the hybridization of MIP to the target sequence takes place, followed by gap filling with dNTPs and ligation to form a circular DNA molecule (Figure 3). This molecule is used as a template for PCR reaction using the primers complementary to the linker sequence. Apart from the primers, sequencer-specific adapters and index sequences are also introduced during the PCR process. Now, the amplicons were sequenced for SNP detection. MIPs can target genomic regions ranging in size from 1 kb to 5 Mb, and they are more suited for targeted resequencing of thousands of short genomic regions in species with even partial genomic-level information (Niedzicka et al., 2016). These targeted sequencing approaches based on PCR, hybrid capture and MIPs have limitations as they do not detect any novel variants outside the targeted region and fail to differentiate similar genomic regions (Deschamps et al., 2012; Winfield et al., 2012).
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FIGURE 3. Schematic representation of Molecular Inversion Probe to capture a specific target for sequencing. (A) Model structure of a molecular inversion probe (MIP) with a ligation and extension arm connected by a 30 bp linker. Both ligation and extension arms are designed to complement the target region. (B) These complementary arms at the end of linker pairs with the target region, which is followed by gap filling and ligation (Circular DNA molecule). (C) Digestion of exogenous host DNA and probes with the help of exonucleases. (D) Amplification of the captured segments using the universal primers complementary to the linker sequence of MIP along with sample-specific index sequences and sequencer-specific adapters. (E) Libraries will go through the sequencing followed by data curation.


RNA-Seq capturing the whole transcriptome, is another targeted sequencing approach that can reliably identify genetic variations in genic regions (Figure 4). It has been a reliable method for evaluating the potential genome and transcriptome level polymorphisms for genome-wide association studies. The major advantage of RNA-Seq is that no pre-requisite knowledge of genome sequence is required. However, the over-representation of abundant transcripts and challenges in the detection of sequences with low expression level remains a roadblock while assembling gene expression profiles (Ostezan et al., 2021), and splice variants can also sometimes add to the complexity. The assembly of these transcripts can be improved by adopting targeted RNA-Seq, which focuses only on the amplification of the genes of interest by designing probes complementary to the targeted exons (Levin et al., 2009; Mercer et al., 2014). This could also reduce the cost as there is no need for whole transcriptome sequencing (Arts et al., 2017). The whole exome capture (Figure 5) approach, using probes designed from target genic regions to hybridize genomic DNA, resolved the limitations related to the proportion of transcripts present or the crop’s developmental stage in RNA-Seq based approach (Kaur and Gaikwad, 2017). The selective sequencing of exome can be performed by three approaches: PCR-based capture, hybrid capture and array-based capture. One well-known example of selective exome capture is about a specific gene family with a nucleotide binding site/leucine-rich repeat (NLR) domain that triggers signaling in plants during pathogen invasion. NLR baits were designed to study this gene family and its molecular role during the plant-microbe interaction (Dinh et al., 2020).
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FIGURE 4. Schematic representation of RNA-Seq to sequence the transcriptome. (A) Poly A tailed messenger RNA (mRNA) is isolated among other RNA types using oligo dT magnetic beads. (B) Double-stranded complementary DNA (cDNA) library is constructed by employing reverse transcriptase on the isolated mRNA. (C) Enzymatic fragmentation of double-stranded cDNA is carried out to construct uniform library followed by end repair and an A nucleotide is added-to facilitate adapter ligation. These fragments are subjected to PCR amplification. (D) The amplicons are sequenced and differentially expressed genes are identified by mapping the reads with a quality reference sequence comparing the contrasting genotypes.
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FIGURE 5. A generalized flowchart for exome capture to isolate the exon variants. It can be broadly divided into two phases viz., target enrichment and DNA sequencing. In enrichment phase high-quality genomic DNA is isolated and specific probes are designed for hybridization followed by capturing of hybridized probes. In sequencing phase, the raw exome sequence data is filtered and aligned to find potential variants.


DNase I hypersensitive sites (DHSs) in the genome usually harbors cis-regulatory DNA elements (CREs). CREs interact with transcription factors and guide the transcription process (Wang and Wang, 2021). DHSs are sensitive to the endonuclease DNase I, which can cleave these regions. The digested segments are used for sequencing to identify the important CREs and TFs (Mathelier et al., 2015). DHS mapping combined with NGS is popularly known as DNase-Seq (Figure 6). Another targeted region sequencing approach, which has regulatory importance is the chromatin immunoprecipitation sequencing (ChIP-Seq) that identifies the binding sites of DNA associated proteins. It refers to mapping of the binding proteins and their bio-chemical modifications across the genome, which play a vital role in replication, transcription, RNA processing, and DNA repair mechanisms (Furey, 2012). The unique feature of this protocol is that it involves the initial crosslinking step to fix the protein-DNA binding in vivo, allowing the capture of native interactions. Antibodies specific to the protein of interest was used to immuno-precipitate the crosslinked DNA and protein. The extracted fragments were sequenced, and the resulting reads were mapped to the genome (Figure 7).

[image: Figure 6]

FIGURE 6. A schematic representation of DNase Seq to determine chromatin accessibility. (A) Nuclei isolation followed by DNase I digestion is a critical step to collect the chromatin. (B) Targeted fragments will be selected and isolated from gel. (C) Library construction followed by next-generation sequencing and data analysis.


[image: Figure 7]

FIGURE 7. An overall workflow for ChIP Seq to analyze protein interactions with DNA. (A) Isolation of genomic DNA with conserved binding proteins. (B) Crosslinking and DNA fragmentation to access the DNA-protein complex. (C) Immunoprecipitation with protein-specific antibodies to separate the DNA-protein complex. (D) DNA purification is followed by adaptor ligation to prepare the sequencing library. (E) Discovery of DNA biding segments using next-generation sequencing platform. (F) Data analysis and alignment to reference genome will identify targeted DNA sequences that interact with the protein. This figure is adapted from “ChIP sequencing,” by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.





SNP VARIANT CALLING

The analysis of GBS sequence data can be complex; hence, there is a need for bioinformatic pipelines with advanced computational efficiency to sort, classify based on sequence barcodes, filter out poor-quality reads, score individuals based on their genotypes, and align the sequenced reads to the given reference sequence for SNP variant calling (Torkamaneh et al., 2016).

Bioinformatic pipelines for SNP variant calling are mainly categorized into two groups: with or without a reference genome. The commonly used pipelines which require a reference genome for data analysis are TASSEL-GBS (v.1 and v.2), IGST, and Fast-GBS, whereas the pipeline that does not require a reference genome is UNEAK (Bradbury et al., 2007; Lu et al., 2013; Sonah et al., 2013; Glaubitz et al., 2014; Torkamaneh et al., 2017). The pipeline Stacks can be used with or without a reference genome for SNP detection (Catchen et al., 2013), although the confidence of allele calling varies. The UNEAK and Stacks pipelines would identify pairs of nearly identical reads, which could potentially represent alternative alleles at a single locus (Catchen et al., 2013; Lu et al., 2013). The TASSEL-GBS or Fast-GBS can map sequencing reads onto the reference genome to identify SNPs, which is a more robust approach (Li and Durbin, 2009; Nielsen et al., 2011). The imputation procedure of missing data generated from GBS is more accurate when a reference sequence is present (Torkamaneh and Belzile, 2015). Therefore, TASSEL-GBS has been widely utilized in association analysis in barley for which the reference genome is available (Pasam et al., 2012; Scheben et al., 2017). Also, it can handle large volumes of low coverage data (Scheben et al., 2017). Although, TASSEL-GBS has been used in many studies with barley to generate SNPs, the alternative Fast-GBS is emerging as a more powerful pipeline providing more thorough data analysis. The efficiency of Fast-GBS was demonstrated in soybean lines by comparing with other pipelines and sequencing platforms. The study found that the SNP calls from a single sequencing technology using different pipelines (Fast-GBS, Stacks, UNEAK, TASSEL-GBS, IGST) had a common SNP overlapping percentage ranging from 72 to 92%, whereas very low overlapping percentage ranging from 50 to 70% was observed while using a single pipeline with the data generated from two different sequencing technologies (Illumina and Ion Torrent). Such variations in overlapping percentage occur due to different variant calling algorithms and read mapping in each pipeline (O’Rawe et al., 2013). Fast-GBS is more flexible and accurate than other pipelines such as, TASSEL-GBS v.2 and Stacks, as demonstrated in soybean (Torkamaneh et al., 2016). In Fast-GBS, various data filtering parameters such as, quality scores for reads, number of reads required, and missing data allowed, can be altered based on the requirements of the study, irrespective of the sequencing platform used. This flexibility makes Fast-GBS less prone to errors. In barley, Fast-GBS mined out more SNPs than the UNEAK pipeline and it has proved to be far more user-friendly (Abed et al., 2019). In addition to these pipelines, researchers have also been using several inhouse bioinformatic pipelines using different programming languages.

Irrespective of the pipelines used, it is necessary to always perform additional quality checks and filtration on datasets (Abed et al., 2019). A well-defined protocol for filtering high-quality data using variant call format (VCF) tools has been demonstrated in crops, including barley (Danecek et al., 2011; Abed et al., 2019). For filtering, parameters such as, heterozygosity, sequencing depth, SNP quality, call rate, missing data percentage and minor allele frequency range (false SNPs) are usually preferred. In order to obtain a complete SNP catalogue, missing genotypic data can be inferred by imputation (Abed et al., 2019) or it can be excluded from downstream genetic analysis (Nazzicari et al., 2016). For data imputation, several software programs are available, including BEAGLE (Browning and Browning, 2007), FImpute (Sargolzaei et al., 2014), and LinkImpute (Money et al., 2015). BEAGLE and FImpute are the most commonly used packages, which exploit the linkage disequilibrium, haplotype information, and pedigree relationships to achieve accurate imputation of missing data (Shi et al., 2017). LinkImpute is optimized for the imputation of missing data for unrelated germplasm; thus, selection of the statistical software package for imputation is based on the objective of the study and the type of germplasm used. The fastPHASE package was used in barley to impute missing data of a low-density experimental panel based on data from a high-density reference panel (Iwata and Jannink, 2010). Data imputation is only optional, and any necessity to do it only depends on the research objectives.



APPLICATIONS OF GBS IN BARLEY

GBS technologies have allowed breeders to access a greater range of genetic variations to construct genetic maps, conduct linkage and genome-wide association studies (GWAS), execute genomic selection (GS), and assess genetic diversity in germplasm (Table 2).



TABLE 2. Practical application of GBS in barley.
[image: Table2]


Genetic Mapping and QTL Detection

GBS platform has enhanced the ability to produce high-density molecular maps in cereals, a pre-requisite for trait-marker linkage studies (Chung et al., 2017). The development of genetic materials and effective implementation of high-throughput phenotyping will remain the main challenges in using this genomic data for crop improvement. High-density molecular maps combined with precise phenotype from bi-parental and multi-parental populations, has allowed to uncover the genetic architecture underlying Mendelian traits and complex traits by genetic mapping analysis (Poland and Rife, 2012). For agronomic traits, GBS based genetic maps were generated in barley recombinant inbred lines to identify three QTLs for plant height on chromosome 2H, 3H and 5H, where the QTL on 2H was positioned near a locus conferring for spike architecture (Vrs1), and the QTL on 5H was in close proximity to a dwarfing gene locus (Ari-e) (Liu et al., 2014). Similarly, DH lines developed from reciprocal crosses involving three parents were utilized to identify 17 and 18 QTLs for grain plumpness and yield, respectively, under drought-prone environments (Obsa et al., 2017). With a high-density genetic map of 3,662 SNP markers generated by GBS approach, a total of five loci and a regulatory factor related to flavonoid synthesis were identified for the economically important purple seed coat trait (Yao et al., 2018).

For disease resistance, various GBS based genetic maps have successfully identified critical QTLs related to powdery mildew and spot blotch. A RIL population with a genetic map length of 1,000 cM was used to identify four candidate genes for powdery mildew resistance on chromosome 2H (Hoseinzadeh et al., 2019). In another study, a susceptible QTL on chromosome 1H for powdery mildew resistance was identified by GBS approach (Goddard et al., 2019). Two QTLs on chromosome 1H and 7H for spot blotch susceptibility were identified from a high-density map and the QTL on chromosome 1H (Qsbs-1H-PI) was found to be a novel allele (Leng et al., 2020).

The one enzyme GBS approach (Elshire et al., 2011) was used to develop high-density genetic maps for the DH population of Oregon Wolfe Barley and Morex × Barke. These genetic maps have been used as a genetic framework to develop the barley physical map, a reference assembly for various breeding and genetic research (Mayer et al., 2012). Similar reference quality anchoring of SNP related contigs was also carried out, which increased the genetically anchored contigs by three times (Mascher et al., 2013).



Genome-Wide Association Studies

GWAS can provide high-resolution mapping by making use of multiple recombination events over many generations (Yu and Buckler, 2006). It is considered as one of the most powerful tools for identifying marker-trait associations using large populations. GWAS have high resolution due to the exploitation of historical recombination events that are limited in bi-parental populations (Zheng et al., 2008). One of the most significant setbacks in GWAS could be the need for large numbers of markers (in millions), depending on the extent of linkage disequilibrium, but GBS is well suited to provide the required high-density markers (Chung et al., 2017). However, for self-pollinated crops like barley and wheat, a few thousand SNPs are usually sufficient to cover the whole genome, given that they have large linkage disequilibrium blocks (Jighly et al., 2015). Another challenge for GWAS is the occurrence of false positives, especially when dealing with complex population structures. However, these false positives can be corrected to some extent by fitting the population structure as covariates using different models like the mixed linear model, which is capable of handling a single locus at a given time, whereas models such as, ISIS EM-BLASSO (Tamba et al., 2017), LASSO (Xu et al., 2017) and FarmCPU (Liu et al., 2016) are capable of handling multiple locus, simultaneously (Kaler and Purcell, 2019). Despite these challenges, GWAS remains a powerful method to understand the genetic architecture of traits.

Plant Genetics and Crop Plant Research institute in Germany (IPK) applied a two enzyme GBS approach to identify genomic regions conferring row type, hull adherence, awn roughness on a barley core collection. With the GWAS approach, QTL for awn roughness and lateral spikelet fertility were identified precisely on chromosome 1H, 5H and 7H (Milner et al., 2019). A study was conducted using GBS data from advanced barley lines and found that adopting an integrated approach involving both single and multi-locus GWAS had a better performance while detecting QTLs for complex traits (Abed and Belzile, 2019).



Genomic Selection

Genomic selection (GS) is a rapidly evolving approach in breeding to predict the genetic value of individuals for selection. This technique was developed to tackle the challenges occurring in both linkage mapping and GWAS while dealing with complex traits particularly governed by minor QTLs (Srivastava et al., 2020) and traits showing high genotype by environment interaction (Jighly et al., 2021). In other words, GS is a more comprehensive version of marker-assisted selection (MAS), where DNA markers covering the whole genome are utilized to select superior genotypes. Once the genomic selection model is established, genotypic data can be used to select for or against lines without phenotyping (Heffner et al., 2009). In GS, a prediction model is developed by using both phenotypic and genotypic information collected from a training or reference population, and then this model is validated by independent testing populations. The double-checked trained population is utilized to formulate a standardized genomic estimated breeding value (GEBV), estimated as the sum of all the genotyped marker effects. The standard GEBV value of the trained model can be used to calculate the GEBV of an untrained population for selection without phenotyping (Contaldi et al., 2021). The high-density, genome-wide data achieved by GBS method is well suited to calculate the sum of marker effects. The genetic maps constructed using GBS provide a guide for the genomic selection of economically important traits and expand the capacity to detect genetic loci with minor effects on a phenotype. Raw GBS reads were retrieved from the European Nucleotide Archive, and 532,253 pan-genome sequence anchors were identified based on the presence/absence of tags. These tags are essential to identify desirable genomic regions within in a species and this information can be effectively used in genomic selection and improvement of barley (Gao et al., 2020).



Diversity Studies

Analysis of DNA sequence variation between individuals is the most efficient way to study the genetic distance among them. This study allows comparisons across different species, or different lines of the same subspecies. Genetic diversity studies based on GBS simplify the complex alignment and related computational challenges that researchers often encounter while working on species with high genetic diversity (Elshire et al., 2011). The genetic relationship and geographical distribution of 16 diverse barley landraces were analyzed using the Roche 454 GS FLX titanium technology and GBS. The application of NGS has provided new information on the available barley genomic resources and revealed the diversity present between the barley landraces from both eastern (Zagros mountains and further east) and western (Fertile Crescent and further west) regions (Fu and Peterson, 2011). In another study, GBS data derived from 21,405 accessions from IPK collection were utilized to understand the population structure of domesticated barley and selected a core set of 1,000 genotypes (Milner et al., 2019). The same core set was used to evaluate the efficiency and effectiveness of both GBS and SNP array platforms. Both platforms were equally good in detecting informative SNPs; however, GBS held an edge over SNP array for the detection of rare alleles in the germplasm collection (Darrier et al., 2019).




CONCLUSION

In the ever-evolving field of genomics, GBS platforms have taken a special place among other sequencing techniques to deliver high-density molecular maps, which are the essential pre-requisite for many advanced breeding studies, such as GWAS and GS, at reduced cost. The concept of genome reduction is the central principle underlying the wider acceptance of GBS, which is highly applicable in crops with large complex genomes, including wheat and barley. GBS works well with crops without any prior reference sequence information, but the availability of a high-quality reference sequence would increase the accuracy manifolds during sequence data curation and allow access to a higher proportion of sequence reads. In the future, standardization of multiple combinations of REs to construct libraries will provide opportunities to increase sequencing coverage. With regard to data analysis, GBS data generated from the existing protocols can be used in the future with the evolution of the computing power of GBS pipelines. The target enrichment based GBS methods have also gained traction; however, the technical complexity associated with these techniques could act as a hurdle in their wider adoption. Moreover, in barley, robust QTL, GWAS and GS studies have been conducted using the data generated from various platforms including GBS; nevertheless, meta-analysis presenting results by combining data from these individual studies are still very limited and need to be extended to encompass a broader scope in coming years. In the wake of climate change, it is now imperative to overcome the bottlenecks in barley breeding by exploiting every advance made in the post-NGS era.



AUTHOR CONTRIBUTIONS

NR, NQ, and MP contributed to the conception and design of the manuscript. NR wrote the manuscript drafts. NQ and MP revised the manuscript and compiled a final draft. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.



FUNDING

This work was supported by the School of Agriculture and Food at the University of Melbourne to MP.



ACKNOWLEDGMENTS

We are grateful to Melissa Bain and Abdulqader Jighly for their critical reading and valuable comments on this manuscript. We thank the Research Training Program (RTP) International PhD scholarship for providing financial support to NR. All the figures were created with BioRender.com.



FOOTNOTES
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We report a novel approach for establishing the number and position of CO events in individual homozygous inbred plants by combining low level EMS mutagenesis, speed breeding, whole genome shotgun sequencing and sliding window analysis of the induced molecular variant data. We demonstrate the approach by exploring CO frequency and distribution in self-fertilised progeny of the inbred barley cultivar Bowman and compare these observations to similar data obtained from a Bowman nearly isogenic line (BW230 Hvmlh3) containing a mutation in the DNA mismatch repair gene HvMLH3. We have previously shown that Hvmlh3 decreases both plant fertility and recombination by ~50%. We compare our results to those from previously published traditional genetic analysis of F3 families derived from multiple F2 lines containing WT or mutant alleles of HvMLH3, revealing a high level of correspondence between analyses. We discuss possible applications of the approach in streamlining the assessment of recombination in plant meiosis research.
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Introduction

Meiotic recombination in plants is a key element in the drive to increase genetic diversity in plant breeding and genetics. During meiosis homologous chromosomes pair and DNA double stranded breaks (DSB), introduced throughout the genome by the topo-isomerase-related enzyme SPO11, define the possible spectrum of crossover (CO) positions within the genome (Higgins et al., 2014). However, the repair of only approximately 5% of these DSBs result in CO formation and the exchange of parental genetic materials along chromosomes. The remaining breaks are resolved as non-CO events (Osman et al., 2011). Successful crossing over is essential for proper chromosome segregation and shuffling of the genetic variation that is subsequently transmitted to the next generation (Altendorfer et al., 2020). However, in most large genome cereal crops such as barley, COs are highly skewed towards the telomeric ends of the chromosomes. The vast peri-centromeric regions which represent around 22% of individual chromosomes and contain 8% of the genes (Mascher et al., 2017) rarely, if ever recombine. Understanding and manipulating the frequency and distribution of successful COs has become a major objective in plant biology in general as this holds a potentially significant impact in practical crop improvement by releasing currently inaccessible genetic diversity, and hopefully leading to an increase in the rate of genetic gain (Able et al., 2009).

To establish the impact that either genetic perturbations (e.g., Colas et al., 2019) or imposed environmental stresses (e.g., Phillips et al., 2015) have on CO frequency and distribution, a host of approaches have been adopted over time by the plant research community. Cytological maps derived from the visualisation of COs (Sybenga, 1965; Anderson et al., 2003; Phillips et al., 2013), genetic maps assembled from molecular markers segregating in bi-parental populations (Colas et al., 2016), tetrad analysis (Copenhaver et al., 2000) and fluorescent protein-tagged loci expressed in pollen (Berchowitz and Copenhaver, 2008) or seed (Melamed-Bessudo et al., 2005) have proved informative in a variety of experimental scenarios. In addition, a range of genetic approaches for detecting polymorphisms between parental genotypes have been applied to assess the inheritance of parent-specific DNA polymorphisms in the male gametes (pollen) from F1 hybrid plants (e.g., Drouaud and Mezard, 2011; Khademian et al., 2013; Dreissig et al., 2015). Today, a combination of informational (e.g., genomic reference sequences) and technological (e.g., cell sorting, next generation sequencing) advances mean these methods have progressed to the point where whole genome short read or linked-read sequencing of high molecular weight DNA can provide an accurate picture of genome-wide CO frequency and distribution in populations of individual (Dreissig et al., 2017) or pooled gametes (Sun et al., 2019) or individual plants from populations segregating for chemically induced sequence variants (Blary et al., 2018; Lian et al., 2022).

However, all of these approaches rely first on the generation of hybrids between suitably diverse parental genotypes where divergent sequences at either the nucleotide or structural level (e.g., inversions or PAVs) may influence the observed outcomes. While they successfully catalogue and contextualise CO events at high resolution, they are constrained to chromosomal mosaics observed in the surviving genotypes of a population of progeny plants. For example, Dreissig et al. (2017) demonstrated that abundant segregation distortion observed in a doubled haploid barley population was completely absent in F1 pollen from the same parental lines allowing them to conclude that meiosis alone was not the main cause of the observed distortion.

Given we work on barley, a large genome (4.3Gb) inbreeding crop plant with a six-month generation time, we were motivated to explore a more cost and time-effective approach for monitoring productive recombination events. We wanted to take advantage of recently available reference genome information (Monat et al., 2019), new sequencing technologies and accelerated plant development (Ghosh et al., 2018; Watson et al., 2018). A major objective was to improve our efficiency at practically exploring crossing over in WT parental and derived mutant genotypes, or the impact of applying environmental treatments. We wanted to overcome the time consuming need to make sexual hybrids between diverse parents and avoid assessing crossing over in F3 families derived from multiple carefully chosen F2 individuals using current molecular marker technologies (e.g., SNP-arrays, GBS) as described previously (Colas et al., 2016). Here we report a new approach for establishing the number and position of CO events in individual homozygous inbred lines of barley.



Materials and methods


Mutagenesis and speed breeding conditions

Bowman and BW230 (Hvmlh3) seeds were treated with 25 mM Ethyl methanesulfonate EMS exactly as described previously (Caldwell et al., 2004). 35 M1 seeds for each genotype were sown and the M1 plants grown in a growth cabinet under speed breeding conditions with light conditions set at 2 h dark and 22 h light. The threshold for lighting was 200 μmol.m-2-1.s. Night temperature was set to 14°C and day temperature to 18°C. Plants were grown to maturity and M2 seeds harvested. Multiple seeds were sown and again grown under speed breeding conditions as described above. One individual for each genotype, that was indistinguishable from its respective parental line, was selected for whole genome shotgun sequencing as the M2 parent. These plants were grown to maturity and the M3 seeds harvested. 55 M3 seeds from each of the two M2 plants (Bowman and BW230), respectively, were germinated under normal glass house conditions of 16 h light at 20°C (nominal) and 8 h night at 15°C (nominal).



DNA extraction and sequencing

Young, 14 days old, barley leaves were collected, frozen in liquid nitrogen, and stored at-80C. DNA extractions were carried out using Macherey-Nagel NucleoSpin Plant II Maxi kit (Germany) as per manufacturer’s instructions. Between 1.5 and 2 g of frozen leaf tissue was used per sample. DNA was sent on dry ice to Novogene for library preparation and whole genome shotgun sequencing. All samples were sequenced at Novogene using Illumina short reads 2x150bp on a NovaSeq 6,000. The sequencing depth was adjusted during the experiment. The two ‘parental’ M2 plants were sequenced to a depth of 15x coverage. Initially, 13 M3 plants derived from each M2 genotype were sequenced to a depth of 2x coverage. Subsequently, 12 different M3 plants from each M2 genotype were sequenced to a depth of 4x coverage.



Bioinformatics analysis


Data availability statement

All scripts are available through the following GiHub repository: https://github.com/SchreiberM/Measuring-frequency-and-distribution-of-meiotic-cross-overs. The raw data has been deposited at the European Nucleotide Archive (ENA): PRJEB52593 (https://www.ebi.ac.uk/ena/browser/view/PRJEB52593).



Mapping and variant calling

Reads were mapped against Morex V2 (Monat et al., 2019) with default parameters of bwa mem (Li and Durbin, 2009; Li, 2013). Reads with more than 6 mismatches per read were removed, the remaining reads sorted, and duplicates marked using sambamba (Tarasov et al., 2015). Following the previous GATK3 best practice pipeline indel realignment was followed by two rounds of haplotype calling with a filtering and recalibration step in between (McKenna et al., 2010; DePristo et al., 2011). Freebayes was used for variant calling combining one M2 individual (either BW230.M2 or Bowman.M2) with an available whole genome shotgun dataset of Bowman wildtype (our unpublished data). Variant calling was done with a minimum coverage of 1, a minimum alternate fraction of 0, a minimum alternate count of 1 and a mapping quality of 30 (Garrison, 2012). Freebayes was also run with legacy mode (−-legacy-gls) and without any population priors. The two resulting variant files from BW230.M2 and Bowman.M2 were compared and all identical sites between the two files removed. This filtering step removed any background variation due to cultivar differences (Morex ‘reference’ versus Bowman ‘test’).

In a last filtering step, using more stringent filtering (minimum quality of 30, read depth of 3 for homozygous and read depth of 10 for heterozygous, an alternate count of at least 3, a total depth below 100) only high confidence SNPs were kept. In addition, we used very specific filtering steps reflecting the experimental setup. Firstly: we only kept SNPs that were heterozygous in the M2 but homozygous in the Bowman wildtype; secondly: we filtered for most likely EMS-induced mutations G - > A or C - > T; thirdly: we removed the previously defined introgressed region around HvMLH3 on 5H and a short introgression at the end of 4H identified previously from genotypic analysis of BW230 and Bowman. For statistical analysis and identification of the effect of background mutations we included SNPs which had homozygous alternative alleles in the M2 but homozygous wildtype background in Bowman. SNPeff (Cingolani et al., 2012) and PROVEAN (Choi et al., 2012; Choi and Chan, 2015) were used to study the effect of the mutations. For SNPeff, the nonsense mutations introducing early stop codons were extracted. To predict the impact of amino acid changes from PROVEAN only sequences with at least 30 related sequences as support were considered and highlighted as deleterious if the cut-off score was below-4.1 which corresponds to a sensitivity prediction of above 90%.1

The heterozygous SNPs were further filtered for equal distribution and same number of SNPs with PLINK (Purcell et al., 2007). Overrepresented regions were thinned with --bp-space 10,000 and afterwards the whole dataset was reduced to 20,000 SNP markers for each dataset using –thin-count 20,000.

For mapping the M3 sequencing reads, the same parameters as described above were used. This time variant calling was carried out with Freebayes, using the previously identified and filtered heterozygous positions as an input file and only calling variants at those locations in the genome. For the individuals sequenced to a 2x coverage the SNPs were filtered for a read depth of 2 while for the individuals sequenced to a 4x coverage the SNPs were filtered for a read depth of 4 before processing further.



Switches from heterozygosity to homozygosity

We used a sliding window approach to identify clear switches from heterozygosity to homozygosity along each chromosome. To take account of the fact that each barley chromosome varies in length and distribution of genomic features (Data Figure 5 in Mascher et al., 2017) we first divided each chromosome into segments designed to take account of highly skewed patterns of recombination. We set the physical size of the sliding windows empirically; largest towards the centre of each chromosome (where recombination is virtually absent) and smallest towards the telomeric ends, providing greater resolution in highly recombinogenic regions. Double CO with less than four variants as support were not considered in the analysis. Full details of the approach are given in the GitHub repository under Sliding_window_approach.r. As a heterozygous call was more unlikely to be identified than a homozygous call as two alternative allele reads are necessary to score in comparison with only one, a weighted median was used for each window size with the weight of the heterozygous mutations set to 1.5 and the weight of the homozygous mutations to 1, choosing the lowest possible weight that removed background noise. For five samples (Bowman_EMS_M3_4, Bowman_EMS_M3_9, Bowman_EMS_M3_11, BW230_EMS_M3_6, BW230_EMS_M3_12) from the 2x sequence coverage data this weight was increased to 3 for the heterozygous mutations due to a higher background noise. The sliding window script was written in R (R Core Team, 2021). Full details and the script itself can be found in the above-mentioned GitHub repository.





Results

We mutagenised M0 seeds of Bowman and BW230 (Hvmlh3), a Bowman near isogenic line carrying a mutation in the HvMLH3 gene, with EMS. The resulting M1 plants were expected to be chimeric, with a different suite of mutations in different progenitor cell files. From the treated M1 seeds 71.43% germinated for Bowman and produced M2 seeds and 62.86% germinated for BW230 and produced M2 seeds. Barley has been previously determined to have an average Genetically Effective Cell Number (GECN) of six (i.e., the number of cells within the shoot meristem of the M0 seed that will ultimately contribute to the seed output of the M1 plants), which will lead to an expected segregation ratio for each EMS induced SNP of 21 WT: 2 heterozygous: 1 homozygous mutant (i.e., 23:1) in a population of M2 plants (Hodgdon et al., 1981). However, in each individual M2 plant, EMS induced SNPs should be present at a frequency of 1:2:1 (WT: heterozygous: mutant). Initially, multiple M2 seeds of each genotype were chosen and grown under speed breeding conditions. Leaf material was harvested from all M2 plants which were grown to maturity while monitoring plant health. All M2 plants were indistinguishable from their parental lines. One individual M2 plant was then chosen from each genotype (Bowman and BW230) and seeds harvested. DNA was extracted from the leaf material previously collected from these two plants and used for whole genome shotgun (WGS) sequencing to a depth of 15x coverage in order to construct a reference variant file and provide sequence context of SNPs introduced by the EMS treatment. Focusing only on the heterozygous SNPs in a single M2 plant then allowed us to determine changes in SNP phase (i.e., the switch from heterozygous to homozygous WT or Mutant allele) in the M3 families and therefore pinpoint CO positions (Figure 1).

[image: Figure 1]

FIGURE 1
 Experimental setup. (A) Overview from ethyl methanesulfonate (EMS) treatement to whole genome shotgun sequencing (WGS) (B) Counting of cross overs (CO) in the M3 plant.


WGS reads were mapped against the Morex V2 genome reference (Monat et al., 2019), duplicated reads removed and variant calling done by filtering for EMS introduced mutations of G to A or C to T (see Material and Methods). At this stage the phase of individual SNPs was unknown. We used SNPeff to predict the effect of the mutations and determine mutation frequency in the M2. For Bowman.M2 37,493 SNPs were identified with 98.9% of those being heterozygous. The mutation frequency for the homozygous mutations was 1 variant per 10 Mb, while the frequency for the heterozygous mutations was 1 every 116 kb. Of the homozygous mutations only one exon and two intron events were identified with the remaining variants being intergenic. Looking at the heterozygous mutations showed that only 1% of all heterozygous mutations were exonic and 1% intronic, while the remaining SNPs were intergenic. Of the exonic mutations 8 were predicted to cause a nonsense mutation (Table 1).



TABLE 1 Nonsense gene mutations in the M2 plants.
[image: Table1]

For BW230.M2 25,303 SNPs were identified with 97.1% of those being heterozygous. There were small differences between BW230.M2 and Bowman.M2, with homozygous mutations identified at a frequency of 1 variant per 5 Mb and heterozygous mutations at a frequency of 1 variant every 175 kb. Of the homozygous mutations 7 were in exons and 6 in introns while the remaining were intergenic. The distribution of the heterozygous variants across the genome was almost identical to Bowman.M2 with 1.1% of the variants located in the exons and another 1.1% located in the introns. The remaining SNPs were intergenic. Of the exonic SNPs, 5 were predicted as nonsense mutations (Table 1).

PROVEAN was used to predict the impact of amino acid changes on the protein function. A total of 392 genes were checked across Bowman.M2 and BW230.M2. For 55 of those, which were all heterozygous in the M2, potentially deleterious amino acid changes were predicted (Supplementary Table 1).

As there was a difference in total number of heterozygous SNPs between Bowman.M2 and BW230.M2 the dataset was first thinned by using Plink to maintain 1 SNP every 10 kb and achieve a more equal distribution along the genome. We further reduced the whole dataset to 20,000 heterozygous SNPs of similar depth and distribution between the two genotypes. The distribution of the SNPs across the genome is shown in Figure 2. As the HvMLH3 gene is located on the long arm of chromosome 5H as part of an introgression that carries a spontaneous Hvmlh3 mutation in the donor Betzes, this region and another introgressed region at the end of chromosome 4H (identified previously by genotyping with the barley 50 K SNP array) were not considered for the final variant dataset in BW230.

[image: Figure 2]

FIGURE 2
 SNP distribution across the seven barley chromosomes, a) Bowman and b) BW230. The introgressed regions have been removed and can be seen as gaps on chromosome 5H and at the end of chromosome 4H.


We grew 50 seeds from each M2 genotype (i.e., the M3 generation) and initially sequenced 13 from each to a depth of 2×. After mapping and variant calling the SNPs were filtered for those already identified in the M2. In a first approach we plotted the unfiltered SNP zygosity along the chromosomes (raw plots in Supplementary material 1). The resulting plots were noisy, and clear switches between homozygous and heterozygous stretches were difficult to determine (as described in Figure 1). This is due to a combination of low sequencing depth, mismapping and sequencing errors. To be able to call a heterozygous SNP at least two reads are necessary one with the reference allele and one with the alternative allele. With a low sequencing read depth of 2 there will be many cases with just one read or no read at some positions. Nevertheless, the raw plots already showed regions with more dense heterozygous SNPs in different parts of the chromosome. Therefore, we adopted a sliding window approach to increase the robustness of the genotype calls. Taking the structure of the barley genome into account, we changed the size of the sliding window depending on the position along the chromosome. As most recombination events occur in the telomeric ends of the chromosomes we used a smaller physical window size towards the telomeric ends (average 14.3 Mbp) while using a larger window size in the pericentromeric and centromeric part (average 42.0 Mbp) of the genome (an explanation of how we established window sizes is given in the methods and the script provided in the GitHub repository). Importantly, only one mapped read is sufficient to be called as homozygous while at least two mapped reads containing alternative alleles are needed for a heterozygous call. Thus, noise is more likely to come from homozygous wild type calls. We therefore used a weighted median call across the sliding window, weighing the heterozygous calls as 1.5 in comparison with the homozygous calls as 1. This cleared up the phasing of the SNPs and allowed the straightforward calling of CO events (Figure 3). We then sequenced another 12 plants for each genotype to a depth of 4x to compare if increasing the sequencing depth led to different or improved results.

[image: Figure 3]

FIGURE 3
 Plotted variant calling for Bowman_EMS_M3_18 plant after using the sliding window approach. COs can be counted at the positions where a switch from heterozygous (blue) to homozygous (grey) occurs.


Quality control of the called SNP sites showed that the requested and expected read depth did correspond with the actual read depth (Figure 4). No obvious differences could be observed when comparing the raw data plots between the two different coverages (Supplementary material 1). To determine if there was a qualitative difference between the two coverages, we compared SNP zygosity before and after adjusting based on the sliding window approach. Between 5.7 to 31.2% of the SNP calls were changed from heterozygous to homozygous or vice versa by the sliding window approach with on average 18% of the positions adjusted in the samples with 2x coverage while only 8% of the positions needed to be corrected using the 4x coverage (Figure 5).

[image: Figure 4]

FIGURE 4
 Read depth of the M3 individuals across the pre-called sites from the M2 individuals.


[image: Figure 5]

FIGURE 5
 Percentage of variant sites which remained unmodified (blue) by the sliding window approach and variants with an adjusted zygosity call (orange) by the sliding window approach. Individuals 1–13 were sequenced to a depth of 2x coverage, while individuals 14–25 were sequenced to a 4× coverage read depth.


In total 25 individuals for Bowman.M3 and 25 individuals for BW230.M3 were analysed as described above and shown in Figure 3 (all remaining plots with the CO positions highlighted in Supplementary material 1). Combining all results and calculating the number of CO for each individual plant led to an average 20.16 ± 3.1 COs in Bowman.M3 and 10.64 ± 2.9 CO for BW230.M3 (Figure 6C). Plotting the average number of CO along the physical chromosome map split into 2 per cent intervals showed a higher number of COs towards the telomeric ends and a pericentromeric region almost completely depleted of COs (Figure 6A). For some of the individual chromosomes (Supplementary material 2) the first 2% of the chromosomes had a higher number of CO events in the BW230 in comparison with the wildtype, but for the remaining 98% the wildtype showed a higher number of CO.

[image: Figure 6]

FIGURE 6
 Number of CO events for the 175 chromosomes of 25 Bowman M3 individuals and 25 BW230 M3 individuals, respectively. (A) Average number of CO across all chromosomes per 2% intervals along the physical map. (B) Total counts of CO per individual chromosome. (C) Total number of CO per individual plant. Average number of CO for Bowman wildtype (blue) was 20.16 ± 3.1 and a median of 20. Average number of CO for BW230 was 10.64 ± 2.9 and a median of 10.


Of the 175 WT chromosomes analysed, 27 revealed one CO event, 38 two, 47 three, 35 four, 12 five, 5 six and 4 seven CO events, numbers reflecting recombination in both male and female gametes. This compared to 56 with one CO event, 59 with two, 17 with three, 9 with four and 1 with five CO events in the 175 Hvmlh3 mutant chromosomes analysed. 7 of the wildtype chromosomes and 33 of the mutant chromosomes had no CO events (Figure 6B).



Discussion

In an inbreeding crop plant such as barley, the routine approach to compare recombination rate and distribution in WT and meiotic mutants or disruptive transgenics has been to construct and compare genetic maps using high density genetic marker analysis (Colas et al., 2016, 2019; Arrieta et al., 2021a). The approach generally uses the F3 progeny from multiple F2 individuals, that are homozygous for either WT or mutant alleles at the gene of interest, which are derived from a heterozygous F1 hybrid constructed from a cross between genetically diverse parents. The use of an F1 hybrid is required to introduce the genome-wide polymorphisms that enable genetic analysis. F3 families from multiple F2 individuals are required to cover all polymorphic regions of the parental genomes, and genome-wide segregation patterns can thus be monitored within the progeny. Any regions that are identical by descent are excluded from the analysis. A comparison of the resulting genetic maps reveals the extent to which the mutant allele has either increased or decreased recombination and/or altered the distribution of recombination events. Being monitored in the living progeny from a sexual cross, all CO events observed in the populations are derived from viable gametes that have been subject to gametic or zygotic selection. While informative, this genetic approach is relatively slow, requires at least two sexual generations, and is expensive due to the need for multiple rounds of genotypic analysis. Recombination in heterozygous F1’s may also be influenced by biological issues such as sequence diversity and segregation distortion in bi-parental populations from diverse origins (e.g., Salome et al., 2012). Furthermore, investigations in similar or identical inbred lines, for example between a NIL and its recurrent parent, or a treatment vs. control, are not suited to this traditional form of analysis.

Here we developed and tested an approach that maintains the biological constraints of observing recombination in viable gametes while also allowing analysis of recombination in essentially homozygous inbred lines. We assumed that the resulting data would provide more biologically accurate measures of recombination than those obtained by either high throughput sequence variation analysis of collections of individual gametic cells (Khademian et al., 2013; Dreissig et al., 2017; Sun et al., 2019), scoring recombination in specific genetic/physical intervals through pollen or seed-based assays (Melamed-Bessudo et al., 2005; Berchowitz and Copenhaver, 2008) or even the analysis of multiple F3 families derived from appropriate F2’s (as described above). We demonstrate the approach and test our assumptions on small populations of an inbred barley genotype cv. Bowman and a derived NIL (BW230) that contains a mutation in the DNA mismatch repair protein HvMLH3, which we have previously shown through traditional genetic analysis to reduce genome-wide recombination by approximately 50% in a population of viable mlh3/mlh3 progeny (Colas et al., 2016). This allowed a direct comparison of recombination distribution and frequency observed independently in a meiotic mutant and its isogenic WT parent, and also a comparison with recombination measured in the F3 progeny from a traditional intercross obtained from using the HvMLH3 mutant (Hvmlh3/mlh3) and a WT (Mlh3/Mlh3) as parents.

The barley genome is relatively large at ~4.3Gb and has been previously characterised both cytogenetically and using molecular markers as having extensive non-recombining pericentromeric regions covering roughly half of each chromosome (Mascher et al., 2017). In addition, measures of haplotype diversity reveal that these pericentromeric regions can be highly divergent. We were therefore interested to establish whether the observed lack of recombination in these regions was possibly the result of this extensive sequence divergence. We did not observe an increase in recombination in the pericentromeric regions despite them being identical at the sequence level.

We treated homozygous WT and isogenic mlh3/mlh3 mutant seed with a low level of EMS (25 mM), which we had previously established induced few morphological or developmental phenotypes (Caldwell et al., 2004; Schreiber et al., 2019). Then, 15X coverage short read Illumina Sequencing of individual M2 seedlings followed by sequencing individual M3 progeny to 2X or 4X allowed us to catalogue the majority the induced polymorphisms. Only around 1% of the induced mutations were found in coding sequences and > 97% of the mutations were heterozygous. We found none in processes that were obviously related to gametogenesis, meiosis or recombination, a finding reflected in the chosen M2 plants which were phenotypically indistinguishable from their parental lines.

While the raw SNP data was noisy in terms of identifying true recombination events, incorporating a sliding window in the analysis of the low coverage data improved robustness and in combination with 2X coverage of individual progeny was sufficient to reliably score CO events. Recombination analysis then relies simply on counting the number of switches from heterozygosity to homozygosity in the M3 progeny. We then plotted their physical distribution against the barley genome reference (Mascher et al., 2017; Monat et al., 2019). Combining results from all individuals, the M3 revealed an average of 20.16 ± 3.1 CO in Bowman and 10.64 ± 2.9 CO in BW230 M3 confirming the negative impact of mlh3/mlh3 on CO as shown previously (Colas et al., 2016). Despite the numbers being relatively small (i.e., 175 chromosomes in each case) they are close to the mean cytological chiasma counts of 18.4 ± 1.3 for WT and 9.2 ± 2.1 for Hvmlh3 (Colas et al., 2016) and the CO estimates derived from genetic mapping of 19.7 for WT and 7.1 for Hvmlh3 (Arrieta et al., 2021a) as well as being congruent with the mean CO numbers of 21.8 in WT populations estimated previously from genetic maps (Close et al., 2009) suggesting few issues associated with comparing carefully conducted cytological analyses (despite the difficulties of resolution), and with traditional genetic analyses. While the number of CO is reduced in Hvmlh3 in comparison with WT the distribution along the chromosome does not seem to be affected (Figure 6A) which is again comparable to what has been observed by Colas et al. (2016) and Arrieta et al. (2021a) and to expectations given the role of MLH3 (Colas et al., 2016).

Making direct comparisons between our data and that from tetrad, fluorescent reporter or pollen-based sequencing assays are more problematic (Dreissig et al., 2015, 2017). Comparison with the latter, as it was also conducted in barley, is probably most appropriate. This approach involved low coverage (ave. 0.1X) short read sequencing of 40 quasi-random PCR-amplified DNA’s from individual flow-sorted pollen nuclei from a heterozygous F1 plant. The resulting data was effective in summarising the recombination landscape, exploring the origins of segregation distortion in doubled haploid populations and investigating CO interference in the barley genome (albeit only for male meiosis). Technically, however, it requires specialist equipment and expertise for flow sorting pollen nuclei originating from F1 hybrid plants, access to a reference genome sequence of at least one of the parental genotypes (cv. Morex, Monat et al., 2019) and a database of linearly ordered SNPs, in this case previously ascertained in a genetic population derived from the same parental genotypes that were used to generate the F1 pollen (ie. cv. Morex and cv. Barke, Mascher et al., 2013). In the approach we describe here, all heterozygous SNPs were ascertained directly in cv. Bowman. As in Dreissig et al. (2017) they were physically ordered along each chromosome according to the same reference barley genome (cv. Morex). Given the relatively frequent occurrence of small inversions or rearrangements in the barley genome this could potentially result in an inflated assignment of physically close double recombinants, but this was not explicitly tested here. A reference standard genome assembly of cv. Bowman will be required to explore this further.

An obvious question about the approach we describe here is ‘when would it be attractive to use?’ We give two examples. First, and continuing on the theme of using barley, large collections of phenotypically characterised homozygous ‘semi-fertile’ (or ‘desynaptic’) mutants are stored in international genebanks or local collections (e.g., we hold a collection of around 300 semi-fertile barley mutants in two different cultivated genetic backgrounds). As ‘semi-fertility’ is often associated with mutations in genes affecting meiosis, an obvious question for us is whether CO frequency or distribution is increased or decreased in some of these lines, and whether this will have practical value. Second, we know that different stresses or treatments (e.g., temperature, nutrients) can affect recombination and exploring these effects at the genetic level is a routine question (Arrieta et al., 2021b). While this could be done in both cases by the traditional approach of analysing the inheritance of genetic markers in contrasting F3 families derived from F1 hybrid seed, we suggest that our approach can streamline this analysis while avoiding biological issues resulting from genotypic effects (e.g., genotype dependent segregation distortion, levels of variation, identity by descent, lethal alleles, etc.). It can also be time and resource efficient as only few plants are grown to maturity. We start with a small number of seed and mutation induction is completed in just over a day. By growing primary M1 plants under speed breeding conditions, M2 seed can be available within 60 days. Growth of a small number of individual M2, short read sequencing, and analysing the data can be done while the M2 grow and set M3 seed. DNA from germinated M3 seed can be extracted in the lab 4–6 days after imbibition and molecular analysis (DNA isolation, library construction and sequencing followed by bioinformatic analysis) conducted as appropriate. We used largely standard molecular biology approaches throughout including commercial kits for library preparation and sequencing, and for the 4.3Gb barley genome we found the process both faster and logistically simpler. However, using standard commercial kits and approaches it was not significantly cheaper than the traditional genetic approach we have used in the past. We nevertheless we expect that bespoke sequencing library preparation protocols avoiding the use of commercial kits, higher multiplexing, instruments with higher sequencing throughput and use on plants with smaller genomes will all contribute to driving down these costs. For inbred diploid barley, comparing 2x and 4x sequencing depths, 2x coverage was sufficient when coupled with adjustments to the sliding window analysis.



Conclusion

We show that introducing a low level of polymorphisms into the genomes of diploid homozygous inbred barley lines using EMS combined with low coverage whole genome shotgun sequencing and sliding window data analysis of induced variants in M3 populations can be used to determine CO numbers and recombination rate in essentially inbred lines. While we analysed a relatively small number of chromosomes (i.e., 175) in both WT and meiotic mutant plants, this was sufficient to demonstrate CO frequency and distribution and the impact of a homozygous mutation in HvMLH3. We found that the outputs of our analyses were directly comparable to those obtained using routine genetic analysis of segregating F3 families. The major advantage is that we achieved this both quickly and logistically simply, and in the absence of potentially complicating biological (e.g., doubled haploidy, pollen sequencing) or genotypic (e.g., deleterious allelic combinations) effects that in certain scenarios could influence our overall conclusions.
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In cereals with hollow internodes, lodging resistance is influenced by morphological characteristics such as internode diameter and culm wall thickness. Despite their relevance, knowledge of the genetic control of these traits and their relationship with lodging is lacking in temperate cereals such as barley. To fill this gap, we developed an image analysis–based protocol to accurately phenotype culm diameters and culm wall thickness across 261 barley accessions. Analysis of culm trait data collected from field trials in seven different environments revealed high heritability values (>50%) for most traits except thickness and stiffness, as well as genotype-by-environment interactions. The collection was structured mainly according to row-type, which had a confounding effect on culm traits as evidenced by phenotypic correlations. Within both row-type subsets, outer diameter and section modulus showed significant negative correlations with lodging (<−0.52 and <−0.45, respectively), but no correlation with plant height, indicating the possibility of improving lodging resistance independent of plant height. Using 50k iSelect SNP genotyping data, we conducted multi-environment genome-wide association studies using mixed model approach across the whole panel and row-type subsets: we identified a total of 192 quantitative trait loci (QTLs) for the studied traits, including subpopulation-specific QTLs and 21 main effect loci for culm diameter and/or section modulus showing effects on lodging without impacting plant height. Providing insights into the genetic architecture of culm morphology in barley and the possible role of candidate genes involved in hormone and cell wall–related pathways, this work supports the potential of loci underpinning culm features to improve lodging resistance and increase barley yield stability under changing environments.
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culm morphology, image-analysis, lodging, multi-environment GWAS, Hordeum vulgare, barley


Introduction

Selection of desired plant architecture traits has represented a driving force in crop domestication and breeding. In cereals, one of the most paradigmatic examples is offered by the widespread introduction of semi-dwarfing genes in the modern varieties of the Green Revolution. When high fertilizer inputs were applied, traditional varieties elongated and lodged, i.e., fell over, leading to major losses in grain yields (Islam et al., 2007; Berry, 2013; Piñera-Chavez et al., 2016). To avoid this problem, breeders developed new semi-dwarf varieties with reduced plant height and sturdy stems, improving lodging resistance and crop production (Khush, 2001; Chandler and Harding, 2013). Several semi-dwarfing genes are involved in the pathways of gibberellins (GA), brassinosteroids (BR), phytohormones that play a major role in stem elongation (Sasaki et al., 2002; Kuczyńska et al., 2013). Examples of alleles deployed in breeding include loss-of-function mutations of the rice (Oryza sativa) semidwarf (SD1) locus, encoding a OsGA20ox2 involved in GA biosynthesis (Sasaki et al., 2002). In wheat (Triticum aestivum), mutants of Reduced Height-1 (Rht) genes are responsible for the expression of mutated forms of DELLA GA signaling repressor proteins (Peng et al., 1999). In barley (Hordeum vulgare), semi-dwarf 1 (sdw1) and semi-brachytic 1 (uzu1) mutant alleles were widely used in breeding programs (Kuczyńska et al., 2013; Dockter and Hansson, 2015). Barley Sdw1 encodes a GA 20-oxidase (like rice SD1), while a missense mutation in the BR receptor gene HvBRI1 causes the uzu phenotype (Chono et al., 2003; Kuczynska and Wyka, 2011). Despite providing yield gains, some semi-dwarfing alleles have been associated with negative pleiotropic effects such as temperature sensitivity, late flowering, and reduced grain quality (Rajkumara, 2008; Okuno et al., 2014).

Changes in climatic conditions are predicted to increase the intensity and frequency of storms, hail, and heavy rains (Lobell et al., 2011), the major causes of lodging impacting crop productivity (Berry and Spink, 2012; Berry, 2013). In cereals such as rice, wheat, and barley, the stem or culm consists of alternating solid nodes and hollow internodes. Three different types of lodging are known: culm bending, culm breaking, and root lodging (Hirano et al., 2017a). Breaking-type lodging is more serious than bending type because bent culms are still able to transport photosynthetic assimilates, which are necessary for plant recovery and grain filling, from the leaves to the panicles. Since cereal height cannot be reduced below a certain point, the improvement of lodging resistance and, therefore, yield requires the identification and the use of other important traits (Berry et al., 2015; Dawson et al., 2015; Hirano et al., 2017a; Shah et al., 2019).

Barley is one of the most important crops worldwide. Due to its intrinsic plasticity and adaptability, barley can be cultivated in areas not suited to maize and wheat, especially where the climatic conditions are cool and/or dry. Barley varieties can be divided into two-row and six-row types. In two-row barley, the central spikelet of each triplet on the rachis is fertile, while the other two are reduced and do not develop. Mutations of the VRS1 gene determine the fertility of these lateral spikelets to produce six-row barleys (Komatsuda et al., 2007) and have pleiotropic effects on a number of morphological traits (Liller et al., 2015).

Barley production can be lowered from 4 to 65% by lodging (Jedel and Helm, 1991; Sameri et al., 2009). While agricultural practices play an important role (Cai et al., 2019), the occurrence of culm bending/breaking lodging events is determined mainly by two factors: (1) the force exerted on the culm (e.g., wind-induced forces or panicle weight) (Pinthus, 1974) and (2) the mechanical resistance of the stem determined by composition and morphology (Samadi et al., 2019).

For example, in cereals with hollow internodes such as barley and rice, lodging resistance is influenced by morphological characteristics such as internode diameter and culm wall thickness (Samadi et al., 2019; Zhang et al., 2020). Wider culm diameter and thickness were shown to improve lodging resistance (e.g., in wheat) (Zuber et al., 1999). Berry et al. (2007) identified increased culm diameter and material strength and reduced wall width as the ideal combination of traits to make lodging-resistant wheat with minor impact on yield potential. Also, a stronger culm may help to improve yield by allowing increased nutritional inputs. Despite the relevance of these traits, knowledge of the genetic control of culm diameter and culm wall thickness is largely limited to studies in rice. A rice mutant with a larger stem diameter and thickness called smos1 (small organ size) exhibits altered cell wall composition and is less prone to lodging (Hirano et al., 2014). The SMOS1 gene encodes an APETALA2 (AP2)-type transcription factor (Aya et al., 2014; Hirano et al., 2014) that interacts with a GRAS transcription factor encoded by SMOS2/DLT to mediate cross-talk between auxin and BR signaling and regulate various culm morphology features (Hirano et al., 2017b). In rice cultivar Habataki, a variety with improved yield and large culms, two quantitative trait loci (QTLs) have been associated with culm architecture: STRONG CULM1 (SCM1) and SCM2/APO1 (ABERRANT PANICLE ORGANIZATION1) were, respectively, identified on chromosome 1 and chromosome 6 (Ookawa et al., 2010). Two additional SCM loci were identified from the high yielding and lodging resistant cultivar Chugoku 117, including SCM3 which was shown to be allelic to the rice TEOSINTE BRANCHED1 (OsTB1)/FINE CULM1 (FC1) gene (Minakuchi et al., 2010; Yano et al., 2015; Cui et al., 2020). Recently, the mediator subunit gene OsMED14_1 was uncovered as a new player in culm and lateral organ development through NARROW LEAF1 (NAL1) gene regulation (Malik et al., 2020).

The lack of efficient and accurate phenotyping protocols has been a limiting factor in genetic dissection of culm architecture, for example, through exploration of wider genetic diversity in germplasm collections. In this context, different solutions emerged in recent years relying on high-throughput phenotyping methods based on the use of new image analysis tools with advanced software and special platforms (Agnew et al., 2017).

So far little is known about the genetic architecture underlying barley culm development and morphology. The aims of this work were to explore natural genetic diversity for culm architecture traits in barley; analyze their correlations with plant height, lodging, and phenology; and identify associated genomic regions and candidate genes through multi-environment genome-wide association studies (GWAS) on a collection of 261 European accessions. To these ends, we developed an image analyses–based protocol to accurately phenotype culm diameter and culm wall thickness and integrated the resulting data with genome-wide marker data from 50k SNP iSelect genotyping (Bayer et al., 2017).



Materials and methods


Plant materials, experimental design, and phenotyping

The germplasm collection considered in this study was composed of 165 two-row and 96 six-row barley lines, including both European cultivars and a set of Spanish landraces grown at two Northern and two Southern European sites, respectively (Supplementary Table 1). Southern sites were winter-sown and for these sites only we included 34 Spanish landraces that had a vernalization requirement. Barley lines were sown for two consecutive harvest years, 2016 and 2017, in four European research stations (Supplementary Table 2), except for the LUKE site (Finland), where data were collected only for 2017. Fields were organized in row and column designs with two complete replicates. Each plot covered on average 2 m2, and all the trials were rainfed – additional details about field trials and sowing densities are presented in Supplementary Table 2.

Zadoks scale was used throughout all trials in order to define the specific developmental stage for sampling and phenotypic measurements (Zadoks et al., 1974). Details of phenotyping methods used to measure the studied traits are described in Supplementary Table 3. Samples were collected from plot centers at Zadoks stage 90 from the second internode of the main culm, which is considered a critical area for lodging resistance (Pinthus, 1974; Berry et al., 2004). A dedicated image analysis–based protocol was developed for the measurement of culm morphological traits (Figure 1), and additional details can be found in Supplementary Method 1.


[image: image]

FIGURE 1
Workflow of phenotyping protocol for culm morphology traits. (A1) Barley specimens were gathered when plants reached Zadoks stage 90 (grain ripening). Three random plants were collected from each plot. (A2) Samples were cleaned and the main culm was selected for each plant. The first internode (I1) was identified as the most basal internode ≥ 1 cm. The second internode (I2) was the one immediately above (white arrowheads indicate the positions of flanking nodes). Five mm tall sections from the center of I2 (red lines) were obtained using a dedicated circular saw. (B) Sections were attached to black A4 cardboard with superglue and organized on the cardboard following the plot order in the field. The upper part of each section was highlighted with a bright white marker in order to enhance the contrast with the blackboard. (C1) Cardboards with I2 sections were scanned using a flat office scanner to obtain 300 dpi color images. (C2) Using the software ImageJ with a dedicated macro the I2 section images were converted to black and white images. (C3i) ImageJ software was able to isolate and measure the medullary cavity of the culm (in red). (C3o) ImageJ software was used to isolate and measure the external outline (in red). ID, inner diameter; OD, outer diameter; and TH, thickness were derived from images 3i and 3o according to formulas in Supplementary Table 3.




Genome-wide single nucleotide polymorphisms genotyping and genotype imputation

The barley germplasm panel was genotyped with the 50k Illumina Infinium iSelect genotyping array (Bayer et al., 2017). Physical positions of markers were based on pseudo-molecule assembly by Monat et al. (2019) as available from the James Hutton Institute GERMINATE SNP platform (Morex v2 Assembly positions)1. Allele calls were made using GenomeStudio Genotyping Module v2.0.2 (Illumina, San Diego, CA, United States). After manual checking, SNP markers with more than two alleles, missing values greater than 10% and minor allele frequency (MAF) < 5% were excluded from analyses, along with unmapped single nucleotide polymorphisms (SNPs). As a result, 36020 SNP markers and 261 genotypes (165 two-row and 96 six-row barleys) remained for the analysis. Missing genotypes were imputed using Beagle v5.0 (Browning et al., 2018, Supplementary Method 2).



Linkage disequilibrium, population structure, and kinship

In many cases, linkage disequilibrium (LD) is influenced by the presence of population structure and relatedness due to demographic and breeding history of the accessions. To take into consideration these factors, the intrachromosomal LD between two SNPs was estimated as squared allele-frequency correlations (r2) using an unbiased (due to non-independence relationships between individuals) estimation implemented in the R package called LDcorSV (Mangin et al., 2012). The markers were thinned to every third SNP, and LD between all pairs of intrachromosomal sites was estimated. Four r2 estimates were calculated: r2 based on raw genotype data, r2 with population structure represented by the principal component analysis (PCA) after scaling the PC scores across a range of zero to one (rs2, see below), r2 with relatedness (rv2; see the next section), and r2 with both population structure and relatedness (rsv2). The r2 values were plotted against the physical distance (Mb), and a non-linear LOESS curve was fitted to investigate the relationship between LD and physical distance. A square root transformation of unlinked r2 values was calculated, and the parametric 95th percentile of the distribution of transformed values was taken as a critical r2 value (Breseghello and Sorrells, 2006). The unlinked r2 refers to the r2 between the SNP loci with a physical distance greater than 50 Mb.

Population structure was estimated using PCA. Prior to PCA, the genotype marker data were filtered out by LD-pruning to generate a pruned dataset of SNPs that are in approximate linkage equilibrium, thus reducing the effect of LD on population structure. The LD-based SNP pruning was conducted with a window size of 100 kb, shifting the window by one SNP at the end of each step. Then, one SNP from a pair of SNPs was removed if their LD was greater than 0.2. Both PCA and LD pruning were conducted in the SNPRelate package in R software (Zheng et al., 2012). To investigate relatedness between individuals, a matrix of genomic relationship was calculated from marker data by the method described by Van Raden (2008), available in the R package snpReady (Granato et al., 2018).



Statistical analysis of phenotypic data

Following a two-step approach, we initially obtained the best linear unbiased estimates (BLUEs; Supplementary Table 1) of each genotype from the analysis of individual environments. Note that in this first step, the genotype effect was treated as fixed to prevent shrinkage in estimated means. BLUEs from this first step became the phenotype input for step two for combined analysis using mixed model to estimate variance components, broad-sense heritability, and subsequent GWAS (Smith et al., 2001). The full description of analytical methods of multi-environment phenotypic data can be found in Supplementary Method 3.



Multi-environment genome-wide association studies analysis

For GWAS, we first extended the general mixed model form of the multi-environment analysis by adding genotype principal components into the fixed part of the model. In addition, we incorporated the genomic relationships into the variance–covariance matrix of random effects to reflect the genetic relatedness between individuals in the population (ΣG⊗K), and allowing a diagonal residual matrix (different residual variances in each trial; R = [image: image]). GWAS was performed using the method proposed by Korte et al. (2012), which can be extended to multi-environment trials to identify QTL/SNPs either with main or interaction effects. The full description of analytical methods of multi-environment GWAS can be found in Supplementary Method 4.



Analysis of co-association network between traits

For each panel, we first organized associations from all traits into a matrix with SNPs (SNPs within the same LD region were treated as a single QTL) in rows and traits in columns, which was filled with cells for corresponding marker effects and association with the corresponding trait (QM, QF, and interaction effects), after correction for population structure and kinship. The resulting matrix was then used to provide a pairwise Pearson correlations matrix between loci. The correlation matrix was subsequently used as an input matrix for network analysis. We used undirected graph networks to visualize submodules of loci using igraph package in R to visualize proximities between loci in a network plot (Csardi and Nepusz, 2006). Nodes (SNPs) were connected by edges if they had a pairwise association above the threshold (r ≥ 0.9) from the similarity matrix described above.




Results


Diversity, population structure, and linkage disequilibrium of the barley panel

The barley panel considered in this study is a collection representing the diversity of European barley from the 20th century and was chosen based on previous geographic and genetic diversity analysis (Tondelli et al., 2013). This panel was supplemented with 57 six-row and five two-row Spanish landraces representing the ecogeographic diversity of barley cultivation in the Iberian Peninsula. Eight of the 269 genotypes did not match with their phenotypes and were discarded from the analyses, resulting in a total of 261 barley cultivars and landraces comprising 165 two-row and 96 six-row barleys being considered in this study (Supplementary Table 1). The 50k SNP iSelect genotyping of the collection yielded a set of 33342, 26262, and 27583 polymorphic markers for the whole, two-row, and six-row panel, respectively (Supplementary Table 4 and Supplementary Figure 1).

Genetic structure of the panel was investigated using PCA on a pruned subset of markers to reduce the effect of LD on population structure. PCA indicated the first two PC scores explained, respectively, 13 and 8.5% of total variation (Supplementary Figure 2A). The first PC could distinguish six-row from two-row barleys, while the second PC axis was attributed to the separation of landraces from cultivars within six-row barleys. In addition, PCA revealed a wider level of genetic variation within six-row barleys, although the proportion of two-row barleys was higher in the panel.

As a prerequisite for GWAS, LD was calculated for each chromosome using the squared correlation coefficient between marker pairs, r2, after correcting for genomic relatedness. The LD decay was visualized by plotting r2 values against the physical distance in Mb. Considerable variation was observed across the genome among the whole panel and row-type subsets, reflecting breeding history and effect of selection (Supplementary Figures 2B–D). The level of LD decay in the two-row panel at the critical r2 threshold was higher (LD = 1.4 Mb) compared to LD decay observed within the six-row panel (LD = 0.6 Mb), with slightly higher LD in the whole panel (LD = 0.8 Mb).



Phenotypic variation, trait heritability, and correlations

The barley collection was grown under field conditions in seven environments including four locations and 2 years, 2016 and 2017 (Supplementary Table 2). Field sites were chosen to represent contrasting environments in Southern Europe (Italy, CREA; Spain, CSIC) and Northern Europe (Scotland, JHI; Finland, LUKE). Regarding culm traits, we focused on culm features reported in the literature as critical for lodging resistance in hollow cereals (Ookawa et al., 2010). Because of the great plasticity of the first internode, we decided to focus on the second basal internode as a critical point for lodging resistance and a good descriptor of culm characteristics (Pinthus, 1974; Berry et al., 2004). For all trials, outer culm diameter (OD), inner culm diameter (ID), and culm thickness (TH) were quantified using a newly developed image analysis–based protocol (Figure 1 and Supplementary Method 1). In order to investigate the correlations between culm traits and some agronomic traits, we also included heading (HD), plant height (PH), and lodging (LG) (Supplementary Table 3). We further derived section modulus (SM), the ratio between OD and TH (herewith designated as stiffness, ST) and the ratio between OD and PH (stem index, SI) as indexes reflecting the physical strength of the culm (Supplementary Table 3; Mulsanti et al., 2018; Sowadan et al., 2018). For trial CSIC16, it was not possible to collect lodging data. The best linear unbiased predictions (BLUEs) were calculated for the downstream analyses.

The single and across environment means, standard deviations (SDs), ranges, minimum, and maximum values are indicated in Supplementary Table 5. Considerable phenotypic variation was present both within and across environments. In general, higher mean values were observed for Southern environments for all traits. CSIC16 had the highest values for almost all culm traits in the whole panel, and both two-row and six-row panels. The highest values for HD were recorded in the CREA17 trial, while CREA16 had the highest mean value for PH in the whole panel and also two-row and six-row panels. Heritability values were calculated both in single and in combined environments in the whole panel and both two-row and six-row subsets (Table 1 and Supplementary Methods 3). In most environments, analysis of variance correcting for field trends i.e., the correlation between residuals from neighboring plots using the first-order autoregressive model (AR1), improved the precision compared to base model fitting. High heritability values (>50%) were obtained for most traits except for TH and ST, although these traits showed improved heritability in the combined environment analysis compared to single environment. Heritability estimates varied among environments indicating the presence of heterogeneity of genotype variance due to genotype × environment interactions. This was especially evident for TH and ST due to their relatively low heritability values.


TABLE 1    Estimates of broad-sense heritability for culm morphological traits in single and across environments.
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The diversity of phenotypic values according to row-type and germplasm source within the panel was visualized based on the box plots (Supplementary Figure 3). According to the box plots, diversities were highly variable across studied traits and were dependent on environment, row-type, and germplasm sources. The distribution of phenotypes was higher between four groups than within groups. In general, cultivars exhibited wider distributions for PH and culm traits; however, the diversity within landraces was comparable despite their limited sampling area. LG showed a wide range of values although the frequency of extreme values in Northern locations, especially within two-row cultivars, was highest compared to other traits. In contrast, the lowest range of phenotypic values was observed for HD both in Northern and in Southern locations.

We further compared phenotypic means according to row-type and germplasm sources as these were important factors shaping population structure within the panel (Supplementary Figure 4 and Supplementary Table 6). Results showed that two-row landraces and six-row cultivars had latest and earliest heading, respectively, in Southern trials, while two-row cultivars were latest heading in Northern trials. In these comparisons, however, it should be noted that only 6 two-row landraces were included in our collection, all from Spain, providing limited representation of this category. PH was highly variable across environments and was mainly highest for six-row landraces in Southern trials, but this was highest for mainly two-row landraces in Northern locations. LG was lowest in all environments in two-row cultivars and highest in six-rowed landraces. For culm morphology, six-row cultivars showed the highest values of OD, ID, SM, SI, and TH, whereas two-row landraces were the lowest almost in all environments. ST was however, highly variable both within and between Northern and Southern trials. Based on phenotypic values obtained from a combined analysis of environments, higher values were observed for culm morphological traits in the cultivar gene pool, especially in six-row cultivars, but two-row cultivars were on average less susceptible to lodging. Generally, landraces showed higher values for PH and HD.

Together, these analyses show that our germplasm panel harbors significant genetic variation for culm-related traits and suggests the existence of complex genotype x environment interactions. The obtained datasets provide an ideal starting point for investigating the genetic architecture of barley culm morphology under contrasting environmental conditions.

In order to gain insight into the relationships among different traits, pairwise correlations were calculated based on phenotype values estimated both within single and combined analyses of environments (Figure 2A and Supplementary Figures 5–7). Germplasm source and row-type were also considered, to study their relationship with the different traits. These values were also calculated within two-row and six-row panels to control for row-type. In the whole panel, row-type showed positive correlations with LG, PH, and culm morphological traits but negatively correlated with ST, SI, and HD. Germplasm source (cultivars coded as presence) had negative correlations with PH, TH, and LG and positive correlations with OD, ID, SI, and ST, meaning that cultivars were shorter and less prone to lodging with larger culm diameter compared to landraces. However, the correlation between germplasm source and HD was dependent on the region, with positive values in Northern environments and negative values in Southern sites. Results show that strong correlations were present in the whole panel between culm morphological traits. Similar results were also obtained in single environments. Except for TH, culm traits were negatively correlated with LG and HD but positively correlated with PH. As expected, LG was positively correlated with PH. Taken together, correlation analyses in the whole panel show that in our collection six-row lines tended to have wider and thicker culms and were overall more prone to lodging compared to two-row. While a confounding effect of row-type may account for the relatively weak correlations between LG and culm diameter and thickness, it should be also noted that in our germplasm collection landraces are more represented in the six-row subset compared to the two-row subset: this may be a confounding factor contributing to observed differences between the row-type subsets.
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FIGURE 2
(A) Pairwise phenotypic correlations between traits along with row type and germplasm sources within whole panel and row type groups based on means estimated across trials. (B) UpSetR plot showing the overlap of the associated SNPs/loci for traits identified by GWAS. (C) Venn diagram showing distribution of QTLs among whole panel and row type groups. Rtype, spike row type (two-row or six-row); Source, germplasm source (cultivar or landrace); HD, heading date; PH, plant height; OD, outer diameter; ID, inner diameter; TH, thickness; SM, section modulus; ST, stiffness; SI, stem index; LG, lodging.


In order to explore the relationships between culm traits and lodging, excluding the effect of row-type, further analyses were conducted within row-type subsets.

In the two-row panel, correlations between culm traits were generally maintained and stronger negative correlations were observed between culm morphological traits and lodging. Some discrepancies were also observed compared to the whole panel, e.g., the negative relationship between TH and lodging in contrast to the positive correlation between these traits in the whole panel, which was possibly due to confounding effects from six-row landraces (thick culms and more prone to lodging). Furthermore, while positively correlated with lodging, PH was environment-dependent and did not show strong correlations with culm morphology, e.g., in Southern environments, the relationship was mainly weakly negative and in Northern weakly positive (Supplementary Figure 6). HD was also mainly positively correlated with culm morphology.

In the six-row panel, culm morphological traits had the strongest interrelationships. HD was also in agreement with the whole panel with stronger negative correlations with culm morphology, and in contrast to the two-row panel, it was positively correlated with lodging. PH had a negatively weak relationship with culm traits with stronger positive correlations in Northern trials and negative correlations in Southern trials (Supplementary Figure 7).

Together, these results highlight the potential of culm morphological traits as interesting targets for the improvement of lodging resistance in barley. In particular, the general lack of correlation within row-type subsets suggests that culm diameter is largely controlled by distinct genetic factors with respect to PH.



Multi-environment genome-wide association mapping

We performed GWAS using multi-trait mixed model (MTMM) proposed for multi-trait or multi-environment association mapping to detect quantitative trait loci (QTLs) underlying culm morphological traits, incorporating kinship estimated from marker data and population structure using principal components (Korte et al., 2012). This method allows us to identify five types of marker-trait associations: markers with main effects stable across environments (QM), markers with main but also significant interaction effects (QF), marker-by-environment interaction effects (QE), marker-by-location interaction effect (QL), and marker-by-year interaction effect (QY) (see Supplementary Method 4 for more details). GWAS of multi-environment trials were performed for the whole panel and also for two-row and six-row subsets separately. The experiment-wise GWAS significance threshold was determined according to the actual number of independent SNP tests as estimated in Haploview software using the tagger function, and the r2 threshold estimated from LD decay analysis. These threshold values were found to be –log10 (P) ≥ 4.94, –log10 (P) ≥ 4.75, and –log10 (P) ≥ 5.02 for the whole panel, two-row, and six-row panels, respectively. However, the p-values with –log10 (P) ≥ 4 were also retained as suggestive QTLs.

A total of 732 marker-trait associations were detected, and the associated SNPs with -log10 (P) ≥ 4 in close vicinity were grouped into a single QTL based on the average LD decay, due to variable LD blocks for individual chromosomes and thus a variable decay across the chromosomes (Supplementary Figures 2B–D). This allowed us to converge marker-trait associations into 192 QTLs (93 single SNPs and 99 SNP clusters) across the whole, two-row, and six-row panels (Supplementary Table 7). From these loci, 109 were trait-specific and the remaining were co-associated with at least two traits (Figure 2B). PH with 36 QTLs and OD with four QTLs were the traits with the maximum and the minimum number of specific QTLs. Most QTLs were co-associated between culm morphological traits. Among the highest number of co-associated QTLs, 13 QTLs were common between SM and OD; 9 QTLs between PH and SI; 9 QTLs between ID, OD and SM; and 6 QTLs were commonly associated with ID and OD. In agreement with a largely independent genetic control, the lowest number of co-associated QTLs was identified between PH and culm morphological traits. In addition, 66, 24, and 45 QTLs were specific to the whole panel, two-row, and six-row panels, respectively (Figure 2C). Other QTLs were in common between at least two panels.

Co-association network analysis for the 192 QTLs revealed many co-association modules across the whole panel and the row-type sub-panels, each of which contained loci from one or more genomic regions distributed on different chromosomes (Figure 3). The co-association module is a cluster of one or more loci that are connected by edges. The edges connecting two loci have similar associations with the phenotype with a distance below the threshold. Loci in different clusters are more dissimilar than those in the same group and would not be connected by edges in a co-association module. In other words, associated nodes with edges appeared in close proximity, while weakly associated nodes appear far apart. The “Multi-Culm” group stands for multiple culm traits because these loci showed associations with multiple culm traits in the GWAS analysis. Likewise, the “PH.SI” stands for loci associated with both PH and SI in the GWAS analysis. One common feature that can be clearly derived from this visualization was that PH and SI were in closer proximity across all panels and nodes for culm morphological traits were closer together and far apart from PH. The other feature was the absence of a clear co-association module between loci associated with multiple traits, especially in the “Multi-Culm” group exhibiting higher dispersion compared to loci associated with a single trait. Furthermore, loci associated with multiple traits indicated connections with other co-association modules (e.g., with SM and TH in the whole panel; Figure 3) that might be a pleiotropic feature of these loci.
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FIGURE 3
Co-association network representing co-association modules between 192 loci across whole panel and row type subsets, with color schemes according to the phenotypic traits. Each node is an SNP/QTL and a color according to its association with the corresponding trait. Strong co-associations with a correlation above threshold (r = 0.9) are connected by edges. PH, plant height; OD, outer diameter; ID, inner diameter; TH, thickness; SM, section modulus; ST, stiffness; SI, stem index; multi-culm stands for loci associated with multiple culm traits; PH.SI stands for loci associated with both PH and SI. QF indicates markers with main but also interaction effects; QM indicates markers with main effects and stable across environments; QE indicates marker-by-environment effect; QL indicates marker-by-location effect; QY indicates marker-by-year effect.


Collectively, multi-environment GWAS results identified loci controlling culm morphology independent of plant height, with some QTLs showing stable effects across environments.



Identification of quantitative trait loci with main and full effects and putative candidate gene exploration

In Table 2, we listed the most significant QTLs associated with the studied traits with QM or QF effects and potential candidate genes. The list of all 192 QTLs with complete details can be found in Supplementary Table 7, and a synthetic view of genomic positions of QTLs along with the circular heatmap can be found in Figure 4 and Supplementary Figure 8. Promising candidate genes were selected based on literature searches, after excluding hypothetical genes and transposable elements. Marker-trait associations were listed with progressive numbering along with chromosomes: as an example of the 93 loci detected by single SNPs, SNP1-1H is the first associated locus on chromosome 1H. The 99 QTLs detected by SNP clusters are designated as QTLs, e.g., QTL10-1H.


TABLE 2    Summary of candidate genes underlying the most significant markers with QM and QF effect on studied traits using multi-environment GWAS.
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FIGURE 4
Physical map of 192 QTLs associated with culm morphological traits a cross whole panel and the row type subsets. Loci with red, blue, and green colors are unique to whole panel, two-row, and six-row subsets, respectively. Loci with black color are those detected at least in two association panel. Purple color indicates relative position of barley known genes at that particular genomic region. PH, plant height; OD, outer diameter; ID, inner diameter; TH, thickness; SM, section modulus; ST, stiffness; SI, stem index.


Out of a total of 31 QTLs on chromosome 1H, the most significant were SNP4-1H, SNP5-1H, SNP7-1H, SNP8-1H, and QTL11-1H. SNP7-1H (pos: 262.13 Mb) was associated with both OD and SM in the whole panel and located in close proximity with candidate gene HvCesA4/HvClsF4, encoding a cellulose synthase protein previously associated with culm strength in barley (Burton et al., 2010).

For chromosome 2H, 19 QTLs were detected. QTL1-2H associated with TH (six-row panel) explained a high proportion of phenotypic variance. We found that QTL1-2H (pos: 1.51–1.74 Mb) harbors the ortholog of rice OsSDG725 encoding a histone H3K36 methyltransferase and playing an important role in rice plant growth and development (Sui et al., 2012).

For chromosome 3H, 27 QTLs were identified including QTL19-3H (pos: 570.92–571.97 Mb), which is associated with both PH and SI across all panels and is closely linked to the well-known plant height gene Sdw1 (Dockter and Hansson, 2015) found in many elite European two-row spring barley cultivars.

On chromosome 4H, a total of 23 QTLs were identified. A particularly interesting region with QM effect was QTL17-4H (pos: 586.24–586.29 Mb) associated with ID, OD, and SM in the two-row panel and explaining at least 6% of the phenotypic variance. This QTL was found to harbor a homolog of rice CCD8-d (carotenoid cleavage dioxygenase). QTL18-4H was detected in both the whole panel (ID, OD, SM, TH) and two-row panel (ID, OD, SM), explaining between 2.74 and 7.1% of the variance (pos: 589.66–590.52 Mb). SNP10-4H was associated with SM and located within a pseudo-response regulator gene (470.68 Mb). Also, about 0.8 Mb from this marker we noted a homolog of TRANSTHYRETIN-LIKE PROTEIN (TTL), a gene that was previously associated with stem circumference in sorghum (Mantilla Perez et al., 2014). OD and ID were associated with SNP16-4H (481.27 Mb), 0.5 Mb from a homolog of rice BIG GRAIN1 (Liu et al., 2015).

On chromosome 5H, 34 QTLs were detected, including three loci with promising associations. QTL1-5H was identified in two-row panel as associated with ID, OD, SM, and SI (pos: 0.87–2.21 Mb) as well as contained the rice homolog of OsCCD1 (Ilg et al., 2009). QTL2-5H is predominantly associated in the six-row panel with PH, ST, and TH, and in the whole panel for TH (pos: 3.33–5.17 Mb) and explained more than 8% of the variance for TH and ST in the six-row panel and harbors several uncharacterized genes. SNP32-5H (pos: 553.95 Mb) was associated with OD, SI, and SM in both the six-row and the whole panel.

For chromosome 6H, in total 24 QTLs were identified, among them two SNPs with promising effect. SNP10-6H is associated with both PH and SI at position 242.933 Mb located within a gene encoding a ubiquitin carboxyl-terminal hydrolase closely related to rice Large Grain 1 (LG1/OsUBP15), a gene involved in seed size and plant height (Shi et al., 2019). SNP17-6H (512.71 Mb) was associated with SM and TH and falls within an uncharacterized gene encoding a RING/U-box superfamily protein. A large QTL region, QTL13-6H, was associated with PH in the six-row panel (pos: 428.84–435.12 Mb) and contains several uncharacterized genes.

On chromosome 7H, a total of 34 QTLs were detected including six QTLs of special interest. QTL3-7H was associated with ST in the whole panel, and PH, SI, and ST in the two-row panel (pos: 12.92–14.59 Mb). The region contains several candidates, including a gene encoding a GRAS transcription factor orthologous to rice DWARF AND LOW-TILLERING (DLT/SMOS2) that can directly interact with SMALL ORGAN SIZE1 (SMOS1/RLA1), and RLA1 plays as an integrator with both OsBZR1 and DLT to modulate their activity (Tong et al., 2009, 2012; Hirano et al., 2017b; Qiao et al., 2017).

QTL5-7H was associated with ID, OD, and SM in both whole and six-rows panels and also with ST in the six-row panel (pos: 21.64–22.45 Mb). SNP16-7H (pos: 265.29 Mb), a hotspot SNP, associated with ID, OD, and SM in the six-row and whole panels. Another noteworthy QTL was QTL27-7H, associated with PH, SI in the whole panel; OD, PH, and SM in the six-row panel; and SI in the two-row panel (pos: 570.827–572.61 Mb). The region contains HvD27, the barley ortholog of rice strigolactone biosynthesis gene DWARF27 encoding beta-carotene isomerase (Lin et al., 2009). QTL30-7H (pos: 597.44–600.25 Mb) was associated with SI, SM, and TH and contains several genes including a patatin encoding protein gene highly related to DEP3, a rice gene previously shown to affect culm morphology and anatomy as well as panicle architecture (Qiao et al., 2011). Finally, QTL34-7H (pos: 628.34–633.84 Mb) was associated with TH in the two-row panel and with ID, OD, and TH in the whole panel. This locus had also a QL effect with SM both in the six-row and whole panel and contains HvDIM encoding Delta(24)-sterol reductase previously shown to act in the brassinosteroid pathway in barley (Dockter et al., 2014).



Identification of quantitative trait loci with interaction effects

Besides the abovementioned QTLs with main and full effects, multi-environment GWAS uncovered highly significant QTLs with interaction effects. QTL26-1H (pos: 495.79–497.02 Mb) was associated with SI in the two-row panel. QTL6-2H (pos: 22.37–23.99 Mb), associated with SI and PH (whole, two-row, and six-row panels), spans the well-known barley PPD-H1 gene (Supplementary Table 7), involved in photoperiod responsive flowering (Turner et al., 2005). The genomic region of QTL15-3H (pos: 499.61–499.87 Mb), associated with ID in two-row subset, hosted uncharacterized genes. QTL34-5H (pos: 594.17–596.71 Mb) was associated with ID, OD, and SM in the whole and six-row panels. This QTL showed QE and QF effects in the whole panel and six-row panel, respectively, and contains a barley Gibberellin 20 oxidase, HvGA20ox1, which has recently been associated with straw breaking and flowering time in barley (Göransson et al., 2019; He et al., 2019). QTL7-7H for PH was found across all panels and located in close proximity to the barley HvFT1/VRNH3 gene. It showed QL effect in the whole and two-row panels and QF effect in the six-row panel. In barley, HvFT1 expression requires the active version of PPD-H1 to promote flowering under long-day conditions (Hemming et al., 2008). Currently, there is no report on its effect on plant height.



Allelic comparison of single nucleotide polymorphisms/quantitative trait loci with QM/QF effects for lodging and plant height

In order to appraise the effects of the QTLs on lodging susceptibility, we focused on QTLs with QM and QF effects (Supplementary Figures 9, 10Supplementary Table 7). Allelic comparisons for these loci indicated that depending on the trait and subpopulation their effect was highly variable. As expected, QTLs for PH and SI showed significant differences for both PH and LG. With respect to culm morphology QTLs, the effects on PH and LG were variable ranging from no difference to significant differences, including some QTLs that significantly affected both LG and PH. However, most QTLs associated with culm morphology had no effects on PH in the whole panel but showed significant effects on LG. Such types of QTLs were also detected in both six-row and two-row panels. For example, the QTLs associated with ID, OD, and/or SM - SNP7-1H, SNP8-1H, QTL11-1H, QTL11-2H, QTL2-3H, SNP5-3H, SNP10-4H, SNP11-4H, SNP16-4H, QTL18-4H, QTL16-5H, QTL5-6H, QTL23-6H, QTL2-7H, SNP21-7H, SNP26-7H - affected lodging without any effect on PH in the whole panel. In two-row, some examples are QTL17-4H, QTL18-4H, and QTL10-5H. Finally, for six-row panel, SNP9-1H, SNP14-4H, and SNP32-5H are QTLs affecting lodging without any effect on PH. Considering loci with main effects (Supplementary Figure 9), out of 21 loci associated with OD, 11 had a significant impact on LG without any effect on PH (8 in the whole panel, 1 and 2 in the six-row and two-row, respectively), and out of 25 loci detected for SM, 16 significantly affected LG without impacting PH (14 in the whole panel, 2 in two-row): nine of these QTLs were shared between OD and SM (SNP7-1H, SNP8-1H, QTL11-1H, QTL11-2H, QTL2-3H, QTL17-4H, QTL18-4H, QTL16-5H, SNP32-5H). Interestingly, QTL18-4H was detected in both the whole panel and the two-row panel also for TH, indicating this locus as an interesting target for manipulation of culm morphology and lodging resistance. However, fewer loci associated with TH and ST had effects on LG. We thus focused on OD, ID, and SM for more detailed analyses of nine SNPs associated with these traits in the whole panel: SNP7-1H, SNP8-1H, SPN5-3H, SNP10-4H, SNP11-4H, SNP16-4H, SNP32-5H, SNP21-7H, and SNP26-7H. In all cases, alleles increasing culm diameter (OD, ID) and/or SM had negative effects on lodging, without affecting PH (Table 3).


TABLE 3    Details of subset of SNPs with main effects and associated with culm traits with negative effects on lodging without impacting on plant height.
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In conclusion, the results from these analyses support the usefulness of SM and culm diameter as parameters for selecting alleles to improve lodging resistance and provide chromosomal positions and markers associated to promising loci.




Discussion

In this study, we investigated natural genetic variation for morphological characteristics of the barley culm and their relationships with lodging and agronomic traits. To date, no genetic studies have used image processing-based phenotyping to investigate the genetic architecture of culm morphology in barley. For this reason, we developed a robust method to extract quantitative measurements of culm diameter and thickness from images of culm sections, showing that significant phenotypic variation exists within our barley germplasm panel with a major contribution of genetic variation to these traits as supported by medium–high heritability values.

Using PCA, we showed that row-type and germplasm sources are the major factors driving the population structure of the panel. In addition, no evidence of strong admixture between row-type groups was observed in PCA. This is consistent with previous studies suggesting that breeders largely focused within the six-row and two-row gene pools in developing new varieties, therefore, limiting the exchange of genetic variation between these major row-types, despite some cases of targeted introgression (Hernandez et al., 2020). Increasing seed number per spike was probably the reason for the human selection of recessive allele at VRS1 into the barley gene pool during domestication (Komatsuda et al., 2007). On the other hand, barleys most commonly grown in Europe are two-row cultivars, which are preferred for malting because of uniformity in seed size: this resulted in limited genetic diversity compared to the six-row cultivars. This variation in seed size is due mainly to the allelic variation at the INT-C/VRS5 gene between row-types (Ramsay et al., 2011). Row-type genes have pleiotropic effects on other traits, as well-known for tillering (Liller et al., 2015). In our study, row-type subsets exhibited clear differences also for some culm morphological traits, e.g., six-row barleys showed higher mean values of TH and SM compared to two-row barleys. Relationships between row-type and the studied traits are also evident from positive correlations with PH, OD, ID, SM, TH, and LG and negative correlations with HD, ST, and SI.

Correlation results showed that although plant height is important for lodging, culm characteristics also play an important role in lodging resistance. We observed strong positive correlations among culm traits, as well as negative correlations between culm traits and lodging across the whole and row-type panels, in line with a recent study focusing on peduncle morphology in a barley Nested Association Mapping population (Zahn et al., 2021). On the other hand, culm morphological traits showed weak (two-row) and even no (six-row panel) correlations with plant height. This suggests opportunities for genetic improvement of lodging resistance through manipulation of culm morphology independent of plant height. Generally, relationships among traits were similar across row-type subpopulations, sometimes with different magnitudes: for example, correlation between LG and OD was −0.52 and −0.69 in two- and six-row subpanels, respectively. Interesting correlations specific to the six-row subset were detected between LG, PH, and HD with six-row landraces being late heading, taller, and more prone to lodging compared to six-row cultivars: these landraces also had lower values of OD, ID, and SM, therefore, combining different unfavorable traits for lodging susceptibility. It should be noted that these contrasting patterns may be due to the different origins of the accessions: the six-row cultivars were mainly early flowering lines of Scandinavian origin, while the six-row landraces were of Mediterranean origin. Based on these observations, it would be interesting to further explore the genetic relationships among heading, plant height, and culm morphological traits in a wider sample of six-row barleys.

Based on these results, we analyzed phenotypic variation and run mixed model GWAS in the whole panel, as well as row-type subgroups independently in order to: (i) minimize the confounding effects of row-type on association analyses; (ii) understand whether distinct loci are segregating in row-type subpopulations and thus different regulatory networks are involved in genetic control of the studied traits. The use of mixed model in GWAS is a well-established approach to efficiently reduce false positive associations for most traits, but it may also mask true signals that are correlated with population structure. As a result, loci that distinguish barley subpopulations are often difficult to detect using mixed model. To circumvent this problem, many association mapping studies have analyzed each subpopulation separately and successfully identified loci specific to each subpopulation. In our study, 120 marker-trait associations were detected in the whole panel, including 21 and 27 that were shared with the two-row and six-row panels, respectively. Six associations were detected across all three panels. In addition, we uncovered 24 and 45 QTLs specific for two- and six-row panels, supporting the relevance of running GWAS on row-type subsets. We also noticed that for some QTLs detected across both row-types, allele frequencies and peak markers differed between the row-type subsets, resulting in opposite effects of minor alleles on the same trait. Taking as an example the PH locus QTL19-3H closely linked to the well-characterized Sdw1 gene, the peak marker in the six-row panel was JHI-Hv50k-2016-205354 with the minor allele showing a negative effect on PH and positive effect on SI, in contrast to the effect of JHI-Hv50k-2016-204992, the peak marker in the two-row panel. Likewise, QTL6-2H containing PPD-H1 had negative effects on PH in the six-row panel while the effect in two-row was the opposite. This indicates that causative variants in these major genes have different frequencies and are associated with different markers in row-type subsets. Taken together, comparative analysis of results from the whole panel and row-type subsets indicates the need to duly account for population structure in dissecting culm morphological traits and carefully analyze the effects of potentially interesting markers for breeding in relation to row-type population. This is also relevant when considering crosses between row types in the context of plant breeding.

While in our GWAS analysis we observed numerous trait-specific QTLs, we also observed QTLs that were associated with multiple traits. In addition, in the same QTL region, the peak marker was sometimes different depending on the panel. For example, QTL34-7H was associated with OD, ID, SM, and TH in the whole panel, with SM in the six-row panel, and with TH in two-row panel (QF effect, Supplementary Figure 10). The peak markers for TH were also different between the whole panel and the two-row panel, while the peak marker for SM was common between six-row and the whole panel. This QTL harbors the HvDIM gene encoding the barley Δ5-sterol-Δ24-reductase, an enzyme involved in the brassinosteroid biosynthetic pathway (Dockter et al., 2014). A link between brassinosteroids and culm thickness is supported by studies of the rice SMOS1 and SMOS2 genes, encoding transcription factors of the AP2 and a GRAS family, respectively, that interact to integrate auxin and brassinosteroid signaling: smos1 and smos2 single mutants, as well as smos1-smos2 double mutants, show increased culm thickness (Hirano et al., 2017b). Classical semi-dwarf barley mutants brh.af, brh14.q, brh16.v, ert-u.56, ert-zd, and ari.o were shown to harbor mutations in the HvDIM gene (Dockter et al., 2014): these mutants have reduced plant height and are more resistant to lodging compared to respective wild type (Dahleen et al., 2005), but their culm morphological traits have not been described. In our work, a marker within this region showed a weak association with PH (JHI-Hv50k-2016-516979, p = 0.003), suggesting HvDIM as a possible candidate for QTL34-7H. However, this genomic region harbours other potential candidate genes, that have been reported as members of glycosyl transferase (GT) gene family, such as cellulose synthase genes of the GT2 family that influences culm cellulose content (Houston et al., 2015). Given the significance of associations between this genomic region and multiple culm morphology traits, it would be interesting to further dissect this QTL to discriminate whether such effects are the result of pleiotropy or closely linked genes (local LD) and identify the underlying gene(s)/alleles combining association mapping and biparental fine mapping.

Taking advantage of data from seven different environments, multi-environment GWAS (Korte et al., 2012) enabled us to disentangle QTLs with main effects stable across environments (QM) from QTLs with environment-dependent effects (location and/or year). An example of a QTL with significant interaction with location is QTL6-2H, which was detected for PH across all panels. This genomic region contains the well-known PPD-H1 gene (Turner et al., 2005), a major regulator of barley flowering in response to photoperiod, that was shown to have pleiotropic effects on several agronomic traits including yield, leaf size, and plant height (Karsai et al., 1999; Digel et al., 2016). With respect to lodging, alleles with stable phenotypic effects across environments are preferable for breeding under changing climatic conditions. For this reason, we decided to focus our attention on culm morphology QTLs with main effects, showing a significant negative impact on lodging without affecting PH: for nine SNPs detected in the whole panel, alleles increasing culm diameter and/or SM consistently reduced lodging (SNP7-1H, SNP8-1H, SNP5-3H, SNP10-4H, SNP11-4H, SNP16-4H, SNP32-5H, SNP21-7H, and SNP26-7H). We scanned regions adjacent to these SNPs ± 0.8 Mb (i.e., the genome-wide LD decay estimated for the whole panel) in order to search for potential candidate genes. For example, cellulose synthase gene HvCslF4 (1H, 261.4 Mb) is located near SNP7-1H (262.1 Mb): a retroelement insertion within this gene was previously associated with the fragile stem2 (fs2) mutant phenotype in barley, suggesting a link between stem strength and genes involved in cellulose content (Burton et al., 2010). Since we analyzed culm morphology traits in straw culm sections, cell wall composition and cellulose content are likely to impact the morphological features considered in our work. Another example is SNP32-5H (5H, 553.9 Mb): the adjacent region hosts several possible candidate genes, including HvMND1 (552.9 Mb), which encodes an N-acetyl-transferase-like protein recently shown to regulate barley plastochron and plant architecture (Walla et al., 2020).

Beside these SNPs, additional QTLs were identified as associated with culm features and having an impact on lodging, independent of PH. Among them, QTL17-4H had the main effects on ID, OD, and SM and contained a carotenoid cleavage dioxygenase 8 (CCD8) gene located in close proximity to the peak marker. A recent phylogenetic study showed that rice has four CCD8 genes (CCD8-a, -b, -c, and -d), while Arabidopsis has only one: both Arabidopsis CCD8 and rice CCD8-b are involved in the biosynthesis of strigolactones, phytohormones that control lateral shoot growth, and affect stem thickness at least in some species (reviewed in Chesterfield et al., 2020). The barley ortholog of OsCCD8-b is located on chromosome 3H, while the CCD8 gene associated with QTL17-4H is more closely related to OsCCD8d, whose function has not been characterized yet (Priya and Siva, 2014). An alternative candidate gene for this QTL may be MDP1, encoding a MADS box transcription factor implicated in brassinosteroid signaling (Duan et al., 2006).

In conclusion, we established a new ad hoc phenotyping protocol to obtain accurate measurements for internode diameters and thickness and derive section modulus and other parameters known to impact lodging resistance in cereals. Application of this method to a diverse set of field-grown barley accessions under seven different environments in Southern and Northern Europe provided a unique platform to dissect genotype x environment interactions and identify stable QTLs across environments. These results support the robustness of our phenotyping protocol that may now be applied to other major crops with similar stem morphology, such as wheat and rice.

While validation of potential candidate genes will require more detailed analyses, this work represents the first comprehensive analysis of the genetic architecture of culm morphology in a barley germplasm collection and its relevance for lodging. Identification of 21 main effect loci for culm diameter and/or section modulus with significant effects on lodging, independent of plant height, may open new avenues to improve lodging resistance and increase barley yield stability.



Data Availability Statement

The genotyping dataset used for GWAS is provided in Supplementary Table 8 and the same genotyping data in VCF (Variant Call Format) format containing SNP calls are also provided as a Supplementary material.



Author contributions

GB developed the stem phenotyping protocols, collected the data for culm morphology traits, and contributed to writing of the manuscript. SS conducted the statistical analyses and drafted the manuscript. AT, HB, and WT multiplied and dispatched the seed for trials. AS, AT, WT, AC, and EI generated the standard scoring protocol. WT designed the field trials and matched the genotypic data with the phenotypic. AT, LC, WT, HB, JR, PG, and AS hosted field trials. SD, HB, PG, and EI collected the samples and agronomic data. RW, JR, AC, and EI provided genotypic data. RR helped in candidate gene searches. LR conceived and coordinated the study, contributed to writing of the manuscript and agrees to serve as the author for contact and responsible for communication. All authors revised the manuscript and approved its final version.



Funding

This work was supported by grant ClimBar (FACCE on Climate Smart Agriculture, Italian Ministry of Agriculture MIPAAF DM 9556/7303/15 dated 12/05/2015). This project also received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 771134: the project BARISTA was carried out under the ERA-NET Cofund SusCrop (Grant No. 771134), being part of the Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI project ID: 77, Italian Ministry of Research MUR DM 2521 dated 12.12.2019). SS was in part supported by a post-doctoral fellowship (assegno di tipo A) from University of Milan.



Acknowledgments

We are grateful to several students from University of Milan who helped in collecting phenotypic data. A previous version of this manuscript is available on bioRXiv https://www.biorxiv.org/content/10.1101/2022.03.30.486427v1 (Bretani et al., 2022).



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.926277/full#supplementary-material


Footnotes

1     https://ics.hutton.ac.uk/50k/


References

Agnew, E., Bray, A., Floro, E., Ellis, N., Gierer, J., Lizárraga, C., et al. (2017). Whole-plant manual and image-based phenotyping in controlled environments. Curr. Protoc. Plant. Biol. 2, 1–21. doi: 10.1002/cppb.20044

Aya, K., Hobo, T., Sato-Izawa, K., Ueguchi-Tanaka, M., Kitano, H., and Matsuoka, M. (2014). A novel AP2-type transcription factor. SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant. Cell. Physiol. 55, 897–912. doi: 10.1093/pcp/pcu023

Bayer, M. M., Rapazote-Flores, P., Ganal, M., Hedley, P. E., Macaulay, M., Plieske, J., et al. (2017). Development and evaluation of a barley 50k iSelect SNP array. Front. Plant. Sci. 8:1792. doi: 10.3389/fpls.2017.01792

Berry, P. M. (2013). “Lodging resistance in cereals in sustainable food production,” in Sustainable Food Production, eds P. Christou, R. Savin, B. A. Costa-Pierce, I. Misztal, and C. B. A. Whitelaw (Berlin: Springer), 1096–1110. doi: 10.1146/annurev-arplant-070121-015752

Berry, P. M., Kendall, S., Rutterford, Z., Orford, S., and Griffiths, S. (2015). Historical analysis of the effects of breeding on the height of winter wheat (Triticum aestivum) and consequences for lodging. Euphytica 203, 375–383. doi: 10.1007/s10681-014-1286-y

Berry, P. M., and Spink, J. (2012). Predicting yield losses caused by lodging in wheat. Field. Crops. Res. 137, 19–26. doi: 10.1016/j.fcr.2012.07.019

Berry, P. M., Sterling, M., Spink, J. H., Baker, C. J., Sylvester-Bradley, R., Mooney, S. J., et al. (2004). “Understanding and reducing lodging in cereals,” in Advances in Agronomy, ed. D. L. Sparks (Cambridge, MA: Academic Press), 217–271. doi: 10.1016/S0065-2113(04)84005-7

Berry, P. M., Sylvester-Bradley, R., and Berry, S. (2007). Ideotype design for lodging-resistant wheat. Euphytica 154, 165–179. doi: 10.1007/s10681-006-9284-3

Breseghello, F., and Sorrells, M. E. (2006). Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetic 172, 1165–1177. doi: 10.1534/genetics.105.044586

Bretani, G., Shaaf, S., Tondelli, A., Cattivelli, L., Delbono, S., Waugh, R., et al. (2022). Multi-environment genome-wide association mapping of culm morphology traits in barley. bioRxiv [Preprint] doi: 10.1101/2022.03.30.486427

Browning, B. L., Zhou, Y., and Browning, S. R. (2018). A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348. doi: 10.1016/j.ajhg.2018.07.015

Burton, R. A., Ma, G., Baumann, U., Harvey, A. J., Shirley, N. J., Taylor, J., et al. (2010). A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene. Plant. Physiol. 153, 1716–1728. doi: 10.1104/pp.110.158329

Cai, T., Peng, D. L., Wang, R., Jia, X. L., Qiao, D., Liu, T. N., et al. (2019). Can intercropping or mixed cropping of two genotypes enhance wheat lodging resistance? Field. Crop. Res. 239, 10–18. doi: 10.1016/j.fcr.2019.05.009

Chandler, P. M., and Harding, C. A. (2013). ‘Overgrowth’ mutants in barley and wheat: new alleles and phenotypes of the ‘Green Revolution’. DELLA gene. J. Exp. Bot. 64, 1603–1613. doi: 10.1093/jxb/ert022

Chesterfield, R. J., Vickers, C. E., and Beveridge, C. A. (2020). Translation of strigolactones from plant hormone to agriculture: achievements, future perspectives, and challenges. Trends Plant. Sci. 25, 1087–1106. doi: 10.1016/j.tplants.2020.06.005

Chono, M., Honda, I., Zeniya, H., Yoneyama, K., Saisho, D., Takeda, K., et al. (2003). A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant. Physiol. 133, 1209–1219. doi: 10.1104/pp.103.026195

Csardi, G., and Nepusz, T. (2006). The igraph software package for complex network research. Inter. J. Complex. Syst. 1695, 1–9.

Cui, Y., Hu, X., Liang, G., Feng, A., Wang, F., Ruan, S., et al. (2020). Production of novel beneficial alleles of a rice yield-related QTL by CRISPR/Cas9. Plant. Biotechnol. J. 18, 1987–1989. doi: 10.1111/pbi.13370

Dahleen, L. S., Vander Wal, L. J., and Franckowiak, J. D. (2005). Characterization and molecular mapping of genes determining semidwarfism in barley. J. Hered. 96, 654–662.

Dawson, I. K., Russell, J., Powell, W., Steffenson, B., Thomas, W. T. B., and Waugh, R. (2015). Barley: a translational model for adaptation to climate change. New. Phytol. 206, 913–931. doi: 10.1111/nph.13266

Digel, B., Tavakol, E., Verderio, G., Tondelli, A., Xu, X., Cattivelli, L., et al. (2016). Photoperiod-H1 (PPD-H1) controls leaf size. Plant. Physiol. 172, 405–415. doi: 10.1104/pp.16.00977

Dockter, C., and Hansson, M. (2015). Improving barley culm robustness for secured crop yield in a changing climate. J. Exp. Bot. 66, 3499–3509. doi: 10.1093/jxb/eru521

Dockter, C., Gruszka, D., Braumann, I., Druka, A., Druka, I., Franckowiak, J., et al. (2014). Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant. Physiol. 166, 1912–1927. doi: 10.1104/pp.114.250738

Duan, K., Li, L., Hu, P., Xu, S. P., Xu, Z. H., and Xue, H. W. (2006). A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling. Plant. J. 47, 519–531. doi: 10.1111/j.1365-313X.2006.02804.x

Göransson, M., Hallsson, J. H., Lillemo, M., Orabi, J., Backes, G., Jahoor, A., et al. (2019). Identification of ideal allele combinations for the adaptation of Spring Barley to Northern Latitudes. Front. Plant. Sci. 10:542. doi: 10.3389/fpls.2019.00542

Granato, I. S. C., Galli, G., de Oliveira Couto, E. G., e Souza, M. B., Mendonça, L. F., and Fritsche-Neto, R. (2018). snpReady: a tool to assist breeders in genomic analysis. Mol. Breed. 38:102. doi: 10.1007/s11032-018-0844-8

He, T., Hill, C. B., Angessa, T. T., Zhang, X. Q., Chen, K., Moody, D., et al. (2019). Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection. J. Exp. Bot. 70, 5603–5616. doi: 10.1093/jxb/erz332

Hemming, M. N., Peacock, W. J., Dennis, E. S., and Trevaskis, B. (2008). Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant. Physiol. 147, 355–366. doi: 10.1104/pp.108.116418

Hernandez, J., Meints, B., and Hayes, P. (2020). Introgression breeding in barley: perspectives and case studies. Front. Plant. Sci. 11:761. doi: 10.3389/fpls.2020.00761

Hirano, K., Okuno, A., Hobo, T., Ordonio, R., Shinozaki, Y., Asano, K., et al. (2014). Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance. PLoS One 9:e96009. doi: 10.1371/journal.pone.0096009

Hirano, K., Ordonio, R. L., and Matsuoka, M. (2017a). Engineering the lodging resistance mechanism of post-green revolution rice to meet future demands. Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci. 93, 220–233. doi: 10.2183/pjab.93.014

Hirano, K., Yoshida, H., Aya, K., Kawamura, M., Hayashi, M., Hobo, T., et al. (2017b). SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice. Mol. Plant. 10, 590–604. doi: 10.1016/j.molp.2016.12.013

Houston, K., Burton, R. A., Sznajder, B., Rafalski, A. J., Dhugga, K. S., Mather, D. E., et al. (2015). A genome-wide association study for culm cellulose content in barley reveals candidate genes co-expressed with members of the cellulose synthase a gene family. PLoS One 10:e0130890. doi: 10.1371/journal.pone.0130890

Ilg, A., Beyer, P., and Al-Babili, S. (2009). Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS J. 276, 736–747. doi: 10.1111/j.1742-4658.2008.06820.x

Islam, M. S., Peng, S., Visperas, R. M., Ereful, N., Bhuiya, M. S. U., and Julfiquar, A. W. (2007). Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field. Crops. Res. 101, 240–248. doi: 10.1016/j.fcr.2006.12.002

Jedel, P. E., and Helm, J. H. (1991). Lodging effects on a semidwarf and two standard barley cultivars. Agron. J. 83, 158–161.

Karsai, I., Mészáros, K., Szücs, P., Hayes, P. M., Láng, L., and Bedö, Z. (1999). Effects of loci determining photoperiod sensitivity (Ppd-H1) and vernalization response (Sh2) on agronomic traits in the ‘Dicktoo’ × ‘Morex’ barley mapping population. Plant. Breed. 118, 399–403. doi: 10.1046/j.1439-0523.1999.00408.x

Khush, G. S. (2001). Green revolution: the way forward. Nat. Rev. Genet. 2, 815–822. doi: 10.1038/35093585

Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, K., Perovic, D., et al. (2007). Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. U.S.A. 104, 1424–1429. doi: 10.1073/pnas.0608580104

Korte, A., Vilhjalmsson, B. J., Segura, V., Platt, A., Long, Q., and Nordborg, M. (2012). A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat. Genet. 44, 1066–1071. doi: 10.1038/ng.2376

Kuczyńska, A., Surma, M., Adamski, T., Mikołajczak, K., Krystkowiak, K., and Ogrodowicz, P. (2013). Effects of the semi-dwarfing sdw1/denso gene in barley. J. Appl. Genet. 54, 381–390. doi: 10.1007/s13353-013-0165-x

Kuczynska, A., and Wyka, T. (2011). The effect of the denso dwarfing gene on morpho-anatomical characters in barley recombinant inbred lines. Breed. Sci. 61, 275–280.

Liller, C. B., Neuhaus, R., Von Korff, M., Koornneef, M., and Van Esse, W. (2015). Mutations in barley row type genes have pleiotropic effects on shoot branching. PLoS One 10:e0140246. doi: 10.1371/journal.pone.0140246

Lin, H., Wang, R., Qian, Q., Yan, M., Meng, X., Fu, Z., et al. (2009). DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant. Cell. 21, 1512–1525. doi: 10.1105/tpc.109.065987

Liu, L., Tong, H., Xiao, Y., Che, R., Xu, F., Hu, B., et al. (2015). Activation of big grain1 significantly improves grain size by regulating auxin transport in rice. Proc. Natl. Acad. Sci. U.S.A. 112, 11102–11107. doi: 10.1073/pnas.1512748112

Lobell, D. B., Schlenker, W., and Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science 333, 616–620. doi: 10.1126/science.1204531

Malik, N., Ranjan, R., Parida, S. K., Agarwal, P., and Tyagi, A. K. (2020). Mediator subunit OsMED14_1 plays an important role in rice development. Plant. J. 101, 1411–1429. doi: 10.1111/tpj.14605

Mangin, B., Siberchicot, A., Nicolas, S., Doligez, A., This, P., and Cierco-Ayrolles, C. (2012). Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 108, 285–291. doi: 10.1038/hdy.2011.73

Mantilla Perez, M. B., Zhao, J., Yin, Y., Hu, J., and Salas Fernandez, M. G. (2014). Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor. Theor. Appl. Genet. 127, 2645–2662. doi: 10.1007/s00122-014-2405-9

Minakuchi, K., Kameoka, H., Yasuno, N., Umehara, M., Luo, L., Kobayashi, K., et al. (2010). FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant. Cell. Physiol. 51, 1127–1135. doi: 10.1093/pcp/pcq083

Monat, C., Padmarasu, S., Lux, T., Wicker, T., Gundlach, H., Himmelbach, A., et al. (2019). TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome. Biol. 20:284. doi: 10.1186/s13059-019-1899-5

Mulsanti, I. W., Yamamoto, T., Ueda, T., Samadi, A. F., Kamahora, E., Rumanti, I. A., et al. (2018). Finding the superior allele of japonica-type for increasing stem lodging resistance in indica rice varieties using chromosome segment substitution lines. Rice 11:25. doi: 10.1186/s12284-018-0216-3

Okuno, A., Hirano, K., Asano, K., Takase, W., Masuda, R., Morinaka, Y., et al. (2014). New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One 9:e86870. doi: 10.1371/journal.pone.0086870

Ookawa, T., Hobo, T., Yano, M., Murata, K., Ando, T., Miura, H., et al. (2010). New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 1:132. doi: 10.1038/ncomms1132

Peng, J., Richards, D. E., Hartley, N. M., Murphy, G. P., Devos, K. M., Flintham, J. E., et al. (1999). “Green revolution” genes encode mutant gibberellin response modulators. Nature 400, 256–261. doi: 10.1038/22307

Piñera-Chavez, F. J., Berry, P. M., Foulkes, M. J., Molero, G., and Reynolds, M. P. (2016). Avoiding lodging in irrigated spring wheat. II. Genetic variation of stem and root structural properties. Field. Crops. Res. 196, 64–74. doi: 10.1016/j.fcr.2016.06.007

Pinthus, M. J. (1974). Lodging in wheat, barley, and oats: the phenomenon, its causes, and preventive measures. Adv. Agron. 25, 209–263. doi: 10.1016/S0065-2113(08)60782-8

Priya, R., and Siva, R. (2014). Phylogenetic analysis and evolutionary studies of plant carotenoid cleavage dioxygenase gene. Gene 548, 223–233.

Qiao, S., Sun, S., Wang, L., Wu, Z., Li, C., Li, X., et al. (2017). The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant. Cell. 29, 292–309. doi: 10.1105/tpc.16.00611

Qiao, Y. L., Piao, R., Shi, J., Lee, S. I., Jiang, W., Kim, B. K., et al. (2011). Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3 which confers high grain yield in rice (Oryza sativa L.). Theor. Appl. Genet. 122, 1439–1449. doi: 10.1007/s00122-011-1543-6

Rajkumara, S. (2008). Lodging in cereals-a review. Agric. Rev. 29, 55–60.

Ramsay, L., Comadran, J., Druka, A., Marshall, D. F., Thomas, W. T., Macaulay, M., et al. (2011). INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat. Genet. 43, 169–172. doi: 10.1038/ng.745

Samadi, A. F., Suzuki, H., Ueda, T., Yamamoto, T., Adachi, S., and Ookawa, T. (2019). Identification of quantitative trait loci for breaking and bending types lodging resistance in rice, using recombinant inbred lines derived from Koshihikari and a strong culm variety. Leaf Star. Plant. Growth. Regul. 89, 83–98. doi: 10.1007/s10725-019-00517-y

Sameri, M., Nakamura, S., Nair, S. K., Takeda, K., and Komatsuda, T. (2009). A quantitative trait locus for reduced culm internode length in barley segregates as a Mendelian gene. Theor. Appl. Genet. 118, 643–652. doi: 10.1007/s00122-008-0926-9

Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., et al. (2002). Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701–702. doi: 10.1038/416701a

Shah, L., Yahya, M., Shah, S. M. A., Nadeem, M., Ali, A., Ali, A., et al. (2019). Improving lodging resistance: using wheat and rice as classical examples. Int. J. Mol. Sci. 20:17. doi: 10.3390/ijms20174211

Shi, C., Ren, Y., Liu, L., Wang, F., Zhang, H., Tian, P., et al. (2019). Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant. Physiol. 180, 381–391. doi: 10.1104/pp.19.00065

Smith, A., Cullis, B., and Gilmour, A. (2001). The analysis of crop variety evaluation data in Australia. Aust. New. Zeal. J. Stat. 43, 129–145.

Sowadan, O., Li, D. L., Zhang, Y. Q., Zhu, S. S., Hu, X. X., Bhanbhro, L. B., et al. (2018). Mining of favorable alleles for lodging resistance traits in rice (Oryza sativa) through association mapping. Planta 248, 155–169. doi: 10.1007/s00425-018-2885-y

Sui, P., Jin, J., Ye, S., Mu, C., Gao, J., Feng, H., et al. (2012). H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. Plant. J. 70, 340–347. doi: 10.1111/j.1365-313X.2011.04873.x

Tondelli, A., Xu, X., Moragues, M., Sharma, R., Schnaithmann, F., Ingvardsen, C., et al. (2013). Structural and temporal variation in genetic diversity of European spring two-row barley cultivars and association mapping of quantitative traits. Plant. Genome 6, 1–14. doi: 10.3835/plantgenome2013.03.0007

Tong, H. N., Jin, Y., Liu, W. B., Li, F., Fang, J., Yin, Y. H., et al. (2009). DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant. J. 58, 803–816. doi: 10.1111/j.1365-313X.2009.03825.x

Tong, H. N., Liu, L. C., Jin, Y., Du, L., Yin, Y. H., Qian, Q., et al. (2012). DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant. Cell. 24, 2562–2577. doi: 10.1105/tpc.112.097394

Turner, A., Beales, J., Faure, S., Dunford, R. P., and Laurie, D. A. (2005). The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034. doi: 10.1126/science.1117619

Van Raden, P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy. Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980

Walla, A., Wilma van Esse, G., Kirschner, G. K., Guo, G., Brünje, A., Finkemeier, I., et al. (2020). An acyl-CoA N-acyltransferase regulates meristem phase change and plant architecture in barley. Plant. Physiol. 183, 1088–1109. doi: 10.1104/pp.20.00087

Yano, K., Ookawa, T., Aya, K., Ochiai, Y., Hirasawa, T., Ebitani, T., et al. (2015). Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol. Plant. 8, 303–314. doi: 10.1016/j.molp.2014.10.009

Zadoks, J. C., Chang, T. T., and Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed. Res. 14, 415–421. doi: 10.1111/j.1365-3180.1974.tb01084.x

Zhang, R., Jia, Z., Ma, X., Ma, H., and Zhao, Y. (2020). Characterising the morphological characters and carbohydrate metabolism of oat culms and their association with lodging resistance. Plant. Biol. 22, 267–276. doi: 10.1111/plb.13058

Zahn, S., Schmutzer, T., Pillen, K., and Maurer, A. (2021). Genomic dissection of peduncle morphology in barley through nested association mapping. Plants 10:10. doi: 10.3390/plants10010010

Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., and Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328. doi: 10.1093/bioinformatics/bts606

Zuber, U., Winzeler, H., Messmer, M. M., Keller, M., Keller, B., Schmid, J. E., et al. (1999). Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.). J. Agron. Crop. Sci. 182, 17–24. doi: 10.1046/j.1439-037x.1999.00251.x









 


	
	
TYPE Original Research
PUBLISHED 06 October 2022
DOI 10.3389/fpls.2022.980870






A novel locus conferring resistance to Puccinia hordei maps to the genomic region corresponding to Rph14 on barley chromosome 2HS

Mehnaz Mehnaz1, Peter M. Dracatos2, Hoan X. Dinh1, Kerrie Forrest3, Matthew N. Rouse4, Robert F. Park1 and Davinder Singh1*†


1School of Life and Environmental Sciences, Plant Breeding Institute, University of Sydney, Sydney, NSW, Australia

2Department of Animal, Plant and Soil Sciences, La Trobe University, AgriBio, Bundoora, VIC, Australia

3Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia

4USDA-ARS Cereal Disease Laboratory, Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States

[image: image2]

OPEN ACCESS

EDITED BY
 Sujan Mamidi, HudsonAlpha Institute for Biotechnology, United States

REVIEWED BY
 Prem Lal Kashyap, Indian Institute of Wheat and Barley Research (ICAR), India
 Shailendra Kumar Jha, Indian Agricultural Research Institute (ICAR), India

*CORRESPONDENCE
 Davinder Singh, davinder.singh@sydney.edu.au 

†ORCID: Davinder Singh https://orcid.org/0000-0003-1411-9291

SPECIALTY SECTION
 This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science

RECEIVED 29 June 2022
ACCEPTED 24 August 2022
PUBLISHED 06 October 2022

CITATION
 Mehnaz M, Dracatos PM, Dinh HX, Forrest K, Rouse MN, Park RF and Singh D (2022) A novel locus conferring resistance to Puccinia hordei maps to the genomic region corresponding to Rph14 on barley chromosome 2HS. Front. Plant Sci. 13:980870. doi: 10.3389/fpls.2022.980870

COPYRIGHT
 © 2022 Mehnaz, Dracatos, Dinh, Forrest, Rouse, Park and Singh. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
 

Barley leaf rust (BLR), caused by Puccinia hordei, is best controlled through genetic resistance. An efficient resistance breeding program prioritizes the need to identify, characterize, and map new sources of resistance as well as understanding the effectiveness, structure, and function of resistance genes. In this study, three mapping populations were developed by crossing Israelian barley lines “AGG-396,” “AGG-397,” and “AGG-403” (carrying unknown leaf rust resistance) with a susceptible variety “Gus” to characterize and map resistance. Genetic analysis of phenotypic data from rust testing F3s with a P. hordei pathotype 5457 P+ revealed monogenic inheritance in all three populations. Targeted genotyping-by-sequencing of the three populations detected marker trait associations in the same genomic region on the short arm of chromosome 2H between 39 and 57 Mb (AGG-396/Gus), 44 and 64 Mb (AGG-397/Gus), and 31 and 58 Mb (AGG-403/Gus), suggesting that the resistance in all three lines is likely conferred by the same locus (tentatively designated RphAGG396). Two Kompetitive allele-specific PCR (KASP) markers, HvGBSv2-902 and HvGBSv2-932, defined a genetic distance of 3.8 cM proximal and 7.1 cM distal to RphAGG396, respectively. To increase the marker density at the RphAGG396 locus, 75 CAPS markers were designed between two flanking markers. Integration of marker data resulted in the identification of two critical recombinants and mapping RphAGG396 between markers- Mloc-28 (40.75 Mb) and Mloc-41 (41.92 Mb) narrowing the physical window to 1.17 Mb based on the Morex v2.0 reference genome assembly. To enhance map resolution, 600 F2s were genotyped with markers- Mloc-28 and Mloc-41 and nine recombinants were identified, placing the gene at a genetic distance of 0.5 and 0.2 cM between the two markers, respectively. Two annotated NLR (nucleotide-binding domain leucine-rich repeat) genes (r2.2HG0093020 and r2.2HG0093030) were identified as the best candidates for RphAGG396. A closely linked marker was developed for RphAGG396 that can be used for marker-assisted selection.
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 characterization, genetic resistance, KASP, NLR, RphAGG396


Introduction

Cultivated barley, Hordeum vulgare, is considered as a founder crop of modern agriculture (Park et al., 2015) ranking fourth in terms of global production after maize, rice, and wheat. Barley can be affected by four rust diseases: leaf rust, crown rust, stripe rust, and stem rust. Among these, barley leaf rust (BLR; also known as brown rust), caused by the fungus Puccinia hordei Otth, is one of the most destructive and widely distributed worldwide. The disease has caused yield losses documented at up to 32% in Australia and North America, with losses in very susceptible varieties even reported as being as high as 60% (Cotterill et al., 1992; Castro et al., 2012; Park et al., 2015). BLR is best controlled through deployment of resistant cultivars (Singh et al., 2015; Rehman et al., 2017; Sardar et al., 2022) and therefore breeding for leaf rust resistance is one of the prime objectives of many barley breeding programs worldwide.

To date, 28 Rph (resistance to Puccinia hordei) genes have been cataloged and mapped in barley (Mehnaz et al., 2021a), comprising 25 seedling or all stage resistance (ASR) genes (Rph1-Rph19, Rph21-Rph22, and Rph25-Rph28) and three adult plant resistance (APR) genes-Rph20, Rph23, and Rph24 (Hickey et al., 2011; Singh et al., 2015; Ziems et al., 2017). Most of the cataloged ASR genes have limited value in breeding because they have been rendered ineffective by pathotypes of P. hordei with matching virulence (Park et al., 2015) or due to possible associated linkage drag (Bishnoi et al., 2022) in the case of those derived from wild species (H. spontaneum or H. bulbosum). To enhance the genetic base and durability of effective resistance in combating epidemics caused by new leaf rust pathotypes, there is a need to identify, characterize and map new resistance genes as well as understand their effectiveness, structure, and function (Park et al., 2015; Li et al., 2016; Wani et al., 2022).

Mapping the genetic basis of disease resistance requires the development of populations segregating for disease resistance response, phenotypic accuracy, marker genotyping, and subsequent trait association analysis to locate the target locus (Hamwieh et al., 2018). Population size, structure, and the type and density of molecular markers employed for mapping play vital roles in determining the resolution of the maps generated (Richards et al., 2017; Tomar et al., 2022). A variety of molecular markers have been developed over the last 30 years and used in mapping traits of interest in crops. For example, in barley, Rph13 (Jost et al., 2020), Rph26 (Yu et al., 2018), and Rph27 (Rothwell et al., 2020) have been mapped/fine-mapped in bi-parental mapping populations using SNPs (single nucleotide polymorphisms), CAPS (cleaved amplified polymorphic sequences) and HRM (High resolution melting), and indels (insertion–deletion events), respectively. Gene mapping provides the foundation for map-based cloning, which ultimately helps in understanding the structure and function of genes (Wani et al., 2022). Markers identified through gene mapping can be used in marker-assisted selection (MAS) to increase plant breeding efficiency as well in gene pyramiding to attain durable resistance.

In the current study, three bi-parental mapping populations were developed to undertake inheritance studies and the identification of genomic regions conferring resistance to BLR. Three barley genotypes (AGG-396, AGG-397, and AGG-403) were selected from a Middle Eastern and Central Asian barley germplasm collection based on their resistance to all predominant Australian pathotypes of P. hordei (Mehnaz et al., 2021b). We conducted the present studies with three objectives: (i) to identify the genomic regions associated with resistance to P. hordei in genotypes AGG-396, AGG-397 and AGG-403; (ii) to fine map the resistance (tentatively designated as RphAGG396); and (iii) to develop closely linked markers for MAS of RphAGG396.



Materials and methods


Plant and pathogen material

Three barley lines [AGG-396 (AUS#403467), AGG-397 (AUS#403468) and AGG-403 (AUS#403774)] from Israel were investigated in this study. The lines were obtained from Australian Grains Genebank (AGG) Horsham, Victoria. Mapping populations were developed by crossing each of the three lines with a leaf rust susceptible (S) genotype “Gus.” F1s (first filial generation) derived from the three crosses were grown, selfed, and advanced to the F2 generation. The F2s were sown as space planted long rows in the field and single plants were harvested as F3 families (AGG-396/Gus = 105; AGG-397/Gus = 120; AGG-403/Gus = 126 families). A single seed from each F3 family was then planted in a 20 cm pot @ three lines per pot to advance to the F4 generation. Sixteen pathotypes of P. hordei (14 of Australian origin and two of North American origin; Table 1) were used according to the objectives of the corresponding experiments.



TABLE 1 Puccinia hordei pathotypes used in this study, along with origin and their virulence profile.
[image: Table1]



Sowing and inoculations


Australia

The test lines and control genotypes (three lines/pot in clumps @ 8–10 seedlings/pot) and F3s (1 line/pot dispersed @ 20 seedlings/pot) were sown in 90 mm diameter pots containing Grange Horticultural® soil premix comprised of 10% composted pine bark, 80% pine bark, 10% propagating sand, 1 kg/m3 gypsum, 1 kg/m3 superphosphate, 0.25 kg/m3 potassium nitrate, 0.25 kg/m3 nitroform, and 1.5 kg/m3 magrilime. Prior to sowing, all pots were fertilized with Aquasol @ 25 g/10 l of water. After sowing, pots were kept at 24°C in a temperature-controlled growth room. Ten-days old seedlings were inoculated with a P. hordei pathotype 5457 P+. A suspension mixture was prepared by adding 10 mg urediniospores /10 ml of isopar, a light mineral oil (Univar., Ingleburn, NSW, Australia), for 200 pots and the mixture was then atomized over the seedlings with a mist atomizer. Following inoculation, seedlings were incubated at 25°C in a dark chamber for 24 h. An ultrasonic humidifier was used to create mist in the incubation chamber. After 24 h of incubation, seedlings were shifted to microclimate rooms maintained at 24°C with natural light and an automated irrigation system.



United States

The three test lines were also rust tested in Minnesota, United States with two North American P. hordei pathotypes (17TX10B and 17WA26B). Test lines and control genotypes (four lines/pot in clumps @ 20 seedlings/pot) were sown in plastic pots (6.7-cm width × 6.7-cm length × 5.7-cm height) filled with vermiculite (Sun Gro Horticulture). Approximately 4 days after sowing and 1 week after inoculation, the pots were fertilized with a 20:20:20 NPK fertilizer @ 5 g/L of water. After sowing, pots were kept in a greenhouse maintained at 19°C–22°C with a photoperiod of 16 h facilitated by supplemental lighting. Approximately nine-days old seedlings were inoculated with a 15 mg urediniospores/0.75 ml Soltrol 70 lightweight mineral oil (ConocoPhillips Inc.) suspension inside a gelatin capsule from selected P. hordei isolates. Inoculations were facilitated by a custom rust inoculator (St. Paul machine shop, University of Minnesota) pressurized by an air pump (30 kPa). After inoculation, plants were placed under a fume hood to allow the oil to evaporate for 20 min. Plants were then placed in a dew chamber where humidity was maintained by ultrasonic humidifiers (V5100NS; Vicks) turned on for 2 min every 15 min for 16 h without light. Then, 400 W high-pressure sodium vapor lamps (LR217718; Kavita Canada Inc.) were turned on above the dew chambers that possessed a transparent plastic roof, allowing light penetration to the plants. After 2 h, the doors of the dew chambers were opened, and the plants were moved to a greenhouse maintained at 19°C–22°C with a photoperiod of 16 h facilitated by supplemental lighting.




Disease scoring

Rust responses in Australia and United States were recorded using a “0”–“4” infection type scale (“0”-“hypersensitive flecks”; no sporulation and “1”–“4” increasing sporulation in the pustules) proposed by Park and Karakousis (2002). Plants were scored when the susceptible control Gus reached infection type (IT) of “3+” (typically 8–10 days after inoculation).



DNA extraction, genotyping and targeted genotyping by sequencing

Genomic DNA was extracted from leaf tissues of single plants of F3 families for all three populations using a CTAB (Cetyl Trimethyl Ammonium Bromide) protocol (Fulton et al., 1995). Concentration of DNA was determined by using spectrophotometer (NanoDropTM, Biolab, Melbourne, VIC, Australia) and quality was determined by running all the samples on 0.8% agarose gel. To rule out the possible presence and involvement of Rph7 and Rph15, all three AGG lines used as resistant parents in this study were genotyped with Indel markers closely linked to Rph7 (Dracatos et al., unpublished) or a highly diagnostic KASP marker for Rph15 (Chen et al., 2021). DNA from individual plants of F3 families from each of the three populations (AGG-396/Gus, AGG 397/Gus and AGG-403/Gus) showing monogenic inheritance with pathotype 5457 P+ was diluted to 100 ng/μl and sent to Agriculture Victoria, AgriBio Bundoora, Australia, for targeted genotyping by sequencing (tGBS) analysis on a fee-for service basis.



Development of molecular markers (KASP and CAPS) for AGG-396/Gus

The target region identified through tGBS for the AGG-396/Gus F3 mapping population was enriched with both KASP and CAPS (Cleaved Amplified Polymorphic Sequences) markers. For KASP markers, SNPs identified in the target region were used directly to develop KASP assays by designing two allele-specific forward primers and one common reverse primer or vice versa using batch primer 3.1

KASP assays were performed in 96 well plates with an 8 μl reaction volume containing 4 μl of genomic DNA (10 ng/ul), 3.89 μl KASP mix (LGC Biosearch Technologies) and 0.11 μl of primer mix. All KASP reactions were conducted using a real time PCR machine-CFX96 (Biorad, United States) with 94°C for 15 min, 10 touchdown cycles at 94°C for 20 s, 65 to 58°C (reducing 0.6°C /cycle) and 35 cycles at 94°C for 20 s, 1 min at 55°C. Plates were read at 40°C and data were analyzed using allelic discrimination function.

For developing CAPS markers, sequence information for chromosome 2H based on Morex v2.0 (Mascher, 2019) was downloaded from IPK barley blast server and primers were designed to the pseudomolecules of chromosome 2H using primer 3 plus.2 PCR conditions for these markers were optimized and all markers were subsequently screened for polymorphism on both parental genotypes (AGG-396 and Gus). A 50 μl reaction was set comprising 15 μl of genomic DNA (10 ng/ μl), 10 μl Mi-Fi buffer, 0.5 μl of taq DNA polymerase (Bioline), 5 μl of each of forward and reverse primers (1.5 μM), and 14.5 μl of double distilled water. PCR conditions comprised an initial denaturation step at 95°C for 10 min, followed by 30 cycles with denaturation at 94°C for 30 s, annealing at 60°C for 30 s and extension at 72°C for 30 s. A final extension step of 10 min at 72°C was used.

The amplicons from parents (AGG-396 and Gus) were purified using Agencourt AMPure protocol- “000601v024” (Agencourt Bioscience Corporation). Forty microliters of AMPure XP was added to 40 μl of PCR product in a 96 well plate and mixed by pipetting. The samples were kept on a magnetic SPRI (solid-phase reversible immobilization) plate for 1 min. Liquid was eluted and DNA samples were washed twice with 120 μl of 70% ethanol to remove any contamination. Ethanol was discarded and samples were kept at room temperature for 5 min to evaporate any remaining liquid in the plate. One hundred microliters of 10 mM Tris (pH = 8) was added and mixed by pipetting. Samples were again kept on the SPRI magnetic plate for 1 min. Purified DNA (30 μl) was eluted and transferred to the new plate. In order to sequence, 8 μl purified PCR product was mixed with 4 μl of primer and sent to AGRF (Australian Genome Research Facility) for Sanger sequencing. For CAPS assays, PCR products were restricted using specific endonucleases as per the manufacturers protocol (New Biolab England, Australia).

All CAPS primers were first used to amplify the parental genotypes (susceptible vs. resistant parent) and CAPS primers that were successfully amplified on the parents were converted to CAPS. Out of the 75 CAPS and 15 KASP markers designed (Supplementary File Tables S1, S2), 18 (3 KASP and 15 CAPS) were polymorphic between the parents and were used to genotype all F3 progeny (n = 105) for mapping of the RphAGG396 resistance. Once flanking markers were identified, a further 600 F2 plants were genotyped with flanking markers for high resolution mapping of RphAGG396. Of the four markers that co-segregated with RphAGG396 in the high-resolution mapping population, MLoc-70 was validated on 70 Australian barley cultivars (Figure 1; Supplementary File Table S3) that are known to lack Rph14 (Singh et al., 2020).

[image: Figure 1]

FIGURE 1
 Marker validation on Australian barley cultivars with marker MLoc-70. Products were digested with restriction enzyme BSrI. Lane number 1 = easy ladder (Bioline). Lane numbers 2, 3, and 4 = PI 584760, Bowman + Rph14 and resistant parent AGG-396, respectively. Lane numbers 5 to 7 = Gus, Bowman and Morex, respectively, and lane numbers 8 to 20 Australian Barley cultivars. Note the presence of susceptible allele for all cultivars shown in this image relative to lanes 2, 3, and 4, which are leaf rust resistant controls.




Gel electrophoresis

Digested PCR products were loaded onto 2% agarose gels. Each gel was prepared by mixing 5 g agarose in 250 ml of TAE buffer and boiling to dissolve the mixture. The gel was cooled under running tap water and then gel red was added (1 μl per 100 ml of solution). Five microliter loading buffer [98% formamide, 10 mM EDTA (pH 8.0), 0.05% Bromophenol blue and 0.05% xylene cyanol] was mixed to 15 μl digested PCR product and was spun down. 5 μl product was then loaded to each well using 2 kb Easy Ladder (Bioline) as a size reference. Electrophoresis was carried out at 110 volts for 60 min or more depending upon the size of digested products. Separated products were visualized using Gel-Doc IT imaging system (Model-M-26, Bioimaging Systems, CA, United States). The gel was scored as A = resistant, B = susceptible and H = heterozygous. Marker genotyping data was compared with the F4 phenotype.



Sample size for initial mapping and high-resolution mapping

For initial mapping studies, 10 to 12 seeds of each F3 family were phenotyped. DNA was extracted from single leaf of each F3 family, and that DNA was used for marker genotyping. A single seed from each family was then advanced to the F4 generation and marker genotyping data was plotted against F4 phenotype. In case of RphAGG396 mapping, all F3 families (n = 105) were used for phenotyping and genotyping. For fine mapping studies, 600 F2 plants were phenotyped and genotyped.



Statistical analysis

F3 families were scored as non-segregating resistant (NSR—when all plants of individual family were resistant), non-segregating susceptible (NSS—when all plants of individual family were susceptible), or segregating (Seg—when both resistant and susceptible plants were found within a family). The data obtained were subjected to Pearson’s Chi-squared analysis (χ2) at significance level α = 0.05 to determine the goodness-of-fit of the observed ratios with expected genetic ratios. Online calculator Quickcalcs (GraphPad Software Inc., United States) was used to determine the p-values from χ2 values.

For tGBS mapping, the genotype calling trimmed sequence data was aligned against the IBSC genome assembly of Morex v1.0 using Nuclear software (GYDLE Inc.) to map each read to the best possible chromosome location. Associations were reported when at least 80% of the read length aligned, where three mismatches were tolerated in a window of 70 bases (i.e., ~96% identity). Genotypes were called when a SNP (Single Nucleotide Polymorphism) had a minimum read depth of 4, for SNPs that occurred in at least 4 samples, using custom perl scripts (a version 4.2 vcf file was generated). A marker was considered to be putatively linked with the target trait when one of the following criteria was met: minimum 50% call rate and minimum 70% allele fixation in the resistant progeny lines (i.e., fixed in resistant only); the susceptible progeny lines (i.e., fixed in susceptible only); minimum 50% call rate and minimum 70% allele fixation across each of the resistant and susceptible progeny lines (i.e., fixed in resistant and susceptible).

CAPS and KASP markers were designed within interval of 39 to 57 Mb (Mega bases) using Morex reference genome assembly v2.0. Sequence information of polymorphic KASP and CAPS primers is given in Tables 2, 3, respectively. The nucleotide sequences for both parents were analyzed for SNPs using Sequencher 5.1 software (Gene Codes, Ann Arbor, MI, United States). The identified SNPs were further subjected to dCAPS (Derived Cleaved Amplified Polymorphic Sequences) Finder 2.0 to identify restriction endonucleases.



TABLE 2 Sequence information for polymorphic KASP primers used to map RphAGG396.
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TABLE 3 Sequence information for polymorphic CAPS primers and respective restriction enzymes used to map RphAGG396.
[image: Table3]




Results


Infection type response and genotyping of the parents

The three resistant parents investigated in this study produced very low to intermediate ITs, while the susceptible parent Gus produced a high IT with eight Australian pathotypes (Table 4). The parental line AGG-397 showed relatively lower infection type compared to AGG-396 and AGG-403 with pathotypes 200 P− and 220 P+ suggesting the presence of an additional gene in AGG-397. All three resistant parents carried susceptibility alleles when genotyped with markers linked to Rph7 (Dracatos et al., unpublished) and Rph15 (Chen et al., 2021), supporting the likely absence of Rph7 and Rph15 (effective against all known Australian pathotypes) in the resistant parents (Supplementary File Table S4).



TABLE 4 Infection types produced by AGG-396, AGG-397, and AGG-403 when tested against eight Puccinia hordei pathotypes in the greenhouse.
[image: Table4]



Phenotyping and genetic analysis of mapping populations

The F1s derived from three crosses showed infection type similar to that of the respective resistant parents involved indicating that the resistance in all three lines is dominant. The F3 families derived from all three populations segregated for resistant (;CN to;12CN) and susceptible (3+) IT responses when tested with pathotype 5457 P+. Chi squared analysis of phenotypic data of F3 families revealed a goodness of fit of the data for a single gene segregation conforming to a 1:2:1 (NSR:Seg:NSS) genetic ratio (p > 0.6 to 0.8) in all three populations (Table 5). The pooled analysis based on resistant (R) and susceptible (S) individuals within segregating lines showed goodness of fit for a 3R:1S ratio in all three populations (AGG-396/Gus = 603R:227S, p > 0.11; AGG-397/Gus = 578R: 211S, p > 0.25; AGG403/Gus = 680R:233S, p > 0.71) confirming that resistance in all three lines is dominant. To determine if the difference in IT response of AGG-397 relative to AGG-396 and AGG-403 is due to presence of an additional gene, the F3s of AGG-397/Gus were also tested with pathotype 200 P−. The population segregated (27NSR:52Seg:23NSS) in a similar fashion with this pathotype as that with pathotype 5457 P+ and conformed to a genetic ratio (1:2:1, p > 0.8) expected for a single dominant gene.



TABLE 5 Distribution and Chi-squared analysis of F3 families derived from crosses between AGG-396/Gus, AGG-397/Gus, and AGG-403/Gus when tested against Puccinia hordei pathotype 5457 P+ in greenhouse.
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Locating genomic regions associated with resistance to Puccinia hordei

To determine chromosomal regions associated with the observed leaf rust resistance, all three populations (AGG-396/Gus, AGG-397/Gus, and AGG-403/Gus) were genotyped using tGBS. In all three populations, markers linked to resistance were detected on the short arm of chromosome 2H between 39 and 57 Mb, 44 and 64 Mb, and 31 and 58 Mb, respectively (Figure 2) based on the Morex reference assembly v.1 (Mascher et al., 2017).

[image: Figure 2]

FIGURE 2
 Genomic regions for AGG-396 (red), 397 (green), and 403/Gus (blue) F3 populations identified on the short arm of chromosome 2H through tGBS. For AGG-396/Gus, AGG-397/Gus and AGG-403/Gus, the intervals linked to resistance were found from 39 to 57, 44 to 64, and 31 to 58 Mb on 2HS, respectively.




Relationship of RphAGG396, RphAGG397, and RphAGG403 with previously reported genes on 2HS

The leaf rust resistance carried by three lines (tentatively designated RphAGG396, RphAGG397, and RphAGG403) was detected in the same region as that reported previously for genes Rph14, Rph15, and Rph16 on chromosome 2HS (Martin et al., 2020; Chen et al., 2021). The possibility of the resistance in these lines being Rph15/Rph16 (demonstrated as the same genes, Chen et al., 2021) was rejected based on all three lines being negative for a diagnostic marker for Rph15. The recently reported physical location of Rph14 (45.7–57.3 Mb) reported by Martin et al. (2020) using GBS SNPs suggested the possible presence of Rph14 in these lines.

To assess this possibility more critically, the parents AGG-396, 397, and 403 along with the Rph14 donor line-PI 584760, a line near isogenic to Bowman carrying Rph14, Bowman and Gus were phenotyped with additional P. hordei pathotypes 5610 P+ (Figure 3A) and 210 P+ (Figure 3B), both considered to carry virulence for Rph14 (Park RF, unpublished). AGG-396, 397 and 403 were all resistant (IT ranging from “;+N” to “;1+CN”) to pathotypes 5610 P+ and 210 P+, while Bowman, Bowman + Rph14 and PI 584760 were susceptible (IT “3” to “3+”) to both pathotypes indicating that the locus involved in three test lines is distinct from Rph14. To further validate these results, the three lines were sent to Minnesota, United States and tested with two additional isolates 17TX10B (avirulent on Rph14) and 17WA26B (virulent on Rph14). The tests however showed specificity allied to Rph14; all three lines being susceptible with isolate 17WA26B and resistant with isolate 17TX10B. The incompatible IT response of AGG-396, AGG-397 and AGG-403 to Australian Rph14-virulent pathotypes 5610 P+ and 210 P+ in contrast to Rph14-specific response with the North American pathotypes implied that resistance in these lines is likely conditioned either by a distinct allele of Rph14 or a gene very closely linked to Rph14 which is not effective to North American isolate 17WA26B.
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FIGURE 3
 (A) From left to right, infection types of AGG-396, 397, 403, PI584760, Bowman + Rph14, and Bowman, respectively, with 5610 P+. (B) Infection types of AGG-396, 397, 403, PI584760, Bowman + Rph14, and Bowman, respectively, with 210 P+.




Mapping RphAGG396

Detection of the same physical region linked to resistance in AGG-396, AGG-397, and AGG-403 (based on the Morex reference genome assembly) suggested the possible involvement of the same locus in the three lines. Based on this assumption, further experiments were conducted to fine map only the resistance locus RphAGG396. This locus was preferred because it was the smallest physical region (18 Mb) compared to RphAGG397 (20 Mb) and RphAGG403 (22 Mb).

Two KASP markers, HvGBSv2-902 and HvGBSv2-932, defined a genetic distance of 3.8 cM (with 8 recombinants) proximal, and 7.1 cM (with 15 recombinants) distal to RphAGG396, respectively. The RphAGG396 locus was further saturated with 15 CAPS markers developed between the two flanking markers (Figure 4). Integration of marker data to F4 phenotypes resulted in the identification of two critical recombinants, placing RphAGG396 between two closely linked markers Mloc-28 (40.75 Mb) and Mloc-41 (41.92 Mb) at a genetic distance of 0.47 cM at proximal and distal ends (Figure 5). The physical window between the newly determined flanking markers was narrowed to a 1.17 Mb region based on the Morex v2.0 reference genome assembly (Mascher, 2019).

[image: Figure 4]

FIGURE 4
 Gel image showing screening of the AGG-396/Gus derived F3 population with CAPS marker Mloc-39 when digested with restriction enzyme MboII. Lane numbers 1, 18, and 35 = Easy Ladder (Bioline). Lane numbers 33 and 34 = resistant parent AGG-396 and susceptible parent Gus, respectively. All other lanes show F3 progeny from the AGG-396/Gus population.
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FIGURE 5
 Genetic and physical map for RphAGG396 based on the Morex genome assembly 2019 (v2). (A) Barley chromosome 2H showing the physical window between 35 and 47 Mb for RphAGG396 based on polymorphic KASP and CAPS markers, (B) fine map of RphAGG396 placing the locus between MLoc-28 and MLoc-41 within a physical interval of 1.17 Mb. Markers co-segregating with RphAGG396 are highlighted red (C) predicted NLRs genes (red highlighted) between MLoc-28 and MLoc-41.




High resolution mapping of RphAGG396 and marker validation

In order to enhance map resolution, 600 F2 plants were genotyped with the markers Mloc-28 and Mloc-41, and nine recombinants were identified. Phenotyping and genotyping of these recombinants placed the gene at genetic distances of 0.5 and 0.2 cM between Mloc-28 and Mloc-41, respectively. Eight markers (MLoc-29, MLoc-31, MLoc-36, MLoc-38, MLoc-39, MLoc-70, MLoc-71, and MLoc-74) were found to co-segregate with RphAGG396 in a low resolution F3 mapping population (Figure 1), among which four (MLoc-29, MLoc-31, MLoc-70, and MLoc-71) co-segregated with the resistance phenotype in a high resolution F2 population (AGG396/Gus).

Marker MLoc-70, derived directly from the sequence of putative candidate gene-r2.2HG0093030 in the target interval was validated on 70 Australian barley cultivars (Supplementary File Table S3) that are considered to lack Rph14 (Singh et al., 2020). MLoc-70 amplified susceptible alleles in all 70 Australian barley cultivars and two leaf rust susceptible controls (Gus and Bowman) and the resistant allele in PI 584760, Bowman + Rph14 and AGG-396. Furthermore, the susceptible allele was amplified from Morex DNA suggesting that the RphAGG396 candidate gene may not be present in the reference genome (Figure 1).



Gene annotation

The genomic region between Mloc-28 and Mloc-41 was searched for high confidence (HC) genes using the Morex reference genome assembly v.2. The region between these markers carries 17 HC genes (Table 6). The functional annotation of these HC genes was retrieved using IPK Gatersleben.3 The annotated genes in the target interval include two NLR genes, r2.2HG0093020, which is a locus for Rph15 as reported by Chen et al. (2021), and r2.2HG0093030, which encodes an NBS-LRR-like resistance protein.



TABLE 6 High confidence genes annotated in the target interval between the flanking markers Mloc-28 and Mloc-41.
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Discussion

This study was conducted to characterize and map leaf rust resistance in three Israeli barley lines (AGG-396, AGG-397, and AGG-403) based on previous results that suggested the lines carried uncharacterised all stage resistance (Mehnaz et al., 2021b). All three lines originated from the same geographical area and produced very similar infection types with all test pathotypes, and it was therefore hypothesized that the resistance in all three lines is likely conferred by the same resistance locus. Targeted genotype by sequencing (tGBS) conducted in this study supported our hypothesis as resistance was mapped to the same overlapping genomic region on the short arm of chromosome 2H in three mapping populations (AGG-396/Gus: 39–57 Mb; AGG-397/Gus: 44–64 Mb; AGG-403/Gus: 31–58 Mb).

Previously reported Rph genes on the short arm of chromosome 2H include Rph14 (Golegaonkar et al., 2009), Rph15 (Weerasena et al., 2004; Chen et al., 2021), Rph16 (Ivandic et al., 1998), and Rph17 (Pickering et al., 1998). Several previous studies conducted to determine the genetic relationship between the Rph genes on chromosome 2HS established that Rph14 and Rph16 are either allelic or closely linked to Rph15 (Ivandic et al., 1998; Weerasena et al., 2004) and Rph14 is independent of Rph15 (Chicaiza, 1996) or closely linked (Derevnina et al., 2015). All these studies were conducted prior to the release of the Morex reference genome assembly of barley and therefore the exact physical location of the genes was not known. However, a recent study by Martin et al. (2020) placed Rph14 and Rph15 on 2HS from 45.7 to 57.3 Mb and 44.8 to 57.3 Mb in the Morex reference genome v.1 based on GBS-based SNP markers. Their findings also established that Rph14 and Rph15 are closely linked, independent genes. The latest findings in this context using Illumina whole genome sequencing in donor lines for Rph14, Rph15, and Rph16 concluded that Rph14 is independent from Rph15 and that Rph15 and Rph16 are the same gene (Chen et al., 2021).

The three resistant lines investigated in this study tested negative for markers linked to Rph15 (Chen et al., 2021), therefore Rph15/16 is most probably not present in these lines. Based on different pathotypic specificity (observed with Australian pathotypes 5610 P+ and 210 P+) compared to the Rph14 donor accession (PI 584760), and on other hand Rph14-specificity with North American pathotypes, it can be concluded that the resistance locus in AGG-396, 397, and 403 could be an allele of Rph14 or an independent locus which is not effective against the Rph14-virulent North American pathotype used. However, further confirmation is recommended through a test of allelism between the three AGG lines and Rph14 donor stock. Sequencing of AGG lines and PI 584760 (Rph14) may also help in revealing any differences at nucleotide level and understanding the nature of the underlying resistance.

In this study, we successfully fine mapped RphAGG396 and narrowed down the physical region to 1.17 Mb. Functional annotation of the genes in the identified target region detected 17 high confidence genes including two NLR genes (r2.2HG0093020 and r2.2HG0093030). Among various known classes for resistance genes in plants, the most prevalent and commonly identified class of genes providing resistance to several pathogens encode immune receptor proteins that contain a nucleotide-binding site (NBS) and a leucine-reach repeat domain (referred to as NLRs; Dangl and Jones, 2001; Tan and Wu, 2012). Most disease resistance genes in cereals isolated so far belong to this class of gene, for example, Rph1 (Dracatos et al., 2019) and Rph15 (Chen et al., 2021) in barley and leaf rust resistance genes Lr1, Lr10, and Lr21 (Feuillet et al., 2003; Huang et al., 2003; Cloutier et al., 2007), stem rust resistance genes Sr33, Sr35, and Sr50 (Periyannan et al., 2013; Saintenac et al., 2013; Mago et al., 2015) and yellow rust resistance genes Yr5, Yr10, and Yr27 (Liu et al., 2014; Marchal et al., 2018; Athiyannan et al., 2022) in wheat.

The two annotated NLR genes (r2.2HG0093020 and r2.2HG0093030) were identified as the best candidates for RphAGG396, the former was however reported as Rph15 (Chen et al., 2021). Martin et al. (2020) reported that Rph14 and Rph15 are closely linked genes between 45 and 57 Mb in reference genome assembly v.1. The two markers (MLoc-29 and MLoc-31) designed to the CDS (coding sequences) of NLR gene-r2.2HG0093020 and further two (MLoc-70 and MLoc-71) designed to the CDS of second NLR gene-r2.2HG0093030 co-segregated with RphAGG396 in a high-resolution mapping population. Therefore, these two NLRs could be candidate genes for RphAGG396. As previous studies also reported that both Rph14 and Rph15 are tightly linked genes (Derevnina et al., 2015; Martin et al., 2020; Chen et al., 2021) and the CDS of two identified NLR genes in this study are at 5 kb distance from one another in Morex reference genome v.2, it was not surprising that all four markers co-segregated with both of these NLR genes. It is probable that there are cultivar specific genes possibly not present in Morex that may represent both Rph14 and RphAGG396. NLRs clusters in genomes evolve mainly through divergent evolution and lineage specific duplication events (Michelmore and Meyers, 1998; Zhong et al., 2018).

Of four co-segregating markers, MLoc-70 was validated on 70 Australian barley cultivars (Supplementary File Table S3) that are believed to lack Rph14 (Singh et al., 2020). The susceptible allele was amplified in all 70 barley cultivars and the leaf rust susceptible controls Gus and Bowman, while the resistance allele was amplified in PI 584760, Bowman + Rph14 and the resistant parent AGG-396, suggesting that this marker is highly predictive for RphAGG396 and can be used for marker-assisted selection.
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YTBW, yield trial bread wheat; EYTBW, elite yield trial bread wheat; YTZN, yield trial zinc; EYTZN, elite yield trial zinc; PCZN, parcela chica (small plots) zinc; B5IR, bed
planting 5 irrigations; B2IR, bed planting 2 irrigations; SR small plots; Rep 1, replication 1; Rep 2, replication 2; BLUES, best linear unbiased estimates.
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2013-2014 2014-2015
DTHD DAYSMT DTHD DAYSMT
LDH JBL PUS LDH JBL PUS LDH JBL PUS LDH JBL PUS
90-111 67-85 65-88 139-151 110-125 121-130 94-109 71-98 68-95 138-147 108-134 113-133
102 75 81 146 118 124 102 82 82 143 121 120
0.87 0.91 0.72 0.56 0.76 0.44 0.92 0.96 0.84 0.83 0.96 0.82
1.33 1.63 2.25 1.19 1.32 0.98 1.06 1.14 413 0.61 0.66 1.94
2.65 2.52 3.06 2.69 2.92 2.62 2.15 1.89 6.51 1.68 1.66 4.48
7.74 8.23 5.13 2:2 4.7 1.06 7.67 11.91 35.35 2.06 11.45 13.32
1.98 1.61 3.78 3.16 2.49 1.63 117 0.92 12.24 0.84 0.78 5.52
2015-2016 2016-2017
89-110 59-87 61-103 139-1564 103-127 1156-136 87-107 66-92 70-94 142-155 116-134 118-135
101 75 87 148 119 126 96 83 82 149 126 126
0.95 0.98 0.89 0.83 0.88 0.81 0.95 0.9 0.79 0.81 0.86 0.78
1 T 3.99 0.8 1.45 2.01 1.04 1.51 2.7 0.81 0.94 1.32
2.09 1.78 6.87 2.33 3.42 4.9 2.08 2.36 3.89 2.36 2.4 3.03
12.42 24.52 55.33 3.91 12.33 15.42 11.97 8.66 14.57 3.54 5.11 5.64
1.06 0.72 12.55 1.43 3.03 6.67 1.02 2.58 6.02 1.5 1.43 2.83
2017-2018 2018-2019
94-115 65-93 74-97 134-154 112-137 110-132 102-120 73-98 68-96 147-159 118-135 120-140
105 80 86 145 125 125 112 84 83 163 126 131
0.96 0.76 0.87 0.87 0.78 0.68 0.95 0.85 0.88 0.89 0.68 0.57
0.91 2.75 1.83 1.02 1.54 1.73 0.79 2.35 2.4 0.63 1.44 1.78
2.03 3.78 3.05 2.91 3.51 3.62 1.9 3.93 3.87 1.94 3.17 3.46
11.97 12.32 9.37 8.62 7.94 5.59 9.1 13.23 17.08 417 4.04 4.84
0.94 6.22 2.85 2.29 3.87 4.99 0.8 4.07 4.42 0.95 3.42 5.74
2019-2020 2020-2021
96-120 59-89 70-99 148-163 111-132 128-139 92-114 58-80 64-92 141-154 105-126 121-134
109 73 83 156 121 134 104 68 76 148 116 127
0.94 0.95 0.85 0.87 0.87 0.76 0.92 0.94 0.95 0.77 0.9 0.82
1.01 1.68 2.71 0.66 1.36 1.21 1.06 1.568 2.06 0.76 1.46 1.36
2.33 2.44 417 2.1 3.32 3.38 2.3 2.28 3.23 2.16 3.47 3.23
11.07 15.24 18.56 4.07 11.85 4.96 10.34 10.41 28.09 2.28 14.5 7.96
1.24 1.36 5.71 1.1 2.84 2.78 1.44 1.16 2.43 1.29 2.89 3.03

DTHD, days to heading; DAYSMT, days to maturity; H?, heritability; CV, coefficient of variation; LSD, least significant difference; o2G, genotypic variance; o2F, residual

variance; BLUE, best linear unbiased estimates,; LDH, Ludhiana; JBL, Jabalpur; PUS, Pusa.
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Years Traits LDH-JBL LDH-PUS JBL-PUS
2013-2014 DTHD 0.68 0.65 0.73
DAYSMT 0.41 0.32 0.44
2014-2015 DTHD 0.74 0.62 0.68
DAYSMT 0.54 0.53 0.61
2015-2016 DTHD 0.75 0.66 0.80
DAYSMT 0.65 0.59 0.66
2016-2017 DTHD 0.49 0.46 0.46
DAYSMT 0.65 0.67 0.59
2017-2018 DTHD 0.68 0.56 0.69
DAYSMT 0.62 0.50 0.56
2018-2019 DTHD 0.55 0.47 0.50
DAYSMT 0.69 0.68 0.72
2019-2020 DTHD 0.64 0.61 0.84
DAYSMT 0.46 0.46 0.64
2020-2021 DTHD 0.62 0.69 0.85
DAYSMT 0.40 0.37 0.65

Significance at 0.01 probability level.
DTHD, days to heading; DAYSMT, days to maturity; LDH, Ludhiana; JBL,
Jabalpur; PUS, Pusa.
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Traits Environment Parents BC20 lines
BLM CcY20 Range Mean + SD CV (%) Skewness Keratosis H?
SL BLUE 10.58 11.88* 8.4-16.89 1210 £ 1.76 14.53 0.14 —0.35 93.49
E1 11.25 12.16* 7.59-16.24 11.52 £1.74 15.09 0.04 —0.39
E2 9.3 9.89* 6.95-15.49 11.44 £1.77 1551 0.04 —0.45
E8 10.2 11.6* 9-19.14 12.75 £1.92 15.07 0.38 0.13
E4 10.47 1.7 8-18 12.71 £ 2.09 16.42 0.3 —0.26
E5 9.33 8.17 7.67-18.33 12.01 £2.08 17.36 0.31 —0.38
E6 — — 7.12-18.75 181421 17.81 0.43 0:82
SC BLUE 2.3 1.97 1.40-2.97 2.08 +0.29 13.89 0.42 0.02 93.46
E1 2.32 2.04* 1.45-3.04 2184081 14.39 0.41 —0.03
E2 2.25 2.05* 1.34-2.9 2.01 £0.29 14.58 0.47 0.02
E3 2.24 1.86* 1.16-2.33 1.71 £0.25 14.61 0.41 -0.19
E4 2.45 2.03* 1.13-2.52 1.78 £0.27 15.01 0.15 -0.21
E5 2.1 2.26 1.31-2.74 2.01 £03 15.16 0.4 —0.38
E6 — - 1.23-2.88 1.85+£0.3 16.47 0.62 0.24

BLUE, best linear unbiased estimation; CV, coefficient of variation; H2, broad-sense heritability.

*and ** represent significance at P < 0.05 and P < 0.01, respectively.
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Kasp_AX-110617782-Kasp_2A-298
Kasp_AX-110617782-Kasp_2A-298
Kasp_AX-110617782-Kasp_2A-298
Kasp_AX-110617782-Kasp_2A-298
Kasp_AX-110617782-Kasp_2A-298
Kasp_AX-174254416-Kasp_AX-158596649
Kasp_AX-174254416-Kasp_AX-158596649
Kasp_2A-991-Kasp_2A-833
Kasp_2A-991-Kasp_2A-833
Kasp_2A-991-Kasp_2A-833
Kasp_2A-991-Kasp_2A-833
Kasp_2A-991-Kasp_2A-833
Kasp_2A-991-Kasp_2A-833
Kasp_2A-1036-Kasp_2A-991
Kasp_2A-1036-Kasp_2A-991
Kasp_2A-1036-Kasp_2A-991
Kasp_2A-1036-Kasp_2A-991
Kasp_2A-991-Kasp_2A-833
Kasp_2A-991-Kasp_2A-833
Kasp_2A-991-Kasp_2A-833
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484
Kasp_A014486-Kasp_A014484

LOD

3.76
4.01
3.27
3.2
2.5
5.16
5.34
4.54
3.92
2.58
3.76
3.67
5.12
4.86
3.61
4.83
3.95
2.85
6.38
6.71
5.37
5.28
3.56
4.26
4.97
9.49
7.62
9.95
9.53
6.02
7.6
4.51
10.6
8.42
11.88
12.84
13.22
7.61

PVE (%)

9.08
9.69
7.93
7.95
6.16
12.66
13.24
11.13
10.36
7

9.12
9.36
12.53
11.75
8.88
12.09
10.26
7.37
14.5
15.26
12.47
12.32
9.32
10.47
12,51
21.35
17.63
22.26
21.43
14.42
17.57
11.36
23.52
19.28
25.97
27.74
28.56
18.44

Add

—0.54
—0.56
—0.56
—0.6
—0.53
0.1
0.11
0.1
0.08
0.07
0.09
0.1
—0.64
—0.62
—0.55
—0.68
—0.68
—0.6
0.12
0.13
0.11
0.09
0.09
0.11
0.12
—0.83
—0.74
—0.85
—0.91
—0.81
—0.89
-0.72
0.14
0.14
0.15
0.13
017
0.13

PVE, phenotypic variation explained; LOD, logarithm of the odd; Add, additive effect (positive values indicate that alleles from BLM are increasing the trait scores, and
negative values indicate that alleles from CY20 are increasing the trait scores); BLUE, best linear unbiased estimation.
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Gp Cul/(%) Landrace/(%) Wild/(%) Uncertain/(%) Sum/(%)

1 149 (92.5) 113 (86.9) 3(100) 50 (86.2) 315 (89.5)
3 7 (4.35) 2(1.5) 0 2(3.4) 11 (3.1)
5 3(1.86) 5(3.9) 0 3(5.2) 11 (3.1)
9 2 (1.24) 10 (7.7) 0 3(5.2) 15 (4.3)
Sum 161 130 3 58 352
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Years Traits LDH-JBL LDH-PUS JBL-PUS
2013-2014 DTHD 0.76 0.81 0.91
DAYSMT 0.73 0.62 0.68
2014-2015 DTHD 0.79 0.71 0.75
DAYSMT 0.61 0.66 0.70
2015-2016 DTHD 0.78 0.71 0.85
DAYSMT 0.75 0.72 0.79
2016-2017 DTHD 0.62 0.62 0.57
DAYSMT 0.71 0.76 0.69
2017-2018 DTHD 0.78 0.62 0.84
DAYSMT 0.73 0.66 0.77
2018-2019 DTHD 0.73 0.60 0.72
DAYSMT 0.78 0.75 0.84
2019-2020 DTHD 0.69 0.69 0.93
DAYSMT 0.53 0.56 0.78
2020-2021 DTHD 0.68 0.73 0.90
DAYSMT 0.48 0.45 0.75

Significance at 0.01 probability level.
DTHD, days to heading; DAYSMT, days to maturity; LDH, Ludhiana; JBL,
Jabalpur; PUS, Pusa.
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S/No.

Population name

Commander x Fleet,
Commander x
WI4304, Fleet x
WI4304

Chevallier x NFG
Tipple

Golden promise x
Morex

Hordeun vuigare L.
cv. Borwina x
Hordeum bulbosum
L

HOR2573 x Morex

Barley advanced
fines & varieties

IPK barley collection
(coreset)

H. vulgare L. cv.
Borwina
(Tetraploid) x H.
bulbosum L.

Bowman x ND 5883

Nierumuzha x
Kunlun 10

Wild and
Domesticated barley

Population
structure

DHs

RlLs

RlLs

Hb introgression
lines

RiLs

Hb introgression
lines

RiLs

DHs

GBS protocol

One enzyme

One enzyme

Two enzyme.

Two enzyme

Two enzyme

Two enzyme

Two enzyme.

Two enzyme.

Two enzyme

GBS pre-
design by
Novogene,
China

ApeK

ApeKl

Pstl, Msel

Pstl-HF, Mspl

Pstl, Mspl

Psl, Mspl

Pstl, Mspl

Pstl, Mspl

Pstl, Msel

Haelll, Msel,
EcoRl

Sequencing
platform

llumina
Hiseq 2000

llumina
Beadxpress

llumina GA Il &
llumina
Hiseq 2000

llumina.
Hiseq 2000

llumina

Hiseq 2,600

Two lon Pl chips.

llumina
Hiseq 2,500

llumina

Hiseq 2,500

BGIS00

llumina Hiseq

Reference panel Key findings

1BSG barley
reference
sequence v.1

Beadkpress
cultivar optimized
SNP (384) panel

Genome
assembly of
Morex, Bowman
&Barke cv.
Barley Reference
sequence (IBSC)

Barley reference
genome

IBSC barley
reference
sequence V.2

Barley reference
genome

TRITEX genome
assembly (Morex)

Morex genome
pseudo
molecules and
contigs
sequences
Barley reference
genome

Raw GBS reads
from European
Nucleotide
Archives

Identified 18 QTL
for yield (1H, 2H,
4H, 6H, 7H) and
17 QTL for grain
plumpness
(1H-7H)

Identified QTL for
plant height,
reduced tler
number,
susceptibilty to
PM (1H) & a novel
QTLfor
physiological leaf
spotting (3H, 7H)
Identified 3 QTL for
plant height (2H,
3H&5H)

Identified and
mapped
introgressed
segments of

Ho on Hy
Identified four
powdery mildew
resistant candidate
genes (2H)
Suggested an
integrated GWAS
(single-SNP,
multiple SNP &
Haplotype)
approach for
precise QTL
detection

Identified key
regions for awn
roughness (6H,
7H) & lateral
spikelet fertiity (1H)
Introgressed and
located powdery
mildew resistant
loous (MIhb.A42)
from Hb to Hv
(@HS)

Identified 2 QTL for
susceptibilty to
spot blotch

(1H, 7H)

Identified major loci
for purple seed
coat using
mapping and gene
annotation

(@H, 7H)

Identified 532,253
pan-genome
sequence anchors
based on the
presence/absence
tags
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S/No. Major countries Total no. of accessions  Major gene bank FAOid URL
1 Canada 41475 Plant Gene Resources of CANOO4 hitp://pgre.agr.ge.ca/
Ganada, Saskatoon Research
and Development Centre
2 United States 57,355 National Small Grains USA029 http://www.ars.usda.gov/main/docs.
Germplasm Research Facilty, htmdocid=2884
USDA-ARS
3 Lebanon 32,451 International Gentre for LBN002 hitps://www icarda.org/
Agricultural Research in Dry
Areas
4 Germany 21956 Leibniz Institute of Plant DEU146 hitp://www.ipk-gatersleben.de
Genetics and Crop Plant
Research
5 Brazi 20868 Embrapa Recursos Genéticos  BRAOOS hitps://www.embrapa.br/recursos-
e Biotecnologia geneticos-e-biotecnologia
6 Australia 19,064 Australian Grains Genebank, ~ AUS165 -
Agriculture Victoria
7 Russian Federation 17,788 NI Vavilov Research Institute  RUS001 tp://wwwi oy
of Plant Industry
8 Sweden 16,638 Nordic Genetic Resource ~ SWE054 http//www.nordgen.org
Center
9 Japan 15,777 NARO Genebank JPN183 tp://www.gene affrc.go jp/about_en.php
10 Mexico 15,330 Gentro Internacional de MEX002 tp://www cimmyt.org/
Mejoramiento de Maiz y Trigo
(CIMMYT)
11 Ethiopia 16,612 Ethiopian Bio-diversity ETHOBS hittp://www.ebi.gov.et
Institute:
12 United Kingdom 10,925 Germplasm Resources Unit, ~ GBR247 It/ jc.ac.uk/germplasm/
John Innes Centre, Norwich
Research Park
13 India 8601 National Bureau of Plant INDOO1 hitp://www.nbpgremetin

Genetic Resources
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Position® 7,505 8,351 8,615* 9,080 9,387* 10,971*

Haplotypes Number of cultivars Intron 1 Intron 2
Hap1 163 G G G T A G
Hap2 9 A A G Tict Alct A
Hap3 2 G G G T A A
Hap4 11 G G A T A G
Hap5 4 - - G T A G

1 Four cultivars are not included the table due to their low coverage (Tommi, Kraka) and because they are hybrids (Hybery and Hyland).

®Position of SNPs is based on the Claire reference sequence (counting from the 3 end of the forward primer VRN1F).

*SNP genotyping was validated with KASP markers and Sanger sequencing.

J'Hez‘erozygous calls T/C and A/C at these positions are due to single nucleotide differences between nearly identical duplicated sequence segments of 838 bp in VRN-B1.
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Genotype Number of Haplotypes Haplotype number Cultivars cluster on Average of allele frequency Copy number estimated based Copy number VRN-A1
group cultivars (minimum estimated VRN5A-SNP45K KASP at SNP45 in exon 4 of on haplotype number, allele estimated by TagMan qPCR
copy number) plot VRN-A1 from ONT reads frequency, KASP cluster (Wiirschum et al., 2015)

GT4 102 Haps, 2 Cluster3 T: 70%, C:%30 3 i

Hap4
GT4 9 Hap3, 2 Cluster2 T: 51%, C:%49 2 o8

Hap4
GT6 55 Hap3, 4 Cluster2 T: 51%, C:%49 4 2C

Hap4,

Hap7,

Hap8

AFor 71 out of 75 cultivars common with this study Wiirschum et al. (2015) estimated three copies.
BFor 5 out of 5 cultivars common with this study Wiirschum et al. (2015) estimated two copies.
CFor 38 out of 39 cultivars common with this study Wiirschum et al. (2015) estimated two copies.





OPS/images/fpls-13-942461/fpls-13-942461-t003.jpg
Intron 4 Intron 6 Exon 7

Intron 2 Exon 4

Intron 1

Intron 1 RIP-SJ'

Promoter

Region

SEL'LE

6E9°LL

vre'LL
9eT' L
SETHL
vETLL

60L°LL

60601

208°01
1020k
9€L'6
290°6
9928
10z'e
9€0°'8
8ELL
§29°L
89V°L
8.6
206°9
895°9
09t'9
6219
2€6°'s
826'G
108's
eeL's
v€9's
0s2's
8.
orL'y
€0LY
v’y
8ELY
666°C
LoL'e
£ov's
65v'e
Lev'e
80v'c
€6€°c
98€ee
868°C
962°€
v8L'e
990
068°L
18L°L
186
vve
pigs

Position®

«FGdNS

0SdNS

«6VdNS
«8VdNS
«LVdNS
«9VdNS

«GvdNS

«VPdNS

«EVdNS
CvdNS
vdNS
O0vdNS
6EdNS
8€dNS
LEANS
9E€dNS

«GEdANS
VEdNS
€EdNS
CEdNS
LEdNS
0E€dNS
62dNS
82dNS
L2dNS
92dNS
G2dNS
V2dNS
€2dNS

«CCdNS
L2dNS
02dNS
61dNS

«8LdNS
LIdNS
9kdNS
ShdNS
VidNS
€ldNS
CldNS
LLdNS
OldNS

6dNS
8dNS
LdNS
9dNS
«GdNS
vdNS
«EdNS

Genotype Number of Haplotypes*
groups cultivars

sequence type

VRN-A1

T

AT CTAACTGCCCGG CATGCCTGGGCGCAAAGCCCCTTCTTATT

Hap1

GT1
GT2
GT3
GT4
GT5

Triple Dirk D

A A C

C
C

AGCTTGCCTTTTGCTGGGTTTGGAGTCGGATCTGC CGC CCOCCTS GT CG C

G G C

Hap2
Hap3
Hap3, Hap4

Robigus/Claire

Weebill

A ACA
A ACA
A ACA

T
T
T

AAGTGCCTAG CGGGCCGGTGGGGAGTTTCGAGC CGS CGG GTECG
AAGTGCCTAG CGGGCCGGTGGGEGGAGTTTCGAGCOCGS CGSG GTECG

AAGTGCCTAGT C GGGTC CTCG

G G C
G

111

Weebill

TGGGGAGTTTO CGAGCGTE CGGGC CG

R

G s

Hap3, Hap4,
Hap5, Hap6

Weebill

A ACA

ccGeGGTGGGEGGAGTTTCGAGCGC CGGC CG T

AAGTGCCTAGC GGR

G G C

Hap3, Hap4,
Hap7, Hap8

55

GT6

Weebill

1Two hybrid cultivars, Hybery and Hyland, were removed from analysis due to heterozygosity.

4'Ff’IP-S is a putative binding site for the flowering repressor TaGRP2 (Xiao et al., 2014, Kippes et al., 2015).

® Positions of SNPs based on the Weebill reference sequence (counting from the 3’ end of the forward primer VRNTF).

*Resolution of haplotypes based on ONT phasing, KASP, Sanger sequencing.

*SNP genotyping calls were validated with Sanger sequencing and KASP markers, bold and underiined letter represents heterozygous SNP.
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VRN-A1 VRN-B1 VRN-D1
Cultivar name Reported growth habit | Insertion (231 bp) | Duplication (838 bp) | Deletion (6,851 bp) | Deletion (37 bp) | Insertion (163 bp)
Hope* she Vin-Ala - - - -
Mex. 17 bb* ST w2 Vin-Ala - - - Vim-D1x
Mex. 3* s1:2 Vin-Ala Vim-B1f - - Vim-D1x
Highbury* she Vin-Ala - Vm-Bla - -
INTRO 615* W2 Vin-Ala - Vm-Bla Vim-B1b -
Cappelle Desprez* w12 - - Vm-Bla = -
NS 22/92* W2 - - Vm-Bla - -
Joss w12 - vm-B1f - - -
Tambor w12 - V-B1f — - -
NaturaStar w12 - Vm-B1f - — -
Topfit w2 - Vm-B1f - - -
Phoenix w12 - Vn-B1f - - -
Triple Dirk S* g2 - Vim-B1f - - -
Cajeme 71* g2 - Vm-B1f - = -
Lambriego Inia* ST w2 - Vm-B1f = = =

S, Spring growth habit; W, Winter growth habit.
1 Genetic Resources Information System for Wheat and Triticale (2022).

2Gerard et al., 2018.

*These cultivars were considered as spring wheat.
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VRN1 VRN-A1 best full-length hit VRN-B1 best full-length hit VRN-D1 best full-length hit Number of

sequence type with reference with reference with reference cultivars
S1 Weebi Robigus/Claire* Claire 154
S2 Robigus/Claire* Robigus/Claire Claire 4
S3 Weebi Robigus/Claire Robigus 13
S4 Weebi LongReach Lancer Claire 7
S5 Triple Dirk D Robigus/Claire Claire 1
S6 Triple Dirk D LongReach Lancer Claire 1
S7 Weebi Weebill Claire 1
S8 Triple Dirk D Robigus/Claire Claire 1
S9 Robigus/Claire Robigus/Claire Robigus 2
184

*The VRN-AT and VRN-B1 sequences are identical in references genomes of Claire and Robigus.
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Environments Parents RILs

Longjian 19 Q9086 Mean = SD Min Max Skewness Kurtosis CV (%)
E1 34.76 41.62** 35.86 +4.59 25.43 50.46 0.48 0.33 12.80
E2 42.57 47.82* 45.37 £4.05 35.038 55.99 —-0.24 —0.04 8.93
E3 31.33 36.45** 32.31 £3.82 22.87 40.30 -0.35 —0.66 11.81
E4 44.06 47.01* 46.21 £2.85 37.77 53.99 0.02 0.24 6.16
E5 35.11 38.39** 36.77 +£2.51 30.12 43.56 0.11 —0.21 6.83
E6 40.93 45.67** 44,43 +2.88 37.91 52.28 0.40 -0.20 6.48
E7 43.77 50.33* 49.71 £3.02 42.63 60.50 0.52 0.65 6.08
E8 42.06 46.09* 45.71 £3.94 33.27 58.41 0.41 0.57 8.62
BLUP 39.69 41.89* 40.85 +£3.97 36.45 46.66 0.12 —0.08 9.72

TGW, thousand grain weight; SD, standard deviation; Min, minimum,; Max, Maximum; CV, coefficient of variation; BLUP, best linear unbiased prediction. E1-E6, experi-
mental environments at Yuzhong farm station in six years from 2013 to 2018, respectively; E7 and E8, experimental environments at Tongwei farm station in 2017 and
2018, respectively. Field experimental designs under each environment were randomized complete blocks with three replications for each line and parent. The asterisks
in the column of “parent Q9086” represent significant differences in phenotypic data between two parents by the F test; *P< 0.05, **P< 0.01.
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MQTL-1B-5

MQTL-1B-6

MQTL-2A-4

MQTL-2A-5
MQTL-2A-6
MQTL-2B-3
MQTL-2D-2

Putative Candidate gene ID

TraesCS1A02G083100
TraesCS1A02G086500
TraesCS1B02G288100
TraesCS1B02G293100
TraesCS1B02G352200
TraesCS1B02G354000
TraesCS1B02G449700
TraesCS1B02G058600
TraesCS1B02G104900
TraesCS1B02G018900
TraesCS1B02G019100
TraesCS1B02G019200
TraesCS1B02G021200
TraesCS1B02G021300
TraesCS1B02G022100
TraesCS1B02G022500
TraesCS1B02G022900
TraesCS2A02G312200
TraesCS2A02G336000
TraesCS2A02G464000
TraesCS2A02G424600
TraesCS2B02G211100
TraesCS2D02G568400
TraesCS2D02G580700
TraesCS2D02G580900
TraesCS2D02G581300
TraesCS2D02G582400
TraesCS2D02G583000
TraesCS2D02G585300
TraesCS2D02G586100
TraesCS2D02G586500
TraesCS2D02G586800
TraesCS2D02G586900
TraesCS2D02G587300
TraesCS2D02G587500
TraesCS2D02G587800
TraesCS2D02G588600
TraesCS2D02G567600
TraesCS2D02G569900
TraesCS2D02G570300
TraesCS2D02G570400
TraesCS2D02G571200
TraesCS2D02G571400
TraesCS2D02G57 1500
TraesCS2D02G571600
TraesCS2D02G571700
TraesCS2D02G571900
TraesCS2D02G575200
TraesCS2D02G576800
TraesCS2D02G577200
TraesCS2D02G577700
TraesCS2D02G577900

Gene function annotation

MYB transcription factor

Mitogen-activated protein kinase

Dual specificity phosphatase

Mitogen-activated protein kinase

Coronatine insensitive 1-like protein

Laccase

ATP-dependent zinc metalloprotease FtsH
HXXXD-type acyl-transferase family protein
Glucose-1-phosphate adenylyltransferase
Ras-related protein, expressed

Ras-like protein

Tubulin-specific chaperone cofactor E-like protein
RNA-binding family protein

Phosphatidate cytidylyltransferase

NBS-LRR disease resistance protein-like protein
Protein trichome birefringence

Nuclear inhibitor of protein phosphatase 1

Zinc finger protein

Aldehyde dehydrogenase

Alcohol dehydrogenase, putative

Remorin family protein

Gibberellin regulated protein

DNA/RNA helicase protein

Ubiquitin

CsAtPR5

RNA-binding region RNP-1

PI-PLC X domain-containing protein
Peroxidase

ABC transporter G family member

308 ribosomal protein S11

WAT1-related protein

Cysteine proteinase inhibitor

Cysteine proteinase inhibitor

Chaperone protein DnaJ

Lectin protein kinase family protein

CsAtPR5

Kinase family protein

Magnesium transporter, putative (DUF803)
S-adenosyl-L-methionine-dependent methyltransferases superfamily protein
RING/FYVE/PHD zinc finger superfamily protein
RING/FYVE/PHD zinc finger superfamily protein
EamA-like transporter family protein

Chitinase

DNA-directed RNA polymerase subunit
Chitinase

C2 calcium/lipid-binding and GRAM domain protein
RING/FYVE/PHD zinc finger protein

Chaperone DnaK

DDB1-and CUL4-associated factor-like protein 1
E3 ubiquitin-protein ligase RNF126-A

GEM-like protein 1

UPFO0503 protein, chloroplastic

Ortholog in rice

MYB61; gNLAT; gCell
OsMPK15; OsMPK16
OsCOl1b

OsLAC

OsSec18

SLG

OsAGPL2; OsAPL2; shri; GIF2

OsMKP1; GSN1
OsMPK15; OsMPK16
0s05g0105100
0s05g0105200
0s05g0105300
0s05g0105900
0s01g0758400
0s01g0547000
0s10g0254720
0s08g0326100
NSG1; LRG1
OsALDH10A5; OsBADH1
GSD1; gsd1-D
FC1; OsCAD7
OsGASR9
ENLA1
0s06g0681400
0s04g0689800
0s04g0689700
0s04g0689300
0s04g0689000
0s01g0615500
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47.37
77.18
77.51
54.87
78.27
78.77
29.82
78.08
81.98
70.85
76.56
53.32
20.85
67.04
61.62
41.01
54.34
81.52
57.81
68.61

SM

75.97
53.13
83.87
75.59
67.04
82.85
81.93
73.45
85.01
86.67
69.25
87.43
90.00
72.26
89.35
86.75
59.37
88.21
84.75
50.03
84.50
84.77
72.38
85.49

ST

59.79
53.36
67.24
51.75
56.27
39.37
52.39
32.22
64.09
72.08
70.15
48.81
73.07
55.07
74.01
47.19
35.96
41.48
60.60
43.83
62.32
70.49
57.98
75.11

SI

87.81
83.82
90.21
86.42
82.89
90.70

92.81
89.71
94.76
92.15
91.87
91.14
85.73
85.22
81.15
92.04
91.04
89.19
91.91
92.48
91.58

Heritabilities with less than moderate values are indicated in bold. *Gen, random genotype effect; Rep, Random replicate effect; Row, Random row effect; Col, random column effect; Lis)

(Row):ID(Col), two dimensional independent error structure; ID(Row):AR1(Col), One dimensional correlated error for columns with first-order autoregressive process; AR1(Row):ID(Col), one

dimensional correlated error for rows with first-order autoregressive process; ARI1(Row):AR1(Col), two dimensional correlated error with first-order auto regressive process. HD, heading date;

PH, plant height; OD, outer diameter; ID, inner diameter; TH, thickness; SM, section modulus; ST, stiffness; SI, stem index.
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Gene ID Start position (bps)
r2.2HG0092910 41,105,597
r2.2HG0092920 41,109,556
r2.2HG0092930 41,282,170
r2.2HG0092940 41,285,574
r2.2HG0092970 41,297,210
r2.2HG0092980 41,360,395
r2.2HG0092990 41,365,081
r2.2HG0093000 41,368,892
r2.2HG0093020* 41,433,854
r2.2HG0093030* 41,437,202
r2.2HG0093040 41,530,676
r2.2HG0093050 41,675,798
r2.2HG0093060 41,735,236
r2.2HG0093070 41,809,611
r2.2HG0093100 41,815,749

2.2HG0093120 41,833,899

2.2HG0093150 41,913,620

*NLR genes based on Morex reference genome assembly v.2.

End position (bps)
41,105,929
41,112,246
11284359
1,287,096
21,298,340
1,363,393
21367971
037292
41,437,075
41,439,356
41,531,044
41,676,166
41,737,909
41,809,988
41,816,882
41,835,608
21917079

Functional annotation

Zinc finger MYM-type protein
Hir-

like protein

Pentatricopeptide repeat-containing protein
F-box family protein

605 ribosomal protein 122

UPF0235 protein

DNA-directed RNA polymerases I 1, and Il subunit rpabe3
UDP-glucuronate decarboxylase

Disease resistance protein (TIR-NBS-LRR class)
NBS-LRRlike resistance protein

B0809H07.3 protein

B0809H07.3 Protein

Hypoxia-responsive family protein-like

UDP-4-am

10-4-deoxy-L-arabinose--oxoglutarate Aminotransferase
Kelch repeat-containing protein
E-box family protein

Splicing factor-like protein
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Mean Standard deviation Median Minimum Maximum Range Standard error of the mean

Panel 2014 441 11.4 431 9.0 100.0 91.0 0.4
Panel 2015 43.2 12.5 41.3 24.7 100.0 75.3 0.4
Panel 2016 49.2 20.5 43.5 15.9 100.0 84.1 0.7
Panel 2017 44.5 18.6 40.6 17.6 100.0 82.4 0.6
Panel 2018 58.9 12.8 58.3 25.8 100.0 74.2 0.4
Panel 2019 37.5 13.1 36.0 9.4 100.0 90.6 0.4

Panel 2020 475 16.3 47.0 8.5 100.0 91.5 0.5
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Population NSR  Seg NSS

AGG-396/Gus E 57 23
AGG-397/Gus 27 52 23
AGG-403/Gus 27 66 33

SR, non-segregating resistant; Seg, segregating;

Tested
ratios
121
121
121

0.98
035
085

Value
ofp
061
083
065

S5, non-segregating susceptible.
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Pathotype

Line 200 220 253 5652 5610 5453 5457 5457
P- P+ P- P+ P+ P-  P- P+

AGG- 31+C 312C 5124CN 14CN SICN G1+4ON GIN 514N

396

AGG- N N 51#N GICN GICN 1N GLON ION

397

AGG- 314C 312C 512C ;14N SICN 514CN 51+CN 514CN

103

Gus 3+ 3+ 3 3+ 3 3 3 N

(Sus)

Infection types are based on a “0"~"4" scale (Park and Karakousis, 2002). Symbol ™
represents hypersensitive flecks, “1” represents small uredinia enclosed by necrotic

s, “2" represents medium size uredinia enclosed by chlorotic and/or necrotic
issues, 3" represents large size uredinia with or without chlorosis and “3+” represents
susceptible host, “N” represents necrosis, “C represents chlorosis. Symbols “+” and *~"
represent higher and lower infection types than normal, respectively. Gus was used as a
susceptible check
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Marker ID

MLoc-6

MLoc-10
MLoc-13
MLoc-28
MLoc-29
MLoc-31
MLoc-36
MLoc-38
MLoc-39
MLoc-41
MLoc-42
MLoc-44
Mloc-70

Mloc-71

Mloc-74

*Positions (in

Locus

22HG0091750
22HG0092260
22HG0092810
r22HG0092860
r22HG0093020
r22HG0093020
r22HG0093070
22HG0093100
r22HG0093120
r22HG0093160
22HG0093180
22HG0093260
22HG0093030
22HG0093030
22HG0093120

Position*
3648
38,50
40.50
40.75
41.43
41.43
41.80
4181
41.83
4192
41.98
4210
41.43
41.43
41.83

illion bases) are based on Morex reference genome assembly V2.

Forward primer sequence
TCCTCTCTGAGATGGCAACA
CGAGGAGCTCTCCACCTACA
CCTTGTCCGTGATGCAACTA
ATTGGTTGCGCTTTGCTATC
GCAAAGACTCCCCTTTAGGC
AAGTTGAAGGTCCGTGGATG
TGGTTAGCTACGAGGGGAGA
GCATCGGCTCTACCTCGTC
CTCAATTTCTTCCGGACCAG
GGACCATTTCTTTGCTGGAA
AAGCTAAGCAGCTCGAAACG
GTGTCCTCCGTCGTCACC
GGGTCTCATCGAGAACCTCA
GTAATGGGAAGACCGTGCAG
CGTTAGGACGTGCGTTCTGT

Reverse primer sequence
GATCGACGGACCTTGAAGAC
GCTGGAGAGCAAACAGGAAC

CCCCTATCGGAGGAGGTATT

ATCATAGGTTTCGCCACGTC

CCGCTGCTAGAACTTTCAGG

CTCTAGAGAAGGCGGGAGGT

ATGACACATGCAAACCCGTA

CGATGGTAGCCCATTCAATC

TTGCCGGCAGTTTACCTAAC

AGCAAAACTGCAGAGGGAAA

CAGAATAGCGCACTTGTTGG

GGCTTTGGCTGCTTGACTAT

CACGGTCTTCCCATTACCAT

CCCTGTACCTCCAATGCCTA

CTGGTCCGGAAGAAATTGAG

Endonucleases

Rsal
Mbol
Bell
Maelll
BsrDI
Ddel
Pstl
Mboll
Mboll
BsmAl
BsmAl
Alul
Bsrl
Acil

Apol
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Common primer

Allele 2

SNP Allele 1

GIT

Position*

Marker ID

35.26
45.83
47.32

HVGBSv2-902

TG
TIC

HVGBSv2-7015

g

CATGCATTGGAA

HVGBSv2-932

*Positions (in million bases) are based on Morex reference genome assembly v.2.
Sequence information of primers provided here are without HEX and FAM.
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Pathotypes Origin Culture® Virulence profile*

200 P—* Australia 518 Rphs
201 P+* Australia 480 Rphl, Rphs, Rph19, and Rph25

210 P+* Australia 482 Rphd, Rphs, Rph14, Rph19, and Rph25

220 P+* Australia 485 Rphs, Rphs, Rph19, and Rph25

20P+13* Australia 577 RphS, Rphs, Rph13, and Rph19

2P+ Australia 531 Rph2, Rpht, Rphs, and Rph19

253 P— Australia 490 Rphl, Rph2, Rphd, Rphs, and Rphs.

3652 P+ Australia 561 Rph2, Rph, Rph6, Rphs, Rpho, Rph10, Rph12, Rph13, and Rph19
3610 P+ Australia 637 Rph, Rphs, Rph9, Rph10, Rph12, Rph14, and Rph19

3453 P— Australia 560 Rphl, Rph2, Rphd, Rpho, Rpho, Rph10, and Rph12

3457 P— Australia 626 Rph1, Rph2, Rph3, Rphd, Rpho, Rph9, Rph10, Rph12, and Rph19
3457 P+ Australia 612 Rph1, Rph2, Rph3, Rphd, Rpho, Rph, Rph10, and Rph12

5672 P+ Australia 639 Rph2, Rph4, Rphs, Rph6, Rphs, Rpho, Rph10, Rph12, and Rph19
5477 P— Australia 672 Rph1, Rph2, Rph3, Rphd, Rphs, Rph6, Rph9, Rph10, and Rph12
2654 P+ Un 17TX10B Rph, Rph2, Rphd, Rpho, Rphs, Rpho, Rph11, Rph13, and Rph19
3273 P- Un 17WA26B Rph, Rph2, Rphd, Rphs, Rpho, Rphs, Rph10, Rph11, and Rph14

‘Rust culture number stored at PBI Cobbitty:

**Tested for virulence on: Rph1, Rph2, Rph3, Rphd, Rphs, Rpht, Rph7, Rphs, Rph9, Rpl10, Rph11, Rph12, Rph13, Rph14, Rph15, Rphl6, Rph19, and Rph25 (Austs
Rph1, Rph, Rph3, Rphd, Rphs, Rpho, Rph7, Rphs, Rph9, Rph10, Rph11, Rph12, Rphi3, Rpli14, Rph1S, and Rph19 (United States; Rouse et al, 2013).

Pathotype designations were based on virulence or avirulence responses of an isolate on the differential set using the octal notation system proposed by Gilmour (1973). Symbol P or P+
was used t0 specify avirulence and virulence, respectively; on the barley cultivar Prior carrying Rph19 (Park, 2003).

*The pathogenicity of these pathotypes for Rpl6 is unknown due to avirulence on Rph2 in each and the presence of this gene in the Rph6 differential tester Bolivia (Rph2+ Rpho).

Park etal, 2015),
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SNP name Chromosome Allele Position Togulp) R2 (%)
ARV 130 28 AG 657,792,718 447 11.67
BS00079013 51 28 G/A 660,114,463 412 11.52
Tdurum_contigs691_596 pi=3 cT 668,570,062 4.12 14.07
Tdurum_contigd 1906_1385 3A G/A 562,984,283 429 14.71
BobWhite_c23687_200 58 G/A 292,192,562 428 14.68
RACB75_038494_52 6A 6 14,607,029 475 16.41
RACB75_rep_c79566_238 6A NG 14,627,383 444 15.25
BobWhite_rep_c50671_356 BA AC 14,627,435 447 15.36
BobWhite_rep_c50671_408 6A AG 14,627,486 453 15.58
wsnp_Ku_c20866_30535489 6A AG 16,038,973 464 16.00
RAC875_012835_1335 6A NG 16,034,906 454 15.62
CAP12_c2701_221 6A 7c 569,526,507 416 14.21
Kukri_c29204_358 BA T/C 561,452,513 4.18 14.29
Kukri_14906_220 6A 7 561,453,969 429 14.71
Tdurum_contig41947_720 6A AG 583,814,512 421 14.40
Excalibur_c9048_1431 6B AC 25,091,875 421 14.41
wsnp_Ku_c20866_30535750 6D # 25,001,824 444 15.25
CAP7_c1933_170 7A CT 484,083,572 4.15 14.20
Kukri_c32241_1165 B cm 49,584,395 424 14.50

RY—variation explained by QTL compared to total phenotypic variation, value of p threshold for significant QTL.
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SNP name

IAAVT130

BS00079013_51
Tdurum_contig5691_596
Tdurum_contigd1906_1385

BobWhite_c23687_200

RACB75_c38494_52
BobWhite_rep_c50671_408
wsnp_Ku_c20866_30535489
BobWhite_rep_c50671_356
RACB75_rep_c79566_238
RACB75_c12835_1335
Tdurum_contigd1947_720

Kukri_c29204_358
Kukri_c14906_220

CAP12_c2701_221

Excalibur_c9048_1431
wsnp_Ku_c20866_30535750
CAP7_c1933_170

Kukri_c32241_1165

Gene ID

TraesCS2B01G463800
TraesCS2B01G465200
TraesCS2B01G472100
TraesCS3A02G320100
TraesCS3A02G320200
TraesCS3A02G320300
TraesCS5B02G 158700

TraesCS6A01G028800
TraesCS6A02G028700
No information
TraesCS6A02G028500
TraesCSU01GO79600

TraesCS6A02G353700
TraesCS6A02G354300
TraesCS6A02G328100

TraesCS6A01G328000

TraesCS6A01G326200

TraesCS6B01G040400
No information
TraesCS7A02G331000

TraesCS7B02G049600

SNP-Gene
distance

1,241
781
943

109,631
71,807
68,839
539,357

3210
23,460

143,007
8,480

1,612,526
1,972,312
882

1,733

281

14,129

109,918

27,008

Gene function

protein dimerization activity

ATP binding, protein kinase activity, protein phosphorylation BP
GTP cyclohydrolose 1 type 2 homolog

Acid phosphatase and hydrolase activity BP metal ion binding
Protein binding activity

Protein binding activity

Oxidoreductase actiity, acting on the GH-OH group of donors,
NAD or NADP as acceptor BP oxidation-reduction process
Serine-type endopeptidase actity BP proteolysis

Manganese ion binding activity and nutrient reservoir activty
Protein binding activity

Protein binding activity

Chiorophylide a oxygenase activity; oxidoreductase activity BP
oxidation-recuction process

Gatalytic activity D-lactate dehydrogenase BP oxidation-reduction
process

Embryo sac development arrest 12

P-loop containing nucleoside triphosphate hydrolases superfamily
protein

Gytochrome bs-like Heme/Steroid binding site, cytochrome b5
reductase (Flavoprotein pyridine nucleotide cytochrome:
reductase). BP nitric oxide biosynthetic process; and nitrate
assimilation oxidoreductase activity

Protein binding activity

Cysteine-type peptidase activity (Acetyl-coenzyme A carboxylase
carboxyl transferase subunit beta, chloroplastic) BP proteolysis
Signal response reguiator, CheY- ke superfamily and
phosphorelay signal transduction system

—/+ indicates the direction (downstream/upstream) in the genome; bp, represents base pairs.

Gene length and
direction (bp)

3,704+
6,356+
1,882
4,655+
4,386~
1,088+
7,932+

3,686-
1,089~

1251+
15,502+

2,268+
11,645+
3,593+

1,054+

3,385+

16,024~
4,46~

219~
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SSR primers

BARGC1136-F
BARG1136-R
BARC113-F
BARC113-R
WMS193-F
WMS193-R
BARC1036-F
BARC1036-R
WMC220-F
WMC220-R

Position

567,464,756
567,464,756
552,302,942
552,302,942
457,662,948
457,662,948
471,685,345
471,685,345
633,876,856
633,876,856

SSR distance to
SNP

4,338,538
4,338,538
10,823,045
10,823,045
37,250,805
37,250,805
51,273,416
51,273,416
2,672,579
2,672,579

Forward and reverse sequence

CGA GTT TTG CAG AGG AGA ACC AAT A-F
ATG CCA GTT TCT TTC TAG ACA TCT G-R
GCGCACAACAACGGACACTTAACAATT-F
GGGACTCATTTAGCTTCTACTCGCCATTA-R
CTTTGTGCACCTCTCTCTCC-F
AATTGTGTTGATGATTTGGGG-R

CCAC CGC AAA AAG ACT TAC AT-F

TGA TGC GTG AGT AAT TCT TTG TAG-R
GTTTCGAGCGAGGGAGAGT-F
GCGTCATTTCCACAAACACC-R

The ones highlighted in bold are the primers that show polymorphism during electrophoresis.

313
313
234
234
216
216
166
166
128
128

Annealing
temperature

50

50
50

50
60
60
52
52
60
60
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SNP Chr. Pos. (bp) ~loguu(p) PVE (%) Environment
AX-111651652 2A 726,761,412 483,527 10.47,11.91 E2,B
AX-108892693 2A 726,762,422 466,5.13 10.68,12.04 E2,B
AX-109972911 2A 726,763,641 4.94-6.20 8.88-11.44 E1,E2,B
AX-109632923 2A 726,763,898 4.94-6.20 8.88-11.44 e
AX-109449153 2A 726,764,021 4.92-6.06 882-11.48 E1,E2,B
AX-111515528 2A 726,770,069 4.93-7.02 802-12.34 E1,E2,B
AX-109323179 2A 726,771,093 5.43-8.37 897-13.49 E1,E2,B
AX-110967398 2A 726,772,232 5.54-7.85 884-13.19 E1,E2,B
AX-111698397 2A 726,775,869 5.54-7.85 8.84-13.19 ELEB
AX-111603918 2A 726,776,128 5.83-8.32 10.34-15.94 E1,E2,B
AX-108793615 2A 726,865,730 545-7.79 887-13.19 E1,E2,B
AX-108777425 2A 726,971,223 5.54-7.85 884-13.19 E1,E2,B
AX-109930704 2A 726,988,053 5.81-8.36 10.05-15.14 E1,E2,B
AX-110654284 2A 726,994,887 5.40-7.68 9.34-13.45 ELELB
AX-110492897 2A 727,004,090 5.54-7.85 884-13.19 E1,E2,B
AX-110471201 2A 727,005,198 5.54-7.85 884-13.19 E1,E2,B
AX-110130904 2A 727,141,584 5.54-7.85 884-13.19 E1,E2,B
AX-109884666 2A 727,169,221 5.51-6.37 10.39-12.77 E1,E2,B
AX-109493384 2A 727,170,336 5.88-7.13 11.01-14.13 aes
AX-108792390 2A 727,180,360 5.89-8.42 10.34-15.94 E1,E2,B
AX-111160521 2A 727,181,412 567-7.79 897-12.77 E1,E2,B
AX-109428070 2A 727,182,816 5.30-6.84 914-12.79 E1,E2,B
AX-109292249 2A 727,183,443 5.67-7.79 897-12.77 E1,E2,8
AX-111509211 2A 727,183,498 5.67-7.79 8.97-12.77 ELELE
AX-108980791 2A 727,187,444 5.67-7.79 8.97-12.77 E1,E2,B
AX-109961153 2A 727,187,627 6.02-8.35 10.47-15.48 E1,E2,B
AX-108923021 2A 727,190,565 4.73-6.06 7.23-955 E1,E2,B
AX-109373105 2A 727,192,289 4.73-6.06 7.23-955 E1,E2,B
AX-111512779 2A 727,192,510 4.60-5.81 7.42-10.15 BLELR
AX-111502719 2A 727,192,902 4.73-6.06 7.23-9.55 a.en
AX-109529880 2A 727,195,932 4.73-6.06 7.23-955 E1,E2,B
AX-110447468 2A 727,198,143 4.96-6.45 7.58-955 E1,E2,B
AX-108980644 2A 727,243,309 4.76-6.17 897-12.30 E1,E2,B
AX-110362101 2A 727,243,960 4.73-6.06 7.23-9.55 ELE2B
AX-109360792 2A 727,245.925 5.64-7.47 866-11.79 E1,E2,B
AX-110397450 2A 727,285,210 4.73-6.06 7.23-955 E1,E2,B
AX-108838121 2A 727,614,205 517,579 7.95,959 E2,B
AX-108908177 2A 727,639917 514,590 7.71,899 E2,B
AX-109430725 2A 727,658,142 5.14,5.90 7.71,8.99 E2,B
AX-109290174 2A 727,955,888 4.70-6.44 814-11.94 E1,E2,B
AX-111064107 2A 728,020,754 481,505 7.40,9.45 E1,B
AX-A11727771 2A 728,020803 464-6.35 814-11.94 E1,E2,B
AX-109884043 2A 728,026513 464-6.35 814-11.94 E1,E2,B
AX-108928895 2A 728,029,569 550, 5.89 8.43,9.42 2,8
AX-111628949 2A 728,070,767 543,597 830,9.34 £2,B
AX-111044883 2A 728,072,564 5.48,6.02 835,935 E2,B
AX-110624913 2A 728,073,136 543,597 830,934 E2,B
AX-109973650 2A 728,132,521 464-6.35 814-11.94 E1,E2,B
AX-111609105 7B 611,944,380 476,497 5.76,7.33 Ee.B
AX-111031595 B 611,960,672 4.77,4.96 5.81,7.34 E2,B
AX-109440948 D 611,243,842 4.70,5.07 10.95,12.47 E1,B
AX-94482751 D 611,586,124 459,472 12.81,13.88 E1,B

E1: 2019, E2: 2020, B: BLUP of 2years, and PVE, phenotypic variance explained.
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Gene ID

TraesCS2A02G496200
TraesCS2A02G496700
TraesCS2A02G497200

Chr.

Chr2A
Chr2A
Chr2A

Pos. (bp)

727,244,098-727,245,793
727,914,334-727,918,774
728,067,465-728,072,317

At Ortholog

AT1G80310
AT2G25680
AT5G20990

0s Ortholog

LOC_0s01g45830
LOC_0s08g01120
LOGC_0s04g56610

Gene annotation

Molybdate transporter 1:2
Molybdate transporter 1;1
Molybdopterin biosynthesis protein CNX1
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Environments

SD, standard deviation;

Mean (ng/g) sp
720,66 179.98
1072.67 258.00
901.16 145.75

CV, coefficient of variation.

Range (ng/g)

293.36-1324.41
496.00-1941.58
528.13-1329.19

oV (%)

Skewness

0.57
0.59
0.46

Kurtosis

0.45
0.37
0.28
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SNP

AX-94452286

AX-94493158

AX-94464974
AX-94747224

AX-95632529

AX-94484139

AX-95097548

AX-94542611
AX-94610590
AX-94389673

Trait

GNS, GWS,
SDW

GY

GY

TGW

Cw, SF

SF

TGW

TGW
TGW
TGW

Gene stable ID

TraesCS3B02G104700

TraesCS3D02G538400

TraesCS3D02G538500
TraesCS5A02G428800

TraesCS5B02G104300

TraesCS5B02G156900

TraesCS5D02G547200

TraesCS5D02G548200
TraesCS5D02G548300
TraesCS7A02G512300

Predicted protein

Xylan O-acetyltransferase

Pectinacetylesterase/NOTUM

Coat protein complex I
(CORPII) of type Sec23a/24a ¢

Dipeptidyl Aminopeptidase IV

MFAP1 and Snu23 complex

Recognition of Peronospora
Parasitica 13

Indole-3-glycerol phosphate
synthase

Function

Polysaccharide acetylation
and improved water use
efficiency

Catalyses the deacetylation
of pectin, cell elongation,
pollen formation

Integrity of cell organelles

Remobilisation and
utilisation of storage
proteins

Contact with Prp38 via
ER/K motif-stabilizers single
a helices

Host pathogen interaction

Indole acetic acid (IAA)
biosynthesis
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2000
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