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Editorial on the Research Topic

Ear-centered sensing: from sensing principles to research and clinical
devices, volume II

Welcome to the second volume of the “Ear-centered sensing: from sensing principles to

research and clinical devices” Research Topic. In this Research Topic of nine articles, we

delve deeper into the realm of ear-centered sensing, exploring its multifaceted applications

and shedding light on the immense potential this field holds. Our aim, as Topic Editors, is to

provide you with a ome of latest research and developments within this emerging field.

Ear-centered sensing: “the ear beyond hearing”

Ear-centered sensing, or “the ear beyond hearing” as coined by one of the Topic

Editors (Voix, 2017), represents a groundbreaking approach to monitoring physiological

signals, offering an unobtrusive and convenient means of data acquisition in everyday

life. Physiological parameters such as heart rate, respiratory rate, eye blink and motion

signals, skin conductance, as well as electrical activity from muscles and the brain, can all

be captured from the ear. This unique positioning not only allows for discreet monitoring

but also supports extended data recording, fostering a deeper understanding of psycho-

physiological processes.

Ear-centered sensing is poised to play a pivotal role in scientific, diagnostic, and

therapeutic endeavors, with a particular emphasis on mobile health applications. The

challenges we face in this domain are intriguing, as we seek to bridge the gap between

unconventional monitoring locations and established recording sites. Questions regarding

signal fidelity, sensitivity, and real-time artifact discrimination remain at the forefront of

our exploration.

Advancements in sensor technology

Dedicated sensor and amplifier technology are paramount for successful long-term usage

of ear-centered sensing devices. Authors that contributed their papers in this Research Topic
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have made significant strides in this area, striving for

unobtrusiveness in every aspect. From biocompatible materials

that adapt to individual anatomy to lightweight, inconspicuous

instrumentation, their innovations promise to enable seamless data

acquisition without restricting users’ daily activities.

The path forward: contributions to
ear-centered sensing

In this volume II of our Research Topic, we present a diverse

range of research articles that collectively advance the field of ear-

centered sensing. We have compiled a brief overview of each article

to pique your interest:

1. “Ear-EEG measures of auditory attention to continuous

speech”: This study explores the potential of ear-centered EEG

to monitor auditory attention during continuous speech, offering

insights into assistive devices for complex auditory environments

(Holtze et al.).

2. “Evaluation of real-time endogenous brain-computer interface

developed using ear-electroencephalography”: Investigating the

feasibility of real-time endogenous ear-EEG-based brain-computer

interfaces, this article explores the potential of ear-EEG in online

environments (Choi et al.).

3. “In-ear electro-oculography for attended speaker estimation”:

Utilizing in-ear electro-oculography, this research focuses on

improving comprehension in hearing-impaired individuals during

conversations, with implications for hearing assistive devices

(Skoglund et al.).

4. “Pre-gelled electrode grid for self-applied EEG sleep monitoring

at home”: Addressing the need for convenient home sleep

monitoring, this article presents a self-applicable EEG sensor array

for accurate sleep evaluation (da Silva Souto et al.).

5. “Assessing focus through ear-EEG”: Investigating the potential

of ear-EEG to determine levels of attention and focus, this study

explores the integration of ear-EEG into wearable devices for

monitoring mental load (Crétot-Richert et al.).

6. “Synchronization of ear-EEG and audio streams in a portable

research hearing device”: This article assesses the alignment of audio

and EEG data in the context of hearing aid algorithms, offering

insights into future closed-loop EEG and audio applications

(Dasenbrock et al.).

7. “Sound localization in children with unilateral microtia and

atresia”: Exploring sound localization in children with hearing

conditions, this study highlights the benefits of non-surgical bone

conduction devices (Liu et al.).

8. “At-home sleep monitoring using generic ear-EEG”:

Introducing a generic ear-EEG device for at-home sleep

monitoring, this research emphasizes the potential for widespread

sleep stage monitoring (Tabar et al.).

9. “Ear-EEG sensitivity modeling for neural sources and ocular

artifacts”: This study establishes the sensitivity of ear-EEG to neural

sources and ocular artifacts, supporting its integration into EEG

paradigms (Yarici et al.).

As you delve into these nine articles, we hope you gain a

deeper appreciation for the transformative potential of ear-centered

sensing across various domains, from healthcare to cognitive

science. By bringing together experts from different disciplines,

we aim to foster collaboration and innovation in this every-day

growing field.
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While previous studies have demonstrated the feasibility of using ear-
electroencephalography (ear-EEG) for the development of brain-computer interfaces
(BCIs), most of them have been performed using exogenous paradigms in offline
environments. To verify the reliable feasibility of constructing ear-EEG-based BCIs,
the feasibility of using ear-EEG should be further demonstrated using another BCI
paradigm, namely the endogenous paradigm, in real-time online environments.
Exogenous and endogenous BCIs are to use the EEG evoked by external stimuli and
induced by self-modulation, respectively. In this study, we investigated whether an
endogenous ear-EEG-based BCI with reasonable performance can be implemented
in online environments that mimic real-world scenarios. To this end, we used three
different mental tasks, i.e., mental arithmetic, word association, and mental singing, and
performed BCI experiments with fourteen subjects on three different days to investigate
not only the reliability of a real-time endogenous ear-EEG-based BCI, but also its test-
retest reliability. The mean online classification accuracy was almost 70%, which was
equivalent to a marginal accuracy for a practical two-class BCI (70%), demonstrating
the feasibility of using ear-EEG for the development of real-time endogenous BCIs, but
further studies should follow to improve its performance enough to be used for practical
ear-EEG-based BCI applications.

Keywords: electroencephalography (EEG), ear-EEG, brain-computer interface (BCI), endogenous BCI, test-retest
reliability

INTRODUCTION

A brain-computer interface (BCI) provides a potential alternative to the normal communication
method, which involves languages and body movements, for disabled patients such as those with
locked-in syndrome and aphasia (Bauer et al., 1979; Gao et al., 2021; Xu et al., 2021). It translates
neuronal brain activity measured invasively or non-invasively into commands for controlling
external devices, such as wheelchairs, robot arms, and computers (Hwang et al., 2013a).

Most BCIs have been realized using non-invasive neuroimaging modalities for measuring brain
activity on the scalp, such as electroencephalography (EEG), magnetoencephalography (Mellinger
et al., 2007), and near-infrared spectroscopy (Power et al., 2012). Among the modalities, EEG has
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been the most widely used owing to its reasonable cost,
portability, and high temporal resolution (Hwang et al., 2013a).
However, BCIs based on the traditional scalp-EEG have several
disadvantages from the viewpoint of their usability (Looney
et al., 2012; Debener et al., 2015; Goverdovsky et al., 2016).
They require measurement electrodes to be attached to the
scalp with conductive gels, which is time-consuming. Moreover,
the electrode attachment time increases with the number of
electrodes to be mounted on the scalp. For instance, it generally
exceeds 0.5 h for 30 electrodes, which leads to both the
subject and operator being exhausted during the preparation
for EEG. Furthermore, the electrodes mounted on the scalp are
unaesthetic, and subjects need to wash their hair to remove the
conductive gels after the BCI experiment. These disadvantages
of conventional scalp-EEG-based BCIs render BCI technology
difficult to be used outside laboratory environments. As an
alternative to the traditional scalp-EEG used in BCIs, some
researchers have proposed the use of EEG in which brain activity
is measured around or inside the ears; such EEG is termed
ear-EEG (Looney et al., 2012; Debener et al., 2015; Bleichner
and Debener, 2017; Choi et al., 2018; Kaveh et al., 2020), and
measurements can be obtained with a miniaturized and compact
hardware system.

The feasibility of using ear-EEG in BCIs has been verified in
many previous studies (Bleichner et al., 2015; Bleichner et al.,
2016; Fiedler et al., 2016; Fiedler et al., 2017; Choi et al., 2018;
Floriano et al., 2018; Wei et al., 2018). Most of the previous
studies on ear-EEG-based BCIs have used exogenous paradigms
involving external auditory or visual stimuli to evoke stimuli-
specific brain activity, such as auditory steady-state response
(ASSR) (Kidmose et al., 2012; Looney et al., 2012; Kidmose
et al., 2013a,b; Mikkelsen et al., 2015; Goverdovsky et al., 2016;
Bech Christensen et al., 2017; Goverdovsky et al., 2017), steady-
state visual evoked potential (SSVEP) (Norton et al., 2015;
Goverdovsky et al., 2016; Goverdovsky et al., 2017), and event-
related potential (ERP) (Kidmose et al., 2012; Bleichner et al.,
2015; Debener et al., 2015; Norton et al., 2015; Fiedler et al.,
2016; Pacharra et al., 2017). In our previous study (Choi et al.,
2018), we showed that an ear-EEG-based BCI can be developed
using an endogenous paradigm involving self-modulated brain
activity, without any external stimuli, and we classified two
different mental states induced during mental arithmetic (MA)
and resting state with an average accuracy of about 78%. We
also proposed an optimal re-referencing method to improve
the signal-to-noise ratio (SNR) of ear-EEG and used it to
improve the performance of an endogenous ear-EEG-based BCI
(Choi and Hwang, 2019).

Although previous studies have shown the feasibility of using
ear-EEG in BCIs, the practical usability of ear-EEG-based BCIs
should be verified via real-time online experiments that mimic
real-life scenarios. To the best of our knowledge, only two
studies have introduced online ear-EEG-based BCIs by using a
representative exogenous paradigm, SSVEP (Norton et al., 2015;
Wang et al., 2015). However, no study has verified the feasibility
of an endogenous BCI based on ear-EEG in online environments.
To further demonstrate the potential possibility of using ear-EEG
on the development of a practically usable BCI, the feasibility of

using ear-EEG in developing endogenous BCIs should be also
demonstrated, particularly in online experimental environments.

Accordingly, in the present study, we investigated whether an
endogenous ear-EEG-based BCI could be reliably implemented
with reasonable performance in real-world applications. We
developed an online endogenous ear-EEG-based BCI and tested
it on two days to investigate not only its reliability as a real-
time endogenous ear-EEG-based BCI, but also its test-retest
reliability. In the experiment, three mental tasks were employed:
MA, mental singing (MS), and word association (WA). An offline
experiment was first conducted to determine the best pair of
mental tasks for each subject, and online experiments were
then conducted on 2 days using individually selected best pairs
of mental tasks.

MATERIALS AND METHODS

Subjects
Fourteen healthy subjects (average age: 25.57 ± 1.70 years; eight
males and six females) participated in this study. All of them
had normal or corrected-to-normal vision and hearing. None
of them reported previous neurological, psychiatric, or other
related diseases that could have affected the outcomes of this
study. To minimize the impact of the subjects’ physical condition
on the experiment, the subjects were asked to sleep for at least
6 h on the day preceding the experiment and to avoid alcohol
intake for at least 24 h before the experiment. Information
regarding the detailed procedure of this study was provided
before the experiment. All subjects gave informed consent prior
to the beginning of the experiments and received monetary
compensation after the experiment. This study was approved by
the Institutional Review Board of the Kumoh National Institute
of Technology (No. 6250), and was performed in accordance with
relevant guidelines and regulations.

Ear-Electroencephalography (EEG)
Measurement
The experiment was conducted in a soundproof room, and the
subjects were seated in comfortable armchairs in front of a 21-
in. monitor (LG, 24MP58VQ, Seoul, South Korea) and binaural
speakers (Britz, BR-1000A, Cuve Black 2, Paju, South Korea). Ear-
EEG data were recorded using eight electrodes attached behind
the ears (four electrodes for each ear), as shown in Figure 1A, at
a sampling rate of 1,000 Hz (actiCHamp, Brain Products GmbH
Ltd., Gilching, Germany). In accordance with the international
10–20 system, the reference and ground electrodes were attached
at the FCz and Fpz positions, respectively, but the reference effect
was removed by re-referencing with only ear-EEG (Figure 1B),
which is explained later in this paper. The impedance was
maintained below 10 k� throughout the experiment.

Experimental Paradigm
Offline Experiment Conducted on Day 1
The objective of the offline experiment was to select the best pair
of mental tasks for each subject, which was used in the subsequent
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FIGURE 1 | (A) Schematic of electrode positions used to record ear-EEG data. (B) Schematic sketch of the re-referencing method used to remove the impact of the
original reference electrode (FCz). Re-referencing was performed by subtracting the mean value of the opposite ear’s electrodes from the value of an electrode of
interest for every time point.

online experiments conducted on two different days. The offline
experiment was hence performed by considering the following
three mental tasks:

(i) MA: Continuously subtracting a single-digit number
(between 5 and 9) from a three-digit number (e.g., 477
− 8 = 469, 469 − 8 = 461, . . .), with both numbers being
randomly presented (Shin et al., 2016; Choi et al., 2018).

(ii) WA: Generating words beginning with a letter provided to
the subjects in their native language (Korean; e.g., Apple,
Arrow, Aerospace, . . . for “A”) (Friedrich et al., 2012, 2013).
The subjects had to generate as many words as they could.

(iii) MS: Mentally singing the English alphabet song from
A to Z at a constant speed of 1 Hz, which induced
relatively lower cognitive load compared with MA and WA
(Shin et al., 2016).

Figure 2A shows the experimental paradigm of the offline
experiment. Each subject completed five experimental sessions.
At the beginning of each session, a blank image was presented
for 5 s, during which the subjects were instructed to relax and
prepare to act according to the upcoming instruction. After the
rest period, eyes-closed (EC) and eyes-open (EO) tasks were
sequentially performed, each for 15 s, with the aim of verifying
the reliability of ear-EEG measurements based on alpha activity
changes (Looney et al., 2012; Goverdovsky et al., 2016; Choi
et al., 2018; Choi and Hwang, 2019). Subsequently, the three
mental tasks were randomly performed, with each task being
performed 10 times, in a single session. A single trial comprised
task presentation for 5 s, subsequent task execution for 10 s,
and a variable rest period that ranged from 8 to 13 s. During
the task presentation period, a combination of three-digit and
one-digit numbers for MA (e.g., 477 – 8), a single letter for WA
(e.g., “A”), or the string “ABC” for MS was randomly presented
on the monitor. The corresponding mental task was performed
for the following 10 s, during which time the subjects gazed
at a fixation mark presented at the center of the monitor to
minimize eye movements. During the variable rest period, the

word “rest” and an asterisk were presented on the monitor, and
the subjects were instructed to gaze at the asterisk with a blank
mind to minimize eye movements. The three mental tasks were
randomly presented in a session, and each session was ended
with EC and EO tasks. Each subject completed five sessions,
performing 50 trials for each of the three mental tasks. There
was a break of 3 to 5 min between the sessions to allow the
subjects to rest.

Online Experiment Conducted on Day 2 and 3
On the basis of the classification accuracies of all combinations
of the three mental tasks performed in the offline experiment
(i.e., MA vs. MS, MA vs. WA, and MS vs. WA), we selected
the best pair of mental tasks for each subject and used
them for the following online experiments performed on
two different days. The online experiment comprised three
training and two test sessions, where we collected training
data (30 trials for each task) using an individually selected
best pair of mental tasks to construct an online classifier and
we tested the classifier for new inputs (test data: 20 trials
for each task) in real-time, respectively. The experimental
paradigm of the online experiments was identical to that of
the offline experiment, except that the best pair of mental
tasks was employed for each subject and real-time feedback
was provided in the two test sessions immediately following
the task execution period, on the basis of the classification
results (Figure 2B). In the first online experiment conducted
on day 2, three training sessions were first performed. No
feedback was provided during mental tasks in these sessions,
whereas auditory feedback was provided on the basis of real-
time classification results in the two test sessions following
the task execution period. The experimental paradigm of the
online experiment conducted on day 3 was identical to that
used for the first online experiment conducted on day 2, except
that the two test sessions were repeated thrice independently
using three different online classifiers. We tested these three
classifiers that were constructed using different training data
sets, namely, the data set obtained on day 2, that acquired
on day 3, and the combination of these two data sets, to
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FIGURE 2 | (A) Schematic of the offline experimental paradigm. At the beginning of each session, a 5 s rest period was provided for preparing for the upcoming
task. Before and after performing three mental tasks, the eyes were closed and opened for 15 s each to check the reliability of ear-EEG data related to alpha activity
changes. A single trial comprised a 5 s task presentation period, a 10 s task execution period, and an 8 to 13 s rest period. During a task presentation period, a
mental task that was to be performed was displayed for 5 s (e.g., 477 – 8 for MA, the string “ABC” for MS, and a Korean character for WA). During a task execution
period, subjects were instructed to perform an indicated mental task for 10 s while focusing on a black fixation cross displayed at the center of a screen, to minimize
eye movements. During a rest period, the word “rest” was presented along with an asterisk on the screen, and the subject was instructed to take a break without
any thought and movement while staring at the asterisk. A short beep was presented at every screen transition (red speaker icons) to explicitly indicate the transition.
(B) Schematic of the online experimental paradigm. The online experiment paradigm was identical to that of the offline experimental paradigm, except that an
individually selected best pair of mental tasks was used for each subject and auditory feedback was provided on the basis of real-time classification results after task
execution.

investigate the impact of different training data on their
classification performance.

Ear-Electroencephalography (EEG) Data
Analysis
Preprocessing
Data analysis was performed using MATLAB (MathWorks,
Natick, MA, United States) along with the EEGLAB (Delorme
and Makeig, 2004) and BBCI toolboxes (Blankertz et al., 2016),
and the same analysis method was applied to the ear-EEG data
measured in both offline and online experiments. Ear-EEG data
were first band-pass filtered from 1 to 50 Hz using a zero-
phase third-order Butterworth filter, and then down-sampled to
200 Hz to reduce the computation time. As the ear-EEG data
were recorded using a reference at FCz, for the removal of the
impact of the original reference electrode, all ear-EEG data were

re-referenced using the mean value of the ear-EEG channels
on the opposite ear because of the superior SNR of the re-
referencing method (Choi and Hwang, 2019). Then, 10 s-epochs
based on the task onset were extracted for each of the three mental
tasks for classification. Figure 1B shows an example of the re-
referencing method for one channel denoted by turquoise blue
color on the left ear, and each of all channels were re-referenced
by the same method.

Classification
A multiband common spatial pattern (CSP) was used to
determine discriminative features for classification in five
frequency bands (δ-band: 1–3 Hz, θ-band: 4–7 Hz, α-band: 8–
13 Hz, β-band: 14–29 HZ, and γ-band: 30–50 Hz) (Ramoser et al.,
2000; Lemm et al., 2005). A multiband CSP was independently
applied to the 10-s epochs of the three mental tasks, respectively,
for each of the five frequency bands, where the log-variances
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TABLE 1 | Classification accuracies (%) of each pair of mental tasks for each
subject in the offline experiment. The bold-font indicates the classification
accuracies for the best pair of mental tasks for each subject.

MA vs. MS MA vs. WA MS vs. WA Best pair

Sub 1 55.2 55.1 42 55.2

Sub 2 76.7 80.6 64.7 80.6

Sub 3 80.8 65.3 70.6 80.8

Sub 4 63.7 70.2 75.6 75.6

Sub 5 51.4 67.3 77.6 77.6

Sub 6 97.7 96.8 93.6 97.7

Sub 7 55.8 54.2 65.4 65.4

Sub 8 87.1 48.4 83.5 87.1

Sub 9 71.1 65.8 58.7 71.1

Sub 10 81.4 81.5 72.2 81.5

Sub 11 91.5 83 79.1 91.5

Sub 12 74.9 82.9 67.5 82.9

Sub 13 69.6 51.2 61.7 69.6

Sub 14 66.8 71.2 60.7 71.2

Average 73.1 ± 13.9 69.5 ± 14.2 69.5 ± 12.5 77.7 ± 10.9

of the first and last CSP components were extracted for
each frequency band as classification features. Shrinkage linear
discriminant analysis (sLDA; Peck and Ness, 1982; Schäfer and
Strimmer, 2005; Blankertz et al., 2011) was used as a classifier.
Offline classification accuracies were obtained using 10-fold
cross-validation for all possible pairs of the three mental tasks
(MA vs. WA, MA vs. MS, and WA vs. MS) and they were
used to select the best pair of mental tasks for each subject on
day 1. Online classification accuracies were estimated using real-
time outputs obtained immediately after performing a single trial
in the two test sessions on days 2 and 3. As mentioned, two
test sessions were performed thrice independently in the online
experiment conducted on day 3. In the sessions, three different
sLDA classifiers were constructed using different training data
(data obtained on day 2, data acquired on day 3, and the
combination of data obtained on these 2 days), and the online
classification accuracies were independently estimated for each of
the three classifiers.

Statistical Test
To investigate the feasibility of constructing an ear-EEG-based
online BCI, we compared the online classification performance of
our ear-EEG-based BCI with a theoretical 95% confidence limit
of a chance accuracy on the basis of the number of trials for a
two-class BCI (e.g., 59.61% for 50 trials of each task) (Müller-
Putz et al., 2008). Furthermore, we employed a non-parametric
statistical method, the Friedman test, for performing multiple
comparisons with the Wilcoxon signed-rank test for post hoc
in terms of the classification performance since the number of
samples was insufficient (<30) for using parametric methods (i.e.,
RM-ANOVA) (Hesterberg, 2015).

Event-Related (de)Synchronization
To visually inspect task-specific brain activity in terms of event-
related (de)synchronization (ERD/ERS), event-related spectral
perturbation (ERSP) of each mental task was estimated for

each epoch extracted from −2 to 10 s on the basis of the
task onset for each channel and subject (baseline period: −2
to 0 s), and ERSPs were averaged over all subjects (Friedrich
et al., 2012). To quantitatively investigate changes in ERSP values
over three experimental days, we estimated ERSP values of three
experimental days for five frequency bands (δ-band: 1–3 Hz, θ-
band: 4–7 Hz, α-band: 8–13 Hz, β-band: 14–29 HZ, and γ-band:
30–50 Hz) for each of three mental tasks.

RESULTS

Offline Experimental Results
Table 1 shows the classification accuracies for each pair of the
three mental tasks and the best pairs of mental tasks for each
subject. The average classification accuracies of MA vs. MS, MA
vs. WA, and MS vs. WA were 73.1 ± 13.9%, 69.5 ± 14.2%, and
69.5 ± 12.5%, respectively. The mean classification accuracy of
the best pairs of mental tasks for each subject was 77.7 ± 10.9%
(last column of Table 1), which was similar to that of our previous
study (Choi and Hwang, 2019). Statistical test results showed that
the mean classification accuracy of individually selected best pairs
of mental tasks was significantly higher than those of MA vs.
WA and MS vs. WA (Friedman: χ2(3) = 15.88, p = 0.0012, best
pair > MA vs. WA = MS vs. WA), whereas the mean classification
accuracy of MA vs. MS was not statistically different from the
others. The combination of MA and MS was mostly selected as
the best pair of mental tasks: MA vs. MS = 7, MA vs. WA = 4,
and WA vs. MS = 3.

Online Experimental Results
Figure 3 shows the mean classification accuracies for the two
online experimental days (days 2 and 3), along with the best
mean offline classification accuracy shown in Table 1 (day 1:
77.7± 10.9%). The mean online classification accuracies for days
2 and 3 were 69.1± 14.5% and 65.7± 12.7% (when only training
data measured on day 3 was used), respectively, which were
not statistically different from the best mean offline classification
accuracy, despite the reduced performances. The mean online
classification accuracy for day 3 decreased when the training data
obtained on a different day (day 2) was used to build a classifier
(61.9 ± 13.2%); by contrast, it increased when a combination
of the training data acquired on two days (day 2 + day 3) was
used (69.5 ± 14.7%). Despite the inter-experimental variability
of the classification accuracies, all the mean online classification
accuracies were higher than the theoretical 95% confidence limit
of a chance accuracy (59.61%), and a classification accuracy of
nearly 70% (marginal classification accuracy for a practical two-
class BCI) was obtained for two online experimental days (for
day 3, when a combination of training data obtained on days 2
and 3 was used).

Event-Related (de)Synchronization Maps
Figure 4 shows the grand-average ERD/ERS maps of all subjects
for each mental task over the 3 days; the maps were obtained
by averaging all channels. Overall, for all three mental tasks,
on day 1 (offline experiment), widespread ERS was observed
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FIGURE 3 | Mean classification accuracies of the offline experiment (day 1) and the two online experiments (days 2 and 3). The mean offline classification accuracy
was obtained by averaging the offline classification accuracies for the best pairs of mental tasks for each subject (day 1). The mean classification accuracies of day 3
were obtained using three different training data sets (day 2, day 3, and day 2 + day 3). An asterisk indicates a statistically significant difference.

FIGURE 4 | ERD/ERS pattern maps averaged over all channels and subjects over the three experimental days. The x-axis indicates the task period between −2 to
10 s on the basis of the task onset, and the y-axis represents the frequency ranging from 1 to 50 Hz. The task onset at t = 0 s is marked by a dotted line.

in a middle frequency band (7–30 Hz), while relatively strong
ERD was observed in the other frequency band (first row of
Figure 4). However, despite the similar ERD/ERS patterns, each
mental task showed relatively distinct ERD/ERS patterns, making
it possible to distinguish each of the tasks, such as relatively
stronger δ- and θ-ERD for MA than MS while stronger γ-
ERD for MS than MA. Moreover, relatively small changes were
observed in ERD/ERS for WA compared with MA and MS.
The ERD/ERS pattern for MA— α- and β-ERS and γ-ERD—
tended to become stronger from the first experimental day
to the last experimental day (day 1 → day 2 → day 3 in

the first column of Figure 4). Furthermore, WA particularly
started to show its unique ERD/ERS pattern from the first
online experiment (day 2), namely, widespread strong ERS over
the entire frequency band along with strong γ-ERD. However,
small changes in ERD/ERS were observed for MS over the
three experimental days. The quantitative analysis results for
ERD/ERS pattern changes over three experimental days are
provided with respect to five frequency bands (δ-band: 1–
3 Hz, θ-band: 4–7 Hz, α-band: 8–13 Hz, β-band: 14–29 Hz,
and γ-band: 30–50 Hz) for each of three mental tasks in
Supplementary Figure 1.
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DISCUSSION

Recently, ear-EEG has gained considerable attention for its
potential use in the development of BCIs owing to its high
usability and portability for brain activity measurement, despite
its relatively low performance compared with scalp-EEG-based
BCIs (Pacharra et al., 2017; Denk et al., 2018; Kaongoen et al.,
2021). Most of the previously proposed ear-EEG-based BCIs have
involved exogenous paradigms, such as SSVEP (Norton et al.,
2015; Goverdovsky et al., 2016; Goverdovsky et al., 2017), ASSR
(Mikkelsen et al., 2015; Bech Christensen et al., 2017), and ERP
(Looney et al., 2012; Debener et al., 2015; Fiedler et al., 2016;
Pacharra et al., 2017), and their feasibility has been demonstrated
via offline experiments in general. However, the feasibility of
using ear-EEG in the development of endogenous BCIs should
be also demonstrated, especially in online experimental settings
that mimic real-world scenarios, in order to extend the feasibility
of using ear-EEG in the development of BCIs. In this study, we
investigated the feasibility of an ear-EEG-based BCI involving
self-modulated EEG by using an endogenous paradigm in an
online environment, and we demonstrated that a real-time
endogenous BCI can be implemented using ear-EEG, despite
its decreased classification performance compared with that in
offline experiments.

The offline classification accuracy of each mental task pair
differed among the subjects. The mean offline classification
accuracy for the best pair of mental tasks (77.7 ± 10.9%) was
significantly higher than those of the other two pairs of mental
tasks (Table 1), namely MA vs. WA (69.5 ± 14.2%) and MS
vs. WA (69.5 ± 12.5%), indicating the importance of using
individualized mental tasks for the development of reliable BCIs
(Hwang et al., 2014). The mean online classification accuracies for
days 2 and 3 were lower by about 8 and 12% (day 2: 69.1± 14.5%;
day 3: 65.7 ± 12.7%), respectively, compared with that of
the offline experiment (77.7 ± 10.9%). The lower classification
performance in the online experiment was probably because
of the difference in the experimental environment between the
training and test sessions; the difference depended on whether
real-time feedback regarding classification results was provided
(Shenoy et al., 2006). In general, the environmental difference
between offline and online experiments gave rise to the inherent
non-stationarity of EEG data, thereby resulting in a shift in
the data distributions in feature space and ultimately degrading
the BCI classification performance (Shenoy et al., 2006). On
the other hand, real-time feedback provided in the online
experiment reduced the impact of inter-day (session) variability
on classification performance because the subject could adapt a
given classifier by chaining a control strategy based on real-time
feedback (Hwang et al., 2017); two classifiers trained using the
EEG data measured on days 2 and 3, respectively, showed a small
difference of classification accuracy when testing the EEG data
measured on day 3 (61.9 ± 13.2% vs. 65.7 ± 12.7%). Despite
the reduced classification performance in the online experiment,
we obtained a meaningful mean classification accuracy of nearly
70%, which is a marginal classification accuracy for practical
communication in two-class BCIs. Thus, we demonstrated
that ear-EEG could be used to realize real-time endogenous

BCIs. Nevertheless, the overall classification performance of
our proposed ear-EEG-based BCI should be improved in order
to increase the reliability of an ear-EEG-based endogenous
BCI. Because the classification performance drop was partly
compensated when the amount of training data was increased
on day 3 (65.7 ± 12.7% → 69.5 ± 14.7% when a combination
of training data of days 2 and 3 was used), it is expected that
the classification accuracy will naturally increase and stabilize as
a user uses a BCI over several days, owing to the cumulative
data. Another approach to prevent the classification performance
drop in the online experiment would be to introduce adaptive
algorithms that use new data measured in real-time feedback
sessions for classifier adaptation (Blankertz et al., 2007). We
intend to work toward enhancing the performance of the
proposed real-time ear-EEG-based BCI with the objective of
developing reliable practical ear-EEG-based BCIs.

In this study, we employed three mental tasks (MA, MS,
and WA) that have been widely used in previous BCI studies,
and they showed somewhat overlapping but unique ERD/ERS
patterns. MA showed relatively strong ERS in α- and β-bands
and widespread ERD in a high frequency band (γ-band), which
were similar to observations made in our previous studies
(Choi et al., 2018; Choi and Hwang, 2019). Interestingly, the
ERD/ERS pattern of MA became more dominant with the
passage of time; from a neurophysiological viewpoint, this can
be attributed to learning through real-time feedback in the
online experiment, which led to better facilitation of brain
activity (Duan et al., 2021). The ERD/ERS pattern of WA
somewhat overlapped with that of MA in terms of α- and
β-ERS with γ-ERD, but was also different from MA (e.g.,
relatively stronger θ- and α-ERS and shorter period of γ-
ERD compared with MA). In particular, θ- and α-ERS became
considerably stronger over the days for WA, which could
be attributed to the learning, similar to MA. Unlike MA
and WA, however, MS did not show significant changes in
ERD/ERS patterns over the days, which could be explained by
MS being the mental task originally designed to induce low
cognitive load without intensively involving the brain resources
during the mental task (Choi et al., 2018; Choi and Hwang,
2019). The qualitative results shown in Figure 4 were also
confirmed by the quantitative results shown in Supplementary
Figure 1, such as an increasing trend of γ-ERD for MA
and that of α-ERS for WA over three experimental days.
Although the unique ERD/ERS patterns of each mental task
tended to become stronger over the days because of learning
through real-time feedback, as mentioned above, the overall
classification performance rather decreased from day 1 to
day 3, which might be because of the overlapping ERD/ERS
patterns between the mental tasks despite their unique ERD/ERS
patterns, such as the relatively strong ERS and ERD in the
low- and high-frequency bands, respectively, as well as increased
non-stationarity of EEG data between the training and test
sessions in the online experiment. Therefore, it is necessary
to develop more advanced algorithms that can fully utilize
task-specific ERD/ERS patterns that change over the days,
to improve the overall performance of endogenous ear-EEG-
based BCIs.
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Because BCI technology was introduced to help paralyzed
patients to communicate with the outside world, BCI spellers
have been widely developed, mainly using exogenous paradigms,
such as SSVEP (Hwang et al., 2013b; Lim et al., 2015) and
ERP (Gong et al., 2020; Miao et al., 2020). As an alternative
to exogenous BCI spellers that require auditory or visual
stimuli, imagined speech has been also actively studied for
communication purposes. The auditory cortex close to the ears is
responsible for speech and has shown task-specific brain activity
during imagined speech (Kaongoen et al., 2021). In this study,
we used three mental tasks that have been most widely used
in BCI studies, but imagined speech might be the mental task
most suitable for implementing ear-EEG-based BCIs since ear-
EEG can capture task-specific brain activity generated from the
auditory cortex more reliably compared with other brain areas
owing to the adjacency effect. Therefore, it would be interesting
to investigate the feasibility of using imagined speech in ear-EEG-
based endogenous BCIs.
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Auditory attention is an important cognitive function used to separate relevant from
irrelevant auditory information. However, most findings on attentional selection have
been obtained in highly controlled laboratory settings using bulky recording setups
and unnaturalistic stimuli. Recent advances in electroencephalography (EEG) facilitate
the measurement of brain activity outside the laboratory, and around-the-ear sensors
such as the cEEGrid promise unobtrusive acquisition. In parallel, methods such as
speech envelope tracking, intersubject correlations and spectral entropy measures
emerged which allow us to study attentional effects in the neural processing of natural,
continuous auditory scenes. In the current study, we investigated whether these three
attentional measures can be reliably obtained when using around-the-ear EEG. To
this end, we analyzed the cEEGrid data of 36 participants who attended to one
of two simultaneously presented speech streams. Speech envelope tracking results
confirmed a reliable identification of the attended speaker from cEEGrid data. The
accuracies in identifying the attended speaker increased when fitting the classification
model to the individual. Artifact correction of the cEEGrid data with artifact subspace
reconstruction did not increase the classification accuracy. Intersubject correlations
were higher for those participants attending to the same speech stream than for
those attending to different speech streams, replicating previously obtained results
with high-density cap-EEG. We also found that spectral entropy decreased over
time, possibly reflecting the decrease in the listener’s level of attention. Overall, these
results support the idea of using ear-EEG measurements to unobtrusively monitor
auditory attention to continuous speech. This knowledge may help to develop assistive
devices that support listeners separating relevant from irrelevant information in complex
auditory environments.

Keywords: around-the-ear EEG, cEEGrid, auditory attention, speech envelope tracking, intersubject correlation
(ISC), spectral entropy, auditory attention decoding (AAD)
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INTRODUCTION

In everyday complex auditory scenes, one fundamental question
to be answered is how the brain manages to select relevant
and neglect irrelevant information. Although many studies on
auditory attention have contributed to this question, most of
them have been conducted in highly controlled laboratory
settings using discrete and artificial stimuli. Two recent advances
have opened up the possibility of measuring brain responses
to natural stimuli in everyday life. First, the development of
small and portable measurement devices has made it possible
to measure brain activity outside of the lab (e.g., Debener et al.,
2012). Second, methods have been developed to analyze the
neural processing of natural and continuous stimuli such as
speech (Hamilton and Huth, 2020). Here, we investigate the
potential of combining these two developments to eventually
measure attentional processes unobtrusively.

Electroencephalography (EEG) is a popular method to non-
invasively measure human brain electrical activity by placing
electrodes on the scalp. Traditional EEG as used in most
laboratories require caps or nets to position electrodes on the
scalp, which is not feasible for EEG acquisition in everyday
life (Bleichner and Debener, 2017). For unobtrusive EEG
acquisition, small and near-invisible approaches are preferred to
not disturb natural social interaction. This demand has led to the
development of in-ear EEG (Looney et al., 2012), and around-
the-ear EEG solutions (Debener et al., 2015), where electrodes are
placed inside the outer ear canal or around the ear, respectively.
The cEEGrid is one around-the-ear EEG solution – a c-shaped
flex-printed sensor array comprising 10 electrodes (Figure 1A).
In the current study, we used the cEEGrid as it provides larger
inter-electrode distances compared to in-ear EEG, leading to
an increase in the measured EEG amplitudes (Bleichner and
Debener, 2017) and better sensitivity to distant contributions
(Meiser et al., 2020).

Debener et al. (2015) and Bleichner et al. (2016) already
provided evidence that attentional processes can be captured with
cEEGrids but used event-based analyses and time-domain trial
averaging instead of measuring the neural response to continuous
stimuli. Here we investigated three methods which cannot only
analyze the neural processing of continuous speech but have also
been shown to be sensitive to attentional effects. We evaluated
their feasibility to capture neural effects of auditory attention
when using around-the-ear EEG.

The first method is speech envelope tracking, which refers to
the neural tracking of the slow amplitude fluctuations, i.e., the
envelope, of speech (Aiken and Picton, 2008). When presented
with more than one speaker at the same time, the listener’s
neural signal correlates more strongly with the speech envelope
of the attended than of the ignored speaker(s) (Power et al.,
2012; Zion Golumbic et al., 2013). Based on this observation,
many studies have been conducted to decode the attended among
all present speakers from the listeners’ EEG (Mirkovic et al.,
2015; O’Sullivan et al., 2015). Therefore, this method is often
referred to as auditory attention decoding (AAD). However, we
will not use this term, because in principle all three methods
introduced here aim at decoding the listener’s attention. One of

the main potentials of speech envelope tracking is that it can
help to develop neuro-steered hearing aids that first identify and
then enhance the attended speaker (Geirnaert et al., 2021b). This
could have a tremendous impact for hearing-impaired listeners
who have difficulties listening to one speaker in the presence of
background noise (Shinn-Cunningham and Best, 2008).

The second method is known as intersubject correlations
(ISCs). This method is based on the observations that
individuals who are exposed to the same stimulus show similar
spatiotemporal brain activity (Hasson et al., 2004; Dmochowski
et al., 2012, for more recent reviews see Zhang, 2018 and
Nastase et al., 2019). More recently, this approach has been
adopted to attention research. When selectively attending to
one of two simultaneously presented audio streams, ISCs of
EEG signals were found to be higher for those participants
attending to the same stream than for those attending to
different streams (Stuldreher et al., 2020; Rosenkranz et al.,
2021). Moreover, Rosenkranz et al. (2021) showed that the
magnitude of participants’ ISCs with others attending to the same
audio stream were positively correlated with the participants’
attentional effect observed in speech envelope tracking. Thus,
the strength by which an individual’s EEG signal correlates with
others attending to the same stimulus reflects the individual’s
ability to selectively attend to the target stimulus and ignore the
distracting stimulus. Regarding future application, this method
could be of value in classroom scenarios (Poulsen et al., 2017;
Janssen et al., 2021). For instance, this method could support
students who have difficulties in focusing on the lecture content
or support lecturers by identifying settings in which lectures are
most effective (Brouwer et al., 2019).

The third method is spectral entropy. Spectral entropy
characterizes the structure of an EEG spectrum (Viertiö-Oja et al.,
2004) and has been proposed as a measure of attention. A high
spectral entropy indicates an equally distributed EEG spectrum.
This means that the power in each frequency band is very similar,
whereas a low spectral entropy indicates an EEG spectrum
in which the power is concentrated in one frequency band
(Lesenfants and Francart, 2020). Lesenfants et al. (2018) found
increased spectral entropy when participants actively attended to
a stimulus compared to when they did not attend to the presented
stimulus. In a consecutive study, Lesenfants and Francart (2020)
showed that speech envelope tracking of a single speaker was
increased during periods of high spectral entropy. Based on
these findings, the authors concluded that high spectral entropy
indicates high levels of attention. It is important to note that
compared to speech envelope tracking and ISC, spectral entropy
is not used to draw conclusion about one’s direction of attention.
Instead, spectral entropy may be an informative measure in
scenarios where it is important to monitor one’s level of attention,
for example, when driving a car.

The aim of the current study was to test whether speech
envelope tracking, ISCs, and spectral entropy capture effects of
auditory attention to ongoing natural stimuli when unobtrusive
around-the-ear EEG acquisition is used. To this end, we analyzed
listeners’ brain activity captured with cEEGrids while they
attended to one of two simultaneously presented, continuous
speech streams. As speech envelope tracking has previously been
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FIGURE 1 | cEEGrid illustration. (A) A cEEGrid attached with double-sided adhesive around the left ear. (B) cEEGrid channel layout consisting of a pair of cEEGrids,
one for the left and one for the right ear. Each cEEGrid comprises 10 electrodes. Electrodes R4a and R4b serve as ground and analog reference, respectively. In the
analysis, data were re-referenced to the half of channel L4b (algebraic linked mastoids). To keep the number of channels symmetrical between the left and right
cEEGrid channel L4a was removed in the analysis.

performed on cEEGrid data but yielded rather low accuracies in
identifying the attended speaker (Mirkovic et al., 2016; Nogueira
et al., 2019), we explored the effect of artifact correction and of
individualizing decoding models on the accuracy to identify the
attended speaker.

MATERIALS AND METHODS

Participants
In the current study, two previously recorded, unpublished
cEEGrid datasets were combined. The cEEGrid datasets were
each concurrently recorded with cap EEG. The corresponding
cap EEG datasets were originally used in Jaeger et al. (2020)
and Holtze et al. (2021), respectively, and later jointly used in
Rosenkranz et al. (2021). Here, we only considered the cEEGrid
datasets. From Jaeger et al. (2020), five out of the 20 participants
had to be excluded due to data loss during the cEEGrid recording.
From Holtze et al. (2021) all 21 participants could be included,
resulting in a total of 36 participants (mean age 23.6 years,
25 females) in the current study. All participants were native
German speakers, had normal hearing based on audiometric
thresholds of 20 dB HL or better in both ears at octave frequencies
from 250 Hz to 8 kHz (Holmes and Griffiths, 2019), and reported
no psychological or neurological condition. Both original studies
were approved by the local ethics committee (University of
Oldenburg, Germany, Jaeger et al., 2020, Drs.Nr.27/2018; Holtze
et al., 2021, Drs.EK/2019/006). All participants signed written
informed consent before taking part in the respective study and
received monetary reimbursement afterward.

Task and Stimuli
Participants were comfortably seated in a dimly lit and sound-
attenuated booth. They were instructed to attend to one of two
simultaneously presented audio books and had to keep their
attention on the same audio book throughout the experiment.
To motivate participants and to make sure that they attended to

the instructed audio book, participants had to answer questions
related to the content of the to-be-attended audio book. Each
audio book was narrated by a different male speaker (for further
details see Mirkovic et al. (2016) where these stimuli were
originally used). In Jaeger et al. (2020) each audio book was
presented via a free-field loudspeaker located to the front-left
(–45◦) and front-right (+45◦) side of the participant, respectively.
In Holtze et al. (2021) the audio books were presented via
earphones while the audio books were spatially separated at an
angle of ±30◦ in azimuth using a head related transfer function
(Kayser et al., 2009). Thus, in both studies, one audio book
appeared to originate from the front left of the participant and
the other one from the front right. The same audio books were
used in both studies. The mode of presentation did not seem
to affect the neural processing of the audio books as shown in
Rosenkranz et al. (2021), where the cap-EEG data from Jaeger
et al. (2020) and Holtze et al. (2021) were jointly analyzed. In both
studies the audio books were presented in blocks of 10 min. In
the Jaeger study the experiment consisted of six 10-min blocks
while in the Holtze study it consisted of five 10-min blocks.
Within the first 10-min block, both audio books were presented
at equal volume in both studies. In the Jaeger study this was
maintained for all remaining blocks. In the Holtze study only
in two out of the remaining four blocks both audio books were
presented at equal volume while in the other two blocks the to-
be-attended audio book was enhanced. To keep the equal volume
aspect constant across both studies, in the current study we only
included the three blocks from the Holtze study where both audio
books were presented equally loud. To keep the amount of data
per participant constant across studies, we also selected only three
blocks from the Jaeger study. This always included the first 10-
min block plus two from the remaining blocks. Due to technical
issues the cEEGrid data of some participants in the Jaeger study
were not recorded during all blocks. For those participants where
only three blocks were available, we used those. When more
than three blocks were available, we pseudo-randomly selected
two blocks such that blocks 2–5 were evenly represented across
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participants. Thus, in the current study we used 30 min of data
per participant, which always included the first 10-min block.

Data Acquisition
The cEEGrid recording procedure was identical for both original
studies. For better electrode to skin conductance, the skin
around the ears was prepared with abrasive gel (Abralyt HiCl,
Easycap GmbH, Hersching, Germany) and cleaned with 70%
alcohol. Thereafter, a small amount of abrasive gel was placed
on the cEEGrid electrodes (TMSI, Oldenzaal, Netherlands;
Debener et al., 2015) before it was attached with double-sided
adhesive around the ear. Impedances were kept below 20 k�.
Each participant was equipped with two cEEGrids, one around
the left and one around the right ear. Electrodes R4a and
R4b of the right cEEGrid served as ground and reference,
respectively (Figure 1B). The two cEEGrids were connected
to a 24-channel mobile amplifier (SMARTING, mBrainTrain,
Belgrade, Serbia) which transmitted the data via Bluetooth
to a recording computer. The cEEGrid data were acquired
with a sampling rate of 500 Hz. The transmitted cEEGrid
data as well as the onset markers of the 10-min blocks were
integrated using the Lab Recorder software based on the
Lab Streaming Layer1 to time synchronize these data streams
(Mullen et al., 2015).

Data Analysis
Preprocessing
All analysis steps were performed in MATLAB (R2019b, The
Math-Works Inc., Natick, MA, United States), using custom
scripts2. The cEEGrid data were processed with EEGLAB (version
2020.0; Delorme and Makeig, 2004) using the cEEGrid EEGLAB
plugin3 (version 0.9). To account for the constant delay between
the onset markers of the 10-min blocks and the corresponding
EEG, we presented 20 beep tones to the participant prior to the
experiment. We then computed the grand average event-related
potential (ERP) in response to these beep tones and shifted the
cEEGrid data to align the N1 latency of the cEEGrid data to
the N1 latency observed in the cap-EEG, which in turn had
been corrected based on a timing test. This resulted in a time
delay of 54 ms for the Jaeger study and 70 ms for the Holtze
study. The difference can be explained by the different audio
presentation setups as described above (for details see Jaeger et al.,
2020 and Holtze et al., 2021). Then, the cEEGrid data were re-
referenced to algebraically linked mastoids by re-referencing the
data to the half of channel L4b. To keep the cEEGrid layout
symmetrical between the left and right side, channel L4a was
removed, leaving 16 cEEGrid channels per participant (Figure
1B) (Debener et al., 2015).

Artifact Correction
Artifact correction was performed using artifact subspace
reconstruction (ASR; Mullen et al., 2015), implemented in the
EEGLAB plugin clean_rawdata (version 2.4). ASR identifies

1https://github.com/labstreaminglayer
2https://doi.org/10.5281/zenodo.6379903
3https://doi.org/10.5281/zenodo.5946875

and reconstructs segments containing artifacts based on the
statistics of artifact-free calibration data. In the current study, no
explicit calibration data was provided, instead the plugin function
automatically selected artifact-free calibration data from the
entire recording. The clean_rawdata wrapper function consists
of multiple sub-functions. The sub-functions clean_flatlines and
clean_channels were not used, to keep the number of channels
constant for all participants, and because the interpolation of
removed cEEGrid channels may not produce reliable results
(cf. Kang et al., 2015). As ASR requires high-pass filtered data
(Mullen et al., 2015), we used the clean_drift function within
clean_rawdata with the default high-pass transition band from
0.25 to 0.75 Hz. As cutoff parameter for the clean_asr function
we used a rather liberal value of 10, as cutoff values below 10 may
be prone to remove brain data (Chang et al., 2018). The function
clean_windows, which removes data segments that still contain
artifacts after performing ASR, was not used as continuous
signals were required for the analyzes.

Speech Envelope Tracking
As mentioned, speech envelope tracking has previously been
implemented with cEEGrid data but yielded rather low accuracies
when the aim was to identify the attended speaker (Mirkovic
et al., 2016: 69.33% with 50 one-min-segments per participant;
Nogueira et al., 2019: 59.79% with 48 one-min segments
per participant). Therefore, we systematically investigated two
adaptations of the analysis pipeline used in Mirkovic et al. (2016),
with the goal of increasing the classification accuracy. For a better
understanding we now first describe how we implemented the
analysis pipeline described in Mirkovic et al. (2016) and then
explain the adaptations.

To extract the attended and ignored speech envelopes the
audio data were first normalized, by dividing them by their
standard deviation. Then, the absolute Hilbert transform was
computed, and low-pass filtered at 8 Hz (Butterworth, filter
order: 3). Lastly, the filtered data were down-sampled to 64 Hz
to reduce subsequent computation times. In accordance with
the two speech envelopes, the cEEGrid data were also low pass
filtered at a cutoff frequency of 8 Hz (finite impulse response filter,
Hann windows, filter order: 100), and then high-pass filtered at
a cutoff frequency of 2 Hz (finite impulse response filter, Hann
windows, filter order: 500). Afterward, the filtered cEEGrid data
were normalized by dividing them by their standard deviation,
and then down-sampled to 64 Hz.

For speech envelope tracking, we implemented a decoding
model, i.e., we trained a model on an individual’s cEEGrid data
to predict the attended speech envelope. For a better replicability,
we implemented the decoding model within the mTRF toolbox
(version 2.1; Crosse et al., 2016). For this, the individual’s cEEGrid
data and speech envelopes were first segmented into non-
overlapping 60 s segments using the mTRFpartition function.
This resulted in 30 segments of each speech envelope and
the corresponding cEEGrid data for each participant. Using
the function mTRFattncrossval, a decoder was trained on 29
segments of the attended speech envelope and the corresponding
cEEGrid data. This decoder was then used to reconstruct the
attended speech envelope of the left-out segment. Afterward, the
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reconstructed speech envelope was correlated with the attended
and ignored speech envelope of the left-out segment, respectively.
The difference between these Pearson correlation coefficients
(Corratt–Corrign) is considered as the attentional gain. If the
attentional gain was positive, the left-out segment was regarded
as classified correctly. The prediction error was quantified as
the mean squared error between the reconstructed and the
actual speech envelope. The process of training a decoder on 29
segments and testing it on the left-out segment was repeated 30
times in a leave-one-out cross-validation manner (Stone, 1974).
The decoding accuracy was then determined as the percentage of
correctly classified segments. Chance level decoding accuracy was
based on a binomial significance threshold.

In the decoding model, two important model hyperparameters
require adjustment. One is the time lag window, which accounts
for the time between the onset of the presented auditory
stimulus and its cortical response. The other is the regularization
parameter. Regularization is a technique to avoid overfitting and
estimate reliable model parameters that generalize to unseen data
(Holdgraf et al., 2017). Regularization is especially important
in decoding models as it strongly affects the decoding accuracy
(Wong et al., 2018). To closely follow the analysis pipeline used
in Mirkovic et al. (2016), we applied Tikhonov regularization.
Therefore, we estimated the optimal regularization parameter
which we then multiplied with the regularization matrix
(Crosse et al., 2016).

In line with Mirkovic et al. (2016), the optimal model
hyperparameters, i.e., the time lag window and regularization
parameter λ, were initially chosen on a group level. To this
end, the grand average decoding accuracies were computed for
different sets of hyperparameters. Potential time lag windows
of 45 ms duration ranged from –115 to 620 ms, with 30 ms
of overlap. Potential regularization parameters ranged from
10−5 to 105 in factors of 10. As a result, for each participant
we computed the decoding accuracy of 517 different sets of
hyperparameters, based on 47 different time lag windows and
11 regularization parameters. We then selected the set of
hyperparameters that yielded the largest grand average decoding
accuracy. These group-level based hyperparameters were then
used for all individual decoders. So far, we have described
how we implemented the analysis pipeline as similarly used
in Mirkovic et al. (2016). In the following two sections, we
will explain the adaptations we made to explore the effect of
artifact correction and individually chosen hyperparameters on
the decoding accuracy.

Effect of Artifact Correction
The first adaptation was to include artifact correction into the
analysis pipeline. As mentioned in Mirkovic et al. (2016), one
possible reason for the low decoding accuracies was that no
eye-, muscle- or movement-related artifacts were corrected for.
Therefore, we investigated the effect of artifact correction on
the decoding accuracy. To this end, we once performed artifact
correction before the data were pass-band filtered between 2
and 8 Hz and compared it to the uncorrected data filtered
between 2 and 8 Hz. To evaluate the impact of artifact
correction, we compared the individual decoding accuracies

between uncorrected and ASR-corrected data using a Wilcoxon
signed rank test. To quantify how much data was modified by
ASR and to what extent, we split the filtered data into consecutive
1-s segments and calculated the spectral power in the frequency
range from 2 to 8 Hz. For each 1-s segment, we then averaged the
spectral power over all channels and calculated the change in dB
from uncorrected to ASR-corrected data.

Effect of Individually Chosen Hyperparameters
As a second adaptation we used individually chosen
hyperparameters, instead of using group-level chosen
hyperparameters. Specifically, individualizing the time lag
window may help to increase decoding accuracies. As mentioned
above, the time lag window accounts for the time between
the stimulus onset and its cortical response. It is well known
that cortical response lags vary across individuals (Lauter and
Karzon, 1990), as can also be seen in Mirkovic et al. (2019).
To the best of our knowledge, the effect of individualizing the
regularization parameter for speech envelope tracking has not
been investigated. Therefore, we also explored this adaptation.
To select the optimal hyperparameters for each participant
separately, we chose the set of hyperparameters which yielded
the highest decoding accuracy for the individual. If multiple
sets of hyperparameters fulfilled this criterion, we selected
the one set among them which yielded the lowest prediction
error. We then compared the individual decoding accuracies
between the models using group-level and individually chosen
hyperparameters with a Wilcoxon signed rank test.

Leave-one-out cross-validation (standard cross-validation) is
a technique to train and test a model, such that the data which
is used to train the model is different from the data which
is used to test the model (Stone, 1974). Leave-one-out cross-
validation is commonly applied in auditory attention decoding
research (O’Sullivan et al., 2015). To compare our results to other
studies, we also followed this approach when comparing the
decoding accuracies of models using group-level or individually
chosen hyperparameters. However, one aspect of this approach,
which is sometimes neglected, is that when a model includes
hyperparameters to be tuned, validating the model should be
done on a yet another part of the data (Holdgraf et al., 2017).
This procedure ensures that the selected hyperparameters do
not only lead to high decoding accuracies on the data used
to select them, but also on independent data. To account for
this potential bias, we performed an additional analysis using
nested cross-validation (Varma and Simon, 2006; Parvandeh
et al., 2020). To this end, we first randomly selected 10 out
of the 30 segments per participant for later validation of our
model. The remaining 20 segments were then used in a leave-
one-out cross-validation manner to find the optimal set of
hyperparameters. Afterward, all these 20 segments were used to
train the model with the selected set of hyperparameters. Finally,
the model was validated by computing the decoding accuracy of
the 10 initially left-out segments. This entire process was repeated
50 times so that at each iteration 10 different segments were
randomly selected for later validation. In the end, the decoding
accuracies were averaged over all 50 iterations. To test whether
the results obtained in the initial analysis without independent
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validation data were biased, we performed the nested cross-
validation approach once with group-level chosen and once with
individually chosen hyperparameters. The difference between the
resulting decoding accuracies was statistically evaluated using a
Wilcoxon signed rank test.

Intersubject Correlations
Cap-EEG-based ISCs within a two competing speaker paradigm
have previously been analyzed by Rosenkranz et al. (2021).
In the current study, we performed the ISC analysis on the
simultaneously acquired cEEGrid data. The aim was to test
whether the attentional effect of ISCs, as observed by Rosenkranz
et al. (2021), can also be observed with unobtrusive around-the-
ear EEG recordings. Therefore, we closely followed the analysis
pipeline presented in Rosenkranz et al. (2021), which was largely
based on the publicly available code4 from Cohen and Parra
(2016). As mentioned above, ISCs are based on the observation,
that people who are exposed to the same stimulus show similar
brain activity. In the current study, the first 10-min block was the
only one which was included for all participants. Therefore, to
leverage the statistical power of the entire sample size, for the ISC
analysis we only used the first 10-min block. This was also done to
closely follow the analysis performed in Rosenkranz et al. (2021).

To compute ISCs, the preprocessed cEEGrid data from the
first 10-min block were first cleaned from artifacts as described
above. After artifact correction the data were low-pass filtered
at a cutoff frequency of 40 Hz (finite impulse response filter,
Hann windows, filter order: 100), and then high-pass filtered at
a cutoff frequency of 1 Hz (finite impulse response filter, Hann
windows, filter order: 500). Lastly, the data were down-sampled
to 250 Hz. Simply correlating the individual EEG channels
between participants would not reveal a good estimate of the
ISCs due to the low signal to noise ratio of EEG (Dmochowski
et al., 2012). Therefore, Dmochowski et al. (2012) developed the
correlated component analysis, which is available in the publicly
available code from Cohen and Parra (2016). In the correlated
component analysis, EEG channels are linearly projected such
that the resulting components are maximally correlated between
participants. Importantly, the number of resulting components
is identical to the number of initial EEG channels. Lastly, the
ISC scores of the three most correlating components were
summed, resulting in a single ISC sum score per individual. Other
components were neglected as their correlations have been shown
to be close to chance (Ki et al., 2016).

Attentional Effect on Intersubject Correlations
When presented with two concurrent auditory streams, those
participants attending to the same stream show higher ISC sum
scores than those attending to different streams, even though all
individuals are exposed to the same physical stimulus (Stuldreher
et al., 2020; Rosenkranz et al., 2021). Here, we investigated
whether this attentional effect could also be observed with
cEEGrids. To test this, the cEEGrid data of each participant
were correlated once with the cEEGrid data of all participants
attending to the same audio book (ISCsame) and once with the
cEEGrid data of all participants attending to the other audio book

4https://www.parralab.org/isc/

(ISCother). Importantly, the projection vector of the correlated
component analysis was computed on all but the to-be-correlated
participant to reduce the risk of overfitting. For each participant,
this resulted in 16 components (number of available cEEGrid
channels) for the ISCsame condition and 16 components for the
ISCother condition. Within a participant, we then compared the
ISC scores of the different components between the ISCsame and
ISCother condition. This we did for the three most correlating
components individually as well as for their sum, using paired
sample t-tests. The difference between an individual’s ISC sum
score in the same and other condition is considered as the
attentional effect (ISCsame–ISCother). To compute the chance level
for ISC scores, we created chance-distributions with circular
time-shifted data (Parra et al., 2018). For each participant the data
were shifted to a different extent but all EEG channels within
a participant were shifted equally. This disturbed the temporal
alignment between the participants’ EEG but kept the temporal
and spatial structure within a participant unchanged. The process
of randomly shifting the data and computing ISC scores for both
conditions was repeated 100 times. This resulted in a distribution
of ISC scores for each component and condition separately. The
95th percentiles of these distributions served as chance level.

In addition, we also classified whether a person attended to
the left or right story based on their ISC scores (Rosenkranz
et al., 2021). Therefore, we once computed the ISC scores of
each participant with all participants attending to the left audio
book (ISCleft) and once with all participants attending to the
right audiobook (ISCright). Thus, ISCleft and ISCright reflect the
synchrony of one participant with others attending to the left
or right audio book, respectively. For this analysis we used
two projection vectors, one was computed on participants who
attended to the left story, and one was computed on participants
who attended to the right story. Again, the to-be-correlated
participant was left out when computing the projection vectors.
Lastly, we summed the ISC scores of the three most correlating
components and classified the direction of attention based on the
ISC sum scores. Classification accuracy was calculated using the
area under the receiver operator curve. Chance level accuracy
was estimated by randomly assigning the class labels left and
right and then calculating the corresponding area under the
receiver operator curve (Ki et al., 2016). This was repeated
1000 times, each time randomizing the class labels. The 95th
percentile of this distribution was then considered as chance level.
Lastly, we evaluated the neurophysiological plausibility of the
ISC components. For that, we computed the projection vectors
of the correlated component analysis once for those participants
attending to the left story, once for those attending to the right
story and once for all participants. As the projection vectors
are not directly physiologically interpretable, the projection
vectors (spatial filters) were transformed into spatial patterns
(Haufe et al., 2014).

Spectral Entropy
To compute the spectral entropy, the preprocessed cEEGrid data
were first cleaned from artifacts as described above. Additionally,
the function clean_channels was used to identify channels
which correlated less than 0.6 with their robust estimate. These
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channels were later neglected when calculating the spectral
entropy averaged over channels. Here, only for three participants
one artifactual channel was identified. Spectral entropy was
computed based on the analysis described in Lesenfants and
Francart (2020). For each one-min segment and channel, the
spectrum from 8 to 32 Hz was computed using multitaper
spectral analysis (7 tapers, MATLAB function: pmtm). Each
spectrum was then normalized by dividing each frequency power
by the sum of all frequency powers in the range from 8 to 32 Hz
(Viertiö-Oja et al., 2004). Thereby, the power of each individual
spectrum was equalized to one which enabled the comparison
between participants and channels. The spectral entropy was
then computed as the product between the normalized frequency
power of each frequency bin and the logarithm of its inverse.
These were then summed over all frequency bins and normalized
by one over the logarithm of the number of frequency bins.
This resulted in spectral entropies ranging between zero and
one. A spectral entropy value close to one reflects a spectrum
in which the power of each frequency bin is similar, whereas a
lower spectral entropy indicates a spectrum in which the power
of the spectrum is concentrated in a few frequency bins. In the
end, we had 30 (segments) times 16 (channels) spectral entropy
values per participant. We did not have any prior assumptions
on which cEEGrid channels to use. Therefore, we averaged the
spectral entropy values over non-artifactual channels. Spectral
entropy has been linked to the level of sustained attention, with
higher values reflecting higher levels of attention (Lesenfants
et al., 2018). There is both behavioral and neurophysiological
evidence that the level of auditory attention decreases over time
(Moore et al., 2017). Therefore, we investigated the spectral
entropy over time by computing the Spearman rank correlation
coefficient between the segment number and the corresponding
spectral entropy. This we did for each participant individually
as well as for the grand average spectral entropy. Alpha power
(8–12 Hz) has also consistently been associated with attention
(Foxe and Snyder, 2011; Klimesch, 2012). As it comprises
one important frequency band when computing the spectral
entropy based on the frequency spectrum from 8 to 32 Hz, we
also investigated alpha power over time. For that we averaged
the normalized frequency power from 8 to 12 Hz over all
non-artifactual channels.

Relation Between Attentional Measures
To investigate the relation between the attentional gain in
speech envelope tracking (Corratt–Corrign) and the attentional
effect of ISC sum scores (ISCsame–ISCother), the time resolved
attentional gain values in speech envelope were averaged over
time. This resulted in one speech envelope gain value and one
ISC sum difference score per participant. To investigate the
relation between the attentional gain in speech envelope tracking
(Corratt–Corrign) and the spectral entropy we performed two
analyses. Unlike Lesenfants and Francart (2020), we followed a
correlation-based approach. In the first analysis, we correlated
the time resolved speech envelope gain values with the time
resolved spectral entropy values for each participant separately.
In the second analysis, we first averaged the time resolved
speech envelope gain and spectral entropy values over time

to have one value pair per participant. We then correlated
these value pairs for all participants. In all of the above-
mentioned correlational analyses, the attentional gain of speech
envelope tracking was computed using artifact corrected data
and individual hyperparameters identified with standard cross-
validation. Lastly, we correlated the attentional effect observed
in the ISC sum scores (ISCsame–ISCother) with the spectral
entropy values averaged over time. To statistically evaluate the
correlations, we performed Spearman rank correlations.

RESULTS

Speech Envelope Tracking
When performing speech envelope tracking without artifact
correction, the grand average decoding accuracies reached 71.3%
(Figure 2A). Removing artifacts with ASR resulted in a grand
average decoding accuracy of 72.13%, which was, however, not
significantly higher (Figure 2A, Wilcoxon signed rank test,
Z = 0.84, p = 0.4). In this analysis, the group-level chosen time
lag window from 95 to 140 ms and a regularization parameter
of 10−2 were used (Figure 2B, black rectangle). Most part
of the data was not strongly modified by artifact correction.
In fact, the change in spectral power (8–12 Hz) due to ASR
was less than ±0.1 dB in 73.41% of all 1-s segments. In only
6.12% of all 1-s segments, the spectral power was changed more
than ±3 dB (Supplementary Figure 1). Even though artifact
correction did not significantly increase the decoding accuracy,
all further analyses were performed on artifact corrected data to
ensure that decoding the attended speaker is based on brain data
and not on artifacts. Using individually chosen hyperparameters
instead of group level chosen ones significantly increased the
decoding accuracies to 82.59% (Figure 2C, Wilcoxon signed
rank test, Z = 5.04, p < 0.001). The individually chosen optimal
hyperparameters are shown in Figure 2B. However, when
further controlling for overfitting with nested cross-validation
the decoding accuracies dropped substantially and the group-
level chosen hyperparameters outperformed those of individually
chosen hyperparameters (Figure 2D, Wilcoxon signed rank test,
Z = –3.88, p < 0.001).

Intersubject Correlations
Using cEEGrid data, we confirmed the expected effect that
ISC scores were significantly higher for participants attending
to the same audio book than for those attending to different
audio books (Figures 3A,C). This was the case for the ISC
sum scores, i.e., the sum of ISC scores of the three strongest
components (Figure 3A, paired sample t-test, t = 8.24, p < 0.001),
as well as for the ISC scores of the first two components
(Figure 3C, paired sample t-test, component 1: t = 7.93,
p < 0.001, component 2: t = 6.2, p < 0.001). For the third
component there was no evidence for a difference in ISC
scores between the same and other conditions (Figure 3C,
paired sample t-test, t = 1.5, p = 0.14). Only the ISC score
of the first and second component revealed above chance level
effects. The ISC sum scores of each individual participant
with all those attending to the left and right audio book
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FIGURE 2 | Effects on the accuracy of speech envelope decoding models. (A) Decoding accuracies of the individual models with and without artifact correction. In
this analysis a group-level based time lag window from 95 to 140 ms and a regularization parameter of 10−2 were used for all individual models. (B) Decoding
accuracies as a function of time lag window and regularization parameter. Black rectangle marks the group-level based optimal set of hyperparameters. Colored
circles mark the optimal set of hyperparameters for each participant. The color within the circle indicates the decoding accuracy of a participant which resulted from
using these hyperparameters. Due to an overlap of potential time lag windows only the center of a time lag window is displayed. (C) Decoding accuracies with
group-level chosen and individually chosen hyperparameters. These decoding accuracies were based on standard leave-one-out cross-validation including 30 test
trials. (D) Decoding accuracy with group-level and individually chosen hyperparameters based on nested cross-validation. Within the nested cross-validation only 10
test trials were used. (A,C,D) Horizontal gray lines indicate chance level decoding accuracy which were based on binomial significance thresholds. Dashed lines
connect data points of the same participant (n.s. non-significant, *** p < 0.001).

enabled us to classify to which audio book a participant
was attending to Figure 3B. Classifying whether participants
attended to the left story, using their ISC sum score with
participants who attended to the left story, yielded an accuracy
of 97.83%. Classifying whether participants attended to the
right story, using their ISC sum score with participants who
attended to the right story, yielded an accuracy of 80.05%.
Both classification accuracies were clearly above chance level,
which was at 65.94%. The spatial patterns of the condition-
independent ISC components are shown in Figure 3D. We

also provide the spatial patterns for all those participants
attending to the left and those attending to the right in the
Supplementary Material. Keeping in mind sign ambiguities, the
spatial patterns of the left and right condition did not differ
strongly from each other, nor from the condition-independent
patterns (Supplementary Figure 2).

Spectral Entropy
Figure 4A shows the average of all individual spectrograms
from 8 to 32 Hz which in turn were averaged over all but
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FIGURE 3 | Attentional effects on ISC. (A) ISC sum scores of each participant with all those attending to the same story (ISCsame) and with all those attending to the
other story (ISCother). Horizontal lines indicate chance level based on circular time-shifted data. Dashed lines connect data points of the same participant. (B) ISC
sums scores of each participant with all those attending to the left story (ISCleft) and with all those attending to the right story (ISCright). (C) Grand average of the ISC
scores of three strongest components. Once computed between those participants attending to the same story and once for those attending to different stories.
Gray bar indicates chance level based on circular time-shifted data. (D) Spatial patterns (cEEGrid topographies) of the three strongest ISC components over all
participants, independent of which story they attended to. In each pair of cEEGrids the left and right cEEGrid are depicted (n.s. non-significant, *** p < 0.001).

the artifactual channels. The grand average spectral entropy
decreased over time (Figure 4B, Spearman rank correlation,
rho = –0.81, p < 0.001). On an individual level the spectral
entropy significantly decreased over time for 12 participants
while it significantly increased for 5 participants. For the
remaining 19 participants there was no significant change over
time (Supplementary Figure 3). In line with a decrease in the
grand average spectral entropy, the grand average alpha power

significantly increased over time (Figure 4C, Spearman rank
correlation, rho = 0.82, p < 0.001).

Relation Between Attentional Measures
The attentional gain observed in speech envelope tracking
(Corratt–Corrign) correlated positively with the attentional
effect observed in the ISC sum scores (ISCsame–ISCother,
Figure 5, Spearman rank correlation, rho = 0.3, p = 0.04).
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FIGURE 4 | Spectral domain of cEEGrid data during the competing speaker
paradigm. (A) Grand average spectrogram over all channels and participants
in the frequency range from 8 to 32 Hz. (B) Spectral entropy over time
averaged over channels and participants. Error bars reflect the standard error
over participants. (C) Alpha power (8–12 Hz) over time averaged over
channels and participants. Error bars depict the standard error over
participants. (A–C) Vertical lines at 10 and 20 min indicate the end of a
preceding 10-min block.

There was no evidence for a relation between the attentional
gain observed in speech envelope tracking and the spectral
entropy, neither for any individual participant nor for the time
aggregated analysis (Supplementary Figure 4A, Spearman rank
correlation, rho = –0.22, p = 0.19). There was no evidence
for a relation between the attentional effect observed in ISC

FIGURE 5 | Correlation between the attentional gain in speech envelope
tracking and the attentional effect in ISC sum scores (Spearman rank
correlation, rho = 0.3, p = 0.04). Corratt: Spearman correlation between the
predicted and the attended speech envelope. Corrign: Spearman correlation
between the predicted and the ignored speech envelope. ISCsame: ISC sum
score between a participant and all others attending to the same story.
ISCother: ISC sum score between a participant and all others attending to the
other story. Gray line represents the least square regression.

sum scores and the spectral entropy values averaged over
time (Supplementary Figure 4B, Spearman rank correlation,
rho = 0.06, p = 0.73).

DISCUSSION

Methods such as speech envelope tracking, ISCs, and spectral
entropy help to analyze the neural processing of continuous
stimuli. We show that all three methods capture complementary
information about attention when the neural data is acquired
exclusively with small flex-printed electrodes placed around the
ear. Speech envelope tracking reliably decodes the attended of two
concurrently presented speakers using cEEGrid data. We found
that artifact correction did not increase the decoding accuracies
while individualizing hyperparameters of the decoding models
did. Moreover, ISCs based on cEEGrid data showed more similar
brain activity between an individual with those attending to
the same speaker than with those attending to another speaker.
Regarding spectral entropy, we found that values obtained
from cEEGrid data decreased over time, potentially reflecting a
decrease in the participants’ level of attention. Interestingly, the
attentional gain of speech envelope tracking and the attentional
effect of ISC sum scores correlated positively while there was no
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evidence that either of these two measures correlated with the
spectral entropy values.

Speech Envelope Tracking
Effect of Artifact Correction
By approximating the analysis pipeline described in Mirkovic
et al. (2016), the resulting decoding accuracies observed in
the current study were comparable to Mirkovic et al. (2016).
However, in contrast to our expectations, attenuating artifacts
with ASR did not increase the decoding accuracy. One
explanation could be that the short duration of typical artifacts
only makes up a small portion of the 60 s segments that were
used for decoding and thus artifact reduction does not strongly
affect the decoding accuracy. In fact, only a small portion of the
data contained strong artifacts which were corrected by ASR.
Consequently, the decoding accuracy may benefit more from
artifact correction when shorter segments of data are used. In
Jaeger et al. (2020), ASR improved classification of shorter data
segments, whereas Straetmans et al. (2022) showed that even
for data segments as short as 5 s, decoding accuracies were not
increased when the data was cleaned with ASR. We speculate
that these heterogenous results could reflect the quality of the
calibration data that were used to perform ASR. In Jaeger et al.
(2020), the calibration data were extracted while participants
performed a task (i.e., the competing speaker paradigm). In
Straetmans et al. (2022), the calibration data were acquired while
participants were seated without performing any task. It is known
that good calibration data are crucial when performing ASR
(Blum et al., 2019).

Effect of Individually Chosen Hyperparameters
We tested the effect of individualizing the classification
model hyperparameters on the decoding accuracy using the
commonly applied standard leave-one-out cross-validation. As
could be expected, we observed higher decoding accuracies for
models using individually chosen hyperparameters compared
to models using group-level chosen hyperparameters. However,
implementing standard leave-one-out cross-validation involves
the risk of overfitting, since the same data are used for choosing
the optimal hyperparameters and validating the model (Holdgraf
et al., 2017). To account for this bias, we repeated the analysis
using nested cross validation (Varma and Simon, 2006), where
the validation of the model is done on a different part of the data
than the training or the selection of hyperparameters (Parvandeh
et al., 2020). In contrast to the results obtained with standard
cross-validation, when implementing nested cross-validation, the
models using group-level chosen hyperparameters outperformed
those models using individually chosen hyperparameters. These
results contradict studies showing that models fitted to the
individual generally perform better than group-level based
models (Mirkovic et al., 2015; O’Sullivan et al., 2015). Yet, when
only a small amount of individual data is available, group-level
based models outperform individualized models (Mirkovic et al.,
2015). Only when a sufficient amount of data from an individual
is supplied, does the individualized model outperform the group-
level based model (Mirkovic et al., 2015). Therefore, we assume
that a sufficiently large amount of individual data is necessary

for the beneficial effect of individually chosen hyperparameters to
become apparent when using nested cross-validation. Recently,
a new approach has been proposed where the decoding models
are initially provided with a participant-independent decoder
which is then continuously updated as more data from the
individual is available (Geirnaert et al., 2021a). To further
investigate the effect of fitting the model to the individual, long-
term recordings of an individual should be acquired. In contrast
to cap-EEG acquisition, long-term data collection is certainly
feasible with cEEGrids, providing good signal quality for many
hours (Debener et al., 2015; Bleichner and Debener, 2017; Da
Silva Souto et al., 2021; Hölle et al., 2021).

Intersubject Correlation
We provide evidence that attentional effects of EEG-based ISCs
can reliably be observed even when the neural data is recorded
with a small number of electrodes placed around the ear. This
is not a fully independent replication of the results reported by
Rosenkranz et al. (2021), as the cap-EEG analyzed in that study
was simultaneously acquired with the cEEGrid data presented
here. However, it shows the potential of ear-EEG to measure
attentional effects of ISCs. When comparing the ISC sum scores
of cap-EEG with those of cEEGrid data, it becomes apparent
that the cEEGrid based ISC sum scores are less often above
chance. This is also the case for the ISC scores of the individual
components. The fact that fewer ISC scores are above chance
for cEEGrid data may be due to the lower number of channels
and their spatial coverage. In fact, cEEGrid electrodes do not
cover central parts of the scalp where ISCs are most prominently
expressed (Rosenkranz et al., 2021). Nevertheless, the ISC sum
scores were higher in the same than in the other condition for
33 out of 36 participants. In addition, the ISCleft and ISCright
sum scores enabled us to accurately classify to which audio
book a participant attended to. These results demonstrate for
the first time the sensitivity of around-the-ear EEG to attentional
effects in ISCs.

It has been shown that attentional effects of ISCs can also be
obtained based on other physiological data such as electrodermal
or heartbeat activity, yet less reliably than based on EEG (Brouwer
et al., 2019; Stuldreher et al., 2020; Pérez et al., 2021). However, in
terms of application, electrodermal and heartbeat activity were
preferred over traditional cap-EEG as those measures are easy to
apply and cost efficient. Here we show that the cEEGrid presents
a suitable candidate which fulfills both criteria–it can be used
to obtain reliable attentional effects in ISCs, and it can be easily
applied to unobtrusively measure one’s EEG. Thus, especially
the combination of cEEGrids with cost-efficient data acquisition
platforms such as the OpenBCI provide a setup that could be
used for research in everyday life scenarios (Knierim et al.,
2021). In addition, ISCs could also be based on a combination
of EEG, electrodermal, and heartbeat activity, which has been
shown to produce more accurate results than using EEG alone
(Stuldreher et al., 2022).

Spectral Entropy
The capacity to sustain attention in demanding tasks typically
declines over time, coinciding with an increase in mental fatigue
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(Moore et al., 2017). Spectral entropy has been proposed as
an objective measure of sustained attention (Lesenfants et al.,
2018). In line with this, we found a decrease in spectral
entropy over time. Since application of spectral entropy as a
marker of sustained attention is a fairly new approach, there
is limited evidence available to which we can compare our
results. However, spectral entropy computed in the frequency
range from 8 to 32 Hz strongly depends on alpha power (8–
12 Hz), which in turn has also been associated with attention
(Foxe and Snyder, 2011; Klimesch, 2012). The influence of alpha
power on spectral entropy is evident in Lesenfants et al. (2018).
They observed decreased alpha power and increased spectral
entropy when participants were actively attending to a flickering
stimulus compared to when the participants did not attend
to the presented stimulus. We also found this inverse relation
between alpha power and spectral entropy in the increase of
alpha power over time. Such an increase in alpha power over
time has been attributed to the depletion of attentional resources
(Wascher et al., 2014). Furthermore, alpha band activity has
been related to the suppression of task-irrelevant stimuli (Foxe
and Snyder, 2011; Klimesch, 2012). Thus, the increase in alpha
power and the decrease in spectral entropy might reflect the
growing need to suppress the ignored speaker when mental
fatigue accumulates.

Relation Between Attentional Measures
We found a positive relation between the attentional gain in
speech envelope tracking and the attentional effect of ISCs.
This suggests that both measures reflect similar phenomena.
Attended stimuli evoke a stronger neural response than ignored
stimuli (Picton and Hillyard, 1974). While speech envelope
tracking focuses on the aspect that the neural response
toward the speech envelopes is consistent over time within
a participant (Aiken and Picton, 2008), ISCs focus on the
aspect that the neural response toward the same external
stimuli is similar between participants, at least in sensory areas
(Hasson et al., 2004).

Spectral entropy on the other hand is not directly linked to
the neural response to the stimulus. When computing spectral
entropy in the frequency range from 8 to 32 Hz, the lower
frequencies, which are relevant for the brain to track the speech
envelope (Giraud and Poeppel, 2012) are neglected. Spectral
entropy may rather reflect a participant’s level of attention or
vigilance (Lesenfants et al., 2018), that is, the capability to be
aware and focus on external stimuli (van Schie et al., 2021). In
contrast, speech envelope tracking and ISCs capture selective
attention – the ability to select relevant and neglect irrelevant
information. This may explain why we did not find a correlation
between spectral entropy values and any of the two selective
attention measures. This does not mean that one’s level of
attention or vigilance does not influence one’s ability in selective
attention, but only states there may not be a direct linear relation.
In fact, Lesenfants and Francart (2020) showed that there is
a difference in one’s selective attention ability during periods
of high and low levels of attention/vigilance, but the exact
nature of a potential relation between the selective attention and
attention/vigilance needs to be further explored.

CONCLUSION

The current study provides clear evidence that attentional
measures to natural and continuous stimuli can be captured with
around-the-ear EEG recordings, as provided with the cEEGrid.
Ear-EEG opens up the possibility to capture neural traces of
attentional processes unobtrusively in realistic everyday life
scenarios. Future assistive devices could help those that have
difficulties attending to one stream of information in the presence
of distractor sounds.
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The need for diagnostic capabilities for sleep disorders such as sleep apnea and
insomnia far exceeds the capacity of inpatient sleep laboratories. Some home
monitoring systems omit electroencephalography (EEG) because trained personnel may
be needed to apply EEG sensors. Since EEG is essential for the detailed evaluation of
sleep, better systems supporting the convenient and robust recording of sleep EEG
at home are desirable. Recent advances in EEG acquisition with flex-printed sensors
promise easier application of EEG sensor arrays for chronic recordings, yet these sensor
arrays were not designed for sleep EEG. Here we explored the self-applicability of a
new sleep EEG sensor array (trEEGrid) without prior training. We developed a prototype
with pre-gelled neonatal ECG electrodes placed on a self-adhesive grid shape that
guided the fast and correct positioning of a total of nine electrodes on the face and
around the ear. Positioning of the sensors was based on the results of a previous ear-
EEG sleep study (da Silva Souto et al., 2021), and included electrodes around the ear,
one eye, and the chin. For comparison, EEG and electrooculogram channels placed
according to the American Academy of Sleep Medicine criteria, as well as respiratory
inductance plethysmography on thorax and abdomen, oxygen saturation, pulse and
body position were included with a mobile polysomnography (PSG) system. Two studies
with 32 individuals were conducted to compare the signal quality of the proposed flex-
printed grid with PSG signals and to explore self-application of the new grid at home.
Results indicate that the new array is self-applicable by healthy participants without
on-site hands-on support. A comparison of the hypnogram annotations obtained from
the data of both systems revealed an overall substantial agreement on a group level
(Cohen’s κ = 0.70 ± 0.01). These results suggest that flex-printed pre-gelled sensor
arrays designed for sleep EEG acquisition can facilitate self-recording at home.
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INTRODUCTION

Sleep disorders are on the rise (Jahrami et al., 2021). Traditionally,
a sleep laboratory has been the best diagnostic tool to identify
symptoms concerning sleep. However, many sleep disorders are
evasive to one night of disrupted sleep in a laboratory setting,
which may lead to over- or underdiagnosing of symptoms.
Typical sleep disorders like insomnia or sleep bruxism may
not be correctly identified in a single night of sleep, but only
over time (Miettinen et al., 2017). Similarly, gradual changes
in sleep architecture associated with neurological diseases like
Parkinson’s disease (Figorilli et al., 2020) or Alzheimer’s disease
(Mander, 2020), or mental disorders like depression (Paunio
et al., 2015; Goldstone et al., 2020) cannot be detected easily in an
environment that is set up for a finite diagnosis after one night.
Reliable diagnostic tools are needed that can be used long-term at
home with minimal invasion to a patient’s comfort and rest.

If the sleep laboratory is to be considered the highest level of
sleep monitoring (type I sleep measurement, typification based
on Miettinen et al., 2017), the next level is the preparation
of sensors at a sleep center, after which patients are sent
home to sleep (type II sleep measurement). While this second
level may give professionals more control over data quality,
having participants or patients come into a center to prepare
for unattended at-home measurements has shown failure
rates that are comparable to self-applied unattended at-home
measurements (type III sleep measurement). Reliable type III
sleep measurements are desirable, however. In the light of the
ongoing Covid-19 pandemic, the focus of health monitoring has
been shifted even more to the need for self-applicability of sensor
systems. In addition to enabling repeated measurements and
long-term monitoring, systems suited for self-application add
more possibilities to reach remote, bedridden, or quarantined
individuals. Self-application also adds convenience for the patient
and can therefore increase compliance with the procedure,
especially if multiple recordings are planned (Mikkelsen et al.,
2019). Ecological validity is further increased because patients
can implement the preparation of the measurement into their
nighttime routine and the quality of sleep is known to be better
when individuals can sleep in familiar environments (e.g., Tamaki
et al., 2016).

In this paper, we will focus on two aspects of self-application,
data validity and signal quality. Data validity concerns the
prospect of deriving information suitable for the relevant
interpretation or diagnosis from the data. Signal quality concerns
all aspects regarding the usefulness of the data in general,
including impedance levels, the number of channels that
delivered stable recordings and the signal-to-noise ratio. Sleep
staging, for instance, can only be achieved if electrodes are
placed at appropriate scalp positions (data validity) and the
recorded data offers sufficient information for an adequate
interpretation (signal quality). In a first feasibility study, we
validate adequate electrodes positioning on the scalp for sleep
staging. In a second study, participants were instructed to find
the correct positioning of a sensor array themselves. This latter
aspect of self-application concerns signal quality in particular.
Previous EEG sensors designed for self-application have used

dry electrodes (i.e., Arnal et al., 2019). While dry electrodes
require no or little skin preparation and can be re-arranged,
which makes them convenient for self-application, they require
physical pressure to hold electrodes in place, causing discomfort,
headaches and sleep disruption. In laboratory settings, wet
electrodes remain the gold standard when the aim is to collect
data with optimal signal quality. Professionals use wet electrodes
in combination with different preparation techniques (skin
cleansing and abrasion) and substances (conductive gels or
pastes, special adhesives). In the context of self-application,
individuals must be trained to perform these or similar
steps themselves.

Previously, we showed that a system consisting of a single
flexible electrode patch around the ear, a cEEGrid (Debener
et al., 2015), delivers enough information for a satisfactory
sleep analysis (da Silva Souto et al., 2021). However, results
were significantly more reliable if EOG information from two
electrodes near the eyes were included in the information
available to the sleep analyst. Based on these results, we designed
a new electrodes array to include positions behind the ear,
around the eye and on the chin, for additional EMG acquisition
(Figure 1). The new configuration omitted the area below the
ear in favor of a bridge above the ear to comfortably connect
electrodes from the facial area to those located behind the
ear. Preliminary exploration revealed that this design reduced
discomfort that can be associated with talking or eating with
cEEGrids. Furthermore, this bridge facilitates self-application,
as the ear provides additional temporary support. A near-
ear electrode in the facial area close to the tragus substitutes
the bottom end electrode of the cEEGrid. Concerning grapho-
elements, our previous study showed that sleep spindles and
K-complexes recorded at Fpz are best represented in cEEGrid
channel combinations that point in the direction of Fpz.
Here, we expanded the principle of linear combinations by
configuring facial electrodes to allow for directional analysis
pointing not only to frontal areas, but to occipital and central
areas as well. This allowed us to focus on frontal areas
that are especially relevant for sleep staging but also offer
applications beyond sleep.

In the first study, we validated a miniaturized EEG setup
consisting of the new electrode constellation and a wearable
amplifier against a commercial mobile PSG system (validation
study). In the second study, we tested the self-applicability
of this system by giving it to participants and instructing
them remotely to prepare the sensors for a measurement (self-
application study).

MATERIALS AND METHODS

Measurement Systems
The new electrode grid introduced will be referred to as
trEEGrid system and was used in combination with a wireless
EEG amplifier (Smarting Sleep, mBrainTrain, Serbia). The
trEEGrid is based on experience with the cEEGrid ear-EEG array
(Figure 1A), but specifically designed to foster self-application
for sleep EEG acquisition at home. In study 1, the general
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FIGURE 1 | Development steps of the self-applicable, pre-gelled trEEGrid. (A) stage 1: cEEGrid + EOG, da Silva Souto et al. (2021). (B) stage 2: foam trEEGrid,
current study. (C) stage 3: trEEGrid prototype on a flexible PCB, future development. ©Fraunhofer IDMT/Anika Bödecker.

design is tested using a prototype built from pre-gelled neonatal
ECG electrodes. The electrodes were embedded within a self-
adhesive grid shape using a medical foam plaster (Figure 1B).
This prototype helped to validate finalize the trEEGrid design, as
shown on a PCB grid in Figure 1C. We refer to this intermediate
design as foam trEEGrid. It included nine single-use self-adhesive
gel electrodes (seven channels for EEG, EOG and EMG analysis,
reference and ground).

The new prototype was validated by concurrent recordings
with commercial PSG system (SOMNOscreen Plus,
SomnoMedics, Germany; further referred to as PSG system).
The commercial system included six EEG electrodes, two
piezosensoric belts for thorax and abdomen expansion and a
finger clip sensor, which measured oxygen saturation and pulse.
The two EMG electrodes of the PSG system were not used, since
they competed with the space of the trEEGrid EMG channels
R6 and R7. Electrodes were gold-plated cup electrodes mounted
with adhesive gel.

Participants
Twenty healthy individuals participated in the validation study.
Eight datasets had to be excluded. Six datasets were excluded
due to technical problems concerning the trEEGrid, one further
dataset due to instability of the Bluetooth connection to the
amplifier, and another dataset due to power failure of the
SOMNOscreen PSG system. The 12 participants (three females,
nine males, mean age = 28.9 years, range = 18–45 years) entering
the analysis reported no sleep disorders. Each participant
provided one night of sleep data, recorded during sleep at home.

Twelve further individuals participated in the self-application
study (four females, eight males, mean age = 28.8 years,
range = 18–55 years). No participant had prior experience in
either handling or applying the foam trEEGrid, nor was involved
in its design process. All participants followed instruction for self-
applicating the trEEGrid system described above and succeeded
in providing a 30 min EEG recording.

For both studies, written consent was given by all participants.
Both studies were approved by the local ethics board.

Data Acquisition
Validation Study
For the validation study, participants came into the lab in the early
evening to be prepared for the study. After given written consent,
they were outfitted with the two systems, the commercial PSG
system and the trEEGrid system.

The sensors of the PSG system (six EEG electrodes, two
piezosensoric belts for thorax and abdomen expansion and a
finger clip sensor for oxygen saturation and pulse measurement)
were connected to a recording box worn in front of the torso on
a belt. EEG recording was sampled at 256 Hz with a reference at
Cz and ground at Fz.

The trEEGrid electrodes were connected via cable to a
smarting amplifier worn in a pouch on a shoulder strap and
recording at a sampling rate of 250 Hz to a raspberry pi-
based recording station via Bluetooth (see Figure 2A for setup).
Participants were then sent home to sleep. The commercial
system started recording at a pre-set time indicated as just prior
to bedtime by the participant. The trEEGrid system was manually
started by the participant on a smartphone app before turning
off the light. Impedance current was active during recording
for continuous impedance measurements. The next morning,
participants manually stopped the recording and took off both
systems without assistance.

Self-Application Study
For the self-application study, participants either picked up
the materials for the study and joined the online, supervised
instruction session from home (10 participants) or they were
placed alone in a room at the institute with materials and joined
the online, supervised instruction session on a laptop set up for
them (two participants). Materials included the trEEGrid system,
consisting of the self-applicable electrode grid and the amplifier
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FIGURE 2 | (A) Recording setup of the validation study including the commercial at-home PSG system and the trEEGrid system worn at the same time. (B) View on
foam electrode grid prepared for self-application with wax paper covers in place to guide the participant through application.

already attached to the chest belt, a mirror, and four cotton pads
soaked in alcohol. The trEEGrid system was prepared for use
by removing adhesives from both the electrodes and the foam
grid structure and replacing it by four fitted pieces of wax paper
numbered 1 through 4 in the order of the planned removal
(see Figure 2B). The experimenter started the online session
at the appointed time and taught the participants through a
detailed picture presentation consisting of 22 slides accompanied
by oral instruction how to self-apply the electrode grid, leaving
room for individual questions if needed. In order, participants
were instructed to put on the chest belt, prepare the skin,
remove the pieces of wax paper and self-apply the electrode
grid section by section and connect the grid to the amplifier.
Time was recorded for this procedure. Participants filled in
a questionnaire, rating statements concerning aspects of self-
applicability on an agreement scale of 1 to 5 (1 = “very much,”
2 = “rather,” 3 = “neutral,” 4 = “slightly,” 5 = “not at all”)
and answered additional questions in a free text format upon
completion of the study.

Data Analysis of Validation Study
Data Preprocessing
Data from both systems (trEEGrid and PSG system)
were prepared for the annotation and the correlation
analysis as followed.

First EEG signals were bandstop filtered from 45 to 55 Hz,
(phase true, 4th order Butterworth) to reduce the 50 Hz line
noise. EEG data of trEEGrid was additionally bandstop filtered
from 60 to 65 Hz, (phase true, 4th order Butterworth) to reduce
impedance current. EEG data of trEEGrid and PSG system were
bandpass filtered from 0.5 to 40 Hz, (phase true, 4th order
Butterworth) to reduce electrode drift and noise containing high-
frequency components. Due to the Bluetooth connection used
in the trEEGrid system, its data was checked for package loss
using the recorded package number information. If necessary,
zeros were added where packages were lost (overall less than
0.0007% of all packages were lost). Data of both systems were

downsampled to 125 Hz and then synchronized by aligning ten
eyeblinks at the start and end of each measurement. The excess
samples before the first and after the last aligned eyeblink were
discarded. If there was a size difference of both datasets due to
diverging system clocks, PSG system data was resized to fit to
trEEGrid data.

Channels of both datasets were selected, re-referenced and
labeled as listed in Table 1. For the trEEGrid layout, linear
combinations of channels were used. This step was motivated
to approximately represent the EEG measured at classic PSG-
relevant scalp positions Fpz, C4 and O2 when referenced to
the right mastoid process M2 (in the following marked with an
asterisk, as shown in Figure 3).

TABLE 1 | Channel configuration of the trEEGrid and PSG system data sets.

Data set trEEGrid PSG system

EEG channels R1 Ô *Fpz_M2 F3_M2

R5 Ô *C4_M2 F4_M1

R5-R4 Ô *O2_M2 C3_M2

C4_M1

O3_M2

O4_M1

EOG R1-R2 Ô *EOGh E1_M2

R2-R3 Ô *EOGv E2_M1

R1-R3 Ô *EOGd

EMG R7-R6 Ô *EMG None

Additional sensors None SPO2

Puls

Pleth

RIP_Thrx

RIP_Abdom

Summe_RIPs

The symbol * is used to differ the names of the channel-combinations from ones of
the classical scalp positions.
This is done because the channel-combinations are used as an estimation of the
EEG that could be measured at those classical scalp positions.
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FIGURE 3 | trEEGrid channel combinations. These bipolar channels extrapolate toward classical PSG scalp positions (Fpz, C4, O2) as well as EOG and EMG, as
illustrated.

Data Annotation of the Expert Scorer
An expert polysomnographic technologist with 15 years of
experience polysomnography (MP, subsequently referred
to as expert scorer) annotated the sleep data of both
systems independently, by evaluating consecutive 30 s
segments. Participant labels of both systems were randomized
independently prior annotation to lower a possible bias by the
expert scorer. An open source, sleep analysis software was used
for this purpose (Combrisson et al., 2017). Sleep staging was done
in accordance with AASM guidelines [annotated stages: awake
(W), N1, N2, N3 and REM (rapid eye movement)]. In addition,
sleep spindles were annotated in EEG data of the PSG system.

Statistical Analysis
To statistically evaluate differences of the impedance
measurements, a repeated analysis of variance (rANOVA)
was done. To test for sphericity of the data a Mauchly-Test was
applied. In case of significance, results were Greenhouse-Geisser
corrected.

To statistically evaluate the accordance of the different
hypnograms, Cohen’s Kappa was used to determine inter-rater
reliability (agreement scale according to Landis and Koch,
1977). For a calculation of the reliability over participants, the
corresponding hypnograms were concatenated. To this end,
confusion matrices of the different hypnograms were calculated
and used to determine Cohen’s Kappa. Cohen’s Kappa was
calculated for every single sleep stage vs. the rest, and across
all sleep stages.

Correlation Analysis
da Silva Souto et al. (2021) showed that sub-hairline EEG
electrodes can be used to estimate the EEG measured at
further distanced location of the scalp. The authors correlated

sleep spindles annotated at a classical Fpz electrode with
corresponding EEG recordings of linear combinations of ear
electrodes and showed that highest correlations were scored at
channel combinations that point in the direction of Fpz. To
further explore this approach, we expanded the analysis to central
and occipital PSG locations of the scalp. Therefore, we first
extracted spindle events by separating of the transient EEG of
the trEEGrid channels (R1, . . ., R7) as well as the transient EEG
of the PSG channels F4_M2, C4_M2 and O2_M2 into epochs
according to the sleep spindle annotations of the expert scorer
in PSG system rating. The annotated epochs of each channel
F4_M2, C4_M2 and O2_M2 are used as reference signals in
three appropriate test conditions of the correlation analysis. DC-
offset was reduced by subtracting the average over all samples
of the respective epoch. Finally, correlation coefficients were
calculated between the epochs of the three reference signals and
the respective transient data of all possible single channel and
bipolar channel combinations of trEEGrid electrodes (28 in total)
as shown in the following:

R1,

R1-R2, R2,

R1-R3, R2-R3, R3,

R1-R4, R2-R4, R3-R4, R4,

R1-R5, R2-R5, R3-R5, R4-R5, R5,

R1-R6, R2-R6, R3-R6, R4-R6, R5-R6, R6,

R1-R7, R2-R7, R3-R7, R4-R7, R5-R7, R6-R7, R7.

If a trEEGrid channel impedance exceeded 60 k� during an
annotation window, the results of this channel and all related
channel combinations were discarded for this specific epoch
(13.6% epochs rejected on average for all listed combination and
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TABLE 2 | trEEGrid system impedances at the start and end of night measurements in the validation study in k� (impedances above 100 k� are marked as “-”).

Participants Impedance measurements [k�]

R1 R2 R3 R4 R5 R6 R7

Start End Start End Start End Start End Start End Start End Start End

P1 7.2 11.7 17.9 15.5 10.9 10.0 – 45.1 16.1 10.8 – 3.9 8.1 8.3

P2 13.1 14.0 14.5 11.8 40.1 25.3 – 22.8 55.2 44.1 – 36.7 – 34.5

P3 12.4 9.7 38.4 26.3 19.6 13.3 36.6 28.5 93.2 54.0 23.0 16.5 21.6 12.3

P4 17.4 21.9 18.5 24.4 22.8 5.1 24.6 34.2 18.4 17.7 18.1 25.3 17.6 19.1

P5 18.8 13.2 29.4 11.8 28.6 24.4 51.8 19.5 39.2 19.9 14.7 12.8 22.3 –

P6 55.1 25.0 52.2 22.5 56.3 51.5 76.8 54.0 62.5 31.9 – – – –

P7 13.1 10.9 16.5 13.0 25.8 17.6 – 18.2 30.4 21.3 – – – –

P8 11.6 12.2 16.2 12.5 15.1 14.4 18.9 12.0 4.9 5.0 27.2 41.9 20.4 12.5

P9 24.1 37.9 33.2 33.2 21.7 13.1 – 36.3 53.5 40.3 – 48.2 52.1 28.5

P10 11.0 15.1 15.0 – 15.0 14.3 27.7 23.9 – 31.5 15.8 16.4 26.4 24.6

P11 7.6 6.9 13.0 9.9 21.7 18.9 40.3 42.8 10.8 11.1 13.6 10.5 11.0 10.0

P12 14.0 9.9 18.6 9.2 36.7 26.2 12.2 11.9 66.6 26.9 – 34.9 – 54.6

FIGURE 4 | Exemplary hypnograms, shown for participants P1 and P4. (A,B) Hypnograms of P1 show a moderate agreement. (C,D) Hypnograms of P4 show an
almost perfect agreement. The sleep stages are defined according to the AASM as: Art (Artifact), Wake (Wakefulness), REM (Rapid Eye Movement), N1 (non-REM1),
N2 (non-REM2) and N3 (non-REM3).

participants). To calculate the median correlation coefficient over
epochs or over participants, the single correlation coefficients
were first Fisher Z transformed than the median was formed.
In a final step, its result was transformed back, by calculating
its hyperbolic tangent. The transformation is necessary to
approximate the normal distribution of correlation coefficients
and reduce the bias of their average (Silver and Dunlap, 1987).

RESULTS

Validation Study
Channel Impedances
Table 2 shows impedance values at 5 min after the start and
before the end of the night measurements. It is noticeable,

that chin electrodes (R6 and R7) lost connection during the
measurement for six out of 12 participants and the electrode
in front of the ear (R4) for four out of 12 participants. In
11 out of 15 cases the loose electrodes reconnected overnight.
Overall impedances dropped significantly at the end of the
night [F(1,11) = 11.8; p < 0.01]. Across electrodes there was a
significant difference of impedance [F(6,66) = 5.1; p < 0.01],
but no significant difference across electrodes and overnight
combined [F(6,66) = 2.3; p = 0.08].

Analysis of Hypnograms
Hypnograms of both systems are shown in Figure 4 for two
participants exemplarily (P1 and P4). The lowest reliability
tests result of a single participant was scored for P1 (shown
in Figures 4A,B) with Cohen’s κ = 0.58 ± 0.02 (moderate
agreement). The highest tests result was scored for P4 (shown

Frontiers in Neuroscience | www.frontiersin.org 6 June 2022 | Volume 16 | Article 88396634

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-883966 June 23, 2022 Time: 7:51 # 7

da Silva Souto et al. Self-Applied EEG Sleep Monitoring

TABLE 3 | Statistical reliability for individual participants (standard error ± 0.02).

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Cohen’s κ 0.58 0.75 0.77 0.83 0.65 0.60 0.77 0.83 0.70 0.58 0.76 0.64

in Figures 4C,D) with Cohen’s κ = 0.83 ± 0.01 (almost perfect
agreement). All single participant test results are shown in
Table 3.

The confusion matrix corresponding to hypnograms of all
participants and systems combined is shown in Table 4. The
respective statistical reliability test results over all participants
and corresponding standard errors are shown in the following
for either every single sleep stage vs. the rest or all sleep stages
combined:

Wake: Cohen’s κ = 0.75 ± 0.01 (substantial agreement).
N1: Cohen’s κ = 0.46 ± 0.02 (moderate agreement).
N2: Cohen’s κ = 0.66 ± 0.01 (substantial agreement).
N3: Cohen’s κ = 0.79 ± 0.01 (substantial agreement).
REM: Cohen’s κ = 0.76 ± 0.01 (substantial agreement).
All: Cohen’s κ = 0.70 ± 0.01 (substantial agreement).

Correlation Analysis
Figure 5 (top) shows the results of all three test conditions of
the correlation analysis. It should be noted that all annotations
of channel R6 and all related channel combinations were
discarded for participant 7 as well as channel R7 and all related
channel combinations for participant 7, since channel impedance
exceeded 60 k� at all annotation windows. In all three conditions,
clusters of trEEGrid channel combinations are visible that have
similar absolute correlation coefficients. Overall, R5-R7 and R4-
R5 scored the highest absolute correlations to sleep spindles
measured at O2_M2 of the PSG system (0.15 and −0.14), R1-
R7 and R1-R6 the highest to C4_M2 (0.32 and 0.31) and finally
R1-R6 and R1 the highest to F4_M2 (0.46 and 0.43). In all
three conditions, it is noticeable that sleep spindles measured
at O2_M2, C4_M2 and F4_M2 are best represented in EEG of
trEEGrid channel linear combinations that either point into the
direction of the respective PSG system electrodes, or are in parallel
to its alignment [as shown in Figure 5 (bottom)]. This result is
exemplary shown in Figure 6, by comparing a single annotated
sleep spindle of participant P4 recorded at C4_M2 of the PSG
system with the EEG recorded at R5 and R1-R7 of the trEEGrid.

These results further confirm the assumption made in
da Silva Souto et al. (2021) that combinations of ear EEG
channels can be used to estimate the EEG measured at distant
locations of the scalp.

Self-Application Study
Figure 7 shows the answers to the self-applicability questionnaire
in box plots. Seven out of 12 participants answered the question
“How easy was it to put on the chest belt?” with “very
much” or “rather.” All 12 participants answered the question
“How easy was it to prepare the skin?” with “very much”
or “rather.” 10 out of 12 participants answered the question
“How easy was it to find the correct electrode positions?” with
“very much” or “rather.” Nine of 12 participants answered

the question “How easy was it to apply the electrodes at
the correct positions?” with “very much” or “rather.” 10 out
of 12 participants answered the question “How easy was it
to connect the electrode grid to the amplifier?” with “very
much” or “rather.” 10 out of 12 participants answered the
question “How confident did you feel during the self-application
process?” with “very much” or “rather.” All 12 participants
answered the question “How confident are you of having applied
the electrode grid correctly?” with “very much“ or “rather.”
Asked for the difficulties experienced during the self-application
process in a free text format, five participants mentioned the
positioning behind the ear as giving them the most difficulty,
one mentioned difficulty with using the mirror image, one
mentioned the order of application of the different electrodes,
and one noted that self-applying alone without assistance was the
most difficult part.

Table 5 shows the set-up time of each participant in minutes.
On group average, the mean set up time was 12 min (rounded
to a 30 s interval) with a range of 8:00 to 19:30 min. The
impedance values after 20 min of wear ranged between 5.1 and
98.6 k�, excluding values above 100 k�. Comparing overall
impedances at the start of the overnight measurement of the
validation study with the recorded impedances of the self-
application study showed no significant difference [F(1,11) = 1.3;
p = 0.28]. Across electrodes there was a significant difference of
impedance [F(6,66) = 9.1; p < 0.01], and a significant difference
across electrodes and between the two measurements combined
[F(6,66) = 3.7; p = 0.04]. Importantly, this interaction is not
driven by impedance differences between the two measurements
at any electrode, but rather by divergent differences between
electrodes within each measurement.

DISCUSSION

In the present study we tested the feasibility of a new sensory
grid design (referred to as trEEGrid) consisting of nine pre-gelled
ECG electrodes around the eye, ear and chin for standard sleep

TABLE 4 | The hypnograms of all participants respective to each system were
concatenated to create this confusion matrix.

trEEGrid vs. PSG system Art W N1 N2 N3 REM

Art 0 0 0 0 0 5

W 2 934 110 40 10 15

N1 1 175 476 159 14 32

N2 8 90 204 2,832 345 92

N3 0 15 14 495 2,620 4

REM 0 88 222 219 24 1,387

Each count refers to the annotation of a single 30 s segment.
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FIGURE 5 | Top: Single participant and median results of all three conditions of the correlation analysis. Correlation coefficients between sleep spindles annotated at
EEG of PSG system (using (A) O2_M2, (B) C4_M2 and (C) F4_M2) and the corresponding EEG of every possible single channel and bipolar channel linear
combinations of trEEGrid electrodes are calculated, Fisher Z transformed, formed the median over epochs and participants, and transformed back. Bottom: Visual
comparison of alignment of PSG system channels (dotted black arrows: O2_M2, C4_M2 and F4_M2) and corresponding trEEGrid channel combinations that scored
highest median correlation coefficients (solid colored arrows). Feasible linear combinations of trEEGrid channels placed around ear are shown for each condition
(dashed colored arrows). Colors represent the magnitude of correlations. Based on the correlation analysis trEEGrid channel linear combination that either point into
the direction of O2_M2, C4_M2 and F4_M2, respectively, or are in parallel to its alignment, result in highest absolute correlation (negative correlations point in the
opposing direction of the channel combination) and therefore are best suited to represent sleep spindle reference measurements of the PSG system (O2_M2,
C4_M2 and F4_M2).

staging recordings. The trEEGrid was used in a mobile setting
and validated by comparing it to concurrent recordings obtained
from a commercial PSG system.

Overnight impedance measurements of the trEEGrid showed
that pre-gelled ECG electrodes were feasible for sleep EEG
measurements. Further it was interesting that in 11 out of 15
cases ECG electrodes that lost connection at the start of the
measurement recovered connection during the night. This could
be a benefit of pre-gelled ECG electrodes over conventional
electrodes using electrolyte gels that solidify over time. In this
case, recovery of the connection would not be possible after
breakage of the solidified gel.

We compared hypnogram annotations of both systems by
calculating inter-rater reliability values and found, overall, a
substantial agreement between both systems for all participants.

Further reliability tests of single sleep stages showed agreements
comparable to the literature (Danker-Hopfe et al., 2009), and very
similar to previous ear-EEG sleep studies (i.e., Sterr et al., 2018).
It must be taken into account that the signals based on the linear
combinations of the trEEGrid are similar but still different to
the signals of the classical EEG electrode positions. This poses a
special challenge to the expert scorer, who is used to the classical
setting. Automated sleep staging approaches based on machine
learning could possibly achieve even better results, in particular
when approaches are trained on trEEGrid data.

We compared sleep spindles annotated in the PSG system with
the respective recordings of different trEEGrid channel linear
combinations in a correlation analysis. In agreement with da
Silva Souto et al. (2021), the results provide further evidence
that linear combinations of ear EEG channels can be used
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FIGURE 6 | Example showing a single annotated sleep spindle of participant
P4, captured by the PSG system (top, channel C4_M2) and trEEGrid
channels R5 (middle) and R1-R7 (bottom).

FIGURE 7 | Box plots of answers given by the 12 participants of the
self-application study concerning different aspects of self-applicability.

to extrapolate information measured at traditional locations
on the scalp, like O2 and C4. This motivates the choice of
linear combinations of trEEGrid channels used for hypnogram
annotations. A preliminary test showed that it is possible for the
expert scorer to annotate sleep spindles in the EEG recording
of the trEEGrid. In a future study it would be interesting to
analyze if these annotations would differ from those made in a
conventional PSG system.

We showed that the trEEGrid system is self-applicable by
healthy participants with only remote instruction. Participants

TABLE 5 | Results of self-application study measurements.

Participants Setup time
[min]

Impedance after 20 min [k�]

R1 R2 R3 R4 R5 R6 R7

SA01 14:30 26.3 – 23.9 86.5 70.3 15.1 42.9

SA02 11:30 59.2 67.5 30.3 98.6 92.2 35.4 59.3

SA03 08:00 6.5 25.5 23.7 29.7 34.5 35.9 –

SA04 13:00 18.3 44.3 17.4 9.7 52.4 16.7 5.1

SA05 11:00 – – – – – – –

SA06 11:00 8.9 7.1 10.5 43.1 42.6 31.7 –

SA07 14:00 23.2 45.7 36.0 69.1 – 11.9 9.5

SA08 19:30 19.9 16.9 27.6 35.6 – 10.0 5.5

SA09 10:00 19.7 61.4 23.6 – – – –

SA10 09:30 8.5 27.6 13.3 27.8 – 15.6 –

SA11 15:00 18.1 28.2 9.9 – – 22.1 13.3

SA12 09:30 24.3 73.6 21.4 25.5 91.4 16.0 19.3

For each participant the time needed for self-application of the trEEGrid is given in
minutes (rounded to 30 s intervals).
Impedance values measured after 20 min of wear are given in k� (impedances
above 100 k� are marked as “-”).

had little trouble finding the correct positions and applied the
self-adhesive grid to facial areas adequately. Note that self-
application was supervised, so the experimenter was able to give
feedback during the process. In a real-life scenario, the goal
would be to offer a system that does not rely on an additional
person guiding the process. Also, participants in this study were
predominantly young adults who had no motor, visual, or hearing
impairments that hindered their ability to understand and follow
the instructions. For applications that focus on diagnosing or
monitoring disorders associated with sleep, older adults may
be more afflicted and therefore make up a larger percentage of
the user base. In half of the participants, some electrodes lost
connection during the measurement and prevented adequate
data acquisition. This happened more often with chin electrodes
than with any other electrodes. Reasons included movement from
eating and talking after applying the grid or insufficient adhesion
on a bearded face. Timing the application of the sensors closer
to bedtime for a sleep measurement may help to keep sensors in
place for a longer period of time, though one participant reported
loosening of a chin electrode within 30 min of application.

The overall comparison of impedance values between
experimenter-application and self-application showed no
significant difference. One major challenge in the application of
the trEEGrid seemed to be electrode R5, sitting at the top behind
the ear. In the validation study, this channel lost connection
only for one out of 12 participants; in the self-application study,
however, this channel remained out of range for six out of
12 participants. The position R5 poses a challenge by being
both visually occluded and not completely hairless for most
participants, therefore rendering it difficult to achieve good
signal quality without assistance.

Remarkably, most participants found the electrode grid to be
sized exactly right for their faces. Although we did not collect
data on facial metrics of the participants, human heads come
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in different shapes and sizes. The prototype used in the studies
was built of single pre-gelled electrodes fixed into a foam grid for
exact placement and additional adhesion. The flexibility of the
foam material allowed participants to place sensors where they
needed to be while still using the grid shape as a guide. This
feature of the grid prototype will be translated into future versions
which should be stretchable PCB based as shown in Figure 1C,
allowing the stretchiness and flexibility of a foam grid while being
lighter and smaller.

In the past few years, a variety of new materials for
biosignal detection have been introduced which offer fascinating
possibilities for face application, including facial tattoos (Shustak
et al., 2018), dry film electrodes that rely on surface tension
caused by the person’s sweat for adhesion (Nawrocki et al.,
2018) or conductive aerogel film (Saadatnia et al., 2021).
These sensor materials have in common that multiple sensor
location can be arranged on a grid which replaces the
need for cables and acts as a guide for correct placement
at the same time.

In conclusion, the use of self-applicable, comfortable and
discrete sensor solutions around the ear could advance future
sleep diagnostics by facilitating repeated home-sleep EEG
acquisition. Beyond sleep, future disposable flex-printed arrays
could be made out of stretchable material, thereby further
increasing wearing comfort and signal quality. We argue that
improving wearing comfort and unobtrusiveness of sensors is
of crucial importance for achieving hassle-free, long-term EEG
monitoring solutions, which are of value in health screenings
and at-risk neurological and psychiatric patients (Fernandez and
Lüthi, 2020; Mander, 2020).
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This presentation details and evaluates a method for estimating the attended speaker

during a two-person conversation by means of in-ear electro-oculography (EOG).

Twenty-five hearing-impaired participants were fitted with molds equipped with EOG

electrodes (in-ear EOG) and wore eye-tracking glasses while watching a video of two

life-size people in a dialog solving a Diapix task. The dialogue was directionally presented

and together with background noise in the frontal hemisphere at 60 dB SPL. During

three conditions of steering (none, in-ear EOG, conventional eye-tracking), participants’

comprehension was periodically measured using multiple-choice questions. Based on

eye movement detection by in-ear EOG or conventional eye-tracking, the estimated

attended speaker was amplified by 6 dB. In the in-ear EOG condition, the estimate

was based on one selected channel pair of electrodes out of 36 possible electrodes.

A novel calibration procedure introducing three different metrics was used to select the

measurement channel. The in-ear EOG attended speaker estimates were compared

to those of the eye-tracker. Across participants, the mean accuracy of in-ear EOG

estimation of the attended speaker was 68%, ranging from 50 to 89%. Based on

offline simulation, it was established that higher scoring metrics obtained for a channel

with the calibration procedure were significantly associated with better data quality.

Results showed a statistically significant improvement in comprehension of about 10%

in both steering conditions relative to the no-steering condition. Comprehension in the

two steering conditions was not significantly different. Further, better comprehension

obtained under the in-ear EOG condition was significantly correlated with more accurate

estimation of the attended speaker. In conclusion, this study shows promising results

in the use of in-ear EOG for visual attention estimation with potential for applicability in

hearing assistive devices.

Keywords: EOG, audio-visual, speech comprehension, eye-tracking, in-ear EEG, hearing impairment
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1. INTRODUCTION

There is a strong scientific and commercial trend toward
developing more realistic assessment methods for the
development of new technology. The main reason is the
urge to obtain results that are applicable to real-life scenarios.
In hearing sciences, and related fields, this concept is referred
to as ecological validity (Keidser et al., 2020). Experiments
conducted in less controlled environments that better represent
the real world may introduce higher variability and unexpected
effects in data, making analysis and interpretation of data
more challenging. Sensing technologies can improve scene,
situation, context, and intention awareness (Mehra et al., 2020;
Slaney et al., 2020), and are promising tools for use in research
with less experimental control. In hearing research, there is
particularly a growing interest in sensing eye movement that
is used as a metric to identify what sound (e.g., speech source)
the listener is attending to. This information can be used to
identify the best signal processing strategy to apply in hearing
devices to optimize hearing in hearing-impaired people. For
example, in Best et al. (2017) and Roverud et al. (2017), a highly
directional beamformer array was steered by the participants’
visual attention using a conventional eye-tracker and multi-
speaker conversational stimuli. Their results showed improved
performance when the speaker was fixed in a single location,
but suggest that it is harder to improve speech intelligibility
when the target speech location switches in an unpredictable
fashion. Also using a conventional eye-tracker, eye-behavior in
dyadic conversation was studied in Hadley et al. (2019), where
it was found that increasing noise led to more focus on the
speaker’s mouth, stressing that eye movement may be a good
metric for identifying the speaker attended to in a multi-speaker
scenario and thus steering hearing device algorithms. But for
real-life applications, the use of conventional eye-tracking
devices is inconvenient.

Portable electroencephalography (EEG) is a promising
technology that has recently received considerable attention
within the fields of, for example, neuroscience and psychology.
The low price point, ease-of-use, and portability makes portable
EEG systems attractive for integration into sensing platforms
that can support experiments in real-life scenarios. EEG systems
enable attended sound sources to be decoded from cortical brain
responses (O’Sullivan et al., 2014; Fuglsang et al., 2017) with
realistic sound stimuli, but these systems typically require several
seconds of data and are therefore not yet an option for real-
time steering applications. In contrast to selective attention, eye
movements can be measured with only temple and forehead
electrodes via electrooculography (EOG). Given this, it is a good
candidate for online applications requiring fast estimates (see
e.g., Manabe and Fukumoto, 2006; Favre-Felix et al., 2018; Chen
et al., 2019; Belkhiria and Peysakhovich, 2021; Gunawardane
et al., 2021; Kastrati et al., 2021). With an across-ear referenced
setup, EOG in the transverse plane can be measured with in-
ear electrodes. This is particularly of interest for integration in
hearing devices (Fiedler et al., 2016) when combined with dry-
electrode solutions (Kappel and Kidmose, 2015, 2018; Kappel
et al., 2018) that can be used without conductive gel and can easily

be used in real-life situations. In Favre-Félix et al. (2017) and
Hládek et al. (2018), fixation angles of eye-gaze were estimated in
real-time with in-ear EOG, showing great potential for hearing
device steering applications. Furthermore, auditory attention
estimation (Grimm et al., 2018), using direction-of-arrival and
EOG with the purpose of estimating probabilistic sound-source
localization, has been evaluated for beamforming in hearing aids.
This evaluation demonstrated that EOG can successfully assist in
analyzing the soundscape.

In previous work conducted at our laboratory (Favre-Félix
et al., 2019), an LED-light was placed on each loudspeaker and
was used to indicate which loudspeaker the user should steer
their attention to, similar to the setup described in Pomper and
Chait (2017). The attended loudspeaker was amplified based on
the absolute eye gaze angle in the horizontal plane as estimated
using EOG, inertial sensors, and magnetometers. The absolute
gaze angle was, however, difficult to estimate. The EOG signal is
heavily affected by the noise that is associated with, for example,
DC drift and muscle activity, which generates large variability
in the results. Other potential drawbacks with that setup were
that the participants sometimes scanned the scene to detect when
LEDs switched, and the use of LED-lights and lack of other visual
cues were not particularly representative of real-life scenarios.
Furthermore, the study only used eleven hearing-impaired (HI)
participants and speech intelligibility, which was measured using
the DAT speech corpus (Bo Nielsen et al., 2014), was not analyzed
and reported.

To fully take advantage of sensing technology in future
experiments, new assessment methods are needed (Carlile and
Keidser, 2020; Lunner et al., 2020). To this end, the increased
interest in the more ecologically-valid hearing research outcomes
has resulted in more frequent use of audio-visual stimuli and the
development of more challenging speech paradigms in hearing
research, refer to e.g., Llorach et al. (2018), for an overview
of advanced setups introduced for that purpose. The impact
of visual cues, and the corresponding eye-gaze behavior, on
speech comprehension in complex listening conditions has not
yet been fully investigated. For this purpose, an audio-visual test
paradigm that targets speech comprehension of a natural dialog
has recently been developed at our laboratory (see Cabella, 2021
for an application of this paradigm).

The main objective of the current study was to further develop
and validate the application of in-ear EOG for attended speaker
estimation in a realistic listening situation. For this, we compared
in-ear EOG estimation to that obtained with a conventional eye-
tracker. Furthermore, given that in-ear EOG signal quality can
vary greatly between electrodes par and over time, we proposed
and evaluated a calibration method that presents three metrics
for visual inspection to evaluate EOG signal quality in order
to extract the best channel from 36 possibilities. The method
was assessed against the eye-tracking ground truth reference
for estimating the attended speaker (i.e., conventional eye-
tracking). Finally, we assessed whether in-ear EOG eye-steering
improves speech comprehension for HI participants in this
realistic listening situation. Performance with EOG steering was
compared to performance with eye-steering via a conventional
eye-tracking device and no eye-steering.
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2. MATERIALS AND METHODS

2.1. Participants
Twenty-seven HI test participants were recruited from
the Eriksholm clinic test pool based on the following
selection criteria:

• Test participants should not have been previously exposed to
audio-visual stimuli.

• Test participants should be native Danish speakers.
• Test participants should not use eye glasses, unless their sight

deficit was sufficiently negligible to not impair their vision of
the experiment stimulus, or they could replace their eye glasses
with contact lenses during testing.

• Test participants should have mild to moderate hearing loss
with a maximum of 60 dB at all frequencies. This constraint
could be relaxed to 70 dB at the highest frequency i.e.,8 kHz.

• Test participants should not have large
hearing-level asymmetries:

– Asymmetry at each frequency should not exceed 20 dB.
– Average asymmetry across frequencies should not

exceed 10 dB.

All participants signed a consent form and the experiment
was approved by The Ethics Committee of the Capital Region
in Denmark (H-20030989). Out of the 27 participants, one
was excluded due to unavailability to complete all experiment
sessions, and one was excluded due to the inability to perform the
task. For each of the remaining 25 participants, we collected data
for 6 different conditions presented in separate blocks, making
a total of 25*6=150 data blocks. Of these data blocks, four were
discarded due to different issues, e.g., missing data or missing
triggers, leading to a total of 146 valid data blocks. The gender
distribution of the final sample was 11 females and 14 males,
and the ages were distributed with a mean of µ = 69.5 years
and a SD of σ = 8 years. Thresholds were measured at each
audiometric frequency from 125 to 8,000 Hz. The audiograms
of all participants who are included in the results are shown in
Figure 1.

2.2. Technical Setup
The test was executed at the Eriksholm Research Centre (ERH)
in June 2021. Prior to the experiment, the participants had ear
impressions made, from which silicone molds with embedded
in-ear electrodes were produced, as shown in Figure 2 for an
example. The technical setup of the experiment is illustrated in
Figure 3. Participants were seated in a comfortable chair in front
of an 88 inch curved TV. Participants were fitted with EOG ear
molds made from individual ear impressions equipped with 6 dry
contact electrodes, which was connected to a 32 channel Mobita
EEG amplifier from TMSi, which sampled at 500 Hz as described
in Kappel et al. (2018); Tobii Pro Glasses 2 mobile eye-tracking
device, which sampled at 50 Hz, and included reflective markers
that were recorded via a Vicon motion capture system, which
sampled at 100 Hz; and two behind-the-ear (BTE) devices for
recording audio, accelerations, rotational velocity, and magnetic
field. The BTE data was not used in the current study. The
Vicon motion tracker was used to monitor potential movement

of the test participants’ heads. MATLAB 2019a was used to
present the audio-visual stimuli, see Section 2.3, on the TV.
Target speech was directionally presented from two loudspeakers,
and babble noise in the frontal hemisphere was presented
from eight loudspeakers, further explained in Section 2.3, and
simultaneously presented from 10 loudspeakers situated in front
of the participant via both a Fireface UCX soundcard from
RME and a Hammerfall DSP Multiface II. The two loudspeakers
in green in Figure 3 presented the target speech and were
roughly spatially aligned with the position of the speakers on
the screen. For the comprehension task, questions and response
options were shown on the screen, and participants answered the
questions using a Bluetooth keyboard. Data from all capturing
devices (Tobii, EOG, and Vicon) were synchronized with a signal
delivered through the sound card. The one-point calibration, as
part of the Tobii glasses setup, was done before each recording
block if it was deemed necessary. A desktop computer and a
laptop were used in this complex setup. The desktop computer
recorded Tobii and Vicon data and executed the stimulus
MATLAB script. The EOGdata was collected on the laptop which
also executed the eye-steering algorithms using MATLAB 2016b.
To enable communication of the attended speaker between the
laptop and the desktop computer, a Maya USB+ 44 soundcard
sent audio signals between the computers. Figure 3 illustrates the
test set-up while Figure 4 describes the test flow.

The hearing loss of the test participants was compensated
on the stimulus side based on the audiogram for a better ear.
The compensation was computed with the CAMEQ formula
for linear hearing aids (Moore and Glasberg, 1998), with the
CAMEQ output extrapolated from 6 to 9 kHz using a cubic
spline. This way of compensating for hearing loss can lead to a
loud environment and that is why the hearing loss of the test
participants was restricted to the mild-to-moderate range. The
experimenter, who was present in the room during testing, wore
ear protection.

2.3. Audio-Visual Stimuli Targeting Speech
Comprehension
The stimuli and tasks were derived from Cabella (2021) and
consisted of in-house HD video recordings of two speakers
engaged in an unscripted conversation in Danish, refer to the
example screenshot in Figure 5. Speakers were fitted with hands-
free microphones and their speech was recorded on two separate
audio channels. Two different sets of speakers were used, with
pairs have taken either from four paid actors, herein referred to as
the ACT material or four volunteers recruited among Eriksholm
Research Centre staff, herein referred to as the ERH material.
The speakers’ conversation consisted of them solving a Diapix
task (Baker and Hazan, 2011) wherein they verbally compared
two similar drawings to find differences between them. The
conversations were clipped into trials ranging between 10 and
39 s long, with each clip ending after the speakers uncovered a
difference. These clips were preceded by a central fixation cross
on a black screen for 3 s. The ACT material was used to generate
a babble-noise that was subsequently used with both materials.
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FIGURE 1 | Audiograms of test persons shown separately for left (blue lines) and right (red lines) ears, with the group mean per ear represented by thick lines.

FIGURE 2 | Example of a soft silicone mold equipped with EOG electrodes.

In order to assess how well the listener understood the
conversation that was presented in the stimulus, a multiple-
choice question with three response options followed each
clip. In this question, the participant was asked to identify

what the speakers identified as the difference between their
drawings. The options consisted of broad categories that
described reoccurring differences in the test materials, such that
individual response options could be used for multiple different
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FIGURE 3 | Schematic overview of the test setup with Vicon motion capture cameras, Tobii Pro eye-tracking Glasses 2 used to measure gaze, the Mobita EEG

amplifier used to record in-ear EOG signals, and the 88 inches 4K TV used to present life-sized persons in the video stimuli. The two green loudspeakers present the

conversation material and are spatially aligned with the two speakers on the TV while the eight red loudspeakers present babble noise.

FIGURE 4 | Schematic overview of the procedure used for each test person.

trials. Because these response options were not identical to the
words spoken in the conversation, this testing strategy pushed
the listener to understand the meaning of the conversation
rather than merely recognize words. Note that for the ACT
materials, the questions and stimuli were previously used in
an experiment with 11 HI listeners (Cabella, 2021). For the
ERH materials, the questions were piloted with a small number
of normal-hearing and hearing-impaired participants prior to
the experiment.

A total of 97 different trials were used in the experiment,
with 67 and 30 from each of the ACT and ERH materials,
respectively. The ACT material was divided into a practice block
of 13 trials, used to familiarize the participants with the task,
and 3 blocks of 18 trials each. The ERH material was divided
into a practice block of 6 trials, and 3 blocks of 8 trials. Each
condition was tested with a separate block of trials from each
material, and the same block was used for every participant. This
allowed for comparison between participants within a block, for
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FIGURE 5 | Still photo from the audio-visual stimuli with two actors in dialog solving a Diapix task (Baker and Hazan, 2011).

the purpose of assessing the success of the proposed calibration
procedure. Since the no-steering condition is the most difficult
for the participants, it was always presented first for each type of
material, thereby reducing the probability of participants giving
up from fatigue. This choice was considered in favor of complete
block randomization with the assumption that further learning
effects after the initial practice blocks are negligible. The trial
order was randomized within each condition for each participant,
and the order of the steering conditions was counterbalanced
between participants.

2.4. Steering Conditions
Each participant carried out the comprehension task under three
different conditions:

• No-support: Constant SNR set to 0 dB for the full experiment.
Sound levels for the attended speaker, unattended speaker, and
noise were all set to 60 dB SPL.

• EOG steering: Sound levels were the same as for the no-
support condition, but a 6 dB gain was provided to the
estimated attended speaker computed from EOG data.

• Eye-tracker steering: Sound levels were the same as for the
no-support condition, but a 6 dB gain was provided to the
estimated attended speaker computed from eye tracking data.

Before testing a material condition, the participants completed a
training block to familiarize themselves with the task and stimuli.
In the training block, the SNR was 10 dB, with the target speech
presented at 60 dB SPL and the babble noise at 50 dB SPL.

2.5. Eye-Tracker Reference and Steering
Eye-tracker gaze data in the horizontal azimuth was used to
determine which of the two speakers the participant attended
at each time point, see yellow asterisk (left speaker) and green
asterisk (right speaker) in Figure 6 for an example. For this,
attention to a speaker was defined as gaze within that speaker’s
respective hemifield. Subsequently, these data were used as a
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ground-truth reference for performance in comparison to the
EOG steering.

2.6. EOG Signals and Steering
Electro-oculography signals are proportional to eye deflection
and are produced by the cornea-retinal potential in the
human eye. Here, the potentials were measured with across-
ear referenced, dry contact, and in-ear electrodes and were
most sensitive to eye-movements in the horizontal azimuth. The
dry contact electrodes, also used in Favre-Félix et al. (2019)
and described in e.g., Kappel and Kidmose (2015), Kappel and
Kidmose (2018), and Kappel et al. (2018), were based on a
titanium substrate coated with iridium dioxide and mechanically
designed to be embedded into a soft earpiece. There were 6
electrodes per ear and since the Mobita EEG amplifier uses a
common mode reference, there were a total of 36 single different
possible channel combinations.

2.6.1. Saccade Detection and Attended Speaker

Estimation

The electro-oculography steering algorithm estimated which of
the two speakers the user attended at any point in time. Due to
the skin-electrode interface (Huigen et al., 2002), the signals were
vulnerable to low-frequency drift in the same order as the EOG
potential, which challenges the calculation of an absolute gaze
angle. This drift may be caused by the pre-amplifier, the contact
potential changes, or changes in the EOG potential. However,
saccades (fast eye-movements), such as those that a listener
makes when switching their gaze between the two speakers,
generate high-frequency responses that can be distinguished
from the drift. We worked with the assumption that saccades
were only generated by a switch in the listener’s gaze between
the speakers and not a switch elsewhere in the scene, and
furthermore that the eyes remained fixated (on a speaker) when
not performing a saccade. Hence, attended speaker estimation
hinged upon accurate and robust saccade detection, which we
based on the derivative of the EOG signal. Prior to obtaining
the derivative, a second-order Butterworth filter with passband
0.1–1 Hz was used to remove part of the baseline drift and
most of the electronic high-frequency noise, such as EEG-based
measurement, while keeping sufficient saccade information for
analysis. Saccade detection required the signal to conform to the
following criteria:

• The derivative of the signal was bounded by a lower and an
upper threshold of 0.1 mVs− and 10 mVs−, respectively.

• The duration of a saccade was bounded by a lower and an
upper duration threshold of 0.2 and 0.9 s, respectively.

• The magnitude of a saccade was calculated based on the
absolute amplitude change, and absolute amplitude changes
smaller than 15 mV were removed.

• Saccades with the wrong direction, e.g., a saccade to the left
when the left speaker is already attended, were excluded.

The criteria listed above were refined during extensive testing
with this specific setup in order to optimize attended speaker
selection while mitigating disturbances. Note that with this
procedure, there was no need for an absolute mapping between

EOG and horizontal gaze location, as only the hemifield
separation was considered, i.e., left or right relative to the
test person.

2.7. Pre-Block EOG Channel Selection
To select the best of 36 possible channels for estimating the
attended speaker, a calibration method was developed. Before
each block, a calibration sequence was used consisting of a red dot
that the participant was instructed to follow with their gaze. The
dot moved between two horizontal positions on the screen in a
pre-determined sequence. An example output of the calibration,
as visible to the experimenter, can be seen in Figure 7. The
positions of the dot approximated the speakers’ locations at±10◦

in the visual material. This allows various metrics to be computed
based on all channel combinations, which were then used to
select the best channel. The metrics computed were as follows:

• The correlation between the EOG and the reference signals.
The higher the positive correlation, the better the channel.

• The proportion of correctly detected saccades using the EOG
steering algorithm. The target value is 100%, corresponding to
6 out of 6, where the first saccade at 5 s is small, see Figure 7.

• The saccade-to-Fixation-Ratio (SFR) is the average saccade
amplitude divided by the average standard deviation of the
fixation. The higher the SFR, the better the channel.

The rationale for the SFR metric was that a high saccade
amplitude corresponds to a better channel and that the signal
should not fluctuate substantially during fixations, as it is
expected to be a stationarymode. Note that SFR is also sufficiently
simple to compute online and could potentially be used to
monitor signal quality. The calibration output, as exemplified in
Figure 7, was visually inspected by the experimenter to judge
which channels to use. The two experimenters reported that
using a combination of the plots and the metrics to select
channels provided good support for finding channels and/or
spotting errors.

3. RESULTS

3.1. Attended Speaker Accuracy
The steering algorithm computed the attended speaker based on
in-ear EOG as a time series, see the example in Figure 6, shown
by black and magenta dots representing left and right speakers,
respectively. The accuracy metric computes which percentage of
time the in-ear EOG-estimated attended speaker matched the
eye-tracker reference. A value of 100% means that the EOG
data matched eye-tracker data perfectly, while the chance level
is 50%. Note that the in-ear EOG attended speaker is initialized
in the algorithm such that the first seconds of the trial may
not reflect algorithm performance but chance, hence the first
3 s were removed in the accuracy measure for each trial. A
scoring function was used to evaluate the in-ear EOG attended
speaker accuracy based on the eye-tracker-attended speaker.
Eye-tracker data within 2◦ with respect to zero azimuth was
considered to be inconclusive and was omitted from the score.
The attended speaker accuracy from the experiments across all
conditions andmaterials for all participants is shown in Figure 8.
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FIGURE 6 | An example of four channels showing the highest correlation (Corr). Reference signal in solid red, EOG signal in green, assumed saccade events in red

overlaid on the green line, and detected saccades represented by black dots.

One participant out of the 25 was omitted from this analysis
as it had missing data in one or more conditions. The mean
accuracy was 68%, the highest accuracy was almost 90%, and
the worst was nearly down to chance level. In Figure 9, the
estimated attended speaker accuracy is shown per condition and
material, averaged across all participants. The accuracies per
condition and material passed a Lilliefors test of normality. A
one-way ANOVA did not support that there were any differences
in average attended speaker accuracy between any of the six
condition blocks [F(5, 126) = 0.37, p = 0.87].

3.2. Calibration Evaluation
Since the calibration procedure code was developed for both
online and offline use, it was possible to calculate the accuracies
for all 36 electrode combinations using the recorded data.
This allowed for an evaluation of the different strategies of
selecting electrodes and assessing selection effectiveness during
the experiment. The simulated attended speaker accuracy was
computed using four different scenarios that may lead to
the selection of different EOG channels. The scenarios were
as follows:

• True accuracy: The channels that were selected by the
experimenter using the calibration procedure.

• Best accuracy: The channel resulting in the highest accuracy
among all 36 without considering the calibration.

• Corr accuracy: The best electrode combination out of all
36 as suggested by ranking the correlation estimated by the
calibration procedure prior to each block.

• SFR accuracy: The best electrode combination out of all 36 as
suggested by ranking the SFR score estimated by calibration
procedure prior to each block.

Due to the technical setup and uncertainties in sampling rates,
simulations with the recorded data did not align with the
experimental data. For the purpose of this analysis, however,
this was not of concern. Rather, it is the relative difference
in attended speaker accuracy based on channel selection for
the different scenarios that are of interest. The simulated
True accuracy gave a mean of 63% compared to the accuracy
mean from the online computation at 68%, resulting in a 5%
difference in mean accuracy. The other three methods (Best,
Corr, and SFR) produced means of 69, 59, and 62%, respectively.
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FIGURE 7 | Example of attended speaker estimation data from a trial with participant TP1743. The solid red line represents gaze in degrees from the eye-tracker, the

dashed blue line is the in-ear EOG signal, which is scaled for illustration purposes, the yellow and green asterisks are the eye-tracker-attended speakers while the

black and magenta small dots are the in-ear EOG-attended speakers. Values below and above 0 deg. refer to left- and right-hand speakers, respectively.

On this basis, we conclude that the experimenters selected
effective channels with guidance from the calibration metrics.
In Figure 10, the three calibration metrics, namely correlation,
SFR, and detection (number of agreeable saccades), are plotted
vs. the attended speaker accuracy per test participant, averaged
across the conditions. All three metrics were related to attended
speaker accuracy with correlations over 0.6. In the bottom
right-hand plot, the average comprehension scores obtained in
the in-ear EOG conditions per participant are shown. These
were also positively correlated with attended speaker accuracy
(ρ = 0.45236, p = 0.026459), such that comprehension scores
improved as the EOG steering became more similar to the eye-
tracker steering.

3.3. Speech Comprehension
The overall performance scores in terms of speech
comprehension in the audio-visual task are shown in Figure 11.
As the task was a multiple-choice task with 3 possible answers,
the data is binomial with the probability of success for a single
trial being 1

3 . Based on the cumulative binomial distribution, the
comprehension score chance level for the individual participant
is 50% for the ERH material and 63% ACT material. Based
on the work by Cabella (2021), that tested 7 hearing-impaired
participants, the presentation SNR of 0 dB was expected to

produce an average score of 60% for the no-support condition,
which is sufficiently low to allow for potential improvement with
the two steering conditions. As seen in Figure 6, this prediction
was close to the actual outcome, with 66.7 and 65.3% correct for
the ACT and ERH materials, respectively. The mean scores in
the ACT-eye-tracker and ACT-EOG conditions were 76.8 and
76.2%, respectively. In Figure 12, the individual performance
scores are shown together with the mean scores.

The following statistical analysis aimed to evaluate if there
was a significant difference between the three steering conditions.
One participant was omitted from this analysis as there were
missing data in one condition, leaving 24 participants. A Lilliefors
tests on each steering condition for each material show that
not all data were normally distributed. Since only the steering
conditions (no-support, eye-tracker, and EOG) were of interest
here, and not the two types of materials, the comprehension
scores were averaged across material types. The averaging of
the scores was justified by a Mann-Whitney U-test showing
no evidence of a significant difference in comprehension score
between the two materials in each of the three test conditions:
no-support (U = 597, p = 0.86), eye-tracker (U = 573, p =

0.76), and EOG (U = 528, p = 0.21). A Friedman test
was conducted on the comprehension scores using the three
conditions as independent variables. We found a significant
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FIGURE 8 | Attended speaker true accuracy across all conditions for the 25 participants (only 24 shown due to missing reference data for one participant). The mean

of the true accuracy across participants is 68%. These data were computed during the experiment.

difference in the comprehension scores between the different
conditions (p = 3.5× 10−5, Q = 20.6). A post-hoc comparison
of the comprehension scores in each condition was done with
a Tukey-Kramer critical value test calculated at 5%. We found
a significant difference between the no-support and both eye-
tracker and EOG, with condition differences for no-support and
eye-tracker (−0.88, p = 0.0056), no-support and EOG (−1.25,
p = 2.89× 10−5). The condition difference between eye-tracker
and EOG was not significant at (−0.38, p = 0.28). The ranks of
eye-tracker and EOG conditions (2.17, 2.54) were both greater
than no-support (1.29), supporting that the steering conditions
have a positive effect on comprehension.

4. DISCUSSION

Asmentioned in the introduction, in-ear EOG has great potential
for application in hearing devices to identify relevant speech
among multiple speakers that the user wishes to attend to.
The experimental setup used here, presenting an audio-visual
dialogue, was intentionally limited in order to achieve robust

and interpretable data and therefore does not represent the
multitude of listening scenarios that hearing device users may
be exposed to in everyday life. For example, contrary to the
question-answer paradigm used in Best et al. (2017) and Roverud
et al. (2017), where several speakers and directions were involved,
the turn-taking in the current test, with only two speakers, is
predictable. However, listening to dialog is a common real-life
situation that can be seen as a building block for more complex
multi-party conversations, and findings from this study should be
helpful in refining steering technology for investigation in more
complex settings.

Most of the participants had reasonable accuracies in the
attended speaker EOG estimation as compared to the eye-tracker
reference, and the overall mean was 68%. The accuracy of the
attended talker estimation based on EOG was not significantly
different across conditions or materials, and such a dependency
was not expected either. The attended talker estimation based
on saccade detection in EOG was robust and generalized well to
the participants without the need for individualized parameters,
which we believe is key for future applications. Beyond the
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FIGURE 9 | Average speaker accuracy across 22 participants (two were omitted due to missing data for one condition or more) for the different conditions. The

median is the red line, the mean is a green diamond, the box represents the 25 and 75th percentile, the whiskers extend to the extreme values, and the red crosses

represent individual outliers. These data were computed during the experiment. No significant difference is found between any of the conditions and materials.

scope of this paper but of interest for future endeavors on
eye-movement analysis with EOG are comparisons of saccade
detector designs and their performance; evaluation of other
metrics, such as saccade rate and average fixation time with
respect to SNR; and absolute angle estimation.

In line with previous work (Huigen et al., 2002; Hládek et al.,
2018; Kappel et al., 2018; Favre-Félix et al., 2019), it was observed
that some people havemostly distortion free EOG signals, leading
to reliable saccade detections, while it can be extremely hard to
find distortion free signals for others. Dependent on how well the
ear-mold fits in the ear of the participant, a poor electrode-skin
interface (Kappel et al., 2018) with weak signals and distortions
may result. To support the experimenter in ensuring acceptable
signals were obtained, a pre-block calibration procedure was
developed utilizing three calibrationmetrics indicative of channel
quality. The calibration procedure supported the finding of
the most distortion free, but not necessarily the best, EOG
signal to use in the experiments. All three calibration metrics
were reasonable indicatives of attended speaker accuracy, with
particularly the SFR calculation showing potential as a candidate

for automated channel selection. This is because SFR is easily
adapted for online signal quality monitoring without the need for
reference data as saccades and fixations are already estimated in
the algorithm. A restriction with the current setup is the across-
ear referenced EOG which requires a wired connection between
the ears, severely limiting hearing aid integration. Thus, future
work should aim to introduce single ear EOG, which likely has
worse SNR, further stressing the importance of calibration and
signal quality monitoring procedure. For EOG methods relying
on absolute angles, see e.g., Hládek et al. (2018) and Favre-Félix
et al. (2019), the calibration is used to map the angles to voltage
levels Manabe et al. (2013). These may vary between participants
and require a reference for calibration. A potential alternative
for hearing aid applications is to estimate speaker directions
with binaural direction-of-arrival, see e.g., Braun et al. (2015),
Zohourian et al. (2018), and Grimm et al. (2018), which is then
used to calibrate the EOG.

Two steering conditions, one using conventional eye-tracking
and the other in-ear EOG, provided significant comprehension
improvement with reference to the no-steering condition. As

Frontiers in Neuroscience | www.frontiersin.org 11 June 2022 | Volume 16 | Article 87320150

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Skoglund et al. In-ear EOG Eye-Movement Estimation

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Attended speaker accuracy [%]

0.5

0.6

0.7

0.8

0.9

1

C
o
rr

e
la

ti
o
n
 [
-]

Attended speaker accuracy versus Correlation in calibration

per participant over all conditions

 = 0.62703, p = 0.0010415

50 55 60 65 70 75 80

Attended speaker accuracy [%]

4

6

8

10

12

14

S
F

R
 [
%

]

Attended speaker accuracy versus SFR in calibration

per participant over all conditions

 = 0.68237, p = 0.00023945

50 55 60 65 70 75 80

Attended speaker accuracy [%]

0

20

40

60

80

100

120

D
e
te

c
ti
o
n
s
 [
%

]

Attended speaker accuracy versus Detections in calibration

per participant over all conditions

 = 0.63305, p = 0.0011862

40 50 60 70 80 90

Attended speaker accuracy [%]

50

60

70

80

90

100

C
o
m

p
re

h
e
n
s
io

n
 s

c
o
re

 [
%

]

Attended speaker accuracy versus Comprehension

score per participant for the EOG conditions

 = 0.45236, p = 0.026459

FIGURE 10 | Attended speaker accuracy vs. various metrics per participant together with the least-squares line fit in solid, Pearson’s correlation (ρ), and the

corresponding p-value. Top left: Correlation metric from calibration procedure. Top right: SFR metric from the calibration procedure. Bottom left: Detection metric from

calibration procedure. Note that one outlier showing unreasonable 300% detections was removed. Bottom right: Comprehension score in the EOG conditions.

long as participants paid attention to the active speaker in the
dialog, an overall performance improvement in the steering
conditions was expected due to the increase in SNR applied to
the attended speaker. However, the improvement experienced
with such steering systems will depend on several factors, such
as the accuracy of attended speaker estimation, the complexity
of the stimuli, and the signal processing applied to the attended
sound. From previous analyses done in experiments that used
the same material, more variation was found in the trials
themselves than at different SNR levels (Cabella, 2021). Trials
that were considered too easy or too difficult were only used
for practice runs, and not used in the experiment. Even so,
the remaining material variability resulted in difficulties finding
an SNR associated with a 60% comprehension score for all
participants in the no-support conditions. Part of this variability
may be attributed to the different degrees of hearing loss
presented across participants, even if it was compensated for.
Ideally, the material variability would have a small influence
on the average scores provided a sufficiently large number of
participants were tested. Since, for logistic reasons, recruiting a
large pool of participants was not possible for this study, it was
instead decided to minimize the between-participant variance,
and hence the variance within the test conditions, by fixating the
trial material for each condition. There is therefore a confound

on the material condition difficulty level that cannot be resolved
in the analysis. Therefore, the comprehension results should be
interpreted with care.

Although there was no significant difference between
comprehension performance on the ACT and ERH material
within each test condition, a slightly better overall performance
was observed in the ERH material than in the ACT material,
see Figure 11. There are two likely reasons for this. One is
that the Eriksholm staff spoke more slowly and clearly than
the actors, making the dialog easier to follow, and the other is
that the questions developed for the ERH material were simpler
and thus required less cognitive effort to answer. The babble
noise which was used in both materials was generated from
ACT material, which in general was a bit quieter than the ERH
material. This means that for the same SNR condition (e.g., ACT-
no-support and ERH-no-support), the SNR of the ERH material
was slighly 0.83dB A higher than for the ACT material. This was
known and accepted prior to the start of the data gathering. It
remains for the future to better understand the differences and
similarities between the materials, and also between individual
trials, and then more systematically assess the effects they have
on comprehension scores.

There was no significant difference between performance
in the two steering conditions. It had been expected that the
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FIGURE 11 | Comprehension performance scores for all participants per condition. The median is the red line, the mean is a green diamond, the box represents the

25 and 75th percentile, the whiskers extend to the extreme values, and the red crosses represent individual outliers.

eye-tracker condition would perform better than the EOG
condition because the EOG signals were not expected to be
reasonably free of distortion for all participants, but the eye-
tracker signals were. Apart from the possibility that the block
of trials used for the in-ear EOG condition was easier to
comprehend than those used for the eye-tracker condition, it is
also possible that a certain amount of support was given even
when the EOG steering did not react to saccades. This is because
one speaker channel was always amplified by 6 dB, whether this
was the channel for the speaker talking or not. This means that
the participants could potentially pick up some keywords from
the active speaker that was beneficial for comprehension, even if
they did not directly attend to that speaker.

The non-significant difference in comprehension
performance between the EOG and eye-tracker conditions
suggest that there can be equal benefit from conventional
eye-tracking and in-ear EOG steering. Thus, it should not be
concluded that a lower attended speaker accuracy in the EOG
condition is indicative of lesser comprehension improvement
than in the eye-tracker condition, although differences in
comprehension difficulties across the blocks used in the two

conditions may have counteracted that. Nevertheless, the
accuracy of estimating the attended speaker using in-ear EOG
could never exceed that of the eye-tracker which is considered
the ground truth reference. Due to the lack of a reference for
the accuracy of eye-tracking, it cannot be deduced that this type
of steering alone improves the comprehension score. However,
as noted in Section 3.1, the comprehension score was improved
in the EOG condition when the estimated attended speaker was
more accurate. This can be taken as indirect support that when
the accuracy of the EOG method is more similar to eye-tracker
accuracy, then the speech comprehension is improved.

For future research, there are a few directions of
particular interest. To fine-tune the experimental setup and
to develop new stimuli that represent a variety of real-life
communication situations, it is desirable to obtain a better
general understanding of the validity of the comprehension
paradigm introduced here; trial clip equivalence; and the
significance of including visual components. Furthermore,
developing a setup that allows us to better understand the
interplay between steering and comprehension is desirable.
It is likely that a simpler paradigm with more control of
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FIGURE 12 | Individual comprehension performance scores for each participant and conditions with the mean scores shown as thick lines.

the task, for instance, speech intelligibility could be an
option. These insights could guide the design for more
efficient and intuitive attention switching algorithms and
test paradigms.

5. CONCLUSION

A method for visual attention estimation using in-ear EOG
was evaluated on hearing-impaired participants using
an audio-visual dialog presented in noise. Particularly, a
novel calibration procedure used to identify the strongest
EOG signal available for estimating the attended speaker
was investigated for accuracy against that obtained with
a conventional eye-tracker. Comprehension performance
with the two methods was also measured. The causal
relationships found between the strength of various calibration
metrics and greater attention estimation accuracy and better
speech comprehension are highly encouraging and show
great potential for utilizing in-ear EOG in hearing devices
to steer signal processing strategies targeting the signal
of interest.
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Characteristics of sound
localization in children with
unilateral microtia and atresia
and predictors of localization
improvement when using a
bone conduction device
Yujie Liu1†, Chunli Zhao2†, Lin Yang1, Peiwei Chen1,
Jinsong Yang1, Danni Wang1, Ran Ren1, Ying Li1,
Shouqin Zhao1* and Shusheng Gong2*
1Ministry of Education Key Laboratory of Otolaryngology Head and Neck Surgery, Department
of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University,
Beijing, China, 2Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital,
Capital Medical University, Beijing, China

This study aimed to determine the characteristics of sound localization

in children with unilateral microtia and atresia (UMA) and the influence

of a non-surgical bone conduction device (BCD). Hearing benefits were

evaluated by the word recognition score (WRS), speech reception threshold,

the international outcome inventory for hearing aids (IOI-HA), and the Speech,

Spatial, and Qualities of Hearing Test for Parent (SSQ-P). Sound localization

was measured using broadband noise stimuli randomly played from seven

loudspeakers at different stimulus levels [65, 70, and 75 dB sound pressure

levels (SPLs)]. The average unaided WRS and speech-to-noise ratio (SNR) for

UMA patients was 18.27± 14.63 % and−5± 1.18 dB SPL, and the average aided

WRS and SNR conspicuously changed to 85.45 ± 7.38 % and −7.73 ± 1.42 dB

SPL, respectively. The mean IOI-HA score was 4.57 ± 0.73. Compared to the

unaided condition, the mean SSQ-P score in each domain improved from

7.08 ± 2.5, 4.86 ± 2.27, and 6.59 ± 1.4 to 8.72 ± 0.95, 7.61 ± 1.52, and

8.55 ± 1.09, respectively. In the sound localization test, some children with

UMA were able to detect sound sources quite well and the sound localization

abilities did not deteriorate with the non-surgical BCD. Our study concludes

that for children with UMA, the non-surgical BCD provided a definite benefit

on speech recognition and high satisfaction without deteriorating their sound

localization abilities. It is an efficient and safe solution for the early hearing

intervention of these patients.

KEYWORDS

unilateral, microtia and atresia, congenital conductive hearing loss, speech
perception, sound localization, bone conduction device
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Introduction

Hearing loss is a major global problem and was described
as an epidemic of the twenty-first century by the World Health
Organization [WHO] (2021). Hearing loss can be congenital
or acquired, with possible etiologies including genetic causes
(Hong et al., 2022; Tao et al., 2022), infections (Shahar-
Nissan et al., 2022), excessive noise (Jiang et al., 2021),
ototoxic drugs (Fu et al., 2022; Wang et al., 2022; Zhang
et al., 2022), and aging (He et al., 2021). For patients with
profound bilateral hearing impairment, treatment is always
offered early in life, but for patients with unilateral form,
the hearing intervention tends to be delayed, as the normal
hearing (NH) ear provides enough hearing cues for basic speech
understanding. However, functional deficits of disability in
speech recognition and inaccuracy of sound localization have
been reported in patients with unilateral hearing loss, and
they may also experience an apparent handicap in academic
performance and social interactions (van Wieringen et al., 2019;
Okada et al., 2020).

Microtia and atresia, a developmental malformation of the
middle and external ear, is a common cause of congenital
conductive hearing loss. Two-thirds of patients with microtia
and atresia experience the unilateral form [i.e., unilateral
microtia and atresia (UMA)] with unilateral conductive
hearing loss (UCHL) (Luquetti et al., 2012; Bartel-Friedrich,
2015). Common treatment options for patients with UMA
include traditional canaloplasty, active middle ear implants,
bone conduction implants, and non-surgical bone conduction
devices (BCDs). For children with UMA who are not
willing to undergo surgery or who have not reached the
age for surgery, non-surgical BCDs represent an important
transition intervention (Liu et al., 2017). Non-surgical BCDs
can provide evident speech recognition-related benefits to
patients with UCHL; however, whether these patients can
achieve more accurate sound localization after receiving
such interventions remains disputed (Kunst et al., 2008;
Yu et al., 2014; Liu et al., 2017; Vyskocil et al., 2017).
Thus, doctors and parents often face the dilemma of
whether a BCD should be selected for these children at an
early age.

Sound localization is a complex process that relies on the
computation and integration of multiple spatial cues at the

Abbreviations: NH, normal hearing; UMA, unilateral microtia and atresia;
UCHL, unilateral conductive hearing loss; BCD, bone conduction
devices; HSE, head shadow effect; BC, bone Conduction; SD, standard
deviation; HL, hearing level; SPL, sound pressure level; UP, the unplugged
condition; P, the plugged condition; FHG, functional hearing gain; WRS,
word recognition score; MSTM, Mandarin Speech Test Materials; SRT,
speech reception threshold; SSN, spectrum-shaped noise; SNR, speech-
to-noise ratio; IOI-HA, the International Outcome Inventory for Hearing
Aids; SSQ-P, the Speech, Spatial, and Qualities of Hearing Test for Parent;
MAE, mean absolute error; g/gain, response gain; b, response bias; r2, R
square.

level of the auditory pathway (Tillein et al., 2016; Risoud et al.,
2018; Wood et al., 2019). For patients having acquired UCHL
with a mature auditory system, definite improvement of sound
localization ability was observed after hearing intervention
(Agterberg et al., 2011, 2012). Regarding congenital UCHL, the
results seem to be contentious. Some studies have reported
remarkable improvements in horizontal spatial hearing in
patients with congenital UCHL aided with BCD, despite the
inherent problems of time delay and cross-hearing (Nelissen
et al., 2016; Vyskocil et al., 2017). In contrast, other studies
have suggested that congenital UCHL cannot benefit from
BCDs in terms of horizontal spatial hearing abilities (Kunst
et al., 2008; Weiss et al., 2017). They maintained that listeners
with congenital UCHL might have adapted to their hearing
impairment as they learned to rely on the spectral shape
cues and ambiguous monaural head shadow effect (HSE)
cues, which had developed during the long-term unilateral
hearing deprivation (Van Wanrooij and Van Opstal, 2004;
Vogt et al., 2020). When aided with a BCD, such listening
cues might be distorted sharply, thus jeopardizing the original
directional hearing. Given the uncertain benefits of hearing
amplification and non-aesthetic reasons, studies concerning the
sound localization ability of children with UMA are limited by
heterogeneous patient populations, varying in study design and
audiological test results. How bone conduction (BC) stimulation
affects spatial hearing abilities and the predictive factors that
may affect the degree of the benefit provided by BCDs are
still unknown.

Currently, there is no research investigating the
characteristics of sound localization and the effects of
non-surgical BCDs in school-aged children with UMA.
This study had three primary objectives: to detect the
hearing benefits of a BCD on speech perception and
subjective satisfaction in children with congenital UMA;
to compare characteristics of sound localization in children
with congenital UMA and children with NH, as well as
acquired UCHL; to investigate whether the use of BCD
would be detrimental to the original sound localization
of children with UMA and reveal predictive factors for
the improvement of sound localization accuracy after
using a BCD.

Materials and methods

Ethics

Ethical approval was given by the medical committee
of Beijing Tongren Hospital, Capital Medical University
(TRECKY2018-067). Written informed consent for
participation was obtained from the parents and guardians of
the participants.
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Participants

Eleven children (mean ± SD: 7.45 ± 1.81 years) who had
UMA and congenital UCHL were included. All patients had NH
in one ear [hearing thresholds,≤ 25 dB hearing level (HL) across
0.5–4 kHz] and pure conductive hearing loss in the impaired
ear (air-bone gap, ≥ 25 dB HL, BC thresholds of ≤ 25 dB
HL across 0.25–4 kHz). For comparative purposes, eight boys
and three girls aged 6–12 years who had bilateral NH were
recruited as control listeners. All control listeners had bilateral
air and BC hearing thresholds ≤ 25 dB HL across frequencies
of 0.5–4 kHz. Detailed demographic data are summarized in
Table 1.

Device and listening conditions

The BCD used in the current study was a non-surgical
adhesive device (ADHEAR; MED-EL, Innsbruck, Austria).
All devices were set in the omnidirectional mode for all
experimental conditions, and the volume was adjusted based on
patients’ preferences. The system fittings of the ADHEAR did
not change during all experiments.

Children with UMA were tested with the BCD off (unaided
condition) and on (aided condition) (Figure 1A). Children with
NH were measured with both ears unplugged (UP condition)
as normal controls. When measuring sound localization,
control listeners were also tested with plugging (P condition)
to stimulate an acquired UCHL to reveal the difference in
directional hearing between the acquired UCHL and UMA
(congenital UCHL). Plugging was performed by covering an ear
with an earmuff (Peltor X5A; 3M Company, MN, United States),
along with a foam earplug (E-A-R soft; 3M Company, MN,
United States) inserted into the external auditory canal. The
plugging provided a mean attenuation of 40.22 dB± 2.29 dB HL,
from 0.5 to 4 kHz (measured by audiometric threshold shifts) in
the sound field.

For the UMA group, unaided audiological tests were
performed on the day they received the BCD and aided
audiological tests were measured after a mean period of
9.27 ± 1.85 weeks. For the NH group, all tests were
performed in one visit.

Setup and stimuli

All tests were conducted in a double-walled soundproof
laboratory. Participants sat in a chair placed 1 m in front
of seven loudspeakers. Sound field hearing thresholds were
obtained by warble tones for octave frequencies across 0.25–
4 kHz in dB HL. Speech perception under quiet was measured
by the word recognition score [WRS (%)] of the Mandarin
speech test materials (MSTMs) (Wang et al., 2007) at 65 dB

sound pressure level (SPL). Speech perception in noise was
measured by the speech reception threshold (SRT) of the
MSTMs. The spectrum-shaped noise (SSN) was set at 65 dB
SPL, and the speech signal started at 0 dB speech-to-
noise ratio (SNR), with the following disyllables changing
adaptively in 2 dB SPL steps as the participants responded.
The SRT was defined as the speech signal level presented
when a participant identified 50% of the words correctly. The
SNR was calculated as the difference between the SRT and
SSN.

Sound localization was measured in a double-walled
soundproof laboratory with seven audiometric loudspeakers
placed at 30◦ intervals in a semicircle within the horizontal
plane (± 90◦, azimuth) (Figure 1B). Broadband noise (0.5–
20 kHz), with a duration of 1 s, was randomly played at three
different sound levels (65, 70, and 75 dB SPL). During the test,
each loudspeaker was randomly presented twice at each sound
level burst; thus, 42 stimuli were included in each test. The
participants sat comfortably in a chair located 1 m in front
of the loudspeaker, facing and fixating the loudspeaker at 0◦,
azimuth. They were not permitted to move their heads when
the noise bursts were presented. After the loudspeaker finished
each presentation, participants were allowed to indicate the
orientation and could turn their heads to look at the number
of the loudspeakers that they considered to be the source of the
burst.

To familiarize the participants with the experiment before
the formal sound localization tests, a brief block of 12 broadband
stimuli was presented. They were instructed to localize the
stimuli as fast as possible, and no feedback was provided
throughout the training to avoid the influence of learning in
the formal test.

Subject satisfaction

The subjective satisfaction was measured with two
questionnaires, the Chinese version of the International
Outcome Inventory for Hearing Aids (IOI-HA) (Liu et al.,
2011) and the Speech, Spatial, and Qualities of Hearing Test
for Parent (SSQ-P) (Gao et al., 2022), which were handed out
to patients’ parents at the end of the follow-up. The IOI-HA
consists of seven items: daily use, benefit, residual activity
limitations, satisfaction, residual participation restrictions,
impact on others, and quality of life. Each answer is rated on a
scale from 0 to 5, with higher ratings reflecting better outcomes
(or fewer residual difficulties). The SSQ-P across three domains:
speech, spatial hearing, and qualities of hearing, with higher
scores in each subdomain representing higher satisfaction.
To evaluate the hearing impairment of patients with UMA in
unaided conditions, the SSQ-P was also handed out to their
parents before they were equipped with the ADHEAR.
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TABLE 1 The demographic data of 11 patients with UMA and 11 children with NH.

Participant number Sex Age (years) Side of impaired/plugged Etiology Follow-up time (weeks)

P1 M 9 R Atresia 8

P2 F 7 R Atresia 13

P3 M 8 L Stenosis 9

P4 M 8 R Atresia 8

P5 F 5 L Atresia 8

P6 M 7 R Atresia 12

P7 F 11 L Stenosis 8

P8 M 6 R Atresia 9

P9 M 7 L Atresia 8

P10 M 5 R Stenosis 11

P11 M 9 L Atresia 8

Mean± SD – 7.45± 1.81 9.27± 1.85

N1 M 8 R – –

N2 M 9 L – –

N3 F 11 R – –

N4 M 11 R – –

N5 F 7 L – –

N6 M 9 R – –

N7 F 6 L – –

N8 M 7 R – –

N9 M 8 L – –

N10 M 12 L – –

N11 M 10 R – –

Mean± SD – 8.91± 1.92 – – –

FIGURE 1

Test setup and listening conditions. (A) The monaural (left) and binaural listening (right) conditions are designed for UMA patients (unaided and
aided conditions) and controls (P and UP conditions). (B) Seven loudspeakers were placed at 30◦ intervals in a semicircle in a double-walled,
soundproof laboratory. NH, normal hearing; P, the plugged condition; UP, the unplugged condition.

Data analysis

MAE =

∑n
i=1

∣∣∣∣∣α i
RESP

− α
i

TARG

∣∣∣∣∣
n

(1)

αRESP = gain · αTARG + b (2)

The mean absolute error (MAE) was calculated using
Equation 1 to assess the sound localization accuracy under
different conditions, where the αRESP and αTARG referred
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FIGURE 2

(A) Hearing thresholds, (B) WRS in quiet, and (C) SRT in the noise of patients with UMA in unaided and aided conditions, as well as the controls.
Group means are presented as mean ± SD. Significant differences, *p < 0.05, **p < 0.01. WRS, word recognition score; SRT, speech reception
threshold; SNR, speech-to-noise ratio; SD, standard deviation; Unaided, the unaided condition of UMA; Aided, the aided condition of UMA;
healthy ear: the healthy ear of patients with UMA; NH, normal hearing group.

FIGURE 3

The results of speech, spatial and qualities of hearing scale for parents (SSQ-p) without (unaided) and with (aided) a BCD. Significant differences,
**p < 0.01. Unaided, the unaided condition of UMA; aided, the aided condition of UMA.

Frontiers in Neuroscience 05 frontiersin.org

60

https://doi.org/10.3389/fnins.2022.973735
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-973735 August 19, 2022 Time: 16:1 # 6

Liu et al. 10.3389/fnins.2022.973735

FIGURE 4

Sound localization target-response plots of two patients (P6 and P7) and one control (N2) in monaural (unaided and P, left) and binaural (aided
and UP, right) listening conditions. Stimulus sound levels are indicated by black circle (65 dB SPL), and cross data (70 dB SPL), and white square
points (75 dB SPL). Best-fit linear regression is indicated by a black line. For participants with an ideal optimal localization ability, gain is 1,
whereas MAE and b are 0. MAE, mean absolute error; g, response gain; b, response bias; r2, R square.
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FIGURE 5

(A) The MAE and (B) g under monaural listening conditions (unaided and P, Y-axis) are plotted against those under binaural listening conditions
(aided and UP, x-axis). Black circle data points indicate 11 UMA children, and white circle data points indicate the controls. The two UMA
children and one control depicted in Figure 4 are marked in this figure (P6, P7, and N2). An MAE near 0 and a gain near 1 demonstrate a
close-to-normal sound localization performance. Data of participants with the same sound localization performance when listening
monaurally and binaurally are displayed on the gray dotted diagonal. A data point below the diagonal in (A) and above the diagonal in (B)
represents a better sound localization performance when listening under binaural conditions than under monaural conditions. UMA, unilateral
microtia and atresia; NH, normal hearing group; MAE, mean absolute error; g, response gain; Unaided, the unaided condition of UMA; Aided, the
aided condition of UMA; P, the plugged condition of controls; UP, the unplugged condition of controls.

FIGURE 6

The mean MAE of patients with UMA and the controls, respectively, on (A) the impaired (including the atretic side of UMA and the plugged side
of controls) side and the (B) contralateral (the healthy side of UMA and the unplugged side of controls) side. Error bars represent mean ± SD.
Significant differences, *p < 0.05, **p < 0.01. ns, not significant; UMA, unilateral microtia and atresia; MAE, mean absolute error; Unaided, the
unaided condition of UMA; Aided, the aided condition of UMA; P, the plugged condition of controls; UP, the unplugged condition of controls;
NH, normal hearing; SD, standard deviation.

to the response azimuth and target azimuth (both in
degrees). Additionally, the best linear fit of the target-
response relationship for each participant was also computed
using Equation 2, where g is the response gain (slope,
dimensionless), and b is the response bias (offset in degrees).
In this study, the right side was defined as the impaired
side; therefore, azimuth coordinates for patients with
left ear impairment and controls with NH with left ears
plugged were inverted.

Paired and independent t-tests were conducted to evaluate
differences under different test conditions. The Mann-Whitney
U-test was used to compare the difference in the unaided, aided,
and delta MAEs (delta MAE = aided MAE - unaided MAE)
between the groups of different sexes, sides of impairment,
and etiologies. Spearman correlation analysis was conducted
to analyze the correlations between continuous variables
(age and follow-up time) and the unaided, aided, and delta
MAEs, respectively. The p-values of < 0.05 and < 0.01 were
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FIGURE 7

(A) MAE outcomes of two subgroups of good performers (n = 5; gain > 0.75) and poor performers (n = 6; gain ≤ 0.75) were separately
compared on the atretic and healthy sides. (B) Individual data of gain of UMA children in unaided conditions are plotted as a function of delta
MAE between unaided and aided conditions. The linear regression was conducted to explore the predictive effect of gain on the benefits of
sound localization accuracy by fitting BCDs. P6 and P7 depicted in Figure 4 are marked in this figure. Delta MAE, aided MAE—unaided MAE.
Significant differences, *p < 0.05. ns, not significant; MAE, mean absolute error; g, response gain.

considered statistically significant. SPSS version 26.0 (IBM
Corp., Armonk, NY, United States) and GraphPad Prism version
8.0 (GraphPad, San Diego, CA) were used to analyze the data
and draw diagrams.

Results

Hearing benefits

For patients with UMA, the mean hearing threshold of the
healthy ear was 14.82 ± 3.82 dB HL. The unaided hearing
threshold was 51.36± 5.02 dB HL and significantly improved to
27.64± 2.38 dB HL with a mean functional hearing gain (FHG)
of 23.73 ± 3.47 dB HL (p < 0.01). For the NH comparison
group, the mean hearing threshold was 15.36± 3.88 dB HL. The
aided mean hearing threshold of the UMA group was still higher
(worse) than the mean hearing threshold of the NH group
(p < 0.01). Detailed outcomes across 0.5–4 kHz are depicted in
Figure 2A.

The average unaided WRS and SNR for patients with UMA
were 18.27 ± 14.63 % and −5 ± 1.18 dB SPL, respectively,
whereas the average aided WRS and SNR conspicuously
changed to 85.45 ± 7.38 % and −7.73 ± 1.42 dB SPL,
respectively (WRS: p < 0.01; SNR: p < 0.05). The mean
WRS and SNR of the comparison group were 99.27 ± 1.35 %
and −10.55 ± 2.77 dB SPL, respectively. Figures 2B,C show
significant differences in the speech levels between patients
aided with BCDs and their peers with NH (WRS: p< 0.01; SNR:
p < 0.05).

The mean overall IOI-HA score was 4.57± 0.73. A score > 3
per item, defined as a benefit from the BCD, was found for nearly
all participants. The mean score for items 1–7 were 3.86± 0.31,
3.57 ± 0.25, 4.29 ± 0.19, 3.79 ± 0.24, 4.14 ± 0.14, 4.64 ± 0.13,

and 4 ± 0.23, respectively. The results of the SSQ-P without
(unaided) and with (aided) BCD are presented in Figure 3,
and significant improvements of subjective satisfaction with the
ADHEAR were found in each subdomain and the total rating
(all p < 0.01).

Sound localization in patients with
unilateral microtia and atresia and
stimulated unilateral conductive
hearing loss

Figure 4 shows the individual sound localization target-
response plots for two children with UMA (P6 and P7) and
one control (N2) under monaural (unaided and P, left column)
and binaural (aided and UP, right column) listening conditions.
Under the unaided condition, P6 showed a poor localization
ability and perceived most stimuli from the healthy ear side.
However, P7 exhibited relatively better sound localization
accuracy than P6. When aided with the BCD, the sound
localization accuracy improved in P6 (delta gain = 0.422,
delta MAE = -14.28◦), and the application of the BCD led
to a decrease in sound localization accuracy in P7 (delta
gain = -0.167, delta MAE = 18.58◦). Under the P condition,
all data points of N2 fell along the diagonal dotted line,
indicating a sharply deteriorated localization performance with
the data points spread larger on the NH side (gain = 0.12,
MAE = 65◦).

Individual data on sex, age, MAE, gain, bias, and r2

for all participants are presented in Supplementary Table 1.
The MAE and gain under monaural listening conditions
(unaided and P) are plotted against those under binaural
listening conditions (aided and UP) in Figure 5. Varying
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sound localization performance was observed in the 11 children
with UMA under the unaided condition. When the mean
gain and MAE of all children with UMA were compared
between the unaided and aided conditions, no significant
differences were identified (gain: p = 0.104, MAE: p = 0.436).
Control listeners showed good sound localization performance
in the UP condition. All exhibited considerable deterioration
after being plugged (gain: p < 0.01; MAE: p < 0.01), with
most of them being unable to localize the stimuli presented
from the plugged side. Although no significant difference
was observed between the unaided and P conditions (gain:
p = 0.073; MAE: p = 0.073), the results indicated that children
with UMA showed better sound localization performance
(smaller MAE) than the stimulated acquired UCHL listeners.
This phenomenon might be related to the adaptation to
congenital unilateral asymmetric hearing loss; however, the
benefit of this adaptation was insufficient for children with
UMA to localize sound as accurately as the normal controls
did.

Influence of a bone conduction device
on sound localization accuracy

To further explore the influence of BCDs on the localization
ability of patients with UMA. The localization accuracy of
the patients with UMA and the controls were calculated
on the impaired (including the atretic and plugged) and
the contralateral (including the healthy and unplugged)
side, respectively.

A better sound localization accuracy was observed in
children with UMA (43.18 ± 30.58◦ vs. 83.18 ± 37.82◦,
p < 0.05) on the impaired side than in controls in the P
condition (Figure 6A). The relative better sound localization
accuracy observed in unaided children with UMA, as compared
with plugged control listeners, may be attributed to the
utilization of distorted remaining binaural cues. For patients
aided with a BCD, there was no difference in the MAE
between the unaided and aided conditions on the impaired
side (43.18 ± 30.58◦ vs. 34.14 ± 17.9◦, p = 0.303) or the
contralateral side (26.97 ± 24.68◦ vs. 27.42 ± 14.52◦, p = 0.79),
indicating that the BCD use was not detrimental to the
original sound localization ability of the patients with UMA
(Figure 6).

Prediction of the benefits of sound
localization accuracy among bone
conduction device users

Our results showed that some patients with congenital
UCHL have relatively good monaural directional hearing
without any hearing intervention (e.g., P7). All 11 children with

UMA were divided into two subgroups of good performers
(n = 5; gain > 0.75) and poor performers (n = 6; gain ≤ 0.75)
according to the criterion in Agterberg et al.’s (2019) research.
When the MAE outcomes were separately compared bilaterally,
a significantly better sound localization accuracy was observed
in good performers on the atretic side (15.67◦ ± 10.71◦ vs.
66.11◦ ± 19.77◦, p < 0.05, Figure 7A).

Correlational analysis was further conducted to explore the
predictive effect of gain on the benefits of sound localization
accuracy by fitting BCDs (delta MAE = aided MAE—
unaided MAE, with a smaller delta MAE representing a better
improvement in sound localization accuracy). The results
revealed an evident relationship between gain and delta MAE
(r2= 0.553, p < 0.05), indicating that children with UMA who
have poor sound localization performance (lower gain) showed
more improvement in sound localization after being fitted with
BCDs (Figure 7B).

Besides, the Mann-Whitney U-test and Spearman
correlation analysis regressions were conducted to investigate
the influence of sexes, sides of impairment, etiologies, age, and
follow-up time on unaided, aided, and delta MAEs in patients
with UMA. The results indicated the absence of the main effect
(Supplementary Tables 2, 3).

Discussion

Hearing benefits of a bone conduction
device

In the present study, the ADHEAR system remarkably
improved the hearing thresholds and speech perception under
quiet and noisy conditions in patients with UMA. Patients with
UMA had a mean FHG of 23.73± 3.47 dB HL over a frequency
range of 0.5–4 kHz; this result lies in the middle of the range of
the previously published data of children wearing the ADHEAR
system (17–35.6 dB HL) (Dahm et al., 2019; Neumann et al.,
2019). Better speech perception abilities were also achieved in
quiet and noisy conditions with high participant satisfaction
post-BCD-use.

Sound localization performance of
children with unilateral microtia and
atresia

Consistent with the findings of previous studies (Agterberg
et al., 2019), our results showed an inter-subject variability
of directional hearing in children with UMA in unaided
conditions. Amongst children with congenital UCHL, good
performers might have learned to use remaining binaural
difference cues to localize sound sources without hearing
amplification, especially when stimuli are presented at an
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intensity higher than the audibility of the affected ear
(Thompson et al., 2020). Another hypothesis for good
directional hearing in patients with UCHL is that some of them
may rely on monaural cues to achieve good sound localization
performance. Vogt et al. (2020) confirmed that patients with
congenital UCHL rely on monaural spectral cues to detect high-
frequency sound sources by comparing localization accuracy
with and without covering the normal hearing ear pinna. Van
Wanrooij and Van Opstal (2004) evaluated nine listeners with
chronic unilateral hearing loss through a group of broadband
sound stimuli fixed at 60 dB, and the results indicated a
strong reliance on the ambiguous HSE in familiar acoustic
environments. However, no relationship was found between
patients’ characteristics and their unaided sound localization
performance.

Influence of a bone conduction device
on sound localization accuracy

In our study, no significant improvement in sound
localization accuracy was observed in children with UMA
aided with BCDs. Similar results have also been obtained
in previous studies (Kunst et al., 2008; Weiss et al., 2017)
regarding the application of bone-anchored hearing aid and
Bonebridge (MED-EL, Innsbruck, Austria) in congenital UCHL.
The inability to perform binaural hearing may be a consequence
of two factors: first, the hearing asymmetry still exists, as
the BCD was not able to produce sufficient intensity input
to provide the same hearing threshold as that of the ear
with NH; second, the processing time delay and inconsistent
stimulation are inherent characteristics of BCD signals, and
the BC signals with less reliable and constant cues may
also prevent children with congenital UCHL from having
restored binaural hearing (Sabin et al., 2005). However,
other studies reported improvement in sound localization
accuracy when a BCD was used in patients with congenital
UCHL (Nelissen et al., 2016; Vyskocil et al., 2017; Vogt
et al., 2018). In a recent study involving nine children
and adolescents with congenital UMA, better spatial hearing
accuracy was found when listening through the Bonebridge,
suggesting that this benefit is not based on the processing
of binaural cues because the improvement was only observed
on the impaired ear side (Vogt et al., 2018). Potential
explanations for these conflicting observations may be the age
gap of the enrolled patients and methodological differences
in the procedure. In summary, it is favorable that sound
localization abilities of the intact ear did not deteriorate
with the cross-hearing of the BCD use, and this result
might be a consequence of the insufficient high-frequency
sound transmission of BCDs (Dobrev et al., 2019) and does
not interfere with the spectral cues from the contralateral
healthy ear.

Predictive factors for the benefits of
sound localization accuracy among
bone conduction device users

As shown in Figure 7B, patients with poor unaided spatial
hearing (e.g., P6) exhibited more evident improvement (smaller
delta MAE) in sound localization accuracy when aided with
a BCD. Hence, the original horizontal sound localization
performance of listeners with UCHL was a good predictor of
their sound localization accuracy under BCD-aided conditions;
thus, there is a greater need for early hearing intervention
in poor performers who cannot make good use of remaining
binaural differences to localize sound sources. As asymmetry
hearing induces auditory system reorganization, and animal
models of UCHL have shown the structural and functional
weakness of the auditory system, thereby affecting binaural
hearing integration (Tillein et al., 2016), there seems to
be a consensus that early rehabilitation of binaural hearing
seems to be better than later rehabilitation (Shirane et al.,
2020).

One main limitation of the study is that the factors
influencing sound localization accuracy amongst listeners with
congenital UCHL are not entirely clear. The small age span
in the present study (we mainly included children aged 5–
11 years) may be attributed to the absence of a significant
correlation between patient characteristics and individual sound
localization differentiation. Thus, more factors influencing
sound localization performance conflict and the optimal age of
BCD use need to be investigated in further studies that include
more participants of different ages.

In conclusion, some children with UMA were able to
compensate using the remaining distorted binaural cues to
detect sound sources, unlike the children with stimulated
acquired UCHL; however, this compensating ability was still far
worse than children with NH and varied across individuals. As
the application of BCD provided a definite benefit on speech
recognition abilities and high participant satisfaction, it is
recommended that children, particularly those with poor sound
localization performance, should be fitted with non-surgical
BCDs at an early age.
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Recent advancements in neuroscientific research and miniaturized ear-

electroencephalography (EEG) technologies have led to the idea of employing

brain signals as additional input to hearing aid algorithms. The information

acquired through EEG could potentially be used to control the audio

signal processing of the hearing aid or to monitor communication-related

physiological factors. In previous work, we implemented a research platform

to develop methods that utilize EEG in combination with a hearing device. The

setup combines currently available mobile EEG hardware and the so-called

Portable Hearing Laboratory (PHL), which can fully replicate a complete

hearing aid. Audio and EEG data are synchronized using the Lab Streaming

Layer (LSL) framework. In this study, we evaluated the setup in three scenarios

focusing particularly on the alignment of audio and EEG data. In Scenario I,

we measured the latency between software event markers and actual audio

playback of the PHL. In Scenario II, we measured the latency between an

analog input signal and the sampled data stream of the EEG system. In

Scenario III, we measured the latency in the whole setup as it would be used

in a real EEG experiment. The results of Scenario I showed a jitter (standard

deviation of trial latencies) of below 0.1ms. The jitter in Scenarios II and

III was around 3ms in both cases. The results suggest that the increased

jitter compared to Scenario I can be attributed to the EEG system. Overall,

the findings show that the measurement setup can time-accurately present

acoustic stimuli while generating LSL data streams over multiple hours of

playback. Further, the setup can capture the audio and EEG LSL streams

with su�cient temporal accuracy to extract event-related potentials from

EEG signals. We conclude that our setup is suitable for studying closed-loop

EEG & audio applications for future hearing aids.

KEYWORDS

hearing aids, mobile EEG, portable setup, timing, jitter, ear-EEG, cEEGrid, neuro-

steered hearing device
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1. Introduction

Current neuroscientific discoveries have led to the concept

of using brain signals as additional input to control audio

signal processing in hearing devices (Slaney et al., 2020). In

this process, correlates from the electroencephalography (EEG)

recording are used to make statements about the user’s mental

state, such as auditory attention (O’sullivan et al., 2015) or

listening effort (Bernarding et al., 2012; Haro et al., 2022). These

can potentially be used to adjust the signal processing in the

hearing device, for example, a beamformer that amplifies the

attended speaker while suppressing the ignored ones (Aroudi

and Doclo, 2019). This idea is commonly referred to as neuro-

steered hearing devices, cognitively controlled hearing aids, or

similar (O’Sullivan et al., 2017; Das et al., 2020; Geirnaert et al.,

2021). Current developments in miniaturization and improving

the wearability of (ear-centered) EEG suggest that the relevant

neural signals can still be detected when using fewer electrodes

and less spatial coverage compared to traditional cap EEG setups

(Kidmose et al., 2012; Debener et al., 2015; Mikkelsen et al.,

2015; Bleichner et al., 2016; Fiedler et al., 2017). This research is

relevant to realize closed-loop applications on wearable devices

with high wearing comfort.

To develop EEG-based hearing aid signal processing

methods, a portable platform is required that offers the

signal quality and timing accuracy required for closed-loop

applications with audio and EEG signals. In Dasenbrock et al.

(2021), we introduced a research platform, which combines

the mobile Smarting EEG system and the so-called Portable

Hearing Laboratory (PHL, Pavlovic et al., 2018). The PHL is

a portable research hearing device that can fully replicate a

hearing device. It uses the open-source open Master Hearing

Aid (openMHA, Kayser et al., 2022) software for real-time, low-

latency audio signal processing. The EEG data is received over

a wireless network connection. The Lab Streaming Layer (LSL,

Kothe et al., 2014) is used to synchronize audio and EEG data.

LSL is a framework that can synchronize data streams from

different devices by measuring their respective clock drift over

a network connection to map the locally generated time stamps

into one common timeline. First pilot timing and physiological

tests showed that this setup’s portable components could be

used to extract event-related potentials (ERPs) using an Oddball

paradigm (Dasenbrock et al., 2021).

The temporal synchronicity of audio and EEG data is crucial

for such a setup. Alignment inaccuracies of audio and EEG

data may lead to errors in the data analysis that may affect

the predictive power of the following listening state analysis.

Several sources of inaccuracy exist when aligning audio and EEG

data. For example, there may be variations in the playback of

the stimuli, i.e., differences between the software event markers

and the actual playback of the device. Further, inaccuracies

can occur when creating an LSL stream of continuous time-

series data, such as the EEG. Generally, factors such as the

operating system, drivers, and hardware performance will

typically introduce variations in delays; thus, a latency variation

(jitter) is always expected in real systems. Timing accuracy,

especially stability (between sessions), must also be considered

for online applications, which rely on a constant latency between

EEG and audio.

Time synchronization has long been a challenge in the

implementation of mobile EEG systems. When performing

EEG experiments, the amount of jitter needs to be sufficiently

small. The required temporal precision generally depends on

the method used. It is particularly relevant for investigating

time-averaged data. For instance, obtaining ERPs requires the

extraction of EEG trials by epoching the data using event

markers, which indicate a response-evoking feature of the

auditory stream. Accurate time synchronization is crucial since

it leads to an exact alignment when averaging over the single-

trial responses, leading to high and sharp ERP components,

i.e., specific peak amplitudes in the ERP (Williams et al., 2021).

For wireless commercial mobile EEG systems, the problem of

event-locking the EEG data has long been challenging, as they

are often not designed for it. For instance, in early iterations

of the wireless Emotiv EEG system, it was found that the

built-in event-locking was unstable and did not produce high-

quality ERPs (Hairston et al., 2014; Ries et al., 2014). Nowadays,

mobile EEG hardware can also be used for ERP studies, as

indicated by recent studies of the Emotiv EEG system (Williams

et al., 2021). Further, fully mobile smartphone-based systems

have already been successfully coupled with mobile Smarting

EEG systems (mBrainTrain, Belgrade, Serbia), which could

be used for extracting ERPs outside the laboratory (Debener

et al., 2015; Blum et al., 2017; Hölle et al., 2022). Building

upon the smartphone-based approach, the setup employed

in this work focuses on hearing aid applications, leveraging

the real-time capabilities of the PHL. The setup presented by

our group in Dasenbrock et al. (2021) was extended by the

possibility of sending single software event markers, which

enabled us to perform a comprehensive timing analysis to

evaluate its suitability for research into closed-loop hearing

devices with EEG.

The timing precision of the setup was systematically

evaluated in several timing test scenarios, that address the

different components of the system. As the setup is composed

of two completely independent components, namely the PHL

and the Smarting EEG system, the timing precision of the

setup is assumed to be composed of the timing accuracy of

the PHL and the timing accuracy of the EEG system. The

accuracy of these two systems was examined separately in timing

test scenarios I and II. Timing test scenario I examines the

PHL’s ability to create a precise software marker that marks the

playback time of an acoustic stimulus, i.e., the event marker.

In this test, the event marker time is compared to the actual

audio playback of the PHL. Timing test scenario II examines

how precisely the EEG system samples and time stamps an
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incoming signal by comparing the sampled and time stamped

signal from the EEG system against a known reference. A third

test, i.e., timing test Scenario III, was conducted to measure the

whole system’s timing, as it would be present in a real EEG

measurement. In this final test, a reference signal generated by

the PHL is compared to the sampled and time stamped signal

of the EEG system. To investigate differences in the timing

accuracy between shorter and longer durations, all timing tests

were performed for 15 min and 3 h. No human subjects were

used in the tests, as their introduction would lead to additional

between-subject variability (Intriligator and Polich, 1995), as

well as measurement variability (Callaway and Halliday, 1973).

Thus, this study was kept purely technical, focusing on the effects

of the measurement devices.

2. Materials and methods

In the following two sections, the setup and its

technical features as well as the timing tests are described

in detail.

2.1. Setup

This section describes the technical aspects of the setup.

For this purpose, the two subsystems, i.e., the PHL and the

EEG system, are discussed in more detail. In addition, the

LSL framework is discussed in depth, followed by a general

system description. Figure 1 outlines how the setup is carried in

a measurement.

2.1.1. Portable hearing laboratory
The PHL is the central component of the setup. It is an

integrated hearing aid research platform combining portable

hardware and the openMHA. Due to its portability, the device is

particularly suitable for field studies to investigate more realistic

hearing scenarios outside the laboratory. A personal computer

or smartphone controls the PHL through a WiFi connection. It

consists of a main unit, including a battery, and supports several

ear-level transducers. The setup uses a binaural 4-microphone

behind-the-ear (BTE) hearing aid headset developed for the

PHL. As visualized in Figure 1, a strap connected to the back

of the device is used to carry the PHL around the neck, which

weights about 130 g with dimensions of 58 × 90 × 30mm. The

PHL runs a Linux operating system (OS)–MAHALIA (Obbard

and James, 2018), optimized for the device’s hardware and to run

openMHA. The PHL supports sampling rates in the range of 8

and 96 kHz. In this work, a sampling rate of 16 kHz was used.

Figure 2 highlights some key features of the PHL’s software and

hardware. An extended table with detailed technical information

on the PHL can be found in the Supplementary material.

FIGURE 1

Sketch of the hearing aid and EEG setup carried in a
measurement. A strap connected to the back of the device is
used to carry the Portable Hearing Laboratory (PHL) around the
neck. Acoustic stimuli are presented via the hearing aids
connected to the PHL. The around-the-ear EEG sensor cEEGrid
is used to measure the neural activity. The cEEGrid is connected
to the mobile wireless Smarting EEG amplifier. Both audio and
EEG data streams are captured on the PHL for further processing
and recording. Figure adapted from Dasenbrock et al. (2021).

FIGURE 2

Photo of Portable Hearing Laboratory (PHL) and table with
selection of hardware and software features. The hardware
consists of a portable main unit and a binaural 4-microphone
behind-the-ear (BTE) hearing aid headset. Photo adapted from
Kayser et al. (2022).

openMHA is an open-source software platform for real-

time, low-latency hearing aid signal processing (Kayser et al.,

2022). The software is implemented in C++ and contains a
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wide range of audio processing algorithms. Its modular structure

allows adding new functionalities in the form of plugins. The

functions of a specific openMHA instance (such as algorithms,

inputs, outputs, and sampling rate) are defined by the user

using the openMHA configuration language consisting of line-

based human-readable text commands. The software runs on

several computer systems, including lab and portable setups,

particularly the PHL.1

2.1.2. EEG system
The EEG system used in the presented setup comprises three

parts, i.e., (1) electrode setup, (2) Smarting EEG amplifier, and

(3) LSL streaming interface. The setup aims to be used mainly

with cEEGrid electrodes (Debener et al., 2015; Bleichner and

Debener, 2017). The cEEGrid is a disposable electrode grid

with printed sensor arrays based on flex-print technology. Ten

circular electrodes are arranged in a c-shape to fit around the

ear and are attached using adhesive tape. The electrode setup

is connected to a small, wireless 24 channel SMARTING EEG

amplifier (mBrainTrain, Belgrade, Serbia), placed at the back

of the head. The amplifier receives the EEG signal, amplifies

it, and streams a Bluetooth signal which is received by the

Smarting Android application on the smartphone. The data

transfer and synchronization between the Smarting amplifier

and the smartphone is handled by a proprietary protocol

unknown to the authors. The smartphone and its Smarting

app act as the LSL streaming interface. It streams the signal

over the network using the LSL framework. In this work, the

SMARTING EEG amplifier (Serial number: 010016) is used in

combination with a Sony Xperia Z1 smartphone (model: C6903;

OS: Android 5.1.1) using a pre-installed Smarting Android

application (Version: 1.6.0). A sampling rate of 250Hz was used.

More information on the EEG system can be found in the

Supplementary material.

2.1.3. Lab streaming layer
When dealing with multiple components within one setup,

each device typically relies on its built-in high-resolution clock.

Even if the time difference 1tclocks between the clocks is known

at some time, 1tclocks usually changes over time due to clock

drift caused by clocks counting at slightly different rates. One

possible way of synchronizing data streams of multiple sources

is to use hardware synchronization, usually achieved using TTL

(transistor-transistor logic) signals, e.g., by regularly sending

out synchronization pulses to the attached devices (Reis et al.,

2014). However, this usually requires wiring up the different

devices. Repeated synchronization of data streams can also be

1 In this study, the openMHA 4.17.0 release version was used, which

is contained in the corresponding MAHALIA image 4.17.0.; MAHALIA

download: http://mahalia.openmha.org (accessed March 18, 2022).

achieved without the need for wires and connectors by using

(wireless) networks and a software agent running on each device.

For this purpose, the LSL was used. LSL is an open framework

that consists of a core library, interfaces for many common

programming languages, and several tools (Kothe et al., 2014;

Blum et al., 2021). It can be used to measure time differences

between connected devices in a network-based setup. Thus,

recording setups including LSL can consist of several pieces of

hardware and software. LSL tools include a recording program,

i.e., the LabRecorder, file importers, and apps to support many

EEG systems on the market. The website offers extensive

documentation on LSL’s functionalities and tools and provides a

list of the many different pieces of hardware which have adopted

the LSL standard.2 The built-in time synchronization capability

of LSL is designed for sub-millisecond accuracy on a network of

computers connected viaWiFi.

In LSL terminology, the combination of the raw data from

a device and its metadata, such as channel count or sampling

rate, is referred to as a stream. LSL streams can have a

regular sampling rate, such as continuous EEG, or an irregular

sampling rate, such as event markers, e.g., when marking an

acoustic event, such as the onset of a sound stimulus. The

time synchronization of LSL relies on two pieces of data being

collected in addition to the actual sample data: (1) timestamp,

(2) clock correction offset. For each LSL sample, a timestamp

is read from a local high-resolution clock of the device. The

clock correction offset is a measurement of themomentary offset

between the two involved clocks and is computed at periodic

intervals, by default, every 5 s. LSL is not limited to the use of

only two devices. If multiple devices are present in the setup,

the clock correction offset between the receiver and every sender

is measured.

LSL uses a protocol similar to the Network Time Protocol

to measure the clock correction offset. The simplest way to

map the time series data from different devices into a common

timeline is to add the most recent clock correction offset value

to each remotely collected timestamp. Other more sophisticated

methods exist that attempt to smooth the clock correction

values, such as an outlier-resistant (robust) linear fit through

a history of clock correction offsets to reduce the effects of

jitter in the clock correction offset measurement. Further, after

applying the clock correction offsets, there is a second source

of jitter, i.e., jitter in the time stamps. This jitter is not due

to synchronization but because time-sampling is usually not

done at regular intervals but on a slightly stochastic schedule

(determined by the hardware, driver, and operating system). If

the LSL stream has a regular sampling rate, this jitter can also

be reduced by applying smoothing algorithms. In this work,

2 More information on the LabRecorder, file importers, and apps can be

found in the LSL documentation https://labstreaminglayer.readthedocs.

io/index.html (accessed June 25, 2022).
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however, no smoothing of the clock correction offsets and time

stamps was applied.

In the setup presented in this work, the LSL framework

was used for the synchronization of EEG data and audio event

markers. A network link is established by the smartphone’s

connection (which runs the Smarting app) to the WiFi hotspot

provided by the PHL. The possibility of using LSL in the

presented setup is provided on the one hand by the Smarting

app’s functionality to generate LSL streams of the EEG data,

and on the other hand by openMHA’s interface to LSL.

Generally, to use LSL, all clients in the network need to

support LSL. Open source Android application projects for

LSL streaming and recording enable the inclusion of additional

sensor streams (Blum et al., 2021).

2.1.4. System description
Figure 3A schematically illustrates which components of

the setup are responsible for the different signals and data

streams. A total of four measurement points, a-d, were included

in the drawing to illustrate between which points the timing

was measured. The measurement points will be relevant in

Section 2.2, which provides a detailed description of the timing

test scenarios.

The setup’s data flow is described in the scheme of a sender-

receiver architecture running on the PHL (left) and the EEG

system (right). The purpose of the sender instance (top left) is to

provide acoustic stimuli audio out to the subject via the hearing

aids. The corresponding physical voltage signal is measured

at measurement point a. The sender instance simultaneously

generates an audio event marker LSL stream containing event

markers that specify the beginning of a stimulus onset in the

audio signal. Point d denotes the position in the data flow at

which the audio event marker LSL stream is measured.

At measurement point b, the resulting EEG voltage signal

(e.g., captured with cEEGrid electrodes) is fed into the EEG

amplifier. The smartphone receives the EEG data from the

amplifier via a Bluetooth connection and creates an LSL stream

of the EEG data, referred to as EEG-LSL stream. The EEG LSL

stream is measured at point c.

The smartphone and the PHL share the same network. This

allows the LSL framework to collect all necessary information

to map both streams into a common timeline (see Section 2.1.3

for details). Both the audio event marker LSL stream and the

EEG LSL stream are captured by the receiver instance (bottom

left). Both sender and receiver instances were implemented as

two independent openMHA instances with different processing

configurations that run on the PHL.3

3 The openMHA configurations for both sender and receiver instances

are published and can be found on Github: https://github.com/

ste�endasenbrock/SynchronizationEarEEGAudioStreams

2.2. Timing tests

This section describes the different timing test scenarios

performed to investigate the timing properties of the setup

outlined in the previous section. It is important to note that the

timing tests were performed without humans and an electrode

setup, such as the cEEGrid. The signals fed into the EEG system

were routed directly into the EEG amplifier. The audio signals

from the PHL were also not played directly through the hearing

aids but redirected to an audio jack. In each scenario, the timing

was evaluated between two of the four measurement points a-d

(see Figure 3A). The timing tests of the different scenarios were

performed separately, i.e., two different measurement points

were measured simultaneously in each scenario.

We conducted tests in three different scenarios. The

different scenarios are discussed in more detail in the following

sections. An additional test described in Section 2.2.3.1 was

performed to compare the recording capabilities of the receiver

instance (Figure 3A, bottom left) with an established reference

recording software.

Stimuli

For all tests, a rectangular pulse was used as a test signal

to investigate the time synchronization properties of the setup,

as it produces sharp detectable responses. Sixty millisecond

pulses were repeated at 1Hz. All timing test scenarios were

performed for two different durations, i.e., 15min (short) and

3 h (long). For the short timing test 900 and the long timing test,

10,800 trial latencies were determined. A total of 21 timing tests

were performed.

2.2.1. Scenario I: Sender instance timing
In timing test Scenario I, the timing accuracy of the

sender instance (Figure 3A, top left) was evaluated. The sender

instance was programmed to play the test stimulus containing

the rectangular pulses. At the same time, it was configured

to generate an LSL event marker whenever a rising edge is

detected in the signal. More details on the implementation

of this mechanism are described in Supplementary Figure 2.

In Figure 3B (left), the procedure to test the sender instance’s

accuracy is sketched in a timing diagram. To specify the timing

of the sender instance, the latency 1tn was measured. In

this scenario, 1tn was defined as the time difference between

the timestamps of the audio event marker LSL stream at

measurement point d and the rising edges in the actual playback

signal audio out at measurement point a.

The LabStreamer (NeuroBehavioral Systems; Albany,

CA, USA) was used to measure 1tn. The LabStreamer is a

commercial device that can be considered an oscilloscope

optimized for network timing, designed explicitly for

analyzing timing precision when dealing with the LSL

framework. It provides a sampling rate of 10 kHz, which
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A

B

FIGURE 3

(A) System diagram of the measurement setup. The system diagram shows the signal flow and illustrates which components of the setup are
responsible for the di�erent signals and data streams and how they are related. Black lines refer to physical voltage signals; red lines refer to LSL
streams. The setup combines the Portable Hearing Laboratory (PHL, left) and the EEG system (right). The PHL’s function is described in the
scheme of a sender-receiver architecture. The sender instance’s (top left) role is to present acoustic stimuli audio out to the subject via the
hearing aids. The physical voltage signal is measured at measurement point a. During playback of the stimuli, the sender instance simultaneously
creates an audio event marker LSL stream that contains event markers indicating specific time points in the audio signal. The audio event marker

LSL stream is measured at point d. Subsequently, the resulting EEG voltage signal EEG in (measurement point b) is amplified using the mobile
EEG amplifier. The smartphone receives the EEG data via a Bluetooth connection and creates an LSL stream of the EEG data, i.e., EEG LSL stream

(measurement point c). The receiver instance captures both the audio event marker LSL stream and the EEG LSL stream. (B) Timing diagrams for
all three timing test scenarios. Timing diagrams relate two signals or streams in terms of time (x-axis). Square wave signals were used to test the
timing in the setup. The time di�erence between two related time points is defined as trial latencies 1tn, measured about every second. In
timing test Scenario I (left) 1tn was computed by comparing the rising edges in the voltage signal audio out (a) and the audio event marker LSL

stream (d). In timing test Scenario II (center) 1tn was computed by comparing the rising edges in the voltage signal EEG in (b) and the EEG LSL

stream (c). In timing test Scenario III (right) 1tn was computed by comparing the rising edges in the EEG LSL stream (c) and the audio event

marker LSL stream (d).

results in a measuring accuracy of 0.1ms. It features

different input and output channels such as audio, general

analog inputs and outputs, and the ability to receive and

generate LSL streams. It offers an oscilloscope panel to

trigger signals by LSL events and a latency histogram

panel. More detailed information on the LabStreamer

can be found in the Supplementary material and in the

respective documentation.4

4 Neurobehavioral Systems. LabStreamer https://www.neurobs.com/

menu_presentation/menu_hardware/labstreamer (accessed June 24,

2022).
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For the technical implementation, a network connection

was established between PHL and LabStreamer to use LSL. The

analog signal of the PHL was fed directly into the audio input

jack of the LabStreamer. More technical details can be found in

Supplementary Section 1.1 of the Supplementary material.

2.2.2. Scenario II: EEG system timing
Timing test Scenario II was done to investigate the timing

accuracy of the EEG system (Figure 3A, right) when it converts

an analog voltage signal into an LSL stream. Figure 3B (center)

visually describes the procedure to test the EEG system’s

accuracy in a timing diagram. In this scenario, the latency 1tn

was defined as the time difference between the rising edges in the

EEG LSL stream at measurement point b and the rising edges

contained in the analog EEG in test signal fed into the EEG

system at measurement point c.

As done in the first scenario, the LabStreamer was used

to measure 1tn. For the technical implementation, a network

connection was established between the EEG system and

LabStreamer to use LSL, as in timing test Scenario I. The

LabStreamer was used to feed the analog test signal into the

EEG system and to capture the EEG LSL stream. More technical

details about this procedure can be found in Supplementary

Section 1.2 of the Supplementary material.

2.2.3. Scenario III: In-the-loop timing
In Scenarios I and II, the timing accuracy of the sender

instance and EEG system were tested separately. In timing test

Scenario III, described in this section, the timing accuracy of the

whole setup was measured. For this, the audio event marker LSL

stream of the sender instance was related to the EEG LSL stream

of the EEG system. Figure 3B (right) outlines the procedure

to test the whole setup’s accuracy in a timing diagram. The

latency 1tn was defined here as the time difference between

the timestamps of the sender instance’s audio event marker LSL

stream at measurement point d and the rising edges in the EEG

LSL stream at measurement point c.

Timing test Scenario III was technically realized by feeding

the audio out signal of the PHL’s sender instance directly into the

EEG system as EEG in signal (see Figure 3). This approach was

adapted from Blum et al. (2017). Further details can be found

in Supplementary Section 1.3 of the Supplementary material. In

contrast to Scenarios I and II, the LabStreamer was not used

here. Both audio event marker LSL stream and EEG LSL stream

were recorded using the receiver instance on the PHL.

The calculation of1tn was done in a post-analysis. The EEG

signal was interpolated sample-wise to correspond to the audio

signal’s sampling rate to determine the rising edge position. This

model assumption is justified by the properties of the test signal,

which features vertical edges. The EEG signal was epoched from

−100 to 150ms and baseline corrected from −100 to −50ms

with reference to the timestamps in the audio event marker

LSL stream. As done in Blum et al. (2017), the latency 1tn for

each rectangular pulse was determined by calculating the time

difference between the event marker time and the time when the

EEG signal amplitude exceeded the half-maximum of the trial

averaged response.

Metrics

The lag describes the arithmetic mean within a timing test

session, i.e.,

lag =
1

N

N
∑

n=1

1tn, (1)

and the jitter the standard deviation of the latency within a

timing test session, i.e.,

jitter =

√

√

√

√

1

N − 1

N
∑

n=1

| 1tn − lag |2. (2)

An across-session range 1R was calculated to quantify the

spread of lag and jitter between timing tests of the same

condition. 1R was defined here as the difference between the

maximum and the minimum value of lag and jitter across all

timing tests of the same condition.

2.2.3.1. Comparison with reference data recording

Two additional 3 h in-the-loop recordings were conducted

to compare the data received by the receiver instance with the

data received by the standard recording program LabRecorder.5

For this, LabRecorder and the receiver instance were used

simultaneously on the PHL. The raw LSL data consisting of time

series, time stamps, and clock corrections collected from the

receiver instance and LabRecorder were compared to check if

the receiver instance correctly recorded the data.

3. Results

In the following, the results of the previously described

timing test scenarios are reported separately. Table 1 gives an

overview of the obtained lag, jitter, and the across-session range

1R of the lag and jitter for each condition.

3.1. Scenario I: Sender instance timing

Figure 4I shows the latency between the LSL timestamps of

the audio event marker LSL stream and the rising edges in the

actual playback signal of the PHL. The Lag was around 32.7ms

for both short and long durations and differed up to 0.14ms

5 LSL. LabRecorder. https://github.com/labstreaminglayer/App-

LabRecorder (accessed February 3, 2022).
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TABLE 1 Measurement results in terms of lag, jitter, and across-session range 1R for all three timing test scenarios.

Duration Meas. Lag Jitter

Number in ms in ms

I II III I II III

15 min

1 32.69 −1.56 29.75 0.07 3.06 1.22

2 32.76 −53.07 24.92 0.09 3.91 1.5

3 32.81 −10.5 37.98 0.07 3.02 1.49

4 32.68 −1.98 29.8 0.09 2.05 1.41

5 32.67 −21.67 15.36 0.07 1.84 1.24

1R 0.14 51.51 22.62 0.02 2.07 0.28

3 h
1 32.64 −13.2 25.19 0.09 3.82 3.33

2 32.65 −7.89 24.61 0.09 2.84 2.99

1R 0.01 5.31 0.58 0 0.98 0.34

1R refers to the difference between the maximum and the minimum value of lag and jitter across all timing tests within one scenario and duration. The columns labeled with Roman

numerals belong to the respective timing test Scenarios I–III (see Sections 2.2.1–2.2.3). Five measurements were performed in the 15min condition (top); two measurements were

performed in the 3 h condition (bottom).

FIGURE 4

Latency-recording time curves for all timing test scenarios. The di�erent plots show the course of the measured latency (y-axis) in milliseconds
over recording time (x-axis) in minutes (left) or hours (right). Five measurement runs were performed in the 15min condition (left column); two
measurement runs were performed in the 3h condition (right column), denoted by di�erent colors. The upper row shows the results for timing
test Scenario I: sender instance timing (see Section 2.2.1); the middle row shows the results for timing test Scenario II: EEG system timing (see
Section 2.2.2), and the bottom row shows the results for timing test Scenario III: In-the-loop timing (Section 2.2.3).
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from session to session. Jitters were below 0.1ms. It can be

observed that the latency stayed constant over time for both

15min and 3 h playback time, i.e., no temporal latency drift

was observed.

3.2. Scenario II: EEG system timing

Figure 4II presents the latency plotted over recording time

between rising edges in the EEG LSL stream and the rising edges

contained in the analog test signal fed into an EEG system.

Contrary to Scenario I the lag did not stay constant, but changed

from session to session, indicated by a 1R of up to 52ms for

the 15min recording condition. Jitters were, however, relatively

constant between sessions, ranging from 1.84 to 3.91ms and 2.84

to 3.82 ms for the short and long timing test duration. A negative

lag was observed in this scenario, which is further discussed

in Section 4. Further, a positive, non-monotonic drift can be

seen in both cases (short and long timing test duration), i.e., an

increasing latency over time. For the 15min timing test, after

substantial fluctuations in the initial 200 s, the latency increases

with an approximately linear trend. However, this linear trend

no longer persists in the 3 h timing tests, and the latency flattens

over time.

3.3. Scenario III: In-the-loop timing

Figure 4III shows the latency obtained from the in-the-loop

system, i.e., the latency between the timestamps of the sender

instance’s audio event marker LSL stream and the rising edges

in the EEG LSL stream. Similar to Scenario II lags differed from

measurement to measurement with a 1R of up to 22ms. Jitters

stayed relatively constant within each recording condition,

ranging from 1.24 to 1.5 ms and from 2.99 to 3.33 ms for the

15min and 3 h timing tests, respectively. The latency-recording

time plots feature a similar trend as observed in Scenario II, as

the recordings show a linear latency drift for the 15min timing

tests, which flattens out over time, visible in the 3 h timing tests.

3.3.1. Comparison with reference data
recording

The comparison of receiver instance and LabRecorder data

yielded two main results: (1) The raw LSL time series and the

locally (in the EEG system and PHL’s sender instance) created

LSL time stamps were identical for both recording methods.

(2) Comparing the LSL clock correction offset values obtained

with openMHA and LabRecorder, differences occurred between

the two recording methods. However, the long term average

amounted to below 0.1ms for both 3 h measurements, sporadic

outliers up to 150ms occurred for single samples. Figure 5

shows a histogram describing the relative occurrences of clock

FIGURE 5

Histogram of one of the two 3h recordings showing the
di�erences between clock correction o�set values obtained
using openMHA’s receiver instance and LabRecorder. Outlier
values outside of ± 10ms were included in the outer 10ms bins.

differences. For illustration purposes outlier values outside of

± 10ms were included in the outer 10ms bins.

The slight differences in the obtained clock correction values

are negligible on average and can be explained by different points

in time at which openMHA and LabRecorder request the clock

correction values from the LSL framework. More prominent

outliers of the clock correction can usually be eliminated by an

outlier resilient fit method of the most recent clock corrections6

instead of adding the most recent clock offset value to the time

stamp as done in this study for reasons of simplicity.

4. Discussion

In this section we compare and discuss the results of the

different timing test scenarios. As mentioned in Section 2.1.3

on the LSL framework, no smoothing of clock corrections and

time stamps was applied. Hence, the results discussed here can

be considered rather conservative and could still be positively

influenced by applying jitter-reducing methods.

4.1. Scenario I: Sender instance timing

Timing test Scenario I showed a jitter close to the time

resolution specified for the LabStreamer of 0.1ms.7 The results

show that the PHL can accurately synchronize its audio playback

with the information sent over the network using LSL. It should

be noted that the lag of the PHL sender instance depends on

6 As, e.g., done in the standard MATLAB importer for .xdf files

load_xdf.m: https://github.com/xdf-modules/xdf-Matlab (accessed

January 14, 2022).

7 Neurobehavioral Systems. LabStreamer https://www.neurobs.com/

menu_presentation/menu_hardware/labstreamer (accessed March 3,

2022).
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the sampling rate-fragment size combination. A larger block size

with the same sampling rate leads to a higher lag, while the jitter

is expected to remain unchanged.

4.2. Scenarios II and III: EEG system
timing vs. in-the-loop timing

In Scenarios II and III, a jitter of around 3ms was measured.

The increase in jitter compared to Scenario I can most likely

be attributed to the EEG system, as it was not used in the

first scenario. Variations of the lag from measurement to

measurement occurred in both Scenarios II and III involving

the EEG system. Even if not further investigated here, these

findings align with previous findings when using the Smarting

EEG system, which indicates that timing can vary with device,

session, and software versions (Debener et al., 2015; Blum et al.,

2017). Similar EEG hardware was used in Blum et al. (2017)

and Hölle et al. (2022). These studies do not report any drift

behavior. One potential reason for this is that in these studies,

the EEG LSL stream was recorded on the same smartphone,

which created the EEG LSL stream. In this study, however, the

EEG LSL stream was recorded by an external device, i.e., the

PHL. If the EEG LSL stream is recorded on the smartphone,

no additional clock correction between PHL and EEG system is

required when aligning audio and EEG.

We observed negative latencies in Scenario II. The rising

edges in the EEG LSL stream were detected before the

rising edges contained in the analog test signal. One possible

explanation for this behavior is that LSL features the possibility

to shift the locally created LSL time stamps by an arbitrary

amount, e.g., to compensate for a known latency. If one

assumes that the timestamps are generated on the smartphone, a

possible explanation for the negative lags is an overcorrection

of the timestamps to compensate for the latency caused by

the Bluetooth connection. However, the proprietary protocol

used for synchronization between Smarting amplifier and

smartphone is not accessible, such that the procedure used to

convert the data sent via Bluetooth into an LSL stream remains

unknown. Hence, a more detailed investigation could not be

carried out.

Scenarios II and III show very similar latency behavior over

time. The two scenarios differ in the fact that Scenario II uses the

reference audio signal from the LabStreamer, and Scenario III

uses the reference audio signal from the PHL. In both cases,

this audio signal is fed into the EEG system. The similar

latency-time trend, i.e., a positive, non-monotonic drift, between

Scenario II and III indicates that the EEG is causing this latency

drift behavior.

The jitter obtained in Scenario II is higher than in

Scenario III, presumably attributed to the higher latency

fluctuations in the first approx. 200 s of the measurements. As

these fluctuations did not occur in Scenarios I and III, they

could be traced back to the LabStreamer’s function to receive

the LSL stream from the EEG system, which may differ from the

PHL. One possibility might be that the LabStreamer could have

applied online smoothing methods to the clock correction offset

values and time stamps received from the EEG system. To record

the latencies as purely as possible, the LabStreamers’s settings

option “Linearize Timestamps” was disabled. This option can

be used to reduce the timestamps’ jitter by assuming a regular

sampling rate of incoming LSL streams (see Section 2.1.3).

However, it is unclear if the LabStreamer still applies online

smoothing methods to the clock correction offset values. Thus,

the initial fluctuations of the latency could be a result of applying

online smoothing using a very limited history of clock correction

offset values. The exact cause for the fluctuations remains

unclear; a more detailed investigation would be interesting but

lies outside the scope of the current study.

4.3. Comparison with reference data
recording

The comparison of the data acquired by the openMHA

software with the LabRecorder has shown that data acquisition

can accurately be made via both ways, i.e., recording with

the LabRecorder as well as real-time capturing with the

openMHA framework.

4.4. Suitability and comparison to
state-of-the-art systems

In order to compare the temporal precision of the presented

system to existing state-of-the-art technology, it is important

to note that there is no standard at which point a mobile EEG

system is considered sufficiently precise. Nevertheless, there

are some indications that can be used for the evaluation of

the system’s performance. For instance, Williams et al. (2021)

established a jitter threshold, i.e., the point at which jitter made

an event-marking method unreliable using an ERP data set

recorded using a research-grade EEG system. Their data set

contained P100, N100, and P200 peaks. They determined a jitter

threshold of 45ms for the temporally wider P200 peak and a

jitter threshold of 16ms for the temporally sharper N1 peak.

They concluded that larger auditory ERP peaks are more robust

to jitter, while smaller peaks are more easily mitigated. While the

authors point out that these values should not be regarded as

absolute thresholds, they can be used as guidelines to narrow

down the order of magnitude of temporal requirements for

mobile EEG systems. The jitter of the system presented here is

well below the jitter thresholds determined in Williams et al.

(2021). Further, when comparing the results to existing studies
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that report timing test data, e.g., Debener et al. (2015), Blum

et al. (2017), Mirkovic et al. (2019), Williams et al. (2021), Hölle

et al. (2022), the system shows a similar or better accuracy. It can

therefore be assumed that the system is suitable to be used for

the measurement of temporally sharper peaks, such as the N1.

Additionally, in another study, the portable components used

for this setup have already been used to record physiological data

that enabled the extraction of ERPs, including N100 and P300

peaks, using an Oddball paradigm (Dasenbrock et al., 2021).

4.5. Limitations and challenges

It was shown that the jitter of the setup is sufficiently small

and thus suitable for online applications. However, the across-

session variation of the lag could have a negative influence when

averaging over sessions and subjects. The respective impact of

the across-session variation of the lag depends on which EEG

feature is examined. Temporally wide features that can be spread

over several 100ms, such as the P300 amplitude, can still be

decoded between sessions. This can be done using decoders

based on 50ms or 100ms time bins (Debener et al., 2015;

Dasenbrock et al., 2021). Nevertheless, an EEG system with

higher lag predictability would facilitate its usability for future

applications of the setup.

This study did not examine the extent to which the

computational load of PHL might have an impact on the setup’s

timing accuracy. Factors such as sophisticated signal processing

and the addition of more sensors could increase the PHL’s CPU

or network load. Thus, future studies using the PHL should

always investigate the timing for their particular setup. Quick

timing tests may be derived from the methods introduced here.

Due to the necessity of a PHL device, the presented

setup may be harder to reproduce when compared to

fully smartphone-based approaches. However, considering the

PHL’s specialized hearing aid hardware and openMHA signal

processing software, less effort will be required to implement

new EEG-based hearing aid algorithms. Regarding their form

factor, both PHL and cEEGrid are not entirely suitable for

everyday use. In a research context, however, the presented

setup provides a useful platform to explore the potential of

neuro-steered hearing devices.

4.6. Relevance for future applications

Studies such as Zink et al. (2017) or Aroudi et al. (2021)

require synchronizing the incoming EEG stream with the

audio stream online, as they are received over LSL, e.g., to

compare the estimated envelope calculated from the EEG

with the envelope of the audio. This requires on-the-fly time

synchronization of incoming LSL streams, which is possible

with the presented setup, as all information for synchronization

is available in the block-based real-time processing in the

openMHA software. Further, other approaches exist that

incorporate information other than microphone signals into

hearing aid processing, based on, e.g., electrooculography

(EOG) and head movement sensors to estimate the user’s gaze

direction (Favre-Felix et al., 2018; Grimm et al., 2018). Since

the presented setup uses the well-established LSL framework,

other sensors could be integrated in the same manner as

employed in this study. This would also allow the setup to

be extended to include other sensors besides EEG to expand

the setup into a multi-modal research platform (Blum et al.,

2021).

5. Summary and conclusions

This study performed a comprehensive timing analysis

of the research platform introduced in Dasenbrock et al.

(2021), focusing on the alignment of audio and EEG data.

The setup combines the mobile Smarting EEG system with

a portable research hearing device, the Portable Hearing

Laboratory (PHL). To perform the timing analysis, we further

developed the setup to enable sending single software event

markers during the onset of an acoustic stimulus. The

temporal precision of the PHL when presenting acoustic

stimuli and the EEG system when providing synchronized

EEG data was measured using a reference device, i.e.,

the LabStreamer. Further, after the accuracy of the PHL’s

stimulus presentation and the EEG system were determined

separately, the entire system was examined “in-the-loop” to

quantify how the setup’s timing accuracy would be in an

actual EEG measurement. The data received and recorded

with the presented setup were compared to the widely used

standard recording program LabRecorder. All timing tests were

performed for a short (15min) and long (3 h) measurement

duration. Based on the data collected in this study, we concluded

the following:

• The PHL can time-accurately present acoustic stimuli and

generate LSL streams over multiple hours of playback.

• The timing accuracy of the EEG system on its own can have

a major influence on the overall system’s timing. Checking

the timing behavior of the EEG system by comparing its

LSL stream against a trusted reference is a crucial step when

integrating such a system. While the EEG system used in

this work is sufficiently accurate within a measurement

session, there are noticeable lag variations across sessions.

The current setup should be enhanced with an EEG system

featuring a higher temporal across-session lag stability to

improve its practicability.

• The PHL is capable of presenting acoustic stimuli while

simultaneously capturing the audio and EEG LSL streams

with sufficient temporal accuracy over multiple hours of
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playback and recording in an in-the-loop system. The

temporal accuracy is sufficient to extract event-related

potentials from the EEG.

• Featuring a high temporal precision and real-time signal

processing capabilities, the presented setup is suitable

as a platform to investigate closed-loop EEG & audio

applications for future hearing aids.
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The ear-EEG has emerged as a promising candidate for real-world

wearable brain monitoring. While experimental studies have validated several

applications of ear-EEG, the source-sensor relationship for neural sources

from across the brain surface has not yet been established. In addition,

modeling of the ear-EEG sensitivity to sources of artifacts is still missing.

Through volume conductor modeling, the sensitivity of various configurations

of ear-EEG is established for a range of neural sources, in addition to ocular

artifact sources for the blink, vertical saccade, and horizontal saccade eye

movements. Results conclusively support the introduction of ear-EEG into

conventional EEG paradigms for monitoring neural activity that originates

from within the temporal lobes, while also revealing the extent to which ear-

EEG can be used for sources further away from these regions. The use of

ear-EEG in scenarios prone to ocular artifacts is also supported, through the

demonstration of proportional scaling of artifacts and neural signals in various

configurations of ear-EEG. The results from this study can be used to support

both existing and prospective experimental ear-EEG studies and applications

in the context of sensitivity to both neural sources and ocular artifacts.

KEYWORDS

ear-EEG, forward modeling, blinks, vertical saccades, horizontal saccades, EEG

artifacts, neural sources

Introduction

Electroencephalography (EEG) is a brain monitoring method that utilizes non-

invasive electrodes placed on the scalp surface to extract electrical neural activity.

The most common use-cases of EEG are clinical; these involve the localization and

characterization of seizures related to epilepsy (Noachtar and Rémi, 2009) and the

objective assessment of hearing ability in infants (Schulman-Galambos and Galambos,

1979). However, since modern EEG hardware is available in a miniaturized, portable

form Abiri et al. (2019) and Wolpaw et al. (2002), EEG has also attracted attention

in multiple real world applications of brain monitoring, such as brain computer

interfaces (BCI).

Conventionally, EEG is recorded through an array (montage) of electrodes placed

across the entire scalp, termed a scalp EEG montage. As a result of the wide coverage

of the human scalp achievable with a scalp EEG montage, conventional EEG offers

good spatial sensitivity to a variety of neuronal activity from across the brain surface.
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A B

FIGURE 1

EEG sensing technologies: (A) In-ear-EEG device mounted on
the right ear of a subject. Common locations for electrodes on
the ear canal, concha (cavum and cymba), and helix are shown
(Looney et al., 2012). (B) Standard scalp EEG cap and electrodes
mounted on the head of a subject.

However, conventional scalp EEG is not suited for wearable

applications as a result of the difficulty of integration of the

hardware with everyday activity. Specifically, conventional scalp

EEG is cumbersome, obtrusive, time-consuming to set up,

difficult to use without specialist supervision, and introduces

unwanted stigma for patient-populations (Casson, 2019).

For these reasons, alternative, miniaturized, and wearable

EEG montages which address these shortcomings hold

much promise.

One such candidate is ear-EEG (Looney et al., 2011), which

employs a small number of electrodes which measure EEG from

the surface of the skin on the outer-ear (Mikkelsen et al., 2015).

Importantly, ear worn devices are familiar, naturally discreet,

unobtrusive, non-stigmatizing, and potentially easy-to-use, thus

providing a convenient base for wearable health monitoring

platforms (see Figure 1). Ear-EEG has been shown to be a

reliable alternative to scalp EEG in several settings; sleep stage

classification (Mikkelsen et al., 2017; Nakamura et al., 2017b),

drowsiness onset detection (Nakamura et al., 2018), objective

hearing threshold estimation (Bech Christensen et al., 2018),

bio-metric authentication (Nakamura et al., 2017a), epileptic

waveform detection (Zibrandtsen et al., 2017), brain-computer-

interfaces (Goverdovsky et al., 2017; Yarici et al., 2021), and

emotion recognition (Athavipach et al., 2019). Additionally,

the susceptibility of ear-EEG to various artifacts has also

been characterized experimentally for auditory neural activity

detection in the presence of head, eye, and jaw movements

(Kappel et al., 2017).

The source-sensor relationship is an important concept

for EEG technologies. The source-sensor relationship is a

characterization of the sensitivity of a sensor, or an EEG

channel, to the signal sources of interest, which are typically

neural current dipoles (Grech et al., 2008). In practical terms,

knowledge of the source-sensor relationship not only facilitates

the optimization of EEG channel configuration for a particular

neural source, but can also provide rigorous, theoretical evidence

for inferences drawn from weak experimental data, for example

data that is collected via a low number of sensors and

in noise-prone scenarios (Rush and Driscoll, 1968; Coburn

and Moreno, 1988; Mosher et al., 1992). For wearable EEG

technologies such as ear-EEG, signal-to-noise ratios (SNR) are

often low in practice, which poses great challenges for the

adoption of such wearable technologies in many scenarios. If

the source-sensor relationship were known for wearable devices,

the choice and design of the device could be optimized for

particular applications.

Physics modeling of the propagation of neural potential

to EEG sensors, commonly termed forward modeling, can be

used to estimate the source-sensor relationship for various

configurations of EEG (both montages and channels). In this

paradigm, the electric potential on the surface of the scalp

arising due to a current dipole source within the brain volume

is estimated by applying Maxwell’s equations to a structurally

accurate dielectric model of the head (Sarvas, 1987), termed

a volume conductor model. High resolution imaging, such

as magnetic resonance imaging (MRI) scans or computerized

tomography (CT) scans enable the construction of detailed

volume conductor models. Unlike experimentation, forward

modeling allows for the testing of a larger number of channels

and sources in a time-efficient way.

Some limited forward modeling work related to ear-EEG

has been reported in the literature. In an ear-EEG modeling

study Kappel et al. (2019), demonstrated the feasibility of

source localization using in-ear-EEG and provided highly

detailed subject specific forward models that were created by

scanning each subject’s head anatomy. However, the source-

sensor relationship for in-ear-EEG was not evaluated in detail.

In a more detailed analysis, Meiser et al. employed forward

modeling in order to compare the sensitivity of scalp EEG with

cEEGrid–an alternative ear-EEG method which utilizes the skin

surface surrounding the ear (Meiser et al., 2020). The study

presented in this paper aimed to establish a detailed source-

sensor relationship for various configurations of ear-EEG.

While the sensitivity to neural sources is a key determining

factor in the reliability of an EEG technology, equally important

is its robustness in the presence of artifacts. Despite the fact

that the physics mechanisms underlying most common EEG

artifacts have been long established [motion (Oliveira et al.,

2016; Symeonidou et al., 2018), eye movement (Gratton, 1998;

Joyce et al., 2004; Roy et al., 2014), muscle activation (Ma

et al., 2012; Muthukumaraswamy, 2013; Richer et al., 2019),

and electrical interference (Webster, 2009)], to date, there is

no theoretical study of such artifacts in ear-EEG. In this paper,

as well as exploring the source-sensor relationship for various

neural sources, we aim to provide a detailed characterization

of the source-sensor relationship for various ocular sources

of artifacts, utilizing equivalent current dipole data for blinks,

vertical saccades, and horizontal saccades [collected by Lins

et al. (1993a)]. This paper aims to highlight the utility of
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approaching ear-EEG equipped with theoretical knowledge of

not only neural source sensitivity, but also that for sources

of artifact.

Methods

Modeling was conducted in COMSOL Multiphyiscs R©–

a multi-physics modeling platform which enables finite

element electromagnetic modeling in multiple physics domains

(COMSOL, 2022). Geometric and dielectric human tissue data

from the Information Technologies in Society Foundation

(IT’IS; Gabriel, 1996; Iacono et al., 2015) was used to build

an accurate (dielectric) model of the human head and ears

to be used within COMSOL. The following section describes

the structure of the model and the implementation of physics

modeling within the COMSOL software.

Forward modeling

For EEGmodeling, the standard volume conductor–forward

modeling approach was employed (Sarvas, 1987). The same

approach was also employed for ocular artifact modeling. The

utilization of such an approach for ocular source modeling is

motivated by the fact that the ocular sources used within this

study were described as equivalent current dipoles, which were

discerned through standard EEG inverse modeling procedures

in Lins et al. (1993a).

In this work, potential on the surface of the skin was

extracted at several EEG locations of interest. For ear-EEG, four

sites on each ear were sampled; the ear canal (XEC), concha

cavum (XCAV), concha cymba (XCYM), and helix (XHEL),

where X is either L (Left) or R (Right), denoting the specific

ear. The placing of the electrodes is shown in Figure 3A. For

scalp-EEG, a 64-channel montage was placed on the surface

of the skin according to the 10–20 BESA (2022) convention.

This configuration represents a commonly used montage within

EEG research and provides a reasonable density of sampling and

spatial extent of coverage on the head surface.

Volume conductor model
The aim of the present study is to provide the first ear-EEG

source-sensor analysis for both neural and ocular sources. As

such, in addition to standard EEG forward model structures

(e.g., bone, brain, skin, and muscle) a volume conductor model

which includes structures of the eyes and ears is necessary.

Rather than provide subject specific modeling, the current

study aims to provide generalizable modeling, such that the

results could be applied to the general population. When

building a generalizable model, anatomical geometry which

closely resembles the average anatomy of the population is

desirable, as this will maximize the portion of the population for

which your predictions resemble experimental measurements.

However, since geometries for the ear and eyes are not used in

EEG forward models or detected in routine anatomical scans

of the head, such average data for the eyes and ears has not

been produced. In the place of data that is generalizable, the

MIDA model has been used in the current study (Iacono et al.,

2015). TheMIDAmodel describes the head anatomy of a healthy

adult male, is highly detailed, and includes 153 different tissues

of the head (including the vitreous humor of the eyes and the

skin surface of the ears). For the present model, an adapted and

simplified geometry, including seven main tissues was created

(see Figure 2). The tissues included were skin, including the

inner and outer dermis of the whole head, neck, and outer ear;

bone, including the skull and the C1–C3 vertebrae; brain tissues

including gray matter, white matter, cerebellum, and brainstem

surface; internal air (respiratory tracts and mastoid air-cells

within the skull); parotid glands; vitreous humor (left and

right eyes); and muscle. The muscle tissue was not designated

a specific geometry, rather, surrounding regions of the other

tissues were endowed with muscle tissue properties.

The tissue properties used within this model are provided in

Table 1 and are drawn from the IT’IS tissue frequency database

(Hasgall et al., 2022). Dielectric values at an excitation frequency

of 10Hz were used for this study in order to reflect a typical EEG

frequency of interest.

The COMSOLMultiphysics software requires that geometry

data does not exhibit non-manifold edges and self-intersecting

faces. Therefore, the MIDA data was adapted and simplified

during a pre-processing procedure in order to meet these

compatibility requirements. Details of the pre-processing

procedure are provided in the Supplemental material, while

the entirety of the final model geometry will be provided

upon request.

Within the COMSOL software, forward modeling was

conducted within the electric currents interface (AC/DC

Module) through the following methods. An equation for

current density was used to solve for electric potential

throughout the model:

J = σE+ jωD+ Je, (1)

where J is the total current density, σ is material conductivity, E

is the electric field, j is the imaginary number, ω is the frequency

of current, D is the displacement field, and Je is the external

(source) current density (COMSOL, 2022).

The following equation of continuity was imposed across

tissue boundaries:

n2(J1 − J2) = 0, (2)

where n is a unit vector that is normal to (and directed away

from) the boundary and J is the electric current density. The

indices 1, 2 describe the regions of space either side of the
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A B C

FIGURE 2

Dielectric distribution within the head and ear model. Di�erent tissue groups are discernible by color; brain-cyan, bone-yellow, muscle-gray,
air-green, vitreous humor-red, and skin-blue. (A) Sagittal section of the head showing the interior of the model. The skin and bones are hidden
to the left of the mid line sagittal plane, such that the brain, eyes, glands, and internal air are clearly visible. (B) Coronal section of the head with
the skin and bone hidden to the rear of the mid line coronal plane. (C) Coronal section of the head, zoomed in to the left ear region, viewed
from a posterior position. The skin and bones are hidden to the rear of the mid line coronal plane. Tissues are transparent, to enable a detailed
view of the entire ear and surrounding structures.

TABLE 1 Dielectric properties of the tissue in the model taken from the IT’IS tissue frequency database (Hasgall et al., 2022).

Tissue

Bone Skin (dry) Brain (gray matter) Muscle Parotid glands Eyes (vitreous humor) Air

σ (S/m) 2× 10−2 2× 10−2 2.9× 10−2 2.2× 10−1 6.7× 10−1 1.5 0

ǫr 5.5× 10−4 1.1× 103 4× 107 2.6× 107 9.4× 101 9.9× 101 1

Values for conductivity (σ ) and relative permittivity (ǫr) at an excitation frequency of 10Hz were used in the model.

boundary. The head model was placed at the center of a

large (r = 10m) sphere with the dielectric properties of air

(conductivity σ = 0 µS/cm, relative permittivity ǫ = 1). The

surface of the sphere acted as the ground in the AC model. See

Martinek et al. (2008), Pelot et al. (2018), and Seibt et al. (2019)

for examples of volume conductor modeling within COMSOL.

Neural sources

The goal of the presented modeling was to evaluate the ear-

EEG source-sensor relationship for a variety of realistic neural

sources. The source space was restricted to the surface of the

brain and comprised 990 homogeneously distributed source

locations (Figure 3C). In this way, an exploration of the source-

sensor relationship for a range of realistically located neural

sources was achieved. Each location was occupied by a single

source, enabling a fine-grained mapping of the brain surface.

Each source was orientated at perpendicularly to the surface of

the brain. Sources were modeled as point current dipoles; the

location, orientation, and magnitude of which were specified

(Sarvas, 1987).

Sensitivity maps
The source sensor relationship between a given EEG

montage and the neural current sources is analyzed through

the following method: for each of the 990 neural sources,

the potential difference between all possible pairings of two

electrodes (i.e., all possible bipolar channels) was determined.

Of all these potential differences, the greatest unsigned potential

difference is defined as the sensitivity of the EEGmontage to the

neural source in question. This method effectively identifies the

best-case signal magnitude that can be measured by the EEG

montage in question, for all neural current sources modeled.

The neural sources were modeled as point current dipoles

oscillating at 10Hz. The entirety of the ear skin-surface is

available to ear-EEG devices, meaning that EEG can be detected

from anywhere on this surface through the use of multiple

electrodesmounted on a single device (see the ear-EEG electrode

locations in Figures 3A, B). The sensitivity maps in Figure 5

display the sensitivities for each of the 990modeled brain surface

sources. The analysis was conducted for both unilateral and

bilateral ear-EEG and scalp-EEG (64 channel 10–20 montage).

Sensitivity data were transferred to visual representations of the

sensitivity over the surface of the brain, or sensitivity maps, in
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A B C

FIGURE 3

(A) Ear-EEG electrode locations and naming convention. Electrodes are shown for the left ear. An equivalent array is positioned on the right ear.
(B) EEG electrode locations on the skin surface of the model. Magenta and cyan markers, respectively, indicate the location of electrodes in a
64-electrode scalp EEG montage and a left and right ear-EEG montage. Sixty-four scalp EEG electrodes are placed according to the 10–20
BESA (2022) convention. (C) Neural source space on the course-grained surface of the brain. Source locations are homogeneously distributed
with a density of 1.5 cm−2 and are highlighted in orange.

MatLab R©, using the source location and brain mesh data in the

function trisurf. In order to enable clear visualization of the

exponentially dynamic sensitivity map, sensitivities are plot in

decibels (dB) relative to an arbitrary value, calculated through

the equation 10log10(V/Vreference), where V is the sensitivity

value of interest and Vreference is the arbitrarily set reference

value. In the chosen logarithmic scale, 10-fold differences in

sensitivity are equal to± 10 dB.

In addition to the sensitivity maps described above, relative

sensitivity maps were created. In this analysis, the ear-EEG

montage sensitivities were divided by the scalp EEG montage

sensitivities, in order to enable calculation of the change

in signal amplitude associated with the use of a particular

ear-EEG montage over the 64-channel scalp-EEG montage.

Once again, for each source, the scalp EEG and ear-EEG

sensitivities are extracted from the optimal differential pair of

electrodes within their respective montages. In this way, the

expected increase/decrease in signal amplitude (signal gain/loss)

associated with the use of both unilateral and bilateral ear-

EEG over scalp EEG could be fairly examined. Meiser et al.

introduced this method for the analysis of the cEEGrid source-

sensor relationship in Meiser et al. (2020). The presently

reported values are transformed into a logarithmic scale via

the equation 10log10(Vear/Vscalp), where Vear and Vscalp,

respectively, are the optimal sensitivity values for the ear and

scalp montages.

Ocular artifact modeling

Artifacts arising due to blinks and eye movements can be

explained in terms of the corneo-retinal dipole (CRD) field. This

dipole field arises due to natural charge separation between the

cornea and the retina. During eye movements, the CRD rotates

around the center of the eyeball, resulting in a dipole current.

During eye blinks, the conductive surface of the inner eyelid

sweeps over the cornea, leading to current discharge, which

can also be modeled as a current dipole. In Lins et al. (1993b),

the authors performed dipole fits to electrooculographic data.

They found that two-dipole fits (one dipole per eye) explained

the data very well (explaining up to around 98% of the total

variance). For each type of ocular artifact (vertical saccades,

horizontal saccades, and blinks), the fitted dipoles shared

approximately the same locations. For blinks, the dipoles were

approximately aligned in the anterior-posterior direction. For

vertical (horizontal) saccades, the dipoles were approximately

aligned in the superior-inferior (lateral) direction. We therefore

modeled each type of artifact using point current dipoles

aligned with the directions reported by Lins et al. (1993a).

Figure 4 displays a graphical representation of the dipoles, while

numerical representations of the dipole vectors are provided in

the Supplemental material.

For modeling ocular artifacts, a current dipole of fixed

amplitude was used to model all three artifact types

(blinks, vertical saccades, and horizontal saccades). The

dipole amplitude was calibrated so that the resulting scalp

topographies reflected the typical waveform amplitudes

measured experimentally [for example, see Lins et al. (1993a)].

However, the values reported in this study are normalized and

are therefore independent of the chosen dipole amplitude (the

same results could be achieved with any dipole amplitude).

In our simulations, we neglected the rider artifact, which is

a transient onset effect which occurs at the start of a vertical or

horizontal saccade. Similar to blink artifacts, the rider artifact

occurs because the eyelid lags behind the motion of the artifact,

discharging slightly. In fact, the two blink dipoles can be used to

explain the rider artifact.

For the purpose of validation of the ocular artifact modeling,

simulations of scalp EEG sensitivities provided by the presented

model were compared to measured data in Lins et al. (1993b);
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A B

FIGURE 4

Ocular artifact dipoles. Orientation of the blink (orange), vertical (cyan), and horizontal (magenta) dipoles are shown within the geometry of the
skull (gray) and eyes (dark gray). (A) Front view. (B) View from the right hand side of the head.

both sets of data are provided in Supplementary Table 3. The

sensitivity of a number of scalp EEG channels ranging from

frontal, central, occipital, and temporal sites were compared,

where the sensitivities were expressed as percentages relative

to values from reference channels; VEOG (for the blink and

vertical saccade artifacts) and HEOG (for the horizontal saccade

artifacts). Correspondence between the measurements in Lins

et al. (1993b) and the presented simulations was calculated

in terms of the mean error between sensitivity values. Good

agreement was found between the measured and simulated

potentials for all three of the investigated ocular artifacts, with

a mean error of 3% across all three artifacts.

Results

Ear-EEG sensitivity to neural sources

Sensitivity maps
Figures 5A, B displays the sensitivity map for a left

ear unilateral ear-EEG montage (displaying the characteristic

sensitivity profile for a single earpiece). As previously described,

the sensitivities displayed for each individual dipole are extracted

from the optimal differential pair of electrodes within the

montage (for that dipole). This analysis enables examination

of the full capability of a montage which is achievable through

the optimal electrode pairing. The highest sensitivities of the

unilateral montage were exclusively observed in the ipsi-lateral

inferior and middle temporal lobe. Decreases in sensitivity

were observed for regions surrounding the ipsi-lateral temporal

lobe, with the lowest sensitivities observed for sources furthest

away from the ipsi-lateral ear; in frontal, central, and posterior,

and contra-lateral locations. For the bilateral montage, high

sensitivities are observed across large portions of the left and

right temporal lobe and even some surrounding regions, while

the lowest sensitivities were observed for frontal, central, and

posterior regions close to the mid-line sagittal plane.

The relative sensitivity of the unilateral montage is displayed

in Figures 5E, F. As with the sensitivity maps described above,

relative sensitivity values are calculated using the optimal

electrode pairing within each montage. On the inferior ipsi-

lateral temporal lobe, for a small collection of sources (2% of

the total) there is moderate signal gain, with a median value

of 2 dB (25/75th percentile: 1/4 dB). For the majority of the

remaining sources, there is a severe signal loss. The median

relative sensitivity for all sources for the unilateral ear-EEG

montage is −17 dB (25/75th percentile: −20/−4 dB). For the

bilateral montage, the regions of severe signal loss are reduced

relative to the unilateral montage. Themedian relative sensitivity

was found to be −10 dB (25/75th percentile: −15/−4 dB). A

small portion (5%) of sources on both temporal lobes were

detected with a signal gain, with the median of 2 dB (25/75th

percentile: 1/3 dB).

Channel sensitivity analysis
In Figure 6, the sensitivities of ear-EEG channels are assessed

individually. Channels were created between all possible pairings

of electrodes within each ear-EEG montage (unilateral and

bilateral). First, the prevalence of the channels is evaluated,

where the prevalence is equal to the percentage of brain

sources for which the channel in question recorded the highest

sensitivity. The prevalence can be viewed to indicate the relative

utility of a channel within its montage. This approach was

introduced in Meiser et al. (2020), for channels within a

unilateral cEEGrid montage. In the prevalence analysis, only

sources for which at least one channel from within the montage

recorded a sensitivity above a certain threshold were included in

the analysis. For all montages, the threshold was set to 10% of

the highest sensitivity from the scalp montage, therefore sources

for which large reductions in amplitude were observed did not

feature in the analysis [see Meiser et al. (2020) for a similar

methodology]. The use of thresholding was motivated by the

fact that for sources which are poorly detected, knowledge of the

channel that recorded the highest sensitivity is not informative.

Figure 6A displays the channel prevalence in the form of a

heat map for both unilateral and bilateral montages (indicated
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B D F H

FIGURE 5

Sensitivity maps for ear-EEG: (A, B) Sensitivity map for a left ear unilateral ear-EEG montage. (C, D) Sensitivity map for a bilateral ear-EEG
montage. (E, F) Relative sensitivity map for a left ear unilateral montage and a 64-channel scalp EEG montage. (G, H) Relative sensitivity map for
a bilateral ear-EEG montage and a 64-channel scalp EEG montage. (A–D) High and low sensitivities, respectively, are represented by magenta
and cyan shading. (E–H) Severe and moderate signal losses are displayed in gray and white, respectively. Signal gains are displayed in red and
yellow. (A, C, E, G) Left brain surface. (B, D, F, H) Inferior surface of the brain.

by a dotted pattern and color shading, respectively). Within the

left unilateral montage (bottom left of the heat map, separated

by a dashed line) the helix to ear canal channel recorded

the maximum sensitivity for 56% of selected sources. Helix to

cavum, and cymba to ear canal were the next most prevalent

(30 and 10%, respectively), followed by cavum to ear canal (3%).

Helix to cymba and cymba to cavum failed to record the highest

sensitivity for a source. Within the right ear unilateral montage

(top right of the heat map, separated by a dashed line) the helix

to cavum was the most prevalent (62%), with the helix to ear

canal recording the highest sensitivity for the remaining sources

(38%).Within the bilateral montage, which included all available

electrodes on both the left and right ears, the left helix to right

helix channel recorded the most maximum sensitivities (36%)

for a single channel, while the bi-ear helix to ear canal channels

(left helix - right ear canal/right helix to left ear canal) recorded

the maximum sensitivity for 20% of sources each (Figure 6A).

The left helix to right cymba and right helix to left cymba were

the next most prevalent, recording 10 and 9% of maximum

sensitivities, respectively. Figure 6B displays the complete set of

channels which recorded the maximum sensitivity at least once.

Dominance of the bilateral channels is clearly observed.

To supplement the channel prevalence analysis, the average

sensitivity for each ear-EEG channel was also calculated

(Figure 6C). As with the channel prevalence analysis, average

sensitivities were based only on sources which satisfied

the threshold condition described above. Values of average

sensitivity are provided in normalized units ( n.u.)–whereby

unilateral and bilateral ear-EEG were normalized with respect to

the same value: the maximum average ear-EEG sensitivity from

within the unilateral and bilateral montages. For the average

sensitivities, a linear scale was sufficient to reveal meaningful

trends, i.e., the values reported are calculated via the equation

Vave/Vmax, where Vave is the average sensitivity of the channel

in question, and Vmax is the maximum average sensitivity.

The helix to helix channel recorded the highest average signal

amplitude (1 n.u.), however the majority of bi-ear channels

recorded similar average amplitudes (>0.6 n.u.). The single ear

channels exhibited lower average signal amplitude (<0.3 n.u.);

the lowest average amplitude was recorded by the left and right

single ear cavum to ear canal channels (<0.1 n.u.).

In order to further characterize ear-EEG, for a selection of

ear- and scalp EEG channels, channel sensitivities were plotted

against respective inter-electrode distance (Figure 6D). In order

to comparison between scalp EEG and ear-EEG, the sensitivity

of each channel was measured as the number of sources for

which the channel sensitivity exceeded the previously described

threshold. Ear and scalp channels were normalized with respect

to the same value - the maximum sensitivity fromwithin the ear-

EEG and scalp EEG montages. For the scalp EEG channels, a

linked mastoid referencing system was used, while for ear-EEG,

left and right ear channels were referenced to the ipsi-lateral

helix, and bi-ear channels to the contra-lateral helix. The inter-

electrode distance for the linked mastoid referenced scalp EEG

channels was calculated as the average of the distance of the

primary electrode from both mastoid electrodes.

Both the sensitivity and inter-electrode distance of single

ear channels are lower than those of the bi-ear and scalp EEG

channels, leading to the ratio of mean channel sensitivity for

left ear, right ear, and bi-ear-EEG relative to the mean channel
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sensitivity of scalp EEG, respectively, of 0.3, 0.3, and 0.9. A linear

trend with equation of best fit, y = 0.1x + 1, (R2 = 0.56) was

found for the data displayed in the plot, where y = sensitivity,

x = inter-electrode distance, and R2 is the goodness-of-fit

measure for the linear trend.

Ocular artifact modeling

The sensitivity of different configurations of ear-EEG in the

presence of three common types of ocular artifact, blinking,

vertical saccade, and horizontal saccade, was investigated. The

sensitivity of ear-EEG to ocular artifacts was bench-marked

against that of scalp EEG in Figures 7A, C, E. Specifically,

sensitivities for two ear-EEG channels; single-ear left helix to

left ear canal (LEH-LEC) and bi-ear left helix to right helix

(LHEL-RHEL) are displayed alongside sensitivities of multiple

scalp EEG channels that were referenced to the linked mastoids.

Since the scalp EEG channel sensitivities are approximately

symmetric about the midline sagittal plane, the inclusion of

only a single hemisphere’s (left) EEG channels was sufficient

to capture the general variations in scalp EEG sensitivities to

ocular artifacts. As a result of the large range (multiple orders of

magnitude) of channel sensitivities, values in dB were calculated

via the equation [10log10(V/Vreference)], where V is the channel

sensitivity of interest, and Vreference is equal to an arbitrarily

set reference value. For all three artifacts, sensitivity values are

reported with respect to the same reference value to enable

between-artifact comparison.

For the blink artifact (Figure 7A), the maximum scalp

EEG sensitivity was recorded by the FP1 channel and the

lowest by the Iz channel (33 dB difference). Regarding ear-EEG,

the blink artifact resulted in a larger potential difference in

the LHEL-LEC channel relative to the LHEL-RHEL channel,

with a difference between the sensitivities of 3 dB. Relative to

scalp EEG, the LHEL-LEC channel was most similar (<1 dB

difference) to scalp channels with a lateral positioning (P7,

TP7), while the LHEL-RHEL channel was most similar (<1 dB

difference) to the posterior scalp channel O1. The LHEL-LEC

and LHEL-RHEL sensitivities were among the least sensitive

out of the selection of scalp and ear-EEG channels analyzed

(7th and 2nd least sensitive out of 37 channels, respectively).

The resultant potential topography on the surface of the head

with overlaid EEG channel topography is shown in Figure 7B,

while a magnified view of the potential on the ears is provided

in Figure 7G.

For the vertical saccade artifact, the maximum scalp EEG

sensitivity was recorded by the FP1 channel and the lowest by

the Iz channel; (26 dB difference). The LHEL-LEC channel was

most similar to lateral and posterior scalp EEG channels, P7

and POz (<26 dB difference), while the LHEL-RHEL channel

was most similar to the posterior inferior scalp EEG channel,

Iz (<5 dB difference). The LHEL-LEC channel was 14 dB more

sensitive relative to the LHEL-RHEL channel. The LHEL-LEC

and LHEL-RHEL sensitivities were among the least sensitive

out of the selection of scalp and ear-EEG channels analyzed

(6th and 1st least sensitive, respectively). The topography of the

vertical saccade potential over the surface of the scalp and ear,

respectively, are shown in Figures 7D, H.

For the horizontal saccade artifact, the maximum scalp

EEG sensitivity was recorded by the AF7 channel and the

lowest by the central and parietal scalp EEG channels along the

midline sagittal plane, Cz and CPz (<2 dB difference), while

the LHEL-RHEL channel was most similar to frontal-lateral

and central-lateral channels, F5 and FC5 (<2 dB difference).

The LHEL-LEC channel was 15 dB less sensitive relative to the

LHEL-RHEL channel. The LHEL-LEC sensitivity was among

the least sensitive out of the selection of scalp and ear-EEG

channels analyzed, while the LHEL-RHEL sensitivity was among

the most sensitive (4th least sensitive and 6th most sensitive,

respectively). The topography of the horizontal saccade potential

over the surface of the scalp and ear, respectively, are shown in

Figures 7F, I. The mean, maximum, and minimum sensitivity

for the blink, vertical saccade, and horizontal saccade artifact

were also calculated for each montage and are presented in

Table 2. For each artifact, Figures 7J–L display the normalized

sensitivities for the various ear-EEG channels, where for each

artifact, the channel sensitivities were normalized via the

equation Vchannel/Vmax, where Vchannel is the sensitivity of the

channel in question, and Vmax is the maximum sensitivity from

all evaluated channels.

Discussion

Sensitivity to neural sources

The sensitivity of both unilateral (single ear) and bilateral

(bi-ear) montages to neural sources across the entire brain

surface was examined. While unilateral montages are confined

to measuring potential differences over the small region of the

ear, bilateral montages enable measurement between the left

and right ears. In this way, the bilateral montage increases the

inter-electrode distance, and therefore the potential difference,

as a result of the physical laws governing EEG. Indeed, in

Kappel et al. (2019), such differences are clearly observed

between exemplar single channel lead fields for unilateral and

bilateral ear-EEG. However, the present results for the montage

sensitivities, which show the optimized sensitivity over a more

diverse range of sources over the brain surface, reveal that

several key, large scale variations in sensitivity for montages are

similar in the unilateral and bilateral cases. For example, in (i)

temporal lobe regions of highest sensitivity in close proximity

to the ear electrodes and (ii) the regions of lowest sensitivity in

proximity to the midline sagittal plane, the sensitivity profiles

are similar. However, in between these regions, benefits of larger
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FIGURE 6

Channel prevalence and average sensitivity analysis for unilateral and bilateral montages of ear-EEG. (A) Channel prevalence for unilateral and
bilateral montages of ear-EEG. Bilateral prevalence is shown in a color scale, while unilateral prevalence for the left and right ears is shown a in
texture scale. Dashed lines separate single ear and bi-ear values on the heat-map. (B) Channel prevalence for unilateral and bilateral ear-EEG
montages visualized on the surface of the ear. For channels that recorded the highest sensitivity within a montage for at least one source (>0%),
a colored line connects the channel’s electrodes. Magenta lines connect channels that were prevalent within the unilateral (left or right)
montage analysis; orange lines connect prevalent channels in the bilateral montage analysis; and cyan lines connect channels which appeared
prevalent in both unilateral and bilateral montage analyzes. (C) Normalized average sensitivity for unilateral and bilateral montages. Dashed lines
separate single ear and bi-ear values on the heat-map. Unilateral and bilateral ear-EEG signals were normalized with respect to the same value.
(D) Relationship between normalized sensitivity and inter-electrode distance for both ear-EEG (unilateral and bilateral) and scalp EEG. Both scalp
EEG and ear-EEG were normalized with respect to the same value. A linear fit of the data is shown in a blue dashed line. Scalp EEG channel
locations are indicated in the inset and colored corresponding to their sensitivity values. All of the channels that are displayed are referenced to
the average of the sensitivities of the mastoid electrodes. The location of the left mastoid electrode is indicated by a black circle on the inset,
while the right mastoid electrode is hidden from view (on the equivalent position on the right side of the head).

inter-electrode distance were clearly observed. Such differences

between the unilateral and bilateral montages were observed

for both the regular sensitivity maps (ear-EEG sensitivity) and

the relative sensitivity maps (ear-EEG sensitivity bench marked

against scalp EEG sensitivity).

Since EEG is conventionality recorded through scalp EEG,

it is useful to compare the amplitude of the ear-EEG signal

to that of scalp EEG. Therefore, relative sensitivity maps were

also created. Ear-EEG produced an increase in signal amplitude

in small regions in the temporal lobe, while adjacent regions

mostly exhibited a moderate decrease in signal amplitude. In

regions furthest away from the ear-EEG electrodes, the ear-

EEG amplitude was shown to be considerably smaller than

that of scalp EEG. The results for sources in and adjacent

to the temporal lobe suggests that ear-EEG can be expected

to record EEG amplitudes similar to those seen in scalp

EEG in these regions. Since temporal lobe neural activity is

known to correspond to important auditory and visuo-auditory

processing, among other functionality, the use of ear-EEG in

applications such as enhanced, "smart" hearing aids is strongly

supported by these results. Indeed, reliable hearing threshold

estimation on subjects with normal hearing and sensorineural
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FIGURE 7

Ocular artifacts. (A, C, E) Sensitivities of the left hemisphere scalp EEG channels in addition to a unilateral left ear (LE) and bilateral (BE) ear-EEG
channel, for (A) blinks, (C) vertical saccades, and (E) horizontal saccades. (B, D, F) Head surface potential topography and EEG sensitivities in
normalized units (n.u.) arising due to (B) blinks, (D) vertical saccades, and (F) horizontal saccades. Scales are normalized uniformly across each
of the head surface topographies such that an inter-artifact comparison is possible. White (black) circles indicate ear (scalp) reference
electrodes. (G–I) Left and right ear surface potential topography arising due to (G) blinks, (H) vertical saccades, and (I) horizontal saccades.
Potential scales are shared with the scalp topographies, however the color scale has been changed to enable clear visualization of the potential
topography over each ear surface. (J–L) Sensitivity in normalized units (n.u.) of ear-EEG channels arising due to (J) blinks, (K) vertical saccades,
and (L) horizontal saccades. The potential scale has been normalized for each individual plot; potential scales are not shared between artifacts.
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hearing loss was demonstrated in two studies (Christensen et al.,

2017; Bech Christensen et al., 2018), where comparable variance

in scalp and ear-based estimations was found.

Sensitivity analysis of the various possible channels within a

unilateral montage showed that the channels which maximize

the space available on the ear surface, while also utilizing

the helix position/electrode (at closer proximity to the brain),

recorded the highest amplitude for the majority of sources.

These channels were: the helix to ipsi-lateral ear canal and

helix to ipsi-lateral cavum channels. These results are in

line with experimental data in Kappel et al. (2016), where

optimum reference configurations for the auditory steady-state

response (ASSR) were investigated, and theoretical predictions

in Meiser et al. (2020), where forward models of cEEGrid

showed that channels maximizing the vertical distance between

electrodes possessed the most favorable sensitivity profiles.

For the bilateral montage, the same trend was observed, with

the helix to contra-lateral ear canal channels and helix to

contra-lateral helix channels producing the highest sensitivities.

As such, in the scenario where a reduction of the ear-

EEG montage size is desirable, the use of the helix and ear

canal electrodes could be prioritized. However, despite the

dominance of the helix and ear canal electrodes, in both the

unilateral and bilateral montages, multiple electrode locations

contributed to the highest sensitivity for at least one source,

indicating that, while the area available on the ear surface

is small, varied channel geometry within the small area is

beneficial. In other words, several configurations of ear-EEG

could be of use often in practice. Such benefits of varied

channel geometry have been experimentally demonstrated in

Kappel and Kidmose (2017), where high-density ear-EEG

earpieces, with electrodes covering a large area of the ear

surface, were tested in the presence of visual and auditory

responses. The authors showed that for each different response,

several locations across the ear could be used with comparable

performance, while between responses, the optimal locations

for EEG detection varied. Benefits of a high density ear-

EEG array were also demonstrated in Kappel et al. (2019),

where subject specific volume conductor model predictions and

experimental high density ear-EEG data were shown to be in

good agreement.

To provide further insight, the average sensitivity of the

various possible channels within a bilateral and unilateral

montage was also calculated. Calculations further supported

the use of multi-electrode ear-EEG array, through comparable

average sensitivities for geometrically similar channels.

The expected signal amplitude of various ear-EEG and

scalp EEG channels were then examined in relation to

their inter-electrode distance. In general, for both scalp

and ear-EEG, the expected signal amplitude was linearly

proportional to inter-electrode distance. The revealed

relationship between expected signal amplitude and inter-

electrode distance could be used during the design process

for various wearable/Hearable devices which utilize the ear

and scalp surfaces. Further, it shows that even for ear-based

EEG devices, amplitude will scale with area covered on

the ear.

Sensitivity to ocular artifacts

For prospective general purpose EEGs, the sensitivity to

ocular artifacts is an important factor to consider. During

most everyday activities, humans frequently blink and perform

visual scans which involve horizontal and vertical saccades,

with each instance of eye movement presenting a different

artifact in the EEG signal. The sensitivity to ocular artifacts

for ear-EEG and scalp EEG was demonstrated through both

single channel sensitivity calculations and topographical plots of

potential over the surface of the head. Ear-EEG sensitivities were

calculated for a characteristic channel from both a unilateral

montage (single ear) and a bilateral montage (bi-ear), while

multiple linked mastoid reference scalp-EEG sensitivities were

also calculated. Generally, the sensitivity to ocular artifacts for

the single ear channel relative to the linked mastoid scalp

EEG channels was observed to be low, evidenced through

channel sensitivities of ear-EEG matching those of scalp

EEG channels which are among the least severely affected

by ocular artifacts. There was further evidence of low ear-

EEG sensitivity in the topographical plots, where, relative to

the scalp surface, the ear surfaces exhibited small ranges of

potential. Experimentally measured EEG SNR deterioration

caused by ocular artifacts was investigated in Kappel et al.

(2017). For blink artifacts, deterioration in SNR was observed

in multiple scalp electrodes, while for ear-EEG electrodes,

no deterioration was detected. These results are in good

agreement with the findings in this paper, as well as previous

scalp EEG studies (Lins et al., 1993b; Gratton, 1998; Joyce

et al., 2004; Roy et al., 2014). For vertical and horizontal eye

movements, unexpected SNR deterioration patterns in scalp-

EEG were observed. While vertical and horizontal saccades

were performed by subjects at a rate of once every 4 s

(0.25Hz), the only deterioration in EEG for the scalp electrodes

was observed in the theta- to gamma-EEG range (4–30Hz).

Since EMG activity is most prominent in higher frequency

ranges, the authors attributed the unexpected patterns of EEG

deterioration to inadvertent muscle contractions during the

measurements, as opposed to the investigated ocular artifacts.

Although deterioration in the delta- to gamma-EEG range

(0–30Hz) was observed for ear-EEG, further measurements

which support these findings are required. The experimental

difficulties highlighted in Kappel et al. (2017) demonstrate the

importance of biophysics modeling approaches, which enable

the investigation of electrophysiological sources in isolation.

For the bi-ear ear-EEG, the sensitivity was also low

for the blink and vertical saccade - evidenced through
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TABLE 2 Sensitivity values for scalp EEG and ear-EEG montages in response to blink, vertical saccade, and horizontal saccade artifacts.

Sensitivities to ocular artifacts: 10log10(V/Vreference) (dB)

Ocular artifact

EEG montage Blink Vertical saccade Horizontal saccade

Scalp (linked mastoid reference) 26 (35, 5) 31 (38, 17) 27 (35, 7)

Left and right unilateral ear-EEG 13 (16, 1) 24 (27, 15) 20 (22, 14)

Bilateral ear-EEG 13 (17, 2) 23 (26, 10) 30 (31, 29)

For each montage, mean values are reported alongside maximum and minimum values, respectively, in parentheses. Values are reported in dB, via the transform 10log10(V/Vreference),

where V is equal to the channel sensitivity, and Vreference is a reference value common to all artifacts and EEG montages/channels.

similarity to low sensitivity scalp EEG channels and minimally

varying topography over the ear skin-surfaces. However,

an exception occurred during the horizontal saccade, when

sensitivities equal to those of the worst affected frontal-

lateral scalp EEG channels were observed for the bilateral

channel. Such results are explained by the topography

for the horizontal artifact (Figures 7F, I), which reveals a

large potential difference between the two ear surfaces.

Measurements of such bi-ear ear-EEG data that could

be compared to the presented simulations have not yet

been reported.

The variation in ocular artifact amplitude between the

various possible ear-EEG channels was also examined. The map-

plots of sensitivity show expected trends, where channels with

larger inter-electrode distance have generally larger amplitudes.

However, there are also variations in sensitivity which arise due

to variations in channel orientation relative to the dipole field.

For example, for the vertical saccade artifact, there is a 14 dB

increase in sensitivity for the LHEL-LEC channel relative to the

LHEL-RHEL channel, despite a much smaller inter-electrode

distance (Figure 7C). Such characteristic variations within the

ear-EEG montages could be used in the detection of artifacts,

and highlight another benefit of utilizing a multi-electrode ear-

EEG array, as opposed to single channels. Ear-EEG data that

could be compared to the presented channel sensitivity analysis

of ocular artifacts have not yet been reported.

Suggestions for ear-EEG

For the first time, a systematic and detailed analysis

of the ear-EEG source-sensor relationship was provided for

a wide variety of neural sources from realistic locations,

while various configurations of ear-EEG were considered.

In addition, novel ear-EEG source-sensor relationships for

vertical saccade, horizontal saccade and blink-related ocular

artifacts have been established. With regard to both EEG

detection and sensitivity to ocular artifacts, such source-

sensor mapping, while serving to provide novel insight

into the ear-EEG sensitivity profile, could also be used to

support experimental measurements from ear-EEG in existing

literature or in prospective studies. Additionally, the methods

employed within this study can be adopted with reasonable

ease by researchers for the purpose of conducting new

ear-EEG simulations.

Simulations of neural source sensitivity have conclusively

supported the use of both unilateral and bilateral ear-EEG

montages for the detection of neural activity originating from

within the temporal lobe. In both the unilateral and bilateral

cases, the ear-EEG was estimated to record higher or similar

amplitudes to conventional scalp EEG within these regions. This

suggests that existing protocols for EEG detection could be used

with ear-EEG, without the need for considerable changes to the

protocol, and with equally likely success. In fact, as a result

of the wearability of ear-EEG, existing auditory EEG protocols

could feasibly be enhanced to include more novel real world

recording scenarios, as demonstrated in a "smart helmet with

ASSR" study (Von Rosenberg et al., 2016), where auditory brain

responses were recorded from a subject while riding a bike. Since

moderate decreases in amplitude were also observed for ear-

EEG in brain regions adjacent to the temporal lobe, covering a

variety of neural function, there is also support for similar use of

ear-EEG in a wider range of applications.

Despite the models predictions of low amplitude ear-

EEG for sources located in areas furthest away from the

temporal lobes, e.g., the posterior regions of the brain, there is

experimental support for ear-EEG detection of neural activity

from such regions, such as the visual cortex in the occipital lobe

(e.g., Kidmose et al., 2013; Goverdovsky et al., 2017). In these

experimental studies, the successful detection of visual ERPs

through ear-EEG have been possible despite smaller amplitudes

(as predicted within the simulations within this paper). A likely

reason for this is the lower noise amplitudes within the ear-EEG,

where noise originated both from untargeted brain signals and

other endogenous sources such as eye movements and muscle

activity. This theory is backed by the simulated examples of

decreases in both signal and noise amplitude in ear-EEG in

this paper. Indeed, an approximately proportional scaling of

EEG and artifact sensitivities is observed for both unilateral

and bilateral montages with each ocular artifact (compare the

analysis of inter-electrode distance and sensitivity in Figure 6D

with the ocular artifact channel sensitivities and topographical
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plots in Figures 7A–F). Such results support the use of ear-EEG

in the detection of neural activity from regions further away

from the ear, despite lower signal amplitude.

Limitations and future work

The first limitation of the presented study is the absence of

absolute sensitivity predictions (predictions of the amplitude of

ear-EEG recordings). However, the amplitude of EEG signals

is likely to change as a result of many factors, such as the

skin-electrode contact quality or the size of the group of

neurons recruited for the response. In the absence of absolute

sensitivity predictions, the approach adopted within this study

focused on relative differences between various channels. In this

way, meaningful comparisons were drawn without requiring

knowledge of absolute sensitivity values. Relative amplitudes are

also useful in practice, since, regardless of the absolute amplitude

of the response, the alignment between model predictions and

measured relative amplitude between two channels can serve as

an indicator for reliable EEG recordings. Nevertheless, absolute

predictions could be made possible through calibration of the

model with experimental measurements.

For a generalizable EEG model, geometry resembling that of

the population average is desirable, since the aim of themodeling

is to provide results that can be applied to most subjects.

However, average head geometry data including tissues such as

the eyes and ears, which are required for neural and ocular ear-

EEG sensitivity modeling, does not exist. Therefore, the present

volume conductor model was built using single subject head

geometry data from the widely accepted MIDA model (Iacono

et al., 2015). In order to mitigate the use of subject specific

geometry, the analysis conducted in this paper reflected that

of other generalizable EEG models, which focus on large-scale,

general variations in geometry that are expected to be shared

between large portions of the population. Moreover, considering

that (i) the current model was based on the anatomical geometry

of a subject with no known physical abnormalities, and (ii)

inter-subject anatomical variability is sufficient to substantially

limit the generalizability of average anatomical geometry, the

presently used single-subject geometry is likely to suffice in

producing generalizable results, provided that the interpretation

of the results are within the bounds of generalizable modeling.

A 64-channel scalp EEG configuration was considered in

this study. The scalp electrodes were placed according to

the standard 10–20 system. We compared the source-sensor

relationship of this scalp montage to that of the ear-EEG

montage. This particular arrangement of scalp EEG electrodes

was selected because of its high adoption rate in research, its

relatively high density, and its wide spatial distribution across

the scalp. However, it does not include many electrodes around

the ears. Therefore, the reader should note that other scalp

montages which contain a higher density of electrodes around

the ear regions would likely produce sensitivity profiles more

similar to that of ear-EEG for temporal lobe regions, and could

probably perform with less, or even no signal loss (relative to

ear-EEG) in temporal regions (Figures 5E–H).

A systematic analysis of the sensitivity to source orientation,

position, and distance, such as that presented in Meiser et al.

(2020) for cEEGrid, has not been the aim of the present study,

which does not consider the analysis of the associated variations

in source characteristics. One way in which such an analysis

could be achieved with the current model is, for each of the

990 dipoles simulated in this study, to test varying orientations.

Since few assumptions about the exact cortical folding structure

of the brain would be made when employing this method, the

absence of subject specific anatomy would be partially mitigated,

enabling the model to maintain a level of generalizability.

In principle, the presented volume conductor modeling

framework could be used to investigate the sensitivity of

wearable EEG montages to muscle artifacts, for example by

placing current sources in the locations fromwhich EMG signals

originate. An example of accurate volume conductor modeling

of muscles has been provided by Pereira Botelho et al. (2019).

The reader should be aware that the modeling method employed

within Pereira Botelho et al. (2019) utilizes both the muscle

fiber geometry andmotor unit activation patterns for the muscle

of interest, in addition to a modified current-source modeling

approach which exploits the reciprocity theorem (Plonsey, 1963;

Rush and Driscoll, 1969). Such methods were employed to gain

accurate predictions, and in an efficient manner (the reciprocity

theorem applied to single channel predictions enables reduced

computation times for a large number of sources). Therefore,

while EMG simulation within the current framework is feasible,

more detailed current modeling than that which is shown here

might be required for meaningful results.

For artifacts that do not arise as a result of an internal source

of electric field, for example motion and external field artifacts,

the presented modeling framework would require modification,

such that the relevant physics is incorporated into the model.

An advantage of simulating through COMSOL is that an existing

model can be adapted and used in simulations of various physics

domains, for example mechanics or electric fields and circuits.

As such, it is possible that the presentedmodel could bemodified

to incorporate simulations of head and electrode mechanics

during motion, or external field interference.

Conclusion

Novel insights into the ear-EEG source sensor relationship

for both neural and ocular sources have been provided, through

comparisons of single channel and montage sensitivity profiles

for ear and scalp EEG. The results have provided conclusive

evidence for the use of ear-EEG in applications concerning

the monitoring of neural activity originating from within the

temporal lobes, for both unilateral and bilateral montages of

ear EEG, while evidence has been provided for equal SNR
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between ear-EEG and scalp EEG in the presence of ocular

artifacts. The reported results could also be used as a reference

for various neural and ocular sources, supporting both existing

and prospective experimental ear-EEG studies. Future work will

look to exploit the utility of the presented physics modeling to

provide further insight into the sensitivity of ear-EEG to both

neural and a variety of artifact sources.
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Introduction: A device comprising two generic earpieces with embedded dry

electrodes for ear-centered electroencephalography (ear-EEG) was developed. The

objective was to provide ear-EEG based sleep monitoring to a wide range of the

population without tailoring the device to the individual.

Methods: To validate the device ten healthy subjects were recruited for a 12-night

sleep study. The study was divided into two parts; part A comprised two nights with

both ear-EEG and polysomnography (PSG), and part B comprised 10 nights using

only ear-EEG. In addition to the electrophysiological measurements, subjects filled

out a questionnaire after each night of sleep.

Results: The subjects reported that the ear-EEG system was easy to use, and that

the comfort was better in part B. The performance of the system was validated by

comparing automatic sleep scoring based on ear-EEG with PSG-based sleep scoring

performed by a professional trained sleep scorer. Cohen’s kappa was used to assess

the agreement between the manual and automatic sleep scorings, and the study

showed an average kappa value of 0.71. The majority of the 20 recordings from

part A yielded a kappa value above 0.7. The study was compared to a companioned

study conducted with individualized earpieces. To compare the sleep across the

two studies and two parts, 7 different sleeps metrics were calculated based on

the automatic sleep scorings. The ear-EEG nights were validated through linear

mixed model analysis in which the effects of equipment (individualized vs. generic

earpieces), part (PSG and ear-EEG vs. only ear-EEG) and subject were investigated.

We found that the subject effect was significant for all computed sleep metrics.

Furthermore, the equipment did not show any statistical significant effect on any

of the sleep metrics.

Discussion: These results corroborate that generic ear-EEG is a promising alternative

to the gold standard PSG for sleep stage monitoring. This will allow sleep stage

monitoring to be performed in a less obtrusive way and over longer periods of time,

thereby enabling diagnosis and treatment of diseases with associated sleep disorders.

KEYWORDS

electroencephalography, sleep monitoring, ear-EEG, long-term sleep monitoring, home
recording
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1. Introduction

Lack of sleep and poor sleep quality is a grand societal challenge.
Poor sleep quality has a negative impact on health, the feeling
of wellbeing, quality of life and on human cognitive performance.
This has large negative consequences for society, productivity,
and economy. Recently, sleep researchers and physicians of sleep
medicine have emphasized the importance of sleep on human’s
health (Naismith et al., 2011; Galbiati et al., 2019; Stefani and
Högl, 2020). However, the development within the field of sleep
monitoring has not evolved much beyond today’s gold standard,
polysomnography (PSG). As its name describes, PSG is a method
that encompasses multiple modalities to describe the sleep. These
measurements are typically recorded in sleep clinics and include
recordings of brain activity [electroencephalography (EEG)], eye
movements [electrooculography (EOG)], muscle [electromyography,
(EMG)] and heart activity [electrocardiography (ECG)] (Berry et al.,
2012). The PSG’s range of sensors and wiring means that PSG
monitoring is discomfortable and in consequence has a negative
impact on the sleep. Furthermore, sleep monitoring often takes place
in a sleep clinic instead of in the patient’s home environment and
sleeping in an unfamiliar environment also has a negative impact
on sleep. Although patients may to some extent become accustomed
to the equipment and unfamiliar environment, so that the effects
become less of a problem over time, the phenomenon is well-known
and are called the “first night effect” and implies e.g., a reduced
total sleep time, a decrease in sleep efficiency, and delayed and
decreased REM sleep (Agnew et al., 1966). These aspects, together
with the dependence on health professionals and the significant cost
associated has limited the PSG’s use in long-term sleep monitoring.
In this light, there is a need for an efficient, comfortable, and easy to
use device for monitoring sleep at home.

Alternative sleep assessment methods such as sleep diaries and
actigraphy are currently used in many sleep studies and clinical
investigations (Sadeh, 2015; Zhu et al., 2018). Unfortunately, the
amount of information gained from these methods is limited
compared to that of PSG. They are therefore mainly used in parallel
with PSG (Gaina et al., 2004). In recent years, several simple
monitoring systems have been introduced for sleep assessment. These
devices rely on fewer sensors (mostly dry EEG electrodes) to increase
comfort and ease of use. The Dreem headband (Arnal et al., 2019),
the forehead mounted Prodigy device (Younes et al., 2017) and ear-
centered electroencephalography (ear-EEG) device (Mikkelsen et al.,
2019; Nakamura et al., 2019) are some examples. While comfort and
ease of use make these devices ideal for sleep assessment, they are still
to be validated in vaster studies before they can be implemented in
the clinic.

Ear-centered electroencephalography was first introduced in
2011 (Looney et al., 2011). The original aim was to provide a more
comfortable and affordable solution for several neurophysiological
problems at a negligible performance cost. Ear-EEG is a method in
which EEG signals are recorded from electrodes in or around the ear.
A large variety of different solutions have been proposed, including
electrodes placed solely around-the-ear (Bleichner and Debener,
2017), electrodes on customized earpieces (Mikkelsen et al., 2015)
and more generic type earpieces (Goverdovsky et al., 2015). One
of the most advanced methods are based on dry-contact electrodes
embedded on individualized earpieces made of soft silicone (Kappel
et al., 2018). The first ear-EEG sleep assessment study was performed

in 2019 (Mikkelsen et al., 2019, 2021b; Tabar et al., 2020, 2021) using
custom made earplugs and a commercial amplifier. In the current
study we deployed a recent advancement in the development of a
comfortable, generic, and ready to use setup for sleep assessment,
without the sacrifice of performance. In this article, we present an at-
home sleep monitoring setup with generic earpieces and a proprietary
amplifier for ear-EEG sleep assessment in healthy people.

The focus of this article is on the comfort of the presented ear-
EEG device, the data quality of the recordings and the resulting
hypnograms. First, we present the generic earpiece design. Then,
we introduce our custom EEG amplifier. Next, we present the
feedback on the comfort of the earpieces. Finally, the data quality and
hypnograms are presented.

2. Materials and methods

2.1. Experimental setup

2.1.1. The generic earpieces
A prerequisite for this study was the development of a generic

earpiece accommodating ear-EEG based sleep monitoring to a wide
range of the population. The generic earpiece should provide a
reliable and robust contact between the body and the electrodes
embedded in the earpiece, and at the same time the earpiece should fit
most human ears, be easy to use and be comfortable to sleep with. To
begin the design process, we studied the anatomy of the human ear, to
identify sizes, curves, and anatomical landmarks. This was achieved
by examination of a large number of 3D scans of human ears and
through review of existing literature in the domain (Toivonen et al.,
2002; Lee et al., 2018; Modabber et al., 2018). This was used as the first
input to the design process. The earpiece design process was iterative
and in each step in the process we evaluated both the comfort, the
ease of use and the EEG signal quality.

There is a very large variety in anatomical shape and sizes of
human ears, and to accommodate most ears, it was necessary to
design four different earpieces. All four earpieces had the same basic
shapes but varied in sizes. The earpieces consisted of three main
features: an ear canal part, a tail, and a main body. The ear canal
part was given a tulip-like shape to ensure easy insertion in the ear
canal, while still filling out the cross section of the ear canal. The
ear canal was designed in three different sizes, equivalent to cross
sectional diameters of 7, 8, and 9 mm. Essential to the comfort is
how deep the earpiece goes into the ear canal and how well it fits the
anatomy of the ear. In our design the earpiece was relative shallow
and was not going more than 5–6 mm into the ear canal. The tail was
designed to keep the earpiece in place by applying pressure on the
outer edge of concha. The main body acted as a connector between
the two other parts and formed a smooth transition between the
concha and the outer part of the ear canal. Additionally, the main
body served as a strain relief for the cable to minimize motion artifact
from cable pulling. Both the main body and tail were available in two
sizes. Eventually we selected four size combinations of the three main
features to be used in the study.

The comfort of an earpiece is related to a wide range of
factors including mechanical properties of the earpiece material, the
number and placement of electrodes, and the ergonomic design.
Our experience was that the earpieces should be made of a soft and
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compliant material. Thus, the earpieces were molded in a soft silicone
material (Detax Software 2.0, DETAX GmbH, Germany).

Regarding the number and position of the electrodes, for sleep
monitoring the most important factor is to have a good cross-ear
derivative; this aspect has been investigated in detail in Mikkelsen
et al. (2021a). Thus, the number of electrodes in each ear is a trade-
off between comfort and redundancy; increasing the number of
electrodes gives a higher degree of redundancy at the cost of lower
comfort. In our design we decided to use two recording electrodes
in each ear, which is significantly lower than the six electrodes in
each ear used in previous studies (Mikkelsen et al., 2017, 2019). The
electrodes were placed where the earpiece seemed to apply the largest
pressure toward the body, because this is believed to give the best
contact between the electrode and the body.

Finally, the shielded cables where assembled in a form-stable and
arc-formed tube guiding the cables around the superior part of the
Helix of the ear, see Figure 1. This further reduces the effect of cable
movement and make the earpiece more discrete. Electrodes were
embedded in the earpieces; the remaining electronics were placed in
a box outside the ear to ensure good comfort.

2.1.2. Custom-designed EEG-amplifier and
electrodes

The EEG amplifier was a 4-channel “EEG-to-digital converter”
application specific integrated circuit (ASIC) specifically developed
for ear-EEG measurements. The ASIC was optimized for high input
impedance, high common mode rejection, low current noise, and low
power consumption. The ASIC was a revised version of the design
described in Zhou et al. (2016); it was extended from 2 to 4 channels
and a digital control block was included to make it easier to store the
data. The EEG amplifier was connected to the electrodes embedded in
the earpieces. Two electrodes in each earpiece were used as recording
electrodes, one electrode in the left earpiece was used as reference
electrode and one electrode in each earpiece was used as ground. The
sleep study measurements were all recorded at 250 Hz sampling rate
and with 14 bit resolution.

The electrodes were made of Titanium with a porous coating
of Iridium Oxide at the contact surface, see (Kappel et al., 2018)
for a detailed description and characterization. The electrodes were
circular with a diameter of 2.6 mm and with a slight concave shape,
whereby the electrodes protruded slightly from the surface of the
earpieces. Each electrode was connected to the amplifier with a Ø
0.53 mm coaxial cable. The cable shielding was extended all the way
to the back side of the electrode. The shield was actively driven by a
unity gain amplifier in the ASIC.

2.2. Sleep recordings

This study was approved by the Central Denmark Region
Committees on Biomedical Research Ethics (Ref. nr. 1-10-72-13-
20) as well as the Danish Medicines Agency (ref. nr. 2020012619).
Written informed consent was obtained from the participants prior
to participation. 10 subjects (4 f, 6 m) participated in this study.
The ages of the subjects ranged between 22 and 35, with a mean
of 27.4 years. Participants were screened for hearing loss, sleep
disorders, neurological disorders, bruxism, pregnancy, drug usage,
allergies, chronic pain, and sleep apnea. Each participant attended an
earpiece fitting session prior to the recordings. During this session,

the earpieces with the best fit to the participant’s ears was determined
by visual inspection of the EEG signal, and the participants were
trained in mounting the earpieces themselves. The subjects were
instructed to put on the earpieces and start recording whenever
they wanted to go to bed and stop the recording when they wake
up. They were free to spend any time in bed before sleeping. The
participants were asked to fill a sleep diary during the recording and
a questionnaire immediately after the wake up.

The study was divided in two parts, Part A and Part B. In Part
A, participants slept two nights with the partial PSG (EEG, EOG,
and EMG electrodes) and ear-EEG setup. Please refer to Mikkelsen
et al. (2019) for more details about the partial PSG. Following two
successful recordings in Part A, the study proceeded to Part B in
which the participants recorded ten full nights using only the ear-
EEG setup. The recordings were performed in the participants’ own
home. In Part A, participants visited the laboratory on the day of the
recording to get the partial PSG mounted. The participants mounted
the earpieces themselves just before the start of the recording. Ear-
EEG and partial PSG were recorded using different data acquisition
devices. The participants were asked to press a trigger button on
both devices simultaneously for signal alignment. The partial PSG
recordings were manually scored by a trained professional sleep
technologist according to the AASM manual for the Scoring of Sleep
and Associated Events (Berry et al., 2012).

In the following sections the recordings described above will be
referred to as sG, a dense form referring to the study with generic
earpieces. Specifically, sG will refer to the complete dataset, and sG.A
and sG.B will refer to the dataset related to Part A and Part B,
respectively. In addition to this dataset, we also used a companioned
dataset from a previous ear-EEG sleep monitoring study (Mikkelsen
et al., 2019, 2022) in which custom-made earpieces and a commercial
amplifier were used. This dataset will be referred to as sC, a dense
form referring to the study with custom earpieces. sC was structured
in the same way as sG, but with 20 subjects recorded four nights with
both partial PSG and ear-EEG in part A (referred to as sC.A) and 10
subjects recorded 12 nights with only ear-EEG in part B (referred to
as sC.B). A summary of the datasets used in this article is presented
in Figure 2. It is important to note that in the current study, sC was
only used for training the sleep scoring classifier and for statistical
comparisons.

2.3. Assessment of sleep quality, comfort
and ease-of-use

The participants reported perceived sleep quality, comfort and
ease-of-use of the device by rating six questions on a Likert scale.
The six questions and the corresponding Likert scale can be seen in
Figure 3. The participants were instructed to fill out the questionnaire
just after they woke up in the morning. Inter, intra subject variation
values were computed as the standard deviation of the ratings
between the subjects and within the subjects.

2.4. Signal pre-processing and channel
selection

A signal pre-processing pipeline was applied to the recorded
ear-EEG data. Each channel was bandpass filtered (0.1–100 Hz),
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FIGURE 1

(Left) Generic earpieces with mounted electrodes. The placement of the three main features (ear canal, tail, and main body) are specified for each
earpiece. The generic earpiece was molded in soft silicone in one piece to ensure good comfort. Cable relief was incorporated in the design to reduce
movement artifacts from cable pulling. Also, a formed tube was designed to guide the cables behind the ear to further reduce cable movement, to
increase comfort and to make the earpiece more discrete. EL1, EL2, ER1, and Er2: data electrodes, D1 and D2 ground electrodes, ref: reference
electrode. (Right) Earpiece mounted in the ear.

FIGURE 2

Overview of the data. sG refers to data from the study with generic earpieces, and sC to data from the study with custom earpieces. Both datasets have a
Part A and a Part B. Part A were recorded with both polysomnography (PSG) and ear-centered electroencephalography (ear-EEG), whereas Part B were
recorded from ear-EEG only.

and notch filtered at 50 and 100 Hz to suppress power line noise.
Artifacts were identified and removed following several steps. For
the sG dataset we observed periodic noise spikes with a period of
200 ms. The noise was related to internal communication in custom
developed amplifier and the severity of the noise increased with
electrode impedance, i.e., the higher the electrode impedance the
more prone the channel was to the device induced noise. The noise
was detected by an algorithm looking for spikes with a repetition rate
of 200 ms. If a spike was detected it was removed and the signal was
interpolated based on the clean signal in the neighboring samples.

Spikes of short duration and high amplitude were also detected
and removed. These spikes are usually due to small changes in the
electrode-skin connection. Poor electrode-skin connection can also
lead to dominant high frequency noise in the signal. Long periods

(>30 s) with such a noise were detected by thresholding the high
frequency power. Finally, any sample with an absolute value greater
than 350 µV were rejected. Exclusion of unsuccessful recordings
from the dataset was performed if more than 30% of the signal was
noisy or if the duration of the recording was less than 5 h.

In the Supplementary material, we have supplied figures
showing the effect of both spike removal and general noise removal.

Finally, the four data channels were combined to construct a
single channel signal. To extract this signal, a channel selection
method based on root mean square (RMS) was employed. The
method relied on the idea that noisy signals tend to yield higher
RMS values. Accordingly, for every 30 s epoch, RMS values were
computed for any possible cross-ear combination of the channels.
The combinations were constructed by using channels from right ear
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FIGURE 3

The participants rated the comfort and ease-of-use of the device after each night. In Part A, they slept wearing both the polysomnography (PSG) setup
and the earpieces, whereas in Part B they only wore the earpieces. This figure shows a summary of their ratings. The numbers in the bars reflect the
number of responses (20 in total for Part A and 100 in total for Part B). Inter subject variation (Inter Std) and Intra subject variation (Intra Std) are shown
for each question-part combination.

[ER1, ER2, and Avg(ER1,ER2)] referenced to the channels from left
ear [EL1, EL2, Avg(EL1,EL2), and ref]. The channel combination that
yielded that lowest RMS value was selected.

2.5. Automatic sleep scoring

Following the pre-processing step and the construction of a single
channel signal, an automatic sleep scoring algorithm was applied
to the resulting signal. The goal of the automatic sleep scoring was
to assign a correct sleep stage (N1, N2, N3, REM, and wake) to
every 30 s epoch.

First, the signal was segmented into 30 s long epochs. Then, a
feature extraction step was applied to every epoch resulting in 84
features for each epoch. The feature set was selected to include time
domain, frequency domain, Continuous Wavelet Transform (CWT)
based, EMG proxy, EOG proxy, sleep event proxies, and non-linear
features [adapted from Mikkelsen et al. (2019)]. The list of features is
presented in Supplementary Table 1. Since sC and sG were recorded
with different devices, the computed features were normalized using
the normalize function in MATLAB. The normalization process was
applied to each recording separately.

The epochs were then classified using a five-class random forest
classifier consisting of 100 decision trees. This method has been
used in several ear-EEG sleep scoring studies (Khademi et al.,
2018; Mikkelsen et al., 2019; Tabar et al., 2021). The classification
performance was measured using Cohen’s kappa value (Cohen,
1960) which reflects the agreement between automatic and manual
scoring. A “leave-one-subject-out” (LOSO) cross-validation was used
to validate the results. This means that for each subject, the classifier
was trained using only recordings from the remaining subjects. Since
manual scoring was only available for the Part A recordings, the
classification results were computed only for Part A.

2.6. Analysis of the effects of equipment,
part, and subject

The Part B recordings were performed without PSG and therefore
the performance of the automatic sleep scoring cannot be validated
using Cohen’s kappa value. Instead, we computed the following sleep
metrics for all recordings:

REMfr =
number of REM epochs
total number of epochs

(1)

N3fr =
number of N3 epochs

total number of epochs
(2)

SE
(
sleep efficiency

)
=

sleep duration
duration of the recording after first sleep epoch

(3)

NREMtoNREM =
number of NREM to NREM transitions

total number of NREM epochs
(4)

NREMtoREM =
number of NREM to REM transitions

total number of NREM epochs
(5)

REMtoREM =
number of REM to REM transitions

total number of REM epochs
(6)

REMtoNREM =
number of REM to NREM transitions

total number of REM epochs
(7)

We investigated the effect of equipment (individualized vs.
generic earpieces), part (PSG and ear-EEG vs. only ear-EEG) and
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subject on each of these metrics using Linear Mixed Models (LMM).
The objective was to investigate if differences in sleep characteristics
could be explained by the equipment, part or inter-subject variation.
For each sleep metric, a LMM was designed as [in Wilkinson notation
(Wilkinson and Rogers, 1973)]:

Sleep metric ∼ 1+ subject + part + study+
(
1

∣∣ recording
)

(8)

Where equipment = 1, 2 (corresponding to individualized and
generic earpieces), part = A, B (corresponding to combined PSG and
ear-EEG, and only ear-EEG), and subject = 1, . . ., 20 were included
as fixed effects and recording = 1, . . ., 16 / recording = 1, . . ., 12 was
included in the model as a random effect. By fitting the models to the
data, we examined the effect of each variable on the sleep metrics.

3. Results

Ten healthy participants (6 m/4 f) aged 27.4 ± 4.9 years were
included in the study. From these 10 subjects, we collected 20
nights of combined PSG and ear-EEG and 100 nights of ear-EEG
sleep recordings. Three recordings from Part A and nine recordings
from Part B were rejected and repeated due to ear-EEG recording
problems. The reasons for rejection of these recordings were: bad
earpiece mounting (five recordings), low battery on recording device
(four recordings) and earpiece fallen out of the ear during sleep
(three recordings). Partial PSG recordings were not checked for
noise. However, two recordings were repeated due to failure of the
acquisition device.

3.1. Comfort and ease-of-use

Following each night, the participants rated the comfort and ease-
of-use of the device by answering a questionnaire. A summary of
the answers is illustrated in Figure 3. During the part of the study
where sleep was assessed using both PSG and ear-EEG (Part A), 65%
of the responses reported that sleep quality was “bad” or “bearable.”
In part B, using only the generic earpiece, 62% reported a “good”
or “very good” sleep quality. This shift in perceived sleep quality fits
well with their ratings of the comfort of the earplugs compared to the
PSG setup, where 75% of the responses showed that the comfort was
“good” or “very good.” Inter and intra subject variation values are also
presented in Figure 3. These values were observed to be generally low
for all question-part combinations.

3.2. Data quality

The artifact rejection procedure described in section “2.4. Signal
pre-processing and channel selection” led to rejection of on average
10.2% of the data. The proportion of each artifact rejection criterion
was: device related noise: 3.2%, spikes 2.6%, high frequency: 3.9%,
high amplitude: 0.5%. A summary of the pre-processing data
rejection is presented in Figure 4.

The channel selection procedure described in section “2.4. Signal
pre-processing and channel selection” was used to find the cross-ear
combination with the least RMS among the accepted channels. Using
this procedure, the average number of rejected epochs was 4.4%. The

inter subject variation for data rejection was 0.027 for part A and
0.036 for part B.

3.3. Sleep scoring algorithm

The performance of the sleep scoring algorithm was validated
using the sC.A and sG.A datasets. Different training and testing
strategies were used to assess the sleep scoring, in which LOSO cross
validation was used where applicable. sC.A included 80 recordings
from 20 participants and sG.A included 20 recordings from 10
participants. The classifier was trained separately using sC.A, sG.A
and a combination of sC.A and sG.A, and tested on both sC.A
and sG.A. For simplicity, we called each of these cross-validation
schemes XY, where X is the train set and Y is the test set, e.g., sCGsG
means trained with sC.A and sG.A combined and tested on sG.A.
A summary of the results of the different combinations is shown
in Table 1. The confusion matrix for 5 class classification using the
sCGsG method is presented in Figure 5.

While the average kappa value for sCsG was 0.68, it increased
to 0.69 for the sGsG method. The number of recordings in the
training set was only 18 in sGsG compared to 80 in sCsG. However,
it still resulted in slightly better classification performance. The
average kappa value further increased to 0.71 when both datasets were
included in the training set in sCGsG. This is the highest kappa value
we achieved for sG.A.

The right panel in Figure 6 shows the kappa values for each
recording using the sCsG, sGsG and sCsG cross validation scheme.
The kappa values of subjects 3 and 7 were conspicuously lower than
for the other subjects. The scoring of the remaining 7 subjects resulted
in a mean kappa well over 0.7 regardless of the training set. The three
left panels in Figure 6 shows the distribution of kappa values for each
cross-validation scheme. For the sGsG and sCGsG cross validation
schemes the majority of the recordings have kappa values above 0.7.
The average kappa value is shown for each method with a colored
dashed line.

The proportion of decision trees voting for a given sleep stage can
be interpreted as an estimate of the likelihood for that sleep stage. The
output of the classifier is the sleep stage with the largest proportion
of votes, and the proportion itself can be interpreted as a confidence
measure of the classifier’s decision. In a previous study (Mikkelsen
et al., 2020), we observed that the mean value of the confidence
measure across all epochs in a recording is a reliable estimate of
the overall scoring performance. Thereby the confidence measure
can be used to assess the sleep scoring performance for unlabeled
data. To illustrate this relation between kappa and confidence the
left panel in Figure 7 shows the confidence versus the kappa for
the sG.A recordings. It is clear that the confidence values correlate
positively with kappa values, which corroborate that the confidence
is a reliable estimate of the kappa value. For these G.A recordings, the
25th, 50th, and 75th percentiles of the kappa values were 0.66, 0.72,
and 0.76, respectively. In other words 75% of the recordings had a
kappa value larger than 0.66, and the 25% best recordings had a kappa
value larger than 0.76. The corresponding confidence values were
0.68, 0.70, and 0.71, respectively. The distribution of the confidence
values for the sG.B recordings are shown in the second and third
subfigure of Figure 7. In 58% of the Part B recordings, a confidence
value above 25th percentile of Part A was achieved. This value was
42% for 50th percentile and 26% for 75th percentile. All subjects had
at least 2 recordings with a confidence above the 25th percentile.
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FIGURE 4

Percentage of rejected data is illustrated for each noise category for each electrode. The overall rejection percentage was 10.2% before and 4.4% after
channel selection. EL1, left electrode 1; EL2, left electrode 2; ER1, right electrode 1; ER2, right electrode 2.

TABLE 1 The kappa values for each train-test pair together with the applied cross validation method.

Method sCsC sCsG sGsG sGsC sCGsC sCGsG

Training set sC.A sC.A sG.A sG.A sC.A,sG.A sC.A,sG.A

Test set sC.A sG.A sG.A sC.A sC.A sG.A

Cross validation LOSO – LOSO – LOSO LOSO

kappa 0.73 0.68 0.69 0.66 0.73 0.71

Highest performance on the sG.A dataset is marked in bold.

FIGURE 5

Confusion matrix for sleep scoring with the sCGsG cross-validation method.

The average kappa value for the sCsC method was found to be
0.73 which is similar to the value reported in Mikkelsen et al. (2019).

3.4. Effect of equipment, part and subject

We investigated the change of the different sleep metrics with
the equipment, part and subject differences. In order to compare
the computed sleep metric values between different sets, these values

is shown in Figure 8. The distributions of these metrics for sC.A,
sC.B, sG.A, and sG.B are presented with different colors. Each circle
indicates the value of the related sleep metric for one subject. We
observed similar distributions in the data for the different studies and
parts. It should be noted that the number of recordings in Part B is
considerably larger than in Part A for both studies.

The results of the LMM analysis are presented in Table 2. Each of
the models in section “2.5. Automatic sleep scoring” were applied to
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FIGURE 6

(Left panels) Histograms of kappa values for sG recordings (cross-validation scheme: sGsG: purple, sCsG: blue, sCGsG: green). Dashed lines represent
the average of each method. For the sGsG and sCGsG schemes, the majority of the recordings yielded a kappa value above 0.7. (Right panel) Kappa
values for each subject for all three cross-validation schemes. Each point represents one recording.

FIGURE 7

(Left) Confidence versus kappa value for the sG.A recordings. The 25th, 50th, and 75th percentiles of the kappa values and the corresponding
confidences are shown with dashed lines. (Center) Histogram of the confidence values for the sG.B recordings. (Right) Confidence values for each
recording. The 25th, 50th, and 75th percentile confidence values are presented with dashed lines in all plots.

the sC, sG and sCsG datasets separately. The p-value was computed
for each fixed effect (subject, part, and equipment).

The Subject parameter had a significant effect on the variation
of all metrics for all datasets. Furthermore, the Part effect was only
significantly different in the N3fr metric for sCsG dataset. The model
coefficient for the fraction of N3 sleep (N3fr) in the combined
dataset sCsG was 2.8%. The Part effect was insignificant in all other
metric/dataset combinations. The Equipment parameter was also
insignificant for all the metrics and datasets.

4. Discussion

This study evaluated a new generic ear-EEG system for sleep
monitoring. The system comprised a set of generic earpieces designed
to fit most human ears, and the earpieces were connected to a
recording device comprising a custom 4-channel “EEG-to-digital
converter” ASIC. Both the EEG signal quality and the comfort are
essential for a good sleep monitoring device, and the design of the
earpieces are important for both these key parameters. The signal
quality is intimately related to the electrode-skin interface, and the
purpose of the earpiece is to provide a firm and stable electrode-skin
connection. The comfort of an earpiece is related to a wide range of
factors including mechanical properties of the earpiece material, the
number and placement of the electrodes embedded in the earpiece,
and the ergonomic design. The earpiece design process was iterative
and in each step in the process we evaluated both the comfort and the

signal quality. Some of the key experiences obtained in the process,
and the consequences for the earpiece design, are summarized here:
The earpieces need to be made of a soft and compliant material; in
our design the earpieces were made of a silicone material with shore
60. Essential to the ergonomic design is how deep the earpiece goes
into the ear canal and how well it fits the anatomy of the ear. In our
design the earpiece was relative shallow and was not going more than
5–6 mm into the ear canal.

The signal quality was quantified in terms of the percentage of
rejected data epochs after the pre-processing step. Rejection of epochs
with poor signal quality is a common practice in sleep monitoring.
Poor signal quality can be due to several factors, but the signal quality
depends in almost all situations on the electrode-skin contact. Thus,
if the signal quality is challenged by e.g., movements, the effect on
the signal quality will be further exacerbated by a poor electrode-skin
connection. Therefore, the proportion of rejected epochs is a good
measure for assessing the quality of the electrode-skin connection–
the lower the proportion of rejected epochs the better the electrode-
skin interface. In the companion study (sC), using individualized
earpieces with six electrodes in each ear and a commercial EEG
amplifier, 9% of the epochs were rejected (Mikkelsen et al., 2019). The
amount of rejected epochs after the single channel signal construction
was 4.3%. In this study (sG), we recorded 20 nights with partial
PSG and ear-EEG, as well as 100 nights with only ear-EEG. In these
120 nights of recording, the pre-processing pipeline rejected 10.2%
of the epochs, which decreased to 4.4% after single channel signal
construction. This value is very similar to our previous rejection
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FIGURE 8

The distribution of the value of the sleep metrics (REMfr, N3fr, SE, NREM to NREM, NREM to REM, REM to REM, and REM to NREM) for sC.A, sC.B, sG.A,
and sG.B datasets show a large overlap and no clear equipment or part differences.

rate. This demonstrates that changing from custom made to generic
earpieces and lowering the number of electrodes did not have a
significant effect on the cross-ear single channel signal’s quality.

During the study, we identified several factors that caused poor
signal quality and occasional rejection of the recording. The main
factor was fitting the earpieces. We observed that the subjects were
able to easily fit the earpieces after the third or fourth night. Although,
the subjects were able to fit the earpieces properly, in some cases,
the subject relocated the earpiece during the night without properly
fitting it causing the electrodes to lose the connection. In one other
case, the subject had excessive movement during the night, which
caused the earpiece to fall out of the ear. Otherwise, the subjects were
successful in fitting the earpieces. In general, subjects were able to use
the device without any problem. Only in few cases, the subjects forgot
to charge the device before the recording. We believe that the device
can be used easily by a normal user.

Comfort and unobtrusiveness are paramount in long-term sleep
recording for at least two reasons: (1) If the sleep monitoring device
is not sufficiently comfortable, subjects will not endure it and thus
the disadvantages in terms of discomfort will outweigh the benefits
of the sleep monitoring. (2) If the monitoring device interferes with
the sleep, the sleep information acquired will be biased and thus
not provide an accurate impression of the sleep. Therefore, subjects
were asked to answer questionnaires after every night to rate their
perceived sleep quality, their perceived comfort, the ease of use of
the device and whether their sleep had been affected by the earpiece.
Based on their answers, we saw that the comfort of the generic
earpieces was similar to that of custom-made earpieces from our

previous study (Mikkelsen et al., 2019). One of the proposed reasons
for this is that it was previously discovered that the depth of the ear
canal part of the earpiece was highly correlated with the perceived
comfort of the earplug. The generic earpiece was designed to not go
further than the second bend of the ear canal, which is the same depth
as what the custom earplugs are modeled to. This could explain why
the comfort assessments are similar to our previous study. Another
important feature in the development of a generic ear-EEG system
is the ease-of-use, when asked, most of the subjects reported that
the earpieces were easy to mount. In general, subjects preferred the
earplugs to the partial PSG setup. The participants responded to
comfort and sleep quality questions with a few bad/very bad answers.
For most of the questions, the intra subject variation was observed to
be higher than the inter subject variation. This shows that the comfort
changes more with the recording night rather than the subject.

Another important aspect to consider in this new approach to
sleep monitoring is its performance in sleep analysis and scoring.
The first part of it, which was mentioned earlier, is the data
quality. Poor data quality and missing data is detrimental for sleep
scoring. Fortunately, the new earpiece design and the introduction
of the customized and application specific amplifier and recording
device, did not affect the amount of data rejection. Next, we
evaluated the performance of our sleep scoring algorithm on different
combinations of this current dataset (sG.A) and a dataset (sC.A)
collected in a previous study, with custom earpieces and a commercial
amplifier. By combining the datasets, we augment our database and
thereby the training and test set of our automatic sleep scoring
algorithm. Although the earpiece, amplifier and the number of
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TABLE 2 Results from the linear mixed model (LMM) analysis on the
sleep metrics.

Metric Effect sC sG sCsG

REMfr Subject P < 0.01* P < 0.01* P < 0.01*

Part P = 0.16 P = 0.87 P = 0.26

Equipment NA NA P = 0.83

N3fr Subject P < 0.01* P < 0.01* P < 0.01*

Part P = 0.18 P = 0.38 P < 0.01*

Equipment NA NA P = 0.46

SE Subject P < 0.01* P = 0.02* P < 0.01*

Part P = 0.17 P = 0.09 P = 0.92

Equipment NA NA P = 0.74

NREM to
NREM

Subject P < 0.01 * P < 0.01* P < 0.01*

Part P = 0.30 P = 0.18 P = 0.69

Equipment NA NA P = 0.13

NREM to REM Subject P < 0.01* P < 0.01* P < 0.01*

Part P = 0.31 P = 0.31 P = 0.20

Equipment NA NA P = 0.16

REM to REM Subject P < 0.01* P < 0.01* P < 0.01*

Part P = 0.28 P = 0.43 P = 0.49

Equipment NA NA P = 0.43

REM to NREM Subject P < 0.01* P < 0.01* P < 0.01*

Part P = 0.11 P = 0.39 P = 0.23

Equipment NA NA P = 0.49

The subject effect was significant for all sleep metrics. The part effect was only significant in
the combined dataset in the fraction of N3 sleep. The equipment effect was insignificant for
all sleep metrics.
*Significant effects are marked.

electrodes were different in those studies, we were able to perform
successful automatic sleep scoring by training with one dataset and
testing on the other one. First, we observed that training and testing
on sG.A yielded a higher performance than training on sC.A and
testing on sG.A. This is probably reflecting a combination of two
effects: (i) the new setup introduces a certain unique fingerprint in
the recordings which is not explained by sC.A. (ii) The characteristic
features of sleep in the ear-EEG are largely preserved across the
two datasets. Combining the sC.A and sG.A datasets in the training
set increased the scoring performance for the sG.A dataset. This
combination probably allowed the algorithm to generalize over a
larger population of subjects and still learn the unique fingerprints
of the new setup. However, combining the datasets did not increase
the performance on the old dataset (sC.A). This is likely because
sC.A is a sufficiently large dataset for the algorithm to generalize
over the population of subjects, therefore adding more training
data from sG.A does not add any significant new information.
Ultimately, the algorithm continues to have most of its knowledge
from sC.A and therefore no increase is observed in the performance
on sC.A. The performance of the sCGsG scheme was lower than
for the sCGsC scheme. It should be mentioned that sC.A is 4
times larger than sG.A, wherefore train-test on sC.A gives a better
generalization. We expect this difference to diminish significantly as
our database grows. Subject-wise, we observed that two subjects had
considerably lower kappa values compared to the other subjects in

all dataset combinations. We suggest that this is caused by different
subject specific factors like earplug fitting, sleep characteristics and
sleep environment. According to Figure 5, the sCGsG method was
successful in detecting N2 and N3 stages and less successful in
detecting N1 stage. This is similar to what we observed in our
previous studies (Mikkelsen et al., 2019; Tabar et al., 2021).

One important aspect of the proposed sleep monitoring system is
to provide longitudinal sleep recordings via only ear-EEG recordings.
Therefore, it is critical to predict the performance of the sleep scoring
algorithm in the part B recordings. While the lack of manual scorings
in part B makes it impossible to validate the automatic scorings in
the conventional way, we validate them using two analytical methods.
The first method is based on the confidence measure derived from
the random forest classifier. In a previous study (Mikkelsen et al.,
2020), we found a strong correlation between the confidence measure
and the kappa value, and this strong relationship was also observed
in the current study. This allows us to predict the expected kappa
value for part B recordings based on their confidence values. While
there is not a one-to-one correspondence between the confidence
measure and the kappa value it still provides a good assessment of
the performance for the unlabelled data in Part B. As a result, we
expect 42% of the Part B recordings to have kappa value above 0.72
which is the median kappa value for part A. Additionally, 58% of the
part B recordings were predicted to have kappa value over 0.66 (25th
percentile), where 26% of them were predicted to have kappa over
0.76 (75th percentile). While the distribution of the predicted kappa
values was highly subject dependent, all the recordings had at least 2
recordings with a kappa above 0.66.

In the second method, we investigated the sleep characteristics of
the recordings to see if there was a difference between the estimated
sleep characteristics of part A and B for any individual subject. We
also aimed to explore whether the new devices (study effect) changed
the distribution of the sleep characteristics and ultimately the sleep of
subjects. Linear mixed models were constructed for six sleep metrics
in which the effects of equipment, part and subject on the sleep metric
were investigated. The part effect reflected the effect of the partial
PSG setup on the sleep characteristics. We found that the effect of
the partial PSG setup was only significant in one sleep metric, namely
the fraction NREM stage 3 (N3) sleep for the sCsG dataset. In this
case the fraction of N3 sleep increased by 2.8 % from Part A (partial
PSG + ear-EEG) to Part B (ear-EEG). The effect of part on all other
sleep metrics were insignificant.

Furthermore, we did not find any significant effect of the
equipment on any of the sleep metrics, which means that the effect of
the new generic earpiece with two electrodes and the new amplifier
is negligible. This is in concordance with the fact that we were able
to get high classification performance by combining both datasets.
The subject effect was significant for all sleep metrics. This shows that
changes in the sleep characteristics were related to subject specific
idiosyncrasies rather than from which part or which equipment the
recordings came from.

These results suggests that generic ear-EEG is a promising
method for long-term sleep monitoring. This may have application
within e.g., treatment of diseases such as insomnia, chronic pain and
many psychiatric disorders, prognostication of recovery after stroke,
concussion and traumatic brain injury, and as an early biomarker in
neurodegenerative diseases such as Parkinson’s disease, Levy Body
dementia and Alzheimer’s disease.

Frontiers in Neuroscience 10 frontiersin.org105

https://doi.org/10.3389/fnins.2023.987578
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-987578 January 25, 2023 Time: 16:19 # 11

Tabar et al. 10.3389/fnins.2023.987578

5. Conclusion

A comfortable and unobtrusive device for long-term sleep
monitoring will have great clinical value in diagnosis and treatment
of many diseases. We have developed an ear-EEG based sleep
monitoring device based on a generic ear-EEG with two recording
electrodes in each ear, a proprietary amplifier and an associated
automatic sleep scoring algorithm. In this study, we have assessed
perceived sleep quality, comfort and ease-of-use and compared the
sleep scoring performance against partial PSG scoring. The proposed
generic earpiece design was found to be as comfortable as the
custom-made design. The EEG signal was recorded from 2 electrodes
in each ear with an amplifier made specifically for the current
application. The quality of the recorded signal was similar to our
previous setup, resulting in successful sleep scoring with an average
kappa value equal to 0.71. Automatic sleep scoring was also applied
to recordings where no manual scoring was available. We used a
confidence measure provided by the sleep stage classifier for assessing
the quality of the unlabelled sleep scorings and found that 42% of
the part B recordings were estimated to have kappa value above
0.72. Finally, we analyzed the sleep patterns, based on a linear mixed
model analysis of seven different sleep metrics, and did not find
any statistically significant differences between individualized and
generic earpieces, or between PSG-nights and ear-EEG nights. These
results suggests that sleep monitoring based on generic ear-EEG
devices is a promising alternative to PSG for long-term monitoring
of sleep stages.
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Introduction: As our attention is becoming a commodity that an ever-increasing
number of applications are competing for, investing in modern day tools and
devices that can detect our mental states and protect them from outside
interruptions holds great value. Mental fatigue and distractions are impacting
our ability to focus and can cause workplace injuries. Electroencephalography
(EEG) may reflect concentration, and if EEG equipment became wearable and
inconspicuous, innovative brain-computer interfaces (BCI) could be developed
to monitor mental load in daily life situations. The purpose of this study is to
investigate the potential of EEG recorded inside and around the human ear to
determine levels of attention and focus.

Methods: In this study, mobile and wireless ear-EEG were concurrently recorded
with conventional EEG (cap) systems to collect data during tasks related to focus:
an N-back task to assess working memory and a mental arithmetic task to assess
cognitive workload. The power spectral density (PSD) of the EEG signal was
analyzed to isolate consistent di�erences between mental load conditions and
classify epochs using step-wise linear discriminant analysis (swLDA).

Results and discussion: Results revealed that spectral features di�ered statistically
between levels of cognitive load for both tasks. Classification algorithms were
tested on spectral features from twelve and two selected channels, for the cap and
the ear-EEG. A two-channel ear-EEG model evaluated the performance of two
dry in-ear electrodes specifically. Single-trial classification for both tasks revealed
above chance-level accuracies for all subjects, withmean accuracies of: 96% (cap-
EEG) and 95% (ear-EEG) for the twelve-channel models, 76% (cap-EEG) and 74%
(in-ear-EEG) for the two-channel model for the N-back task; and 82% (cap-EEG)
and 85% (ear-EEG) for the twelve-channel, 70% (cap-EEG) and 69% (in-ear-EEG)
for the two-channel model for the arithmetic task. These results suggest that
neural oscillations recorded with ear-EEG can be used to reliably di�erentiate
between levels of cognitive workload and working memory, in particular when
multi-channel recordings are available, and could, in the near future, be integrated
into wearable devices.

KEYWORDS

EEG, brain computer interface, cEEGrid, attention, cognitive workload, working memory,

machine learning, ear-EEG
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1. Introduction

The push to develop and democratize useful neurotechnology

tools and devices has been fueled by both the academic and

industrial sectors. Over the last twenty years, neuroscience as a

field of research has grown remarkably, generating major funding

and institutional support (Zivkovic, 2015). The private sector has

also increased investments and a handful of companies are now

considered leaders of innovation in the neurotech landscape, not

without growing ethical concerns and public scrutiny (Jarchum,

2019; Pfotenhauer et al., 2021; Wexler, 2021). In this context,

new applications are emerging for medical as well as consumer

interests and with these come new challenges, specifically, the

need for improved mobility (Debener et al., 2012; Gramann et al.,

2014). Transferring knowledge and technology from a laboratory

environment to real-world applications is both necessary and far

from trivial. Electroencephalography (EEG) is a proven technique

to record brain-electrical activity with the important advantage

of high temporal resolution. Non-invasive EEG uses electrodes

placed on the scalp to capture electrical potentials emitted by

large groups of neurons firing synchronously. EEG is a safe,

low-cost and low energy technology compared to other brain

imaging techniques, such as magnetic resonance imaging (MRI).

This has made EEG particularly appealing for brain-computer

interfaces (BCI). BCIs allow humans to control electronic devices,

such as computers or prosthetics (Hochberg et al., 2006), using

their thoughts. Earlier uses of such devices mainly focused on

communication and control for individuals suffering from different

forms of paralysis (Birbaumer et al., 1999; Wolpaw et al., 2002;

Vansteensel et al., 2016). However, other, more quotidian BCI

applications are emerging (Zander and Kothe, 2011). For instance,

BCI applications could monitor the mental state of a person in

view of workplace security (Müller et al., 2008; Aricò et al., 2016;

Mijović et al., 2017) and productivity, by preventing interruptions

that could be detrimental to task completion and quality (Jenkins

et al., 2016). If we could reliably decode when a person is focused

on a task, we could protect that state of “flow” by limiting

both visual and auditory distractions. This study intends to do

the former using non-invasive, discrete technology that will not

limit movement.

The robustness of BCI devices is improving thanks to

recent progress in signal processing, machine learning, electrode

technology and open-source software tools (Delorme and Makeig,

2004; Popescu et al., 2007; Blankertz et al., 2011; Gramfort et al.,

2014). However, several challenges still need to be addressed.

For instance, the recording equipment usually involves caps

or headbands, making it unsuitable in social settings while

the electrodes are usually wire-connected to bulky amplifiers

making the devices cumbersome and stationary. Thus, recent

EEG technological developments have been focusing on lighter

equipment with fewer electrodes and greater mobility, more

adapted for exploration of cognitive processes in realistic

environments and situations (Casson et al., 2010; Chi et al., 2011;

Debener et al., 2015; Goverdovsky et al., 2017). Wireless EEG

amplifiers are becoming available and their capability to record

reliable EEG data has been scientifically proven (Debener et al.,

2012; De Vos et al., 2014b; Lin et al., 2014).

Ear-EEG refers to the recording of brain-electrical activity from

electrodes placed in or near the ear, as opposed to traditional

scalp EEG, for which electrodes are commonly placed in concentric

circles on caps which cover the entire scalp. The main appeal

of ear-EEG for the proposed mental focus application is that it

can be inconspicuous to wear in public settings. Also, the area

around the ear and inside the ear canal is usually hairless, an

advantage for electrode-skin contact with or without conductive

gel. Furthermore, the irregular geometry of the ear canal would

allow fitted earpieces to keep the device firmly in place, thereby

potentially reducing artifacts during natural movement. The first

proof-of-concept for ear-EEG was published in 2011 (Looney et al.,

2011) and since then, multiple research groups have demonstrated

its potential, with electrodes placed around the ear, in the concha

and inside the ear canal (Debener et al., 2012; Kidmose et al., 2012;

Bleichner et al., 2015). Ear-EEG has already proven its capacity to

reliably record auditory attention (Bleichner et al., 2016; Mirkovic

et al., 2016), event-related potential (ERP) components such as

the P300 (Debener et al., 2015; Pacharra et al., 2017) and factors

like fatigue and sleep quality (Looney et al., 2014; Mikkelsen et al.,

2018; Sterr et al., 2018). Some studies have considered the potential

of ear-EEG to record alpha frequencies (rhythmical activation of

the brain oscillating between 8 and 12Hz) (Debener et al., 2015;

Mikkelsen et al., 2015), but ear-EEG research has generally focused

on the analysis of time-locked events. ERPs are induced potentials

that are seen in response to sensory, cognitive or motor events.

They combine positive and negative amplitude peaks occurring

over specific time windows after stimulus onset, some are large

in amplitude and identifiable even at the single trial level (e.g.,

P300 or N100). Another type of brain activity, which has received

perhaps less attention in ear-EEG research, is continuous EEG and

its oscillatory behaviors (Buzsaki, 2011). Neural oscillations are

defined as power spectral densities over specific frequency ranges,

delta (1–3Hz), theta (4–7Hz), alpha (8–12Hz), beta (13–30Hz)

and gamma (> 30Hz). They have been found to reflect mental

states such as memory (Klimesch et al., 1996), attention (Foxe and

Snyder, 2011), engagement (Berka et al., 2007) and higher thinking

and reasoning processes (Palaniappan, 2006).

This study aims to investigate the EEG power spectrum

extracted from signals recorded in and around the ear and to

evaluate the potential to use these signals to monitor mental states.

We compared conventional cap-EEG (EEG recorded over the

entire head) to new devices developed for mobile ear-EEG to assess

how the signals’ amplitudes and power spectrum differ from one

recording system to the other. The goal is to discriminate between

states of high and of low focus using classification algorithms

(Müller et al., 2008).

In this study, focus is associated to two main concepts: working

memory and cognitive workload as seen in (Klimesch et al., 1998;

Oken et al., 2006; Fougnie, 2008). Working memory refers to

the process of using short-term memory to make immediate and

conscious decisions regarding a perceptual or linguistic task. A

popular paradigm used to investigate working memory is the N-

back task as presented in Brouwer et al. (2012). Different working

memory loads can be studied by lengthening or shortening the

duration of a sequence of numbers or letters a subject is asked to

remember. Working memory load is known to inversely correlate
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with alpha power (Owen et al., 2005; Berka et al., 2007; Regenbogen

et al., 2012). Additionally, brain oscillations from theta to gamma

have been found to vary according to the working memory levels

(Herrmann et al., 2004; Pesonen et al., 2007). The N-back task

elicits a P300 ERP, a well-known ERP component, which varies

in amplitude according to task relevance and working memory

(Watter et al., 2001). Cognitive workload relates to the difficulty and

effort required to perform a task. It has strongly been associated

with changes in alpha power according to the level of difficulty

of the task (Anderson and Sijercic, 1996; Keil et al., 2006; Foxe

and Snyder, 2011; Magosso et al., 2019). It has been reported

that other frequency bands, such as delta (Harmony et al., 1996),

theta (Scheeringa et al., 2008), and gamma (Shibata et al., 1999;

Landau et al., 2007) also carry information relative to cognitive

workload. To assess the ear-EEG’s capability to detect changes in

power spectral density (PSD) relevant to cognitive workload levels,

an arithmetic task was replicated from established high-density

cap-EEG studies (Yu et al., 2009; Rebsamen et al., 2011).

2. Materials and methods

2.1. Subjects

Fifteen subjects (nine females, six males, mean age 27.1

years, 14 right-handed) were initially recruited for this study to

participate in both tasks although some participants only took

part in one of the two. Each gave written informed consent

and none reported any neurological or psychiatric disorders.

Recruitment and procedures for this study were performed in

accordance with the Ethics Committee of Oldenburg University.

Subjects were remunerated at minimum wage to take part in

the study.

2.2. Test paradigm

Two tasks were chosen to study different characteristics and

common features of concentration: an N-back task to study

working memory and an arithmetic task to study cognitive

workload. For both tasks, subjects were seated in front of a screen

where visual stimuli, letters and numbers were displayed using the

Presentation R© software (Version 18.0, Neurobehavioral Systems,

Inc., Berkeley, CA, www.neurobs.com), which also generated event

markers. The stimuli were displayed in a black font on a light

gray background. For each task, subjects were first given a tutorial

round to ensure the instructions were understood. Task order was

balanced across subjects.

The N-back task was conducted according to the following

study’s procedure (Brouwer et al., 2012). Subjects memorized a

series of consonants and for each new letter that appeared, they

had to decide if it was a target or a non-target letter using a two-

button handheld box. Button assignment for target and non-target,

left or right, was balanced across subjects. The attributes of the

target letter depended on the level of difficulty of the task, of which

there were three. The first level or 0-back, required no working

memory effort as the subjects did not have to pay attention to the

sequence of letters. They only had to identify the letter ’X’ as a

target and any other letter as a non-target. For the 1-back, subjects

needed to remember the past letter shown. If the new stimulus

was the same as the previous one, one back, then that letter was

a target. And finally, for the 2-back, the most demanding level in

terms of working memory, the target letters were those shown two

letters before, requiring the subjects to constantly update the last

two letters in their head and compare it with the new one. The

letters were displayed on the screen for 500ms with a 2000ms inter-

stimulus interval during which a fixation cross was displayed at the

center of the screen.

The duration of the N-back task was about 45 min. It was

divided into four sessions of six two-minute blocks each. The

three levels of difficulty were repeated twice during one session.

Forty-eight letters were shown during each block, 33% of which

were targets. The levels were given in a pseudorandom order,

different for each subject. Each level was presented once before

being repeated and the same level was never given twice in a row.

Between each block, the subjects were shown their success rate on

the screen followed by a fixation cross for 20 seconds. Subjects

initiated the next block and between sessions, the experimenters

would briefly interact with the subjects before initiating the next

session.

The arithmetic task consisted of sums and inequalities, a

procedure adapted from Rebsamen et al. (2011). Subjects were

shown an addition, asked to calculate it and keep the result in mind.

A new number was then displayed which could be greater, equal to

or lower than the result, each with a 33% probability. Subjects were

asked to compare their answer with this number, using a handheld

3-button box. The buttons were marked with the signs “<”, “=”

and “>”. There was no time limit to solve a problem. The task

featured five levels of difficulty; level 1: addition of two single-digit

numbers, level 2: addition of a single and a double-digit number,

level 3: addition of two double-digit numbers, level 4: one double

and one triple-digit number and finally, level 5: an addition between

two triple-digit numbers.

The arithmetic task took 35 min to complete. It was divided

into two sessions, each consisting of fifteen one-minute blocks and

the five levels of difficulty were repeated three times. During a block,

only additions of the same level were featured. Subjects completed

as many additions as they could in the one-minute time frame. The

levels of difficulty were given in a pseudorandom order, different for

each subject. Each level was presented once before being repeated,

and the same level was never given twice in a row. Between each

block, subjects were shown their success rate on the screen. A 20-s

rest period followed each block, during which a fixation cross was

displayed on the screen. Between sessions, experimenters would

interact with the subjects until they felt ready to initiate the next

session.

2.3. Data acquisition

EEG data was recorded using two recording systems

concurrently: an ear-EEG mobile recording system and a

high-density cap-EEG stationary recording system as described

in Bleichner et al. (2016). The ear-EEG equipment consisted of

a SMARTING 24-channel wireless EEG amplifier (mBrainTrain,
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Belgrade, Serbia) with a modified connector to two cEEGrids–

concealed, around the ear self-adhesive arrays of 10 flex-printed

Ag/AgCl electrodes (Debener et al., 2015) - and two TIPtrodeTM -

in-ear foam inserts wrapped in gold foil (Bauch and Olsen, 1990)

as seen in Figure 1. Ear-EEG channels, cEEGrids and TIPtrodesTM,

were referenced to a channel on the cEEGrid placed around the

subject’s right ear, electrode R4b, while electrode R4a served as

the analog ground. Channels from the right ear, cEEGrids and

TIPtrodes (excluding R4a and R4b), were re-referenced during

signal pre-processing to channel L4b ensuring that each ear-EEG

channel was referenced to a channel on the contralateral ear. Data

from this system was transmitted wirelessly via Bluetooth to the

recording computer.

The cap-EEG system consisted of a research-grade EEG

amplifier (Brainamp, Brainproducts GmbH,Herrsching, Germany)

connected to a 96-channel Ag/AgCl EEG cap (EasyCap, Hersching,

Germany) with equidistant electrodes. Twelve electrodes were not

connected, that is, six over each ear, as they would have overlapped

with the cEEGrids placed underneath the cap. This gave a total of

84 effective channels. The ground was placed at a central fronto-

polar electrode and the reference electrode was placed at the nose-

tip. This system had two dedicated eye electrodes placed under

each of the participant’s eyes (E29 and E30). The cap-EEG data

was transmitted through fiber optic cable to the same recording

computer as the one used for the ear-EEG. Both recording systems’

data streams were recorded at a 500Hz sampling rate along with a

third data stream consisting of the event markers generated by the

Presentation R© software (Neurobehavioral Systems, Inc., Berkeley,

CA, www.neurobs.com). As shown in Figure 2, they were combined

into a single file, xdf format, using the Lab Recorder program from

the open-source Lab Streaming Layer (LSL) data acquisition and

synchronization software (Kothe, 2014).

Prior to recording, subjects were asked to wash and dry their

hair. They were also given cotton swabs to clean earwax from the

outer ear canal. Alcohol wipes and abrasive gel were used to prep

the skin around the ear. Electrolytic gel (Abralyt HiCl, Easycap

GmbH, Germany) was applied to the cEEGrid electrodes, which

were then placed around the subjects’ ears. Electrode impedance

was adjusted to under 20 k� for each ear electrode. Next, the subject

was fitted with the electrode head cap. The six electrode rings over

each ear were taped off, all others were covered with electrolytic

gel and individual electrode impedance was set to under 5 k�

for all cap electrodes. The subjects were seated facing a screen at

a distance of 1.3 meters, in a sound-proof room. Lastly, the two

dry TIPtrodesTM were rolled tight and inserted into the ear canal

where they were given time to expand and come in close contact

with the skin. Metallic clamps were attached to the gold foil of the

TIPtrodesTM and connected to a SMARTING adaptor along with

the cEEGrids leads. The SMARTING amplifier was secured to the

shoulder of the subject.

2.4. Data analysis

Data was analyzed offline using MATLAB (MathWorks Inc.,

Natick, USA) and EEGLAB, version 13.6.5b (Delorme and Makeig,

2004). Fourteen subjects took part in the N-back task and all

were included in this study. Fifteen subjects were recruited for the

arithmetic task, but five of these were not considered because of a

stimuli marker experimental error that failed to associate EEG data

blocks to their level of difficulty. EEG data was band-pass filtered

between 0.5Hz and 100Hz and resampled at 256Hz. The data

sets were then epoched for each task. For the N-back task, epochs

started 500ms before a new stimulus was presented and ended

1500ms after. Epochs were baseline corrected at 200ms before

stimulus presentation. This resulted in 48 epochs per block, 384 per

level and 1,152 per subject. For the arithmetic task, epochs were

not linked to stimuli presentation since the number of problems

and the time lapse between problems varied across levels and

subjects. Therefore, data from the arithmetic task was epoched

at regular intervals. Regularly-spaced dummy event markers were

added during pre-processing and used to epoch the EEG data in

2-second windows with a one-second overlap between windows.

This produced 58 epochs per block, 348 epochs per level and 1,740

epochs per subject). Epochs from both tasks were inspected visually

to select artefact-dominated trials and remove them. Less than 5%

of trials were removed for each individual subject data set. An

Independent Component Analysis (ICA) was then performed on

all available channels for each recording equipment (84 for the

cap-EEG data and 20 for the ear-EEG). The eye blink component

or components were removed using topographical distribution

when available and time courses of the independent component

activation for both systems. Between one and three components

was removed per subject per task as the eye blink component(s) for

the cap-EEG data while for the ear-EEG data, components removed

varied between one and two components per subject per task, with

an exception of one participant for which no component were

removed. This participant’s ear-EEG data exhibited in fact very few

blink related activity. For both the cap and the ear EEG data, the

blink removal procedure was validated by inspecting superimposed

single trial time courses before and after component removal using

EEGLAB tools to ensure that the blinks had been removed from

the signal without affecting other dynamics of the continuous EEG

signal. Other components identified as noise, notably an important

sinusoidal component which affected some cap-EEG electrodes

located at the back of the ears and both in-ear-EEG electrodes,

were removed using the ICAmethod as well. This noise might have

been related to interference between the two recording systems and

equipment.

Data sets were then processed for a spectral-domain analysis.

The Power Spectral Density (PSD) was calculated for each epoch

using a periodogram power spectral density estimate under a

Hanning window. The results were interpreted for a frequency

range from 1 to 100Hz in 1Hz interval bins and as band

power for seven neural oscillation groups: delta (1–3Hz), theta

(4–7Hz), alpha (8–12Hz), a low beta band (13–19Hz) and a

high beta band (20–30Hz), a low gamma band (30–50Hz) and

a high gamma band (50–100Hz). This splitting of the last two

frequency bands was based on the results of an analysis, not

shown here, which came to a compromise between showcasing

significant differences in PSD within the bands while limiting the

amount of splits in the bands when the differences were not as

statistically significant.
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FIGURE 1

Ear-EEG recording devices: (a, b) show the cEEGrid; (c) shows the TIPtrodesTM.

FIGURE 2

EEG devices setup and recording systems.

A time-domain analysis was performed for the N-back task, for

which the data was resampled at 100Hz and a low-pass filter was

applied at 20Hz to analyze the ERP response from 0 to 1,000ms.

For both these analyses, spectral and temporal, all channels

were studied and two electrodes from each recording system were

selected to highlight grand average and distribution results: a

centrally-located electrode, Pz for cap-EEG, L3 for ear-EEG; and

another electrode which was relevant to compare in-ear EEG to

cap-EEG specifically. These special electrodes were: one of the in-

ear channels, E1 and E2, the two TIPtrodesTM electrodes used

dry inside the ear canal; and the cap-EEG channel chosen for

comparison consisted of an occipital channel, O1 or O2, chosen

after multiple considerations of other electrodes (midline, central

and frontal pairs). The analysis (and later classification) results were

found to be best at these locations which was to be anticipated

considering the visual nature of both tasks’ experimental stimuli.

Only one in-ear channel and one occipital channel were shown

in the figures since their results looked similar enough that no

additional information could be gathered from representing both.

A spatial-domain analysis was performed using all 84 cap-

EEG channels available. Topographical distributions for the above-

mentioned seven frequency band powers was mapped for different

mental load conditions. The difference between the most and

least demanding conditions and the relative significance of these

differences were also represented spatially.

Lastly, statistical analyses of the differences between mental

load conditions was done through permutation testing (Cohen,

2014) for twelve electrodes from both recording systems which
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covered the recorded channels as well as possible. The cap-

EEG’s channels provided a good spatial distribution over the head

and were based on De Vos et al. (2014b). Since the cap-EEG

electrode layout used in this study differed from the cited article’s

layout, a correspondence was established between the 10–20 system

electrode labels and the 96 equidistant electrode cap labels using

the shortest Euclidean distances between electrode positions. The

cap-EEG electrodes chosen for this study are: E1-Cz, E2-Fz, E5-

Pz, E8-Fpz, E12-O2, E13-O1, E45-F4, E38-C4, E49-P4, E53-P3,

E41-C3, E57-F3. The ear-EEG’s channels which were found to be

representative of the entire electrode set and overlapped with the

results of prior authors (Bleichner et al., 2016). They are: L1, L2,

L3, L6, L7, R1, R2, R3, R6, R7 for the cEEGrid plus the right and

left in-ear TIPtrodeTM electrodes referred to as E1 and E2. This

non-parametric test was chosen because PSD distributions from

all subjects were largely non-uniform. Additionally, the statistical

results of a permutation test, a z-score, is a signed indicator which

gives information on the strength of the statistical test but also on

the sign of the difference between conditions. It was shown that

the sign of the differences - which condition yields a higher PSD

or amplitude and which is lesser - changes between mental load

conditions according to individual subject, frequency, time and

spatial location. Each permutation test was done 5,000 times to

yield z-scores for each comparison and significance threshold was

placed at a p-value of 0.01, equivalent to a z-score of ± 2.326. The

results of these comparisons are featured in the analysis of the EEG

data for both tasks. Statistical heatmaps were created from them

for both spectral and temporal domain information. To account for

the important number of tests performed to produce each heatmap

(over a thousand), multiple comparison correction was applied

to the statistical values using the False Discovery Rate (FDR)

method (Benjamini and Hochberg, 1995; Yekutieli and Benjamini,

1999).

2.5. Feature extraction and classification

Classification of the data epochs was performed on a subset of

the total number of channels available (twelve and two) for each

recording system to be consistent across both recording systems

and more representative of concealed ear-EEG device constraints.

Narrowing the number of channels considered was also important

for dimensionality concerns associated with machine learning

algorithms. Multiple models were generated using one classifier

type, a step-wise linear discriminant analysis (swLDA), each model

was defined by the features of the EEG signal it used. Sets of

features were generated in order to compare their performance

and assess the influence of factors such as the number of channels

available, the PSD resolution, the cut-off frequency and the domain

of the features (spectral vs temporal). The same channels as for the

statistical heatmaps were used to create the twelve-channel feature

sets for both recording equipment and both task. The channels used

to compare in-ear to cap-EEG specifically were used to generate the

two-channel features sets: E1 and E2 for the ear-EEG, O1 and O2

for the cap-EEG.

PSD features for each channel were extracted from the

periodogram of the epochs generated for each task and focus

level. The main PSD feature set considered was composed of PSD

estimates from 1 to 100Hz with a 1Hz resolution also referred to

as the 1Hz frequency bin model. It generated 100 initial features

per channel. Each model was trained for both cap and ear-EEG, for

twelve channels (1200 initial features) and for two channels (200

initial features). The PSD values for each selected channel were

concatenated.

To study the influence of PSD resolution on classifier

performance, models with different PSD resolution or bin sizes

were considered, two additional frequency bin models and

3 frequency band models. The highest resolution model was

composed of 0.5Hz bins, yielding 200 initial features per channels.

A 5Hz or less PSD model was evaluated, it was composed of a

delta (1-3Hz), theta (4-7Hz) and alpha (8-12Hz) neural oscillation

bands since their frequency ranges were equal to or lower than

5Hz; the remaining interval (13 to 100Hz) was divided into 5Hz-

frequency bins resulting in 21 features per channel. The twelve-

band model (or 10Hz model) started the same with frequency

bands delta to alpha, it split the beta frequency range in two (much

like the seven frequency band model described earlier) for a low

beta (13 to 19Hz) and a high beta (20 to 30Hz), the gamma

band was then equally split in 10Hz frequency bins from 30 to

100Hz for a total of 12 features (or bands) per channel. Refer

to the previous section for the seven-band model. The five-band

model, the lowest resolution model, consisted simply of the five

main neural oscillations: delta, theta, alpha, beta (13-30Hz) and

gamma (30Hz to cut-off frequency). These PSD feature sets were

compared to the 1Hz frequency bins model and to each other. The

last PSD featuremodel were created to study the influence of cut-off

frequency. The gamma band cut-off frequency appears inconsistent

in the EEG literature: Buzsaki (2011) uses both 80Hz and 100Hz as

a gamma band cut-off at multiple occasions in his book on brain

oscillations. Other researchers suggest that gamma band activity

could extend to 200Hz (Uhlhaas et al., 2011), while representations

of EEG grand average PSD often stop at 45Hz. Hence, feature sets

were extracted with a 100, 80, and 45Hz cut-off frequency.

Because the N-back task had temporal information from the

ERP response available as well as PSDs, additional models were

considered for this task inspired by the following study (Brouwer

et al., 2012). One model consisted of temporal features from the

time-locked epochs: the amplitude of the signal from 0 to 1,000ms

taken every 10ms, (100 initial features per channel). Lastly, a mixed

set of features, dubbed the "fusion" features by Brouwer et al.,

incorporated the 100 temporal features and 1Hz interval PSD

features for a total of 200 initial features per channel.

The choice of a swLDA classification algorithm was made

since it greatly reduced the number of features considered,

thereby reducing the risk of over-fitting (Blankertz et al., 2011),

important to address considering the high number of features some

models have compared to the number of trials. This technique

has proven very powerful for EEG single-trial classification

(Krusienski et al., 2006). The swLDA was implemented according

to specifications from De Vos et al. (2014b). Feature selection was

done sequentially and features were only included if they improved

class discrimination statistically (pin < 0.1). For each new feature

included, the procedure re-analyzed the current feature pool and

removed any feature that had become redundant (pout > 0.15).
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All classifier models in this study were binary. For the

arithmetic task, conditions were defined as high and low cognitive

workload state. Data from levels 1 and 2 were combined to form

the low cognitive workload condition, and levels 4 and 5 were

combined to form the high cognitive workload condition. Level

3 was left out to maintain a balanced set of trials per class. This

produced a set of over 1250 samples across 2 classes for low vs. high

cognitive workload conditions. For the N-back data, high and low

working memory conditions were associated with the 2-back and

0-back. This data set held over 700 samples over 2 classes for the

high vs. low condition.

The performance of each model was obtained using a ten-fold

cross validation test. Before training, the models were divided into

10 sub-groups. Each trial was given a number from 1 to 10, ensuring

the same partition of trials or samples was used to evaluate the

performance of all the feature sets. The classifiers were trained on

all the subgroups except for one, the testing set, which would be

used to evaluate the classification accuracy of the trained model.

The model then classifies each trial from the testing set using the

knowledge it gathered during the training phase. Classification

accuracy corresponds to the percentage of trials in the testing

set correctly classified as low or high focus by the model. The

process was repeated so that each subgroup served as the testing set,

yielding ten accuracy results for each model and subject. Reported

subject accuracy was the average of these 10 results.

The threshold for above chance-level classification accuracy of

single subject data was set using the method in Combrisson and

Jerbi (2015), which considers sample size to determine chance-

level. Seeing as there were more than 500 samples for each task,

in the high vs. low and pairwise binary classification, and that these

were 2-class determinations, the chance-level was set at 57% (for a

p-value of 0.001).

To compare statistical performance of cap and ear-EEG

classifiers and assess the influence of different feature extraction

and selection methods, a paired t-test was used on the performance

metrics. Each model had 10 accuracy results per subject, a p-value

of 0.001 was considered significant, some average p-values were

reported when relevant.

3. Results

3.1. EEG data

3.1.1. N-back task
The N-back task’s data epochs were locked to the presentation

of a stimuli. This made it possible to study PSD and ERP amplitudes

to assess the fluctuations in EEG activity between low and high

working memory conditions. The difference between these states

was assessed on group data from all subjects and on an individual

subject basis to create statistical heatmaps.

Figure 3 shows the grand average PSD for two cap and two

ear-EEG channels for the three levels of the N-back task on a

logarithmic scale. The grand average PSD shows three distinct

conditions visible with both recording systems, ear and cap,

particularly around the alpha peak (8–12Hz) for all four channels

represented. The amplitudes of the alpha peaks are higher for

the cap-EEG channels, Pz and O1, compared to the ear-EEG

channels. Conditions with higher working memory load exhibited

visibly weaker alpha peaks over both recording systems. It also

appears that this order, with the least demanding condition on top,

the moderate condition in the middle and the more demanding

condition at the bottom seems to be the same over the theta

range (4–7Hz) and the lower part of the beta range (below

20Hz). This holds true for virtually all channels available over both

recording systems with a few exceptions where PSD levels were less

distinctive. Around 20Hz and to the end of the frequency range

considered, the order of the plot lines gets inverted with the more

demanding condition now generating higher PSD values over the

high beta range (from 20 to 30Hz) and gamma range (30Hz and

above).

In Figure 4, the normalized PSD for different neural oscillations

for all subjects is represented with boxplots. The range is divided

into seven frequency bands: delta, theta, alpha, two beta bands,

low beta (beta 1 for 20-30Hz) and high beta (beta 2 for 20–30Hz)

and two gamma bands, low gamma (gamma 1 30-50Hz) and high

gamma (gamma 2 50–100Hz). The beta band was split to coincide

with the shift seen in the grand averages of Figure 3. The gamma

band mid-point between low and high was chosen after it was

determined that more splits or different frequency splits than 50Hz

did not have a significant impact on representation or statistical

results. In order to visualize power bands from all the frequency

ranges in one figure, band power values were normalized at the

individual subject level (divided by the 90th percentile for this

band power). Normalized values from all subjects were then pooled

together and plotted. The data sets have a substantial amount of

outliers and many with extreme values. To reduce the number

of outliers and improve readability, the interquartile range used

for the whiskers of the boxplots is extended to 2.5. Outliers with

extreme values are compressed if they are above 2.5 normalized

PSD. A dotted line is placed at this upper limit and outlier markers

are plotted evenly in the region above it. Z-scores obtained from

permutation testing over trials from all subjects are given over each

boxplot. The higher the absolute value of the z-score, the more

significant the difference between the two mental load conditions.

The sign of the z-score indicates the direction of this difference

(i.e. positive values indicate the more demanding condition, the 2-

back in this case, yields higher PSD values than the less demanding

condition, the 0-back).

From Figure 4, it can be noted that most of the distributions

are different and highly significantly from their z-scores, for

all channels considered. Though the boxplots themselves can

sometimes be harder to interpret, particularly with median values,

the same trends as with the grand averages (Figure 3) can still

be observed over both recording systems. Box outlines, whisker

limits and outlier values hold noticeable differentiating information

between conditions. That is a tendency for smaller PSD values as

mental load increases for the lower frequency bands (under 30Hz).

All channels represented had negative Z-scores for the delta, alpha

and beta 1 bands. The alpha bands are the most distinguishable,

yielding the highest negative z-scores for every channel considered.

While from the beta 2 band onward the PSD is now higher with

increasing mental load. All gamma bands z-scores are negative

and highly significant and although beta 2’s z-score is positive for
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FIGURE 3

Grand average PSD for the N-back task for selected cap and ear-EEG channels (N = 14).

FIGURE 4

Boxplot of PSD for seven frequency bands for the N-back task for selected cap and ear-EEG channels (N = 14; *z-score>±2.3262 eq. p = 0.01,
**z-score>±3.0902 eq. p = 0.001).

the cap channels and negative for the ear channels, only the most

demanding condition distributions have outliers, with extreme

values, for channels over both recording systems for these three

highest power bands.

Spatial distribution of the PSD over the seven frequency

bands can be observed in Figure 5, in which the first two

rows show grand average EEG activity for the 0-back and 2-

back condition. The last row represents the difference between

both conditions by mapping the z-scores obtained through

permutation testing for each frequency band at each electrode

location. Blue regions represent a decrease in EEG activity with

increasing mental load for this neural oscillation; red regions,
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FIGURE 5

Topographical maps of PSD for seven frequency bands for the N-back task (N = 14, first two rows are grand averages, the last is the statistical results
of permutation testing between both conditions–positive z-scores (red) indicate an increase in PSD from the 0-back to the 2-back, negative
z-scores (blue) indicate a decrease).

an increase. The intensity of the color conveys the degree of

statistical significance.

The grand average maps for each condition at frequency ranges

under 20Hz - delta to beta 1–concentrate high PSD values over

the center of the map with a more posterior focus for the alpha

band and the beta 1. Higher frequency range maps show that

PSD values are the highest over the ocular regions, due mostly

to electro-oculography (EOG) and other muscle-related artefacts.

This activity was highlighted by the presence of two dedicated eye

electrodes, placed under each eye. Other regions of interest for

these higher frequency bands can be seen over the occipital region,

increasing seemingly with each neural oscillation range from beta 2

to gamma 2.

When comparing the activity between both working memory

conditions, the difference maps show a decrease in activity

(represented in blue) for the lower frequency bands. The alpha

and beta 1 difference maps are predominantly blue over the entire

scalp, while the difference map from the theta band exhibits a

decrease in activity in the occipital region that was not visible in

the previous maps. Regarding the 3 higher frequency bands, beta 2

(20-30Hz), gamma 1 (30-50Hz) and gamma 2 (50-100Hz), although

PSD values were higher over the ocular regions, the differences in

PSD distributions across the scalp point to an increase (represented

in red) in activity between conditions distributed over multiple

regions spanning the entire scalp. Interestingly, regions of most

significant statistical difference are concentrated at the back and to

the sides of the topographical maps, indicating that the differences

between working memory conditions seem to emerge from an

increase in EEG activity distributed over the parietal and occipital

lobe and not driven by artefacts. These results are in line with our

previous findings for the different neural oscillations.

Figure 6 shows the differences at an individual subject level. The

heatmaps are the result of multiple statistical analyses conducted

for each subject and later summed together to highlight which

PSD regions and which channels are statistically significant when

comparing high and low working memory conditions. At the

individual level, subjects exhibited strong differences throughout

the power spectrum, which were assessed through permutation

testing for each 1Hz interval bin for individual cap and ear

channels. For each subject, every bin was tested and given

a binary result, 1 if the difference in PSD was significant

at an equivalent p-value of 0.01, 0 if it was not significant.

Converting the signed z-score to their p-values allowed positive

and negative differences to be considered significant instead of

canceling their effect when taken in a grand average (Figure 3)

or a distribution (Figure 4) approach. Indeed some subjects had

inverted effects when considering the same frequency bin and

channel. Additionally and to account for the considerable amount

of tests per subject (100 bins for 12 channels), p-value threshold

were adjusted for each subject using the FDR method. Corrected

significance threshold actually varied between 0.001 and 0.009 for

the cap-EEG channels and from 0.00006 to 0.008 for the ear-EEG

channels. Each rectangle of the statistical heatmap represents the

sum of subjects for which this PSD bin was significantly different at

this channel. Twelve channels were represented for each recording

system, the same as were later used for classification. The alpha

peak range, centered around 10Hz, is visibly lighter across all

channels considered, for both recording systems. Some other areas

are more significant for the cap-EEG channels: the delta range (1–

3Hz) and the frequency bins right after the alpha peak where we

can distinguish a slow gradient of color throughout the low beta

range from 12 to 20Hz ending with a darker, less differentiated EEG

activity between 20 and 30Hz. For the gamma range, beyond 30Hz,

both recording systems indicate that a high number of individual

subjects exhibit significant differences over this frequency range.

Figure 7 shows the grand average ERP waveforms generated by

the N-back task for the same electrodes as the PSD figures. Cap-

EEG channels showed peaks at much higher amplitudes than ear-

EEG channels. Given that the ear-EEG ERP is considerably noisier,

a 4-point moving average was applied to smooth the data. For the
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FIGURE 6

Heatmaps show the sum of subjects (from 0 to 14) for which PSD values are significantly di�erent between working memory condition (0-back vs
2-back). Significance threshold was placed at the subject level at a FDR corrected z-score of ±2.3262 (equivalent to p = 0.01).

cap-EEG channels, a distinct P300 response started around 250ms

and peaked at around 450-500ms after stimulus onset. The P300

peak was visibly higher for lower working memory conditions and

return to baseline was faster. The ear-EEG waveforms are not as

clear. The around-the-ear electrode L3 highlights a visible P300

response starting a bit earlier than for the cap-EEG channels but

the differences between conditions are not clear at the P300 peak

level, return to baseline seems to be faster again for lower working

memory condition. The in-ear data grand average ERP shows a

clear P100 response, present in all the considered channels, but

the P300 response is not visible. This difference between recording

equipment, between the cap-EEG data’s recognizable P300 peak

and the ear-EEG data’s much less discernible ERP waveforms is

supported by the statistical heatmap for the temporal data analysis,

Figure 8. This heatmap was obtained using the same method as for

Figure 6, comparing at the individual subject level, PSD for low

(0-back) and high working memory (2-back) conditions at each

time-point (10ms intervals) and for each of the twelve channel

subsets. Significance threshold at the subject level was place at an

equivalent of p = 0.01 and corrected for multiple comparisons using

the FDRmethod, actual p-value thresholds varied between 0.002 to

0.005 for the cap-EEG channels and from 0.000003 to 0.0014 for the

ear-EEG channels. Each rectangle of the heatmaps represents the

sum of subjects for which this amplitude is significantly different

at this channel. The cap-EEG channels showed very bright regions

around 500ms, corresponding to the peak of the P300 response

seen in the grand average waveforms. However, the ear-EEG

channels, particularly the in-ear channels (E1 and E2) don’t show

asmuch shared differences in the temporal domain. Some outer-ear

channels were still able to detect significant changes in amplitude in

the range of the P300 response for a majority of subjects.

3.1.2. Arithmetic task
For this task, the PSD was taken from 2-second epochs taken at

regular interval, no time domain analysis was performed. To assess

the fluctuations in EEG activity between a high and a low cognitive

workload, subjects were asked to solve arithmetic problems with

varying degrees of difficulty. The differences were assessed on group

data from ten subjects and an individual subject basis to create the

heatmaps.

Figure 9 shows the grand average PSD for the arithmetic task.

For this task also the different mental load conditions can be

differentiated on these plots for both recording systems. The alpha

peak was harder to differentiate between low and high workload

conditions for the cap-EEG than for the ear-EEG. For this task

and for both recording equipment, the more demanding condition

appear to generate higher PSD than the less demanding one, over

the entire frequency range considered. The grand average ear-EEG

PSD difference is quite striking from the alpha range forward. The

gamma band PSD for the cap-EEG data was also distinctly higher

for the more demanding workload condition.

The boxplots of Figure 10 represent the distribution of PSD

for all subjects for the seven frequency bands. The data was

analyzed in the same manner as for the N-back task, the frequency

bands were the same, the normalization procedure and statistical
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FIGURE 7

Grand average ERP for the N-back task for selected cap and ear-EEG channels (N = 14).

approach were also the same (refer to Figure 6). The boxplots

confirm and highlight that themore demanding cognitive workload

condition’s PSD is statistically higher than the less demanding

condition for all frequency bands and for all channels considered

from both recording equipment, indeed all z-scores obtained

from permutation testing are highly significant and they are all

positive. Despite the normalization of the data and the increase

in the percentage of distribution included within the whiskers

of the plots, there is still a large number of outliers for this

task, like for the one before. For this task however, extreme

value outliers are only found for the more demanding condition,

and the higher the frequency bands, the more this difference in

outlier presence differs between the conditions. From beta 2 to the

gamma ranges, the distributions for the low workload condition

show no outliers for all channels considered over both recording

systems while the high workload condition distributions exhibit

many and always with some extreme values. These non-uniform

distributions could suggest that the pooled data from all subjects

might need better processing methods to harmonize results and

lower variance.

The topographical mapping of the seven frequency bands

is shown in Figure 11. The maps show the grand average PSD

at each channel location for both conditions and the difference

between conditions by way of projecting the results of a statistical

analysis at each electrode location (cf to Figure 5 for more details

as the procedure is the same). The grand average maps are not

so informative, there seems to be a strong unilateral posterior

component present in all frequency ranges and strong activation

over the ocular region as well, due to EOG artefacts, for the

beta and gamma bands. Other important regions and differences

between states are not easily identifiable in these rows but they

come into focus with the difference maps. Mostly the difference

maps show an increase in EEG activity (seen in red) throughout

the frequency range considered. The posterior region, over the

occipital lobe, seems to be the most significant when considering

the highest (high beta and both gammas) and the lowest (delta and

theta) frequency bands, indicating again that differences between

conditions is emerging from actual EEG activity. Maps from the

middle of the frequency range, alpha and low beta, show more

lateralized regions of interest over the parietal and frontal lobe.
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FIGURE 8

Heatmaps show the sum of subjects (from 0 to 14) for which ERP
amplitudes are significantly di�erent between working memory
condition (0-back vs 2-back). Significance threshold was placed at
the subject level at a FDR corrected z-score of ±2.3262 (equivalent
to p = 0.01).

For this task, EOG activity seems to have a localized differentiated

effect between mental load conditions, particularly for the higher

frequency bands where artifact activity decreases.

Figure 12 highlights the number of subjects showing a

significant difference between low and high cognitive workload

conditions in PSD from 1 to 100Hz for the same twelve channels

subset for each recording equipment as before. The approach is

the same as for the N-back task, refer to Figure 6 for more details.

Significance was calculated through permutation testing and the

resulting statistical scores adjusted using the FDR method for

multiple comparison correction. Significance threshold was put

at p = 0.01, adjusted p-values varied for each subject ranging

from 0.00011 to 0.0072 with an average of 0.0031 for cap-EEG

channels and from 0.00017 to 0.0085 with an average of 0.0037

for ear-EEG channels. The alpha range for this task appear less

differentiated across conditions than for the last. Some channels

have some very bright bins in this interval, but for the cap-EEG

data at least, there is no clear band across all channels. The ear-

EEG data has a clearer indication of strong differences in the

alpha range flanked by a very dark region over the theta range

(4–7Hz) and a darker region just following it. This is not to say

that there were less significant differences in the PSD for this task,

very light areas are found throughout the heatmaps. They were

more largely distributed across the higher frequency ranges, mostly

beyond 20Hz for the ear-EEG data and beyond 30Hz for the cap-

EEG data. Lastly, the cap-EEG data appears to be less significant for

individual subjects beyond 80Hz although this tendency was not

observed in the ear-EEG data.

3.2. Classification results

3.2.1. N-back task
Figure 13 shows individual subject’s single-trial classification

accuracies obtained using an swLDA classifier to predict the class

of individual trials between the high (2-back) and low (0-back)

working memory conditions. The algorithm first performed a

feature selection step, the step-wise linear regression which kept

only the more statistically differentiated features. Then the model

was trained on a portion of the trials and tested on the remaining

trials using only the selected features. Accuracy results show the

percentage of correctly classified trials within the testing sets using

a 10-fold cross-validation scheme. For each subject, the average of

these 10 accuracies was reported and the average over all subjects

is plotted in the same figure. The features used were extracted

from the 1Hz spectral feature range model. This model consists

of PSD extracted from each epoch or trial from 1 to 100Hz in

1Hz interval bins, much like the statistical heatmap data (Figure 6).

The heatmap figure represented the same channels considered for

classification, the lighter regions of the heatmaps showed where the

significant features are concentrated and there is a strong overlap

between these regions and the selected features of the classifier.

They are the features that help differentiate between working

memory loads. This feature model started with 100 features (PSDs)

per channel, 1,200 for the 12 channel model, which represents a

higher number than the number of trials (768). This creates issues

of dimensionality that are problematic for classification purposes.

The ill-advised feature to sample ratio was mitigated through the

feature selection regression. On average, over fourteen subjects, the

final number of features kept for this model went from 1,200 for the

twelve channel models to 306 for the cap-EEG data and 285 for the

ear-EEG data. For the two channel models, the initial number of

features was 200 and the number of features used for classification

was on average 35 for the cap-EEG data and 34 for the ear-EEG

data.

Classification results of Figure 13 show that all subjects

achieved significant above-chance level performance for both

recording equipment, for the twelve and the two-channel models.

For the twelve channel models, average accuracy was 96% for

the cap-EEG and 95% for the ear-EEG;. For the two-channel

models, average accuracy was 76% for the cap-EEG and 74% for

the in-ear EEG. It might appear that cap-EEG data yielded higher

classification accuracies than ear-EEG data but these differences

were not found to be statistically significant with a paired t-test

comparing the 10 fold classification accuracies of all subjects and

a p = 0.001 threshold (p = 0.034 for the twelve channels and p

= 0.230 for the two channels). On an individual subject level, it is

interesting to note that some of the two channel ear-EEG models

which represent only dry in-ear electrodes outperform greatly the

occipital channels of the cap-EEG models, it is the case of subject 1

and 6 for example and subject 4 to a lesser extent.
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FIGURE 9

Grand average PSD for the arithmetic task for selected cap and ear-EEG channels (N = 10).

FIGURE 10

Boxplot of PSD for seven frequency bands for the arithmetic task for selected cap and ear-EEG channels (N=10; *z-score > ±2.3262 - eq. p = 0.01,
**z-score > ±3.0902 - eq. p = 0.001).

For the N-back task, time domain features were also available.

Table 1 provides the classification accuracy for different feature

modalities: spectral, temporal and mixed. Both cap and ear-

EEG data were considered for both channel models. The spectral

1Hz interval bins feature and the temporal 1,000ms (in 10

ms interval) features started out with the same number of

initial features, 100. The mixed or “fusion” model had 200

initial features per channels. The results show that the spectral

domain features outperformed the temporal domain features

and that the fusion model outperformed both of them. This

is statistically significant for both channel subsets across both

recording systems with p-values all under 10-7. While the

performances for the spectral range models did not differ

statistically between recording equipment. The performances

of the classifier for the temporal and fusion models were all

significantly better for the cap-EEG data than the ear-EEG data

with p-values all under 10-4 for both channel subsets and both

feature model.
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FIGURE 11

Topographical maps of PSD for seven frequency bands for the arithmetic task (N=10, first two rows are grand averages, the last is the statistical
results of permutation testing between both conditions–positive z-scores (red) indicate an increase in PSD from the 0-back to the 2-back, negative
z-scores (blue) indicate a decrease).

FIGURE 12

Heatmaps showing the sum of subjects (from 0 to 10) for which PSD values are significantly di�erent between cognitive workload conditions (low vs.
high). Significance threshold was placed at the subject level at a FDR corrected z-score of ±2.3262 (equivalent to p = 0.01).

When considering the final number of features for each

model, it can be noted that the final number of temporal

features was a lot less than the final number of spectral features,

about 80 % less for the 12 channel models and close to 50 %

for the 2 channel model. The final number of mixed features

selected by the step-wise linear regression was unexpectedly higher

than the addition of those different modality features for the

twelve channel configuration, 37% more features on average.

This could explain the abnormally high classification accuracies

of the fusion model for the twelve channel models, probably

brought on by over-fitting. This was not the case for the 2

channel model.
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FIGURE 13

Single-Trial classification accuracies for the N-back task with a 1Hz interval bins and a 1–100Hz frequency range (the black line represents chance
level at 57%).

FIGURE 14

Single-trial classification accuracies for the arithmetic task with a 1Hz interval bins and a 1–100Hz frequency range (the black line represents chance
level at 57%).

3.2.2. Arithmetic task
Figure 14 shows the single subject classification accuracy for the

same model as in Figure 13 for the arithmetic task (1Hz interval

frequency range model from 1 to 100Hz) for each recording system

and for a twelve and two-channel feature set. The initial number of

features was again undesirably close to the number of trials, around

1,392 compared to 1,200 initial features for the twelve-channel

model. Again, the step-wise linear regression step helped reduce

the number of features considered for classification to 139 for

the twelve-channel cap-EEG, 171 for the twelve-channel cap-EEG
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TABLE 1 N-back task single-trial classification results for di�erent feature

modalities (in grey is the final number of features kept by each classifier

over the initial number of features available).

12 channels 2 channels

cap-EEG ear-EEG cap-EEG ear-EEG

Range 1 to 100Hz

1Hz steps

96 %

(306/1,200)

95 %

(285/1200)

76

(35/200 %)

73 %

(34/200)

Temporal

1 to 1000ms

86 %

(76/1,200)

76 %

(57/1200)

72 %

(17/200)

64 %

(16/200)

Fusion: temporal

and 1 to 100Hz

100 %

(564/2,400)

99 %

(592/2400)

81 %

(48/400)

77 %

(52/400)

data, 34 for the two-channel cap-EEG and 36 for the two-channel

ear-EEG. The figure shows that all subjects performed better than

chance-level for the twelve-channel feature set with an average of

81% for cap-EEG, 84% for ear-EEG. For the two-channel feature

set, the average was 70% for the cap-EEG and 69% for the in-ear

EEG. On average, it seems that the ear-EEG features outperformed

the cap-EEG ones for the twelve channel model but not for the two

channel model. However, none of these differences are significant

at an alpha of 0.001 although the twelve channel ear-EEG model

comes close to this threshold (p= 0.0013 for the twelve-channel, p=

0.309 for the two-channel). Some individual subjects show better

performances for the in-ear EEG data compared to the cap in this

task as well, such is the case for subject 7 and 11 for example.

3.2.3. Spectral feature model comparison
Figure 15 is useful to assess the influence of certain feature

parameters over classification accuracies. The same tendencies can

be observed for both tasks: on the left, a decrease in classification

accuracy with decreasing spectral resolution; on the right, a

decrease in classification accuracy with decreasing frequency cut-

off for the spectral range considered. The feature models in the left

plot all have a frequency cut-off of 100Hz. The accuracy results

from the right plots are those of the twelve channel ear-EEGmodel,

the tendencies were the same for other channel subsets. The feature

sets are described in detail in Section 2.5. They are labeled as 0.5Hz

for 0.5Hz-interval bins (200 initial features per channel); 1Hz for

the 1Hz-interval bins (100 initial features per channel); the 5Hz

model corresponds to bands of 5Hz or less (21 initial features per

channel); and finally the band models have the same number of

initial features per channel as their band number.

Statistically for the N-back task, each decrease in resolution

from 0.5 Hz down to 5 Hz did yield a significantly lower reported

classification accuracy average for all channel models. After that

resolution, drops in accuracy are not significant (alpha 0.001)

from one model to the next until reaching the 5 bands model

where all four channel models perform statistically worse than all

other models considered. The drop in accuracy and subsequent

stagnation can be linked to the number of features in the final

models. For the twelve channel models the final number of features

is about 540 for the 0.5Hz models and just under 300 for the 1Hz

model. After this, it drops to below 50 features for the 5Hz and 17

for the 5 band models. The two channel models only have 5 or 6

final features considered by the classifier yet they still manage to

yield accuracies over chance-level (73% for the cap-EEG and 65%

for the ear-EEG).

For the arithmetic task, statistical analysis results are quite

similar. Significant drops in accuracy can be found from 0.5 to 1

Hz and then again from 1Hz to 5Hz for all four channel. After this,

no significant drop from one model to the next is recorded until

the 5 band model which performs significantly worse than the 5Hz

model but only for the twelve channel models.

The right side plots show that classification accuracy decreases

when the gamma cut-off frequency is lowered. The seven band

model stops at 80Hz because with a 45Hz cut-off frequency, it

consisted of the same features as the 5Hz model. All reported

average accuracy results plotted for both tasks and for the 5 feature

models were lower when the cut-off frequency dropped from

100 to 80Hz and from 80 to 45Hz. However, not all decreases

were statistically significant. Lowering the cut-off to 45Hz was

significant for both tasks for the three range models considered

(0.5, 1, and 5 Hz); while the drop in accuracy going to a 80Hz cut-

off frequency was statistically significant for the 0.5Hz and the 1Hz

model when considering the N-back task; and for the 1Hz model

for the arithmetic task.

4. Discussion

Future BCIs have the potential to change how we interact

with technology, assuming they can be used outside of controlled

environments. Besides comfort and aesthetics, the signal must be

of sufficient quality if one is to reliably decode different mental

states. Mobile EEG recording equipment with proven signal quality

is already available (Debener et al., 2012; De Vos et al., 2014a).

In this study, we investigated the potential of ear-EEG to monitor

focus, a concept that overlaps with notions such as concentration,

attention, engagement and intensity of a task. Tasks were chosen

to represent different features of focus, namely working memory

and cognitive workload. The goal in both of these tasks was to

differentiate between low and high mental demand to ascertain

differences in EEG activity that could be indicative the level of

focus. We compared the quality of neural oscillation recordings

of a mobile ear-EEG recording system to that of a conventional

84-channel wet cap-EEG wired system, used concurrently. The ear-

EEG electrodes were wet around-the-ear electrodes (cEEGrids) and

dry in-ear electrodes (TIPtrodesTM).

When comparing the cap-EEG data obtained with existing

studies using similar paradigms (Rebsamen et al., 2011; Brouwer

et al., 2012), our results were comparable. For the N-back task, we

found a strong and significant alpha peak with its power inversely

proportional to the working memory load (Figure 3). The peak

was visible in both cap and ear channels, although cap channel

power was stronger for this interval. In the higher frequency ranges,

above 30Hz, it seemed the PSD order for both recording equipment

inverted with the higher demand translating into higher PSD levels

over high beta and gamma bands. Over this higher frequency

range, ear channels recorded slightly stronger PSD signals. Overall,

these grand average power spectrum seem to offer information

of comparable quality across both recording systems as further

evidenced by Figure 4. This next figure highlights the differences

in distribution of all frequency ranges in more compelling detail,
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FIGURE 15

Average of individual subject’s classification accuracies for di�erent spectral resolution and frequency range cut-o� for the N-back (N = 14) and
arithmetic task (N = 10).

through its representation of the PSD distributions but also thanks

to the statistical results it features. The results of the boxplots

establish that for this task, EEG activity elicited from a higher

working memory demand translates into statistically lower PSD for

frequency ranges under 20Hz; from delta to alpha. Above 30Hz,

higher working memory demand translates to a higher PSD. The

transition between this inversion occurs over the beta range from

12 to 30Hz where it does fluctuate between channels and range

considered. Cap channels are quite effective at showing differences

in the lower beta range, behaving much like the alpha range

distribution: lower medians for the more demanding condition

and less outlier values. For the higher beta range, the around-the-

ear channel show a statistically more significant and visually more

compelling difference where themore demanding condition show a

higher distribution andmore outliers. The dry in-ear EEG channels’

results seemed less conclusive when considering the grand averages,

particularly when it came to the higher frequency bands, but the

differences evidenced in the boxplots were still very significant for

the gamma frequency range.

The topographical maps show how these differences in

PSD were distributed spatially. They are consistent with the

previous results, upholding the choice of these selected channels

to represent EEG activity for this recording system. The shift

between the lower frequency ranges which were predominantly

blue, indicative of a decrease in activity to maps with a lot more

red, indicative of an increase in EEG activity, for the higher

frequency range is complemented with more information on the

spatial origin of these differences in PSD. The higher frequency

bands (high beta and gamma oscillations), residual artifacts

of eye movement clearly contaminated the PSD topographical

maps. However, it was shown that activity in this ocular region

is not where the differences between working memory load

are the strongest. For these higher frequency bands, higher

working memory load had the strongest statistical significance

over posterior regions of the maps. Visible clusters of heightened

activity can be seen over the temporal lobes reaching more

towards the occipital region. This lets us surmise that although

PSD in the high beta and gamma ranges incorporates residual

muscle activity which contributed unwittingly to the results,

the differences in mental states are in fact driven by activity

emanating from cortical areas. This was important to show

particularly for the gamma range where EOG activity is known

to persist even after appropriate data pre-processing and can be

underestimated when using a nose reference (Yuval-Greenberg

et al., 2008).

Heatmaps of Figure 6 have shown that differences at the

individual subject level are strong for the alpha range and for

the higher frequency bands (30Hz and up), sometimes stronger
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than grand average or cumulative distribution differences. Boxplot

representation showed that there is a high degree of variance

in data sets obtained from multiple subjects and that the

medians are not the best tool to assess differences between these

populations. Heatmaps considered individual differences, which

were sometimes of opposite signs, to assess which frequency ranges

were the most indicative of change in EEG activity between mental

load conditions.

The classification accuracy results for this task obtained with a

spectral range feature set from 1 to 100Hz in 1Hz intervals were

well above chance-level, that is, over 95% for the twelve-channel

models and over 70% for the two-channel models. The working

memory condition could reliably be decoded from both cap and

ear-EEG signals as well as in-ear EEG. Cap and ear EEG recording

equipment produced comparable results and although the cap-

EEG feature sets often had a few percentage points over ear-EEG

feature sets, this difference was not significant. This was all themore

impressive given that the twelve-channel cap-EEG electrodes were

placed around the entire head versus the ear-EEG electrodes closer

together and condensed in two much narrower regions around and

inside the ears. The two-channel model’s comparable performances

were noteworthy particularly since we compared occipital wet

electrodes to in-ear dry electrodes for a task with visual stimuli. On

an individual subject basis, none of the recording equipment was

consistently better than the other. A better result with the twelve-

channel cap-EEG feature model did not mean that the two-channel

cap-EEG would perform better and vice versa.

For the arithmetic task, again we observed clear differences

betweenmental load conditions, however these were not always the

same differences as what we saw for the N-back task. The alpha

range provided a visible peak and could be used to distinguish

between conditions but the difference was mostly for the ear-

EEG channels this time and said difference was in the opposite

direction than for the other task. The cap-EEG channels grand

average representation of PSD (Figure 3) did not provide a clear

differentiation between workload levels at this frequency range,

although significant differences were confirmed with the boxplots

(Figure 4). This is in line with the concept of internalized attention

vs. externalized attention (Magosso et al., 2019). For this task, it was

observed that with a higher workload came a higher PSD for the

entire frequency range considered for both recording equipment.

Only the high beta range (20 to 30Hz) showed areas of overlap

between conditions and for cap channels only. Other than this,

the low workload conditions had systematically and significantly

lower PSD at every frequency range considered. For a majority of

the bands, the standard deviation for the low workload condition

was also much smaller than the high workload condition. Although

the differences in EEG activity for the lower frequency bands

(under 20Hz) were not what was observed for the N-back task,

the gamma band distributions had important similarities between

the two tasks. When considering the topographical distribution

of PSD for each neural oscillation (Figure 5), the difference maps

all showed large areas with positive z-scores, which translates to

stronger PSD with higher workload demand. The regions where

these differences were the strongest and most significant were

distributed over several cortical regions according to the frequency

range considered. The alpha and lower beta band’s PSD changes

were concentrated over the temporal region which could be an

indication as to why the ear-EEG channels performed better at

differentiating activity in that range. A phenomenon confirmed

again in the statistical heatmap of Figure 12, where the alpha band

was visible for the ear but not so much for the cap-EEG channels.

Regarding the higher frequency range maps, similar conclusions

could be drawn for both tasks for high beta and both gamma bands.

Specifically, grand average workload condition maps pointed to

the ocular region, indicative of muscle artefacts, but the most

significant areas when considering differences between conditions

pointed to the parietal and occipital regions consistent with actual

EEG activity. Some clusters were also found closer to the temporal

regions for the beta bands. These considerations are important

since the features used for classification are selected based on

their statistical difference between conditions. Conclusions of the

topographical analyses therefore support the argument that the

features used for classification are in fact related to actual brain

activity dynamics. The classification accuracy results for this task,

obtained with the same range model as before, were again well

above chance-level, 80% and more for the twelve channel models

and close to 70% for the two channel models. The cognitive

workload could be decoded from both cap and ear-EEG signals,

around and inside the ear. Statistical analysis of both task, did reveal

that for this task, the ear-EEG channel sets performed slightly better

than the cap-EEG channels for some subjects over both channel

models, twelve and two.

We conclude that EEG spectral features recorded from inside

and around the ear can reliably assess different focus levels may it be

related to working memory or cognitive workload features. These

features systematically allow for significantly above-chance level

classification accuracy between all levels of difficulty. Therefore, it

would be feasible to develop a concentration or focus-monitoring

BCI in the form of an earpiece.

The next steps for this line of research will be to test these

conclusions under less restrictive conditions, outside of a controlled

environment and with more diverse and complex tasks. Such data

obtained from more realistic focus conditions will obviously be

noisier, and will be harder to appropriately label for the purpose

of training new classification algorithms. On the other hand,

the tasks presented for this study might have been biased or

misrepresented the focused state of individual subjects. The degree

to which the participant’s might have felt involved in these repetitive

tasks throughout the recording and the perceived difficulty of

the task could vary as several subjects did comment on the

tediousness of the N-back task in particular. Recording participants

in more realistic focus scenarios might actually provide better,

more consistent differences across PSD features between tasks

and between participants. The nature of the tasks will most likely

have an impact on which spectral ranges are best to characterize

focus. As we have seen here, the alpha frequency although very

effective to distinguish between working memory conditions and

between cognitive workload conditions behaves in a completely

opposite fashion from one task to the other. It might be too task

dependent to be useful in this context. Higher frequencies in the

beta and gamma bands, although mixed with muscular activity,

might procure more consistent markers of focus across a variety

of tasks.
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This study showed grand average EEG results and distributions

from all participants but reported classification accuracies for

within-participant trial data. This choice was supported by Aroudi

et al. (2016)’s results on attention decoding, which showed that

given sufficient individual data, individual models will outperform

the group model given that inter-subject variance is always larger

than variance within individuals for this type of data. Nevertheless,

according to the type of application considered it might still make

sense to try and improve group model classification. Going back

to the boxplot from both tasks, distributions of PSD values were

non-uniform, skewed and contained a lot of outliers. The medians

were often very close in value while the spread and reach of the

distributions were in fact very different. This might be related

to the high variance across subjects which could be improved

through better standardization methods when comparing PSD

values. Spectral selection, filtering and the use of band ratios

seem like interesting avenues to address this (Berka et al., 2007).

This will most likely imply further research on feature extraction

procedures and preprocessing specifications that can have a great

impact on classification accuracies (Farquhar and Hill, 2013).

The choices made, that led to the specific features used for this

study, included montage selection (electrode discrimination from

eighty-four to twelve for the cap-EEG data and twenty to twelve

for the ear-EEG data), resampling and filtering, epoch duration

selection and base-lining. ICA was used to remove mainly the

eye blink components from the data before choosing the best re-

referencing option for both recording systems. The ear-EEG data

provided the best results using a contralateral reference for each

ear channel, this increased the distance between the reference

and the channels. For the cap-EEG data, the nose reference was

kept as it was the furthest from strong noise contamination from

the concurrent recording systems which affected several cap-

EEG channels around the ears at different locations for different

participants and in intermittent fashion. Linked mastoid reference

was rejected because of this unpredictable noise, most likely

originating from the ear-EEG equipment. It might also have had an

impact by propagation on the use of a common average reference

which strongly impacted individual subject differences and PSD

distributions at individual channel locations, making it harder to

keep a consistent channel selection over all participants and tasks.

The nose-reference although not well suited for source localization

(Mahjoory et al., 2017) produced more consistent results for inter-

subject comparisons of specific electrode locations. Topographical

representation of PSD can be biased by a nose reference because

of the proximity with ocular artefact location (Trujillo et al.,

2005), therefore conclusions regarding topographical data from this

study were tested against common average reference topographical

representations and held up.

Stronger classification algorithms might be necessary to

identify the important features shared between individuals and

normalization of the spectral data will most likely be a determining

factor in improving this process. In order for the algorithms to

be able to generalize across individuals, selecting which frequency

ranges are used as features could be very relevant as well as better

standardization of the features across subjects through the use

of frequency band ratios for example. On model performance

comparisons, we have learned from this study that higher spectral

resolution tends to produce better classification results at the

individual subject level, as does a higher cut-off frequency.

However, increasing spatial resolution increases the dimensionality

of each sample increasing the risk of over-fitting. This explains why

even though the 0.5 Hz resolution models performed better than

the 1Hz resolution, the later models were used for visualization and

for single trial classification since the final number of features was

more appropriate considering our sample size. The choice of a 100

Hz cut-off frequency was influenced by the feature resolution as this

model performed significantly better with this cut-off frequency

for both tasks. It might be interesting to do future research on

maximum useful frequency cut-off as ear-EEG channel features in

particular seem like they would be significant past this 100Hz limit.

Lastly, the study of temporal features showed that even though

they were capable of predicting with above chance-level accuracy

the levels of cognitive demand for both recording equipment

and channel subsets, they performed worse than spectral ones.

Results of this study have shown that while ear-EEG spectral

features performed on par with cap-EEG spectral features, ear-EEG

temporal data is much noisier than cap-EEG’s temporal data as

evidenced by the grand average ERP waveforms (Figure 7) and the

temporal heatmaps (Figure 8). Dry in-ear EEG channels did not

produce a grand average P300 response but were sometimes better

than selected cap-EEG channels at differentiating PSD between

conditions. Hence ear-EEG might be better suited for applications

that rely on spectral data rather than temporal responses, such

as focus monitoring. It is worth noting that mixing temporal

with spectral features did improve classification results compared

to spectral features alone. Although given the abnormally high

performance of this type of fusion model (near 100 %), and the

high dimensionality of these models, over-fitting is suspected to

have happened, despite feature reduction. This will be decisive if

these results are to be exploited in a BCI context, it would also make

sense to report information transfer rates along with classification

accuracies.

Future research should also focus on improving ear-EEG

electrode technology. The TIPtrodesTM are very sensitive to

movement, whichmakes them single-use and susceptible to various

sources of electromagnetic noise. Around-the-ear electrodes used

in this study were wet, innovation in electrode material and

treatment could allow their use as dry electrodes. Movement-

tolerance of such ear-EEG recording system will surely be

a research area of interest going forward. Tighter contact,

possibly achieved through custom-fitted earpieces and shielding

technologies, could effectively decrease the potential impact of

movement artifacts when developing these applications for daily

life situations.

5. Conclusion

Focus can be assessed using EEG spectral features that

were recorded from sites in and around-the-ear using a

mobile EEG amplifier. These features are consistent with

known characteristics of working memory and cognitive

workload. Ear-EEG is a promising candidate for future

BCI and brain-monitoring applications, which could help
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with our day-to-day activities, such as workplace security

and productivity.
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