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Editorial on the Research Topic
Computational methods in cardiac electrophysiology

Introduction

Cardiac electrophysiology research increasingly relies on computational methods
to connect experimental and clinical observations to understand underlying
mechanisms. These methods process experimental data, such as optical mapping
and body-surface potential mapping, and model biophysical processes, such as the
behavior of electrical sources within the heart and the electrical potential fields
linked to these. Signal processing from experiments and clinical recordings helps
elucidate electrophysiological properties across various domains, while
computational modeling offers a theoretical understanding. Patient-specific
models increasingly help interpret observations and improve individual cardiac
electrical behavior approximations. Consequently, advancements in computational
methodologies are vital for gaining new insights into cardiac electrophysiology and
arrhythmias.

Here, we review papers published in the Frontiers in Physiology Research Topic on
“Computational methods in cardiac electrophysiology,” and share a perspective on the
potential future impact of such technology (Figure 1).

Body-surface potential mapping,
electrocardiographic imaging, and optical mapping

Body-surface potential mapping (BSPM) may provide information beyond the 12-
lead electrocardiogram (ECG), which is particularly relevant for extraction of therapy
predictors in complex (chaotic) rhythms such as atrial fibrillation (AF). Zhong et al.
used BSPM signals to predict AF recurrence after catheter ablation therapy. They
combined single-time instant BSPMs with temporal-attention block, which allowed
the training of a 3D convolutional neural network (3D-CNN) with BSPMs over time to
predict AF recurrence. The advantage of using BSPM without performing noninvasive
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inverse mapping techniques (called electrocardiographic
imaging, ECGI) is that it avoids ECGI’s particular intricacies
and pitfalls. Melgaard et al. have performed such inverse
mapping but have limited it to a simplified, potentially more
stable, approach. They restrict their inverse technique to the 12-
lead ECG and a generic (non-personalized) geometry. Their
method was able to noninvasively localize the latest electrically
activated region in patients with LBBB, which is relevant for
lead placement during CRT implantation. Although the use of
generic geometries forfeits the need for imaging in patients, it
likely affects the accuracy with which abnormalities can be
localized in the heart. This was also studied by Molero et al.,
who investigated the effect of the density of personalized
digitized torso meshes in patients with AF undergoing ECGI.
They found that including the exact positions of the electrodes
on the patient’s torso directly in the mesh (thus matching
electrodes with mesh nodes) drastically reduces the need for
high-density meshes. Their findings suggest that meshes
primarily composed of electrode positions may contain
sufficient geometric detail for accurate inverse
reconstructions (if sufficient electrodes are present).

In two companion papers, Meng et al. introduced a novel
formulation of ECGI and then applied this method to the less-
studied intracardiac approach. First, the method of
fundamental solutions (MFS) was employed to map
intracardiac (catheter-based) signals to the endocardium of
the heart. MFS is a meshless ECGI approach that has been

applied to inverse torso-heart mapping, but not yet to inverse
catheter-heart (intracardiac) mapping. They studied the
intracardiac MFS approach and found that it outperforms
traditional (mesh-based) approaches and is theoretically
simpler to set up. Subsequent application of this method in
patients with AF showed that it is a feasible mapping method,
but catheters must be large enough to capture features of
complex rhythms (Meng S. et al.).

Combined, these papers add important insights to the field:
For some applications, BSPM or simplified ECGI approaches
(based on the 12-lead ECG) may be sufficient; and for more
complex applications such as intracardiac mapping, meshless
approaches may be better suited than the traditional mesh-
based approaches with more complex requirements.
Sometimes, simpler is better.

With the advent of telehealth, a robust quality assessment of
input data from (wearable) sensors is essential. Castiglioni et al. used
cepstral analysis, a method to identify the periodicity of a signal, for
single-lead electrocardiograms to quantify the quality of the
recording. Even if multiple electrodes are available, defining the
most informative metrics remains an ongoing process, as illustrated
by Kappel et al., who assessed three quantitative indices to predict
whether a uniform ablation strategy resulted in AF termination
(Kappel et al.).

Optical mapping plays a major role in unraveling
arrhythmia mechanisms in experimental investigations. Such
mechanisms may be partially based on complex interactions

FIGURE 1
Current mechanistic reasoning frameworks highlight the complex spatiotemporal interaction of trigger and substrate (A); computational modeling
is essential to integrate detailed assessment of trigger and substrate characteristics to obtain translational insights (B). Adapted from Cluitmans et al.,
2023, licensed CC-BY-4.0.
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between transmembrane voltage and intracellular calcium.
Uzelac et al. developed a method that allows simultaneous
recording of these quantities in a single-camera optical
mapping setup. This allows the quantitative characterization
of their dynamic interactions that play a role in
arrhythmogenesis at the tissue level. Among others,
dynamics may be the result of inflammation, which was
studied with computational models to begin unraveling the
underlying complex interactions by Bi et al.

Tissue modeling, organ modeling, and
digital twins

Traditionally, computational models have been
indispensable in experimental studies to facilitate more
accurate analysis and to infer mechanisms underlying cardiac
function. Driven by recent methodological advances, cardiac
modeling has also begun to appear in clinical applications as a
means of aiding in diagnosis and stratification, or—by
exploiting their mechanistic nature that allows to predict
therapy outcomes—for the optimal planning of therapies. All
of these application scenarios pose different challenges, many of
which are addressed in this Research Topic.

Overall, cardiac modeling benefits from methodological
advances leading to improved robustness, accuracy and
numerical stability (Barral et al.). It also profits from more
accurate biophysical representation of mechanisms, such as
electro-mechanical force generation at the cellular level
(Bartolucci et al.) or of atrial electrophysiology in experimentally
important porcine models (Peris-Yagüe et al.). Models also play a
pivotal role in gaining insight into the relationship between key
pathological processes in cardiac diseases such as myocardial fibrosis
and their reflection in the most important observable physical
measurements, that is, intracardiac electrograms. The
computational methodology for best representing the impact of
fibrosis inmodels on electrograms was comprehensively reviewed by
(Sánchez and Loewe).

At the forefront of cardiac modeling research is the
development of methodologies for generating anatomically
accurate and physiologically detailed computational models
calibrated to patient data at an individual level. Such
personalized models represent data acquired from individuals
with high fidelity, or are statistically representative of a group
of patients. Such digital twin models or virtual cohorts are now
gaining importance in clinical applications, in the medical device
industry as well as in regulatory policy. Furthering these arguably
most advanced models of cardiac function to deliver on these high
promises relies on improving several critical aspects. Most
importantly, model calibration must be achieved with high
fidelity by comparing to clinically observable data. These
calibration processes must be streamlined and automated to
create digital twins with sufficient reliability within feasible
timeframes. Gillette et al. reported the first biophysical whole-
heart electrophysiology model that can be executed with real-time
performance, and is able to match the ECG of the modelled subject
using a topologically and physically detailed model of the entire
cardiac conduction system. Beetz et al. proposed a novel data-

driven approach to investigate physiological patterns linked to
electrophysiological activity and mechanical deformation (Beetz
et al.). These vary considerably between individual patients and
across cardiovascular diseases. They developed a multi-domain
variational autoencoder network that integrates electrocardiogram
and MRI-based 3D anatomy data into a unified model.
Demonstrating high fidelity reconstruction and generation of
realistic virtual populations, their approach enhances
cardiovascular disease classification and supports the creation of
accurate computational models, capturing disease and patient
variability. Doste et al. proposed utilizing cardiac models for
accurately and non-invasively determining the site of origin of
ectopic beats in outflow tract arrhythmias prior to ablation
therapy, to improve intervention outcomes. They enriched the
training data with simulation-based synthetic data to train a
machine-learning classification model. Their study
demonstrated that simulated data are pivotal for enhancing
training classification algorithms to achieve sufficiently accurate
localization of the sites of origin.

Personalized computational methodology is ideally
positioned—and perhaps critical—to assess an individual’s true
risk for arrhythmias, as it is increasingly recognized that
simplified concepts such as “wave length,” “scar volume,” and
“reduced ejection fraction” are insufficient to accurately assess
this. This is particularly true when addressing both electrical and
structural abnormalities, as can be studied using the recently
introduced unifying “Circle of Reentry” (Cluitmans et al., 2023),
Figure 1A. Although such reasoning frameworks may be all-
encompassing, they are dependent on a complex spatiotemporal
interaction of their elements. This necessitates computational
assessment not just to process the complex data at the level of
each single modality, but also to integrate findings to understand
emergent behavior and arrive at an accurate risk assessment of an
individual’s heart characteristics (Figure 1B).

Artificial intelligence (AI), although relatively unaddressed in this
collection of papers, is expected to significantly change our scientific
understanding (Krenn et al., 2022). Although its ‘black-box’ approach
may initially seem unsuitable to obtain new insights, it can uncover
patterns and may be well suited to explore new or unstructured data.
Evenwhen the biophysics of a field are relatively well-understood—as is
arguably the case for cardiac electrophysiology—an interaction between
“fuzzy” AI and ‘exact’ biophysics may yield new insights (Cluitmans,
2023). And AI in Digital Twins may help to augment data that is
required for personalization but may not be directly available in a
particular individual.

Conclusion

In conclusion, the papers presented in this Research Topic on
“Computational methods in cardiac electrophysiology” collectively
contribute to advancements in computational methods that can
transform the understanding, analysis, and treatment of cardiac
arrhythmias. By focusing on the development of robust and accurate
models, as well as innovative approaches to personalize patient care,
these methodologies pave the way for better clinical applicability and
predictive outcomes. The integration of artificial intelligence and
machine learning techniques, which have seen rapid growth and
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adoption in recent years and months, is poised to propel the field
forward, enabling deeper insights and more effective treatment
strategies. Overall, the synergy of computational
electrophysiology, AI, and experimental and clinical data holds
great promise for improved diagnostic accuracy, patient-specific
therapeutic planning, and an enhanced understanding of complex
cardiac interactions, ultimately contributing to better patient
outcomes and quality of life.
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Most cardiac arrhythmias at the whole heart level result from alteration of cell membrane

ionic channels and intracellular calcium concentration ([Ca2+]i) cycling with emerging

spatiotemporal behavior through tissue-level coupling. For example, dynamically induced

spatial dispersion of action potential duration, QT prolongation, and alternans are

clinical markers for arrhythmia susceptibility in regular and heart-failure patients that

originate due to changes of the transmembrane voltage (Vm) and [Ca2+]i. We present

an optical-mapping methodology that permits simultaneous measurements of the

Vm - [Ca2+]i signals using a single-camera without cross-talk, allowing quantitative

characterization of favorable/adverse cell and tissue dynamical effects occurring from

remodeling and/or drugs in heart failure. We demonstrate theoretically and experimentally

in six different species the existence of a family of excitation wavelengths, we termed

semasbestic, that give no change in signal for one dye, and thus can be used to record

signals from another dye, guaranteeing zero cross-talk.

Keywords: optical mapping, semasbestic wavelength, isosbestic point, fluorescent dyes, transmembrane voltage,

intracellular free calcium concentration, alternans

1. INTRODUCTION

Heart failure (HF) is a global epidemic, affecting more than 64 million people worldwide (James
et al., 2018) and is increasing in prevalence. In the US, about 6.9million people have been diagnosed
with HF, with an expected 24% increase to nearly 8.5 million by 2030 (Benjamin et al., 2018). The
prognosis is poor: 20% die within 1 year and 80% within 8 years, resulting in over 655,000 deaths
annually (Virani et al., 2020) in the US alone. More than half of HF deaths are due to ventricular
fibrillation (Packer, 1985), and despite decades of study, the mechanisms by which HF predisposes
patients to these ventricular arrhythmias are not well-understood. As a result, few treatment options
are available. It is, therefore, crucial to identify howHF leads to the development of life-threatening
cardiac arrhythmias. Although it is well-known that fibrosis and myocardial ischemia (Tomaselli
and Zipes, 2004) can cause conduction abnormalities and cardiac arrhythmias, there is growing
recognition that abnormal intracellular calcium cycling plays a fundamental role in the pathology
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of HF (Hoeker et al., 2009; Aistrup et al., 2011). Many
studies have shown that disruptions in intracellular calcium
concentration ([Ca2+]i) cycling, along with the complex voltage-
calcium bidirectional coupling, can lead to action potential
(AP) repolarization abnormalities that promote arrhythmias
(Balijepalli and Kamp, 2008, 2011; Hoeker et al., 2009;
Louch et al., 2010; Aistrup et al., 2011). This necessitates
the development of effective methods that can investigate
simultaneously the dynamics of the cell’s transmembrane voltage
(Vm) and [Ca2+]i in cardiac tissue.

Optical mapping, developed in the mid-1970s, is the
perfect methodology for the study of Vm -[Ca2+]i in cardiac
electrophysiology due to a high spatial and temporal resolutions.
In essence the method originally consisted in measuring changes
in Vm from changes in fluorescence intensity using Vm sensitive
dyes. For example, electrochromic Vm dyes bind to the cell’s
membrane, and their absorption and emission spectra blue-
shifts a few nanometers as the cell membrane depolarizes. By
blocking the excitation light and part of the emission spectra
with a long-pass-filter (LPF) placed over an electro-optical
sensor (camera), fluorescence intensity is measured in practice
(Figure 1). For small spectra shifts, the normalized change in
fluorescence intensity (1F/F) is given by (F - F0) / F0, where
F0 is the fluorescence intensity when the cell’s membrane is
polarized (the resting membrane potential), and F when the cell’s
membrane is depolarized (any other transmembrane potential)
which to first approximation it is linearly proportional to the
cell’s transmembrane potential and thus closely reproduce the
action potential (Figure 1D). With unprecedented high spatial
and temporal resolution, optical mapping with Vm sensitive dyes
have been used to characterize wave propagation across the tissue
surface (Barone et al., 2020) and depth (Kelly et al., 2013), during
regional ischemia (Sidorov et al., 2011) and provide evidence
of reentrant waves as mechanisms of lethal arrhythmias such as
ventricular tachycardia and fibrillation (Davidenko et al., 1992;
Gray et al., 1998; Cherry and Fenton, 2008) that affect the electro-
mechanical coupling (Christoph et al., 2018). Additionally,
invasive and non-invasive techniques can also be characterized
using optical mapping, such radio-frequency ablation outcome
(Paredes et al., 2020; Pollnow et al., 2020), and low-energy
defibrillation techniques (Li et al., 2011; Ji et al., 2017; Uzelac
and Fenton, 2020). However, for a complete understanding
of arrhythmic mechanisms, simultaneous measurements of Vm

and [Ca2+]i are needed. Simultaneous measurement of Vm-
[Ca+2]i reveals spatial dispersion of AP repolarization and
[Ca+2]i transients (CaT) (Uzelac et al., 2017) which is one of the
mechanisms leading to ventricular arrhythmias (Pastore et al.,
1999; Watanabe et al., 2001; Gizzi et al., 2013).

Historically, the first dual optical mapping systems were
designed in 2000 by Choi and Salama (2000) with RH-237 Vm

and Rhod-2 AM [Ca+2]i dyes, and by Laurita and Singal (2001)
with Di-4-ANEPPS Vm and Indo-1 AM [Ca+2]i dyes. These
systems used overlapping excitation bands for the two dyes with
separate emission bands split and sent to the two photodetectors,
one to measure Vm and one for [Ca+2]i with a spatial resolution
of 16 × 16 pixels. Since then, other dual systems with higher
resolution (Holcomb et al., 2009) have been developed, including

those designed with a single camera for monolayers (Scull et al.,
2012) and whole hearts (Lee et al., 2011, 2012a,b,c; Herron et al.,
2012). The advantages of a single detector based systems include:
(i) Significantly less expensive as they do not require multiple
detectors/cameras; (ii) There is no need for spatial alignment of
the detectors to have the same field of view, increasing complexity
of setups, and possible decrease of the field of view (Holcomb
et al., 2009); (iii) No need to use a dichroic mirror to separate the
Vm and [Ca+2]i fluorescence signals for each sensor, decreasing
light intensity, that is signal to noise ratio (SNR).

While optical mapping recordings have been considered
technically challenging and expensive, advances in recent years
have made the necessary equipment affordable enough (Marina-
Breysse et al., 2021) to become a standard technique in many
labs. Different methods have been proposed to achieve dual Vm

and [Ca2+] optical mapping measurement. Two-camera setups
require complex spatial alignment of the cameras and optical
elements to split the two fluorescent signals, with only one signal
reaching each camera (Holcomb et al., 2009). The complexity
of the two-camera setups can be avoided by a single camera
for dual Vm and [Ca2+]i signal measurements. The fundamental
principle behind single-camera-based methods is to separate
the Vm and [Ca2+] fluorescence signals based on differences in
excitation and/or emission spectra of the two dyes used. Existing
methods (Lee et al., 2011, 2012a,c) are limited to the particular
choice of fluorescent dyes, significantly limiting their application.
Additionally, there is no established methodology for designing
and implementing a single-camera-based dual Vm and [Ca2+]i
measurement technique which provides zero-cross talk of the
two fluorescence signals. The excitation light band for a Vm

dye preferably would not excite a [Ca2+]i dye and vice versa.
However, true spectral separation is not possible (with currently
available dyes), but illuminating at a wavelength where one or the
other dye is not sensitive to the parameter of interest is sufficient.
This is essential as the complex bidirectional coupling between
Vm and [Ca2+]i (Shiferaw and Karma, 2006) is important when
investigating under which HF conditions (Gorski et al., 2015) Vm

or [Ca2+]i are responsible for triggering an arrhythmia.
This study presents a theoretical framework to analyze and

select the optimal dyes/filters combination to achieve zero-
cross talk for dual Vm - [Ca2+] optical mapping applications
for simultaneous measurement of Vm and [Ca2+]i signals,
using a single sensor. The methodology is based on alternating
excitation bands for each fluorescent dye in sync with the
camera, recording each signal in alternating frames in order
to overcome the challenges of mutual cross-talk of the two
signals. Excitation at wavelengths we term semasbestic results
in no change of fluorescence of a voltage-sensitive dye as Vm

changes, which is suitable to excite a [Ca2+]i dye with no
cross-talk. We demonstrate the existence of a family of these
excitation wavelengths and the advantage of this methodology
experimentally with optical mapping measurements performed
in six different animal species, while also showing how
previous methods exhibit signal cross-talk. Furthermore, optical-
mapping methods using Vm and [Ca+2]i dyes have a broad
range of applications, suitable for research of cardiomyocyte
cultures (Fast and Ideker, 2000), studying drug effects on heart
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FIGURE 1 | Mechanisms of measurement with an electrochromic Vm dye. (A) The Gaussian absorption (blue) and emission curves (red) are good fits for a given

electrochromic Vm dye for illustration purposes, with solid lines for polarized membrane and leftward shifted dotted lines for maximally depolarized membrane by a

propagating AP. For excitation at the isosbestic point and for a given LPF on the camera side passing only part of the emission spectra, as illustrated with the solid

(black) vertical lines, 1F/F is always negative. 1F/F = 0 can only be achieved if the entire emission spectrum is obtained (solid blue vertical line), thereby not

dependent on the optical setup, the λLPF value. Excitation left of the isosbestic point results in an amplitude increase of the emission spectra due to absorption

coefficient increase with the shift of the absorption spectra. Depending on the filter λLPF, overall 1F/F sign can be negative or positive, and in between, there is a

particular λLPF such that positive change cancels the negative change resulting in 1F/F = 0, for specific λExc, termed semasbestic wavelength. (B) Theoretically

calculated map of 1F/F magnitude values as a function of λExc and λLPF, showing the transition from positive to negative 1F/F, and continuous line of semasbestic

wavelengths, 1F/F = 0 isochrone line, for each λExc - λLPF pair. (C) Illustration of the experimental setup. (D) APs from optical mapping measurements on isolated

rabbit heart near a semasbestic wavelength. A 10 nm wide BP excitation filter was used of 540 nm nominal center wavelength along different LPFs on the camera’s

side. Due to low 1F/F values SNR is low. However, ensemble averaging (stacking) increases SNR without filtering in post-processing. (E) Quadratic fit curves from

1F/F simulated values (B), for four different LPFs of the same λLPF values as LPF used in 1F/F measurements on isolated hearts. (F) Quadratic fit curves from 1F/F

magnitude values for four different LPFs. Optical mapping recordings were performed on isolated rabbit heart for across a wide range of excitation wavelengths, from

500 to 660 nm. Zero crossings correspond to the semasbestic wavelengths. All λLPF values of LPFs are experimentally measured.
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electrophysiology (Bedut et al., 2016; Streit and Kleinlogel, 2018;
Gunawan et al., 2021; Uzelac et al., 2021), gene therapies on Vm

and [Ca2+]i dynamics in cardiac tissue and in other organs such
as the brain (Baker et al., 2005;Ma et al., 2016; Turrini et al., 2017)
as well as in other biological systems driven by Vm and [Ca2+]i
dynamics like in C-Elegans (Venkatachalam et al., 2016).

2. MATERIALS AND METHODS

Previously published methods of simultaneous measurement of
Vm-[Ca

2+]i with a single sensor (Lee et al., 2011, 2012b,c), have
incorrectly used the term isosbestic point of a Vm dye as a suitable
excitation wavelength (λExc) for [Ca

2+]i dye, expecting no change
in measured Vm fluorescence. While isosbestic points (Ahmed
and Connor, 1979; Shynkar et al., 2004; Tai et al., 2004; Nič
et al., 2009; Bachtel et al., 2011; Uzelac et al., 2019) are defined
as the excitation wavelengths at which the total absorbance of a
fluorescent dye does not change in response to a change of Vm

(Figure 1A; Supplementary Figure 1), it was instead applied as
the excitation wavelength at which there is no measurable change
inVm fluorescence signal, expressed as1F/F = (F−F0)/F0 ≈ 0,
where F0 is the fluorescence intensity when the cell’s membrane is
at the restingmembrane potential, and F = F(Vm) is the intensity
at any other cell membrane potential.

Isosbestic point is defined as the excitation wavelength at
which the absorption spectra for polarized cell membrane and the
shifted absorption spectra for maximally depolarized membrane,
intersect each other (Bachtel et al., 2011) (Figure 1A). Therefore,
when illuminating at an isosbestic point, the absorption
coefficient changes minimally (can be approximated to zero), and
the integral over the entire emission spectra remains the same.
This implies 1F/F = 0, only if the LPF placed on the camera side
passes the entire emission spectra. In practice, this is not possible
as cameras have limited dynamic rang, and in common use the
LPF on the camera side blocks part of the emission spectra to
increase the absolute 1F/F value (Figure 1A).

In this study, we show that isosbestic points, which are
an intrinsic property of fluorescent dyes and as such do not
depend on the optical filters transmission properties and sensor
spectral response used in many optical mapping setups, are not
necessarily the correct wavelengths to use to prevent cross-talk
and in fact can give large Vm signal (see top panel Vm signal in
Figure 1D obtained with the same optical filter values and the
same camera used in Lee et al. (2012b) what authors mistakenly
considered to be an isosbestic point excitation). In this study,
we establish a methodology to design bi-modal optical-mapping
systems with the selection of the correct optical filters, given
a choice of Vm and [Ca2+]i dyes. We demonstrate that for a
given electrochromic Vm dye, a continuous range of excitation
wavelengths exist that result in 1F/F = 0 (no fractional
change of fluorescence) dependable on a given a LPF cut-on
wavelength (λLPF) and the spectral response of the camera used.
We have termed such a family of wavelengths as semasbestic (self-
extinguishable) wavelengths, which are a function of the λLPF for
a particular Vm dye. Thus, Vm and [Ca2+]i dyes can be excited
with different wavelengths in alternating frames, the Vm with a

wavelength outside of a [Ca2+]i dye’s absorption spectrum and the
[Ca2+]i dye within the absorption spectra of the Vm dye, but using
a semasbestic wavelength for the Vm dye, to achieve zero cross-talk
for both signals.

The absorption and emission spectra of electrochromic Vm

dyes bound to a cardiac cell membrane and shift a few
nanometers toward blue as the membrane depolarizes (Loew,
1982) (Figure 1A). The isosbestic point, is the intersection of
the absorption curves for the polarized (−80 mV) and fully
depolarized (approximately +20 mV) membrane (Figure 1A),
typically occurring near the peak of the absorption spectrum
(Ahmed and Connor, 1979; Bachtel et al., 2011; Uzelac et al.,
2019). Excitation at the isosbestic point results in a leftward shift
of the emission curve without changing in amplitude. Therefore,
the only case in which no change in Vm signal can be measured
(1F/F = 0), occurs when using an LPF on the camera side that
passes the entire emission spectra for both (polarized/depolarized
cell membrane) curves (Figure 1A).

Excitation with wavelengths shorter than the isosbestic
(Figure 1A) increases the absorbed light, resulting in an
increased amplitude of the shifted emission spectrum. For the
emission spectrum range, approximately left of the emission
peak, 1F/F is positive, and for the range right of the peak, 1F/F
is negative. With LPF on the camera side, the actual measured
fluorescence signal represents integrated emission spectra from
the filter λLPF, and the overall sign of 1F/F can be positive
or negative depending on λLPF. A semasbestic wavelength will
be then the excitation wavelength such that integrated intensity
over the emission spectra starting from λLPF results in 1F/F =
0. Therefore, Semasbestic wavelengths depend on the λExc and
the λLPF used, resulting in continuous line of 1F/F = 0 values
(Figure 1B).

To demonstrate the existence and usefulness of semasbestic
wavelengths, we used the near infra-red electrochromic Vm dye
JPW-6003 (Supplementary Figure 1) in isolated Langendorff
perfused hearts of six animal species, fish (N = 2), Guinea
pigs (N = 2), rabbits (N = 12), cats (N = 6), pigs (N =
7), and sheep (N = 2), totaling 31 experiments, in addition
to monolayers cultured from neonatal rat hearts. Details of
experimental materials and methods, including heart excision
and preparation, cell culture monolayers preparation, excitation
light sources, emission optical filters characterization, absorption
and emission spectra of the JPW-6003 Vm dye, as well as
methods used to obtained 1F/F = 0 semasbestic points
experimentally and their statistical analysis, are provided in the
Supplementary Materials.

3. RESULTS

1F/F values weremeasured in isolated heart experiments stained
with Vm dye JPW-6003, and excited with a series of different
excitation light bands using 10 nmwide bandpass (BP) excitation
filters of nominal center wavelengths ranging from 500 to
671 nm. The filters were coupled to either green or red LED
collimated light (Figure 1C), and for four different LPFs used
on the camera side (Supplementary Figure 2). The excitation
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light band of each BP filter was modeled with a single effective
excitation wavelength (Supplementary Figure 3).

For each LPF-BP filter combination (out of the 60 possible),
optical mapping recordings of Vm were obtained for a duration
of 2–10 min (depending on the amplitude of 1F/F signal),
acquiring a sequence of images with the Vm across the tissue,
at 500 FPS at a resolution of 128 × 128 pixels. For signals of
low 1F/F values close to the semasbestic wavelengths, where
signal to noise ratio (SNR) decreases (Figure 1D), the longer
recordings (10 min) were used to perform action potential (AP)
stacking (ensemble-averaging) (Uzelac and Fenton, 2015) in
post-processing. The stacking procedure significantly improved
SNR to precisely obtain the small 1Fmax/F magnitude values
(Figure 1D; Supplementary Figure 4).

For each isolated experiment and each LPF, semasbestic
wavelengths were obtained as zero values of the fit curves
of 1F/F magnitudes obtained for different excitation BP
filters. The range of semasbestic wavelength hypothesized
theoretically matches well with those obtained experimentally
(Figures 1E,F). Among obtained semasbestic wavelengths from
the different animal species, no statistically significant difference
was observed, with the largest variation found only in pig
hearts (Figure 2A). We attribute this difference to the surface
fatty tissue layer (that other animals did not have) attenuating
non-linearly the emitted fluorescence spectra (van Veen et al.,
2004), which resulted in a small leftward shift of the semasbestic
wavelengths. One-way ANOVA tests were performed with and
without the semasbestic wavelengths obtained in pig hearts, and
found that even when including the semasbestic wavelengths
of the pig hearts, P-values did not reach statistical significance
(P < 0.05 was considered statistically significant). Therefore,
semasbestic wavelengths (Figure 2B) appear to be independent
of animal species, and a curve can be fitted to relate semasbestic
wavelengths as a function of λLPF for Vm JPW-6003 dye,
(Figure 2C).

Any semasbestic wavelength is suitable to excite a [Ca2+]i dye.
However, in practice using off-the-shelf filters it is expected some
mismatch with the filter effective excitation wavelength from the
ideal semasbesticwavelength. Anymismatch will result in a cross-
talk, the presence of the Vm signal while measuring the [Ca2+]i
fluorescence signal. However, for the excitation wavelengths of
up to 10 nm from the ideally suitable semasbestic wavelength,
the fractional change of Vm fluorescence is less than 0.5%
(Figure 2D). Staining a heart in addition with a [Ca2+]i dye and
assuming the same baseline fluorescence levels of the two dyes,
the fractional change of 0.5% will results in ∼0.25% fractional
change of both fluorescence signals combined, attributed to
Vm − Ca cross-talk. In practice for Vm − Ca single-camera
measurements, a relative fluorescence change measured in Ca
fluorescence channel, of for example 5% means that 0.25% of
the measured fluorescence change is attributed to the unwanted
Vm signal.

To further demonstrate the proof of concept for Vm − Ca
cross-talk minimization for each of the four LPF filters, Vm

measurements with JPW-6003 dye only were performed using
alternating excitation bands in sync with the camera frame rate

(500 Hz at a resolution of 128 × 128 pixels). The sequence
of images was recorded with the odd frames corresponding
to ideally no change in Vm fluorescence (DFF = 0) and even
frames corresponding to the change in Vm signal fluorescence
(Figure 3). For odd frames, the off-the-shelf BP excitation filters
were used chosen to match as close as possible the ideal
semasbestic point corresponding to each of the four different
LPFs, and coupled with 525 centered green LED. For even
frames, the BP excitation filter of the effective λExc = 660.0
nm wavelength was used. For each of the four validation tests
with different LPF, the amount of Vm − Ca cross-talk is around
0.25% except for λLPF = 698.2, which is around 0.4%. The
cross-talk is represented as a fractional change in the Vm dye
fluorescence. The optical action potential traces corresponding
to the same image pixel for even and odd image sequences
for direct comparison. As off-the-shelf BP filters were used, the
amount of cross-talk depends on the difference between the BP
filter effective wavelength from the semasbestic point. Based on
the measurement (Figure 3), sensitivity is minimal for λnomLPF =
740.0 nm, using a BP filter of effective excitation wavelength
of 5 nm off the semasbestic point and resulting in 1F/F less
than 0.25%.

4. DISCUSSION

The range of different semasbestic wavelengths of a given Vm

dye provides flexibility in the design of an optical mapping
system for simultaneous single-camera Vm - Ca recordings,
as it is not limited to a single choice of excitation and
emission filters, and Vm and Ca fluorescence dyes. The
design parameters include the optimal excitation wavelength
for a Vm dye (that maximizes 1F/F), choice of [Ca2+]i dye
and its excitation wavelength (semasbestic point), the dual-
band pass optical filter on the camera side, and suitable
LEDs coupled with excitation filters. Availability of LEDs,
optical excitation filters, and the dual-band pass filter of
desired spectral properties based on the theoretical design are
additional constraints that need to be considered. To begin
with the parameters optimization, the first step is to choose a
Vm dye.

4.1. Vm Dye Selection
Selection of the Vm dye determines the range of semasbestic
wavelengths. For optical mapping method optimization with
a chosen Vm dye, the first step is to determine the Vm dye
emission spectra to optimize 1Fmax/F. For a chosen JPW-
6003 dye its absorption and emission spectra are shown in
Supplementary Figure 1. Excitation of the Vm dye with longer
wavelengths than the isosbestic point and using longer λLPF on
the camera side, increases 1Fmax/F magnitude (Figures 1B–F;
Supplementary Figure 5). However, the SNR decreases for
longer λLPF due to less fluorescence light reaching the detector.
A common practice is to choose λLPF between the Vm dye
emission peak and 50% of the peak, the range from 708 to 775
nm for JPW-6003 dye (Supplementary Figure 1). Considering
suitable and currently available deep red high-power LEDs,
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FIGURE 2 | The semasbestic wavelengths across all experiments for JPW-6003 Vm dye. (A) Box plots are a statistical representation of semasbestic wavelength

averaged for each species. The ends of each box are the upper and lower quartiles, with the median marked as a horizontal line inside the box. The whiskers lines

represent the upper and lower extremity. The P-values represent results of one-way ANOVA analysis with and without the isosbestic points from isolated pig hearts

experiments. (B) The mean values and uncertainties of experimentally obtained semasbestic points across all species for different LFPs used on the camera. (C) A

linear curve fit relating the range of semasbestic wavelengths corresponding to different λLPF. (D) Sensitivity analysis near the isosbestic wavelength for different LPFs.

Experimentally obtained 1F/F magnitude values were averaged across all species for the same LPF-BP filter pairs. Excitation wavelengths for up to 10 nm off the

semasbestic wavelength result in less than 0.5% in the fractional change of the Vm signal.

the optimal choice is to use peak emission LEDs around
660 nm.

4.2. [Ca2+]i Dye Selection
Selection of the suitable [Ca2+]i dye is constrained with the range
of the semasbestic wavelengths corresponding to the selected
range of λLPF values, from 708 to 775 nm. From the equation
shown in Figure 2C, the corresponding range of semasbestic
wavelengths range from 523 to 548 nm, suitable to excite [Ca2+]i
dyes such as Cal-520, Rhod-2, and Rhod-4. In this study, we
choose Rhod-2 dye with a peak absorption at 552 nm. However,
commercially available LEDs offer peak emission around 525
nm, decreasing emission intensity toward the Rhod-2 absorption
peak, making excitation at 540 nm a suitable trade-off. Another
important aspect to consider is to avoid overlap of the [Ca2+]i
dye absorption spectra with the chosen JPW-6003 Vm dye

excitation wavelength of 660 nm. Rhod-2 [Ca2+]i dye absorption
spectrum effectively reaches zero above 625 nm, making Rhod-2
dye a suitable choice for [Ca2+]i measurement.

4.3. Dual-Band Pass Filter
A dual-bandpass optical filter is required on the camera
to pass the emitted fluorescence from both dyes. With the
chosen 540 nm semasbestic wavelength, the Vm dye band
is determined from the λExc vs. λLPF curve (Figure 2C) to
start at ∼730 nm. The first filter band corresponding to
the Rhod-2 emission spectra can be from 560 and up to
610 nm. The lower band limit is imposed by excitation
BP filter centered at 540 nm so that its transition band
effectively reaches zero (< 10−4) at 560 nm. The upper
limit is determined to avoid overlap with the Vm emission
spectra to minimize cross-talk, the presence of Vm signal in

Frontiers in Physiology | www.frontiersin.org 6 February 2022 | Volume 13 | Article 81296814

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Uzelac et al. Semasbestic Wavelengths for Cross-Talk Elimination

FIGURE 3 | Single-camera dual Vm measurements. The Vm dye was excited with alternating excitation bands, using a 660/10 excitation BP filter in even frames. Odd

frames were acquired using off-the-shelf excitation BP filters selected to closely match the semasbestic points (λSem) corresponding to the λLPF of the four LPFs. λExc

wavelengths are effective excitation wavelengths of the BP filters. Their nominal center wavelengths are listed in Supplementary Figure 3. λnomExc = 525 nm is the

nominal center wavelength of 20 nm wide (OD6) BP filter (Semrock). Shown optical action potential signals are obtained using the stacking procedure from a single

pixel, averaging at least 400 periods without any filtering. The stacking resolves small Vm signal changes buried under the noise level, which could be interpreted as

no change in Vm signal in the odd frames otherwise. The cross-talk, the presence of Vm signal due to the differences between the filters effective excitation

wavelength and corresponding semasbestic points is less than 0.25% for most LPF. The sensitivity to the difference is the lowest for λLPF = 740.0 nm, resulting in

1F/F amplitude of less than 0.25% using excitation wavelength of more than 5 nm different from the ideal semasbestic point.

the 560–610 nm filter band when the Rhod-2 dye is excited
(Supplementary Figures 1, 6).

4.4. Excitation Filters
The LED bell-shaped emission curve results in non-uniform
excitation spectra passing through the BP excitation filter.
For example, the light intensity passed through the 10 nm
wide 540 nm centered BP filter is higher for the wavelength
range left of the 540 nm than for the range right of the
540 nm, resulting in different effective (mean) excitation from
the nominal 540 nm center wavelength. Since this effective
excitation wavelength has to match the semasbestic wavelength,
any mismatch will result in a non-zero 1F/F value. However,
the introduced error is small, and the Vm signal change is
less than 0.5% using an excitation wavelength in the ±10
nm range around the semasbestic wavelength. The fractional
changes were measured only with the Vm dye. Adding the
Ca dye, the amount of cross-talk will be even lower, as the
fractional change is measured in respect to the summed baseline
fluorescence of both dyes (Figure 2D). For the Vm dye excitation,
the width and spectral non-uniformity of the passed light are
not critical. With a 660 nm centered LED, BP filters with a
660 nm center wavelength of up to 50 nm BP width can be

used. The limits are imposed to avoid excitation of the Rhod-
2 dye, and a practical limit is due to the LED’s bell-shaped
emission curve.

4.5. Practical Design With Applications
The optical mapping setup with optimized parameters may come
at a high cost requiring the manufacturing of custom filters.
However, flexibility in the choice of the semasbestic wavelengths
provides leverage in the choice of design parameters while still
minimizing the cross-talk for single-camera based simultaneous
Vm - Ca measurements to use off the shelf filters. The dual BP
filter is the most important for the system design as it determines
the semasbestic wavelength. Additionally, any mismatch between
the off-the-shelf BP filter effective excitation wavelength and
the semasbestic wavelength will result in Vm to Ca cross-talk.
However, as outlined above, the amount of cross-talk is less
than 0.25% when the difference between the BP filter effective
excitation wavelength and the semasbestic point is less than 5 nm
(Figures 2D, 3).

For practical realization, we choose an off-the-shelf dual
BP filter, of optical density (OD) 6 (Chroma), with the
first passband of 560–610 nm, and the second LPF band
of the nominal 700 nm wavelength (effective 698.2 nm)
(Supplementary Figure 7). Based on the equation (Figure 2C),
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the corresponding semasbestic wavelength for JPW-6003 Vm dye
is 551.7 nm. The closest off-the-shelf 10 nm wide BP filter
of 550 nm (nominal wavelength) center wavelength (Edmund
Optics) was chosen to be used for Rhod-2 Ca dye excitation
(Supplementary Figure 3). An additional OD6 LPF of nominal
λLPF = 575 nm (Chroma) was placed over the dual BP filter to
avoid overlap between the 550/10 BP excitation filter and the
560–610 nm passband of the dual-band pass filter. This design
narrows the Rhod-2 Ca emission spectra range to the 575–
610 nm range resulting in reduced Ca fluorescence intensity
reaching the camera sensor. However, this was a necessary
trade-off using off-the-shelf optical filter filters. For the Vm dye
excitation, a 10 nm wide OD4 BP filter of 660 nm nominal center
wavelength was used (Edmund Optics). A green LED with 525
nm peak (Luminous Devices) coupled with 550/10 nm BP filter
for Rhod-2 Ca dye excitation was used, and a red 660 nm peak
LED (LEDEngin) coupled with the 660/10 nm BP for Vm dye
excitation (Supplementary Figure 8).

Quantification of spatiotemporal discordant alternans of Vm-
[Ca2+]i in cardiac tissue. The optical mapping system with
the design parameters described above was used to measure
Vm - [Ca2+]i signals with a single-camera in isolated hearts
of Rabbit, Cat, Guinea Pig, Pig (Figure 4), and monolayer cell
culture of neonatal rats (Figure 5). A restitution protocol was
performed for each species, where Vm - Ca signals were recorded
at decreasing pacing cycle lengths (PCLs) until a conduction
block or ventricular fibrillation (VF) occurs. At shorter PCLs,
instabilities in Vm or [Cai] at the cellular level lead to the
development of beat to beat alternans in action potential duration
(APD) (Pastore et al., 1999), and intracellular calcium duration
(CaD) (Uzelac et al., 2017). Through tissue-level coupling, these
instabilities lead to complex and irregular spatial dispersion in
AP repolarization and in CaD (Figure 4), forming dangerous
spatially discordant alternans. Spatially discordant alternans are
equivalent to T-wave alternans in clinical ECGs (Pastore et al.,
1999; Uzelac et al., 2021), the clinical marker for arrhythmia
susceptibility and sudden cardiac death (Walker and Rosenbaum,
2003; Verrier et al., 2009). Among species, the differences in ionic
membrane channel densities such as potassium repolarization
channels and lack of specific ionic channels create differences
in AP morphology. In addition, through Vm - Ca bidirectional
coupling, other differences across species exist in terms of
handling the intracellular Ca cycling (Figure 4). For rabbit, cat,
and guinea pig heart, alternans in Ca seem to drive Vm alternans
leading to spatial dispersion of AP repolarization. In contrast, no
alternans are observed in Vm nor Ca signals for pig hearts, yet
pig hearts develop VF at faster PCLs in the restitution protocols.
Understanding these differences across species could lead to
a better understanding of different arrhythmia mechanisms
modalities and relate them to human heart physiology to more
complete understanding arrhythmia in human hearts, devise
novel treatments, and help with the global epidemic of HF.

5. CONCLUSIONS

This study presents a methodology to achieve zero cross-
talk (smaller than SNR after stacking) in a single-camera bi-
modal optical mapping design based on semasbestic wavelengths.

The presented guidelines show how to optimize semasbestic
wavelengths to achieve zero cross-talk among Vm and Ca
signals, while optimizing signals amplitudes as well. With
off-the-shelf bandpass excitation filters of slightly different
effective excitation wavelengths than corresponding semasbestic
wavelengths (Figure 3) we achieved near zero-cross talk. For
a true zero cross-talk, custom manufactured bandpass filters
matching the semasbestic point would be needed, and one
would need to take into account the LED excitation light
spectral profile within the filter passband. The absorption spectra
of a given electrochromic Vm dye is spectrally shifted when
the dye is bounded within a cell membrane due to a strong
interaction between the dye’s molecule electric dipolemomentum
and the cell membrane electric field (Matson et al., 2012).
Therefore, contemporary spectroscopy methods to obtain the
dye absorption and emission spectra, dissolving the dye in
a solvent such as ethanol and using a spectrometer, would
result in different semasbesticwavelengths than when performing
equivalent measurements on isolated hearts stained with the dye.
In this study we conclude that obtained semasbestic wavelengths
for a given electrochromic Vm dye, are dependent only on the
excitation wavelength λExc and corresponding λLPF of the dye
emission band. As validated on isolated hearts of six different
species, the semasbestic wavelengths seems to be independent
of the species (as validated on six different species and cell
culture monolayers).

In the published literature of simultaneous measurement of
Vm-[Ca

2+]i with a single sensor (Lee et al., 2011, 2012b,c),
authors used the same EMCCD camera model and the dual-
bandpass filter of 700 nm LPF cut-on wavelength for the JPW-
6003 Vm fluorescence showing no visible Vm signal when excited
with 540 nm centered band, subsequently used for Rhod-
2 Ca dye excitation. However, our findings are different. As
shown in Figure 1D, excitation at 540 nm with LPF of 700
nm nominal cut-on wavelength resulted in apparent presence of
Vm signal. Therefore, exiting Rhod-2 dye with 540 nm centered
bandpass filter and using the dual-band pass filter of 700 nm
LPF band for Vm fluorescence results in a cross-talk which
can be further minimized with the presented methodology for
cross-talk elimination.

While the presented methodology is demonstrated with the
semasbestic wavelengths of JPW-6003 Vm dye and using Rhod-
2 [Ca2+]i dye, the described methodology does not depend on
the choice of the dyes. It applies to any other electrochromic Vm

resulting in a different set of semasbestic wavelengths. Therefore,
depending on the user’s need, we provide a range of semasbestic
excitation wavelengths that can be used with JPW-6003 Vm

sensitive dye, and a methodology to obtain the same for other
Vm sensitive dyes. We followed the common practice in optical
mapping to use an LPF to record Vm signal fluorescence.
Excitation on the positive-slope side of the excitation spectrum
induced an increase in fluorescence during an action potential,
which is balanced by recording from the negative-slope side of
the emission spectrum. Other classes of semasbestic points may
exist with different designs of the emission filter. For example,
it is also possible to create a semasbestic wavelength along the
negative-slope side of the excitation spectrum and balance this
by recording from a band on the positive-slope side of the
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FIGURE 4 | Single-camera dual Vm − Ca measurements in isolated hearts of different species. (A) Arrhythmic effects under dynamic pacing, shown as spatial

dispersion of APD and CaD across tissue for different species for even and odd beats. The spatial dispersion indicates an increased susceptibility to arrhythmia. APD

values are obtained from 50% signal rise in amplitude till 50% AP repolarization. Numbers to the right indicate 3rd and 97th percentile APD values expressed in

milliseconds. CaD values are obtained as the integral from 50% rise in amplitude till 50% decrease. Blue-red patterns show variations in APD and CaD (1APD, 1CaD)

between even and odd beats (discordant alternans), showing regions alternating out of phase and separated with the nodal lines (white lines). Spatially discordant

alternans are the counterpart of T-wave ECG alternans, a well-known marker for arrhythmia susceptibility. Although all species do develop arrhythmia under dynamic

pacing, the electrophysiology across species is very different. Spatially discordant alternans are the most pronounced in rabbits, while pig hearts show very little APD

and CaD dispersion, with insignificant differences between even and odd beats. (B) Vm and Ca representative AP signals showing temporal alternans for different

species.
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FIGURE 5 | Simultaneous single-camera-based measurements of Vm and Ca signals in isolated cell culture monolayers of neonatal rats. (A) Time-snapshots of Vm -

Ca dynamic at different time points illustrating the presence of anchored spiral wave and spatial loss of correlation between propagating Vm wavefront from Ca

dynamics. (B) Normalized Vm and Ca signals obtained from processed raw recordings showing Ca signal lagging in time. (C) Representative unfiltered Vm and Ca

signal traces with no filtering expressed as a relative change. In cell culture monolayers, Ca signals have significantly higher SNR than Vm signals originating only from

the dye bound to the cell membrane. The amount of cross-talk and the presence of Vm signal in Ca signal with excitation at near the semasbestic point (Exc550)

results is a small yet negligible cross-talk compared to the amplitudes of the signals.

emission spectrum. However, the close separation between the
dye absorption and emission spectra (Supplementary Figure 1)
may preclude such an approach for JPW-6003 dye, while it may
be feasible for other Vm dyes.

Optical mapping methods using fluorescent dyes are well-
established and very important to measure signals from cells and
tissue. The use of optical mapping systems is rapidly growing.
Nowadays, it is becoming a common tool in many research labs
as the equipment is no longer prohibitively expensive (Lee et al.,
2017) with novel advances in CMOS sensor technology. The
increasing number of research groups are using optical mapping

to investigate Vm-[Ca
+2]i on biological tissues, and optical

mapping methods are even becoming accessible in university
classrooms. Simultaneous measurement of Vm and [Ca2+]i
enables many studies in the area of electrophysiology related to
the Vm and [Ca2+]i dynamic and their bidirectional coupling.
For example, cardiac arrhythmia can be caused by AP spatial
dispersion driven with Ca alternans at the cellular level (Uzelac
et al., 2017) (Supplementary Videos 1, 2). Dual Vm and [Ca2+]i
measurements are necessary to understand the underlying
mechanism leading to arrhythmia (Groenendaal et al., 2014), and
optical mapping studies can be performed even in combination
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with contractions (Christoph et al., 2018) to study themechanical
stretching effects on cardiac electrophysiology. Time-resolved
series ofVm and [Ca2+]i signals at high spatiotemporal resolution
are generally applicable to other electrophysiology related studies
besides HF. For example, many drugs affect the AP repolarization
phase blocking the potassium channels and prolonging the
APD, the cellular mechanism of long-QT. Optical mapping
provides integrative studies at both the cellular and tissue level
to understand how drugs affect the ionic channel currents and
intracellular Ca dynamics and to understand the drug’s safety
profile and associated antiarrhythmic or proarrhythmic at the
tissue level (Uzelac et al., 2020, 2021), which would not be
possible to understand, studying the drug’s effect at the cellular
level only. The methodology developed here can also be used
to investigate other biological systems with Vm-[Ca

+2]i driven
dynamics such as the brain (Rad et al., 2017) the pancreas (Yang
and Berggren, 2006), smooth (Nelson et al., 1990), and skeletal
(Flucher and Tuluc, 2017) muscle among others.
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State of the art mathematical models are currently used to bridge the gap between

basic research conducted in the laboratory and preclinical research conducted on large

animals, which ultimately paves the way for clinical translation. In this regard, there is a

great need for models that can be used alongside experiments for in-depth investigation

and validation. One such experimental model is the porcine atrium, which is commonly

used to study the mechanisms of onset and control of atrial fibrillation in the context

of its surgical management. However, a mathematical model of pig atria is lacking. In

this paper, we present the first ionically detailed mathematical model of porcine atrial

electrophysiology, at body temperature. The model includes 12 ionic currents, 4 of

which were designed based on experimental patch-clamp data directly obtained from

literature. The formulations for the other currents are adopted from the human atrial

model, and modified for porcine specificity based on our measured restitution data for

different action potential characteristics: resting membrane potential, action potential

amplitude, maximum upstroke velocity and action potential duration and different levels of

membrane voltage repolarization. The intracellular Ca2+ dynamics follows the Luo-Rudy

formulation for guinea pig ventricular cardiomyocytes. The resulting model represents

“normal” cells which are formulated as a system of ordinary differential equations. We

extend our model to two dimensions to obtain plane wave propagation in tissue with

a velocity of 0.58 m/s and a wavelength of 8 cm. The wavelength reduces to 5 cm

when the tissue is paced at 200 ms. Using S1-S2 cross-field protocol, we demonstrate

in an 11.26 cm square simulation domain, the ability to initiate single spiral waves

(rotation period ≃ 180 ms) that remain stable for more than 40 s. The spiral tip exhibits

hypermeander. In agreement with previous experimental results using pig atria, our model

shows that early repolarization is primarily driven by a calcium-mediated chloride current,

IClCa, which is completely inactivated at high pacing frequencies. This is a condition that

occurs only in porcine atria. Furthermore, the model shows spatiotemporal chaos with

reduced repolarization.

Keywords: ionic model, pig atria, spiral waves, large animal, cardiac electrophysiology
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1. INTRODUCTION

Atrial fibrillation (AF) is the most common sustained form of
cardiac arrhythmia occurring in humans. Its effective treatment
requires a detailed understanding of the underlying mechanisms
at the genetic, molecular, cellular, tissue and organ levels. To
study the complex mechanisms underlying the development,
maintenance and termination of cardiac arrhythmias, preclinical
research models are required. These models range from in vitro
cell cultures to in vivo small and large animal hearts. However,
translational research necessitates a proper understanding of
the results from animal experiments in the human context, for
which it is very important that the preclinical results are well-
understood and validated. Currently, this is achieved through
simulations of state-of-the-art mathematical models alongside
experimentation on large animals. In particular, a model that
is extensively used by experimentalists to advance surgical
management of AF, is that of the pig atria. However, until now,
an ionically detailed mathematical model for pig atrial tissue
has been lacking, and researchers have been forced to rely on
mathematical models from other animal species to understand
their experimental observations.

Typical large animal heart models include that of dog, sheep,
goat, pig, etc. In studies on cardiac arrhythmias, especially
atrial fibrillation (AF) it is a challenge to find the right
animal model. This is mainly because the reliable inducibility
of sustained AF requires some form of chronic intervention,
which is often associated with a large cost of maintenance
and time limitations. The porcine atrial model overcomes this
challenge by providing an acute, reliable and reproducible
model for sustained AF (Lee et al., 2016). This model can
be used at length to test experimental procedures and drugs
that are intended for translational purposes under various
disease conditions. To make matters more favorable, the cardiac
anatomy, electrophysiology and coronary circulation of pigs are
very similar to those of humans (e.g., heart mass: 148–383 g
in humans vs. 250–400 g in pigs; heart to body mass ratio: 0.4
in humans vs. 0.32 in pigs; heart rate: 60–80 in humans vs.
68–100 in pigs, etc.) For a detailed comparison of human and
pig parameters, we refer the reader to Table 1 of Clauss et al.
(2020). Thus, an electrophysiologically detailed mathematical
model of the porcine atria is definitely a important tool to have
in translational research.

In this study, we present the first detailed mathematical model
of the pig atria, based on experimental patch-clamp data from
literature and our own restitution experiments on pig atrial
tissue, using sharp-electrode technique. In two dimensions, we
demonstrate its ability to produce and sustain stable meandering
spiral waves. We characterize the spatiotemporal meander
pattern, report the dominant frequencies and the effect of
system size on the stability of the spiral pattern. In particular,
we highlight some fundamental differences in the role of Cl−

currents and Ca2+ dynamics in the early repolarisation phase
of AP in pigs with respect to humans, a crucial difference to
be accounted for in the translatability of results, from pigs to
humans, in future in vitro and in vivo experiments. We further go
on to propose a model for AF using an altered set of parameters

that allows us to have a state of electric turbulence in pig
atrial tissue.

2. MATERIALS AND METHODS

All animal care and use procedures were carried out exclusively
by appropriately trained staff and were in accordance with
the German Animal Welfare Act and reported to the local
animal welfare officers. The handling of the animals prior to the
experiments and the humane, animal welfare procedures strictly
followed animal welfare regulations, in accordance with German
legislation, local regulations and the recommendations of the
Federation of European Laboratory Animal Science Associations
(FELASA). All scientists and technicians involved have been
accredited by the responsible ethics committee (Lower Saxony
State Office for Consumer Protection and Food Safety - LAVES).

Experimental Recordings
Trabecular muscles were isolated and excised from a whole right
atria, and placed in a custom-built recording chamber under
continuous perfusion of heated (37◦C) and carbonated (5% CO2,
95% O2) Tyrode’s solution containing (in mM): NaCl 126.7,
KCl 5.4, MgCl2 1.1, CaCl2 1.8, NaHPO4 0.42, NaHCO3 22,
glucose 5.5, pH = 7.45 at least 45 min before measurement,
for accommodation.

Borosilicate glass capillaries (Hilgenberg, Germany) were
pulled using a horizontal pipette puller (Zeitz, Germany).
Electrical resistance was 30–40 M�. Pipettes were backfilled with
3M KCl.

Tissues were electrically stimulated with a 1 ms monophasic
pulse using a custom-made electrode (FHC, USA). Pulse
amplitude was pre-defined as 30% higher than the value
necessary to trigger an action potential. After successful tissue
impalement, and after reaching steady state activity, the tissue
was then subjected to a train of electrical stimulation at increasing
frequencies (0.25, 0.5, 1, 2, 3, and 4 Hz). AP onset at 5 Hz proved
difficult and inconsistent.

Membrane potential signals were amplified using a Sec-05-X
(npi, Germany) amplifier, digitized using LabChart PowerLab,
and acquired and saved with LabChart Pro 7 software (both:
ADInstruments, New Zealand).

Analysis was performed using LabChart pro and GraphPad
Prism 7 (GraphPad Software Inc., USA). The average value of
10 consecutive action potentials were calculated in LabChart
Pro. The following parameters weremeasured: restingmembrane
potential (RMP), action potential maximum upstroke velocity
(dV/dtmax), action potential amplitude (APA) and the action
potential duration at 20, 50 and 90% of repolarisation (APD20,
APD50, and APD90, respectively).

Mathematical Model
The fitting of IV curves from experimental data by Li et al. (2004)
was carried out by minimization of the squared error between the
simulated and experimental data using Python’s Scipy module
(Virtanen et al., 2020). For this purpose, a function was created
in Python that would recreate the patch-clamp experiments as
in Li et al. (2004), and output the simulated IV curve. The
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morphology of each individual current and its gating variables
was initially taken directly from the human atrial model by
Courtemanche et al. (1998) and corrected accordingly to match
experimental data. Fitting was done by matching normalized IV
curves first, and then adjusting conductance values to match the
non-normalized experimental IV curves.

Overall AP morphology and restitution curves were later
matched by re-adjusting conductance values of the different
currents, and simulating AP evolution for stimulation at different
cycle lengths. Slight changes were made to currents not fitted
from Li et al. (2004) to better adjust experimental restitution
curves. See the Results section for detailed explanations of each
individual current.

3. RESULTS

We developed a mathematical model for a native atrial
cardiomyocyte, isolated from the excised atrium of a healthy
adult pig. The equivalent electrical circuit representing the cell
membrane is shown in Figure 1.

It consists of a membrane capacitance, Cm, connected in
parallel with several nonlinear conductances (GX) and batteries
(EX). The net current (Iion) flowing across the cell membrane at
any instant is the sum of individual currents flowing through the
various branches of the circuit. Thus, the time-evolution of the
transmembrane voltage V can be described using the following
ordinary differential equation. (Equation 1)

dV

dt
= −

Iion + Istim

Cm
(1)

Here Istim represents the external stimulus current that needs to
be applied to the cell membrane to invoke an action potential
(AP). We describe Iion as a sum of 12 ionic currents (Equation 2):

Iion = INa + IK1 + IClCa + IKur + IKr + IKs

+ ICa,L + Ip,Ca + INaK

+ INaCa + Ib,Na + Ib,Ca

(2)

V is measured in millivolts (mV), time (t) in milliseconds
(ms), Cm in picofarads (pF), and all currents in picoamperes
per picofarad (pA/pF). All conductances GX are measured
in nanosiemens per picofarad (nS/pF), and intracellular and
extracellular ionic concentrations ([X]i, [X]o) are expressed in
milimolar (mM). The fast Na+ current is represented by INa, the
inward rectifierK+ current by IK1, ultrarapid rectifierK

+ current
is given by IKur , rapid and slow delayed rectifier K+ currents by
IKr , IKs, respectively, L-Type Ca

2+ current by ICa,L, Ca
2+ pump

current by Ip,Ca, the Sodium-Potassium and Sodium-Calcium
pump currents by INaK , INaCa, respectively, and the background
Na+ and Ca2+ currents by Ib,Na, Ib,Ca, respectively. Uniquely in
the pig atrial model, the transient outward current is represented
only by a calcium-mediated chloride current, IClCa.

The formulation of subcellular Ca2+ uptake and release by the
sarcoplasmic reticulum (SR) is retained from the work of Luo
and Rudy (1994). The three main currents involved are the Ca2+

uptake current, Iup, the Ca2+ release current Irel and the Ca2+

transfer current between the network SR (NSR) and junctional
SR (JSR), Itr . The model also includes a leak current from the SR
into the cytoplasm, Iup,leak, as described by Courtemanche et al. in
their model for the human atrial cardiomyocyte (Courtemanche
et al., 1998).

To invoke action potentials in tissue, we applied a stimulus
current of 7 nA for 4 ms. The mathematical description of
each ionic current is provided in the Supplementary Appendix,
together with a list of model parameters and initial values.

Membrane Currents
Fast Sodium, INa
We describe the fast Na+ current according to the
Courtemanche-Ramirez-Nattel (CRN) model for human
atrial cardiomyocytes (Courtemanche et al., 1998), which uses a
Hodgkin-Huxley type formulation (see Equation 3) taken from
the Luo-Rudy model (Luo and Rudy, 1994):

INa = gNam
3hj(V − ENa) (3)

Here m is the activation gate; h and j are the two inactivation
gates. In order to make the model pig-specific, we used

FIGURE 1 | (A) Schematics of a pig atrial cardiomyocyte model, showing transmembrane currents and the basic structure of the Ca2+ dynamics. (B) Electrical circuit

equivalent of the cell.
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Equation (3) to fit experimentally obtained INa current-voltage
(IV) characteristics and/or current traces from patch-clamp
measurements. However, in the absence of these experimental
data, we followed an alternative approach. Since INa is the
dominant active current during the upstroke phase of an AP,
(the other current being the inward rectifier, IK1, which is
orders of magnitude smaller than INa), we considered it to
be primarily responsible for the AP amplitude (APA) and

maximumupstroke velocity ( dV
dt max

). Thus, we used the complete
model (considering all currents, pumps and exchangers) to fit

experimentally obtained APA and dV
dt max

data, at various pacing

frequencies, i.e., APA- and dV
dt max

restitution, by tuning only
the INa.

Numerical fitting of these restitution data, using Equation (3)
to describe INa instructed us to apply the following adaptations:
(i) raise the maximum channel conductance (gNa) by 80% with
respect to humans; (ii) increase the time constant of activation
(τm) by a factor 1.7; and (iii) increase the time constant of
inactivation (τh, τj) by a factor 2. The kinetics of the activation

and inactivation gates are shown in Figures 2A,B. With the
applied modifications, the INa current traces turned out to be as
in Figure 2C and the IV curve, as shown in Figure 2D.

L-Type Calcium Current, ICa,L
The L-type Ca2+ currrent (ICa,L) was modeled according to
previous literature (Courtemanche et al., 1998; Ramirez et al.,
2000; Pandit et al., 2001; Majumder et al., 2016), based on the
Hodgkin-Huxley formalism:

ICa,L = gCa,LdffCa(V − 65.0) (4)

Here gCa,L is the channel conductance, d and f the voltage-gated
activation and inactivation variables, respectively, and fCa is a
calcium-mediated gating variable defined by:

τf (Ca) = 2, fCa,∞ =
1

1+ [Ca2+]i
0.00035

(5)

FIGURE 2 | The kinetics of the fast Na+ current INa. (A) Activation and inactivation characteristics of the steady state gating variables m (raised to cubic power), h and

j (combined as the product h∞ j∞). (B) Voltage dependence of the time constants for activation (τm) and fast and slow inactivation (τh and τj , respectively). (C)

Simulated traces of INa (traces at 5mV steps from minimum to maximum in the inset). (D) INa Current-Voltage characteristics.
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In particular, the gating behavior of ICa,L follows the human
CRN model, with a +5mV shift in the activation kinetics to
decrease the activation window along with the overall ICa,L that
is necessary for the fitting of action potential duration restitution
properties. As ICa,L is considered to be largely responsible for the
plateau phase of the action potential, decreasing (increasing) this
current by small amounts can lead to sharp decrease (increase)
in the action potential duration without lowering (raising) the
resting membrane potential by substantial amounts. Our patch-
clamp measurements showed that the amplitude of ICa,L was
≃ 3.25 ± 0.75 pA/pF. This value imposed a constraint on the
choice of gCaL. The kinetics of L-type Ca

2+ channel, as well as the
IV characteristics of the ICaL are shown in Figure 3.

Inward Rectifier Potassium Current, IK1

The IK1 is known to play a major role in determining the
resting membrane potential (RMP) of excitable cardiac cells in
many animal species, with the current reversing its direction
of flow close to the actual RMP value. Given that our sharp-
electrode measurements on pig atrial tissue suggested a more
depolarised (positive) RMP value than that reported in human
atrial cardiomyocytes (Courtemanche et al., 1998), we modified

the parameters of the CRN IK1 formulation to make the current
pig-specific.

To this end, (i) we shifted the reversal potential of IK1 by –5
mV, as has been done previously in some large animal models,
such as the sheep (Butters et al., 2013), (ii) we reduced the
maximum channel conductance of IK1 by 9% relative to the
human model (Courtemanche et al., 1998), (iii) we decreased
the slope of activation of the IK1 IV curve by 10%; and (iv)
we shifted the half-rise potential by +10 mV . Thus, IK1 in the
pig atrial model is described according to Equation (6). These
adjustments enabled us to fit the shape of the action potential
duration restitution curves at the 80–90% repolarization, while
trying to balance the effects of ICa,L and other rectifier currents.
The IV curve for IK1 as shown in Figure 4.

IK1 = gK1 ·
V − EK − 5

1+ exp(0.063 · (V + 70))
(6)

Ultrarapid Potassium Current, IKur
Recent work by Ehrlich et al. (2006), indicates that pig atrial
tissue exhibits a bi-exponential inactivation. Pandit et al. (2011)
developed a model for the ultrarapidK+ current, that reproduces
the experimental data of Ehrlich et al. (2006). We used the

FIGURE 3 | The kinetics of the fast L-type Ca2+ current ICaL. (A) Activation and inactivation characteristics of the steady state gating variables d and f . (B) Voltage

dependence of the time constants for activation (τd ) and voltage-gated inactivation (τf ). (C) Simulated traces of ICaL (traces at 5mV steps from minimum to maximum

in the inset). Intracellular Ca2+ concentration was kept constant at [Ca2+]i = 0.0001mM. (D) ICaL Current-Voltage characteristics.
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FIGURE 4 | The current-voltage characteristic of the inward rectifier K+

current (IK1). The direction of flow of the current across the cell membrane

reverses at EK = −81.76mV which is close to our experimentally measured

resting membrane potential.

formulation of Pandit et al. (2011) to describe IKur in our model
for the pig atrial tissue (see Equation 7)

IKur = gKur · u
3
a · (aui,f + bui,s) · (V − EK) (7)

Here gKur is the channel conductance, ua the activation gate,
EK the reversal potential of K+, and ui,f and ui,s the fast and
slow inactivation components, respectively. (a, b) = (0.25, 0.75)
are weights applied to the inactivation gates. It is interesting
to note that the approach by Pandit et al. is similar to that of
Aguilar et al. for the human atria. However, in the latter case, the
inactivation of IKur is given by ui = ui,f · ui,s instead of a sum
of the variables (Aguilar et al., 2017). The conductance of IKur is
described according to Equation (8).

gKur = gKur,amp

[

0.005+
0.05

1+ exp(−V−15
13 )

]

(8)

Here gKur,amp is an adjustable parameter whose value is
determined during the final stages of model development (see
section 3.2, for more details). Figures 5A,B show the activation
and inactivation kinetics of IKur , whereas, a comparison between
the current-voltage characteristics, as measured in experiments
by Ehrlich et al. (2006) and that produced using our model, is
presented in Figure 5C.

Rapid Delayed Rectifier Current, IKr
The rapid delayed rectifier current (IKr) was formulated similar
to the original CRN model (Courtemanche et al., 1998), but with
altered half-rise voltage (V1/2), slope of the correction value,
and the steady-state of the single gating variable, such that the

obtained IV characteristic curve matches with the experimental
IV curve of Li et al. (2004):

IKr = gKr · xr ·
V − EK

1+ exp(V−79.4825
8.2217 )

(9)

Initially, the conductance gKr was set at 0.0065 pA/pF to match
the non-normalized IV curve. However, this value was tuned
during the final stages of model development to match the pig
atrial APD restitution curves at the tissue level. The steady-state
value (xr,∞) of the gating variable xr is described according to
Equation (10):

xr,∞ =
1

1+ exp(−(V−4.4451)
9.3305 )

(10)

Note that, V1/2 of xr,∞ is shifted by +20mV relative to the
CRN model, whereas, the slope of the xr kinetic is slightly
decreased (Courtemanche et al., 1998). The gating behavior
of xr is described in Figures 5D,E. Unavailability of sufficient
experimental data led us to retain the temporal dynamics of
the gating variable xr from the CRN model (Courtemanche
et al., 1998). Figure 5F shows the comparison between the
experimental and simulated IV curves for IKr .

Slow Delayed Rectifier Current, IKs
We retained the slow delayed rectifier current formulation from
the original CRN model (Courtemanche et al., 1998):

IKs = gKs · x
2
s · (V − EK) (11)

The maximum channel conductance gKs was adjusted to fit the
restitution properties. The gating variable xs, and time constant τs
are described according to Equations (12) and (13), respectively.

xs,∞ =

[

1

1+ exp(−
V−p1
p2

)

]1/2

(12)

τs =
1

2
·

[ 1

4× 10−5 ·
(V−p1)

1−exp(−
V−p1
17 )

+ 3.5× 10−5 ·
(V−p1)

exp(
V−p1

9 )−1

]

,

(13)
Here, parameters p1 and p2 have values 18.802 and 12.6475
mV, respectively, obtained by fitting experimental data from Li
et al. (2004). The close resemblance of these values with those
used in the human atrial tissue model (Courtemanche et al.,
1998) suggests that electrophysiologically, human atrial IKs and
pig atrial IKs are very similar. Figures 5G,H show the steady
state kinetic and time constant, respectively, of IKs, whereas, the
model-generated IV curve is compared with experimental data
from Li et al. in Figure 5I.

Transient Outward Current, Ito
Ito in most species is composed of two components: a potassium
current (Ito,1) and a chloride current (Ito,2, also referred to as
IClCa).

Ito = Ito,1 + Ito,2 = Ito,1 + IClCa (14)
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FIGURE 5 | Channel kinetics and current-voltage characteristics of the rectifying K+ currents IKur , IKr and IKs. (A) Voltage-dependence of steady-state activation (us,∞)

and inactivation (uif ,∞ of uis,∞ ) probabilities of IKur . (B) Voltage-dependence of the time constants of activation (τui ) and inactivation (τuf or τus) of IKur , reduced by a

factor of 20. (C) Comparison between the model-generated IV curve for IKur and the IV curve reported by Ehrlich et al. (2006) based on experiments. (D)

Voltage-dependence of steady-state activation (xr,∞) probability of IKr . (E) Voltage-dependence of the time constant of activation (τr ) of IKr . (F) Comparison between

the model-generated IV curve for IKr and the experimentally obtained IV curve from Li et al. (2004). (G) Voltage-dependence of steady-state activation (xs,∞) probability

of IKs. (H) Voltage-dependence of the time constant of activation (τs) of IKs. (I) Comparison between the model-generated IV curve for IKs and the experimentally

obtained IV curve from Li et al. (2004).

Although the presence of IClCa has been reported in multiple
species and tissues (Zygmunt and Gibbons, 1991; Gomis-Tena
and Saiz, 1998; Ramirez et al., 2000; Xu et al., 2002; Bondarenko
et al., 2004;Wang and Sobie, 2008), including human atria (Wang
et al., 1987, 1993), it is generally observed that Ito,1 forms the
predominant component, scoring over IClCa in both strength
and duration of activity, as a transient outward current (Wang
et al., 1993; Bondarenko et al., 2004). However, in a study by
Li et al. (2004), it was reported that pig atrial Ito is unique, in
the sense that it is a completely calcium-driven chloride current
(Li et al., 2003, 2004; Schultz et al., 2007). Thus, in our model,
we incorporated this feature by modeling IClCa according to

Equation (15), and experimental data from Li et al. (2004).

Ito ≡ IClCa = gClCa · qCa(V − ECl) (15)

For the choice of formulation of IClCa we considered various
candidates (Gomis-Tena and Saiz, 1998; Ramirez et al., 2000;
Bondarenko et al., 2004; Wang and Sobie, 2008). In the end, we
decided to use Equation (15), which is a formulation for IClCa
in a canine atrial model (Ramirez et al., 2000). The reason for
choosing this formulation was that it allowed a fairly accurate
reproduction of the bell shape of the IV curve and the same
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general upward trend present in the experimental data of Li et al.
(2004).

Here gClCa is the channel conductance, ECl the Cl− reversal
potential and qCa the sole gating variable of the channel, which
follows the typical gating behavior of a Hodgkin-Huxley-type
gating variable:

qCa(t) = qCa,∞ − (qCa,∞ − qCa,0) · e
−

t−t0
τCa

qCa,∞ = 1−

[

1

1+
(

Fn
1.1e−10

)3

]

, τCa = 2
(16)

Fn is the flux of Ca2+ into the myoplasm. Fn shows a strong
correlation with the sharp release of Ca2+ from the SR in the
initial stages of AP (through the SR release current, Irel), giving
IClCa the fast dynamics of a transient outward current. Also,
the inactivation of Irel gives IClCa a significant bell-shape in its
IV curve, something universally observed in IClCa (Tseng and
Hoffman, 1989; Gomis-Tena and Saiz, 1998; Hiraoka et al., 1998;
Ramirez et al., 2000). In the case of our model, we shifted
the inactivation of Irel by +40mV and increased the slope of
inactivation to fit experimental results from Li et al. (2004).

Figure 6 shows the IV curve for IClCa, as obtained using our
model of the pig atrial tissue, overlaid on experimental data from
Li et al. (2004). The simulated current activated earlier than in
experiments, but with a good overall qualitative behavior.

Summary of Currents
Table 1 presents a summary of all currents adjusted in the model,
along with references to the experimental data used and the
parameters adjusted.

Restitution Studies
The cell model thus developed reflects ionic current properties
obtained from different cell samples patched under different
experimental conditions and by different groups around the
world. It is unreasonable to expect that the resultingmodel would
represent the electrophysiology of a real porcine atrial cell just
by combining these currents. We need some degree of tuning
to ensure that the resulting cell responds electrophysiologically
in the same way as an average cell isolated from a porcine
tissue sample. Therefore, we move to the next step in model
development, i.e., tuning with restitution. Refining a model to
ensure that it is able to reproduce the electrical properties of
the heart at tissue and organ level requires detailed studies of

FIGURE 6 | (A) Simulated traces (traces at 5mV steps from minimum to maximum in the inset) and (B) Current-voltage characteristics of IClCa, showing experimental

data (dots with error bars) from Li et al. (2004), overlaid on the model-generated curve (solid). Note the significant bell-shape of the curve at high positive voltage values.

TABLE 1 | Summary of currents.

Current Source Species Parameters adjusted Experimental data source

INa Luo and Rudy (1994) Guinea-pig gNa, τm, τh, τj our APA and dV/dtmax restitution data

IK1 Courtemanche et al. (1998) Human gK1, slope, half-rise, reversal potential our RMP and APD80-APD90 restitution data

ICa,L Courtemanche et al. (1998) Human gCa,L, d∞, τd, τf , τj ourAPD20 − APD50 restitution and patch clamp data (for

maximum current)

IKur Pandit et al. (2011) Pig gKur,amp our APD10 − APD30 restitution data

IKr Courtemanche et al. (1998) Human gKr , xr,∞ Li et al. (2004) and our APD60 − APD90 restitution data

IKs Courtemanche et al. (1998) Human gKs, xs,∞ Li et al. (2004) and our APD60 − APD90 restitution data

ICl,Ca Ramirez et al. (2000) Dog gCl,Ca, w(of Irel ) Li et al. (2004) and our APD10 − APD20 restitution data

INaK Luo and Rudy (1994) Guinea-pig INaK,max our APD70 − APD90 restitution data

INaCa Luo and Rudy (1994) Guinea-pig INaCa,max our APD70 − APD90 restitution data
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model restitution. In cardiac electrophysiology, restitution refers
to the property by which parameters such as the duration of an
electrical action potential (APD) or the conduction velocity (CV)
of a propagating signal vary with time between successive stimuli
applied to excitable cardiac tissue. In order to study restitution,
the model was extended to higher spatial dimension.

Spatial Extension of the Model to Higher Dimensions
To simulate wave propagation in 1 dimension and above,
we added a diffusion term to Equation 1, such that the
spatiotemporal evolution of the voltage is given by

∂V

∂t
= −

Iion + Istim

Cm
+ D∇2V (17)

We used a value 0.00126 cm2/ms for the diffusion coefficient
D. This choice of D allowed our model to reproduce
the experimentally observed conduction velocity of 58 cm/s
from Jang et al. (2019).

For numerical integration of Equation (17), we used a Forward
Time Centered Space (FTCS) scheme, with a space differential
1x = 1y = 0.022 cm. The timestep chosen for the simulations
was 1t = 0.02 ms and all coding was done using Python or C,
with MPI-based parallelization.

Action Potential Duration (APD)
The amount of time, during an action potential, when the
membrane voltage of an excited cardiac cell is more positive than
a chosen threshold, is called the action potential duration (APD)
at that threshold. Typically, this threshold value is measured
on the basis of degree of repolarisation of the cell membrane.
Thus, APDX refers to the amount of time during an AP, when
the cell membrane is more than X% repolarised, or, less than
X% depolarised.

When cardiac tissue is electrically stimulated using a train of
pulses at a particular frequency, the morphology of the AP adapts
to the applied pacing frequency. This reflects in the APA, RMP,
dV
dt max

and APD values at all possible levels of repolarization.
Such studies are conducted to investigate the restitution behavior
of the model or the tissue sample. We performed sharp-
electrode measurements on pig atrial tissue to obtain APD
restitution (APDR) data. We used these data to make final
adjustments to the model, to perfect its electrical response to high
frequency stimulation. In both experiments and simulations, pig
atrial tissue was stimulated at 0.25, 0.5, 1, 2, 3, 4Hz, and action
potentials were recorded.

We adjusted model parameters to find the most optimal
parameter set that simultaneously fit each of these restitution
curves with minimal deviation from measurement. Specifically,
we adjusted the maximum conductance values of several
currents. The final selection of conductance values is listed in
Table 2.

The overlays of our experimental and simulated data for each

of the following parameters: APA, RMP, dV
dt max

, and APDX , for X
= 10, 20, 30, 40, 50, 60, 70, 80, and 90% repolarization are shown
in Figure 7.

TABLE 2 | Conductance values and maximal currents after fitting restitution data.

Conductance Value (nS/pF)

gK1 0.08218

gNa 13.9900

gKur,amp 0.45539

gClCa 0.15731

gKr 0.01730

gKs 0.0594

gCa,L 0.06574

Maximal current Value (pA/pF)

INaK,max 0.94935

INaCa,max 2304

Note that pig APDR curves show an interesting feature that
distinguishes the model from most other mammalian species
that we know of. In the early stages of repolarisation (i.e., up to
APD50), an overall downward trend is observed for stimulation
cycle lengths greater than 1,000 ms (see Figures 7D–H). This
could be due to inactivation of IClCa at high pacing frequencies:
slower and lesser calcium uptake causes a decrease in IClCa, which
significantly slows down initial AP repolarization, causing an
overall higher early APD at high pacing frequencies with respect
to low-frequency pacing.

To test this hypothesis, we measured intracellular calcium
flux and IClCa in simulated restitution experiments. Figure 8
shows the resulting restitution curves for peak calcium flux
and peak IClCa at different stimulation cycle lengths in the
simulated model. A clear dependence of peak values on cycle
length can be observed, and both quantities decrease significantly
with a decrease in cycle length. This is indeed indicative of
an initial AP repolarization phase that is heavily dependent on
calcium dynamics. To the best of our knowledge, this behavior is
exclusive to the pig, and might have profound implications in the
translatability of studies on arrhythmia control and termination
from pigs to other species.

To summarize, the pig atrial model is capable of reproducing
experimentally recorded porcine APs at different pacing
frequencies within experimental deviations (Figures 9A,E–G).
The discrepancies between the experimental traces show the
variable nature of electrophysiology, in particular in the atria
(Cherry and Fenton, 2007), and the model is good at finding a
compromise and reproducing an AP with average traits within
experimental tolerances. Figures 9B–D show the temporal
evolution of each of the transmembrane currents considered in
Equation (2). With this basic model, we now begin our study of
electrical wave propagation at the tissue level.

Wave Propagation in 2D
Electrical stimulation of a quiescent 2D domain containing
pig atrial cardiomyocytes leads to propagation of an excitation
wave. Our studies confirm that at frequencies below 5 Hz, the
paced waves propagate with uniform and identical wavefront
and waveback conduction velocity. Electrical pacing at higher
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FIGURE 7 | Restitution curves for (A) resting membrane potential (RMP), (B) action potential amplitude (APA), (C) maximum upstroke velocity ( dV
dt max

), and (D–L)

action potential duration (APDX ), at X = 10, 20, 30, 40, 50, 60, 70, 80, and 90% repolarisation of the membrane voltage. Solid black lines indicate the model-generated

data, whereas the markers (with error bars) represent our data obtained from sharp-electrode experiments.
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FIGURE 8 | Restitution curve of peak intracellular calcium flux (dashed) and peak IClCa (solid).

frequencies does not lead to 1:1 capture. This is because the
effective refractory period of the cells is approximately 215 ms.
Figure 10A shows snapshots of plane wave propagation through
a 2D domain containing identical pig atrial cardiomyocytes. The
simulated wavelength (WL, estimated as WL = (t|back,−40mV −

t|wavefront) × CV) and CV restitution curves are presented in
Figures 10B,C.

Spiral Waves in the Pig Atria
Spiral Initiation
Using the reported parameter set in our 2D model, we produced
a spiral wave that survived for more than 40 s of simulation
time. To initiate a spiral wave in a domain containing 512× 512
grid points, we used the S1–S2 cross field protocol. We applied
a line stimulus along the left edge of the domain to initiate a
plane wave (S1) propagating toward the right (Figure 10A). As
the waveback of the S1 wave crossed x = 256, a second stimulus
(S2) is applied in the region y ≤256 (Figure 11A, t = 240 ms).
This leads to propagation of the S2 wave in the region that
has recovered from excitation. With time, as the wave S1 wave
moves out of the domain, more excitable tissue becomes available
and a spiral prototype is formed (Figure 11A, t = 280 ms).
Figure 11A shows the spatiotemporal formation and evolution of
the spiral.

Spiral Characterization
The spiral wave in the pig atrial tissue model meanders with
a shifting hypocycloidal trajectory. The trajectory of the tip of
the spiral was traced by connecting the points of intersection of
the isopotential line V = −35 mV and the line dV/dt = 0 at
each snapshot, spaced 10 ms apart in time. An analysis of the
tip trajectory shows that the basic pattern contains 5 outward
petals enclosing a center (see Figure 11B), which shifts in space
at the end of every 5 rotational cycles. A Fourier analysis of the tip
trajectory reveals the existence of 4 fundamental frequencies (see

Figure 11C), of which f0 = 5.426Hz and f1 = −3.548Hz are the
dominant ones. These contribute to the construction of the basic
hypocycloidal pattern, through superposition of the two counter-
rotating circular orbits at the given frequencies, where the radii
of the orbits are proportional to the heights of the peaks obtained
from the Fourier Transform of the trajectory.

Alternans
A visual impression of the spatio-temporal distribution
of membrane tension during spiral wave evolution
(Supplementary Video S1) indicated the occurrence of
wavelength fluctuations, as opposed to a constant, uniform
wavelength observed during plane wave propagation. To
quantify this effect, we measured APD90 from every 8th node
within the simulation domain in X- and Y- directions. We
excluded points from the region that was close to the spiral tip.

Figure 12 shows the restitution curves of APD90 in the
simulated spirals, both with respect to Cycle Length (CL)
(Figure 12A) and Diastolic Interval (DI) (Figure 12B).
Figure 12A shows the presence of alternans for cycle lengths in
the range ≡ 165-215 ms. This is consistent with the restitution
curve in Figure 12B, which focuses on the region with slope
≃ 1, a known predictor of the presence of alternans (Nolasco
and Dailen, 1968). In a previous work Fakuade et al. (2021)
demonstrated the occurrence of alternans at low stimulation
frequencies in patients suffering from postoperative AF. Thus,
our model can be used to develop useful insights into the origin
and control of this alternans in pig atria.

To test if the unique current IClCa is responsible for alternans
in the pig atrial model, we followed an approach that was first
proposed by Gomis-Tena et al. (2003). Accordingly, we inhibited
the IClCa (by 50 and 90% in two separate cases) in pig atrial
model and re-initiated the spiral. However, unlike Gomis-Tena
et al. (2003), alternans continued to exist in our model. APs
in the simulated spiral have a duration of at most ≃ 225 ms.
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FIGURE 9 | (A) Voltage and Current traces (B–D) of a pig atrial action potential at 1 Hz pacing. Simulated (solid black) and experimentally measured (green and red)

traces of AP recordings from cardiac tissue. (E–G) Voltage traces, both simulated (black) and experimental (green and red), at pacing frequencies of 2, 3, and 4 Hz,

respectively.

Referring back to Figure 8, we can see that IClCa is naturally
already shut off at such small cycle lengths, and any further
inactivation will obviously have a negligible effect on the behavior
of the resulting spiral.

Spiral Wave Breakup
Finally, we arrive at the most challenging question. Is it possible
to use this model to study atrial fibrillation, with the spiral

waves actually breaking up? The answer is, yes. The model does
exhibit a state of sustained chaotic electrical activity in an altered
parameter regime. Spiral wave breakup could be initiated by
suppressing the repolarization reserve. In particular, a reduction
of 75% in the value of gKr,max could lead to a state characterized
by more than six spiral waves. The spatiotemporal evolution of
the spiral breakup state is demonstrated in Figure 13 and in
Supplementary Video S2.
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FIGURE 10 | Propagation of a plane wave through simulated 2D pig atrial tissue. (A) Shows snapshots of the propagating wave at different times. (B,C) Show the

conduction velocity (CV) and wavelength (WL) restitution curves, as obtained from simulations.

4. DISCUSSION

In this study, we present the first complete mathematical model
of the pig atrial tissue. It is built upon experimental data on pig
atria as obtained from literature, and new sharp-electrode data
that was produced in our laboratory. The model is numerically
stable over long timescales, and is capable of reproducing
pig atrial action potentials that can be compared closely with
experiments. In particular, the AP characteristics, namely APD,

CV, RMP, APA, and dV
dt max

show excellent agreement with
experiments, not only for a single evoked AP, but also for the full
extent of their respective restitution curves. This confirms that
our model is capable of reproducing the exact electrical response
as can be expected from healthy pig atrial cardiomyocytes.

Our model takes into consideration the uniqueness of
the constitution of the transient outward current. In most
mammalian tissue, this current is found to be predominantly K+

based. However, in pig atria, this current is solely Cl−-based and
activated by the flow of Ca2+ ions. The unique dynamics of this
current results in a downward trend of the early repolarization
APD restitution curves; a feature that is not observed in most
mammalian species. Our model reproduces this experimental
trend in early APD restitution curves for large cycle lengths, and

attributes the trend to the inactivation of the IClCa at low cycle
lengths (Li et al., 2004).

In 2D, we demonstrate the model’s ability to sustain stable
spiral waves and spiral wave breakup, which adds to the suitability
of the model for in silico studies of AF in extended media. To
study spiral wave dynamics in the default model representing
healthy heart tissue, we used simulation domains that are
physically large compared to realistic tissue sizes. Our motivation
for choosing such domains is based on the concept presented by
Panfilov (2006). He showed that the pattern of stabilization of re-
entries in cardiac tissue is not determined by the actual size of
the heart per se, but by the effective size measured as heart size
scaled by the wavelength of electrical activity. This means that
in healthy tissue, where the wavelength of electrical activity is
relatively large, it is difficult (almost impossible) to obtain self-
sustaining spirals. In our default model, the wavelength of the
spiral was so large that it was not possible to obtain stable spirals
in tissue domains smaller than 8.5 x 8.5 cm. A Fourier analysis of
the tip trajectory shows that there are 4 fundamental frequencies
responsible for the dynamics of the intact spiral wave. Of these
frequencies, one is associated with wavemeander at fmeander ≃ 0.1
Hz, two are associated with the hypocycloid pattern, f0 = 5.426
Hz and f1 = 3.548 Hz, with one of those frequencies also being
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FIGURE 11 | (A) Formation of spiral waves in a 2D pig atrial tissue of size 11.26 × 11.26 cm2. Here t = 0 is considered as the time instant at which the S1 wave is

initiated (as in Figure 10A). (B) Hypocycloid pattern of the spiral tip trajectory. (C) Amplitude of the Discrete Fourier Transform (DFT) of the tip trajectory. The sampling

frequency is Fs = 500 Hz, and the corresponding resolution 1f = 0.2089 Hz. The inset shows the 4 main peaks of the DFT.

FIGURE 12 | Restitution curves for APD90 in (A) a simulated spiral with respect to Cycle Length and (B) Diastolic Interval. The dashed line in (B) indicates the region

of slope = 1.
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FIGURE 13 | Spiral wave breakup in a 2D pig atrial tissue of size 11.26 × 11.26 cm2 with GKr,max reduced to 0.25x its value in the healthy pig model. (A)

Pseudocolour plots of the membrane voltage distribution at different times demonstrates the occurrence of multiple spiral waves in the domain. (B) Quantification of

number of spiral waves in the domain at various times, measured as the number of phase singularities (one located at each spiral tip).

the frequency of rotation of the spiral arm (and thus setting the
average stimulation frequency). Furthermore, our model points
to the occurrence of alternans in 2D in the presence of spiral
waves, between the cycle lengths of 165 ms and 215 ms. This may
explain the difficulty encountered in experiments with evoking
consistent APs at a pacing frequency of 5 Hz. To understand

the underlying basis of this alternans, we tested an approach
suggested by Gomis-Tena et al. (2003), who inhibited the Ca2+-
activated Cl− current in their canine model to inhibit alternans.
Our model, however, failed to show suppression of alternans by
similar inhibition of the IClCa, suggesting that the alternans was
not driven by the Cl− current.
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The model presented here has the same general limitations
as any other ionically-detailed mathematical model of cardiac
electrophysiology. We have tried to incorporate as much porcine
specificity to themodel as is allowed by the available experimental
data. However, there are quite a few currents for which direct
validation was not possible, forcing us to resort to indirect
methods for model development. In our model, as listed in detail
in Table 1, experimental data on current voltage characteristics
was available for currents like IKur , IKr , IKs and Ito. For the
remaining currents, we found little or no clear information from
literature. For INa, we had to rely on the APA- and dV/dtmax

restitution curves for obtaining the correct value of gNa, assuming
that the channel kinetics were the same as in the human atrial
cell model. For IK1 we relied on the RMP restitution curve
and the APD restitution curves at 80–90% repolarization to
formulate the current. We had no information about the Ca2+

dynamics. Therefore, it was adopted in its entirety from the
Luo-Rudy dynamic model. Same applied for the pump and
exchanger currents, whose maximum values we tuned based on
our APD restitution data at 70–90% repolarization. Regarding
the L-type Ca2+ current, the only information we had was
our own data from patch-clamp recordings, which verfied that
the maximum conductance used was in line with what we
had chosen for the model. As previously discussed by Cherry
and Fenton (2007), detailed mathematical models need to be
treated with extreme considerations to appreciate their ability to
correctly reproduce phenomena outside the general experimental
conditions they were modeled after, and their main utility should
be in developing new hypotheses in the study of already-known
phenomena, rather than for the study of the dynamics of novel,
unverified phenomena.

The model falls prey to the natural variability found in
cardiac tissue, especially in the atria. The atrial cavities are
particularly complex, more so than the ventricles, when it
comes to heterogeneity and anisotropy, and the properties of
cardiomyocytes are known to be affected by factors like age or
sex (Cherry and Fenton, 2007). In the context of this project,
this is evidently palpable in the description of IKur given in
the two published papers used as sources in this model, which
differ significantly, and it highlights some of the compromises
that researchers must make when building a general model. In
addition to intrinsic ionic heterogeneities in the heart tissue,
structural factors are also known to play an important role in
destabilizing reentrant electrical waves in the atria, leading to
AF. A recent study by Roy et al. (2018) demonstrates how the
gradients in the atrial wall thickness and tissue fibrosis can
cause drifting of spiral waves across the left and right atria,
resulting in AF. In another study Boyle et al. (2019) report
that in patients with persistent AF who develop atrial fibrosis
targeted ablation of fibrotic patches can reduce the risk of
sustained AF, thereby indicating that structural heterogeneities,
such as those introduced by fibrosis, play a major role in
stabilizing AF.

Some of the limitations of the model come from the fact
that it relies on experiments from literature for the description
of individual currents, which sometimes have incomplete data

(lack of information of the time dynamics of the currents, for
example Li et al., 2004), or which have fundamentally different
experimental setups (Li et al., 2004; Ehrlich et al., 2006). However,
this model provides a good basis to start, and can be develeoped
further, as and when new experimental data become available.
Another important limitation of the model lies in its description
of the Ca2+ dynamics, which is mostly taken from the human
atrial model of Courtemanche et al.. The CRN model itself
adapts the description of the Ca2+ dynamics from the Luo-Rudy
model for guinea pig ventricular cardiomyocytes (Courtemanche
et al., 1998). Thus the Ca2+-dynamics cannot be called state-
of-the-art. Although it does give rise to physiologically relevant
pig atrial action potentials, the model does not provide any
significant insight to the fundamental role that Ca2+ plays
in mediating IClCa (Ito) and early AP repolarization. It would
therefore be of great interest to make detailed experimental
measurements on Ca2+ dynamics specific for the pig atria, with
the aim of building a more accurate mathematical description
to elucidate the mechanisms underlying the dynamics of
IClCa and to make more accurate predictions of its behavior
in arrhythmias.

Proposing the single cell model is just the first step. We
have taken one step further to extend the model to 2D, where
at least we can expect it to reproduce electrophysiological
behavior of monolayer cell cultures. The next steps would include
incorporation of natural cellular heterogeneity of cardiac tissue,
together with structural heterogeneity, such as fibrosis. These are
currently not addressed in our paper. Furthermore, we are trying
to develop an anatomically detailed 3D atrial model of the pic
heart, based on DTMRI data, which would describe the intrinsic
fiber anisotropy. A study of AF in such anisotropic, realistic heart
geometries would have a huge impact on the advancement of
arrhythmia research.
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Computational models of the electrical potential across a cell membrane are longstanding
and vital tools in electrophysiology research and applications. These models describe how
ionic currents, internal fluxes, and buffering interact to determine membrane voltage and
form action potentials (APs). Although this relationship is usually expressed as a differential
equation, previous studies have shown it can be rewritten in an algebraic form, allowing
direct calculation of membrane voltage. Rewriting in this form requires the introduction of a
new parameter, called Γ0 in this manuscript, which represents the net concentration of all
charges that influence membrane voltage but are not considered in the model. Although
several studies have examined the impact of Γ0 on long-term stability and drift in model
predictions, there has been little examination of its effects onmodel predictions, particularly
when a model is refit to new data. In this study, we illustrate how Γ0 affects important
physiological properties such as action potential duration restitution, and examine the
effects of (in)correctly specifying Γ0 during model calibration. We show that, although
physiologically plausible, the range of concentrations used in popular models leads to
orders of magnitude differences in Γ0, which can lead to very different model predictions. In
model calibration, we find that using an incorrect value of Γ0 can lead to biased estimates of
the inferred parameters, but that the predictive power of these models can be restored by
fitting Γ0 as a separate parameter. These results show the value of making Γ0 explicit in
model formulations, as it forces modellers and experimenters to consider the effects of
uncertainty and potential discrepancy in initial concentrations upon model predictions.

Keywords: action potential, electrophysiology, mathematical model, conservation of charge, parameter fitting,
calibration

1 INTRODUCTION

Since the seminal work by Hodgkin and Huxley (1952), mathematical models of electrophysiology
have been developed for many different cell types, including neurons, cardiomyocytes, gastric
smooth muscle cells, and many more (Noble, 1962; Dodge and Cooley, 1973; Corrias and Buist,
2007). Differences in ionic concentrations across cell membranes lead to a transmembrane voltage
(Vm). Its evolution over time is usually calculated in mathematical models by numerically integrating
the effects of the ionic currents passing through the membrane. Since the late 90s, several authors

Edited by:
Gernot Plank,

Medical University of Graz, Austria

Reviewed by:
Richard A. Gray,

United States Food and Drug
Administration, United States

Sanjay Ram Kharche,
Western University, Canada

*Correspondence:
Gary R. Mirams

gary.mirams@nottingham.ac.uk

Specialty section:
This article was submitted to

Cardiac Electrophysiology,
a section of the journal
Frontiers in Physiology

Received: 18 February 2022
Accepted: 16 March 2022
Published: 26 April 2022

Citation:
Barral Y-SHM, Shuttleworth JG,
Clerx M, Whittaker DG, Wang K,
Polonchuk L, Gavaghan DJ and
Mirams GR (2022) A Parameter

Representing Missing Charge Should
Be Considered when Calibrating

Action Potential Models.
Front. Physiol. 13:879035.

doi: 10.3389/fphys.2022.879035

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8790351

ORIGINAL RESEARCH
published: 26 April 2022

doi: 10.3389/fphys.2022.879035

40

http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.879035&domain=pdf&date_stamp=2022-04-26
https://www.frontiersin.org/articles/10.3389/fphys.2022.879035/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.879035/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.879035/full
http://creativecommons.org/licenses/by/4.0/
mailto:gary.mirams@nottingham.ac.uk
https://doi.org/10.3389/fphys.2022.879035
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.879035


have showed that Vm can also be computed directly from intra-
and extracellular concentrations of charges, due to a conservation
principle in the models (Guan et al., 1997; Varghese and Sell,
1997; Endresen et al., 2000; Hund et al., 2001; Jacquemet, 2007;
Livshitz and Rudy, 2009; Pan et al., 2018). In this work, we
investigate further the implications of using this second
expression for Vm in terms of numerical stability, we highlight
its impact on electrophysiological predictions, and we discuss the
benefits to using this approach in model calibration.

First, in this section we present a brief overview of relevant
work that leads to different ways of computing the voltage in
AP models, based on a conservation of charge principle
hidden in the equations, as well as how this conservation
of charge relates to the steady state of the AP models. Section
2 then highlights how the accuracy of solutions is improved
by the algebraic expression for voltage. In Section 3, we show
that model outputs are sensitive to the net concentration of
charge across the cell membrane, which varies because of
high variability and/or uncertainty in initial concentrations.
We finally show in Section 4 that Γ0, a parameter
characterising the relationship between Vm and the intra-
and extracellular concentrations of charges, can be inferred
from experimental data to produce the desired steady-state
behaviour of the AP model, despite being challenging to
estimate experimentally.

In this study, we explore the consequences of writing Vm

algebraically using the Ten Tusscher-Panfilov model of human
ventricular cells (TTP06) (Ten Tusscher and Panfilov, 2006) and
the CiPA version of the O’Hara-Rudy model by Dutta et al.
(2017) (ORd-CiPA). Beyond these two models, our findings
apply to any model tracking the intracellular concentrations of
all charge-carriers, which make up the majority of modern
electrophysiology models.

1.1 Membrane Voltage and Ionic
Concentrations in AP Models
Major variables in AP models include Vm, channel and pump/
transporter state variables and, in later models, concentrations of
ions, buffers, and signalling molecules. The relationship between
these variables, grouped together in a vector X, is expressed as a
system of ordinary differential equations (ODEs) of the form

dX
dt

� f X( ),
X � Vm,C, g{ },

where the vector function f(X) describes the rate of change of X,
which can be subdivided into Vm, the ionic concentrations C and
all other variables g. The first equation in f is usually the one that
defines the rate of change in Vm, using an ideal capacitor equation:

dVm

dt
� − 1

Cm
∑N
j�1

Ij X( ), (1)

where Cm is the membrane capacitance (usually in pF), and Ij are
the N different ionic currents flowing across the cell membrane
(in pA). Note that the currents depend non-linearly on voltage,

concentration, and time, so that all the state variables are coupled
together in a non-linear system.

The earliest AP models (e.g. Hodgkin and Huxley, 1952;
Noble, 1962; McAllister et al., 1975) approximated
intracellular concentrations as constants, arguing that the
relatively small ionic currents would not alter concentrations
significantly. This assumption holds well for the K+ and Na+

currents included in these models, which have relatively large
internal concentrations which do not show significant variations
during a single AP. In addition, simulating longer time spans
during which these small changes could build up, was
computationally infeasible at the time. But after the discovery
of Ca2+ currents in the 60s, it was quickly realised that [Ca2+]i
could vary by orders of magnitude during a single AP,
necessitating the inclusion of a time-varying [Ca2+]i in models
as early as the Beeler and Reuter (1977) model.

Later, DiFrancesco and Noble (1985) proposed a model where
the current-induced changes in [Ca2+]i, [K+]i, and [Na+]i are
tracked over time, along with the extracellular concentration of
K+ close to the cell membrane. This revolutionised the
understanding of major features of cardiac electrophysiology,
as reviewed by Dibb et al. (2015). Most subsequent AP models
have retained the dynamic description for intracellular
concentrations (although [K+]i is sometimes held constant)
and extended it with concentrations in intracellular
compartments such as the sarcoplasmic reticulum (SR, e.g.,
Noble et al., 1991; Wilders et al., 1991; Luo and Rudy, 1994)
and other species (e.g. chloride in Tomek et al., 2020). Variations
in extracellular concentrations over the course of the action
potential proved less popular but are still present e.g., in some
models of atrial (Hilgemann and Noble, 1987; Lindblad et al.,
1996; Nygren et al., 1998) and sino-atrial (Demir et al., 1994;
Dokos et al., 1996; Lovell et al., 2004; Pohl et al., 2016) action
potentials. Even though extracellular concentrations do vary in
practice (e.g., under ischemic conditions), their variations due to
ionic currents are often neglected in AP models because ions are
constantly exchanged with the vascular buffer which limits their
temporal variation in the extracellular space (Dokos et al., 1996)
and reduces accumulation of ions in the extracellular space.

1.2 Algebraic Expressions for Vm
A study by Varghese and Sell (1997) showed that models in which
all membrane currents are assigned to a charge-carrying species,
and in which the intracellular ionic concentrations vary
accordingly, will implicitly satisfy a conservation of charge
principle. As a result, Vm can be computed algebraically as a
function of the concentrations, so that the ODE for Vm Eq. 1 is
redundant. Applying the approach of Varghese & Sell to the Luo
and Rudy (1994) model as an example, we obtain

Vm � V iF

Cm
Na+[ ]i + K+[ ]i +2 Ca2+[ ]i +2V JSR

V i
Ca2+[ ]JSR +2VNSR

V i
Ca2+[ ]NSR( )

+ V0,

(2)
where V0 is an integration constant (called C0 in the original
publication), F is the Faraday constant, V i is the volume of the
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cytosol compartment of the cell, VJSR and VNSR are the volumes of
the junctional (JSR) and network (NSR) sarcoplasmic reticulum
compartments of the cell, respectively, and [Ca2+]JSR and
[Ca2+]NSR are the concentrations of Ca2+ in these
compartments. Hund et al. (2001) used a similar expression
for Vm but moved the integration constant within the
brackets, thereby turning it into a concentration instead of a
voltage. Using C0 to represent the concentration, the two
representations are related by V0 � −ViF

Cm
C0.

Endresen et al. (2000) proposed an expression very similar to
that of Varghese and Sell but with a strong assumption: that all
charges contributing to Vm are carried by K+, Na+, and Ca2+. This
assumption leads to

V0 � −V iF

Cm
K+[ ]o + Na+[ ]o + 2 Ca2+[ ]o( ), (3)

where [X]o is the extracellular concentration of species X. In other
words, Vm is simply proportional to the difference between total
intracellular and extracellular concentrations of these three
species. Endresen et al. acknowledged that their approach
omitted anions, but justified this with the observation that the
total concentrations of anions are approximately the same inside
and outside the cell and that most currents are carried by cations.
However, this framework needs to be extended for models which
include Cl−, e.g., Hund and Rudy (2004); Grandi et al. (2010);
Tomek et al. (2020): Eqs 2, 3 can be combined and generalised to
any number of modelled species and compartments as follows

Vm � V iF

Cm
∑
A

∑
k

zA A[ ]total,kVk

V i
−∑

A

zA A[ ]o⎛⎝ ⎞⎠, (4)

where A represents each charged species in the model, zA its
valence, Vk is the volume of the compartment k and the index k is
over all intracellular compartments (e.g. compartment k = i
corresponds to the cytosol). Equation 4 therefore
accommodates further electrically charged species such as
chloride, provided that the model keeps track of changes in
their intracellular concentrations.

Note that the total concentration of any ion A is denoted here
as [A]total,k. Some models include buffering of ions which alters
free ionic concentrations, but as binding to buffers does not cause
current flow over the membrane it should not change membrane
voltage. So the [A]total notation in Eq. 4 serves as a reminder that
the total concentration carried by A is given by the sum of any
buffered and free concentrations. For example, in many models
[Ca2+]total, i is not equal to [Ca2+]i. This can make derivation of an
algebraic-Vm formmore complicated than in the examples above.

However, various other charge-carriers—ions, compounds
and charged proteins—are known to be present at different
concentrations on either side of the membrane, but are
omitted from models. If these omitted charge carriers lead to a
net transmembrane voltage, then an extra parameter is needed to
account for the contribution of their charge imbalance to Vm. For
example, the Hund and Rudy (2004) dog action potential model
includes Cl− ions and an extra offset parameter would be needed
to compensate the strong imbalance between intracellular

(~ 20mM) and extracellular (~ 100mM) concentrations of
Cl−, or there would be huge voltages using Eq. 4. In this
model, chloride co-transporters change intracellular K+, Na+

and Cl− concentrations but do not induce any ionic current or
change voltage as they transport pairs of oppositely charged ions.
The balanced effect of these co-transporters does not need special
treatment in the equations above as long as both co-transported
ionic species are accounted for.

We can modify Eq. 4 to explicitly allow for transmembrane
imbalance of species that are not included in the model:

Vm � V iF

Cm
∑
A

∑
k

zA A[ ]total,kVk

V i
−∑

A

zA A[ ]o⎛⎝ ⎞⎠ + ΔV. (5)

Here, ΔV corresponds to the transmembrane potential due to
the difference in charge of all un-modelled species on either side
of the membrane. As the contribution of these species toVm is not
modelled as varying, ΔV remains constant through the
simulations. Equivalently, we can express the offset constant as
a concentration that we denote Γ0:

Vm � V iF

Cm
∑
A

∑
k

zA A[ ]tot,kVk

V i
−∑

A

zA A[ ]o + Γ0⎛⎝ ⎞⎠, (6)

where Γ0 � V iFΔV/Cm.
Expressing the offset as a concentration rather than voltage

may help in assessing whether the values implicitly attributed to
Γ0 by ODE models could be realistic. If positive, Γ0 could be
interpreted as the net concentration of 1 + charged intracellular
ions carried by species omitted in the model (or equivalently the
net extracellular concentration of 1 − charged ions), and if
negative it could be interpreted as a net intracellular
concentration of 1 − charged omitted ions—but in reality it
will reflect the sum of concentrations of a wide range of intra
and extracellular un-modelled charged species. The smaller the
magnitude of Γ0, the smaller the transmembrane imbalance of
charge carried by un-modelled species. As a consequence, a value
of Γ0 = 0 mM does not necessarily imply that no charge is missing
in the model; but it does imply that any external missing charge is
balanced exactly by an internal missing charge. Thus, the value of
Γ0 must be interpreted in the light of which charged species are
included in each model. Throughout this manuscript, we will use
the Γ0 symbol to represent these missing charges, but the results
hold equally well for its mathematically equivalent representation
as voltage (Endresen et al., 2000), concentration of charge (Hund
et al., 2001), or electrical charge (Jacquemet, 2007). Further detail
on these expressions and their interpretation is provided in
Supplementary Material Section S1-2.

A value for Γ0 can be found by substituting in the initial
conditions for the concentrations and the initial value of Vm from
the ODE formulation. This highlights an important point: models
that express Vm in ODE form “hide” the value of this model
parameter within their initial conditions. So when a set of initial
conditions is chosen, perhaps arbitrarily from within the bounds
of physiological realism, a hidden assumption is being made
about the (im)balance of un-modelled charges in the cell. As we
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will show in this study, this net imbalance in un-modelled charge,
captured by Γ0, is a key parameter in determining the behaviour
of AP models.

1.3 Γ0 and Stable Behaviour
In Figure 1 we show the stable behaviour of the O’Hara-Rudy
CiPA model when paced for a long time at 1 Hz. The solution
converges to a pattern under which all variables in the system take
the same trajectory (to within numerical simulation tolerances)
every time a stimulus is applied. The resulting periodic orbit in
the state variable space (as shown in Figure 1E) is called a “stable
limit cycle” in the study of dynamical systems, but is often
referred to as a “steady state” for shorthand in
electrophysiology modelling. Figure 1 also shows how a
change in pacing to 2 Hz results in a transient shift to a new

limit cycle. Similar transients to different limit cycles will also
occur when other parameters in the model are changed (e.g.,
those representing maximal ion channel conductances being
altered by drug block, or a change in extracellular
concentrations). A model at a limit cycle has settled to a stable
behaviour where each ionic concentration is in a dynamic
equilibrium—any depletion/accumulation due to ions flowing
down concentration gradients is restored before the next pace by
pumps and exchangers (see Figure 1C).

Convergence to a stable limit cycle of the same period as the
pacing (a “period-1” orbit) is not guaranteed: some models’
variables/concentrations may simply keep drifting (perhaps
reaching unrealistic levels); exhibit more complex behaviour
such as alternans (a stable “period-2” limit cycle in which we
arrive back at the same state after two stimuli periods rather than

FIGURE 1 | Example of a limit cycle in the O’Hara-Rudy CiPA 2017 model (Dutta et al., 2017), using the initial conditions from the published CellML model. The
simulation methods are detailed in “Simulation”. (A): Comparison of paced steady-state APs with 1 and 2 Hz pacing. (B): Adaptation of the voltage profile when the
pacing rate is suddenly changed from 1 to 2 Hz. The dots plotted on the traces correspond to the end of the diastolic phase in each AP. (C): Comparison of periodic
steady-state [K+]i variations during the AP with 1 and 2 Hz pacing. The values are normalised for easier comparison. (D): Adaptation of [K+]i after the sudden
change to 2 Hz shown in panel (B). (E): Vm and [K+]i during the transient adaptation phase where the model converges towards its periodic steady state. Data is shown
from the 500th pace onward. After a slow drift of [K+]i over time, a limit cycle (in blue) is reached where the patterns from consecutive APs overlap. (F): Evolution of
diastolic intracellular potassium (measured at the time points denoted with dots in B and D) after a change in pacing rate. A limit cycle is reached after approximately
700 2 Hz paces.
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one); or even chaotic behaviour (Qu, 2011). If pacing is stopped
altogether, model variables may converge to stable values—a
“stable steady state”. In models that exhibit automaticity, a
limit cycle can be reached without any periodic forcing
applied by a stimulus current. In this manuscript, we will use
either “limit cycle” or “periodic steady state” when referring to
stable limit cycles, and “quiescent steady state” when referring to
stable steady states without any periodic forcing by a stimulus
current.

Many published models do not exhibit a periodic steady state.
Hund et al. (2001); Jacquemet (2007) showed that models where
variables drift can often be ‘fixed’ to produce periodic steady
states by ensuring that all currents through the membrane,
including the stimulus current, are taken into account in the
concentration updates, i.e. by ensuring that charge is conserved
(as well as other conservation laws, see Pan et al., 2018).

Even when a model does have a periodic steady state, for any
models where Vm is written as a redundant ODE, the charge
represented by Γ0 is defined by the initial conditions. As a result,
arbitrarily varying initial conditions in the presence of this
redundant ODE alters the parameterisation of the model
(changes the amount of charge in the system), and any
quiescent steady states or limit cycles can alter accordingly. Or
in other words, when a redundant ODE is included there can be
no unique periodic steady state, it will vary depending on the
initial conditions. Conversely, when the redundant ODE is
removed there is often a unique stable limit cycle or quiescent
steady state; that is, the same quiescent steady state or limit cycle
is reached for any initial conditions.

Some authors such as Livshitz and Rudy (2009) have gone a
step further, and suggested that uniqueness of limit cycles/
quiescent steady states is guaranteed once conservation of
charge is met. An analysis by Jacquemet (2007), however,
shows that more than one stable quiescent steady state can
exist for a charge-conserving model with a given value of Γ0.
Examining the atrial model by Nygren et al. (1998), Jacquemet
found that for some values of Γ0 the model had a stable steady
state where Vm is polarised at rest (−60 to −90 mV), a stable
steady state where the cell is depolarised to about −30 mV, and an
unstable periodic steady state where the model displays
automaticity. In the course of this study we also found
examples of more than one stable limit cycle in other analytic-
Vm models, which are discussed below.

Although undoubtedly important for reproducible modelling,
it is reasonable to question the physiological relevance of
quiescent steady states and limit cycles. Convergence to a
perfect limit cycle seems unlikely to occur in real cells, as
channel activity and other chemical processes are inherently
stochastic and will perturb each orbit differently. The idea of a
limit cycle, however, overlaps well with biological concepts of
homeostasis and robustness. Even though the cell’s environment
is constantly altering to some degree, it would be ideal for a cell to
exist in close proximity to a stable limit cycle such that small
stochastic perturbations converge back to the same behaviour—at
least while energetic demands are met.

2 IMPACT OF THE ALGEBRAIC VOLTAGE
FORMULATION ON NUMERICAL
SOLUTIONS
2.1 Models and Simulation
CellML files for the TTP06 and ORd-CiPA models were obtained
from the Physiome Model Repository (Yu et al., 2011). The
TTP06 model has epi-, endo- and mid-myocardial variants;
where not stated otherwise we used the epicardial variant in
this study. The units in the obtained CellML files for TTP06 had
to be corrected before the algebraic-Vm form could be applied, as
described in Supplementary Material Section S1.1. The
algebraic-Vm forms of the TTP06 and ORd-CiPA models were
derived, and model variants that employ this form were created
for comparison with the original derivative-Vm form. A detailed
overview of the conversion of a model to its algebraic-Vm form is
given in Supplementary Material Section S1.3, along with a
guide to performing this translation in other models.

Simulations were performed using Myokit (Clerx et al., 2016)
which imported the CellML models, and using solver tolerances
stated in the section below. Unless stated otherwise, figures were
created after 2000 pre-pacing stimuli at a frequency of 1 Hz. In
the TTP06 model, the stimulus current was modelled as a K+

current of amplitude −52A/F lasting 0.5 ms. In the ORd-CiPA
model, the stimulus current was also attributed to K+ ions and its
amplitude was set at −50A/F and its duration at 1 ms.

All code used for this article is publicly available and open
source (see Data Availability at the end of the article).

FIGURE 2 | Evolution of resting membrane potential (RMP) in a
simulation with the derivative-Vm ORd-CiPA model, starting from the
published initial conditions. 2000 paces were simulated, we are showing
paces 250 onwards to examine the behaviour close to periodic steady
state. A slight drift is observed when using a coarse solver tolerance, but this
disappears when tolerances are tightened.
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2.2 Accuracy of Solutions
Simulations in Myokit are performed using the CVODES
software package (Hindmarsh et al., 2005) to numerically
integrate the differential equations. CVODES has two
“tolerance” settings that control the accuracy of the numerical
solutions (Cohen et al., 1996). To visualise the influence of solver
tolerance on AP simulations and find suitable tolerances to use in
this study, simulations were run for 2000 paces with the ORd-
CiPAmodel in its derivative-Vm form, using a coarse setting (10–6

and 10–4 for absolute and relative tolerance, respectively) and a
fine setting (10–8 and 10–6). The resting membrane potential
(RMP) was measured as the Vm 1 ms before application of the
stimulus, and plotted for the final 1750 paces in Figure 2.

As expected, using coarse tolerances results in (a small)
numerical error in the solution, but the figure also shows a
slight drift in Vm, even after 1,000 paces. When tightening the
solver tolerance, the numerical noise is significantly reduced, and
Vm stabilises after around 700 paces. The other state variables
show a similar pattern, as can be seen for [K+]i in Supplementary
Material Section S1.4.

To further investigate the long term stability of the solutions,
3,000 paces were simulated with the ORd-CiPA and TTP06
models, in both the derivative and the algebraic-Vm forms.
Since, with fine tolerances, the system had stabilised after 2000
paces (see Figure 2), the variation in the state variables after 2000
paces could safely be attributed to numerical error and not to

electrophysiological phenomena. We quantified this variation by
measuring the standard deviation in the final 1,000 paces in [K+]i
(the state variable that had the highest absolute value and largest
variations over successive paces, see Supplementary Material
Section S1.4). This standard deviation was evaluated for several
solver tolerances, in both the derivative and algebraic-Vm forms
of the models, and plotted in Figure 3 to create a “map of
stability”.

For both models, numerical solutions appear less stable when
using the derivative-Vm form Eq. 1. We believe this is because the
intracellular ionic concentrations andVm are updated without the
numerical method having any knowledge of Γ0. This can lead to
numerical errors that break conservation of charge, effectively
introducing variations in Γ0, and allowing the periodic steady
state of the system to change. By contrast, when explicitly
incorporating the algebraic constraint on Vm (Eq. 6) and
fixing Γ0, conservation of charge is guaranteed, so that the
periodic steady state stays the same and the stability of the
solution is improved.

For the remainder of this manuscript, we therefore used the
algebraic-Vm form and absolute and relative solver tolerances of
10–8 and 10–6, respectively.

2.3 Computation Time
We also investigated whether computation time was affected by
switching to the algebraic-Vm form of the model. One might have

FIGURE 3 | Numerical stability of [K+]i in the TTP06 and ORd-CiPA models, comparing the derivative and algebraic-Vm forms. The colour map corresponds to the
standard deviation of [K+]i between the 2000th and 3000th pace. The darker the map, the lower the variance, and the more stable the simulation.
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expected an improvement in simulation time due to a smaller and
better conditioned system with the redundant ODE removed
(avoiding a singular Jacobian as Varghese and Sell (1997)
suggested), but there was no significant (if any) change in
computation time, see Supplementary Figure S5 in the
Supplementary Material.

3 PHYSIOLOGICAL IMPACT OF Γ0

3.1 Γ0, [K+]i and [Na+]i in Human Ventricular
AP Models
The algebraic-Vm form of the model (Eq. 6) gives the voltage in
terms of the total intra- and extra-cellular ionic concentrations.
The impact of variations in these parameters and variables across
ventricular models was investigated by computing Γ0 for several
literature models using the published initial conditions. This
work could be carried out only for models which obey the
conservation of charge principle. The results are shown in
Table 1 which reports Γ0 (Eq. 6), the corresponding C0 as
defined by Endresen et al., and the corresponding voltage
offset ΔV for each of the investigated models.

These parameters contain information about the difference
between the un-modelled intra- and extracellular charged species
(e.g. H+, Mg2+, cations, phosphates, proteins). In the TTP06 Epi
model, for example, the intra- and extra-cellular charges of these
missing species are responsible for a voltage offset of 18.2 V. In
the ORd-CiPA model, the voltage offset is of −126.8 V.

The Tomek et al. (2020) model (an update of the 2019 version
to conserve charge) has a very high Γ0 constant due to the
inclusion of chloride ions, for which there is a very large
difference between intra- and extracellular concentrations. In
the Ten Tusscher et al. (2004) model, the epicardial and
endocardial versions were assumed to have the same initial
conditions, so their missing charge concentrations are the
same. The 2006 epi/endo variants of the Ten Tusscher model
(Ten Tusscher and Panfilov, 2006) have minor differences in the
initial conditions and buffered Ca2+ concentrations. As a result,
there are slight differences in Γ0 between the various versions of
the Ten Tusscher et al. model.

It remains to be seen whether the Γ0 value (net concentration
of un-modelled charge) is biologically as variable as the values it

has been implicitly assigned within models, or whether this
simply reflects lack of information on real concentrations and
subsequent uncertainty in what initial conditions should
be used.

Comparing the magnitudes of Γ0 and ΔV in Table 1 shows
that a 20 mV variation one might observe in resting
potential between models corresponds to Γ0 variations of
approximately 0.002 mM, much smaller than the variation
in the offset constants between models. So what we observe is
not influenced much by the precise value of the initial
condition for the RMP (this is the same reason initial
gating variable values have negligible effects) but instead by
how the various possible initial concentrations cause
longer term system behaviour to change via altered Nernst
potential (or GHK flux equations) and resulting currents, as
well as any explicit concentration-dependence in gating
kinetics. So the impact of initial RMP on Γ0 can be
neglected in comparison to that of initial concentrations
(RMP is also much easier to measure to within a few
millivolts in experiments). As a consequence, variation of

TABLE 1 | The integration constant for a range of human APmodels, written asC0 (Hund et al., 2001)—see Section 1.2—, net un-modelled species concentration Γ0 Eq. 6,
and voltage offset ΔV Eq. 5. The Trovato et al. (2020) and Stewart et al. (2009) models are Purkinje fibre models, while the remaining models represent ventricular cells.

Model C0 (mM) Γ0 (mM) ΔV (mV) Included ions

Trovato et al. (2020) 195.3377 −46.3377 −1.0605 × 106 K+, Na+, Ca2+

Stewart et al. (2009) 147.2641 2.1359 1.8273 × 104 K+, Na+, Ca2+

Ten Tusscher et al. (2004) Epi/Endo 150.5207 −1.1207 −9.5878 × 103 K+, Na+, Ca2+

Ten Tusscher and Panfilov (2006) Epi 147.2683 2.1317 1.8237 × 104 K+, Na+, Ca2+

Ten Tusscher and Panfilov (2006) Endo 150.5427 −1.1427 −9.776 × 103 K+, Na+, Ca2+

Iyer et al. (2004) 135.7501 10.2499 1.6659, ×, 105 K+, Na+, Ca2+

O’Hara et al. (2011) Endo 156.8010 −7.8010 −1.2680, ×, 105 K+, Na+, Ca2+

O’Hara et al. (2011) Epi 156.8022 −7.8022 −1.2682 × 105 K+, Na+, Ca2+

Dutta et al. (2017) (ORd-CiPA) Endo 156.8011 −7.8011 −1.2680 × 105 K+, Na+, Ca2+

Tomek et al. (2020) Epi 135.7563 −137.1563 −2.2294 × 106 K+, Na+, Ca2+, Cl−

Tomek et al. (2020) Endo 135.7555 −137.1555 −2.2294 × 106 K+, Na+, Ca2+, Cl−

FIGURE 4 | Initial concentrations published for cardiac AP models, for a
range of species and tissues. Green: human, Purple: canine, Orange: rabbit,
Yellow: Guinea pig, Blue: mammalian, Pink: murine. The dotted box highlights
the extreme values of intracellular concentrations, estimated from the
work of Bers et al. (2003) for Na+ and from the Grandi et al. (2010) and the
Tomek et al. (2020) models for K+.
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the initial voltage used to compute Γ0 from Eq. 6 was neglected
in this study and the initial voltage as published in the original
models was used to compute Γ0 in simulations of the
sections below.

3.2 Γ0 and Ranges of K+ and Na+
In this section, we estimate the variability of Γ0 from literature
and observe how this variability might impact the AP predicted
by the model. The values that can be taken by Γ0 are, for a large
part, dictated by the uncertainty in intracellular concentrations in
intact myocytes. Extracellular concentrations are fixed
parameters in most AP models that are more reliably
estimated (at least in in vitro experiments); we therefore
investigate the effect of only the initial conditions of
intracellular state variables on long-term model behaviour.

A literature search was carried out to find the range of
intracellular K+ and Na+ concentrations observed
experimentally in human cardiomyocytes and/or used in
simulations. The contribution of Ca2+ to total intracellular
charge at the end of the resting phase of the AP is much
smaller, so its variation can be neglected compared to K+ and
Na+, and Γ0 variation between the models is mainly due to
different intra- and extra-cellular K+ and Na+. The
concentrations of [K+]i and [Na+]i used in previous cardiac
AP models are reported in Figure 4, for a range of tissues and
species based on the annotated CellML models at https://github.
com/Chaste/cellml that were studied in Cooper et al. (2015).

In human ventricular cardiomyocytes the intracellular sodium
concentration ([Na+]i) was found to range experimentally from 4
to 16 mM (Bers et al., 2003). Fry et al. (1986) determined
experimentally that the intracellular potassium concentration
([K+]i) is 113 ± 6 mM in rat cardiomyocytes. We did not find
direct experimental measurements of [K+]i in ventricular human
cardiomyocytes in the literature. Also, experimental
measurements of intracellular ionic concentrations in intact
cardiomyocytes were all performed in the quiescent
configuration. We therefore used initial values for [K+]i from
human ventricular AP models as a measure of uncertainty in
[K+]i, which ranged from 120 mM in the Grandi et al. (2010)
model to 152 mM in the Tomek et al. (2020) model. With these
estimated ranges for [K+]i and [Na+]i, the range for their sum
varies by 44 mM. Such uncertainty in intracellular concentrations
produces the high variability of Γ0 between models that is
observed in Table 1.

The extreme K+ and Na+ concentrations from Figure 4 were
used to initialise [K+]i and [Na+]i in simulations to observe the
effect of such variations on the limit cycle AP. The K+

concentration was initialised to 120 mM and to 152 mM in the
two models, whilst the initial Na+ concentration was initialised to
4 mM and to 16 mM, respectively. Γ0 was computed from Eq. 6
for these intracellular concentrations and initial voltage set to its
published value (−84.9 mV for the TTP06model, − 88 mV for the
ORd-CiPA model). The high total concentration of intracellular
ions yielded Γ0 = −20.4 mM and Γ0 = −24.4 mM in the TTP06 and
the ORd-CiPA models, respectively. The low total concentration
of intracellular ions yielded Γ0 = 23.6 mM and Γ0 = 20.9 mM in
the TTP06 and the ORd-CiPA models, respectively.

In simulations in sections below where the value of Γ0 is
imposed by the user, the initial intracellular concentrations must
be changed to satisfy the algebraic constraint of Eq. 6 and leave
the initial voltage unchanged. Otherwise, the high variations of Γ0
reported in Table 1 would lead to voltage offsets of up to several
kilovolts. The intracellular concentration of K+ was therefore
adjusted with Eq. 6 so that the initial voltage remains untouched
and consistent with the required value of Γ0. Alternatively, Na+
could be adjusted; but the degree of variation of Γ0 could lead to
negative values of [Na+]i so we adjust K+ instead.

The ORd-CiPA model has extra ionic variables compared to
the TTP06 model: variables were added for the concentrations of
sodium and potassium in the subspace domain, denoted by
[Na+]SS and [K+]SS. At the limit cycle, the difference between
diastolic concentrations of ions in the subspace and in the
intracellular compartment were observed to be smaller than
0.1 mM, even when initial conditions were set to very different
values (results not shown). Furthermore, there is no physical
structure delimiting the subspace from the bulk intracellular
space. Thus, K+ and Na+ concentrations in the subspace are
very close to concentrations in the main intracellular
compartments at the end of the resting phase of the AP,
i.e., when state variables are initialised in simulations. To
avoid introducing big differentials in K+ and Na+

concentrations between the subspace and the bulk cytosol
compartment in simulations where the user introduced
changes to initial conditions for [K+]i and [Na+]i, the initial
conditions of [Na+]SS and [K+]SS were set to the same values as
[Na+]i and [K+]i respectively.

The limit cycle APs, observed after 2,000 paces, are plotted in
Figure 5. The difference in Γ0 induces important changes in the
limit cycle AP, especially for the TTP06 model. For instance, the
TTP06 model does not have a physiological AP when simulated
with a very low Γ0 value, the cell does not depolarise. In the ORd-
CiPA model, the RMP is particularly impacted, decreasing from
−82 mV for Γ0 = −24.4 mM to −88 mV for Γ0 = 20.9 mM. This
shows that Γ0 variations have a strong impact on the model
output, which is investigated further below.

3.3 Effect of Γ0 on Steady States
Several authors have asserted that Γ0 (or its equivalents from the
literature) defines the steady states of various models, both under
paced and unpaced conditions (Hund et al., 2001; Jacquemet,
2007; Livshitz and Rudy, 2009; Pan et al., 2018). Here we
investigate the steady states and limit cycles reached by the
TTP06 and ORd-CiPA models for initial conditions that
sample the range of physiologically-plausible Γ0 values
(Section 3.2).

The range of experimental concentrations determined in the
previous section was sampled at 10 linearly spaced Γ0 values. For
each Γ0 value, the [Na+]i range was sampled linearly at 10 points.
The initial [Ca2+]i was taken to range from 0.5 to 1.5 times its
originally published value, also with 10 sampling points, giving a
total of 100 samples for each Γ0 value. The remaining Ca2+

concentrations were initialised to a random value ranging
from 0.5 to 1.5 times their published initial value. The initial
value for [K+]i was computed using Eq. 6 to match with the initial
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voltage of the published model. Due to the linear relationship
between the ionic concentrations in Eq. 6, a hyperplane in the
state variable space can be associated to each Γ0 value. The initial
values of the remaining state variables (gating variables) were
taken randomly within the range 0–1, and the sum of the Markov
states in the IKr compartment of the ORd-CiPA model was
maintained equal to 1. The quiescent steady state was reached
after 4000 s without pacing and the limit cycle was recorded after
2000 s of steady 1 Hz pacing, and the values of the state variables
at the end of the diastole were recorded.

The quiescent steady state and the 1 Hz limit cycle diastolic
intracellular concentrations are shown in Figure 6. For each Γ0
value, all the simulations converged to the same quiescent or
periodic steady state. The steady states that can be reached by the
models for the various Γ0 values align on these plots.

Note how some of the points in Figure 6A appear to move
outside the Γ0 plane. Only [K+]i, [Na+]i, and [Ca2+]i are plotted
to allow a 3D visualisation of the quiescent steady states and limit
cycles. Thus, major changes in other concentrations, which are
not plotted in the figure, shift the steady states. Although the
steady state variables appear outside of the initial Γ0 plane in this
lower dimensional representation, Γ0 was correctly preserved
throughout the simulations.

For both models, regardless of the initial conditions used for
the state variables, a unique quiescent steady state and a unique
1 Hz limit cycle were observed for each value of Γ0. Thus, the
solution of the model under quiescence and for prolonged
regular pacing is defined by the value of Γ0. This observation
is consistent with the studies mentioned previously, with
constants equivalent to Γ0. As a conclusion, Γ0 can be used
as a single model parameter to summarise the intracellular
concentrations in these models at these pacing conditions
and parameter values. Moreover, the initial conditions for the
gating variables did not impact the limit cycle or steady-state
outputs, so their initial conditions were not altered in further
simulations. When calibrating an AP model based on its limit

cycle or steady state outputs, it appears sufficient to establish the
correct value of Γ0, regardless of how K+, Na+ and Ca2+

concentrations and gating variables are individually
initialised as long as they remain physiologically plausible.
Thus, when exploring values of Γ0 in a derivative-Vm model
the changes could be attributed to a single intracellular
concentration (K+ for example) without loss of generality.

3.4 Model Predictions Are Sensitive to Γ0
The influence of Γ0 on the limit cycle outputs and on the APD
restitution portrait was evaluated in the TTP06 and ORd-CiPA
models. The models’ outputs were recorded with Γ0 values
varying by 30 mM. Intracellular concentrations were initialised
so that Eq. 6 is satisfied with the initial voltage set to its published
value. The state variables other than intracellular concentrations
were initialised to their originally published initial values. 2000
paces were simulated to approach the limit cycle. The inward
rectifier potassium current (IK1) and the sodium potassium
exchanger current (INaK), the currents which showed the
highest sensitivity to Γ0 change, were recorded at 1 Hz pacing,
together with Vm.

The AP duration restitution portrait at limit cycle was
investigated using the Cardiac Electrophysiology Web Lab
(https://chaste.cs.ox.ac.uk/WebLab) (Cooper et al., 2016; Daly
et al., 2018). There, the models were loaded as CellML files, using
the public protocol “Steady State Restitution”. In this protocol,
2000 paces are applied (bringing models close to their limit
cycles) at various pacing periods ranging from 250 to 2000 ms.
Two consecutive APs are then recorded, and their APD90s
measured. The limit cycle outputs at 1 Hz and the restitution
plots are shown in Figure 7.

Γ0 variations impacted the IK1 current particularly strongly in
bothmodels, with faster IK1 activation kinetics for lower Γ0 values,
see Figures 7A,E. In addition, peak IK1 is decreased by 45% when
increasing Γ0 by 30 mM in the ORd-CiPA model. INaK is also
shown to be sensitive to Γ0, see Figures 7B,F. When using a low Γ0

FIGURE 5 | Limit cycle APs for extreme initial conditions for the TTP06 model (A) and for the ORd-CiPA model (B). Extreme Γ0 values covering approximately
44 mM are computed from the extreme [K+]i and [Na+]i observed in human ventricular models, as reported in Figure 4.
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value, INaK is reduced by approximately 15% in both the TTP06
and the ORd-CiPA models. The consequences for the simulated
AP are important, see Figures 7C,G. When looking at the resting
membrane potential (RMP) and the APD at 90% repolarisation
(APD90) for example, RMP is increased from −88 mV to −82 mV
for the TTP06 model, and from −88 mV to −83 mV in the ORd-
CiPA model when increasing Γ0 by 30 mM. APD90 is increased
from 299 to 306 ms for the TTP06 model, and is increased from
265 to 273 ms in the TTP06 ORd-CiPA model, when increasing
Γ0 by 30 mM.

Figures 7D,H show that Γ0 has an effect on the APD90 steady
state restitution portraits. The bifurcation of APD90 in the

restitution portrait is particularly important as it is
characteristic of alternans, when two consecutive APs do not
have the same APD90 but the model outputs are still periodic.
Note that when stable alternans occurs, the limit cycle no longer
follows the trajectory of the state variables over a single pacing
period, but over two consecutive pacing periods.

There is a bifurcation of APD90 for pacing periods at 700 ms
for the TTP06 model and at 400 ms for the ORd-CiPA model.
The pacing periods generating this bifurcation appear to be
independent of Γ0. However, the steepness of the restitution
slope as well as the size of the bifurcation depend on Γ0 used
for the simulation, especially for the ORd-CiPA model. In the

FIGURE 6 | Plot of the quiescent steady state and limit cycle values for [Na+]i , [K+]i and [Ca2+]i . (A): TTP06 model at a quiescent steady state. (B): ORd-CiPA
model at a quiescent steady state. (C): TTP06 model in a limit cycle. (D): ORd-CiPA model in a limit cycle. Each plane has initial conditions satisfying Eq. 6with the same
fixed Γ0 value. 100 combinations of initial conditions are sampled from each plane to cover the physiological range of concentrations. These initial conditions are used in
simulations to reach the (top row) quiescent steady state and the (bottom row) paced limit cycle. The steady state and limit cycle concentrations are plotted as
points (with dashed projections along the associated Γ0 plane), with the colour matching the plane from which the initial conditions were sampled. For clarity, the planes
for which the quiescent steady state is out of the range reported in Section 3.2, are not shown.
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studied models, higher values of Γ0 generate wider bifurcations in
the APD90 restitution portrait. The impact of Γ0 on characteristics
of the alternans predicted by the TTP06 and ORd-CiPA models
stresses the need to carefully consider the value of Γ0 used in AP
models.

4 CALIBRATION OF AP MODELS AND Γ0

The dependency of model outputs to Γ0 observed in Figure 7 is
also expected have an impact when fitting parameter values to
whole traces of Vm, or their derived biomarkers. Indeed, if Γ0 is
fixed to a value that incorrectly summarises the experimental
concentrations under which the data were generated, we might
expect a fitting process to return parameter values which are
skewed away from their correct values. A fitting of the ORd-CiPA
model to synthetic (simulated) data was performed to examine
this effect.

The synthetic datasets used in model training were generated
by running the ORd-CiPA model for 2000 pre-paces (1 Hz
pacing), and recording the 2001th AP, with one data point per
0.05 ms, no noise was added. The “true” scaling parameters for
conductances were then “forgotten” and re-calibrated to the
synthetic AP data, as in Johnstone et al. (2016). The
parameters used for the simulations are expressed as: gsimulation

= θ × goriginal, with gsimulation the value of the conductance used for
the simulation, θ the scaling factor, and goriginal the original value
of the conductance parameter. Thus, a scaling factor of θ = 1
corresponds to the conductance used in the original published
model (the “true” value in this synthetic study).

Three cases were explored to assess the influence of Γ0 in the
fitting process. In the first case, the initial conditions were
unaltered (assumed to be known/exactly correct), therefore the
value of Γ0 during the fitting was set to the “true” value, i.e. the one
used for synthetic data generation. In the second case, the model

was fitted with a fixed and incorrect Γ0 value computed from
initial concentrations and voltage published for the TTP06model,
a different but still plausible value. The third fitting is the same as
the second case, but Γ0 was added to the set of parameters to be
fitted, to allow compensation for discrepancy in the initial
intracellular ion concentrations provided by the user (in terms
of Figure 6 this allows flexibility in the plane upon which
intracellular concentrations will settle). The initial conditions
used for the fittings are reported in the Table 2.

When using initial concentrations from the TTP06 model,
calcium concentrations, [Na+]i and [K+]i were set to the values
published by Ten Tusscher and Panfilov (2006) [K+]SS and
[Na+]SS were initialised to the same value as [K+]i and [Na+]i.
In the ORd-CiPA model, the SR is split into two sub-
compartments while the TTP06 model has only one SR
compartment. Therefore [Ca2+]NSR and [Ca2+]JSR were
initialised at the same concentration published by Ten
Tusscher et al. for [Ca2+]SR.

The optimisation problem was defined as the minimisation of
the sum of square errors between the synthetic data and the fitted
model AP. The fitting algorithm uses the PINTS Python package
(https://github.com/pints-team/pints) (Clerx et al., 2019), to run
the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES)
(Hansen et al., 2003). The scaling factor parameters θCaL, θKr, θKs,
θNa, θNaL of the ORd-CiPA model were fitted. The initial guesses
for scaling factors were taken from the range 0.2–5, while the
boundaries were set to 0.1 to 10. The CMA-ES hyper-parameter
Σ0, the initial proposal covariance for new parameter samples,
was set to 0.1 along the diagonal for all parameters and zero
otherwise.

The value of scaling parameters retrieved by the three fittings
are compared in Table 3, and the corresponding APs are plotted
in Figure 8. In the case of the first fitting with the correct Γ0, the
true parameter values are retrieved as expected due to these
model parameters being identifiable. In the case of the second

FIGURE 7 | Comparison of model predictions in the periodic steady state outputs for the extreme values of Γ0 computed from Section 3.2. Data is shown for the
TTP06 (top row) and ORd-CiPA models (bottom row). (A,E): IK1 current. (B,F): Sodium-Potassium exchanger (INaK) current. (C,G): AP. (D,H): Limit cycle restitution
portraits showing APD90 variation with the pacing period. The insets show pacing cycle lengths of 500 ms and shorter.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 87903511

Barral et al. Missing Charge in Electrophysiology Models

50

https://github.com/pints-team/pints
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


fitting with a discrepancy in Γ0, the model cannot converge to the
right limit cycle. The optimal AP is still very similar to the
synthetic data, the only difference being a small shift in the
resting membrane potential, as seen in Figure 8A. However, the
discrepancy in ionic concentrations is compensated by a dramatic
shift in the retrieved scaling parameters, especially for gKs (0.522)
and gNaL (1.585). This impacts the response of the model to
perturbation: for example 50% block of IKr as shown in
Figure 8B, where we see a 14 ms difference in the predicted
APD90 which would be significant in many drug effect prediction
settings.

In the case of the third fitting with Γ0 as an inferred parameter,
the true values for all scaling parameters could be recovered. The
fact that the value of Γ0 could also be accurately retrieved from
fitting supports its identifiability as a model parameter, at least in
the absence of model misspecification/discrepancy.

4.1 Calibration When Multiple Stable Limit
Cycles Exist for a Single Γ0 Value
It was shown in Section 3.3 that the ORd-CiPA model, with
published parameters, has a unique limit cycle for any particular

TABLE 2 | Initial conditions used in the various fittings of the ORd-CiPA model to synthetic data.

Case Γ0 Initial
conditions for [K+]i

Initial conditions for
other concentrations

Data generation − 7.801 144.6 mM ORd-CiPA
#1 Fixed & ‘correct’ Γ0 − 7.801 144.6 mM ORd-CiPA
#2 Fixed & ‘wrong’ Γ0 − 1.562 135.4 mM TTP06
#3 Fitted Γ0 Fitted 135.4 mM TTP06

TABLE 3 | Parameters retrieved from fittings in the investigated cases. The fitting process with an incorrect Γ0 value yields incorrect values for model parameters. Such a
model suffers from poor predictive power, this can be corrected by fitting Γ0 together with the other model parameters.

Case Γ0
(mM)

Diastolic [K+]i
atlimitcycle

θCaL θKr θKs θNa θNaL APD90 baseline APD90 with 50% IKr block

Data generation −7.801 144.4 1 1 1 1 1 266 ms 369 ms
#1 Fixed & “correct” Γ0 −7.801 144.4 1.000 1.000 1.000 1.000 1.000 266 ms 369 ms
#2 Fixed & “wrong” Γ0 −1.562 138.6 0.760 1.187 0.522 1.129 1.585 265 ms 383 ms
#3 Fitted Γ0 −7.801 144.4 1.000 1.000 1.000 1.000 1.000 266 ms 369 ms

Values associated with the synthetic (simulated) data generation are written in bold font.

FIGURE 8 | Predicted APs for the ORd-CiPAmodel fitted to synthetic data. (A)Comparison of the synthetic data with APs obtained from optimal parameterisations
in the different fitting cases. (B) Prediction of response of the model to 50% block of IKr. Predictions of model with parameter fittings #1, #3 and the true parameters set
overlay.
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value of Γ0 that has been used (implicitly) in previous models. As
shown by previous studies, under certain conditions there are
possibly multiple quiescent steady state (Guan et al., 1997;
Jacquemet, 2007) and/or limit cycle (Surovyatkina et al., 2010)
solutions for the same value of Γ0.

For instance, with 95% reduction of IKr, Γ0 = −20mM, and 1 Hz
pacing, the ORd-CiPAmodel has two stable limit cycle APs, shown
in Figure 9. With the initial Na+ concentration as originally
published in the ORd-CiPA model, the limit cycle AP has an
early after-depolarisation (EAD), whereas the limit cycle AP with
higher initial Na+ concentration exhibits alternans and an EAD.
This is characteristic of a bifurcation of the limit cycle for the same
value of Γ0, which is investigated further in this section.

Various conditions of IKr block (0, 90 and 95%) were applied
to the ORd-CiPA model to test for the presence of multiple limit
cycles for a single value of Γ0. As in Section 3.3, the ORd-CiPA
model was paced to its limit cycle for various initial conditions

that sample the physiological range of concentrations reported in
Section 3.2, but variations of initial conditions were considered
only for [K+]i and [Na+]i this time. Given the low influence of
[Ca2+] variations on Γ0 value, its influence on the model outputs
were neglected. Eq. 6 defines a linear relationship between [Na+]i
and [K+]i and Γ0, and therefore for a fixed value of Γ0, the
intracellular concentrations follow a line in the ([Na+]i, [K+]i)
plane, if the other ionic concentrations are not changed. Ten
different initial conditions were sampled for each of the 15 values
of Γ0 covering the physiological range of concentrations ([K+]i
between 120 and 152 mM and [Na+]i between 4 and 16 mM). In
case there is alternans, diastolic concentrations are read out at the
end of the longer AP.

The limit cycle diastolic concentrations reached for the various
Γ0 values with various IKr block conditions are represented in
Figure 10. For IKr block lower than 90% across the range of initial
conditions we studied, the limit cycle is unique for a given value of
Γ0. In such situations, fitting Γ0 would be sufficient to fully inform
the intracellular concentrations.

In the extreme case of 95% of IKr block, a bifurcation is
observed for the ORd-CiPA model—see Figure 10C. A second
stable limit cycle appears, and intracellular concentrations
converge to one or the other limit cycle value depending on
their initial conditions, despite corresponding to the same Γ0
value. The multiple limit cycles at a fixed Γ0 value are observed for
Γ0 values ranging from −13 to 2 mM—see Figure 10C. In such
cases, Γ0 does not solely determine which limit cycle will be reached,
and one needs to consider [K+]i and [Na+]i initial conditions.

As observed in Figure 10, multiple stable limit cycles can be
found for the same value of Γ0 under particular conditions. In this
section, we investigate how the bifurcations of the limit cycle can
impact the fitting process. Under 95% of IKr reduction, there are
two stable limit cycle APs for the ORd-CiPA model for the same
value of Γ0: one with early after-depolarisation (EAD) generated
with low initial [Na+]i, and one without EAD when simulating
the limit cycle AP from high initial [Na+]i—see Figure 9.

FIGURE 9 | Limit cycle APs for the ORd-CiPA model under 95% of IKr
reduction, generated with the same value for Γ0=−20 mM, but different initial
Na+ concentrations. With the initial Na+ concentration set to 15 mM (Black),
the limit cycle AP shows no early after-depolarisation (EAD). With a lower
initial Na+ concentration of 7.3 mM (Blue), the limit cycle AP exhibits alternans
with an EAD.

FIGURE 10 | Limit cycle concentrations of [K+]i and [Na+]i for simulations with ORd-CiPA model starting from different initial conditions. Each line corresponds to
combinations of intracellular concentrations bound by a single Γ0 value. For each value of Γ0, 10 combinations of [K+]i and [Na+]i are used to sample the whole
physiological range reported in Section 3.2. Limit cycle concentrations of the 10 combinations are marked by circles, with colour matching the initial conditions. For IKr
reduction up to 90%, a unique limit cycle can be reached per value of Γ0. In the case of 95% of IKr reduction, two distinct limit cycles can be observed for higher
intracellular concentrations. (A): With no IKr reduction. (B): With 90% IKr reduction. (C): With 95% IKr reduction.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 87903513

Barral et al. Missing Charge in Electrophysiology Models

52

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


The synthetic data was generated with the ORd-CiPA model
under 95% of IKr block, with intracellular concentrations
initialised at [Na+]i � 15mM and [K+]i = 149 mM,
corresponding to Γ0 = −20 mM. Synthetic data showed no
EAD. As seen in Figure 9, there is a second stable limit cycle
AP, with EAD, in this configuration of the ORd-CiPAmodel with
lower initial Na+ concentration.

During the fitting process, the initial concentration of Na+ was
fixed to its published value [Na+]i � 7.3mM, and when a new
value of Γ0 was proposed by the fitting algorithm, the changes in
Γ0 were attributed to K+ ions. As a consequence, when the “true
parameters” were evaluated during the fitting process, an EAD
was observed. The fitting of the ORd-CiPA model to synthetic
data from the same model was performed with the same methods
as in Section 4. The same parameters as previously were fitted
(θCaL, θKr, θKs, θNa, θNaL, Γ0).

Note that for Γ0 = −20mM, [Na+]i can take only values between
14 and 16mM for [K+]i to remain in the physiological range
(Figure 10). This bifurcation was selected despite the initial and
limit cycle concentrations being outside the physiological range,
because of the dramatic changes between the two limit cycle APs
that make more visual the potential impact of multiple stable limit
cycles on the parameters retrieved from model calibration.

The parameters retrieved from the fitting are reported in
Table 4. The limit cycle AP under 95% IKr reduction for the
calibrated model is compared to the synthetic data (Figure 11A)
and its prediction of AP without IKr block is compared to that of

the true model that generated the synthetic data in the validation
case of Figure 11B.

The optimal values of θKr and θNa are close to their true values,
but θNaL and θKs have considerable differences to their true values,
57 and 26% too large respectively. This explains why even though
the synthetic data AP is well reproduced (Figure 11A), the fitted
model makes an incorrect prediction in the validation case with
no IKr block (Figure 11B). The optimal value of Γ0 is interestingly
close to its true value. However, one cannot conclude from this
example alone that Γ0 value will still be correctly recovered in the
case of bifurcation.

In this case with bifurcation, fitting initial conditions for both
[Na+]i and [K+]i would be necessary to reach the correct limit
cycle and obtain a correct optimal model. However, we would not
recommend fitting both [Na+]i and [K+]i simultaneously as a
standard. In most cases, there is only one limit cycle solution for a
given value of Γ0, so that the two parameters would be
unidentifiable (see Whittaker et al., 2020).

5 DISCUSSION

We investigated the consequences of computing voltage in AP
models directly from concentrations, using an algebraic-Vm

formulation (Eq. 6). This method for computing voltage
increases the numerical accuracy of solutions, compared to the
canonical derivative-Vm method of integrating the sum of trans-

TABLE 4 |Rescaling factors for conductance parameters retrieved from fitting to data generated under conditions where several stable limit cycles coexist for the same value
of Γ0 = −20 mM.

Γ0
(mM)

Diastolic [K+]i
(mM)

θCaL θKr θKs θNa θNaL APD90 with 95% IKr block APD90 baseline

Data generation −20.0 156.18 1 1 1 1 1 663 ms 264 ms
Fitted values −19.7 155.73 0.863 0.933 1.263 0.936 1.574 663 ms 294 ms

Values associated with the synthetic (simulated) data generation are written in bold font.

FIGURE 11 | Consequence of fitting the ORd-CiPA model in case of multiple stable limit cycles for the same Γ0 value. (A): ORd-CiPA fitted with initial [Na+]i � 7.3
mM under 95% of IKr block is able to reproduce the synthetic data generated with initial [Na+]i � 15 mM (APs superposed). (B): predictions for no IKr block. Despite the
good fit to IKr block data in panel (A), incorrect parameter values are retrieved from fitting, and the prediction of the calibrated model is erroneous.
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membrane currents. The computation time of simulations is not
impacted significantly by the choice of expression for the voltage.
Changing to the algebraic-Vm form of the model did not reduce
the computational time required for AP simulations, as it does
not change the stiffness of the model (the main driver for the
computational cost).

Γ0 is a constant representing the net concentration of un-
modelled charge present in the model, needed to ensure the
consistency of initial values for concentrations and voltage. In
most cases, the value of Γ0 defines the steady-state behaviour of
the model, regardless of the combination of initial values for state
variables such as concentrations in the simulations. Given the
high variability of intracellular concentrations that have been
used in action potential models, with less variability in
extracellular concentrations, Γ0 is also highly variable. Extreme
variations of Γ0 lead to very different steady-state behaviours and
substantially impact their outputs, making it important to
establish the value of Γ0 as accurately as possible.

Measurements of intracellular ionic concentrations in intact
myocytes are not generally available alongside recordings of
electrophysiological activity used to calibrate AP models. We
showed that this issue could potentially be addressed by inferring
Γ0 from the data, along with other parameters of the AP model.

With the algebraic-Vm form of the model, the algebraic
constraint on the variables appears explicitly. At each time-
step, this constraint is therefore rigorously applied to the
system. With the derivative-Vm form of the model, the
constraint is mathematically satisfied by the system—by design
in AP models which satisfy the conservation of charge
principle—but during the numerical integration of the
equations, the constraint is not verified at each time step.
Therefore, the numerical errors that appear during the
integration allow the constraint to be violated. This violation
of conservation of charge explains that with a coarse solver
tolerance, the model does not properly converge to a limit
cycle—see Figure 2. Livshitz & Rudy noted that AP models
are often mistaken as Ordinary Differential Equation (ODE)
systems when they are actually Differential-Algebraic Equation
(DAE) systems—ODE systems with algebraic constraints. With
the algebraic-Vm form of the model, all constraints of the DAEs
appear explicitly, which is best practice (Livshitz and Rudy, 2009).
In theory, the differential and algebraic representations of the
membrane voltage are still mathematically equivalent, so
modellers could use either of them as preferred (Hund et al.,
2001). In practice, we recommend to use the algebraic-Vm

formulation.
Using the algebraic-Vm form of the model makes also Γ0

appear as a model parameter, highlighting the need to consider its
value explicitly. We propose to infer Γ0 from the experimental
data on which the model is calibrated. Endresen et al. (2000)
reported with the derivative-Vm form of the model that “the
observer tracks only the variations in the number of ions, but then
an initial concentration must be guessed”. Livshitz & Rudy
proposed criteria for validation against experimental data and
adequate comparison between dynamic models (Livshitz and
Rudy, 2009). Among these criteria, the use of “a consistent set
of initial conditions for state variables (Vm, intracellular ion

concentrations)” is recommended. Smirnov et al. (2020) also
noted that the question of initial conditions for ionic
concentrations is often overlooked when fitting AP models,
when they fitted the O’Hara Rudy model (O’Hara et al., 2011)
to AP recordings from optical mapping experiments in human
ventricular wedges.

The errors induced in conductance fits when using a fixed but
incorrect Γ0—see Section 4—emphasise the importance of using
the correct initial conditions for concentrations when fitting to
AP data. An AP model calibrated using an incorrect
representation of concentrations (i.e. an incorrect but plausible
value for Γ0) is badly parameterised with up to ±50% error in
some maximal conductance parameters, and has a reduced
predictive power.

Our results show that Γ0 can be fitted to compensate for errors
in assumed intracellular concentrations, at least when fitting to
synthetic (simulated) AP data. So we recommend inferring Γ0
from the training data during model calibration, following the
methods of Section 4. When using real data, discrepancy in the
AP model may cause additional problems, but still the possibility
for uncertainty in Γ0 should be explicitly considered.

In our study, we show that due to the conservation law: 1) a
consistent Γ0 value should be used throughout the model
calibration, and 2) it is sufficient to fit the value of Γ0 to
capture the input of intracellular concentrations on steady
state outputs, unless bifurcations are present. The second
point is supported by observations on other models reported
in the literature (Hund et al., 2001; Jacquemet, 2007; Livshitz and
Rudy, 2009; Pan et al., 2018). For example, Smirnov et al. (2020)
have included initial values for [Na+]i and [Ca2+]SR in their set of
parameters to calibrate, which is similar to fitting Γ0. However,
they fitted their initial conditions independently at each pacing
rate, thus changing the value of Γ0 from one pacing rate to
another.

It remains important to consider that the uniqueness of the
limit cycle for a single Γ0 value cannot be always guaranteed
(Guan et al., 1997; Jacquemet, 2007). The methods presented in
Section 3.3 can be reused to verify that Γ0 solely defines the limit
cycle for a model under a given set of studied experimental
conditions. If the uniqueness of a limit cycle is verified, it is
reasonable to fit Γ0 alone to summarise the initial conditions of
intracellular ionic concentrations. Otherwise, in case of
bifurcation of the limit cycle, we would recommend fitting Γ0
and the initial condition of [Na+]i. Alternatively, initial
conditions for two intracellular concentrations could be
inferred, for instance [K+]i and [Na+]i which have the highest
contribution to the value of Γ0.

5.1 Limitations
As mentioned above and in the literature (Guan et al., 1997;
Jacquemet, 2007), the uniqueness of the steady states for a single
Γ0 value is not always guaranteed. In cases of bifurcation, where
several stable solutions exist for the model with a single value of
Γ0, Γ0 (as well as other parameters) can be incorrectly determined.
We observed in this study that for the ORd-CiPAmodel, the limit
cycle is unique in most physiologically-plausible cases. However,
this property does not always hold if parameters are changed. A
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method to investigate thoroughly the uniqueness of the limit cycle
for a given value of Γ0 for all parameterisations of an AP model
could be extremely costly computationally. Still, we have
demonstrated for the ORd-CiPA model, as originally
published, that Γ0 is identifiable and could be correctly
estimated. We observed consistent findings for Γ0 in the
TTP06 model, which has a very different model structure to
the ORd-CiPA model—data not shown. We therefore expect this
behaviour to be replicated for all AP models that conserve charge.
Hence we recommend to consider calibrating Γ0 as a parameter
that usually encapsulates both the initial conditions of the
modelled ionic species and the un-modelled charge. In the
cases where there are multiple steady states for the same Γ0,
the unidentifiability could be resolved by fitting initial conditions
for ionic concentrations as well.

To define the physiologically-plausible range of
concentrations, we used the extreme values of [K+]i reported
in previous human ventricular AP models. Direct experimental
measurements of [K+]i would help refining this range. Moreover,
[Na+]i and [K+]i were considered separately in our study.
Simultaneous experimental measurements of [Na+]i and [K+]i
in human ventricular cardiomyocytes would give better
understanding of correlation between these concentrations,
which may further restrict the range of physiologically-
plausible Γ0 values.

When AP models are used to investigate changes in
extracellular concentrations (e.g. when simulating hypo/er-
kalemia or ischaemia—pathological changes to extracellular
concentrations such as [K+]) care is needed with Eq. 6. In
such situations, as the extracellular ion of interest changes
concentration, opposite charges will be introduced into the
same solution to maintain electrical neutrality (e.g. if we
experimentally use the salt KCl to change [K+]o we also
change [Cl−]o); if one ion is accounted for in Eq. 6 but the
‘opposite ion’ is not (e.g. the model does include [K+]o but does
not explicitly consider [Cl−]o) then Γ0 will need to be adjusted by
the same amount to account for this extra “opposite” charge.
For models where external concentrations are fixed as
constants, an equation of the form of Eq. 2 with V0 or C0

can then be used equivalently, and would simplify simulation
procedures when extracellular concentrations are changed by
the user, but the interpretation of Γ0 as “net un-modelled
charge” is clearer.

5.2 Possible Extensions to This Study
Although this study was focused on ventricular AP models, the
conservation law that binds together the voltage and intracellular
ionic concentrations applies to all cellular electrophysiology
models: other cardiac cell types, neural, gastric, skeletal
muscle etc.

The improvement in numerical accuracy enabled by the
algebraic-Vm form of the model was shown to reduce the
numerical error that can lead to deviation of state variables
after reaching the periodic steady state—see Figure 3 and
Supplementary Material Section S1.4. The computational
efficiency was similar with the algebraic-Vm form of the model
when using the same solver tolerance.

The extent to which intracellular concentrations are well
established has been somewhat overlooked (Smirnov et al.,
2020). Our study, showed the importance of the correct
estimation of Γ0 in specifying concentrations. In literature
models, there is significant variation between the assumed
initial concentrations, and therefore variation in Γ0, as shown
in Section 3.2. In papers on action potential model
development, we have not found any discussion of the
choice of Γ0, or equivalently the choice of the offset
between concentrations and voltage in initial conditions,
perhaps suggesting somewhat arbitrary choices. It remains
to be seen whether Γ0 exhibits significant physiological
variation to contribute to inter-cell and/or inter-individual
differences in electrophysiology, or whether it is a well-
constrained biological quantity—which would be the case if
the un-modelled missing ions that Γ0 represents do not vary
significantly between cells or individuals. In either case, Γ0
strongly influences model behaviour and a concerted effort
should be made to identify its value alongside other key model
parameters. The recent emergence of cell-specific models
(Groenendaal et al., 2015) may offer an approach to
quantify Γ0 more accurately.

6 CONCLUSION

We advocate here for the use of the algebraic-voltage form of AP
models, as it improves the stability of numerical solutions by
enforcing a hidden algebraic constraint in the models.
Furthermore, the algebraic-voltage form ensures that the
model conserves charge. It also requires the modeller to
think carefully about initial conditions for intracellular
concentrations and to acknowledge their effects on the model
output. We recommend consideration of the potential
discrepancy and uncertainty in intra- and extracellular
concentrations of ions, as model outputs and model fitting
are dependent on these. The Γ0 value summarises these
factors into one parameter which can be fitted alongside the
rest of a model.
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A Review of Healthy and Fibrotic
Myocardium Microstructure Modeling
and Corresponding Intracardiac
Electrograms
Jorge Sánchez* and Axel Loewe

Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Computational simulations of cardiac electrophysiology provide detailed information on the
depolarization phenomena at different spatial and temporal scales. With the development
of new hardware and software, in silico experiments have gained more importance in
cardiac electrophysiology research. For plane waves in healthy tissue, in vivo and in silico
electrograms at the surface of the tissue demonstrate symmetric morphology and high
peak-to-peak amplitude. Simulations provided insight into the factors that alter the
morphology and amplitude of the electrograms. The situation is more complex in
remodeled tissue with fibrotic infiltrations. Clinically, different changes including
fractionation of the signal, extended duration and reduced amplitude have been
described. In silico, numerous approaches have been proposed to represent the
pathological changes on different spatial and functional scales. Different modeling
approaches can reproduce distinct subsets of the clinically observed electrogram
phenomena. This review provides an overview of how different modeling approaches
to incorporate fibrotic and structural remodeling affect the electrogram and highlights open
challenges to be addressed in future research.

Keywords: cardiac modeling, fibrosis, electrogram, multiscale, microstructure

1 INTRODUCTION

Patients with cardiac arrhythmias are often treated with ablation therapy. Substrate-based ablation
therapy is guided by intracardiac measurements acquired from catheters inserted into the cardiac
chamber that record the extracellular potential.

The signal recorded by an electrode with respect to a distant reference is called unipolar
electrogram (uEGM). EGMs of several electrodes on a catheter and/or multiple catheter
locations are used to understand the dynamics of the cardiac arrhythmia. However, the
recorded uEGMs are affected by different artifacts such as contraction of the heart,
breathing of the patient, far-field signals from distant parts of the heart and noise from
different hardware components. To alleviate these issues, bipolar electrograms (biEGM) are
most frequently used, which subtract the uEGMs of two close-by electrodes. In this way, artifacts
that affect both electrodes in the same way are cancelled. The difference between two potentials
is called voltage and we should keep in mind that we can only measure voltages. Therefore,
uEGMs always have to be considered with respect to their (distant) reference electrode. In
clinical literature, also the peak-to-peak amplitude of an electrogram signal (i.e., a voltage time
course) is often called “voltage”.
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The mathematical model of an excitable cell proposed by
Hodgkin and Huxley, (1952), the tissue homogenization
approach proposed by Schmitt, (1969), and the set of
bidomain equations first applied by Tung, (1978) in 1978 is
the most complete and accurate model that describes the
spread of electrical depolarization across the myocardium
and its cells.

Computational simulations based on this mathematical model
have been used to understand the phenomena of the depolarization
spread in cardiac tissue and their effects on electrogram genesis and
morphology (Bishop and Plank, 2011b; Oesterlein et al., 2016;
Roney et al., 2016; Pollnow et al., 2017; Beheshti et al., 2018; Hwang
et al., 2019). While EGMs can be extracted from the extracellular
medium in a bidomain simulation, this approach is
computationally expensive. Thus, different methods based on
excitation propagation simulations in the monodomain model
have been proposed. Another modeling approach to accelerate
the computation is the so-called reaction-eikonal model Neic et al.
(2017), which can simulate physiological propagation using a
coarser mesh (element average length 400 μm). In the
monodomain model and the reaction-eikonal model, the
extracellular potential is not calculated directly. However, it can
be approximated with the pseudo-bidomain approach or the
infinite homogeneous volume conductor method to obtain
EGMs as detailed below. The infinite homogeneous volume
conductor method approximates the extracellular potential
caused by a group of cells spatially distributed in space and
acting as sources of the electric field (Malmivuo and Plonsey, 1995).

In this review, we give an overview of the biophysical
phenomena governing wave propagation in cardiac tissue and
the corresponding extracellular potentials measured as
electrograms. We will particularly focus on different
approaches used to model fibrotic remodelling and simulate
the corresponding electrograms to reproduce and understand
the clinically observed changes in electrogram amplitude and
morphology.

2 INTRACARDIAC ELECTROGRAMS

The electrical activity in the myocardium originates from the
coordinated opening and closing of the ion channels in the cell
membrane. The time course of the difference between the
potential in the intracellular and in the extracellular medium
is known as the action potential. In cardiac tissue, the cells are
interconnected through gap junctions that will start a cascade
effect of cellular activation along the major axis in which
myocytes are aligned locally (also known as fiber direction),
resulting in excitation propagation across the myocardium.

The extracellular field is a consequence of the spatial
distribution of the transmembrane voltage of the cells in the
myocardium (Figure 1A). An advancing depolarization wave in
the cardiac tissue changes the spatial distribution of the
extracellular potential. The extracellular potential can be
measured as the uEGM at one electrode (technically the
voltage between the extracellular potential at the measuring
electrode with reference to for example, Wilson central
terminal). The unipolar electrogram morphology is
characterized by a biphasic symmetric shape (Figure 1B)
where the positive phase (R-peak) indicates the approaching of
the wavefront to the measuring electrode and the fast downslope
indicates the moment that the wavefront is underneath the
electrode. The opposing negative phase (S-peak) indicates the
movement of the wavefront away from the measuring electrode.
The peak-to-peak amplitude of the signal is also called “voltage”
in the clinical literature. Peak-to-peak voltage is used as a marker
to distinguish healthy from pathological tissue both for biEGMs
(Jadidi et al., 2020) and uEGMs (Nairn et al., 2020b). However,
biEGM amplitude can be affected by to several factors (Hwang
et al., 2019) such as the orientation of the catheter (Schuler et al.,
2013; Gaeta et al., 2020), the electrode spacing and size (Beheshti
et al., 2018; Abdi et al., 2020; Nairn et al., 2020a; Takigawa et al.,
2022), depolarization patterns (Jacquemet et al., 2003), substrate
remodeling (Jacquemet et al., 2003; McDowell et al., 2012;

FIGURE 1 | Electrical propagation in healthy cardiac tissue. (A) Extracellular field caused by the depolarization of cardiomyocytes when an excitation propagates
from left to right (green arrows). (B)Symmetric unipolar electrogrammeasured at the surface of the cardiac tissue (pink). The initial positive wave (R-peak) is caused by the
wavefront approaching the electrode (dark gray), the polarity changes when the wavefront passes underneath the electrode, and the S-peak is caused by the wavefront
traveling away from the measuring electrode.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 9080692

Sánchez and Loewe Modeling of the Myocardium Microstructure and Electrograms

59

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Campos et al., 2013; Mendonca Costa et al., 2014; Roney et al.,
2016; Sánchez et al., 2021b) and signal filter settings (Starreveld
et al., 2020).

3 MODELLING INTRACARDIAC SIGNALS

Computational cardiac modeling has advanced rapidly in the last
years and different numerical methods to simulate the
propagation of the cardiac depolarization have been proposed
over the years. Finite difference approaches have been widely
used (Potse et al., 2006) and can be generalized for grids with
distinct spacing (Trew et al., 2005; Sánchez et al., 2019a). Also the
finite element method has been used to discretize complex
geometries such as the cardiac chambers to simulate cardiac
electrophysiology (Vigmond et al., 2003; Cooper et al., 2015; Neic
et al., 2017; Plank et al., 2021).

The bidomain model represents cardiac tissue as a
homogenized medium composed of the intracellular and the
extracellular domains. The two computational domains coexist
in the bidomain model and occupy the same geometrical space:

∇ · σ i∇ϕi( )) � βIm (1)
∇ · σe∇ϕe( )) � −βIm − Iextra (2)

Im � Cm
zVm

zt
+ Iion Vm, ]( ) − Iintra (3)

Vm � ϕi − ϕe , (4)
where ϕ represents the electrical potential, the indices i and e refer
to the intracellular and extracellular spaces, respectively. σ is the
conductivity tensor, β is the surface to volume ratio of the
myocytes and Iion the total transmembrane ionic current
density defined by the cellular model. The latter is dependent
on Vm and a vector ] of further state variables. Iintra (a
transmembrane current density) and Iextra (an extracellular
current density) describe external stimuli. If a bath surrounds
the tissue, it is treated as an extension of the extracellular space.

Adding Eqs 1, 2 and incorporating it into Eq. 4 yields:

∇ · σ i + σe( )∇ϕe � −∇ · σ i∇Vm( ) − Iextra (5)
∇ · σ i∇Vm( ) � −∇ · σ i∇ϕe( ) + βIm . (6)

As mentioned before, the reference potential during an
electro-anatomical mapping procedure is usually a potential in
a remote site or an average of potential values such as Wilson’s
central terminal. For a bidomain model, when calculating
uEGMs, the reference potential can, for example, be
considered as an average of the extracellular potential of the
furthest surface with respect to the tissue (Colli Franzone et al.,
2007; Keller et al., 2014), which is not a perfect approximation of a
remote reference electrode (e.g., a surface patch on the back of the
patient) but markedly reduces drift of the reference potential. The
further away the reference is from the myocardial tissue in the
model, the better the representation of the reference potential but
also the higher the computational cost due to the extended
computational domain. Considering the average potential in a
remote surface or volume is numerically advantageous compared

to defining a fixed reference potential as a Dirichlet boundary
condition.

The monodomain model is an approximation that assumes
that the anisotropy of the extracellular and intracellular
conductivity are aligned. Therefore, under the assumption of
equal anisotropy ratios, one needs to solve only the parabolic
partial differential equation above with the monodomain
conductivity set appropriately:

∇ · σm∇Vm( ) � βIm + βItr , (7)
where the bidomain equivalent monodomain conductivity σm is
given as

σm � σ iσe σ i + σe( )−1 . (8)
Potse et al. (2006) performed a thorough comparison between

the results of the bidomain model and monodomain model. The
authors conclude that the monodomain model, although being a
simplification of the bidomain model, is sufficient to study and
understand the electrical propagation in the cardiac tissue under
physiological conditions as well as for electrically remodeled
tissue (ionic current abnormalities). The acceleration of the
wavefront at the tissue-to-blood interface due to the bath-
loading effect can be represented with the augmented
bidomain approach (Bishop and Plank, 2011b). One of the
biggest disadvantages of the bidomain model is the long
computation time that it requires. Therefore, a common
modeling approach is to combine the monodomain model
with independent forward calculation of extracellular
potentials. The most simplistic approach is the infinite volume
conductor assumption, which assumes that the cardiac tissue is
immersed in a homogeneous extracellular medium with infinite
extent. This approach was for example, used to study the relation
of the spread of depolarization in the cardiac tissue to the genesis
and morphology of the unipolar electrogram (Gima and Rudy,
2002; Ganesan et al., 2013; Ugarte et al., 2014; Cabrera-Lozoya
et al., 2017; Hwang et al., 2019) but neglects the influence of the
heterogeneous surrounding tissue like other cardiac chambers,
the lungs or the liver.

Briefly, the source and the measuring point (electrode) for a
dipole are assumed to be immersed in an unbounded (infinite)
volume conductor with homogeneous properties. The time
course of the potential of the dipole corresponds to the uEGM
electrogram measured at a location x in a certain distance to the
source located in the cardiac tissue (xsrc) with respect to a
reference electrode in infinite distance using the integral
solution to Poisson’s equation:

ϕe �
1

4πσ
∫∫∫

V

Isrc
‖x − xsrc‖ dV , (9)

where ϕe is the extracellular potential, σ is the conductivity of the
volume conductor, Isrc is the source current density and ‖x − xsrc‖
is the Euclidean distance from the source point to the
measuring point.

Bishop and Plank (2011a) proposed a combined bidomain and
monodomain model (pseudo-bidomain) to calculate the
extracellular potential. The proposed pseudo-bidomain
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approach computes the elliptic bidomain equation for a given
transmembrane voltage distribution only at the time instants for
which the extracellular potential is sampled. This approach is
suitable to reproduce extracellular signals [EGM (Keller et al.,
2012) and ECG (Nagel et al., 2022)] for a finite surrounding
conductive medium (bath, potentially inhomogeneous) and is
computationally efficient.

3.1 Factors Affecting the Intracardiac
Signals
Using the bidomain model and realistic geometries of
commercially available catheters can help to better
understand EGM morphology (Schuler et al., 2013; Pollnow
et al., 2017; Sánchez et al., 2021a). Schuler et al. (2013)
modeled a realistic 7F catheter with two electrodes such
that the tip was at the center of the tissue and in direct
contact with the tissue patch surface. The catheter angle
was changed with respect to the surface of the tissue
(elevation) and to the wavefront propagation direction
(rotation). Additionally, the authors explored the impact of
the tissue thickness and conduction velocity on biEGM
amplitude and duration. One of their main findings was
that catheter orientation greatly affects the height and ratio
of the positive and negative bipolar signal amplitude, which
can be traced back to changes in the proximal signal.

Moreover, the authors pointed out that the substrate
characteristics (thickness and conduction velocity) mainly
affect the biEGM peak-to-peak amplitude.

In new highly detailed bidomain simulations for this review,
we show the biophysical phenomena of the spread of
depolarization in the left atrium and the EGMs from a 7F
LASSO™ (Biosense Webster) catheter in a healthy left atrium.
Figure 2 shows that local activation time is the main factor that
impacts the biEGM amplitude and that it is less sensitive to the
wavefront direction. Additionally, bidomain simulations showed
that biEGMs from electrodes that are not in direct contact with
the tissue have the same activation time resulting in a small
biEGM amplitude, which confirms the results previously shown
(Gaeta et al., 2020). In brief, the atrial anatomical model (Roney
et al., 2021) has a realistic wall thickness and an average edge
length of 100 μm. Tissue conductivity was tune to achieved a
conduction velocity of 40 cm/s (McDowell et al., 2013). The value
of conductivity of the blood were as reported by Clerc (1976), the
electrode conductivity was set to 1 × 1012 S/m to represent a good
conductor that yields an isopotential volume, the conductivity of
the catheter insulator was set close to zero (1 × 106 S/m).

The amplitude of uEGMs is affected by the geometrical
properties of the electrode, such as the size of the electrode.
Nairn et al. (2020a) performed a series of in silico experiments to
understand the effect of the electrode size on the amplitude of the
measured EGM. uEGM amplitude was shown to be inversely

FIGURE 2 | Bidomain simulation of a realistically deformed LASSO™ (Biosense Webster) catheter in a left atrium to study the genesis of different EGM
morphologies in healthy myocardium. (A) The wavefront approaches the electrode pair 7–8 and activates both electrodes at the same time, the resulting bipolar
electrogramwith a reduced peak-to-peak amplitude (0.42 mV). (B) Several wavefronts approaching electrode pair 13–14, both unipolar electrograms are asymmetrical,
lacking an S-peak; the resulting bipolar electrogram has a high peak-to-peak amplitude and a positive polarity. (C) The wavefront travels almost perpendicular to
electrode pair 3–4; the electrodes are activated at different times, the resulting bipolar electrogram has negative polarity and a high peak-to-peak amplitude (7.45 mV).
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related to the size of the electrode. biEGM amplitude is
additionally affected by the electrode pair spacing. Beheshti
et al. (2018) showed that biEGM amplitude was increased
when the electrode spacing increased. Assuming a plane wave
and a perfectly symmetric uEGM in a simple thought experiment,
the biEGM amplitude is zero for electrodes that are activated at
exactly the same time. When increasing the distance between the
electrodes, the peak-to-peak biEGM amplitude increases up to
two times the uEGM amplitude. When further increasing the
interelectrode distance, the biEGM amplitude decreases again
until there is no more temporal overlap between the two uEGMs
and the biEGM amplitude plateaus at the uEGM amplitude.

An additional factor that impacts the EGM amplitude and
morphology are the filter settings (Schneider et al., 2004; Lin et al.,
2007; Starreveld et al., 2020). In clinical practice, a bandpass filter
is commonly used. However, the cut-off values of the bandpass
filter differs for different mapping systems, catheters or due to the
noise environment present in the specific electrophysiology
laboratory. During an electroanatomical mapping procedure,
uEGMs are typically filtered with a highpass of 0.5–2 Hz and a
lowpass filter of 300–600 Hz biEGMs are typically bandpass
filtered with a highpass of 1–30 Hz and a lowpass of
300–500 Hz. Both EGM types are also filtered at the frequency
of the powerline with a notch filter (50 or 60 Hz). Figure 3 depicts
the effect of the filter settings on both uEGMs (panel A) and
biEGMs (panel C). In particular for biEGMs, the highpass filter
cut-off value affects the measure voltage (Figure 3D). The higher
amplitude of these simulated EGMs compared to clinical EGMs is
likely due to the chosen extracellular conductivity, perfect contact
of the electrode with the tissue and absence of losses along the
signal chain.

Considering the numerous factors that affect the uEGM and
biEGM amplitude and morphology, standardized mapping
modality (uEGM or biEGM), electrode size, electrode spacing
and filter settings could increase comparability between studies.
For modeling the healthy myocardium and electrograms,
bidomain models provide the most accurate representation of
the biophysical phenomena of depolarization and the influence of
the catheter inside the cardiac cavity. Monodomain models and
reaction-eikonal models in combination with forward calculation
approaches to obtain the EGMs provide sufficient information
about the propagation in the cardiac tissue in most scenarios.
After reviewing the factors that influence the EGMs in the healthy
myocardium, the next section covers factors that increase the
complexity of the signals due to heterogeneities of the tissue and
different patterns of propagation.

4 MYOCARDIAL STRUCTURAL
REMODELING AND INTRACARDIAC
SIGNALS
Structural remodeling alters the cardiac substrate, and the
depolarization wavefront often has to follow a zig-zag
pattern (Figure 4 white arrows). The zig-zag pattern of the
propagation is reflected in uEGM and biEGM as fractionation
in the signal due to constantly changing orientation of the
wavefront. Fractionation is defined as an increase of
deflections, thus an increase in complexity of the signal as
well as a prolongation of the EGM (Jacquemet and Henriquez,
2009; Verheule and Schotten, 2021). As previously mentioned,
the highpass filter cut-off value affects the signal amplitude. In

FIGURE 3 | Filter effects on electrograms measured in healthy myocardium. (A) Unipolar electrograms with different highpass filter values. (B) Effect of different
highpass cut-off values on the unipolar electrogram amplitude. (C) Bipolar electrogram with different highpass cut-off values. (D) Effect of different highpass cut-off
values on the bipolar electrogram amplitude.
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the presence of fibrotic tissue, uEGMs and biEGMs have a
different frequency spectrum and are affected in a different
manner. Figure 5D shows that there is no optimal cut-off
frequency as previously reported by Starreveld et al. (2020).
The filtered biEGM amplitude (orange line) drops due to the
highpass cut-off but does not intersect the unfiltered amplitude
(blue dashed line) as is the case for healthy myocardium
(Figure 3D).

Many approaches have been proposed to model fibrotic
cardiac tissue (Table 1) to understand the effect on the
wavefront propagation and the corresponding electrograms
(Ashihara et al., 2012; McDowell et al., 2013; Roney et al., 2016).

Creating a model of cardiac fibrotic tissue is not an easy task
as fibrosis formation has been associated with different
diseases (myocardial infarction (Liu et al., 2017), diabetes
(Russo and Frangogiannis, 2016), autoimmune diseases

FIGURE 4 | Electrical propagation in fibrotic cardiac tissue, the composition is heterogeneous and includes cardiac myocytes (orange), myofibroblasts/fibroblasts
(green) and collagen fibers (purple). Depolarization of cardiomyocytes when an excitation propagates from left to right (brown arrows). Dotted arrows represent a
conduction block, while dashed arrows represent slowed conduction. As a result of the zig-zag propagation of the wavefront (white arrows), the unipolar electrogram
morphology is not symmetric, is prolonged and shows multiple deflections.

FIGURE 5 | Filter effect on electrograms measured in the proximity of a fibrotic area. (A) Unipolar electrograms with different highpass filter values. (B) Effect of
different highpass cut-off values on the unipolar electrogram amplitude. (C)Bipolar electrogramwith different highpass cut-off values. (D) Effect of different highpass cut-
off values on the bipolar electrogram amplitude.
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(Tschöpe et al., 2021) and others), which produce different
patterns of structural remodeling (interstitial, compact,
diffuse, and patchy) (Nguyen et al., 2014). For example, it
has been described that during an ischemic episode in the
ventricle, the myocardium undergoes electrical remodeling
(Mendonca Costa et al., 2018). From a macroscopic view,
conduction velocity is reduced in the scar area, which can
be modeled by decreasing the conductivity or by including
isolating barriers (Balaban et al., 2018). Additionally, at a
cellular scale the cardiac myocytes undergo electrical
remodeling (Mendonca Costa et al., 2018). At the border
zone of the ischemic area, cardiomyocytes lack oxygen
which impacts their metabolism and increase acidity. This
triggers a series of effects in the cell’s ion channels. To model

these effects, the maximum conductance (Rodriguez et al.,
2006; Loewe et al., 2018) of certain ionic channels are modified
including an ATP-sensitive potassium channel (IKATP), which
has a major contribution during ischemic episodes (Dutta
et al., 2017).

Moreover, computational models of pathological tissue need
to include fibrosis at the tissue scale. Fibrosis patterns (Figure 6)
can be modeled using different approaches by assigning different
properties to the mesh using for example, a random distribution
(e.g., uniform or Gaussian) (Sánchez et al., 2019b; ten Tusscher
and Panfilov, 2007; Alonso and Bär, 2013; Vigmond et al., 2016),
by extracting the scar area from MRI (McDowell et al., 2012;
Krueger et al., 2014; Morgan et al., 2016; Beach et al., 2021) or by
using algorithms that synthetically generate similar patterns as

TABLE 1 | Different modeling approaches to represent fibrotic tissue in computational models and their effect on simulated EGMs.

Modeling approach Effect on EGMs References

Myofibroblasts/fibroblasts coupled to myocytes longer duration due conduction slowing in the fibrotic
area

MacCannell et al. (2007), Ashihara et al. (2012), McDowell et al.
(2013), Morgan et al. (2016), Roney et al. (2016), Zahid et al.
(2016), Sánchez et al. (2019b)

Reduced conductivity in fibrotic region,
potentially with gradient to surrounding tissue

peak-to-peak amplitude reduced and duration
prolonged due to slow propagation of the wavefront

Krueger et al. (2014), Caixal et al. (2020), Lim et al. (2020), Beach
et al. (2021)

Severely reduced conductivity in some elements
in the fibrotic region

reduced peak-to-peak amplitude in the fibrotic area Alonso and Bär, (2013), ten Tusscher and Panfilov, (2007),
Clayton, (2018)

Removing some elements in the fibrotic region fractionation and reduced peak-to-peak amplitude Roney et al. (2016), Vigmond et al. (2016)

Edge splitting fractionation depending on the length of the path Jacquemet and Henriquez, (2009), McDowell et al. (2013),
Mendonca Costa et al. (2014), Roney et al. (2016)

Reduction of conductivity in the transversal fiber
direction

increased anisotropy of excitation propagation, effect
on EGMs not yet studied

McDowell et al. (2012)

Reduction of conductivity in the transmural
direction

excitation propagation dissociation between
transmural layers, effect on EGMs not yet studied

Gharaviri et al. (2016), Irakoze and Jacquemet, (2020)

FIGURE 6 | Sketches of a tissue cut for healthy and fibrotic tissue (top row). Fibrotic sketches represent different fibrotic patterns (diffuse, interstitial, patchy or
compact). The bottom row depicts the homogenization assumption where a hexahedral mesh element of 100 μm × 100 μm×100 μm represents several cardiac
myocytes and has to assume one average set of properties that describes the electrophysiology of this group of cells. For fibrotic tissue, homogenization implies that one
element contains different types of cells (cardiac myocytes and fibroblasts/myofibroblasts) and collagen. Also the electrophysiological characteristics of this piece of
tissue has to be represented by one set of effective parameters.
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observed in histological cuts of fibrotic tissue (Jakes et al., 2019;
Pezzuto et al., 2019; Sutanto et al., 2020; Sánchez et al., 2021b).

Fibrosis can be modeled differently and many studies reduce
the tissue conductivity such as for example, informed by
microstructural modeling in Gokhale et al. (2017). The
conductivity of the fibrotic areas can also be reduced in the
transversal direction (McDowell et al., 2012) to represent
lateralization of gap junctions, close to zero in all directions
(Clayton, 2018) or affected by a no flux boundary condition
(ten Tusscher and Panfilov, 2007; Alonso and Bär, 2013) to
represent replacement fibrosis. The specific spatial distribution
of conductivities or conduction velocity can be informed by
fibrosis imaging such as the pixel intensity in late gadolinium
enhanced magnetic resonance images (Krueger et al., 2014;
Morgan et al., 2016; Caixal et al., 2020; Beach et al., 2021) or
using a mathematical function determined from EGM
amplitude (Lim et al., 2020). Within the regions, either
uniform conductivities can be assumed or a gradient from
the center of the fibrotic area to the healthy surrounding tissue
is assumed.

Furthermore, the edge splitting method has been proposed
to separate the computational mesh along its edges with the
aim to reproduce the effect of collagen deposition in fibrotic
tissue that separates the cardiac myocytes (Mendonca Costa
et al., 2014). Edge splitting consists of splitting the nodes along
and edge to disconnect adjacent elements creating an
alternative path for the wavefront propagation in the
cardiac tissue. However, reducing the conductivity or
splitting the edges of the mesh does not capture the effect
of increased cellular heterogeneity in the cardiac tissue
(fibroblast-myocyte coupling) and the inflammatory
response. To model cellular heterogeneity, myofibroblast or
fibroblast models have been introduced (MacCannell et al.,
2007; Ashihara et al., 2012; Morgan et al., 2016; Roney et al.,
2016; Sánchez et al., 2021b). Myofibroblasts or fibroblasts were
electrically connected to the myocytes by gap junctions. There
are equivocal data about the exact conductance of these gap
junctions and the number of fibroblasts that a myocyte couples
to. In computational models, the value of conductance ranges
between 0.5 nS to 2 nS and up to 9 fibroblasts are considered
Morgan et al. (2016), MacCannell et al. (2007), Maleckar et al.
(2009), Rook et al. (1992), Sánchez et al. (2019a), Seemann
et al. (2017). The inflammatory response (myocyte-fibroblast
paracrine interactions) has been modeled by altering the
maximum conductance of the sodium ion channel (reduced
by 50%), the maximum conductance of the L-type calcium ion
channel (reduced by 50%), and the maximum conductance of
the inward potassium rectifier ion channel (reduced by 40%)
(Zahid et al., 2016), as reported by in vitro experiments (Avila
et al., 2007; Ramos-Mondragón et al., 2011).

Lately, Vigmond et al. (2016) proposed to represent fibrotic
tissue in a monodomain model by removing the elements of the
mesh to capture the effect of the low conductive extracellular
medium and the absence of an intracellular current path. One
advantage of the proposed modeling approach, is that there is no
flux of current towards the fibrotic tissue; therefore, there are no
source elements that will contribute to the calculated extracellular

potential. Using this modeling approach, the authors observed
that at the percolation threshold (Alonso and Bär, 2013) the
fibrotic tissue was be able to trigger and maintain an arrhythmia.
The EGMs calculated over the fibrotic tissue exhibit fractionation
due to the zig-zag patterns of depolarization in the cardiac tissue
in this modeling approach. Moreover, the study also looked at the
impact of the mesh resolution when modeling fibrotic tissue and
showed that in meshes with a resolution of 300 μm conduction
block was reached at lower degrees of fibrosis than in meshes with
finer resolution (< 100 μm).

Using a realistic geometry Jacquemet et al. (2003) studied the
morphology of uEGMs during different atrial fibrillation
propagation patterns. The authors showed that different
propagation patterns (plane waves, spiral waves, and
wavefront collision) lead to different uEGM morphology
(symmetry and amplitude) and that asymmetric signals
(Figure 2B) occurred in less than 2% of the cases in
homogeneous substrate. However, the increase of
heterogeneities in the cardiac tissue also increases the
asymmetry and reduces the amplitude of the EGM(van der
Does and de Groot, 2017). Frontera et al. (2018) showed how
different depolarization patterns affected the biEGM
morphology. High peak-to-peak amplitude and short duration
of biEGMs are wavefront collisions or pivotal points, low peak-to-
peak amplitude and EGM prolongation are associated with slow
conduction areas. The authors remarked how understanding the
genesis of the electrograms is a key factor to improving the
arrhythmia treatments.

Including heterogeneous tissue composition in the model
changes the wavefront propagation in the cardiac tissue
(McDowell et al., 2012; Campos et al., 2013; Mendonca Costa
et al., 2014; Roney et al., 2016) (Figure 7). Roney et al. (2016)
showed how different modeling approaches of cardiac fibrosis
can change the propagation in the cardiac tissue and affect the
morphology of EGMs. In that study, Roney et al. (2016) modeled
fibrosis as conduction disturbances (lower conductivity, edge
splitting, or removing elements). They included electrical
remodeling of the cardiac myocyte due to inflammatory
processes mediated by transforming growth factor-β1,
myocyte-fibroblast coupling and combinations of the
preceding. EGM morphology was mostly affected when
fibrosis was modeled by edge splitting or removing the
elements (Figure 7) as also shown previously. In addition,
including fibroblast coupling has an organizing effect on rotor
dynamics, also shown by other studies (McDowell et al., 2012;
Sánchez et al., 2019b).

The amplitude of the EGMs can also be affected by
conduction impairment along certain axes (McDowell et al.,
2012; Gharaviri et al., 2016; Irakoze and Jacquemet, 2020).
Gharaviri et al. (2016) created a model of the cardiac tissue that
enables the study of dissociation between transmural layers,
for example, dissociation between the subendocardial and the
subepicardial myocardium as can be caused by endomysial
fibrosis. Moreover, Saba et al. (2009) described how the
epicardial EGM amplitude varies in the ventricle with the
thickness of the epicardial fat layer. The authors showed
that biEGM amplitude was inversely related to epicardial fat
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thickness. Thus, using a voltage cut-off of 0.5 mV to define scar
tissue would lead to identifying also healthy areas with
overlaying fat and more information needs to be used to
define epicardial tissue characteristics.

5 OTHER FACTORS IMPACTING
INTRACARDIAC SIGNALS

EGM morphology and amplitude are also affected by electrode
polarization, excessive contact pressure, catheter motion
(Oesterlein et al., 2016), electromagnetic interference (Unger
et al., 2019), near field and far field effects (Schicketanz et al.,
2021), and poor grounding. However, most in silico experiments
do not consider these factors, which might alter the EGM
characteristics. Simulation studies have created a model of
clinical noise which covers the electromagnetic interference
(Sánchez et al., 2021a; Nothstein et al., 2021). However,
further aspects likely need to be considered explicitly if their
influence is relevant for the intended use of the model.

6 RESEARCH GAPS AND POTENTIAL
FUTURE DEVELOPMENTS

Modeling of the cardiac tissue has significantly advanced
understanding of the electrical propagation and the measured

intracardiac EGMs. There is consensus on how to assign the
properties of the computational model to represent healthy
myocardium and the advantages and limitations of the
different approaches to compute the extracellular potentials
are mostly characterized. However, the question how to model
fibrosis is far from being ultimately answered and will most likely
continue to depend on the question of interest to be answered
with a specific model. Additionally, the mesh resolution used in
most of the studies of ≈300 μm determines the degree of
homogenization (Figure 6). Spatial discretization of the mesh
at the cellular level should be considered to study the influence of
microstructural heterogeneity in the tissue (e.g., fibrosis) on
EGMs (Figure 4). In addition, such models with subcellular
resolution would enable to investigate to which degree
discontinuous propagation within a cell vs. between cells leads
to fractionation in healthy tissue. Here, we presented an overview
of the commonly used methods and their corresponding EGMs.

Over the last years, the human cardiac digital twin has been under
development to suggest personalized treatments for cardiac
arrhythmias. Gillette et al. (2021) proposed an automated
framework to generate a patient’s digital twin from clinical data
and Nagel et al. (2021) proposed a statistical approach to generate a
population of anatomical models. While the anatomical model can
be accurately generated from magnetic resonance images or
statistical shape models, functional twinning can be achieved by
tuning a phenomenological model or using generalized global
properties for the cardiac tissue. Functional information will

FIGURE 7 | Different fibrosis modeling methodologies and their corresponding unipolar and bipolar electrograms. Central fibrotic area (dashed line), the choice of
the modeling approach affects the resulting uEGMs and biEGMs. (A) fibroblasts coupled tomyocytes in the fibrotic region; (B) removing a share of elements in the fibrotic
region from the computational domain; (C) severely reducing conductivity in a share of elements in the fibrotic region but the spatial transmembrane voltage gradients of
fibrotic elements still contribute to the EGMs; (D) conductivity gradient from center of the fibrotic region to the surrounding healthy tissue. Absolute EGM amplitudes
are smaller than in vivo due to the small size of the tissue patch.
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impact the morphology and amplitude of the EGM. However, over
the years, different studies proposed distinct methodologies to
extract structural and functional information from the EGM
signals. One open question is still the possibility of obtaining
repolarization times from EGMs as repolarization of the cardiac
tissue plays a pivotal role for the initiation of arrhythmias (Rivaud
et al., 2021). From simulations of atrial electrophysiology, Celotto
et al. (2021) proposed a method to detect areas of parasympathetic
innervation from the amplitude of the repolarization EGM. Verrier
et al. (2016) showed that repolarization times can be recovered from
EGMs for both the atrium and the ventricle in a controlled clinical
environment. However, initial experience in other groups including
our own suggest that reliably obtaining atrial repolarization
information from EGMs remains a challenge.

Different studies demonstrated discrepancies when using the
same voltage threshold (for example, 0.5 mV) to distinguish
healthy from pathological tissue when mapping during
different rhythms (sinus rhythm and AF) (Rodríguez-Mañero
et al., 2018; Nairn et al., 2020b; Nairn et al., 2022). Nairn et al.
(2022) looked at how the amplitude of EGMs changed when
electroanatomical mapping was performed under three different
rhythms (sinus rhythm, native AF, and induced AF). The authors
proposed not only one single cut-off voltage value for the entire
atrium but regional voltage thresholds to minimize the
discrepancies between different mapping rhythms. Computer
models could help to further characterize the voltage relations
during different rhythms and to overcome the use of a voltage
threshold to distinguish the cardiac substrate (healthy and
fibrotic) by combining in vivo data and in silico data to fully
exploit the information contained in EGMs (Sánchez et al.,
2021a). Additionally, computer models of cardiac
electrophysiology could aid the design of medical devices
helping in understanding the factors that affect EGMs to raise
awareness for them (Oesterlein et al., 2016; Pollnow et al., 2017;
Beheshti et al., 2018; Hwang et al., 2019) as well as to inform the
choice of parameters to improve the technologies as proposed for
cardiac resynchronization therapy (Jolley et al., 2010).

Understanding the functional relationship between the
discrete structure and continuum behaviour of cardiac tissue
at microscopic and macroscopic levels is a significant challenge
(Gokhale et al., 2017). At the microscopic level, Tveito et al.
(2017) and Bécue et al. (2017) proposed a cell-by-cell approach
that explicitly models the extracellular, membrane and
intracellular domain. However, cell-by-cell models are
computationally expensive and will require an increase of
computational resources such that finer meshes up to cellular
resolution can be handled efficiently (Potse et al., 2020). At the
macroscopic level, reduced order models (Fresca et al., 2020)
could help to reproduce in detail the electrophysiology of the
cardiac tissue without losing important details that will determine
the vulnerability of the tissue to arrhythmia. Recently, (Herrero
Martin et al., 2022) explored the use of Physics Informed Neural
Networks (PINN) to model the electrical propagation in the
cardiac tissue. The authors introduced electrophysiology
models to the neural network and were able to reconstruct the
spatial-temporal dynamics of the action potential and its
propagation. One of the big drawbacks of these approaches is

the amount of data needed to train the network in order to predict
different possible propagations patterns.

Software plays a fundamental role in cardiac modeling.
Recent work demonstrated significant speedup of
simulations of cardiac electrophysiology (Sundnes et al.,
2006; Seemann et al., 2010; Cooper et al., 2015; Quarteroni
et al., 2017; Sánchez et al., 2020; Plank et al., 2021). However, it
remains to be seen how effectively GPUs can be integrated into
large-scale cardiac simulations. Regardless, several numerical
libraries are currently available, opening the door to accelerate
cardiac electrophysiology simulations (Anzt et al., 2020; Mills
et al., 2021).

7 CONCLUSION

Models of cardiac tissue electrophysiology have played an
essential role in advancing our understanding of action
potential propagation in the heart and the genesis of EGMs.
Despite the significant progress of different modeling
approaches and efficient numerical software, there are
substantial challenges, such as modeling of the
microstructure at a close-to-cellular scale, modeling the
different aspects of fibrosis, electrophysiological
heterogeneity as well as realistic electrode configurations.
Dedicated simulation studies with refined models will help
to further elucidate the different factors that contribute to
EGM genesis and impact their morphology.
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Introduction: Atrial fibrillation (AF) is the most prevalent cardiac dysrhythmia and
percutaneous catheter ablation is widely used to treat it. Panoramic mapping with
multi-electrode catheters can identify ablation targets in persistent AF, but is limited by
poor contact and inadequate coverage.

Objective: To investigate the accuracy of inverse mapping of endocardial surface
potentials from electrograms sampled with noncontact basket catheters.

Methods: Our group has developed a computationally efficient inverse 3D mapping
technique using a meshless method that employs the Method of Fundamental Solutions
(MFS). An in-silico test bed was used to compare ground-truth surface potentials with
corresponding inverse maps reconstructed from noncontact potentials sampled with
virtual catheters. Ground-truth surface potentials were derived from high-density clinical
contact mapping data and computer models.

Results: Solutions of the intracardiac potential inverse problem with the MFS are robust,
fast and accurate. Endocardial surface potentials can be faithfully reconstructed from
noncontact recordings in real-time if the geometry of cardiac surface and the location of
electrodes relative to it are known. Larger catheters with appropriate electrode density are
needed to resolve complex reentrant atrial rhythms.

Conclusion: Real-time panoramic potential mapping is feasible with noncontact
intracardiac catheters using the MFS.

Significance: Accurate endocardial potential maps can be reconstructed in AF with
appropriately designed noncontact multi-electrode catheters.

Keywords: atrial arrhythmia, multi-electrode basket catheters, method of fundamental solutions, inverse mapping,
endocardial potentials
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INTRODUCTION

Accurate identification of regions in the heart which trigger
ectopic activation and sustain reentrant arrhythmia is a critical
step in effective interventional treatment of heart rhythm
disturbance. Sequential contact mapping with catheters
introduced percutaneously into one or more heart chambers is
widely used for this purpose (Issa et al., 2019), but it can be time-
consuming and works poorly in atrial fibrillation (AF) where
rhythm is non-stationary. While multi-electrode basket catheters
have been used for panoramic mapping in AF (Narayan et al.,
2012; Pathik et al., 2018), it is difficult to position them so that the
electrodes are uniformly distributed across the atrial surface and
in contact with it (Oesterlein et al., 2016; Martinez- Mateu et al.,
2018; Pathik et al., 2018).

In principle, inverse methods can be used to reconstruct
potentials on the endocardial surface of a cardiac chamber
from electrograms recorded at electrodes that are not in
contact with it if three-dimensional (3D) chamber geometry is
specified, the locations of electrodes are known and the forward
problem, which describes the transfer relationship between
measured and endocardial surface potentials, is specified
accurately. However, the boundary mesh-based solution
methods used previously to solve the intracardiac potential
inverse problem have shortcomings that are discussed in detail
elsewhere (Meng et al., 2017; Meng et al., 2022). With the finite
element method (FEM), the transfer matrix is sparse, inherently
ill-conditioned and time-consuming to evaluate (Pullan et al.,
2005). On the other hand, boundary elements (BEMs) are not
robust for measurement points near the heart wall, particularly
when surface topology is complex as is commonly the case with
the atria. (Pullan et al., 2005).

Meshless methods (MMs) employing the Method of
Fundamental Solutions (MFS) (Fairweather and Karageorghis,
1998) have been successfully used to solve the body surface
potential inverse problem (Wang and Rudy, 2006). This
approach is computationally efficient and robust in a uniform,
isotropic domain, an assumption that is realistic for the
intracardiac problem. In this case, the MFS provides an
inherently simpler representation of the forward problem than
boundary mesh-based methods.

While there have been numerous systematic analyses of the
efficacy of inverse body surface potential mapping (Ramanathan
and Rudy, 2001; Cluitmans et al., 2017; Bear et al., 2018), there
have been very few equivalent studies of intracardiac potential
mapping (Meng et al., 2022) and no attempt to use the MFS in
this setting. In the research reported here, we have used the MFS
to address the accuracy with which time-varying potentials on the
endocardial surface of the left atrium (LA) can be reconstructed
from electrograms recorded inside the chamber with basket
catheters where the electrodes may or may not be in contact
with the atrial wall. We conclude that accurate real-time
panoramic potential mapping and 3D phase mapping are
feasible with noncontact intracardiac catheters using the MFS.
However, to faithfully recover complex potential fields, such as
those seen in AF on the endocardial surfaces of the atria, it is
necessary to use catheters that are sufficiently large to capture

characteristic features of surface potential variation with an
electrode distribution appropriate to resolve it spatially (Meng
et al., 2022). We argue that the sampling constraints identified in
this study apply to noncontact intracardiac mapping in general.

MATHEMATICAL BACKGROUND

Noncontact intracardiac potential mapping seeks to reconstruct
the potential distribution on the inner surface of a heart
chamber from a discrete set of potentials recorded at known
points inside the chamber with a multi-electrode catheter. To
solve this inverse problem, it is first necessary to formulate the
corresponding forward problem. Here, we extend an approach
followed by Wang and Rudy (Wang and Rudy, 2006), in which
the MFS was applied to inverse body surface potential mapping.

The formulation of the intracardiac forward problem is shown
in Figure 1. Potentials ϕ(xc) are recorded at M points xc on the
surface ΓC that bounds the electrodes. A set of N fictitious sources
is positioned at locations {ξi}Ni�1 along a virtual 3D boundary ΓV
that lies outside the endocardial surface of the cardiac chamber.
The linear combination of the Laplace fundamental solution over
the sources on {ξi}Ni�1 allows us to have an expression of the
potentials in the source free volume ΩH contained in the cardiac
chamber. It is assumed that 1) there are no electrical sources or
sinks within the heart cavity, 2) conductivity throughout the
domain is uniform and isotropic, 3) the electrical properties of the
basket catheter can be neglected, and 4) bioelectric processes are
quasi-static.

At any instant, the potential ϕ(x) at any point x in ΩH due to
fictitious sources located on the virtual external boundary ΓV is

ϕ(x) � a0 +∑N

i�1aiG(ξi, x) (1)

FIGURE 1 | Schematic representation of the intracardiac forward
problem. Fictitious electrical sources (open circles) distributed around a virtual
boundary ΓV outside the surface ΓH that bounds a heart cavity ΩH generate
current flux within the domain. This contributes to potentials recorded
with electrodes (closed circles) on a basket catheter. The electrodes lie on the
open surface ΓC.
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where a0 is a constant and a � (a1, . . . , aN) is the instantaneous
source current at a source {ξi}Ni�1. G is the fundamental solution of
the Laplace operator in 3D

G(ξ, x) � 1
4π|ξ − x| (2)

and {ξi}Ni�1 are the 3D locations of the fictious sources and |ξ − x|
is the Euclidean distance between x and ξ. Note that ai = σli for
i = 1, N where li is the source current at ξi and σ is conductivity.

Potentials at xc on the surface ΓC that bounds the electrodes
therefore can be estimated by using Eq. 1 for x ∈ Γc.This results in a

linear system of equations when they are equated to the measured
potentials on the M electrodes of the catheter. It should be noted
that while the forward problem has been set up here for the
continuous surfaces ΓC and ΓH, this is not a requirement of theMFS.

Solution of this system yields the associated current source
densities on the fictitious external boundary ΓV and
corresponding potentials on the endocardial surface ΓH are
then estimated by using Eq. 1 again for x ∈ ΓH. This system is
inherently under-determined because the number of electrodes
M is generally less thanN, the number of fictitious sources needed
to map potentials faithfully onto ΓH.

FIGURE 2 | In silico analysis of the effects of mapping catheter dimension and electrode distribution on MFS inverse solutions during pacing from distal coronary
sinus. Ground-truth LA surface potential distributions during atrial activation are constructed from pace-synchronized contact recordings acquired with a high density
electrode array. Corresponding potential fields in the LA cavity are estimated throughout the atrial activation cycle and “sampled” at locations of virtual basket catheter
electrodes. Inverse surface potential maps are then reconstructed from these data and compared with ground truth maps. (A) Ground-truth LA surface potential
distribution at one instant during activation - see red line in (C). Corresponding inverse potential map (B) reconstructed from potentials sampled with virtual 64-electrode
basket catheter with 0.67 volume fraction relative to LA. Electrodes are distributed uniformly along 8 splines as indicated in (A). (C) Ground truth and reconstructed
electrograms at 1 in (A,B). In the middle panel, CC (D), nRMSE (E) and ΔT (F) are presented as functions of relative catheter volume for inverse solutions over one
activation cycle. Median values and IQR are given for inverse maps constructed from “recordings” at 64 sites (blue) and 3 sequential “recordings” at 64 sites following
stepwise rotation of the catheter through 15° around its axis (red). Bothmaps in the lower panel relate to the same time as in (A,B). In (G), the distribution of nRMSE on the
LA surface is compared with spline location for a potential map constructed from 64 full or near-contact “recordings”, while (H) corresponds to (B). Here, the inversemap
was constructed from 3 sequential “recordings” at 64 sites with a relative catheter volume fraction of 0.67. (I) Ground truth and inverse electrograms at 2) in (H).
Abbreviations: MFS, Method of Fundamental Solutions; LA, left atrium; CC, correlation coefficient; nRMSE, normalized root-mean-squared error; ΔT, activation time
difference; IQR, interquartile range.
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METHODS

An established computational approach (Ramanathan and Rudy,
2001) was used to quantify the accuracy of inverse potential
mapping and key steps are illustrated in Figure 2. First, ground-
truth potential distributions were specified on the endocardial
surface of the left atrium (LA). The associated field throughout
the LA was determined by numerical solution of Laplace’s
equation and potentials were sampled at points corresponding
to electrode locations on open basket catheters with different
electrode distributions across a range of dimensions (Figure 2A).
Endocardial surface potentials were then reconstructed from the
sampled potentials using the MFS (Figure 2B) and compared
with ground-truth potential distributions. This process was
continued through a complete atrial activation cycle for
stationary rhythms or over several cycles of reentrant activity.
Ground-truth electrograms were also compared with
corresponding inverse estimates at points across the
endocardial surface (Figure 2F) to assess the accuracy with
which local activation timing information is reconstructed.

Clinical ground truth data used in this study were acquired as
follows. CT imaging was performed in one patient undergoing
catheter ablation to treat atrial flutter. The patient gave written
informed consent and the study protocol was approved by the
Melbourne Health Research and Human Ethics Committee. LA
geometry was segmented with the Ensite VerismoTM tool and
registered with respect to the mapping system (Ensite Precision,
Abbott). A decapolar pacing catheter was positioned in the
coronary sinus (CS). A 20-pole LassoTM catheter was
introduced into the LA via trans-septal puncture and used to
collect 3,200 time-referenced, spatially-registered contact
unipolar electrograms across the LA during pacing (300 ms
interval) from the distal CS at a sampling rate of 1 kHz. The
LA shell was refined to 5,000 vertices and potentials were
interpolated by Dirichlet energy minimization (Botsch et al.,
2010).

Ground truth data representing polymorphic reentrant atrial
activation were simulated. Atrial surface geometry was
reconstructed in an anaesthetized sheep (crossbred female,
53 Kg). All procedures were approved by the Animal Ethics
Committee of the University of Auckland and conform to the
Guide for the Care and Use of Laboratory Animals (National
Institutes of Health publication no. 85-23). Gadolinium-
enhanced ECG-gated MRI images of the atria (1.0 × 1.0 mm2

in-plane resolution approximately parallel to the atrio-ventricular
valve plane and 1.6 mm between slices) were acquired with a 3T
Siemens Magnetom SkyraTM scanner. LA endocardial surface
geometry was segmented using Amira (Thermo Fisher Scientific)
and a 3D triangular surface mesh (1,529 nodes) was fitted to the
LA with pulmonary veins and left atrial appendage truncated.
Ground-truth potential distributions representing polymorphic
reentrant atrial activation were modeled on this geometry as
follows. Meandering spiral wave reentry was simulated on an
isotropic 2Dmonodomain with Fenton Karma activation kinetics
(Fenton and Karma, 1998) using a standard cross-field S1-S2
stimulus protocol (Pandit et al., 2005). Points on the 2D domain
were sampled and mapped onto the 3D surface mesh so that

surface area was similar in both, with a contour adjacent to the
boundary in the former assigned to the mitral valve orifice.
Extracellular potentials were approximated from the
transmembrane currents computed at each 3D point at a
sampling rate of 1 kHz (Supplementary Video S1—Simulated
ground truth data—in the Supplementary Material).

The open-source software environment SCIRun (http://www.
sci.utah.edu/cibc-software/scirun.html) was used for FEM
solutions of the 3D forward problem. (Burton et al., 2011).
Intracardiac potential fields were computed from the ground-
truth surface potential distributions at successive time instants by
solving Laplace’s equation throughout ΩH. The intracardiac field
was sampled at points corresponding to electrodes on two basket
catheter configurations with 1) 64 channels with 8 equally spaced
electrodes along 8 splines at equal radial angles, and 2) 130
channels with 8 equally spaced electrodes along 16 splines at
equal radial angles and electrodes at upper and lower poles.
Basket dimensions were uniformly scaled to vary catheter:
atrial volume ratio. The centroids of catheters and the LA
chamber were aligned to allow maximum catheter expansion
and to ensure reproducibility between results. Noise was imposed
by adding Gaussian noise independently to the electrograms
recorded at each electrode with power set at realistic levels.
Signal-to-noise ratio (SNR) is quantified as the ratio of root-
mean-squared (RMS) voltages of reconstructed electrograms
and noise.

Inverse solutions with the MFS were run with purpose-written
code. The fictitious boundary was formed by uniform scaling of the
atrial surface mesh and sources were associated with each node.
Inflation was quantified as the relative volume difference between ΓV
and ΓH. Solutions were stable across the inflation range 2–10%
(Supplementary Figure S1) and the value 6% was selected as
optimal in the results presented here. Inverse endocardial potential
distributions for intracardiac potentials “sampled” with virtual
catheters were obtained using zero-order Tikhonov regularization
(Tikhonov and Arsenin, 1977) employing the L-curve method to
calculate the regularization parameter (Hansen, 2010).

Phase maps were constructed using the approach outlined by
Kuklik et al. (Kuklik et al., 2017) Sinusoidal recomposition was
applied to electrograms at each LA surface node and the Hilbert
transformation was then used to estimate instantaneous phase at
these points.

Correspondence between ground-truth and reconstructed
potential maps were quantified by evaluating normalized RMS
error (nRMSE) and correlation coefficient (CC).

nRMSE �

���������������
∑N

i�1(∅i
GT − ∅i

R)2∑N
i�1(∅i

GT)2
√√

and CC

� ∑N
i�1(∅i

GT − μGT)∑N
i�1(∅i

R − μR)���������������∑N
i�1(∅i

GT − μGT)2√ �������������∑N
i�1(∅i

R − μR)2√ (3)

where N is the number of surface points compared, ∅i
GT and ∅i

R
are ground-truth and reconstructed potentials at surface point i,
and μGT and μR are mean values for ground-truth and
reconstructed potentials, respectively, across the surface.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8730494

Meng et al. Intracardiac Inverse Potential Mapping

74

http://www.sci.utah.edu/cibc-software/scirun.html
http://www.sci.utah.edu/cibc-software/scirun.html
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Activation times (ATs) for ground-truth (ATGT) and
reconstructed electrograms (ATR) were estimated as maximum
negative rate of potential change and the activation time
difference ΔT at each surface point was evaluated as

ΔT � |ATGT − ATR| (4)
Programs were written in C or in the MATLAB programming

language (The Mathworks, Natick, Massachusetts).

RESULTS

Inverse Potential Mapping in Stationary
Rhythm
Figure 2 indicates the accuracy with which high-density potential
maps can be reconstructed from clinical ground truth electrograms
recorded during the relatively uniform spread of LA activation in
coronary sinus pacing. Key features of activation were reconstructed
from intra-atrial potentials sampled with a virtual 64-electrode
noncontact catheter that occupied ~67% of atrial cavity volume
(Figure 2A). However, neither high resolution features of
instantaneous potential maps (Figure 2B) nor high frequency
components of regional electrograms (Figure 2F) were captured
faithfully. Despite this, accuracymeasures were high and surprisingly
stable across a wide range of catheter dimensions with median CC =
0.92, nRMSE = 0.054 and ΔT = 1ms for catheter:atrial volume
ratios >0.3 with a 64-electrode basket catheter (Figures 2D–F).
None of these measures improved with full or near contact between
electrodes and endocardial surface, and nRMSEwas highest between
splines where the spacing of adjacent electrodes was greatest
(Figure 2H), indicating that spatial distribution of electrodes on
the surface that bounds the catheter is the problem here. Sampling
density was increased by moving the catheter and synchronizing the
electrograms acquired. The instantaneous potential map in
Figure 2C was reconstructed from 192 electrograms “recorded”
in 3 sequential steps by rotating the virtual 64-electrode catheter
(relative volume ratio 0.67) around its axis in increments of 15°. This
markedly improved the match between high-density ground truth
and inverse maps (compare Figures 2A,C). The nRMSE between
electrodes was substantially reduced (compare Figures 2H,I) and
high frequency components of complex local electrograms were
reconstructed accurately (Figure 2F). Median CC increased to ~0.97
and median nRMSE halved across a wide range of catheter
dimensions (Figure 2G).

Inverse Potential Mapping in Reentrant
Rhythm
In Figure 3, we present the effects of catheter dimension and
electrode distribution on inverse solutions obtained with the MFS
in simulated macroscopic reentrant activation of the LA that
replicates features of atrial flutter. Catheter designs considered are
a 64-electrode catheter with 8 uniformly spaced electrodes along 8
splines and a 130-electrode catheter that has 8 uniformly distributed
electrodes on 16 splines with 2 additional polar electrodes. Once
again, the centroids of catheters and LA chamber were aligned.

In the upper panel of Figure 3, an instantaneous ground-truth
potential map (Figure 3A) is compared with corresponding
inverse maps constructed from potentials sampled with a 64-
electrode catheter (Figure 3B) and a 130-electrode catheter
(Figure 3C). Endocardial potentials were poorly reconstructed
in some regions of the LA with an 8 spline 64-electrode basket
catheter but recovered more faithfully with a 16 spline 130-
electrode catheter where electrode distribution is more
uniform, spatially. As might be expected, errors with the 64-
electrode catheter were greatest between splines near the equator
where inter-electrode spacing was largest.

The correspondence between ground-truth and reconstructed
surface electrograms was quantified for these two catheters over 3
consecutive activation cycles for a range of catheter dimensions,
and results are presented in the lower panel of Figure 3. The
accuracy with which unanchored reentrant rhythm could be
reconstructed was consistently less than for more stable paced
rhythms (compare Figure 3 with Figure 2) and it was affected
more markedly by relative catheter dimensions. For each of the 3
metrics considered, performance was better at all catheter
dimensions with 130-electrode catheters than with the 64-
electrode catheters. For example, with 130-electrode catheters,
CC approached a median of 0.97 [IQR 0.07] as catheter
dimensions were increased, compared with corresponding
values around 0.9 [IQR 0.19] with 64-electrode catheters
(Figure 3D). Consistent with these results, nRMSE was
reduced with increased catheter dimension reaching a median
of 0.042 [IQR 0.055] for the 130-electrode catheter compared
with 0.083 [IQR 0.099] for 64-electrode catheters (Figure 3E).
Finally, ΔT was reduced to a median of 1 ms with a 130-electrode
catheter compared with 2 ms for 64-electrode catheters
(Figure 3F). All three metrics were relatively stable for
catheter volumes >0.6 relative to LA volume.

Effects of Noise on Inverse Potential
Mapping
The effects of noise on the accuracy of inverse endocardial
potentials reconstructed with the MFS are summarized in
Figure 4. Intra-atrial electrograms were “sampled” with 130-
channel catheters during simulated macro-reentry with
superimposed Gaussian noise at RMS voltages of 18, 56
and 178 µV. In general, addition of noise had little effect
for catheter: LA volume ratios >0.5. However, inverse
solutions were progressively degraded by noise at catheter
volumes less than this (Figures 4B–D). Comparison of the
representative electrograms in Figure 4A provides further
insight into this finding. While SNR in reconstructed
electrograms scales inversely with added noise, it is much
worse for the smaller of the two catheters (6.54, 4.23 and 1.91
for RMS noise voltages of 18, 56 and 178 μV, respectively,
compared with 69.56, 22.85 and 6.83 for the larger catheter). It
is also noteworthy that while our inverse solutions do not
recover higher frequency components in the ground truth
electrograms when the catheter is small this is not
systematically altered by noise.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8730495

Meng et al. Intracardiac Inverse Potential Mapping

75

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Inverse Phase Mapping in Macroscopic
Reentry
While potential maps during macro reentrant activity were
reconstructed more faithfully using a 130-electrode catheter than a
64-electrode catheter with the same dimension, corresponding phase
maps in Figure 5A appear to carry very similar information about the
history of activation across the LA surface. This similarity in phase
distribution was preserved throughout an extended sequence of
simulated electrical activity (Supplementary Video S1), where
phase singularities identified recovered with 64- and 130-electrode
catheters are also collocated. The correspondencewith ground truth for
phase maps obtained with noncontact catheters was maintained for a
wider range of relative catheter volumes than for the potential maps in
Figure 3 above. However, CCwas increased and nRMSE reducedwith
a 130-electrode catheter compared to a 64-electrode catheter
(Figure 5B). This indicates that phase maps with the latter capture
key features of wave front propagation inmacro reentrant arrhythmia,
but aspects of the fine structure of the phase distribution are lost.

Region-Of-Interest Potential Mapping
With region-of-interest (RoI) mapping, a small catheter is positioned
close to a region of the endocardial surface to reconstruct local
electrical activity. In Figure 6, we consider the accuracy with
which regional electrical activity can be recovered using non-
contact catheters. This analysis was completed without adding
Gaussian noise. An 8-spline 64-electrode basket catheter (major

and minor axes 25 and 23mm, respectively) was initially located
close to the origin of a simulated macro-reentrant circuit in the LA
(Figure 6A). The inverse solution (Figure 6B) was good near the
catheter, but much poorer over the rest of the LA. This is
demonstrated in Figure 6C where CC is rendered on the LA
surface; median CC is >0.9 in the RoI, but falls off rapidly with
distance from this region. In the lower panel we present CC
(Figure 6D), nRMSE (Figure 6E) and ΔT (Figure 6F) in the RoI
(red) and across the full endocardial surface (blue) for inverse
solutions constructed as the catheter was moved progressively
along a line from the origin of the LAA to the inter-atrial septum
(Figure 6A). These figures demonstrate that regional mapping
performance was excellent when the catheter was in or adjacent to
the RoI, but poor when the catheter was most distant from it. Global
mapping performance was best when the catheter was located
centrally, but significantly poorer in this case in the RoI. Of
particular interest, RoI performance was optimal when the catheter
was ~10mm from its initial position with electrodes 9–20mm from
the LA wall; median CC was 0.96 [IQR 0.072], median nRMSE 0.09
[IQR 0.05] and median ΔT 0.89ms [IQR 1.97ms].

DISCUSSION

Summary
This analysis of noncontact intracardiac potential mapping
extends an in-silico boundary mesh-based study previously

FIGURE 3 | Effects of mapping catheter electrode distribution on inverse solutions with MFS during macro reentry. LA surface potentials throughout 3 activation
cycles in simulated atrial flutter are reconstructed from electrograms sampled inside the LA cavity with 64- and 130-electrode basket catheters and compared with
ground-truth surface potentials. The upper panel presents typical results for catheters that bound a volume fraction of 0.67 relative to LA volume. These include (A) the
ground-truth surface potential distribution at one instant during reentrant activation and corresponding potential maps reconstructed using electrograms sampled
with (B) a 64- electrode basket catheter, and (C) a 130-electrode basket catheter. In the lower panel CC (D), nRMSE (E) and ΔT (F) are presented as functions of relative
catheter volume for the 64-electrode catheter (blue) and 130-electrode catheter (red). Median values and IQR are given. Abbreviations: MFS, Method of Fundamental
Solutions; LA, left atrium; CC, correlation coefficient; nRMSE, normalized root-mean-squared error; ΔT, activation time difference; IQR, interquartile range.
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reported by our laboratory (Meng et al., 2017; Meng et al., 2022).
Here we have investigated the accuracy with which endocardial
potential maps can be reconstructed from noncontact
electrograms recorded with a multi-electrode basket catheter
using meshless methods that use the MFS, the first time that
this has been done as far as we are aware. We demonstrate that
fast, accurate noncontact potential mapping and phase mapping
are possible using this approach. However, the spatial frequency
of the electrical activity captured is determined by the distribution
of electrodes and in order to recover complex non-stationary
rhythms, such as AF, the mapping catheter must address a
representative subvolume of the cardiac chamber.

Effects of Catheter Dimension
We have reported that noncontact mapping performance
deteriorates progressively as catheter dimensions are reduced
relative to those of the cardiac chamber and that this
degradation becomes more marked when activation is complex.
Neither of these findings is surprising. With increasing distance
from the heart surface, intracardiac potentials associated with local
activation are progressively attenuated and blurred, and
information lost in this process cannot be recovered fully.
Furthermore, as catheter dimension is reduced, information is
captured from a decreasing subset of the cavity volume which may
not fully reflect local activity. More striking, perhaps, is the finding

that surface electrograms can be reconstructed with acceptable
accuracy (CC > 0.9, nRMSE ≤0.06 and ΔT ≤ 2 ms) during
reentrant rhythm with basket catheters that fill only half of the
cavity. A supplementary point that needs to be made here, is that
while relative catheter volume is an accessible measure of
dimension, it scales with the third power of radius for a
spherical basket catheter. Therefore, catheter volume increases
by 112.5% when its diameter changes from 35 to 45mm. While
there was no contact between electrodes and LA wall for the
centrally located catheter in Figure 3A (Catheter:Atrial volume
ratio = 0.67), there was increasing (though incomplete) contact
between them as relative volume expanded to ~0.9.

Effects of Noise
Median CC was decreased and median ΔT was increased with
reduced catheter dimension (Figures 4B,D) when Gaussian noise
was added but there was no corresponding effect on median
nRMSE (Figure 4C). The reconstructed electrograms in
Figure 4A provide explanation for these results. Because
electrograms recorded toward the centre of the LA cavity with
a small central catheter are attenuated, the noise added to them
markedly reduces SNR. This is reflected in the reconstructed
surface electrograms presented in the left-hand panel of
Figure 4A, where SNR is low and is reduced progressively as
noise amplitude increases. The recorded electrograms are also

FIGURE 4 | Effects of noise on inverse solutions with the MFS during macro reentry. LA surface potentials throughout activation cycle in simulated atrial flutter are
reconstructed from electrograms sampled inside the LA cavity using 130-electrode basket catheters with added Gaussian noise at different mean power levels. All data
are compared with ground-truth endocardial potentials. In the upper panel (A) electrograms reconstructed from records acquired from a very small and a large basket
catheter with 18, 56 and 178 μV of added noise are presented with the corresponding ground-truth electrogram. Catheter volumes relative to LA volume are 0.014
and 0.91, respectively. In the lower panel, CC (B), nRMSE (C) and ΔT (D) are presented as functions of relative catheter volume for the three noise levels. Median values
and IQR are given. Abbreviations: LA, left atrium; CC, correlation coefficient; nRMSE, normalized root-mean-squared error; ΔT, activation time difference.
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smoothed in this case and the frequency content of the ground-
truth surface electrograms is not recovered by inverse mapping.
However, the overlap between ground-truth and reconstructed
electrograms is affected less by noise than might have been
expected. With increased noise power, the deviation between
reconstructed and ground-truth electrograms can increase, but
there is also greater instantaneous overlap between the two. With
a large catheter (right-hand panel in Figure 4A), the magnitudes
of recorded electrograms are substantially greater and there is
much less smoothing. As a result, surface electrograms are
recovered more faithfully with much less impact of added noise.

Inverse methods are prone to instability and error in the
presence of noise. The fact that this is not the case here further
reinforces the fact that the transfer matrix used is inherently well-
conditioned and the regularization procedures adopted are
appropriate. However, the Gaussian noise introduced here is a
very narrow representation of the problems faced in practice with
inverse potential mapping. Artifacts in the unipolar signals used
for this purpose include common-mode electrical noise, far-field

activity due to electrical activation of the ventricles which can
mask local activity completely in AF and complexity in atrial
electrograms that may be due to far-field atrial activity,
inadequate spatial sampling or non-uniform electrical
properties in the underlying substrate. That said there are
many ways that more robust regional information can be
extracted from these channels using signal processing methods
that exploit temporal and spatial correlation among adjacent
electrograms and wavelet-based methods which identify
characteristic differences in the instantaneous frequency
content of recorded electrograms (Zhao et al., 2013).

Electrode Distribution and Recovery of
Complex Activation Patterns
Our data show that ground truth potential maps based on
simulated macro-reentrant activity were reconstructed more
faithfully using a 130-electrode catheter than a 64-electrode
catheter with the same dimension (Figure 3). Furthermore,
when noncontact electrodes were within a few mm of the
cavity surface, dimension had no effect on the efficacy of the
inverse solution, which was wholly dependent on electrode
distribution. This reflects the fact that the accuracy with which
surface potentials can be reconstructed depends on whether the
sampled potentials provide a faithful representation of the field
addressed. If the electrode distribution is not sufficiently dense,
high spatial frequencies cannot be recovered and low frequency
artifacts (aliasing) may occur (Shannon, 1949). An example of
this is provided in Figure 2 where apparent fractionation of the
electrogram reconstructed between adjacent splines with a 64
electrode basket catheter (see blue trace in Figure 2F)
disappears with more dense sampling in that region (compare
red trace with ground truth electrogram in Figure 2F). While
compressed sensing approaches can collect and represent sparse
signals with many fewer sampling points than indicated by the
Nyquist (Shannon, 1949) theorem, optimal sampling strategies are
determined by regional spatial and temporal correlation (Long
et al., 2011). Specialized regularization techniques are also needed
for inverse reconstruction of higher frequencies from sparsely
sampled signals without introducing excessive noise.

It should be noted that metrics such as CC and nRMSE used
here to quantify the correspondence between ground-truth and
reconstructed potentials do not take the time-history of the
electrograms into account. This provides additional
information about the spread of electrical activation across the
heart surface as illustrated by the phase maps in Figure 5. The
phase map shown here for a 64-electrode catheter is very similar
to that presented for a 130-electrode catheter. Both correspond
closely to ground truth phase maps throughout the activation
sequence (Supplementary Video S1). Because phase mapping
identifies local activation as an abrupt standardized transition
from +π to −π and imposes relatively uniform spatio-temporal
variation around this, confounding effects of local variation in
potential magnitude are removed.

It is also important to acknowledge that sampling density is
affected by catheter dimensions. For instance, for a 64-electrode
25-mm diameter spherical catheter, inter-electrode spacing along

FIGURE 5 | Phase maps of inverse solutions with MFS during macro-
reentry. LA surface potentials throughout activation cycle in simulated atrial
flutter are reconstructed from electrograms sampled inside the LA cavity using
64- and 130-electrode basket catheters. The centrally located catheters
occupy 67% of LA volume. (A) Ground truth phase map at one instant during
activation compared with corresponding phase maps for surface potentials
reconstructed from electrograms recorded with 64-electrode and 130-
electrode basket catheters. (B) CC and nRMSE presented as functions of
relative catheter volume for the 64-electrode catheter (blue) and 130-electrode
catheter (red). Median values and IQR are given. Abbreviations: MFS, Method
of Fundamental Solutions; LA, left atrium; CC, correlation coefficient; nRMSE,
normalized root-mean-squared error; IQR, interquartile range.
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splines is ~5 mm, while the curvilinear distance between splines at
the equator is ~10 mm. These measurements are doubled with a
50-mm diameter catheter. This explains the apparent reduction
in median CC and the increase in median nRMSE and its
interquartile range for 64-electrode catheters when relative
catheter volume increases from 0.8–0.91 (Figures 3D,E,
respectively). Here any improvement in accuracy associated
with proximity to the wall is offset by reduced electrode
density. In the clinical setting, attempts to achieve direct
contact between electrodes and the heart surface can introduce
additional error by deforming catheter splines and increasing the
nonuniformity of sampling. (Oesterlein et al., 2016; Pathik et al.,
2018). It follows that global mapping with multi-electrode basket
catheters is more likely to produce reliable results when electrodes
are not in contact with the heart wall than when attempts are
made to achieve close contact.

The results for RoI mapping are consistent with these
observations. The relatively small 64-electrode catheter in
Figure 6 recovered local electrical activity with a high level of
accuracy. Moreover, regional mapping produced best results
when electrodes were not in contact with the wall (median
CC, nRMSE and ΔT: 0.96, 0.09 and 0.89 ms, respectively).
Global performance was much poorer, but it would be
straightforward to quantify the uncertainty of reconstructed

maps based on the distance of electrodes from surface nodes
and the results of analyses such as those outlined here.

Potential Clinical Impact of These Findings
The results of this study indicate that global electroanatomic
maps can be recovered faithfully in real-time from electrograms
recorded with noncontact multi-electrode basket catheters using
meshless methods that use the MFS. Accurate specification of 3D
electrode locations with respect to cardiac anatomy is required for
inverse intracardiac mapping, but this is readily achieved with
current hybrid navigation technologies (Issa et al., 2019). Our
findings indicate that, for optimal performance, catheters should
be located centrally within the cardiac chamber and address a
representative subvolume of the cavity (>50% in the data
presented here) with minimum contact between electrodes and
endocardial surface. The capacity to reconstruct spatially
complex activation patterns is limited by electrode
distribution, but when heart rhythm is stable and repeated,
more detailed maps can be reconstructed with sequential
alteration of electrode locations, for instance by catheter
rotation/translation. Potentially, this could be more efficient
than sequential contact mapping with high density contact
arrays because complete maps can be developed with relatively
few iterations. For nonstationary heart rhythms such as AF,

FIGURE 6 | Comparison of region-of-interest inverse potential mapping with global mapping. LA surface potentials during 3 activation cycles of simulated
macroscopic reentry were reconstructed from electrograms sampled inside the LA cavity with a small 64-electrode basket catheter. The catheter was initially positioned
with some electrodes touching the wall at the junction with the LAA and then moved rightward until electrodes made contact with the inter-atrial septum. (A)
Representative ground truth potentials on cavity surface also showing broken white line along which catheter is moved from origin of LAA (relative catheter position
0) to inter-atrial septum (relative catheter position 1). (B) Inverse solution reconstructed from potentials sampled at relative catheter position 0. (C) Correlation coefficient
map for ground-truth and inverse solutions in this case. The RoI indicated is the smoothed boundary of the surface in (C) where CC ≥ 0.9. In the lower panel (D–F)
present CC, nRMSE and ΔT, respectively, in the RoI (red) and across the complete LA surface (blue) for inverse solutions with the catheter at equi-spaced locations along
the line in (A); catheter locations 0 and 1 are indicated in (A). Median values and interquartile range (IQR) are given in lower panel. Abbreviations: RoI, region of interest; LA,
left atrium; LAA, left atrial appendage; CC, correlation coefficient; nRMSE, normalized.
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however, the accuracy with which endocardial surface activation
can be reconstructed is constrained by the spatial distribution of
electrodes on the catheter for both contact and noncontact
mapping. Sparse sampling can lead to repeating artifact in
reconstructed activation patterns that is incorrectly identified
as rotors (Roney et al., 2017; Martinez- Mateu et al., 2018).
Williams et al. (Williams et al., 2018) reported that >1.0–1.5
points/cm2 were needed on the endocardial surface to resolve
spiral wave activity and this corresponds to an inter-electrode
spacing of 2–3 mm -much denser than is the case for 64-electrode
basket catheters, particularly for equatorial electrodes on adjacent
splines. As demonstrated here, more optimal electrode
distribution is achieved with catheters that have 16 rather than
8 splines. While phase mappingmay relax sampling requirements
to some extent, it seems evident that improved catheter design is
necessary for accurate panoramic mapping in AF.

Inverse methods have been used for noncontact intracardiac
electrical mapping in two commercial systems. (Schilling et al.,
1999; Grace et al., 2019). The Ensite multi-electrode array
(Abbott) is used for noncontact potential mapping and
consists of 64 electrodes mounted on an inflatable balloon.
Consistent with the results reported here, validation studies
have shown that accuracy is inversely related to the distance
between the array and the heart wall with poor recovery of
endocardial surface potentials when this distance is >25 mm
(Earley et al., 2006). More recently, instantaneous charge
density distributions associated with atrial electrical activation
have been constructed from electrograms recorded with
noncontact 48-electrode basket catheters (Acutus/Biotronik)
(Grace et al., 2019). This is based on a forward model that
relates intracardiac potential fields to secondary cellular
sources associated with distributed membrane charge dipoles
(Plonsey, 1982; Grace et al., 2019; Willems et al., 2019). Our
analysis makes no assumptions about the cellular basis of
electrical activation. Instead, we address how well endocardial
surface potentials can be recovered from a limited number of
electrograms recorded inside the heart cavity. We found that
information is lost with noncontact mapping if the basket
catheters used are too small and with both contact and
noncontact mapping if the sampling density is not sufficient.
These factors would be expected to impact the spatial resolution
with which surface charge distributions can be recovered from
noncontact electrograms also.

Limitations
A limitation of this study is that error introduced by uncertainty
of the 3D geometry of the heart surface relative to 3D electrode
locations has not been explicitly considered. While this would be
expected to amplify uncertainty associated with relative catheter
size, electrode distribution and noise, we note that our
formulation of the intracardiac inverse problem is surprisingly
robust. A further limitation is that although our ground-truth
data represent atrial rhythms of increasing complexity, they do
not fully replicate the spatio-temporal disorder which
characterizes AF. However, the analysis presented here
demonstrates that the performance of contact mapping is
matched by this inverse approach and that spatial resolution

in both cases is limited by electrode distribution. Finally, while
ground-truth data are based in part on clinical and simulated
data, the accuracy of inverse intracardiac mapping has been
confirmed computationally. While many of the assumptions
made in specifying the forward problem are entirely
reasonable, other are not. The electrical properties of the
blood in the cardiac chambers are isotropic and uniform but
they are certainly not the same as those in the myocardium
adjacent to the endocardial surface where the fictitious sources
are located. More detailed experimental characterization of the
accuracy with which endocardial potentials can be reconstructed
using inverse mapping is therefore needed to confirm the analyses
presented here.

CONCLUSION

This study demonstrates that atrial endocardial potentials can be
reconstructed accurately from electrograms recorded with
noncontact multi-electrode basket catheters using a fast robust
inverse mapping approach that employs the MFS. This enables
efficient and potentially more precise capture of global and
region-of-interest potential maps than comparable contact
mapping methods. Because data for all electrodes are used, it
is not necessary to maximize contact between catheter and the
heart wall. This reduces the deformation of catheter splines which
occurs when direct contact is sought, thereby preserving a more
uniform electrode distribution. However, we demonstrate that
conventional 8 spline catheters are suboptimal for instantaneous
contact or noncontact mapping of complex rhythms, such as AF.
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Cardiovascular diseases are the primary cause of death of humans, and among these,
ventricular arrhythmias are the most common cause of death. There is plausible evidence
implicating inflammation in the etiology of ventricular fibrillation (VF). In the case of systemic
inflammation caused by an overactive immune response, the induced inflammatory
cytokines directly affect the function of ion channels in cardiomyocytes, leading to a
prolonged action potential duration (APD). However, the mechanistic links between
inflammatory cytokine-induced molecular and cellular influences and inflammation-
associated ventricular arrhythmias need to be elucidated. The present study aimed to
determine the potential impact of systemic inflammation on ventricular electrophysiology
by means of multiscale virtual heart models. The experimental data on the ionic current of
three major cytokines [i.e., tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1β), and
interleukin-6 (IL-6)] were incorporated into the cell model, and the effects of each cytokine
and their combined effect on the cell action potential (AP) were evaluated. Moreover, the
integral effect of these cytokines on the conduction of excitation waves was also
investigated in a tissue model. The simulation results suggested that inflammatory
cytokines significantly prolonged APD, enhanced the transmural and regional
repolarization heterogeneities that predispose to arrhythmias, and reduced the
adaptability of ventricular tissue to fast heart rates. In addition, simulated pseudo-
ECGs showed a prolonged QT interval—a manifestation consistent with clinical
observations. In summary, the present study provides new insights into ventricular
arrhythmias associated with inflammation.
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1 INTRODUCTION

Inflammation is a part of the complex biological response of body
tissues to harmful stimuli, such as pathogens, damaged cells, toxic
compounds, or irradiation (Chen et al., 2018). These harmful
stimuli trigger a cascade that releases inflammatory biomarkers
and recruits immune cells, which contribute to eliminating the
initial cause of cell injury and initiating tissue repair. However, an
excessive immune response could potentially lead to multiorgan
dysfunction by triggering a cytokine storm.

According to World Health Organization statistics,
cardiovascular diseases (CVDs) are the number one cause of
death globally, accounting for an estimated 17.9 million lives each
year (Kaptoge et al., 2019). In some recent studies, accumulating
data suggest increased CVD morbidity and mortality in patients
infected with coronavirus disease 2019 (COVID-19), among
which there may be an arrhythmia effect (Lazzerini et al.,
2020a, 2020b; O’Shea et al., 2021). The mechanisms
underlying COVID-19-related arrhythmia events are
complicated. For example, CVDs in these patients can be
caused by immune cell tissue invasion associated with
pulmonary or cardiogenic myocardial injury (Agricola et al.,
2020; Jaffe et al., 2020; Magadum and Kishore, 2020).
Recently, clinical research by Lazzerini et al. reported that the
QT interval was prolonged in patients with COVID-19, and this
electrocardiogram (ECG) abnormality was accompanied by high
levels of inflammatory cytokines in serum, suggesting a potential
link between systematic inflammation and cardiac arrhythmias
(Lazzerini et al., 2020a).

There is increasing experimental evidence supporting the
effects of inflammatory cytokines (mainly tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6
(IL-6)) on cardiac ion channels, and this specific type of
channelopathy is termed inflammatory cardiac channelopathy
(Lazzerini et al., 2018, 2019). Existing studies have found that
inflammatory cytokines can affect multiple ion channels,
including transient outward potassium current (Ito) (Kawada
et al., 2006; Fernández-Velasco et al., 2007; Grandy and Fiset,
2009; Monnerat et al., 2016), rapid delayed-rectifier potassium
channel (IKr) (Wang et al., 2004; Aromolaran et al., 2018), and
L-type calcium current (Hagiwara et al., 2007). There are also
studies suggesting the effects of inflammatory cytokines on
calcium handling. For example, IL-6 was reported to inhibit
the gene expression of sarco/endoplasmic reticulum Ca2+-
ATPase (SERCA) (Villegas et al., 2000; Tanaka et al., 2004),
and IL-1β was observed to increase sarcoplasmic reticulum (SR)
calcium leakage (Monnerat et al., 2016). Although the effects of
inflammatory cytokines on individual ion channels have been
investigated in these studies, its integral effect on ventricular
cellular action potential (AP) and its conduction properties
remain unclear. In recent years, emerging cardiac simulations
have provided powerful tools for exploring the pathogenesis of
cardiovascular diseases (Xie et al., 2004; Arevalo et al., 2016;
Zhang et al., 2019, 2020). In our recent work, we constructed a
multiscale ventricle model that is able to reproduce both
physiological and pathological phenomena on different scales
(Bi et al., 2021). Based on this multiscale model, we investigated

and evaluated the effects of inflammatory cytokines on
ventricular electrophysiology.

The present study aimed to determine the potential impact of
systemic inflammation on ventricular electrophysiology. Several
simulations were conducted in this work. First, available
experimental data regarding the effects of several
inflammatory cytokines on multiple cardiac targets were
incorporated into rat and human ventricular myocyte models
so that the inflammation-induced electrophysiological alterations
at the cellular level could be simulated. Next, we constructed a 1-
D strand model and quantitatively evaluated the temporal
susceptibility of inflammatory tissue to unidirectional
conduction blocks. Finally, inflammatory cells were coupled to
form a local inflammatory area, which was then incorporated into
a ventricular slice model to explore the potential proarrhythmic
factors under local inflammatory conditions. As a parallel
experiment, we also simulated the electrical activities under
global inflammatory conditions by setting all of the cells on
the slice as inflammatory cells.

2 METHODS

2.1 Effects of Inflammatory Cytokines
Evidence from several in vitro and animal studies indicated that an
overactive immune response might lead to a storm of inflammatory
cytokines, and some of these inflammatory cytokines directly affect
the function of ion channels in cardiomyocytes. In this research, we
mainly evaluated the effects of three cytokines (i.e., TNF-α, IL-1β,
and IL-6) on cardiomyocytes and their possible proarrhythmic
effects. It has been demonstrated that these cytokines can prolong
the ventricular action potential duration (APD) by modulating
several targets in cardiomyocytes, specifically the transient
outward K+ channel (Ito), the rapid delayed-rectifier K+ current
(IKr), and some targets involved in calcium handling. Focusing on
acute inflammation, we screened out the experimental data based on
the duration of the experimental treatment (less than 48 h), which
are listed in Table 1, Table 2, and Table 3.

2.2 Single-Cell Simulations
The rat ventricular cell model by Terkildsen et al. (referred to as the
Terk model) (Terkildsen et al., 2008) and the human ventricular cell
model by Ten Tusscher et al. (referred to as the TP06 model) (Ten
Tusscher et al., 2006) were adopted in this study. Due to the lack of
heterogeneity in the Terk model, AP heterogeneities, including
transmural heterogeneity and interventricular heterogeneity, were
incorporated according to our previous study (Bi et al., 2021) and
experimental observations (Clark et al., 1993; Shimoni et al., 1995;
Casis et al., 1998; MacDonell et al., 1998; Kaprielian et al., 1999;
Ashamalla et al., 2001).

In the single-cell simulation, the ratmodel was pacedwith a series
of 1000 stimuli with an amplitude of 6 pA/pF and a duration of
5.0 ms (80 pA/PF, 0.5 ms in the TP06 model) to reach the steady-
state. To investigate the effects of a single cytokine and the combined
influences of multiple cytokines on the cardiomyocytes, we adjusted
the conductance of the related channel or ion flux of the related
calcium handling process in the cell models according to the
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previous experimental recordings (Table 1, Table 2, Table 3). Note
that the combined effects of the three cytokines were assumed to be
an accumulation of each cytokine. The AP traces, APD90, and
current density traces of the different types of cells under various
conditions were recorded for later analysis.

In addition, the data used in this study were obtained from
bioexperiments in which the preparation concentrations of the
cytokines were higher than the clinically measured cytokine levels
in patients (Liu andZhao, 1999;Monnerat et al., 2016; Liu et al., 2021).
Therefore, we also considered another ‘mild’ type of inflammation
(referred to as mild inflammation in this study) by halving the
reported effects of cytokines as shown in Table 1, Table 2, Table 3.

2.3 One-Dimensional (1-D) Simulations
Using Transmural Tissue Strand Models
2.3.1 Numerical Details
A 15-mm-long 1-D transmural tissue strand model of humans
was constructed using the monodomain equation:

zVm

zt
� ∇ ·D∇Vm − Iion

Cm
(1)

where Vm is the membrane voltage, Iion is the sum of the
currents that flow through the membrane, and Cm is the
membrane capacitance. The 1-D model was discretized by a
spatial resolution of 0.15 mm to form 100 interconnected nodes.

The proportions for the transmural cell types were set to 25:35:
40 for endocardial (ENDO), middle (MID), and epicardial (EPI)
cells to produce a positive going T-wave, in accordance with our
previous work (Jiang et al., 2022). The diffusion coefficient D
was set to 0.154 mm2/ms, and the corresponding conduction
velocity (CV) was 0.74 m/s through the strand. In addition,
there is evidence suggesting that cell-to-cell coupling in tissue is
reduced under inflammation (Baum et al., 2012). Therefore, the
conduction coefficient in the inflammatory area was set to
0.1 mm2/ms (CV: 0.6 m/s) to simulate cell coupling under
inflammation.

2.3.2 Measurements of the Vulnerable Window
A vulnerable window (VW) is a certain time period in which a
unidirectional conduction block occurs. A standard S1–S2
protocol was used to measure the VWs across the whole
tissue strand. Specifically, a series of supra-threshold stimuli
(S1) were applied to the first three cells at the ENDO end with a
frequency of 1 Hz. After an interval (Δt), a premature stimulus
was applied to a 0.45 mm segment centered on the location
currently being measured. Due to the different refractory
durations, different Δt would correspond to different results:
bidirectional conduction block, unidirectional conduction
block, and bidirectional conduction. The width of the VWs
across the strand was averaged by the cell number, which acted
as a metric for the temporal vulnerability to arrhythmias.

TABLE 1 | The effects of TNF-α on cellular targets.

Targets Experimental observations References

Effects Time of treatment Concentration Type of cell tested —

Ito Current density: −23.4–65% Inactivation curve:
Approximately 5.7 mV shift to the left

48 h 1–5 ng/ml Ventricular myocyte (rat) Fernández-Velasco et al. (2007)

IKr Current density:
−33%

10 h 1 ng/ml HEK293 Wang et al. (2004)

TABLE 2 | The effects of IL-6 on cellular targets.

Targets Experimental observations References

Effects Time of treatment Concentration Type of cell tested —

IKr Current density: −29.6% Activation curve:
5 mV shift to the left

40 min 20 ng/ml HEK293 Aromolaran et al. (2018)

ICaL Current density:
+27%

30 min 20 ng/ml Ventricular myocyte (mice) Hagiwara et al. (2007)

Jup Expression of SERCA gene:
−21%~−50%

48 h 10 ng/ml Ventricular myocyte (rat) Villegas et al. (2000)

TABLE 3 | The effects of IL-1β on cellular targets.

Targets Experimental observations References

Effects Time of treatment Concentration Type of cell tested —

Ito Current density:
−36.8%

24 h 60 pg/ml Ventricular myocyte (rat) Monnerat et al. (2016)

Jleak SR Ca2+ leak:
+63.6%

24 h 60 pg/ml Ventricular myocyte (rat) Monnerat et al. (2016)
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2.4 Two-Dimensional (2-D) Simulations
Using Realistic Ventricular Slice Models
2.4.1 Model Geometries and Numerical Details
Two geometries of 2-D realistic ventricular tissue for rats and
humans were employed in this study. Preprocessing of
geometries, including transmural layer segmentation, was
conducted according to our previous work (Bi et al., 2021).
The proportions of transmural layers in humans were
consistent with the aforementioned transmural settings in the
1-D strand model and were 2:1 for ENDO:EPI in rats.

Similar to the 1-Dmodel, the monodomain equation (Eq. 1) was
adopted to describe the propagation of excitation waves in the
ventricular slice. Isotropic propagation was assumed, and the
diffusion coefficient D was set to 0.08mm2/ms and 0.154 mm2/
ms in rats and humans, respectively, to produce CVs of 0.42m/s for
rats (Sedmera et al., 2016) and 0.74 m/s for humans (Taggart et al.,
2000). It should be noted that there is evidence suggesting that cell-
to-cell coupling is reduced by 30–55% in inflammatory tissue (Baum
et al., 2012); therefore, the conductivity coefficient was reduced by
35% in the model for inflammation to reflect this reduction. The
spatial step was set to 0.1 mm in rats and 0.15mm in humans to be
consistent with the reported cell length (i.e., 80–150 μm (Hinrichs
et al., 2011)). To mimic the physiological characteristics of the
Purkinje fibers, a series of supra-threshold stimuli were applied to
several pacing sites on the endocardium of the slice.

2.4.2 Model Settings for the Inflammatory Conditions
Two inflammatory conditions, namely, local inflammation and
global inflammation, were discussed in this study. Specifically,
cells that incorporated the effects of the inflammatory cytokines
were regarded as ‘inflammatory cells’. In the local inflammatory
condition, a group of normal cells within a local area on the free
wall of the left ventricle were replaced by inflammatory cells
(Supplementary Figure S1), whereas all cells were set as
inflammatory cells under the global inflammatory condition.

2.4.3 Initiation of Reentry Arrhythmias in 2-D
Ventricular Slices
A typical S1–S2 protocol (Sutanto et al., 2020; Cluitmans et al.,
2021) was used to induce reentry arrhythmias in 2-D slice models.
Specifically, under physiological conditions, the premature S2
stimulus was applied to a local region of the epicardium within
the VW caused by transmural repolarization heterogeneity. In
contrast, due to the presence of pathological heterogeneity in the
local inflammatory condition, S2 was applied to the boundary
between the normal and inflammatory areas. The above process
of applying S2 stimulation may be repeated several times until S2
falls within the VW, thus producing a unidirectional
conduction block.

2.4.4 Measurements of the Critical Pacing Cycle
Length
The critical pacing cycle length (PCL) was defined as the
minimum pacing cycle length for maintaining a normal 1:1
conduction in 2-D ventricular slices. In this study, we tested
the critical PCL under control and global inflammatory

conditions. For both cases, we gradually decreased the PCL
until reaching a critical value under which the tissue failed to
maintain a normal 1:1 conduction.

2.4.5 Generation of the Pseudo-ECG
The pseudo-ECG was calculated from the 2-D ventricular slice by
the following equation:

ϕ(x′, y′) � a2σ i

4σe
∫(−∇Vm) · [∇1

r
]dΩ (2)

where Vm is the membrane potential, ϕ is a unipolar potential
generated by the tissue, r is the distance between a source point
and the virtual electrode, σ i and σe are the extracellular and
intracellular conductivities, respectively, and ∫ is the domain of
integration. The models were paced to their steady states at 1 Hz
before being used to calculate ECGs.

3 RESULTS

3.1 Effects of Inflammatory Cytokines at the
Cellular Level
The individual effect of each inflammatory cytokine and their
combined effects (called “inflammation” in this study) on APs
(1 Hz) are shown in Figure 1. First, for the rat cell model, it can
be observed that except for IL-6 causing a negligible influence
on EPI AP, all of these cytokines caused obvious AP
prolongations in the ENDO/EPI cells. In terms of APD90,
both EPI and ENDO cells exhibited a significant increase
compared with their control levels, which hinted at the
presence of severe pathological repolarization heterogeneity
between normal and inflammatory tissue. Next, in the human
cell model, the simulation results (Figure 1B) showed that the
APs in the IL-6 and TNF-α groups were prolonged in all three
types of cells, but there was little change in AP in the IL-1β
group. Moreover, as Figure 1Biv shows, the ΔAPD between
MID and ENDO/EPI exhibited an obvious augmentation
(from 97 to 150 ms) under inflammatory conditions, leading
to a larger transmural repolarization heterogeneity compared
with the control level.

In addition to the influences on AP, we also investigated the
alteration of calcium handling using the TP06 model, as shown
in Figure 2. In this regard, the reported reduced systolic
[Ca2+]i (Sugishita et al., 1999) and elevated diastolic [Ca2+]i
(London et al., 2003) under inflammatory conditions were
successfully reproduced (Figure 2B). This observation might
be attributed to the reduced SERCA activity and the increased
SR Ca2+ leakage, which also caused a decreased SR Ca2+

content (Figure 2C). Moreover, the greatly decreased peak
Ca2+ concentration in the cytoplasm exactly reflected the
negative inotropic effect (Weisensee et al., 1993; Sugishita
et al., 1999; Duncan et al., 2010) under inflammatory
conditions.

The above simulation results were based on experimental data
using high doses of cytokines. In this study, we also tested a type
of mild inflammation by downregulating the reported effects in
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the TP06 model. The simulation results are shown in Figure 3.
We can see that APD varied with the degree of inflammation, and
in the case of mild inflammation, the ΔAPD between MID and
ENDO/EPI cells showed a slight increase (from 97 to 119 ms)
compared with the control group.

The other ionic current traces in the rat and human cell
models under different cytokines can be found in
Supplementary Figures S2,S3.

3.2 Evaluation of the Temporal Vulnerability
to Unidirectional Conduction Blocks Under
Inflammatory Conditions
Unidirectional conduction blocks are an important pathological
phenomenon in 1-D tissue, as the unidirectionally propagated
excitation wave can evolve into reentrant spiral/scroll waves in 2-
D slices and 3-D organs. The time window within which

FIGURE 1 | Effects of different inflammatory cytokines on action potentials in (A) rat and (B) human models. Top panels plot the APs in (Ai) rat ENDO (Aii) rat EPI,
(Bi) human ENDO, (Bii) human MID, and (Biii) human EPI cells. The bottom panels are the APD90 of different cells for (Aiii) rats and (Biv) humans. Note: “inflammation”
represents the combined effects of three cytokines.

FIGURE 2 | Simulation results of the combined effects of three inflammatory cytokines on calcium handling. Corresponding profiles for ICaL (A) and the
concentration of Ca2+ in the cytosol (B) and sarcoplasmic reticulum (C).
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FIGURE 3 | Simulation results under different levels of inflammation. (A) APs of ENDO (Ai), MID (Aii), and EPI (Aiii) cells at different levels of inflammation. (B) APD90

of three types of cells under normal and inflammatory conditions.

FIGURE 4 |Measurement of the VW in the 1-D strand model under normal, mild inflammatory, and extreme inflammatory conditions. (A) The three subplots from
left to right show the bidirectional conduction, the unidirectional conduction block, and the bidirectional conduction block. (B) Distributions of VWs across the strand.
Black and red belts represent the control and inflammatory conditions, respectively. (C) Comparison of the average width of the VWs in the three groups.
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unidirectional conduction blocks occur, termed the vulnerable
window, is a commonly used metric for measuring the temporal
susceptibility of tissue to arrhythmias. In this section, we quantified
the influence of inflammation on temporal vulnerability by
measuring the VW across the 1-D transmural strand. Different
degrees of inflammation, i.e., an extreme level of inflammation (e.g.,
sepsis) and amild level of inflammation, were evaluated individually.
The simulation results are shown in Figure 4. Specifically, Figure 4A
shows different responses to the premature S2 stimulus, including
bidirectional conduction (S2 too early), unidirectional conduction
block (VW), and bidirectional conduction block (S2 too late). The
distribution of the time window when unidirectional conduction

blocks occurred (i.e., the distribution of VW) is plotted in Figure 4B.
Both mild inflammation and inflammation delayed the occurrence
of VW, and the average width of the VWs increased gradually from
7.4 to 8.8 and 10.0 ms depending on the degree of inflammation. As
a wider VW signifies a higher chance of a unidirectional conduction
block, the above simulation results implied an increased temporal
susceptibility to reentry arrhythmias under inflammatory
conditions.

3.3 Evaluation of the Proarrhythmic Effects
of Pathological Heterogeneity Under Local
Inflammatory Conditions
Inflammation may initially occur in a specific area in the heart.
This type of inflammation, termed local inflammation in this
study, may result in the presence of pathological heterogeneity
in ventricular tissue due to the prolonged APD of the affected
cells, which predisposes to ventricular arrhythmias. In this
section, we mimicked this condition by setting a local region of
inflammation on the free wall of the left ventricle, and a typical
S1-S2 protocol was used to evaluate the inducibility of reentry
arrhythmias in this condition (see Methods for more details).
The simulation results are shown in Figure 5 (rat) and
Figure 6 (human).

First, for the control condition (Supplementary Video S1),
it can be observed that, due to the limited size of rat hearts, the
evoked unidirectional conduction was not able to turn back to
form a functional reentry, and the subsequent two waves
propagating along the ventricular wall collided and failed
to form anatomical reentry (snapshots in Figure 5A). The
whole process lasted only approximately 90 ms. For the
human ventricular slice (Supplementary Video S2),
although the evoked unidirectional conduction could turn
back to form a functional reentry, such a process was
unsustainable, and the spiral waves terminated shortly after
the first cycle with a brief lifetime of approximately 350 ms
(snapshots in Figure 6A).

Simulation results of local inflammatory conditions are shown
in Figure 5B (rat) and Figure 6B (human). Due to the

FIGURE 5 | Induced reentry arrhythmias in rat ventricular slices under conditions of (A) control and (B) local inflammation. The S1 and S2 stimuli are marked by
white arrows, while the inflammatory region is indicated by a black rectangle.

FIGURE 6 | Induced reentry arrhythmias in rat ventricular slices under
conditions of (A) control and (B) local inflammation. The S1 and S2 stimuli are
marked by white arrows, while the inflammatory region is indicated by a black
rectangle.
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asynchronous repolarization caused by the prolonged APD of
inflammatory cells, extra S2 stimulation applied to the border
area would encounter the refractory tail on the inflammatory side.
Therefore, S2 would generate a unidirectional conduction block,
which in turn would evolve gradually into an anatomical spiral
wave circling around the ventricular ring structure
(Supplementary Video S3,S4). In brief, the pathological
heterogeneity caused by inflammatory cytokines provided
extra substrates for unidirectional conduction block and
reentry arrhythmias.

3.4 Evaluation of the Adaptability of Tissue
to High Stimulating Frequencies Under
Global Inflammatory Conditions
Another type of inflammatory condition, as opposed to local
inflammation, is global inflammation. It reflects a globally
affected condition in which the whole ventricle is influenced
by inflammatory cytokines. Compared to its counterpart,
global inflammation does not create additional pathological
heterogeneity; however, the prolonged wavelength may impair
the tissue’s adaptability to fast heart rates. In this study, we
mimicked the global inflammatory condition by setting all cells
as inflammatory cells and tested the influences of global

inflammation on the critical PCL using rat and human
ventricular models (see Methods for more details). In the
rat model, the measured critical PCL was 101 ms (9.9 Hz) in
control conditions, while in global inflammation, it increased
to 390 ms (2.56 Hz), and stimuli with cycle lengths below
390 ms led to complete repolarization failure (see Figure 7A
or Supplementary Video S5). The critical PCL of 390 ms
corresponds to a heart rate of 154 bpm, which is
significantly lower than the physiological range of
approximately 300–500 bpm in rats. Such simulation results
showed a decreased adaptability of tissue to fast heart rates
under global inflammation conditions and suggested a strong
proarrhythmic effect. However, considering that the heart rate
of rats is much faster than that of humans, this result might be
species dependent. In addition, the atypical phenomenon of
complete repolarization failure might also depend on the
specific model (Supplementary Figure S6). To further
clarify these questions, we performed parallel simulations
using human tissue models. The simulation results showed
that complete repolarization failure did not occur even at very
high frequencies; however, there was still a critical PCL below
which the 1:1 conduction could not be maintained and was
replaced by 2:1 conduction (see Figure 7B or Supplementary
Video S6). In this setting, the critical PCL was increased from

FIGURE 7 | The performance of the model at high frequency. Conduction waves under physiological and inflammatory conditions at high frequency (A) for rats and
(B) for humans. The white arrow represents stimulus S1, which failed to pace.
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319 ms in the control condition to 380 ms in the global
inflammatory condition. Notably, the BCL of 380 ms, which
corresponds to a heart rate of approximately 157 bpm, was
physiologically relevant and therefore might lead to
arrhythmogenesis.

3.5 Pseudo-ECGs in 2-D Simulation
The generated pseudo-ECG of the human ventricular 2-D slice
model under physiological and inflammatory conditions is shown
in Figure 8. As some available studies concerning systemic
inflammation have reported (Adlan et al., 2015; Lazzerini
et al., 2020a; Armbruster et al., 2022), prolonged QT intervals
were also reproduced in our simulation results.

4 DISCUSSION

4.1 Main Findings
In recent years, accumulating evidence has shown an association
between systemic inflammation and cardiovascular disease.
Inflammatory cytokines, a type of signaling molecule secreted
from immune cells, were proven to be able to affect membrane
ion channels and might therefore lead to ventricular arrhythmias.
In this study, we selected three of these major cytokines and
evaluated their proarrhythmic effects using a multiscale virtual
heart. The main findings are as follows: 1) at the cellular level,
inflammatory cytokines caused a prolongation of APD by
affecting multiple ion channels, and heterogeneously
prolonged APDs led to augmented transmural heterogeneities;
2) simulation results of the VW using the 1-D strand suggested
that inflammation increased the temporal vulnerability to
arrhythmias; 3) in the case of local inflammation, the
repolarization of the inflammatory area was delayed due to the
cytokine-induced APD prolongation, leading to the presence of
pathological heterogeneities around the local inflammatory area.
Such regional differences in repolarization provided extra
substrates for the unidirectional conduction block and
increased the chance of the development of anatomical reentry
arrhythmias; 4) In the global inflammatory condition, the

generated pseudo-ECG exhibited a prolonged QT interval that
was in accordance with the clinical observations. Furthermore,
the globally prolonged APD impaired the tissue adaptability to
high frequencies and caused 2:1 conduction at physiologically
relevant heart rates.

APD prolongation has been observed in many pathological
conditions and has been shown to be proarrhythmic
(Antoniou et al., 2017; Dietrichs et al., 2019; Shimaoka
et al., 2020). For example, APD prolongation and changes
in electrophysiological characteristics caused by the
downregulation of outward potassium currents, alterations
of calcium channel kinetics and increases in late sodium
currents create a substrate for ventricular arrhythmias in
the case of heart failure (Zhang et al., 2018). A study on
hypokalemia showed that APD prolongation could
predispose patients to early afterdepolarizations, which in
turn act as triggers for ventricular arrhythmias (Tse et al.,
2021). APD prolongation is also the main factor responsible
for the proarrhythmic influences of drugs with cardiotoxicity.
A prolonged APD and, consequently, a prolonged QT interval,
are considered important biomarkers of drug cardiotoxicity in
drug discovery (Schrickel et al., 2006; Hondeghem et al., 2011).
For example, the antihistamine drug terfenadine, which was
previously used for the treatment of allergic conditions, was
proven to be able to prolong APD due to its effects of blocking
hERG currents (IKr), causing QT prolongation and torsade de
pointes (TdP). Despite the tight association between APD/QT
prolongation and ventricular arrhythmia, prolonged QT does
not always lead to arrhythmogenesis events. Some new
evaluation criteria, such as TRIaD (Triangulation, Reverse
use dependence, Instability and Dispersion), have been
suggested to identify false-positive cases. On the other
hand, it should also be noted here that APD prolongation
can also exert antiarrhythmic effects by extending the effective
refractory period, which is also the major pharmaceutical
mechanism of class III antiarrhythmic drugs. In particular,
homogeneous APD prolongation in the absence of early
afterdepolarizations (EADs) commonly exerts
antiarrhythmic effects, whereas EADs or repolarization

FIGURE 8 | Comparison of pseudo-ECGs between normal and inflammatory conditions.
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heterogeneities induced by inhibition of repolarization are
proarrhythmic. For the case in this study, the simulation
results demonstrated a double-sided nature, especially in a
condition of global inflammation: the prolonged refractory
period in ventricles tends to be antiarrhythmic, but it also
reduces the adaptability of the tissue to high heart rates. For
the local inflammatory condition, although we did not observe
EADs, the presence of both pathological heterogeneities and
augmented transmural heterogeneity increased the
vulnerability to arrhythmogenesis in terms of both spatial
and temporal aspects.

Accumulating studies have demonstrated that augmented
electrophysiological heterogeneity provides proarrhythmic
substrates (Laurita and Rosenbaum, 2000; Pak et al., 2004;
Antzelevitch, 2007; Boukens et al., 2009). Intrinsic
heterogeneity within normal hearts contributes to the
development of arrhythmias under certain conditions
(Bishop et al., 2013). Premature beats in the heterogeneous
area that occurred during a certain time duration (i.e., VW)
would lead to unidirectional conduction block and reentry
arrhythmias. In most cases, the VW is rather small; however, it
can be significantly enlarged in some pathological conditions
due to augmented regional heterogeneity, such as ischemia (De
Bakker et al., 1988; Yuuki et al., 2004) and heart failure (Roden,
2003; Coronel et al., 2013). For the local inflammatory
condition, our simulation results suggested that the
repolarization of the tissue developing inflammation was
significantly delayed, which in turn contributed to an
apparent electrical heterogeneity around the local area. Such
regional dispersion of repolarization, as an arrhythmogenic
substrate, will be further amplified in higher but
physiologically relevant pacing frequencies and eventually
lead to arrhythmia. Regarding interspecies differences, the
simulation results suggested that inflammation weakened
the repolarization ability of both rat and human myocytes,
but there were obvious interspecies variances behind it, as
repolarization is notably different in rodents compared to large
mammals. In particular, the cytokine-induced APD
prolongation in rat myocytes was mainly attributed to the
decreased Ito; in contrast, the APD prolongation in human
ventricular cells resulted mainly from the reduced IKr. It has
been demonstrated that Ito is the major repolarization current
in rat myocytes (Zhao et al., 2012), but for humans, Ito is only
one of various repolarizing currents and is mainly involved in
repolarizing phase 1 of cardiac AP. In comparison, hERG (the
gene that codes for the alpha subunit of IKr) is abundantly
expressed in human ventricles, and IKr plays a critical role in
repolarizing during cardiac AP (Ledford et al., 2022; Cheng
and Kodama, 2004). This interspecies variation has also been
widely observed in other studies. For instance, when used to
treat carbon monoxide (CO)-induced arrhythmias, ranolazine
was shown to be effective in inhibiting CO-induced EAD in rat
cells (Dallas et al., 2012), but it exacerbated EADs and even
caused oscillation in guinea pigs (which have wide APs similar
to those in humans). In a recent study (Morotti et al., 2021),
Morotti et al. examined the influences of interspecies
differences on animal experimentation and drug efficacy

assessment, and they created cross-species translators of
electrophysiological responses to translate the drug-induced
effects experimentally observed in myocytes from animal
models to predict the effects that these perturbations would
cause in humans. In summary, although our simulations
demonstrated that inflammation caused similar reentry
arrhythmias in rats and humans, the underlying
mechanisms were different among various species and this
needs to be taken into account, especially when translating
experimental findings regarding drug efficacy and safety from
animal models to clinical use.

4.2 Limitations
It should be noted that the combined effect of three cytokines was
assumed to be an additive effect of each cytokine in the present
work. Kumar et al. (Kumar et al., 1996) reported a synergistic
inhibitory effect of TNF-α and IL-1β on ventricular contractility,
where the concentration of each cytokine under conditions of a
combination was much lower than those acting alone. Such
synergistic effects and the potential antagonistic effects among
cytokines were not considered in this study.

Although the present study followed the experimental setup in
the original reports exactly, the concentrations of inflammatory
cytokines used in previous experiments were generally higher
than those observed under pathophysiological conditions.
Specifically, Liu et al. reported a median IL-6 serum level of
4809 pg/ml in a nonsurvivor group of patients with sepsis (Liu
et al., 2021). Liu et al. reported that the pathophysiological level of
TNF-alpha was approximately 0.15 ng/ml in the serum of heart
failure patients (Liu and Zhao, 1999). Monnerat et al. reported a
serum IL-1β level of 60 pg/ml in diabetic mice (Monnerat et al.,
2016). Therefore, our simulation results reflected an extreme
condition of inflammation (i.e., sepsis). To account for this, we
have considered another ‘mild’ inflammatory condition by
halving the concentrations of the inflammatory cytokines;
however, caution should still be taken when translating these
findings to clinical use.

The effects of inflammatory cytokines on ion channels were
assumed to be consistent by setting specific constant change
ratios to the conductance of the involved ion channels. However,
inflammation is a dynamic process with complicated
mechanisms. For example, there have been studies showing
that inflammatory cytokines could increase sympathetic
activity to inhibit cytokine production; however, it also
deserves to be noted that hyperactive sympathetic nerves could
directly influence the function of ion channels by
phosphorylation in myocardial cells and may induce
arrhythmias (Lazzerini et al., 2017). The above dynamic
process, as a kind of negative feedback mechanism, could
change the concentrations of inflammatory cytokines in
serum, which was not incorporated in our simulations. In
addition, inflammatory cytokines could also affect the
electrophysiological function via complicated indirect pathways
in addition to the introduced direct modulations of ion channels
and calcium handling. These indirect pathways include, but are
not limited to, the following two aspects: 1) inflammatory
cytokines could cause chronic remodeling and myocardial
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fibrosis, thus increasing the susceptibility of cardiac tissue to
arrhythmias in chronic heart failure patients (Dick and Epelman,
2016); 2) current evidence suggests that TNF-αmay promote the
formation of atherosclerotic plaques by upregulating the
expression of multiple protein molecules (e.g., adhesion
molecule-1) in the vascular wall (Ohta et al., 2005), which
would exacerbate the ischemic condition of hearts and lead to
ischemic-related arrhythmias. As we mentioned above,
inflammation has complex mechanisms and effects that
require further simulation studies. Above all, these indirect
pathways play critical roles in inflammation-mediated
arrhythmias but they were not investigated in this study.

Limited to the sources of the experimental data, the
proarrhythmic mechanisms investigated in this study focused
mainly on ventricular arrhythmia. In fact, accumulating evidence
has shown that there is a strong link between inflammation and
postoperative atrial fibrillation. Maesen et al. reported an
overlapping time course of atrial fibrillation occurrence after
cardiac surgery and the activation of the complement system
with the release of proinflammatory cytokines, suggesting
potential roles of inflammation in triggering postoperative
atrial fibrillation (POAF) (Maesen et al., 2012). Heijman et al.
observed that postoperative inflammation along with preexisting
Ca2+-handling abnormalities contributed to the formation of
DADs and thus led to POAF (Heijman et al., 2020). The
above postoperative atrial fibrillation, as a widely accepted
form of inflammation-induced arrhythmia, warrants further
research.

5 CONCLUSION

In this study, we conducted an in silico investigation using a
multiscale virtual heart to explore the proarrhythmic
mechanisms of inflammation. Inflammatory cytokines directly
affect the function of ion channels and thus cause prolongation of
AP and augmentation of transmural dispersion. The
augmentation of the transmural dispersion would increase the
vulnerability to arrhythmia (e.g., the greater VWs). In addition,
the prolongation of AP contributes to significant pathological
heterogeneity and provides extra substrates for inducing

arrhythmia under conditions of local inflammation. In the
case of global inflammation, the QT interval and the
minimum PCL for normal 1:1 conduction are both enhanced,
indicating a greater proarrhythmic effect. In summary, the
present study provides new insights into the underlying
mechanisms of the systemic inflammatory response to
arrhythmia.
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A Novel In Silico Electromechanical
Model of Human Ventricular
Cardiomyocyte
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Contractility has become one of the main readouts in computational and experimental
studies on cardiomyocytes. Following this trend, we propose a novel mathematical
model of human ventricular cardiomyocytes electromechanics, BPSLand, by coupling
a recent human contractile element to the BPS2020 model of electrophysiology.
BPSLand is the result of a hybrid optimization process and it reproduces all the
electrophysiology experimental indices captured by its predecessor BPS2020,
simultaneously enabling the simulation of realistic human active tension and its
potential abnormalities. The transmural heterogeneity in both electrophysiology and
contractility departments was simulated consistent with previous computational and
in vitro studies. Furthermore, our model could capture delayed afterdepolarizations
(DADs), early afterdepolarizations (EADs), and contraction abnormalities in terms of
aftercontractions triggered by either drug action or special pacing modes. Finally, we
further validated the mechanical results of the model against previous experimental and
in silico studies, e.g., the contractility dependence on pacing rate. Adding a new level of
applicability to the normative models of human cardiomyocytes, BPSLand represents a
robust, fully-human in silico model with promising capabilities for translational
cardiology.

Keywords: computational modeling, human ventricular cardiomyocyte model, action potential (AP), contractility,
aftercontraction

1 INTRODUCTION

The future of diagnosis and treatment in cardiology progressively depends on advanced methods in
imaging, gene profiling, and pharmaceutical technologies. Despite the recent advances in health
technologies, the current empirical clinical investigations face serious challenges as the complexity of
therapeutic interventions, prognosis, and the possibility of classifying the treatments grow.
Specifically, identifying the optimal treatment strategy with a degree of statistical significance
poses serious challenges to current empirical routes in cardiology (Niederer et al., 2019).
Furthermore, as precision medicine emerges (Forouzandehmehr et al., 2022), the proven
pathophysiological variability between individuals highly augments the detail in the diagnostic
process and data, thus, finding an optimal patient-specific solution becomes increasingly difficult
(Niederer et al., 2019). Cardiac computational models, based on established physiological and
engineering principles, offer a capable framework that not only can be fed by large datasets but also
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enable mechanistic and integrative simulations leading to disclose
novel insights in cardiac pathophysiology (Niederer et al., 2019).

Early physiologically constrained computational models of
cardiac cells could quantitatively translate the protein
functions into developing cellular phenotypes (Niederer et al.,
2019). During the past decade, these models have also
incorporated functional characteristics of ion channels, cellular
pumps, transporters, and buffers making them promising
candidates in preclinical studies (O’Hara et al., 2011; Tomek
et al., 2019; Bartolucci et al., 2020; Paci et al., 2021). Currently, as
the cardiac contractility data become increasingly available,
together with new recording techniques (Ahola et al., 2018),
mathematical models of cardiomyocytes (CMS) are developed
to predict dynamics of contraction combined with simulation of
drug effects alongside the electrophysiology. Toward building
models of myocyte electromechanics, elements of contractility
have been developed with different levels of complexity focusing
on animals (Rice et al., 2008; Campbell et al., 2010; Sheikh et al.,
2012; Land et al., 2013) and human CMs (Land et al., 2017).
Initial efforts on developing reliable models to capture the
electromechanics of human adult CMs have been initiated
recently (Lyon et al., 2020; Margara et al., 2021). Margara
et al., integrated an established human-based developed
contractile element (Land et al., 2017) into the gold standard
in silico model of human ventricular cell electrophysiology
(O’Hara et al., 2011) and into their new ToR-ORd model
(Tomek et al., 2019) to predict ventricular active tension
generation alongside action potential (AP) and calcium
transients (CaT). Also Lyon et al. complemented the ORd
model with a contractile element: their choice was the
MedChem model of sarcomere mechanics (Dupuis et al.,
2018), which they used to assess the impact of β-adrenergic
stimulation and sarcomere length on CaTs and force (Lyon
et al., 2020).

Our recently published BPS2020 model of the human adult
ventricular CM electrophysiology (Bartolucci et al., 2020), holds
significant improvements compared with the original ORd model
(e.g., the simulation of the experiments with the correct
extracellular K+ concentration used in vitro or the generation
of DADs) and includes specific mechanisms not simulated by
ToR-ORd (e.g., the inverse APD90-[Ca

2+]o dependence). Given
these improvements in simulating electrophysiology phenomena,
it is worth investigating how we can expand the spectrum of
BPS2020 simulation, by using it as the basis for a new
electromechanical human CM in silico model.

We have integrated one of the most recent human contractile
machinery (LandCE) (Land et al., 2017) into BPS2020 (Bartolucci
et al., 2020). As done inMargara et al. (2021), we chose LandCE as
it is a contractile element validated against human data. Our goal
was to investigate the capabilities of this newly integrated
electromechanical model, BPSLand, by evaluating active
tension generation and contractility abnormalities e.g.,
aftercontractions, that can be activated either by drug action
or special pacing conditions. BPSLand is a robust, fully-human, in
silico model meeting the computational expectations from both
departments, the electrophysiology and contractility, with the

potential for facilitating the translation of biophysical and
pharmacological functions into pre-clinical readouts.

2 METHODS

2.1 In Vitro Data
To calibrate the BPSLand model, we used a dataset of isometric
active tension (Ta) biomarkers recorded from human isolated
ventricular CMs (Land et al., 2017; Margara et al., 2021) and a
dataset of action potential (AP) biomarkers from human isolated
ventricular endocardial CMs (O’Hara et al., 2011; Bartolucci et al.,
2020). The Ta biomarker dataset includes measures from strips of
the left ventricular myocardium (Mulieri et al., 1992), left
ventricular trabeculae (Pieske et al., 1996) and right
ventricular trabeculae (Rossman et al., 2004) (additionally
considered by Margara et al., 2021). Both datasets were
recorded at 37°C. Ta biomarkers are the peak tension
(TaPeak), the relaxation time at 50% and 95% (TaRT50,
TaRT95) and the time-to-peak (TaTTP). AP biomarkers are
the duration at 30%, 40%, 50%, 70% and 90% (APD30, APD40,
APD50, APD70, APD90), the maximum upstroke velocity (dV/
dtmax), the peak voltage (VPeak) and the resting membrane
potential (RMP). In silico biomarkers were computed as in
Margara et al. (2021). As we previously reported in Bartolucci
et al. (2020), we simulated the AP biomarkers for calibration at
[K+]o = 4 mM. Conversely, as no information was reported on the
in vitro Ta biomarker ranges, we run our simulations at the
standard concentration [K+]o = 5.4 mM.

To validate BPSLand, we used the following human data: 1)
APD rate dependence, restitution and accommodation data in
control condition and with current blockers from endocardial
CMs (O’Hara et al., 2011) (see Supplementary Methods for
details and Supplementary Table S1); 2) TaPeak, TaRT50 and
CaT relaxation time at 50% (CaRT50) rate adaptation data (Pieske
et al., 1995; Janssen and Periasamy, 2007); 3) TaPeak transmural
heterogeneity data from sub-epicardial, mid-myocardial, and
sub-endocardial specimens (Haynes et al., 2014).

2.2 Integration of the Land Contractile
Element Into the BPS2020 Model
The original BPS2020model (Bartolucci et al., 2020) was based on
the seminal O’Hara-Rudy model of the human ventricular AP
(O’Hara et al., 2011) and it features two cytosolic compartments,
the subspace and the bulk myoplasm, and the sarcoplasmic
reticulum (SR) represented with a single compartment. It
includes the following ion currents: fast and late Na+ currents
(INaF, INaL), transient outward K+ current (Ito), L-type Ca2+

current (ICaL), also with its Na+ and K+ components (ICaNa,
ICaK), the rapid, slow and inward rectifying K+ currents (IKr,
IKs, IK1), the Na+/Ca2+ exchanger divided in its cytosolic and
subspace components (INCXi, INCXss), the Na+/K+ pump (INaK),
Na+, K+ and Ca2+ background currents (INab, IKb, ICab) and the
sarcolemmal Ca2+ pump (IpCa). Ca

2+
fluxes from/to SR are the

RyR-sensitive Ca2+ release (Jrel), the SERCA pump (Jup) and a
leakage flux (Jleak).
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We integrated LandCE into BPS2020 following the approach
presented in (Margara et al., 2021). Shortly, LandCE takes as
input the intracellular Ca2+ concentration [Ca2+]i computed by
BPS2020, to update a new state variable CaTRPN, representing
the fraction of troponin C units which bound to Ca2+.

dCaTRPN
dt

� kTRPN( [Ca2+]i
[Ca2+]T50)

nTRPN

(1 − CaTRPN)

− CaTRPN)
BPS2020 receives as feedback the amount of Ca2+ buffered by

troponin C, [Ca2+]TRPN, to update the intracellular Ca2+

concentration.

d[Ca2+]i
dt

� βCai( − (IpCa + ICab − 2INaCa,i) Acap

2Fvmyo
− Jup

vsr
vmyo

+ Jdiff ,Ca
vss
vmyo

− d[EGTA]i
dt

− d[Ca2+]TRPN
dt

)
d[Ca2+]TRPN

dt
� [Ca2+]TRPN ,max

dCaTRPN
dt

where [Ca2+]TRPN,max represents the maximum Ca2+

concentration that can bind to troponin C.

2.3 Optimization of the BPSLand Model
The structure of the cost function used for both optimizations is
the same as in Paci et al. (2018b)

Cost � ∑Nbiom

1

wi p Costi

Cos ti � (bi,sim < LBi)(bi,sim − LBi)2 + (bi,sim > UBi)(bi,sim − UBi)2
0.5(LBi + UBi)

where bi,sim is the ith simulated biomarker, LBi the ith
experimental lower bound for bi,sim, UBi the ith experimental
upper bound for bi,sim, wi the weight for each biomarker’s cost
(Supplementary Table S2) and Nbiom the number of biomarkers
used for optimization. Briefly, if the simulated ith biomarker is
smaller than LBi or greater than UBi, the error is computed as the
squared distance between the simulated biomarker and the
bound, normalized by the center of mass of [LBi, UBi]. Finally,
in order to minimize the active tension Ta, we included one
additional term to Cost, obtaining the final cost function

CostTOT � wminTa pmin(Ta) + Cost

with wminTa the weight of the minimun active tension.

2.3.1 Step 1: Hybrid Optimization on the LandCE
Parameters
After integrating LandCE into BPS2020, we first optimized the
LandCE parameters using a hybrid approach combining first a
genetic optimization (Matlab function ga), followed by the
simplex optimization [Matlab function fminsearchbnd
(D’Errico, 2022)]. The parameters optimized in this first step
are only the LandCE parameters listed in Table 1. The
optimization ranges for the LandCE parameters are the same
as in the original LandCE publication (Land et al., 2017), except
for the tropomyosin Ca2+ sensitivity ([Ca2+]T50), for which we
chose [0.5, 0.6] instead of [0.8, 0.9]. As the original range [0.8, 0.9]
increased substantially the CaT peak, i.e. the systolic Ca2+

(+22%), we decided not to affect the BPS2020
electrophysiology and chose [0.5, 0.6] as it preserved the
original BPS2020 CaT peak.

For this first optimization step, we considered five
contractility and two electrophysiology biomarkers: active
tension peak (TaPeak), time-to-peak (TaTTP), relaxation
time to 50% and 95% of the diastolic level (TaRT50 and
TaRT95) and the minimum of the diastolic active tension,
systolic and diastolic intracellular free Ca2+ (CaSys and
CaDiast). The acceptable ranges for these biomarkers were
taken from the original Land publication (Land et al., 2017) for
TaTTP, TaRT50 and TaRT95, from Margara et al. (2021) for
TaPeak, while we chose to set the ranges for CaSys and CaDias
as ±5% of their original values (Bartolucci et al., 2020), in order
to keep the electrophysiology the most similar to the original
BPS2020 model. At the end of this first step, we obtained an

TABLE 1 | Contractility and electrophysiology biomarkers used for the BPSLand optimization, with their ranges.

Model Step Parameter Range

LandCE 1 Tropomyosin rate constant ku (1/ms) [0.01, 0.2]
Hill coefficient ntm [3, 7]
Unbound-to-weak crossbridge transition scaling factor ] [1, 12]
Weak-to-strong crossbridge transition scaling factor μ [1, 12]
Tropomyosin Ca2+ sensitivity ([Ca2+]T50) (μM) [0.5, 0.6]

BPS2020 2 Maximum Ca2+ release flux from SR Jrel,max (1/ms) [0.016, 0.024]
Maximum SERCA pump flux Jup,max (mM/ms) [2.504, 3.756]

TABLE 2 | In vitro contractility and electrophysiology biomarkers used in the cost
function and their goal ranges.

Biomarker Range [LB, UB]

Active tension peak TaPeak (kPa) [15, 25]
Active tension time-to-peak TaTTP (ms) [109, 125]
Active tension relaxation time to 50% TaRT50 (ms) [147, 172]
Active tension relaxation time to 95% TaRT95 (ms) [291, 377]
Minimum active tension min (Ta) (kPa) —

Systolic intracellular Ca2+ CaSys (mM) [3.004755, 3.321045]e-4
Diastolic intracellular Ca2+ CaDias (mM) [7.712955, 8.524845]e-4
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electromechanical model whose electrophysiology biomarkers
were not significantly affected by the LandCE and correctly
simulated TaRT95 while the remaining contractility
biomarkers were close to their respective lower bounds.

2.3.2 Step 2: Simplex Only
In order to capture the remaining contractility biomarkers, we
then run a second simplex optimization on the Ca2+ fluxes of the
SERCA pump (Jup) and the RyR-sensitive release (Jrel), using all
the constraints in Table 2, and additional constraints on the AP
biomarkers. In particular, for resting potential (RMP), peak
voltage (VPeak), maximum upstroke velocity (dV/dtmax), AP
duration at 40%, 50% and 90% (APD40, APD50 and APD90),
and the triangulation metric (Tri9040), we set the lower and upper
bounds as ±5% of their values in the original BPS2020 model,
which were fit against the experimental data (O’Hara et al., 2011)
at [K+]o = 4 mM. We chose these parameters as we did not want
to change the ion current parameters of BPS2020, derived from
the ORd model and partially fit experimental data in Bartolucci
et al. (2020). As ranged for manually tune Jrel,max and Jup,max, we
chose ±20% of their original values 20e-3 (1/ms) and 3.13 (mM/
ms), respectively. At the end of this second step, the
electromechanical model correctly simulated TaRT95 and
TaPeak while the remaining contractility biomarkers were
close to their respective lower bounds. However, we missed
one of the key features of BPS2020, i.e., the inverse
relationship [Ca2+]o – APD90, which was otherwise simulated
at the end of the first step.

2.3.3 Step 3: Manual Tuning
In order to restore the [Ca2+]o – APD90 relationship, we added
one final step to our pipeline, where we did a minor manual re-
tuning of Jrel,max (0.0240→0.0220 1/ms) and Jup,max (3.1333→
3 mM/ms), still considering their lower and upper bounds as in
Table 1. The final model is named BPSLand and its parameter
values are reported in Table 3. Supplementary Tables S2–S4
summarize the weights, parameters and biomarkers obtained
after each of the three optimizations steps. Supplementary
Table S5 shows the impact of the manual tuning of Jrel,max and
Jup,max on the [Ca2+]o – APD90 relationship.

2.3.4 Rate Dependence
To test the active tension dependence on the applied pacing rate,
we paced BPSLand at 0.5, 1, 1.5, 2, 2.5 and 3 Hz for 1,000 beats to
reach the steady state, using [K+]o = 5.4 mM, [Ca2+]o = 1.8 mM

and [Na+]o = 144 mM as extracellular ion concentration. We then
compared simulated TaPeak, TaRT50 and CaRT50 with the
in vitro data by Pieske et al., (1995) and Janssen and
Periasamy (2007).

2.3.5 Heterogeneity
To simulate transmural heterogeneity, i.e., simulating epicardial
(EPI) and mid-myocardial (M) CMs in addition to endocardial
(ENDO), we used the same scaling factors reported in Bartolucci
et al. (2020) for INaL, Ito, ICaL, IKr, IKs, IK1, INCX, INaK, IKb, Jrel and
Jup (Supplementary Table S6).

TABLE 3 | Final BPSLand parameter set.

Parameter Original value Optimized value

ku (1/ms) 1 1.5230
Ntm 5 3.0899
N 7 1.002
M 3 2.0779
[Ca2+]T50 (μM) 0.805 0.5
Jrel,max (1/ms) 20e-3 22e-3
Jup,max (mM/ms) 3.13 3

FIGURE 1 | Illustrative traces simulated by BPSLand ([K+]o = 5.4 mM).
(A) Action potential. (B) Cytosolic Ca2+ concentration. (C) Subspace Ca2+

concentration. (D) Active tension. (E) Inverse action potential duration
dependence on the extracellular Ca2+ concentration.
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2.3.6 EAD and DAD Simulations to Trigger Active
Tension Abnormalities
We assessed the occurrence of early-afterdepolarization (EADs)
and aftercontractions in the BPSLand following three different
protocols. First, we simulated the administration of quinidine
considering the drug effects on INa, IKr, ICaL, IKs and Ito, using the
IC50 and Hill’s coefficients reported in Passini et al. (2017) and
Paci et al. (2018a) and the single pore block model, as in Paci et al.
(2021) (Supplementary Table S7). We tested three drug
concentrations, namely 10, 15 and 20 μM at the standard
extracellular ion concentrations ([K+]o = 5.4 mM, [Ca2+]o =
1.8 mM, [Na+]o = 144 mM) and cycle length (CL) of 4,000 ms.
The second EAD protocol simulated dofetilide, similarly to what
we did in Bartolucci et al. (2020). Shortly, we simulated the
administration of 0.1 µM dofetilide at CL = 5,000 ms and
extracellular concentrations experimentally used by Guo et al.
(2011) ([K+]o = 5 mM, [Ca2+]o = 2 mM, [Na+]o = 137 mM), using
the IKr drug binding values reported by Dutta et al. (2017). We
simulated quinidine and dofetilide effects on the endocardial
BPSLand model and we anticipate no EADs nor
aftercontractions, despite the remarkable AP prolongation.
Conversely, the same tests performed on the M cell version,
resulted in EADs and aftercontraction.

To assess the occurrence of delayed afterdepolarizations
(DADs) we used the same protocol as in Li and Rudy (2011):
we fast paced BPSLand for 1,500 beats (BCL = 275 ms) and then
we triggered one long beat (BCL = 10,000 ms).

3 RESULTS

3.1 The BPSLand Model
We report the AP, [Ca2+]i, [Ca

2+]ss and Ta traces simulated at
[K+]o = 5.4 mM in Figure 1, together with the simulations for
variable [Ca2+]o to highlight the inverse APD90-[Ca

2+]o
dependence, which was described first by Severi et al. (2009)

and then observed in vitro and in vivo (Leitch, 1996; Nagy et al.,
2013), but failed to be simulated by many in silico models,
including the original ORd (O’Hara et al., 2011) and ToR-
ORd (Tomek et al., 2019). In details, for increasing [Ca2+]o =
0.9, 1.8 and 2.4 mM, APD90 equals to 251.4, 239.9 and 237.1 ms.
Table 4 reports the AP and Ta biomarkers, with the in vitro
ranges used for the BPSLand calibration, together with additional
CaT biomarkers: CaT duration at 50% and 90% (CTD50, CTD90)
and amplitude (CaAmp). All the AP biomarkers are within the

TABLE 4 | The electrophysiology and contractility biomarkers simulated by the original BPS2020 and the new BPSLand models, compared to in vitro data.

Biomarker [K+]o = 5.4 mM [K+]o = 4 mM

BPS2020 BPSLand In vitro BPS2020 BPSLand In vitro

APD90 (ms) 239.9 239.9 — 267.6 268.4 [180, 440]
APD50 (ms) 177.1 175.9 — 200.1 200.0 [110, 350]
APD40 (ms) 160.1 158.9 — 178.3 177.3 [85, 320]
Tri9040 79.8 81.0 — 89.3 91.1 [50, 150]
dV/dtmax (V/s) 248.1 248.8 — 305.3 305.7 [100, 1,000]
VPeak (mV) 42.2 42.2 — 43.7 43.8 [10, 55]
RMP (mV) -87.6 -87.7 — -95.6 -95.7 [-103, -88]
CTD90 (ms) 247.9 251.3 — 247.6 254.9 —

CTD50 (ms) 124.1 138.9 — 125.3 140.3 —

CaSys (nM) 316.3 303.3 — 328.7 311.7 —

CaAmp (nM) 235.1 225.0 — 244.6 230.5 —

CaDias (nM) 81.2 78.2 — 84.1 81.2 —

TaPeak (kPa) — 15.6 [15, 25] — 17.4 —

TaTTP (ms) — 142.9 [147, 172] — 145.3 —

TaRT95 (ms) — 307.4 [291, 377] — 308.1 —

TaRT50 (ms) — 108.4 [109, 125] — 108.2 —

TaMin (kPa) — 0.100 — — 0.112 —

FIGURE 2 | Active tension dependence on pacing rate and comparison
with the in vitro data from Pieske et al. (1995) and Janssen and Periasamy
(2007). (A) Normalized active tension peak. (B) Active tension relaxation time.
(C) Ca2+ transient relaxation time.
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experimental ranges, as well as TaPeak and TaRT95. Conversely,
TaRT50 and TaTTP are very close to their respective experimental
lower bounds, although out of the in vitro ranges. The
comparison of AP, Ca2+ and Ta traces simulated with [K+]o =
4 mM and [K+]o = 5.4 mM is presented in Supplementary
Figure S1.

3.2 Electrophysiology and Contractility
Dependence on Pacing Rate
The APD rate adaptation tests reported in Bartolucci et al. (2020)
were repeated using BPSLand, to show that introducing LandCE
did not affect the capability of the new model in simulating the
old data. Briefly, BPSLand simulated the in vitro data as
satisfactorily as BPS 2020, outperforming the original ORd
model (Supplementary Figures S2, S3).

In this section we validate BPSLand against two additional
in vitro datasets of rate adaptation of TaPeak, TaRT50 and
CaRT50, not considered for BPS2020. Figure 2A shows the
qualitative agreement of our model with the data published by

Janssen and Periasamy (2007) in terms of TaPeak-pacing rate
dependence. In particular, we successfully simulate the linearity
of such dependence. In Figure 2B, we considered the rate
dependence of TaRT50, considering in vitro data by Pieske
et al., 1995 and Janssen and Periasamy (2007). BPSLand
simulations qualitatively agree both with the Janssen07 and
the Pieske95 experiments, although TaRT50 is lower at the
slowest pacing rates. This discrepancy is due to the TaRT50

in vitro range used to calibrate the BPSLand model at 1 Hz,
i.e. [109, 125] ms (purple line). BPSLand is positioned at the
interval lower bound (108.4 ms), while Janssen07 data at the
upper bound (125 ms) and Pieske95 is out of bound (137.2 ms).
Conversely, BPSLand shows quantitative agreement with the
Pieske95 CaRT50 data (Figure 2C). A comparison with the
ToR-ORd+Land model is shown in Supplementary Figure S4.
Furthermore, the length dependence properties of the BPSLand
model is presented in Supplementary Figure S5 and was
performed in the same way proposed by Margara et al. (2021)
in their original Supplementary Section S6.

3.3 Transmural Heterogeneity
Figure 3 shows how BPSLand simulates the transmural
heterogeneity in terms of electrophysiology and contractility.
Our simulations are in agreement with the ToR-ORd+Land
and ORd+Land models presented in Margara et al. (2021). In
terms of APD, the M model has the longest APs, followed by the
ENDO and EPI models. In terms of CaTs and active tension, the
M model shows the highest peaks, followed by EPI and ENDO.
Haynes et al. reported transmural heterogeneity data of isometric
active tension peaks in human heart preparations, showing
similar average active tension in EPI and ENDO preparations
(although EPI < ENDO), and greater in M specimens (Haynes
et al., 2014). We simulate an EPI TaPeak (17.4 kPa) slightly
greater than ENDO (15.6 kPa), while the M model produces
greater TaPeak (34.8 kPa). This is the same trend simulated by the
ToR-ORd+Land model (TaPeakM > EPI > ENDO), although the
absolute TaPeak values are considerably greater in ToR-
ORd+Land than in BPSLand. As in (Margara et al., 2021) the
authors suggested that the Ca2+ sensitivity in ENDO CMs could
be higher than in EPI cells, we tested how much upscaling of
[Ca2+]T50 is required in EPI BPSLand to bring the simulated EPI
TaPeak even closer to the experiments (Haynes et al., 2014). In
fact, [Ca2+]T50 is not considered as one of the parameters to
change when switching from ENDO to EPI models. The purple
star in Figure 3E show that a ×1.1 upscale produces an EPI
TaPeak matching the experiments. A comparison of the
transmural heterogeneity with the ToR-ORd+Land model is
also reported in Supplementary Figure S6.

3.4 EADs, DADs and Aftercontractions
The endocardial BPSLand model did not produce EADs just by
administering quinidine or dofetilide, despite the extreme APD90

prolongation up to +272%with 0.1 µM dofetilide; +398%, +489%,
+563% with the three increasing quinidine doses.

Conversely, the M cell version, characterized by smaller IKr
and larger ICaL, reacted to both drugs with EADs and, in some

FIGURE 3 | Transmural heterogeneity simulations with BPSLand in
endocardial (green), epicardial (blue) and mid-myocardial (red) modes. (A)
Action potentials. (B) Cytosolic Ca2+ concentration. (C) Active tension. (D–E)
Comparison of the simulated and experimental active tension peak
magnitude across endocardial, epicardial and mid-myocardial cell types. The
simulated purple star represents an additional epicardial simulation where we
tested a small increments of the calcium sensitivity, ×1.1 the baseline [Ca2+]T50
value, to obtain an active tension even closer to the experimental data (Haynes
et al., 2014).
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cases, aftercontractions. The simulations shown in Figure 4
are noteworthy: for both the intermediate and high quinidine
concentrations (15 µM in the second row and 20 µM in the
third row) quinidine triggers EADs, but only some of them
have a correspondent aftercontraction. This is due to the
different mechanisms underlying each EAD and it is well
summarized in case of 20 µM quinidine, reported in more
detail in Figure 5. The smaller EADs due to ICaL reactivation
(ICaL-driven), e.g., t ~ 1.3 s or t ~ 5.3 s do not have a
corresponding aftercontractions. On the other hand, other
EADs are triggered by a spontaneous Ca2+ release from the
SR through Jrel, e.g., t ~ 2.2 s or t ~ 10.2 s, which pours into the
cytosol enough Ca2+ to trigger the contractile element to
produce an aftercontraction. Therefore, from this result, we
can hypothesize there is not a 1:1 EAD-aftercontraction
correspondence, since aftercontractions require enough
Ca2+ to start, as in the case of Jrel intervention.

We observed a similar result with dofetilide in Figure 6
where the dofetilide simulation resulted in EADs and
aftercontractions. Also in this case, the EADs are triggered
by spontaneous Ca2+ release from the SR through Jrel, as shown
in the third panel.

Following the DAD Li et al. protocol, BPSLand triggered an
unpaced beat further followed by several DADs (Figure 7).
The fast pacing protocol led to the accumulation of Ca2+ in the
SR (oscillations in [1.76, 2.12] mM instead of [1.20, 1.47] mM),
which was spontaneously released by Jrel during the diastolic
phase of the last long beat. These unpaced releases of
sarcoplasmic Ca2+ not only triggered the anticipated AP
and DADs (as we already showed in Bartolucci et al., 2020),
but it also was enough to trigger aftercontractions (Figure 7D
inset).

4 DISCUSSION

In this work, we present an updated version of our BPS2020
model of the human ventricular AP (Bartolucci et al., 2020), that
we enhanced with the contractility model presented by Land et al.
(2017). The potential of in silicomodels is getting more and more
recognition both by industry and regulators for specific
applications, e.g., cardiac safety pharmacology (Li et al., 2020;
Musuamba et al., 2021). However, most of the current cardiac cell
models focus mainly on electrophysiology, i.e., AP and Ca2+

handling, not considering the fact that the heart behaves like a
pump, and therefore the contractile activity of CMs is surely
worth of interest. Most of the diseases of interest modelled so far
within silico CM models mainly affected specific ion channels
[long QT syndrome (Clancy and Rudy, 2002; Paci et al., 2017,
2018a; Kernik et al., 2020)] or Ca2+ handling [catecholaminergic
polymorphic ventricular tachycardia (CPVT) (Koivumäki et al.,
2018)]. Conversely, hypertrophic cardiomyopathy (HCM), the
most widespread genetic cardiac disorder, primarily associates
with pathogenic variants in protein genes of sarcomere (Santini
et al., 2020). In fact, most of pathogenic variants in HCM are
hosted by myosin binding protein C and adult cardiac myosin
isoforms that are mainly programmed by MYBPS3 and MYH7
genes, respectively, (Toepfer et al., 2020). These variants are
responsible for myocardium hypercontractility (Sarkar et al.,
2020), impaired contractile relaxation (Toepfer et al., 2020),
arrhythmogenesis, diastolic dysfunction and heart failure
(Sarkar et al., 2020). Furthermore, the hypoxia-induced lack of
oxygenation in ischemia impairs the orchestrate of molecular
events leading to normal ventricular contraction (Katz, 1973).
Finally, the glycation of myofilaments in diabetes, a major risk
factor in heart failure, correlates with significant reduction in

FIGURE 4 | Illustrative traces of the membrane potential (left column) and active tension (right column) simulated by the M cell BPSLand with low (10 µM),
intermediate (15 µM) and high (20 µM) quinidine concentrations. The intermediate and high doses trigger early afterdepolarizations and aftercontractions.
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calcium sensitivity of the sarcomere (Papadaki et al., 2022) that
cannot be captured in electrophysiology-only models. The same
applies to new drugs directly targeting sarcomere dynamics, e.g.,
blebbistatin, omecamtiv mecarbil and mavacamten (Rahman
et al., 2018; Awinda et al., 2020; Fülöp et al., 2021): with no in
silico contractility description, it is not possible to properly
simulate them.

Therefore, the goal of our work was to provide the new and
validated BPSLand in silico model of human adult CMs,
combining both electrophysiology and contractility. As the
electrophysiology description by BPS2020 carried a few
novelties, especially the APD-[Ca2+]o relationship and an
extended and more reliable description of Ca2+ handling,
including the generation of DADs, it was important to us to
create a model able to translate such novelties also to contractility.
Of note, we did not aim to simulate here specific pathological
conditions affecting contractility, as this will be topic for
future works.

4.1 Development of the BPSLand Model
We followed the same strategy published by Margara et al. (2021)
for their ToR-ORd+Land model, to integrate the
electrophysiology described by BPS2020 and the contractility

of LandCE: as forward mechanism, LandCE takes as input the
cytosolic Ca2+ concentration computed by BPS2020, to compute
the fraction of troponin C units bound to Ca2+, and this new flux
of Ca2+ towards the sarcomere is then included in the equation
regulating the BPS2020 cytosolic Ca2+ concentration, to close the
loop. In terms of mathematical formulation, the process was
straightforward, as BPS2020 and ToR-ORd are both based on the
original ORd model. For the optimization of the model, we built
our cost function with the same biomarkers (TaPeak, TaTTP,
TaRT50 and TaRT95) and experimental ranges as in Land et al.
andMargara et al., and we tuned the same parameters (ku, ntm, ν,
µ and [Ca2+]T50) within the same ranges, except for the Ca2+

sensitivity [Ca2+]T50. In both Land et al. and Margara et al.,
[Ca2+]T50 was optimized within [0.8, 0.9]. However, values in that
range would have altered too much the CaT amplitude of BPS
2020. Land et al. already reported that such parameter “needs to
be fit depending on the calcium transient used to drive the
model,” as it is not consistent inter-species and also variable
in their experiments on skinned human CMs. Therefore, we
optimized [Ca2+]T50 in the range [0.5, 0.6], which allowed us to
keep the same CaT morphology and magnitude of the original
BPS 2020. As we reported in Section 2, we followed a hybrid
optimization approach based on genetic algorithm (Step 1, as in

FIGURE 5 | Early afterdepolarizations (EADs) triggered by 20 µM of quinidine and their underlying mechanisms in the M cell BPSLand. The smaller EADs due to ICaL
reactivation (ICaL-driven), e.g., t ~ 1.3 s or t ~ 5.3 s do not have a corresponding aftercontraction. Conversely, EADs trigger by a spontaneous Ca2+ release from the
sarcoplasmic reticulum through Jrel, e.g., t = ~ 2.2 s or t = ~ 10.2 s, have a corresponding aftercontraction, since Jrel pours into the cytosol enough Ca2+ to trigger the
contractile element.
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Land et al. and Margara et al.) to avoid being stuck in local
minima, followed by a simplex (Step 2) on the sarcoplasmic Ca2+

fluxes again to keep the BPSLand Ca2+ handling the most similar
to BPS2020. Already at this stage, the resulting model would have
satisfactorily simulated the considered AP and Ta biomarkers.
However, it lost the ability to simulate the inverse APD-[Ca2+]o
dependence for high [Ca2+]o values. Such dependence was one of
the key-novelties of BPS2020 (Bartolucci et al., 2020). In order to
restore it (Figure 1), we added one step of manual tuning on the
sarcoplasmic maximal fluxes Jrel,max and Jup,max, applying only
minor changes fully consistent with the physiological formulation
(Step 3). The final BPSLandmodel satisfactorily simulates AP and
Ta biomarkers, together with the APD-[Ca2+]o inverse
dependence (Figure 1; Table 4).

4.2 Validation of the Model Against In Vitro
Data and Comparison With Other In Silico
Models
We first validated BPSLand against the same AP data (APD
rate dependence and restitution in control condition and with
current blocker) used to validate BPS2020 and the original
ORd model. The rationale is we want BPSLand to work as well
as BPS2020 in simulating electrophysiology data. As we
already presented in detail those simulations in Bartolucci
et al. (2020), here we report our results and the used protocols

in the Supplementary Section S1 and Supplementary Figures
S2, S3). These results confirm that adding the mechanical
model have not altered the behaviour of the model
electrophysiology. Nevertheless, it should be taken into
account that having a single experimental dataset, including
both electrical and mechanical measurements, would be the
ideal setting to better calibrate and validate an
electromechanical model (same in vitro preparations, clearer
assessment of the mechanoelectric feedback, etc.). However, to
our current knowledge, there is no such kind of data collection.

In terms of contractile properties, we compared BPSLand
simulations to in vitro experiments performed on human CMs
and cardiac preparations (Section 2.1). BPSLand successfully
simulated the linear force-frequency dependence reported by
Janssen and Periasamy (2007) (Figure 2). Such dependence
was previously simulated by Lyon et al. (2020), although
obtaining lower values of normalized force compared to
BPSLand and to in vitro data in the range [1, 2.5] Hz (see
Figure 2B in the original Lyon et al. paper). In terms of
relaxation time, BPSLand optimally replicated the CaRT50 data
by Pieske et al., and very well the TaRT50 by Pieske et al. (1995)
and Janssen and Periasamy (2007). BPSLand TaRT50 is lower at
the slowest pacing rates (Figure 2). We ascribe this discrepancy to
the TaRT50 interval we used at 1 Hz during the model
optimization: BPSLand and Janssen07 TaRT50 are positioned
at the opposite sides of such interval (purple line in Figure 2)

FIGURE 6 | Illustrative early afterdepolarizations and aftercontractions triggered by 0.1 µM of dofetilide in the M cell BPSLand.
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while Pieske95 is out of bound. In terms of transmural
heterogeneity (Figure 3), BPSLand simulations are in
agreement with the in silico results of ToR-ORd+Land in
terms of APD (M > ENDO > EPI) and TaPeak (M > EPI >
ENDO) sequences, although the TaPeak values are greater in
ToR-ORd+Land than in our model (M ~ 60 kPa, EPI ~ 40 kPa,
ENDO ~ 20 kPa). In fact, although we used the same TaPeak
range as in Margara et al. (2021), i.e., [15, 25] kPa, BPSLand
simulates a reference ENDO TaPeak equals to 15.6 kPa, which is
more in line with the Haynes et al. (2014) in vitro values
(Figure 3), especially for the small difference we observed in
our ENDO vs. EPI TaPeak. As in Margara et al. (2021), we have
tested heterogeneities in myofilament calcium sensitivities by
acting on the baseline [Ca2+]T50 value for the epicardial cell
type (Figure 3E), showing that a small change of the
[Ca2+]T50 parameter replicates better the experiments. This
result suggests that simulating transmural heterogeneity with
electromechanical models may not only require re-calibration

of the electrophysiological part but also of the mechanical part of
the chosen model (Haynes et al., 2014).

Abnormalities in the ionic regulations of cardiomyocytes e.g.,
EADs and DADs can trigger the occurrence of a contractile
irregularity in form of aftercontractions (Nguyen et al., 2017) the
incidence of which has been reported in animal models of heart
failure associated with arrhythmogenesis (Pogwizd et al., 2001). We
observed that the endocardial BPSLand, as the original BPS2020,
reacts to dofetilide and quinidine not producing EADs nor
aftercontractions, but with an extreme prolongation of APD. This
is not surprising, since we designed BPSLand carefully maintaining
the electrophysiology of BPS2020. On the other hand, the M cell
model reacted to both drugs with such abnormalities in
electrophysiology and contractility. From the modelling point of
view, it is not surprising: compared to the endocardial model, the M
cell model has smaller GKr (thus smaller repolarization reserve),
larger GCaL (thus being prone to more significant reactivation of ICaL
during phase 3 of the AP) and Jrel,max (i.e., larger releases, also

FIGURE 7 | Aftercontractions triggered by anticipated beats and DADs in the endocardial (left column) and M cell (right column) BPS 2020. The action potential at
t = 0 is the long beat at BCL = 10,000 ms, following 1,500 beats at BCL = 275 ms. The action potential at t ~ 6 s (left) and t ~ 4.2 s/4.7 s/6.4 s (right) is triggered by the
spontaneous Ca2+ release from the sarcoplasmic reticulum and not by external pacing. (A)Membrane potential. (B) Ca2+ release flux from the sarcoplasmic reticulum.
(C) Cytosolic Ca2+ concentration. (D) Active tension with aftercontractions. The zoomed inset on the left column highlights the small aftercontractions
corresponding to the DADs following the anticipated action potential.
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spontaneous, of Ca2+ from SR). From the in vitro point of view, the
higher sensitivity of M cells to drugs affecting repolarizing ion
currents compared to endocardial and epicardial was reported by
Antzelevitch et al. (1999), with a panel of 13 drugs. Nonetheless, we
did not observe a 1:1 correspondence between EADs and
aftercontractions. We previously observed (see Figure 6C in the
original BPS2020 paper) EADs triggered by two different
mechanisms: ICaL reactivation-driven and RyR spontaneous
opening-driven EADs, as we also report here in Figure 5. Only
in the case of a RyR spontaneous opening-driven EAD, we also have
the corresponding aftercontraction, which is not present for ICaL-
driven EADs. Similarly to RyR spontaneous opening-driven EADs,
also DADs are source of aftercontractions (Desantiago et al., 2008).
BPSLand correctly simulated them using a protocol aimed to stress
the model. Aftercontractions have been reported in vitro following
the administration of diverse compounds or in presence of
mutations in several cardiac preparations, e.g., cardiac tissues and
trabeculae following dofetilide administration (Nguyen et al., 2017),
in myocardial slices containing titin and collagen administered with
isoproterenol (Watson et al., 2019), or in CPVT human induced
pluripotent stem cell-derived CMs (Novak et al., 2012).

4.3 Limitations
The proposed computational model can be used to better
understand the electromechanical interactions and the strong
relationship between Ca2+ regulation and mechanics. Despite this,
the experimental in vitro human data, taking into account both
electrical and mechanical aspects, are still few, and urgently required
to ensure better insight in electromechanical coupling and design
more accurate models. The BPSLand model itself has some
limitations. Preload and afterload conditions contribute to
contractility response and should be considered in future model
developments by including a mathematical description of dynamic
changes in sarcomere length, since now only the isometric condition
can be simulated. Other previously published mechanical models,
e.g., Rice et al. (2008), Dupuis et al. (2016), and Dupuis et al. (2018),
also include a mechanical description of sarcomere lengthening and
shortening, thus expanding the range of possible simulations. Our
choice to use Land model is based on the fact that it is validated
against human experimental data. BPSLand model describes
mechano-electric feedback only through the binding of calcium
to troponin, but this phenomenon also includes other actors, for
example stretch-activated ion channels (Peyronnet et al., 2016),
which are modulated by membrane stretch and yield a current
acting on the cardiomyocyte membrane potential. Future works
should include into the model also these channels. Figures 2B,C
show another limitation of BPSLand: while the model captures well
the CaRT50 in vitro data, it slightly underestimates the TaRT50, as
BPSLand simulates very similar CaRT50 and TaRT50 for each tested
rate. One reason could be a slightly too fast relaxation dynamic in the
contractile element. However, we replicated the same test with a
second in silico model (Supplementary Figure S4) and an even
more different behavior emerges. As cardiomyocyte
electromechanical models are not so common yet as
electrophysiology only models, it is clear that further iterations of
optimization and validation shall be made in the future. Finally, we
did not test the application of the model to multiscale simulations

(2D or 3D) since it was beyond the scope of the work, although it will
be interesting to check BPSLand behaviour also in this field of
applicability.

5 CONCLUSION

In this paper, we presented our new electromechanical model of
human adult ventricular cardiomyocyte, built and validated using
several sets of human in vitro experiments. In addition to
replicate correctly the results produced by its predecessor
BPS2020, BPSLand adds an accurate simulation of active
tension and contractility abnormalities, which can be triggered
by drugs or specific pacing protocols. Therefore, BPSLand
expands the domain of applicability of in silico model, which
traditionally focus mainly on the simulation of the cardiac cell
electrophysiology.
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of MRI-Based Biventricular Anatomy
and ECG-Based Cardiac
Electrophysiology
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Human cardiac function is characterized by a complex interplay of mechanical deformation
and electrophysiological conduction. Similar to the underlying cardiac anatomy, these
interconnected physiological patterns vary considerably across the human population with
important implications for the effectiveness of clinical decision-making and the accuracy of
computerized heart models. While many previous works have investigated this variability
separately for either cardiac anatomy or physiology, this work aims to combine both
aspects in a single data-driven approach and capture their intricate interdependencies in a
multi-domain setting. To this end, we propose a novel multi-domain Variational
Autoencoder (VAE) network to capture combined Electrocardiogram (ECG) and
Magnetic Resonance Imaging (MRI)-based 3D anatomy information in a single model.
Each VAE branch is specifically designed to address the particular challenges of the
respective input domain, enabling efficient encoding, reconstruction, and synthesis of
multi-domain cardiac signals. Our method achieves high reconstruction accuracy on a
United Kingdom Biobank dataset, with Chamfer Distances between reconstructed and
input anatomies below the underlying image resolution and ECG reconstructions
outperforming multiple single-domain benchmarks by a considerable margin. The
proposed VAE is capable of generating realistic virtual populations of arbitrary size with
good alignment in clinical metrics between the synthesized and gold standard anatomies
and Maximum Mean Discrepancy (MMD) scores of generated ECGs below those of
comparable single-domain approaches. Furthermore, we observe the latent space of our
VAE to be highly interpretable with separate components encoding different aspects of
anatomical and ECG variability. Finally, we demonstrate that the combined anatomy and
ECG representation improves the performance in a cardiac disease classification task by
3.9% in terms of Area Under the Receiver Operating Characteristic (AUROC) curve over
the best corresponding single-domain modeling approach.

Keywords: multi-domain variational autoencoder, combined electrocardiogram and cardiac anatomy generation,
cardiac disease classification, point clouds, cine magnetic resonance imaging, cardiac electrophysiology, time
series analysis, geometric deep learning
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1 INTRODUCTION

Healthy cardiac function of the human heart consists of complex
interactions between anatomical deformations and
electrophysiological conduction patterns which vary
considerably between individuals in the population.
Accounting for this variability is of high importance in clinical
practice as it heavily influences the accuracy of cardiovascular
disease diagnosis and treatment. Consequently, it is also a core
objective of computational modeling approaches of cardiac
anatomy and function to correctly represent these inter-person
differences and enable more personalized and accurate computer
models. Two of the most commonly used modalities in clinical
practice to assess healthy cardiac function on both an individual
and a population level are, respectively, the cardiac Magnetic
Resonance Imaging (MRI) (Stokes and Roberts-Thomson, 2017)
and the Electrocardiogram (ECG) (Macfarlane and Lawrie, 2010).

Due to its high soft-tissue contrast and lack of ionizing
radiation combined with high temporal resolution, cardiac
cine MRI is currently considered the gold-standard for image-
based cardiac function analysis (Stokes and Roberts-Thomson,
2017). It has also been extensively used to determine normal
cardiac behavior and investigate inter-patient differences. To this
end, several image-based atlases of the heart with associated
statistical shape models of cardiac anatomy and function have
been developed for a variety of different populations and cardiac
substructures (Bai et al., 2015; Nagel et al., 2021). In these
approaches, a mean template shape is typically created from a
distribution of image-derived cardiac shapes, followed by
Principal Component Analysis (PCA) to model population
variability (Tavakoli and Amini, 2013; Bai et al., 2015; Piazzese
et al., 2017). More recently, deep learning approaches based on
Variational Autoencoders (VAE) or Generative Adversarial
Networks (GAN) have also been explored for this purpose
(Litjens et al., 2017; Bello et al., 2019; Biffi et al., 2020; Gilbert
et al., 2020; Beetz et al., 2021b; Rezaei, 2021). The resulting
statistical models have a variety of use cases, including the
prediction of certain cardiac disease events (Acero et al.,
2022), the association analysis of cardiac shape and disease
risk factors (Mauger et al., 2019), and the generation of virtual
populations for physiological simulations (Mincholé et al., 2019;
Niederer et al., 2020; Romero et al., 2021).

The ECG offers an easy and non-invasive procedure to capture
and visualize the electrical conduction patterns of the heart and is
therefore widely used in clinical diagnosis and electrophysiology
modeling (Macfarlane and Lawrie, 2010). Similar to cine MRI,
considerable research has been focused on capturing population
variability in the ECG signals. For example, PCA has been applied
to ECG data to derive respiratory signals (Langley et al., 2009),
estimate the effect of diabetes on ECG parameters (Kalpana et al.,
2013), or classify ECG beats (Martis et al., 2013). GAN and VAE-
based approaches have more recently been investigated for the
task of virtual ECG generation and to analyze ECG shape
variations across the population (Delaney et al., 2019; Zhu
et al., 2019; Kuznetsov et al., 2021).

However, in all aforementioned works, inter-subject
variability was modeled based on either MRI or ECG

information separately in a single-domain setting. This
neglects the complex, non-linear relationships between
anatomical deformations and electrophysiological conduction,
and therefore inhibits a more holistic understanding of cardiac
function and its variability across the human population. Hence,
the objective of this work is to combine both cine MRI-based
cardiac anatomy information and ECG-based electrophysiology
information across a whole population in a single data-driven
modeling approach and study their variations and interactions in
this multi-domain setting. To this end, we propose a multi-
domain variational autoencoder framework consisting of
multiple domain-specific branches and a latent space shared
across all branches for cross-domain information exchange.
The design of the individual branches, loss function, and
training procedure are specifically tailored to a multi-domain
dataset consisting of both MRI-based cardiac anatomy
information and ECG-based electrophysiology signals.
Anatomical information is represented as high-resolution and
multi-class 3D point clouds reconstructed from cine MRI
acquisitions and can be efficiently processed by the point
cloud-based deep learning branches. Anatomies at both the
End-Diastolic (ED) and End-Systolic (ES) phases of the
cardiac cycle are used together with the corresponding ECG
signals to give the network access to both spatial and temporal
information.

Similar to the single-domain shape modeling approaches, the
multi-domain VAE has a variety of possible use cases in both
clinical and research settings, such as problem-specific
dimensionality reduction of high-dimensional data,
interpretable shape analysis of both spatial and temporal data,
explainable cardiac disease identification and prediction, or the
generation of virtual population cohorts for mechanical and
electrophysiological computer simulations or to augment
datasets for training machine learning or deep learning
classifiers or regressors.

To the best of our knowledge, this is the first deep learning
method to capture the combined cardiac anatomy and
electrophysiology data in a single model. In summary, our
contributions are as follows:

• We present a novel multi-domain variational autoencoder
capable of modeling combined cardiac anatomy and
ECG data.

• We provide a detailed explanation of the preprocessing
steps, network architecture, loss function, and training
procedure.

• We assess the VAE’s ability to reconstruct multi-domain
data on a United Kingdom Biobank dataset (Petersen
et al., 2015, 2013) of 1,000 cases and compare the
reconstruction performance with multiple single-
domain benchmarks.

• We evaluate the VAE’s capability to generate realistic virtual
populations of combined anatomy and ECG data and
perform a comparative analysis with the gold standard
test set and multiple single-domain benchmarks.

• We investigate the VAE’s latent space with regards to its
interpretability and degree of disentanglement.
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• We develop and evaluate a machine learning classifier for
cardiac disease prediction from the VAE’s latent space.

• We include a detailed discussion of our findings and a
pertinent literature review.

A preliminary version of this work was presented in Beetz et al.
(2022). This paper provides a more comprehensive explanation of
the methodology, additional new experiments including
comparisons with various benchmarks and application to 150
pathological cases, and a substantially expanded discussion and
literature review.

2 MATERIALS AND METHODS

In this section, we describe the multi-domain dataset used for
method development (Section 2.1) and explain the required
preprocessing steps (Section 2.2) as well as our method’s
architecture (Section 2.3, Section 2.4, Section 2.5), loss
function (Section 2.6), and training procedure (Section 2.7).

2.1 Dataset
We conduct our research work using 1,300 subjects from the
United Kingdom Biobank imaging study (Petersen et al., 2013)
for which paired cardiac cine Magnetic Resonance (MR) images
and electrocardiograms were acquired (Petersen et al., 2015). All
cine MR short-axis images had a voxel resolution of 1.8 × 1.8 ×
8.0 mm3 and typical image dimensions of 208 × 168–210, while
the cine MR long-axis images had a voxel resolution of 1.8 × 1.8 ×
6.0 mm3 with typical image dimensions of 208 × 126–180
(Petersen et al., 2015). 1,150 subjects were assumed to be

healthy individuals, while 150 cases suffered from at least one
pathology related to the cardiovascular system. These
cardiovascular disease cases were identified following the same
procedure outlined in Bai et al. (2020), based on the self-reported
disease codes in the United Kingdom Biobank (see
Supplementary Table S1). We select 1,000 presumably
healthy cases for the initial method development and the
experiments in Section 3.2, Section 3.3, Section 3.4, and
Section 3.5. The dataset is randomly split into training,
validation, and test sets of sizes ~800, ~50, and ~150,
respectively, to give the network access to enough cases for
training, while at the same time retaining a sufficiently high
number of cases for method evaluation. We use the remaining
150 healthy and 150 diseased cases for our cardiac disease
classification experiment described in Section 3.6.

2.2 Domain-Specific Data Preprocessing
In order to extract the anatomical and physiological information
required for training our multi-domain VAE from the raw cine
MRI and ECG signals, we first apply various preprocessing steps
to the data from each modality (Figure 1A,B). Regarding the
imaging data (Figure 1A), we first segment both short- and long-
axis images of the cine MRI acquisition into four classes that
delineate the anatomical substructures of interest (Left
Ventricular (LV) cavity, LV myocardium, Right Ventricular
(RV) cavity, and background) using the fully convolutional
neural networks as detailed in Banerjee et al. (2021) and Bai
et al. (2018). Next, we use the obtained segmentation masks from
the short-axis images to identify the ED and ES phases of the cine
MRI sequence for each case as anatomical representations of the
extreme ends of the cardiac cycle (Banerjee et al., 2021). The final

FIGURE 1 | Overview of the proposed combined anatomy and ECG modeling pipeline. We first reconstruct point cloud representations of the 3D biventricular
anatomy at the ED and ES phase of the cardiac cycle (A) and preprocess the raw ECG acquisitions (B) to create a multi-domain dataset. We then use this data to train a
multi-domain variational autoencoder (C) to capture combined cardiac anatomy and electrophysiology information in a singlemodel. The VAE architecture (C) consists of
three separate encoder-decoder branches, one for each network input (ED anatomy, ES anatomy, ECG), that share a common latent space for cross-modal
information exchange. Each branch architecture is specifically tailored to the requirements of the respective input type, i.e. point clouds for anatomy and time series for
ECG processing (Figure 2).
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3D point clouds of the biventricular anatomy are reconstructed at
both ED and ES phases from the selected slices using the
approach described in Beetz et al. (2021a). For ECG data
(Figure 1B), the United Kingdom Biobank provides both a raw
acquisition consisting of multiple heart beats, as well as a combined
ECG signal that averages the information from multiple cardiac
cycles into a single one-heartbeat representation for each lead. In
this work, we focus on the lead II signals, since they provide a good
view of the P and R waves, are predictive of many cardiac
arrhythmias, and are also used by previous methods (Delaney
et al., 2019; Wang et al., 2019). We choose the average lead II signal
in each case as our ECG data and apply the standardization step, i.e.
subtracting themean value from each data instance and dividing by
the standard deviation, to each resulting time series. The
preprocessed ECG is then combined with the corresponding 3D
point cloud reconstructions of the biventricular anatomy at the ED
and ES phases of each case to form the multi-domain dataset used
for method development.

2.3 Multi-Domain Variational Autoencoder
In order to capture the combined anatomy and ECG data
obtained from the preprocessing steps, we propose a multi-
domain β-VAE (Higgins et al., 2017) architecture with three
branches that share a common latent space for inter-modal
information sharing (Figure 1C).

Each of the three branches has an encoder-decoder structure
and is responsible for processing one of the three inputs, namely

the ED anatomy point cloud, the ES anatomy point cloud, and the
ECG. The encoder outputs of the three branches are tasked with
predicting the mean and standard deviation vectors of the
multivariate Gaussian distribution of the latent space following
the standard variational autoencoder setting (Kingma and
Welling, 2013). A 12-dimensional vector is sampled from this
distribution and passed into each decoder of the three branches
which aim to reconstruct the input of their corresponding
encoder branch. The reparameterization (Kingma and Welling,
2013) trick is applied during training. The architectures of each of
the three branches are specifically designed to enable efficient
processing of the respective data type (i.e. point clouds and time
series) and are described in greater detail in Section 2.4 and
Section 2.5. The two anatomy branches share the same network
architecture (Section 2.4) but maintain separate trainable
network parameters, while the ECG branch exhibits a different
design (Section 2.5).

2.4 Point Cloud Branches
The architecture of the two anatomy branches of the multi-
domain VAE (Figure 2A,B) follows an extended version of the
point completion network (Yuan et al., 2018) and its adaptations
to cardiac image analysis (Beetz et al., 2021b).

The network input point clouds are encoded as sets of
36,000 4-dimensional vectors consisting of the 3D coordinates
and the class label of each point which indicates its cardiac
substructure (LV endocardium, LV epicardium, RV

FIGURE 2 | Overview of the encoder and decoder architectures of both the point cloud (A,B) and time series (C,D) branches of the multi-domain VAE. The input
point cloud (A) encodes the biventricular anatomy as a set (n = 36,000) of 4D vectors (x,y,z coordinates and the class label of each point), while a separate set of 3D point
coordinates is used for each of the three cardiac substructures in the output point cloud (B). The point cloud decoder (B) outputs both a coarse, low-dimensional (2,250
points) and a dense, high-dimensional (36,000 points) representation of the cardiac anatomy. The former represents the final output used for further processing,
while the latter primarily facilitates the training process in this work (Eq. 5) by first focusing on an approximate reconstruction and later putting more emphasis on the
dense output. Both input and output ECG time series (C,D) are represented as 400-dimensional vectors. Both encoders (A,C) are tasked with predicting the shared
latent space z. The time-series decoder (D) follows a symmetric design to its encoder (C) and aims to reconstruct the input ECG signal from the latent space during
training. (Background colors of architecture blocks are consistent with Figure 1)
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endocardium). Point clouds are then passed through the encoder
(Figure 2A), which resembles a multi-class extension of the
Pointnet (Qi et al., 2017a) architecture. Similar to (Qi et al.,
2017b), it consists of two stacked Pointnets that are connected via
a skip connection as well as a pooling and an unpooling step.
Furthermore, we add additional fully connected layers before the
latent space to enable easier information sharing. The encoder
outputs are then concatenated with the respective outputs of the
other two branches before the variational sampling step is
applied. The sampled latent space vector is then provided as
input into the decoder (Figure 2B) where a multi-layer
perceptron (MLP) is first tasked with creating a low-resolution
multi-class point cloud with 2,250 points. This coarse point cloud
aims to represent the biventricular anatomy on a global level and
is primarily used to stabilize the training process of the network in
the early stages. The second step of the decoder follows the design
of FoldingNet (Yang et al., 2017) and processes the previous low-
resolution output, the sampled latent space vector, and a set of
tiled point grids to generate a high-resolution multi-class point
cloud with 36,000 points as the final network output. For both the
low and high resolution output point clouds, each class is
represented by a separate set of 750 and 12,000 3D
coordinates, respectively.

2.5 Time-Series Branches
The architecture of the ECG branch combines convolutional,
pooling, and dense layers to capture both local and global patterns
at different scales (Figure 2C,D). The encoder (Figure 2C)
receives each ECG time series as a 400-dimensional input
vector and passes it through two convolutional blocks, each of
which consists of a 2D convolution, an Exponential Linear Unit
(ELU) activation function, and a batch normalization layer. This
is followed by an average pooling layer and two fully connected
layers, which output the mean and standard deviation vectors of
the multivariate normal distribution of the latent space,
respectively. Next, the sampled vector z from the shared latent
space distribution of the multi-branch autoencoder is fed through
a dense block with two fully connected layers at the beginning of
the decoder (Figure 2D). Subsequently, two transposed 2D
convolutions are applied to obtain the 400-dimensional ECG
time series reconstruction as the final network output.

2.6 Loss Function
Following the formulation of the β-VAE (Higgins et al., 2017)
framework, our loss function Ltotal is composed of the sum of a
reconstruction loss term Lrecon and a regularizing term LKL
weighted by the parameter β, as

Ltotal � Lrecon + β pLKL. (1)
We use the Kullback-Leibler divergence between the latent

space distributionQ (z|X) and the multivariate standard Gaussian
prior distribution P(z) as the regularizing loss term LKL, where X
refers to the VAE inputs and z to the VAE’s latent space. This
encourages each latent space component to follow a normal
distribution with zero mean and standard deviation of one,
which we choose as our prior P(z).

LKL � DKL Q z|X( )‖P z( )[ ] (2)
The reconstruction loss Lrecon consists of three loss terms, one

for each of the three branches in the multi-domain autoencoder.
It incentivizes the VAE to output anatomy and ECG signals that
are as close as possible to the respective inputs, which we consider
to be our physiologically accurate gold standard for network
training.

Lrecon � LED + LES + γ p LECG (3)
We introduce a parameter γ to control the importance of the ECG
reconstruction during training.

We choose the mean squared error between the reconstructed
ECG signals xn and the gold standard ECG signals yn across N time
steps as our ECG loss term LECG to put more emphasis on correctly
capturing less common values, such as the R-peak of the ECG signal.

LECG � 1
N

∑N
n�1

xn − yn( )2 (4)

Each of the two anatomy loss terms LED and LES consists of the
weighted sum of a coarse and a dense loss term over all three
classes C corresponding to the respective cardiac substructures.
We consider each part of the anatomy as equally important in the
loss function and therefore do not use any class-specific weighting
parameter.

LED/ES � ∑C
i�1

Lcoarse,i + α pLdense,i( ) (5)

The coarse loss term measures the difference between the low-
density output of the point cloud decoder and the ground truth,
while the dense loss term compares the high-density output point
cloud with the same ground truth. The weighting parameter α is
used during training to first prioritize a good global structure of
the coarse prediction and then gradually put increasing emphasis
on local accuracy in the dense point cloud prediction.

Both the coarse and dense loss terms are calculated using the
Chamfer Distance (CD) between the point cloud predicted by the
network P1 and the ground truth input point cloud P2.

CD P1, P2( ) � 1
2

1
|P1| ∑

x∈P1

min
y∈P2

‖x − y‖2 + 1
|P2| ∑

y∈P2

min
x∈P1

‖y − x‖2⎛⎝ ⎞⎠
(6)

Since the Chamfer Distance aims to find the closest point in the
ground truth point cloud for each point in the input point cloud
and vice versa, it can be considered as an approximate surface-to-
surface distance on point cloud data between the respective
anatomical shapes.

2.7 Implementation and Training
Our deep learning experiments are conducted on a GeForce RTX
2070 Graphics Card with 8 GB memory. We use TensorFlow
(Abadi et al., 2016) and Scikit-learn (Pedregosa et al., 2011) for
our deep learning and machine learning implementations,
respectively. All VAEs are trained using the Adam optimizer
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(Kingma and Ba, 2014) with a mini-batch size of 4, which we
empirically found to provide a good balance between the memory
and time constraints of our setup and the improved gradient
quality during network training. The training duration is set to
150,000 steps based on the convergence of the loss function in the
validation dataset. We set all loss weighting parameters to small
values (α and β to 0.01, γ to 0.1) at the start of training to focus on
obtaining a good coarse reconstruction of the two anatomy point
clouds. We then gradually increase both α and γ to improve local
prediction quality in both anatomy and ECG outputs. After both
parameters have reached a value of 1, we increase the β parameter
using a variation of the monotonic annealing schedule (Bowman
et al., 2015) to improve the latent space quality. We stop the β
value at 0.25, which we have empirically found to provide a good
balance between overall reconstruction quality and latent space
quality.

3 EXPERIMENTS AND RESULTS

We evaluate the proposed multi-domain VAE in terms of its
performance in multiple tasks. First, we investigate its ability to
correctly reconstruct paired input data from all three domains
(Section 3.2). Second, we assess its ability to generate virtual
populations of realistic ECGs and anatomy point clouds, both
within and across the different domains (Section 3.3, Section
3.4). Third, we analyse the effect of certain latent space changes
on the reconstructed ECG and anatomy shapes to gain a better
understanding of the latent space distribution (Section 3.5).
Finally, we compare the compressed latent space
representation of the proposed multi-domain VAE with its
single-domain counterparts in a cardiovascular disease
classification task (Section 3.6). We propose multiple different
metrics for the outlined experiments to account for the different
data types and objectives (Section 3.1).

3.1 Evaluation Metrics
In order to assess the VAE’s ECG reconstruction quality, we
follow the metrics suggested by Zhu et al. (2019), which allows us
to compare our results with the task of ECG-only generation
without any image-based anatomy information. Accordingly, we
use the Root Mean Squared Error (RMSE) as our first metric to
quantify the distance between predicted ECG time series x and
ground truth ECG time series y in our test dataset, each with a
length of N time steps.

RMSE �

														
1
N

∑N
n�1

xn − yn( )2
√√

(7)

In addition, our second ECG reconstruction metric, Percentage
Root Mean Squared Distance (PRD), provides a relative and
normalized quantification of the reconstruction performance.

PRD �

																	
1∑N

n�1x2
n

∑N
n�1

xn − yn( )2
√√

p 100 (8)

The anatomy reconstruction quality achieved by our VAE is
evaluated using the average Chamfer Distance (Eq. 6) between
the predicted and ground truth point clouds of the test dataset for
both the ED and ES phases.

Similar to work by Delaney et al. (2019) on ECG-only
generation, we propose the Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012) between two randomly
generated distributions as a metric to assess the generative
ability of our network. Hereby, K refers to the Gaussian kernel
and x and y refer to the two sample distributions of sequences
with sizes n and m respectively.

MMD � 1
n n − 1( ) ∑

n

i�1
∑n
j≠i

K xi, xj( ) + 1
m m − 1( ) ∑

m

i�1
∑m
j≠i

K yi, yj( ) − 2
nm

∑n
i�1

∑m
j�1

K xi, yj( )⎡⎢⎢⎣ ⎤⎥⎥⎦12
(9)

In order to evaluate the quality of the generated anatomies at
ED and ES separately, we select the widely used clinical evaluation
metrics LV volume, RV volume, and myocardial mass. In

FIGURE 3 | Qualitative reconstruction results of the proposed method
for three sample cases.
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addition, we choose the Stroke Volume (SV) (Eq. 10) and
Ejection Fraction (EF) (Eq. 11) metrics for both the LV and
RV, to assess the correspondence between the generated
anatomies at ED and ES.

SV � EDV − ESV. (10)
EF � SV

EDV
× 100. (11)

Here, EDV and ESV refer to ED volume and ES volume,
respectively. Furthermore, we select the Area Under the
Receiver Operating Characteristic (AUROC) curve to evaluate
the performance in the binary cardiac disease classification task.

3.2 Reconstruction Ability
We first focus on the network’s ability to accurately reconstruct
both the two input point clouds and the input electrocardiogram.
To this end, we pass the ED point cloud, the ES point cloud, and
the ECG time series of each case of the test dataset through the
network and compare the network’s predicted outputs with the
respective inputs. Figure 3 shows input and prediction data of
three such sample cases.

We observe good global and local alignment between inputs
and predictions of both point cloud and time series data. Class
information in the form of three anatomical substructures is also
accurately reconstructed for both ED and ES point clouds. Next,
we quantify our method’s reconstruction ability on the test
dataset using separate metrics for each modality.

For the ECG data, we select the RMSE (Eq. 7) and PRD (Eq. 8)
metrics to determine our method’s reconstruction error. We
apply min-max normalization to both the input and predicted
time series data before calculating the metrics, in order to
compare the obtained values with the performance of multiple
approaches proposed by Zhu et al. (2019) for single-domain
ECG-only generation using the MIT-BIH dataset (Goldberger
et al., 2000) (Table 1). In addition, we train and evaluate a
separate VAE on only the ECG signals of our
United Kingdom Biobank dataset as a benchmark method for
our multi-domain VAE. It follows the encoder and decoder
architecture presented in Figure 2C,D and uses the same ECG
data and preprocessing steps as our proposed approach, allowing
for a direct comparison (Table 1).

We find that the proposed multi-domain VAE method
achieves lower reconstruction errors than the ones reported by
Zhu et al. (2019) for any of their architectures, both in terms of

RMSE and PRD, despite the more challenging task of combined
anatomy and electrocardiogram generation. However, this result
should only be interpreted as an approximate marker of the
reconstruction quality of our method instead of a direct
outperformance, since different datasets and signal
preprocessing steps were used in each analysis. For example,
while the proposed approach uses the ECG signals averaged to
one cardiac cycle from the United Kingdom Biobank, Zhu et al.
(2019) did not mention the usage of averaged signals. Compared

TABLE 1 | ECG reconstruction results of multiple methods on different datasets.

Method Dataset RMSE PRD

BiLSTM-CNN GAN * MIT-BIH 0.22 51.80
BiLSTM-GRU * MIT-BIH 0.31 74.05
BiLSTM-LSTM * MIT-BIH 0.35 84.80
BiLSTM-MLP * MIT-BIH 0.61 147.73
ECG VAE United Kingdom Biobank 0.16 26.51
Multi-Domain VAE (Proposed) United Kingdom Biobank 0.17 27.45

*Values obtained directly from Zhu et al. (2019)

TABLE 2 | ED and ES anatomy reconstruction results of our method on the test
dataset.

Phase Class Chamfer Distance (mm)

ED LV endocardium 1.37 (±0.40)
LV epicardium 1.29 (±0.29)
RV endocardium 1.42 (±0.29)

ES LV endocardium 1.11 (±0.39)
LV epicardium 1.23 (±0.45)
RV endocardium 1.35 (±0.55)

Values represent mean (±standard deviation)

FIGURE 4 | Five randomly generated sample outputs where each row
presents one case.
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to the VAE trained on only ECG signals on the same
United Kingdom Biobank dataset, our method achieves similar
results for both evaluation metrics.

We quantify the reconstruction ability of our method for
the point cloud data of the test dataset using the Chamfer
Distance (Eq. 6). The resulting values for both ED and ES
reconstructions, split by the three cardiac substructures, are
reported in Table 2.

We find low distance values that are smaller than the voxel
sizes of the image acquisitions (1.8 × 1.8 × 8.0 mm3) used to
generate the 3D point clouds for both the ED and ES phases as
well as for all cardiac substructures. Distances are slightly larger
for the right ventricle compared to left ventricular structures and
for the ED phase than for the ES phase.

3.3 Generative Ability
In order to assess our network’s ability to generate diverse
populations with realistic anatomies and ECGs, we randomly
sample from the latent space distribution and pass the resulting
vectors through the three branches of the decoder. The mean and
standard deviation values of the multivariate normal distribution
of the latent space are determined based on the averaged encoder
outputs of the training data. Hence, every component of the latent
space is involved in the sampling step. Five randomly generated
decoder outputs, each consisting of an ED anatomy point cloud,
an ES anatomy point cloud, and an ECG, are depicted in Figure 4.

We observe that all outputs follow realistic shapes and sizes
while maintaining a good amount of diversity between different
cases. For example, the case in the first row exhibits considerably
larger heart sizes at both ED and ES and a noticeably higher
R-peak in the electrocardiogram as compared to the case in the
fourth row.

Next, we evaluate the multi-domain VAE’s capability for
ECG generation on a population level. To this end, we
synthesize 500 virtual electrocardiogram signals from
randomly sampled latent space vectors and calculate their
MMD (Eq. 9) with respect to the ECGs in our test dataset. We
repeat the same procedure for the ECG-only VAE to enable a
comparison of our multi-domain approach with a single-
domain method on the same dataset. We also randomly
split the test dataset into two subsets and determine the
MMD between these two subsets to obtain a gold standard
benchmark for desired ECG population similarity. The
resulting values are reported in Table 3, together with
MMD scores obtained from different approaches by

Delaney et al. (2019) on the MIT-BIH dataset (Goldberger
et al., 2000) and by Kuznetsov et al. (2021) on the LUDB
dataset (Kalyakulina et al., 2020) for ECG-only generation.

Our method achieves lower MMD scores than all other
methods by a considerable margin. However, similar to the
comparisons of our method’s reconstruction performance, it
should again be noted that the other approaches utilize
different datasets and preprocessing steps. For example,
Delaney et al. (2019) generated ECGs with multiple cardiac
cycles, while Kuznetsov et al. (2021) focused on ECGs
consisting of a single cardiac cycle. Furthermore, we find that
the multi-domain VAE achieves a comparable MMD value as the
ECG-only VAE. Comparing our method’s MMD to the gold
standard MMD achieved on the same test dataset, we observe a
74% lower MMD value.

The population quality of the generated ED and ES anatomies
is assessed by calculating population-wide cardiac anatomy
metrics, which are commonly used in clinical practice, for
both the 500 generated point clouds and the point clouds of
the test dataset that we consider the gold standard for this
analysis. Table 4 depicts the resulting values for the LV and
RV volumes of each phase and the LV mass.

All clinical metrics show high degrees of similarity between
generated and gold standard point cloud populations for both ED
and ES phases, indicating that the VAE was able to successfully
generate realistic virtual anatomies.

3.4 Combined Multi-Domain Generation
While our previous analyses have demonstrated the
population quality of the generated ECGs and anatomies
separately for each domain, we also want to investigate
whether the same holds true for combined distributions of

TABLE 3 | ECG generation results of multiple methods based on different datasets.

Method Dataset MMD

4CNN GAN (Delaney et al., 2019)* MIT-BIH 1.03 × 10–3

4CNN BiLSTM GAN (Delaney et al., 2019)* MIT-BIH 1.13 × 10–3

VAE (Kuznetsov et al., 2021)* LUDB 3.83 × 10–3

Gold standard (test dataset) United Kingdom Biobank 1.40 × 10–4

ECG VAE United Kingdom Biobank 3.05 × 10–5

Multi-Domain VAE (Proposed) United Kingdom Biobank 3.54 × 10–5

*Values obtained directly from Delaney et al. (2019) or Kuznetsov et al. (2021)

TABLE 4 | Clinical metrics of meshed ED and ES anatomy point clouds generated
by our method.

Phase Clinical Metric Gold Standard Ours

ED LV volume (ml) 141 (±30) 139 (±31)
RV volume (ml) 170 (±34) 176 (±37)

ES LV volume (ml) 59 (±15) 58 (±16)
RV volume (ml) 78 (±20) 80 (±24)

ED/ES LV mass (g) 102 (±28) 99 (±29)

Values represent mean (±standard deviation) in all cases
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these outputs. To this end, we first calculate common clinical
metrics combining ED and ES anatomies (LV SV (Eq. 10), RV
SV (Eq. 10), LV EF (Eq. 11), RV EF (Eq. 11)) to assess

mechanical cardiac function for both our generated and test
dataset populations (Table 5).

We observe very good alignment between the clinical function
metrics from all generated and gold standard meshed point
clouds, indicating that our method is capable of synthesizing
accurate ED-ES anatomy pairs.

Results presented up to this point demonstrate the ability of
our method to produce realistic ECG populations, as well as ED
and ES point clouds. In order to evaluate whether the method
generates anatomy and electrocardiogram outputs preserving the
correspondence between them, we select all cardiac anatomy and
function metrics from Table 4 and 5 and concatenate them with
the respective ECG signal to obtain a combined, low-dimensional
representation of anatomy and ECG data for each case. We then
calculate the MMD between the generated and test datasets
consisting of the combined data representations for each case
(Table 6). Similar to Table 3, we also determine the MMD
between two random subsets of the test set as our gold
standard value.

Our method obtains MMD values close to the gold standard
ones, suggesting a good degree of coupling between the generated
anatomy and ECG outputs.

TABLE 5 | Clinical function metrics of meshed point clouds generated by our
method.

Clinical Metric Gold Standard Ours

LV EF (%) 58 (±8) 57 (±9)
LV SV (ml) 82 (±21) 81 (±22)

RV EF (%) 55 (±7) 55 (±8)
RV SV (ml) 92 (±19) 96 (±22)

Values represent mean (±standard deviation) in all cases

TABLE 6 | Difference in randomly generated multi-modal distributions combining
MRI-based anatomy and ECG-based electrophysiology.

Metric Gold standard Ours

MMD 5.02 × 10–4 4.72 × 10–4

Values represent mean in all cases

FIGURE 5 | Effects of varying different latent space components by -3 standard deviations (S.D.) and +3 S.D. from their mean values on the generated ED (A), ES
(B), and ECG (C) outputs.
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3.5 Latent Space Analysis
A desirable feature of a variational autoencoder is the
existence of an interpretable, disentangled latent space, in
which different components are responsible for encoding
various identifiable structural aspects of the generated
output shapes. In order to analyze these characteristics for
the proposed multi-domain VAE, we vary the values of each
latent space dimension in both positive and negative
directions while keeping the mean values for the remaining
dimensions the same, and pass the resulting latent space
vectors through the decoder to obtain outputs that
correspond to the applied latent space changes. Three
sample latent space components with easily visible effects
on the generated multi-domain outputs are depicted in
Figure 5.

Regarding the point cloud outputs, each component’s
variation results in similar changes to the ED (Figure 5A)
and ES (Figure 5B) anatomies, respectively. Component 1
controls the overall size of the point cloud and component 2
causes a tilt in the basal short-axis plane of the heart, while
component 3 converts elongated, thin hearts to shorter and
wider ones. Regarding the ECG data (Figure 5C), component
3 changes both the R-peak height and existence of the S-wave,
component 2 increases the height of the P-wave and T-wave,
while component 1 has an effect on the height and width of the
R-wave as well as the height and sharpness of both the P and
T-waves.

3.6 Cardiac Disease Classification
In order to further explore the VAE’s latent space, we
investigate the utility of its compressed multi-domain
representation of cardiac anatomy and physiology
information for the task of cardiac disease classification,
and compare its performance to similar single-domain

representations. To this end, we first select the 150 healthy
and 150 pathological United Kingdom Biobank cases
described in Section 2.1 and use them as the basis for our
binary disease classification task. We then pass the
corresponding bitemporal anatomy and ECG data of each
case through their respective encoders in the VAE to obtain
the pertinent multi-domain latent space encodings, which
serve as input features for the classification. Next, we
repeat the same procedure using the point cloud encoders
and the time-series encoder separately to calculate the single-
domain encodings of bitemporal anatomy and
electrophysiology information, respectively, for the same
subjects. For each of the three resulting latent space
datasets (multi-domain, anatomy-specific, and ECG-
specific), we train a logistic regression classifier to identify
subjects with cardiac disease. Figure 6 depicts the binary
classification results of the 10-fold cross validation
experiments for each combination of latent space datasets
in the form of AUROC curves. We find that the multi-domain
representation of anatomy and ECG achieves the highest
AUROC score.

4 DISCUSSION

In summary, we have demonstrated in our experimental results
that the proposed multi-domain VAE can excel at a variety of
different tasks despite the challenging multi-domain setting.

4.1 Reconstruction Accuracy
The point cloud branches are able to reconstruct complex 3D
anatomical shapes with high accuracy on both a local and global
level and for both the ED and ES phases of the cardiac cycle
(Figure 3) with Chamfer Distances below the underlying image
resolution (Table 2). This shows the high suitability of the
anatomy-specific network architecture. In addition, it is able to
accurately maintain class information identifying the different
cardiac substructures and cope with anatomies at both the ED
and the ES phase of the cardiac cycle. This indicates that an
introduction of additional class information about important
anatomical substructures or pathological areas (e.g. scar
regions in the myocardium) or a further temporal extension is
possible. In our experiments, we observe slightly higher distance
values for the RV compared to the LV substructures and for the
ED phase compared to the ES phase. We hypothesize that this is
likely caused by the generally larger heart sizes that are
represented by point clouds with the same resolution as the
smaller hearts, which in and of itself leads to larger Chamfer
Distance values. Therefore, we do not presume this to impede any
future applications, as the differences are not due to any
anatomical reasons. Furthermore, we find no erroneous
overlappings of different anatomical substructures (e.g., at the
interventricular septum) despite no loss term specifically
enforcing such consistency. From these findings, we conclude
that the point cloud branches are flexible and robust with respect
to temporal and spatial variations and are able to capture the
complexity of part-whole relationships in 3D structures, all of

FIGURE 6 | Area under curve (AUC) prediction differences in ROC
curves of the cardiac disease classification results based on latent space
representations of VAEs trained on combined anatomy and ECG, only
anatomy, and only ECG data.
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which are crucial for accurate cardiac anatomy modeling. These
results are achieved despite the complex multi-domain setting in
which separate point cloud branches for ED and ES as well as
another ECG-based branch all share a single latent space and are
trained jointly using a weighted combination of several loss
function terms. This indicates that the good reconstruction
performance of the point cloud-specific deep learning
architecture is not limited to the single-domain setting, as in
Beetz et al. (2021b), but can be applied effectively in conjunction
with data from new domains while still maintaining the more
challenging variational setup.

The time-series branches show a similarly good performance in
the reconstruction task with a high degree of visual closeness between
reconstructed and gold standard signals (Figure 3). We also find
considerably lower RMSE and PRD scores thanmultiple benchmarks
(Table 1). However, we interpret this finding as only an approximate
comparison due to the usage of another dataset (MIT-BIH) and
preprocessing steps to train and evaluate the benchmark methods.
Nevertheless, while the MIT-BIH dataset has some differences
compared to the United Kingdom Biobank dataset used in this
work (e.g., ambulatory two-channel ECGvs. 12-lead ECG, 47 subjects
vs. 1,300 subjects, multiple cardiac cycles vs. single cardiac cycle), they
also share many similarities (e.g., both are ECG datasets with normal
and pathological subjects, all compared methods focus on single lead
ECG signals). In addition, we have applied similar filtering steps as
the benchmark approaches (e.g., min-max normalization, same
choice of sequence length) to the ECG signals in order to
improve comparability between the two datasets. Hence, while a
direct comparison with the other methods is limited by the dataset
differences, the results still give an indication that the time-series
branch architecture is able to successfully encode and decode different
temporal patterns of lead II ECG signals. These findings are further
corroborated by the similar reconstruction performance of the ECG-
only VAE and the proposed multi-domain VAE. Since these results
were achieved on the same United Kingdom Biobank dataset, they
enable a direct comparison which is not affected by differences in the
data or preprocessing steps between the methods. Hence, the similar
RMSE and PRD values observed for both methods indicate that the
multi-domainVAEwas able to capture the ECG-specific information
required for the reconstruction task similarly well as a single-domain
ECG approach.

4.2 Generation of Virtual Multi-Domain
Populations
In addition to the multi-domain VAE’s reconstruction ability, we
also find it to be capable of generating arbitrarily-sized virtual
populations of combined bitemporal anatomies and ECGs with a
high degree of realism and correct levels of shape diversity. We
are able to observe this visually in Figure 4, where typical shape
changes in biventricular surfaces (e.g., overall size, basal plane tilt,
ventricular thickness) and ECGs (e.g., R-peak height and width,
P-wave peakedness, small noise levels in the signal) appear in the
generated virtual examples in a similar way as in the real dataset.

The quantitative results further corroborate this finding in
multiple ways. First, the generated ECGs from our VAE achieve
lower MMD scores than the gold standard real ECGs from our

test set (Table 3). On the one hand, the generally small values
indicate that the distribution of real ECG signals is closely
mimicked by the generated ones on both individual and
population levels (Table 3). On the other hand, we
hypothesize that the lower MMD scores for the generated
ECGs are likely caused by the VAE’s ability to act as a
regularizing self-prior and reduce noise. The proposed multi-
domain VAE also achieves a comparableMMD score as the ECG-
only VAE benchmark on the same United Kingdom Biobank
dataset, which indicates that the ECG population was well
captured despite the challenging inclusion of additional
bitemporal anatomy information. Furthermore, our proposed
method obtains lower MMD scores than multiple prior
approaches in its ECG generation task. While this particular
finding should again (similar to the reconstruction task) only be
seen as an approximate comparison due to the usage of different
datasets, it does nevertheless provide further evidence that the
architectural design of the time-series branches can successfully
convert random latent space samples into ECG populations.
Second, the clinical volume-based metrics calculated for the
population of generated anatomies closely resemble the ones
obtained from the true gold standard test dataset, both in
terms of their mean and standard deviation values (Table 4).
This indicates that the point cloud branches are able to synthesize
realistic biventricular shapes that accurately represent the
morphological variety across the whole population. The
network achieves this for both the ED and ES phases showing
its architecture’s ability to function well with temporally related,
but different shape distributions. Third, the clinical function
metrics, which combine volume-based anatomical information
from ED and ES phases, exhibit high degrees of similarity
between the generated and gold standard anatomies in terms
of both mean and standard deviation values (Table 5). This
demonstrates that the synthesized anatomies do not only reflect a
realistic population at ED or ES separately but also when
considered as a combined bitemporal anatomy population.
This correspondence between ED and ES shapes in the
generated population is highly beneficial for multiple follow-
up tasks (e.g. mechanical deformation modeling (Beetz et al.,
2021c)). We also conclude from these results that the ED-ES
correspondence information is likely captured in the shared latent
space of the VAE and that the respective ED and ES point cloud
branches are sufficiently powerful to correctly take into account
cross-temporal information during training. Fourth, when
combining ECG and bitemporal anatomy information in a
unified representation, we find similar MMD values between
synthesized and real gold standard populations (Table 6). This
indicates that good correspondence is present not only between
different cardiac phases but also between the generated ECG and
anatomy data and that both the decoder branches and latent
space information adequately model these inter-domain
relationships. We note that while the selected cardiac metrics
used to represent the anatomy in the unified representation only
act as low-dimensional approximations of the full generated
shapes for the MMD calculations, they were weighted
accordingly to give the anatomical and ECG-based
information a balanced influence in the combined
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representation. In general, since the aforementioned results were
achieved using real ECG data, we hypothesize that the VAE could
also be applied to synthetically-generated ECGs (e.g. via
electrophysiology simulations based on mathematical models)
for the task of generating personalized models of both normal and
pathological data in real-time, which we wish to explore in detail
in our future work.

4.3 Latent Space Quality
The positive results in the data generation tasks are likely
significantly facilitated by the high quality of the latent space,
which we observe to exhibit a good degree of disentanglement
and interpretability (Figure 5). This can be seen by the clearly
distinguishable effects that different individual latent space
components have on the reconstructed anatomy and ECG
outputs. We also find such latent space changes to cause
gradual deformations of the output shapes of all domains
while maintaining a realistic overall appearance even in case of
larger deviations from the mean values. This indicates that the
latent space learnt during training at least approximately
resembles a multivariate normal distribution as enforced by
the Kullback-Leibler divergence loss, as opposed to a more
sparse and disordered representation that might lead to
sudden unrealistic outlier shapes in the generated
distributions. But compared to the zero mean parameterization
of all Gaussians, we achieve better generation results when using
the mean values predicted by the encoders on the training dataset
to parameterize the latent space normal distributions for
sampling. This shows that the actual latent space distribution
still exhibits some differences to the target normal distribution.
Nevertheless, this slight deviation is to be expected as the overall
VAE loss represents a compromise between accurate
reconstruction and latent space quality. We find the weighting
parameter β to be crucially important for determining the optimal
balance for the given dataset empirically, especially considering
our highly challenging multi-domain setting. The similar shape
changes observed in the ED and ES reconstructions corroborate
the good choice of β further and demonstrate that the
aforementioned high interpretabiliy of the latent space is
retained even in the cross-domain case.

4.4 Cardiovascular Disease Classification
As evidenced by the cardiac disease classification results in
Figure 6, the multi-domain latent space representation is able
to successfully capture shape patterns related to both the healthy
hearts and various cardiovascular pathologies in both the ECGs
and the bitemporal anatomies. This offers the possibility to
discover, visualize, and analyze pathology-specific feature
combinations in both ECG and anatomy. One approach to
achieve this would be to compare healthy and pathological
latent spaces in terms of their respective mean representations
or distributions and then reconstruct the corresponding
anatomies and ECGs for each group to visualize the
differences. Another possibility might be to identify the latent
space components that are most predictive during the
classification tasks and study what effects the corresponding
changes in these latent components have on the reconstructed

anatomies. Furthermore, when applying the multi-domain VAE
trained on healthy subjects to diseased cases, we observe a slight
decrease in reconstruction performance compared to unseen
healthy cases, which also indicates that the network has learnt
patterns specific to the healthy subpopulation. These results
provide further proof of the importance of image-based and
ECG shape analysis on both local and global scales for cardiac
disease identification, which is in line with other previous findings
(Mauger et al., 2019; Acero et al., 2022). One crucial difference to
these prior works, however, is the combination of anatomy and
ECG information in a compressed format that we observe to be
more effective than similar approaches relying on either anatomy
or ECG information alone (Figure 6). This multi-domain
approach is particularly advantageous for the selected
cardiovascular disease class containing different pathologies
whose diagnoses are usually based on different modalities (e.g.,
cardiac MRI, ECG). Furthermore, we observe smaller differences
in AUROC values between ECG + anatomy and anatomy-only
information than between ECG + anatomy and ECG-only
information. On the one hand, this might be due to the
individual pathologies considered in the classification task that
might be more easily predicted based on anatomy information.
On the other hand, it could also be caused by our focus on only
lead II ECG signals from a single heartbeat. This provides the
ECG-only classifier with less information, which is in contrast to
the high-dimensional multi-class 3D point cloud data that serves
as input to the anatomy-based classifier. We also note that the
latent space representation was obtained without any prior
explicit training for the task of disease prediction, which
outlines the potential for further improvements in directly
finding pathology-specific compressed shape representation.

4.5 Architectural Design and Training
We have found the architectural design of our network
(Figure 1C) to be highly suitable to process combined ECG
and anatomy input data. The point cloud branch architectures
(Figure 2A,B) are able to apply deep learning operations directly
on point cloud data, which allows surface data of much higher
resolution to be efficiently processed and used for storing
anatomical shape information. This is in contrast to the
widely-used voxelgrid representations (Çiçek et al., 2016; Bello
et al., 2019; Xu et al., 2019), which are considerably less memory-
efficient at managing surface-level data leading to lower
resolution, longer processing times, and ultimately limit the
overall accuracy of the modeled anatomy. Furthermore, each
of the high-dimensional point clouds combines both the left and
right ventricular anatomy and maintains separate labels for the
LV endocardium, LV epicardium, and RV endocardium
substructures. This results in a more holistic and accurate
representation of the true 3D cardiac anatomy compared to
the non-labelled single ventricle approaches and enables a
more detailed and effective study of the structure-function
interactions between MRI-based cardiac anatomy and ECG-
based cardiac electrophysiology information.

As opposed to traditional shape modeling approaches, such as
principal component analysis (Mauger et al., 2019; Acero et al.,
2022), the deep learning architecture is able to capture
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significantly more complex and non-linear shape variations,
which is important for the accurate modeling of the intricate
interactions of both single-domain ECG and anatomy data, but
especially in the multi-domain setting. In addition, no point-to-
point correspondence is required in the point cloud dataset and
no prior shape registration step needs to be applied, which makes
the preprocessing steps considerably simpler, faster, and less
error-prone compared to the PCA (Figure 1A,B). Another
advantage of the VAE framework is its condensed latent space
representation of the input data, which is useful for a variety of
different tasks as shown in this work. The design of the time-
series branches (Figure 2C,D) relies on a combination of
convolutional, pooling, and fully connected layers, as opposed
to recurrent layers such as Long Short-Term Memory (LSTM) or
Gated Recurrent Units (GRU), and its good performance is in line
with previous findings in ECGmodeling (Zhu et al., 2019). For all
branches, we hypothesize that the fully connected layers on both
sides of the latent space in the encoder and decoder architectures
provide the necessary power and flexibility to extract the relevant
information for each domain from the shared latent space, while
still accounting for inter-domain correspondence. Despite no
specifically designed consistency loss between different output
branches, we find that a careful empirical choice of weighting
parameters in Eq. 3 and Eq. 5 in the domain-specific loss function
components is sufficient to obtain high quality outputs both
intra-domain and inter-domain. Finally, we note that the
domain-specific data preprocessing of the proposed approach
offers a certain degree of robustness and flexibility with regards to
changes in the input data (e.g., different image resolutions in the
cine MRI acquisitions), as both the 3D cardiac surface
reconstruction and the ECG preprocessing steps can be
adjusted as required in order to still be capable of creating 3D
anatomy point clouds and ECG time series in a suitable format for
the multi-domain VAE. For example, the same point cloud
resolution can be maintained by the 3D surface reconstruction
method despite changes in the underlying image resolution.

4.6 Limitations
The presented approach to multi-domain cardiac anatomy and
physiology modeling also has some limitations. While it has
previously been shown that the position and orientation of the
heart with respect to the ECG electrodes on the torso significantly
affects the ECG shapes (Mincholé et al., 2019), we did not include
any torso information in this work. However, since the VAE was
trained with paired anatomy and ECG information from real
acquisitions, we hypothesize that the network is at least to some
extent able to implicitly learn the effect of the torso on the output
signals. We also note that since the 3D anatomy models were
derived from 2D cineMRI acquisitions, any limitations (e.g., image
resolution) or errors (e.g. slice misalignment due to inconsistent
breath holds) introduced during the image acquisition or 3D
reconstruction will affect the accuracy of the anatomical shapes.
Similarly, we also note that the United Kingdom Biobank imaging
study uses very established acquisition protocols and certain
quality control measures that might not be fully representative
of a standard clinical environment. While this makes the results
easier to understand, it might also require some adjustments to the

proposed methods in case of their application to different settings
with a possibly larger variety of acquisition conditions and noise.
While this study only focuses on lead II ECGs averaged across
multiple cardiac cycles and thereby foregoes additional
information from other leads and multi-heartbeat patterns, we
believe that the core part of the architecture has the potential to be
extended to the full-cycle 12-lead case. This could be achieved by
first applying the same preprocessing steps to each of the 12 leads
in order to represent each lead signal as a normalized 400-
dimensional vector. The resulting vectors could then be
concatenated and input into the ECG branch of the VAE. The
ECG loss could be easily extended to include multiple leads by
summing or averaging over the lead-specific mean squared errors.
In addition, adjustments to the ECG branch architecture, training
schedule, and possibly the lead-specific weighting terms in the loss
function will likely be necessary to accommodate the increased
difficulty of processing all 12 leads. Another limitation of the
method is that no anatomical information about the atria is
included in the model, which plays an important role in
modeling electrophysiology. However, as the, to the best of our
knowledge, first deep learning approach to combine anatomy and
ECG data in a single data-driven model, we found the utilized
information sources sufficient to demonstrate the feasibility and
show the benefits of a multi-domain cardiac model. Information
from other domains can be included into the model in future work,
for example, as extra classes in the point cloud inputs, additional
time series in the ECG inputs, or as new network branches
altogether.

5 CONCLUSION

In this work, we have developed and evaluated a novel multi-
domainVAEwith the ability to capture combined cardiac anatomy
and physiology information and their intricate interconnections in
a single data-driven model. We have shown that the network can
successfully handle the complex interdependencies of multi-
domain datasets by reconstructing existing cardiac data from
low-dimensional latent spaces with high accuracy and
generating realistic populations of corresponding cardiac
anatomies and ECGs. Furthermore, we have found an
interpretable latent space in the VAE with each component
responsible for a separate morphological change in anatomy
and ECG outputs enabling a more localized analysis of cardiac
health. Finally, we have observed that combined anatomy and ECG
representations improve the identification of cardiovascular
disease compared to single-domain approaches. This shows the
utility and positive synergies of large-scale data integration from
multiple sources in cardiology and opens up promising future
research avenues for possible further multi-domain integration.
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Cepstral Analysis for Scoring the
Quality of Electrocardiograms for
Heart Rate Variability
Paolo Castiglioni 1*, Gianfranco Parati 2,3 and Andrea Faini 2
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Mobile-health solutions based on heart rate variability often require electrocardiogram
(ECG) recordings by inexperienced operators or real-time automatic analyses of long-term
recordings by wearable devices in free-moving individuals. In this context, it is useful to
associate a quality index with the ECG, scoring the adequacy of the recording for heart rate
variability to identify noise or arrhythmias. Therefore, this work aims to propose and validate
a computational method for assessing the adequacy of single-lead ECGs for heart rate
variability analysis that may run in real time on wearable systems with low computational
power. The method quantifies the ECG pseudo-periodic structure employing cepstral
analysis. The cepstrum (spectrum of log-spectrum) is estimated on a running ECGwindow
of 10 s before and after “liftering” (filtering in the cepstral domain) to remove slower noise
components. The ECG periodicity generates a dominant peak in the liftered cepstrum at
the “quefrency” of the mean cardiac interval. The Cepstral Quality Index (CQI) is the ratio
between the cepstral-peak power and the total power of the unliftered cepstrum. Noises
and arrhythmias reduce the relative power of the cepstral peak decreasing CQI. We
analyzed a public dataset of 6072 single-lead ECGsmanually classified in normal rhythm or
inadequate for heart rate variability analysis because of noise or atrial fibrillation, and the
CQI = 47% cut-off identified the inadequate recordings with 79% sensitivity and 85%
specificity. We showed that the performance is independent of the lead considering a
public dataset of 1,000 12-lead recordings with quality classified as “acceptable” or
“unacceptable” by visual inspection. Thus, the cepstrum describes the ECG periodic
structure effectively and concisely and CQI appears to be a robust score of the adequacy
of ECG recording for heart rate variability analysis, evaluable in real-time on wearable
devices.

Keywords: heart rate variability, fourier transform, EKG, power cepstrum, signal quality, premature beat, wearable
system, mobile ECG monitoring

1 INTRODUCTION

Advancements in sensors technology are making it possible to monitor the electrocardiogram (ECG)
for long periods in unattended subjects through wearable systems, promoting solutions for
telemonitoring, home rehabilitation, mobile health, and ambient-assisted living applications.
Most of these applications quantify indexes of heart rate variability to provide information on
the autonomic control and cardiorespiratory interactions, based on ECG recordings performed by
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inexperienced users and on automatic analyses of ECG tracings.
In these cases, it is important to associate a quality score with the
recorded signals. In telemonitoring applications this would
indicate to inexperienced operators the need to repeat the
recording if the ECG quality is too low; in ambient assisted
living applications, this would allow expert systems not to take
decisions on the base of unreliable ECG signals. A further
requirement is to exclude arrhythmias if the aim is to quantify
heart rate variability, as during exercise-based rehabilitation
programs for restoring the autonomic control in cardiac
patients after heart surgery or in diabetic individuals with
autonomic neuropathy. A normal rhythm is indeed necessary
to correctly interpret the indices of heart rate variability.

In the frame of domotic applications aimed at developing a
smart environment for elderly people, we had to deal with the
definition of an automatic score of the ECG quality in normal
rhythm. The domotic application consisted of a first layer of
sensors and devices with low computational power to collect
physiological and behavioral data to be sent to upper
computational levels operating decisions in support of the
assistance staff (Gower et al., 2011). In particular, the ECG
had to be recorded for hours or days on freely moving
subjects for a continuous assessment of heart rate variability
with wearable ECG sensors (Di Rienzo et al., 2010). In this
context, the occurrence of arrhythmic episodes, artifacts, and
noise was expected, making important the dynamic assessment of
data reliability in real-time automatically. These requirements
demanded an algorithmworking on different leads separately and
running on low-power microprocessors on board the wearable
devices, to score the ECG quality, select the best lead, and identify

the presence of normal sinus rhythm for the online evaluation of
heart rate variability. To deal with these requirements, we
originally designed an algorithm to characterize the ECG
quality from its periodic structure (Castiglioni et al., 2011).

We further developed the original algorithm and this work
aims to illustrate the capability of cepstral analysis to characterize
the pseudo-periodicity of the ECG and to propose and validate a
cepstral method for devices with low-computing power that
scores the quality of ECG leads for heart rate variability
applications.

2 METHODS

2.1 The Power Cepstrum
The Power Spectrum PS(f) of a signal s(t) is the squared
magnitude of its Fourier Transform:

PS(f) � |F[s(t)]|2 (1)
The Power Cepstrum PC(τ) of s(t) is the power spectrum of the

logarithm of PS(f):

PC(τ) � ∣∣∣∣F[logPS(f)]∣∣∣∣2 (2)
The Power Cepstrumwas introduced to identify signals echoes

(Bogert et al., 1963; Oppenheim and Schafer, 2004). In fact, the
Fourier spectrum of the superposition of a signal and its echo
after τ seconds is the product between the spectrum of the signal
and a periodic function with period 1/τ Hertz. The logarithm
converts the product into a sum and the following Fourier

FIGURE 1 | Power spectra and power cepstra of a sinusoid, sawtooth function and synthesised ECG. The signals were sampled at 200 Hz, the spectra were
calculated over 2048 points by Fast Fourier Transform (FFT) and the cepstra were calculated by FFT of the log-transformed spectra between 0 and 100 Hz (for clarity,
spectra are plotted up to 40 Hz, signals and cepstra up to 4 s). The cepstra of the sawtooth function and synthesized ECG show peaks at 1, 2, and 3 s representing the
train of power spectrum harmonics multiple of the fundamental frequency f0 = 1 Hz; the sawtooth cepstrum also shows peaks at 0.24 s and its multiples
representing the modulation with period of 4.2 Hz visible in its log-spectrum; the ECG cepstrum shows a large peak at the lowest quefrency representing the decreasing
spectral trend.
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analysis identifies the echo delay as a spectral peak at “frequency”
τ. The domain of the spectrum of the log-spectrum is treated as a
“frequency domain”, but after two Fourier transforms its units are
those of time, in seconds, not of frequency, in Hertz. For this
reason, it is referred to as the “quefrency” domain. Like
“cepstrum” and “liftering”, this term was coined by
interchanging consonants of familiar words (“frequency”,
“spectrum” and “filtering”) to emphasize that time-domain
methods are applied to functions of the frequency.

The cepstral approach, however, also gives us a concise way
of describing the harmonic structure of periodic signals. This is
illustrated in Figure 1, which compares power spectra and
power cepstra of three periodic functions with a period of 1 s.

The first function is a sinusoid: its power spectrum is composed of
a single peak at 1 Hz and, consequently, its cepstrum shows very-low
quefrency power only. The second signal is a sawtooth function: the
power spectrum consists of a sequence of harmonics at multiples of
the fundamental frequency f0 = 1Hz.When plotted in a log scale, this
train of peaks appears modulated by a slower oscillation with a
“period” of 4.2 Hz. These components are clear in the cepstrum:
harmonics at quefrencies τmultiples of τ0 = 1/f0, i.e. at τ equal to 1, 2,
and 3 s, represent the train of spectral peaks; and cepstral peaks at τ =
1/4.2 Hz−1 (i.e., 0.24 s) and its multiples represent the slower spectral
periodicity. The third periodic function is a synthesized ECG: in this
case, the log-spectrum appears as a quasi-sinusoidal train of peaks that
decays at frequencies higher than 20Hz. Like the sawtooth cepstrum,
the ECG cepstrum shows peaks at τ = 1, 2, and 3 s that represent the
train of harmonics.

2.2 Synthesized Electrocardiogram
To identify the parameters that better describe the cepstral
peaks of the ECG, we made use of synthesized ECG signals.

The same synthesized ECGs also allow us to quantify the
effects of added noise and deviations from pseudo-
periodicity. To synthesize ECG waves with realistic shapes,
we started with real recordings. One lead ECG (Einthoven II
lead, 200 Hz) was recorded in eight young volunteers (4 males/
4 females, age 21–38 years) resting supine for 10 min by a
Cardioline Delta 1 plus (REMCO ITALIA, Milan, Italy)
electrocardiograph. An ECG template was obtained from
each recording by R-peak synchronized average. About 600
beats were averaged for each template, virtually removing any
type of noise asynchronous with the R peak (baseline drift,
muscular noise, or 50/60 Hz power noise). A synthesized ECG
was generated from each template sequentially appending
copies of the template, spaced evenly. The mean R-R
interval of the 8 recordings ranged between 738 and
1126 ms and the distance between consecutive R peaks was
equal to the mean R-R interval of each original recording. In
this way, the 8 synthesized signals preserved the original heart
rate and ECG shape (see an example in the lower-left panel of
Figure 1).

2.3 Electrocardiogram Cepstral Estimator
We first introduced the ECG cepstral analysis in a conference
presentation as a new tool for assessing the quality of
electrocardiographic recordings (Castiglioni et al., 2011). In
the present work, we evaluate critically the performance of the
cepstral approach by applying it to synthesized ECG signals, to a
large number of real ECG recordings from public databases, and
to specific ECG tracings selected from our previous works as
being representative of specific physiological or pathological
conditions. However, before applying the cepstral analyses on
synthesized and real ECGs, this paragraph shows how we

FIGURE 2 | Definition of data windows for ECG cepstral analysis. (A): power spectrum of a synthesised ECG (dotted line) with interpolation of the maxima at the
fundamental harmonic and its multiples (continuous line). (B): average and 95% confidence interval of the lines interpolating the spectral maxima of 8 synthesised ECG.
The average interpolating line is relatively constant up to 20 Hz and rapidly decreases at higher frequencies, suggesting to limit the length of the frequency-domain data
window up to 20 Hz. (C): relative power of the main cepstral peak: median and interquartile range over 8 synthesised ECGs calculated by six different time-domain
data windows and by smoothing the spectral lines using moving average filters with bandwidth between 98 and 684 mHz. The best performance is obtained with the
Blackmann window and smoothing bandwidth between 250 and 500 mHz.
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empirically optimized some parameters of the cepstral estimator.
In particular, the power cepstrum estimator depends on the type
of data windowing and spectral smoothing, like the traditional
Fourier periodogram. Since the cepstrum consists of two
consecutive Fourier spectra, the length of the data windows
should be defined in the time domain for the first Fourier
Transform, selecting the duration of the ECG segments, and
in the frequency domain for the second Fourier Transform,
selecting the frequency range of the log-spectrum. The
window length in the time domain was set equal to 10 s as a
trade-off between frequency resolution, which should be
sufficiently high to distinguish ECG harmonics, and amplitude

of heart rate changes, which should be relatively small to locally
preserve the pseudo-periodicity of the signal.

The optimal window length in the frequency domain was
identified as the frequency band where the height of ECG spectral
peaks remains relatively constant. This choice avoids introducing
very low quefrency components in the cepstrum due to slow
decreasing trends in the train of harmonics. The band was
identified by calculating the power spectrum for consecutive
10-s segments of each synthesized ECG and by interpolating
the maxima (Figures 2A,B). The interpolating function is
relatively stable below 20 Hz and decreases at higher
frequencies, coherently with the literature (Golden et al.,

FIGURE 3 | Examples of ECG cepstral analysis. Left: 10-s ECG segments from the Physionet/Computing in Cardiology datasets of the 2011 (A–C) and 2017 (D)
Challenges; centre: log-spectra with polynomial trends (red line); right: cepstra before (dotted black) and after (red) liftering by polynomial detrending, with τ0 the
quefrency of the estimated first harmonic. (A) shows a high quality ECG and a cepstrumwith a single harmonic; the corresponding CQI is 91.1%. (B) shows a high quality
ECG, its cepstrum with 3 harmonics multiple of τ0, and CQI is 67.2%. (C) shows a low-quality ECG with a single harmonic identifiable in the liftered cepstrum and
CQI is 29.3% due to consistent low-quefrency noise. (D) shows a high quality ECG during atrial fibrillation: the log-spectrum does not have a periodic structure, the
liftered cepstrum does not show a clear first harmonic, and CQI is 22.1% only. When a clear cepstral first harmonic is identifiable (A–C), its quefrency τ0 practically
coincides with the mean R-R interval, RRm.
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1973). This suggests setting the length of frequency-domain data
windows between 0 and 20 Hz.

The type of window function critically defines the proper
combination between power leakage and main-lobe amplitude of
the Fourier spectrum (Marple, 1987), determining the relative
power of the cepstral peak at the quefrency τ0 corresponding to
the mean R-R interval. To choose the time-domain data window,

the relative amplitude of the main cepstral peak was calculated
using six different windows (rectangular, triangular, 10%-cosine,
Hann, Hamming, and Blackman) and by smoothing the resulting
spectral lines with moving average filters of different orders. The
best performance was obtained with the Blackmann window
(Figure 2C): about 90% of the cepstral power is concentrated
in the main cepstral peak if the Blackman window is used in the

FIGURE 4 | Effects of noise and deviations from periodicity on CQI. CQI median and interquartile range over 8 synthesised ECGs. (A): CQI at decreasing levels of
signal-to-noise ratios, SNR (SNR =∞means no noise, SNR = 0means noise only) with * indicating statistically significant difference vs. SNR = 0 at p < 0.05; the inset is an
example of ECG with SNR = 4. (B): CQI at increasing values of variation coefficient, VC, of R-R interval when the heart rate dynamics consists in monotonic ramps (solid
circles) or random changes (open circles): median and interquartile range over 8 synthesised ECGs with * indicating statistically significant difference between ramp
and random changes at p < 0.05. (C): CQI without or with 1, 2 or 3 premature beats, with * indicating statistically significant difference vs. no premature beats at p < 0.05:
inset is an example of simulated supraventricular premature beat.

FIGURE 5 | Examples of multi-lead ECGs from the dataset of Physionet/Computing in Cardiology 2011 Challenge. The recordings were classified as “acceptable”
(left) or “unacceptable” (right). CQI scores of individual leads correctly detect Lead I of sufficient quality for heart rate variability analysis in the “unacceptable” recording
and Lead V6 as inadequate for heart rate variability analysis in the “acceptable” recording.
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time domain and the resulting spectral lines are smoothed with
moving average filters of order between 250 and 500 mHz.

As regards the data window in the frequency domain, we
selected the 10%-cosine taper (Bingham et al., 1967) because the
window length is relatively short (up to 20 Hz only, implying a
relatively large main lobe) and the cosine taper reduces leakage
with a small increase only of the width of the main lobe.

2.4 A Cepstral Score of the
Electrocardiogram Quality in Normal Sinus
Rhythm
The evidence that the harmonic structure of synthesized ECGs
produces cepstra with a dominant peak at the quefrency τ0
corresponding to the average R-R interval, suggests taking the

relative power of this cepstral peak (and its higher harmonics if
present) as the index of ECG signal quality. To obtain a Cepstral
Quality Index (CQI), first the ECG cepstrum and its total power are
estimated as follows:

1. a 10-s ECG segment is selected, linearly detrended and
Blackman windowed, s(t);

2. the FFT power spectrum of s(t) is calculated, P(f);
3. P(f) is truncated at 20 Hz, smoothed averaging contiguous

lines over a frequency band of 300 mHz and log-transformed,
log P(f);

4. log P(f) is linearly detrended by least-square fitting a regression
line and windowed by the 10%-cosine taper, log P(f)CT;

FIGURE 6 | Physionet/Computing in Cardiology Challenge 2011 datasets. CQI median and interquartile range for each of 12 leads of ECG recordings classified as
“acceptable” (A) or “unacceptable” (B): for each lead, the * indicates statistically significant difference between groups at p < 0.01.

FIGURE 7 | Physionet/Computing in Cardiology Challenge 2017 datasets. (A) CQI as median and interquartile range for single-lead ECGs manually classified as in
normal rhythm, atrial fibrillation or noisy recording. The * indicates a statistically significant difference vs. the normal rhythm group at p < 0.01 (B) ROC analysis on 5050
recordings adequate for heart rate variability analysis (normal rhythm) vs. 1022 recordings inadequate for heart rate variability analysis (in atrial fibrillation or noisy); the red
dot on the curve identifies the classification cut-off (CQI > 47%) according to the Youden’s criterion; AUC = Area Under the Curve.
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5. the FFT power spectrum of log P(f)CT is calculated obtaining
the cepstrum CP(τ) at quefrencies τ≥ 0.05 s (inverse of 20 Hz,
highest frequency in the log spectrum);

6. the total cepstral power TOT is calculated by integrating
CP(τ) up to τ = 3 s.

Figure 3 shows examples of power cepstra CP(τ) from real
ECG recordings selected from the datasets of the PhysioNet/

Computing in Cardiology 2011 Challenge (Silva et al., 2011) and
2017 Challenge (Clifford et al., 2017). Figures 3A,B show high-
quality ECG in normal sinus rhythm: their cepstrum consists of
the main harmonic at the quefrency of the mean R-R interval and
possibly higher harmonics. By contrast, Figure 3C shows that
noise may produce spurious cepstral peaks with larger power
than the true ECG peak; in this case, high-pass “liftering”
(i.e., filtering in the frequency domain) the log-spectra may
help identifying the true peaks. Thus, to properly calculate the

FIGURE 8 | Examples of discarded ECG segments by running cepstral analysis. Colors represent four CQI levels. (A): low CQI values identify a short burst of
muscle noise and a following movement artefact. (B): low CQI values detect signal loss likely due to a poor contact between textile electrodes and skin. (C): premature
beats in a high quality recording are locally associated to low CQI values. (D): atrial fibrillation is associated to persistently low CQI even in high quality ECG recording.
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power associated with the ECG cepstral harmonics, a liftered
cepstrum is also estimated as follows:

7. log P(f) (calculated at step 3) is “liftered” by least-square
fitting and removing a polynomial of order 10, log P(f)L;

8. the 10% cosine taper is applied to log P(f)L obtaining log
P(f)LCT;

9. the FFT of log P(f)LCT is calculated obtaining the liftered
cepstrum CPL(τ);

10. a moving average over a quefrency band of 0.20 s further
improves the statistical consistency of CPL(τ);

Figure 3 shows that liftering removes very-low quefrency
power due to noise without affecting the true ECG cepstral

FIGURE 9 | Examples of running cepstral during ramp-like heart-rate changes. Upper panels: ECG (A), R-R intervals, RRI (B), and respiratory movements of the
thorax (C) during sleep apneas; color codes represent the CQI levels. Even if apnea/deep breathing events produced large ramp-like changes of heart rate, the CQI score
remained relatively high classifying the data segment of good quality for heart rate variability analysis. Lower panels: R-R intervals (D) and ECG (E) during an incremental
exercise test on the cycloergometer: the ECG was in normal sinus rhythm (see insets) and the CQI score remained high even when RRI progressively decreased
during the exercise.
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peaks. Readers may find a detailed description of the MATLAB
code implementing steps from 1 to 10 in the Supplemental
Material. We define the quality score as the power of the
liftered cepstral peaks relative to the total power of the
unliftered cepstrum as follows:

11. the power of CPL(τ) first and second harmonics, H, is
calculated;

12. the cepstral quality index is the ratio between H and TOT:
CQI = H/TOT.

In our application, the main ECG peak is identified between
0.30≤ τ ≤ 2.5 s (the quefrency band where τ0 corresponding to the
average R-R interval is expected) by comparison with a threshold
equal to the 90% percentile of the liftered cepstrum: the peak of
the ECG first cepstral harmonic should overcross this threshold.
A second cepstral peak that falls in the quefrency band
corresponding to twice the band of the main harmonic is
recognized as a genuine second harmonic. CQI may therefore
range between 100% (when all the power of the cepstrum is
contained in the first and second harmonics of the ECG
cepstrum) and 0% (when no ECG peaks are identified in the
cepstrum).

When the hypothesis of ECG pseudoperiodicity does not hold,
as during arrhythmias episodes, a cepstral main harmonic might
not be detected even in a high-quality ECG. Figure 3D shows an
ECG segment during atrial fibrillation: the power spectrum does
not have a periodic structure, cepstral harmonics cannot be

correctly associated with a spectral periodicity, and the
resulting CQI is remarkably low.

When the ECG recording is longer than 10 s, continuous,
second-by-second CQI estimates are calculated for the whole
duration of the recording performing the cepstral analysis on
90%-overlapped, running ECG segments of 10-s length.

2.5 Validation on Synthesized and Real
Electrocardiograms
We quantified the effects of noise and deviations from
pseudoperiodicity on CQI using the synthesized ECGs. The
effect of broadband noise was evaluated by adding increasing
levels of white noise to the synthesized ECGs, with signal-to-noise
ratio, SNR (ratio between the ECG power and the power of added
noise), between 9 and 1/9. The effects of deviations from
periodicity were evaluated on synthesized ECGs appending the
ECG templates at uneven periods. Two types of heart rate
changes were simulated preserving the original mean heart
rate: monotonic ramps, with R-R intervals increasing or
decreasing linearly in time, and random fluctuations, with
independent changes of R-R intervals from one beat to the
next. Monotonic heart-rate ramps during normal sinus
rhythm can be observed in 10-s ECG tracings following
cardiac sympathetic or vagal activations, as well as during
deep breathing episodes. Random heart-rate changes may
somehow model the disordered cardiac rhythm in atrial
fibrillation. The variation coefficient, VC (ratio between

FIGURE 10 | Overall quality of very long-term ECG recordings from the distribution of running CQI values. Distributions (relative frequencies) of CQIs calculated
second-by-second on ECG Holters recorded for 7 consecutive days continuously with a wearable device (RootiRx

®
, Rooti Labs Ltd., Taipei, Taiwan) at 250 Hz in two

subjects. The recording of the subject on the right (#1556) is almost completely analysable having good quality (CQI > 50%) for 97% of the time; by contrast, assessing
heart rate variability in the recording on the left (#38F) might be problematic for a not negligible fraction of the time, being the quality “very low” or “unacceptable”
(CQI ≤ 40%) for 12% of the recording.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9212109

Castiglioni et al. Cepstral Analysis and ECG Quality

132

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


standard deviation and mean) of the original R-R intervals in
healthy volunteers was 4.5% when calculated over 10-s segments
and the ECGs were synthesized with VC between half and twice
this physiological value. Premature beats may also alter the ECG
pseudo-periodicity. Supraventricular beats were simulated by
removing the portion of the template before the QRS complex
which includes the P wave. One, two, or three altered templates
were added randomly to the equispaced sequence of
synthesized ECGs.

To validate the proposed cepstral score on real ECG tracings,
we considered recordings from two datasets provided by the
Physionet Community at the MIT Laboratory for Computational
Physiology (Goldberger et al., 2000). To test the effects of noise
and artifacts on real ECG recordings, CQI was evaluated on “set-
A” of ECG recordings made available for the Physionet/
Computing in Cardiology 2011 Challenge (Silva et al., 2011).
The recordings consisted of 12 ECG leads (I, II, III, aVR, aVF,
aVL, V1-V6) sampled at 500 Hz, 16 bit with 5 μV resolution, and
standard diagnostic bandwidth (0.05–100 Hz). The overall
quality of each multi-lead recording was manually scored by a
group of annotators. Combining their scores, ECG recordings
were classified as having “acceptable” (n = 773) or “unacceptable”
(n = 225) signal quality.

To systematically check how the CQI score detects
arrhythmias, the cepstral analysis was applied to the training
dataset of the PhysioNet/Computing in Cardiology 2017
Challenge (Clifford et al., 2017). The dataset is composed of
single-channel (equivalent to lead I) ECGs recorded with the
AliveCor devices at 300 Hz and 16 bit, with 0.5–40 Hz bandwidth,
visually classified by experts into 4 groups: noisy, or in normal
rhythm, or in atrial fibrillation, or in any “other” rhythm. From
the whole dataset, we considered the 5050 normal-rhythm
recordings, the 738 atrial fibrillation recordings, and the 284
noisy ECGs. Their duration ranged between 9 and 61 s, with a
median value of 30 s. The running cepstral analysis was applied
and the second-by-second estimates were averaged to obtain a
single CQI score for each recording. The Area Under the Curve
(AUC) of Receiver-Operator Characteristic (ROC) analysis
measured how CQI classifies between cases for which heart
rate variability analysis is feasible (i.e., normal rhythm
recordings without excessive noise), and cases to be excluded
from heart rate variability analysis (i.e., atrial fibrillation or too
noisy recordings). The Youden index, calculated as in (Goksuluk
et al., 2016), provided the cut-off value for the classification.

Statistical comparisons between groups were performed with
the Wilcoxon matched-pairs test.

Additionally, we illustrated the performance of the
proposed score by applying the running cepstral analysis on
ECG tracings collected in our previous experiments, which
included long-term recordings in free-moving volunteers at
high altitudes (Lombardi et al., 2013; Caravita et al., 2015). The
experiments were approved by the ethic committee of Istituto
Auxologico Italiano, IRCCS (EudraCT No. 2010-019986-27)
and conducted in agreement with the principles of the
Declaration of Helsinki, after having received informed
consent.

3 RESULTS

3.1 Validation on Synthesized
Electrocardiograms
Figure 4A shows the effect of broadband noise on CQI. The index
progressively decreases from values greater than 90%, when noise
is absent, to 68% when SNR = 1. CQI falls more rapidly when
SNR < 1 and at SNR = 1/9 it is statistically indistinguishable from
CQI of pure noise. Figure 4B illustrates the effects of increasing
levels of heart rate variability, quantified by VC, on CQI,
comparing random changes with ramp-like changes. In both
cases, CQI decreases with increasing levels of VC, but the effects
depend on the type of heart rate dynamics, being more important
for random than monotonic changes. As to the effects of
premature beats on CQI, Figure 4C shows that even a single
ectopic beat in the 10-s ECG segment reduces CQI importantly.

3.2 Validation on Real Electrocardiograms
3.2.1 Physionet/Computing in Cardiology 2011
Challenge
The effects of noise and artifacts on real ECG recordings were
tested systematically on the Physionet/Computing in Cardiology
2011 Challenge dataset (Silva et al., 2011). Figure 5 shows two
examples of multi-lead ECGs, one classified as “unacceptable”
and one as “acceptable”; the CQI of each lead is reported. Since
the Physionet classification regards the quality of multi-lead
ECGs as a whole, a single lead might have sufficient quality
for heart rate variability analysis even in a multi-lead recording
scored as globally unacceptable: this is the case of lead I of
#2722184 recording. Similarly, individual leads may
occasionally have poor quality even in globally “acceptable”
recordings, such as lead V6 of #2984955 recording. In these
two examples, the CQI scores allow automatically selecting the
proper ECG leads for heart rate variability discarding
inadequate leads.

Figure 6 shows the results of cepstral analysis for the whole
dataset. The median CQI score of each lead is coherent with the
manual classification through visual inspection of the recordings,
being close to 70% for all the leads of the “acceptable” group and
much lower for all the leads of the “unacceptable” group (close to
30% for limb leads, to 7% for chest leads).

However, the CQI interquartile range is remarkably wide for
the “unacceptable” group, suggesting that leads with a sufficient
CQI score for heart rate variability analysis may be identified in
most cases even in this group, as the example of Figure 5A
suggests.

3.2.2 Physionet/Computing in Cardiology 2017
Challenge
Figure 7A compares CQI values in the three groups of recordings
of the PhysioNet/Computing in Cardiology 2017 Challenge
(Clifford et al., 2017). These three groups were selected to
quantify the effects of deviations due to noise or atrial
fibrillation from the pseudoperiodicity of the normal rhythm.
Most of the recordings in normal rhythm have CQIs greater than
50%, as the “acceptable” recordings of the 2011 Challenge. Atrial
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fibrillation or noise substantially reduces CQI, which is lower
than 40% in most of these recordings.

The ROC curve that was calculated to quantify the capability
of CQI to identify an ECG recording as adequate for heart rate
variability analysis, was associated with a consistently high AUC
(Figure 7B). The Youden criterion identified in CQI > 47% the
cut-off to classify an ECG recording as adequate, with 79.0%
sensitivity and 85.2% specificity.

3.2.3 Running Cepstral Analysis
Figure 8 shows examples of running cepstral analysis on ECGs
collected with wearable/mobile devices affected by different types
of noise. A four-level color code is used to represent the CQI
values estimated second by second. Based on the cut-off defined
by ROC analysis (Figure 7B), we classified the ECG as having
good quality when CQI > 50%, representing the time window in
green color, and as having “acceptable quality” when 40 < CQI ≤
50%, representing the time window in yellow. ECG classified with
“very low” or “unacceptable” quality are associated with 25 < CQI
≤ 40% and CQI ≤ 25%, and are represented in magenta and red
respectively.

Panel a) is a segment of 24-h ECG (250 Hz sampling, 16 bit) in
a healthy volunteer during daily-life activities with a wearable
device (Faros 360 Mega, Kuopio, Finland). The ECG shows a
short burst of muscular noise followed by a movement artifact:
the running analysis associates both the events with locally low
CQI values.

Panel b) is a segment of ECG recorded in a healthy
volunteer during night-time sleep at a high altitude
(Lombardi et al., 2013). The ECG (200 Hz, 12 bit) was
recorded with the MagIC device, a wearable system with
woven ECG electrodes, a textile plethysmograph for
measuring respiratory movements of the thorax, and a
sternal accelerometer (Di Rienzo et al., 2010), connected to
a pulse oximeter (Nonin Xpod®, Nonin Medical, Inc.,
Plymouth, MN, United States). The running analysis
classified unacceptable (CQI ≤ 25%) a data segment with a
temporary signal loss, likely due to a bad contact between
textile electrodes and skin. The recovery of the ECG waveform
was identified by classifying the signal as having CQI > 50%.

Panel c) is a high-quality ECG with frequent premature beats
recorded by MagIC in a volunteer resting at a high altitude
(Caravita et al., 2015). While most of the recording is associated
with high CQI values, each premature beat causes a dramatic local
fall in the quality score. These beats are classified as
“unacceptable” for heart rate variability analysis.

Panel d) is an example of running cepstral analysis during
random heart-rate variations due to the lack of normal sinus
rhythm. The ECG was recorded with a mobile electrocardiograph
(AliveCor Inc., Mountain View, CA, United States) by a patient in
atrial fibrillation (#A00027 of the PhysioNet/Computing in
Cardiology Challenge 2017 dataset). The whole signal is
associated with very low CQI values indicating that it is
unacceptable for heart rate variability.

Figure 9 shows examples of running cepstral analysis on ECG
tracings in normal sinus rhythm with large ramp-like changes in
heart rate. The upper panels regard a segment of a sleep recording

at a high altitude by the MagIC device. The low barometric
pressure at high altitude induced frequent apneas/hypopneas
events followed by deep breathing, which caused wide ramp-
like changes in R-R intervals and fluctuations of the ECG
baseline. These wide heart rate fluctuations occurred in
normal sinus rhythm and did not prevent the cepstral analysis
to quantify high CQI scores and classify the segment as acceptable
for heart rate variability analysis.

The lower panels of Figure 9 regard an ECG recording
(1000 Hz sampling rate, PowerLab 8/35 Bioamp—Data
Acquisition System, ADInstruments, Dunedin, New Zealand)
during an incremental exercise test up to exhaustion on the
cycle ergometer (Ergoselect 100, ergoline GmbH, Bitz,
Germany). The test was performed by a 14-year-old male
participant with an increasing exercise load at 12W/min. Even
if the R-R intervals decreased progressively during the test with a
ramp-like pattern as the load increased, the CQI score remained
sufficiently high and classified the ECG quality as “good” or
“acceptable” throughout the test.

4 DISCUSSION AND CONCLUSION

In the last years, several methods have been proposed for
evaluating the quality of ECG recordings: the principles on
which they are defined and comparisons among methods are
reported in two recent reviews (Satija et al., 2018; Rahman et al.,
2022). These reviews highlight that the accuracy of each method
depends on the medical context for which it is proposed.
Therefore, while some methods are aimed at the correct
identification of the QRS complex only, others require a more
detailed morphological identification of specific ECG features,
like amplitudes and intervals between waves (Satija et al., 2018).
Furthermore, the accuracy depends on the testing dataset because
the type of artifacts and noises affecting mobile ECGs for
telemonitoring applications differ from those expected for
wearable ECG devices or ECGs recorded in the doctor’s office
or in intensive care units (Rahman et al., 2022). In this context,
the usefulness of our cepstral approach is to address a specific
aspect of the ECG signal quality that has not been explicitly
considered by other methods: the acceptability of ECG recordings
for heart rate variability analysis. In this frame, an ECG segment
should be considered not acceptable even in absence of noise
components or artifacts if it does not occur during normal sinus
rhythm, a condition not considered by other indexes of signal
quality. In addition, our work was motivated by the need to
evaluate the ECG adequacy for heart rate variability analysis
continuously onboard wearable devices with low computational
power.We found the cepstral analysis to be a promising approach
because the power cepstrum describes the periodic structure of
ECG recordings in a simple way (i.e., with the main harmonic at
τ0 and very few multiples at most) that can be calculated and
interpreted easily. This makes the power cepstrum a potentially
useful tool in heart rate variability studies to identify and discard
noisy ECG recordings or recordings not in normal sinus rhythm.
The estimation of the power cepstrum does not require important
computational resources and consent defining a simple score,
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CQI, evaluable by the wearable systems themselves. In multi-lead
ECG recordings, CQI could allow selecting and transmitting the
ECG lead with the best quality only (that is the lead with the
highest CQI), reducing the flow of redundant information within
the monitoring system and the power consumption for signal
transmission.

The dataset of the Physionet/Computing in Cardiology 2017
Challenge demonstrated that CQI is useful to distinguish ECGs in
normal rhythm from unacceptable recordings due to noise or
arrhythmias, and provided us with an objective cut-off threshold
for the classification. In ambient-assisted living applications,
thresholds on running CQI estimates may be employed to
send alerts from the wearable device to upper computational
levels, which may apply more sophisticated analysis tools,
possibly integrating other physiological, behavioral, and
environmental signals, to properly manage the alarm. On
very-long term monitoring, comparing the distribution of CQI
values with cut-off thresholds provides an effective way to
summarize the overall quality of the ECG recording, as in the
example of Figure 10.

It is worth noting that deviations from the ECG periodicity
may occur also in normal sinus rhythm due to physiological
changes in heart rate. Even if most applications of heart rate
variability require stationarity, which assures a stable mean heart
rate, time-varying methods are employed to describe autonomic
activations that induce rapid changes in the cardiac rhythm.
These changes appear as heart-rate ramps in the short running
window used for cepstral analysis and they should not be
excluded from the evaluation of heart rate variability. Results
on synthesized ECGs (Figure 4B) showed that a chaotic heart-
rate pattern decreases CQI significantly more than a ramp-like
pattern with the same variation coefficient. As Figure 9
exemplifies, this means that even marked ramp-like changes in
the heart rate may be correctly classified as adequate for
evaluating the heart rate variability if they occur in normal
sinus rhythm, in absence of artifacts or noise.

4.1 Limitations and Future Perspectives
We defined CQI to assess recordings in adults or the elderly
during daily activities. Therefore, the parameters defining our
method should be modified to properly monitor subjects with
much higher heart rates, such as neonates or young athletes
during maximal exercise. This can be done easily because the
parameters are easily interpretable. For instance, let’s consider the
frequency data window we defined between 0 and 20 Hz and the
cepstral band for identifying the peak at τ0 between 0.3 and 2.5 s;
if the heart rate is 180 bpm, only 6 harmonics fall in the frequency
data window and τ0 is very close to the lower limit of the cepstral
band. Thus, if such high average heart rates are expected, it may
be desirable to increase the upper limit of the frequency window
above 20 Hz and to shift the cepstral band toward quefrencies
lower than 0.3 s to better capture the cepstral power around the

mean R-R interval. Moreover, a limit of CQI is that it does not
distinguish between noise and arrhythmias, being similarly low in
the case of noise and atrial fibrillation (Figure 7A), even if the
causes for the deviations from the ECG periodicity are rather
different in the two cases. More detailed quantification of the
cepstral morphology than CQI might better characterize the
chaotic rhythm of atrial fibrillation, possibly integrating
traditional spectral methods to distinguish among types of
atrial fibrillation and between atrial fibrillation and noise.
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Atrial fibrillation (AF) is the most common cardiac dysrhythmia and percutaneous catheter
ablation is widely used to treat it. Panoramic mapping with multi-electrode catheters has
been used to identify ablation targets in persistent AF but is limited by poor contact and
inadequate coverage of the left atrial cavity. In this paper, we investigate the accuracy with
which atrial endocardial surface potentials can be reconstructed from electrograms
recorded with non-contact catheters. An in-silico approach was employed in which
“ground-truth” surface potentials from experimental contact mapping studies and
computer models were compared with inverse potential maps constructed by
sampling the corresponding intracardiac field using virtual basket catheters. We
demonstrate that it is possible to 1) specify the mixed boundary conditions required
for mesh-based formulations of the potential inverse problem fully, and 2) reconstruct
accurate inverse potential maps from recordings made with appropriately designed
catheters. Accuracy improved when catheter dimensions were increased but was
relatively stable when the catheter occupied >30% of atrial cavity volume. Independent
of this, the capacity of non-contact catheters to resolve the complex atrial potential fields
seen in reentrant atrial arrhythmia depended on the spatial distribution of electrodes on the
surface bounding the catheter. Finally, we have shown that reliable inverse potential
mapping is possible in near real-time with meshless methods that use the Method of
Fundamental Solutions.

Keywords: atrial fibrillation, open basket catheters, inverse problem, non-contact mapping, endocardial potentials

INTRODUCTION

Intracardiac catheters can acquire electrograms simultaneously at multiple sites on or close to the
heart wall and have been used to construct panoramic maps of electrical activity in patients during
persistent atrial fibrillation (AF) (Narayan et al., 2012; Pathik et al., 2018). While macro-scale atrial
activation is disorganized in AF, it is argued that repeated patterns of local electrical reentry in such
maps may provide targets for the percutaneous catheter ablation procedures used to treat this
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dysrhythmia (Narayan et al., 2012; Haissaguerre et al., 2016).
Effective contact mapping with multi-electrode catheters presents
challenges. The spatial distribution of electrodes in the 8-spline
basket catheters that have been used for intra-atrial mapping is
inherently non-uniform, with greater density along splines than
around the equator of these devices when fully deployed (Pathik
et al., 2018). Deformation of basket catheter splines in contact
with the wall can exacerbate sampling heterogeneity (Pathik et al.,
2018). Furthermore, experimental and modelling studies indicate
incomplete wall coverage, with ~50% only of electrodes close to
the atrial wall (<5 mm from endocardium) in typical studies of
the left atrium (LA) (Oesterlein et al., 2016;Martinez-Mateu et al.,
2018; Pathik et al., 2018).

Inverse methods can be used to reconstruct potential maps on
the heart surface from electrograms recorded with electrodes that
are not in contact with it (Johnson and Bronzino, 2000; Pullan
et al., 2005). This requires information about the geometry of the
heart surface, the 3D locations of the electrodes and the electrical
properties of the volume between them. Mesh-based solutions of
the inverse potential problem have been widely used for non-
invasive electrocardiographic imaging (ECGi) (Barr et al., 1977;
Johnson and Bronzino, 2000; Ramanathan and Rudy, 2001;
Pullan et al., 2005; Cluitmans et al., 2017; Duchateau et al.,
2019) but also for non-contact intracardiac potential mapping
with electrodes arrays mounted on the surface of inflatable
balloons (Khoury et al., 1995). To solve this problem, it is
necessary to specify Cauchy boundary conditions; that is to
assign both potentials and normal potential gradients at points
across the boundary on which electrical recordings are made
(Johnson and Bronzino, 2000; Pullan et al., 2005). This presents
no difficulties for ECGi or for intracardiac inverse potential
mapping if electrodes are mounted on an inflatable balloon.
Sampling surfaces are insulating in both instances and the
normal potential gradient is zero everywhere on them. This is
not the case, however, for a multi-electrode basket catheter and
normal potential gradients must be estimated on the virtual
surface that bounds the electrodes to solve mesh-based
formulations of the inverse potential problem. While reliable
solutions of the inverse potential problem can in principle be
obtained with mesh-based methods such as the finite element
method (FEM) or boundary element method (BEM) if
appropriate input information is provided (Johnson and
Bronzino, 2000; Pullan et al., 2005), meshless methods that
employ the Method of Fundamental Solutions (MFS)
(Fairweather and Karageorghis, 1998) offer a simpler
alternative. The latter approach has been used for ECGi
(Wang and Rudy, 2006; Bear et al., 2018) and was recently
proposed for non-contact intracardiac potential mapping
(Meng et al., 2022).

Here, we provide a systematic in silico analysis of mesh-based
and meshless methods for solving the intracardiac inverse
potential problem—for the first time as far as we are aware.
The mathematical bases of the approaches used in this setting are
summarized and a simple method for estimating Cauchy
boundary conditions from electrograms recorded with a multi-
electrode basket catheter is outlined. This is tested in a simplified
2D domain and then used for an FEM-based investigation of

inverse potential mapping in the 3D atria. The extent to which
accuracy is affected by catheter dimensions, electrode distribution
and noise are considered. Finally, we compare the efficacy of this
mesh-based approach with meshless methods that use the MFS.

This study demonstrates that reliable non-contact potential
mapping can be achieved across a wide range of basket catheter
dimensions using mesh-based inverse methods if the electrode
distribution is sufficient to provide representative samples of the
intracardiac potential field. It also shows that the MFS is equally
accurate over most of this range but computationally more efficient.

MATHEMATICAL BACKGROUND

The electrostatic potential ϕ in a biological volume conductor is
typically represented as

∇ · σ∇ϕ � − Iv (1)
where σ is the electrical conductivity tensor and Iv is the current
per unit volume defined within the solution domain Ω.
Electrostatic potentials associated with cardiac electrical
activity flow are caused by current flow via transmembrane
ion channels and transporters in heart muscle cells, but there
is no nett current flow elsewhere in the domain. Therefore,

∇ · σ∇ϕ � 0 inΩH (2)
where ΩH is a heart cavity.

A Mesh-Based Inverse Approach
A representation of the potential problem is given in Figure 1A. If
the potential on the endocardial surface ΓH is specified (Dirichlet
boundary conditions), ϕ can be estimated throughout ΩH by
solving the forward problem Eq. 2.

The objective of the corresponding inverse problem is to
reconstruct ϕ on ΓH from potentials recorded with an array of
electrodes introduced into the cavity on a catheter. This can be
expressed as a boundary value problem by defining a surface ΓC
that bounds the electrodes on the catheter and encloses the
domain ΩC. We seek to define a set of linear equations that
satisfies Eq. 2 in ΩH − ΩC and can be reformulated as

AϕH � ϕC (3)
where ϕH is a vector of data on ΓH and ϕC is a vector of data on ΓC.
The inverse problem is to determine ϕH given ϕC.

Both problems can be solved numerically using finite
difference, finite element and finite volume methods or, because
the problem can be reduced to the boundaries alone since σ is
uniform and isotropic throughout ΩH, using boundary integral
and boundary element methods (Oostendorp and van Oosterom,
1991; Johnson and Bronzino, 2000; Pullan et al., 2005). To do so,
it is first necessary to discretize the solution domain with an
appropriate mesh. Because the inverse problem is ill-posed,
solutions are not unique and this amplifies the effects of noise.
Tikhonov regularization (Johnson and Bronzino, 2000) is widely
used in this setting to reduce instability. It seeks to identify the
regularization parameter λ that optimises the objective function
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����AϕH − ϕC

����2 + λ
����LϕH

����2 (4)
where the first term is the sum of squared residuals from Eq. 3
and the second penalizes lack of smoothness of the solution
vector. With zero-order Tikhonov regularization L is the identity
matrix (Tikhonov and Arsenin, 1977). The closely related inverse
problem of electrocardiography ECGi, in which voltages
measured on the torso are used to calculate voltages on the
surface of the heart, has been solved using all the numerical
methods above (Barr et al., 1977; Johnson and Bronzino, 2000;
Pullan et al., 2005; Cluitmans et al., 2017; Bear et al., 2018).

To solve the intracardiac inverse problem, it is necessary to
specify appropriate boundary conditions at ΓC. Continuity of
potential and normal current flow is maintained on both sides of
the interface (Pullan et al., 2005).

That is

ϕin
C � ϕout

C

σin∇ϕin
C · n � σout∇ϕout

C · n (5)

where in and out indicate inner and outer sides of ΓC respectively.
For a balloon catheter, σin � ∞ and ∇ϕC · n � 0, and the

inverse problem for this case has been solved using a boundary
element method very similar to equivalent approaches used for
ECGi (Khoury et al., 1995; Pullan et al., 2005). However, current
flows freely across ΓC with a basket catheter and the dispersion of
current in ΩH −ΩC can vary substantially between these cases
depending on the geometry of ΓH and ΓC. The distribution of ϕ in
ΩH −ΩC reflects this and it follows that ϕ cannot be estimated
adjacent to ΓC unless Cauchy boundary conditions which specify
both ϕC and ∇ϕC.n are used. A simple way to set these boundary
conditions is to solve the forward problem Eq. 2 for the
subdomain ΩC using ϕC recorded on ΓC as Dirichet boundary
conditions so that ϕin adjacent to ΓC can be estimated. Provided

that ϕC samples the potentials on ΓC adequately, ∇ϕC · n can be
estimated enabling Cauchy boundary conditions to be specified.

Meshless Inverse Methods That Use the
Method of Fundamental Solutions
The Method of Fundamental Solutions (MFS) provides a means
of solving partial differential equations such as the Laplace
equation without the need to set up connected internal meshes
in the solution domain (Fairweather and Karageorghis, 1998).
This approach was applied to ECGi by Wang and Rudy (Wang
and Rudy, 2006) and here we extend it to intracardiac inverse
potential mapping.

The meshless/MFS formulation of the intracardiac problem is
presented in Figure 1B. Potentials ϕ(x) at points x in ΩH are
approximated as the linear superposition of source functions
positioned at locations {ξi}Ni�1 around a virtual surface ΓV that
enclosesΩH. It is assumed that the conductivity σ throughout the
extended domain bounded by ΓV is uniform and isotropic, and
that the electrical properties of the basket catheter can be
neglected.

At any instant, the potential ϕC(x) at each of theM electrodes
at x in ΩH is estimated as

ϕ(x) � ∑N

i�1σIiG(ξ i, x) (6)
where Ii � (I1, . . . , IN) are the source current magnitudes at
{ξi}Ni�1 and G is the fundamental solution of the 3D Laplace
operator at each point. That is,

G(ξ, x) � 1
4π|ξ − x| (7)

where |ξ − x| is the Euclidean distance between x and ξ.

FIGURE 1 | Schematic representations of (A)mesh-based and (B) meshless/MFS formulations of the intracardiac inverse potential problem which seeks to map
the potential distribution on the surface ΓH that bounds a heart cavity ΩH from a set ofM potentials ϕC(x) sampled at electrodes inside ΩH. In (A) potentials and normal
potential gradients on the surface ΓC that bounds the electrodes are related to the potential distribution on ΓH and in solution domainΩH −ΩC. In (B)N fictitious sources Ii
(open circles) distributed around a virtual boundary ΓV outside ΓH generate the current flux that gives rise to the potential distribution inΩH. These arematched to the
sampled potentials ϕC(x) enabling potential distribution on ΓH to be estimated.
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This results in an M × N system of equations and solution of
the inverse problem yields the source current magnitudes that
best match the ϕC(x) recorded with the catheter. The
corresponding endocardial potentials ϕH(x) can then be
reconstructed by evaluating Eq. 6 ∀ x ∈ ΓH.

This system is inherently under-determined because the
number of electrodes M is generally less than N, the number
of fictitious sources needed to map potentials faithfully onto ΓH.

METHODS

A well-established computational approach (Ramanathan and
Rudy, 2001) was used to quantify the accuracy with which
potentials around an external boundary can be reconstructed
from non-contact potentials sampled within the corresponding
domain using inverse solution methods. The basic steps were as
follows. First, “ground-truth” potential distributions, one simple
and one more complex, were specified on the external boundary.
The corresponding internal field was then determined by
numerical solution of Laplace’s equation and this potential
field was sampled at points corresponding to different catheter
dimensions and electrode distributions. Finally, potentials on the

outer boundary were reconstructed using the sampled potentials
and compared with ground-truth potentials to assess the accuracy
of inverse mapping. Key features of our mesh-based inverse
approach were tested first with simple 2D problems and then
extended to a more realistic 3D FEM analysis using atrial
endocardial boundary geometry and representative potential
distributions on this anatomy based on experimental
measurement and simulation. Finally, the efficacy of inverse
potential mapping using a meshless/MFS approach was
compared with a representative mesh-based FEM analysis.

2D Analysis
Aspects of the approach employed here are illustrated in Figure 2.
Two different arbitrary ground-truth potential distributions were
specified on the boundary ΓH of the circular domain ΩH and the
associated potential fields in ΩH were constructed by solving
Laplace’s equation with these boundary conditions (Figure 2A)
using the finite difference method (FDM) on a polar grid centered
on the origin.

Cauchy boundary conditions on ΓC were determined as shown
in Figure 2A. Potentials were sampled at discrete points
distributed uniformly on ΓC which bounds the circular interior
domain ΩC. Potentials around ΓC were reconstructed using

FIGURE 2 | 2D illustration of mesh-based inverse potential mapping. (A) Schematic of steps in specifying Cauchy boundary conditions on ΓC. The potential
distribution in ΩH (upper panel) is sampled at 8 recording electrodes (black dots). Potentials around ΓC are reconstructed from these samples with radial basis
interpolation and used as Dirichlet boundary conditions in numerical solution of potential distribution inΩC (lower panel). This enables estimation of potentials and normal
potential gradients around ΓC. B and (C) Potential distributions on ΓH reconstructed from potentials sampled in ΩH for (B) relatively simple, and (C)more complex
potential fields in ΩH. Ground-truth potential distributions in ΩH are given on left and the broken circles indicate the internal boundaries around which samples are
acquired (16 sites in both cases). Potentials on ΓH are reconstructed using Cauchy boundary conditions on ΓC and compared with ground-truth potentials in the graphs
at right. Normalized ground truth surface potentials (solid line, blue diamonds), and surface potentials reconstructed from samples acquired on internal boundaries with
relative radii 0.469 (dashed line, green squares) and 0.375 (dotted line, red circles) are plotted as functions of angular coordinate θ.
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radial-based interpolation and the corresponding potential field
in ΩC was estimated by solving Laplace’s equation with a polar
finite difference scheme. Gradients normal to ΓC were estimated
using the FDM with a polar grid centered on the origin of the
domains. Transfer Eq. 3 relating ϕH and ϕC were formulated
using the boundary integral approach developed by Barr et al.
(1977) (Barr et al., 1977), then discretized and evaluated as
outlined by this group. The inverse problem was solved
employing zero-order Tikhonov regularization (Tikhonov and
Arsenin, 1977) with the regularization parameter selected using a
U-curve algorithm (Chamorro-Servent et al., 2019) based on the
discrete Picard condition (Hansen, 2010). This optimizes the
singular value decomposition associated with the regularization
problem.

3D Analyses
Anatomic and experimental data used for 3D analyses were
acquired from an anesthetized closed-chest sheep employing
methods summarized below. All procedures were approved by
the Animal Ethics Committee of the University of Auckland and
conform to the Guide for the Care and Use of Laboratory Animals
(National Institutes of Health publication no. 85–23).

Gadolinium-enhanced (Gd-DTPA 0.2 mmol kg) ECG-gated
magnetic resonance images (MRIs) of the atria (1.0 mm2 ×
1.0 mm2 in-plane resolution approximately parallel to the
atrio-ventricular valve plane and 1.6 mm between slices) were
acquired with a 3T Siemens Magnetom Skyra scanner in late
diastole with lungs inflated. Atrial electrical activation was
subsequently mapped using 38 and 48 mm 64-electrode
Constellation™ catheters (Boston Scientific) introduced
percutaneously into the atria via the jugular vein under
fluoroscopic guidance. Catheters were positioned in the LA
using a guide wire and sheath introduced by trans-septal
puncture. Electrograms from LA catheters (bandlimited to
0.5–1,500 Hz and sampled at 3 kHz) were recorded
simultaneously in sinus rhythm (SR) using a multi-channel
acquisition system (UnEmap, Auckland UniServices) with
catheters in different locations. Serial biplane ciné X-ray views
of the catheters (LAO/RAO, 25 frames/second, with concurrent
Lead II ECG added for synchronization) were acquired
immediately after each electrical recording. The ventilator was
switched off during fluoroscopy to minimize respiratory motion.

Endocardial surface geometry from a representative LA was
segmented from serial MRI using Amira 5.4 (Thermo Fisher
Scientific) and reconstructed in 3D with the atrial appendage
cropped (see Figure 2). LA electro-anatomic maps were
reconstructed for this heart from recordings in SR with 3D
electrode locations estimated from biplane X-ray records
(Meng et al., 2017). Ground-truth potential distributions in SR
were constructed at selected activation times by interpolating
potentials around the activation wavefront from recorded
electrograms. Ground truth data representing reentrant atrial
activation were simulated. Meandering spiral wave reentry was
simulated on an isotropic 2D monodomain with Fenton Karma
activation kinetics (Fenton and Karma, 1998) using a standard
cross-field S1-S2 stimulus protocol (Pandit et al., 2005). Points on
the 2D domain were sampled and mapped onto the 3D surface

mesh so that surface area was similar in both, with a contour
adjacent to the boundary in the former assigned to the mitral
valve orifice. Extracellular potentials were approximated from the
transmembrane currents computed at each 3D point at a
sampling rate of 1 kHz.

The open-source software environment SCIRun (Burton et al.,
2011) was used for FEM solutions of 3D forward problems. A
triangular surface mesh (1,529 nodes) was fitted to the LA andΩH

was discretized using tetrahedral elements. Intracardiac potential
fields were computed from the ground-truth surface potential
distributions by solving Laplace’s equation throughout ΩH. The
intracardiac field was sampled at points corresponding to
electrodes on two basket catheter configurations with 1) 64
channels with 8 equally spaced electrodes along 8 splines at
equal radial angles, and 2) 130 channels with 8 equally spaced
electrodes along 16 splines at equal radial angles and electrodes at
upper and lower poles. Basket dimensions were uniformly scaled
to vary the ratio of catheter volume to LA volume. The centroids
of catheters and the LA chamber were aligned to allow maximum
catheter expansion and to ensure reproducibility between results.
Noise was imposed by adding Gaussian noise independently to
the electrograms recorded at each electrode with power set at
realistic levels. Signal-to-noise ratio (SNR) is quantified as the
ratio of root-mean-squared (RMS) voltages of reconstructed
electrograms and noise.

SCIRun was also used for FEM solutions of 3D inverse
problems. The methods outlined above for estimating Cauchy
boundary conditions for the 2D case were extended to 3D as
follows. Intracardiac fields were sampled at points corresponding
to electrodes on specified intracardiac catheters. A triangular
mesh was fitted to ΓC (6,720 nodes) and the potential field on this
surface was reconstructed from the sampled data using radial-
based interpolation. Laplace’s equation was solved in ΩC using
these potentials as Dirichlet boundary conditions and ∇ϕ · n was
estimated on ΓC with the FDM using a polar grid centered on the
catheter. Finally, the volume between boundaries ΓC and ΓH was
discretized with a tetrahedral mesh. The inverse problem was
solved subject to the potential and normal potential gradient
boundary conditions specified on it using zero-order Tikhonov
regularization (Tikhonov and Arsenin, 1977) employing the
L-curve method to calculate the regularization parameter
(Hansen, 2010).

Inverse solutions with the MFS were run with purpose-written
code and a more detailed account of the methods used is given in
Meng et al. (Meng et al., 2022). In brief, the virtual boundary Γv
was formed by uniform radial inflation of the atrial surface mesh
ΓH by 6% and individual sources were associated with each of its
nodes. Inverse endocardial potential distributions for intracardiac
potentials “sampled” with virtual catheters were obtained using
zero-order Tikhonov regularization (Tikhonov and Arsenin,
1977) employing the L-curve method to calculate the
regularization parameter (Hansen, 2010). Comparisons
between FEM and MFS inverse solutions were made at
common points on ΓH.

Correspondence between ground-truth and reconstructed
potential maps were quantified by evaluating normalized root-
mean-squared error (nRMSE) and correlation coefficient (CC).
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nRMSE �

��������������
∑N

i�1(ϕi
GT − ϕi

R)2∑N
i�1(ϕi

GT)2
√√

and

CC � ∑N
i�1(ϕi

GT − μGT)(ϕi
R − μR)���������������∑N

i�1(ϕi
GT − μGT)2√ �������������∑N

i�1(ϕi
R − μR)2√

(8)

where N is the number of surface points compared, ϕiGT and ϕiR
are ground-truth and reconstructed potentials at surface point i,
while μGT and μR are mean values for ground-truth and
reconstructed potentials, respectively, across the surface.

Activation times (ATs) for ground-truth and reconstructed
electrograms were estimated as maximum negative rate of
potential change and the activation time difference ΔT at each
surface point was evaluated as the difference between the ground-
truth and reconstructed ATs

ΔT � |ATGT − ATR| (9)
SCIRun was used for 3D FEM forward and inverse

calculations and for visualization of all 3D results. Meshless/
MFS inverse solutions were run in purpose-written C code. All
other computation (2D analysis, estimation of potential
gradients, regularization and evaluation of correspondence
measures), was implemented in the MATLAB programming
language (The Mathworks, Natick, Massachusetts).

RESULTS

2D Analysis of Mesh-Based Intracardiac
Potential Mapping
We used a simple 2D analysis initially to test the feasibility of our
methods for estimating intracardiac Cauchy boundary
conditions. Figure 2A illustrates the steps involved. It shows
that the ground truth potential field in ΩC (upper panel) is
replicated qualitatively in the lower panel using a limited set
of samples around ΓC. Table 1 presents corresponding median
CC and nRMSE for ϕ and ∇ϕ · n around ΓC and demonstrates
that both can be estimated with good accuracy in this case. Error

increased as ΓC was enlarged relative to ΓH but was offset by
increasing the number of samples.

In this figure, we also compare ground-truth potentials on ΓH
with corresponding inverse results reconstructed from samples
around internal circles in simple (Figure 2B) and more complex
(Figure 2C) fields. Surface potentials reconstructed from samples
around an internal radius of 0.469 relative to ΓH were close to
ground-truth (nRMSE 0.02 and 0.06, CC 1.0 and 0.99 for simple
and more complex fields, respectively). However, error increased
when the dimension of ΓC was reduced further. With a relative
radius of 0.375 (~14% of the domain area), reconstructed surface
potentials were overestimated, and the complex surface potential
distribution captured less well (nRMSE 0.14 and 0.48, CC 0.99
and 0.70 for simple and more complex fields, respectively). These
results demonstrate that mesh-based inverse potential mapping
can be used to reconstruct surface potential distributions, but that
accuracy is influenced by the dimension of the surface relative to
the solution domain.

3D Analysis of Mesh-Based Intracardiac
Potential Mapping Accuracy
Figure 3 presents the results of an in silico analysis of the accuracy
with which LA surface potential distributions can be
reconstructed from non-contact electrograms recorded in SR
using 64-channel basket catheters. The ground truth
endocardial potential distribution at one instant (43.9 msec
after onset of atrial activation) is shown in Figure 3A with the
3D locations of basket catheter electrodes superimposed (the
volume ratio of the catheter with respect to LA cavity was 0.67).
The corresponding inverse reconstruction of atrial surface
potentials in Figure 3B is qualitatively similar to the ground-
truth map, while reference and inverse electrograms at a
representative site (point 1 in Figure 3B) correspond closely
throughout the activation cycle (Figure 3C). Figures 3D–F show
acceptable non-contact mapping accuracy for a wide range of
catheter dimensions (median: CC >0.96; nRMSE <0.12; ΔT =
3 ms for catheter-atrial volume ratios >0.3). However, error
accumulates progressively when catheter dimensions are
decreased below this range.

TABLE 1 | Effects of number of points on sampling boundary ΓC represented in Figure 2A and its location relative to outer boundary ΓH on the accuracy with which
potentials and normal potential gradients on ΓC are reconstructed. Potential distribution inΩH shown in Figure 2A. ΓC is concentric with ΓH and the radius of the former is
increased as indicated by the area ratio ΩC relative to ΩH. Samples are acquired at 8,16 and 32 uniformly spaced points around ΓC.

Area ratio 0.049 0.195 0.346 0.541 0.779 0.914 Samples

ϕ(xj) CC 0.9999 0.9995 0.9991 0.9989 0.9984 0.9970 8
nRMSE 0.0041 0.0101 0.0128 0.0137 0.0170 0.0241

zϕ(xj )
zn

CC 0.9996 0.9961 0.9947 0.9977 0.9879 0.9689
nRMSE 0.0078 0.022 0.0263 0.0268 0.0280 0.0428

ϕ(xj) CC 1.0000 1.0000 1.0000 0.9999 0.9997 0.9986 16
nRMSE 0.0022 0.0020 0.0023 0.0031 0.0078 0.0161

zϕ(xj )
zn

CC 0.9998 0.9996 0.9994 0.9989 0.9949 0.9797
nRMSE 0.0049 0.0061 0.0079 0.0105 0.0184 0.0347

ϕ(xj) CC 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 32
nRMSE 0.0014 0.0017 0.0020 0.0023 0.0027 0.0046

zϕ(xj )
zn

CC 0.9999 0.9997 0.9995 0.9996 0.9996 0.9996
nRMSE 0.0030 0.0055 0.0074 0.0062 0.0055 0.0156
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FIGURE 3 | Effect of catheter size on accuracy of inverse potential mapping. Comparison of ground truth potential maps on endocardial surface of LA in SR with
inversemaps reconstructed using FEM. Inverse potential maps were reconstructed from electrograms “sampled” using a 64-electrode basket catheter, with centroids of
catheter and LA chamber aligned. The upper panel presents typical results for a catheter which bounds a volume fraction of 0.67 relative to LA volume. These include (A)
ground-truth surface potential distribution 43.9 msec after onset of activation with basket catheter superimposed, and (B) corresponding potential maps
reconstructed using FEM. Finally, in (C) a ground-truth electrogram (black) at point 1 is compared with corresponding electrograms reconstructed using FEM (blue). In
the lower panel, (D) correlation coefficient (CC) (E) normalized root-mean-squared error (nRMSE), and (F) activation time difference (ΔT) are presented as functions of
relative catheter volume for FEM. Median values and interquartile range are given. Abbreviations: FEM, finite element method; SR sinus rhythm.

FIGURE 4 | Effect of boundary value specification on accuracy of inverse potential mapping using FEM. Comparison of ground truth potential maps on endocardial
surface of LA in SR 43.9 msec after onset of activation with inverse maps reconstructed using FEM from potentials sampled with centrally located internal basket
catheters with 64 equi-spaced electrodes. In (A) and (B), respectively, relative root-mean-squared error (nRMSE) and correlation coefficient (CC) are presented as
functions of catheter volume relative to LA. Additional error introduced by not estimating normal potential gradients on the virtual surface bounding electrodes is
indicated by the no flux results (open circles) in which normal potential gradients are set to zero. Abbreviations: FEM, finite element method; SR, sinus rhythm.
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Figure 4 presents the error introduced when the normal
potential gradient on the surface bounding the electrodes, ΓC,
is not accounted for. In this example, one time-point only is
considered (43.9 msec after onset of atrial activation). zϕ(xj)

zn is
assumed to be zero which corresponds to a no-flux condition at
ΓC. Incorporation of realistic estimates of normal potential
gradients on ΓC reduces nRMSE, with greatest absolute
reduction in error for the intermediate range of relative
volume ratios. The effects are modest with ~9% reduction in
CC and ~10% increase in nRMSE at a catheter-atrial volume ratio
of 0.3 and absolute error appears to be reduced at the extremes of
the relative volume ratio range.

Results of an analysis of inverse mapping accuracy for more
complex atrial rhythms in the presence of noise are presented in
Figure 5. In this case, a simulated rotor with a moving core was
used as ground-truth. Three activation cycles were sampled with a
130-electrode basket catheter and Gaussian noise at RMS voltages
of 18, 56 and 178 µV was added to these records. The upper panel
shows representative results for a catheter-atrial volume ratio of
0.67. Ground-truth surface potential maps (Figure 5A) were
reconstructed with reasonable accuracy in the absence of noise
(see Figure 5B). Median results were CC = 0.92, nRMSE = 0.11

and ΔT = 2 ms; clearly better than the corresponding result with a
64-electrode catheter (CC = 0.83, nRMSE = 0.14 and ΔT = 3 ms).
At this catheter dimension also, inverse mapping was robust in
the presence of realistic levels of electrical noise. Results with
systematic variation of relative catheter dimension and noise are
shown in Figures 5D–F. Accuracy was relatively invariant despite
increasing noise as catheter-atrial volume ratio was reduced from
0.67 to ~0.2. At dimensions less than this, however, there was a
progressive increase in error which scaled with noise level. It is
noteworthy that activation time estimates were markedly
degraded by noise at reduced catheter dimensions.

An important final observation is that the transfer matrices
used for 3D FEM analyses were over-determined in all cases, with
the LA represented by a 1529-node triangular surface mesh while
a 6720-node triangular mesh was fitted to the catheter. This was
necessary to achieve stable solutions.

Comparison of FEM and MFS Inverse
Solutions
In Figure 6, we compare the performance of mesh-based inverse
mapping employing a FEM solver with a meshless approach that

FIGURE 5 | Effects of catheter dimension and noise on inverse potential maps reconstructed during macro-reentry using FEM. LA surface potentials during 3
cycles of simulated atrial flutter are reconstructed from electrograms sampled inside the LA cavity with 130-electrode basket catheters and compared with ground-truth
data. The upper panel presents typical results for catheters that bound a volume fraction of 0.67 relative to LA volume. These include (A) the ground-truth surface
potential distribution at one instant with catheter electrodes overlaid (B) corresponding potential map reconstructed using electrograms “sampled” with a 130-
electrode basket catheter, and (C) electrograms reconstructed at location 1 from sampled records with 18 µV RMS (blue), 56 µV RMS (red) and 178 µV RMS (black) of
added Gaussian noise compared with the ground truth electrogram (grey) at the same site. In the lower panel, (D) correlation coefficient (CC) (E) normalized root-mean-
squared error (nRMSE), and (F) activation time difference (ΔT) are presented as functions of catheter-atrial volume ratio for these levels of added noise. Median values and
interquartile range are given. Abbreviation: FEM, finite element method.
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employs the MFS. We used the simulated rotor in Figure 5 as
ground-truth and again “sampled” 3 activation cycles with 130-
electrode basket catheters of different dimensions. FEM inverse
solutions matched ground-truth maps quite well, with median
values of CC = 0.91 and nRMSE = 11.3% across the activation
sequence at a catheter-atrial volume ratio of 0.67. Corresponding
results for the meshless/MFS approach were 0.95 and 4.9%, but
activation time differences with ground truth were the same for
both. While CC was marginally better with MFS than FEM for
catheter-atrial volume ratios >0.3, this measure decreased more
rapidly with the MFS when catheter dimensions were reduced
further (see Figure 6A). Likewise, ΔT was greater with the MFS
for catheter-atrial volume ratios <0.3. In contrast, nRMSE was
substantially less for MFS than FEM inverse results across the full
volume range.

The main difference between methods was that the MFS was
much more efficient computationally than the FEM in our hands.
Transfer matrices were simple to set up and inverse solutions
were obtained in near real-time using purpose-written code.
Finally, the meshless/MFS formulation was robust, with stable
inverse solutions despite the fact that transfer matrices were
inherently under-determined.

DISCUSSION

Summary
In this paper, we present the results of a computational analysis of
the accuracy with which endocardial potential maps can be
reconstructed from non-contact multi-electrode basket catheter
recordings. This inverse problem is addressed initially using a
mesh-based approach where transfer relationships are
formulated between potentials on the two boundaries involved.
This is accurate in principle because assumptions made about the
electrical properties of the solution domain are limited (and
inherently realistic). However, it requires Cauchy conditions to

be specified on the surface ΓC that bounds the electrodes. A simple
and robust way of doing this is outlined and used to solve
representative 2D and 3D problems. We demonstrate that
effective non-contact intracardiac potential mapping can be
achieved using mesh-based methods and that accuracy is
determined by 1) the spatial complexity of the intracardiac
potential field, 2) the dimensions of the catheter relative to
those of the cavity, 3) the distribution of electrodes on the
catheter, and 4) the signal-to-noise ratio of the potentials
acquired. Finally, we show that a much simpler meshless
method which uses the MFS is at least as accurate as mesh-
based inverse potential mapping over a wide range of catheter
dimensions and computationally far more efficient. This work
addresses an important problem in cardiac electrophysiology and
is the first in silico investigation of this topic, as far as we
are aware.

Mesh-Based Inverse Potential Mapping
With the mesh-based inverse solvers used in this analysis, it is
necessary to specify potentials at sufficient points on the surface
ΓC that bounds the electrodes to ensure that the transfer matrices
are well-determined. These boundary potentials can be faithfully
reconstructed by interpolation if their distribution is represented
by the data sampled. This is not sufficient here for complete
specification of boundary conditions. It is evident that current
flux through an open basket catheter affects the distribution of
potentials across the heart cavity and with mesh-based inverse
solvers this is captured by specifying normal potential gradients
on ΓC as outlined in the Mathematical Background.

Our 2D analysis demonstrates that intracardiac potential fields
in the vicinity of ΓC can be reconstructed accurately from a
relatively small number of potentials sampled uniformly around
this boundary. The difference between estimated and expected
potentials and normal potential gradients on ΓC depended on
matching the number of electrodes to the spatial complexity of
the potential distribution, and correspondence improved as the

FIGURE 6 | Comparison of inverse potential maps reconstructed during macro-reentry using FEM and meshless methods that employ the MFS. LA surface
potentials throughout 3 activation cycles in simulated atrial flutter reconstructed from electrograms sampled inside LA cavity with 130-electrode basket catheters and
compared with ground-truth data. (A) Correlation coefficient (CC) (B) normalized root-mean-squared error (nRMSE), and (C) activation time difference (ΔT) are
presented as functions of catheter-atrial volume ratio for FEM (blue) and meshless/MFS (red). Median values and interquartile range are given. Abbreviations: FEM,
finite element method; MFS method of fundamental solutions.
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distance between ΓC and heart surface ΓH increased. These
findings indicate that it is possible to specify the boundary
conditions necessary for non-contact potential mapping using
mesh-based inverse solution methods. We have demonstrated
that normal potential gradients on ΓC can be estimated with
acceptable accuracy and have shown in Figure 4 that inclusion of
this information improves the accuracy of 3D non-contact
potential mapping with mesh-based inverse solvers. The
robustness of this approach is confirmed by the precision of
non-contact potential mapping across a wide range of catheter
dimensions in complex rhythms and in the presence of noise
(Figures 3, 5).

Our analyses show that the accuracy of inverse potential
mapping decreases when catheter dimensions are reduced and
this becomes more marked as noise levels are increased. In the 3D
examples presented here (Figures 3, 5), error remains relatively
low as catheter-atrial volume ratios decrease to ~0.3 but increases
exponentially with further reduction. These findings are
intuitively reasonable. With increasing distance from the heart
surface, intracardiac potentials are progressively attenuated and
smoothed. The extent to which high temporal frequencies on ΓH
can be recovered depends on the regularization method used, but
the presence of noise introduces additional problems (Johnson
and Bronzino, 2000; Pullan et al., 2005). Because themagnitude of
intracardiac electrograms decreases toward the center of ΓH, the
signal-to-noise ratio of records sampled with a small catheter is
reduced and the noise is amplified by inverse mapping. Finally, if
the catheter is too small it cannot provide an adequate
representation of the potentials distributed throughout the
cavity, particularly when they are complex spatially.

The 3D analyses above also show that the accuracy with which
potentials on ΓH are reconstructed is improved by matching the
number of electrodes to the spatial complexity of the “ground
truth” potential distribution. While acceptable non-contact
mapping accuracy was achieved in SR using a 64-electrode
basket catheter (see Figure 3), a 130-electrode catheter was
needed to achieve similar performance for non-stationary
reentrant activity (see Figure 5 and related text). If the
electrode distribution is not sufficiently dense, high spatial
frequencies cannot be recovered and low frequency artefacts
(aliasing) may occur (Rice, 1950). This holds for both non-
contact and contact mapping.

Comparison of Mesh-Based and Meshless
Inverse Potential Mapping
As noted at the start of the Discussion, we opted to use mesh-
based inverse potential mapping as the reference method in this
study because assumptions made about the electrical properties of
the solution domain with this approach are minimal. We argue
that the correspondence of the 3D FEM solutions presented here
with ground truth and the stability of these results support this
strategy. In contrast, the meshless/MFS alternative with which it
is compared employs a much simpler representation of the
intracardiac forward problem but introduces additional
assumptions about the current sources that give rise to
intracardiac potential distributions. The fact that the MFS

approach performs better for catheter-atrial volume ratios >0.3
(Figure 6) warrants further consideration. It is likely that much of
the apparent improvement with meshless/MFS is due to the
compact support for linear interpolation in the FEM
implementation used. This gives rise to discontinuities across
element boundaries (see Figure 5B) whereas potentials on the
heart surface are continuous with meshless inverse mapping. We
note that there is no difference in ΔT for catheter-atrial volume
ratios >0.3 and argue that meshless/MFS inverse potential
mapping is at least as accurate as mesh-based inverse methods
over this range.

The major advantage of meshless/MFS methods in this setting
is that the forward transfer function is computationally simple
and can be assembled very rapidly. In contrast, with mesh-based
alternatives, such as FEM, the forward transfer function is
complex and time consuming to assemble and invert.
Furthermore, our results indicate that the meshless/MFS
representation of the intracardiac problem is much better
conditioned and therefore more robust than FEM. This is
reflected by the fact that an over-determined transfer matrix
was needed for stable inverse solutions with FEM, whereas
accurate solutions were obtained with MFS despite the fact
that transfer matrices were under-determined.

Potential Clinical Impact of These Findings
Non-contact intracardiac mapping systems that have been used
clinically have utilized balloon-mounted multi-electrode array for
potential mapping (Khoury et al., 1995; Khoury et al., 1998;
Schilling et al., 1999) or have reconstructed membrane charge
density from electrograms recorded with an open basket catheter
(Willems et al., 2019). While the inverse problem techniques used
are different, one would expect the information recovered to be
affected similarly by electrode density and positioning, and
catheter size, i.e. the number of recording electrodes, their
physical spacing on the catheter and proximity of the
electrodes to the atrial wall once the catheter is fully deployed.
Validation studies have shown that the accuracy with which
endocardial electrograms are constructed with the first of these
approaches is inversely related to the distance from the electrodes
array to corresponding points on the cavity surface (Earley et al.,
2006). As far as we are aware, an equivalent systematic validation
has not been completed for the second. This study indicates that
reliable non-contact potential mapping can also be performed
using multi-electrode catheters and could be carried out in near
real-time using meshless methods that employ the MFS.

In terms of optimal catheter design, greater electrode density
and more uniform distribution would be expected to provide
higher resolution. However, the question of how much is enough
has only started to be addressed recently. Martinez et al.
(Martinez-Mateu et al., 2018) showed computationally that
methods used to transform basket electrogram signals back
into catheter surface potential maps may result in the creation
of fictitious repetitive activation patterns resembling AF rotors
when the input information was too sparsely sampled. Williams
et al. (Williams et al., 2018) on the other hand defined optimal
endocardial sampling densities, both computationally and in-
vivo, required to resolve activation patterns of varying
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complexities. They report that a minimum endocardial sampling
density of 1.0–1.5 points/cm2 is required, with higher densities
needed to resolve spiral wave activity. Whilst they were looking at
endocardial interpolation of contact recordings not inverse
solutions, it is evident from our work here that potential
pitfalls in inverse mapping also need to be addressed with
good catheter design and mechanistic insight.

Limitations
It could be argued that the BEM is better matched to the mesh-
based inverse potential problem addressed here (Oostendorp and
van Oosterom, 1991; Johnson and Bronzino, 2000; Pullan et al.,
2005). The FEM generates sparse transfer matrices and is
computationally expensive, while BEMs reduce the solution
domain to the boundaries only giving rise to compact transfer
matrices that can reduce computational overheads and improve
accuracy (Johnson and Bronzino, 2000; Pullan et al., 2005).
However, our purpose here was to benchmark the mesh-based
approach and we opted to use FEM to avoid possible instability
that can occur when boundaries are geometrically complex as is
the case in the atria. We note that our mesh-based analysis has
proved stable and that the meshless/MFS methods with which
they are compared are much more efficient computationally than
either FEM or BEM. A further limitation is that although our
ground-truth data represent atrial rhythms of increasing
complexity they do not replicate the spatio-temporal disorder
that characterizes AF.

CONCLUSION

This computational analysis indicates that potentials on the
endocardial surface of a cardiac chamber can be reconstructed
with intracardiac multi-electrode basket catheters using inverse
solution methods provided that the boundary geometry is
specified and the 3D location of catheters with respect to it
are known. These data are now available clinically. Panoramic
electro-anatomic maps can therefore be generated at successive
time steps from non-contact recordings. Mapping accuracy is
determined by 1) the distance of recording electrodes from the
endocardium, 2) their distribution within the subdomain
sampled, and 3) rhythm complexity. These issues should be
factored into the design of future non-contact multi-electrode
basket catheters. We conclude that reliable non-contact potential

mapping can be carried out in near real-time using meshless
methods that employ the MFS.
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In order to determine the site of origin (SOO) in outflow tract ventricular

arrhythmias (OTVAs) before an ablation procedure, several algorithms

based on manual identification of electrocardiogram (ECG) features,

have been developed. However, the reported accuracy decreases when

tested with different datasets. Machine learning algorithms can automatize

the process and improve generalization, but their performance is hampered

by the lack of large enough OTVA databases. We propose the use of detailed

electrophysiological simulations of OTVAs to train a machine learning

classification model to predict the ventricular origin of the SOO of

ectopic beats. We generated a synthetic database of 12-lead ECGs

(2,496 signals) by running multiple simulations from the most typical

OTVA SOO in 16 patient-specific geometries. Two types of input data

were considered in the classification, raw and feature ECG signals. From

the simulated raw 12-lead ECG, we analyzed the contribution of each lead

in the predictions, keeping the best ones for the training process. For

feature-based analysis, we used entropy-based methods to rank the

obtained features. A cross-validation process was included to evaluate

the machine learning model. Following, two clinical OTVA databases

from different hospitals, including ECGs from 365 patients, were used as

test-sets to assess the generalization of the proposed approach. The results

show that V2 was the best lead for classification. Prediction of the SOO in

OTVA, using both raw signals or features for classification, presented high

accuracy values (>0.96). Generalization of the network trained on simulated

data was good for both patient datasets (accuracy of 0.86 and 0.84,

respectively) and presented better values than using exclusively real

ECGs for classification (accuracy of 0.84 and 0.76 for each dataset). The

use of simulated ECG data for training machine learning-based

classification algorithms is critical to obtain good SOO predictions in
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OTVA compared to real data alone. The fast implementation and

generalization of the proposed methodology may contribute towards its

application to a clinical routine.

KEYWORDS

machine learning, electrophysiological simulations, outflow tract ventricular
arrhythmias, synthetic databases, virtual population, digital twin

1 Introduction

In structurally healthy hearts, ventricular tachycardia (VT)

occurs primarily as a consequence of abnormal ectopic foci in the

ventricles, overtaking sino-atrial activation and leading to

premature ventricular complexes. The most common type of

idiopathic ventricular arrhythmias originates from the outflow

tract, and shows a high incidence in young population (Sirichand

et al., 2017). For this group of patients, a catheter ablation of the

tissue that triggers the ectopic focus is indicated, which shows low

procedural complications and a high success rate. However, it is

key to previously determine the site of origin (SOO) of the

outflow tract ventricular arrhythmia (OTVA) to plan the

intervention and the catheter approach. In particular, the

differentiation between left and right ventricular (LV and RV,

respectively) origin is crucial for the electrophysiologist, being

the involved risk and time greatly different.

It is common to obtain recordings of the focal VT in the form

of an electrocardiogram (ECG) prior to a radiofrequency ablation

(RFA) procedure, which contain important information related

to the OTVA and its origin. It is known that the majority of

OTVAs originates from the RVOT (70–80%) (Srivathsan et al.,

2005). Clinicians have developed several algorithms based on

manual feature detection from ECGs (Lerman, 2015) to help

determine the SOO. For a review on the classical ECG signatures

proposed to determine the SOO of OTVAs, see Anderson et al.

(2019). One of the main drawbacks of traditional ECG features is

that they are complex to implement in daily clinical practice due

to the large number of specific rules that have to be checked,

which entail detailed measurements and visual comparison

between precordial transitions, signal notches, and other

features. In addition, they are usually based on observations

on small cohorts of patients from a single-center study. In

consequence, the whole process is too dependent on the

clinician’s experience. We recently showed that patient-

specific simulations can reproduce the ECG signatures of

OTVA, being able to predict the SOO in a small cohort of

patients from a single center (Doste et al., 2020). However,

processing patient data and performing patient-specific

simulations requires very specific expertise and it is very time

consuming, limiting its implementation in clinical routine.

We propose the application of machine learning (ML)

techniques on ECGs from OTVA patients to guide their

treatment. The use of ML and deep learning (DL) algorithms

to learn from ECG data and provide predictions is becoming very

popular in the medical field (Attia et al., 2021; Nagarajan et al.,

2021). One particularly successful application is the use of ML for

ECG analysis of cardiac arrhythmias, as recently reviewed in

Minchole et al. (2019). For instance, ML was applied to classify

different types of ventricular arrhythmias by a combination of

support vector machine (SVM), with the help of grid search, and

waveform morphological analysis (Li et al., 2022). ML has also

being used to predict the LVOT versus RVOT SOO of VT in a

clinical database of 420 patients with a high accuracy (Zheng

et al., 2021), and to localize premature ventricular complexes

from ECG using simulated databases (Yang et al., 2017; Alawad

andWang, 2019). Beyond patient stratification, DL has also been

used for risk prediction of drug-induced arrhythmias and

diagnosis of long QT syndrome (Prifti et al., 2021), or for

finding an optimal lead subset of the 12-lead ECG to

eliminate the redundancy, improving the generalizability of

DL-based models (Lai et al., 2021).

ML and DL techniques rely on the quality of training

datasets, which should represent the target population and be

balanced. In the particular case of OTVAs, there are different

locations for the SOOs (transmurally distributed in several

anatomical regions of the LV and RV), and other co-variables

such as the ventricular anatomy, its orientation, or the presence

of pathological tissue (scar) that affect the ECG morphology.

Since there are not large public labelled databases of OTVA

patients available (largest in the order of 350 cases), the solution

could be the use of computational models, e.g., digital twins

(Corral-Acero et al., 2020) to build large virtual datasets where all

the variables are under control. These virtual hearts are

electrophysiological twins to the patient’s heart on which

various stimulation protocols can be applied to, for instance,

in our case induce OTVAs from different SOO. Such an

approach has been successfully applied to several medical

applications, such as drug screening (Costabal et al., 2019),

anatomical modelling of pathological populations (Romero

et al., 2021; O’Hara et al., 2022), therapy planning of catheter

ablation (Ferrer et al., 2015; Ferrer-Albero et al., 2017; Prakosa

et al., 2018; Lopez-Perez et al., 2019), or ECG simulation

(Cardone-Noott et al., 2016).

In this paper, we propose the use of ML models trained with

large synthetic datasets of simulated ECG data obtained from

biophysical electrophysiology simulations of OTVAs on digital

twins. We present results on the prediction of SOO using

different approaches in which we train ML models with a

virtual population of synthetic simulated data, validating them
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FIGURE 1
Scheme of the proposed methodology. Patient data was used to build ventricular digital twins for the 16 patients. Biophysical simulations were
run in the different anatomies, using 12 different sites of origin (SOO), to generate a database of 12-lead electrocardiograms (ECGs). The database of
simulated ECGs was finally used to train a ML algorithm to predict the SOO (Right ventricle outflow tract (RVOT) vs. Left ventricle outflow tract
(LVOT)) of real patients ECGs from two different clinical datasets (DS-334 and DS-31). Abbreviations used in the image: CT: computed
tomography; EAM: electroanatomical mapping; ML: machine learning; SVM: support vector machine.
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with real clinical datasets from different centers, also evaluating

combinations of synthetic and real data for training and

validation. We also evaluated the best precordial leads and the

signal features that produced a better LVOT/RVOT

classification. This approach in which all the simulations have

been performed beforehand and only ML models are used to

predict the SOO of new patients permits its translation to daily

clinical routine.

2 Materials and methods

We have developed a computational pipeline to build and

validate our approach, from clinical data to final ML-based

predictions, summarized in Figure 1. It starts with the

generation of ventricular digital twins, built with patient-

specific heart meshes together with their cellular and tissue

electrical properties. All the digital twins include outflow

tracts from both ventricles up to the valve planes, with the

estimated myocardial fiber orientation as in Doste et al.

(2019), and no structural disease. Biophysical simulations of

ventricular cardiac electrophysiology were run from different

SOO to compute the ECGs. Subsequently, simulated ECGs were

compared and validated against the available patient data and

used to generate a database of synthetic ECGs. This database was

later used to perform a supervised training of a ML model to

predict the SOO of an ectopic beat, and was tested against two

clinical OTVA ECG databases from different hospitals. In the

following subsections we describe the different clinical datasets

and the methodology used for simulating the ECGs. The next

subsection is then focused on the data pre-processing and

homogenization for both clinical and simulated signals. Final

subsection contains all the information about the support vector

machine used for classification between RV and LV SOO. Two

different strategies for reducing the dimensionality of the data

(downsampling the raw ECG signal and extracting ECG-based

features) are introduced. We also applied a data augmentation

algorithm to improve the performance of the classification.

Finally, the different scenarios used for the signal classification

are described.

2.1 Clinical datasets for testing

We included two different clinical ECG datasets from OTVA

patients for the validation of the proposed approach. The first

dataset consisted of 31 ECGs (DS-31) that were prescribed for

catheter ablation procedure at the Hospital Clinic, Barcelona. All

patients underwent a electro-anatomical mapping study by

CARTO three navigation system (Biosense Webster, Diamond

Bar, CA, United States ) with a 3.5 mm irrigated tip catheter

(NaviStar, Biosense Webster). During the procedure, 12-lead

surface ECG and intracardiac recordings were obtained and

displayed by an electrophysiology data acquisition system

(Bard LabSystem, CR Bard Inc., Lowell, MA, United States ;

or EP-Tracer, CardioTek, Maastricht, Netherlands). Ablation

was considered successful if the targeted OTVA was

eliminated and it was noninducible after isoproterenol

infusion. The site where RFA application eliminated the

OTVA was considered the SOO and was labelled and saved in

the electroanatomical mapping data for validation purposes. The

study was approved by the local ethics committee and written

informed consent was obtained from all participants. The second

dataset was an open-source 12-lead ECG database of 334 OTVA

patients (DS-334) published by Zheng et al. (2020). The database

was composed of 257 patients that had arrhythmias originated in

the RVOT and 77 patients with an LVOT origin, which were

treated at the Ningbo First Hospital of Zhejiang University

(China). ECG signals were obtained at a sampling rate of

2 kHz. Details about the RFA procedure, ECG acquisition or

ethical committee can be found in the original study (Zheng et al.,

2020).

2.2 Virtual electrocardiogram generation

In this work, we constructed ventricular digital twins from

16 different biventricular geometries built from patient-specific

computed tomography (CT) scans. Each model was represented

by a volumetric 3D mesh made of hexahedral elements with an

average resolution of 400 μm. Every element was labeled

according to its cellular properties as, endocardial,

midmyocardial or epicardial cells. As described in Doste et al.

(2020), for each digital twin, we simulated OTVAs from

12 different SOOs (see Figure 1, digital twins, spheres on

biventricular geometry) chosen following clinical observations

(Anderson et al., 2019), seven from the LVOT and five from the

RVOT.To perform the simulations at the organ level, we used the

software ELVIRA (Heidenreich et al., 2010), which solves the

anisotropic reaction-diffusion equation of the monodomain

model for cardiac EP using finite element methods. For the

numerical solution of our simulations, we applied the conjugate

gradient method with an integration time step of 0.02 ms, using

implicit integration for the parabolic partial differential equation

of monodomain model and explicit integration with adaptive

time stepping for ordinary differential equation of the ionic

model (ten Tusscher et al., 2004). Each simulation consisted

in a train of four beats with a cycle length of 800 ms followed by

an ectopic focus simulated during a time window of 300 ms.

Extracellular potentials at the heart were approximated from

transmembrane potentials previously computed, and propagated

by using the finite element method to solve a Laplace equation

over the volume mesh of a generic 3D torso model (Lopez-Perez

et al., 2019). Torso anatomy included the lungs, ribs, liver, atria

and a cavity where each biventricular model was fitted. To add

extra variability on the simulated ECG that can be produced by
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different lead placement or heart orientation, we shifted

precordial leads around the standard position to have

13 different lead configurations. Consequently, we built a

database of a total of 2,496 12-lead simulated ECGs

(16 patients, with 12 different SOO and with 13 different

electrode placements). ECGs were validated against patient

data using the 12 lead correlation coefficient and the LV/RV

ratio (Doste et al., 2020). This ratio was calculated by dividing the

mean of the 12 lead correlation coefficient values of all the SOO

simulations with origin in the LVOT by the one corresponding to

the SOO simulations originated in the RVOT. A LV/RV ratio

larger and smaller than one will indicate a LVOT and RVOT

origins, respectively.

2.3 Data pre-processing

We performed data homogenization to facilitate the data

processing by the ML algorithm and a better comparison of the

results. In particular, we classified all the ECGs (real and

simulated) according to the SOO provided in the work by

Zheng et al. (2020). All the OTVA ECGs were divided in two

main groups as a function of the origin: LVOT or RVOT. The

SOO were also distributed in different sublocations. LVOT cases

were classified into six regions: Left coronary cusp (LCC), right

coronary cusp (RCC), LCC-RCC commissure, non-coronary

cusp (NCC), aortomitral continuity (AMC) and LV epicardial

summit. RVOT cases were divided in anteroseptal RV,

posteroseptal RV and right ventricular free wall (RFW). These

regions can be visualized in the geometry shown in Figure 4. Only

the QRS complex of the ECGs was evaluated. To standardize the

input to the ML models, each 12-lead ECG amplitude was max-

abs normalized (i.e., normalized in the range [-1, 1]) and the

onset and offset of the QRS complexes were obtained using a DL-

based ECG delineator (Jimenez-Perez et al., 2021a; Jimenez-

Perez et al., 2021b) for posteriorly using them in raw- and

feature-based approaches (Section 2.4). In feature-based

approaches, the signal was further zero-corrected to remove

baseline wander, and transformed using the wavelet transform

(Martinez et al., 2004) and Welch’s periodogram (Welch, 1967)

for the feature extraction pipeline.

2.4 Machine learning model

We chose support vector machines (SVM) to classify patient

arrhythmias as a function of the SOO. An SVM is a well-known

learning algorithm (Cristianini and Shawe-Taylor, 2000) that has

extensively been used in many clinical areas, such as ECG

classification (Attia et al., 2021), due to a remarkably robust

performance when working with sparse and noisy data. SVMs

tries to separate a given labeled training set (LVOT vs. RVOT

origin) with a hyper-plane that is maximally distant from them.

In our case, we use radial basis function kernels that will produce

non-linear decision boundaries. We have applied two strategies

for reducing the dimensionality of the data used for model

training, since high dimensionality directly affects the

classification performance by introducing unwanted noise.

These strategies included downsampling the raw ECG signal

and using this morphology directly (Section 2.4.1) and extracting

ECG-based features (Section 2.4.2). The final number of features

and samples in the down-sampled signal was chosen by

evaluating the cumulative variance against the number of

principal components of the training signals. We also

evaluated the information carried in each lead by analyzing

the classification performance of using specific lead

combinations.

2.4.1 Raw signals
Since all ECG signals were conveniently normalized and

aligned, segmented QRS complexes could be directly treated

as patterns and also as feature vectors, where the pseudo-

features correspond to the ECG amplitude at each time point.

Given that the changes in the voltage convey the most important

information of the ECG, we simply consider that the down-

sampled raw signal (dimensionality reduction) is a set of features

that represent the data at specific time points around the R-peak.

Therefore, after studying the cumulative variance of the principal

components, the signals were down-sampled to 10 samples (see

Figure 2).

We used this down-sampled raw signal representation to

determine the best lead combinations as well as the most

important lead in terms of classification. This exploration was

carried out exhaustively, that is, for each one of the possible lead

combinations (4,095). Therefore, a SVM classification model was

trained with the corresponding lead combinations and then

evaluated with the two test datasets. To obtain the feature

vector of a lead combination we simply concatenate the

corresponding signal leads (increasing the number of

dimensions associated to the classification tasks). Finally, we

computed the accuracy distribution associated to each lead by

considering all the accuracy obtained from any lead combination

that contain that particular lead.

The signal low dimension representation can also be used

to determine what part of the signal is the most important in

terms of classification. To assess this issue, we calculate a

feature importance ranking based on extra − trees classifier

models. In this kind of forests, the importance of the features

are computed as the mean and standard deviation of

accumulation of the impurity decrease within each tree

(entropy based) and it is provided by the fitted model. The

feature importance is specially interesting for raw signals as

each feature covers a short time interval of the beat, so that

the most important features correspond with the time

intervals used by the classifier that better explain its

predictions.

Frontiers in Physiology frontiersin.org05

Doste et al. 10.3389/fphys.2022.909372

153

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.909372


2.4.2 Feature-based signals
2.4.2.1 Feature extraction

Previous studies have reported a decrease in generality

when using the raw ECG trace as opposed to ECG-derived

features (Minchole et al., 2019). To address this, feature

extraction was performed on the QRS complex as an

alternative representation of its morphology. A total of

356 features were extracted, based on measurements on

the raw ECG, its wavelet transform and its power spectral

density. Some features were computed using single leads (e.g.

maximum of lead V3), whereas other features performed

pairwise comparisons of leads (e.g. area under the curve of

lead II with respect to lead III). To avoid too high

dimensionality, comparative features were only computed

within three subsets of leads: limb leads (I, II and III),

augmented leads (aVR, aVF and aVL) and precordial leads

(V1 to V6), with a total of 21 comparisons per extracted

feature. Finally, some features explored the effect of many

leads (e.g. precordial transition explores the lead where the

polarity changes, taking all precordial leads). Some of the

extracted features were inspired in the methodology

presented by Maršánová et al. (2017), which provided high

accuracy when classifying heartbeat types. A schematic

representation of the extracted features is depicted in

Figure 3.

The signal-based features consisted in the computation of

several markers from the raw ECG. Firstly, two all-lead features

were considered: the QRS′ total activation time (QRSend −

QRSstart) and the localization of the precordial transition. The

precordial transition was computed via retrieving the signed

maximum of each precordial lead and selecting the first lead

where the QRS complex changed polarity, codified as a decimal

point value within zero (V1) and one (V6). Secondly, eight per-

lead features are extracted. These comprise the polarity of the

lead’s signed maximum ({ − 1, 1}), the lead’s maximum and

minimum voltage, its absolute maximum voltage (signed and

unsigned), the lead’s amplitude and its area (both raw and taking

the absolute value). Finally, three comparative features were

computed: the signed maximum voltage of the difference

between the leads, the area of the difference between the leads

and the cross-correlation between the leads.

Wavelet-based features were computed with the mother

wavelet designed by Martinez et al. (2004), which has a

frequency response that is optimal for QRS complexes. The

wavelet transform is used in this work as a robust surrogate

of the original signal’s derivatives, and was employed to locate

FIGURE 2
A set of selected ECG traces from the simulated (DS-2496) and the DS-334 datasets. The extracted QRS of the V2 and V3 precordial leads are
shown in the top row and their corresponding down-sampled traces (10 samples) in the bottom row. Right Ventricle (RV) signals are plotted in blue,
whereas left ventricle (LV) signals are in red.
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different fiducials in the signal (Q, R and S wave peaks) through

the identification of zero crossings across multiple wavelet scales

(Figure 3, bottom-left). This allowed a better characterization of

important clinical markers such as the ratio between the R and S

waves or the maximum signal velocity. Firstly, a single all-lead

feature was extracted, the precordial transition, by estimating the

moment where the precordial leads changed polarity. Secondly,

six per-lead features were computed, comprising the maximum

and minimum amplitude values, the mean amplitude of the

wavelet, its area under the curve, the signal fragmentation

(estimated as the ratio between the wavelet’s area and its

absolute area) and the R/S amplitude ratio. Finally, three

comparative features were extracted, consisting in the area

under the curve, the maximum difference and the cross-

correlation between two leads. Although the identification of

important fiducials was performed by propagating the

information across different wavelet scales, only the first

wavelet scale was employed for the above computations.

Finally, seven per-lead spectral features were extracted. For

that purpose, the power spectral density of the QRS complex was

computed with the method proposed by Welch (1967). After

computing the power spectra (Figure 3, red block), the

fundamental frequency was estimated by computing the

frequency with the highest power, and six spectral density

bands were computed by averaging the signal’s power between

(0.3) (3.6) (6.9) (9.12) (12.25) and (25.50) Hz.

2.4.2.2 Feature importance

When working with the 356-featured training set, the

selection of the best features for classification has been carried

out using extra − trees classifier models (Geurts et al., 2006). The

model consists on a meta estimator that fits a number of

unpruned randomized decision trees (extra − trees) on various

sub-samples of the training set. Then, predictions are made by

majority voting from the trees. Similar methods like bagging and

random forest develop each decision tree from a bootstrap

FIGURE 3
Schematic representation of the feature extraction pipeline. The ECG (left, top) and its wavelet transform (left, scales one through 5) are used to
compute signal-based (blue), wavelet-based (green) and spectral-based (red) features. Signal-based features measure the raw ECG, computing
extrema, areas or characteristics computed through pairwise lead comparison. Wavelet-based features also compute said markers, but also identify
important fiducials through zero-crossings (e.g. differentQRSwaves such as the R and Swaves, shown on the left as green and red dotted lines).
Finally, spectral information employs Welch’s periodogram to obtain features based on the signal’s power spectral density.
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sample of the training set, while the extra − trees algorithm fits

each decision tree on the whole training set. Furthermore,

similarly to the random forest method, the extra − trees

model will randomly sample the features at each split point of

a decision tree. However, random forest uses a greedy algorithm

to select an optimal split point, while the extra − trees model

selects a split point at random. All the features extracted from the

simulated dataset (DS-2496) were ranked according with the

results of the extra − trees classifier. A variance analysis was also

conducted to evaluate the minimum number of features that

optimizes the classification performance.

2.4.3 Data augmentation
In order to improve the performance of the classification

task, the simulated dataset was augmented using mixup, as

described by Zhang et al. (2018). This technique allowed for

smoother decision boundaries when training a classifier on

augmented data: augmented samples are generated by

randomly selecting two samples (xi and xj) and performing a

linear combination of the two (x̂ � λxi + (1 − λ)xj), given a

parameter generated by a beta distribution

(λ ~ B(α, β), λ ∈ [0, 1]). In the same signal generation process,

the corresponding label (yi or yj) was fixed through the λ

parameter: yiwas adopted if λ > 0.5, and yjwas selected otherwise.

In this work, we employed single 12-lead QRS complexes as

samples xi, and the labels yi were the ground-truth SOO (either

LVOT vs. RVOT or the nine finer SOO sublocations). For the

purposes of this work, α = 5 and β = 1.5 were selected as

hyperparameters. The λ parameter was saved to be used as

sample weight in the classification process. In the case of the

finer sublocations, and to avoid issues with labels corresponding

to distant sublocalizations (e.g. mixing Anteroseptal and AMC

SOO samples), mixup was only applied when xi and xj were

neighboring segments in a spatial sense, as can be seen in

Figure 4. Finally, the generated QRS complexes were in turn

employed for classification with the raw signal, as described in

Section 2.4.1, and with the feature extraction pipeline explained

in Section 2.4.2. In total, 7,488 augmented QRS complexes were

generated for the virtual ECG population described in Section

2.2. A table with comparison metrics of the different databases,

including the augmented database, can be found in the

Supplementary Material S1.

2.4.4 Classification and validation
To evaluate the degree of generalization achieved by the SVM

models and to exploit the datasets used in this work, we

considered the following scenarios (See Table 1):

As we manage four datasets, namely DS-2496 (simulated

signals), DS-7488 (simulated augmented signals), DS-334 (real

patient signals), and DS-31 (real patient signals), the test-set(s)

used for the assessment of each learning scenario are those not

employed in training. Furthermore, cross validation (CV)

FIGURE 4
Representation of the signal augmentation process. Two samples xi and xj are linearly combinedwith λ ~ B(α, β). The label of xi is adopted, given
that λ >0.5. In the right, markedwith a cross, the approximated location of the augmented sample. LCC: left coronary cusp; RCC: right coronary cusp;
RFW: right free wall; AMC: aortomitral continuity; RVOT: right outflow tract.
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techniques (folds = 5) in the domain of the training set are also

included. Accuracy values obtained for the DS-334 and DS-31

datasets were computed as balanced accuracy. More information

about the classification of the main Scenarios (confusion matrix

and accuracy per class) is attached in the Supplementary

Material S1.

3 Results

3.1 Variance analysis

Figure 5 shows the variance explained by a principal

component analysis (PCA) of the simulated dataset (DS-2496)

according to the number of components, in the two signal

representations handled in this work; raw (a) and featured

(b). In both cases, the number of features required to cover

almost 100% of the variance is low (10 features). Therefore, the

down-sampling of the raw signals allows to easily reduce the

number of features of the dataset in similar way to PCA, although

in this case the new features are directly related with the electrical

potential mean values of time intervals.

3.2 Best lead combination for
classification with raw data

Using the down-sampled simulated raw data (10 equidistant

samples from the voltage ECG traces), we explored which were the

lead combinations that showed a better performance for ECG

classification. A total of 4,095 different models were trained using

all the possible lead combinations. Figure 6A shows the best

24 combinations that presented the highest classification results.

The accuracy distribution associated to each lead is presented in

Figure 6B. Lead V2 is the lead that presents higher accuracy in both

testing sets (followed by lead V3), and is also present in all the best

lead combinations for DS-334. When comparing the different

accuracy obtained with both datasets, DS-31 presents overall

lower accuracy values.To uncover the characteristics of V2 that

might be responsible for the higher classification accuracy, we

evaluated the importance of each samples in the downsampled

raw signal. The results are depicted in Figure 7A. The importance

of each of the 10 samples is represented by the red bars, being the

seventh sample the most important one. Figure 7B depicts a small

subset of V2 traces from the LVOT (red) and RVOT (blue)

simulations overlaid to the down-sampled signal samples (red and

TABLE 1 Description of the different classification scenarios.

Scenario Training Classification Strategy

Scenario 1 (Sc1) SVM model trained with simulated signals (DS-2496) or augmented simulated
signals (DS-7488)

down-sampled raw signal; feature-based ECG signals; 10 best
features

Scenario 2 (Sc2) SVM model trained with real signals (DS-334; DS-31) down-sampled raw signal; feature-based ECG signals

Scenario 3 (Sc3) SVM model trained with a hybrid training set (DS-334) + (DS-2496); (DS-31) +(DS-
2496)

down-sampled raw signal; feature-based ECG signals

FIGURE 5
Variance explained by the principal components from the simulated dataset (DS-2496). (A)Down-sampled raw signals (10 samples or features).
(B) Featured signals (356 features).

Frontiers in Physiology frontiersin.org09

Doste et al. 10.3389/fphys.2022.909372

157

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.909372


blue dots). Results show that the seventh bin samples, where

differences in voltage between LVOT and RVOT simulated traces

are clearly seen, are the most important for the classification. The

second most important bin is the second, where traces show a

positive or negative slope. The adjacent samples to the second and

seventh bins continue the order of descending sample relevance.

3.3 Feature selection

Figure 8A shows the ten most important features obtained

using the introduced extra − trees model. As can be seen, the

most important features were signal-based features extracted

from the V2 and V3 leads. In addition, the panel on the right

shows the accuracy scores obtained by the SVM-classifier by

varying the number of features used in the training set. The

calculated scores are the accuracy from a cross validation process

(folds = 5) and the predictions of the datasets employed for

model testing (DS-334, DS-31).

3.4 Classification results

Table 2 shows the classification performance of the different

scenarios described in the methodology. The cross-validation

analysis of the classification with each of the datasets, using five

FIGURE 6
(A) Lead combinations that presented the best classification results for both datasets. (B)Distribution of the classification accuracies associated
to each lead for the DS-334 (left) and DS-31 (right) datasets.
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folds, provided high accuracies between 0.82 and 0.96 for the

simulated data, and low accuracies for the clinical datasets,

that were between 0.60 and 0.92. DS-31 was particularly

complex to classify due to its reduced size and high data

variability.

Scenario 1, where only simulated signals were considered for

training, presents the highest accuracy values in the classification. Raw

down-sampled signals were able to classify the clinical signals of the

DS-334 with an accuracy of 0.86, whereas the DS-31 presented lower

values (0.71). Results did not improve significantly whenwemade use

FIGURE 7
(A) Sample importance obtained using raw down-sampled signals; (B) Ten samples (red and blue dots) corresponding to signal time intervals
obtained from a subset of V2 signals, together with their corresponding traces (transparent) so that they could be easily interpreted. Red traces
correspond to LVOT and blue traces to RVOT.

FIGURE 8
Left: Ranking of the 10 most important signal features (out of 356) for signal classification, extracted using the extra-trees classifier method.
Right: Evolution of the accuracy scores vs. the number of features used for training. The accuracy was evaluated in the simulated signals through a
cross validation (CV) process and in the clinical datasets (DS-334 and DS-31).
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of augmented simulated data for training (DS-7488). The use of signal

features also presented good classification values. Although the

accuracy slightly decreased in the DS-334 with respect to the raw

data (0.85 vs. 0.86, featured-based vs. raw data), the accuracy for

dataset DS-31 was considerably higher (0.84 vs. 0.71, featured-based

vs. raw data). As with the case of raw data, augmented feature data

barely increased the accuracy values. Furthermore, as shown in the

cumulative variance plot, classification with only 10 features was also

performed. Results showed that a classification using the best

10 features, determined in Figure 8, provided good accuracy

values, although the cross-validation accuracy values were slightly

lower than the ones obtained using all the features (356).

Scenario 2, which was calculated using only real data for training,

served as a good comparison of the classification performance of the

simulated data versus the real data. It can be seen that, when using

signals from different clinical datasets for training and classification,

the accuracy in the prediction of the SOO decreases significantly,

being inferior to the values of Scenario one in all cases. Scenario 3, on

its behalf, used a mix of simulated and real data for training. All the

accuracies (using raw data and featured data) surpassed the values of

the Scenario 2, showing that the use of simulated data in the training

can considerably improve the classification results.

4 Discussion

In this work, we have presented a methodology to

automatically classify ECGs from patients that suffer

OTVAs by a ML model purely trained with synthetic data

from biophysical simulations carried out on ventricular

digital twins. To this end, we trained SVMs classifiers that

were able to determine the SOO of the arrhythmia,

differentiating between LVOT and RVOT. We have

validated the method with two clinical datasets acquired in

different clinical centers. In particular, we show that this

method can predict the SOO with an accuracy of 0.86 in a

clinical database of 334 patients, and 0.84 in a second clinical

database of 31 patients, without the need of performing any

manual analysis on the ECG signals. This is key, since other

algorithms in the literature require an electrophysiologist to

extract a considerable number of the features from the 12-

lead ECG signals and perform several calculations on them to

predict the SOO (Anderson et al., 2019). Further, we have

been able to show that a ML model for ECG classification can

be trained on virtual ECGs, eliminating the need to collect

and curate large clinical databases (Zheng et al., 2020).

Another advantage of this simulation strategy is that the

signals are noise free, and the location of the SOO is

determined without any error in position. Finally, the

dataset built to train the ML model can include a balanced

number of samples that represent properly all the SOOs, and

possible variations of the heart with respect to the torso, such

as rotations, which is really complex to achieve with clinical

data due to the incidence of the pathology in the population

(70% of cases correspond to RVOT SOO) (Srivathsan et al.,

2005).

TABLE 2 SVM accuracy results.

Scenario Training Set Accuracy

CV (folds = 5) Test (DS-334) Test (DS-31)

Sc1 Simulated Raw Signals (DS-2496) 0.96 0.86 0.71

Sc1 Augmented Simulated Raw Signals (DS-7488) 0.98 0.86 0.71

Sc1 Featured Simulated Signals (DS-2496) 0.97 0.85 0.84

Sc1 Featured Augmented Simulated Signals (DS-7488) 0.98 0.86 0.84

Sc1 10 Best Features Simulated Signals (DS-2496) 0.82 0.88 0.77

Sc1 10 Best Features Augmented Simulated Signals (DS-7488) 0.87 0.86 0.77

Sc2 Real Raw Signal (DS-334) 0.88 - 0.57

Sc2 Real Featured Signal (DS-334) 0.92 - 0.76

Sc2 Real Raw Signal (DS-31) 0.62 0.84 -

Sc2 Real Featured Signal (DS-31) 0.60 0.74 -

Sc3 Hybrid: Simulated + Real Raw Signals (DS-334)+(DS-2496) 0.90 - 0.71

Sc3 Hybrid: Simulated + Real Featured Signals (DS-334)+(DS-2496) 0.96 - 0.81

Sc3 Hybrid: Simulated + Real Raw Signals (DS-31)+(DS-2496) 0.95 0.86 -

Sc3 Hybrid: Simulated + Real Featured Signals (DS-31)+(DS-2496) 0.97 0.85 -
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Our analysis on the use of different combinations of signals to

train the model and predict the SOO pointed out that V2 was the

signal that convey more information followed by V3. This is in

agreement with the results already reported in a few clinical studies

(Hayashi et al., 2017; Kaypakli et al., 2018). A more exhaustive

evaluation of the down-sampled version of the V2 lead, showed the

most important signal samples used for the classification by the

SVM. In particular, these positions, usually located after the R

peak, corresponded with the signal parts that presented higher

variability in voltage between RVOT and LVOT (once these signals

have been aligned and normalized).

The obtained classification results had a similar level of

accuracy than clinical algorithms used in the SOO prediction

(Anderson et al., 2019; Mariani et al., 2021). From these results, we

have been able to conclude that, although extracting signal features

from ECG seems to be the best approach, there is not a large

improvement with respect to simply use raw data as features (the

potential of the signal at ten equally spaced time points), provided

that all signals are aligned. That means that, if necessary, signals do

not have to be processed, which could introduce errors and

requires supervision during the feature extraction phase.

One of the most remarkable results of this work is that the use

of simulated ECGs for training not only predicts the OTVA SOO

with good accuracy, but it even surpasses the performance of the

databases trained with real data, especially when they are used

with a different database. This is due to the higher variability of

the simulated data, which also presents less bias towards

acquisition instruments or protocol. Consequently, as it is

shown in Scenario 3, the addition of simulated data to real

databases can improve the prediction of the SOO in any

dataset when compared with the results obtained by training

with only real data (Scenario 2). These results support the use of

simulated signals for improving the performance of ML

classifiers, as it has been done previously for atrial fibrillation

(Luongo et al., 2021) or cardiac resynchronization therapy

response (Khamzin et al., 2021). On the other hand, the

inclusion of augmented simulated data (DS-7488) did not had

a significant impact in the classification results, probably due to

the high correlation of the data. We also analyzed why the DS-31

dataset presents lower classification accuracies than DS–334. An

analysis of the classification results (see Supplementary Material

S1) showed that some of the LV SOO were wrongly classified as

RV SOO. This was caused by some LV signals presenting

variability that could not be reproduced by the simulated

ECGs used for training. Furthermore, the reduced sample size

of this dataset negatively affected the computed accuracies.

It is important to note that the designed ML-based pipeline

does not require any further complex and time-consuming

simulations, unless there is a need to update the model with

additional data. That is one of the main limitations of physics-

based approaches, in which the construction of the patient digital

twin, and the computation of electrophysiology simulations is

complex and requires hours to days to produce the results

(Prakosa et al., 2018). This makes the ML-based approach

suitable to be transferred to the clinical routine, since it can

make instantaneous predictions with the only requirement of

accessing the 12-lead ECG. This is a critical step towards the

implantation of computational techniques for therapy planning

of catheter-based ablation, since they can help to reduce

procedure times, improve the risk evaluation or identify

arrhythmias that cannot be treated (e.g. inaccessible SOOs

(Yamada et al., 2010)) before the intervention. There have

been previous works that made use of ML models to predict

the SOO using only clinical data for training with good accuracy

(0.97) at the cost of having a large feature vector of 1.6 million

size (Zheng et al., 2021), which could show problems to

generalize for other databases.

4.1 Limitations

Even though our method shows promising results when

compared to existing solutions, it presents some limitations.

First of all, to build the database, digital twin models must be

faithful representations of patients, and the biophysical

simulations have to be properly calibrated to produce realistic

simulations that provide ECGs comparable to those recorded in

clinical practice (Lopez-Perez et al., 2015). Otherwise, the

training dataset could represent only a subset of the

population and have problems generalizing to other datasets

and patients. We are aware that having a single torso geometry,

where all the personalized ventricular anatomies are registered

could also be a limitation, since it has been reported that changes

in the orientation of the heart or disposition of pericardial fat

could have important effects in the ECG (Bradley et al., 2000;

Gyawali et al., 2020). In our models, we have not considered the

inclusion of a personalized Purkinje system, which could interact

with the electrical sequence of activation (Sebastian et al., 2011;

Cárdenes et al., 2015).

In addition, although we include variability in our

simulations (different electrode location, SOO or digital twin

anatomy), simulated data still is highly dependent on the initial

conditions of the model. Increasing the number of the

simulations, and varying additional parameters (new torso

geometry, SOOs, different ectopic coupling interval,

conduction velocity or heart rate) could reduce the bias that

the simulated data may present. The use of more anatomies could

help to cover a wider range of anatomical variability. In this study

we used 16 patient-specific anatomies that presented

considerable differences in shape and volume, but including a

greater inter-subject variability could also improve the simulated

ECG data. However, the computational time necessary to build

or extend the simulated database can increase considerably.

Finally, we have not explored the classification of the SOO in the

nine sublocations (e.g., LCC, RFW or AMC). The available datasets

did not produced enough well-labeled data, and some of these
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sublocations were underrepresented (e.g., LCC-RCC commissure,

AMC). This same limitation was present in other works that used

similar datasets (Zheng et al., 2021). Richer clinical data for testing

the ML models, together with more accessible OTVA datasets, will

help in the prediction of the SOO with more accuracy.

5 Conclusion

We have shown a computational approach to predict the

SOO of idiopathic ventricular tachycardia originated in the

ventricular outflow tract. The method, that relies in

biophysical simulation and machine learning techniques, is

able to differentiate between LV or RV origin of the ectopic

beat with an accuracy of 0.86 in a clinical database of 334 patients,

and 0.84 in a second clinical database of 31 patients.

Since all the simulated training set was generated offline, the

presented methodology could be transferred to a clinical

environment, avoiding the need of time consuming tasks such as

building computational models of the heart and performing

electrophysiology simulations. Nevertheless, the simulated signals

(DS-2496, DS-7488) achieved high performance in the test sets (DS-

344 and DS-31), demonstrating the viability to produce good

classification models for real data. Moreover, the methodology is

not dependent on the expertise of the electrophysiologist, and it is

consistent between cases, which could provide an additional tool to

electrophysiologist to plan RFA interventions of this type of

tachycardia. Future works will focus on improving the accurate

determination of the exact SOO of the tachycardia within the

ventricles, especially in the outflow tract sublocations.
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Introduction: Electrocardiographic Imaging (ECGI) allows computing the

electrical activity in the heart non-invasively using geometrical information

of the patient and multiple body surface signals. In the present study we

investigate the influence of the number of nodes of geometrical meshes

and recording ECG electrodes distribution to compute ECGI during atrial

fibrillation (AF).

Methods: Torso meshes from 100 to 2000 nodes heterogeneously and

homogeneously distributed were compared. Signals from nine AF realistic

mathematical simulations were used for computing the ECGI. Results for

each torso mesh were compared with the ECGI computed with a

4,000 nodes reference torso. In addition, real AF recordings from 25 AF

patients were used to compute ECGI in torso meshes from 100 to

1,000 nodes. Results were compared with a reference torso of 2000 nodes.

Torsos were remeshed either by reducing the number of nodes while

maximizing the overall shape preservation and then assigning the location of

the electrodes as the closest node in the new mesh or by forcing the remesher

to place a node at each electrode location. Correlation coefficients, relative

differencemeasurements and relative difference of dominant frequencies were

computed to evaluate the impact on signal morphology of each torso mesh.

Results: For remeshed torsos where electrodes match with a geometrical node

in the mesh, all mesh densities presented similar results. On the other hand, in

torsos with electrodes assigned to closest nodes in remeshed geometries

performance metrics were dependent on mesh densities, with correlation

coefficients ranging from 0.53 ± 0.06 to 0.92 ± 0.04 in simulations or from

0.42 ± 0.38 to 0.89 ± 0.2 in patients. Dominant frequency relative errors

showed the same trend with values from 1.14 ± 0.26 to 0.55 ± 0.21 Hz in

simulations and from 0.91 ± 0.56 to 0.45 ± 0.41 Hz in patients.

Conclusion: The effect of mesh density in ECGI is minimal when the location of

the electrode is preserved as a node in the mesh. Torso meshes constructed

without imposing electrodes to constitute nodes in the torso geometry should

contain at least 400 nodes homogeneously distributed so that a distance

between nodes is below 4 cm.
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1 Introduction

Electrocardiographic imaging (ECGI) is a non-invasive

technique that can be used to estimate the electrical activity of

the heart from surface electrocardiographic signals. ECGI offers

multiple clinical applications, such as ablation guidance in atrial

fibrillation (AF) patients. ECGI requires to use torso and heart

geometries together with electrical recordings from the patient.

Firstly, surface electrodes placed over the torso are used to record

electrical signals. Additionally, the heart geometry is usually

obtained from medical images (magnetic resonance imaging

or axial computerized tomography) (Salinet et al., 2021), and

the torso geometry can be derived from photogrammetry

(Rodrigo et al., 2018), with latter reconstruction creating

triangular or polygonal meshes (van der Graaf et al., 2016).

Once these elements are acquired, the inverse problem can be

solved and epicardial potentials are estimated, which can be used

to compute dominant frequencies or rotor-related metrics

(Rodrigo et al., 2017a).

The properties of the 3D torso geometry have been proven to

affect the calculation of the ECGI. Accurate reconstructions

(Messinger-Rapport and Rudy, 1990) of the anatomy of the

patient’s body and the use of real dimensions in the torso

model (Jamison et al., 2011) show more precise results.

Incorporation of inner organs into the geometry of the

problem has not shown a major impact on the shape of ECGI

potentials (Ramanathan and Rudy, 2001). However, additional

geometrical effects should be carefully considered in order to

achieve a sufficient resolution.

The objective of this study is to evaluate the repercussion of

the number of nodes of the torso geometry mesh and their

distribution on the resolution of the ECGI using both AF

simulations and real recordings from AF patients. We

hypothesized that there is an effect on the ECGI

reconstruction quality related to the number of nodes on the

torso mesh used independently of the number of ECG electrodes

that record the signal. A careful analysis will allow us to establish

a threshold to ensure good performance while keeping the

computing time as low as possible. We studied two different

remeshing situations based on the positioning of body surface

electrodes. The first was maintaining the electrodes in the

original position while remeshing the rest of the torso to

quantify the effect of mesh density and distribution on the

morphology of ECGI signals, and our second remeshing

alternative was to remesh the whole torso surface to maximize

resemblance between original and remeshed volumes, and then

we reassign the electrode nodes as those with the smallest

Euclidean distance between the original and remeshed torso

geometries, in order to quantify the effect of electrode

displacement as a consequence of remeshing. We compared

the electrocardiographic signals (ECGI) using time metrics:

the Pearson’s correlation coefficient (CC), the relative

difference measurement (RDM*) and errors in dominant

frequency estimation. To obtain the ECGI potentials, we used

real torso geometries from AF patients with different geometrical

resolutions, 9 electrophysiological AF simulations, and 25 ECGI

recordings from AF patients.

2 Materials and methods

To analyze the effect related with node variations of torso

geometry on the ECGI, we first created the torso models with

different numbers and distribution of nodes, then computed the

respective inverse electrograms, and finally compared the results

using time metrics (CC and RDM*) and dominant frequencies

related maps and metrics.

2.1 Study population—Data acquisition

2.1.1 Simulation data
Cardiac electrophysiological simulations lasting for 10 s

included in this study were created using the same cardiac

geometry and different AF episodes. A realistic 3D model of

the atrial anatomy composed of 284,578 nodes and

1,353,783 tetrahedrons was used for creating the simulations

(Rodrigo et al., 2017b). Variation of ionic current parameters was

introduced in Ik,ACH, IK1, INa, and ICaL to simulate electrical

remodeling and allow the maintenance of atrial fibrillation.

Fibrotic tissue was modeled by disconnecting a percentage of

nodes between 20% and 60% and scar tissue by disconnecting

100% of nodes in the scar region. The system of differential

equations was solved by using Runge–Kutta integration on a

graphic processors unit (NVIDIA Tesla C2075 6G), (Rodrigo

et al., 2017b). AF was induced by implementing an

S1 S2 protocol, with the S2 stimulus applied at different

locations in the atria, thus producing different AF patterns.

2.1.2 Patient data
The electrical recordings from 25 atrial fibrillation patients

from Hospital Gregorio Marañón, Madrid, Spain (Ethics

Committee Approval 475/14) described elsewhere (Rodrigo

et al., 2020; Molero et al., 2021) were used. To record the

signals 57 electrodes distributed on the torso of the patients

were employed. The atrial geometries were also obtained from

the same patients using Magnetic Resonance Imaging, and the

3Dmodels were segmented through ITK-Snap (Yushkevich et al.,

2006) and Autodesk Meshmixer (Schmidt and Singh, 2010).

Furthermore, the torso models were obtained from
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photogrammetry, and 3D geometries consisting of triangular

meshes were constructed (Remondino, 2004) and refined with

Autodesk Meshmixer.

2.2 Data processing

2.2.1 Torso remeshing
In order to evaluate the effect of torso mesh density on the

morphology of the electrograms after resolution of the inverse

problem of electrocardiography, we constructed torso meshes

with a reduced number of nodes departing from the finest torso

meshes available. We used as reference the torso meshes

constructed for each patient, constituted of at least

2000 nodes. The epicardial potentials computed for each of

the electrophysiological models were placed in the same

position as the original heart inside the thorax. In order to

calculate body surface potentials for the computer model

simulations, we chose 10 different patient meshes of

4,000 nodes. An inhomogeneous remeshing of torso

geometries down to 100, 200, 400, 500, and 1,000 nodes for

patients (plus a 2000 nodes mesh for cardiac simulations),

maximizing shape preservation was performed with MATLAB

built-in functions (see Figure 1A). In order to quantify the impact

on ECGI resolution of the homogeneity of the distance of the

nodes in the mesh, we also constructed meshes with a

homogeneous distribution of nodes based on an iterative

approach (Manu, 2022) (see Figure 1B). Properties of the

different torso meshes used with simulations and patients are

displayed in Figures 2, 3, respectively.

For solving the inverse problem of electrocardiography,

electrodes have to be located in the torso mesh. We chose the

node with the smallest Euclidean distance from each electrode to

relocate electrodes on the mesh. In order to evaluate separately

the effect of mesh density and electrode relocation, we also

constructed downsampled meshes without electrode

relocation. For imposing the electrode position in all the

meshes, the closest face of the geometry to each electrode was

triangulated again, and three new triangles were included joined

by the original electrode position (see Figure 1C).

2.2.2 Processing of surface potentials and
Electrocardiographic Imaging calculation

In mathematical models, the forward problem of the

simulated electrograms was calculated using the boundary

element method (BEM) (Pedrón-Torrecilla et al., 2016). Noise

was added to the computed surface potentials to obtain a 20 dB

signal to noise ratio emulating the noise present in real

recordings. The baseline was subtracted, and a low pass filter

of 40 Hz was applied. The electrical information related to the

nodes representing the 57 electrodes was selected, and the inverse

problem was calculated through the BEM, using zero-order

Tikhonov regularization and L-curve optimization (Pedrón-

Torrecilla et al., 2016).

Body surface signals obtained from each patient with surface

electrodes were pre-processed by selecting 5 s and removing the

FIGURE 1
Example of torso models with different number of nodes and node distribution. The electrodes relocated appear in blue and the original
locations in red. (A) illustrates torsos with irregular mesh distribution, (B)with homogeneous distribution and (C) torsos maintaining the electrodes in
the original position.
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baseline. A 10th order Butterworth was used to band-pass filter

between 2 and 45 Hz to eliminate the noise. The Principal

Component Analysis (PCA) approach was performed

electrode by electrode to cancel the ventricular activity (QRST

segment), (Castells et al., 2005).

Once the recorded or simulated body surface signals

were processed, the inverse computed electrograms were

calculated through BEM using zero-order Tikhonov

regularization and L-curve optimization (Pedrón-Torrecilla

et al., 2016).

2.3 Quality of mesh evaluation metrics

To evaluate the effect of the mesh in the reconstruction of

ECGI potentials, the similarity between ECGI signals obtained

with finest and sparser torso meshes was evaluated.

Specifically, we used Pearson’s correlation coefficient

(CC) and the relative difference measurement (RDM*) (Meijs

et al., 1989; Figuera et al., 2016). For both metrics, the temporal

version was used (for each node, the CC and RDM* were

computed using all the time instants, and the mean and

standard deviation across nodes are then calculated).

RDM* �

���������������
∑
k

⎛⎝ xk
‖x2‖ −

x̂k
‖x̂2‖

⎞⎠2
√√

2.4 Frequency metrics

The dominant frequency (DF) of each node of the cardiac

geometry was estimated after the calculation of ECGI using

Welch periodogram (2-s Hamming window with a 25%

overlap) (Rodrigo et al., 2017a). The absolute difference in DF

for each atrial node between the reference and the other models

was calculated for both AF simulations and AF patient studies

(Figuera et al., 2016).

FIGURE 2
Mean value and standard deviation of torso model properties of the geometries used in the simulation study represented. (A). Mean number of
nodes depending on the model. (B). Mean area of the faces. (C). Variability of the area of the faces. (D). Mean distance between nodes of the same
triangle.
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3 Results

3.1 Impact of mesh density on
Electrocardiographic Imaging
reconstruction

Mesh density alone -without electrode relocation-had a

limited impact on ECGI signals. In Figure 4A, reconstructed

signals with different mesh densities for a sample epicardial node

show only subtle differences. Average correlation coefficients

remain above 0.96 even for torso meshes with just 100 nodes, and

relative errors are below 0.3%, with the lowest CC values of 0.93,

Figures 4B,C. The effect of the torso’s node density in the

dominant frequencies is depicted in Figure 4D. The observed

absolute error decreases with the number of nodes of the mesh,

and errors are stabilized below 0.2 Hz with torso meshes with at

least 400 nodes.

The same analysis on real AF patient data is shown in

Figure 5. Again, CCs were above 0.99 even for meshes with

100 nodes, relative errors were below 0.1 and errors in DF were

below 0.2 Hz. CC values for low-density meshes presented very

high values, even higher than those obtained for the simulated

data. This was because when solving the inverse problem in

patients, the optimal regularization parameter was higher than in

the simulated cases (~10−5 vs. ~10−8), likely because of the

presence of spatial uncertainties in ECGI reconstruction and

the presence of different sources of noise on the recorded signals.

These larger values of regularization parameters in patients result

in smoother ECGI solutions that make the ECGI signal

estimation less dependent on mesh resolution.

In addition to the effect of the number of nodes, the type of

remeshing affected the quality of the ECGI signal. Results showed

that homogenous meshes present lower values of CC and higher

values of RDM* and DF errors compared to the heterogeneous

distribution of the mesh, which could be attributed to a poorer

shape preservation in the homogeneous meshes.

3.2 Impact of electrode relocation in low-
density torso meshes on
Electrocardiographic Imaging
reconstruction

ECGI signals obtained from cardiac electrophysiological

simulations and using different torso meshes where the

electrode position was relocated to match a mesh node after

remeshing present noticeable differences with the reference

ECGI signals with the finest torso meshes without electrode

FIGURE 3
Mean value and standard deviation of torso model properties of the geometries used in the real patient’s study. (A). Mean number of nodes
depending on the model. (B). Mean area of the faces. (C). Variability of the area of the faces. (D). Mean distance between nodes of the same triangle.
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relocation (Figure 6). First, an example of simulated ECGI signals

of the reference torso with coarser meshes is presented in panel

Figure 6A. Although the overall shape of the inversely computed

electrograms is preserved for lower mesh densities, some impact

of shape morphology can be observed, especially for the sparser

meshes (blue line). A global comparison between the signals

measured through time-metrics is represented in Figures 6B,C

for all the models. The CC and the RDM* show a strong

dependency on torso mesh density. A progressive increase is

shown for the CC as the number of nodes increases, from 0.53 ±

0.06 for the 100 mesh to 0.92 ± 0.04 for the 2000 node mesh.

Besides, the RDM* decreases when the torso is composed with a

higher number of vertices from 0.96 ± 0.07 for the 100 mesh

down to 0.38 ± 0.09 for the 2000 node mesh. Regular meshes do

show better correlation coefficients and RDM* values than

irregular meshes with a similar number of nodes, especially

for the meshes with a lower number of nodes. For the finer

meshes and, therefore, smaller areas of the geometrical faces,

slightly better results are observed for the irregular meshes.

Figure 6D shows the differences in DF between the ECGI

signals calculated with the torso meshes with 4,000 nodes

homogeneously distributed and the remaining models. The

largest difference can be observed for the torso with

100 nodes (1.14 ± 0.26 Hz), and it decreases as the number of

nodes increases. Differences in the frequencies show higher

values when a homogeneous distribution of the electrodes is

presented for models with fewer than 1,000 nodes. However,

when the number of nodes was 1,000 or higher, these differences

were higher in the case of the homogeneous models.

The results of the CC and RDM* of the ECGI computed with

each torso mesh from real AF patient data are presented in

Figure 7. As observed with the computer simulations, the CC

values increased, and the RDM* decreased with the number of

FIGURE 4
(A). Example of 1 s of inverse computed electrograms
obtained with different torso models and the same simulation
signals for torsos without electrode relocation. Signal in black was
obtained with the reference 4000-node torso, red and blue
signals correspond to the ones obtained with torsos of 2000 and
100 nodes respectively. (B). Pearson’s correlation coefficient (CC),
(C). relative measurement (RDM*) and (D). mean absolute
difference between the reference dominant frequencies (DF)
between torso models and from 100 to 2000 nodes. Points in
black represent the mean value of the metrics torsos in which the
distribution of the nodes is homogeneous and white points
represent the torso with nodes heterogeneously placed. Whiskers
represent the standard deviation.

FIGURE 5
Time metrics obtained comparing the inverse computed
electrograms 25 atrial fibrillation patients of the reference and the
signals obtained with different torso models without electrode
relocation. Points in black represent the torsos in which the
distribution of the nodes is homogeneous and white points
represent the torso with nodes heterogeneously placed. (A).
Pearson’s correlation coefficient (CC) and (B). Relative difference
measurement (RDM*). (C). Mean absolute difference between the
reference dominant frequencies (DF) between torso models and
from 100 to 1,000 nodes.
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nodes. Even though the trend is the same as presented in Figure 6,

differences are more prominent using real AF signals from

patients as compared to simulation data. The correlation

coefficient ranged from 0.42 ± 0.38 using the 100 nodes torso

and up to 0.87 ± 0.2 with the 1,000 mesh. The RDM* decreases

from 0.98 ± 0.45 (100 nodes) to 0.40 ± 0.33 (1000R). Although

the results show amore marked effect of the remeshing in real AF

signals, both CCs and RDM* values showed a stabilization for

torsos above 400 nodes, as in Figure 6.

The calculation of differences in dominant frequencies is

shown in Figure 7C. The results presented the same trend as the

findings for simulations, and the difference in DF decreases with

increasing number of nodes. The largest difference is found for

the torso with 100 nodes (0.91 ± 0.56 Hz), while the lowest

difference is obtained using the 1000-node torso (0.45 ± 0.41 Hz).

In this case we could observe that differences in DFs were lower

for the homogeneous torso meshes than their inhomogenous

counterparts. DF maps for a sample patient are shown in

Figure 8. As the number of vertices increased, the maps

looked more similar to the one obtained with the reference

torso mesh (2000 nodes). Torso meshes constituted by

400 nodes or less didn’t allow to determine the site with the

highest DF, present in the right atrium. In addition, in torso

meshes with nodes from 400 to 1,000, the location and extension

of the highest dominant frequency area are more similar to the

reference ECGI 2000-nodes torso.

4 Discussion

In this study, we explored the effect of torso mesh density and

homogeneity on ECGI signals for atrial fibrillation simulations

and real signals. Firstly, we studied the effect of the number of

FIGURE 6
(A). Example of 1 s of inverse computed electrograms
obtained with different torso models and the same simulation
signals for torsos with the node of the electrode displaced by the
remeshing. Signal in black was obtained with the reference
4000-node torso, red and blue signals correspond to the ones
obtained with torsos of 2000 and 100 nodes respectively. (B).
Pearson’s correlation coefficient (CC), (C). relative measurement
(RDM*) and (D). mean absolute difference between the reference
DF between torso models and from 100 to 2000 nodes. Points in
black represent the mean value of the metrics torsos in which the
distribution of the nodes is homogeneous and white points
represent the torso with nodes heterogeneously placed. Whiskers
represent the standard deviation.

FIGURE 7
Time metrics obtained comparing the inverse computed
electrograms 25 atrial fibrillation patients of the reference and the
signals obtained with different torso models with the node of the
electrode displaced by the remeshing. Points in black
represent the torsos in which the distribution of the nodes is
homogeneous and white points represent the torso with nodes
heterogeneously placed. (A). Pearson’s correlation coefficient
(CC) and (B). Relative difference measurement (RDM*). (C). Mean
absolute difference between the reference DF between torso
models and from 100 to 1,000 nodes.
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nodes on torso meshes with imposed nodes matching with the

location of the electrodes so that they don’t need to be relocated.

For both simulations and real signals, the number of nodes had

little effect in the ECGI solution, especially for torsos with more

of 400 nodes, where the trend in the studied metrics was

stabilized. This suggests that torso meshes built upon the

restriction of including the electrodes as nodes in the torso

mesh are reliable even for very low densities. Furthermore, we

observed that irregular meshes presented better results in terms

of metrics compared to regular meshes for finer geometries, likely

because of a better shape preservation.

Additionally, we explored the effect of node distribution and

density, considering that the remeshing affects the position of the

nodes that corresponded to electrodes. This analysis is relevant in

the context of building first a torso mesh and later assigning the

nodes corresponding to recording electrodes in a second

step. Under these constraints, the effect of torso density is no

longer negligible, and CC can decrease down to 0.5 for meshes

with 100 nodes in simulations when there are no further spatial

uncertainties and noise is limited to 20 dB SNR. The impact of

mesh density on real patient data, when different sources of

uncertainty are present, is less relevant because correlations are

lower than in the computer simulations even for torso meshes

with 1,000 nodes. In either case, correlation coefficients are

affected, and decrease from 0.87 ± 0.2 for 1,000 node meshes

down to 0.42 ± 0.38.

The effect of the node density of the meshes of the torsos has

not been widely studied. Nevertheless, an accurate torso

geometry has been reported as necessary to obtain precise

inverse electrograms (Messinger-Rapport and Rudy, 1990).

Our study uses torso models obtained with photogrammetry,

which presented realistic results but not as precise as those

obtained with medical imaging techniques, which were

reported to be very important for correct inverse results

(Svehlikova et al., 2012). Previous studies addressed that as

long as geometrical parameters are captured with local details,

the significant impact on the inverse electrogram is minimal

(Wang et al., 2010), which is in accordance with the presented

results, especially with a larger number of nodes. Likewise, torso

reshaping and remeshing with a different number of nodes

affected the quality of the signals, with 400 nodes being the

minimum necessary to obtain a reliable result. Torso reshaping

and smoothing the geometry have been reported to produce less

accurate results when computed inverse electrograms (Lenkova

et al., 2012) were compared to real ones. Nevertheless, we

demonstrated that a homogeneous distribution of the nodes

improved the inverse solution for meshes of less than

1,000 nodes independently of the type of signal used (real or

simulated) when the remeshing forced a relocation of the

electrodes. Heterogenous distribution of the nodes improved

the results compared to the homogeneous one for geometries

of more than 1,000 nodes and torsos with the electrodes

matching a node position. However, when number of nodes

increased, the differences between the distribution of the nodes

decrease, and we cannot ensure that homogeneous meshes are

worse for higher number of nodes, most likely because electrode

relocation is less relevant in homogenous torso meshes since the

distance between the actual location of the electrode and its

location in the relocated torso mesh is larger in heterogenous

meshes than in their homogeneous counterparts.

The minimum number of electrodes for computing ECGI with

AF signals needed has been studied previously, with 23 theminimum

number for an accurate reconstruction, similar to a 12-lead ECG

(Guillem et al., 2009). Although the number of electrodes remains

critical for a proper inverse reconstruction, in this study, we used a

reliable amount according to the literature. Notwithstanding,

increasing the number may alleviate the misplacement effect and

could be needed for a correct reconstruction of reliable torso meshes.

FIGURE 8
Dominant frequency maps obtained with different torso models for one real patient case.
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The position and displacement of the electrodes remain

important, as shown in the results and described by van der

Graaf et al., 2016. Nevertheless, some studies provided results

that the optimal position for placing the electrodes is not unique,

which matches the study (Lux et al., 1978). The possibility of a

range of appropriate electrode positions allows the opportunity

of having reliable ECGI reconstructions with different torso

meshes and electrodes displacement as in the presented study.

The remeshing influenced electrode location, but we could

establish the maximum displacement tolerated of the

electrodes as 2cm, the mean displacement of 400-nodes

torsos, which is in accordance with what has been described

in vivo studies previously (Cluitmans and Volders, 2017). This

distance gives margin to consider as a good reconstruction of the

location of the electrodes using photogrammetry. Furthermore,

slightly displaced electrodes would not affect the results

drastically. Despite that, results demonstrated that 400 nodes

-or mean distance between nodes below 4 cm-is a good trade-off

for torso geometry reconstruction; geometries with a higher

number of nodes would alleviate electrode misplacement

(Huiskamp and Van Oosterom, 1989).

4.1 Limitations

In this study, we compared real AF signals with ECGI

reconstructed with a higher number of nodes in the mesh as a

reference and with no intracardiac data. We considered a higher

number of nodes models as a reference assuming that it will

provide a better reconstruction. For this purpose, data from AF

simulations were used, being the conclusions with simulations

and real data in agreement.

For the used forward model, inner organs were not included.

Our model may be simplistic, and for that reason, the observed

results with relocated electrodes may be better in simulations

than in patient analysis. Nevertheless, although the incorporation

of inner organs has not shown a major impact on the shape of

ECGI potentials (Ramanathan and Rudy, 2001), simulated body

surface potentials are indeed affected by these torso

inhomogeneities that we have not considered in the present

study. Additionally, the lack of anisotropy of the forward

model may influence our results because although it may not

affect the ECGI resolution significantly, potential distributions

that are more complex due to the anisotropy will complicate the

resolution of the inverse model (Colli-Franzone et al., 1982; Hren

et al., 1998; Potse et al., 2009). Furthermore, it should be noted

that the presented results are not relevant to mesh-less solutions

due to the influence of the BEM on the presented results. For

simulations, the results for each torso geometry were compared

with a reference ECGI of a 4000-nodes torso and not with the

original electrogram due to the low similarity at the high-

frequencies for the intrinsic smoothing of the ECGI.

Nevertheless, this does not imply that we could define the

effect of the quality of the mesh on the inverse solution.

Finally, in the present study we have omitted the

quantification of the impact of the epicardial mesh on the

signals estimated by ECGI, which should be explored in

future studies.

5 Conclusion

The present study shows that the effect of mesh density on

ECGI signals has little effect when the original electrode position

is respected, especially for geometries with more than 400 nodes.

Nevertheless, if maintaining the original position of the electrode

is not possible, a mesh of at least 400 nodes is recommended for

solving the inverse problem of electrocardiography in the context

of atrial fibrillation signals in order to achieve reliable results.

Furthermore, a homogeneous distribution of the nodes showed

to be convenient for computing the ECGI with a distance

separation of nodes under 4 cm. A displacement of the nodes

corresponding to the position of the electrodes higher than 2 cm

should be avoided.
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Background: Cardiac resynchronization therapy (CRT) is a treatment for

patients with heart failure and electrical dyssynchrony, i.e., left bundle

branch block (LBBB) ECG pattern. CRT resynchronizes ventricular

contraction with a right ventricle (RV) and a left ventricle (LV) pacemaker

lead. Positioning the LV lead in the latest electrically activated region

(measured from Q wave onset in the ECG to LV sensing by the left

pacemaker electrode [QLV]) is associated with favorable outcome. However,

optimal LV lead placement is limited by coronary venous anatomy and the

inability to measure QLV non-invasively before implantation. We propose a

novel non-invasive method for estimating QLV in sinus-rhythm from the

standard 12-lead ECG.

Methods: We obtained 12-lead ECG, LV electrograms and LV lead position in a

standard LV 17-segment model from procedural recordings from 135 standard

CRT recipients. QLV duration was measured post-operatively. Using a generic

heart geometry and corresponding forward model for ECG computation, the

electrical activation pattern of the heart was fitted to best match the 12-lead

ECG in an iterative optimization procedure. This procedure initialized six

activation sites associated with the His-Purkinje system. The initial timing of

each site was based on the directions of the vectorcardiogram (VCG). Timing

and position of the sites were then changed iteratively to improve the match

between simulated and measured ECG. Noninvasive estimation of QLV was

done by calculating the time difference between Q-onset on the computed

ECG and the activation time corresponding to centroidal epicardial activation

time of the segment where the LV electrode is positioned. The estimated QLV

was compared to the measured QLV. Further, the distance between the actual

LV position and the estimated LV position was computed from the generic

ventricular model.

Results: On average there was no difference between QLV measured from

procedural recordings and non-invasive estimation of QLV
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(ΔQLV � −3.0 ± 22.5ms, p � 0.12). Median distance between actual LV pacing

site and the estimated pacing site was 18.6 mm (IQR 17.3 mm).

Conclusion: Using the standard 12-lead ECG and a generic heart model it is

possible to accurately estimate QLV. This method may potentially be used to

support patient selection, optimize implant procedures, and to simulate optimal

stimulation parameters prior to pacemaker implantation.

KEYWORDS

cardiac modeling, electrophysiology, ventricular activation, left bundle branch block,
cardiac resynchronization therapy

Introduction

Cardiac resynchronization therapy (CRT) is a treatment

option intended for patients with heart failure and reduced

ejection fraction (HFrEF) and wide QRS on the

electrocardiogram (ECG) (Glikson et al., 2021). The therapy

was developed in the 1990s (Leclercq et al., 1998) and gained

widespread use in the early 2000s. It is known that response

varies greatly from patient to patient, with some improving much

in both symptoms and survival, while others see no or even a

negative response (Ypenburg et al., 2009). This has entailed great

interest in finding markers for positive response. Initially, a

stricter definition of the ECG criteria for left bundle branch

block (LBBB) was proposed (Strauss et al., 2011), but still, about

one third of these patients do not experience improvement in

symptoms. Lack of response is most likely multifactorial,

including patient selection, presence of large areas of

myocardial scarring, implantation site of the left ventricular

(LV) pacing lead, and timing of the stimulus impulse. Further,

CRT has been shown to be beneficial in some subgroups of

patients with HF and non-LBBB ECG, e.g. Right Bundle Branch

Block (RBBB) or non-specific Intra-Ventricular Conduction

Delay (IVCD), stressing that other factors than solely QRS

duration or LBBB morphology determine outcome (Salden

et al., 2020). Therefore, more knowledge about the activation

sequence of the heart prior to CRT implantation may impact

selection of the best CRT candidates and be valuable in planning

CRT implantation.

Inverse ECG computer modeling is a means for relating ECG

signals measured on the body surface to the cardiac electrical

activation through equations governed by physical laws.

Computing the ECG from a cardiac activation pattern is

termed the forward problem, while going from ECG to

myocardial activation is termed the inverse problem, or often

simply electrocardiographic imaging (ECGi). The inverse

problem in electrocardiography cannot be solved uniquely,

and generally recordings from much more than the

10 electrodes used for measuring the 12-lead ECG are used

when solving the inverse problem. Such recordings are termed

body surface potential maps (BSPM). A computationally efficient

way of solving the inverse problem is to define a fixed set of

activation sites and minimize the error between simulated and

measured ECGs or BSPMs (van Dam, Oostendorp, Linnenbank,

et al., 2009). Given fixed activation sites, forward models have

been able to accurately simulate LBBB ECGs (Galeotti et al., 2013;

van Dam et al., 2014). Similarly, a fastest route algorithm

optimizing the activation pattern with regard to the error

between the simulated and measured 12-lead ECG, by moving

and delaying a number of activation sites, was able to simulate the

ECG accurately (Roudijk et al., 2021; Boonstra et al., 2022).

Ideally, an individual geometric model should be made for each

patient, to improve simulation accuracy. However, this requires

CT or MRI scans of the patient, and time-consuming manual

work to segment the heart, lungs and thorax. Hence, this is often

not possible in standard clinical practice.

In this study we use an inverse ECG algorithm together with

a generic geometric model and the standard 12-lead surface ECG

to estimate the activation sequence of the heart for LBBB

patients. Further, we estimate QLV from a given anatomical

location and compare with procedurally measured QLV in

patients with sinus rhythm and LBBB undergoing CRT

implantation.

Methods

Study population

The study population consisted of 182 patients included in

the Empiric Versus Imaging Guided Left Ventricular Lead

Placement in Cardiac Resynchronization Therapy

(ImagingCRT) study (Clinical Trials record NCT01323686); a

double-blinded, randomized controlled trial. The design and

results of the study have previously been published (Sommer

et al., 2013, 2016). Briefly, the study investigated if imaging

guided optimal left ventricular (LV) lead placement targeting

the latest mechanically activated non-scared segment improved

the response rate to cardiac resynchronization therapy (CRT)

compared with standard LV lead placement. A 12-lead surface

ECG and bipolar electrograms were recorded during the

implantation procedure (CardioLab, GE Medical, Milwaukee,

MN). At the time of collection, 31 records could not be retrieved
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from CardioLab, 15 records had no sinus rhythm ECG (patients

were pacemaker dependent), and one showed a normal QRS

duration of 84 ms and was therefore excluded. The remaining

135 patients were included in this study.

The included 135 patients all had simultaneous 12-lead

surface ECG and bipolar right ventricular (RV) and LV

pacing lead electrograms measured at the final implant site.

Data was exported as two paired files per patient, one with

the 12-lead ECG, and one where lead V1 was exchanged for the

bipolar LV sense signal (ECG/LV). QRS duration was measured

manually by one reviewer (C.G.) with digital calipers on the

ECGs with magnification 200%, and the QRS onset and offset

points were transferred to the ECG/LV files. QLV was then

measured on the ECG/LV files by two reviewers (C.G. and J.M.),

also using a digital caliper at a magnification of 500%. Any

discrepancies were resolved by consensus. AHA17 segment

FIGURE 1
The four bipolar electrogram phenotypes identified and simulated. Left column are simulated isochrones, with the ring denoting the negative
electrode, and the star denoting the positive catheter tip electrode. The arrow points to the stimulation site at (x = 0 mm, y = 15 mm). Middle column
shows simulated bipolar electrograms. Right column shows representative examples from the data. (A–D) (horizontal) show the four different
configurations. Please refer to the text for further details.
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location (Cerqueira et al., 2002) for the LV electrode was

evaluated by post-implant cardiac computed tomography

(A.S.) and was available for all 135 patients from study records.

QLV measurement

The morphology of bipolar electrograms depend on both the

direction of the activation wave front and the tissue-electrode

distances (Bakker, 2019). We identified four different QLV

morphology phenotypes in our data. Bipolar electrograms are

simulated using a moving circular dipole layer in an infinite

medium approximated by triangulated rings. Simulations were

done in an infinite 3D slab of homogenous isotropic tissue with

thickness of 4 mm.We visualize the wavefront only for a 120 mm

by 120 mm region of this slab. The simulated sensing catheter has

electrode spacing of 10 mm. The stimulus origin was at x = 0 mm

and y = 15 mm (referenced to the visualized region), with the

catheter electrodes placed approximately 40 mm away from this

origin. We first computed the activation map analytically with a

conduction velocity of 0.6 m/s. Then, with a time sampling of

0.1 ms, we computed the total solid angle (van Oosterom and

Strackee, 1983) per time step of the triangulated circular ring

(400 triangles); this being a scaled version of the local infinite

medium potential at one measuring electrode (the unipolar

electrogram). The bipolar electrogram is then the subtraction

of the two simulated electrograms from the two differently

located electrode positions. As the electrodes are relatively

close together, the approximation of the volume conductor as

being an infinite medium is approximately valid. A limitation of

these simulations is that the local heart curvature and anisotropy

is not taken into account, because this data was not available

Also, bath loading effects were not including is this simulation.

For different electrode orientations the electrogram could be

simulated as shown in Figure 1. One bipolar electrogram

simulation takes approximately 4 s on a standard office pc

(Intel core i7 3 GHz running Windows). Panel (A) shows

propagation along the catheter direction, with the tip closest

to activation origin. In this case, activation at the catheter tip

causes the first negative deflection in the bipolar ECG. Hence, to

reflect local activation time (LAT) at the catheter tip, we measure

the first negative slope of the signal. Panel (B) also shows

propagation along the catheter, but in the opposite direction.

In this case, the second leg (but still the steepest negative slope)

represents LAT at the tip. Panel (C) shows electrodes nearly

perpendicular to the activation wavefront, giving rise to a

biphasic signal. In this case, the steepest negative slope is

measured as representative for LAT at the electrode

tip. Finally, panel (D) shows a situation similar to (C), but

with the electrodes interchanged with respect to the activation

wavefront. In this case, the steepest positive deflection is

representative of LAT at the tip. The four phenotypes are

denoted configuration one to four, for (A)-(D), respectively.

To reflect local activation time (LAT) at the catheter tip, all

EGMs were first classified as one of the four phenotypes, and

based on this configuration the QLV was determined

accordingly.

The mapper

TheMapper is a modeling approach that aims to estimate the

cardiac activation initiated from the His-Purkinje system by

optimizing a forward solution to best match the ECG. The

mapper has previously been validated using both endocardial

and epicardial recordings (Roudijk et al., 2021; Boonstra et al.,

2022), and has also been shown to accurately show PVC foci

(Potyagaylo et al., 2019) and general morphological changes

occurring with LBBB (Galeotti et al., 2013). The steps

involved in The Mapper algorithm are shown in Figure 2.

Briefly, a generic geometry and a patient-specific ECG are

used as input. Using this data, the major QRS axis is

computed. Depending on the QRS axis and QRS duration, an

initial activation time is set for each of the “His-Purkinje” nodes,

or the nodes are “disabled”. In the final optimization step, timing

and position of the “His-Purkinje” nodes are changed to best fit

the patient specific ECG. The human His-Purkinje system

distributes the electrical activation to a large part of the

endocardial surface of the myocardium. In this study the

initial activation from a branch of the His-Purkinje system is

approximated by an endocardial surface being activated almost

simultaneously, attributed to the density of the local available

Purkinje-myocardial junctions located on the endocardial

surface. Thus, the Purkinje initiated ventricular activation is

modelled by a combination of multiple breakthroughs in

different parts of the left and right ventricular myocardium.

Activation sequence construction
The fastest route algorithm is used to compute the activation

propagation from the initial sites of activation (van Oosterom

and van Dam, 2005; van Dam, Oostendorp, and van Oosterom,

2009b). The fastest route algorithm computes the (virtual)

distances in the geometric heart model between a node and

all other nodes on a closed triangulated myocardial surface. The

propagation velocity within the myocardium is anisotropic,

i.e., velocities perpendicular to the myocardial fiber direction

is about 2 times slower than along the fiber direction. To take this

anisotropic propagation velocity into account the (virtual)

distance for transmural connections is made 2.5 times longer,

as the transmural connections are by definition perpendicular to

the local fiber direction (van Dam, Oostendorp, and van

Oosterom, 2009b; van Dam, Oostendorp, Linnenbank, et al.,

2009). To mimic the surface activation from the Purkinje system,

the local velocity around a node on the ventricular surface is set

to 1.7 m/s with a radius of 15 mm. The Mapper is described in

detail by Roudijk et al. (Roudijk et al., 2021), especially in the
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FIGURE 2
The regional sites of early activation associated with the Purkinje activation. Each red circle identifies a position of the initial estimation of the
cardiac activation. The exact position of the His-Purkinje system is unknow, only the effect of the His-Purkinje system on cardiac activation is
simulated (left panel).15.

FIGURE 3
The steps involved in The Mapper algorithm. 1) First, a geometry (generic or patient specific) and a patient specific 12-lead ECG is used as input.
2) Initial analysis of the QRS axis and QRS duration determines gross activation pattern, and based on this 3) pre-defined times are set for the six His-
Purkinje activation sites (or sites are “disabled”). Finally, 4) both the position and the activation times of the His-Purkinje activation sites are changed to
best fit the ECG.
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supplementary material, and by Boonstra et al. (Boonstra et al.,

2022).

The geometric model used in this study to estimate the

cardiac activation is from a 58-year-old male which we find to

have typical body build and heart orientation. The source method

used to simulate the equivalence of the cardiac activity is the

equivalent dipole layer (EDL) (van Dam, Oostendorp, & van

Oosterom, 2009a; van Dam, Oostendorp, Linnenbank, et al.,

2009; van Oosterom, 2011; van Dam et al., 2013; Janssen et al.,

2018). This model is used to compute the ECG given the

activation time at each of the nodes of the ventricular mesh

(Figure 3). Several methods exist to account for the volume

conductor effect and compute the ECG from local activation

times, for instance the Lead Field approach (Potse, 2018), or the

commonly used Boundary Element Method. In this research the

Boundary Element Method was used. The volume conductor

model uses the geometries of the thorax, ventricles, and

ventricular blood cavities. The conductivity of the blood was

set to be 3 times the value of the rest of the thorax geometry

(Roudijk et al., 2021).

Phenomenological estimation of His-Purkinje
system activation

To estimate the His-Purkinje activation sequence from a

patient’s ECG, an initial activation sequence is generated to

simulate ECG signals. This initial sequence uses six different

anatomical locations of potential Purkinje activations sites

(Figure 2), based qualitatively of the activation sequence

described by Durrer et al. They described that initial

activation was typically found on the anterior left septum,

with later local breakthroughs in the left and right apical

regions as well as the right free wall (Durrer et al., 1970).

Hence, for the LV septum, two sites are located basal and mid

septum. Two more locations were selected on the left free wall,

associated with papillary muscle locations and thus with

potential sites of early His-Purkinje activation. The two

positions on the endocardial RV wall represent the entry of

the moderator band (Ho et al., 2003) associated with the papillary

muscles, and a site at the right apical septum. This approach was

previously validated (Roudijk et al., 2021; Boonstra et al., 2022).

The initial timing of each of these six locations depend on the

morphology of an ECG waveform and they are used as an initial

guess for subsequent iterative optimization procedures. For

normal ECG morphology, the initiation times of the left

septal wall was set to 0 ms, i.e. equal to the QRS onset, while

the RV and LV initiation times are set to 15 ms. For ECGs with an

LBBB pattern (QRS duration >120 ms) the initial timing of the

left regions, is delayed to 40 ms for the septal regions and 45 ms

for the free wall regions. Similarly, for RBBB ECG waveforms

(QRS duration >120 ms), the initial activation of the RV septal

region is set to 45 ms, and the RV free wall to 65 ms.

In the subsequent optimization procedure, the timing and

position of these six early sites of activation can be changed to

obtain the best match between the simulated ECG and measured

ECG. The total activation duration for each constructed sequence

is matched to the QRS duration by adapting the overall used

propagation velocity. The used propagation velocity is

maintained within the physiological range of the myocardial

velocity, i.e., between 0.6 and 0.85 m/s (Roberts et al., 1979; Spach

and Kootsey, 1983; Kléber and Rudy, 2004; Cantwell et al., 2015;

Good et al., 2020).

Analysis of activation times and LV pacing
site

For each patient, the mapper estimates the activation

sequence of the heart based on the 12-lead ECG. The mesh-

model of the heart is divided into the AHA 17 defined segments

on a node level, and the geometric mean of the segment

containing the LV pace electrode is computed. Since the

pacing site within an AHA 17 segment is not known, we set

the LV pacing site to be in the center of the myocardial segment

assessed by cardiac computed tomography. The estimated

activation time at this location is found by linear interpolation

within the triangle encompassing the geometric mean of the

segment. The time difference between the measured and

estimated activation time, denoted ΔQLV, is given in milliseconds.

From the estimated activation of the whole heart, we also

determined the distance between the LV electrode position

(defined and computed as above) and the closest point which

is estimated to activate at the measured QLV time. This is done

by first searching for the nearest triangulated surface element

containing an activation time equal to the measured QLV. For

this triangular element, the precise location activating at this time

is found by linear interpolation within the triangle. All distances

between points are given in millimeters. Finally, we compared the

TABLE 1 Baseline characteristics.

All

Subjects, n 135

Female sex, n (%) 32 (24)

Age 70 ± 9 years

Height 174 ± 9 cm

Weight 80 ± 16 kg

BMI 26.3 ± 4.5 kg m−2

Ischemic Heart Disease, n (%) 63 (47)

Pacemaker, n (%) 6 (4)

QRS Duration 163 ± 21 ms

QLV 135 ± 28.6 ms

LVEF 25 ± 5.7%

LV EDF 259 ± 83.3 ml

LV ESV 196 ± 71.2 ml

Frontiers in Physiology frontiersin.org06

Melgaard et al. 10.3389/fphys.2022.939240

179

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.939240


segment of the estimated QLV position to the segment

containing the LV lead. We report the fraction that is placed

within the same segment.

Statistical analysis

Continuous variables are reported as mean ± SD unless

severely skewed. Categorical values are reported as absolute

numbers and percentages. For analysing associations, unpaired

t-test was used for continuous independent variables. p< 0.05

was considered statistically significant. Matlab 2021b was used to

perform the statistical analyses.

Results

Baseline patient characteristics are shown in Table 1. The

Mapper successfully estimated activation sequences for all

patients. The mean difference between estimated and

measured QRS duration was −0.7 ± 3.3ms (mean ± SD). For

125 cases out of the 135, the QRS difference was within −2ms to

+4 ms; the remaining 10 cases were outliers with a difference

between −2 and −20 ms. Median correlation between simulated

and recorded ECGs was 0.73. The Mapper runs in near real-time,

with an execution time of approximately 1 s (and always less than

2 s) on a standard office PC (2018 Intel core i7, 3 GHz) running

Windows.

On average there was a small and not statistically significant

difference between measured and estimated QLV

(ΔQLV � −3.0 ± 22.5ms; mean ± SD, p = 0.119). Regression

between estimated and measured QLV is highly significant

and shows R2 � 0.49. A scatterplot together with the

regression line is shown in Figure 4. All estimated QLV values

are shown in the AHA 17-segment illustration in Figure 5.

Overall distribution of LV pacing site given as AHA

17 segments is shown in Table 2, while overall distribution of

EGM configurations is shown in Table 3. The overall median

distance between measured and estimated LV pacing site was

18.6 mm (IQR = 17.3 mm). In Tables 2, 3 we also present the

fraction of correctly estimated QLV segments.

Similarly, there was no systematic difference or proportional

bias between measured QLV and ΔQLV (Figure 6).

Figure 7 shows the distances between LV pacing site and the

nearest point activating at the measured QLV time also using the

AHA 17-segment model.

Figure 8 illustrates, for all 135 patients, the distance between

the LV catheter position (defined as the geometric center of the

segment it was found to be in), and the closest point of the

epicardium that is estimated to activate at this time. The markers

are 8 mm in diameter.

Discussion

In this retrospective study based on 135 patients undergoing

CRT, we estimated QLV using a standard 12-lead ECG. There

was no statistical difference between non-invasively estimated

QLV and QLV measured during the implant procedure. The

median distance between measured and estimated LV pacing site

was 18.6 mm (IQR 17.3 mm). However, the location of LV

pacing site was known with segment-level precision; LV

pacing site was always placed in the segment center. For

reference, in the generic model, the mean epicardial area of

the defined segments is 601 mm2. If the segments were perfectly

square in shape, this would correspond to a side length of

approximately 25 mm. This is an adequate approximation for

all segments except the apex which is circular and even larger; it

has a mean diameter of 47 mm.

We presented four phenotypes of bipolar electrograms

and show from a theoretical standpoint how local

activation should be measured differently in the four

situations. To our knowledge, such categorization and

presentation is novel.

Since we are using a generic geometry with uniform

conduction velocity for the whole heart, it is not always

possible to match the ECG exactly. One measure of the

goodness of fit for the model is the error in matching QRS

duration (ΔQRS). We divided ΔQRS into three groups representing

underestimation of QRS (ΔQRS < − 1ms), exact estimation of

QRS (−1ms≤ΔQRS ≤ + 1ms) and overestimation of QRS

(ΔQRS > + 1ms). These groups were compared with a one-way

ANOVA analysis, and the group representing QRS

underestimation was significantly different from the other two

FIGURE 4
Scatter plot of estimated vs. measured QLV. Included is also a
linear regression analysis.
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(p< 0.05). Figure 9 shows a boxplot with median and IQR for

each group. Since the QRS duration imposes an upper limit of the

QLV estimate, it is not surprising that QRS underestimation also

(on average) leads to QLV underestimation. However, it is only

in four cases that QRS underestimation exceeds -4 ms, and these

cases are the main drivers of this group. The largest ΔQRS was

FIGURE 5
Time difference between estimated and measured QLV (ΔQLV ) according to anatomical LV lead position. The encircled numbers show ΔQLV for
each patient. The color of the circle is a visual representation of the ΔQLV value.

TABLE 2 Overall distribution of LV pacing site in terms of AHA17 segments and associated ΔQLV .

LV pacing
site [AHA17 segment]

n ΔQLV p-value Mean distance
[mm]

Fraction correct

μ (± SD) [ms]

1 1 -21 17 1/1 (100%)

4 2 -15 25 1/2 (50%)

5 40 -6 ± 14 0.012 15 32/40 (80%)

6 32 16 ± 18 0.000 22 24/32 (75%)

7 2 +9 12 2/2 (100%)

10 1 -68 58 0/1 (0%)

11 26 -15 ± 23 0.003 28 8/26 (31%)

12 27 -5 ± 24 0.294 23 15/27 (56%)

16 4 -13 18 3/4 (75%)

n: number of patients with LV pacing site at the given segment.ΔQLV μ and SD: mean and standard deviation ofΔQLV for all patients with LV pacing site in the given segment. In groups with

four patients or less, no standard deviation was computed, and hence no p-value could be computed. p-value: test for the hypothesis μ � 0. Mean distance: distance between LV pacing site

and the nearest site estimated to activate at the measured QLV time. Fraction correct: The fraction of estimated QLV locations in the same segment as LV lead. Please refer to Figure 3 or five

for anatomical location of AHA segment number.
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4 ms; for the 125 of 135 cases with ΔQRS between -1 ms and

+4 ms, there was no relation between ΔQRS and ΔQLV.

The varying response to CRT treatment between patients has

led to an immense number of studies investigating both patient

selection and optimal treatment. Positioning of the LV electrode

has long been a main concern for response and is still reported to

be associated with outcome (Kutyifa et al., 2018). Further it is

suggested that having an overview of the myocardial substrate in

terms of fibrosis and scarring (Butter et al., 2021), as well as

myocardial activation and coronary venous anatomy before the

procedure would be beneficial. This makes it possible to plan the

procedure and to aim for placing the LV lead in a coronary sinus

branch over a viable myocardial region with late electrical

activation. There are several steps in this process. Firstly, the

activation pattern of the heart needs to be mapped. This is the

aim of this study. Secondly, information on myocardial scarring

and cardiac venous anatomy obtained through cardiac imaging

(e.g., magnetic resonance imaging and cardiac computed

tomography) should be fused with the model. Then, the

optimal pacing site can be determined based on simulations

and be provided to the physician prior to CRT implantation.

However, possible challenges with achieving a stable LV lead

position with acceptable pacing thresholds and no phrenic nerve

stimulation may still exist.

The largest drawback of the approach described above is that

it works in research settings but is too elaborate for normal

clinical practice. This is the reason we explore the use of generic

models and use of the 12-lead ECG only. Our results indicate that

QLV, and likely the entire activation sequence, may be estimated

non-invasively from a standard 12-lead ECG, potentially solving

the inherent problem that QLV cannot be measured until the

patient is undergoing CRT implantation. However, The Mapper

TABLE 3 Overall distribution of EGM configurations and associated ΔQLV .

Configuration n ΔQLV p Mean distance
[mm]

Fraction correct

μ ± SD [ms]

1 24 -8 ± 24 0.101 23 15/24 (62%)

2 19 +8 ± 22 0.137 19 13/19 (68%)

3 45 -4 ± 25 0.294 23 28/45 (62%)

4 47 -4 ± 19 0.151 19 30/47 (64%)

n: number of patients with ECG configuration as defined in Figure 1. ΔQLV μ and SD: mean and standard deviation of ΔQLV for all patients with LV pacing site in the given segment. In

groups with four patients or less, no standard deviation was computed, and hence no p-value could be computed. p-value: test for the hypothesis μ � 0. Mean distance: distance between LV

pacing site and the nearest site estimated to activate at the measured QLV time. Fraction correct: The fraction of estimated QLV locations in the same segment as LV lead.

FIGURE 6
Bland-Altman plot showing agreement between estimated and measured QLV. No general trends were identified from the plot.
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is not constrained in positioning the latest activating site. In

practice, LV lead placement is limited by coronary vein anatomy,

presence of scar tissue, or unintentional phrenic nerve pacing in

which case the lead should be repositioned. This will inherently

lead to differences between estimated and measured QLV. Still,

knowing the activation sequence of the heart and hence the latest

activating site may provide a more narrow and targeted area to

map during LV lead implantation. Precision could possibly be

improved by using more patient specific anatomical models

obtained e.g. from statistical shape modeling, which could be

done automatically or semi-automatically with little physician

effort. This, however, requires a large library of segmented CT/

MRI images. We are currently building such a library to

enable this.

An intrinsic difficulty with CRT patients is that they often

also suffer from ischemic heart disease (IHD) and have areas of

myocardial scarring. Especially scarring is a poor tissue substrate

for stimulation and should be avoided. In the present study we

used a generic model and did not take ischemia or scarring into

account. However, the precision was practically the same

whether patients were considered to have ischemic heart

disease or not (+IHD: ΔQLV � +2ms, SD = 24 ms, median

distance 22 mm, −IHD: ΔQLV � −8ms, SD = 20 ms, median

distance 21 mm). We expect the reason for this to be the

implicit incorporation of ischemia or scarring through

adjustment of the propagation velocity. Ischemia causes

slower conduction than healthy tissue. When computing the

activation sequence of the heart, the overall QRS duration must

be matched, and thus ischemia is indirectly taken into

consideration, however without location or extent. If data on

scarring or ischemia is available, it would be possible to transfer

this information to the generic model in a segment-wise manner.

This will be investigated in a future study.

It is well known that the bipolar electrogram changes

configuration depending on the position and angle to the

wavefront, making measurement of local activation time

difficult. The variations theoretically constitute a continuous

spectrum of morphological changes. However, in practice we

identified only four different phenotypes, corresponding to

wavefronts along the axis or transverse to the axis of the

bipolar lead, each in both directions. This is an important

result that demonstrates the feasibility of measuring bipolar

EGMs and how they can be used similarly to unipolar EGMs

to measure local activation time consistently.

Limitations

The Mapper is limited in that it has up to six initial activation

sites that can change in timing and position, and a uniform (but

FIGURE 7
Distance between anatomical LV pacing site and nearest node activating at the measured ΔQLV . Each encircled number shows the computed
distance between estimated position and position determined by physician. The color of a circle is a visual representation of these distances.
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anisotropic) conduction velocity. On this basis, the Mapper tries

to match both the activation pattern (as governed by correlation

between measured and simulated ECG) and QRS duration (by

adjusting conduction velocity within certain physiological

limits). Hence, it may be necessary to make a trade-off

between the two. This is especially true in cases where the

generic geometry is a poor match for the actual heart, and in

cases where ischemia or scarring results in non-uniform

conduction velocity. The limitation in the number of possible

activation sites are most important in cases with complex

activation sequences, where they may limit the accuracy of the

solution.

FIGURE 8
Estimated activation patterns for all 135 patients in the study. All hearts are oriented similarly independent of LV pacing site. Early to late
activation is codedwith red (earliest) over yellow and green to blue (latest) colors. The coloring is normalized to the patient specificQRS duration. The
purple sphere shows the LV pacing site determined by physician by cardiac computed tomography (always in the center of a segment), while the
bronze-colored sphere shows the nearest site activating at the measured QLV time. Both spheres are drawn with a diameter of 8 mm.
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Conclusion

We demonstrated a novel non-invasive method for estimating

QLV, based on the standard 12-lead ECG. On average, the method

estimates myocardial activation and QLVwith a small error, andmay

potentially be used to support patient selection, optimize implant

procedures, and to simulate optimal stimulation parameters before the

procedure. The use of a generic model has limitations that in some

cases lead to considerable errors. This has to be taken into account

when using The Mapper. Adding patient specific data, like electrode

positions and body build might be necessary.
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Computer models capable of representing the intrinsic personal

electrophysiology (EP) of the heart in silico are termed virtual heart

technologies. When anatomy and EP are tailored to individual patients within

the model, such technologies are promising clinical and industrial tools.

Regardless of their vast potential, few virtual technologies simulating the

entire organ-scale EP of all four-chambers of the heart have been reported

and widespread clinical use is limited due to high computational costs and

difficulty in validation. We thus report on the development of a novel virtual

technology representing the electrophysiology of all four-chambers of the

heart aiming to overcome these limitations. In our previous work, a model of

ventricular EP embedded in a torso was constructed from clinical magnetic

resonance image (MRI) data and personalized according to the measured

12 lead electrocardiogram (ECG) of a single subject under normal sinus

rhythm. This model is then expanded upon to include whole heart EP and a

detailed representation of the His-Purkinje system (HPS). To test the capacities

of the personalized virtual heart technology to replicate standard clinical

morphological ECG features under such conditions, bundle branch blocks

within both the right and the left ventricles under two different conduction

velocity settings are modeled alongside sinus rhythm. To ensure clinical

viability, model generation was completely automated and simulations were

performed using an efficient real-time cardiac EP simulator. Close

correspondence between the measured and simulated 12 lead ECG was

observed under normal sinus conditions and all simulated bundle branch

blocks manifested relevant clinical morphological features.

KEYWORDS

His-Purkinje system, virtual heart technology, cardiac electrophysiology, 12 lead
electrocardiogram, cardiac personalization, cardiovascular disease
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1 Introduction

Many virtual heart technologies aim to represent the

entire organ-scale EP of the heart in silico in full

mechanistic detail and accordingly provide information of

the intrinsic cardiac sources that drive electrical activation

and repolarization of the heart. As such, these technologies

have the potential to serve not only as surrogates for human

clinical and experimental studies, but be a powerful tool

within both industrial and clinical applications (Abadi

et al., 2020; Corral-Acero et al., 2020). More efficient

development of medical devices at cheaper costs, for

example, is possible by reducing the number of necessary

animal experiments and allowing automated testing of

alternative design and deployment variations during the

design process. Furthermore, virtual heart technologies

could allow optimization of clinical trials and provide

patient-tailored therapeutic options (Viceconti et al., 2016).

Most importantly, the models can be a transformative tool in

clinical diagnostics, prognostics, and treatment planning

(Corral-Acero et al., 2020) when personalized. Personalization

is performed according to electrical recordings such as the

12 lead ECG and electro-anatomical mappings (EAMs) that are

ideally acquired non-invasively.

Despite their potential, current realizations of such

technologies fall short in various regards, significantly

limiting the scope for potential industrial or clinical

applications. Major limitations are the 1) significant

computational costs involved in carrying out in silico EP

studies; 2) the difficulty of personalizing the EP; 3) lack of

compelling validation, that is, to demonstrate that simulated

EP correlates closely to the physical reality; 4) little proof of

predictive capabilities; and, 5) inability to provide estimates

of model uncertainties. Furthermore, most reported current

technologies focus only on specific chambers of the heart.

Namely, studies have reported on either the ventricles

(Arevalo et al., 2016; Lopez-Perez et al., 2019) or the atria

(Ali et al., 2019; Nagel et al., 2021; Roney et al., 2022), and

only a few technologies representing whole heart EP are

reported (Strocchi et al., 2020; Gerach et al., 2021; Moss

et al., 2021).

We report on the development of our novel virtual

technology of whole-heart EP aiming to address these

limitations. Our cardiac EP simulator, comprising a whole

heart EP model, is able to mechanistically represent the full

spectrum of known organ-scale EP under both normal sinus

rhythm and bundle branch blocks (BBBs). In previous work,

a trimmed down ventricular and torso model of a healthy

volunteer was personalized under sinus conditions (Gillette

et al., 2021a) and subsequently equipped with a topologically

realistic model of the His-Purkinje system (HPS) (Gillette

et al., 2021b). Within this study, the model was extended to

the whole heart by accounting for atrial EP and adding an

atrio-ventricular node (AVN) connected to the HPS

facilitating atrio-ventricular conduction. 12 lead ECGs and

body surface potential maps (BSPMs) on the torso surface, as

well as EAMs recovered through electrocardiographic

imaging (ECGi) within the entirety of the heart, were

simulated using an efficient and real-time EP simulator

first under normal sinus rhythm. The ability of the model

to reproduce known ECG features under pathological

conditions, which the model was not parameterized for,

was then tested. BBBs in the (left and right ventricles LV,

RV) were generated. To account for possible remodeling and

alterations in the electrical substrate of the ventricles under

such conditions (Vernooy et al., 2005; Valenti et al., 2012;

Michalski et al., 2022), a lowered (conduction velocity CV)

within the associated ventricle was also applied. Close

correspondence between simulated and measured 12 lead

ECGs is shown under sinus conditions. 12 lead ECGs

simulated under pathological conditions under complete

BBB are validated based on standard clinical ECG

diagnostics (Surawicz et al., 2009).

2 Materials and methods

An anatomically-personalized model of a single subject

(male, 45 years of age) was built from imaging data and the

non-invasive 12 lead ECG, extending on our previous work

(Gillette et al., 2021a; Gillette et al., 2021b). Segmentation

and meshing was performed semi-automatically to generate

a model that explicitly represents all four chambers of the

heart, blood volumes, lungs, and torso. Highly automated

workflows relying on abstract anatomical reference frames

defined within the ventricles and atria separately were then

used to define complex space-varying parameters governing

cardiac EP over the whole heart. Parameters governing

ventricular EP were previously introduced and fitted using

a five-fascicular model to represent the HPS (Gillette et al.,

2021a). The simplified model was subsequently replaced by

an equivalent topologically realistic representation of the

HPS to produce a corresponding 12 lead ECG (Gillette et al.,

2021b). Atrial EP was prescribed according to experimental

and clinical observations. To generate a complete human

heartbeat, the proximal HPS was electrically connected to a

model of the AVN that was electrically paired to tissue in the

basal right atrium (RA). Methodological steps are described

in detail below.

2.1 Model generation

2.1.1 Anatomical model
An anatomically-specific model of a human whole heart for

the single subject was generated from clinical magnetic resonance
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MRI data (Gillette et al., 2021a). Two separate MRI scans of the

full torso and whole heart were sequentially acquired using

standardized protocols at 3T (Magnetom Skyra, Siemens

Healthcare, Erlangen, Germany). The full torso MRI was

attained in four overlapping stacks using a non-ECG gated 3D

T1-weighted gradient-echo sequence during expiration at a lower

resolution of 1.3 × 1.3 × 3.0 mm3. A lower resolution is acceptable

as the scan is used purely to construct the volume-conductor

model. To preserve anatomical structures of the heart for

subsequent segmentation, the whole heart MRI was attained

using an ECG-gated, fat-saturated, T2-prepared, isotropic 3D

gradient-echo to give a higher output resolution of 0.7 × 0.7 ×

0.7 mm3. The scan was attained in an expiratory state during free

breathing by employing navigators. All subjects gave written and

informed consent at the time of the study that was approved by

ethical review board at the Medical University of Graz (EKNr:

24–126 ex 11/12).

At the time of image acquisition, a 12 lead ECG was recorded

in the supine position using MRI-compatible electrodes. The

measured 12 lead ECG had been filtered with a 150 Hz low-pass

filter, 0.5 Hz high-pass filter, and a band-stop filter of 50 Hz to

remove electrical noise (Kligfield et al., 2007). Electrode positions

were later recovered during segmentation.

Four chamber heart segmentation including blood pools

from the iso-volumetric cardiac MRI was automatically

performed using a two-kernel convolutional neural network

originally trained on computed tomography images and

boosted for application on MRIs (Payer et al., 2018). The

torso MRI was semi-automatically segmented using intensity

thresholding in open-source Seg3D (CIBC, 2016) into heart,

lungs, and general torso tissue. Registration using an iterative

closest point algorithm was performed to automatically

register the four-chamber heart with the heart in the torso

segmentation (Chetverikov et al., 2002). Anatomical meshes

of all four cardiac chambers were generated from volumetric

segmentations using the software CARPentry-Pro Studio

(NumeriCor GmbH, Graz, Austria). Target resolutions of

1.2 and 4 mm were prescribed for cardiac and torso

surfaces, respectively.

2.1.2 Anatomical reference frames
Anatomical reference frames were computed for the

ventricles and the atria to facilitate control over spatially-

varying EP parameters and to map tissue properties such as

fibers. Surfaces and interfaces that were required to define

boundary conditions for the computation of the reference

frames were automatically extracted from the model using

tissue labels and the meshtool (Neic et al., 2020) software

package. For the ventricles, universal ventricular coordinates

(UVCs) were computed within the meshed ventricles

according to (Bayer et al., 2018) and modified as discussed in

(Gillette et al., 2021a). Universal atrial coordinates (UACs) were

assigned to the endocardial surface of the left and right atria as

introduced in (Roney et al., 2019; Roney et al., 2021).

2.1.3 Ventricular and atrial fiber architecture
Within the ventricles, fiber architecture was auto-generated

using a rule-based method as presented in (Bayer et al., 2012).

Ventricular fibers were generated to rotate from +60° on the

endocardium to −60° on the epicardium (Streeter et al., 1969).

Within the atria, a two-step UAC-based mapping was used to

incorporate fiber architecture from an endocardial fiber atlas as

in (Roney et al., 2021). In a first step, fibers were mapped from the

fiber altas onto the endocardial surface of left and right atria

utilizing the UACs generated for our model. In a second step, the

fibers were extended transmurally to the volumetric mesh

defining the atria. For this reason, a kd-tree was generated to

map each volumetric cell element in the atrial mesh to the closest

surface element on the atrial endocardium. This map was then

used to assign the fibers of the surface elements to the related

volumetric cell elements. Processing steps of anatomical

reference frame generation and fiber integration were also

carried out in CARPentry-Pro Studio (NumeriCor GmbH,

Graz, Austria).

2.2 Cardiac electrophysiology

We subsequently detail the EP within the various chambers

of the heart, as well as the subsequent simulation of both the

cardiac sources and 12 lead ECGs. The pipeline for personalizing

and constructing the whole heart model of EP was implemented

within the publicly-available openCARP simulation framework

(Plank et al., 2021). Cardiac simulation was performed in

CARPentry (Vigmond et al., 2008), which includes

implementations and components not available in the

openCARP simulator, but utilized within this work.

Simulation, however, could still be performed using a

traditional bidomain simulation approach within the

openCARP simulator.

2.2.1 His-Purkinje system
A simplified fascicular-based model comprising disk-like

root sites embedded in a fast-conducting sub-endocardial

layer, representing the fascicles of the HPS in the sub-

endocardium, was previously optimized for single subject’s

measured 12 lead ECG (Gillette et al., 2021a) and slightly

modified within this work. Such a representation modulates

the fast spread of activation mediated by the subendocardial

Purkinje network, but lacks the ability to capture complex

mechanisms during certain disease pathologies and pacing

(Gillette et al., 2021b). Therefore, the fitted fascicular-based

model was replaced by an auto-generated topologically

realistic representation of the HPS. It was previously shown
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that the 12 lead ECG is preserved during substitution within

sinus rhythm (Gillette et al., 2021b).

Improvements were made on the implementation of

topologically realistic representation of the HPS to make it

compatible for whole heart simulations. Namely, 1) extending

the input of the His bundle to include an AVN, 2) alternative

branching parameters of 45° repulsion and a mean cable

length of 6 mm resulted in a less-dense network allowing

faster computation, and 3) incorporating cable-wise tuning

of conduction parameters as subsequently described. All

fascicles within the HPS were confined to the

subendocardium, apart from the fascicle of the RV

moderator band, which was allowed to transmurally

penetrate up to 50% in the RV free wall to obtain realistic

amplitudes in the precordial leads. After discretization to

500 μm, the final HPS contained 958 Purkinje-myocardial

junctions and a total of ≈ 32k nodes. Antegrade and

retrograde delays of the HPS were respectively prescribed

at 8 and 3 ms (Evans et al., 1984).

CV within the fast-conducting HPS was assumed to be

2.0 m s−1 (Kassebaum and Van Dyke, 1966). To ensure

activation timings comparable with those directly

prescribed in the fascicular-based model, CVs were tuned

within the last cable of the HPS preceding the root site of each

fascicular branch. In more detail, an initial Eikonal activation

map of the HPS was pre-computed to determine the activation

timings in the root sites without CV tuning. CVs within each

cable preceding a root site were then computed as the

Euclidean distance over desired activation delay as

prescribed. General myocardial CVs along the longitudinal

myocardial fiber orientations were assigned 0.6 m s−1 with an

off-axis ratio of 4:2:1 (Taggart et al., 2000). Conductivity

within the ventricles was set according to (Roberts and

Scher, 1982).

2.2.2 Atrial electrophysiology
During sinus rhythm, activation was assumed to start

from the sino-atrial node (SAN) placed high on the

posteriorly-located crista terminalis (CT) on the roof of

the RA after an initial electrical baseline of 25 ms. Within

the atrial myocardium, CVs of 1.2 m s−1 along the fiber axes

with an off-axis value of 0.6 m s−1 was assigned in both the

RA and the LA. Conductivity values were set using ratios

reported in (Roberts and Scher, 1982), but scaled to account

for the higher atrial CVs (Roberts and Scher, 1982). To

facilitate coordinated activation of the LA and RA, a

Bachmann’s bundle (BB) was incorporated into the model

that linked the RA from the SAN to the roof of the LA.

Between the LA and the RA, the BB wraps between the

superior vena cava and the left ventricular outflow tract

(LVOT). A higher CV of 2.25 m s−1 with an off-axis value of

0.8 m s−1 assigned within this region (Nagel et al., 2021). A

pathway on the rim of the foramen ovale (Fossa Ovalis

(FO)-RIM) was also included on the atrial septum.

Additional structures of the SAN block (SAN-B), the

pectinate muscles (PMs), and the CT were included, but

assigned default EP in accordance with the atrial

myocardium.

2.2.3 Cellular electrophysiology and ventricular
repolarization

With the aim of keeping simulation times compatible with

real-time scales, cellular EP dictating action potential

morphology was defined using the Mitchell-Schaeffer

phenomenological model within the entirety of the heart

(Mitchell and Schaeffer, 2003). This is motivated by the

fact that ECG morphology is governed by the spatio-

temporal distribution of cardiac electrical sources, which is

essentially determined by the CV of travelling depolarization

wavefronts and the intrinsic duration of the action potential at

a given location in the heart. The Mitchell-Schaeffer model

was tuned to the more physiologically detailed Ten-Tusscher

model (ten Tusscher et al., 2004; Gillette et al., 2021a).

Resulting base parameter values of ]gate, τclose, τin, and τout
were respectively 0.13, 175.0, 0.3, and 5.4. A prescribed resting

membrane potential of −86.2 mV and a peak potential of

40 mV were applied.

To establish a physiological T-wave, gradients in the

activation recovery intervals (ARIs) across the ventricles were

computed assuming a linear mapping with the Eikonal activation

map AT(x) dictated by ventricular EP,

ARI x( ) � m · AT x( ) + b. (1)

The Eikonal activation sequence of only the ventricles was

therefore precomputed using the tuned HPS. To compute ARI, a

slope of m = −0.66 was then used according to (Opthof et al.,

2009) and intersect value of b = 215 ms was chosen based on the

ST interval manually extracted from the measured 12 lead ECG

of the subject.

The ARI must then be prescribed using variations in ionic

model parameters. The τclose parameter of the Mitchell-Schaeffer

ionic model primarily dictates maximal action potential duration

(APDmax), a surrogate for the ARI. A relationship between τclose
and APDmax is derived from Eq. (13) in (Mitchell and Schaeffer,

2003), such that

τclose x( ) � APDmax x( )
ln 4 τin

τout
( ) ≈

ARI x( )
ln 4 τin

τout
( ). (2)

2.2.4 Atrio-ventricular conduction
Atria and ventricles were separated at the base by nodal

splitting (Costa et al., 2014) to enforce electrical isolation of

the intracellular space. Atrio-ventricular conduction was then

mediated by a ventricular conduction system comprising an

AVN and a HPS. A topologically simple 1D model of an AVN
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was incorporated and electrically connected to tissue in the

basal RA. CV within the AVN was determined to obtain a

physiological PR interval of 200 ms matching the subject’s

12 lead ECG. The CV within the AVN was tuned to a value of

0.07 m s−1 to delay the onset of ventricular activation (Efimov

et al., 2004). The fast and slow conducting pathways of the

AVN were not accounted for. The distal exit of the AVN was

connected to the His bundle, mediating propagation into

fascicles and Purkinje network. This model of atrial-

ventricular conduction facilitates bidirectional electrical

conduction across the atrio-ventricular base.

2.2.5 Torso volume conductor model
The lungs, blood pools, and general tissue in the torso volume

conductor were set according to 0.0389 S m−1, 0.7 S m−1, and

0.22 S m−1, respectively (Keller et al., 2010). Both the trunk of the

aorta and the right ventricular outflow track (RVOT) were

integrated into the general torso tissue and electrically

inhibited. Electrode placements corresponding to the

measured 12 lead ECG were localized to nodes on the torso

surface.

2.3 Bundle branch block

Disease pathologies of left bundle branch block (LBBB)

and right bundle branch block (RBBB) were modeled

alongside sinus rhythm under two different CV setups. In

both setups, the respective branch of the HPS was inhibited to

cause a complete branch block in each case. First, the

standard myocardial CV settings were used. As BBBs often

cause underlying structural changes or result in cardiac

remodelling (i.e. dilation in dyssynchrony) altering

activation and conduction within myocardial tissue

(Vernooy et al., 2005; Breithardt and Breithardt, 2012;

Valenti et al., 2012; Michalski et al., 2022), the

longitudinal CV was then reduced to 0.3 m s−1 within the

affected ventricle while maintaining off-axis ratios. In both

conditions, all other EP was assumed to be the same as under

sinus rhythm.

2.4 Cardiac simulation

Cardiac sources and the potentials at every electrode position

for the 12 lead ECG were simulated using the reaction-Eikonal

method and lead fields implemented within CARPentry

(Vigmond et al., 2008; Neic et al., 2017; Potse, 2018; Gillette

et al., 2021a). The right leg (RL) electrode was prescribed as an

electrical ground for computation. Lead fields were precomputed

once for the model and utilized in every pathological simulation.

Simulations were conducted for a single heart beat assumed to

last 700 ms, in agreement with the subject’s heart rate. A desktop

machine with 8 cores was utilized. All simulated ECGs were

filtered with a 150 Hz low-pass filter and a high-pass filter of

0.5 Hz to correspond to the measured 12 lead ECG (Kligfield

et al., 2007). Note that the 12 lead ECGs are represented in the

rotational-axis view.

The reaction-Eikonal simulations were also run in pseudo-

bidomain mode to compute extracellular potential fields

throughout the heart and torso needed for EAMs. The

pseudo-bidomain simulation method, described in great detail

elsewhere (Bishop and Plank, 2011; Neic et al., 2017), couples an

augmented monodomain model with the elliptic portion of the

bidomain model to achieve faster computation of potentials

within a bounded simulation domain such as the torso.

Speedup is achieved as the elliptic portion is only solved at

infrequent time instances dictated by the desired temporal

frequency of the electrical signal.

2.5 ECG analysis

The 12 lead ECG during sinus rhythm was compared

against the measured signal of the subject. For this purpose,

the measured signal of 10 s was split into the individual beats by

identifying the QRS peaks on lead I and aligning them using a

simple thresholding value of 0.2 mV. This allowed us to

compute the statistical mean beat against which we

compared the simulated ECG. The loss metrics of average

L2-norm and the average Pearson correlation coefficient

(correlation coefficient (CC)) across all leads in the 12 lead

ECG were computed between simulated and mean signals to

give an indication of the overall agreement in the signals

achieved from the personalization. Scaling of 0.32 is

performed to align the signals in terms of amplitude (Gillette

et al., 2021a). As no recordings of LBBB and RBBB were

available for the healthy subject, QRS duration was

computed and the signals were analyzed for standard clinical

recommendations set by the American Heart Association for

complete LBBB and complete RBBB as reported in (Surawicz

et al., 2009). The same scaling is applied under these conditions.

3 Results

3.1 Workflow performance

All anatomical entities facilitating cardiac EP could be

integrated using abstract reference frames (Figure 1). Due to

such high automation in model construction and use of an

efficient simulator for cardiac EP, a single human heart beat

could therefore be simulated in around 2 min on a desktop

machine with 8 cores. Pure model construction time amounted

to around 1.5 min, with 9 s denoted to mapping of

repolarization heterogeneity and 70 s denoted to
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construction of the HPS including fascicular CV tuning to keep

activation timing optimal at root sites. The remaining model

construction time was allocated general setup time. In terms of

simulation, computation of all lead fields required a one-time

computational cost of around 72 s. Subsequent simulation

using the reaction-Eikonal method with the lead fields

FIGURE 1
Setup of the torso and whole heart EP simulations. (A) Tissue labels present within themodel. Blood pools within the heart are not visualized. All
electrodes for 12 lead ECG are recovered from theMRI image of the subject, with RL electrode serving as electrical ground. (B) Anatomical structures
pertaining to cardiac EP. Structures of SAN block (SAN-B), pectinate muscles (PM), and CT are assigned generic EP. The AVN and the SAN facilitate
activation, where the BB is assigned a higher CV to facilite coordinate activation of the atria. Each terminal cable before a root site is applied a
different CV to control activation timings of the fascicles of the HPS. (C) Prescribed τclose parameters of the Mitchell-Schaeffer model needed to
facilitate a physiological T-wave. Values within the ventricles are computed from the Eikonal activation map. Both atrial tissues and the HPS are
assigned the maximal value. Isolines and binning of the color bar indicates 5 ms.

FIGURE 2
Activation and repolarization patterns during normal sinus rhythm underlying simulated ECGi information of BSPMs and EGMs. (A) Activation
initiates from fascicular root sites and spreads into the fast-conducting Purkinje network. Latest activation is seen on the posterior RV free wall. (B)
Repolarization is linearly dependent on activation, thus exhibiting a similar pattern. (C) The BSPM and EAM are visualized at a time point of 275 ms.
Electrical potentials at 6 recording locations on the torso, on the epicardium, and in the blood pool next to the endocardium are shown for the
single heart beat.
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required approximately 30 s with 10 s purely for mesh IO.

Running in pseudo-bidomain mode to recover extracellular

potential fields needed for construction of EAMs led to an

increased simulation time of 35 min.

3.2 Whole heart electrophysiology under
sinus rhythm

Activation of the atria is initiated at the SAN and spreads

from the RA to the LA. Inter-atrial conduction within the model

is predominately dictated by the BB that leads to earlier

conduction on the LA roof. Latest activation is observed in

the left-atrial appendage and within the LA just above the

base at the LV free wall. Synchronous activation of the LV

and RV then ensues due to rapid breakthrough of the fascicles

with the myocardium stemming from the root locations. Latest

activation occurs on the posterior RV wall due to a lack of

Purkinje network within this region (Figure 1B), which is in

agreement with reported physiology (Durrer et al., 1970). Due to

the dependence of repolarization on activation, similar patterns

are observed albeit an inverse relationship (Figure 2B).

Electrical potentials in the form of EGMs reveal the underlying

cardiac electrical sources and temporal time sequence when an

activation wave-front passes by a given region within the heart.

Electrical potentials can also be recovered within the entirety of the

model, including on the blood pool and torso surface, to generate

information for ECGi, namely BSPMs and EAMs (Figure 2) to

replicate all clinically observable EP data.

Close agreement between simulated and measured ECGs

across all 12 leads is attained (Figure 3A). The personalized

signal resulted in an average L2-norm difference of 0.08 and a CC

of 0.89. Visually, only very minor discrepancies are observed such

as the onset of the T-wave in lead V2 or a less pronounced R

progression in the precordial leads.

3.3 Manifestation of bundle branch block

Within all cases of BBB, atrial SAN driven activation and

associated P-wave remained unaltered. Morphological

differences within the 12 lead ECG from normal sinus rhythm

(Figure 3) therefore predominantly arise from asynchronous

activation of the ventricles as can be observed within the

time-course of transmembrane voltages for every pathology

(Figure 4). Videos of cellular membrane voltage for both

healthy sinus rhythm and BBBs at different CVs are provided

that demonstrate the spread of the activation and repolarization

wavefronts within the heart. Every video has a temporal rate of 25

frames per second with a total of 700 frames, thus lasting a total

FIGURE 3
Simulated 12 lead ECGs of a single heartbeat. (A) The personalized heartbeat (red) during normal sinus rhythm is compared to an average heart
beat in the measured data (black). Gray indicates 2 standard deviations from the average measured signal. Disease pathologies of (B) LBBB and (C)
RBBB are compared to the simulated 12 lead ECG under sinus rhythm. The simulated and measured signals under sinus rhythm have a QRS duration
of 85 ms. Simulated LBBB ECGs have QRS durations of 127 and 178 ms with a ...longitudinal CV of 0.6 m/s and 0.3 m/s, respectively, within the
LV. Simulated RBBB ECGs have QRS durations of 121 and 148 ms with a longitudinal CV of 0.6 m/s and 0.3 m/s, respectively, within the RV.
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of 28.0 s. These videos correspond to Figure 4 within the main

text. Corresponding full videos of the membrane voltage through

the heart beat are included in the Supplementary Material. While

underlying cardiac electrical sources are only shown under sinus

rhythm, the same information is available across all pathologies.

Standard empirical ECG diagnostics (Surawicz et al., 2009) under

complete BBB were used as a metric to gauge the fidelity of the

model under disease conditions.

3.3.1 Left bundle branch block
All propagation into the left bundle branch was interrupted

to generate a complete LBBB. Activation of the ventricles

FIGURE 4
Time-course of the transmembrane voltage within the heart for sinus rhythm and BBBs with both normal and halfed CV in the respective
affected ventricle. Green isosurfaces within the ventricles correspond to amembrane voltage of −40 mV and the color map corresponds to the atrial
trans-membrane voltages.
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therefore initiates from the RV. Retrograde activation of the left

bundle branch and associated HPS led to a significantly slower

activation of the LV as compared to sinus under both CV settings

(see 275 ms panels in Figure 4). Apparent morphological features

in the 12 lead ECG meet all clinical diagnostic criteria of a LBBB

(Figure 3B), and are exaggerated by a reduction in CV within the

LV. A prolonged QRS duration of 150 ms (> 120ms) is attained

under LBBB with normal CV that is extended to 195 ms with

reduced CV. A deep and broad S with a notch resembling a “W”

in leads V1 and V2 and a completely positive and notched

R-wave in leads V5 and V6 is also observed. Furthermore,

leads I and aVL appear similar to leads V5 and V6. During

repolarization, T-wave inversion and ST-segment depression in

leads V5, V6, I and aVL in contrast to ST-segment elevation and

positive T-waves in leads V1-V3 is also observed.

3.3.2 Right bundle branch block
RBBB was initiated by inhibiting propagation of the right

bundle branch of the HPS. Activation within the RV was

therefore facilitated by a retrograde activation of the HPS and

general myocardial tissues that passes from the LV through the

septum (see 300 ms panels in Figure 4). This activation pattern is

manifested within the 12 lead ECG (Figure 3C) by a monophasic

R in leads V1 and V2, slight slurring of S waves in leads aVL and

I, and a QRS duration of 150.0 ms (> 120ms). With lowered CV

within the RV, an inversion in the T-wave in leads V1 and

V2 becomes more drastic, as well as an increasing amount of

fractionation is observed in leads II, aVL, and III. QRS duration is

also extended to 180 ms under reduced CV conditions.

4 Discussion

This study reports on the development of a novel torso and

whole heart model of EP that is able to compute EGMs and ECGs

with real-time performance, thus mitigating typical costs

associated with in silico EP studies. Anatomically and

structurally accurate representations of atria and ventricles were

used, which were electrically isolated at the base. A topologically

realistic cardiac conduction systemwas incorporated to electrically

connect atria and ventricles, thus mediating bidirectional atrio-

ventricular conduction. Personalization of the model was based

primarily on the recorded ECG, as well as some experimental and

clinical measurements. This novel virtual technology of the whole

heart thus constitutes a fully mechanistic model of whole heart EP.

As most current virtual heart technologies reported in the

literature do not relate simulated EP to clinically observable data,

our novel virtual heart technology constitutes an important

advancement towards clinical and industrial in silico

applications in terms of model fidelity (Viceconti et al., 2016).

Mechanistic completeness is demonstrated by modeling two

pathologies of the cardiac conduction system, LBBB and

RBBB, the model was not parameterized for. Our model is

able to replicate intricate morphological features of the

12 lead ECG during both normal sinus rhythm, as well as

during LBBB and RBBB according to standard clinical

guidelines (Figure 3). The underlying cardiac EP of the given

subject must therefore be accounted for to a great extent

(Figure 3A). We were able to replicate observable data under

sinus rhythmwith high fidelity andmeet all clinical criteria under

BBB, thus building an important foundation for future use of

cardiac digital twins (Corral-Acero et al., 2020).

Our methodology of personalizing cardiac digital twins

under sinus rhythm and then adapting the model to disease

condition could have important implications for predictive and

preemptive medicine. The mechanistic completeness endows

the model with predictive capabilities, that is, the model can be

used under scenarios to which it was not calibrated for, without

the need of model re-fitting. Further, model predictions are

testable and can be validated by comparing directly to both

non-invasive data acquired in clinical routine, or invasive

measurements as acquired during an intervention. These

capabilities combined facilitate the generation of high fidelity

digital twin hearts from a physical patient, open new

perspectives in industry, e.g. in the development of device

therapies, and in the clinic, for advanced model-based

clinical data analysis to support diagnosis, and predictive

modeling for planning of optimal therapies.

4.1 Workflow performance

Personalization of parameters relating to the QRS complex

was previously performed on the simpler BiV model assuming a

fasicular-based representation of the His-Purkinje system

embedded in a fast-conducting sub-endocardial layer well-

suited for efficient simulations at large scale. Extending this

representation to the whole heart model, necessary for

modeling various disease pathologies, was entirely automatic

and required an additional construction time of only 1.5 min.

Extension included construction of a detailed His-Purkinje

system modulating the same personalized activation pattern

under sinus rhythm, and inclusion of the parameters dictating

atrial electrophysiology.

In general, lightweight and efficient simulation models are

needed to render whole heart simulations tractable and clinically

relevant. Simulations of cardiac sources for a single heart beat

using the reaction-Eikonal method with lead fields were

computationally inexpensive. Recovery of 12 lead ECGs was

possible in around 30 s after precomputation of the lead fields

requiring approximately 1.5 min. Body surface potential maps

and electro-anatomical maps, as well as cardiac sources, needed

in various clinical applications, could be computed using

reaction-Eikonal in pseudo-bidomain mode in approximately

35 min on a normal desktop machine with 8 cores. Validation of

the underlying simulation in previous work reported in Gillette
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et al., 2021 (Gillette et al., 2021a) showed that ECGs acquired

using the reaction-Eikonal method paired with lead fields gave

comparable ECG morphologies to a traditional high-resolution,

full bidomain simulation at a fraction of the costs. Such fine-

detailed full bidomain simulations on even a simpler bi-

ventricular setup without a physiologically-detailed His-

Purkinje system lasting only 150 ms, required 30 min min on

a HPC with 240 computing cores to compute both cardiac

sources and potentials used to generate the same 12 lead ECG

(Gillette et al., 2021a).

4.2 Clinical ECG interpretation

The ECG during sinus rhythm was assessed by making a

comparison with the ECG measured from the healthy subject.

Close correspondence between the measured and simulated

12 lead ECG could be obtained under normal sinus

conditions. As pathological ECGs were not available for

healthy volunteer subject, the effect of conduction

disturbances, specifically, LBBB and RBBB, was assessed to

ascertain the model’s mechanistic completeness. It was

demonstrated that all relevant clinical morphological features

manifest in the ECG consistent with clinical ECG diagnostic

criteria.

4.2.1 Sinus rhythm
The simulated ECGs under sinus rhythm matched the

recorded ECG with high fidelity. A very close agreement in

ECG morphology across all 12 lead could be attained

(Figure 3A) in terms of the averaged L2-norm of 0.08 and

CC of 0.89, with all complexes matching in terms of polarity

and shape. In the simulated healthy ECG known features

manifest such as R-wave progression or the S-wave

disappearing between leads V3 to V4. Nonetheless, minor

discrepancies are also witnessed that provide hints towards

missing features of the model or sub-optimal model

parameterization. Overall, QRS morphology is well captured,

but R-progression in the precordial leads is slower, with R

peaking in V5, not in V4. More striking discrepancies relate to

ST-segment and T-wave. Modelled ST-segments differ from

clinical ones largely in their slope that is close to zero over

prolonged periods. This is less the case with measured ST-

segments where a non-zero slope early after QRS initiates a

smooth transition to the T-wave. Similarly, the T-wave in the

precordial leads features a spikier morphology, with sharper

deflections as compared to the ECG.

Discrepancies are anticipated to some extent due to a

number of factors. These comprise technological factors

related to ECG acquisition such as anatomical uncertainties

due to breathing, electrode placement, and signal processing in

terms of noise. Modeling factors related to the choice of action

potential shape, tissue conductivities, and neglect of structures

such as bones, muscle or skin) may also play a role. Finally, the

measurement of similarity between ECGs is influenced by the

scaling applied (Gillette et al., 2021a). The flat slope of the ST-

segment is likely to be related to the Mitchell-Schaeffer model

used to model the action potential that lacks features such as

early repolarization or a spike-and-dome morphology. In

absence of these features, during the plateau phase there is

no change in transmembrane voltage, thus minimizing the

dynamics of any gradients that could contribute towards an

ST-segment slope.

4.2.2 Left bundle branch block
Interrupting the left bundle branch innervating all fascicles in

the LV altered the ECG, leading to a morphology that was

consistent with all empirically-based standard clinical

diagnostic criteria. With LBBB alone, most diagnostic

hallmark features could be identified in the simulated ECG,

albeit some were borderline. For instance, QRS was prolonged

to ≈120 ms, but not beyond to > 120ms, as anticipated from a

full block of the entire left bundle branch. However, diagnostic

criteria are built upon empirical observations from patients

suffering from LBBB over prolonged periods of time, not

from perfectly healthy subjects with a sudden acutely

occurring LBBB, as simulated in this model. Such a persistent

ventricular electrical dyssynchrony, associated with changes in

electrical activation and repolarization patterns that impairs

mechanical performance, triggers downstream remodelling

processes (Vernooy et al., 2005; Valenti et al., 2012; Michalski

et al., 2022) which may lead to alterations in anatomical shape,

size and morphology, in structural changes related to fiber and

sheet arrangement and fibrosis, and functional changes in EP

affecting action potential shape and duration. These factors

combined contribute to clinical LBBB ECGs, but have not

been considered.

4.2.3 Right bundle branch block
Similarly to LBBB, interrupting the right bundle branch led

to an ECG morphology that was mostly consistent with the

ECG criteria for diagnosing RBBB, albeit to a lesser degree than

LBBB. In the RBBB case not all diagnostic features manifested

after acutely blocking the right bundle branch. For instance, the

criterion of a QRS complex in leads V1 and V2 resembling the

letter M displaying a rsr’, rsR’ or rSR’ pattern, with rSR‘ being

the most common, is not readily apparent. S often does not

reach baseline in V1 and V2 which is not the case either. A

broad S-wave, with S being longer than R, is only observed in

aVL and I, but not in V5 and V6, and S is > 40ms in I, but not in

V6. Downsloping ST-segments and inverted T-waves are

present in leads V1 and V2, but the shape of the T-wave is

biphasic, also featuring a positive component. The leads V5, V6,

aVL and I all show positive T-waves, consistent with the

diagnostic criterion. These discrepancies are explained,

analog to the LBBB case, by additional factors beyond the
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interruption of conduction in the right bundle branch that

contribute to the clinical RBBB ECG, but remain unaccounted

for in the model.

4.3 Validation

Validation of the cardiac sources under all conditions is required.

Comparison between the simulated and measured 12 lead ECG

signal was only made against the statistical mean beat recorded over

10 s which slightly differs as indicated in Figure 3A. As the inverse

problem of cardiac EP is ill-posed, different activation sequences

might produce the same ECG. That is, the observation that the

computed ECGunder a sinus activation replicates themeasured ECG

of the subject with remarkable fidelity suggests a close relationship in

EP between virtual and physical heart, but does not imply that the EP

must be the same.

Furthermore, predictive capabilities were only illustrated by

assessing the effect of a complete bundle branch block in the

virtual heart of a healthy subject according to standard diagnostic

criteria as such data cannot be acquired from healthy volunteers.

Simulating a wider range of activation sequences under

pathologies such as bundle branch blocks that activate the

HPS differently, with a fusion of orthodromic and antidromic

conduction, is thus required to better interrogate fascicular and

network structure of the HPS. While BBB was explored under

two different conduction velocity settings, accounting for

ventricular hypertrophy, dilation, and remodeling must be

explored to better understand the capabilities of the model, as

seen in (Galeotti et al., 2013). Simulation of either Wolff-

Parkinson-White syndrome or premature ventricular

contractions leading to retrograde activation, for example,

could also provide valuable insight.

A thorough clinical validation of our model should be

performed in patients to better understand the ability to

replicate the underlying EP. For example, in patients

undergoing His-optimized (HOT) cardiac resynchronization

therapy (CRT), a broader range of activation sequences is

initiated during implantation, including RV and LV pacing as

well as selective or non-selective His and left bundle branch

pacing. Such validation is beyond the scope of this study, but

digital twin modeling has the potential to revolutionize cardiac

resynchronisation therapy by predicting activation patterns, as

well as hemodynamics, under different pacing strategies before

implantation which would facilitate response-prediction for such

costly therapies.

A general limitation of clinical data, however, is related to the

inability to observe electrical signals throughout the 3D

myocardial muscle. Observations of electrical phenomenon are

limited on specific manifolds, such as the body surface or the

endocardia where EAMs of relatively high spatio-temporal

resolution are recorded during routine clinical mapping

procedures. More rigorous experimental validation to

determine if the underlying EP is truly representative of the

patient could be built on experimental animal studies that

acquire electrical data invasively in 3D, throughout the

myocardial walls, under a range of induced activation

sequences as previously mentioned. Such invasive

experimental studies offer a means to record within the

entirety of the mammalian heart (Cluitmans et al., 2018;

Zenger et al., 2020), and comparison of EGMs could reveal

whether the underlying cardiac EP sufficiently approximates

the mechanisms within the heart.

Furthermore, as the reported virtual technology of whole heart

EP is only personalized for a single subject, however, further

validation is required to ensure that the technique for

generating a personalized model of cardiac EP is possible in

additional subjects. This is particularly important for the

generation of model cohorts that could be used for the

applications of device development and clinical trials on larger

patient groups. Ensuring underlying parameters are capable of

representing variation in the patient population is therefore crucial

and can be conducted by comparing simulation outputs against

databases of 12 lead ECGs such as the publicly available PTB-XL

dataset (Wagner et al., 2020). Global sensitivity analysis would also

yield valuable information on the relationship between

morphological elements in the 12 lead ECG and the input

parameter space detailing cardiac EP.

4.4 Personalization of cardiac
electrophysiology

Simulated physiology correlates closely to the physical reality

within the signal subject based on the 12 lead ECG due to model

personalization and fitting. Primarily, parameters relating to the

location and initiation time of the fascicular sites of the His-

Purkinje system had been previously personalized and shown to

give improvement within the QRS complex in the 12 lead ECG

over an initial fascicular setup (Gillette et al., 2021a). Comparison

in activation sequences revealed the underlying differences in the

12 lead ECG were negligible when extending to a more

sophisticated representation of the His-Purkinje system used

in the study (Gillette et al., 2021b). Various parameters could

be tuned using metrics directly taken from the measured 12 lead

ECG Namely, the CV of the atrio-ventricular (AV) node, as well

as the intersect parameter during ARI mapping for

repolarization, could be extracted using the PR and QT

intervals, respectively.

Several limitations still exist within this study in terms of

modeling personalized cardiac EP, however, as many parameters

were assigned based on physiological measurements. Primarily,

little personalization of the parameters dictating atrial EP was

performed. Locations of the AVN, SAN and atrial structures such

as BB were not known within the subject, but were instead

generically assigned based on physiological assumptions.
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Further, the actual architecture and branching of the HPS is

not known and was thus assigned generically. In theory, variation

in CV with the branches as detailed in 2.2.1 should indirectly

account for differing branching properties that may influence

activation breakthrough. Many other components dictating

ventricular activation, such as fibers, conductivities, and

conduction velocities were also assigned generic values.

Regarding the T-wave, the linear slope of the ARI mapping

was taken from reported values (Opthof et al., 2009) and the

general technique may only be applicable when information on

the sinus ECG is available.
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SUPPLEMENTAL VIDEO S1
Normal Sinus Rhythm.
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SUPPLEMENTAL VIDEO S2
Complete LBBB with a normal CV of 0.6 m/s along the longitudinal
myocardial fiber orientation assigned in the LV.

SUPPLEMENTAL VIDEO S3
Complete LBBB with a reduced longitudinal CV of 0.3 m/s in the LV.

SUPPLEMENTAL VIDEO S4
Complete RBBB with a normal CV of 0.6 m/s along the longitudinal
myocardial fiber orientation assigned in the RV.

SUPPLEMENTAL VIDEO S5
Complete RBBB with a reduced longitudinal CV of 0.3 m/s in the RV.
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A 3D-CNN with
temporal-attention block to
predict the recurrence of atrial
fibrillation based on
body-surface potential mapping
signals
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Catheter ablation has become an important treatment for atrial fibrillation (AF),

but its recurrence rate is still high. The aim of this study was to predict AF

recurrence using a three-dimensional (3D) network model based on body-

surface potential mapping signals (BSPMs). BSPMs were recorded with a 128-

lead vest in 14 persistent AF patients before undergoing catheter ablation

(Maze-IV). The torso geometry was acquired and meshed by point cloud

technology, and the BSPM was interpolated into the torso geometry by the

inverse distance weighted (IDW) method to generate the isopotential

map. Experiments show that the isopotential map of BSPMs can reflect the

propagation of the electrical wavefronts. The 3D isopotential sequence map

was established by combining the spatial–temporal information of the

isopotential map; a 3D convolutional neural network (3D-CNN) model with

temporal attention was established to predict AF recurrence. Our study

proposes a novel attention block that focuses the characteristics of atrial

activations to improve sampling accuracy. In our experiment, accuracy

(ACC) in the intra-patient evaluation for predicting the recurrence of AF was

99.38%. In the inter-patient evaluation, ACC of 3D-CNN was 81.48%, and the

area under the curve (AUC) was 0.88. It can be concluded that the dynamic

rendering of multiple isopotential maps can not only comprehensively display

the conduction of cardiac electrical activity on the body surface but also

successfully predict the recurrence of AF after CA by using 3D isopotential

sequence maps.

KEYWORDS

atrial fibrillation recurrence, attention, body surface potential mapping, 3D
convolutional neural network (3D CNN), isopotential map
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1 Introduction

Atrial fibrillation (AF) is the most common cardiac

arrhythmia with a prevalence of 10%–18% in people aged

over 80 (Zoni-Berisso et al., 2014). Although catheter ablation

(CA) therapy can effectively treat AF, the recurrence rate of AF is

still high, and the mechanism of recurrence is not clear (Schotten

et al., 2011; Calvo et al., 2018; McCann et al., 2021). At present,

predicting postoperative recurrence in AF patients based on

preoperative clinical baseline data would enable the selection

of the best personalized treatment for AF patients.

Various body surface electrocardiogram (ECG) and

intracardiac electrogram (EGM) predictors associated with AF

recurrence after CA have been reported. Everett et al. (2001)

concluded that the spectrum of AF signals contains information

related to its tissue and can be used to predict the successful

termination of AF in ten dogs. Takahashi et al. (2006) found that

a higher organization index (OI) of atrial EGM was associated

with the termination of AF during limited ablation; this

parameter may be useful for anticipating the extent of

ablation. Meo et al. (2013) argued that the amplitude

variability of AF waves (f-waves) could be characterized by

multi-lead ECG to predict the prognosis of CA. Szilágyi et al.

(2018) used body-surface ECG and intracardiac EGM signals for

spectrum analysis and found that dominant frequency (DF),

regularity index (RI), and OI could be used to predict AF

recurrence. Furthermore, most of the methods based on ECG

complexity investigated to date have been determined both in the

frequency (Alcaraz et al., 2016; Hidalgo-Muñoz et al., 2017) and

time domain (Nault et al., 2009) or in AF cycle length (Matsuo

et al., 2009), and a few by sample entropy (Alcaraz et al., 2011).

Nevertheless, the acquisition of EGM is difficult for its trauma,

and some body-surface ECG, like the standard 12-lead ECG or

single-lead ECG, could not provide sufficient spatial–temporal

information on atrial activity to predict AF recurrence.

Body-surface potential mapping signals (BSPM) can not only

provide sufficient body surface information but also effectively

characterize the atrial complexity of patients with AF. Bonizzi

et al. (2010) demonstrated that BSPMs outperform standard

single-lead analysis and proposed a novel automated approach to

quantitatively assess the degree of the spatial–temporal

organization of atrial activity (AA) during AF. Zhang et al.

(2018) suggested that the fast Fourier transform (FFT)

algorithm is a useful and convenient way to evaluate the

rhythm of BSPMs in AF patients, which is important for

identifying some hypotheses to predict the recurrence of AF.

Their study also demonstrated that multi-channel mapping is

superior to standard 12-lead ECG. Meo et al. (2018) proposed a

marker from BSPMs to quantify AF complexity that could be

used to select patients eligible for AF ablation. Marques et al.

(2020) used frequency and phase analyses of BSPM maps to

reveal distinct behavior between arrhythmias. Li et al. (2018)

proposed a deep learning algorithm based on BSPMs to predict

AF recurrence after CA. However, most studies quantify AF

complexity using traditional machine-learning methods, and few

studies use deep learning to predict AF recurrence after CA based

on the three-dimensional (3D) spatial–temporal features of

BSPMs.

Due to the volume of BSPMs and the difficulty of

distinguishing and quantifying important features, electrical

image sequence representation is a common visualization tool

in evaluating and understanding BSPMs (Brook and MacLeod,

1997). Common methods include isochrone maps, isopotential

maps, integral maps, isoarea or isointegral maps, and phase maps

(Brook and MacLeod, 1997; Rogers et al., 1998). Isopotential

maps are obtained by directly plotting the mapped ECG

data—the voltage amplitude—on the model without

modification. This drawing will not add any additional

information nor any data processing, so it will not lose any

mapping information.

In this study, 3D visualization techniques were used to deeply

explore the temporal evolution of BSPMs to predict the

recurrence of AF. It takes a step from previous research and

proposes a noninvasive isopotential map-based approach for the

evaluation of AF complexity. We here propose a new method for

extracting the spatial–temporal characteristics of cardiac

activations during AF and realize the prediction of AF

recurrence by inputting 3D isopotential sequence maps into a

3D convolutional neural network (3D-CNN). This method not

only provides the overall propagation pattern of ECG signals on

the body surface but also successfully predicts the recurrence of

AF. At the same time, the innovative temporal-attention block

solves the problem of the 3D input signal not being able to

effectively extract important information based on time series.

2 Material and methods

2.1 Data collection

BSPM data from 33 patients with clinical AF were collected

before and after macrovascular surgery atWest China Hospital of

Sichuan University; 14 AF patients with radiofrequency surgery

ablations and successful electrical cardioversion within

3–4 weeks had been the subject of continuous follow-up

studies for 1 year. The study was approved by the ethics

review board of West China Hospital, Sichuan University, and

written informed consent was obtained from all patients upon

admission. Moreover, their personal information was

anonymized and de-identified prior to analysis. Table 1 lists

their clinical characteristics and the basic information.

A 128-lead vest connected by elastic bands constitutes the

front-end signal acquisition equipment. Every electrode is gold-

plated copper, and all electrodes were gathered on a soft PCB

board. Figure 1A illustrates how the electrodes were distributed

on a patient’s body surface. There were 74 electrodes distributed
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TABLE 1 Fundamental information and clinical characteristics of subjects.

ID Age Sex Height Weight Preoperative
rhythm

Description Surgical
process
and treatment
plan

Recurrence Segments

13 53 Male 170 66 AF RHDa: MSb, MRc, TRd MVRg, TVPh, Mazej No 72

14 52 Male — — AF RHDa: MSb, MRc, TRd MVRg, Mazej No 106

16 50 Male 164 58 AF RHDa: MSb, ASf, ARe MVRg, Mazej No 86

17 50 Male 170 68 AF RHDa: MSb, MRc, ARe MVRg, Mazej No 82

18 69 Male 173 56 AF RHDa: MSb, TRd MVR, Mazej Yes 69

19 46 Female 156 55 AF RHDa: MSb, MRc, TRd MVRg, TVRh, Mazej Yes 62

20 44 Female 155 55 AF RHDa: MSb, MRc, TRd MVRg, TVRh, Mazej No 68

21 50 Female 155 45 AF RHDa: MSb, TRd MVRg, TVRh, Mazej No 74

22 46 Male 173 67 AF RHDa: MSb, TRd MVRg, TVRh, Mazej No 91

23 65 Female 156 57 AF RHDa, MSb, MRc, TRd MVRg, TVRh, Mazej No 70

24 42 Female 157 80 AF RHDa: MRc, TRd MVRg, TVRh, Mazej Yes 108

25 62 Female 152 55 AF RHDa: MSb, ARe MVRg, TVPh, Mazej No 88

26 43 Female 153 49 AF RHDa: MSb, TRd MVRg, AVRi, TVRh, Mazej No 76

30 50 Female 154 47 AF RHDa: MSb, MRc, TRd MVRg, TVRh, Mazej Yes 120

aRHD, rheumatic heart disease.
bMS, mitral valve stenosis.
cMR, mitral valve regurgitation.
dTR, tricuspid valve regurgitation.
eAR, aortic valve regurgitation.
fAS, aortic stenosis.
gMVR, mitral valve replacement.
hTVR, tricuspid valve replacement.
iAVR, aortic valve replacement.
jMaze, surgical maze surgery of AF.

FIGURE 1
Framework of our predictionmodel of AF recurrence. (A) The distribution of the electrodes. There are 128 electrodes, including 74 on the chest
and 54 on the back. (B) The experimental scene. (C) Torso geometries. Torso geometries consist of 128 body surface electrodes and a body torso
geometry. (D) 128 electrocardiograms. Different colors show the BSPM of different channels, and there are 128 channels in total. (E) Isopotential
map. Different colors indicate different voltage amplitudes, and the darker the color, the lower the voltage. (F) 3D isopotential sequencemaps. y
and x are the height and width of isopotential map, and time is consistent with the time of the BSPMs.
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on the anterior body surface, while 54 were distributed on the

posterior body surface. Two adjacent electrodes belonging to the

same columnwere 3.5 cm apart. At the same time, three electrode

points were located in a triangular shape to construct the

Wilson’s center terminal as the reference point. This reference

point should be subtracted by the voltage value acquired at other

points to obtain the ultimate voltage value. Data recording and

storage uses the multi-channel electrophysiological signal

acquisition and recording system NeuroScan (ESI-128,

Compumedics Ltd., Australia) (Zhang et al., 2018). Figure 1B

depicts the experimental scene.

The entire experiment was verified on the AF signals

database before surgery; this is different from other work

which used sinus rhythm before AF (Sahadevan et al., 2004),

and where patient follow-up was conducted by the same doctor

performing the same surgical procedure, which can ensure that

the initial conditions of sample are the same. In this study,

preoperative signals were used to predict postoperative AF

recurrence, and postoperative sinus rhythm signals were used

to analyze the conduction law of AF cardiac activation on

BSPMs.

2.2 Framework overview

As shown in Figure 1, the two parts of this study were an

isopotential map and a 3D-CNN. In the former, the data

analyzed in this study were all BSPMs of patients with AF

and were filtered by the NeuroScan system at a 1–40 Hz

band-pass. After obtaining the torso geometry by pre-

processing technology based on a point cloud from a laser

scanning system (Guo et al., 2020), the BSPMs were

interpolated to 3D displacement by inverse distance weighting

(IDW). The patient’s isopotential map was displayed at the same

time, and the conduction law of cardiac electrical activity was

analyzed by BSPM. At the same time, the noise of baseline

wander (in record “bw”) (Goldberger et al., 2000) with a

signal-to-noise ratio of 12 dB was added to the original signal.

In the 3D-CNN part of this study, the isopotential map was

generated from the signal and transformed into 3D isopotential

sequence maps by combining time information. A temporal-

attention block for ECG signals was designed to predict the

recurrence of AF. Figure 1F shows the 3D isopotential sequence

maps. In order to process 3D isopotential sequence map

information more efficiently, the original isopotential map was

transformed into a gray-scale image with only one channel,

whereas the color image has three (RGB). The image input to

the CNN is significantly increased if a color image is employed, as

it is three times larger than a gray-scale image. A more effective

gray-scale image was employed because it can capture different

potentials at different pixel values; this can already reflect the

conduction of the ECG signal. The deep CNN is used to train the

processed 3D isopotential sequence maps.

The 128-channel unipolar BSPMs at about 3 min per patient

were collected, and the BSPMs were sampled at 1000 Hz.

Afterward, the original signal was cut into 2 s for analysis.

Segments with extremely poor signal quality were manually

eliminated due to circumstances such as patient movement

during the acquisition process. Consequently, the number of

segments saved varies for each patient, as shown in Table 1 with

specific subject information. The ratio of non-recurrent to

recurrent segments is 813:359. There is a great imbalance in

the amount of data. The overlap method is used to deal with

recurrent samples. It should also be noted that the shift between

two segments is equal to 175 points (Oliver et al., 2018; Andersen

et al., 2019). Thereafter, the total data were 1627 segments,

including 814 recurrent and 813 non-recurrent segments.

The development environment of this research is the Win

10 system, 64 GB memory, i7-8700 CPU, and RTX2080 GPU.

The isopotential map compiler using the C++ development

language adopts Visual Studio 2013, and the deep learning

framework is the Tensorflow framework based on Python.

2.3 Isopotential map

Using the scanning platform, the 3D model of the torso

geometry is reconstructed by point-cloud technology (Chen

et al., 2013). The hardware is based on a Raspberry PI 3B +

microcontroller, stepper motor and laser drive circuit, scanning

tables, and optical sensor. Depth information is point-cloud

information, which had to be collected at different sites of the

torso by infrared cameras around the body. Then, the data

collected in the space were processed and recovered by

software, and the geometric shape of the torso geometry and

the position of the surface electrodes were finally obtained. The

format of the point cloud information is an obj file containing

83,184 vertices and 39,504 faces. There were a total of 129 meshes

representing 128 body surface electrodes and a body torso

geometry (for the latter, see Figure 1C).

IDW is a computational method based on the geometric

relationship between interpolated objects (Shepard, 1968). The

distance between the known point and the point to be

interpolated is the “weight value”, and the interpolation points

can be estimated by a weighted average. Assuming the known

point is Di(xi, yi), whose value is represented by zi(xi, yi), the
point to be interpolated is P(x, y), while di represents the

distance between the two points P(x, y) and Di(xi, yi). The
interpolation function can therefore be expressed as

f1,x(x, y) � ∑N
i�1∑N

j�1,i ≠ j(di)−(u−2)(dj)−u(x − xi)zi(zi − zj)∣∣∣∣∑N
i�1(di)−u

∣∣∣∣2 (1)

By replacing (x − xi) with (y − yi), the interpolation of the

f1,y(x, y) can be calculated. The weight of the distance is as

follows:
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(di)−2 � 1[(x − xi)2 + (y − yi)2] (2)

Empirically, with the increase of the coefficient u, the

interpolation points become smooth, but the computational

overhead increases significantly. Usually, the parameter u is

taken to be 2.

The different potential in the isopotential map was rendered

as different colors filling the vertex coordinates at the same time

(Abildskov et al., 1976). The 3D characterization process of the

ECG data from the BSPMs is principally divided into the

following steps:

1) Collect the synchronous BSPMs with a certain sampling

frequency � 1000Hz , as shown in Figure 1A, according to

the placement location of the acquisition electrode.

2) Remove noise or interference from power frequency,

breathing or muscle power from the ECG signal collected

in Step 1), and normalize the signal amplitude.

3) Based on the voltage amplitude after normalizing each of the

ECG data obtained in Step 2), draw the isopotential map

according to the IDW interpolation algorithm and estimate

the voltage. Then map the actual or interpolated voltage

values to the corresponding spatial coordinates, with

different voltage values rendered into different colors

according to the voltage level.

4) Repeat Step 3) to obtain the isopotential map of each

sampling time by the sampling interval 1/fs and complete

the dynamic rendering, then render one image at each

sampling interval and save the isopotential map of each

sampling time.

5) Within the period of time l, the isopotential map obtained in

Step 4) is synthesized to a 3D isopotential sequence map at a

fixed time interval Δt. The 3D isopotential sequence map

retains the color information contained in each isopotential

map rendering. Multiple series of time dimensions are

merged into a 3D isopotential sequence map. The fixed

time interval is Δt � 1/fs, for a certain period of time

l � K · Δt, where K is the number of isopotential maps

included in each synthesized 3D excited sequence map. In

this study, l � 2 s, Δt � 1ms, K � 2000.

6) Repeat Step 5) to obtain the 3D isopotential sequence maps

until all isopotential maps are traversed.

We give different colors to different voltage values

according to the voltage level: the darker the color, the

lower the voltage. Red represents a wave crest, and blue

represents a wave trough. The research uses the OpenGL

graphics interface in Visual Studio 2013 software to load the

3D torso model, obtain the isopotential map at each sampling

time at a time interval of 1 ms (i.e., 1/fs), and use the screen

capture function glReadPixels in OpenGL to save the image at

each sampling time.

In our study, we use a CNN to analyze the 3D isopotential

sequence maps, as too much input will increase the difficulty of

network convergence. Thus, only the isopotential map from the

front part of the torso is included, and the information from the

back part is totally ignored.

2.4 Architecture and training of the
prediction model

We used 3D-CNN to predict AF recurrence. The architecture

of the network is shown in Figure 2. The network takes 3D

isopotential sequence maps as input and the vector representing

recurrence or non-recurrence as output. The 3D isopotential

sequence maps generated by a series of 2D isopotential maps as

the dataset is input into the 3D-CNN. The size of the 3D

isopotential sequence maps is W × H × T, where W indicates

its width, H its height, and T is the number of frames of the 3D

isopotential sequence maps. We arrive at an architecture

consisting of eight convolutional layers, three fully connected

layers, and a Softmax.

2.4.1 3D-CNN
In order to make the optimization of such a network

tractable, we employed skip connections in a similar manner

to those found in the U-Net architecture (Ronneberger et al.,

2015). The skip connections between neural network layers

optimize training by allowing the information of low- and

high-resolution features to propagate effectively in different

layers of a neural network. The network architecture is

illustrated in Figure 2, including Blocks 1–3 and the temporal-

attention block. Block 3 is the full connection layer block. The

structures of other parts consist of a contracting path as shown in

Block 1 and an expansive path as shown in Block 2. The

contracting path follows the typical architecture of a

convolutional network. At each down-sampling step, we

doubled the number of feature channels. Every step in the

expansive path consists of an up-sampling of the feature map

followed by a 2 × 2 convolution (“up-convolution”) that halves

the number of feature channels. Based on the U-Net architecture,

the model extracts the feature on the output of the multi-scale

convolutional layer in the contraction path and inputs to the fully

connected layer. The prediction result is obtained through

Softmax. In Figure 2, C indicates the channel of the network

and Dense 256 indicates that the length of the output feature

vector is 256.

In the output part, the deep and shallow features of the

network can be fused by fusing the information of different layers

of the network. Among them, the network parameter F1 is the

output after the fifth convolution layer, F2–F4 process the

features after using up-convolution fusion on deep and

shallow features, and the deep and shallow features are fused

again through concatenating.
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2.4.2 Temporal attention
The temporal-attention block presented was mainly inspired

by SENet in 2017 (Hu et al., 2018) and the characteristics of ECG.

The prediction of AF recurrence mainly focuses on the signals

within a particular time. For example, for AF recurrence, we

mainly focused on the characteristics of atrial activations

(Heijman et al., 2021). The data used in this study include

ventricular and atrial activations. However, we paid more

attention to the atrial signal for the recurrence of AF. In order

to better identify the characteristics of atrial activation, we added

a temporal-attention block to the network so that the signal can

pay attention to K of W × H × T × C. For AF recurrence, the

temporal-attention block should give greater weight to the time

period of atrial activation, so that the network can pay more

attention to the time period related to AF recurrence.

A temporal-attention block is a computational unit which

can be built upon a transformation Ftr mapping an input

X ∈ RH2032×W′× T′×C′ to feature maps U ∈ RH×W×T×C. In the

following notation, we take Ftr to be a convolutional operator

and use V � [vs1, vs2,/, vsc] to denote the learned set of filter

kernels, where vsc refers to the parameters of the cth filter. We

can then write the outputs as usl, and usl refers to the parameters

of the l-th part of feature maps. That means vsl ∈ Ra×b×c and

Xl ∈ Ra×b×c, where:

usl � vsl*Xl � ∑C
k�1

⎛⎝∑i�a
i�1

∑j�b
j�1

∑z�c
z�1

vsijz × Xijz
⎞⎠

k

(3)

For a temporal feature, the traditional 3D convolution is the

convolution sum of the length, width, and time dimensions of the

signal. The characteristic relationship of the temporal and spatial

information is thus learned by the convolution kernel, and even

channel information will be mixed together through summation.

The purpose of temporal attention is to extract the temporal

information from this mixture so that the model can learn the

temporal information more directly.

The 4D features are passed through a 1 × 1 × 1

convolution kernel, and the channel number is adjusted to

1 to obtain F through a reshape operation, where F ∈ RH×W×T

(Szegedy et al., 2015). Since convolution is only operated in a

local space, it is difficult to observe the relationship between

the local and global space. Using the squeeze operation

proposed by SENet, we encode all spatial features at a time

into a global feature, which is generated into temporal-wise

FIGURE 2
Structure diagram of the 3D-CNN classification framework.
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statistics by global average pooling (AvgPool) and maximum

average pooling (MaxPool) (Woo et al., 2018). The temporal

weight MT is obtained by fusing the features of global average

pooling and max average pooling. MT goes through a

sequence and excitation operation. The shared network is

composed of a multi-layer perceptron (MLP) with one hidden

layer. After the shared network is applied to the block, we

merge the output feature vectors using element-wise

summation. The formula of the temporal weight MT is as

follows:

MT(F) � σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))
� σ(W2ReLU(W1(Fsq

avg)) +W2ReLU(W1(F sq
max )))

(4)
where σ denotes the Sigmoid function, W1 ∈ RT/r×T and

W2 ∈ RT×T/r. The formula of AvgPool Fsq
avg and MaxPool

F sq
max are as follows:

Fsq
avg � 1

H × W
∑H
i�1
∑w
j�1
ft(i, j) (5)

FIGURE 3
Temporal-attention block and its variants. (A) Temporal-attention block. Two groups of features were obtained by global average pooling
(AvgPool) and maximum average pooling (MaxPool), then get the sum of the different features matrices. (B) Temporal-attention A1. Feature
acquisition contains only MaxPool. (C) Temporal-attention A2. Different channel features were obtained by MaxPool, and use concatenation to fuse
different channel features. (D) Temporal-attention A3. Different channel features were obtained by AvgPool and MaxPool, and use
concatenation to fuse different channel features.
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F sq
max � max(ft(i, j)) (6)

As with SENet, r is a super parameter for dimensionality

reduction. In this experiment, r = 4 is taken. The weighted

temporal attention is obtained by summing up the elements

to map the features and multiplying this by the original signal

F. Finally, the number of channels is adjusted to C using a

1 × 1 × 1 convolution kernel. The temporal-attention block

structure is shown in Figure 3A, while Figures 3B–D are all

variants of the structure. The temporal attention A1 structure

includes a 1 × 1 × 1 convolution kernel and just uses MaxPool

to generate temporal-wise statistics. Temporal attention

A2 and A3 structures use concatenation to fuse

different channel features instead of a 1 × 1 × 1

convolution kernel.

2.5 Optimization

There are more non-recurrent than recurrent samples,

which causes data imbalance. Therefore, the model fails to

learn the features of fewer classes and is trained with low

efficiency, as most locations are easy negatives that contribute

no useful learning signal. The purpose of using focal loss is to

solve the serious imbalance in the proportion of non-

recurrent and recurrent samples (Lin et al., 2017) and to

reduce the weight of a large number of easy-to-classify

samples in training. Focal loss reduces the contribution of

samples which are easy to classify to loss and makes the model

attend more to the hard-to-classify samples. The formula is as

follows:

L fl �
⎧⎨⎩ −α(1 − y′ )γ log(y′), y � 1

−(1 − α)y′ γ log(1 − y′), y � −1 (7)

As aforementioned, y ∈ {± 1} specifies the ground-truth

class and y′ ∈ [0, 1] is the model’s estimated probability for

the class with label y = 1, which means recurrent samples.

When γ = 0, L fl is equivalent to cross entropy (CE) and as γ is

increased, the effect of the modulating factor is likewise

increased. The γ reduces the contribution of easy-to-classify

samples to loss. The α can be used to balance the uneven

number of non-recurrent and recurrent samples. In our study,

we set γ to 2 and α to 0.25.

After each convolutional layer, we applied batch

normalization (Ioffe and Szegedy, 2015) and a rectified

linear activation. We also applied dropout (Srivastava

et al., 2014) between the skip-connection layers and the

fully-connected layers. We used the Adam (Kingma et al.,

2014) optimizer with default parameters and reduced the

learning rate by 1/t decay, where t denoted the training

step. During optimization, we saved the best model as an

evaluation of the validation set.

2.6 Evaluation index of performance

In our study, we used two dataset evaluation methods to test

performance. One is inter-patient evaluation, which strictly requires

that the training set and testing set data come from different patients

(Nguyen et al., 2019). The other is intra-patient evaluation, which

completely ignores the individual differences. The training set and

testing set can come from the same patient to achieve higher

performance. At this time, the negative impact of individual

differences is the least, as is the difficulty of realization.

For the two different data-set division methods, we used four

main statistical indicators to evaluate this prediction model:

sensitivity (SE), specificity (SP), positive predictive value

(PPV), and accuracy (ACC). These expressions are given as

follows:

SE � TP

(TP + FN) × 100% (8)

SP � TN

(TN + FP) × 100% (9)

PPV � TP

(TP + FP) × 100% (10)

ACC � (TP + TN)
(TP + FN + FP + FN) × 100% (11)

where TP is the amount of AF recurrence samples that were

correctly predicted, TN is the AF non-recurrence samples which

were predicted as non-recurrence, FP indicates the AF non-

recurrence samples that were wrongly predicted as recurrent, and

FN is the recurrence samples that were wrongly predicated as

non-recurrent. Another quality of the prediction model is

measured by the area under curve (AUC) of its receiver

operating characteristic (ROC) curve based on maximized SE

and SP (Fawcett, 2006).

3 Experimental results and discussion

3.1 Cardiac axis

The signal of normal sinus rhythm is selected to calculate the

cardiac axis. The conduction law of cardiac activations in the

BSPMs is that these conduct along the direction of the cardiac

axis, allowing the cardiac electrical signals of different

propagation orders to be extracted through the BSPMs.

According to the electrode distribution of the anterior chest

mapped on the body surface (Figure 4), we use channels 93, 29,

and 37 to approximately calculate leads I and III. Lead I is

approximately the difference between channels 29 and 93 and

lead III is approximately the difference between channels 37 and

29. Its formula is as follows:

UⅠ ~ U29 − U93 (12)
UⅢ ~ U37 − U29 (13)
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FIGURE 4
Position of six electrode reference points.

FIGURE 5
ECG of lead I (29–93) and lead III (37–29) achieved from BSPM. (A) the original BSPM. The blue line is 93 lead (channel); the red line is 29 lead
(channel); and the orange line is 36 lead (channel). (B) The ECG after band-pass filtering. (C) The approximate ECG of lead I and III. The blue line is the
approximate ECG of lead I by subtracting lead (channel) 93 amplitude from lead (channel) 29 amplitude; the red line is the approximate ECGof lead III
by subtracting lead (channel) 29 amplitude from lead (channel) 37 amplitude; (D) The signal after removing the baseline wander.
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Figure 5 shows the approximate ECG of leads I and III achieved

from BSPMs. Figure 5A is the original BSPM, Figure 5B is the ECG

after band-pass filtering at 1–40 Hz, Figure 5C is the approximate

ECG of lead I obtained by subtracting the corresponding lead, and

Figure 5D is the signal after removing the baseline wander using the

low-pass filter of 3 Hz (first-order Butterworth filter).

We calculated the amplitude of positive and negative R waves

in 80 s signals to obtain the patient’s cardiac axis. The sum of the

amplitude of a QRS wave of UⅠ is UⅠ � 383.7130 and the sum of

the amplitude of a QRS wave of UⅢ is UⅢ � 176.5790. The

cardiac axis angle is 47.9516°, which is in normal range.

On the transverse plane, the projection of the vectorcardiographic

loop of the BSPMs is shown in Figure 6. Electrodes 97–33 in the same

row of BSPMs are selected, and the propagation law of BSPMs is

obtained through a two-step projection of a spatial vector cardiogram,

as shown in Figure 6. By comparing the BSPMs collected in Figure 6, it

is evident that the BSPMs follow the pattern of the conduction law of

cardiac activations and that the peak value of the R wave follows the

propagation order from left to right.

3.2 Verification isopotential map

For postoperative sinus rhythm, a total of 80 s sinus mapping

signals (including 92 heartbeats) are included to verify the

performance of the rendered dynamic mapping data. Six

electrode reference points—nearly consistent with the normal

electrical axis of the heart (Figure 4)—are channels 93, 112, 3, 5,

24 and 36, respectively. These channels are numbered 93 (①),

112 (②), 3 (③), 5 (④), 25 (⑤), and 36 (⑥) from small to large,

and the chronological order of the QRS complex received at these

six electrodes is also counted. Table 2 shows numbers and arrows

being used to indicate the order of the body surface activation

sequence during sinus rhythm. For example,

①→②→③→④→⑤→⑥ indicates that the activation

sequence is conducted from right to left, from the top to

bottom, and from channel 92 (①) to channel 36 (⑥).

The delay time is used to represent the difference between the

time when the electrodes with a different activation sequence

receive the ECG activation and when they receive the ECG

activation under normal conditions. It can be seen from

Table 2 that an activation delay was detected in electrodes ②

and ⑥. The longest activation delay was less than 3 ms. It is

found that the delay time is short and will not have a great impact

on the model rendering. Compared with the 14 times of

activation delay, the difference is not obvious; this indicates

that the isopotential map can approximately represent the

conduction law of cardiac electrical activity on BSPMs.

For preoperative AF, the BSMPs of the five selected

electrode points (channels 2, 12, 23, 25, and 36) in the

normal activation sequence and the rendered isopotential

map are shown in Figures 7 and 8. In Figure 7, the ECG

signals of the five selected channels within 3 s are arranged in

parallel from top to bottom. The dotted line indicates that the

time from channel 2 to the QRS complex peak is 362 ms,

corresponding to the first isopotential map of Figure 8. It is

evident that channel 2 first detected the moment of excitation

and that the other channels also detected excitation after a

certain delay—consistent with the conduction results shown

in Figure 8. It can be seen from Figure 8 that the color of the

place near channel 2 changes first, indicating that the

excitement is first transmitted to this place. Then, along the

FIGURE 6
Projection and waveform formation of the transverse plane vectorcardiographic loop of BSPM.
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electrical axis, the color of the lower-left area of the torso turns

from yellow to red and spreads out, indicating that the

excitement is transmitted to this area later.

3.3 3D-CNN in the intra-patient evaluation

In our study, a 3D isopotential sequence map was used to

predict the recurrence of AF, and the 3D-CNN structure was

used for prediction. In the meanwhile, the classification

performance of four classic network structures of image was

compared. Four common network training models—LeNet

(Lecun et al., 1998), AlexNet (Krizhevsky et al., 2012),

VGGNet-16 (Simonyan and Zisserman, 2014), and ResNet

(He et al., 2016)—were selected for comparison with the 3D-

CNN classification model in this study. The input of LeNet,

AlexNet, and VGGNet-16 was 3D isopotential sequence maps

changed from a traditional 2D image; ResNet was changed from

ResNet 50 and had 16 convolution layers and 1 max average

pooling layer.

In our experiment, different sizes of 3D isopotential sequence

maps were reserved to compare the prediction results. Because

the data size is too large when K = 2000, in order to save training

time and improve network performance, the network input size

W × H × T is 32 × 32 × 128, 64 × 64 × 256, and 64 × 64 × 400,

respectively. We randomly divided the dataset (training set:

validation set: testing set = 7: 2: 1). The results of the

comparison of five different 3D network models and four

different input sizes are shown in Table 3.

It can be seen from Table 2 that the performance of

different models for data differs. Compared with other

models, AlexNet and VGGNet-16 have insufficient

memory when the input size of the model is larger than

64 × 64 × 256. This is because the model parameters are too

large. From the results in the table, we can see that the

training speed of the 32 × 32 × 128 model is obviously

faster than that of other sizes. For the other three

networks, the performance of LeNet and ResNet is

unstable, while the result of 3D-CNN is the best and is

relatively stable.

TABLE 2 Statistics for the excitement sequence of sinus rhythm.

Activation sequence The number of heartbeats Delay time The proportion of the
number of heartbeats in
the delay time

①→②→③→④→⑤→⑥a 78 0 —

②→①→③→④→⑤→⑥ 11 1–3 ms 1 ms 91.67%

3 ms 8.33%

⑥→①→②→③→④→⑤ 2 >3 ms 100.00%

②→①→⑥→③→④→⑤ 1 1 ms 100.00%

a①→②→③→④→⑤→⑥ indicates that activation sequence is conducted from channels 93 (①) to 36 (⑥).

The bold values represents the optimal result of different algorithms.

FIGURE 7
Original ECG data collected by channels 2, 12, 23, 25, and 36.
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FIGURE 8
Rendering of the isopotential map of preoperative AF (A) Rendering of the isopotential map at different times. The time in this figuremeans each
sampling time of the isopotential map and the color of each isopotential map represents the magnitude of the voltage amplitude: red represents the
maximum relative amplitude, and blue represents theminimum. (B)Conduction order of Torso geometries. Blue circular lines are the location of the
different electrodes; red arrow indicate the order of cardiac activations.

TABLE 3 Comparison of balanced random prediction performance with different network structures.

Size Model PPV(%) SP(%) SE (%) ACC(%) Time s/epoch Batch size

32 × 32×128 LeNet 96.34 96.29 97.53 96.91 5 s/epoch 16

AlexNet 65.85 48.14 100.00 74.07 11 s/epoch 16

VGGNet-16 100.00 100.00 93.82 96.91 26 s/epoch 16

ResNet 100.00 100.00 97.53 98.76 3 s/epoch 16

Proposed 98.77 100.00 100.00 99.38 8 s/epoch 16

64 × 64 × 256 LeNet 92.11 92.59 86.42 89.51 8 s/epoch 16

AlexNet OOMa 16

VGGNet-16 OOMa 16

ResNet 97.18 97.53 85.19 91.36 19 s/epoch 16

Proposed 100.00 100.00 96.30 98.14 52 s/epoch 16

64 × 64 × 400 LeNet 98.77 98.76 98.77 98.77 14 s/epoch 8

AlexNet OOMa 8

VGGNet-16 OOMa 8

ResNet 100.00 100.00 97.53 98.76 31 s/epoch 8

Proposed 100.00 100.00 98.77 99.38 85 s/epoch 8

aOut of memory.

The bold values represents the optimal result of different algorithms.
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3.4 3D-CNN in the inter-patient evaluation

A training set and testing set can be derived from the same

patient, so the accuracy of using neural networks to predict

recurrence is very close. In order to better verify that the

network proposed in this study can effectively distinguish

spatial–temporal features, in the later experiments we used

the inter-patient method: the method of distinguishing

patients to verify the model. The experiment uses five-fold

cross-validation to characterize the experimental results.

Since there are only four recurrent patients, one was

randomly selected for training.

The 3D 32 × 32 × 128 isopotential sequence map was

selected as the input to the network, and LeNet, ResNet, and

3D-CNN were selected for comparison. Table 4 shows that, in

the case of a small amount of data, the accuracy of inter-

patient in predicting the recurrence of AF has reached

81.48%. It can be seen from Table 3 that the 3D-CNN

performs better than the three classic image network

structures with an SE of 67.71%, SP of 95.69%, and PPV of

76.79%, based on the same dataset in inter-patient prediction

of AF recurrence.

3.5 Effectiveness of temporal-attention
block in the inter-patient evaluation

To verify the effectiveness of the proposed components of our

model, we conducted control experiments with fine-tuned models

on the inter-patient dataset using five-fold cross-validation. In the

control experiment, we selected 64 × 64 × 256 as the input size. The

baseline represents the CNN architecture using VGGNet-5. The

3DCNN + F4 represents the proposed model with up-convolution.

The results of the control experiment are shown in Table 5; the

proposed 3DCNN+ F4model outperforms the traditional VGGNet

structure. It can also be seen that up-convolution has excellent

performance on the inter-patient dataset, which demonstrates that

up-convolution can effectively expand the difference between the

recurrence and non-recurrence samples.

To more intuitively show the advantages of fusing the deep

and shallow features model in the full connection layer, we

calculated the performance of the validation set a on five-fold

cross-validation. As shown in Table 6, only adding the fully

connected layer of F2 or F3 could not improve the network

identification accuracy of recurrent AF. We speculate that F2 or

F3 might contain limited information in the middle layer of the

network, so it could not bring gain to the network. However,

when F1 and F4 were concatenated, the model contained the

fusing deep and shallow features and performed better.

Furthermore, when F1–F4 were concatenated, the model

contained features of different depth and achieved best

performance. The focal loss is widely used in class-imbalanced

classification; in our work, the default-loss function is set to focal

loss in a structure containing the F1–F4 methods. Overall, these

results indicate that the network model combined with features

of different depths can perform better.

TABLE 4 Inter-patient prediction performance of the five-fold cross-validation model.

Model Indicator Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

LeNet ACC(%) 51.85 43.30 82.02 70.30 76.27 64.75

SE (%) 0.00 11.79 79.49 63.31 71.43 45.20

SP(%) 100.00 97.89 86.34 76.22 83.34 88.56

PPV(%) 0.00 90.62 90.79 69.29 87.05 67.55

ResNet ACC(%) 51.85 36.60 37.10 93.39 39.47 51.68

SE (%) 0.00 0.00 0.00 94.24 0.00 18.85

SP(%) 100.00 100.00 100.00 92.68 100.00 98.52

PPV(%) 0.00 0.00 0.00 91.61 0.00 18.32

Proposed ACC(%) 51.85 91.75 95.16 95.71 72.94 81.48

SE (%) 0.00 91.87 95.97 90.65 60.07 67.71

SP(%) 100.00 91.55 93.79 100.00 95.69 95.69

PPV(%) 0.00 94.96 96.32 100 92.66 76.79

The bold values represents the optimal result of different algorithms.

TABLE 5 Performance of up-convolution model on five-fold cross-
validation.

Model PPV SP SE ACC AUC

VGG-5 69.82 87.08 56.66 71.48 0.7958

VGG-8 49.79 96.65 11.30 54.27 0.5370

3D-CNN + F4 64.98 82.66 63.27 73.09 0.7634

The bold values represents the optimal result of different algorithms.
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In addition, as shown in Table 7, our experiment analyzed the

network with temporal-attention structure. By comparing the

attention structures of temporal-attention A1 and other

structures, it is found that the 1 × 1 × 1 structure can bring

gain to the network. We can see that the network model

combined with temporal-attention A1 or temporal-attention

block can achieve better results. It can also be seen that

temporal-attention block (proposed) by fusing the features of

global average pooling and max average pooling can effectively

expand the difference between the recurrence samples and non-

recurrence samples. Temporal-attention A3 is the most complex

attention block in our experiment, while the results are not

satisfactory. According to the results for temporal-attention

A2 and A3, it seems that the attention-block parameters need

not be too complex; otherwise, difficulties in network training

will result.

4 Discussion

4.1 Isopotential map and its clinical
significance

Many clinical indicators have been proposed to measure the

recurrence of AF, such as CAAP-AF score (Winkle et al., 2016),

while there is still a lack of a standard to evaluate the recurrence

of AF by preoperative ECG. In this study, a newmethod based on

3D isopotential sequence maps is proposed to non-invasively

evaluate the complex cardiac electrical activity of AF before CA.

The isopotential map shows the difference of the potential

distribution of body surface ECG activity, which is a direct

manifestation of the ECG conduction pathway. Over time, a

series of isopotential maps on the torso geometry form the

fluctuation map that represents the conduction path of

cardiac electrical activity in the torso across the body surface.

The experimental results show that fluctuations in the

isopotential map can reveal some regularities of the

conduction of the cardiac electrical activity. The 3D-CNN

model could extract features of 3D isopotential sequence maps

through the convolution layer. As an isopotential map is rich in

spatial and temporal information, 3D-CNN can combine the

spatial–temporal information using the unique skip-connections.

Through the convolution layer, the detailed features reflecting

the conduction of cardiac electrical activity in the isopotential

map can be extracted to accurately predict the recurrence of AF.

4.2 Comparison with other studies

Based on the same dataset in the intra patient evaluation, the

3D-CNN performed better than the CNN approach of amplitude

of discrete ECG signal, with SE of 83.50% and SP of 95.99% in

predicting AF recurrence (Li et al., 2018), with SE of the proposed

approach increasing by almost 15%.

Due to the lack of a public database for the study of AF

recurrence, we can only make comparison with research in

different datasets. Compared with the traditional approach of the

P wave signal-averaged ECG method (Aytemir et al., 1999) with SE

of 70% and SP of 76%, and based on the different dataset in the inter-

patient evaluation, ourmodel can achieve better prediction results by

inputting 3D isopotential sequence maps that combine temporal

information and spatial characteristics. Our method associates the

TABLE 6 Performance of fusing the deep and shallow features model on five-fold cross-validation.

Model PPV(%) SP(%) SE (%) ACC(%) AUC

3D-CNN + F1+F4 70.37 86.96 60.26 74.19 0.8214

3D-CNN + F4+F2 67.83 88.56 43.58 63.74 0.7757

3D-CNN + F4+F3 67.21 81.37 54.76 67.30 0.7385

3D-CNN + F4+F1+F2+F3 72.48 71.59 62.10 74.81 0.8459

3D-CNN + F4+F1+F2+F3+FOCAL 71.49 85.36 65.80 76.36 0.8766

The bold values represents the optimal result of different algorithms.

TABLE 7 Performance of adding attention block model on five-fold cross-validation.

Model PPV(%) SP(%) SE (%) ACC(%) AUC

Temporal-attention A1 69.86 68.02 70.67 73.24 0.7583

Temporal-attention A2 68.09 80.07 63.70 72.92 0.7798

Temporal-attention A3 65.05 82.41 51.53 66.26 0.7041

Temporal-attention block (Proposed) 76.79 95.69 67.71 81.48 0.8850

The bold values represents the optimal result of different algorithms.
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higher spatial-temporal characteristics complexity of BSPM with

successful CA procedures, even though the interclass has statistically

significant differences which are not verified on the signals we

examined.

4.3 Benefits of the classification method

Experiments show that up-convolution and skip connections

can promote the network compared with the traditional VGG

network. The skip connections between the neural network layers

of the dense layer can also make the network integrate features of

different depth and can improve the accuracy of the network in

identifying the recurrence of AF. Focal loss makes the model

attend better to difficult samples and can solve the problem of

data imbalance, thus improving the accuracy of identifying the

recurrence of AF.

Our research proposes a novel attention block—temporal

attention—which captures the importance of features of the local

space of ECG signals in a period of time. Temporal attention uses an

efficient attention-computation method that does not have any

information bottlenecks. By comparing other attention blocks, we

find that, for long time-series data, the temporal-attention block we

propose can effectively extract temporal information and improve

the accuracy of prediction. Our experiments demonstrate that

temporal attention improves the baseline performance of

architectures like 3D-CNN on tasks like ECG classification or

other physiological signals, while only introducing a minimal

computational overhead. We suggest that this temporal-attention

block can achieve good results for any type of time series.

4.4 General remarks and limitation

Our experiment included 14 patients in the intra-patient

evaluation. We used random shuffling to choose partial segments

of 14 patients to build the network model and another to test it.

This method ignores patient-specific differences because training

segments and test segments are probably from the same

patient—leading to relatively decent results—while other

patients not involved in the network model training (non-

participants) will have very poor test outcomes. In order to

avoid this situation, this study used the inter-patient

evaluation method, where the segments participating in the

network training and the tested segments come from different

patients, thus avoiding the aforementioned situation.

The lack of comparison with endocardial recording has

hampered our research. A global overview of cardiac electrical

activity is provided by BSPMs, while endocardial signals

account for local information. Nevertheless, we propose a

noninvasive analysis method. The superiority of our method

over conventional CA outcome predictors has been

demonstrated. Furthermore, the conclusion of this study is

based on the BSPMs of 1627 segments from 14 patients with

AF, and there is no available public database in regard to

postoperative detailed information for patients with AF. For

further research, we need to gradually collect more clinical

BSPM data of AF patients to further verify the reliability of the

proposed methods.

5 Conclusion

BSPMs combined with 3D isopotential sequence maps can

be used as a tool for the clinical diagnosis and treatment of AF.

Isopotential maps can express the conduction law of cardiac

electrical activity on the body surface. Furthermore, 3D

isopotential sequence maps can obtain the spatial

information of conduction. Temporal-attention block is easy

to use, can be embedded in any layer of the network, and has

fewer parameters. The 3D-CNN with temporal-attention block

can extract the features of 3D isopotential sequence maps, and

the network is shown to be robust. The optimal network

combination confirmed its excellent intra-patient prediction

performance with 99.38% of ACC, 98.77% of SE, 100.00% of SP,

and 100.00% of PPV. In intra-patient evaluation, 3D-CNN

achieved 81.48% of ACC, 67.71% of SE, 76.79% of SP,

95.69% of PPV, and 0.8850 of AUC. A 3D-CNN with

temporal-attention block can provide relevant insights for

selecting patients with low recurrence risk and suitability for

surgery for radiofrequency ablation, thus providing better

treatment for them.
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Background: Termination of atrial fibrillation (AF), the most common

arrhythmia in the United States, during catheter ablation is an attractive

procedural endpoint, which has been associated with improved long-term

outcome in some studies. It is not clear, however, whether it is possible to

predict termination using clinical data. We developed and applied three

quantitative indices in global multielectrode recordings of AF prior to

ablation: average dominant frequency (ADF), spectral power index (SPI), and

electrogram quality index (EQI).

Methods: In N = 42 persistent AF patients (65 ± 9 years, 14% female) we

collected unipolar electrograms from 64-pole baskets (Abbott, CA). We studied

N = 17 patients in whom AF terminated during ablation (“Term”) and N = 25 in

whom it did not (“Non-term”). For each index, we determined its ability to

predict ablation by computing receiver operating characteristic (ROC) and

calculated the area under the curve (AUC).

Results: The ADF did not differ for Term and Non-term patients at 5.28 ±

0.82 Hz and 5.51 ± 0.81 Hz, respectively (p = 0.34). Conversely, the SPI for these

two groups was. 0.85 (0.80–0.92) and 0.97 (0.93–0.98) and the EQI was 0.61

(0.58–0.64) and 0.56 (0.55–0.59) (p < 0.0001). The AUC for predicting AF

termination for the SPI was 0.85 ([0.68, 0.95] 95% CI), and for the EQI, 0.86

([0.72, 0.95] 95% CI).

Conclusion: Both the EQI and the SPI may provide a useful clinical tool to

predict procedural ablation outcome in persistent AF patients. Future studies

are required to identify which physiological features of AF are revealed by these

indices and hence linked to AF termination or non-termination.

KEYWORDS

atrial fibrillation, ablation, termination, computational analysis, electrograms

OPEN ACCESS

EDITED BY

Gernot Plank,
Medical University of Graz, Austria

REVIEWED BY

Oleg Aslanidi,
King’s College London, United Kingdom
Raúl Alcaraz,
University of Castilla-La Mancha, Spain

*CORRESPONDENCE

Wouter-Jan Rappel,
rappel@physics.ucsd.edu

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to Cardiac
Electrophysiology,
a section of the journal
Frontiers in Physiology

RECEIVED 09 May 2022
ACCEPTED 10 November 2022
PUBLISHED 22 November 2022

CITATION

Kappel C, Reiss M, Rodrigo M,
Ganesan P, Narayan SM and Rappel W-J
(2022), Predicting acute termination and
non-termination during ablation of
human atrial fibrillation using
quantitative indices.
Front. Physiol. 13:939350.
doi: 10.3389/fphys.2022.939350

COPYRIGHT

© 2022 Kappel, Reiss, Rodrigo,
Ganesan, Narayan and Rappel. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 22 November 2022
DOI 10.3389/fphys.2022.939350

218

https://www.frontiersin.org/articles/10.3389/fphys.2022.939350/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.939350/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.939350/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.939350/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.939350&domain=pdf&date_stamp=2022-11-22
mailto:rappel@physics.ucsd.edu
https://doi.org/10.3389/fphys.2022.939350
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.939350


Introduction

Atrial fibrillation (AF) is the most common cardiac

arrhythmia in the world and currently affects more than five

million people in the United States alone (Chugh et al., 2014;

Calkins et al., 2018). AF is associated with increased risk for

stroke and morbidity. There is increasing evidence that early

intervention for AF, either by drug therapy or ablation, can

reduce long-term adverse outcomes (Kirchhof et al., 2020), yet

both forms of therapy are suboptimal. Pulmonary vein isolation

(PVI) to electrically isolate the pulmonary veins is the

cornerstone of ablation treatment (Haissaguerre et al., 1998),

but is only modestly effective with a 1-year success rate in

persistent AF patients of 50–60% (Calkins et al., 2017).

Several additional ablation procedures have been proposed yet

with varying outcomes, such as targeting complex fractionated

electrograms (Nademanee et al., 2004; Knecht et al., 2008),

rotational and focal sources (Narayan et al., 2012; Ramirez

et al., 2017; Baykaner et al., 2018), posterior wall isolation

(Lee et al., 2019; Pothineni et al., 2021; Chieng et al., 2022)

and others. It would be useful to track AF ablation

intraprocedurally, to determine if the current strategy is

effective in this patient or whether additional lesions are

warranted.

Currently, there is no quantitative metric that can reliably

predict whether ablation will result in AF termination or not.

Such a metric may be procedurally useful. In addition, some

studies have shown that acute termination during ablation is

associated with improved long-term outcome (O’Neill et al.,

2009; Scherr et al., 2015; Heist et al., 2012; Zhou et al., 2013;

Park et al., 2012; Schreiber et al., 2015; Rostock et al., 2011).

Furthermore, a reliable metric may provide insights into the

spatio-temporal activation patterns that underlie AF.

In this study, we developed and compared the ability of three

different quantitative indices to predict whether a uniform

ablation strategy resulted in AF termination to either sinus

rhythm (SR) or atrial tachycardia (AT), or failed to terminate

AF. Our indices were computed using unipolar electrograms

from 64-pole baskets, measured over a prolonged time (60 s).

The indices consisted of the average dominant frequency (ADF),

the DF averaged over all electrograms, the spectral power index

(SPI), a measure of the power contained in the power spectrum

close to the dominant frequency relative to the total power in the

spectrum, and a novel electrogram quality index (EQI), a

measure of the relative amplitude of the most prominent peak

of the time derivative of electrograms in repeated intervals. These

indices were tested in N = 42 patients, divided into N =

17 patients that did (“Term”) and N = 25 patients that did

not (“Non-term”) terminate during the procedure.

Methods

We studied 42 patients with persistent AF (defined as

patients in whom AF lasted longer than 7 days) referred for

ablation at Stanford University Hospital, Palo Alto, CA for

standard indications. Of these patients, N = 17 terminated

acutely during the ablation procedure, while N = 25 did not.

All patients had failed at least one anti-arrhythmic medication,

were >18 years and none had contra-indications to ablation. All

patients provided written informed consent and this study was

approved by our Institutional IRB.

Data acquisition

No electrical cardioversion was applied at the beginning of

the procedure and patients who presented in sinus rhythm were

paced into AF. AF was mapped using 64 pole contact baskets

(FIRMap, Abbott) for 60 s. The baskets were positioned in LA for

AF mapping, based upon 3-dimensional electroanatomic

imaging (NavX, St Jude Medical, Sylmar, CA; or Carto,

Biosense-Webster, Diamond Bar, CA). This catheter consists

of eight splines, each with eight electrodes, totaling 64 electrodes,

which improves over older designs and covers >70% of the LA

(Honarbakhsh et al., 2017). Within a spline, electrodes are

separated by 4–6 mm, and spacing between splines is mostly

within 20% of that range (Honarbakhsh et al., 2017). Ablation

was guided prospectively at regions of interest identified by a

commercial system (RhythmView™, Abbott, Inc.).
Endocardial ablation was used using 3.5 mm irrigated-tip

catheters (SmartTouch®, Biosense Webster; FlexAbilityTM,

Abbott) targeting 30–35 W at 10–20 g force. The primary goal

was to perform pulmonary vein isolation assessed by the

endpoint of entrance block. Additional lesions were patient-

tailored. Selected sites were ablated to cover 2–3 cm regions,

to an endpoint of voltage < 0.5 mV. Ablation at any site was

abandoned if the esophagus was heated by > 1.5 C despite

reduced power or high power short-duration lesions (50W,

6 s), or that overlay regions of phrenic nerve capture.

Electrical cardioversion was applied if AF had not terminated

(non-termination group).

Data export

Unipolar electrograms were recorded at 1 kHz sampling and

the QRS complex was removed by computing an average QRS

complex and subtracting it from electrograms as detailed before

(Alhusseini et al., 2017).
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Data analysis

The Dominant Frequency (DF) was computed for each

electrode from the Power Spectral Density (PSD) of the

unipolar electrogram using a Welch Periodogram (50%

overlapping, 4 s length Hamming window) and a frequency

interval between 0 and 20 Hz. The ADF for each patient was

then computed as the mean of the DF of all 64 electrodes.

To compute the Spectral Power Index (SPI) of an electrogram

(Figure 1), we first determined the spectral power of the DF (PDF)

and defined a threshold αPDF, where α is a value between 0 and 1.

This threshold was introduced to remove the noise floor in the

signal. Second, we determined all frequencies with a power larger

than αPDF and within an interval of width 2Δf symmetrically

located around the DF: DF±Δf. The sum of the power for these

frequencies was computed as Pint. The SPI was then defined as

the ratio of Pint and the sum of the power for all frequencies

between 0 and 20 Hz that were above αPDF, Pall: SPI = Pint/Pall.

This procedure is shown in Figure 1, where we have plotted a

sample power spectrum of one of the electrograms. The

threshold, here taken to be α = 0.1, is shown as a green line

while the interval around the DF is indicated as dashed red lines

and shown using Δf = 4 Hz. Note that the SPI can take on values

between 0 and 1. Specifically, for noisy signals, with a broad peak,

we expect that most power is concentrated around the DF. This

signal will have a high SPI value. For more regular signals, we

expect a narrow peak and more power in harmonics

(corresponding to whole number multiples the peak

frequency), resulting in a low SPI value. Figure 2A shows a

power spectrum of an electrogram with a high SPI (SPI = 0.95).

In this case, all power above the threshold, here chosen to be α =

0.2, resided within the interval DF±Δf, with Δf = 3 Hz. As a

comparison, Figure 2B shows a power spectrum of an

electrogram with the low SPI value (SPI = 0.65). In this case,

for the same values of the parameters α and Δf, significant
amount power is distributed at frequencies outside the

interval around DF.

For the Electrogram Quality Index (EQI), we processed each

electrogram v(t) with a bandpass filter from 2.5 Hz to 30 Hz as a

combination of a low-pass and a high-pass Butterworth filter of

fourth order, respectively. Additionally, we applied a fourth order

Butterworth notch filter between 55 and 65 Hz to eliminate 60 Hz

noise. To calculate the period T of the signal, we used the first

peak in the autocorrelation at non-zero time of v(t), smoothed

using a zero-phase digital filter. We computed the first derivate

with respect to time, dvdt, and the resulting time trace was divided

into N consecutive intervals with width T. This procedure is

illustrated in Figure 3 for two sample electrograms and where the

intervals are marked by dashed red lines. In these, and other

patients, T was around 200 ms, resulting in approximately

300 intervals. We computed for each interval i the difference,

Qi, between the maximum value of dvdt , β, and the sum of all other

(n) positive maxima within that interval, γ, normalized by β:

Qi � (β − 1
n∑n

j�1γj)/β. In Figure 3, the maximum value β for the

first intervals is marked by a magenta dot, while all other positive

maxima in the same interval are marked by black dots. For an

electrogram with a single peak in its time derivate, the value ofQi

will equate to 1. On the other hand, a value of 0 corresponds to a

signal with equal valued maxima of dv
dt in the interval. Thus, Qi

quantifies the ease with which a large dv
dt can be identified in the

interval. Examples of intervals with large values of Qi are shown

in Figure 3A: for every interval, the maximum dv
dt is well separated

from smaller peaks in dv
dt and clearly distinguishable. As a result,

Qi, which quantifies the normalized difference between the value

of this peak and the sum of all other positive peaks within each

interval, is close to one In contrast, the intervals presented in

Figure 3B all have multiple peaks with almost identical

amplitudes, resulting in much smaller values of Qi.

The electrogram quality index was then calculated as the

average of Qi over all N intervals: EQI � ∑N
i�1Qi/N. In summary,

the EQI can also take on values between 0 and 1 with large values

of EQI corresponding to dv
dt traces with a clear maximum in each

interval and small values corresponding to signals that have

multiple and almost equally valued peaks in dv
dt for the majority of

its time.

Statistics

Data are reported as mean ± standard deviation for normally

distributed data and statistical significance was calculated using a

FIGURE 1
Example of the single sided power spectrum of one of the
electrograms used to calculate the DF and the SPI. The threshold, a
fraction α of the peak at the DF, αPDF, is plotted as a green line using
α = 0.1 while the interval around the DF, indicated by the
arrow, is plotted as dashed red lines, and shown using Δf = 2 Hz. In
this example, SPI = 0.67 and DF = 4.53 Hz.
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two tailed t-test. For data that were not normally distributed,

data are reported as median (interquartile 1 - inter quartile 3)

and the significance was evaluated with the Wilcoxon rank

sum test using the “ranksum” function in MATLAB. A

p-value < 0.05 was considered statistically significant.

Receiver Operating Characteristic Curves (ROC curves)

were computed using the built in MATLAB “perfcurve”

function and confidence intervals (CIs) of the area under

curve (AUC) values were estimated using a non-parametric

bootstrap algorithm, using 10,000 iterations.

As a sensitivity analysis, the AUC values were also

computed by performing 5,000 iterations in which

5 randomly selected patients were removed from the total

cohort. Results form this analysis are reported as median

FIGURE 2
SPI analysis. (A) Power spectrum of one of the electrodes of a 55 year-old female in which AF did not terminate during the procedure,
corresponding to an SPI value of 0.95, computed using α = 0.2 and Δf = 3 Hz. (B) As in A, but for a 51 year-old male in which AF terminated during the
procedure with an SPI value of 0.65.

FIGURE 3
EQI analysis. (A) Unipolar trace (left panel) and its time derivative (right panel) for an electrogram with large values of Qi. The value of Qi is
reported in the right panel for each time interval, indicated by the red dashed lines. It quantifies the normalized difference between the maximum
value of dv/dt and the sum of all other positive maxima within the interval. These dots are marked for the first interval in magenta and black,
respectively. The EQI is computed as the average value ofQi for each time interval. (B) As in A, but now for an electrogramwith small values ofQi

(reported in the right panel).
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(interquartile 1 - inter quartile 3). Finally, the ROC analysis

was repeated by removing outliers in the data set, defined as

values that were either 3 standard deviations from the mean

(for normal distributions) or 1.5 times the interquartile range

(IQR) above the third quartile or below the first quartile (for

non-normal distributions).

Results

Patient demographics

Table 1 provides the clinical details for the patients in the

termination and non-termination cohort. The two groups did

not differ significantly in any characteristic.

Average dominant frequency (ADF)

We first determined the ADF using the PSD of the

electrograms. The histograms of the ADF values, averaged

over all electrograms for each patient, are shown in Figure 4A

for both the Term (blue) and Non-term groups (red). For the

termination patients, we found that the ADF was 5.28 ± 0.82 Hz

while for the non-termination patients this value was 5.51 ±

0.81 Hz (p = 0.34). These histograms did not contain any outliers

(Methods).

To determine whether this quantity was able to distinguish

between termination and non-termination patients, we

computed the corresponding receiver operating characteristic

(ROC) (Figure 4B). We calculated the area under the curve

(AUC) and found that it was 0.57 ([0.38, 0.75] 95% CI). The

TABLE 1 Patient details.

Term (n = 17) Non-term (n = 25) p-value

Age in years 62.08 ± 10.98 66.92 ± 8.02 0.11

Female 17.6% (3) 12% (3) 0.61

Non-paroxysmal AF 100% (17) 100% (25) 1

Normal LA Size 29.4% (5) 12% (3) 0.16

LVEF % 52.88 ± 12.93 55.04 ± 12.44 0.60

Hypertension 64.7% (11) 60% (15) 0.76

Coronary artery disease 5.88% (1) 24% (6) 0.12

Diabetes mellitus 29.4% (5) 16% (4) 0.30

Transient ischemia attack/stroke 0% (0) 8% (2) 0.50

CHADS2-VASc 1.82 ± 1.33 2.32 ± 1.46 0.27

Previous AF ablation 52.94% (9) 32% (8) 0.18

On Anti Arrhythmic Drug(s) 64.7% (11) 44% (11) 0.19

FIGURE 4
ADF analysis. (A) Histogram of the ADF value for the Term (blue) and Non-term groups (red). (B) Corresponding ROC curve with an AUC = 0.57
([0.38, 0.75] 95% CI).
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sensitivity analysis (Methods) resulted in a median AUC that was

unaltered, with a small IQR: 0.57 (0.55–0.60).

Spectral power index (SPI)

We next determined whether the shape of the peak in the

power spectrum was significantly different between the

termination and non-termination patients. For this, we

computed the SPI, which ranges between 0 and one and

which represents a measure of the power around the DF

relative to the total power (Methods).

We computed the SPI for each patient as the mean value

over all electrograms as a function of the two parameters α
and Δf in the analysis (Methods). After having obtained the

SPI values for both patient groups, we determined the ROC

and corresponding AUC. The result of this grid search is

presented in Figure 5A, where we plot the AUC using a color

scheme with low/high values shown in blue/yellow. The

maximum AUC value was found to be 0.85 ([0.68, 0.95]

95% CI) corresponding to a threshold of α = 0.18 and a

frequency interval around the DF of Δf = 3.6 Hz. For these

parameter values, the mean SPI for the termination patients

was 0.85 (0.80–0.92) while for the non-termination patients

it was 0.97 (0.93–0.98) (p < 0.001). This significance was

retained when adding any of the patient characteristics to the

SPI in a logistic regression model. After removing one outlier

in each data set, the AUC only changed to 0.86 while the

sensitivity analysis resulted in an identical AUC with a small

IQR: AUC = 0.85 (0.83–0.87). We also performed this grid

search using the median value of the SPI of all electrograms,

with the results illustrated in Figure 5B. Using this median

value, we found a maximum AUC of 0.82 ([0.65, 0.93] 95%

CI) using a threshold α = 0.14 and a frequency interval of

Δf = 4.0 Hz.

Finally, we asked whether the termination patients had more

electrograms with SPI = 1 than non-termination patients. To

address this question, we calculated for each patient the

proportion of electrograms with an SPI value equal to 1, again

using a grid search in threshold and frequency interval. For this

comparison, we found a maximum AUC of 0.86 (([0.71, 0.95]

95% CI) using a threshold of α = 0.2 and a frequency interval of

Δf = 10.4 Hz (Figure 5C). For these parameters, the average

proportion of electrograms with SOI = 1 in termination patients

was 0.91 (0.65–0.96) while this value was 1.00 (0.96–1.00) for

non-termination patients (p < 0.001).

Electrogram quality index (EQI)

As a final quantity, we computed the EQI for each patient,

averaged over all electrograms. The histograms of the EQI for the

termination (blue) and non-termination patients (red) are shown

in Figure 6A. Themedian EQI for the termination group was 0.61

(0.58–0.64) while that for the non-termination group was 0.56

(0.55–0.59) (p < 0.0001). As was the case for the SPI, this

significance was retained when combining the EQI and any

single patient characteristic in a logistic regression model. The

ROC curve for this analysis is plotted in Figure 6B and has an

AUC of 0.86 ([0.72, 0.95] 95% CI). Finally, one outlier was

identified in the Term patients and removing this outlier did not

change the AUC while the sensitive analysis resulted in an AUC

value of 0.86 (0.85–0.88).

Discussion

In this study we show that novel indices of electrograms in

patients with persistent AF can identify those in whom AF did or

did not terminate by ablation.

FIGURE 5
Results of the SPI analysis. (A) The AUCof the ROCs computed using themean SPI as a function of the two parameters in the algorithm, α and Δf,
plotted using a color scale with AUC = 0.5 corresponding to blue and AUC = 0.9 corresponding to yellow. (B) As in A but now using themedian value
of the SPI. (C) As in A but now using the proportion of channels with SPI = 1.
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Usefulness of AF termination

While the utility of AF termination during ablation is

debated, there are few other procedural endpoints beyond

isolation of the pulmonary veins. AF termination has been

shown in several studies to be associated with improved long-

term outcome (O’Neill et al., 2009; Scherr et al., 2015; Heist et al.,

2012; Zhou et al., 2013; Park et al., 2012; Schreiber et al., 2015;

Rostock et al., 2011). For example, using a stepwise ablation

procedure that involved pulmonary vein isolation, electrogram-

guided, and linear ablation, it was shown that inability to

terminate AF during ablation was the strongest predictor of

arrhythmia recurrence (Scherr et al., 2015). Other studies have

failed to show this association and that further studies are

required to reconcile the divergent clinical outcomes (Estner

et al., 2008; Elayi et al., 2010; Wang et al., 2018). Nevertheless,

termination remains the only acute endpoint that correlates with

long-term outcome and knowing whether termination is

achievable could enable an electrophysiologist to add or

constrain lesion sets accordingly.

Previous studies predicting AF termination

A number of previous studies have investigated whether

patient characteristics can predict acute AF termination in

catheter ablation. In one study, a cohort of persistent AF

patients with a similar size to the current study (N = 38, with

18 termination patients) was examined (Combes et al., 2013).

Several patient characteristics were found to be significantly

associated with AF termination during ablation, including left

ventricular ejection fraction and left atrial area. However, in a

multivariable analysis, only the left atrial appendage peak flow

velocity remained significant, with the termination group having

a larger velocity (p = 0.04). The corresponding AUCwas found to

be 0.81. In another study, N = 70 persistent AF patients, of

whom 14 terminated, were investigated (Kumagai et al., 2013).

Again, it was found that the left atrial appendage contraction

velocity was significantly decreased in the non-termination

group and was an independent predictor of termination. No

AUC value was reported but this study also showed that

patients that terminated during ablation had a higher AF-

free survival after 1 year than patients that needed

cardioversion. In future studies, it would be interesting to

combine this patient characteristic with our newly developed

indices.

Indices in our study

The ADF metric, which quantifies the frequency of the peak

in the power spectrum, averaged over all electrograms, was not

able to distinguish between the two patient groups. This suggests

that the overall average ‘rate’ of AF within the atrium may not

separate patient groups. The average DF value between the two

groups (5.28 Hz vs 5.51 Hz) was not significantly different and

the AUC value of the ROC was close to 0.5 (0.57). These ADF

values were consistent with those reported in a recent previous

study (Rodrigo et al., 2021). Note that we did not use the location

of DF sites to guide ablation (Atienza et al., 2009).

Contrary to the ADF index, both the SPI and EQI had

average values that differed significantly between patients with

and without AF termination. These indices provided promising

AUCs (0.85 and 0.86, respectively), indicating that they may be

clinically useful. The SPI quantifies the amount of power

contained within a certain frequency band around the DF

relative to the power contained in the entire 0–20Hz interval.

This SPI is a function of two parameters: the width of this

frequency band and the threshold value above which the

power is considered.

FIGURE 6
Results of the EQI analysis. (A) Histograms of EQI for the termination (blue) and non-termination patients (red). (B) ROC curve for the EQI
analysis (AUC = 0.86 ([0.72,0.95] 95% CI)).
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SPI is distinct from previous spectral organizational indices,

such as those which computed a regularity index that involved

the power within a fixed interval around the DF (Skanes et al.,

1998; Sanders et al., 2005; Rodrigo et al., 2021). Using a

systematic search, in which we varied the values of these two

parameters, we found a set of parameters that optimized the

AUC of the ROC. Our results indicated that, on average, the

Term patients had more power in their PSD outside the interval

around the DF than Non-term patients. In other words, the Non-

term patients had more noisy signals, resulting in a broad peak

within the interval around the DF while the Term patients had

narrower peaks, with more power in harmonics that were outside

this interval.

The newly introduced EQI is computed using the time

derivative of the electrogram and quantifies the amplitude of

the peak, relative to all other peaks in intervals of length T, the

correlation time. This is equivalent to the magnitude of the slope

of the electrogram, which has long been used to identify tissue

activation (Colli-Franzone et al., 1982; Steinhaus, 1989; Kuklik

et al., 2015). EQI is determined by first computing T in the

electrogram and then, using contiguous windows of size T,

determining the value of the maximum amplitude of the

derivative relative to all other maxima of the derivative. Thus,

an electrogram with either several near-equal valued maxima or

with poorly identifiable peak values of the derivative in most

intervals will have a small EQI. In contrast, very regular

electrograms with a clearly identifiable and large derivative

peak will result in a large EQI. We have verified that this

computation is insensitive to the start time of the first time

window (Supplementary Figure S1). In contrast to the SPI, the

EQI does not depend on adjustable parameters and did not

require fine tuning to achieve an optimal AUC. The EQI was

significantly higher in the Term compared to the Non-term

patients, indicating that the electrogram shapes of the Term

group exhibited peaks in their time derivative that were more

clearly identifiable. Activation patterns in this group determined

using algorithms based on electrogram shapes may therefore be

less prone to noise. This could result in better identification of

rotational sources, better guidance for targeted ablation, and

could result in acute termination.

Our results were computed using the simultaneous

recordings from 64 electrograms, obtained from a basket

catheter inserted into the left atrium. Thus, and distinct from

other studies that used single recording electrodes, we were able

to obtain spatially averaged quantities since this basket

covers >70% of the atrium. It would be interesting, however,

to apply our indices to electrograms that are collected in a

pointwise fashion. Furthermore, we used recordings with a

prolonged duration (60s), which reduces the likelihood of

spurious results.

Our results indicate that both the SPI and the EQI may be a

useful tool to predict whether ablation results in acute

termination or not. Furthermore, our finding that the SPI and

EQI are significantly different in Term than in Non-term patients

may indicate a difference in atrial organization in these patient

groups.

Limitations

Our cohort size was moderate (N = 42) and replication in

larger samples with external validation is needed. We are

currently planning to expand the analysis to larger patient

groups. Furthermore, we did not use the indices to

prospectively predict outcome, or to guide ablation strategy.

In addition, although studies have shown that acute

termination during ablation correlates with long-term

outcome, this study did not report any follow-up results. We

are currently planning to determine whether the metrics are able

to predict long-term outcome in AF patients.
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