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Editorial on the Research Topic
Computational methods in cardiac electrophysiology

Introduction

Cardiac electrophysiology research increasingly relies on computational methods
to connect experimental and clinical observations to understand underlying
mechanisms. These methods process experimental data, such as optical mapping
and body-surface potential mapping, and model biophysical processes, such as the
behavior of electrical sources within the heart and the electrical potential fields
linked to these. Signal processing from experiments and clinical recordings helps
elucidate electrophysiological properties across various domains, while
computational modeling offers a theoretical understanding. Patient-specific
models increasingly help interpret observations and improve individual cardiac
electrical behavior approximations. Consequently, advancements in computational
methodologies are vital for gaining new insights into cardiac electrophysiology and
arrhythmias.

Here, we review papers published in the Frontiers in Physiology Research Topic on
“Computational methods in cardiac electrophysiology,” and share a perspective on the
potential future impact of such technology (Figure 1).

Body-surface potential mapping, _ _
electrocardiographic imaging, and optical mapping

Body-surface potential mapping (BSPM) may provide information beyond the 12-
lead electrocardiogram (ECG), which is particularly relevant for extraction of therapy
predictors in complex (chaotic) rhythms such as atrial fibrillation (AF). Zhong et al.
used BSPM signals to predict AF recurrence after catheter ablation therapy. They
combined single-time instant BSPMs with temporal-attention block, which allowed
the training of a 3D convolutional neural network (3D-CNN) with BSPMs over time to
predict AF recurrence. The advantage of using BSPM without performing noninvasive
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(called
imaging, ECGI) is that it avoids ECGI’s particular intricacies

inverse mapping techniques electrocardiographic
and pitfalls. Melgaard et al. have performed such inverse
mapping but have limited it to a simplified, potentially more
stable, approach. They restrict their inverse technique to the 12-
lead ECG and a generic (non-personalized) geometry. Their
method was able to noninvasively localize the latest electrically
activated region in patients with LBBB, which is relevant for
lead placement during CRT implantation. Although the use of
generic geometries forfeits the need for imaging in patients, it
likely affects the accuracy with which abnormalities can be
localized in the heart. This was also studied by Molero et al,,
who investigated the effect of the density of personalized
digitized torso meshes in patients with AF undergoing ECGI.
They found that including the exact positions of the electrodes
on the patient’s torso directly in the mesh (thus matching
electrodes with mesh nodes) drastically reduces the need for
high-density meshes. Their findings suggest that meshes
primarily composed of electrode positions may contain
detail
reconstructions (if sufficient electrodes are present).

sufficient ~ geometric for  accurate inverse

In two companion papers, Meng et al. introduced a novel
formulation of ECGI and then applied this method to the less-
studied First, the method of
fundamental was employed map

intracardiac approach.
(MES)
intracardiac (catheter-based) signals to the endocardium of

the heart. MFS is a meshless ECGI approach that has been

solutions to

Frontiers in Physiology 6

applied to inverse torso-heart mapping, but not yet to inverse
catheter-heart (intracardiac) mapping. They studied the
intracardiac MFS approach and found that it outperforms
traditional (mesh-based) approaches and is theoretically
simpler to set up. Subsequent application of this method in
patients with AF showed that it is a feasible mapping method,
but catheters must be large enough to capture features of
complex rhythms (Meng S. et al.).

Combined, these papers add important insights to the field:
For some applications, BSPM or simplified ECGI approaches
(based on the 12-lead ECG) may be sufficient; and for more
complex applications such as intracardiac mapping, meshless
approaches may be better suited than the traditional mesh-
based

Sometimes, simpler is better.

approaches with more complex requirements.

With the advent of telehealth, a robust quality assessment of
input data from (wearable) sensors is essential. Castiglioni et al. used
cepstral analysis, a method to identify the periodicity of a signal, for
single-lead electrocardiograms to quantify the quality of the
recording. Even if multiple electrodes are available, defining the
most informative metrics remains an ongoing process, as illustrated
by Kappel et al., who assessed three quantitative indices to predict
whether a uniform ablation strategy resulted in AF termination
(Kappel et al.).

Optical mapping plays a major role in unraveling
arrhythmia mechanisms in experimental investigations. Such

mechanisms may be partially based on complex interactions

frontiersin.org
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between transmembrane voltage and intracellular calcium.
Uzelac et al. developed a method that allows simultaneous
recording of these quantities in a single-camera optical
mapping setup. This allows the quantitative characterization
of their that play a
arrhythmogenesis at the level. Among

dynamic interactions role in

tissue others,
dynamics may be the result of inflammation, which was
studied with computational models to begin unraveling the

underlying complex interactions by Bi et al.

Tissue modeling, organ modeling, and
digital twins

Traditionally,  computational ~models have been
indispensable in experimental studies to facilitate more
accurate analysis and to infer mechanisms underlying cardiac
function. Driven by recent methodological advances, cardiac
modeling has also begun to appear in clinical applications as a
means of aiding in diagnosis and stratification, or—by
exploiting their mechanistic nature that allows to predict
therapy outcomes—for the optimal planning of therapies. All
of these application scenarios pose different challenges, many of
which are addressed in this Research Topic.

Overall, cardiac modeling benefits from methodological
advances leading to improved robustness, accuracy and
numerical stability (Barral et al). It also profits from more
accurate biophysical representation of mechanisms, such as
electro-mechanical force generation at the cellular level
(Bartolucci et al.) or of atrial electrophysiology in experimentally
important porcine models (Peris-Yagiie et al.). Models also play a
pivotal role in gaining insight into the relationship between key
pathological processes in cardiac diseases such as myocardial fibrosis
and their reflection in the most important observable physical
that is, The

computational methodology for best representing the impact of

measurements, intracardiac  electrograms.
fibrosis in models on electrograms was comprehensively reviewed by
(Sanchez and Loewe).

At the forefront of cardiac modeling research is the
development of methodologies for generating anatomically
accurate and physiologically detailed computational models
Such

personalized models represent data acquired from individuals

calibrated to patient data at an individual level.
with high fidelity, or are statistically representative of a group
of patients. Such digital twin models or virtual cohorts are now
gaining importance in clinical applications, in the medical device
industry as well as in regulatory policy. Furthering these arguably
most advanced models of cardiac function to deliver on these high
promises relies on improving several critical aspects. Most
importantly, model calibration must be achieved with high
fidelity by comparing to clinically observable data. These
calibration processes must be streamlined and automated to
create digital twins with sufficient reliability within feasible
timeframes. Gillette et al. reported the first biophysical whole-
heart electrophysiology model that can be executed with real-time
performance, and is able to match the ECG of the modelled subject
using a topologically and physically detailed model of the entire
cardiac conduction system. Beetz et al. proposed a novel data-

Frontiers in Physiology

10.3389/fphys.2023.1231342

driven approach to investigate physiological patterns linked to
electrophysiological activity and mechanical deformation (Beetz
et al.). These vary considerably between individual patients and
across cardiovascular diseases. They developed a multi-domain
variational autoencoder network that integrates electrocardiogram
and MRI-based 3D anatomy data into a unified model.
Demonstrating high fidelity reconstruction and generation of
populations,  their approach
cardiovascular disease classification and supports the creation of

realistic  virtual enhances
accurate computational models, capturing disease and patient
variability. Doste et al. proposed utilizing cardiac models for
accurately and non-invasively determining the site of origin of
ectopic beats in outflow tract arrhythmias prior to ablation
therapy, to improve intervention outcomes. They enriched the
training data with simulation-based synthetic data to train a
Their

demonstrated that simulated data are pivotal for enhancing

machine-learning  classification ~ model. study
training classification algorithms to achieve sufficiently accurate
localization of the sites of origin.

Personalized computational —methodology is ideally
positioned—and perhaps critical—to assess an individual’s true
risk for arrhythmias, as it is increasingly recognized that
simplified concepts such as “wave length,” “scar volume,” and
“reduced ejection fraction” are insufficient to accurately assess
this. This is particularly true when addressing both electrical and
structural abnormalities, as can be studied using the recently
introduced unifying “Circle of Reentry” (Cluitmans et al., 2023),
Figure 1A. Although such reasoning frameworks may be all-
encompassing, they are dependent on a complex spatiotemporal
interaction of their elements. This necessitates computational
assessment not just to process the complex data at the level of
each single modality, but also to integrate findings to understand
emergent behavior and arrive at an accurate risk assessment of an
individual’s heart characteristics (Figure 1B).

Artificial intelligence (AI), although relatively unaddressed in this
collection of papers, is expected to significantly change our scientific
understanding (Krenn et al., 2022). Although its ‘black-box’ approach
may initially seem unsuitable to obtain new insights, it can uncover
patterns and may be well suited to explore new or unstructured data.
Even when the biophysics of a field are relatively well-understood—as is
arguably the case for cardiac electrophysiology—an interaction between
“fuzzy” Al and ‘exact’ biophysics may yield new insights (Cluitmans,
2023). And Al in Digital Twins may help to augment data that is
required for personalization but may not be directly available in a

particular individual.

Conclusion

In conclusion, the papers presented in this Research Topic on
“Computational methods in cardiac electrophysiology” collectively
contribute to advancements in computational methods that can
transform the understanding, analysis, and treatment of cardiac
arrhythmias. By focusing on the development of robust and accurate
models, as well as innovative approaches to personalize patient care,
these methodologies pave the way for better clinical applicability and
predictive outcomes. The integration of artificial intelligence and
machine learning techniques, which have seen rapid growth and
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adoption in recent years and months, is poised to propel the field
forward, enabling deeper insights and more effective treatment
strategies. Overall, the
electrophysiology, Al, and experimental and clinical data holds

synergy ~ of  computational
great promise for improved diagnostic accuracy, patient-specific
therapeutic planning, and an enhanced understanding of complex
cardiac interactions, ultimately contributing to better patient
outcomes and quality of life.
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Most cardiac arrhythmias at the whole heart level result from alteration of cell membrane
ionic channels and intracellular calcium concentration ([Ca®*];) cycling with emerging
spatiotemporal behavior through tissue-level coupling. For example, dynamically induced
spatial dispersion of action potential duration, QT prolongation, and alternans are
clinical markers for arrhythmia susceptibility in regular and heart-failure patients that
originate due to changes of the transmembrane voltage (V,,) and [Ca?*];. We present
an optical-mapping methodology that permits simultaneous measurements of the
Vin - [Ca?*) signals using a single-camera without cross-talk, allowing quantitative
characterization of favorable/adverse cell and tissue dynamical effects occurring from
remodeling and/or drugs in heart failure. We demonstrate theoretically and experimentally
in six different species the existence of a family of excitation wavelengths, we termed
semasbestic, that give no change in signal for one dye, and thus can be used to record
signals from another dye, guaranteeing zero cross-talk.

Keywords: optical mapping, semasbestic wavelength, isosbestic point, fluorescent dyes, transmembrane voltage,
intracellular free calcium concentration, alternans

1. INTRODUCTION

Heart failure (HF) is a global epidemic, affecting more than 64 million people worldwide (James
etal,, 2018) and is increasing in prevalence. In the US, about 6.9 million people have been diagnosed
with HE, with an expected 24% increase to nearly 8.5 million by 2030 (Benjamin et al., 2018). The
prognosis is poor: 20% die within 1 year and 80% within 8 years, resulting in over 655,000 deaths
annually (Virani et al., 2020) in the US alone. More than half of HF deaths are due to ventricular
fibrillation (Packer, 1985), and despite decades of study, the mechanisms by which HF predisposes
patients to these ventricular arrhythmias are not well-understood. As a result, few treatment options
are available. It is, therefore, crucial to identify how HF leads to the development of life-threatening
cardiac arrhythmias. Although it is well-known that fibrosis and myocardial ischemia (Tomaselli
and Zipes, 2004) can cause conduction abnormalities and cardiac arrhythmias, there is growing
recognition that abnormal intracellular calcium cycling plays a fundamental role in the pathology
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of HF (Hoeker et al, 2009; Aistrup et al, 2011). Many
studies have shown that disruptions in intracellular calcium
concentration ([Ca®T];) cycling, along with the complex voltage-
calcium bidirectional coupling, can lead to action potential
(AP) repolarization abnormalities that promote arrhythmias
(Balijepalli and Kamp, 2008, 2011; Hoeker et al., 2009;
Louch et al, 2010; Aistrup et al, 2011). This necessitates
the development of effective methods that can investigate
simultaneously the dynamics of the cell’s transmembrane voltage
(Vi) and [Ca?T]; in cardiac tissue.

Optical mapping, developed in the mid-1970s, is the
perfect methodology for the study of V,, -[Ca?t]; in cardiac
electrophysiology due to a high spatial and temporal resolutions.
In essence the method originally consisted in measuring changes
in V,, from changes in fluorescence intensity using V,, sensitive
dyes. For example, electrochromic V,, dyes bind to the cell’s
membrane, and their absorption and emission spectra blue-
shifts a few nanometers as the cell membrane depolarizes. By
blocking the excitation light and part of the emission spectra
with a long-pass-filter (LPF) placed over an electro-optical
sensor (camera), fluorescence intensity is measured in practice
(Figure 1). For small spectra shifts, the normalized change in
fluorescence intensity (AF/F) is given by (F - Fy) / Fo, where
Fo is the fluorescence intensity when the cell's membrane is
polarized (the resting membrane potential), and F when the cell’s
membrane is depolarized (any other transmembrane potential)
which to first approximation it is linearly proportional to the
cell’s transmembrane potential and thus closely reproduce the
action potential (Figure 1D). With unprecedented high spatial
and temporal resolution, optical mapping with V,, sensitive dyes
have been used to characterize wave propagation across the tissue
surface (Barone et al., 2020) and depth (Kelly et al., 2013), during
regional ischemia (Sidorov et al., 2011) and provide evidence
of reentrant waves as mechanisms of lethal arrhythmias such as
ventricular tachycardia and fibrillation (Davidenko et al., 1992;
Gray et al., 1998; Cherry and Fenton, 2008) that affect the electro-
mechanical coupling (Christoph et al, 2018). Additionally,
invasive and non-invasive techniques can also be characterized
using optical mapping, such radio-frequency ablation outcome
(Paredes et al., 2020; Pollnow et al, 2020), and low-energy
defibrillation techniques (Li et al., 2011; Ji et al.,, 2017; Uzelac
and Fenton, 2020). However, for a complete understanding
of arrhythmic mechanisms, simultaneous measurements of V;,
and [Ca?T]; are needed. Simultaneous measurement of V-
[Cat?]; reveals spatial dispersion of AP repolarization and
[Cat?]; transients (CaT) (Uzelac et al., 2017) which is one of the
mechanisms leading to ventricular arrhythmias (Pastore et al.,
1999; Watanabe et al., 2001; Gizzi et al., 2013).

Historically, the first dual optical mapping systems were
designed in 2000 by Choi and Salama (2000) with RH-237 V,,
and Rhod-2 AM [Ca™?]; dyes, and by Laurita and Singal (2001)
with Di-4-ANEPPS V,, and Indo-1 AM [Ca*?]; dyes. These
systems used overlapping excitation bands for the two dyes with
separate emission bands split and sent to the two photodetectors,
one to measure V,,; and one for [Cat?]; with a spatial resolution
of 16 x 16 pixels. Since then, other dual systems with higher
resolution (Holcomb et al., 2009) have been developed, including

those designed with a single camera for monolayers (Scull et al.,
2012) and whole hearts (Lee et al., 2011, 2012a,b,c; Herron et al.,
2012). The advantages of a single detector based systems include:
(i) Significantly less expensive as they do not require multiple
detectors/cameras; (ii) There is no need for spatial alignment of
the detectors to have the same field of view, increasing complexity
of setups, and possible decrease of the field of view (Holcomb
et al., 2009); (iii) No need to use a dichroic mirror to separate the
V,, and [Cat?]; fluorescence signals for each sensor, decreasing
light intensity, that is signal to noise ratio (SNR).

While optical mapping recordings have been considered
technically challenging and expensive, advances in recent years
have made the necessary equipment affordable enough (Marina-
Breysse et al., 2021) to become a standard technique in many
labs. Different methods have been proposed to achieve dual V,,
and [Ca>"] optical mapping measurement. Two-camera setups
require complex spatial alignment of the cameras and optical
elements to split the two fluorescent signals, with only one signal
reaching each camera (Holcomb et al., 2009). The complexity
of the two-camera setups can be avoided by a single camera
for dual V,, and [Ca?T]; signal measurements. The fundamental
principle behind single-camera-based methods is to separate
the V,, and [Ca®T] fluorescence signals based on differences in
excitation and/or emission spectra of the two dyes used. Existing
methods (Lee et al., 2011, 2012a,c) are limited to the particular
choice of fluorescent dyes, significantly limiting their application.
Additionally, there is no established methodology for designing
and implementing a single-camera-based dual V,, and [Ca2t];
measurement technique which provides zero-cross talk of the
two fluorescence signals. The excitation light band for a V,,
dye preferably would not excite a [Ca?"]; dye and vice versa.
However, true spectral separation is not possible (with currently
available dyes), but illuminating at a wavelength where one or the
other dye is not sensitive to the parameter of interest is sufficient.
This is essential as the complex bidirectional coupling between
Vo, and [Ca?*]; (Shiferaw and Karma, 2006) is important when
investigating under which HF conditions (Gorski et al., 2015) V,,
or [Ca®*]; are responsible for triggering an arrhythmia.

This study presents a theoretical framework to analyze and
select the optimal dyes/filters combination to achieve zero-
cross talk for dual V,, - [Ca®"] optical mapping applications
for simultaneous measurement of V,, and [Ca2t]; signals,
using a single sensor. The methodology is based on alternating
excitation bands for each fluorescent dye in sync with the
camera, recording each signal in alternating frames in order
to overcome the challenges of mutual cross-talk of the two
signals. Excitation at wavelengths we term semasbestic results
in no change of fluorescence of a voltage-sensitive dye as V,
changes, which is suitable to excite a [Ca?t]; dye with no
cross-talk. We demonstrate the existence of a family of these
excitation wavelengths and the advantage of this methodology
experimentally with optical mapping measurements performed
in six different animal species, while also showing how
previous methods exhibit signal cross-talk. Furthermore, optical-
mapping methods using V,, and [Cat?]; dyes have a broad
range of applications, suitable for research of cardiomyocyte
cultures (Fast and Ideker, 2000), studying drug effects on heart
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FIGURE 1 | Mechanisms of measurement with an electrochromic Vi dye. (A) The Gaussian absorption (blue) and emission curves (red) are good fits for a given
electrochromic Vm dye for illustration purposes, with solid lines for polarized membrane and leftward shifted dotted lines for maximally depolarized membrane by a
propagating AP. For excitation at the isosbestic point and for a given LPF on the camera side passing only part of the emission spectra, as illustrated with the solid
(black) vertical lines, AF/F is always negative. AF/F = 0 can only be achieved if the entire emission spectrum is obtained (solid blue vertical line), thereby not
dependent on the optical setup, the A pr value. Excitation left of the isosbestic point results in an amplitude increase of the emission spectra due to absorption
coefficient increase with the shift of the absorption spectra. Depending on the filter 4| pr, overall AF/F sign can be negative or positive, and in between, there is a
particular A pr such that positive change cancels the negative change resulting in AF/F = 0, for specific Agyc, termed semasbestic wavelength. (B) Theoretically
calculated map of AF/F magnitude values as a function of Agy; and A pr, showing the transition from positive to negative AF/F, and continuous line of semasbestic
wavelengths, AF/F = 0 isochrone line, for each gy - ALpg pair. (C) lllustration of the experimental setup. (D) APs from optical mapping measurements on isolated
rabbit heart near a semasbestic wavelength. A 10 nm wide BP excitation filter was used of 540 nm nominal center wavelength along different LPFs on the camera’s
side. Due to low AF/F values SNR is low. However, ensemble averaging (stacking) increases SNR without filtering in post-processing. (E) Quadratic fit curves from
AF /F simulated values (B), for four different LPFs of the same 1| pr values as LPF used in AF/F measurements on isolated hearts. (F) Quadratic fit curves from AF/F
magnitude values for four different LPFs. Optical mapping recordings were performed on isolated rabbit heart for across a wide range of excitation wavelengths, from
500 to 660 nm. Zero crossings correspond to the semasbestic wavelengths. All A pg values of LPFs are experimentally measured.
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electrophysiology (Bedut et al., 2016; Streit and Kleinlogel, 2018;
Gunawan et al., 2021; Uzelac et al., 2021), gene therapies on V,,
and [Ca?t]; dynamics in cardiac tissue and in other organs such
as the brain (Baker et al., 2005; Ma et al., 2016; Turrini et al., 2017)
as well as in other biological systems driven by V;, and [Ca**];
dynamics like in C-Elegans (Venkatachalam et al., 2016).

2. MATERIALS AND METHODS

Previously published methods of simultaneous measurement of
Vin-[Ca®T]; with a single sensor (Lee et al., 2011, 2012b,c), have
incorrectly used the term isosbestic point of a V,,, dye as a suitable
excitation wavelength (Agy.) for [Ca?t]; dye, expecting no change
in measured V,, fluorescence. While isosbestic points (Ahmed
and Connor, 1979; Shynkar et al., 2004; Tai et al., 2004; Ni¢
et al., 2009; Bachtel et al., 2011; Uzelac et al., 2019) are defined
as the excitation wavelengths at which the total absorbance of a
fluorescent dye does not change in response to a change of V,,
(Figure 1A; Supplementary Figure 1), it was instead applied as
the excitation wavelength at which there is no measurable change
in V,, fluorescence signal, expressed as AF/F = (F—Fy)/Fy ~ 0,
where Fj is the fluorescence intensity when the cell's membrane is
at the resting membrane potential, and F = F(V,,) is the intensity
at any other cell membrane potential.

Isosbestic point is defined as the excitation wavelength at
which the absorption spectra for polarized cell membrane and the
shifted absorption spectra for maximally depolarized membrane,
intersect each other (Bachtel et al., 2011) (Figure 1A). Therefore,
when illuminating at an isosbestic point, the absorption
coefficient changes minimally (can be approximated to zero), and
the integral over the entire emission spectra remains the same.
This implies AF/F =0, only if the LPF placed on the camera side
passes the entire emission spectra. In practice, this is not possible
as cameras have limited dynamic rang, and in common use the
LPF on the camera side blocks part of the emission spectra to
increase the absolute AF/F value (Figure 1A).

In this study, we show that isosbestic points, which are
an intrinsic property of fluorescent dyes and as such do not
depend on the optical filters transmission properties and sensor
spectral response used in many optical mapping setups, are not
necessarily the correct wavelengths to use to prevent cross-talk
and in fact can give large V,, signal (see top panel V,, signal in
Figure 1D obtained with the same optical filter values and the
same camera used in Lee et al. (2012b) what authors mistakenly
considered to be an isosbestic point excitation). In this study,
we establish a methodology to design bi-modal optical-mapping
systems with the selection of the correct optical filters, given
a choice of V,, and [Ca®t]; dyes. We demonstrate that for a
given electrochromic V,, dye, a continuous range of excitation
wavelengths exist that result in AF/F 0 (no fractional
change of fluorescence) dependable on a given a LPF cut-on
wavelength (A1pr) and the spectral response of the camera used.
We have termed such a family of wavelengths as semasbestic (self-
extinguishable) wavelengths, which are a function of the A;pr for
a particular V;, dye. Thus, V,, and [Ca**]; dyes can be excited
with different wavelengths in alternating frames, the V,, with a

wavelength outside of a [Ca®T]; dye’s absorption spectrum and the
[Ca?*]; dye within the absorption spectra of the V,, dye, but using
a semasbestic wavelength for the V,, dye, to achieve zero cross-talk
for both signals.

The absorption and emission spectra of electrochromic V;,
dyes bound to a cardiac cell membrane and shift a few
nanometers toward blue as the membrane depolarizes (Loew,
1982) (Figure 1A). The isosbestic point, is the intersection of
the absorption curves for the polarized (—80 mV) and fully
depolarized (approximately +20 mV) membrane (Figure 1A),
typically occurring near the peak of the absorption spectrum
(Ahmed and Connor, 1979; Bachtel et al., 2011; Uzelac et al.,
2019). Excitation at the isosbestic point results in a leftward shift
of the emission curve without changing in amplitude. Therefore,
the only case in which no change in V,, signal can be measured
(AF/F = 0), occurs when using an LPF on the camera side that
passes the entire emission spectra for both (polarized/depolarized
cell membrane) curves (Figure 1A).

Excitation with wavelengths shorter than the isosbestic
(Figure 1A) increases the absorbed light, resulting in an
increased amplitude of the shifted emission spectrum. For the
emission spectrum range, approximately left of the emission
peak, AF/F is positive, and for the range right of the peak, AF/F
is negative. With LPF on the camera side, the actual measured
fluorescence signal represents integrated emission spectra from
the filter A;pp, and the overall sign of AF/F can be positive
or negative depending on Ajpp. A semasbestic wavelength will
be then the excitation wavelength such that integrated intensity
over the emission spectra starting from Appp results in AF/F =
0. Therefore, Semasbestic wavelengths depend on the Ap, and
the Appr used, resulting in continuous line of AF/F = 0 values
(Figure 1B).

To demonstrate the existence and usefulness of semasbestic
wavelengths, we used the near infra-red electrochromic V,, dye
JPW-6003 (Supplementary Figure 1) in isolated Langendorft
perfused hearts of six animal species, fish (N = 2), Guinea
pigs (N = 2), rabbits (N = 12), cats (N = 6), pigs (N =
7), and sheep (N = 2), totaling 31 experiments, in addition
to monolayers cultured from neonatal rat hearts. Details of
experimental materials and methods, including heart excision
and preparation, cell culture monolayers preparation, excitation
light sources, emission optical filters characterization, absorption
and emission spectra of the JPW-6003 V,, dye, as well as
methods used to obtained AF/F 0 semasbestic points
experimentally and their statistical analysis, are provided in the
Supplementary Materials.

3. RESULTS

AF/F values were measured in isolated heart experiments stained
with V,,, dye JPW-6003, and excited with a series of different
excitation light bands using 10 nm wide bandpass (BP) excitation
filters of nominal center wavelengths ranging from 500 to
671 nm. The filters were coupled to either green or red LED
collimated light (Figure 1C), and for four different LPFs used
on the camera side (Supplementary Figure 2). The excitation
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light band of each BP filter was modeled with a single effective
excitation wavelength (Supplementary Figure 3).

For each LPF-BP filter combination (out of the 60 possible),
optical mapping recordings of V,,, were obtained for a duration
of 2-10 min (depending on the amplitude of AF/F signal),
acquiring a sequence of images with the V,, across the tissue,
at 500 FPS at a resolution of 128 x 128 pixels. For signals of
low AF/F values close to the semasbestic wavelengths, where
signal to noise ratio (SNR) decreases (Figure 1D), the longer
recordings (10 min) were used to perform action potential (AP)
stacking (ensemble-averaging) (Uzelac and Fenton, 2015) in
post-processing. The stacking procedure significantly improved
SNR to precisely obtain the small AF,,,/F magnitude values
(Figure 1D; Supplementary Figure 4).

For each isolated experiment and each LPE semasbestic
wavelengths were obtained as zero values of the fit curves
of AF/F magnitudes obtained for different excitation BP
filters. The range of semasbestic wavelength hypothesized
theoretically matches well with those obtained experimentally
(Figures 1E,F). Among obtained semasbestic wavelengths from
the different animal species, no statistically significant difference
was observed, with the largest variation found only in pig
hearts (Figure 2A). We attribute this difference to the surface
fatty tissue layer (that other animals did not have) attenuating
non-linearly the emitted fluorescence spectra (van Veen et al,
2004), which resulted in a small leftward shift of the semasbestic
wavelengths. One-way ANOVA tests were performed with and
without the semasbestic wavelengths obtained in pig hearts, and
found that even when including the semasbestic wavelengths
of the pig hearts, P-values did not reach statistical significance
(P < 0.05 was considered statistically significant). Therefore,
semasbestic wavelengths (Figure 2B) appear to be independent
of animal species, and a curve can be fitted to relate semasbestic
wavelengths as a function of Ajpr for V,, JPW-6003 dye,
(Figure 2C).

Any semasbestic wavelength is suitable to excite a [Ca?*]; dye.
However, in practice using off-the-shelf filters it is expected some
mismatch with the filter effective excitation wavelength from the
ideal semasbestic wavelength. Any mismatch will result in a cross-
talk, the presence of the V,, signal while measuring the [Ca®*];
fluorescence signal. However, for the excitation wavelengths of
up to 10 nm from the ideally suitable semasbestic wavelength,
the fractional change of V,, fluorescence is less than 0.5%
(Figure 2D). Staining a heart in addition with a [Ca*Tt]; dye and
assuming the same baseline fluorescence levels of the two dyes,
the fractional change of 0.5% will results in ~0.25% fractional
change of both fluorescence signals combined, attributed to
Vi — Ca cross-talk. In practice for V,, — Ca single-camera
measurements, a relative fluorescence change measured in Ca
fluorescence channel, of for example 5% means that 0.25% of
the measured fluorescence change is attributed to the unwanted
Vo signal.

To further demonstrate the proof of concept for V,, — Ca
cross-talk minimization for each of the four LPF filters, V,,
measurements with JPW-6003 dye only were performed using
alternating excitation bands in sync with the camera frame rate

(500 Hz at a resolution of 128 x 128 pixels). The sequence
of images was recorded with the odd frames corresponding
to ideally no change in V,, fluorescence (DFF = 0) and even
frames corresponding to the change in V,, signal fluorescence
(Figure 3). For odd frames, the off-the-shelf BP excitation filters
were used chosen to match as close as possible the ideal
semasbestic point corresponding to each of the four different
LPFs, and coupled with 525 centered green LED. For even
frames, the BP excitation filter of the effective Agy, = 660.0
nm wavelength was used. For each of the four validation tests
with different LPE, the amount of V,,, — Ca cross-talk is around
0.25% except for Arpr = 698.2, which is around 0.4%. The
cross-talk is represented as a fractional change in the V,, dye
fluorescence. The optical action potential traces corresponding
to the same image pixel for even and odd image sequences
for direct comparison. As off-the-shelf BP filters were used, the
amount of cross-talk depends on the difference between the BP
filter effective wavelength from the semasbestic point. Based on
the measurement (Figure 3), sensitivity is minimal for A{PY =
740.0 nm, using a BP filter of effective excitation wavelength
of 5 nm off the semasbestic point and resulting in AF/F less
than 0.25%.

4. DISCUSSION

The range of different semasbestic wavelengths of a given V,,
dye provides flexibility in the design of an optical mapping
system for simultaneous single-camera V,, - Ca recordings,
as it is not limited to a single choice of excitation and
emission filters, and V,, and Ca fluorescence dyes. The
design parameters include the optimal excitation wavelength
for a V,, dye (that maximizes AF/F), choice of [Ca’*]; dye
and its excitation wavelength (semasbestic point), the dual-
band pass optical filter on the camera side, and suitable
LEDs coupled with excitation filters. Availability of LEDs,
optical excitation filters, and the dual-band pass filter of
desired spectral properties based on the theoretical design are
additional constraints that need to be considered. To begin
with the parameters optimization, the first step is to choose a
Vi dye.

4.1.V,, Dye Selection

Selection of the V,, dye determines the range of semasbestic
wavelengths. For optical mapping method optimization with
a chosen V,, dye, the first step is to determine the V,, dye
emission spectra to optimize AF,./F. For a chosen JPW-
6003 dye its absorption and emission spectra are shown in
Supplementary Figure 1. Excitation of the V,, dye with longer
wavelengths than the isosbestic point and using longer Ajpr on
the camera side, increases AF,,,/F magnitude (Figures 1B-F;
Supplementary Figure 5). However, the SNR decreases for
longer Appr due to less fluorescence light reaching the detector.
A common practice is to choose Aipr between the V, dye
emission peak and 50% of the peak, the range from 708 to 775
nm for JPW-6003 dye (Supplementary Figure 1). Considering
suitable and currently available deep red high-power LEDs,
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FIGURE 2 | The semasbestic wavelengths across all experiments for JPW-6003 Vi, dye. (A) Box plots are a statistical representation of semasbestic wavelength
averaged for each species. The ends of each box are the upper and lower quartiles, with the median marked as a horizontal line inside the box. The whiskers lines
represent the upper and lower extremity. The P-values represent results of one-way ANOVA analysis with and without the isosbestic points from isolated pig hearts
experiments. (B) The mean values and uncertainties of experimentally obtained semasbestic points across all species for different LFPs used on the camera. (C) A
linear curve fit relating the range of semasbestic wavelengths corresponding to different 1| pr. (D) Sensitivity analysis near the isosbestic wavelength for different LPFs.
Experimentally obtained AF/F magnitude values were averaged across all species for the same LPF-BP filter pairs. Excitation wavelengths for up to 10 nm off the
semasbestic wavelength result in less than 0.5% in the fractional change of the Vi, signal.

the optimal choice is to use peak emission LEDs around  excitation wavelength of 660 nm. Rhod-2 [Ca®*]; dye absorption
660 nm. spectrum effectively reaches zero above 625 nm, making Rhod-2
dye a suitable choice for [Ca?t]; measurement.

4.2. [Ca?t]; Dye Selection

Selection of the suitable [Ca%T]; dye is constrained with the range 4.3. Dual-Band Pass Filter

of the semasbestic wavelengths corresponding to the selected A dual-bandpass optical filter is required on the camera
range of Appr values, from 708 to 775 nm. From the equation  to pass the emitted fluorescence from both dyes. With the
shown in Figure 2C, the corresponding range of semasbestic ~ chosen 540 nm semasbestic wavelength, the V,, dye band
wavelengths range from 523 to 548 nm, suitable to excite [Ca%t]; is determined from the Ap. Vs. Appp curve (Figure 2C) to
dyes such as Cal-520, Rhod-2, and Rhod-4. In this study, we  start at ~730 nm. The first filter band corresponding to
choose Rhod-2 dye with a peak absorption at 552 nm. However,  the Rhod-2 emission spectra can be from 560 and up to
commercially available LEDs offer peak emission around 525 610 nm. The lower band limit is imposed by excitation
nm, decreasing emission intensity toward the Rhod-2 absorption =~ BP filter centered at 540 nm so that its transition band
peak, making excitation at 540 nm a suitable trade-off. Another  effectively reaches zero (< 107%) at 560 nm. The upper
important aspect to consider is to avoid overlap of the [Ca*"];  limit is determined to avoid overlap with the V,, emission
dye absorption spectra with the chosen JPW-6003 V,, dye  spectra to minimize cross-talk, the presence of V), signal in
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FIGURE 3 | Single-camera dual Vi, measurements. The Vi dye was excited with alternating excitation bands, using a 660/10 excitation BP filter in even frames. Odd
frames were acquired using off-the-shelf excitation BP filters selected to closely match the semasbestic points (Aggm) corresponding to the A pr of the four LPFs. Agxe
wavelengths are effective excitation wavelengths of the BP filters. Their nominal center wavelengths are listed in Supplementary Figure 3. )L”E‘;’g =525 nmis the
nominal center wavelength of 20 nm wide (OD6) BP filter (Semrock). Shown optical action potential signals are obtained using the stacking procedure from a single
pixel, averaging at least 400 periods without any filtering. The stacking resolves small Vi signal changes buried under the noise level, which could be interpreted as
no change in Vm signal in the odd frames otherwise. The cross-talk, the presence of Vm signal due to the differences between the filters effective excitation
wavelength and corresponding semasbestic points is less than 0.25% for most LPF. The sensitivity to the difference is the lowest for A pr = 740.0 nm, resulting in
AF/F amplitude of less than 0.25% using excitation wavelength of more than 5 nm different from the ideal semasbestic point.
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the 560-610 nm filter band when the Rhod-2 dye is excited
(Supplementary Figures 1, 6).

4.4. Excitation Filters

The LED bell-shaped emission curve results in non-uniform
excitation spectra passing through the BP excitation filter.
For example, the light intensity passed through the 10 nm
wide 540 nm centered BP filter is higher for the wavelength
range left of the 540 nm than for the range right of the
540 nm, resulting in different effective (mean) excitation from
the nominal 540 nm center wavelength. Since this effective
excitation wavelength has to match the semasbestic wavelength,
any mismatch will result in a non-zero AF/F value. However,
the introduced error is small, and the V), signal change is
less than 0.5% using an excitation wavelength in the £10
nm range around the semasbestic wavelength. The fractional
changes were measured only with the V,, dye. Adding the
Ca dye, the amount of cross-talk will be even lower, as the
fractional change is measured in respect to the summed baseline
fluorescence of both dyes (Figure 2D). For the V,, dye excitation,
the width and spectral non-uniformity of the passed light are
not critical. With a 660 nm centered LED, BP filters with a
660 nm center wavelength of up to 50 nm BP width can be

used. The limits are imposed to avoid excitation of the Rhod-
2 dye, and a practical limit is due to the LED’s bell-shaped
emission curve.

4.5. Practical Design With Applications

The optical mapping setup with optimized parameters may come
at a high cost requiring the manufacturing of custom filters.
However, flexibility in the choice of the semasbestic wavelengths
provides leverage in the choice of design parameters while still
minimizing the cross-talk for single-camera based simultaneous
Vm - Ca measurements to use off the shelf filters. The dual BP
filter is the most important for the system design as it determines
the semasbestic wavelength. Additionally, any mismatch between
the off-the-shelf BP filter effective excitation wavelength and
the semasbestic wavelength will result in V,, to Ca cross-talk.
However, as outlined above, the amount of cross-talk is less
than 0.25% when the difference between the BP filter effective
excitation wavelength and the semasbestic point is less than 5 nm
(Figures 2D, 3).

For practical realization, we choose an off-the-shelf dual
BP filter, of optical density (OD) 6 (Chroma), with the
first passband of 560-610 nm, and the second LPF band
of the nominal 700 nm wavelength (effective 698.2 nm)
(Supplementary Figure 7). Based on the equation (Figure 2C),
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the corresponding semasbestic wavelength for JPW-6003 V,, dye
is 551.7 nm. The closest off-the-shelf 10 nm wide BP filter
of 550 nm (nominal wavelength) center wavelength (Edmund
Optics) was chosen to be used for Rhod-2 Ca dye excitation
(Supplementary Figure 3). An additional OD6 LPF of nominal
Arpr = 575 nm (Chroma) was placed over the dual BP filter to
avoid overlap between the 550/10 BP excitation filter and the
560-610 nm passband of the dual-band pass filter. This design
narrows the Rhod-2 Ca emission spectra range to the 575-
610 nm range resulting in reduced Ca fluorescence intensity
reaching the camera sensor. However, this was a necessary
trade-oft using off-the-shelf optical filter filters. For the V,, dye
excitation, a 10 nm wide OD4 BP filter of 660 nm nominal center
wavelength was used (Edmund Optics). A green LED with 525
nm peak (Luminous Devices) coupled with 550/10 nm BP filter
for Rhod-2 Ca dye excitation was used, and a red 660 nm peak
LED (LEDEngin) coupled with the 660/10 nm BP for V,, dye
excitation (Supplementary Figure 8).

Quantification of spatiotemporal discordant alternans of V-
[Ca?*]; in cardiac tissue. The optical mapping system with
the design parameters described above was used to measure
Vi - [Ca®t]; signals with a single-camera in isolated hearts
of Rabbit, Cat, Guinea Pig, Pig (Figure 4), and monolayer cell
culture of neonatal rats (Figure 5). A restitution protocol was
performed for each species, where V,, - Ca signals were recorded
at decreasing pacing cycle lengths (PCLs) until a conduction
block or ventricular fibrillation (VF) occurs. At shorter PCLs,
instabilities in V,, or [Ca;] at the cellular level lead to the
development of beat to beat alternans in action potential duration
(APD) (Pastore et al., 1999), and intracellular calcium duration
(CaD) (Uzelac et al., 2017). Through tissue-level coupling, these
instabilities lead to complex and irregular spatial dispersion in
AP repolarization and in CaD (Figure 4), forming dangerous
spatially discordant alternans. Spatially discordant alternans are
equivalent to T-wave alternans in clinical ECGs (Pastore et al.,
1999; Uzelac et al., 2021), the clinical marker for arrhythmia
susceptibility and sudden cardiac death (Walker and Rosenbaum,
2003; Verrier et al., 2009). Among species, the differences in ionic
membrane channel densities such as potassium repolarization
channels and lack of specific ionic channels create differences
in AP morphology. In addition, through V,, - Ca bidirectional
coupling, other differences across species exist in terms of
handling the intracellular Ca cycling (Figure 4). For rabbit, cat,
and guinea pig heart, alternans in Ca seem to drive V,, alternans
leading to spatial dispersion of AP repolarization. In contrast, no
alternans are observed in V,, nor Ca signals for pig hearts, yet
pig hearts develop VF at faster PCLs in the restitution protocols.
Understanding these differences across species could lead to
a better understanding of different arrhythmia mechanisms
modalities and relate them to human heart physiology to more
complete understanding arrhythmia in human hearts, devise
novel treatments, and help with the global epidemic of HF.

5. CONCLUSIONS

This study presents a methodology to achieve zero cross-
talk (smaller than SNR after stacking) in a single-camera bi-
modal optical mapping design based on semasbestic wavelengths.

The presented guidelines show how to optimize semasbestic
wavelengths to achieve zero cross-talk among V,, and Ca
signals, while optimizing signals amplitudes as well. With
off-the-shelf bandpass excitation filters of slightly different
effective excitation wavelengths than corresponding semasbestic
wavelengths (Figure 3) we achieved near zero-cross talk. For
a true zero cross-talk, custom manufactured bandpass filters
matching the semasbestic point would be needed, and one
would need to take into account the LED excitation light
spectral profile within the filter passband. The absorption spectra
of a given electrochromic V), dye is spectrally shifted when
the dye is bounded within a cell membrane due to a strong
interaction between the dye’s molecule electric dipole momentum
and the cell membrane electric field (Matson et al., 2012).
Therefore, contemporary spectroscopy methods to obtain the
dye absorption and emission spectra, dissolving the dye in
a solvent such as ethanol and using a spectrometer, would
result in different semasbestic wavelengths than when performing
equivalent measurements on isolated hearts stained with the dye.
In this study we conclude that obtained semasbestic wavelengths
for a given electrochromic V,, dye, are dependent only on the
excitation wavelength A, and corresponding Ajpr of the dye
emission band. As validated on isolated hearts of six different
species, the semasbestic wavelengths seems to be independent
of the species (as validated on six different species and cell
culture monolayers).

In the published literature of simultaneous measurement of
V.-[Ca2t]; with a single sensor (Lee et al, 2011, 2012b,c),
authors used the same EMCCD camera model and the dual-
bandpass filter of 700 nm LPF cut-on wavelength for the JPW-
6003 V,, fluorescence showing no visible V,, signal when excited
with 540 nm centered band, subsequently used for Rhod-
2 Ca dye excitation. However, our findings are different. As
shown in Figure 1D, excitation at 540 nm with LPF of 700
nm nominal cut-on wavelength resulted in apparent presence of
Vi signal. Therefore, exiting Rhod-2 dye with 540 nm centered
bandpass filter and using the dual-band pass filter of 700 nm
LPF band for V,, fluorescence results in a cross-talk which
can be further minimized with the presented methodology for
cross-talk elimination.

While the presented methodology is demonstrated with the
semasbestic wavelengths of JPW-6003 V,, dye and using Rhod-
2 [Cat); dye, the described methodology does not depend on
the choice of the dyes. It applies to any other electrochromic V,,
resulting in a different set of semasbestic wavelengths. Therefore,
depending on the user’s need, we provide a range of semasbestic
excitation wavelengths that can be used with JPW-6003 V,,
sensitive dye, and a methodology to obtain the same for other
Vi sensitive dyes. We followed the common practice in optical
mapping to use an LPF to record V,, signal fluorescence.
Excitation on the positive-slope side of the excitation spectrum
induced an increase in fluorescence during an action potential,
which is balanced by recording from the negative-slope side of
the emission spectrum. Other classes of semasbestic points may
exist with different designs of the emission filter. For example,
it is also possible to create a semasbestic wavelength along the
negative-slope side of the excitation spectrum and balance this
by recording from a band on the positive-slope side of the
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FIGURE 4 | Single-camera dual V,,, — Ca measurements in isolated hearts of different species. (A) Arrhythmic effects under dynamic pacing, shown as spatial
dispersion of APD and CaD across tissue for different species for even and odd beats. The spatial dispersion indicates an increased susceptibility to arrhythmia. APD
values are obtained from 50% signal rise in amplitude till 50% AP repolarization. Numbers to the right indicate 3rd and 97th percentile APD values expressed in
milliseconds. CaD values are obtained as the integral from 50% rise in amplitude till 50% decrease. Blue-red patterns show variations in APD and CaD (AAPD, ACaD)
between even and odd beats (discordant alternans), showing regions alternating out of phase and separated with the nodal lines (white lines). Spatially discordant
alternans are the counterpart of T-wave ECG alternans, a well-known marker for arrhythmia susceptibility. Although all species do develop arrhythmia under dynamic
pacing, the electrophysiology across species is very different. Spatially discordant alternans are the most pronounced in rabbits, while pig hearts show very little APD
and CaD dispersion, with insignificant differences between even and odd beats. (B) V;, and Ca representative AP signals showing temporal alternans for different
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results is a small yet negligible cross-talk compared to the amplitudes of the signals.

FIGURE 5 | Simultaneous single-camera-based measurements of Vi and Ca signals in isolated cell culture monolayers of neonatal rats. (A) Time-snapshots of Vi -
Ca dynamic at different time points illustrating the presence of anchored spiral wave and spatial loss of correlation between propagating Vi wavefront from Ca
dynamics. (B) Normalized Vim and Ca signals obtained from processed raw recordings showing Ca signal lagging in time. (C) Representative unfilttered Vi and Ca
signal traces with no filtering expressed as a relative change. In cell culture monolayers, Ca signals have significantly higher SNR than Vi signals originating only from
the dye bound to the cell membrane. The amount of cross-talk and the presence of Viy signal in Ca signal with excitation at near the semasbestic point (Exc550)

emission spectrum. However, the close separation between the
dye absorption and emission spectra (Supplementary Figure 1)
may preclude such an approach for JPW-6003 dye, while it may
be feasible for other V,, dyes.

Optical mapping methods using fluorescent dyes are well-
established and very important to measure signals from cells and
tissue. The use of optical mapping systems is rapidly growing.
Nowadays, it is becoming a common tool in many research labs
as the equipment is no longer prohibitively expensive (Lee et al.,
2017) with novel advances in CMOS sensor technology. The
increasing number of research groups are using optical mapping

to investigate V,,-[Ca*?]; on biological tissues, and optical
mapping methods are even becoming accessible in university
classrooms. Simultaneous measurement of V,, and [Ca2t];
enables many studies in the area of electrophysiology related to
the V,, and [Ca?"]; dynamic and their bidirectional coupling.
For example, cardiac arrhythmia can be caused by AP spatial
dispersion driven with Ca alternans at the cellular level (Uzelac
et al, 2017) (Supplementary Videos 1, 2). Dual V,, and [Ca®*];
measurements are necessary to understand the underlying
mechanism leading to arrhythmia (Groenendaal et al., 2014), and
optical mapping studies can be performed even in combination

Frontiers in Physiology | www.frontiersin.org 18

February 2022 | Volume 13 | Article 812968


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Uzelac et al.

Semasbestic Wavelengths for Cross-Talk Elimination

with contractions (Christoph et al., 2018) to study the mechanical
stretching effects on cardiac electrophysiology. Time-resolved
series of V,, and [Ca?"]; signals at high spatiotemporal resolution
are generally applicable to other electrophysiology related studies
besides HF. For example, many drugs affect the AP repolarization
phase blocking the potassium channels and prolonging the
APD, the cellular mechanism of long-QT. Optical mapping
provides integrative studies at both the cellular and tissue level
to understand how drugs affect the ionic channel currents and
intracellular Ca dynamics and to understand the drug’s safety
profile and associated antiarrhythmic or proarrhythmic at the
tissue level (Uzelac et al., 2020, 2021), which would not be
possible to understand, studying the drug’s effect at the cellular
level only. The methodology developed here can also be used
to investigate other biological systems with V..-[Cat?]; driven
dynamics such as the brain (Rad et al., 2017) the pancreas (Yang
and Berggren, 2006), smooth (Nelson et al., 1990), and skeletal
(Flucher and Tuluc, 2017) muscle among others.
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State of the art mathematical models are currently used to bridge the gap between
basic research conducted in the laboratory and preclinical research conducted on large
animals, which ultimately paves the way for clinical translation. In this regard, there is a
great need for models that can be used alongside experiments for in-depth investigation
and validation. One such experimental model is the porcine atrium, which is commonly
used to study the mechanisms of onset and control of atrial fibrillation in the context
of its surgical management. However, a mathematical model of pig atria is lacking. In
this paper, we present the first ionically detailed mathematical model of porcine atrial
electrophysiology, at body temperature. The model includes 12 ionic currents, 4 of
which were designed based on experimental patch-clamp data directly obtained from
literature. The formulations for the other currents are adopted from the human atrial
model, and modified for porcine specificity based on our measured restitution data for
different action potential characteristics: resting membrane potential, action potential
amplitude, maximum upstroke velocity and action potential duration and different levels of
membrane voltage repolarization. The intracellular Ca?+ dynamics follows the Luo-Rudy
formulation for guinea pig ventricular cardiomyocytes. The resulting model represents
“normal” cells which are formulated as a system of ordinary differential equations. We
extend our model to two dimensions to obtain plane wave propagation in tissue with
a velocity of 0.58 m/s and a wavelength of 8 cm. The wavelength reduces to 5 cm
when the tissue is paced at 200 ms. Using S1-S2 cross-field protocol, we demonstrate
in an 11.26 cm square simulation domain, the ability to initiate single spiral waves
(rotation period >~ 180 ms) that remain stable for more than 40 s. The spiral tip exhibits
hypermeander. In agreement with previous experimental results using pig atria, our model
shows that early repolarization is primarily driven by a calcium-mediated chloride current,
lcicas Which is completely inactivated at high pacing frequencies. This is a condition that
occurs only in porcine atria. Furthermore, the model shows spatiotemporal chaos with
reduced repolarization.

Keywords: ionic model, pig atria, spiral waves, large animal, cardiac electrophysiology
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Mathematical Model for Pig Atria

1. INTRODUCTION

Atrial fibrillation (AF) is the most common sustained form of
cardiac arrhythmia occurring in humans. Its effective treatment
requires a detailed understanding of the underlying mechanisms
at the genetic, molecular, cellular, tissue and organ levels. To
study the complex mechanisms underlying the development,
maintenance and termination of cardiac arrhythmias, preclinical
research models are required. These models range from in vitro
cell cultures to in vivo small and large animal hearts. However,
translational research necessitates a proper understanding of
the results from animal experiments in the human context, for
which it is very important that the preclinical results are well-
understood and validated. Currently, this is achieved through
simulations of state-of-the-art mathematical models alongside
experimentation on large animals. In particular, a model that
is extensively used by experimentalists to advance surgical
management of AF, is that of the pig atria. However, until now,
an ionically detailed mathematical model for pig atrial tissue
has been lacking, and researchers have been forced to rely on
mathematical models from other animal species to understand
their experimental observations.

Typical large animal heart models include that of dog, sheep,
goat, pig, etc. In studies on cardiac arrhythmias, especially
atrial fibrillation (AF) it is a challenge to find the right
animal model. This is mainly because the reliable inducibility
of sustained AF requires some form of chronic intervention,
which is often associated with a large cost of maintenance
and time limitations. The porcine atrial model overcomes this
challenge by providing an acute, reliable and reproducible
model for sustained AF (Lee et al, 2016). This model can
be used at length to test experimental procedures and drugs
that are intended for translational purposes under various
disease conditions. To make matters more favorable, the cardiac
anatomy, electrophysiology and coronary circulation of pigs are
very similar to those of humans (e.g., heart mass: 148-383 g
in humans vs. 250-400 g in pigs; heart to body mass ratio: 0.4
in humans vs. 0.32 in pigs; heart rate: 60-80 in humans vs.
68-100 in pigs, etc.) For a detailed comparison of human and
pig parameters, we refer the reader to Table 1 of Clauss et al.
(2020). Thus, an electrophysiologically detailed mathematical
model of the porcine atria is definitely a important tool to have
in translational research.

In this study, we present the first detailed mathematical model
of the pig atria, based on experimental patch-clamp data from
literature and our own restitution experiments on pig atrial
tissue, using sharp-electrode technique. In two dimensions, we
demonstrate its ability to produce and sustain stable meandering
spiral waves. We characterize the spatiotemporal meander
pattern, report the dominant frequencies and the effect of
system size on the stability of the spiral pattern. In particular,
we highlight some fundamental differences in the role of CI™
currents and Ca?t dynamics in the early repolarisation phase
of AP in pigs with respect to humans, a crucial difference to
be accounted for in the translatability of results, from pigs to
humans, in future in vitro and in vivo experiments. We further go
on to propose a model for AF using an altered set of parameters

that allows us to have a state of electric turbulence in pig
atrial tissue.

2. MATERIALS AND METHODS

All animal care and use procedures were carried out exclusively
by appropriately trained staff and were in accordance with
the German Animal Welfare Act and reported to the local
animal welfare officers. The handling of the animals prior to the
experiments and the humane, animal welfare procedures strictly
followed animal welfare regulations, in accordance with German
legislation, local regulations and the recommendations of the
Federation of European Laboratory Animal Science Associations
(FELASA). All scientists and technicians involved have been
accredited by the responsible ethics committee (Lower Saxony
State Office for Consumer Protection and Food Safety - LAVES).

Experimental Recordings

Trabecular muscles were isolated and excised from a whole right
atria, and placed in a custom-built recording chamber under
continuous perfusion of heated (37°C) and carbonated (5% CO,,
95% O3) Tyrode’s solution containing (in mM): NaCl 126.7,
KCl 5.4, MgCl, 1.1, CaCl, 1.8, NaHPO4 0.42, NaHCO3 22,
glucose 5.5, pH = 7.45 at least 45 min before measurement,
for accommodation.

Borosilicate glass capillaries (Hilgenberg, Germany) were
pulled using a horizontal pipette puller (Zeitz, Germany).
Electrical resistance was 30-40 M. Pipettes were backfilled with
3M KCL

Tissues were electrically stimulated with a 1 ms monophasic
pulse using a custom-made electrode (FHC, USA). Pulse
amplitude was pre-defined as 30% higher than the value
necessary to trigger an action potential. After successful tissue
impalement, and after reaching steady state activity, the tissue
was then subjected to a train of electrical stimulation at increasing
frequencies (0.25, 0.5, 1, 2, 3, and 4 Hz). AP onset at 5 Hz proved
difficult and inconsistent.

Membrane potential signals were amplified using a Sec-05-X
(npi, Germany) amplifier, digitized using LabChart PowerLab,
and acquired and saved with LabChart Pro 7 software (both:
ADInstruments, New Zealand).

Analysis was performed using LabChart pro and GraphPad
Prism 7 (GraphPad Software Inc., USA). The average value of
10 consecutive action potentials were calculated in LabChart
Pro. The following parameters were measured: resting membrane
potential (RMP), action potential maximum upstroke velocity
(dV/dtmax), action potential amplitude (APA) and the action
potential duration at 20, 50 and 90% of repolarisation (APDy,
APDsy, and APDq, respectively).

Mathematical Model

The fitting of IV curves from experimental data by Li et al. (2004)
was carried out by minimization of the squared error between the
simulated and experimental data using Python’s Scipy module
(Virtanen et al., 2020). For this purpose, a function was created
in Python that would recreate the patch-clamp experiments as
in Li et al. (2004), and output the simulated IV curve. The
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morphology of each individual current and its gating variables
was initially taken directly from the human atrial model by
Courtemanche et al. (1998) and corrected accordingly to match
experimental data. Fitting was done by matching normalized IV
curves first, and then adjusting conductance values to match the
non-normalized experimental IV curves.

Overall AP morphology and restitution curves were later
matched by re-adjusting conductance values of the different
currents, and simulating AP evolution for stimulation at different
cycle lengths. Slight changes were made to currents not fitted
from Li et al. (2004) to better adjust experimental restitution
curves. See the Results section for detailed explanations of each
individual current.

3. RESULTS

We developed a mathematical model for a native atrial
cardiomyocyte, isolated from the excised atrium of a healthy
adult pig. The equivalent electrical circuit representing the cell
membrane is shown in Figure 1.

It consists of a membrane capacitance, C,,, connected in
parallel with several nonlinear conductances (Gx) and batteries
(Ex). The net current (Ij,,) flowing across the cell membrane at
any instant is the sum of individual currents flowing through the
various branches of the circuit. Thus, the time-evolution of the
transmembrane voltage V can be described using the following
ordinary differential equation. (Equation 1)

av

av. _Iion + Istim
dt

= c, (1)

Here Iy, represents the external stimulus current that needs to
be applied to the cell membrane to invoke an action potential
(AP). We describe Ijy, as a sum of 12 ionic currents (Equation 2):

Lion =INa + Ix1 + Icica + Ikur + Ik + Iks

V is measured in millivolts (mV), time (¢f) in milliseconds
(ms), Cy, in picofarads (pF), and all currents in picoamperes
per picofarad (pA/pF). All conductances Gx are measured
in nanosiemens per picofarad (nS/pF), and intracellular and
extracellular ionic concentrations ([X];, [X],) are expressed in
milimolar (mM). The fast Na™ current is represented by I, the
inward rectifier K+ current by Iy, ultrarapid rectifier K current
is given by Ixy,, rapid and slow delayed rectifier K currents by
Ikr, Iks, respectively, L-Type Ca** current by Iy, Ca** pump
current by I, cs, the Sodium-Potassium and Sodium-Calcium
pump currents by Inyk, INaca> respectively, and the background
Nat and Ca?* currents by Iy Na» Ip,ca» respectively. Uniquely in
the pig atrial model, the transient outward current is represented
only by a calcium-mediated chloride current, Ic,.

The formulation of subcellular Ca?>* uptake and release by the
sarcoplasmic reticulum (SR) is retained from the work of Luo
and Rudy (1994). The three main currents involved are the Ca>*
uptake current, I, the Ca*>* release current I,,; and the Ca>*
transfer current between the network SR (NSR) and junctional
SR (JSR), I;». The model also includes a leak current from the SR
into the cytoplasm, I, jot as described by Courtemanche et al. in
their model for the human atrial cardiomyocyte (Courtemanche
et al., 1998).

To invoke action potentials in tissue, we applied a stimulus
current of 7 nA for 4 ms. The mathematical description of
each ionic current is provided in the Supplementary Appendix,
together with a list of model parameters and initial values.

Membrane Currents

Fast Sodium, Iy,

We describe the fast Na®™ current according to the
Courtemanche-Ramirez-Nattel (CRN) model for human
atrial cardiomyocytes (Courtemanche et al., 1998), which uses a
Hodgkin-Huxley type formulation (see Equation 3) taken from
the Luo-Rudy model (Luo and Rudy, 1994):

INg = gnam’hj(V — Eng) 3)

+Icar + Ipca + INak (2)  Here m is the activation gate; h and j are the two inactivation
+ Inaca + Ipna + Ipca gates. In order to make the model pig-specific, we used
B bithon ) v
Cli K*f K«1 K‘f K‘f xtracellular gV
|to,2 lK1 IKur |Kr ]K5
e fop Iy o8 In
7 T Ryn Ry R -
Ca* ; _—
TNk T _— [
pa | Exn E Eyy
| ' pCa
Ca2 Na* Ca2*
| Inak
et ! Intracellular 1V.
FIGURE 1 | (A) Schematics of a pig atrial cardiomyocyte model, showing transmembrane currents and the basic structure of the Ca®* dynamics. (B) Electrical circuit
equivalent of the cell.
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Equation (3) to fit experimentally obtained Iy, current-voltage  and inactivation gates are shown in Figures 2A,B. With the

(IV) characteristics and/or current traces from patch-clamp  applied modifications, the Iy, current traces turned out to be as

measurements. However, in the absence of these experimental  in Figure 2C and the IV curve, as shown in Figure 2D.

data, we followed an alternative approach. Since Iy, is the

dominant active current during the upstroke phase of an AP,  L-Type Calcium Current, Ica,

(the other current being the inward rectifier, Ix;, which is  The L-type Ca** currrent (Ic,;) was modeled according to

orders of magnitude smaller than Iy,), we considered it to  previous literature (Courtemanche et al., 1998; Ramirez et al.,

be primarily responsible for the AP amplitude (APA) and  2000; Pandit et al., 2001; Majumder et al., 2016), based on the

maximum upstroke velocity (‘fj—\t/ max)- Thus, we used the complete Hodgkin-Huxley formalism:

model (considering all currents, pumps and exchangers) to fit

experimentally obtained APA and ‘%’max data, at various pacing Ica,r = gca,Ldffca(V — 65.0) (4)

frequencies, i.e., APA- and %’mx restitution, by tuning only

the Ing. Here gc,,r is the channel conductance, d and f the voltage-gated
Numerical fitting of these restitution data, using Equation (3) activation and inactivation variables, respectively, and fc, is a

to describe Iy, instructed us to apply the following adaptations: calcium-mediated gating variable defined by:

(i) raise the maximum channel conductance (gn,) by 80% with

respect to humans; (i) increall.s.e t.he time constfmt of activation Tiew =2 fouse = 1 _ 5)

(tm) by a factor 1.7; and (iii) increase the time constant of E)%uoos]sl

inactivation (7, 7j) by a factor 2. The kinetics of the activation

A B
104 200
- 0.20
2 0.8 4 150 -
£ P -0.15 3
g 0.6 I . §)
: £ 100+ £
g © L
B 0.4 A = 0.10 £
(] ~
7 50 A
® 024 - 0.05
e - : : : ; : - 0L : : 0.00
-100 -75 =50 =25 0 25 50 -100 -75 =50
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C D
0.0 1
INa
—-0.2 1
-0.4 A
-0.6
-0.8 1
T T T T T T T T T T T T T T
0 5 10 15 20 25 30 -100 -75 -50 -25 0 25 50
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FIGURE 2 | The kinetics of the fast Na*t current /y. (A) Activation and inactivation characteristics of the steady state gating variables m (raised to cubic power), h and
Jj (combined as the product hafs). (B) Voltage dependence of the time constants for activation (z;,) and fast and slow inactivation (z;, and 7, respectively). (C)
Simulated traces of Iy, (traces at 5mV steps from minimum to maximum in the inset). (D) /na Current-Voltage characteristics.
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In particular, the gating behavior of Ic,; follows the human
CRN model, with a +5mV shift in the activation kinetics to
decrease the activation window along with the overall I¢, that
is necessary for the fitting of action potential duration restitution
properties. As Ic, 1 is considered to be largely responsible for the
plateau phase of the action potential, decreasing (increasing) this
current by small amounts can lead to sharp decrease (increase)
in the action potential duration without lowering (raising) the
resting membrane potential by substantial amounts. Our patch-
clamp measurements showed that the amplitude of Ic,; was
o~ 3.25 £ 0.75 pA/pF. This value imposed a constraint on the
choice of gc,r.. The kinetics of L-type Ca*t channel, as well as the
IV characteristics of the I, are shown in Figure 3.

Inward Rectifier Potassium Current, Ik

The Ik; is known to play a major role in determining the
resting membrane potential (RMP) of excitable cardiac cells in
many animal species, with the current reversing its direction
of flow close to the actual RMP value. Given that our sharp-
electrode measurements on pig atrial tissue suggested a more
depolarised (positive) RMP value than that reported in human
atrial cardiomyocytes (Courtemanche et al., 1998), we modified

the parameters of the CRN Ik formulation to make the current
pig-specific.

To this end, (i) we shifted the reversal potential of Ix; by -5
mV, as has been done previously in some large animal models,
such as the sheep (Butters et al., 2013), (ii) we reduced the
maximum channel conductance of Ix; by 9% relative to the
human model (Courtemanche et al., 1998), (iii) we decreased
the slope of activation of the Ix; IV curve by 10%; and (iv)
we shifted the half-rise potential by +10 mV. Thus, Ix; in the
pig atrial model is described according to Equation (6). These
adjustments enabled us to fit the shape of the action potential
duration restitution curves at the 80-90% repolarization, while
trying to balance the effects of I, and other rectifier currents.
The IV curve for Ix; as shown in Figure 4.

V—FEx—5
1+ exp(0.063 - (V + 70))

Ix1 = gk1 - (6)
Ultrarapid Potassium Current, Ik,

Recent work by Ehrlich et al. (2006), indicates that pig atrial
tissue exhibits a bi-exponential inactivation. Pandit et al. (2011)
developed a model for the ultrarapid K™ current, that reproduces
the experimental data of Ehrlich et al. (2006). We used the

ms
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FIGURE 3 | The kinetics of the fast L-type Ca®* current /e, . (A) Activation and inactivation characteristics of the steady state gating variables d and f. (B) Voltage
dependence of the time constants for activation (zy) and voltage-gated inactivation (z¢). (C) Simulated traces of /g, (traces at 5mV steps from minimum to maximum
in the inset). Intracellular Ca®t concentration was kept constant at [Ca?t]; = 0.0001 mM. (D) /c.. Current-Voltage characteristics.
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IV Curve: IK]

I(pA/pF)
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FIGURE 4 | The current-voltage characteristic of the inward rectifier K
current (Ik1). The direction of flow of the current across the cell membrane
reverses at Ex = —81.76 mV which is close to our experimentally measured
resting membrane potential.

formulation of Pandit et al. (2011) to describe Ik, in our model
for the pig atrial tissue (see Equation 7)

Ixur = gkur - “2 . (aui,f + bui,s) -(V —Eg) (7)

Here gk, is the channel conductance, u, the activation gate,
Ex the reversal potential of K*, and u; f and u;; the fast and
slow inactivation components, respectively. (a, b) = (0.25,0.75)
are weights applied to the inactivation gates. It is interesting
to note that the approach by Pandit et al. is similar to that of
Aguilar et al. for the human atria. However, in the latter case, the
inactivation of Iy, is given by u; = u; S+ Uis instead of a sum
of the variables (Aguilar et al., 2017). The conductance of Ik, is
described according to Equation (8).

0.05
V=15 ]

1 +exp(—-33

8Kur = gKur,amp [0-005 + (®)

Here gkuramp is an adjustable parameter whose value is
determined during the final stages of model development (see
section 3.2, for more details). Figures 5A,B show the activation
and inactivation kinetics of Iy, whereas, a comparison between
the current-voltage characteristics, as measured in experiments
by Ehrlich et al. (2006) and that produced using our model, is
presented in Figure 5C.

Rapid Delayed Rectifier Current, Ik,

The rapid delayed rectifier current (Ix,) was formulated similar
to the original CRN model (Courtemanche et al., 1998), but with
altered half-rise voltage (V7,2), slope of the correction value,
and the steady-state of the single gating variable, such that the

obtained IV characteristic curve matches with the experimental
IV curve of Li et al. (2004):

Ikr = gxr - Xr - VI )
r r r 1+exp V—87292411£7325)

Initially, the conductance gk, was set at 0.0065 pA/pF to match
the non-normalized IV curve. However, this value was tuned
during the final stages of model development to match the pig
atrial APD restitution curves at the tissue level. The steady-state
value (x;) of the gating variable x, is described according to
Equation (10):

1

—(V—4.4451) )
93305

Xro0 = (10)

1 ~+ exp(

Note that, Vi, of X, is shifted by 4+-20mV relative to the
CRN model, whereas, the slope of the x, kinetic is slightly
decreased (Courtemanche et al., 1998). The gating behavior
of x, is described in Figures 5D,E. Unavailability of sufficient
experimental data led us to retain the temporal dynamics of
the gating variable x, from the CRN model (Courtemanche
et al., 1998). Figure 5F shows the comparison between the
experimental and simulated IV curves for I;.

Slow Delayed Rectifier Current, Ixs
We retained the slow delayed rectifier current formulation from
the original CRN model (Courtemanche et al., 1998):

Ixs = gks - %2 - (V — Ex) (11)

The maximum channel conductance gx, was adjusted to fit the
restitution properties. The gating variable x;, and time constant t;
are described according to Equations (12) and (13), respectively.

) 1/2
Xgoo = | —————————— (12)
s [1 + exp(—vpfl)}
1 [ 1
Ts = = - >
2 -5 . V—p1) —5._ (V=p1) ]
431070 R 435 X 1070 — e

(13)

Here, parameters p; and p, have values 18.802 and 12.6475
mV, respectively, obtained by fitting experimental data from Li
et al. (2004). The close resemblance of these values with those
used in the human atrial tissue model (Courtemanche et al,,
1998) suggests that electrophysiologically, human atrial I and
pig atrial I, are very similar. Figures 5G,H show the steady
state kinetic and time constant, respectively, of Ix,, whereas, the
model-generated IV curve is compared with experimental data
from Li et al. in Figure 51.

Transient Outward Current, /I3,
I, in most species is composed of two components: a potassium
current (1) and a chloride current (Is,2, also referred to as

Icica)-

Itp = Ito,l + Ito,2 = Ito,l + IClCa (14)
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FIGURE 5 | Channel kinetics and current-voltage characteristics of the rectifying K* currents Ixyr, I- and Iks. (A) Voltage-dependence of steady-state activation (Us o)
and inactivation (Ui« Of Uis,o0) Probabilities of Ik,,. (B) Voltage-dependence of the time constants of activation (z,;) and inactivation (z,s or tys) Of Ixyr, reduced by a
factor of 20. (C) Comparison between the model-generated IV curve for Ik, and the IV curve reported by Ehrlich et al. (2006) based on experiments. (D)
Voltage-dependence of steady-state activation (x, ) probability of /x,. (E) Voltage-dependence of the time constant of activation () of /. (F) Comparison between
the model-generated IV curve for Ik and the experimentally obtained IV curve from Li et al. (2004). (G) Voltage-dependence of steady-state activation (xs, ) probability
of Ixs. (H) Voltage-dependence of the time constant of activation (zs) of /ks. (I) Comparison between the model-generated IV curve for Ixs and the experimentally
obtained IV curve from Li et al. (2004).

Although the presence of I¢jc, has been reported in multiple
species and tissues (Zygmunt and Gibbons, 1991; Gomis-Tena
and Saiz, 1998; Ramirez et al., 2000; Xu et al., 2002; Bondarenko
etal.,, 2004; Wang and Sobie, 2008), including human atria (Wang
et al.,, 1987, 1993), it is generally observed that Ij,; forms the
predominant component, scoring over Igc, in both strength
and duration of activity, as a transient outward current (Wang
et al., 1993; Bondarenko et al., 2004). However, in a study by
Li et al. (2004), it was reported that pig atrial Iy, is unique, in
the sense that it is a completely calcium-driven chloride current
(Li et al., 2003, 2004; Schultz et al., 2007). Thus, in our model,
we incorporated this feature by modeling I, according to

Equation (15), and experimental data from Li et al. (2004).

Ito = Icica = gcica - 9ca(V — Ecr) (15)

For the choice of formulation of I, we considered various
candidates (Gomis-Tena and Saiz, 1998; Ramirez et al., 2000;
Bondarenko et al., 2004; Wang and Sobie, 2008). In the end, we
decided to use Equation (15), which is a formulation for Igc,
in a canine atrial model (Ramirez et al., 2000). The reason for
choosing this formulation was that it allowed a fairly accurate
reproduction of the bell shape of the IV curve and the same
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general upward trend present in the experimental data of Li et al.
(2004).

Here gcjc, is the channel conductance, E¢; the CI™ reversal
potential and gc, the sole gating variable of the channel, which
follows the typical gating behavior of a Hodgkin-Huxley-type
gating variable:

t—to

dca(t) = gcaco — (qcaco — qcap) - €
1 (16)

ﬁ > TCa =
n
1+ (1.1e—10)

F, is the flux of Ca** into the myoplasm. F, shows a strong
correlation with the sharp release of Ca** from the SR in the
initial stages of AP (through the SR release current, I,.;), giving
Icic, the fast dynamics of a transient outward current. Also,
the inactivation of I, gives I¢c, a significant bell-shape in its
IV curve, something universally observed in I¢, (Tseng and
Hoffman, 1989; Gomis-Tena and Saiz, 1998; Hiraoka et al., 1998;
Ramirez et al.,, 2000). In the case of our model, we shifted
the inactivation of I,; by +40mV and increased the slope of
inactivation to fit experimental results from Li et al. (2004).

qcaoo =1 —

Figure 6 shows the IV curve for I¢jc,, as obtained using our
model of the pig atrial tissue, overlaid on experimental data from
Li et al. (2004). The simulated current activated earlier than in
experiments, but with a good overall qualitative behavior.

Summary of Currents

Table 1 presents a summary of all currents adjusted in the model,
along with references to the experimental data used and the
parameters adjusted.

Restitution Studies

The cell model thus developed reflects ionic current properties
obtained from different cell samples patched under different
experimental conditions and by different groups around the
world. It is unreasonable to expect that the resulting model would
represent the electrophysiology of a real porcine atrial cell just
by combining these currents. We need some degree of tuning
to ensure that the resulting cell responds electrophysiologically
in the same way as an average cell isolated from a porcine
tissue sample. Therefore, we move to the next step in model
development, i.e., tuning with restitution. Refining a model to
ensure that it is able to reproduce the electrical properties of
the heart at tissue and organ level requires detailed studies of

A +65mV

FIGURE 6 | (A) Simulated traces (traces at 5mV steps from minimum to maximum in the inset) and (B) Current-voltage characteristics of Igica, showing experimental
data (dots with error bars) from Li et al. (2004), overlaid on the model-generated curve (solid). Note the significant bell-shape of the curve at high positive voltage values.
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TABLE 1 | Summary of currents.

Current Source Species Parameters adjusted Experimental data source

Ina Luo and Rudy (1994) Guinea-pig INa» Tm, T T our APA and dV//dtnax restitution data

Ix1 Courtemanche et al. (1998) Human 9k, slope, half-rise, reversal potential our RMP and APDgy-APDg restitution data

lcal Courtemanche et al. (1998) Human gcal, Ouos o, T, T oUrAPD»o — APDs restitution and patch clamp data (for
maximum current)

Ixur Pandit et al. (2011) Pig IKur,amp our APD1o — APDz restitution data

Ixr Courtemanche et al. (1998) Human IKrs X0 Lietal (2004) and our APDso — APDgy restitution data

Ixs Courtemanche et al. (1998) Human IKs» Xs,00 Li et al. (2004) and our APDgy — APDqy restitution data

loica Ramirez et al. (2000) Dog 9aica, W(OF ler) Li et al. (2004) and our APD1o — APDo restitution data

INak Luo and Rudy (1994) Guinea-pig INaK max our APD7o — APDqy restitution data

INaca Luo and Rudy (1994) Guinea-pig INaCa,max our APD7o — APDqy restitution data

Frontiers in Physiology | www.frontiersin.org 29

March 2022 | Volume 13 | Article 812535


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Peris-Yague et al.

Mathematical Model for Pig Atria

model restitution. In cardiac electrophysiology, restitution refers
to the property by which parameters such as the duration of an
electrical action potential (APD) or the conduction velocity (CV)
of a propagating signal vary with time between successive stimuli
applied to excitable cardiac tissue. In order to study restitution,
the model was extended to higher spatial dimension.

Spatial Extension of the Model to Higher Dimensions
To simulate wave propagation in 1 dimension and above,
we added a diffusion term to Equation 1, such that the
spatiotemporal evolution of the voltage is given by

aV _ _Iion + Istim

— DV?V
ot Cm +

(17)

We used a value 0.00126 cm?/ms for the diffusion coefficient
D. This choice of D allowed our model to reproduce
the experimentally observed conduction velocity of 58 cm/s
from Jang et al. (2019).

For numerical integration of Equation (17), we used a Forward
Time Centered Space (FTCS) scheme, with a space differential
Ax = Ay = 0.022 cm. The timestep chosen for the simulations
was At = 0.02 ms and all coding was done using Python or C,
with MPI-based parallelization.

Action Potential Duration (APD)

The amount of time, during an action potential, when the
membrane voltage of an excited cardiac cell is more positive than
a chosen threshold, is called the action potential duration (APD)
at that threshold. Typically, this threshold value is measured
on the basis of degree of repolarisation of the cell membrane.
Thus, APDyx refers to the amount of time during an AP, when
the cell membrane is more than X% repolarised, or, less than
X% depolarised.

When cardiac tissue is electrically stimulated using a train of
pulses at a particular frequency, the morphology of the AP adapts
to the applied pacing frequency. This reflects in the APA, RMP,
%max and APD values at all possible levels of repolarization.
Such studies are conducted to investigate the restitution behavior
of the model or the tissue sample. We performed sharp-
electrode measurements on pig atrial tissue to obtain APD
restitution (APDR) data. We used these data to make final
adjustments to the model, to perfect its electrical response to high
frequency stimulation. In both experiments and simulations, pig
atrial tissue was stimulated at 0.25,0.5, 1,2, 3,4 Hz, and action
potentials were recorded.

We adjusted model parameters to find the most optimal
parameter set that simultaneously fit each of these restitution
curves with minimal deviation from measurement. Specifically,
we adjusted the maximum conductance values of several
currents. The final selection of conductance values is listed in
Table 2.

The overlays of our experimental and simulated data for each
of the following parameters: APA, RMP, %’max, and APDy, for X
= 10, 20, 30, 40, 50, 60, 70, 80, and 90% repolarization are shown
in Figure 7.

TABLE 2 | Conductance values and maximal currents after fitting restitution data.

Conductance Value (nS/pF)
K1 0.08218
ONa 13.9900
Kur.amp 0.45539
gcica 0.15731
9kr 0.01730
Oks 0.0594
9caL 0.06574
Maximal current Value (pA/pF)
INaK max 0.94935
INaCamax 2304

Note that pig APDR curves show an interesting feature that
distinguishes the model from most other mammalian species
that we know of. In the early stages of repolarisation (i.e., up to
APDs), an overall downward trend is observed for stimulation
cycle lengths greater than 1,000 ms (see Figures 7D-H). This
could be due to inactivation of I¢jc, at high pacing frequencies:
slower and lesser calcium uptake causes a decrease in I¢;c,, which
significantly slows down initial AP repolarization, causing an
overall higher early APD at high pacing frequencies with respect
to low-frequency pacing.

To test this hypothesis, we measured intracellular calcium
flux and Igc, in simulated restitution experiments. Figure 8
shows the resulting restitution curves for peak calcium flux
and peak Iy, at different stimulation cycle lengths in the
simulated model. A clear dependence of peak values on cycle
length can be observed, and both quantities decrease significantly
with a decrease in cycle length. This is indeed indicative of
an initial AP repolarization phase that is heavily dependent on
calcium dynamics. To the best of our knowledge, this behavior is
exclusive to the pig, and might have profound implications in the
translatability of studies on arrhythmia control and termination
from pigs to other species.

To summarize, the pig atrial model is capable of reproducing
experimentally recorded porcine APs at different pacing
frequencies within experimental deviations (Figures 9A,E-G).
The discrepancies between the experimental traces show the
variable nature of electrophysiology, in particular in the atria
(Cherry and Fenton, 2007), and the model is good at finding a
compromise and reproducing an AP with average traits within
experimental tolerances. Figures 9B-D show the temporal
evolution of each of the transmembrane currents considered in
Equation (2). With this basic model, we now begin our study of
electrical wave propagation at the tissue level.

Wave Propagation in 2D

Electrical stimulation of a quiescent 2D domain containing
pig atrial cardiomyocytes leads to propagation of an excitation
wave. Our studies confirm that at frequencies below 5 Hz, the
paced waves propagate with uniform and identical wavefront
and waveback conduction velocity. Electrical pacing at higher
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FIGURE 7 | Restitution curves for (A) resting membrane potential (RMP), (B) action potential amplitude (APA), (C) maximum upstroke velocity (%max), and (D-L)

action potential duration (APDx), at X = 10, 20, 30, 40, 50, 60, 70, 80, and 90% repolarisation of the membrane voltage. Solid black lines indicate the model-generated
data, whereas the markers (with error bars) represent our data obtained from sharp-electrode experiments.
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frequencies does not lead to 1:1 capture. This is because the
effective refractory period of the cells is approximately 215 ms.
Figure 10A shows snapshots of plane wave propagation through
a 2D domain containing identical pig atrial cardiomyocytes. The
simulated wavelength (WL, estimated as WL = (t|pack,—a0mv —
tHwavefront) X CV) and CV restitution curves are presented in
Figures 10B,C.

Spiral Waves in the Pig Atria

Spiral Initiation

Using the reported parameter set in our 2D model, we produced
a spiral wave that survived for more than 40 s of simulation
time. To initiate a spiral wave in a domain containing 512x 512
grid points, we used the S1-S2 cross field protocol. We applied
a line stimulus along the left edge of the domain to initiate a
plane wave (S1) propagating toward the right (Figure 10A). As
the waveback of the S1 wave crossed x = 256, a second stimulus
(S2) is applied in the region y <256 (Figure 11A, t = 240 ms).
This leads to propagation of the S2 wave in the region that
has recovered from excitation. With time, as the wave S1 wave
moves out of the domain, more excitable tissue becomes available
and a spiral prototype is formed (Figure 11A, t = 280 ms).
Figure 11A shows the spatiotemporal formation and evolution of
the spiral.

Spiral Characterization

The spiral wave in the pig atrial tissue model meanders with
a shifting hypocycloidal trajectory. The trajectory of the tip of
the spiral was traced by connecting the points of intersection of
the isopotential line V. = —35 mV and the line dV/dt = 0 at
each snapshot, spaced 10 ms apart in time. An analysis of the
tip trajectory shows that the basic pattern contains 5 outward
petals enclosing a center (see Figure 11B), which shifts in space
at the end of every 5 rotational cycles. A Fourier analysis of the tip
trajectory reveals the existence of 4 fundamental frequencies (see

Figure 11C), of which fy = 5.426 Hz and fi = —3.548 Hz are the
dominant ones. These contribute to the construction of the basic
hypocycloidal pattern, through superposition of the two counter-
rotating circular orbits at the given frequencies, where the radii
of the orbits are proportional to the heights of the peaks obtained
from the Fourier Transform of the trajectory.

Alternans

A visual impression of the spatio-temporal distribution
of membrane tension during spiral wave evolution
(Supplementary Video S1) indicated the occurrence of
wavelength fluctuations, as opposed to a constant, uniform
wavelength observed during plane wave propagation. To
quantify this effect, we measured APDgy from every 8" node
within the simulation domain in X- and Y- directions. We
excluded points from the region that was close to the spiral tip.

Figure 12 shows the restitution curves of APDyy in the
simulated spirals, both with respect to Cycle Length (CL)
(Figure 12A) and Diastolic Interval (DI) (Figure 12B).
Figure 12A shows the presence of alternans for cycle lengths in
the range = 165-215 ms. This is consistent with the restitution
curve in Figure 12B, which focuses on the region with slope
~ 1, a known predictor of the presence of alternans (Nolasco
and Dailen, 1968). In a previous work Fakuade et al. (2021)
demonstrated the occurrence of alternans at low stimulation
frequencies in patients suffering from postoperative AF. Thus,
our model can be used to develop useful insights into the origin
and control of this alternans in pig atria.

To test if the unique current I, is responsible for alternans
in the pig atrial model, we followed an approach that was first
proposed by Gomis-Tena et al. (2003). Accordingly, we inhibited
the I, (by 50 and 90% in two separate cases) in pig atrial
model and re-initiated the spiral. However, unlike Gomis-Tena
et al. (2003), alternans continued to exist in our model. APs
in the simulated spiral have a duration of at most >~ 225 ms.
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Referring back to Figure 8, we can see that Igg, is naturally
already shut off at such small cycle lengths, and any further
inactivation will obviously have a negligible effect on the behavior
of the resulting spiral.

Spiral Wave Breakup
Finally, we arrive at the most challenging question. Is it possible
to use this model to study atrial fibrillation, with the spiral

waves actually breaking up? The answer is, yes. The model does
exhibit a state of sustained chaotic electrical activity in an altered
parameter regime.  Spiral wave breakup could be initiated by
suppressing the repolarization reserve. In particular, a reduction
of 75% in the value of giy max could lead to a state characterized
by more than six spiral waves. The spatiotemporal evolution of
the spiral breakup state is demonstrated in Figure 13 and in
Supplementary Video S2.
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4. DISCUSSION

In this study, we present the first complete mathematical model
of the pig atrial tissue. It is built upon experimental data on pig
atria as obtained from literature, and new sharp-electrode data
that was produced in our laboratory. The model is numerically
stable over long timescales, and is capable of reproducing
pig atrial action potentials that can be compared closely with
experiments. In particular, the AP characteristics, namely APD,
CV, RMP, APA, and ‘fT‘t/max show excellent agreement with
experiments, not only for a single evoked AP, but also for the full
extent of their respective restitution curves. This confirms that
our model is capable of reproducing the exact electrical response
as can be expected from healthy pig atrial cardiomyocytes.

Our model takes into consideration the uniqueness of
the constitution of the transient outward current. In most
mammalian tissue, this current is found to be predominantly K+
based. However, in pig atria, this current is solely CI~-based and
activated by the flow of Ca®" ions. The unique dynamics of this
current results in a downward trend of the early repolarization
APD restitution curves; a feature that is not observed in most
mammalian species. Our model reproduces this experimental
trend in early APD restitution curves for large cycle lengths, and

attributes the trend to the inactivation of the I¢ic, at low cycle
lengths (Li et al., 2004).

In 2D, we demonstrate the model’s ability to sustain stable
spiral waves and spiral wave breakup, which adds to the suitability
of the model for in silico studies of AF in extended media. To
study spiral wave dynamics in the default model representing
healthy heart tissue, we used simulation domains that are
physically large compared to realistic tissue sizes. Our motivation
for choosing such domains is based on the concept presented by
Panfilov (2006). He showed that the pattern of stabilization of re-
entries in cardiac tissue is not determined by the actual size of
the heart per se, but by the effective size measured as heart size
scaled by the wavelength of electrical activity. This means that
in healthy tissue, where the wavelength of electrical activity is
relatively large, it is difficult (almost impossible) to obtain self-
sustaining spirals. In our default model, the wavelength of the
spiral was so large that it was not possible to obtain stable spirals
in tissue domains smaller than 8.5 x 8.5 cm. A Fourier analysis of
the tip trajectory shows that there are 4 fundamental frequencies
responsible for the dynamics of the intact spiral wave. Of these
frequencies, one is associated with wave meander at f,,,c4der =~ 0.1
Hz, two are associated with the hypocycloid pattern, fy = 5.426
Hz and f; = 3.548 Hz, with one of those frequencies also being
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number of spiral waves in the domain at various times, measured as the number of phase singularities (one located at each spiral tip).

the frequency of rotation of the spiral arm (and thus setting the
average stimulation frequency). Furthermore, our model points
to the occurrence of alternans in 2D in the presence of spiral
waves, between the cycle lengths of 165 ms and 215 ms. This may
explain the difficulty encountered in experiments with evoking
consistent APs at a pacing frequency of 5 Hz. To understand

the underlying basis of this alternans, we tested an approach
suggested by Gomis-Tena et al. (2003), who inhibited the Ca®*-
activated CI~ current in their canine model to inhibit alternans.
Our model, however, failed to show suppression of alternans by
similar inhibition of the I, suggesting that the alternans was
not driven by the CI~ current.
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The model presented here has the same general limitations
as any other ionically-detailed mathematical model of cardiac
electrophysiology. We have tried to incorporate as much porcine
specificity to the model as is allowed by the available experimental
data. However, there are quite a few currents for which direct
validation was not possible, forcing us to resort to indirect
methods for model development. In our model, as listed in detail
in Table 1, experimental data on current voltage characteristics
was available for currents like Iy, Ixy, Igs and I,. For the
remaining currents, we found little or no clear information from
literature. For Iy,, we had to rely on the APA- and dV/dt;ay
restitution curves for obtaining the correct value of gn;, assuming
that the channel kinetics were the same as in the human atrial
cell model. For Ix; we relied on the RMP restitution curve
and the APD restitution curves at 80-90% repolarization to
formulate the current. We had no information about the Ca?*
dynamics. Therefore, it was adopted in its entirety from the
Luo-Rudy dynamic model. Same applied for the pump and
exchanger currents, whose maximum values we tuned based on
our APD restitution data at 70-90% repolarization. Regarding
the L-type Ca*" current, the only information we had was
our own data from patch-clamp recordings, which verfied that
the maximum conductance used was in line with what we
had chosen for the model. As previously discussed by Cherry
and Fenton (2007), detailed mathematical models need to be
treated with extreme considerations to appreciate their ability to
correctly reproduce phenomena outside the general experimental
conditions they were modeled after, and their main utility should
be in developing new hypotheses in the study of already-known
phenomena, rather than for the study of the dynamics of novel,
unverified phenomena.

The model falls prey to the natural variability found in
cardiac tissue, especially in the atria. The atrial cavities are
particularly complex, more so than the ventricles, when it
comes to heterogeneity and anisotropy, and the properties of
cardiomyocytes are known to be affected by factors like age or
sex (Cherry and Fenton, 2007). In the context of this project,
this is evidently palpable in the description of Ik, given in
the two published papers used as sources in this model, which
differ significantly, and it highlights some of the compromises
that researchers must make when building a general model. In
addition to intrinsic ionic heterogeneities in the heart tissue,
structural factors are also known to play an important role in
destabilizing reentrant electrical waves in the atria, leading to
AF. A recent study by Roy et al. (2018) demonstrates how the
gradients in the atrial wall thickness and tissue fibrosis can
cause drifting of spiral waves across the left and right atria,
resulting in AF. In another study Boyle et al. (2019) report
that in patients with persistent AF who develop atrial fibrosis
targeted ablation of fibrotic patches can reduce the risk of
sustained AF, thereby indicating that structural heterogeneities,
such as those introduced by fibrosis, play a major role in
stabilizing AF.

Some of the limitations of the model come from the fact
that it relies on experiments from literature for the description
of individual currents, which sometimes have incomplete data

(lack of information of the time dynamics of the currents, for
example Li et al., 2004), or which have fundamentally different
experimental setups (Li et al., 2004; Ehrlich et al., 2006). However,
this model provides a good basis to start, and can be develeoped
further, as and when new experimental data become available.
Another important limitation of the model lies in its description
of the Ca** dynamics, which is mostly taken from the human
atrial model of Courtemanche et al.. The CRN model itself
adapts the description of the Ca** dynamics from the Luo-Rudy
model for guinea pig ventricular cardiomyocytes (Courtemanche
et al, 1998). Thus the Ca?*-dynamics cannot be called state-
of-the-art. Although it does give rise to physiologically relevant
pig atrial action potentials, the model does not provide any
significant insight to the fundamental role that Ca’" plays
in mediating Iy, (I;p) and early AP repolarization. It would
therefore be of great interest to make detailed experimental
measurements on Ca** dynamics specific for the pig atria, with
the aim of building a more accurate mathematical description
to elucidate the mechanisms underlying the dynamics of
Icic, and to make more accurate predictions of its behavior
in arrhythmias.

Proposing the single cell model is just the first step. We
have taken one step further to extend the model to 2D, where
at least we can expect it to reproduce electrophysiological
behavior of monolayer cell cultures. The next steps would include
incorporation of natural cellular heterogeneity of cardiac tissue,
together with structural heterogeneity, such as fibrosis. These are
currently not addressed in our paper. Furthermore, we are trying
to develop an anatomically detailed 3D atrial model of the pic
heart, based on DTMRI data, which would describe the intrinsic
fiber anisotropy. A study of AF in such anisotropic, realistic heart
geometries would have a huge impact on the advancement of
arrhythmia research.
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Computational models of the electrical potential across a cell membrane are longstanding
and vital tools in electrophysiology research and applications. These models describe how
ionic currents, internal fluxes, and buffering interact to determine memibrane voltage and
form action potentials (APs). Although this relationship is usually expressed as a differential
equation, previous studies have shown it can be rewritten in an algebraic form, allowing
direct calculation of membrane voltage. Rewriting in this form requires the introduction of a
new parameter, called I'y in this manuscript, which represents the net concentration of all
charges that influence membrane voltage but are not considered in the model. Although
several studies have examined the impact of I'y on long-term stability and drift in model
predictions, there has been little examination of its effects on model predictions, particularly
when a model is refit to new data. In this study, we illustrate how Ty affects important
physiological properties such as action potential duration restitution, and examine the
effects of (in)correctly specifying Ty during model calibration. We show that, although
physiologically plausible, the range of concentrations used in popular models leads to
orders of magnitude differences in I'g, which can lead to very different model predictions. In
model calibration, we find that using an incorrect value of I'y can lead to biased estimates of
the inferred parameters, but that the predictive power of these models can be restored by
fitting T'g as a separate parameter. These results show the value of making Ty explicit in
model formulations, as it forces modellers and experimenters to consider the effects of
uncertainty and potential discrepancy in initial concentrations upon model predictions.

Keywords: action potential, electrophysiology, mathematical model, conservation of charge, parameter fitting,
calibration

1 INTRODUCTION

Since the seminal work by Hodgkin and Huxley (1952), mathematical models of electrophysiology
have been developed for many different cell types, including neurons, cardiomyocytes, gastric
smooth muscle cells, and many more (Noble, 1962; Dodge and Cooley, 1973; Corrias and Buist,
2007). Differences in ionic concentrations across cell membranes lead to a transmembrane voltage
(Vim). Its evolution over time is usually calculated in mathematical models by numerically integrating
the effects of the ionic currents passing through the membrane. Since the late 90s, several authors
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have showed that V,,, can also be computed directly from intra-
and extracellular concentrations of charges, due to a conservation
principle in the models (Guan et al., 1997; Varghese and Sell,
1997; Endresen et al., 2000; Hund et al., 2001; Jacquemet, 2007;
Livshitz and Rudy, 2009; Pan et al, 2018). In this work, we
investigate further the implications of using this second
expression for V,, in terms of numerical stability, we highlight
its impact on electrophysiological predictions, and we discuss the
benefits to using this approach in model calibration.

First, in this section we present a brief overview of relevant
work that leads to different ways of computing the voltage in
AP models, based on a conservation of charge principle
hidden in the equations, as well as how this conservation
of charge relates to the steady state of the AP models. Section
2 then highlights how the accuracy of solutions is improved
by the algebraic expression for voltage. In Section 3, we show
that model outputs are sensitive to the net concentration of
charge across the cell membrane, which varies because of
high variability and/or uncertainty in initial concentrations.
We finally show in Section 4 that T, a parameter
characterising the relationship between V,, and the intra-
and extracellular concentrations of charges, can be inferred
from experimental data to produce the desired steady-state
behaviour of the AP model, despite being challenging to
estimate experimentally.

In this study, we explore the consequences of writing V;,
algebraically using the Ten Tusscher-Panfilov model of human
ventricular cells (TTP06) (Ten Tusscher and Panfilov, 2006) and
the CiPA version of the O’Hara-Rudy model by Dutta et al
(2017) (ORd-CiPA). Beyond these two models, our findings
apply to any model tracking the intracellular concentrations of
all charge-carriers, which make up the majority of modern
electrophysiology models.

1.1 Membrane Voltage and lonic

Concentrations in AP Models

Major variables in AP models include V,,,, channel and pump/
transporter state variables and, in later models, concentrations of
ions, buffers, and signalling molecules. The relationship between
these variables, grouped together in a vector X, is expressed as a
system of ordinary differential equations (ODEs) of the form

dx
i f(X),
X ={VaC g},

where the vector function f{X) describes the rate of change of X,
which can be subdivided into V,,,, the ionic concentrations C and
all other variables g. The first equation in f is usually the one that
defines the rate of change in V., using an ideal capacitor equation:

dv,, 1
= _Cim Z;I] (X))
=

1

& 1)
where Cy, is the membrane capacitance (usually in pF), and I; are
the N different ionic currents flowing across the cell membrane
(in pA). Note that the currents depend non-linearly on voltage,

Missing Charge in Electrophysiology Models

concentration, and time, so that all the state variables are coupled
together in a non-linear system.

The earliest AP models (e.g. Hodgkin and Huxley, 1952;
Noble, 1962; McAllister al, 1975) approximated
intracellular concentrations as constants, arguing that the
relatively small ionic currents would not alter concentrations
significantly. This assumption holds well for the K" and Na*
currents included in these models, which have relatively large
internal concentrations which do not show significant variations
during a single AP. In addition, simulating longer time spans
during which these small changes could build up, was
computationally infeasible at the time. But after the discovery
of Ca®" currents in the 60s, it was quickly realised that [Ca®*];
could vary by orders of magnitude during a single AP,
necessitating the inclusion of a time-varying [Ca?*]; in models
as early as the Beeler and Reuter (1977) model.

Later, DiFrancesco and Noble (1985) proposed a model where
the current-induced changes in [Ca**];, [K*];, and [Na']; are
tracked over time, along with the extracellular concentration of
K" close to the cell membrane. This revolutionised the
understanding of major features of cardiac electrophysiology,
as reviewed by Dibb et al. (2015). Most subsequent AP models
have retained the dynamic description for intracellular
concentrations (although [K*]; is sometimes held constant)
and extended it with concentrations in intracellular
compartments such as the sarcoplasmic reticulum (SR, e.g.,
Noble et al., 1991; Wilders et al., 1991; Luo and Rudy, 1994)
and other species (e.g. chloride in Tomek et al., 2020). Variations
in extracellular concentrations over the course of the action
potential proved less popular but are still present e.g., in some
models of atrial (Hilgemann and Noble, 1987; Lindblad et al.,
1996; Nygren et al., 1998) and sino-atrial (Demir et al., 1994;
Dokos et al., 1996; Lovell et al., 2004; Pohl et al., 2016) action
potentials. Even though extracellular concentrations do vary in
practice (e.g., under ischemic conditions), their variations due to
ionic currents are often neglected in AP models because ions are
constantly exchanged with the vascular buffer which limits their
temporal variation in the extracellular space (Dokos et al., 1996)
and reduces accumulation of ions in the extracellular space.

et

1.2 Algebraic Expressions for V,,

A study by Varghese and Sell (1997) showed that models in which
all membrane currents are assigned to a charge-carrying species,
and in which the intracellular ionic concentrations vary
accordingly, will implicitly satisfy a conservation of charge
principle. As a result, V,,, can be computed algebraically as a
function of the concentrations, so that the ODE for V,, Eq. 1 is
redundant. Applying the approach of Varghese & Sell to the Luo
and Rudy (1994) model as an example, we obtain

.F
Vast ([Naﬂi I 2[Ca ] 2 Gt 228 [Ca“]NSR>
+Vy,

)

where V; is an integration constant (called C, in the original
publication), F is the Faraday constant, V; is the volume of the
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cytosol compartment of the cell, Vjsr and Vygg are the volumes of
the junctional (JSR) and network (NSR) sarcoplasmic reticulum
compartments of the cell, respectively, and [Ca®'];szx and
[Ca®*]ysr are the concentrations of Ca?* in these
compartments. Hund et al. (2001) used a similar expression
for V,, but moved the integration constant within the
brackets, thereby turning it into a concentration instead of a
voltage. Using C, to represent the concentration, the two
representations are related by Vi = —MCO

Endresen et al. (2000) proposed an expression very similar to
that of Varghese and Sell but with a strong assumption: that all
charges contributing to Vi, are carried by K*, Na*, and Ca**. This
assumption leads to

_ViF

VO Cm

([K'], + [Na'], +2[Ca®"],), (3)
where [X], is the extracellular concentration of species X. In other
words, V,, is simply proportional to the difference between total
1ntracellular and extracellular concentrations of these three
species. Endresen et al. acknowledged that their approach
omitted anions, but justified this with the observation that the
total concentrations of anions are approximately the same inside
and outside the cell and that most currents are carried by cations.
However, this framework needs to be extended for models which
include CI', e.g., Hund and Rudy (2004); Grandi et al. (2010);
Tomek et al. (2020): Eqs 2, 3 can be combined and generalised to
any number of modelled species and compartments as follows

(Z z ZA [A]\otalk z ZA > (4)

where A represents each charged species in the model, z, its
valence, Vy is the volume of the compartment k and the index k is
over all intracellular compartments (e.g. compartment k =
corresponds to the cytosol). Equation 4 therefore
accommodates further electrically charged species such as
chloride, provided that the model keeps track of changes in
their intracellular concentrations.

Note that the total concentration of any ion A is denoted here
as [Alotalk- Some models include buffering of ions which alters
free ionic concentrations, but as binding to buffers does not cause
current flow over the membrane it should not change membrane
voltage. So the [A]r Notation in Eq. 4 serves as a reminder that
the total concentration carried by A is given by the sum of any
buffered and free concentrations. For example, in many models
[Ca?* ol ; IS nOt equal to [Ca?*];. This can make derivation of an
algebraic-V,,, form more complicated than in the examples above.

However, various other charge-carriers—ions, compounds
and charged proteins—are known to be present at different
concentrations on either side of the membrane, but are
omitted from models. If these omitted charge carriers lead to a
net transmembrane voltage, then an extra parameter is needed to
account for the contribution of their charge imbalance to V. For
example, the Hund and Rudy (2004) dog action potential model
includes Cl™ ions and an extra offset parameter would be needed
to compensate the strong imbalance between intracellular

V,F

Vi =
Cn

Missing Charge in Electrophysiology Models

(~20mM) and extracellular (~ 100 mM) concentrations of
Cl', or there would be huge voltages using Eq. 4. In this
model, chloride co-transporters change intracellular K*, Na*
and CI” concentrations but do not induce any ionic current or
change voltage as they transport pairs of oppositely charged ions.
The balanced effect of these co-transporters does not need special
treatment in the equations above as long as both co-transported
ionic species are accounted for.

We can modify Eq. 4 to explicitly allow for transmembrane
imbalance of species that are not included in the model:

(Z Y24 [A]wm],k% -z, [A]0> +AV
Ak 1 A

Here, AV corresponds to the transmembrane potential due to
the difference in charge of all un-modelled species on either side
of the membrane. As the contribution of these species to V, is not
modelled as varying, AV remains constant through the
simulations. Equivalently, we can express the offset constant as
a concentration that we denote T'y:

(Z ZZA [A]totk ZZA ot ro>> (6)

where Ty = V;FAV/C,,.

Expressing the offset as a concentration rather than voltage
may help in assessing whether the values implicitly attributed to
I', by ODE models could be realistic. If positive, Iy could be
interpreted as the net concentration of 1 + charged intracellular
ions carried by species omitted in the model (or equivalently the
net extracellular concentration of 1 — charged ions), and if
negative it could be interpreted as a net intracellular
concentration of 1 — charged omitted ions—but in reality it
will reflect the sum of concentrations of a wide range of intra
and extracellular un-modelled charged species. The smaller the
magnitude of T, the smaller the transmembrane imbalance of
charge carried by un-modelled species. As a consequence, a value
of I', = 0 mM does not necessarily imply that no charge is missing
in the model; but it does imply that any external missing charge is
balanced exactly by an internal missing charge. Thus, the value of
I', must be interpreted in the light of which charged species are
included in each model. Throughout this manuscript, we will use
the Ty symbol to represent these missing charges, but the results
hold equally well for its mathematically equivalent representation
as voltage (Endresen et al., 2000), concentration of charge (Hund
etal., 2001), or electrical charge (Jacquemet, 2007). Further detail
on these expressions and their interpretation is provided in
Supplementary Material Section S1-2.

A value for Ty can be found by substituting in the initial
conditions for the concentrations and the initial value of V,;, from
the ODE formulation. This highlights an important point: models
that express V,, in ODE form “hide” the value of this model
parameter within their initial conditions. So when a set of initial
conditions is chosen, perhaps arbitrarily from within the bounds
of physiological realism, a hidden assumption is being made
about the (im)balance of un-modelled charges in the cell. As we

V,F

Vi =
Cn

©)

V,F
O

Vi =
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FIGURE 1 | Example of a limit cycle in the O’Hara-Rudy CiPA 2017 model (Dutta et al., 2017), using the initial conditions from the published CellML model. The

simulation methods are detailed in “Simulation”. (A): Comparison of paced steady-state APs with 1 and 2 Hz pacing. (B): Adaptation of the voltage profile when the
pacing rate is suddenly changed from 1 to 2 Hz. The dots plotted on the traces correspond to the end of the diastolic phase in each AP. (C): Comparison of periodic
steady-state [K*]; variations during the AP with 1 and 2 Hz pacing. The values are normalised for easier comparison. (D): Adaptation of [K*]; after the sudden

change to 2 Hz shown in panel (B). (E): V., and [K*]; during the transient adaptation phase where the model converges towards its periodic steady state. Data is shown
from the 500th pace onward. After a slow drift of [K*]; over time, a limit cycle (in blue) is reached where the patterns from consecutive APs overlap. (F): Evolution of
diastolic intracellular potassium (measured at the time points denoted with dots in B and D) after a change in pacing rate. A limit cycle is reached after approximately
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will show in this study, this net imbalance in un-modelled charge,
captured by T, is a key parameter in determining the behaviour
of AP models.

1.3 I'yx and Stable Behaviour
In Figure 1 we show the stable behaviour of the O’Hara-Rudy

CiPA model when paced for a long time at 1 Hz. The solution
converges to a pattern under which all variables in the system take
the same trajectory (to within numerical simulation tolerances)
every time a stimulus is applied. The resulting periodic orbit in
the state variable space (as shown in Figure 1E) is called a “stable
limit cycle” in the study of dynamical systems, but is often
referred to as a “steady state” for shorthand in
electrophysiology modelling. Figure 1 also shows how a
change in pacing to 2 Hz results in a transient shift to a new

limit cycle. Similar transients to different limit cycles will also
occur when other parameters in the model are changed (e.g.,
those representing maximal ion channel conductances being
altered by drug block, or a change in extracellular
concentrations). A model at a limit cycle has settled to a stable
behaviour where each ionic concentration is in a dynamic
equilibrium—any depletion/accumulation due to ions flowing
down concentration gradients is restored before the next pace by
pumps and exchangers (see Figure 1C).

Convergence to a stable limit cycle of the same period as the
pacing (a “period-1” orbit) is not guaranteed: some models’
variables/concentrations may simply keep drifting (perhaps
reaching unrealistic levels); exhibit more complex behaviour
such as alternans (a stable “period-2” limit cycle in which we
arrive back at the same state after two stimuli periods rather than
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FIGURE 2 | Evolution of resting membrane potential (RMP) in a

simulation with the derivative-V,, ORd-CiPA model, starting from the
published initial conditions. 2000 paces were simulated, we are showing
paces 250 onwards to examine the behaviour close to periodic steady
state. A slight drift is observed when using a coarse solver tolerance, but this
disappears when tolerances are tightened.

one); or even chaotic behaviour (Qu, 2011). If pacing is stopped
altogether, model variables may converge to stable values—a
“stable steady state”. In models that exhibit automaticity, a
limit cycle can be reached without any periodic forcing
applied by a stimulus current. In this manuscript, we will use
either “limit cycle” or “periodic steady state” when referring to
stable limit cycles, and “quiescent steady state” when referring to
stable steady states without any periodic forcing by a stimulus
current.

Many published models do not exhibit a periodic steady state.
Hund et al. (2001); Jacquemet (2007) showed that models where
variables drift can often be ‘fixed’ to produce periodic steady
states by ensuring that all currents through the membrane,
including the stimulus current, are taken into account in the
concentration updates, i.e. by ensuring that charge is conserved
(as well as other conservation laws, see Pan et al., 2018).

Even when a model does have a periodic steady state, for any
models where V,, is written as a redundant ODE, the charge
represented by Iy is defined by the initial conditions. As a result,
arbitrarily varying initial conditions in the presence of this
redundant ODE alters the parameterisation of the model
(changes the amount of charge in the system), and any
quiescent steady states or limit cycles can alter accordingly. Or
in other words, when a redundant ODE is included there can be
no unique periodic steady state, it will vary depending on the
initial conditions. Conversely, when the redundant ODE is
removed there is often a unique stable limit cycle or quiescent
steady state; that is, the same quiescent steady state or limit cycle
is reached for any initial conditions.

Missing Charge in Electrophysiology Models

Some authors such as Livshitz and Rudy (2009) have gone a
step further, and suggested that uniqueness of limit cycles/
quiescent steady states is guaranteed once conservation of
charge is met. An analysis by Jacquemet (2007), however,
shows that more than one stable quiescent steady state can
exist for a charge-conserving model with a given value of T\,.
Examining the atrial model by Nygren et al. (1998), Jacquemet
found that for some values of I'y the model had a stable steady
state where V,,, is polarised at rest (—60 to —90 mV), a stable
steady state where the cell is depolarised to about —30 mV, and an
unstable periodic steady state where the model displays
automaticity. In the course of this study we also found
examples of more than one stable limit cycle in other analytic-
Vi models, which are discussed below.

Although undoubtedly important for reproducible modelling,
it is reasonable to question the physiological relevance of
quiescent steady states and limit cycles. Convergence to a
perfect limit cycle seems unlikely to occur in real cells, as
channel activity and other chemical processes are inherently
stochastic and will perturb each orbit differently. The idea of a
limit cycle, however, overlaps well with biological concepts of
homeostasis and robustness. Even though the cell’s environment
is constantly altering to some degree, it would be ideal for a cell to
exist in close proximity to a stable limit cycle such that small
stochastic perturbations converge back to the same behaviour—at
least while energetic demands are met.

2 IMPACT OF THE ALGEBRAIC VOLTAGE
FORMULATION ON NUMERICAL
SOLUTIONS

2.1 Models and Simulation
CellML files for the TTP06 and ORd-CiPA models were obtained
from the Physiome Model Repository (Yu et al, 2011). The
TTP06 model has epi-, endo- and mid-myocardial variants;
where not stated otherwise we used the epicardial variant in
this study. The units in the obtained CellML files for TTP06 had
to be corrected before the algebraic-V,,, form could be applied, as
described in Supplementary Material Section S1.1. The
algebraic-V,, forms of the TTP06 and ORd-CiPA models were
derived, and model variants that employ this form were created
for comparison with the original derivative-V},, form. A detailed
overview of the conversion of a model to its algebraic- V;, form is
given in Supplementary Material Section S1.3, along with a
guide to performing this translation in other models.

Simulations were performed using Myokit (Clerx et al., 2016)
which imported the CellML models, and using solver tolerances
stated in the section below. Unless stated otherwise, figures were
created after 2000 pre-pacing stimuli at a frequency of 1 Hz. In
the TTP06 model, the stimulus current was modelled as a K*
current of amplitude —52 A/F lasting 0.5 ms. In the ORd-CiPA
model, the stimulus current was also attributed to K* ions and its
amplitude was set at =50 A/F and its duration at 1 ms.

All code used for this article is publicly available and open
source (see Data Availability at the end of the article).
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2.2 Accuracy of Solutions
Simulations in Myokit are performed using the CVODES

software package (Hindmarsh et al, 2005) to numerically
integrate the differential equations. CVODES has two
“tolerance” settings that control the accuracy of the numerical
solutions (Cohen et al., 1996). To visualise the influence of solver
tolerance on AP simulations and find suitable tolerances to use in
this study, simulations were run for 2000 paces with the ORd-
CiPA model in its derivative-V,, form, using a coarse setting (10~
and 107 for absolute and relative tolerance, respectively) and a
fine setting (10™® and 107°). The resting membrane potential
(RMP) was measured as the V,, 1 ms before application of the
stimulus, and plotted for the final 1750 paces in Figure 2.

As expected, using coarse tolerances results in (a small)
numerical error in the solution, but the figure also shows a
slight drift in V,,, even after 1,000 paces. When tightening the
solver tolerance, the numerical noise is significantly reduced, and
Vim stabilises after around 700 paces. The other state variables
show a similar pattern, as can be seen for [K*]; in Supplementary
Material Section S1.4.

To further investigate the long term stability of the solutions,
3,000 paces were simulated with the ORd-CiPA and TTP06
models, in both the derivative and the algebraic-V,, forms.
Since, with fine tolerances, the system had stabilised after 2000
paces (see Figure 2), the variation in the state variables after 2000
paces could safely be attributed to numerical error and not to

electrophysiological phenomena. We quantified this variation by
measuring the standard deviation in the final 1,000 paces in [K*];
(the state variable that had the highest absolute value and largest
variations over successive paces, see Supplementary Material
Section S1.4). This standard deviation was evaluated for several
solver tolerances, in both the derivative and algebraic-V,,, forms
of the models, and plotted in Figure 3 to create a “map of
stability”.

For both models, numerical solutions appear less stable when
using the derivative-V,, form Eq. 1. We believe this is because the
intracellular ionic concentrations and V,,, are updated without the
numerical method having any knowledge of T'y. This can lead to
numerical errors that break conservation of charge, effectively
introducing variations in Iy, and allowing the periodic steady
state of the system to change. By contrast, when explicitly
incorporating the algebraic constraint on V,, (Eq. 6) and
fixing Ty, conservation of charge is guaranteed, so that the
periodic steady state stays the same and the stability of the
solution is improved.

For the remainder of this manuscript, we therefore used the
algebraic-V,, form and absolute and relative solver tolerances of
107 and 107°, respectively.

2.3 Computation Time
We also investigated whether computation time was affected by
switching to the algebraic- V;,, form of the model. One might have
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TABLE 1 | The integration constant for a range of human AP models, written as Co (Hund et al., 2001)—see Section 1.2—, net un-modelled species concentration I'y Eq. 6,
and voltage offset AV Eq. 5. The Trovato et al. (2020) and Stewart et al. (2009) models are Purkinje fibre models, while the remaining models represent ventricular cells.

Model Co (mM)
Trovato et al. (2020) 195.3377
Stewart et al. (2009) 147.2641
Ten Tusscher et al. (2004) Epi/Endo 150.5207
Ten Tusscher and Panfilov (2006) Epi 147.2683
Ten Tusscher and Panfilov (2006) Endo 150.5427
lyer et al. (2004) 135.7501
O’Hara et al. (2011) Endo 156.8010
O’Hara et al. (2011) Epi 156.8022
Dutta et al. (2017) (ORd-CiPA) Endo 156.8011
Tomek et al. (2020) Epi 135.7563
Tomek et al. (2020) Endo 135.7555

expected an improvement in simulation time due to a smaller and
better conditioned system with the redundant ODE removed
(avoiding a singular Jacobian as Varghese and Sell (1997)
suggested), but there was no significant (if any) change in
computation time, see Supplementary Figure S5 in the
Supplementary Material.

3 PHYSIOLOGICAL IMPACT OF T,

3.1 T, [K']; and [Na']; in Human Ventricular

AP Models

The algebraic-V,,, form of the model (Eq. 6) gives the voltage in
terms of the total intra- and extra-cellular ionic concentrations.
The impact of variations in these parameters and variables across
ventricular models was investigated by computing Iy for several
literature models using the published initial conditions. This
work could be carried out only for models which obey the
conservation of charge principle. The results are shown in
Table 1 which reports Iy (Eq. 6), the corresponding C, as
defined by Endresen et al, and the corresponding voltage
offset AV for each of the investigated models.

These parameters contain information about the difference
between the un-modelled intra- and extracellular charged species
(e.g. H', Mg®", cations, phosphates, proteins). In the TTP06 Epi
model, for example, the intra- and extra-cellular charges of these
missing species are responsible for a voltage offset of 18.2 V. In
the ORd-CiPA model, the voltage offset is of —126.8 V.

The Tomek et al. (2020) model (an update of the 2019 version
to conserve charge) has a very high Ty constant due to the
inclusion of chloride ions, for which there is a very large
difference between intra- and extracellular concentrations. In
the Ten Tusscher et al. (2004) model, the epicardial and
endocardial versions were assumed to have the same initial
conditions, so their missing charge concentrations are the
same. The 2006 epi/endo variants of the Ten Tusscher model
(Ten Tusscher and Panfilov, 2006) have minor differences in the
initial conditions and buffered Ca®" concentrations. As a result,
there are slight differences in Ty between the various versions of
the Ten Tusscher et al. model.

It remains to be seen whether the T, value (net concentration
of un-modelled charge) is biologically as variable as the values it

To (MM) AV (mV) Included ions
-46.3377 -1.0605 x 10° K*, Na*, Ca®*
2.1359 1.8273 x 10* K*, Na*, Ca®*
-1.1207 -9.5878 x 10° K*, Na*, Ca**
2.1317 1.8237 x 10* K*, Na*, Ca®*
-1.1427 -9.776 x 10° K*, Na*, Ca®*
10.2499 1.6659, x, 10° K*, Na*, Ca®*
-7.8010 -1.2680, x, 10° K*, Na*, Ca®*
-7.8022 -1.2682 x 10° K*, Na*, Ca**
-7.8011 -1.2680 x 10° K*, Na*, Ca®*
-137.1563 -2.2294 x 10° K*, Na*, Ca®*, CI-
-137.1555 —2.2294 x 10° K*, Na*, Ca®*, CI”
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FIGURE 4 | Initial concentrations published for cardiac AP models, for a
range of species and tissues. Green: human, Purple: canine, Orange: rabbit,
Yellow: Guinea pig, Blue: mammalian, Pink: murine. The dotted box highlights
the extreme values of intracellular concentrations, estimated from the
work of Bers et al. (2003) for Na* and from the Grandi et al. (2010) and the
Tomek et al. (2020) models for K*.

has been implicitly assigned within models, or whether this
simply reflects lack of information on real concentrations and
subsequent uncertainty in what initial conditions should
be used.

Comparing the magnitudes of I'y and AV in Table 1 shows
that a 20mV variation one might observe in resting
potential between models corresponds to Iy variations of
approximately 0.002 mM, much smaller than the variation
in the offset constants between models. So what we observe is
not influenced much by the precise value of the initial
condition for the RMP (this is the same reason initial
gating variable values have negligible effects) but instead by
how the various possible initial concentrations cause
longer term system behaviour to change via altered Nernst
potential (or GHK flux equations) and resulting currents, as
well as any explicit concentration-dependence in gating
kinetics. So the impact of initial RMP on I, can be
neglected in comparison to that of initial concentrations
(RMP is also much easier to measure to within a few
millivolts in experiments). As a consequence, variation of
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the initial voltage used to compute I, from Eq. 6 was neglected
in this study and the initial voltage as published in the original
models was used to compute Iy in simulations of the
sections below.

3.2 Iy and Ranges of K* and Na*

In this section, we estimate the variability of Ty from literature
and observe how this variability might impact the AP predicted
by the model. The values that can be taken by Iy are, for a large
part, dictated by the uncertainty in intracellular concentrations in
intact myocytes. Extracellular concentrations are fixed
parameters in most AP models that are more reliably
estimated (at least in in vitro experiments); we therefore
investigate the effect of only the initial conditions of
intracellular state variables on long-term model behaviour.

A literature search was carried out to find the range of
intracellular K" and Na® concentrations observed
experimentally in human cardiomyocytes and/or used in
simulations. The contribution of Ca®** to total intracellular
charge at the end of the resting phase of the AP is much
smaller, so its variation can be neglected compared to K* and
Na’, and T, variation between the models is mainly due to
different intra- and extra-cellular K" and Na®. The
concentrations of [K*]; and [Na*]; used in previous cardiac
AP models are reported in Figure 4, for a range of tissues and
species based on the annotated CellML models at https://github.
com/Chaste/cellml that were studied in Cooper et al. (2015).

In human ventricular cardiomyocytes the intracellular sodium
concentration ([Na*];) was found to range experimentally from 4
to 16 mM (Bers et al, 2003). Fry et al. (1986) determined
experimentally that the intracellular potassium concentration
([K*];) is 113 + 6 mM in rat cardiomyocytes. We did not find
direct experimental measurements of [K*]; in ventricular human

cardiomyocytes in the literature. Also, experimental
measurements of intracellular ionic concentrations in intact
cardiomyocytes were all performed in the quiescent

configuration. We therefore used initial values for [K*]; from
human ventricular AP models as a measure of uncertainty in
[K*];, which ranged from 120 mM in the Grandi et al. (2010)
model to 152 mM in the Tomek et al. (2020) model. With these
estimated ranges for [K*]; and [Na*];, the range for their sum
varies by 44 mM. Such uncertainty in intracellular concentrations
produces the high variability of Iy between models that is
observed in Table 1.

The extreme K" and Na™ concentrations from Figure 4 were
used to initialise [K*]; and [Na*]; in simulations to observe the
effect of such variations on the limit cycle AP. The K'
concentration was initialised to 120 mM and to 152 mM in the
two models, whilst the initial Na* concentration was initialised to
4 mM and to 16 mM, respectively. I'y was computed from Eq. 6
for these intracellular concentrations and initial voltage set to its
published value (—84.9 mV for the TTP06 model, — 88 mV for the
ORd-CiPA model). The high total concentration of intracellular
ions yielded I'y = —20.4 mM and I'y = -24.4 mM in the TTP06 and
the ORd-CiPA models, respectively. The low total concentration
of intracellular ions yielded I'y = 23.6 mM and I'; = 20.9 mM in
the TTP06 and the ORd-CiPA models, respectively.

Missing Charge in Electrophysiology Models

In simulations in sections below where the value of T is
imposed by the user, the initial intracellular concentrations must
be changed to satisfy the algebraic constraint of Eq. 6 and leave
the initial voltage unchanged. Otherwise, the high variations of T,
reported in Table 1 would lead to voltage offsets of up to several
kilovolts. The intracellular concentration of K™ was therefore
adjusted with Eq. 6 so that the initial voltage remains untouched
and consistent with the required value of T;. Alternatively, Na*
could be adjusted; but the degree of variation of Iy could lead to
negative values of [Na*]; so we adjust K" instead.

The ORd-CiPA model has extra ionic variables compared to
the TTP06 model: variables were added for the concentrations of
sodium and potassium in the subspace domain, denoted by
[Na*]ss and [K']ss. At the limit cycle, the difference between
diastolic concentrations of ions in the subspace and in the
intracellular compartment were observed to be smaller than
0.1 mM, even when initial conditions were set to very different
values (results not shown). Furthermore, there is no physical
structure delimiting the subspace from the bulk intracellular
space. Thus, K" and Na* concentrations in the subspace are
very close to concentrations in the main intracellular
compartments at the end of the resting phase of the AP,
i, when state variables are initialised in simulations. To
avoid introducing big differentials in K" and Na®
concentrations between the subspace and the bulk cytosol
compartment in simulations where the wuser introduced
changes to initial conditions for [K*]; and [Na*];, the initial
conditions of [Na*]gs and [K]ss were set to the same values as
[Na*]; and [K*]; respectively.

The limit cycle APs, observed after 2,000 paces, are plotted in
Figure 5. The difference in Iy induces important changes in the
limit cycle AP, especially for the TTP06 model. For instance, the
TTP06 model does not have a physiological AP when simulated
with a very low Ty value, the cell does not depolarise. In the ORd-
CiPA model, the RMP is particularly impacted, decreasing from
-82mV for Iy = -24.4 mM to —88 mV for Iy = 20.9 mM. This
shows that Ty variations have a strong impact on the model
output, which is investigated further below.

3.3 Effect of I', on Steady States

Several authors have asserted that Ty (or its equivalents from the
literature) defines the steady states of various models, both under
paced and unpaced conditions (Hund et al., 2001; Jacquemet,
2007; Livshitz and Rudy, 2009; Pan et al, 2018). Here we
investigate the steady states and limit cycles reached by the
TTP06 and ORd-CiPA models for initial conditions that
sample the range of physiologically-plausible T, values
(Section 3.2).

The range of experimental concentrations determined in the
previous section was sampled at 10 linearly spaced Iy values. For
each Ty value, the [Na*]; range was sampled linearly at 10 points.
The initial [Ca**]; was taken to range from 0.5 to 1.5 times its
originally published value, also with 10 sampling points, giving a
total of 100 samples for each Ty value. The remaining Ca**
concentrations were initialised to a random value ranging
from 0.5 to 1.5 times their published initial value. The initial
value for [K*]; was computed using Eq. 6 to match with the initial
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FIGURE 5 | Limit cycle APs for extreme initial conditions for the TTP0O6 model (A) and for the ORd-CiPA model (B). Extreme T values covering approximately
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voltage of the published model. Due to the linear relationship
between the ionic concentrations in Eq. 6, a hyperplane in the
state variable space can be associated to each Iy value. The initial
values of the remaining state variables (gating variables) were
taken randomly within the range 0-1, and the sum of the Markov
states in the Iy, compartment of the ORd-CiPA model was
maintained equal to 1. The quiescent steady state was reached
after 4000 s without pacing and the limit cycle was recorded after
2000 s of steady 1 Hz pacing, and the values of the state variables
at the end of the diastole were recorded.

The quiescent steady state and the 1 Hz limit cycle diastolic
intracellular concentrations are shown in Figure 6. For each T,
value, all the simulations converged to the same quiescent or
periodic steady state. The steady states that can be reached by the
models for the various Iy values align on these plots.

Note how some of the points in Figure 6A appear to move
outside the Ty plane. Only [K*];, [Na*];, and [Ca®t]; are plotted
to allow a 3D visualisation of the quiescent steady states and limit
cycles. Thus, major changes in other concentrations, which are
not plotted in the figure, shift the steady states. Although the
steady state variables appear outside of the initial I'y plane in this
lower dimensional representation, I'y was correctly preserved
throughout the simulations.

For both models, regardless of the initial conditions used for
the state variables, a unique quiescent steady state and a unique
1 Hz limit cycle were observed for each value of I'y. Thus, the
solution of the model under quiescence and for prolonged
regular pacing is defined by the value of I',. This observation
is consistent with the studies mentioned previously, with
constants equivalent to I'y. As a conclusion, Iy can be used
as a single model parameter to summarise the intracellular
concentrations in these models at these pacing conditions
and parameter values. Moreover, the initial conditions for the
gating variables did not impact the limit cycle or steady-state
outputs, so their initial conditions were not altered in further
simulations. When calibrating an AP model based on its limit

cycle or steady state outputs, it appears sufficient to establish the
correct value of Ty, regardless of how K, Na* and Ca**
concentrations and gating variables are individually
initialised as long as they remain physiologically plausible.
Thus, when exploring values of T in a derivative-V,,, model
the changes could be attributed to a single intracellular
concentration (K" for example) without loss of generality.

3.4 Model Predictions Are Sensitive to I'y
The influence of Iy on the limit cycle outputs and on the APD
restitution portrait was evaluated in the TTP06 and ORd-CiPA
models. The models’ outputs were recorded with Ty values
varying by 30 mM. Intracellular concentrations were initialised
so that Eq. 6 is satisfied with the initial voltage set to its published
value. The state variables other than intracellular concentrations
were initialised to their originally published initial values. 2000
paces were simulated to approach the limit cycle. The inward
rectifier potassium current (Ix;) and the sodium potassium
exchanger current (Iy,x), the currents which showed the
highest sensitivity to Ty change, were recorded at 1 Hz pacing,
together with V.

The AP duration restitution portrait at limit cycle was
investigated using the Cardiac Electrophysiology Web Lab
(https://chaste.cs.ox.ac.uk/WebLab) (Cooper et al., 2016; Daly
etal., 2018). There, the models were loaded as CellML files, using
the public protocol “Steady State Restitution”. In this protocol,
2000 paces are applied (bringing models close to their limit
cycles) at various pacing periods ranging from 250 to 2000 ms.
Two consecutive APs are then recorded, and their APDyys
measured. The limit cycle outputs at 1 Hz and the restitution
plots are shown in Figure 7.

I, variations impacted the Ix; current particularly strongly in
both models, with faster I, activation kinetics for lower I'y values,
see Figures 7A,E. In addition, peak I, is decreased by 45% when
increasing I'y by 30 mM in the ORd-CiPA model. I,k is also
shown to be sensitive to Iy, see Figures 7B,F. When using alow Iy
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FIGURE 6 | Plot of the quiescent steady state and limit cycle values for [Na*];, [K*]; and [Ca®*];. (A): TTPOB model at a quiescent steady state. (B): ORd-CiPA
model at a quiescent steady state. (C): TTPO6 model in a limit cycle. (D): ORd-CiPA model in a limit cycle. Each plane has initial conditions satisfying Eq. 6 with the same
fixed T value. 100 combinations of initial conditions are sampled from each plane to cover the physiological range of concentrations. These initial conditions are used in
simulations to reach the (top row) quiescent steady state and the (bottom row) paced limit cycle. The steady state and limit cycle concentrations are plotted as
points (with dashed projections along the associated I' plane), with the colour matching the plane from which the initial conditions were sampled. For clarity, the planes
for which the quiescent steady state is out of the range reported in Section 3.2, are not shown.

value, In.x is reduced by approximately 15% in both the TTP06
and the ORd-CiPA models. The consequences for the simulated
AP are important, see Figures 7C,G. When looking at the resting
membrane potential (RMP) and the APD at 90% repolarisation
(APDy) for example, RMP is increased from —88 mV to —82 mV
for the TTP06 model, and from —88 mV to —83 mV in the ORd-
CiPA model when increasing I'y by 30 mM. APDy, is increased
from 299 to 306 ms for the TTP06 model, and is increased from
265 to 273 ms in the TTP06 ORd-CiPA model, when increasing
I by 30 mM.

Figures 7D,H show that Iy has an effect on the APDy, steady
state restitution portraits. The bifurcation of APDgy, in the

restitution portrait is particularly important as it is
characteristic of alternans, when two consecutive APs do not
have the same APDy, but the model outputs are still periodic.
Note that when stable alternans occurs, the limit cycle no longer
follows the trajectory of the state variables over a single pacing
period, but over two consecutive pacing periods.

There is a bifurcation of APDy, for pacing periods at 700 ms
for the TTP06 model and at 400 ms for the ORd-CiPA model.
The pacing periods generating this bifurcation appear to be
independent of I'y. However, the steepness of the restitution
slope as well as the size of the bifurcation depend on Ty used
for the simulation, especially for the ORd-CiPA model. In the
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FIGURE 7 | Comparison of model predictions in the periodic steady state outputs for the extreme values of I'y computed from Section 3.2. Data is shown for the
TTPO6 (top row) and ORd-CiPA models (bottom row). (A,E): I; current. (B,F): Sodium-Potassium exchanger (Inax) current. (C,G): AP. (D,H): Limit cycle restitution
portraits showing APDgq variation with the pacing period. The insets show pacing cycle lengths of 500 ms and shorter.

studied models, higher values of Ty generate wider bifurcations in
the APDyj restitution portrait. The impact of Ty on characteristics
of the alternans predicted by the TTP06 and ORd-CiPA models
stresses the need to carefully consider the value of I'y used in AP
models.

4 CALIBRATION OF AP MODELS AND T,

The dependency of model outputs to I'y observed in Figure 7 is
also expected have an impact when fitting parameter values to
whole traces of V,,, or their derived biomarkers. Indeed, if T, is
fixed to a value that incorrectly summarises the experimental
concentrations under which the data were generated, we might
expect a fitting process to return parameter values which are
skewed away from their correct values. A fitting of the ORd-CiPA
model to synthetic (simulated) data was performed to examine
this effect.

The synthetic datasets used in model training were generated
by running the ORd-CiPA model for 2000 pre-paces (1 Hz
pacing), and recording the 2001th AP, with one data point per
0.05 ms, no noise was added. The “true” scaling parameters for
conductances were then “forgotten” and re-calibrated to the
synthetic AP data, as in Johnstone et al. (2016). The
parameters used for the simulations are expressed as: gsimulation
= 0 X Zoriginal With ggmulation the value of the conductance used for
the simulation, 6 the scaling factor, and gosigina the original value
of the conductance parameter. Thus, a scaling factor of 6 = 1
corresponds to the conductance used in the original published
model (the “true” value in this synthetic study).

Three cases were explored to assess the influence of Ty in the
fitting process. In the first case, the initial conditions were
unaltered (assumed to be known/exactly correct), therefore the
value of Ty during the fitting was set to the “true” value, i.e. the one
used for synthetic data generation. In the second case, the model

was fitted with a fixed and incorrect T value computed from
initial concentrations and voltage published for the TTP06 model,
a different but still plausible value. The third fitting is the same as
the second case, but I'y was added to the set of parameters to be
fitted, to allow compensation for discrepancy in the initial
intracellular ion concentrations provided by the user (in terms
of Figure 6 this allows flexibility in the plane upon which
intracellular concentrations will settle). The initial conditions
used for the fittings are reported in the Table 2.

When using initial concentrations from the TTP06 model,
calcium concentrations, [Na*]; and [K*]; were set to the values
published by Ten Tusscher and Panfilov (2006) [K']ss and
[Na*]gs were initialised to the same value as [K*]; and [Na'];.
In the ORd-CiPA model, the SR is split into two sub-
compartments while the TTP06 model has only one SR
compartment. Therefore [Ca®']ysg and [Ca*']jsg  were
initialised at the same concentration published by Ten
Tusscher et al. for [Ca*"]sg.

The optimisation problem was defined as the minimisation of
the sum of square errors between the synthetic data and the fitted
model AP. The fitting algorithm uses the PINTS Python package
(https://github.com/pints-team/pints) (Clerx et al., 2019), to run
the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES)
(Hansen et al., 2003). The scaling factor parameters 8c,y, Ok, Oks
Ona> Onar of the ORA-CiPA model were fitted. The initial guesses
for scaling factors were taken from the range 0.2-5, while the
boundaries were set to 0.1 to 10. The CMA-ES hyper-parameter
%, the initial proposal covariance for new parameter samples,
was set to 0.1 along the diagonal for all parameters and zero
otherwise.

The value of scaling parameters retrieved by the three fittings
are compared in Table 3, and the corresponding APs are plotted
in Figure 8. In the case of the first fitting with the correct Ty, the
true parameter values are retrieved as expected due to these
model parameters being identifiable. In the case of the second
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TABLE 2 | Initial conditions used in the various fittings of the ORd-CiPA model to synthetic data.

Case To
Data generation - 7.801
#1 Fixed & ‘correct’ I'y - 7.801
#2 Fixed & ‘wrong’ Tg - 1.562
#3 Fitted T Fitted

Initial
conditions for [K*];

Initial conditions for
other concentrations

144.6 mM ORd-CiPA
144.6 mM ORd-GiPA
135.4 mM TTPO6
135.4 mM TTPO6

TABLE 3 | Parameters retrieved from fittings in the investigated cases. The fitting process with an incorrect I' value yields incorrect values for model parameters. Such a
model suffers from poor predictive power, this can be corrected by fitting I's together with the other model parameters.

Case To Diastolic [K+]; OcaL Okr Oks ONa ONaL APDg, baseline APDg, with 50% Iy, block
(mM) atlimitcycle
Data generation —-7.801 144.4 1 1 1 1 1 266 ms 369 ms
#1 Fixed & “correct” Ty -7.801 144.4 1.000 1.000 1.000 1.000 1.000 266 ms 369 ms
#2 Fixed & “wrong” Ty -1.562 138.6 0.760 1.187 0.522 1.129 1.585 265 ms 383 ms
#3 Fitted T -7.801 144.4 1.000 1.000 1.000 1.000 1.000 266 ms 369 ms
Values associated with the synthetic (simulated) data generation are written in bold font.
40 — Data to fit 40 — Validation data
20 = F!tt!ng #1 20 N Pred!ct!on #1
Fitting #2 Prediction #2
S 0 Fitting#3 | < 0 — Prediction #3
€ S ‘
o —20 o —20
)] )]
3 3
S —40 S —40
o o
> >
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-80 J -80
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Time (ms) Time (ms)
FIGURE 8| Predicted APs for the ORd-CiPA model fitted to synthetic data. (A) Comparison of the synthetic data with APs obtained from optimal parameterisations
in the different fitting cases. (B) Prediction of response of the model to 50% block of /x,. Predictions of model with parameter fittings #1, #3 and the true parameters set
overlay.

fitting with a discrepancy in Iy, the model cannot converge to the
right limit cycle. The optimal AP is still very similar to the
synthetic data, the only difference being a small shift in the
resting membrane potential, as seen in Figure 8A. However, the
discrepancy in ionic concentrations is compensated by a dramatic
shift in the retrieved scaling parameters, especially for gx, (0.522)
and gnap (1.585). This impacts the response of the model to
perturbation: for example 50% block of Iy, as shown in
Figure 8B, where we see a 14 ms difference in the predicted
APDy, which would be significant in many drug effect prediction
settings.

In the case of the third fitting with Iy as an inferred parameter,
the true values for all scaling parameters could be recovered. The
fact that the value of Ty could also be accurately retrieved from
fitting supports its identifiability as a model parameter, at least in
the absence of model misspecification/discrepancy.

4.1 Calibration When Multiple Stable Limit

Cycles Exist for a Single Iy, Value
It was shown in Section 3.3 that the ORd-CiPA model, with
published parameters, has a unique limit cycle for any particular
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FIGURE 9 | Limit cycle APs for the ORd-CiPA model under 95% of Ik,
reduction, generated with the same value for Tp=—20 mM, but different initial
Na* concentrations. With the initial Na* concentration set to 15 mM (Black),
the limit cycle AP shows no early after-depolarisation (EAD). With a lower
initial Na* concentration of 7.3 mM (Blue), the limit cycle AP exhibits alternans
with an EAD.

value of Ty that has been used (implicitly) in previous models. As
shown by previous studies, under certain conditions there are
possibly multiple quiescent steady state (Guan et al., 1997;
Jacquemet, 2007) and/or limit cycle (Surovyatkina et al., 2010)
solutions for the same value of T,.

For instance, with 95% reduction of Ix,, [, = —20 mM, and 1 Hz
pacing, the ORd-CiPA model has two stable limit cycle APs, shown
in Figure 9. With the initial Na® concentration as originally
published in the ORd-CiPA model, the limit cycle AP has an
early after-depolarisation (EAD), whereas the limit cycle AP with
higher initial Na* concentration exhibits alternans and an EAD.
This is characteristic of a bifurcation of the limit cycle for the same
value of 'y, which is investigated further in this section.

Various conditions of Iy, block (0, 90 and 95%) were applied
to the ORd-CiPA model to test for the presence of multiple limit
cycles for a single value of Ty. As in Section 3.3, the ORd-CiPA
model was paced to its limit cycle for various initial conditions

Missing Charge in Electrophysiology Models

that sample the physiological range of concentrations reported in
Section 3.2, but variations of initial conditions were considered
only for [K*]; and [Na*]; this time. Given the low influence of
[Ca®*] variations on T, value, its influence on the model outputs
were neglected. Eq. 6 defines a linear relationship between [Na*];
and [K*]; and Ty, and therefore for a fixed value of Ty, the
intracellular concentrations follow a line in the ([Na*];, [K*];)
plane, if the other ionic concentrations are not changed. Ten
different initial conditions were sampled for each of the 15 values
of Ty covering the physiological range of concentrations ([K*];
between 120 and 152 mM and [Na*]; between 4 and 16 mM). In
case there is alternans, diastolic concentrations are read out at the
end of the longer AP.

The limit cycle diastolic concentrations reached for the various
Iy values with various I, block conditions are represented in
Figure 10. For Iy, block lower than 90% across the range of initial
conditions we studied, the limit cycle is unique for a given value of
Ty. In such situations, fitting I'y would be sufficient to fully inform
the intracellular concentrations.

In the extreme case of 95% of Ik, block, a bifurcation is
observed for the ORd-CiPA model—see Figure 10C. A second
stable limit cycle appears, and intracellular concentrations
converge to one or the other limit cycle value depending on
their initial conditions, despite corresponding to the same Iy
value. The multiple limit cycles at a fixed I'y value are observed for
Iy values ranging from —13 to 2 mM—see Figure 10C. In such
cases, I'y does not solely determine which limit cycle will be reached,
and one needs to consider [K*]; and [Na™]; initial conditions.

As observed in Figure 10, multiple stable limit cycles can be
found for the same value of I'y under particular conditions. In this
section, we investigate how the bifurcations of the limit cycle can
impact the fitting process. Under 95% of Ix, reduction, there are
two stable limit cycle APs for the ORd-CiPA model for the same
value of Tp: one with early after-depolarisation (EAD) generated
with low initial [Na*];, and one without EAD when simulating
the limit cycle AP from high initial [Na*];—see Figure 9.
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FIGURE 10 | Limit cycle concentrations of [K*]; and [Na*]; for simulations with ORd-CiPA model starting from different initial conditions. Each line corresponds to
combinations of intracellular concentrations bound by a single T value. For each value of Ty, 10 combinations of [K*]; and [Na*]; are used to sample the whole
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TABLE 4 | Rescaling factors for conductance parameters retrieved from fitting to data generated under conditions where several stable limit cycles coexist for the same value

of Ip = =20 mM.
To Diastolic [K+]; OcaL Okr Oks Ona ONnaL APDg, with 95% Ik, block APDg, baseline
(mM) (mM)
Data generation -20.0 156.18 1 1 1 1 1 663 ms 264 ms
Fitted values -19.7 155.73 0.863 0.933 1.263 0.936 1.574 663 ms 294 ms
Values associated with the synthetic (simulated) data generation are written in bold font.
40 = True model 40
= Fitted model
20 20
- 0 Model | _ | Validation
z training| 2 prediction
o —20 o —20
o o
3 40 2 40
S S
—60 -60
-80 -80
0 200 400 600 800 0 200 400
Time (ms) Time (ms)
FIGURE 11 | Consequence of fitting the ORd-CiPA model in case of multiple stable limit cycles for the same T'g value. (A): ORd-CiPA fitted with initial [Na*]; = 7.3
mM under 95% of I block is able to reproduce the synthetic data generated with initial [Na*]; = 15 mM (APs superposed). (B): predictions for no Iy, block. Despite the
good fit to Ik, block data in panel (A), incorrect parameter values are retrieved from fitting, and the prediction of the calibrated model is erroneous.

The synthetic data was generated with the ORd-CiPA model
under 95% of Iy, block, with intracellular concentrations
initialised at [Na*]; =15mM and [K']; 149 mM,
corresponding to Iy = —20 mM. Synthetic data showed no
EAD. As seen in Figure 9, there is a second stable limit cycle
AP, with EAD, in this configuration of the ORd-CiPA model with
lower initial Na* concentration.

During the fitting process, the initial concentration of Na™ was
fixed to its published value [Na*]; = 7.3 mM, and when a new
value of Ty was proposed by the fitting algorithm, the changes in
T, were attributed to K* ions. As a consequence, when the “true
parameters” were evaluated during the fitting process, an EAD
was observed. The fitting of the ORd-CiPA model to synthetic
data from the same model was performed with the same methods
as in Section 4. The same parameters as previously were fitted
(eCaL> eKr) eKs’ GNar eNaL’ rO)

Note that for [, = —20 mM, [Na*]; can take only values between
14 and 16 mM for [K*]; to remain in the physiological range
(Figure 10). This bifurcation was selected despite the initial and
limit cycle concentrations being outside the physiological range,
because of the dramatic changes between the two limit cycle APs
that make more visual the potential impact of multiple stable limit
cycles on the parameters retrieved from model calibration.

The parameters retrieved from the fitting are reported in
Table 4. The limit cycle AP under 95% I, reduction for the
calibrated model is compared to the synthetic data (Figure 11A)
and its prediction of AP without Iy, block is compared to that of

the true model that generated the synthetic data in the validation
case of Figure 11B.

The optimal values of Ok, and Oy, are close to their true values,
but Oy, and Ok, have considerable differences to their true values,
57 and 26% too large respectively. This explains why even though
the synthetic data AP is well reproduced (Figure 11A), the fitted
model makes an incorrect prediction in the validation case with
no Iy, block (Figure 11B). The optimal value of Ty is interestingly
close to its true value. However, one cannot conclude from this
example alone that Ty value will still be correctly recovered in the
case of bifurcation.

In this case with bifurcation, fitting initial conditions for both
[Na*]; and [K*]; would be necessary to reach the correct limit
cycle and obtain a correct optimal model. However, we would not
recommend fitting both [Na*]; and [K*]; simultaneously as a
standard. In most cases, there is only one limit cycle solution for a
given value of Ty, so that the two parameters would be
unidentifiable (see Whittaker et al., 2020).

5 DISCUSSION

We investigated the consequences of computing voltage in AP
models directly from concentrations, using an algebraic-V,,
formulation (Eq. 6). This method for computing voltage
increases the numerical accuracy of solutions, compared to the
canonical derivative-V};, method of integrating the sum of trans-
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membrane currents. The computation time of simulations is not
impacted significantly by the choice of expression for the voltage.
Changing to the algebraic-V,,, form of the model did not reduce
the computational time required for AP simulations, as it does
not change the stiffness of the model (the main driver for the
computational cost).

Iy is a constant representing the net concentration of un-
modelled charge present in the model, needed to ensure the
consistency of initial values for concentrations and voltage. In
most cases, the value of Ty defines the steady-state behaviour of
the model, regardless of the combination of initial values for state
variables such as concentrations in the simulations. Given the
high variability of intracellular concentrations that have been
used in action potential models, with less variability in
extracellular concentrations, Iy is also highly variable. Extreme
variations of T lead to very different steady-state behaviours and
substantially impact their outputs, making it important to
establish the value of Ty as accurately as possible.

Measurements of intracellular ionic concentrations in intact
myocytes are not generally available alongside recordings of
electrophysiological activity used to calibrate AP models. We
showed that this issue could potentially be addressed by inferring
Iy from the data, along with other parameters of the AP model.

With the algebraic-V,, form of the model, the algebraic
constraint on the variables appears explicitly. At each time-
step, this constraint is therefore rigorously applied to the
system. With the derivative-V,, form of the model, the
constraint is mathematically satisfied by the system—by design
in AP models which satisfy the conservation of charge
principle—but during the numerical integration of the
equations, the constraint is not verified at each time step.
Therefore, the numerical errors that appear during the
integration allow the constraint to be violated. This violation
of conservation of charge explains that with a coarse solver
tolerance, the model does not properly converge to a limit
cycle—see Figure 2. Livshitz & Rudy noted that AP models
are often mistaken as Ordinary Differential Equation (ODE)
systems when they are actually Differential-Algebraic Equation
(DAE) systems—ODE systems with algebraic constraints. With
the algebraic-V,,, form of the model, all constraints of the DAEs
appear explicitly, which is best practice (Livshitz and Rudy, 2009).
In theory, the differential and algebraic representations of the
membrane voltage are still mathematically equivalent, so
modellers could use either of them as preferred (Hund et al,
2001). In practice, we recommend to use the algebraic-V,,
formulation.

Using the algebraic-V,, form of the model makes also T
appear as a model parameter, highlighting the need to consider its
value explicitly. We propose to infer Ty from the experimental
data on which the model is calibrated. Endresen et al. (2000)
reported with the derivative-V,,, form of the model that “the
observer tracks only the variations in the number of ions, but then
an initial concentration must be guessed”. Livshitz & Rudy
proposed criteria for validation against experimental data and
adequate comparison between dynamic models (Livshitz and
Rudy, 2009). Among these criteria, the use of “a consistent set
of initial conditions for state variables (V,,, intracellular ion

Missing Charge in Electrophysiology Models

concentrations)” is recommended. Smirnov et al. (2020) also
noted that the question of initial conditions for ionic
concentrations is often overlooked when fitting AP models,
when they fitted the O’Hara Rudy model (O'Hara et al., 2011)
to AP recordings from optical mapping experiments in human
ventricular wedges.

The errors induced in conductance fits when using a fixed but
incorrect T'y—see Section 4—emphasise the importance of using
the correct initial conditions for concentrations when fitting to
AP data. An AP model calibrated using an incorrect
representation of concentrations (i.e. an incorrect but plausible
value for Ty) is badly parameterised with up to +50% error in
some maximal conductance parameters, and has a reduced
predictive power.

Our results show that Ty can be fitted to compensate for errors
in assumed intracellular concentrations, at least when fitting to
synthetic (simulated) AP data. So we recommend inferring T
from the training data during model calibration, following the
methods of Section 4. When using real data, discrepancy in the
AP model may cause additional problems, but still the possibility
for uncertainty in I'y should be explicitly considered.

In our study, we show that due to the conservation law: 1) a
consistent I'; value should be used throughout the model
calibration, and 2) it is sufficient to fit the value of T, to
capture the input of intracellular concentrations on steady
state outputs, unless bifurcations are present. The second
point is supported by observations on other models reported
in the literature (Hund et al., 2001; Jacquemet, 2007; Livshitz and
Rudy, 2009; Pan et al., 2018). For example, Smirnov et al. (2020)
have included initial values for [Na*]; and [Ca?*]gy in their set of
parameters to calibrate, which is similar to fitting I'y. However,
they fitted their initial conditions independently at each pacing
rate, thus changing the value of Iy from one pacing rate to
another.

It remains important to consider that the uniqueness of the
limit cycle for a single Ty value cannot be always guaranteed
(Guan et al., 1997; Jacquemet, 2007). The methods presented in
Section 3.3 can be reused to verify that Iy solely defines the limit
cycle for a model under a given set of studied experimental
conditions. If the uniqueness of a limit cycle is verified, it is
reasonable to fit Ty alone to summarise the initial conditions of
intracellular ionic concentrations. Otherwise, in case of
bifurcation of the limit cycle, we would recommend fitting 'y
and the initial condition of [Na*];. Alternatively, initial
conditions for two intracellular concentrations could be
inferred, for instance [K*]; and [Na*]; which have the highest
contribution to the value of T,.

5.1 Limitations

As mentioned above and in the literature (Guan et al., 1997;
Jacquemet, 2007), the uniqueness of the steady states for a single
Iy value is not always guaranteed. In cases of bifurcation, where
several stable solutions exist for the model with a single value of
Ty, Ty (as well as other parameters) can be incorrectly determined.
We observed in this study that for the ORd-CiPA model, the limit
cycle is unique in most physiologically-plausible cases. However,
this property does not always hold if parameters are changed. A
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method to investigate thoroughly the uniqueness of the limit cycle
for a given value of Ty for all parameterisations of an AP model
could be extremely costly computationally. Still, we have
demonstrated for the ORd-CiPA model, as originally
published, that T, is identifiable and could be correctly
estimated. We observed consistent findings for Ty in the
TTP06 model, which has a very different model structure to
the ORd-CiPA model—data not shown. We therefore expect this
behaviour to be replicated for all AP models that conserve charge.
Hence we recommend to consider calibrating I as a parameter
that usually encapsulates both the initial conditions of the
modelled ionic species and the un-modelled charge. In the
cases where there are multiple steady states for the same T,
the unidentifiability could be resolved by fitting initial conditions
for ionic concentrations as well.

To define the physiologically-plausible range of
concentrations, we used the extreme values of [K*]; reported
in previous human ventricular AP models. Direct experimental
measurements of [K*]; would help refining this range. Moreover,
[Na*]; and [K*]; were considered separately in our study.
Simultaneous experimental measurements of [Na*]; and [K*];
in human ventricular cardiomyocytes would give better
understanding of correlation between these concentrations,
which may further restrict the range of physiologically-
plausible Iy values.

When AP models are used to investigate changes in
extracellular concentrations (e.g. when simulating hypo/er-
kalemia or ischaemia—pathological changes to extracellular
concentrations such as [K']) care is needed with Eq. 6. In
such situations, as the extracellular ion of interest changes
concentration, opposite charges will be introduced into the
same solution to maintain electrical neutrality (e.g. if we
experimentally use the salt KCI to change [K*], we also
change [CI'],); if one ion is accounted for in Eq. 6 but the
‘opposite ion’ is not (e.g. the model does include [K*], but does
not explicitly consider [Cl™],) then I'; will need to be adjusted by
the same amount to account for this extra “opposite” charge.
For models where external concentrations are fixed as
constants, an equation of the form of Eq. 2 with V, or C,
can then be used equivalently, and would simplify simulation
procedures when extracellular concentrations are changed by
the user, but the interpretation of T, as “net un-modelled
charge” is clearer.

5.2 Possible Extensions to This Study

Although this study was focused on ventricular AP models, the
conservation law that binds together the voltage and intracellular
ionic concentrations applies to all cellular electrophysiology
models: other cardiac cell types, neural, gastric, skeletal
muscle etc.

The improvement in numerical accuracy enabled by the
algebraic-V,,, form of the model was shown to reduce the
numerical error that can lead to deviation of state variables
after reaching the periodic steady state—see Figure 3 and
Supplementary Material Section S1.4. The computational
efficiency was similar with the algebraic-V,, form of the model
when using the same solver tolerance.

Missing Charge in Electrophysiology Models

The extent to which intracellular concentrations are well
established has been somewhat overlooked (Smirnov et al.,
2020). Our study, showed the importance of the correct
estimation of Iy in specifying concentrations. In literature
models, there is significant variation between the assumed
initial concentrations, and therefore variation in I'y, as shown
in Section 3.2. In papers on action potential model
development, we have not found any discussion of the
choice of Ty, or equivalently the choice of the offset
between concentrations and voltage in initial conditions,
perhaps suggesting somewhat arbitrary choices. It remains
to be seen whether T, exhibits significant physiological
variation to contribute to inter-cell and/or inter-individual
differences in electrophysiology, or whether it is a well-
constrained biological quantity—which would be the case if
the un-modelled missing ions that I'y represents do not vary
significantly between cells or individuals. In either case, Ty
strongly influences model behaviour and a concerted effort
should be made to identify its value alongside other key model
parameters. The recent emergence of cell-specific models
(Groenendaal et al., 2015) may offer an approach to
quantify T, more accurately.

6 CONCLUSION

We advocate here for the use of the algebraic-voltage form of AP
models, as it improves the stability of numerical solutions by
enforcing a hidden algebraic constraint in the models.
Furthermore, the algebraic-voltage form ensures that the
model conserves charge. It also requires the modeller to
think carefully about initial conditions for intracellular
concentrations and to acknowledge their effects on the model
output. We recommend consideration of the potential
discrepancy and uncertainty in intra- and extracellular
concentrations of ions, as model outputs and model fitting
are dependent on these. The T, value summarises these
factors into one parameter which can be fitted alongside the
rest of a model.
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Computational simulations of cardiac electrophysiology provide detailed information on the
depolarization phenomena at different spatial and temporal scales. With the development
of new hardware and software, in silico experiments have gained more importance in
cardiac electrophysiology research. For plane waves in healthy tissue, in vivo and in silico
electrograms at the surface of the tissue demonstrate symmetric morphology and high
peak-to-peak amplitude. Simulations provided insight into the factors that alter the
morphology and amplitude of the electrograms. The situation is more complex in
remodeled tissue with fibrotic infiltrations. Clinically, different changes including
fractionation of the signal, extended duration and reduced amplitude have been
described. In silico, numerous approaches have been proposed to represent the
pathological changes on different spatial and functional scales. Different modeling
approaches can reproduce distinct subsets of the clinically observed electrogram
phenomena. This review provides an overview of how different modeling approaches
to incorporate fibrotic and structural remodeling affect the electrogram and highlights open
challenges to be addressed in future research.

Keywords: cardiac modeling, fibrosis, electrogram, multiscale, microstructure

1 INTRODUCTION

Patients with cardiac arrhythmias are often treated with ablation therapy. Substrate-based ablation
therapy is guided by intracardiac measurements acquired from catheters inserted into the cardiac
chamber that record the extracellular potential.

The signal recorded by an electrode with respect to a distant reference is called unipolar
electrogram (uEGM). EGMs of several electrodes on a catheter and/or multiple catheter
locations are used to understand the dynamics of the cardiac arrhythmia. However, the
recorded uEGMs are affected by different artifacts such as contraction of the heart,
breathing of the patient, far-field signals from distant parts of the heart and noise from
different hardware components. To alleviate these issues, bipolar electrograms (biEGM) are
most frequently used, which subtract the uEGMs of two close-by electrodes. In this way, artifacts
that affect both electrodes in the same way are cancelled. The difference between two potentials
is called voltage and we should keep in mind that we can only measure voltages. Therefore,
uEGMs always have to be considered with respect to their (distant) reference electrode. In
clinical literature, also the peak-to-peak amplitude of an electrogram signal (i.e., a voltage time
course) is often called “voltage”.
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FIGURE 1 | Electrical propagation in healthy cardiac tissue. (A) Extracellular field caused by the depolarization of cardiomyocytes when an excitation propagates
from left to right (green arrows). (B) Symmetric unipolar electrogram measured at the surface of the cardiac tissue (pink). The initial positive wave (R-peak) is caused by the
wavefront approaching the electrode (dark gray), the polarity changes when the wavefront passes underneath the electrode, and the S-peak is caused by the wavefront
traveling away from the measuring electrode.

The mathematical model of an excitable cell proposed by
Hodgkin and Huxley, (1952), the tissue homogenization
approach proposed by Schmitt, (1969), and the set of
bidomain equations first applied by Tung, (1978) in 1978 is
the most complete and accurate model that describes the
spread of electrical depolarization across the myocardium
and its cells.

Computational simulations based on this mathematical model
have been used to understand the phenomena of the depolarization
spread in cardiac tissue and their effects on electrogram genesis and
morphology (Bishop and Plank, 2011b; Oesterlein et al., 2016;
Roney et al., 2016; Pollnow et al., 2017; Beheshti et al., 2018; Hwang
et al., 2019). While EGMs can be extracted from the extracellular
medium in a bidomain simulation, this approach is
computationally expensive. Thus, different methods based on
excitation propagation simulations in the monodomain model
have been proposed. Another modeling approach to accelerate
the computation is the so-called reaction-eikonal model Neic et al.
(2017), which can simulate physiological propagation using a
coarser mesh (element average length 400um). In the
monodomain model and the reaction-eikonal model, the
extracellular potential is not calculated directly. However, it can
be approximated with the pseudo-bidomain approach or the
infinite homogeneous volume conductor method to obtain
EGMs as detailed below. The infinite homogeneous volume
conductor method approximates the extracellular potential
caused by a group of cells spatially distributed in space and
acting as sources of the electric field (Malmivuo and Plonsey, 1995).

In this review, we give an overview of the biophysical
phenomena governing wave propagation in cardiac tissue and
the corresponding extracellular potentials measured as
electrograms. We will particularly focus on different
approaches used to model fibrotic remodelling and simulate
the corresponding electrograms to reproduce and understand
the clinically observed changes in electrogram amplitude and
morphology.

2 INTRACARDIAC ELECTROGRAMS

The electrical activity in the myocardium originates from the
coordinated opening and closing of the ion channels in the cell
membrane. The time course of the difference between the
potential in the intracellular and in the extracellular medium
is known as the action potential. In cardiac tissue, the cells are
interconnected through gap junctions that will start a cascade
effect of cellular activation along the major axis in which
myocytes are aligned locally (also known as fiber direction),
resulting in excitation propagation across the myocardium.
The extracellular field is a consequence of the spatial
distribution of the transmembrane voltage of the cells in the
myocardium (Figure 1A). An advancing depolarization wave in
the cardiac tissue changes the spatial distribution of the
extracellular potential. The extracellular potential can be
measured as the uEGM at one electrode (technically the
voltage between the extracellular potential at the measuring
electrode with reference to for example, Wilson central
terminal). The unipolar electrogram morphology is
characterized by a biphasic symmetric shape (Figure 1B)
where the positive phase (R-peak) indicates the approaching of
the wavefront to the measuring electrode and the fast downslope
indicates the moment that the wavefront is underneath the
electrode. The opposing negative phase (S-peak) indicates the
movement of the wavefront away from the measuring electrode.
The peak-to-peak amplitude of the signal is also called “voltage”
in the clinical literature. Peak-to-peak voltage is used as a marker
to distinguish healthy from pathological tissue both for biEGMs
(Jadidi et al., 2020) and uEGMs (Nairn et al., 2020b). However,
biEGM amplitude can be affected by to several factors (Hwang
et al., 2019) such as the orientation of the catheter (Schuler et al.,
2013; Gaeta et al., 2020), the electrode spacing and size (Beheshti
et al., 2018; Abdi et al., 2020; Nairn et al., 2020a; Takigawa et al,,
2022), depolarization patterns (Jacquemet et al., 2003), substrate
remodeling (Jacquemet et al, 2003; McDowell et al, 2012;
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Campos et al.,, 2013; Mendonca Costa et al., 2014; Roney et al,,
20165 Sanchez et al., 2021b) and signal filter settings (Starreveld
et al., 2020).

3 MODELLING INTRACARDIAC SIGNALS

Computational cardiac modeling has advanced rapidly in the last
years and different numerical methods to simulate the
propagation of the cardiac depolarization have been proposed
over the years. Finite difference approaches have been widely
used (Potse et al., 2006) and can be generalized for grids with
distinct spacing (Trew et al., 2005; Sanchez et al., 2019a). Also the
finite element method has been used to discretize complex
geometries such as the cardiac chambers to simulate cardiac
electrophysiology (Vigmond et al., 2003; Cooper et al., 2015; Neic
et al,, 2017; Plank et al., 2021).

The bidomain model represents cardiac tissue as a
homogenized medium composed of the intracellular and the
extracellular domains. The two computational domains coexist
in the bidomain model and occupy the same geometrical space:

V'(aiv‘pi)) = BLn (1)

\E (UEV(/)e)) = _ﬁIm - Iextm (2)
oV,

Im = Cm? + Iitm (Vm, V) - Iintm (3)

Vin=6;=¢. > (4)

where ¢ represents the electrical potential, the indices i and e refer
to the intracellular and extracellular spaces, respectively. o is the
conductivity tensor, 8 is the surface to volume ratio of the
myocytes and I, the total transmembrane ionic current
density defined by the cellular model. The latter is dependent
on V,, and a vector v of further state variables. I, (a
transmembrane current density) and I, (an extracellular
current density) describe external stimuli. If a bath surrounds
the tissue, it is treated as an extension of the extracellular space.
Adding Eqs 1, 2 and incorporating it into Eq. 4 yields:

®)
(6)

V. (O’i + 0'g)V¢e =-V- (UiVVm) - Iextm
V- (aiVV,) ==V - (0:V¢,) + L .

As mentioned before, the reference potential during an
electro-anatomical mapping procedure is usually a potential in
a remote site or an average of potential values such as Wilson’s
central terminal. For a bidomain model, when calculating
uEGMs, the reference potential can, for example, be
considered as an average of the extracellular potential of the
furthest surface with respect to the tissue (Colli Franzone et al.,
2007; Keller et al., 2014), which is not a perfect approximation of a
remote reference electrode (e.g., a surface patch on the back of the
patient) but markedly reduces drift of the reference potential. The
further away the reference is from the myocardial tissue in the
model, the better the representation of the reference potential but
also the higher the computational cost due to the extended
computational domain. Considering the average potential in a
remote surface or volume is numerically advantageous compared
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to defining a fixed reference potential as a Dirichlet boundary
condition.

The monodomain model is an approximation that assumes
that the anisotropy of the extracellular and intracellular
conductivity are aligned. Therefore, under the assumption of
equal anisotropy ratios, one needs to solve only the parabolic
partial differential equation above with the monodomain
conductivity set appropriately:

V. (0mVVy) =Bl + BLir, (7)

where the bidomain equivalent monodomain conductivity g, is
given as

Om = O'iae(o'i + Ue)_l . (8)

Potse et al. (2006) performed a thorough comparison between
the results of the bidomain model and monodomain model. The
authors conclude that the monodomain model, although being a
simplification of the bidomain model, is sufficient to study and
understand the electrical propagation in the cardiac tissue under
physiological conditions as well as for electrically remodeled
tissue (ionic current abnormalities). The acceleration of the
wavefront at the tissue-to-blood interface due to the bath-
loading effect can be represented with the augmented
bidomain approach (Bishop and Plank, 2011b). One of the
biggest disadvantages of the bidomain model is the long
computation time that it requires. Therefore, a common
modeling approach is to combine the monodomain model
with independent forward calculation of extracellular
potentials. The most simplistic approach is the infinite volume
conductor assumption, which assumes that the cardiac tissue is
immersed in a homogeneous extracellular medium with infinite
extent. This approach was for example, used to study the relation
of the spread of depolarization in the cardiac tissue to the genesis
and morphology of the unipolar electrogram (Gima and Rudy,
2002; Ganesan et al., 2013; Ugarte et al., 2014; Cabrera-Lozoya
et al,, 2017; Hwang et al., 2019) but neglects the influence of the
heterogeneous surrounding tissue like other cardiac chambers,
the lungs or the liver.

Briefly, the source and the measuring point (electrode) for a
dipole are assumed to be immersed in an unbounded (infinite)
volume conductor with homogeneous properties. The time
course of the potential of the dipole corresponds to the uEGM
electrogram measured at a location x in a certain distance to the
source located in the cardiac tissue (x,.) with respect to a
reference electrode in infinite distance using the integral
solution to Poisson’s equation:

1 ISTC
el
4no 1% ||X - xsrc"

where ¢, is the extracellular potential, o is the conductivity of the
volume conductor, I, is the source current density and [|x — x|l
is the Euclidean distance from the source point to the
measuring point.

Bishop and Plank (2011a) proposed a combined bidomain and
monodomain model (pseudo-bidomain) to calculate the
extracellular potential. The proposed pseudo-bidomain

¢. 9

Frontiers in Physiology | www.frontiersin.org

60

May 2022 | Volume 13 | Article 908069


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Sanchez and Loewe

Modeling of the Myocardium Microstructure and Electrograms

7.4

Extracellular potential (mV)

Unipolar electrogram

Bipolar electrogram

—Electrode 7
— Electrode 8

Extracellular potential (mV)

50 100 150 200 250

Time (ms)

50
Time (ms)

100 150 200 250

FIGURE 2 | Bidomain simulation of a realistically deformed LASSO™ (Biosense Webster) catheter in a left atrium to study the genesis of different EGM
morphologies in healthy myocardium. (A) The wavefront approaches the electrode pair 7-8 and activates both electrodes at the same time, the resulting bipolar
electrogram with a reduced peak-to-peak amplitude (0.42 mV). (B) Several wavefronts approaching electrode pair 13-14, both unipolar electrograms are asymmetrical,
lacking an S-peak; the resulting bipolar electrogram has a high peak-to-peak amplitude and a positive polarity. (C) The wavefront travels aimost perpendicular to
electrode pair 3—4; the electrodes are activated at different times, the resulting bipolar electrogram has negative polarity and a high peak-to-peak amplitude (7.45 mV).
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approach computes the elliptic bidomain equation for a given
transmembrane voltage distribution only at the time instants for
which the extracellular potential is sampled. This approach is
suitable to reproduce extracellular signals [EGM (Keller et al.,
2012) and ECG (Nagel et al,, 2022)] for a finite surrounding
conductive medium (bath, potentially inhomogeneous) and is
computationally efficient.

3.1 Factors Affecting the Intracardiac
Signals

Using the bidomain model and realistic geometries of
commercially available catheters can help to better
understand EGM morphology (Schuler et al., 2013; Pollnow
et al.,, 2017; Sdnchez et al., 2021a). Schuler et al. (2013)
modeled a realistic 7F catheter with two electrodes such
that the tip was at the center of the tissue and in direct
contact with the tissue patch surface. The catheter angle
was changed with respect to the surface of the tissue
(elevation) and to the wavefront propagation direction
(rotation). Additionally, the authors explored the impact of
the tissue thickness and conduction velocity on biEGM
amplitude and duration. One of their main findings was
that catheter orientation greatly affects the height and ratio
of the positive and negative bipolar signal amplitude, which
can be traced back to changes in the proximal signal.

Moreover, the authors pointed out that the substrate
characteristics (thickness and conduction velocity) mainly
affect the biIEGM peak-to-peak amplitude.

In new highly detailed bidomain simulations for this review,
we show the biophysical phenomena of the spread of
depolarization in the left atrium and the EGMs from a 7F
LASSO™ (Biosense Webster) catheter in a healthy left atrium.
Figure 2 shows that local activation time is the main factor that
impacts the biEGM amplitude and that it is less sensitive to the
wavefront direction. Additionally, bidomain simulations showed
that biEGMs from electrodes that are not in direct contact with
the tissue have the same activation time resulting in a small
biEGM amplitude, which confirms the results previously shown
(Gaeta et al., 2020). In brief, the atrial anatomical model (Roney
et al, 2021) has a realistic wall thickness and an average edge
length of 100 um. Tissue conductivity was tune to achieved a
conduction velocity of 40 cm/s (McDowell et al., 2013). The value
of conductivity of the blood were as reported by Clerc (1976), the
electrode conductivity was set to 1 x 10'* S/m to represent a good
conductor that yields an isopotential volume, the conductivity of
the catheter insulator was set close to zero (1 x 10° S/m).

The amplitude of uEGMs is affected by the geometrical
properties of the electrode, such as the size of the electrode.
Nairn et al. (2020a) performed a series of in silico experiments to
understand the effect of the electrode size on the amplitude of the
measured EGM. uEGM amplitude was shown to be inversely
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related to the size of the electrode. biEGM amplitude is
additionally affected by the electrode pair spacing. Beheshti
et al. (2018) showed that biEGM amplitude was increased
when the electrode spacing increased. Assuming a plane wave
and a perfectly symmetric uEGM in a simple thought experiment,
the biEGM amplitude is zero for electrodes that are activated at
exactly the same time. When increasing the distance between the
electrodes, the peak-to-peak biEGM amplitude increases up to
two times the uEGM amplitude. When further increasing the
interelectrode distance, the biEGM amplitude decreases again
until there is no more temporal overlap between the two uEGM:s
and the biEGM amplitude plateaus at the uEGM amplitude.

An additional factor that impacts the EGM amplitude and
morphology are the filter settings (Schneider et al., 2004; Lin et al.,
2007; Starreveld et al., 2020). In clinical practice, a bandpass filter
is commonly used. However, the cut-off values of the bandpass
filter differs for different mapping systems, catheters or due to the
noise environment present in the specific electrophysiology
laboratory. During an electroanatomical mapping procedure,
uEGMs are typically filtered with a highpass of 0.5-2 Hz and a
lowpass filter of 300-600 Hz biEGMs are typically bandpass
filtered with a highpass of 1-30Hz and a lowpass of
300-500 Hz. Both EGM types are also filtered at the frequency
of the powerline with a notch filter (50 or 60 Hz). Figure 3 depicts
the effect of the filter settings on both uEGMs (panel A) and
biEGMs (panel C). In particular for biEGMs, the highpass filter
cut-off value affects the measure voltage (Figure 3D). The higher
amplitude of these simulated EGMs compared to clinical EGMs is
likely due to the chosen extracellular conductivity, perfect contact
of the electrode with the tissue and absence of losses along the
signal chain.

Considering the numerous factors that affect the uEGM and
biEGM amplitude and morphology, standardized mapping
modality (uEGM or biEGM), electrode size, electrode spacing
and filter settings could increase comparability between studies.
For modeling the healthy myocardium and electrograms,
bidomain models provide the most accurate representation of
the biophysical phenomena of depolarization and the influence of
the catheter inside the cardiac cavity. Monodomain models and
reaction-eikonal models in combination with forward calculation
approaches to obtain the EGMs provide sufficient information
about the propagation in the cardiac tissue in most scenarios.
After reviewing the factors that influence the EGMs in the healthy
myocardium, the next section covers factors that increase the
complexity of the signals due to heterogeneities of the tissue and
different patterns of propagation.

4 MYOCARDIAL STRUCTURAL
REMODELING AND INTRACARDIAC
SIGNALS

Structural remodeling alters the cardiac substrate, and the
depolarization wavefront often has to follow a zig-zag
pattern (Figure 4 white arrows). The zig-zag pattern of the
propagation is reflected in uEGM and biEGM as fractionation
in the signal due to constantly changing orientation of the
wavefront. Fractionation is defined as an increase of
deflections, thus an increase in complexity of the signal as
well as a prolongation of the EGM (Jacquemet and Henriquez,
2009; Verheule and Schotten, 2021). As previously mentioned,
the highpass filter cut-off value affects the signal amplitude. In
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the presence of fibrotic tissue, uEGMs and biEGMs have a
different frequency spectrum and are affected in a different
manner. Figure 5D shows that there is no optimal cut-off
frequency as previously reported by Starreveld et al. (2020).
The filtered biEGM amplitude (orange line) drops due to the
highpass cut-off but does not intersect the unfiltered amplitude
(blue dashed line) as is the case for healthy myocardium
(Figure 3D).

Many approaches have been proposed to model fibrotic
cardiac tissue (Table 1) to understand the effect on the
wavefront propagation and the corresponding electrograms
(Ashihara et al., 2012; McDowell et al., 2013; Roney et al., 2016).

Creating a model of cardiac fibrotic tissue is not an easy task
as fibrosis formation has been associated with different
diseases (myocardial infarction (Liu et al., 2017), diabetes
(Russo and Frangogiannis, 2016), autoimmune diseases

Frontiers in Physiology | www.frontiersin.org

63 May 2022 | Volume 13 | Article 908069


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Sanchez and Loewe Modeling of the Myocardium Microstructure and Electrograms

TABLE 1 | Different modeling approaches to represent fibrotic tissue in computational models and their effect on simulated EGMs.
Modeling approach Effect on EGMs References

Myofibroblasts/fibroblasts coupled to myocytes  longer duration due conduction slowing in the fibrotic ~ MacCannell et al. (2007), Ashihara et al. (2012), McDowell et al.
area (2013), Morgan et al. (2016), Roney et al. (2016), Zahid et al.
(2016), Sanchez et al. (2019b)

Reduced conductivity in fibrotic region, peak-to-peak amplitude reduced and duration Krueger et al. (2014), Caixal et al. (2020), Lim et al. (2020), Beach
potentially with gradient to surrounding tissue prolonged due to slow propagation of the wavefront et al. (2021)

Severely reduced conductivity in some elements  reduced peak-to-peak amplitude in the fibrotic area  Alonso and Bar, (2013), ten Tusscher and Panfilov, (2007),

in the fibrotic region Clayton, (2018)
Removing some elements in the fibrotic region  fractionation and reduced peak-to-peak amplitude Roney et al. (2016), Vigmond et al. (2016)
Edge splitting fractionation depending on the length of the path Jacquemet and Henriquez, (2009), McDowell et al. (2013),

Mendonca Costa et al. (2014), Roney et al. (2016)

Reduction of conductivity in the transversal fiber  increased anisotropy of excitation propagation, effect McDowell et al. (2012)

direction on EGMs not yet studied
Reduction of conductivity in the transmural excitation propagation dissociation between Gharaviri et al. (2016), Irakoze and Jacquemet, (2020)
direction transmural layers, effect on EGMs not yet studied
Healthy Fibrosis
Diffuse Interstitial Patchy/Compact
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FIGURE 6 | Sketches of a tissue cut for healthy and fibrotic tissue (top row). Fibrotic sketches represent different fibrotic patterns (diffuse, interstitial, patchy or
compact). The bottom row depicts the homogenization assumption where a hexahedral mesh element of 100 um x 100 um x 100 ym represents several cardiac
myocytes and has to assume one average set of properties that describes the electrophysiology of this group of cells. For fibrotic tissue, homogenization implies that one
element contains different types of cells (cardiac myocytes and fibroblasts/myofibroblasts) and collagen. Also the electrophysiological characteristics of this piece of
tissue has to be represented by one set of effective parameters.

(Tschope et al., 2021) and others), which produce different these effects, the maximum conductance (Rodriguez et al.,
patterns of structural remodeling (interstitial, compact,  2006; Loewe et al., 2018) of certain ionic channels are modified
diffuse, and patchy) (Nguyen et al., 2014). For example, it including an ATP-sensitive potassium channel (Ixsp), which
has been described that during an ischemic episode in the  has a major contribution during ischemic episodes (Dutta
ventricle, the myocardium undergoes electrical remodeling et al.,, 2017).

(Mendonca Costa et al,, 2018). From a macroscopic view, Moreover, computational models of pathological tissue need
conduction velocity is reduced in the scar area, which can  to include fibrosis at the tissue scale. Fibrosis patterns (Figure 6)
be modeled by decreasing the conductivity or by including  can be modeled using different approaches by assigning different
isolating barriers (Balaban et al., 2018). Additionally, at a  properties to the mesh using for example, a random distribution
cellular scale the cardiac myocytes undergo electrical  (e.g., uniform or Gaussian) (Sanchez et al., 2019b; ten Tusscher
remodeling (Mendonca Costa et al., 2018). At the border  and Panfilov, 2007; Alonso and Bir, 2013; Vigmond et al., 2016),
zone of the ischemic area, cardiomyocytes lack oxygen by extracting the scar area from MRI (McDowell et al., 2012;
which impacts their metabolism and increase acidity. This  Krueger et al., 2014; Morgan et al., 2016; Beach et al., 2021) or by
triggers a series of effects in the cell’s ion channels. To model  using algorithms that synthetically generate similar patterns as
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observed in histological cuts of fibrotic tissue (Jakes et al., 2019;
Pezzuto et al., 2019; Sutanto et al., 2020; Sanchez et al., 2021b).

Fibrosis can be modeled differently and many studies reduce
the tissue conductivity such as for example, informed by
microstructural modeling in Gokhale et al. (2017). The
conductivity of the fibrotic areas can also be reduced in the
transversal direction (McDowell et al., 2012) to represent
lateralization of gap junctions, close to zero in all directions
(Clayton, 2018) or affected by a no flux boundary condition
(ten Tusscher and Panfilov, 2007; Alonso and Bir, 2013) to
represent replacement fibrosis. The specific spatial distribution
of conductivities or conduction velocity can be informed by
fibrosis imaging such as the pixel intensity in late gadolinium
enhanced magnetic resonance images (Krueger et al., 2014;
Morgan et al., 2016; Caixal et al., 2020; Beach et al., 2021) or
using a mathematical function determined from EGM
amplitude (Lim et al, 2020). Within the regions, either
uniform conductivities can be assumed or a gradient from
the center of the fibrotic area to the healthy surrounding tissue
is assumed.

Furthermore, the edge splitting method has been proposed
to separate the computational mesh along its edges with the
aim to reproduce the effect of collagen deposition in fibrotic
tissue that separates the cardiac myocytes (Mendonca Costa
etal., 2014). Edge splitting consists of splitting the nodes along
and edge to disconnect adjacent elements creating an
alternative path for the wavefront propagation in the
cardiac tissue. However, reducing the conductivity or
splitting the edges of the mesh does not capture the effect
of increased cellular heterogeneity in the cardiac tissue
(fibroblast-myocyte  coupling) and the inflammatory
response. To model cellular heterogeneity, myofibroblast or
fibroblast models have been introduced (MacCannell et al.,
2007; Ashihara et al., 2012; Morgan et al., 2016; Roney et al.,
2016; Sanchez et al., 2021b). Myofibroblasts or fibroblasts were
electrically connected to the myocytes by gap junctions. There
are equivocal data about the exact conductance of these gap
junctions and the number of fibroblasts that a myocyte couples
to. In computational models, the value of conductance ranges
between 0.5 nS to 2 nS and up to 9 fibroblasts are considered
Morgan et al. (2016), MacCannell et al. (2007), Maleckar et al.
(2009), Rook et al. (1992), Sanchez et al. (2019a), Seemann
et al. (2017). The inflammatory response (myocyte-fibroblast
paracrine interactions) has been modeled by altering the
maximum conductance of the sodium ion channel (reduced
by 50%), the maximum conductance of the L-type calcium ion
channel (reduced by 50%), and the maximum conductance of
the inward potassium rectifier ion channel (reduced by 40%)
(Zahid et al., 2016), as reported by in vitro experiments (Avila
et al.,, 2007; Ramos-Mondragon et al., 2011).

Lately, Vigmond et al. (2016) proposed to represent fibrotic
tissue in a monodomain model by removing the elements of the
mesh to capture the effect of the low conductive extracellular
medium and the absence of an intracellular current path. One
advantage of the proposed modeling approach, is that there is no
flux of current towards the fibrotic tissue; therefore, there are no
source elements that will contribute to the calculated extracellular
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potential. Using this modeling approach, the authors observed
that at the percolation threshold (Alonso and Bir, 2013) the
fibrotic tissue was be able to trigger and maintain an arrhythmia.
The EGM:s calculated over the fibrotic tissue exhibit fractionation
due to the zig-zag patterns of depolarization in the cardiac tissue
in this modeling approach. Moreover, the study also looked at the
impact of the mesh resolution when modeling fibrotic tissue and
showed that in meshes with a resolution of 300 um conduction
block was reached at lower degrees of fibrosis than in meshes with
finer resolution ( < 100 pm).

Using a realistic geometry Jacquemet et al. (2003) studied the
morphology of uEGMs during different atrial fibrillation
propagation patterns. The authors showed that different
propagation patterns (plane waves, spiral waves, and
wavefront collision) lead to different uEGM morphology
(symmetry and amplitude) and that asymmetric signals
(Figure 2B) occurred in less than 2% of the cases in
homogeneous  substrate. ~ However, the increase of
heterogeneities in the cardiac tissue also increases the
asymmetry and reduces the amplitude of the EGM(van der
Does and de Groot, 2017). Frontera et al. (2018) showed how
different depolarization patterns affected the bIEGM
morphology. High peak-to-peak amplitude and short duration
of biEGMs are wavefront collisions or pivotal points, low peak-to-
peak amplitude and EGM prolongation are associated with slow
conduction areas. The authors remarked how understanding the
genesis of the electrograms is a key factor to improving the
arrhythmia treatments.

Including heterogeneous tissue composition in the model
changes the wavefront propagation in the cardiac tissue
(McDowell et al., 2012; Campos et al., 2013; Mendonca Costa
et al., 2014; Roney et al., 2016) (Figure 7). Roney et al. (2016)
showed how different modeling approaches of cardiac fibrosis
can change the propagation in the cardiac tissue and affect the
morphology of EGMs. In that study, Roney et al. (2016) modeled
fibrosis as conduction disturbances (lower conductivity, edge
splitting, or removing elements). They included electrical
remodeling of the cardiac myocyte due to inflammatory
processes mediated by transforming growth factor-f1,
myocyte-fibroblast coupling and combinations of the
preceding. EGM morphology was mostly affected when
fibrosis was modeled by edge splitting or removing the
elements (Figure 7) as also shown previously. In addition,
including fibroblast coupling has an organizing effect on rotor
dynamics, also shown by other studies (McDowell et al., 2012;
Sanchez et al., 2019b).

The amplitude of the EGMs can also be affected by
conduction impairment along certain axes (McDowell et al,,
2012; Gharaviri et al., 2016; Irakoze and Jacquemet, 2020).
Gharaviri et al. (2016) created a model of the cardiac tissue that
enables the study of dissociation between transmural layers,
for example, dissociation between the subendocardial and the
subepicardial myocardium as can be caused by endomysial
fibrosis. Moreover, Saba et al. (2009) described how the
epicardial EGM amplitude varies in the ventricle with the
thickness of the epicardial fat layer. The authors showed
that biIEGM amplitude was inversely related to epicardial fat
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thickness. Thus, using a voltage cut-off of 0.5 mV to define scar
tissue would lead to identifying also healthy areas with
overlaying fat and more information needs to be used to
define epicardial tissue characteristics.

5 OTHER FACTORS IMPACTING
INTRACARDIAC SIGNALS

EGM morphology and amplitude are also affected by electrode
polarization, excessive contact pressure, catheter motion
(Oesterlein et al.,, 2016), electromagnetic interference (Unger
et al., 2019), near field and far field effects (Schicketanz et al.,
2021), and poor grounding. However, most in silico experiments
do not consider these factors, which might alter the EGM
characteristics. Simulation studies have created a model of
clinical noise which covers the electromagnetic interference
(Sdnchez et al., 2021a; Nothstein et al., 2021). However,
further aspects likely need to be considered explicitly if their
influence is relevant for the intended use of the model.

6 RESEARCH GAPS AND POTENTIAL
FUTURE DEVELOPMENTS

Modeling of the cardiac tissue has significantly advanced
understanding of the electrical propagation and the measured

intracardiac EGMs. There is consensus on how to assign the
properties of the computational model to represent healthy
myocardium and the advantages and limitations of the
different approaches to compute the extracellular potentials
are mostly characterized. However, the question how to model
fibrosis is far from being ultimately answered and will most likely
continue to depend on the question of interest to be answered
with a specific model. Additionally, the mesh resolution used in
most of the studies of =300 um determines the degree of
homogenization (Figure 6). Spatial discretization of the mesh
at the cellular level should be considered to study the influence of
microstructural heterogeneity in the tissue (e.g., fibrosis) on
EGMs (Figure 4). In addition, such models with subcellular
resolution would enable to investigate to which degree
discontinuous propagation within a cell vs. between cells leads
to fractionation in healthy tissue. Here, we presented an overview
of the commonly used methods and their corresponding EGMs.

Over the last years, the human cardiac digital twin has been under
development to suggest personalized treatments for cardiac
arrhythmias. Gillette et al. (2021) proposed an automated
framework to generate a patient’s digital twin from clinical data
and Nagel et al. (2021) proposed a statistical approach to generate a
population of anatomical models. While the anatomical model can
be accurately generated from magnetic resonance images or
statistical shape models, functional twinning can be achieved by
tuning a phenomenological model or using generalized global
properties for the cardiac tissue. Functional information will
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impact the morphology and amplitude of the EGM. However, over
the years, different studies proposed distinct methodologies to
extract structural and functional information from the EGM
signals. One open question is still the possibility of obtaining
repolarization times from EGMs as repolarization of the cardiac
tissue plays a pivotal role for the initiation of arrhythmias (Rivaud
et al,, 2021). From simulations of atrial electrophysiology, Celotto
et al. (2021) proposed a method to detect areas of parasympathetic
innervation from the amplitude of the repolarization EGM. Verrier
et al. (2016) showed that repolarization times can be recovered from
EGMs for both the atrium and the ventricle in a controlled clinical
environment. However, initial experience in other groups including
our own suggest that reliably obtaining atrial repolarization
information from EGMs remains a challenge.

Different studies demonstrated discrepancies when using the
same voltage threshold (for example, 0.5mV) to distinguish
healthy from pathological tissue when mapping during
different rhythms (sinus rhythm and AF) (Rodriguez-Marero
et al., 2018; Nairn et al., 2020b; Nairn et al., 2022). Nairn et al.
(2022) looked at how the amplitude of EGMs changed when
electroanatomical mapping was performed under three different
rhythms (sinus rhythm, native AF, and induced AF). The authors
proposed not only one single cut-off voltage value for the entire
atrium but regional voltage thresholds to minimize the
discrepancies between different mapping rhythms. Computer
models could help to further characterize the voltage relations
during different rhythms and to overcome the use of a voltage
threshold to distinguish the cardiac substrate (healthy and
fibrotic) by combining in vivo data and in silico data to fully
exploit the information contained in EGMs (Sdnchez et al,
2021a).  Additionally, computer models of cardiac
electrophysiology could aid the design of medical devices
helping in understanding the factors that affect EGMs to raise
awareness for them (Oesterlein et al., 2016; Pollnow et al., 2017;
Beheshti et al., 2018; Hwang et al., 2019) as well as to inform the
choice of parameters to improve the technologies as proposed for
cardiac resynchronization therapy (Jolley et al., 2010).

Understanding the functional relationship between the
discrete structure and continuum behaviour of cardiac tissue
at microscopic and macroscopic levels is a significant challenge
(Gokhale et al., 2017). At the microscopic level, Tveito et al.
(2017) and Bécue et al. (2017) proposed a cell-by-cell approach
that explicitty models the extracellular, membrane and
intracellular domain. However, cell-by-cell models are
computationally expensive and will require an increase of
computational resources such that finer meshes up to cellular
resolution can be handled efficiently (Potse et al., 2020). At the
macroscopic level, reduced order models (Fresca et al., 2020)
could help to reproduce in detail the electrophysiology of the
cardiac tissue without losing important details that will determine
the vulnerability of the tissue to arrhythmia. Recently, (Herrero
Martin et al., 2022) explored the use of Physics Informed Neural
Networks (PINN) to model the electrical propagation in the
cardiac tissue. The authors introduced electrophysiology
models to the neural network and were able to reconstruct the
spatial-temporal dynamics of the action potential and its
propagation. One of the big drawbacks of these approaches is
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the amount of data needed to train the network in order to predict
different possible propagations patterns.

Software plays a fundamental role in cardiac modeling.
Recent work demonstrated significant speedup of
simulations of cardiac electrophysiology (Sundnes et al,
2006; Seemann et al., 2010; Cooper et al., 2015; Quarteroni
etal., 2017; Sanchez et al., 2020; Plank et al., 2021). However, it
remains to be seen how effectively GPUs can be integrated into
large-scale cardiac simulations. Regardless, several numerical
libraries are currently available, opening the door to accelerate
cardiac electrophysiology simulations (Anzt et al., 2020; Mills
et al., 2021).

7 CONCLUSION

Models of cardiac tissue electrophysiology have played an
essential role in advancing our understanding of action
potential propagation in the heart and the genesis of EGMs.
Despite the significant progress of different modeling
approaches and efficient numerical software, there are
substantial  challenges, such as modeling of the
microstructure at a close-to-cellular scale, modeling the
different  aspects of  fibrosis, electrophysiological
heterogeneity as well as realistic electrode configurations.
Dedicated simulation studies with refined models will help
to further elucidate the different factors that contribute to
EGM genesis and impact their morphology.
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Introduction: Atrial fibrillation (AF) is the most prevalent cardiac dysrhythmia and
percutaneous catheter ablation is widely used to treat it. Panoramic mapping with
multi-electrode catheters can identify ablation targets in persistent AF, but is limited by
poor contact and inadequate coverage.

Objective: To investigate the accuracy of inverse mapping of endocardial surface
potentials from electrograms sampled with noncontact basket catheters.

Methods: Our group has developed a computationally efficient inverse 3D mapping
technique using a meshless method that employs the Method of Fundamental Solutions
(MFS). An in-silico test bed was used to compare ground-truth surface potentials with
corresponding inverse maps reconstructed from noncontact potentials sampled with
virtual catheters. Ground-truth surface potentials were derived from high-density clinical
contact mapping data and computer models.

Results: Solutions of the intracardiac potential inverse problem with the MFS are robust,
fast and accurate. Endocardial surface potentials can be faithfully reconstructed from
noncontact recordings in real-time if the geometry of cardiac surface and the location of
electrodes relative to it are known. Larger catheters with appropriate electrode density are
needed to resolve complex reentrant atrial rhythms.

Conclusion: Real-time panoramic potential mapping is feasible with noncontact
intracardiac catheters using the MFS.

Significance: Accurate endocardial potential maps can be reconstructed in AF with
appropriately designed noncontact multi-electrode catheters.

Keywords: atrial arrhythmia, multi-electrode basket catheters, method of fundamental solutions, inverse mapping,
endocardial potentials
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INTRODUCTION

Accurate identification of regions in the heart which trigger
ectopic activation and sustain reentrant arrhythmia is a critical
step in effective interventional treatment of heart rhythm
disturbance. Sequential contact mapping with catheters
introduced percutaneously into one or more heart chambers is
widely used for this purpose (Issa et al., 2019), but it can be time-
consuming and works poorly in atrial fibrillation (AF) where
rhythm is non-stationary. While multi-electrode basket catheters
have been used for panoramic mapping in AF (Narayan et al,,
2012; Pathik et al., 2018), it is difficult to position them so that the
electrodes are uniformly distributed across the atrial surface and
in contact with it (Oesterlein et al., 2016; Martinez- Mateu et al.,
2018; Pathik et al., 2018).

In principle, inverse methods can be used to reconstruct
potentials on the endocardial surface of a cardiac chamber
from electrograms recorded at electrodes that are not in
contact with it if three-dimensional (3D) chamber geometry is
specified, the locations of electrodes are known and the forward
problem, which describes the transfer relationship between
measured and endocardial surface potentials, is specified
accurately. However, the boundary mesh-based solution
methods used previously to solve the intracardiac potential
inverse problem have shortcomings that are discussed in detail
elsewhere (Meng et al., 2017; Meng et al., 2022). With the finite
element method (FEM), the transfer matrix is sparse, inherently
ill-conditioned and time-consuming to evaluate (Pullan et al,
2005). On the other hand, boundary elements (BEMs) are not
robust for measurement points near the heart wall, particularly
when surface topology is complex as is commonly the case with
the atria. (Pullan et al., 2005).

Meshless methods (MMs) employing the Method of
Fundamental Solutions (MFS) (Fairweather and Karageorghis,
1998) have been successfully used to solve the body surface
potential inverse problem (Wang and Rudy, 2006). This
approach is computationally efficient and robust in a uniform,
isotropic domain, an assumption that is realistic for the
intracardiac problem. In this case, the MFS provides an
inherently simpler representation of the forward problem than
boundary mesh-based methods.

While there have been numerous systematic analyses of the
efficacy of inverse body surface potential mapping (Ramanathan
and Rudy, 2001; Cluitmans et al., 2017; Bear et al., 2018), there
have been very few equivalent studies of intracardiac potential
mapping (Meng et al., 2022) and no attempt to use the MFS in
this setting. In the research reported here, we have used the MFS
to address the accuracy with which time-varying potentials on the
endocardial surface of the left atrium (LA) can be reconstructed
from electrograms recorded inside the chamber with basket
catheters where the electrodes may or may not be in contact
with the atrial wall. We conclude that accurate real-time
panoramic potential mapping and 3D phase mapping are
feasible with noncontact intracardiac catheters using the MFS.
However, to faithfully recover complex potential fields, such as
those seen in AF on the endocardial surfaces of the atria, it is
necessary to use catheters that are sufficiently large to capture

Intracardiac Inverse Potential Mapping

Physical boundary
Virtual boundary
Fictitious source point
Intracardiac electrodes

FIGURE 1 | Schematic representation of the intracardiac forward

problem. Fictitious electrical sources (open circles) distributed around a virtual
boundary Ty outside the surface I'y that bounds a heart cavity Qn generate
current flux within the domain. This contributes to potentials recorded

with electrodes (closed circles) on a basket catheter. The electrodes lie on the
open surface Tc.

characteristic features of surface potential variation with an
electrode distribution appropriate to resolve it spatially (Meng
etal., 2022). We argue that the sampling constraints identified in
this study apply to noncontact intracardiac mapping in general.

MATHEMATICAL BACKGROUND

Noncontact intracardiac potential mapping seeks to reconstruct
the potential distribution on the inner surface of a heart
chamber from a discrete set of potentials recorded at known
points inside the chamber with a multi-electrode catheter. To
solve this inverse problem, it is first necessary to formulate the
corresponding forward problem. Here, we extend an approach
followed by Wang and Rudy (Wang and Rudy, 2006), in which
the MFS was applied to inverse body surface potential mapping.

The formulation of the intracardiac forward problem is shown
in Figure 1. Potentials ¢ (x.) are recorded at M points x. on the
surface I'- that bounds the electrodes. A set of N fictitious sources
is positioned at locations {Ei}f\:’ , along a virtual 3D boundary I'y
that lies outside the endocardial surface of the cardiac chamber.
The linear combination of the Laplace fundamental solution over
the sources on {E,»}fi , allows us to have an expression of the
potentials in the source free volume Qp contained in the cardiac
chamber. It is assumed that 1) there are no electrical sources or
sinks within the heart cavity, 2) conductivity throughout the
domain is uniform and isotropic, 3) the electrical properties of the
basket catheter can be neglected, and 4) bioelectric processes are
quasi-static.

At any instant, the potential ¢ (x) at any point x in Qy due to
fictitious sources located on the virtual external boundary I'y is

P =ar+ Y, aG(&,x) (1)
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FIGURE 2 | In silico analysis of the effects of mapping catheter dimension and electrode distribution on MFS inverse solutions during pacing from distal coronary
sinus. Ground-truth LA surface potential distributions during atrial activation are constructed from pace-synchronized contact recordings acquired with a high density
electrode array. Corresponding potential fields in the LA cavity are estimated throughout the atrial activation cycle and “sampled” at locations of virtual basket catheter
electrodes. Inverse surface potential maps are then reconstructed from these data and compared with ground truth maps. (A) Ground-truth LA surface potential
distribution at one instant during activation - see red line in (C). Corresponding inverse potential map (B) reconstructed from potentials sampled with virtual 64-electrode
basket catheter with 0.67 volume fraction relative to LA. Electrodes are distributed uniformly along 8 splines as indicated in (A). (C) Ground truth and reconstructed
electrograms at 1 in (A,B). In the middle panel, CC (D), nRMSE (E) and AT (F) are presented as functions of relative catheter volume for inverse solutions over one
activation cycle. Median values and IQR are given for inverse maps constructed from “recordings” at 64 sites (blue) and 3 sequential “recordings” at 64 sites following
stepwise rotation of the catheter through 15° around its axis (red). Both maps in the lower panel relate to the same time as in (A,B). In (G), the distribution of NRMSE on the
LA surface is compared with spline location for a potential map constructed from 64 full or near-contact “recordings”, while (H) corresponds to (B). Here, the inverse map
was constructed from 3 sequential “recordings” at 64 sites with a relative catheter volume fraction of 0.67. (I) Ground truth and inverse electrograms at 2) in (H).
Abbreviations: MFS, Method of Fundamental Solutions; LA, left atrium; CC, correlation coefficient; nRMSE, normalized root-mean-squared error; AT, activation time

where a is a constant and a = (ay, .. .,ay) is the instantaneous
source current at a source {Ei}f\i 1- G is the fundamental solution of
the Laplace operator in 3D

G(x) = 2

1
4m|& — x|
and {«f,-}fi , are the 3D locations of the fictious sources and | — x|
is the Euclidean distance between x and &. Note that a; = ol; for
i = 1, N where I; is the source current at &; and ¢ is conductivity.

Potentials at x. on the surface I'c that bounds the electrodes
therefore can be estimated by using Eq. 1 forx € I'.. This results in a

linear system of equations when they are equated to the measured
potentials on the M electrodes of the catheter. It should be noted
that while the forward problem has been set up here for the
continuous surfaces I'c and I'y;, this is not a requirement of the MFS.

Solution of this system yields the associated current source
densities on the fictitious external boundary I'y and
corresponding potentials on the endocardial surface I'y are
then estimated by using Eq. 1 again for x € I'y. This system is
inherently under-determined because the number of electrodes
M is generally less than N, the number of fictitious sources needed
to map potentials faithfully onto I'y.

Frontiers in Physiology | www.frontiersin.org

73

May 2022 | Volume 13 | Article 873049


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Meng et al.

METHODS

An established computational approach (Ramanathan and Rudy,
2001) was used to quantify the accuracy of inverse potential
mapping and key steps are illustrated in Figure 2. First, ground-
truth potential distributions were specified on the endocardial
surface of the left atrium (LA). The associated field throughout
the LA was determined by numerical solution of Laplace’s
equation and potentials were sampled at points corresponding
to electrode locations on open basket catheters with different
electrode distributions across a range of dimensions (Figure 2A).
Endocardial surface potentials were then reconstructed from the
sampled potentials using the MFS (Figure 2B) and compared
with ground-truth potential distributions. This process was
continued through a complete atrial activation cycle for
stationary rhythms or over several cycles of reentrant activity.
Ground-truth  electrograms were also compared with
corresponding estimates at points across the
endocardial surface (Figure 2F) to assess the accuracy with
which local activation timing information is reconstructed.

Clinical ground truth data used in this study were acquired as
follows. CT imaging was performed in one patient undergoing
catheter ablation to treat atrial flutter. The patient gave written
informed consent and the study protocol was approved by the
Melbourne Health Research and Human Ethics Committee. LA
geometry was segmented with the Ensite Verismo™™ tool and
registered with respect to the mapping system (Ensite Precision,
Abbott). A decapolar pacing catheter was positioned in the
coronary sinus (CS). A 20-pole Lasso™ catheter was
introduced into the LA via trans-septal puncture and used to
collect 3,200 time-referenced, spatially-registered contact
unipolar electrograms across the LA during pacing (300 ms
interval) from the distal CS at a sampling rate of 1 kHz. The
LA shell was refined to 5,000 vertices and potentials were
interpolated by Dirichlet energy minimization (Botsch et al,
2010).

Ground truth data representing polymorphic reentrant atrial
simulated. Atrial surface geometry was
reconstructed in an anaesthetized sheep (crossbred female,
53 Kg). All procedures were approved by the Animal Ethics
Committee of the University of Auckland and conform to the
Guide for the Care and Use of Laboratory Animals (National
Institutes of Health publication no. 85-23). Gadolinium-
enhanced ECG-gated MRI images of the atria (1.0 x 1.0 mm?
in-plane resolution approximately parallel to the atrio-ventricular
valve plane and 1.6 mm between slices) were acquired with a 3T
Siemens Magnetom Skyra™" scanner. LA endocardial surface
geometry was segmented using Amira (Thermo Fisher Scientific)
and a 3D triangular surface mesh (1,529 nodes) was fitted to the
LA with pulmonary veins and left atrial appendage truncated.
Ground-truth potential distributions representing polymorphic
reentrant atrial activation were modeled on this geometry as
follows. Meandering spiral wave reentry was simulated on an
isotropic 2D monodomain with Fenton Karma activation kinetics
(Fenton and Karma, 1998) using a standard cross-field S1-S2
stimulus protocol (Pandit et al., 2005). Points on the 2D domain
were sampled and mapped onto the 3D surface mesh so that

inverse

activation were

Intracardiac Inverse Potential Mapping

surface area was similar in both, with a contour adjacent to the
boundary in the former assigned to the mitral valve orifice.
Extracellular  potentials approximated from the
transmembrane currents computed at each 3D point at a
sampling rate of 1kHz (Supplementary Video S1—Simulated
ground truth data—in the Supplementary Material).

The open-source software environment SCIRun (http://www.
sci.utah.edu/cibc-software/scirun.html) was used for FEM
solutions of the 3D forward problem. (Burton et al, 2011).
Intracardiac potential fields were computed from the ground-
truth surface potential distributions at successive time instants by
solving Laplace’s equation throughout Q. The intracardiac field
was sampled at points corresponding to electrodes on two basket
catheter configurations with 1) 64 channels with 8 equally spaced
electrodes along 8 splines at equal radial angles, and 2) 130
channels with 8 equally spaced electrodes along 16 splines at
equal radial angles and electrodes at upper and lower poles.
Basket dimensions were uniformly scaled to vary catheter:
atrial volume ratio. The centroids of catheters and the LA
chamber were aligned to allow maximum catheter expansion
and to ensure reproducibility between results. Noise was imposed
by adding Gaussian noise independently to the electrograms
recorded at each electrode with power set at realistic levels.
Signal-to-noise ratio (SNR) is quantified as the ratio of root-
mean-squared (RMS) voltages of reconstructed electrograms
and noise.

Inverse solutions with the MES were run with purpose-written
code. The fictitious boundary was formed by uniform scaling of the
atrial surface mesh and sources were associated with each node.
Inflation was quantified as the relative volume difference between I'y
and Iy Solutions were stable across the inflation range 2-10%
(Supplementary Figure S1) and the value 6% was selected as
optimal in the results presented here. Inverse endocardial potential
distributions for intracardiac potentials “sampled” with virtual
catheters were obtained using zero-order Tikhonov regularization
(Tikhonov and Arsenin, 1977) employing the L-curve method to
calculate the regularization parameter (Hansen, 2010).

Phase maps were constructed using the approach outlined by
Kuklik et al. (Kuklik et al., 2017) Sinusoidal recomposition was
applied to electrograms at each LA surface node and the Hilbert
transformation was then used to estimate instantaneous phase at
these points.

Correspondence between ground-truth and reconstructed
potential maps were quantified by evaluating normalized RMS
error (nRMSE) and correlation coefficient (CC).

were

N i i )\?

zi:l (NQGT i QZR) and CC
2 (Fer)

N i N i

_ Yo (or — Her)2in (B — #z)
i 2 i 2
\/Zf\:jl (Der — Her) \/ZII\:II (D — tr)

where N is the number of surface points compared, @ and &,
are ground-truth and reconstructed potentials at surface point i,

and ygr and pp are mean values for ground-truth and
reconstructed potentials, respectively, across the surface.

nRMSE =

3)
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Activation times (ATs) for ground-truth (ATgr) and
reconstructed electrograms (ATyg) were estimated as maximum
negative rate of potential change and the activation time
difference AT at each surface point was evaluated as

AT = |ATgr — ATg| 4)

Programs were written in C or in the MATLAB programming
language (The Mathworks, Natick, Massachusetts).

RESULTS

Inverse Potential Mapping in Stationary

Rhythm
Figure 2 indicates the accuracy with which high-density potential
maps can be reconstructed from clinical ground truth electrograms
recorded during the relatively uniform spread of LA activation in
coronary sinus pacing. Key features of activation were reconstructed
from intra-atrial potentials sampled with a virtual 64-electrode
noncontact catheter that occupied ~67% of atrial cavity volume
(Figure 2A). However, neither high resolution features of
instantaneous potential maps (Figure 2B) nor high frequency
components of regional electrograms (Figure 2F) were captured
faithfully. Despite this, accuracy measures were high and surprisingly
stable across a wide range of catheter dimensions with median CC =
0.92, nRMSE = 0.054 and AT = 1ms for catheter:atrial volume
ratios >0.3 with a 64-electrode basket catheter (Figures 2D-F).
None of these measures improved with full or near contact between
electrodes and endocardial surface, and nRMSE was highest between
splines where the spacing of adjacent electrodes was greatest
(Figure 2H), indicating that spatial distribution of electrodes on
the surface that bounds the catheter is the problem here. Sampling
density was increased by moving the catheter and synchronizing the
electrograms acquired. The instantaneous potential map in
Figure 2C was reconstructed from 192 electrograms “recorded”
in 3 sequential steps by rotating the virtual 64-electrode catheter
(relative volume ratio 0.67) around its axis in increments of 15°. This
markedly improved the match between high-density ground truth
and inverse maps (compare Figures 2A,C). The nRMSE between
electrodes was substantially reduced (compare Figures 2H,I) and
high frequency components of complex local electrograms were
reconstructed accurately (Figure 2F). Median CC increased to ~0.97
and median nRMSE halved across a wide range of catheter
dimensions (Figure 2G).

Inverse Potential Mapping in Reentrant
Rhythm

In Figure 3, we present the effects of catheter dimension and
electrode distribution on inverse solutions obtained with the MFS
in simulated macroscopic reentrant activation of the LA that
replicates features of atrial flutter. Catheter designs considered are
a 64-electrode catheter with 8 uniformly spaced electrodes along 8
splines and a 130-electrode catheter that has 8 uniformly distributed
electrodes on 16 splines with 2 additional polar electrodes. Once
again, the centroids of catheters and LA chamber were aligned.

Intracardiac Inverse Potential Mapping

In the upper panel of Figure 3, an instantaneous ground-truth
potential map (Figure 3A) is compared with corresponding
inverse maps constructed from potentials sampled with a 64-
electrode catheter (Figure 3B) and a 130-electrode catheter
(Figure 3C). Endocardial potentials were poorly reconstructed
in some regions of the LA with an 8 spline 64-electrode basket
catheter but recovered more faithfully with a 16 spline 130-
electrode catheter where electrode distribution is more
uniform, spatially. As might be expected, errors with the 64-
electrode catheter were greatest between splines near the equator
where inter-electrode spacing was largest.

The correspondence between ground-truth and reconstructed
surface electrograms was quantified for these two catheters over 3
consecutive activation cycles for a range of catheter dimensions,
and results are presented in the lower panel of Figure 3. The
accuracy with which unanchored reentrant rhythm could be
reconstructed was consistently less than for more stable paced
rhythms (compare Figure 3 with Figure 2) and it was affected
more markedly by relative catheter dimensions. For each of the 3
metrics considered, performance was better at all catheter
dimensions with 130-electrode catheters than with the 64-
electrode catheters. For example, with 130-electrode catheters,
CC approached a median of 0.97 [IQR 0.07] as catheter
dimensions were increased, compared with corresponding
values around 0.9 [IQR 0.19] with 64-electrode catheters
(Figure 3D). Consistent with these results, nRMSE was
reduced with increased catheter dimension reaching a median
of 0.042 [IQR 0.055] for the 130-electrode catheter compared
with 0.083 [IQR 0.099] for 64-electrode catheters (Figure 3E).
Finally, AT was reduced to a median of 1 ms with a 130-electrode
catheter compared with 2ms for 64-electrode catheters
(Figure 3F). All three metrics were relatively stable for
catheter volumes >0.6 relative to LA volume.

Effects of Noise on Inverse Potential
Mapping

The effects of noise on the accuracy of inverse endocardial
potentials reconstructed with the MFS are summarized in
Figure 4. Intra-atrial electrograms were “sampled” with 130-
channel catheters during simulated macro-reentry with
superimposed Gaussian noise at RMS voltages of 18, 56
and 178 uV. In general, addition of noise had little effect
for catheter: LA volume ratios >0.5. However, inverse
solutions were progressively degraded by noise at catheter
volumes less than this (Figures 4B-D). Comparison of the
representative electrograms in Figure 4A provides further
insight into this finding. While SNR in reconstructed
electrograms scales inversely with added noise, it is much
worse for the smaller of the two catheters (6.54, 4.23 and 1.91
for RMS noise voltages of 18, 56 and 178 uV, respectively,
compared with 69.56, 22.85 and 6.83 for the larger catheter). It
is also noteworthy that while our inverse solutions do not
recover higher frequency components in the ground truth
electrograms when the catheter is small this is not
systematically altered by noise.
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Inverse Phase Mapping in Macroscopic
Reentry

While potential maps during macro reentrant activity were
reconstructed more faithfully using a 130-electrode catheter than a
64-electrode catheter with the same dimension, corresponding phase
maps in Figure 5A appear to carry very similar information about the
history of activation across the LA surface. This similarity in phase
distribution was preserved throughout an extended sequence of
simulated electrical activity (Supplementary Video S1), where
phase singularities identified recovered with 64- and 130-electrode
catheters are also collocated. The correspondence with ground truth for
phase maps obtained with noncontact catheters was maintained for a
wider range of relative catheter volumes than for the potential maps in
Figure 3 above. However, CC was increased and nRMSE reduced with
a 130-electrode catheter compared to a 64-electrode catheter
(Figure 5B). This indicates that phase maps with the latter capture
key features of wave front propagation in macro reentrant arrhythmia,
but aspects of the fine structure of the phase distribution are lost.

Region-Of-Interest Potential Mapping

With region-of-interest (Rol) mapping, a small catheter is positioned
close to a region of the endocardial surface to reconstruct local
electrical activity. In Figure 6, we consider the accuracy with
which regional electrical activity can be recovered using non-
contact catheters. This analysis was completed without adding
Gaussian noise. An 8-spline 64-electrode basket catheter (major

and minor axes 25 and 23 mm, respectively) was initially located
close to the origin of a simulated macro-reentrant circuit in the LA
(Figure 6A). The inverse solution (Figure 6B) was good near the
catheter, but much poorer over the rest of the LA. This is
demonstrated in Figure 6C where CC is rendered on the LA
surface; median CC is >0.9 in the Rol, but falls off rapidly with
distance from this region. In the lower panel we present CC
(Figure 6D), nRMSE (Figure 6E) and AT (Figure 6F) in the Rol
(red) and across the full endocardial surface (blue) for inverse
solutions constructed as the catheter was moved progressively
along a line from the origin of the LAA to the inter-atrial septum
(Figure 6A). These figures demonstrate that regional mapping
performance was excellent when the catheter was in or adjacent to
the Rol, but poor when the catheter was most distant from it. Global
mapping performance was best when the catheter was located
centrally, but significantly poorer in this case in the Rol. Of
particular interest, Rol performance was optimal when the catheter
was ~10 mm from its initial position with electrodes 9-20 mm from
the LA wall; median CC was 0.96 [IQR 0.072], median nRMSE 0.09
[IQR 0.05] and median AT 0.89 ms [IQR 1.97 ms].

DISCUSSION

Summary
This analysis of noncontact intracardiac potential mapping
extends an in-silico boundary mesh-based study previously
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reported by our laboratory (Meng et al., 2017; Meng et al., 2022).
Here we have investigated the accuracy with which endocardial
potential maps can be reconstructed from noncontact
electrograms recorded with a multi-electrode basket catheter
using meshless methods that use the MFS, the first time that
this has been done as far as we are aware. We demonstrate that
fast, accurate noncontact potential mapping and phase mapping
are possible using this approach. However, the spatial frequency
of the electrical activity captured is determined by the distribution
of electrodes and in order to recover complex non-stationary
rhythms, such as AF, the mapping catheter must address a
representative subvolume of the cardiac chamber.

Effects of Catheter Dimension

We have reported that noncontact mapping performance
deteriorates progressively as catheter dimensions are reduced
relative to those of the cardiac chamber and that this
degradation becomes more marked when activation is complex.
Neither of these findings is surprising. With increasing distance
from the heart surface, intracardiac potentials associated with local
activation are progressively attenuated and blurred, and
information lost in this process cannot be recovered fully.
Furthermore, as catheter dimension is reduced, information is
captured from a decreasing subset of the cavity volume which may
not fully reflect local activity. More striking, perhaps, is the finding

that surface electrograms can be reconstructed with acceptable
accuracy (CC > 0.9, nRMSE <0.06 and AT < 2ms) during
reentrant rhythm with basket catheters that fill only half of the
cavity. A supplementary point that needs to be made here, is that
while relative catheter volume is an accessible measure of
dimension, it scales with the third power of radius for a
spherical basket catheter. Therefore, catheter volume increases
by 112.5% when its diameter changes from 35 to 45 mm. While
there was no contact between electrodes and LA wall for the
centrally located catheter in Figure 3A (Catheter:Atrial volume
ratio = 0.67), there was increasing (though incomplete) contact
between them as relative volume expanded to ~0.9.

Effects of Noise

Median CC was decreased and median AT was increased with
reduced catheter dimension (Figures 4B,D) when Gaussian noise
was added but there was no corresponding effect on median
nRMSE (Figure 4C). The reconstructed electrograms in
Figure 4A provide explanation for these results. Because
electrograms recorded toward the centre of the LA cavity with
a small central catheter are attenuated, the noise added to them
markedly reduces SNR. This is reflected in the reconstructed
surface electrograms presented in the left-hand panel of
Figure 4A, where SNR is low and is reduced progressively as
noise amplitude increases. The recorded electrograms are also
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FIGURE 5 | Phase maps of inverse solutions with MFS during macro-
reentry. LA surface potentials throughout activation cycle in simulated atrial
flutter are reconstructed from electrograms sampled inside the LA cavity using
64- and 130-electrode basket catheters. The centrally located catheters
occupy 67% of LA volume. (A) Ground truth phase map at one instant during
activation compared with corresponding phase maps for surface potentials
reconstructed from electrograms recorded with 64-electrode and 130-
electrode basket catheters. (B) CC and nRMSE presented as functions of
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catheter (red). Median values and IQR are given. Abbreviations: MFS, Method
of Fundamental Solutions; LA, left atrium; CC, correlation coefficient; NRMSE,
normalized root-mean-squared error; IQR, interquartile range.

smoothed in this case and the frequency content of the ground-
truth surface electrograms is not recovered by inverse mapping.
However, the overlap between ground-truth and reconstructed
electrograms is affected less by noise than might have been
expected. With increased noise power, the deviation between
reconstructed and ground-truth electrograms can increase, but
there is also greater instantaneous overlap between the two. With
a large catheter (right-hand panel in Figure 4A), the magnitudes
of recorded electrograms are substantially greater and there is
much less smoothing. As a result, surface electrograms are
recovered more faithfully with much less impact of added noise.

Inverse methods are prone to instability and error in the
presence of noise. The fact that this is not the case here further
reinforces the fact that the transfer matrix used is inherently well-
conditioned and the regularization procedures adopted are
appropriate. However, the Gaussian noise introduced here is a
very narrow representation of the problems faced in practice with
inverse potential mapping. Artifacts in the unipolar signals used
for this purpose include common-mode electrical noise, far-field

Intracardiac Inverse Potential Mapping

activity due to electrical activation of the ventricles which can
mask local activity completely in AF and complexity in atrial
electrograms that may be due to far-field atrial activity,
inadequate spatial sampling or non-uniform electrical
properties in the underlying substrate. That said there are
many ways that more robust regional information can be
extracted from these channels using signal processing methods
that exploit temporal and spatial correlation among adjacent
electrograms and wavelet-based methods which identify
characteristic differences in the instantaneous frequency
content of recorded electrograms (Zhao et al., 2013).

Electrode Distribution and Recovery of
Complex Activation Patterns

Our data show that ground truth potential maps based on
simulated macro-reentrant activity were reconstructed more
faithfully using a 130-electrode catheter than a 64-electrode
catheter with the same dimension (Figure 3). Furthermore,
when noncontact electrodes were within a few mm of the
cavity surface, dimension had no effect on the efficacy of the
inverse solution, which was wholly dependent on electrode
distribution. This reflects the fact that the accuracy with which
surface potentials can be reconstructed depends on whether the
sampled potentials provide a faithful representation of the field
addressed. If the electrode distribution is not sufficiently dense,
high spatial frequencies cannot be recovered and low frequency
artifacts (aliasing) may occur (Shannon, 1949). An example of
this is provided in Figure 2 where apparent fractionation of the
electrogram reconstructed between adjacent splines with a 64
electrode basket catheter (see blue trace in Figure 2F)
disappears with more dense sampling in that region (compare
red trace with ground truth electrogram in Figure 2F). While
compressed sensing approaches can collect and represent sparse
signals with many fewer sampling points than indicated by the
Nyquist (Shannon, 1949) theorem, optimal sampling strategies are
determined by regional spatial and temporal correlation (Long
et al., 2011). Specialized regularization techniques are also needed
for inverse reconstruction of higher frequencies from sparsely
sampled signals without introducing excessive noise.

It should be noted that metrics such as CC and nRMSE used
here to quantify the correspondence between ground-truth and
reconstructed potentials do not take the time-history of the
electrograms into account. This provides additional
information about the spread of electrical activation across the
heart surface as illustrated by the phase maps in Figure 5. The
phase map shown here for a 64-electrode catheter is very similar
to that presented for a 130-electrode catheter. Both correspond
closely to ground truth phase maps throughout the activation
sequence (Supplementary Video S1). Because phase mapping
identifies local activation as an abrupt standardized transition
from +m to —m and imposes relatively uniform spatio-temporal
variation around this, confounding effects of local variation in
potential magnitude are removed.

It is also important to acknowledge that sampling density is
affected by catheter dimensions. For instance, for a 64-electrode
25-mm diameter spherical catheter, inter-electrode spacing along
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splines is ~5 mm, while the curvilinear distance between splines at
the equator is ~10 mm. These measurements are doubled with a
50-mm diameter catheter. This explains the apparent reduction
in median CC and the increase in median nRMSE and its
interquartile range for 64-electrode catheters when relative
catheter volume increases from 0.8-0.91 (Figures 3D,E,
respectively). Here any improvement in accuracy associated
with proximity to the wall is offset by reduced electrode
density. In the clinical setting, attempts to achieve direct
contact between electrodes and the heart surface can introduce
additional error by deforming catheter splines and increasing the
nonuniformity of sampling. (Oesterlein et al., 2016; Pathik et al.,
2018). It follows that global mapping with multi-electrode basket
catheters is more likely to produce reliable results when electrodes
are not in contact with the heart wall than when attempts are
made to achieve close contact.

The results for Rol mapping are consistent with these
observations. The relatively small 64-electrode catheter in
Figure 6 recovered local electrical activity with a high level of
accuracy. Moreover, regional mapping produced best results
when electrodes were not in contact with the wall (median
CC, nRMSE and AT: 0.96, 0.09 and 0.89 ms, respectively).
Global performance was much poorer, but it would be
straightforward to quantify the uncertainty of reconstructed

maps based on the distance of electrodes from surface nodes
and the results of analyses such as those outlined here.

Potential Clinical Impact of These Findings
The results of this study indicate that global electroanatomic
maps can be recovered faithfully in real-time from electrograms
recorded with noncontact multi-electrode basket catheters using
meshless methods that use the MFS. Accurate specification of 3D
electrode locations with respect to cardiac anatomy is required for
inverse intracardiac mapping, but this is readily achieved with
current hybrid navigation technologies (Issa et al., 2019). Our
findings indicate that, for optimal performance, catheters should
be located centrally within the cardiac chamber and address a
representative subvolume of the cavity (>50% in the data
presented here) with minimum contact between electrodes and
endocardial surface. The capacity to reconstruct spatially
complex activation patterns is limited by electrode
distribution, but when heart rhythm is stable and repeated,
more detailed maps can be reconstructed with sequential
alteration of electrode locations, for instance by catheter
rotation/translation. Potentially, this could be more efficient
than sequential contact mapping with high density contact
arrays because complete maps can be developed with relatively
few iterations. For nonstationary heart rhythms such as AF,

Frontiers in Physiology | www.frontiersin.org

79

May 2022 | Volume 13 | Article 873049


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Meng et al.

however, the accuracy with which endocardial surface activation
can be reconstructed is constrained by the spatial distribution of
electrodes on the catheter for both contact and noncontact
mapping. Sparse sampling can lead to repeating artifact in
reconstructed activation patterns that is incorrectly identified
as rotors (Roney et al., 2017; Martinez- Mateu et al., 2018).
Williams et al. (Williams et al., 2018) reported that >1.0-1.5
points/cm® were needed on the endocardial surface to resolve
spiral wave activity and this corresponds to an inter-electrode
spacing of 2-3 mm - much denser than is the case for 64-electrode
basket catheters, particularly for equatorial electrodes on adjacent
splines. As demonstrated here, more optimal electrode
distribution is achieved with catheters that have 16 rather than
8 splines. While phase mapping may relax sampling requirements
to some extent, it seems evident that improved catheter design is
necessary for accurate panoramic mapping in AF.

Inverse methods have been used for noncontact intracardiac
electrical mapping in two commercial systems. (Schilling et al.,
1999; Grace et al, 2019). The Ensite multi-electrode array
(Abbott) is used for noncontact potential mapping and
consists of 64 electrodes mounted on an inflatable balloon.
Consistent with the results reported here, validation studies
have shown that accuracy is inversely related to the distance
between the array and the heart wall with poor recovery of
endocardial surface potentials when this distance is >25 mm
(Earley et al, 2006). More recently, instantaneous charge
density distributions associated with atrial electrical activation
have been constructed from electrograms recorded with
noncontact 48-electrode basket catheters (Acutus/Biotronik)
(Grace et al.,, 2019). This is based on a forward model that
relates intracardiac potential fields to secondary cellular
sources associated with distributed membrane charge dipoles
(Plonsey, 1982; Grace et al., 2019; Willems et al., 2019). Our
analysis makes no assumptions about the cellular basis of
electrical activation. Instead, we address how well endocardial
surface potentials can be recovered from a limited number of
electrograms recorded inside the heart cavity. We found that
information is lost with noncontact mapping if the basket
catheters used are too small and with both contact and
noncontact mapping if the sampling density is not sufficient.
These factors would be expected to impact the spatial resolution
with which surface charge distributions can be recovered from
noncontact electrograms also.

Limitations

A limitation of this study is that error introduced by uncertainty
of the 3D geometry of the heart surface relative to 3D electrode
locations has not been explicitly considered. While this would be
expected to amplify uncertainty associated with relative catheter
size, electrode distribution and noise, we note that our
formulation of the intracardiac inverse problem is surprisingly
robust. A further limitation is that although our ground-truth
data represent atrial rhythms of increasing complexity, they do
not fully replicate the spatio-temporal disorder which
characterizes AF. However, the analysis presented here
demonstrates that the performance of contact mapping is
matched by this inverse approach and that spatial resolution

Intracardiac Inverse Potential Mapping

in both cases is limited by electrode distribution. Finally, while
ground-truth data are based in part on clinical and simulated
data, the accuracy of inverse intracardiac mapping has been
confirmed computationally. While many of the assumptions
made in specifying the forward problem are entirely
reasonable, other are not. The electrical properties of the
blood in the cardiac chambers are isotropic and uniform but
they are certainly not the same as those in the myocardium
adjacent to the endocardial surface where the fictitious sources
are located. More detailed experimental characterization of the
accuracy with which endocardial potentials can be reconstructed
using inverse mapping is therefore needed to confirm the analyses
presented here.

CONCLUSION

This study demonstrates that atrial endocardial potentials can be
reconstructed accurately from electrograms recorded with
noncontact multi-electrode basket catheters using a fast robust
inverse mapping approach that employs the MFS. This enables
efficient and potentially more precise capture of global and
region-of-interest potential maps than comparable contact
mapping methods. Because data for all electrodes are used, it
is not necessary to maximize contact between catheter and the
heart wall. This reduces the deformation of catheter splines which
occurs when direct contact is sought, thereby preserving a more
uniform electrode distribution. However, we demonstrate that
conventional 8 spline catheters are suboptimal for instantaneous
contact or noncontact mapping of complex rhythms, such as AF.
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Cardiovascular diseases are the primary cause of death of humans, and among these,
ventricular arrhythmias are the most common cause of death. There is plausible evidence
implicating inflammation in the etiology of ventricular fibrillation (VF). In the case of systemic
inflammation caused by an overactive immune response, the induced inflammatory
cytokines directly affect the function of ion channels in cardiomyocytes, leading to a
prolonged action potential duration (APD). However, the mechanistic links between
inflammatory cytokine-induced molecular and cellular influences and inflammation-
associated ventricular arrhythmias need to be elucidated. The present study aimed to
determine the potential impact of systemic inflammation on ventricular electrophysiology
by means of multiscale virtual heart models. The experimental data on the ionic current of
three major cytokines [i.e., tumor necrosis factor-a (TNF-a), interleukin-1 (IL-1pB), and
interleukin-6 (IL-6)] were incorporated into the cell model, and the effects of each cytokine
and their combined effect on the cell action potential (AP) were evaluated. Moreover, the
integral effect of these cytokines on the conduction of excitation waves was also
investigated in a tissue model. The simulation results suggested that inflammatory
cytokines significantly prolonged APD, enhanced the transmural and regional
repolarization heterogeneities that predispose to arrhythmias, and reduced the
adaptability of ventricular tissue to fast heart rates. In addition, simulated pseudo-
ECGs showed a prolonged QT interval—a manifestation consistent with clinical
observations. In summary, the present study provides new insights into ventricular
arrhythmias associated with inflammation.

Keywords: inflammation, COVID-19, cardiac simulation, ventricular arrhythmia, rat ventricle

Abbreviations: VF, ventricular fibrillation; TNF-a, tumor necrosis factor-a; IL-1f, interleukin-1p; IL-6, interleukin-6; CVDs,
cardiovascular diseases; COVID-19, coronavirus disease 2019; ECG, electrocardiogram; BCL, basic cycle length; AP, action
potential; APD, action potential duration; ENDO, endocardial; EPI, epicardial; MID, middle; SR, sarcoplasmic reticulum; CV,
conduction velocity; VW, vulnerable window; PCL, pacing cycle length; SERCA, sarco/endoplasmic reticulum Ca®*-ATPase;
EAD, early-afterdepolarizations; DAD, delayed afterdepolarizations; POAF, post-operative atrial fibrillation; TdP, torsade de
pointes; TRIaD, triangulation, reverse use dependence, instability and dispersion.
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1 INTRODUCTION

Inflammation is a part of the complex biological response of body
tissues to harmful stimuli, such as pathogens, damaged cells, toxic
compounds, or irradiation (Chen et al., 2018). These harmful
stimuli trigger a cascade that releases inflammatory biomarkers
and recruits immune cells, which contribute to eliminating the
initial cause of cell injury and initiating tissue repair. However, an
excessive immune response could potentially lead to multiorgan
dysfunction by triggering a cytokine storm.

According to World Health Organization statistics,
cardiovascular diseases (CVDs) are the number one cause of
death globally, accounting for an estimated 17.9 million lives each
year (Kaptoge et al., 2019). In some recent studies, accumulating
data suggest increased CVD morbidity and mortality in patients
infected with coronavirus disease 2019 (COVID-19), among
which there may be an arrhythmia effect (Lazzerini et al,
2020a, 2020b; O’Shea et al, 2021). The mechanisms
underlying  COVID-19-related  arrhythmia are
complicated. For example, CVDs in these patients can be
caused by immune cell tissue invasion associated with
pulmonary or cardiogenic myocardial injury (Agricola et al,
2020; Jaffe et al, 2020; Magadum and Kishore, 2020).
Recently, clinical research by Lazzerini et al. reported that the
QT interval was prolonged in patients with COVID-19, and this
electrocardiogram (ECG) abnormality was accompanied by high
levels of inflammatory cytokines in serum, suggesting a potential
link between systematic inflammation and cardiac arrhythmias
(Lazzerini et al., 2020a).

There is increasing experimental evidence supporting the
effects of inflammatory cytokines (mainly tumor necrosis
factor-a (TNF-a), interleukin-1f (IL-1B), and interleukin-6
(IL-6)) on cardiac ion channels, and this specific type of
channelopathy is termed inflammatory cardiac channelopathy
(Lazzerini et al,, 2018, 2019). Existing studies have found that
inflammatory cytokines can affect multiple ion channels,
including transient outward potassium current (I,,) (Kawada
et al., 2006; Fernandez-Velasco et al., 2007; Grandy and Fiset,
2009; Monnerat et al., 2016), rapid delayed-rectifier potassium
channel (Iy,) (Wang et al., 2004; Aromolaran et al., 2018), and
L-type calcium current (Hagiwara et al., 2007). There are also
studies suggesting the effects of inflammatory cytokines on
calcium handling. For example, IL-6 was reported to inhibit
the gene expression of sarco/endoplasmic reticulum Ca®'-
ATPase (SERCA) (Villegas et al., 2000; Tanaka et al., 2004),
and IL-1( was observed to increase sarcoplasmic reticulum (SR)
calcium leakage (Monnerat et al., 2016). Although the effects of
inflammatory cytokines on individual ion channels have been
investigated in these studies, its integral effect on ventricular
cellular action potential (AP) and its conduction properties
remain unclear. In recent years, emerging cardiac simulations
have provided powerful tools for exploring the pathogenesis of
cardiovascular diseases (Xie et al., 2004; Arevalo et al., 2016;
Zhang et al,, 2019, 2020). In our recent work, we constructed a
multiscale ventricle model that is able to reproduce both
physiological and pathological phenomena on different scales
(Bi et al.,, 2021). Based on this multiscale model, we investigated

events
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and evaluated the effects of inflammatory cytokines on
ventricular electrophysiology.

The present study aimed to determine the potential impact of
systemic inflammation on ventricular electrophysiology. Several
simulations were conducted in this work. First, available
experimental data regarding the effects of several
inflammatory cytokines on multiple cardiac targets were
incorporated into rat and human ventricular myocyte models
so that the inflammation-induced electrophysiological alterations
at the cellular level could be simulated. Next, we constructed a 1-
D strand model and quantitatively evaluated the temporal
susceptibility of inflammatory tissue to unidirectional
conduction blocks. Finally, inflammatory cells were coupled to
form a local inflammatory area, which was then incorporated into
a ventricular slice model to explore the potential proarrhythmic
factors under local inflammatory conditions. As a parallel
experiment, we also simulated the electrical activities under
global inflammatory conditions by setting all of the cells on
the slice as inflammatory cells.

2 METHODS
2.1 Effects of Inflammatory Cytokines

Evidence from several in vitro and animal studies indicated that an
overactive immune response might lead to a storm of inflammatory
cytokines, and some of these inflammatory cytokines directly affect
the function of ion channels in cardiomyocytes. In this research, we
mainly evaluated the effects of three cytokines (i.e., TNF-a, IL-1p,
and IL-6) on cardiomyocytes and their possible proarrhythmic
effects. It has been demonstrated that these cytokines can prolong
the ventricular action potential duration (APD) by modulating
several targets in cardiomyocytes, specifically the transient
outward K" channel (), the rapid delayed-rectifier K™ current
(Ixr), and some targets involved in calcium handling. Focusing on
acute inflammation, we screened out the experimental data based on
the duration of the experimental treatment (less than 48 h), which
are listed in Table 1, Table 2, and Table 3.

2.2 Single-Cell Simulations

The rat ventricular cell model by Terkildsen et al. (referred to as the
Terk model) (Terkildsen et al., 2008) and the human ventricular cell
model by Ten Tusscher et al. (referred to as the TP06 model) (Ten
Tusscher et al., 2006) were adopted in this study. Due to the lack of
heterogeneity in the Terk model, AP heterogeneities, including
transmural heterogeneity and interventricular heterogeneity, were
incorporated according to our previous study (Bi et al., 2021) and
experimental observations (Clark et al., 1993; Shimoni et al., 1995;
Casis et al., 1998; MacDonell et al., 1998; Kaprielian et al., 1999;
Ashamalla et al., 2001).

In the single-cell simulation, the rat model was paced with a series
of 1000 stimuli with an amplitude of 6 pA/pF and a duration of
5.0 ms (80 pA/PF, 0.5 ms in the TP06 model) to reach the steady-
state. To investigate the effects of a single cytokine and the combined
influences of multiple cytokines on the cardiomyocytes, we adjusted
the conductance of the related channel or ion flux of the related
calcium handling process in the cell models according to the
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TABLE 1 | The effects of TNF-a on cellular targets.

Inflammation-Induced Ventricular Arrhythmias

Targets Experimental observations References
Effects Time of treatment Concentration Type of cell tested -
o Current density: —23.4-65% Inactivation curve: 48 h 1-5 ng/ml Ventricular myocyte (rat) Fernandez-Velasco et al. (2007)
Approximately 5.7 mV shift to the left
Ir Current density: 10h 1 ng/ml HEK293 Wang et al. (2004)

-33%

TABLE 2 | The effects of IL-6 on cellular targets.

Targets Experimental observations References
Effects Time of treatment Concentration Type of cell tested —
Ie Current density: —29.6% Activation curve: 40 min 20 ng/ml HEK293 Aromolaran et al. (2018)
5 mV shift to the left
lcaL Current density: 30 min 20 ng/ml Ventricular myocyte (mice) Hagiwara et al. (2007)
+27%
Jup Expression of SERCA gene: 48 h 10 ng/ml Ventricular myocyte (rat) Villegas et al. (2000)

-21%~-50%

TABLE 3 | The effects of IL-1p on cellular targets.

Targets Experimental observations References
Effects Time of treatment Concentration Type of cell tested —
ho Current density: 24 h 60 pg/ml Ventricular myocyte (rat) Monnerat et al. (2016)
-36.8%
Jieak SR Ca?* leak: 24 h 60 pg/ml Ventricular myocyte (rat) Monnerat et al. (2016)
+63.6%

previous experimental recordings (Table 1, Table 2, Table 3). Note
that the combined effects of the three cytokines were assumed to be
an accumulation of each cytokine. The AP traces, APDgy,, and
current density traces of the different types of cells under various
conditions were recorded for later analysis.

In addition, the data used in this study were obtained from
bioexperiments in which the preparation concentrations of the
cytokines were higher than the clinically measured cytokine levels
in patients (Liu and Zhao, 1999; Monnerat et al., 2016; Liu et al., 2021).
Therefore, we also considered another ‘mild’ type of inflammation
(referred to as mild inflammation in this study) by halving the
reported effects of cytokines as shown in Table 1, Table 2, Table 3.

2.3 One-Dimensional (1-D) Simulations
Using Transmural Tissue Strand Models
2.3.1 Numerical Details
A 15-mm-long 1-D transmural tissue strand model of humans
was constructed using the monodomain equation:

an Iion

—"-V.DVV,, -
ot Cum

1

where V,, is the membrane voltage, I;y, is the sum of the
currents that flow through the membrane, and C,, is the
membrane capacitance. The 1-D model was discretized by a
spatial resolution of 0.15 mm to form 100 interconnected nodes.

The proportions for the transmural cell types were set to 25:35:
40 for endocardial (ENDO), middle (MID), and epicardial (EPI)
cells to produce a positive going T-wave, in accordance with our
previous work (Jiang et al., 2022). The diffusion coefficient D
was set to 0.154 mm*/ms, and the corresponding conduction
velocity (CV) was 0.74 m/s through the strand. In addition,
there is evidence suggesting that cell-to-cell coupling in tissue is
reduced under inflammation (Baum et al., 2012). Therefore, the
conduction coefficient in the inflammatory area was set to
0.1 mm*/ms (CV: 0.6 m/s) to simulate cell coupling under
inflammation.

2.3.2 Measurements of the Vulnerable Window

A vulnerable window (VW) is a certain time period in which a
unidirectional conduction block occurs. A standard S1-S2
protocol was used to measure the VWSs across the whole
tissue strand. Specifically, a series of supra-threshold stimuli
(S1) were applied to the first three cells at the ENDO end with a
frequency of 1 Hz. After an interval (At), a premature stimulus
was applied to a 0.45 mm segment centered on the location
currently being measured. Due to the different refractory
durations, different At would correspond to different results:
bidirectional conduction block, unidirectional conduction
block, and bidirectional conduction. The width of the VWs
across the strand was averaged by the cell number, which acted
as a metric for the temporal vulnerability to arrhythmias.
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2.4 Two-Dimensional (2-D) Simulations

Using Realistic Ventricular Slice Models
2.4.1 Model Geometries and Numerical Details

Two geometries of 2-D realistic ventricular tissue for rats and
humans were employed in this study. Preprocessing of
geometries, including transmural layer segmentation, was
conducted according to our previous work (Bi et al., 2021).
The proportions of transmural layers in humans were
consistent with the aforementioned transmural settings in the
1-D strand model and were 2:1 for ENDO:EPI in rats.

Similar to the 1-D model, the monodomain equation (Eq. 1) was
adopted to describe the propagation of excitation waves in the
ventricular slice. Isotropic propagation was assumed, and the
diffusion coefficient D was set to 0.08 mm?*/ms and 0.154 mm?*/
ms in rats and humans, respectively, to produce CVs of 0.42 m/s for
rats (Sedmera et al., 2016) and 0.74 m/s for humans (Taggart et al,,
2000). It should be noted that there is evidence suggesting that cell-
to-cell coupling is reduced by 30-55% in inflammatory tissue (Baum
et al., 2012); therefore, the conductivity coefficient was reduced by
35% in the model for inflammation to reflect this reduction. The
spatial step was set to 0.1 mm in rats and 0.15 mm in humans to be
consistent with the reported cell length (i.e., 80-150 um (Hinrichs
et al, 2011)). To mimic the physiological characteristics of the
Purkinje fibers, a series of supra-threshold stimuli were applied to
several pacing sites on the endocardium of the slice.

2.4.2 Model Settings for the Inflammatory Conditions
Two inflammatory conditions, namely, local inflammation and
global inflammation, were discussed in this study. Specifically,
cells that incorporated the effects of the inflammatory cytokines
were regarded as ‘inflammatory cells’. In the local inflammatory
condition, a group of normal cells within a local area on the free
wall of the left ventricle were replaced by inflammatory cells
(Supplementary Figure S1), whereas all cells were set as
inflammatory cells under the global inflammatory condition.

2.4.3 Initiation of Reentry Arrhythmias in 2-D
Ventricular Slices

A typical S1-S2 protocol (Sutanto et al., 2020; Cluitmans et al.,
2021) was used to induce reentry arrhythmias in 2-D slice models.
Specifically, under physiological conditions, the premature S2
stimulus was applied to a local region of the epicardium within
the VW caused by transmural repolarization heterogeneity. In
contrast, due to the presence of pathological heterogeneity in the
local inflammatory condition, S2 was applied to the boundary
between the normal and inflammatory areas. The above process
of applying S2 stimulation may be repeated several times until S2
falls within the VW, thus producing a unidirectional
conduction block.

2.4.4 Measurements of the Critical Pacing Cycle
Length

The critical pacing cycle length (PCL) was defined as the
minimum pacing cycle length for maintaining a normal 1:1
conduction in 2-D ventricular slices. In this study, we tested
the critical PCL under control and global inflammatory
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conditions. For both cases, we gradually decreased the PCL
until reaching a critical value under which the tissue failed to
maintain a normal 1:1 conduction.

2.4.5 Generation of the Pseudo-ECG
The pseudo-ECG was calculated from the 2-D ventricular slice by
the following equation:

. do; 1
o(xy") = 5 [ =9V - [v3]ao @)
where V,,, is the membrane potential, ¢ is a unipolar potential
generated by the tissue, r is the distance between a source point
and the virtual electrode, o; and o, are the extracellular and
intracellular conductivities, respectively, and I is the domain of
integration. The models were paced to their steady states at 1 Hz
before being used to calculate ECGs.

3 RESULTS

3.1 Effects of Inflammatory Cytokines at the
Cellular Level

The individual effect of each inflammatory cytokine and their
combined effects (called “inflammation” in this study) on APs
(1 Hz) are shown in Figure 1. First, for the rat cell model, it can
be observed that except for IL-6 causing a negligible influence
on EPI AP, all of these cytokines caused obvious AP
prolongations in the ENDO/EPI cells. In terms of APDy,,
both EPI and ENDO cells exhibited a significant increase
compared with their control levels, which hinted at the
presence of severe pathological repolarization heterogeneity
between normal and inflammatory tissue. Next, in the human
cell model, the simulation results (Figure 1B) showed that the
APs in the IL-6 and TNF-a groups were prolonged in all three
types of cells, but there was little change in AP in the IL-1p
group. Moreover, as Figure 1Biv shows, the AAPD between
MID and ENDO/EPI exhibited an obvious augmentation
(from 97 to 150 ms) under inflammatory conditions, leading
to a larger transmural repolarization heterogeneity compared
with the control level.

In addition to the influences on AP, we also investigated the
alteration of calcium handling using the TP06 model, as shown
in Figure 2. In this regard, the reported reduced systolic
[Ca®*]; (Sugishita et al., 1999) and elevated diastolic [Ca®*];
(London et al., 2003) under inflammatory conditions were
successfully reproduced (Figure 2B). This observation might
be attributed to the reduced SERCA activity and the increased
SR Ca’" leakage, which also caused a decreased SR Ca**
content (Figure 2C). Moreover, the greatly decreased peak
Ca®" concentration in the cytoplasm exactly reflected the
negative inotropic effect (Weisensee et al., 1993; Sugishita
et al., 1999; Duncan et al., 2010) under inflammatory
conditions.

The above simulation results were based on experimental data
using high doses of cytokines. In this study, we also tested a type
of mild inflammation by downregulating the reported effects in
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the TP06 model. The simulation results are shown in Figure 3. 3.2 Evaluation of the Temporal Vulnerability

We can see that APD varied with the degree of inflammation,and g9 Unidirectional Conduction Blocks Under
in the case of mild inflammation, the AAPD between MID and .
Inflammatory Conditions

ENDOVJEPI cells showed a slight increase (from 97 to 119 ms)
compared with the control group. Unidirectional conduction blocks are an important pathological

The other ionic current traces in the rat and human cell ~ phenomenon in 1-D tissue, as the unidirectionally propagated
models under different cytokines can be found in  excitation wave can evolve into reentrant spiral/scroll waves in 2-
Supplementary Figures S2,S3. D slices and 3-D organs. The time window within which

Frontiers in Physiology | www.frontiersin.org 87 May 2022 | Volume 13 | Article 843292


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bi et al.

Inflammation-Induced Ventricular Arrhythmias

A .
Al g,
S
z 0
(9]
j=)]

8
S 50
-100

Alii 59
<
z 0
(0]
jo2]

8
S 50
-100

Voltage (mV

APDg, (ms)

) >

390

N
=3
t=3

W
S

Inflammation
Mild Inflammation
—— Control

FIGURE 3| Simulation results under different levels of inflammation. (A) APs of ENDO (Ai), MID (Aii), and EPI (Aiii) cells at different levels of inflammation. (B) APDgg
of three types of cells under normal and inflammatory conditions.

== ENDO

m—— EP|

100 ms

W

420 9

360 1

VW Distribution (ms)

[

(23

o
M

300 T

;"

BN Inflammation

Mild

. Control

6 9

Position (mm)

12

15

Average Width of VWs (ms)

12 9

10.0

-80
(mV)

FIGURE 4 | Measurement of the VW in the 1-D strand model under normal, mild inflammatory, and extreme inflammatory conditions. (A) The three subplots from
left to right show the bidirectional conduction, the unidirectional conduction block, and the bidirectional conduction block. (B) Distributions of VWs across the strand.
Black and red belts represent the control and inflammatory conditions, respectively. (C) Comparison of the average width of the VWs in the three groups.

Inflammation

Frontiers in Physiology | www.frontiersin.org

88

May 2022 | Volume 13 | Article 843292


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bi et al.

Inflammation-Induced Ventricular Arrhythmias

>

Condition

2m§

m Control

Local
Inflammation

2m§ 10 ms

white arrows, while the inflammatory region is indicated by a black rectangle.

(010

63 ms

70 fns

FIGURE 5 | Induced reentry arrhythmias in rat ventricular slices under conditions of (A) control and (B) local inflammation. The S1 and S2 stimuli are marked by

100 ms 150 ms

100 ms 300 ms

A
_ £ 6
[ Oms  350m 400 ms
£ 5 40
8 5 6 b 6 I
450 ms 500 ms 700 ms 800 ms
B
= I
2 6 6 g§ 6
E E 50 ms 360 ms -100
S E
- s
=
=

0000

560 ms 800 ms 1270 ms 1660 ms

FIGURE 6 | Induced reentry arrhythmias in rat ventricular slices under
conditions of (A) control and (B) local inflammation. The S1 and S2 stimuli are
marked by white arrows, while the inflammatory region is indicated by a black
rectangle.

unidirectional conduction blocks occur, termed the vulnerable
window, is a commonly used metric for measuring the temporal
susceptibility of tissue to arrhythmias. In this section, we quantified
the influence of inflaimmation on temporal vulnerability by
measuring the VW across the 1-D transmural strand. Different
degrees of inflammation, i.e., an extreme level of inflammation (e.g.,
sepsis) and a mild level of inflammation, were evaluated individually.
The simulation results are shown in Figure 4. Specifically, Figure 4A
shows different responses to the premature S2 stimulus, including
bidirectional conduction (S2 too early), unidirectional conduction
block (VW), and bidirectional conduction block (S2 too late). The
distribution of the time window when unidirectional conduction

blocks occurred (i.e., the distribution of VW) is plotted in Figure 4B.
Both mild inflammation and inflammation delayed the occurrence
of VW, and the average width of the VWs increased gradually from
7.4 to 8.8 and 10.0 ms depending on the degree of inflammation. As
a wider VW signifies a higher chance of a unidirectional conduction
block, the above simulation results implied an increased temporal
susceptibility to reentry arrhythmias under inflammatory
conditions.

3.3 Evaluation of the Proarrhythmic Effects
of Pathological Heterogeneity Under Local
Inflammatory Conditions

Inflammation may initially occur in a specific area in the heart.
This type of inflammation, termed local inflammation in this
study, may result in the presence of pathological heterogeneity
in ventricular tissue due to the prolonged APD of the affected
cells, which predisposes to ventricular arrhythmias. In this
section, we mimicked this condition by setting a local region of
inflammation on the free wall of the left ventricle, and a typical
S1-S2 protocol was used to evaluate the inducibility of reentry
arrhythmias in this condition (see Methods for more details).
The simulation results are shown in Figure 5 (rat) and
Figure 6 (human).

First, for the control condition (Supplementary Video S1),
it can be observed that, due to the limited size of rat hearts, the
evoked unidirectional conduction was not able to turn back to
form a functional reentry, and the subsequent two waves
propagating along the ventricular wall collided and failed
to form anatomical reentry (snapshots in Figure 5A). The
whole process lasted only approximately 90 ms. For the
human ventricular slice (Supplementary Video S2),
although the evoked unidirectional conduction could turn
back to form a functional reentry, such a process was
unsustainable, and the spiral waves terminated shortly after
the first cycle with a brief lifetime of approximately 350 ms
(snapshots in Figure 6A).

Simulation results of local inflammatory conditions are shown
in Figure 5B (rat) and Figure 6B (human). Due to the
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asynchronous repolarization caused by the prolonged APD of
inflammatory cells, extra S2 stimulation applied to the border
area would encounter the refractory tail on the inflammatory side.
Therefore, S2 would generate a unidirectional conduction block,
which in turn would evolve gradually into an anatomical spiral
wave circling around the ventricular ring structure
(Supplementary Video $3,54). In brief, the pathological
heterogeneity caused by inflammatory cytokines provided
extra substrates for unidirectional conduction block and
reentry arrhythmias.

3.4 Evaluation of the Adaptability of Tissue
to High Stimulating Frequencies Under

Global Inflammatory Conditions

Another type of inflammatory condition, as opposed to local
inflammation, is global inflammation. It reflects a globally
affected condition in which the whole ventricle is influenced
by inflammatory cytokines. Compared to its counterpart,
global inflammation does not create additional pathological
heterogeneity; however, the prolonged wavelength may impair
the tissue’s adaptability to fast heart rates. In this study, we
mimicked the global inflammatory condition by setting all cells
as inflammatory cells and tested the influences of global

inflammation on the critical PCL using rat and human
ventricular models (see Methods for more details). In the
rat model, the measured critical PCL was 101 ms (9.9 Hz) in
control conditions, while in global inflammation, it increased
to 390 ms (2.56 Hz), and stimuli with cycle lengths below
390 ms led to complete repolarization failure (see Figure 7A
or Supplementary Video S5). The critical PCL of 390 ms
corresponds to a heart rate of 154bpm, which is
significantly than the physiological range of
approximately 300-500 bpm in rats. Such simulation results
showed a decreased adaptability of tissue to fast heart rates
under global inflammation conditions and suggested a strong
proarrhythmic effect. However, considering that the heart rate
of rats is much faster than that of humans, this result might be
species dependent. In addition, the atypical phenomenon of
complete repolarization failure might also depend on the
specific model (Supplementary Figure S6). To further
clarify these questions, we performed parallel simulations
using human tissue models. The simulation results showed
that complete repolarization failure did not occur even at very
high frequencies; however, there was still a critical PCL below
which the 1:1 conduction could not be maintained and was
replaced by 2:1 conduction (see Figure 7B or Supplementary
Video $6). In this setting, the critical PCL was increased from

lower
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319 ms in the control condition to 380ms in the global
inflammatory condition. Notably, the BCL of 380 ms, which
corresponds to a heart rate of approximately 157 bpm, was
physiologically relevant and therefore might lead to
arrhythmogenesis.

3.5 Pseudo-ECGs in 2-D Simulation

The generated pseudo-ECG of the human ventricular 2-D slice
model under physiological and inflammatory conditions is shown
in Figure 8. As some available studies concerning systemic
inflammation have reported (Adlan et al, 2015; Lazzerini
et al., 2020a; Armbruster et al., 2022), prolonged QT intervals
were also reproduced in our simulation results.

4 DISCUSSION
4.1 Main Findings

In recent years, accumulating evidence has shown an association
between systemic inflammation and cardiovascular disease.
Inflammatory cytokines, a type of signaling molecule secreted
from immune cells, were proven to be able to affect membrane
ion channels and might therefore lead to ventricular arrhythmias.
In this study, we selected three of these major cytokines and
evaluated their proarrhythmic effects using a multiscale virtual
heart. The main findings are as follows: 1) at the cellular level,
inflammatory cytokines caused a prolongation of APD by
affecting multiple ion channels, and heterogeneously
prolonged APDs led to augmented transmural heterogeneities;
2) simulation results of the VW using the 1-D strand suggested
that inflammation increased the temporal vulnerability to
arrhythmias; 3) in the case of local inflammation, the
repolarization of the inflammatory area was delayed due to the
cytokine-induced APD prolongation, leading to the presence of
pathological heterogeneities around the local inflammatory area.
Such regional differences in repolarization provided extra
substrates for the unidirectional conduction block and
increased the chance of the development of anatomical reentry
arrhythmias; 4) In the global inflammatory condition, the

generated pseudo-ECG exhibited a prolonged QT interval that
was in accordance with the clinical observations. Furthermore,
the globally prolonged APD impaired the tissue adaptability to
high frequencies and caused 2:1 conduction at physiologically
relevant heart rates.

APD prolongation has been observed in many pathological
conditions and has been shown to be proarrhythmic
(Antoniou et al.,, 2017; Dietrichs et al.,, 2019; Shimaoka
et al., 2020). For example, APD prolongation and changes
in electrophysiological characteristics caused by the
downregulation of outward potassium currents, alterations
of calcium channel kinetics and increases in late sodium
currents create a substrate for ventricular arrhythmias in
the case of heart failure (Zhang et al., 2018). A study on
hypokalemia showed that APD prolongation could
predispose patients to early afterdepolarizations, which in
turn act as triggers for ventricular arrhythmias (Tse et al,
2021). APD prolongation is also the main factor responsible
for the proarrhythmic influences of drugs with cardiotoxicity.
A prolonged APD and, consequently, a prolonged QT interval,
are considered important biomarkers of drug cardiotoxicity in
drug discovery (Schrickel et al., 2006; Hondeghem et al., 2011).
For example, the antihistamine drug terfenadine, which was
previously used for the treatment of allergic conditions, was
proven to be able to prolong APD due to its effects of blocking
hERG currents (Ik,), causing QT prolongation and torsade de
pointes (TdP). Despite the tight association between APD/QT
prolongation and ventricular arrhythmia, prolonged QT does
not always lead to arrhythmogenesis events. Some new
evaluation criteria, such as TRIaD (Triangulation, Reverse
use dependence, Instability and Dispersion), have been
suggested to identify false-positive cases. On the other
hand, it should also be noted here that APD prolongation
can also exert antiarrhythmic effects by extending the effective
refractory period, which is also the major pharmaceutical
mechanism of class III antiarrhythmic drugs. In particular,
homogeneous APD prolongation in the absence of early
afterdepolarizations (EADs) commonly exerts
antiarrhythmic effects, whereas EADs or repolarization
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heterogeneities induced by inhibition of repolarization are
proarrhythmic. For the case in this study, the simulation
results demonstrated a double-sided nature, especially in a
condition of global inflammation: the prolonged refractory
period in ventricles tends to be antiarrhythmic, but it also
reduces the adaptability of the tissue to high heart rates. For
the local inflammatory condition, although we did not observe
EADs, the presence of both pathological heterogeneities and
augmented transmural heterogeneity increased the
vulnerability to arrhythmogenesis in terms of both spatial
and temporal aspects.

Accumulating studies have demonstrated that augmented
electrophysiological heterogeneity provides proarrhythmic
substrates (Laurita and Rosenbaum, 2000; Pak et al., 2004;
Antzelevitch, 2007; Boukens al., 2009). Intrinsic
heterogeneity within normal hearts contributes to the
development of arrhythmias under certain conditions
(Bishop et al., 2013). Premature beats in the heterogeneous
area that occurred during a certain time duration (i.e., VW)
would lead to unidirectional conduction block and reentry
arrhythmias. In most cases, the VW is rather small; however, it
can be significantly enlarged in some pathological conditions
due to augmented regional heterogeneity, such as ischemia (De
Bakker et al., 1988; Yuuki et al., 2004) and heart failure (Roden,
2003; Coronel et al., 2013). For the local inflammatory
condition, simulation results suggested that the
repolarization of the tissue developing inflammation was
significantly delayed, which in turn contributed to an
apparent electrical heterogeneity around the local area. Such
regional dispersion of repolarization, as an arrhythmogenic
substrate, will be further amplified in higher but
physiologically relevant pacing frequencies and eventually
lead to arrhythmia. Regarding interspecies differences, the
simulation results suggested that inflammation weakened
the repolarization ability of both rat and human myocytes,
but there were obvious interspecies variances behind it, as
repolarization is notably different in rodents compared to large
mammals. In particular, the cytokine-induced APD
prolongation in rat myocytes was mainly attributed to the
decreased I,,; in contrast, the APD prolongation in human
ventricular cells resulted mainly from the reduced Ix,. It has
been demonstrated that I, is the major repolarization current
in rat myocytes (Zhao et al., 2012), but for humans, I,, is only
one of various repolarizing currents and is mainly involved in
repolarizing phase 1 of cardiac AP. In comparison, hERG (the
gene that codes for the alpha subunit of Iy,) is abundantly
expressed in human ventricles, and Ik, plays a critical role in
repolarizing during cardiac AP (Ledford et al., 2022; Cheng
and Kodama, 2004). This interspecies variation has also been
widely observed in other studies. For instance, when used to
treat carbon monoxide (CO)-induced arrhythmias, ranolazine
was shown to be effective in inhibiting CO-induced EAD in rat
cells (Dallas et al., 2012), but it exacerbated EADs and even
caused oscillation in guinea pigs (which have wide APs similar
to those in humans). In a recent study (Morotti et al., 2021),
Morotti et al. examined the influences of interspecies
differences on animal experimentation and drug efficacy
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assessment, and they created cross-species translators of
electrophysiological responses to translate the drug-induced
effects experimentally observed in myocytes from animal
models to predict the effects that these perturbations would
cause in humans. In summary, although our simulations
demonstrated that inflammation caused similar reentry
arrhythmias in rats and humans, the underlying
mechanisms were different among various species and this
needs to be taken into account, especially when translating
experimental findings regarding drug efficacy and safety from
animal models to clinical use.

4.2 Limitations

It should be noted that the combined effect of three cytokines was
assumed to be an additive effect of each cytokine in the present
work. Kumar et al. (Kumar et al., 1996) reported a synergistic
inhibitory effect of TNF-a and IL-1f on ventricular contractility,
where the concentration of each cytokine under conditions of a
combination was much lower than those acting alone. Such
synergistic effects and the potential antagonistic effects among
cytokines were not considered in this study.

Although the present study followed the experimental setup in
the original reports exactly, the concentrations of inflammatory
cytokines used in previous experiments were generally higher
than those observed under pathophysiological conditions.
Specifically, Liu et al. reported a median IL-6 serum level of
4809 pg/ml in a nonsurvivor group of patients with sepsis (Liu
etal,, 2021). Liu et al. reported that the pathophysiological level of
TNF-alpha was approximately 0.15 ng/ml in the serum of heart
failure patients (Liu and Zhao, 1999). Monnerat et al. reported a
serum IL-1P level of 60 pg/ml in diabetic mice (Monnerat et al.,
2016). Therefore, our simulation results reflected an extreme
condition of inflammation (i.e., sepsis). To account for this, we
have considered another ‘mild’ inflammatory condition by
halving the concentrations of the inflammatory cytokines;
however, caution should still be taken when translating these
findings to clinical use.

The effects of inflammatory cytokines on ion channels were
assumed to be consistent by setting specific constant change
ratios to the conductance of the involved ion channels. However,
inflammation is a dynamic process with complicated
mechanisms. For example, there have been studies showing
that inflammatory cytokines could increase sympathetic
activity to inhibit cytokine production; however, it also
deserves to be noted that hyperactive sympathetic nerves could
directly influence the function of ion channels by
phosphorylation in myocardial cells and may induce
arrhythmias (Lazzerini et al., 2017). The above dynamic
process, as a kind of negative feedback mechanism, could
change the concentrations of inflammatory cytokines in
serum, which was not incorporated in our simulations. In
addition, cytokines could also affect the
electrophysiological function via complicated indirect pathways
in addition to the introduced direct modulations of ion channels
and calcium handling. These indirect pathways include, but are
not limited to, the following two aspects: 1) inflammatory
cytokines could cause chronic remodeling and myocardial
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fibrosis, thus increasing the susceptibility of cardiac tissue to
arrhythmias in chronic heart failure patients (Dick and Epelman,
2016); 2) current evidence suggests that TNF-a may promote the
formation of atherosclerotic plaques by upregulating the
expression of multiple protein molecules (e.g., adhesion
molecule-1) in the vascular wall (Ohta et al., 2005), which
would exacerbate the ischemic condition of hearts and lead to
ischemic-related arrhythmias. As mentioned above,
inflammation has complex mechanisms and effects that
require further simulation studies. Above all, these indirect
pathways play critical roles in inflammation-mediated
arrhythmias but they were not investigated in this study.

Limited to the sources of the experimental data, the
proarrhythmic mechanisms investigated in this study focused
mainly on ventricular arrhythmia. In fact, accumulating evidence
has shown that there is a strong link between inflammation and
postoperative atrial fibrillation. Maesen et al. reported an
overlapping time course of atrial fibrillation occurrence after
cardiac surgery and the activation of the complement system
with the release of proinflammatory cytokines, suggesting
potential roles of inflammation in triggering postoperative
atrial fibrillation (POAF) (Maesen et al., 2012). Heijman et al.
observed that postoperative inflammation along with preexisting
Ca*"-handling abnormalities contributed to the formation of
DADs and thus led to POAF (Heijman et al, 2020). The
above postoperative atrial fibrillation, as a widely accepted
form of inflammation-induced arrhythmia, warrants further
research.

we

5 CONCLUSION

In this study, we conducted an in silico investigation using a
multiscale virtual heart to explore the proarrhythmic
mechanisms of inflammation. Inflammatory cytokines directly
affect the function of ion channels and thus cause prolongation of
AP and augmentation of transmural dispersion. The
augmentation of the transmural dispersion would increase the
vulnerability to arrhythmia (e.g., the greater VWs). In addition,
the prolongation of AP contributes to significant pathological
heterogeneity and provides extra substrates for inducing

REFERENCES

Adlan, A. M., Panoulas, V. F., Smith, J. P., Fisher, J. P., and Kitas, G. D. (2015).
Association between Corrected QT Interval and Inflammatory Cytokines
in Rheumatoid Arthritis. J. Rheumatol. 42, 421-428. d0i:10.3899/jrheum.
140861

Agricola, E., Beneduce, A., Esposito, A., Ingallina, G., Palumbo, D.,
Palmisano, A., et al. (2020). Heart and Lung Multimodality Imaging in
COVID-19. JACC Cardiovasc. Imaging 13, 1792-1808. d0i:10.1016/j.jcmg.
2020.05.017

Antoniou, C.-K,, Dilaveris, P., Manolakou, P., Galanakos, S., Galanakos, N.,
Gatzoulis, K., et al. (2017). QT Prolongation and Malignant Arrhythmia:
How Serious a Problem? Eur. Cardiol. Rev. 1216, 112-120. doi:10.15420/
ecr10.15420/ecr.2017:16:1

Antzelevitch, C. (2007). Heterogeneity and Cardiac Arrhythmias: An Overview.
Heart rhythm. 4, 964-972. doi:10.1016/j.hrthm.2007.03.036

Inflammation-Induced Ventricular Arrhythmias

arrhythmia under conditions of local inflammation. In the
case of global inflammation, the QT interval and the
minimum PCL for normal 1:1 conduction are both enhanced,
indicating a greater proarrhythmic effect. In summary, the
present study provides new insights into the underlying
mechanisms of the systemic inflammatory response to
arrhythmia.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization, SZ; Methodology, XB and HJ; Software, XB, SZ,
WM, and WL; Validation, XB, SZ, YL, and FY; Formal analysis, XB,
SZ, and WM; Investigation, XB and SZ; Resources, WL, and ZW;
Data curation, XB, HJ, and WM; Writing-original draft, XB;
Writing-Review and editing, SZ and ZW; Visualization, YL, FY,
and WL; Supervision, SZ and ZW; Project administration, ZW;
Funding acquisition, SZ and ZW. All authors have read and agreed
to the published version of the manuscript.

FUNDING

This work was supported by the Natural Science Foundation of
Shandong Province (NO. ZR2021MFO011) and the Shandong
Provincial Postdoctoral Program for Talents
(grantee SZ).

Innovative

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www frontiersin.org/articles/10.3389/fphys.2022.843292/
full#supplementary-material

Arevalo, H. J., Vadakkumpadan, F., Guallar, E., Jebb, A., Malamas, P., Wu, K. C,,
et al. (2016). Arrhythmia Risk Stratification of Patients after Myocardial
Infarction Using Personalized Heart Models. Nat. Commun. 7,
11437-11438. doi:10.1038/ncomms11437

Armbruster, A. L., Campbell, K. B., Kahanda, M. G., and Cuculich, P. S. (2022). The
Role of Inflammation in the Pathogenesis and Treatment of Arrhythmias.
Pharmacotherapy 42, 250-262. doi:10.1002/phar.2663

Aromolaran, A. S., Srivastava, U., Ali, A., Chahine, M., Lazaro, D., El-Sherif, N.,
et al. (2018). Interleukin-6 Inhibition of hERG Underlies Risk for Acquired
Long QT in Cardiac and Systemic Inflammation. PLoS One 13, €0208321.
doi:10.1371/journal.pone.0208321

Ashamalla, S. M., Navarro, D., and Ward, C. A. (2001). Gradient of Sodium
Current across the Left Ventricular Wall of Adult Rat Hearts. J. Physiology 536,
439-443. doi:10.1111/j.1469-7793.2001.0439¢.xd

Baum, J. R,, Dolmatova, E., Tan, A., and Duffy, H. S. (2012). Omega 3 Fatty Acid
Inhibition of Inflammatory Cytokine-Mediated Connexin43 Regulation in the
Heart. Front. Physio. 3 (JUL), 272. doi:10.3389/fphys.2012.00272

Frontiers in Physiology | www.frontiersin.org

93

May 2022 | Volume 13 | Article 843292


https://www.frontiersin.org/articles/10.3389/fphys.2022.843292/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2022.843292/full#supplementary-material
https://doi.org/10.3899/jrheum.140861
https://doi.org/10.3899/jrheum.140861
https://doi.org/10.1016/j.jcmg.2020.05.017
https://doi.org/10.1016/j.jcmg.2020.05.017
https://doi.org/10.15420/ecr10.15420/ecr.2017:16:1
https://doi.org/10.15420/ecr10.15420/ecr.2017:16:1
https://doi.org/10.1016/j.hrthm.2007.03.036
https://doi.org/10.1038/ncomms11437
https://doi.org/10.1002/phar.2663
https://doi.org/10.1371/journal.pone.0208321
https://doi.org/10.1111/j.1469-7793.2001.0439c.xd
https://doi.org/10.3389/fphys.2012.00272
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bi et al.

Bi, X,, Zhang, S., Jiang, H., and Wei, Z. (2021). A Multi-Scale Computational Model
for the Rat Ventricle: Construction, Parallelization, and Applications. Comput.
Methods Programs Biomed. 208, 106289. doi:10.1016/j.cmpb.2021.106289

Bishop, M. J., Vigmond, E. J.,, and Plank, G. (2013). The Functional Role of
Electrophysiological Heterogeneity in the Rabbit Ventricle during Rapid Pacing
and Arrhythmias. Am. J. Physiology-Heart Circulatory Physiology 304,
H1240-H1252. doi:10.1152/ajpheart.00894.2012

Boukens, B. J. D., Christoffels, V. M., Coronel, R., and Moorman, A. F. M. (2009).
Developmental Basis for Electrophysiological Heterogeneity in the Ventricular and
Outflow Tract Myocardium as a Substrate for Life-Threatening Ventricular
Arrhythmias. Circulation Res. 104, 19-31. doi:10.1161/CIRCRESAHA.108.188698

Casis, O., Iriarte, M., Gallego, M., and Sanchez-Chapula, J. A. (1998). Differences in
Regional Distribution of K+ Current Densities in Rat Ventricle. Life Sci. 63,
391-400. doi:10.1016/s0024-3205(98)00287-2

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., et al. (2018). Inflammatory
Responses and Inflammation-Associated Diseases in Organs. Oncotarget 9,
7204-7218. doi:10.18632/oncotarget.23208

Cheng, J. H.,, and Kodama, I. (2004). Two Components of Delayed Rectifier K+
Current in Heart: Molecular Basis, Functional Diversity, and Contribution to
Repolarization. Acta Pharmacol. Sin. 25, 137

Clark, R. B, Bouchard, R. A,, Salinas-Stefanon, E., Sanchez-Chapula, J., and Giles, W. R.
(1993). Heterogeneity of Action Potential Waveforms and Potassium Currents in Rat
Ventricle. Cardiovasc. Res. 27, 1795-1799. doi:10.1093/cvr/27.10.1795

Cluitmans, M. J. M, Bear, L. R,, Nguyén, U. C,, van Rees, B, Stoks, J., ter Bekke, R.
M. A, et al. (2021). Noninvasive Detection of Spatiotemporal Activation-
Repolarization Interactions that Prime Idiopathic Ventricular Fibrillation. Sci.
Transl. Med. 13, 9317. doi:10.1126/scitranslmed.abi9317

Coronel, R,, Wilders, R., Verkerk, A. O., Wiegerinck, R. F., Benoist, D., and Bernus,
O. (2013). Electrophysiological Changes in Heart Failure and Their
Implications for Arrhythmogenesis. Biochimica Biophysica Acta (BBA) -
Mol. Basis Dis. 1832, 2432-2441. doi:10.1016/j.bbadis.2013.04.002

Dallas, M. L., Yang, Z., Boyle, J. P., Boycott, H. E., Scragg, J. L., Milligan, C. J., et al.
(2012). Carbon Monoxide Induces Cardiac Arrhythmia via Induction of the
Late Na*Current. Am. J. Respir. Crit. Care Med. 186, 648-656. doi:10.1164/
rcem.201204-06880C

De Bakker, J. M., Van Capelle, E. ], Janse, M. J., Wilde, A. A., Coronel, R., Becker,
A. E, et al. (1988). Reentry as a Cause of Ventricular Tachycardia in Patients
with Chronic Ischemic Heart Disease: Electrophysiologic and Anatomic
Correlation. Circulation 77, 589-606. doi:10.1161/01.CIR.77.3.589

Dick, S. A., and Epelman, S. (2016). Chronic Heart Failure and Inflammation:
What Do We Really Know? Circ. Res. 119, 159-176. doi:10.1161/
CIRCRESAHA.116.308030

Dietrichs, E. S., Tveita, T., and Smith, G. (2019). Hypothermia and Cardiac
Electrophysiology: A Systematic Review of Clinical and Experimental Data.
Cardiovasc. Res. 115, 501-509. doi:10.1093/cvr/cvy305

Duncan, D. ], Yang, Z., Hopkins, P. M., Steele, D. S., and Harrison, S. M. (2010).
TNF-a and IL-1f Increase Ca2* Leak from the Sarcoplasmic Reticulum and
Susceptibility to Arrhythmia in Rat Ventricular Myocytes. Cell Calcium 47,
378-386. doi:10.1016/j.ceca.2010.02.002

Fernéndez-Velasco, M., Ruiz-Hurtado, G., Hurtado, O., Moro, M. A,, and Delgado, C.
(2007). TNF-a Downregulates Transient Outward Potassium Current in Rat
Ventricular Myocytes through iNOS Overexpression and Oxidant Species
Generation. Am. J. Physiology-Heart Circulatory Physiology 293, H238-H245.
doi:10.1152/ajpheart.01122.2006

Grandy, S. A., and Fiset, C. (2009). Ventricular K+ Currents Are Reduced in Mice
with Elevated Levels of Serum TNFa. J. Mol. Cell. Cardiol. 47, 238-246. doi:10.
1016/j.yjmcc.2009.02.025

Hagiwara, Y., Miyoshi, S., Fukuda, K., Nishiyama, N., Ikegami, Y., Tanimoto, K.,
et al. (2007). SHP2-mediated Signaling Cascade through Gp130 Is Essential for
LIF-dependent ICaL, [Ca2+]i Transient, and APD Increase in Cardiomyocytes.
J. Mol. Cell. Cardiol. 43, 710-716. doi:10.1016/j.yjmcc.2007.09.004

Heijman, J., Muna, A. P., Veleva, T., Molina, C. E., Sutanto, H., Tekook, M., et al.
(2020). Atrial Myocyte NLRP3/CaMKII Nexus Forms a Substrate for
Postoperative Atrial Fibrillation. Circ. Res. 127, 1036-1055. doi:10.1161/
CIRCRESAHA.120.316710

Hinrichs, S., Heger, J., Schreckenberg, R., Wenzel, S., Euler, G., Arens, C,, et al.
(2011). Controlling Cardiomyocyte Length: : the Role of Renin and PPAR-
{gamma}. Cardiovasc. Res. 89, 344-352. d0i:10.1093/cvr/cvq313

Inflammation-Induced Ventricular Arrhythmias

Hondeghem, L. M., Dujardin, K., Hoffmann, P., Dumotier, B., and De Clerck, F.
(2011). Drug-induced QTC Prolongation Dangerously Underestimates
Proarrhythmic Potential: Lessons from Terfenadine. J. Cardiovasc.
Pharmacol. 57, 589-597. doi:10.1097/FJC.0b013e3182135e91

Jaffe, A. S., Cleland, J. G. F., and Katus, H. A. (2020). Myocardial Injury in Severe
COVID-19 Infection. Eur. Heart J. 41, 2080-2082. doi:10.1093/eurheartj/
ehaa447

Jiang, H., Zhang, S., Bi, X., Ma, W., and Wei, Z. (2022). Proarrhythmic Effects of Carbon
Monoxide in Human Ventricular Tissue: Insights from Computational Modeling.
Comput. Biol. Med. 140, 105066. doi:10.1016/j.compbiomed.2021.105066

Kaprielian, R., Wickenden, A. D., Kassiri, Z., Parker, T. G, Liu, P. P., and Backx, P.
H. (1999). Relationship between K + Channel Down-Regulation and [Ca 27 ] I
in Rat Ventricular Myocytes Following Myocardial Infarction. J. Physiology 517,
229-245. doi:10.1111/j.1469-7793.1999.0229z.x

Kaptoge, S., Pennells, L., De Bacquer, D., Cooney, M. T., Kavousi, M., Stevens, G.,
et al. (2019). World Health Organization Cardiovascular Disease Risk Charts:
Revised Models to Estimate Risk in 21 Global Regions. Lancet Glob. Health 7,
e1332-e1345. doi:10.1016/s2214-109x(19)30318-3

Kawada, H., Niwano, S., Niwano, H., Yumoto, Y., Wakisaka, Y., Yuge, M., et al. (2006).
Tumor Necrosis Factor- ALPHA. Downregulates the Voltage Gated Outward K+
Current in Cultured Neonatal Rat Cardiomyocytes A Possible Cause of Electrical
Remodeling in Diseased Hearts. Circ. J. 70, 605-609. doi:10.1253/circ;.70.605

Kumar, A., Thota, V., Dee, L., Olson, J., Uretz, E., and Parrillo, J. E. (1996). Tumor
Necrosis Factor Alpha and Interleukin lbeta Are Responsible for In Vitro
Myocardial Cell Depression Induced by Human Septic Shock Serum. J. Exp.
Med. 183, 949-958. doi:10.1084/jem.183.3.949

Laurita, K. R., and Rosenbaum, D. S. (2000). Interdependence of Modulated
Dispersion and Tissue Structure in the Mechanism of Unidirectional Block.
Circulation Res. 87, 922-928. doi:10.1161/01.RES.87.10.922

Lazzerini, P. E., Capecchi, P. L., El-Sherif, N., Laghi-Pasini, F., and Boutjdir, M. (2018).
Emerging Arrhythmic Risk of Autoimmune and Inflammatory Cardiac
Channelopathies. J. Am. Heart Assoc. 7, €010595. doi:10.1161/JAHA.118.010595

Lazzerini, P. E., Acampa, M., Laghi-Pasini, F., Bertolozzi, I, Finizola, F., Vanni, F.,
et al. (2020a). Cardiac Arrest Risk during Acute Infections: Systemic
Inflammation Directly Prolongs QTc Interval via Cytokine-Mediated Effects
on Potassium Channel Expression. Circ Arrhythmia Electrophysiol. 13,
€008627. doi:10.1161/CIRCEP.120.008627

Lazzerini, P. E., Boutjdir, M., and Capecchi, P. L. (2020b). COVID-19, Arrhythmic
Risk, and Inflammation: Mind the Gap! Circulation 142, 7-9. doi:10.1161/
CIRCULATIONAHA.120.047293

Lazzerini, P. E., Capecchi, P. L., and Laghi-Pasini, F. (2017). Systemic Inflammation
and Arrhythmic Risk: Lessons from Rheumatoid Arthritis. Eur. Heart ]. 38,
ehw208-1727. doi:10.1093/eurheartj/ehw208

Lazzerini, P. E., Laghi-Pasini, F., Boutjdir, M., and Capecchi, P. L. (2019).
Cardioimmunology of Arrhythmias: the Role of Autoimmune and
Inflammatory Cardiac Channelopathies. Nat. Rev. Immunol. 19, 63-64.
doi:10.1038/s41577-018-0098-z

Ledford, H. A,, Ren, L., Thai, P. N, Park, S., Timofeyev, V., Sirish, P., et al. (2022).
Disruption of Protein Quality Control of the Human Ether-A-Go-Go Related
Gene K+ Channel Results in Profound Long QT Syndrome. Heart rhythm. 19,
281-292. doi:10.1016/j.hrthm.2021.10.005

Liu, J., Bai, C, Li, B, Shan, A,, Shi, F., Yao, C,, et al. (2021). Mortality Prediction
Using a Novel Combination of Biomarkers in the First Day of Sepsis in
Intensive Care Units. Sci. Rep. 11, 79843. doi:10.1038/s41598-020-79843-5

Liu, L., and Zhao, S.-P. (1999). The Changes of Circulating Tumor Necrosis Factor
Levels in Patients with Congestive Heart Failure Influenced by Therapy. Int.
J. Cardiol. 69, 77-82. doi:10.1016/S0167-5273(99)00008-X

London, B., Baker, L. C., Lee, J. S., Shusterman, V., Choi, B.-R., Kubota, T., et al.
(2003). Calcium-dependent Arrhythmias in Transgenic Mice with Heart
Failure. Am. J. Physiology-Heart Circulatory Physiology 284, H431-H441.
doi:10.1152/ajpheart.00431.2002

MacDonell, K. L., Severson, D. L., and Giles, W. R. (1998). Depression of
Excitability by Sphingosine 1-phosphate in Rat Ventricular Myocytes. Am.
J. Physiology-Heart Circulatory Physiology 275, H2291-H2299. doi:10.1152/
ajpheart.1998.275.6.h2291

Maesen, B., Nijs, J., Maessen, J., Allessie, M., and Schotten, U. (2012). Post-
operative Atrial Fibrillation: A Maze of Mechanisms. Europace 14, 159-174.
doi:10.1093/europace/eur208

Frontiers in Physiology | www.frontiersin.org

94

May 2022 | Volume 13 | Article 843292


https://doi.org/10.1016/j.cmpb.2021.106289
https://doi.org/10.1152/ajpheart.00894.2012
https://doi.org/10.1161/CIRCRESAHA.108.188698
https://doi.org/10.1016/s0024-3205(98)00287-2
https://doi.org/10.18632/oncotarget.23208
https://doi.org/10.1093/cvr/27.10.1795
https://doi.org/10.1126/scitranslmed.abi9317
https://doi.org/10.1016/j.bbadis.2013.04.002
https://doi.org/10.1164/rccm.201204-0688OC
https://doi.org/10.1164/rccm.201204-0688OC
https://doi.org/10.1161/01.CIR.77.3.589
https://doi.org/10.1161/CIRCRESAHA.116.308030
https://doi.org/10.1161/CIRCRESAHA.116.308030
https://doi.org/10.1093/cvr/cvy305
https://doi.org/10.1016/j.ceca.2010.02.002
https://doi.org/10.1152/ajpheart.01122.2006
https://doi.org/10.1016/j.yjmcc.2009.02.025
https://doi.org/10.1016/j.yjmcc.2009.02.025
https://doi.org/10.1016/j.yjmcc.2007.09.004
https://doi.org/10.1161/CIRCRESAHA.120.316710
https://doi.org/10.1161/CIRCRESAHA.120.316710
https://doi.org/10.1093/cvr/cvq313
https://doi.org/10.1097/FJC.0b013e3182135e91
https://doi.org/10.1093/eurheartj/ehaa447
https://doi.org/10.1093/eurheartj/ehaa447
https://doi.org/10.1016/j.compbiomed.2021.105066
https://doi.org/10.1111/j.1469-7793.1999.0229z.x
https://doi.org/10.1016/s2214-109x(19)30318-3
https://doi.org/10.1253/circj.70.605
https://doi.org/10.1084/jem.183.3.949
https://doi.org/10.1161/01.RES.87.10.922
https://doi.org/10.1161/JAHA.118.010595
https://doi.org/10.1161/CIRCEP.120.008627
https://doi.org/10.1161/CIRCULATIONAHA.120.047293
https://doi.org/10.1161/CIRCULATIONAHA.120.047293
https://doi.org/10.1093/eurheartj/ehw208
https://doi.org/10.1038/s41577-018-0098-z
https://doi.org/10.1016/j.hrthm.2021.10.005
https://doi.org/10.1038/s41598-020-79843-5
https://doi.org/10.1016/S0167-5273(99)00008-X
https://doi.org/10.1152/ajpheart.00431.2002
https://doi.org/10.1152/ajpheart.1998.275.6.h2291
https://doi.org/10.1152/ajpheart.1998.275.6.h2291
https://doi.org/10.1093/europace/eur208
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bi et al.

Magadum, A., and Kishore, R. (2020). Cardiovascular Manifestations of COVID-
19 Infection. Cells 9, 2508. doi:10.3390/cells9112508

Monnerat, G., Alarcén, M. L., Vasconcellos, L. R., Hochman-Mendez, C., Brasil, G.,
Bassani, R. A, et al. (2016). Macrophage-dependent IL-1f Production Induces
Cardiac Arrhythmias in Diabetic Mice. Nat. Commun. 7, 13344. doi:10.1038/
ncomms13344

Morotti, S., Liu, C., Hegyi, B., Ni, H., Fogli Iseppe, A., Wang, L., et al. (2021).
Quantitative Cross-Species Translators of Cardiac Myocyte Electrophysiology:
Model Training, Experimental Validation, and Applications. Sci. Adv. 7,
abg0927. doi:10.1126/sciadv.abg0927

Ohta, H., Wada, H., Niwa, T., Kirii, H., Iwamoto, N., Fujii, H., et al. (2005).
Disruption of Tumor Necrosis Factor-a Gene Diminishes the Development of
Atherosclerosis in ApoE-Deficient Mice. Atherosclerosis 180, 11-17. doi:10.
1016/j.atherosclerosis.2004.11.016

O’Shea, C. J., Middeldorp, M. E., Thomas, G., Harper, C., Elliott, A. D., Ray, N,,
et al. (2021). Atrial Fibrillation Burden during the Coronavirus Disease 2019
Pandemic. Europace 23, 1493-1501. doi:10.1093/europace/euab099

Pak, H.N., Hong, S.]., Hwang, G.S., Lee, H. S,, Park, S. W., Ahn, J. C,, et al. (2004). Spatial
Dispersion of Action Potential Duration Restitution Kinetics Is Associated with
Induction of Ventricular Tachycardia/fibrillation in Humans. J. Cardiovasc.
Electrophysiol. 15, 1357-1363. doi:10.1046/j.1540-8167.2004.03569.x

Roden, D. M. (2003). A Surprising New Arrhythmia Mechanism in Heart Failure.
Circulation Res. 93, 589-591. doi:10.1161/01.RES.0000095382.50153.7D

Schrickel, J. W., Schwab, J. O., Yang, A., Bielik, H., Bitzen, A., Luderitz, B., et al.
(2006). Pro-arrhythmic Effects of Amiodarone and Concomitant Rate-Control
Medication. Europace 8, 403-407. doi:10.1093/europace/eul038

Sedmera, D., Neckar, J., Benes, J., Pospisilova, J., Petrak, J., Sedlacek, K., et al.
(2016). Changes in Myocardial Composition and Conduction Properties in Rat
Heart Failure Model Induced by Chronic Volume Overload. Front. Physiol. 7,
367. doi:10.3389/fphys.2016.00367

Shimaoka, T., Wang, Y., Morishima, M., Miyamoto, S., and Ono, K. (2020).
Magnesium Deficiency Causes Transcriptional Downregulation of Kir2.1 and
Kv4.2 Channels in Cardiomyocytes Resulting in QT Interval Prolongation. Circ.
J. 84, 1244-1253. doi:10.1253/circj.CJ-20-0310

Shimoni, Y., Severson, D., and Giles, W. (1995). Thyroid Status and Diabetes
Modulate Regional Differences in Potassium Currents in Rat Ventricle.
J. Physiol. 488, 673-688. doi:10.1113/jphysiol.1995.5p020999

Sugishita, K., Kinugawa, K.-i., Shimizu, T., Harada, K., Matsui, H., Takahashi, T,
et al. (1999). Cellular Basis for the Acute Inhibitory Effects of IL-6 and TNF- a
on Excitation-Contraction Coupling. J. Mol. Cell. Cardiol. 31, 1457-1467.
doi:10.1006/jmcc.1999.0989

Sutanto, H., Cluitmans, M. J. M., Dobrev, D., Volders, P. G. A., Bébarova, M., and
Heijman, J. (2020). Acute Effects of Alcohol on Cardiac Electrophysiology and
Arrhythmogenesis: Insights from Multiscale In Silico Analyses. J. Mol. Cell.
Cardiol. 146, 69-83. doi:10.1016/j.yjmcc.2020.07.007

Taggart, P., Sutton, P. M., Opthof, T., Coronel, R,, Trimlett, R., Pugsley, W, et al.
(2000). Inhomogeneous Transmural Conduction during Early Ischaemia in
Patients with Coronary Artery Disease. J. Mol. Cell. Cardiol. 32, 621-630.
doi:10.1006/jmcc.2000.1105

Tanaka, T., Kanda, T., Takahashi, T., Saegusa, S., Moriya, J., and Kurabayashi, M.
(2004). Interleukin-6-induced Reciprocal Expression of SERCA and Natriuretic
Peptides mRNA in Cultured Rat Ventricular Myocytes. . Int. Med. Res. 32,
57-61. doi:10.1177/147323000403200109

Tentusscher, K., Bernus, O., Hren, R., and Panfilov, A. (2006). Comparison of
Electrophysiological Models for Human Ventricular Cells and Tissues.
Prog. Biophysics Mol. Biol. 90, 326-345. doi:10.1016/j.pbiomolbio.2005.
05.015

Inflammation-Induced Ventricular Arrhythmias

Terkildsen, J. R., Niederer, S., Crampin, E. J., Hunter, P., and Smith, N. P. (2008).
Using Physiome Standards to Couple Cellular Functions for Rat Cardiac
Excitation-Contraction. Exp. Physiol. 93, 919-929. doi:10.1113/expphysiol.
2007.041871

Tse, G., Li, K. H. C,, Cheung, C. K. Y,, Letsas, K. P., Bhardwaj, A., Sawant, A. C,,
et al. (2021). Arrhythmogenic Mechanisms in Hypokalaemia: Insights from
Pre-clinical Models. Front. Cardiovasc. Med. 8, 620539. doi:10.3389/fcvm.2021.
620539

Villegas, S., Villarreal, F. J., and Dillmann, W. H. (2000). Leukemia Inhibitory
Factor and Interleukin-6 Downregulate Sarcoplasmic Reticulum Ca 2* ATPase
(SERCA2) in Cardiac Myocytes. Basic Res. Cardiol. 95, 47-54. d0i:10.1007/
5003950050007

Wang, J., Wang, H., Zhang, Y., Gao, H., Nattel, S., and Wang, Z. (2004).
Impairment of HERG K(+) Channel Function by Tumor Necrosis Factor-a.
J. Biol. Chem. 279, 13289-13292. doi:10.1074/jbc.c400025200

Weisensee, D., Bereiter-Hahn, J., Schoeppe, W., and Low-Friedrich, I. (1993).
Effects of Cytokines on the Contractility of Cultured Cardiac Myocytes. Int.
J. Immunopharmacol. 15, 581-587. doi:10.1016/0192-0561(93)90075-A

Xie, F., Qu, Z., Yang, J., Baher, A., Weiss, J. N., Garfinkel, A., et al. (2004). A
Simulation Study of the Effects of Cardiac Anatomy in Ventricular Fibrillation.
J. Clin. Invest. 113, 686-693. doi:10.1172/jci17341

Yuuki, K., Hosoya, Y., Kubota, I., and Yamaki, M. (2004). Dynamic and Not Static
Change in Ventricular Repolarization Is a Substrate of Ventricular Arrhythmia
on Chronic Ischemic Myocardium. Cardiovasc. Res. 63, 645-652. doi:10.1016/j.
cardiores.2004.04.017

Zhang, D., Tu, H., Wadman, M. C,, and Li, Y.-L. (2018). Substrates and Potential
Therapeutics of Ventricular Arrhythmias in Heart Failure. Eur. J. Pharmacol.
833, 349-356. doi:10.1016/j.ejphar.2018.06.024

Zhang, S., Lu, W,, Li, Z., Wang, S, Jiang, M., Yuan, Q,, et al. (2020). “Mechanisms
Underlying Sulfur Dioxide Pollution Induced Ventricular Arrhythmia: A
Simulation Study,” in IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), Seoul, South Korea, December 16-19, 2020. 381

Zhang, S., Zhang, S., Fan, X., Wang, W,, Li, Z, Jia, D., et al. (2019). Pro-arrhythmic
Effects of Hydrogen Sulfide in Healthy and Ischemic Cardiac Tissues: Insight from a
Simulation Study. Front. Physiol. 10, 1482. doi:10.3389/fphys.2019.01482

Zhao, Z., Xie, Y., Wen, H., Xiao, D., Allen, C., Fefelova, N, et al. (2012). Role of the
Transient Outward Potassium Current in the Genesis of Early
Afterdepolarizations in Cardiac Cells. Cardiovasc. Res. 95, 308-316. doi:10.
1093/cvr/cvs183

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commerecial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bi, Zhang, Jiang, Ma, Li, Lu, Yang and Wei. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physiology | www.frontiersin.org

May 2022 | Volume 13 | Article 843292


https://doi.org/10.3390/cells9112508
https://doi.org/10.1038/ncomms13344
https://doi.org/10.1038/ncomms13344
https://doi.org/10.1126/sciadv.abg0927
https://doi.org/10.1016/j.atherosclerosis.2004.11.016
https://doi.org/10.1016/j.atherosclerosis.2004.11.016
https://doi.org/10.1093/europace/euab099
https://doi.org/10.1046/j.1540-8167.2004.03569.x
https://doi.org/10.1161/01.RES.0000095382.50153.7D
https://doi.org/10.1093/europace/eul038
https://doi.org/10.3389/fphys.2016.00367
https://doi.org/10.1253/circj.CJ-20-0310
https://doi.org/10.1113/jphysiol.1995.sp020999
https://doi.org/10.1006/jmcc.1999.0989
https://doi.org/10.1016/j.yjmcc.2020.07.007
https://doi.org/10.1006/jmcc.2000.1105
https://doi.org/10.1177/147323000403200109
https://doi.org/10.1016/j.pbiomolbio.2005.05.015
https://doi.org/10.1016/j.pbiomolbio.2005.05.015
https://doi.org/10.1113/expphysiol.2007.041871
https://doi.org/10.1113/expphysiol.2007.041871
https://doi.org/10.3389/fcvm.2021.620539
https://doi.org/10.3389/fcvm.2021.620539
https://doi.org/10.1007/s003950050007
https://doi.org/10.1007/s003950050007
https://doi.org/10.1074/jbc.c400025200
https://doi.org/10.1016/0192-0561(93)90075-A
https://doi.org/10.1172/jci17341
https://doi.org/10.1016/j.cardiores.2004.04.017
https://doi.org/10.1016/j.cardiores.2004.04.017
https://doi.org/10.1016/j.ejphar.2018.06.024
https://doi.org/10.3389/fphys.2019.01482
https://doi.org/10.1093/cvr/cvs183
https://doi.org/10.1093/cvr/cvs183
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

:' frontiers ‘ Frontiers in Physiology

ORIGINAL RESEARCH
published: 01 June 2022
doi: 10.3389/fphys.2022.906146

OPEN ACCESS

Edited by:
Matthijs Cluitmans,
Maastricht University, Netherlands

Reviewed by:

Steven Alexander Niederer,

King’s College London,

United Kingdom

Aurore Lyon,

Maastricht University, Netherlands
Alexander Jung,

Medical University of Graz, Austria

*Correspondence:
Chiara Bartolucci
chiara.bartoluccid@unibo.it

Specialty section:

This article was submitted to
Cardiac Electrophysiology,

a section of the journal
Frontiers in Physiology

Received: 28 March 2022
Accepted: 10 May 2022
Published: 01 June 2022

Citation:

Bartolucci C, Forouzandehmehr M,
Severi S and Paci M (2022) A Novel In
Silico Electromechanical Model of
Human Ventricular Cardiomyocyte.
Front. Physiol. 13:906146.

doi: 10.3389/fphys.2022.906146

Check for
updates

A Novel In Silico Electromechanical
Model of Human Ventricular
Cardiomyocyte

Chiara Bartolucci’*, Mohamadamin Forouzandehmehr?, Stefano Severi' and
Michelangelo Paci?

"Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”,
University of Bologna, Bologna, Italy, °BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere,
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Contractility has become one of the main readouts in computational and experimental
studies on cardiomyocytes. Following this trend, we propose a novel mathematical
model of human ventricular cardiomyocytes electromechanics, BPSLand, by coupling
a recent human contractile element to the BPS2020 model of electrophysiology.
BPSLand is the result of a hybrid optimization process and it reproduces all the
electrophysiology experimental indices captured by its predecessor BPS2020,
simultaneously enabling the simulation of realistic human active tension and its
potential abnormalities. The transmural heterogeneity in both electrophysiology and
contractility departments was simulated consistent with previous computational and
in vitro studies. Furthermore, our model could capture delayed afterdepolarizations
(DADs), early afterdepolarizations (EADs), and contraction abnormalities in terms of
aftercontractions triggered by either drug action or special pacing modes. Finally, we
further validated the mechanical results of the model against previous experimental and
in silico studies, e.g., the contractility dependence on pacing rate. Adding a new level of
applicability to the normative models of human cardiomyocytes, BPSLand represents a
robust, fully-human in silico model with promising capabilities for translational
cardiology.

Keywords: computational modeling, human ventricular cardiomyocyte model, action potential (AP), contractility,
aftercontraction

1 INTRODUCTION

The future of diagnosis and treatment in cardiology progressively depends on advanced methods in
imaging, gene profiling, and pharmaceutical technologies. Despite the recent advances in health
technologies, the current empirical clinical investigations face serious challenges as the complexity of
therapeutic interventions, prognosis, and the possibility of classifying the treatments grow.
Specifically, identifying the optimal treatment strategy with a degree of statistical significance
poses serious challenges to current empirical routes in cardiology (Niederer et al, 2019).
Furthermore, as precision medicine emerges (Forouzandehmehr et al, 2022), the proven
pathophysiological variability between individuals highly augments the detail in the diagnostic
process and data, thus, finding an optimal patient-specific solution becomes increasingly difficult
(Niederer et al., 2019). Cardiac computational models, based on established physiological and
engineering principles, offer a capable framework that not only can be fed by large datasets but also
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enable mechanistic and integrative simulations leading to disclose
novel insights in cardiac pathophysiology (Niederer et al., 2019).

Early physiologically constrained computational models of
cardiac cells could quantitatively translate the protein
functions into developing cellular phenotypes (Niederer et al.,
2019). During the past decade, these models have also
incorporated functional characteristics of ion channels, cellular
pumps, transporters, and buffers making them promising
candidates in preclinical studies (O’Hara et al, 2011; Tomek
et al., 2019; Bartolucci et al., 2020; Paci et al., 2021). Currently, as
the cardiac contractility data become increasingly available,
together with new recording techniques (Ahola et al, 2018),
mathematical models of cardiomyocytes (CMS) are developed
to predict dynamics of contraction combined with simulation of
drug effects alongside the electrophysiology. Toward building
models of myocyte electromechanics, elements of contractility
have been developed with different levels of complexity focusing
on animals (Rice et al., 2008; Campbell et al., 2010; Sheikh et al.,
2012; Land et al,, 2013) and human CMs (Land et al.,, 2017).
Initial efforts on developing reliable models to capture the
electromechanics of human adult CMs have been initiated
recently (Lyon et al, 2020; Margara et al, 2021). Margara
et al, integrated an established human-based developed
contractile element (Land et al, 2017) into the gold standard
in silico model of human ventricular cell electrophysiology
(O’Hara et al, 2011) and into their new ToR-ORd model
(Tomek et al., 2019) to predict ventricular active tension
generation alongside action potential (AP) and calcium
transients (CaT). Also Lyon et al. complemented the ORd
model with a contractile element: their choice was the
MedChem model of sarcomere mechanics (Dupuis et al,
2018), which they used to assess the impact of P-adrenergic
stimulation and sarcomere length on CaTs and force (Lyon
et al., 2020).

Our recently published BPS2020 model of the human adult
ventricular CM electrophysiology (Bartolucci et al., 2020), holds
significant improvements compared with the original ORd model
(e.g., the simulation of the experiments with the correct
extracellular K™ concentration used in vitro or the generation
of DADs) and includes specific mechanisms not simulated by
ToR-ORd (e.g., the inverse APDy,-[Ca®*], dependence). Given
these improvements in simulating electrophysiology phenomena,
it is worth investigating how we can expand the spectrum of
BPS2020 simulation, by using it as the basis for a new
electromechanical human CM in silico model.

We have integrated one of the most recent human contractile
machinery (LandCE) (Land et al., 2017) into BPS2020 (Bartolucci
etal., 2020). As done in Margara et al. (2021), we chose LandCE as
it is a contractile element validated against human data. Our goal
was to investigate the capabilities of this newly integrated
electromechanical model, BPSLand, by evaluating active
tension generation and contractility abnormalities e.g.,
aftercontractions, that can be activated either by drug action
or special pacing conditions. BPSLand is a robust, fully-human, in
silico model meeting the computational expectations from both
departments, the electrophysiology and contractility, with the

Novel Human Ventricular Electromechanical Model

potential for facilitating the translation of biophysical and
pharmacological functions into pre-clinical readouts.

2 METHODS
2.1 In Vitro Data

To calibrate the BPSLand model, we used a dataset of isometric
active tension (Ta) biomarkers recorded from human isolated
ventricular CMs (Land et al., 2017; Margara et al., 2021) and a
dataset of action potential (AP) biomarkers from human isolated
ventricular endocardial CMs (O’Hara et al., 2011; Bartolucci et al.,
2020). The Ta biomarker dataset includes measures from strips of
the left ventricular myocardium (Mulieri et al, 1992), left
ventricular trabeculae (Pieske al., 1996) and right
ventricular trabeculae (Rossman et al., 2004) (additionally
considered by Margara et al, 2021). Both datasets were
recorded at 37°C. Ta biomarkers are the peak tension
(TaPeak), the relaxation time at 50% and 95% (TaRTs,
TaRTys) and the time-to-peak (TaTTP). AP biomarkers are
the duration at 30%, 40%, 50%, 70% and 90% (APD;, APD,,
APDsgy, APD;g, APDy), the maximum upstroke velocity (dV/
dtp.y), the peak voltage (VPeak) and the resting membrane
potential (RMP). In silico biomarkers were computed as in
Margara et al. (2021). As we previously reported in Bartolucci
et al. (2020), we simulated the AP biomarkers for calibration at
[K"], = 4 mM. Conversely, as no information was reported on the
in vitro Ta biomarker ranges, we run our simulations at the
standard concentration [K], = 5.4 mM.

To validate BPSLand, we used the following human data: 1)
APD rate dependence, restitution and accommodation data in
control condition and with current blockers from endocardial
CMs (O’Hara et al., 2011) (see Supplementary Methods for
details and Supplementary Table S1); 2) TaPeak, TaRTs5, and
CaT relaxation time at 50% (CaRT5) rate adaptation data (Pieske
et al., 1995; Janssen and Periasamy, 2007); 3) TaPeak transmural
heterogeneity data from sub-epicardial, mid-myocardial, and
sub-endocardial specimens (Haynes et al., 2014).

et

2.2 Integration of the Land Contractile

Element Into the BPS2020 Model

The original BPS2020 model (Bartolucci et al., 2020) was based on
the seminal O’Hara-Rudy model of the human ventricular AP
(O’'Hara et al,, 2011) and it features two cytosolic compartments,
the subspace and the bulk myoplasm, and the sarcoplasmic
reticulum (SR) represented with a single compartment. It
includes the following ion currents: fast and late Na" currents
(Inap> Inav)s transient outward K' current (I), L-type Ca®*
current (Ic,), also with its Na™ and K" components (Ic,Na
Icak), the rapid, slow and inward rectifying K™ currents (Ig;,
Ik k1), the Na*/Ca** exchanger divided in its cytosolic and
subspace components (Incxi> Incxss)> the Na™/K™ pump (Inax),
Na*, K* and Ca®* background currents (Inap, Ixp» Icap) and the
sarcolemmal Ca** pump (Tpca)- Ca®* fluxes from/to SR are the
RyR-sensitive Ca’" release (J,o), the SERCA pump (Jp) and a
leakage flux (Jiear)-
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TABLE 1 | Contractility and electrophysiology biomarkers used for the BPSLand optimization, with their ranges.

Model Step Parameter Range

LandCE 1 Tropomyosin rate constant k,, (1/ms) [0.01, 0.2
Hill coefficient ntm [3, 7]
Unbound-to-weak crossbridge transition scaling factor » [1,12]
Weak-to-strong crossbridge transition scaling factor u [, 12]
Tropomyosin Ca®* sensitivity ([Ca*]rs0) (UM) [0.5, 0.6]

BPS2020 2 Maximum Ca?* release flux from SR Jremax (1/ms) [0.016, 0.024]
Maximum SERCA pump flux Jyp,max (MM/ms) [2.504, 3.756]

We integrated LandCE into BPS2020 following the approach
presented in (Margara et al., 2021). Shortly, LandCE takes as
input the intracellular Ca** concentration [Ca®*]; computed by
BPS2020, to update a new state variable CaTRPN, representing
the fraction of troponin C units which bound to Ca**.

dCaTRPN [Ca?], \"™™
T = ke 1 - CaTRPN
dt TRPN( [Ca**]rs ( ¢ :
- CaTRPN)

BPS2020 receives as feedback the amount of Ca** buffered by
troponin C, [Ca®"]igpn, to update the intracellular Ca**
concentration.

d[Ca*"], A v,
—t = il — Ia+1u_21aai Lp_u ul
It Bea| — (Tpca + Toab — 2Ivacas) 5 Fraps 2 Voo
n ve d[EGTA]; d[Ca™ ]y
M o dt dt
d[Ca" ] 1ron _ [Cca*] dCaTRPN
dt TRPN,max dt
where  [Ca**]rrpNmax  Tepresents the maximum Ca®*

concentration that can bind to troponin C.

2.3 Optimization of the BPSLand Model

The structure of the cost function used for both optimizations is
the same as in Paci et al. (2018b)

Npiom
Cost = z
1

(bi,sim < LBi) (bi,sim - LBi)Z + (bi,sim > UBi) (bi,sim - UBi)2

w; * Cost;

Cost; =
0.5(LB; + UB;)

where b;g,, is the ith simulated biomarker, LB; the ith
experimental lower bound for b; g, UB; the ith experimental
upper bound for b;,,, w; the weight for each biomarker’s cost
(Supplementary Table S2) and Ny;,,,, the number of biomarkers
used for optimization. Briefly, if the simulated ith biomarker is
smaller than LB; or greater than UB,, the error is computed as the
squared distance between the simulated biomarker and the
bound, normalized by the center of mass of [LB;, UB,]. Finally,
in order to minimize the active tension T,, we included one
additional term to Cost, obtaining the final cost function

TABLE 2 | In vitro contractility and electrophysiology biomarkers used in the cost
function and their goal ranges.

Biomarker Range [LB, UB]
Active tension peak TaPeak (kPa) [15, 25]
Active tension time-to-peak TaTTP (ms) [109, 125]
Active tension relaxation time to 50% TaRTsg (mMs) [147,172]
Active tension relaxation time to 95% TaRTgs (Ms) [291, 377]

Minimum active tension min (Ta) (kPa) —
Systolic intracellular Ca®* CaSys (mM) [3.004755, 3.321045]e-4
Diastolic intracellular Ca%* CaDias (mM) [7.712955, 8.524845]e-4

Costror = Winta * min (T,) + Cost

with Wyinr, the weight of the minimun active tension.

2.3.1 Step 1: Hybrid Optimization on the LandCE
Parameters

After integrating LandCE into BPS2020, we first optimized the
LandCE parameters using a hybrid approach combining first a
genetic optimization (Matlab function ga), followed by the
simplex optimization [Matlab function fminsearchbnd
(D’Errico, 2022)]. The parameters optimized in this first step
are only the LandCE parameters listed in Table 1. The
optimization ranges for the LandCE parameters are the same
as in the original LandCE publication (Land et al., 2017), except
for the tropomyosin Ca®* sensitivity ([Ca**]1so), for which we
chose [0.5, 0.6] instead of [0.8, 0.9]. As the original range [0.8, 0.9]
increased substantially the CaT peak, ie. the systolic Ca**
(+#22%), we decided not to affect the BPS2020
electrophysiology and chose [0.5, 0.6] as it preserved the
original BPS2020 CaT peak.

For this first optimization step, we considered five
contractility and two electrophysiology biomarkers: active
tension peak (TaPeak), time-to-peak (TaTTP), relaxation
time to 50% and 95% of the diastolic level (TaRTs, and
TaRTgs5) and the minimum of the diastolic active tension,
systolic and diastolic intracellular free Ca®* (CaSys and
CaDiast). The acceptable ranges for these biomarkers were
taken from the original Land publication (Land et al., 2017) for
TaTTP, TaRTs, and TaRTys, from Margara et al. (2021) for
TaPeak, while we chose to set the ranges for CaSys and CaDias
as +5% of their original values (Bartolucci et al., 2020), in order
to keep the electrophysiology the most similar to the original
BPS2020 model. At the end of this first step, we obtained an
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TABLE 3 | Final BPSLand parameter set.

Parameter Original value Optimized value
ku (1/ms) 1 1.5230

Ntm 5 3.0899

N 7 1.002

M 3 2.0779
[Ca%*Trso (M) 0.805 0.5
Jreymax (1/ms) 20e-3 22e-3
Jup,max (MM/ms) 3.13 3

electromechanical model whose electrophysiology biomarkers
were not significantly affected by the LandCE and correctly
simulated TaRTys while the remaining contractility
biomarkers were close to their respective lower bounds.

2.3.2 Step 2: Simplex Only

In order to capture the remaining contractility biomarkers, we
then run a second simplex optimization on the Ca®" fluxes of the
SERCA pump (J,,p) and the RyR-sensitive release (J..1), using all
the constraints in Table 2, and additional constraints on the AP
biomarkers. In particular, for resting potential (RMP), peak
voltage (VPeak), maximum upstroke velocity (dV/dty,,), AP
duration at 40%, 50% and 90% (APD,y, APDs, and APDy),
and the triangulation metric (Trigg40), we set the lower and upper
bounds as +5% of their values in the original BPS2020 model,
which were fit against the experimental data (O’'Hara et al., 2011)
at [K'], = 4 mM. We chose these parameters as we did not want
to change the ion current parameters of BPS2020, derived from
the ORd model and partially fit experimental data in Bartolucci
et al. (2020). As ranged for manually tune Jre max and Jup,max We
chose £20% of their original values 20e-3 (1/ms) and 3.13 (mM/
ms), respectively. At the end of this second step, the
electromechanical model correctly simulated TaRTys; and
TaPeak while the remaining contractility biomarkers were
close to their respective lower bounds. However, we missed
one of the key features of BPS2020, ie., the inverse
relationship [Ca**], - APDy,, which was otherwise simulated
at the end of the first step.

2.3.3 Step 3: Manual Tuning

In order to restore the [Ca®*], — APDy, relationship, we added
one final step to our pipeline, where we did a minor manual re-
tuning of J e, max (0.0240 —0.0220 1/ms) and Jyup, max (3.1333 —
3 mM/ms), still considering their lower and upper bounds as in
Table 1. The final model is named BPSLand and its parameter
values are reported in Table 3. Supplementary Tables S2-S4
summarize the weights, parameters and biomarkers obtained
after each of the three optimizations steps. Supplementary
Table S5 shows the impact of the manual tuning of ], max and
Jup,max On the [Ca®*], - APDy, relationship.

2.3.4 Rate Dependence

To test the active tension dependence on the applied pacing rate,
we paced BPSLand at 0.5, 1, 1.5, 2, 2.5 and 3 Hz for 1,000 beats to
reach the steady state, using [K'], = 5.4 mM, [Ca**], = 1.8 mM

Novel Human Ventricular Electromechanical Model
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FIGURE 1 | lllustrative traces simulated by BPSLand ([K*], = 5.4 mM).
(A) Action potential. (B) Cytosolic Ca®* concentration. (C) Subspace Ca**
concentration. (D) Active tension. (E) Inverse action potential duration
dependence on the extracellular Ca®* concentration.

and [Na*], = 144 mM as extracellular ion concentration. We then
compared simulated TaPeak, TaRTs, and CaRTs, with the
in vitro data by Pieske et al, (1995) and Janssen and
Periasamy (2007).

2.3.5 Heterogeneity

To simulate transmural heterogeneity, i.e., simulating epicardial
(EPI) and mid-myocardial (M) CMs in addition to endocardial
(ENDO), we used the same scaling factors reported in Bartolucci
et al. (2020) for Inars Lo Icars Tke Iks Tkt Incxs INako Iks Jret and
Jup (Supplementary Table S6).
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TABLE 4 | The electrophysiology and contractility biomarkers simulated by the original BPS2020 and the new BPSLand models, compared to in vitro data.

Biomarker [K*]lo = 5.4 mM [K*]o =4 mM

BPS2020 BPSLand In vitro BPS2020 BPSLand In vitro
APDgo (Ms) 239.9 239.9 - 267.6 268.4 [180, 440]
APDsq (ms) 1771 175.9 — 200.1 200.0 [110, 350]
APDyo (Ms) 160.1 158.9 - 178.3 177.3 [85, 320]
Trigoao 79.8 81.0 — 89.3 91.1 [50, 150]
dV/dtmax (V/s) 2481 248.8 - 305.3 305.7 [100, 1,000]
VPeak (mV) 42.2 42.2 — 43.7 43.8 [10, 55]
RMP (mV) -87.6 -87.7 - -95.6 -95.7 [-103, -88]
CTDgo (mMs) 247.9 251.3 — 247.6 254.9 —
CTDsg (ms) 1241 138.9 — 125.3 140.3 —
CaSys (nM) 316.3 303.3 — 328.7 311.7 -
CaAmp (nM) 235.1 225.0 — 244.6 230.5 —
CaDias ("M) 81.2 78.2 — 84.1 81.2 -
TaPeak (kPa) — 15.6 [15, 25] — 17.4 —
TaTTP (ms) — 142.9 [147,172] — 145.3 —
TaRTgs (Ms) - 307.4 [291, 377] — 308.1 —
TaRTso (MS) — 108.4 [109, 125] — 108.2 —
TaMin (kPa) - 0.100 - — 0.112 —

2.3.6 EAD and DAD Simulations to Trigger Active A
Tension Abnormalities T 4l A
We assessed the occurrence of early-afterdepolarization (EADs) g A -
and aftercontractions in the BPSLand following three different g osh _ et
protocols. First, we simulated the administration of quinidine 3 _ 2--C
considering the drug effects on Ina, Ik Icar, Ixs and I, using the < ost _a-< z
ICsg and Hill’s coefficients reported in Passini et al. (2017) and E _ == p
Paci et al. (2018a) and the single pore block model, as in Paci et al. J04r ==
(2021) (Supplementary Table S7). We tested three drug 0 P P pre 5 P 8
concentrations, namely 10, 15 and 20 uM at the standard Pacing rate (Hz)
extracellular ion concentrations ([K'], = 54mM, [Ca**], = B 200 120
1.8 mM, [Na'], = 144 mM) and cycle length (CL) of 4,000 ms.
The second EAD protocol simulated dofetilide, similarly to what 150} 2@ o % g £ y
we did in Bartolucci et al. (2020). Shortly, we simulated the | £ N $ R o g @ R $ @
administration of 0.1 pM dofetilide at CL = 5,000 ms and B 100 ' % 8 60
extracellular concentrations experimentally used by Guo et al. % In silico BPSLand & 20
(2011) ([K']o =5 mM, [Ca®']o=2mM, [Na'lo= 137 mM), using |~ 50| 2 InviroPieskeds %
the I, drug binding values reported by Dutta et al. (2017). We ra:;r::;n:;: "7
simulated quinidine and dofetilide effects on the endocardial 00 1 P 3 00 1 2 3
BPSLand model and we anticipate no EADs nor Pacing rate (Hz) Pacing rate (Hz)
aftercontractions, despite the remarkable AP prolongation.
Conversely, the same tests performed on the M cell version, FI.GURE‘2|Activetension dgpendence on pacing rate and comparison
. . with the in vitro data from Pieske et al. (1995) and Janssen and Periasamy

resulted in EADs and aftercontraction. (2007). (A) Normalized active tension peak. (B) Active tension relaxation time.

To assess the occurrence of delayed afterdepolarizations (C) Ca2* transient relaxation time.

(DADs) we used the same protocol as in Li and Rudy (2011):
we fast paced BPSLand for 1,500 beats (BCL = 275 ms) and then

we triggered one long beat (BCL = 10,000 ms).
and then observed in vitro and in vivo (Leitch, 1996; Nagy et al.,

2013), but failed to be simulated by many in silico models,

3 RESULTS including the original ORd (O’Hara et al, 2011) and ToR-
ORd (Tomek et al., 2019). In details, for increasing [Ca*'], =
3.1 The BPSLand Model 0.9, 1.8 and 2.4 mM, APDy, equals to 251.4, 239.9 and 237.1 ms.

We report the AP, [Ca®*];, [Ca®"] and Ta traces simulated at Table 4 reports the AP and Ta biomarkers, with the in vitro
[K'], = 54 mM in Figure 1, together with the simulations for ~ ranges used for the BPSLand calibration, together with additional
variable [Ca®'], to highlight the inverse APDgy-[Ca®"],  CaT biomarkers: CaT duration at 50% and 90% (CTDso, CTDeg)
dependence, which was described first by Severi et al. (2009) and amplitude (CaAmp). All the AP biomarkers are within the
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FIGURE 3 | Transmural heterogeneity simulations with BPSLand in
endocardial (green), epicardial (blue) and mid-myocardial (red) modes. (A)
Action potentials. (B) Cytosolic Ca®* concentration. (C) Active tension. (D-E)
Comparison of the simulated and experimental active tension peak
magnitude across endocardial, epicardial and mid-myocardial cell types. The
simulated purple star represents an additional epicardial simulation where we
tested a small increments of the calcium sensitivity, x1.1 the baseline [Ca®*]rso
value, to obtain an active tension even closer to the experimental data (Haynes
et al., 2014).

experimental ranges, as well as TaPeak and TaRTs. Conversely,
TaRTso and TaTTP are very close to their respective experimental
lower bounds, although out of the in vitro ranges. The
comparison of AP, Ca®" and Ta traces simulated with [K'], =
4mM and [K'], = 54mM is presented in Supplementary
Figure S1.

3.2 Electrophysiology and Contractility

Dependence on Pacing Rate

The APD rate adaptation tests reported in Bartolucci et al. (2020)
were repeated using BPSLand, to show that introducing LandCE
did not affect the capability of the new model in simulating the
old data. Briefly, BPSLand simulated the in vitro data as
satisfactorily as BPS 2020, outperforming the original ORd
model (Supplementary Figures S2, S3).

In this section we validate BPSLand against two additional
in vitro datasets of rate adaptation of TaPeak, TaRTs, and
CaRTs5, not considered for BPS2020. Figure 2A shows the
qualitative agreement of our model with the data published by

Novel Human Ventricular Electromechanical Model

Janssen and Periasamy (2007) in terms of TaPeak-pacing rate
dependence. In particular, we successfully simulate the linearity
of such dependence. In Figure 2B, we considered the rate
dependence of TaRTs, considering in vitro data by Pieske
et al, 1995 and Janssen and Periasamy (2007). BPSLand
simulations qualitatively agree both with the Janssen07 and
the Pieske95 experiments, although TaRTs, is lower at the
slowest pacing rates. This discrepancy is due to the TaRTs,
in vitro range used to calibrate the BPSLand model at 1 Hz,
ie. [109, 125] ms (purple line). BPSLand is positioned at the
interval lower bound (108.4 ms), while Janssen07 data at the
upper bound (125 ms) and Pieske95 is out of bound (137.2 ms).
Conversely, BPSLand shows quantitative agreement with the
Pieske95 CaRTs, data (Figure 2C). A comparison with the
ToR-ORd+Land model is shown in Supplementary Figure S4.
Furthermore, the length dependence properties of the BPSLand
model is presented in Supplementary Figure S5 and was
performed in the same way proposed by Margara et al. (2021)
in their original Supplementary Section S6.

3.3 Transmural Heterogeneity

Figure 3 shows how BPSLand simulates the transmural
heterogeneity in terms of electrophysiology and contractility.
Our simulations are in agreement with the ToR-ORd+Land
and ORd+Land models presented in Margara et al. (2021). In
terms of APD, the M model has the longest APs, followed by the
ENDO and EPI models. In terms of CaTs and active tension, the
M model shows the highest peaks, followed by EPI and ENDO.
Haynes et al. reported transmural heterogeneity data of isometric
active tension peaks in human heart preparations, showing
similar average active tension in EPI and ENDO preparations
(although EPI < ENDO), and greater in M specimens (Haynes
et al, 2014). We simulate an EPI TaPeak (17.4kPa) slightly
greater than ENDO (15.6 kPa), while the M model produces
greater TaPeak (34.8 kPa). This is the same trend simulated by the
ToR-ORd+Land model (TaPeak M > EPI > ENDO), although the
absolute TaPeak values are considerably greater in ToR-
ORd+Land than in BPSLand. As in (Margara et al., 2021) the
authors suggested that the Ca®" sensitivity in ENDO CMs could
be higher than in EPI cells, we tested how much upscaling of
[Ca**]psp is required in EPI BPSLand to bring the simulated EPI
TaPeak even closer to the experiments (Haynes et al., 2014). In
fact, [Ca®"]rso is not considered as one of the parameters to
change when switching from ENDO to EPI models. The purple
star in Figure 3E show that a x1.1 upscale produces an EPI
TaPeak matching the experiments. A comparison of the
transmural heterogeneity with the ToR-ORd+Land model is
also reported in Supplementary Figure S6.

3.4 EADs, DADs and Aftercontractions
The endocardial BPSLand model did not produce EADs just by
administering quinidine or dofetilide, despite the extreme APDy,
prolongation up to +272% with 0.1 uM dofetilide; +398%, +489%,
+563% with the three increasing quinidine doses.

Conversely, the M cell version, characterized by smaller Iy,
and larger I¢,;, reacted to both drugs with EADs and, in some
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FIGURE 4 | llustrative traces of the membrane potential (left column) and active tension (right column) simulated by the M cell BPSLand with low (10 pM),
intermediate (15 pM) and high (20 uM) quinidine concentrations. The intermediate and high doses trigger early afterdepolarizations and aftercontractions.

cases, aftercontractions. The simulations shown in Figure 4
are noteworthy: for both the intermediate and high quinidine
concentrations (15 uM in the second row and 20 uM in the
third row) quinidine triggers EADs, but only some of them
have a correspondent aftercontraction. This is due to the
different mechanisms underlying each EAD and it is well
summarized in case of 20 uM quinidine, reported in more
detail in Figure 5. The smaller EADs due to I, reactivation
(IcaL-driven), e.g., t ~ 1.3s or t ~ 53s do not have a
corresponding aftercontractions. On the other hand, other
EADs are triggered by a spontaneous Ca”* release from the
SR through J,j, e.g., t ~ 2.2 s or t ~ 10.2 s, which pours into the
cytosol enough Ca®* to trigger the contractile element to
produce an aftercontraction. Therefore, from this result, we
can hypothesize there is not a 1:1 EAD-aftercontraction
correspondence, since aftercontractions require enough
Ca®* to start, as in the case of J,¢ intervention.

We observed a similar result with dofetilide in Figure 6
where the dofetilide simulation resulted in EADs and
aftercontractions. Also in this case, the EADs are triggered
by spontaneous Ca®* release from the SR through J,., as shown
in the third panel.

Following the DAD Li et al. protocol, BPSLand triggered an
unpaced beat further followed by several DADs (Figure 7).
The fast pacing protocol led to the accumulation of Ca** in the
SR (oscillations in [1.76, 2.12] mM instead of [1.20, 1.47] mM),
which was spontaneously released by J,. during the diastolic
phase of the last long beat. These unpaced releases of
sarcoplasmic Ca®" not only triggered the anticipated AP
and DADs (as we already showed in Bartolucci et al., 2020),
but it also was enough to trigger aftercontractions (Figure 7D
inset).

4 DISCUSSION

In this work, we present an updated version of our BPS2020
model of the human ventricular AP (Bartolucci et al., 2020), that
we enhanced with the contractility model presented by Land et al.
(2017). The potential of in silico models is getting more and more
recognition both by industry and regulators for specific
applications, e.g., cardiac safety pharmacology (Li et al., 2020;
Musuamba et al., 2021). However, most of the current cardiac cell
models focus mainly on electrophysiology, i.e., AP and Ca®*
handling, not considering the fact that the heart behaves like a
pump, and therefore the contractile activity of CMs is surely
worth of interest. Most of the diseases of interest modelled so far
within silico CM models mainly affected specific ion channels
[long QT syndrome (Clancy and Rudy, 2002; Paci et al.,, 2017,
2018a; Kernik et al., 2020)] or Ca** handling [catecholaminergic
polymorphic ventricular tachycardia (CPVT) (Koivuméki et al.,
2018)]. Conversely, hypertrophic cardiomyopathy (HCM), the
most widespread genetic cardiac disorder, primarily associates
with pathogenic variants in protein genes of sarcomere (Santini
et al., 2020). In fact, most of pathogenic variants in HCM are
hosted by myosin binding protein C and adult cardiac myosin
isoforms that are mainly programmed by MYBPS3 and MYH?7
genes, respectively, (Toepfer et al, 2020). These variants are
responsible for myocardium hypercontractility (Sarkar et al.,
2020), impaired contractile relaxation (Toepfer et al, 2020),
arrhythmogenesis, diastolic dysfunction and heart failure
(Sarkar et al., 2020). Furthermore, the hypoxia-induced lack of
oxygenation in ischemia impairs the orchestrate of molecular
events leading to normal ventricular contraction (Katz, 1973).
Finally, the glycation of myofilaments in diabetes, a major risk
factor in heart failure, correlates with significant reduction in
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calcium sensitivity of the sarcomere (Papadaki et al., 2022) that
cannot be captured in electrophysiology-only models. The same
applies to new drugs directly targeting sarcomere dynamics, e.g.,
blebbistatin, omecamtiv mecarbil and mavacamten (Rahman
et al., 2018; Awinda et al., 2020; Fulop et al., 2021): with no in
silico contractility description, it is not possible to properly
simulate them.

Therefore, the goal of our work was to provide the new and
validated BPSLand in silico model of human adult CMs,
combining both electrophysiology and contractility. As the
electrophysiology description by BPS2020 carried a few
novelties, especially the APD-[Ca®'], relationship and an
extended and more reliable description of Ca®* handling,
including the generation of DADs, it was important to us to
create a model able to translate such novelties also to contractility.
Of note, we did not aim to simulate here specific pathological
conditions affecting contractility, as this will be topic for
future works.

4.1 Development of the BPSLand Model

We followed the same strategy published by Margara et al. (2021)
for their ToR-ORd+Land model, to integrate the
electrophysiology described by BPS2020 and the contractility

of LandCE: as forward mechanism, LandCE takes as input the
cytosolic Ca®* concentration computed by BPS2020, to compute
the fraction of troponin C units bound to Ca®*, and this new flux
of Ca®* towards the sarcomere is then included in the equation
regulating the BPS2020 cytosolic Ca>* concentration, to close the
loop. In terms of mathematical formulation, the process was
straightforward, as BPS2020 and ToR-ORd are both based on the
original ORd model. For the optimization of the model, we built
our cost function with the same biomarkers (TaPeak, TaTTP,
TaRTs5, and TaRTys) and experimental ranges as in Land et al.
and Margara et al., and we tuned the same parameters (k,, ntm, v,
p and [Ca**]tso) within the same ranges, except for the Ca*t
sensitivity [Ca**]1s0. In both Land et al. and Margara et al,
[Ca**]pso was optimized within [0.8, 0.9]. However, values in that
range would have altered too much the CaT amplitude of BPS
2020. Land et al. already reported that such parameter “needs to
be fit depending on the calcium transient used to drive the
model,” as it is not consistent inter-species and also variable
in their experiments on skinned human CMs. Therefore, we
optimized [Ca®*]rs in the range [0.5, 0.6], which allowed us to
keep the same CaT morphology and magnitude of the original
BPS 2020. As we reported in Section 2, we followed a hybrid
optimization approach based on genetic algorithm (Step 1, as in
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Land et al. and Margara et al.) to avoid being stuck in local
minima, followed by a simplex (Step 2) on the sarcoplasmic Ca**
fluxes again to keep the BPSLand Ca** handling the most similar
to BPS2020. Already at this stage, the resulting model would have
satisfactorily simulated the considered AP and Ta biomarkers.
However, it lost the ability to simulate the inverse APD-[Ca®*],
dependence for high [Ca**],, values. Such dependence was one of
the key-novelties of BPS2020 (Bartolucci et al., 2020). In order to
restore it (Figure 1), we added one step of manual tuning on the
sarcoplasmic maximal fluxes Jeimax and Jup max applying only
minor changes fully consistent with the physiological formulation
(Step 3). The final BPSLand model satisfactorily simulates AP and
Ta biomarkers, together with the APD-[Ca®'], inverse
dependence (Figure 1; Table 4).

4.2 Validation of the Model Against In Vitro
Data and Comparison With Other In Silico

Models

We first validated BPSLand against the same AP data (APD
rate dependence and restitution in control condition and with
current blocker) used to validate BPS2020 and the original
ORd model. The rationale is we want BPSLand to work as well
as BPS2020 in simulating electrophysiology data. As we
already presented in detail those simulations in Bartolucci
et al. (2020), here we report our results and the used protocols

in the Supplementary Section S1 and Supplementary Figures
S2, 83). These results confirm that adding the mechanical
model have not altered the behaviour of the model
electrophysiology. Nevertheless, it should be taken into
account that having a single experimental dataset, including
both electrical and mechanical measurements, would be the
ideal setting to better calibrate and validate an
electromechanical model (same in vitro preparations, clearer
assessment of the mechanoelectric feedback, etc.). However, to
our current knowledge, there is no such kind of data collection.

In terms of contractile properties, we compared BPSLand
simulations to in vitro experiments performed on human CMs
and cardiac preparations (Section 2.1). BPSLand successfully
simulated the linear force-frequency dependence reported by
Janssen and Periasamy (2007) (Figure 2). Such dependence
was previously simulated by Lyon et al. (2020), although
obtaining lower values of normalized force compared to
BPSLand and to in vitro data in the range [1, 2.5] Hz (see
Figure 2B in the original Lyon et al. paper). In terms of
relaxation time, BPSLand optimally replicated the CaRTs5, data
by Pieske et al., and very well the TaRTs, by Pieske et al. (1995)
and Janssen and Periasamy (2007). BPSLand TaRTs is lower at
the slowest pacing rates (Figure 2). We ascribe this discrepancy to
the TaRTs, interval we used at 1Hz during the model
optimization: BPSLand and Janssen07 TaRTs, are positioned
at the opposite sides of such interval (purple line in Figure 2)
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while Pieske95 is out of bound. In terms of transmural
heterogeneity (Figure 3), BPSLand simulations are in
agreement with the in silico results of ToR-ORd+Land in
terms of APD (M > ENDO > EPI) and TaPeak (M > EPI >
ENDO) sequences, although the TaPeak values are greater in
ToR-ORd+Land than in our model (M ~ 60 kPa, EPI ~ 40 kPa,
ENDO ~ 20kPa). In fact, although we used the same TaPeak
range as in Margara et al. (2021), i.e, [15, 25] kPa, BPSLand
simulates a reference ENDO TaPeak equals to 15.6 kPa, which is
more in line with the Haynes et al. (2014) in vitro values
(Figure 3), especially for the small difference we observed in
our ENDO vs. EPI TaPeak. As in Margara et al. (2021), we have
tested heterogeneities in myofilament calcium sensitivities by
acting on the baseline [Ca**]pso value for the epicardial cell
type (Figure 3E), showing that a small change of the
[Ca**]rs0 parameter replicates better the experiments. This
result suggests that simulating transmural heterogeneity with
electromechanical models may not only require re-calibration

of the electrophysiological part but also of the mechanical part of
the chosen model (Haynes et al., 2014).

Abnormalities in the ionic regulations of cardiomyocytes e.g.,
EADs and DADs can trigger the occurrence of a contractile
irregularity in form of aftercontractions (Nguyen et al., 2017) the
incidence of which has been reported in animal models of heart
failure associated with arrhythmogenesis (Pogwizd et al., 2001). We
observed that the endocardial BPSLand, as the original BPS2020,
reacts to dofetilide and quinidine not producing EADs nor
aftercontractions, but with an extreme prolongation of APD. This
is not surprising, since we designed BPSLand carefully maintaining
the electrophysiology of BPS2020. On the other hand, the M cell
model reacted to both drugs with such abnormalities in
electrophysiology and contractility. From the modelling point of
view, it is not surprising: compared to the endocardial model, the M
cell model has smaller G, (thus smaller repolarization reserve),
larger G¢,1, (thus being prone to more significant reactivation of I,y
during phase 3 of the AP) and J.gma (ie., larger releases, also
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spontaneous, of Ca** from SR). From the i vitro point of view, the
higher sensitivity of M cells to drugs affecting repolarizing ion
currents compared to endocardial and epicardial was reported by
Antzelevitch et al. (1999), with a panel of 13 drugs. Nonetheless, we
did not observe a 1:1 correspondence between EADs and
aftercontractions. We previously observed (see Figure 6C in the
original BPS2020 paper) EADs triggered by two different
mechanisms: Ig, reactivation-driven and RyR spontaneous
opening-driven EADs, as we also report here in Figure 5. Only
in the case of a RyR spontaneous opening-driven EAD, we also have
the corresponding aftercontraction, which is not present for I, -
driven EADs. Similarly to RyR spontaneous opening-driven EADs,
also DADs are source of aftercontractions (Desantiago et al., 2008).
BPSLand correctly simulated them using a protocol aimed to stress
the model. Aftercontractions have been reported in vitro following
the administration of diverse compounds or in presence of
mutations in several cardiac preparations, e.g., cardiac tissues and
trabeculae following dofetilide administration (Nguyen et al., 2017),
in myocardial slices containing titin and collagen administered with
isoproterenol (Watson et al., 2019), or in CPVT human induced
pluripotent stem cell-derived CMs (Novak et al., 2012).

4.3 Limitations

The proposed computational model can be used to better
understand the electromechanical interactions and the strong
relationship between Ca** regulation and mechanics. Despite this,
the experimental in vitro human data, taking into account both
electrical and mechanical aspects, are still few, and urgently required
to ensure better insight in electromechanical coupling and design
more accurate models. The BPSLand model itself has some
limitations. Preload and afterload conditions contribute to
contractility response and should be considered in future model
developments by including a mathematical description of dynamic
changes in sarcomere length, since now only the isometric condition
can be simulated. Other previously published mechanical models,
e.g., Rice et al. (2008), Dupuis et al. (2016), and Dupuis et al. (2018),
also include a mechanical description of sarcomere lengthening and
shortening, thus expanding the range of possible simulations. Our
choice to use Land model is based on the fact that it is validated
against human experimental data. BPSLand model describes
mechano-electric feedback only through the binding of calcium
to troponin, but this phenomenon also includes other actors, for
example stretch-activated ion channels (Peyronnet et al, 2016),
which are modulated by membrane stretch and yield a current
acting on the cardiomyocyte membrane potential. Future works
should include into the model also these channels. Figures 2B,C
show another limitation of BPSLand: while the model captures well
the CaRTj in vitro data, it slightly underestimates the TaRTs, as
BPSLand simulates very similar CaRT's, and TaRTj, for each tested
rate. One reason could be a slightly too fast relaxation dynamic in the
contractile element. However, we replicated the same test with a
second in silico model (Supplementary Figure S4) and an even
more  different  behavior emerges. As  cardiomyocyte
electromechanical models are not so common yet as
electrophysiology only models, it is clear that further iterations of
optimization and validation shall be made in the future. Finally, we
did not test the application of the model to multiscale simulations

Novel Human Ventricular Electromechanical Model

(2D or 3D) since it was beyond the scope of the work, although it will
be interesting to check BPSLand behaviour also in this field of
applicability.

5 CONCLUSION

In this paper, we presented our new electromechanical model of
human adult ventricular cardiomyocyte, built and validated using
several sets of human in vitro experiments. In addition to
replicate correctly the results produced by its predecessor
BPS2020, BPSLand adds an accurate simulation of active
tension and contractility abnormalities, which can be triggered
by drugs or specific pacing protocols. Therefore, BPSLand
expands the domain of applicability of in silico model, which
traditionally focus mainly on the simulation of the cardiac cell
electrophysiology.
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Human cardiac function is characterized by a complex interplay of mechanical deformation
and electrophysiological conduction. Similar to the underlying cardiac anatomy, these
interconnected physiological patterns vary considerably across the human population with
important implications for the effectiveness of clinical decision-making and the accuracy of
computerized heart models. While many previous works have investigated this variability
separately for either cardiac anatomy or physiology, this work aims to combine both
aspects in a single data-driven approach and capture their intricate interdependencies in a
multi-domain setting. To this end, we propose a novel multi-domain Variational
Autoencoder (VAE) network to capture combined Electrocardiogram (ECG) and
Magnetic Resonance Imaging (MRI)-based 3D anatomy information in a single model.
Each VAE branch is specifically designed to address the particular challenges of the
respective input domain, enabling efficient encoding, reconstruction, and synthesis of
multi-domain cardiac signals. Our method achieves high reconstruction accuracy on a
United Kingdom Biobank dataset, with Chamfer Distances between reconstructed and
input anatomies below the underlying image resolution and ECG reconstructions
outperforming multiple single-domain benchmarks by a considerable margin. The
proposed VAE is capable of generating realistic virtual populations of arbitrary size with
good alignment in clinical metrics between the synthesized and gold standard anatomies
and Maximum Mean Discrepancy (MMD) scores of generated ECGs below those of
comparable single-domain approaches. Furthermore, we observe the latent space of our
VAE to be highly interpretable with separate components encoding different aspects of
anatomical and ECG variability. Finally, we demonstrate that the combined anatomy and
ECG representation improves the performance in a cardiac disease classification task by
3.9% in terms of Area Under the Receiver Operating Characteristic (AUROC) curve over
the best corresponding single-domain modeling approach.

Keywords: multi-domain variational autoencoder, combined electrocardiogram and cardiac anatomy generation,

cardiac disease classification, point clouds, cine magnetic resonance imaging, cardiac electrophysiology, time
series analysis, geometric deep learning
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1 INTRODUCTION

Healthy cardiac function of the human heart consists of complex
interactions  between  anatomical = deformations  and
electrophysiological ~ conduction  patterns  which  vary
considerably ~ between individuals in the population.
Accounting for this variability is of high importance in clinical
practice as it heavily influences the accuracy of cardiovascular
disease diagnosis and treatment. Consequently, it is also a core
objective of computational modeling approaches of cardiac
anatomy and function to correctly represent these inter-person
differences and enable more personalized and accurate computer
models. Two of the most commonly used modalities in clinical
practice to assess healthy cardiac function on both an individual
and a population level are, respectively, the cardiac Magnetic
Resonance Imaging (MRI) (Stokes and Roberts-Thomson, 2017)
and the Electrocardiogram (ECG) (Macfarlane and Lawrie, 2010).

Due to its high soft-tissue contrast and lack of ionizing
radiation combined with high temporal resolution, cardiac
cine MRI is currently considered the gold-standard for image-
based cardiac function analysis (Stokes and Roberts-Thomson,
2017). It has also been extensively used to determine normal
cardiac behavior and investigate inter-patient differences. To this
end, several image-based atlases of the heart with associated
statistical shape models of cardiac anatomy and function have
been developed for a variety of different populations and cardiac
substructures (Bai et al., 2015; Nagel et al, 2021). In these
approaches, a mean template shape is typically created from a
distribution of image-derived cardiac shapes, followed by
Principal Component Analysis (PCA) to model population
variability (Tavakoli and Amini, 2013; Bai et al,, 2015; Piazzese
et al., 2017). More recently, deep learning approaches based on
Variational Autoencoders (VAE) or Generative Adversarial
Networks (GAN) have also been explored for this purpose
(Litjens et al., 2017; Bello et al., 2019; Biffi et al., 2020; Gilbert
et al., 2020; Beetz et al., 2021b; Rezaei, 2021). The resulting
statistical models have a variety of use cases, including the
prediction of certain cardiac disease events (Acero et al,
2022), the association analysis of cardiac shape and disease
risk factors (Mauger et al., 2019), and the generation of virtual
populations for physiological simulations (Mincholé et al., 2019;
Niederer et al., 2020; Romero et al., 2021).

The ECG offers an easy and non-invasive procedure to capture
and visualize the electrical conduction patterns of the heart and is
therefore widely used in clinical diagnosis and electrophysiology
modeling (Macfarlane and Lawrie, 2010). Similar to cine MRI,
considerable research has been focused on capturing population
variability in the ECG signals. For example, PCA has been applied
to ECG data to derive respiratory signals (Langley et al., 2009),
estimate the effect of diabetes on ECG parameters (Kalpana et al.,
2013), or classify ECG beats (Martis et al., 2013). GAN and VAE-
based approaches have more recently been investigated for the
task of virtual ECG generation and to analyze ECG shape
variations across the population (Delaney et al, 2019; Zhu
et al., 2019; Kuznetsov et al., 2021).

However, in all aforementioned works, inter-subject
variability was modeled based on either MRI or ECG

Multi-Domain VAEs for ECG-Anatomy Modeling

information separately in a single-domain setting. This
neglects the complex, non-linear relationships between
anatomical deformations and electrophysiological conduction,
and therefore inhibits a more holistic understanding of cardiac
function and its variability across the human population. Hence,
the objective of this work is to combine both cine MRI-based
cardiac anatomy information and ECG-based electrophysiology
information across a whole population in a single data-driven
modeling approach and study their variations and interactions in
this multi-domain setting. To this end, we propose a multi-
domain variational autoencoder framework consisting of
multiple domain-specific branches and a latent space shared
across all branches for cross-domain information exchange.
The design of the individual branches, loss function, and
training procedure are specifically tailored to a multi-domain
dataset consisting of both MRI-based cardiac anatomy
information and ECG-based electrophysiology signals.
Anatomical information is represented as high-resolution and
multi-class 3D point clouds reconstructed from cine MRI
acquisitions and can be efficiently processed by the point
cloud-based deep learning branches. Anatomies at both the
End-Diastolic (ED) and End-Systolic (ES) phases of the
cardiac cycle are used together with the corresponding ECG
signals to give the network access to both spatial and temporal
information.

Similar to the single-domain shape modeling approaches, the
multi-domain VAE has a variety of possible use cases in both
clinical and research settings, such as problem-specific
dimensionality =~ reduction of  high-dimensional  data,
interpretable shape analysis of both spatial and temporal data,
explainable cardiac disease identification and prediction, or the
generation of virtual population cohorts for mechanical and
electrophysiological computer simulations or to augment
datasets for training machine learning or deep learning
classifiers or regressors.

To the best of our knowledge, this is the first deep learning
method to capture the combined cardiac anatomy and
electrophysiology data in a single model. In summary, our
contributions are as follows:

e We present a novel multi-domain variational autoencoder
capable of modeling combined cardiac anatomy and
ECG data.

e We provide a detailed explanation of the preprocessing
steps, network architecture, loss function, and training
procedure.

e We assess the VAE’s ability to reconstruct multi-domain
data on a United Kingdom Biobank dataset (Petersen
et al, 2015, 2013) of 1,000 cases and compare the
reconstruction performance with multiple single-
domain benchmarks.

e We evaluate the VAE’s capability to generate realistic virtual
populations of combined anatomy and ECG data and
perform a comparative analysis with the gold standard
test set and multiple single-domain benchmarks.

e We investigate the VAE’s latent space with regards to its
interpretability and degree of disentanglement.
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FIGURE 1 | Overview of the proposed combined anatomy and ECG modeling pipeline. We first reconstruct point cloud representations of the 3D biventricular
anatomy at the ED and ES phase of the cardiac cycle (A) and preprocess the raw ECG acquisitions (B) to create a multi-domain dataset. We then use this data to train a
multi-domain variational autoencoder (C) to capture combined cardiac anatomy and electrophysiology information in a single model. The VAE architecture (C) consists of
three separate encoder-decoder branches, one for each network input (ED anatomy, ES anatomy, ECG), that share a common latent space for cross-modal
information exchange. Each branch architecture is specifically tailored to the requirements of the respective input type, i.e. point clouds for anatomy and time series for

ECG processing (Figure 2).
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e We develop and evaluate a machine learning classifier for
cardiac disease prediction from the VAE’s latent space.

e We include a detailed discussion of our findings and a
pertinent literature review.

A preliminary version of this work was presented in Beetz et al.
(2022). This paper provides a more comprehensive explanation of
the methodology, additional new experiments including
comparisons with various benchmarks and application to 150
pathological cases, and a substantially expanded discussion and
literature review.

2 MATERIALS AND METHODS

In this section, we describe the multi-domain dataset used for
method development (Section 2.1) and explain the required
preprocessing steps (Section 2.2) as well as our method’s
architecture (Section 2.3, Section 2.4, Section 2.5), loss
function (Section 2.6), and training procedure (Section 2.7).

2.1 Dataset

We conduct our research work using 1,300 subjects from the
United Kingdom Biobank imaging study (Petersen et al., 2013)
for which paired cardiac cine Magnetic Resonance (MR) images
and electrocardiograms were acquired (Petersen et al., 2015). All
cine MR short-axis images had a voxel resolution of 1.8 x 1.8 x
8.0 mm” and typical image dimensions of 208 x 168-210, while
the cine MR long-axis images had a voxel resolution of 1.8 x 1.8 x
6.0 mm’ with typical image dimensions of 208 x 126-180
(Petersen et al., 2015). 1,150 subjects were assumed to be

healthy individuals, while 150 cases suffered from at least one
pathology related to the cardiovascular system. These
cardiovascular disease cases were identified following the same
procedure outlined in Bai et al. (2020), based on the self-reported
disease codes in the United Kingdom Biobank (see
Supplementary Table S1). We select 1,000 presumably
healthy cases for the initial method development and the
experiments in Section 3.2, Section 3.3, Section 3.4, and
Section 3.5. The dataset is randomly split into training,
validation, and test sets of sizes ~800, ~50, and ~150,
respectively, to give the network access to enough cases for
training, while at the same time retaining a sufficiently high
number of cases for method evaluation. We use the remaining
150 healthy and 150 diseased cases for our cardiac disease
classification experiment described in Section 3.6.

2.2 Domain-Specific Data Preprocessing

In order to extract the anatomical and physiological information
required for training our multi-domain VAE from the raw cine
MRI and ECG signals, we first apply various preprocessing steps
to the data from each modality (Figure 1A,B). Regarding the
imaging data (Figure 1A), we first segment both short- and long-
axis images of the cine MRI acquisition into four classes that
delineate the anatomical substructures of interest (Left
Ventricular (LV) cavity, LV myocardium, Right Ventricular
(RV) cavity, and background) using the fully convolutional
neural networks as detailed in Banerjee et al. (2021) and Bai
etal. (2018). Next, we use the obtained segmentation masks from
the short-axis images to identify the ED and ES phases of the cine
MRI sequence for each case as anatomical representations of the
extreme ends of the cardiac cycle (Banerjee et al., 2021). The final
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FIGURE 2 | Overview of the encoder and decoder architectures of both the point cloud (A,B) and time series (C,D) branches of the multi-domain VAE. The input

point cloud (A) encodes the biventricular anatomy as a set (n = 36,000) of 4D vectors (X,y,z coordinates and the class label of each point), while a separate set of 3D point
coordinates is used for each of the three cardiac substructures in the output point cloud (B). The point cloud decoder (B) outputs both a coarse, low-dimensional (2,250
points) and a dense, high-dimensional (36,000 points) representation of the cardiac anatomy. The former represents the final output used for further processing,

while the latter primarily facilitates the training process in this work (Eq. 5) by first focusing on an approximate reconstruction and later putting more emphasis on the
dense output. Both input and output ECG time series (C,D) are represented as 400-dimensional vectors. Both encoders (A,C) are tasked with predicting the shared
latent space z. The time-series decoder (D) follows a symmetric design to its encoder (C) and aims to reconstruct the input ECG signal from the latent space during
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3D point clouds of the biventricular anatomy are reconstructed at
both ED and ES phases from the selected slices using the
approach described in Beetz et al. (2021a). For ECG data
(Figure 1B), the United Kingdom Biobank provides both a raw
acquisition consisting of multiple heart beats, as well as a combined
ECG signal that averages the information from multiple cardiac
cycles into a single one-heartbeat representation for each lead. In
this work, we focus on the lead II signals, since they provide a good
view of the P and R waves, are predictive of many cardiac
arrhythmias, and are also used by previous methods (Delaney
etal, 2019; Wang et al., 2019). We choose the average lead II signal
in each case as our ECG data and apply the standardization step, i.e.
subtracting the mean value from each data instance and dividing by
the standard deviation, to each resulting time series. The
preprocessed ECG is then combined with the corresponding 3D
point cloud reconstructions of the biventricular anatomy at the ED
and ES phases of each case to form the multi-domain dataset used
for method development.

2.3 Multi-Domain Variational Autoencoder
In order to capture the combined anatomy and ECG data
obtained from the preprocessing steps, we propose a multi-
domain B-VAE (Higgins et al., 2017) architecture with three
branches that share a common latent space for inter-modal
information sharing (Figure 1C).

Each of the three branches has an encoder-decoder structure
and is responsible for processing one of the three inputs, namely

the ED anatomy point cloud, the ES anatomy point cloud, and the
ECG. The encoder outputs of the three branches are tasked with
predicting the mean and standard deviation vectors of the
multivariate Gaussian distribution of the latent space following
the standard variational autoencoder setting (Kingma and
Welling, 2013). A 12-dimensional vector is sampled from this
distribution and passed into each decoder of the three branches
which aim to reconstruct the input of their corresponding
encoder branch. The reparameterization (Kingma and Welling,
2013) trick is applied during training. The architectures of each of
the three branches are specifically designed to enable efficient
processing of the respective data type (i.e. point clouds and time
series) and are described in greater detail in Section 2.4 and
Section 2.5. The two anatomy branches share the same network
architecture (Section 2.4) but maintain separate trainable
network parameters, while the ECG branch exhibits a different
design (Section 2.5).

2.4 Point Cloud Branches

The architecture of the two anatomy branches of the multi-
domain VAE (Figure 2A,B) follows an extended version of the
point completion network (Yuan et al., 2018) and its adaptations
to cardiac image analysis (Beetz et al., 2021b).

The network input point clouds are encoded as sets of
36,000 4-dimensional vectors consisting of the 3D coordinates
and the class label of each point which indicates its cardiac
substructure (LV ~ endocardium, LV epicardium, RV
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endocardium). Point clouds are then passed through the encoder
(Figure 2A), which resembles a multi-class extension of the
Pointnet (Qi et al,, 2017a) architecture. Similar to (Qi et al.,
2017b), it consists of two stacked Pointnets that are connected via
a skip connection as well as a pooling and an unpooling step.
Furthermore, we add additional fully connected layers before the
latent space to enable easier information sharing. The encoder
outputs are then concatenated with the respective outputs of the
other two branches before the variational sampling step is
applied. The sampled latent space vector is then provided as
input into the decoder (Figure 2B) where a multi-layer
perceptron (MLP) is first tasked with creating a low-resolution
multi-class point cloud with 2,250 points. This coarse point cloud
aims to represent the biventricular anatomy on a global level and
is primarily used to stabilize the training process of the network in
the early stages. The second step of the decoder follows the design
of FoldingNet (Yang et al., 2017) and processes the previous low-
resolution output, the sampled latent space vector, and a set of
tiled point grids to generate a high-resolution multi-class point
cloud with 36,000 points as the final network output. For both the
low and high resolution output point clouds, each class is
represented by a separate set of 750 and 12,000 3D
coordinates, respectively.

2.5 Time-Series Branches

The architecture of the ECG branch combines convolutional,
pooling, and dense layers to capture both local and global patterns
at different scales (Figure 2C,D). The encoder (Figure 2C)
receives each ECG time series as a 400-dimensional input
vector and passes it through two convolutional blocks, each of
which consists of a 2D convolution, an Exponential Linear Unit
(ELU) activation function, and a batch normalization layer. This
is followed by an average pooling layer and two fully connected
layers, which output the mean and standard deviation vectors of
the multivariate normal distribution of the latent space,
respectively. Next, the sampled vector z from the shared latent
space distribution of the multi-branch autoencoder is fed through
a dense block with two fully connected layers at the beginning of
the decoder (Figure 2D). Subsequently, two transposed 2D
convolutions are applied to obtain the 400-dimensional ECG
time series reconstruction as the final network output.

2.6 Loss Function

Following the formulation of the 8-VAE (Higgins et al., 2017)
framework, our loss function Ly, is composed of the sum of a
reconstruction loss term L., and a regularizing term Lg;
weighted by the parameter j3, as

Ltoml = Lrecon + ﬁ * LKL- (1)

We use the Kullback-Leibler divergence between the latent
space distribution Q (z]X) and the multivariate standard Gaussian
prior distribution P(z) as the regularizing loss term Lg;, where X
refers to the VAE inputs and z to the VAE’s latent space. This
encourages each latent space component to follow a normal
distribution with zero mean and standard deviation of one,
which we choose as our prior P(z).

Multi-Domain VAEs for ECG-Anatomy Modeling

Lgi = D [Q (2| X)||P (2)] 2)

The reconstruction loss L., consists of three loss terms, one
for each of the three branches in the multi-domain autoencoder.
It incentivizes the VAE to output anatomy and ECG signals that
are as close as possible to the respective inputs, which we consider
to be our physiologically accurate gold standard for network
training.

Lrecon = LED + LES +y * LECG (3)

We introduce a parameter y to control the importance of the ECG
reconstruction during training.

We choose the mean squared error between the reconstructed
ECG signals x,, and the gold standard ECG signals y,, across N time
steps as our ECG loss term Lgcg to put more emphasis on correctly
capturing less common values, such as the R-peak of the ECG signal.

1 N

Lgcg = ﬁ Z (xn - yn)z (4)

Each of the two anatomy loss terms Lgp and Lgg consists of the
weighted sum of a coarse and a dense loss term over all three
classes C corresponding to the respective cardiac substructures.
We consider each part of the anatomy as equally important in the
loss function and therefore do not use any class-specific weighting
parameter.

C
LED/ES = Z (Lcoarse,i + o Ldense,i) (5)

i=1

The coarse loss term measures the difference between the low-
density output of the point cloud decoder and the ground truth,
while the dense loss term compares the high-density output point
cloud with the same ground truth. The weighting parameter « is
used during training to first prioritize a good global structure of
the coarse prediction and then gradually put increasing emphasis
on local accuracy in the dense point cloud prediction.

Both the coarse and dense loss terms are calculated using the
Chamfer Distance (CD) between the point cloud predicted by the
network P; and the ground truth input point cloud P,.

1 1 1
CD(Py,Py) == — min ||x — y|l, + — min ||y — x||
o 2<|P1|X;1 R |P2|y;2 O

yep;
(6)

Since the Chamfer Distance aims to find the closest point in the
ground truth point cloud for each point in the input point cloud
and vice versa, it can be considered as an approximate surface-to-
surface distance on point cloud data between the respective
anatomical shapes.

2.7 Implementation and Training

Our deep learning experiments are conducted on a GeForce RTX
2070 Graphics Card with 8 GB memory. We use TensorFlow
(Abadi et al., 2016) and Scikit-learn (Pedregosa et al., 2011) for
our deep learning and machine learning implementations,
respectively. All VAEs are trained using the Adam optimizer
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(Kingma and Ba, 2014) with a mini-batch size of 4, which we
empirically found to provide a good balance between the memory
and time constraints of our setup and the improved gradient
quality during network training. The training duration is set to
150,000 steps based on the convergence of the loss function in the
validation dataset. We set all loss weighting parameters to small
values (a and  to 0.01, y to 0.1) at the start of training to focus on
obtaining a good coarse reconstruction of the two anatomy point
clouds. We then gradually increase both « and y to improve local
prediction quality in both anatomy and ECG outputs. After both
parameters have reached a value of 1, we increase the § parameter
using a variation of the monotonic annealing schedule (Bowman
et al, 2015) to improve the latent space quality. We stop the f8
value at 0.25, which we have empirically found to provide a good
balance between overall reconstruction quality and latent space
quality.

3 EXPERIMENTS AND RESULTS

We evaluate the proposed multi-domain VAE in terms of its
performance in multiple tasks. First, we investigate its ability to
correctly reconstruct paired input data from all three domains
(Section 3.2). Second, we assess its ability to generate virtual
populations of realistic ECGs and anatomy point clouds, both
within and across the different domains (Section 3.3, Section
3.4). Third, we analyse the effect of certain latent space changes
on the reconstructed ECG and anatomy shapes to gain a better
understanding of the latent space distribution (Section 3.5).
Finally, we compare the compressed latent space
representation of the proposed multi-domain VAE with its
single-domain counterparts in a cardiovascular disease
classification task (Section 3.6). We propose multiple different
metrics for the outlined experiments to account for the different
data types and objectives (Section 3.1).

3.1 Evaluation Metrics

In order to assess the VAE’s ECG reconstruction quality, we
follow the metrics suggested by Zhu et al. (2019), which allows us
to compare our results with the task of ECG-only generation
without any image-based anatomy information. Accordingly, we
use the Root Mean Squared Error (RMSE) as our first metric to
quantify the distance between predicted ECG time series x and
ground truth ECG time series y in our test dataset, each with a
length of N time steps.

@)

In addition, our second ECG reconstruction metric, Percentage
Root Mean Squared Distance (PRD), provides a relative and
normalized quantification of the reconstruction performance.

N

1 2
ZTIXZ Z; (xn - yn) * 100 (8)

PRD =
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FIGURE 3 | Qualitative reconstruction results of the proposed method
for three sample cases.

The anatomy reconstruction quality achieved by our VAE is
evaluated using the average Chamfer Distance (Eq. 6) between
the predicted and ground truth point clouds of the test dataset for
both the ED and ES phases.

Similar to work by Delaney et al. (2019) on ECG-only
generation, we propose the Maximum Mean Discrepancy
(MMD) (Gretton et al, 2012) between two randomly
generated distributions as a metric to assess the generative
ability of our network. Hereby, K refers to the Gaussian kernel
and x and y refer to the two sample distributions of sequences
with sizes n and m respectively.

1
2

K(x,-,yj)

)

1 & 1 & 2
MMD = mzZK(X{,xj)+mZZK(y,,yj)—n—m

i=1 j#i i1 j#i
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ﬂ
.
i

In order to evaluate the quality of the generated anatomies at
ED and ES separately, we select the widely used clinical evaluation
metrics LV volume, RV volume, and myocardial mass. In
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TABLE 1 | ECG reconstruction results of multiple methods on different datasets.

Method Dataset RMSE PRD

BILSTM-CNN GAN * MIT-BIH 0.22 51.80
BILSTM-GRU * MIT-BIH 0.31 74.05
BILSTM-LSTM * MIT-BIH 0.35 84.80
BILSTM-MLP * MIT-BIH 0.61 147.73
ECG VAE United Kingdom Biobank 0.16 26.51

Multi-Domain VAE (Proposed) United Kingdom Biobank 0.17 27.45

*Values obtained directly from Zhu et al. (2019)

addition, we choose the Stroke Volume (SV) (Eq. 10) and
Ejection Fraction (EF) (Eq. 11) metrics for both the LV and
RV, to assess the correspondence between the generated
anatomies at ED and ES.

SV = EDV - ESV. (10)
N
EF = x 100. (11)
EDV

Here, EDV and ESV refer to ED volume and ES volume,
respectively. Furthermore, we select the Area Under the
Receiver Operating Characteristic (AUROC) curve to evaluate
the performance in the binary cardiac disease classification task.

3.2 Reconstruction Ability

We first focus on the network’s ability to accurately reconstruct
both the two input point clouds and the input electrocardiogram.
To this end, we pass the ED point cloud, the ES point cloud, and
the ECG time series of each case of the test dataset through the
network and compare the network’s predicted outputs with the
respective inputs. Figure 3 shows input and prediction data of
three such sample cases.

We observe good global and local alignment between inputs
and predictions of both point cloud and time series data. Class
information in the form of three anatomical substructures is also
accurately reconstructed for both ED and ES point clouds. Next,
we quantify our method’s reconstruction ability on the test
dataset using separate metrics for each modality.

For the ECG data, we select the RMSE (Eq. 7) and PRD (Eq. 8)
metrics to determine our method’s reconstruction error. We
apply min-max normalization to both the input and predicted
time series data before calculating the metrics, in order to
compare the obtained values with the performance of multiple
approaches proposed by Zhu et al. (2019) for single-domain
ECG-only generation using the MIT-BIH dataset (Goldberger
et al., 2000) (Table 1). In addition, we train and evaluate a
separate.  VAE on only the ECG signals of our
United Kingdom Biobank dataset as a benchmark method for
our multi-domain VAE. It follows the encoder and decoder
architecture presented in Figure 2C,D and uses the same ECG
data and preprocessing steps as our proposed approach, allowing
for a direct comparison (Table 1).

We find that the proposed multi-domain VAE method
achieves lower reconstruction errors than the ones reported by
Zhu et al. (2019) for any of their architectures, both in terms of

Multi-Domain VAEs for ECG-Anatomy Modeling

TABLE 2 | ED and ES anatomy reconstruction results of our method on the test
dataset.

Phase Class Chamfer Distance (mm)
ED LV endocardium 1.37 (£0.40)
LV epicardium 1.29 (+0.29)
RV endocardium 1.42 (£0.29)
ES LV endocardium 1.11 (£0.39)
LV epicardium 1.23 (£0.45)
RV endocardium 1.35 (+0.55)
Values represent mean (+standard deviation)
ED anatomy ES anatomy ECG
Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
. LV endocardium - LV epicardium . RV endocardium
FIGURE 4 | Five randomly generated sample outputs where each row
presents one case.

RMSE and PRD, despite the more challenging task of combined
anatomy and electrocardiogram generation. However, this result
should only be interpreted as an approximate marker of the
reconstruction quality of our method instead of a direct
outperformance, since different datasets and signal
preprocessing steps were used in each analysis. For example,
while the proposed approach uses the ECG signals averaged to
one cardiac cycle from the United Kingdom Biobank, Zhu et al.
(2019) did not mention the usage of averaged signals. Compared
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TABLE 3 | ECG generation results of multiple methods based on different datasets.

Method

4CNN GAN (Delaney et al., 2019)*

4CNN BILSTM GAN (Delaney et al., 2019)*
VAE (Kuznetsov et al., 2021)*

Gold standard (test dataset)

ECG VAE

Multi-Domain VAE (Proposed)

*Values obtained directly from Delaney et al. (2019) or Kuznetsov et al. (2021)

to the VAE trained on only ECG signals on the same
United Kingdom Biobank dataset, our method achieves similar
results for both evaluation metrics.

We quantify the reconstruction ability of our method for
the point cloud data of the test dataset using the Chamfer
Distance (Eq. 6). The resulting values for both ED and ES
reconstructions, split by the three cardiac substructures, are
reported in Table 2.

We find low distance values that are smaller than the voxel
sizes of the image acquisitions (1.8 x 1.8 x 8.0 mm?>) used to
generate the 3D point clouds for both the ED and ES phases as
well as for all cardiac substructures. Distances are slightly larger
for the right ventricle compared to left ventricular structures and
for the ED phase than for the ES phase.

3.3 Generative Ability

In order to assess our network’s ability to generate diverse
populations with realistic anatomies and ECGs, we randomly
sample from the latent space distribution and pass the resulting
vectors through the three branches of the decoder. The mean and
standard deviation values of the multivariate normal distribution
of the latent space are determined based on the averaged encoder
outputs of the training data. Hence, every component of the latent
space is involved in the sampling step. Five randomly generated
decoder outputs, each consisting of an ED anatomy point cloud,
an ES anatomy point cloud, and an ECG, are depicted in Figure 4.

We observe that all outputs follow realistic shapes and sizes
while maintaining a good amount of diversity between different
cases. For example, the case in the first row exhibits considerably
larger heart sizes at both ED and ES and a noticeably higher
R-peak in the electrocardiogram as compared to the case in the
fourth row.

Next, we evaluate the multi-domain VAE’s capability for
ECG generation on a population level. To this end, we
synthesize 500 virtual electrocardiogram signals from
randomly sampled latent space vectors and calculate their
MMD (Eq. 9) with respect to the ECGs in our test dataset. We
repeat the same procedure for the ECG-only VAE to enable a
comparison of our multi-domain approach with a single-
domain method on the same dataset. We also randomly
split the test dataset into two subsets and determine the
MMD between these two subsets to obtain a gold standard
benchmark for desired ECG population similarity. The
resulting values are reported in Table 3, together with
MMD scores obtained from different approaches by

Multi-Domain VAEs for ECG-Anatomy Modeling

Dataset MMD
MIT-BIH 1.03 x 107
MIT-BIH 113 x 107°
LUDB 3.83 x 10°°
United Kingdom Biobank 1.40 x 107
United Kingdom Biobank 3.05 x 107°
United Kingdom Biobank 3.54 x 107°

TABLE 4 | Clinical metrics of meshed ED and ES anatomy point clouds generated
by our method.

Phase Clinical Metric Gold Standard Ours
ED LV volume (ml) 141 (£30) 139 (+31)
RV volume (ml) 170 (£34) 176 (+37)
ES LV volume (ml) 59 (x15) 58 (x16)
RV volume (ml) 78 (+20) 80 (+24)
ED/ES LV mass (g) 102 (£28) 99 (£29)

Values represent mean (+standard deviation) in all cases

Delaney et al. (2019) on the MIT-BIH dataset (Goldberger
et al., 2000) and by Kuznetsov et al. (2021) on the LUDB
dataset (Kalyakulina et al., 2020) for ECG-only generation.

Our method achieves lower MMD scores than all other
methods by a considerable margin. However, similar to the
comparisons of our method’s reconstruction performance, it
should again be noted that the other approaches utilize
different datasets and preprocessing steps. For example,
Delaney et al. (2019) generated ECGs with multiple cardiac
cycles, while Kuznetsov et al. (2021) focused on ECGs
consisting of a single cardiac cycle. Furthermore, we find that
the multi-domain VAE achieves a comparable MMD value as the
ECG-only VAE. Comparing our method’s MMD to the gold
standard MMD achieved on the same test dataset, we observe a
74% lower MMD value.

The population quality of the generated ED and ES anatomies
is assessed by calculating population-wide cardiac anatomy
metrics, which are commonly used in clinical practice, for
both the 500 generated point clouds and the point clouds of
the test dataset that we consider the gold standard for this
analysis. Table 4 depicts the resulting values for the LV and
RV volumes of each phase and the LV mass.

All clinical metrics show high degrees of similarity between
generated and gold standard point cloud populations for both ED
and ES phases, indicating that the VAE was able to successfully
generate realistic virtual anatomies.

3.4 Combined Multi-Domain Generation

While our previous analyses have demonstrated the
population quality of the generated ECGs and anatomies
separately for each domain, we also want to investigate
whether the same holds true for combined distributions of
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TABLE 5 | Clinical function metrics of meshed point clouds generated by our

method.

Clinical Metric Gold Standard Ours
LV EF (%) 58 (+8) 57 (£9)
LV SV (ml) 82 (£21) 81 (x22)
RV EF (%) 55 (£7) 55 (+8)
RV SV (ml) 92 (+19) 96 (+22)

Values represent mean (+standard deviation) in all cases

TABLE 6 | Difference in randomly generated multi-modal distributions combining
MRI-based anatomy and ECG-based electrophysiology.

Metric Gold standard Ours

MMD 502 x 107 472 x 107

Values represent mean in all cases

these outputs. To this end, we first calculate common clinical
metrics combining ED and ES anatomies (LV SV (Eq. 10), RV
SV (Eq. 10), LV EF (Eq. 11), RV EF (Eq. 11)) to assess

Multi-Domain VAEs for ECG-Anatomy Modeling

mechanical cardiac function for both our generated and test
dataset populations (Table 5).

We observe very good alignment between the clinical function
metrics from all generated and gold standard meshed point
clouds, indicating that our method is capable of synthesizing
accurate ED-ES anatomy pairs.

Results presented up to this point demonstrate the ability of
our method to produce realistic ECG populations, as well as ED
and ES point clouds. In order to evaluate whether the method
generates anatomy and electrocardiogram outputs preserving the
correspondence between them, we select all cardiac anatomy and
function metrics from Table 4 and 5 and concatenate them with
the respective ECG signal to obtain a combined, low-dimensional
representation of anatomy and ECG data for each case. We then
calculate the MMD between the generated and test datasets
consisting of the combined data representations for each case
(Table 6). Similar to Table 3, we also determine the MMD
between two random subsets of the test set as our gold
standard value.

Our method obtains MMD values close to the gold standard
ones, suggesting a good degree of coupling between the generated
anatomy and ECG outputs.
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FIGURE 5 | Effects of varying different latent space components by -3 standard deviations (S.D.) and +3 S.D. from their mean values on the generated ED (A), ES
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FIGURE 6 | Area under curve (AUC) prediction differences in ROC
curves of the cardiac disease classification results based on latent space
representations of VAEs trained on combined anatomy and ECG, only
anatomy, and only ECG data.

3.5 Latent Space Analysis

A desirable feature of a variational autoencoder is the
existence of an interpretable, disentangled latent space, in
which different components are responsible for encoding
various identifiable structural aspects of the generated
output shapes. In order to analyze these characteristics for
the proposed multi-domain VAE, we vary the values of each
latent space dimension in both positive and negative
directions while keeping the mean values for the remaining
dimensions the same, and pass the resulting latent space
vectors through the decoder to obtain outputs that
correspond to the applied latent space changes. Three
sample latent space components with easily visible effects
on the generated multi-domain outputs are depicted in
Figure 5.

Regarding the point cloud outputs, each component’s
variation results in similar changes to the ED (Figure 5A)
and ES (Figure 5B) anatomies, respectively. Component 1
controls the overall size of the point cloud and component 2
causes a tilt in the basal short-axis plane of the heart, while
component 3 converts elongated, thin hearts to shorter and
wider ones. Regarding the ECG data (Figure 5C), component
3 changes both the R-peak height and existence of the S-wave,
component 2 increases the height of the P-wave and T-wave,
while component 1 has an effect on the height and width of the
R-wave as well as the height and sharpness of both the P and
T-waves.

3.6 Cardiac Disease Classification

In order to further explore the VAE’s latent space, we
investigate the utility of its compressed multi-domain
representation of cardiac anatomy and physiology
information for the task of cardiac disease classification,
and compare its performance to similar single-domain
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representations. To this end, we first select the 150 healthy
and 150 pathological United Kingdom Biobank cases
described in Section 2.1 and use them as the basis for our
binary disease classification task. We then pass the
corresponding bitemporal anatomy and ECG data of each
case through their respective encoders in the VAE to obtain
the pertinent multi-domain latent space encodings, which
serve as input features for the classification. Next, we
repeat the same procedure using the point cloud encoders
and the time-series encoder separately to calculate the single-
domain  encodings of bitemporal anatomy and
electrophysiology information, respectively, for the same
subjects. For each of the three resulting latent space
datasets (multi-domain, anatomy-specific, and ECG-
specific), we train a logistic regression classifier to identify
subjects with cardiac disease. Figure 6 depicts the binary
classification results of the 10-fold cross validation
experiments for each combination of latent space datasets
in the form of AUROC curves. We find that the multi-domain
representation of anatomy and ECG achieves the highest
AUROC score.

4 DISCUSSION

In summary, we have demonstrated in our experimental results
that the proposed multi-domain VAE can excel at a variety of
different tasks despite the challenging multi-domain setting.

4.1 Reconstruction Accuracy

The point cloud branches are able to reconstruct complex 3D
anatomical shapes with high accuracy on both a local and global
level and for both the ED and ES phases of the cardiac cycle
(Figure 3) with Chamfer Distances below the underlying image
resolution (Table 2). This shows the high suitability of the
anatomy-specific network architecture. In addition, it is able to
accurately maintain class information identifying the different
cardiac substructures and cope with anatomies at both the ED
and the ES phase of the cardiac cycle. This indicates that an
introduction of additional class information about important
anatomical substructures or pathological areas (e.g. scar
regions in the myocardium) or a further temporal extension is
possible. In our experiments, we observe slightly higher distance
values for the RV compared to the LV substructures and for the
ED phase compared to the ES phase. We hypothesize that this is
likely caused by the generally larger heart sizes that are
represented by point clouds with the same resolution as the
smaller hearts, which in and of itself leads to larger Chamfer
Distance values. Therefore, we do not presume this to impede any
future applications, as the differences are not due to any
anatomical reasons. Furthermore, we find no erroneous
overlappings of different anatomical substructures (e.g., at the
interventricular septum) despite no loss term specifically
enforcing such consistency. From these findings, we conclude
that the point cloud branches are flexible and robust with respect
to temporal and spatial variations and are able to capture the
complexity of part-whole relationships in 3D structures, all of

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 886723


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Beetz et al.

which are crucial for accurate cardiac anatomy modeling. These
results are achieved despite the complex multi-domain setting in
which separate point cloud branches for ED and ES as well as
another ECG-based branch all share a single latent space and are
trained jointly using a weighted combination of several loss
function terms. This indicates that the good reconstruction
performance of the point cloud-specific deep learning
architecture is not limited to the single-domain setting, as in
Beetz et al. (2021b), but can be applied effectively in conjunction
with data from new domains while still maintaining the more
challenging variational setup.

The time-series branches show a similarly good performance in
the reconstruction task with a high degree of visual closeness between
reconstructed and gold standard signals (Figure 3). We also find
considerably lower RMSE and PRD scores than multiple benchmarks
(Table 1). However, we interpret this finding as only an approximate
comparison due to the usage of another dataset (MIT-BIH) and
preprocessing steps to train and evaluate the benchmark methods.
Nevertheless, while the MIT-BIH dataset has some differences
compared to the United Kingdom Biobank dataset used in this
work (e.g., ambulatory two-channel ECG vs. 12-lead ECG, 47 subjects
vs. 1,300 subjects, multiple cardiac cycles vs. single cardiac cycle), they
also share many similarities (e.g., both are ECG datasets with normal
and pathological subjects, all compared methods focus on single lead
ECG signals). In addition, we have applied similar filtering steps as
the benchmark approaches (e.g, min-max normalization, same
choice of sequence length) to the ECG signals in order to
improve comparability between the two datasets. Hence, while a
direct comparison with the other methods is limited by the dataset
differences, the results still give an indication that the time-series
branch architecture is able to successfully encode and decode different
temporal patterns of lead II ECG signals. These findings are further
corroborated by the similar reconstruction performance of the ECG-
only VAE and the proposed multi-domain VAE. Since these results
were achieved on the same United Kingdom Biobank dataset, they
enable a direct comparison which is not affected by differences in the
data or preprocessing steps between the methods. Hence, the similar
RMSE and PRD values observed for both methods indicate that the
multi-domain VAE was able to capture the ECG-specific information
required for the reconstruction task similarly well as a single-domain
ECG approach.

4.2 Generation of Virtual Multi-Domain

Populations
In addition to the multi-domain VAE’s reconstruction ability, we
also find it to be capable of generating arbitrarily-sized virtual
populations of combined bitemporal anatomies and ECGs with a
high degree of realism and correct levels of shape diversity. We
are able to observe this visually in Figure 4, where typical shape
changes in biventricular surfaces (e.g., overall size, basal plane tilt,
ventricular thickness) and ECGs (e.g., R-peak height and width,
P-wave peakedness, small noise levels in the signal) appear in the
generated virtual examples in a similar way as in the real dataset.
The quantitative results further corroborate this finding in
multiple ways. First, the generated ECGs from our VAE achieve
lower MMD scores than the gold standard real ECGs from our
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test set (Table 3). On the one hand, the generally small values
indicate that the distribution of real ECG signals is closely
mimicked by the generated ones on both individual and
population levels (Table 3). On the other hand, we
hypothesize that the lower MMD scores for the generated
ECGs are likely caused by the VAFE’s ability to act as a
regularizing self-prior and reduce noise. The proposed multi-
domain VAE also achieves a comparable MMD score as the ECG-
only VAE benchmark on the same United Kingdom Biobank
dataset, which indicates that the ECG population was well
captured despite the challenging inclusion of additional
bitemporal anatomy information. Furthermore, our proposed
method obtains lower MMD scores than multiple prior
approaches in its ECG generation task. While this particular
finding should again (similar to the reconstruction task) only be
seen as an approximate comparison due to the usage of different
datasets, it does nevertheless provide further evidence that the
architectural design of the time-series branches can successfully
convert random latent space samples into ECG populations.
Second, the clinical volume-based metrics calculated for the
population of generated anatomies closely resemble the ones
obtained from the true gold standard test dataset, both in
terms of their mean and standard deviation values (Table 4).
This indicates that the point cloud branches are able to synthesize
realistic biventricular shapes that accurately represent the
morphological variety across the whole population. The
network achieves this for both the ED and ES phases showing
its architecture’s ability to function well with temporally related,
but different shape distributions. Third, the clinical function
metrics, which combine volume-based anatomical information
from ED and ES phases, exhibit high degrees of similarity
between the generated and gold standard anatomies in terms
of both mean and standard deviation values (Table 5). This
demonstrates that the synthesized anatomies do not only reflect a
realistic population at ED or ES separately but also when
considered as a combined bitemporal anatomy population.
This correspondence between ED and ES shapes in the
generated population is highly beneficial for multiple follow-
up tasks (e.g. mechanical deformation modeling (Beetz et al,
2021c)). We also conclude from these results that the ED-ES
correspondence information is likely captured in the shared latent
space of the VAE and that the respective ED and ES point cloud
branches are sufficiently powerful to correctly take into account
cross-temporal information during training. Fourth, when
combining ECG and bitemporal anatomy information in a
unified representation, we find similar MMD values between
synthesized and real gold standard populations (Table 6). This
indicates that good correspondence is present not only between
different cardiac phases but also between the generated ECG and
anatomy data and that both the decoder branches and latent
space information adequately model these inter-domain
relationships. We note that while the selected cardiac metrics
used to represent the anatomy in the unified representation only
act as low-dimensional approximations of the full generated
shapes for the MMD calculations, they were weighted
accordingly to give the anatomical and ECG-based
information a balanced influence in the combined
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representation. In general, since the aforementioned results were
achieved using real ECG data, we hypothesize that the VAE could
also be applied to synthetically-generated ECGs (e.g. via
electrophysiology simulations based on mathematical models)
for the task of generating personalized models of both normal and
pathological data in real-time, which we wish to explore in detail
in our future work.

4.3 Latent Space Quality

The positive results in the data generation tasks are likely
significantly facilitated by the high quality of the latent space,
which we observe to exhibit a good degree of disentanglement
and interpretability (Figure 5). This can be seen by the clearly
distinguishable effects that different individual latent space
components have on the reconstructed anatomy and ECG
outputs. We also find such latent space changes to cause
gradual deformations of the output shapes of all domains
while maintaining a realistic overall appearance even in case of
larger deviations from the mean values. This indicates that the
latent space learnt during training at least approximately
resembles a multivariate normal distribution as enforced by
the Kullback-Leibler divergence loss, as opposed to a more
sparse and disordered representation that might lead to
sudden unrealistic outlier shapes in the generated
distributions. But compared to the zero mean parameterization
of all Gaussians, we achieve better generation results when using
the mean values predicted by the encoders on the training dataset
to parameterize the latent space normal distributions for
sampling. This shows that the actual latent space distribution
still exhibits some differences to the target normal distribution.
Nevertheless, this slight deviation is to be expected as the overall
VAE loss represents a compromise between accurate
reconstruction and latent space quality. We find the weighting
parameter f3 to be crucially important for determining the optimal
balance for the given dataset empirically, especially considering
our highly challenging multi-domain setting. The similar shape
changes observed in the ED and ES reconstructions corroborate
the good choice of f further and demonstrate that the
aforementioned high interpretabiliy of the latent space is
retained even in the cross-domain case.

4.4 Cardiovascular Disease Classification

As evidenced by the cardiac disease classification results in
Figure 6, the multi-domain latent space representation is able
to successfully capture shape patterns related to both the healthy
hearts and various cardiovascular pathologies in both the ECGs
and the bitemporal anatomies. This offers the possibility to
discover, visualize, and analyze pathology-specific feature
combinations in both ECG and anatomy. One approach to
achieve this would be to compare healthy and pathological
latent spaces in terms of their respective mean representations
or distributions and then reconstruct the corresponding
anatomies and ECGs for each group to visualize the
differences. Another possibility might be to identify the latent
space components that are most predictive during the
classification tasks and study what effects the corresponding
changes in these latent components have on the reconstructed
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anatomies. Furthermore, when applying the multi-domain VAE
trained on healthy subjects to diseased cases, we observe a slight
decrease in reconstruction performance compared to unseen
healthy cases, which also indicates that the network has learnt
patterns specific to the healthy subpopulation. These results
provide further proof of the importance of image-based and
ECG shape analysis on both local and global scales for cardiac
disease identification, which is in line with other previous findings
(Mauger et al., 2019; Acero et al., 2022). One crucial difference to
these prior works, however, is the combination of anatomy and
ECG information in a compressed format that we observe to be
more effective than similar approaches relying on either anatomy
or ECG information alone (Figure 6). This multi-domain
approach is particularly advantageous for the selected
cardiovascular disease class containing different pathologies
whose diagnoses are usually based on different modalities (e.g.,
cardiac MRI, ECG). Furthermore, we observe smaller differences
in AUROC values between ECG + anatomy and anatomy-only
information than between ECG + anatomy and ECG-only
information. On the one hand, this might be due to the
individual pathologies considered in the classification task that
might be more easily predicted based on anatomy information.
On the other hand, it could also be caused by our focus on only
lead II ECG signals from a single heartbeat. This provides the
ECG-only classifier with less information, which is in contrast to
the high-dimensional multi-class 3D point cloud data that serves
as input to the anatomy-based classifier. We also note that the
latent space representation was obtained without any prior
explicit training for the task of disease prediction, which
outlines the potential for further improvements in directly
finding pathology-specific compressed shape representation.

4.5 Architectural Design and Training
We have found the architectural design of our network
(Figure 1C) to be highly suitable to process combined ECG
and anatomy input data. The point cloud branch architectures
(Figure 2A,B) are able to apply deep learning operations directly
on point cloud data, which allows surface data of much higher
resolution to be efficiently processed and used for storing
anatomical shape information. This is in contrast to the
widely-used voxelgrid representations (Cicek et al., 2016; Bello
etal., 2019; Xu et al,, 2019), which are considerably less memory-
efficient at managing surface-level data leading to lower
resolution, longer processing times, and ultimately limit the
overall accuracy of the modeled anatomy. Furthermore, each
of the high-dimensional point clouds combines both the left and
right ventricular anatomy and maintains separate labels for the
LV endocardium, LV epicardium, and RV endocardium
substructures. This results in a more holistic and accurate
representation of the true 3D cardiac anatomy compared to
the non-labelled single ventricle approaches and enables a
more detailed and effective study of the structure-function
interactions between MRI-based cardiac anatomy and ECG-
based cardiac electrophysiology information.

As opposed to traditional shape modeling approaches, such as
principal component analysis (Mauger et al., 2019; Acero et al,,
2022), the deep learning architecture is able to capture
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significantly more complex and non-linear shape variations,
which is important for the accurate modeling of the intricate
interactions of both single-domain ECG and anatomy data, but
especially in the multi-domain setting. In addition, no point-to-
point correspondence is required in the point cloud dataset and
no prior shape registration step needs to be applied, which makes
the preprocessing steps considerably simpler, faster, and less
error-prone compared to the PCA (Figure 1A,B). Another
advantage of the VAE framework is its condensed latent space
representation of the input data, which is useful for a variety of
different tasks as shown in this work. The design of the time-
series branches (Figure 2C,D) relies on a combination of
convolutional, pooling, and fully connected layers, as opposed
to recurrent layers such as Long Short-Term Memory (LSTM) or
Gated Recurrent Units (GRU), and its good performance is in line
with previous findings in ECG modeling (Zhu et al., 2019). For all
branches, we hypothesize that the fully connected layers on both
sides of the latent space in the encoder and decoder architectures
provide the necessary power and flexibility to extract the relevant
information for each domain from the shared latent space, while
still accounting for inter-domain correspondence. Despite no
specifically designed consistency loss between different output
branches, we find that a careful empirical choice of weighting
parameters in Eq. 3 and Eq. 5 in the domain-specific loss function
components is sufficient to obtain high quality outputs both
intra-domain and inter-domain. Finally, we note that the
domain-specific data preprocessing of the proposed approach
offers a certain degree of robustness and flexibility with regards to
changes in the input data (e.g., different image resolutions in the
cine MRI acquisitions), as both the 3D cardiac surface
reconstruction and the ECG preprocessing steps can be
adjusted as required in order to still be capable of creating 3D
anatomy point clouds and ECG time series in a suitable format for
the multi-domain VAE. For example, the same point cloud
resolution can be maintained by the 3D surface reconstruction
method despite changes in the underlying image resolution.

4.6 Limitations

The presented approach to multi-domain cardiac anatomy and
physiology modeling also has some limitations. While it has
previously been shown that the position and orientation of the
heart with respect to the ECG electrodes on the torso significantly
affects the ECG shapes (Mincholé et al., 2019), we did not include
any torso information in this work. However, since the VAE was
trained with paired anatomy and ECG information from real
acquisitions, we hypothesize that the network is at least to some
extent able to implicitly learn the effect of the torso on the output
signals. We also note that since the 3D anatomy models were
derived from 2D cine MRI acquisitions, any limitations (e.g., image
resolution) or errors (e.g. slice misalignment due to inconsistent
breath holds) introduced during the image acquisition or 3D
reconstruction will affect the accuracy of the anatomical shapes.
Similarly, we also note that the United Kingdom Biobank imaging
study uses very established acquisition protocols and certain
quality control measures that might not be fully representative
of a standard clinical environment. While this makes the results
easier to understand, it might also require some adjustments to the
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proposed methods in case of their application to different settings
with a possibly larger variety of acquisition conditions and noise.
While this study only focuses on lead II ECGs averaged across
multiple cardiac cycles and thereby foregoes additional
information from other leads and multi-heartbeat patterns, we
believe that the core part of the architecture has the potential to be
extended to the full-cycle 12-lead case. This could be achieved by
first applying the same preprocessing steps to each of the 12 leads
in order to represent each lead signal as a normalized 400-
dimensional vector. The resulting vectors could then be
concatenated and input into the ECG branch of the VAE. The
ECG loss could be easily extended to include multiple leads by
summing or averaging over the lead-specific mean squared errors.
In addition, adjustments to the ECG branch architecture, training
schedule, and possibly the lead-specific weighting terms in the loss
function will likely be necessary to accommodate the increased
difficulty of processing all 12 leads. Another limitation of the
method is that no anatomical information about the atria is
included in the model, which plays an important role in
modeling electrophysiology. However, as the, to the best of our
knowledge, first deep learning approach to combine anatomy and
ECG data in a single data-driven model, we found the utilized
information sources sufficient to demonstrate the feasibility and
show the benefits of a multi-domain cardiac model. Information
from other domains can be included into the model in future work,
for example, as extra classes in the point cloud inputs, additional
time series in the ECG inputs, or as new network branches
altogether.

5 CONCLUSION

In this work, we have developed and evaluated a novel multi-
domain VAE with the ability to capture combined cardiac anatomy
and physiology information and their intricate interconnections in
a single data-driven model. We have shown that the network can
successfully handle the complex interdependencies of multi-
domain datasets by reconstructing existing cardiac data from

low-dimensional latent spaces with high accuracy and
generating realistic populations of corresponding cardiac
anatomies and ECGs. Furthermore, we have found an

interpretable latent space in the VAE with each component
responsible for a separate morphological change in anatomy
and ECG outputs enabling a more localized analysis of cardiac
health. Finally, we have observed that combined anatomy and ECG
representations improve the identification of cardiovascular
disease compared to single-domain approaches. This shows the
utility and positive synergies of large-scale data integration from
multiple sources in cardiology and opens up promising future
research avenues for possible further multi-domain integration.
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Mobile-health solutions based on heart rate variability often require electrocardiogram
(ECG) recordings by inexperienced operators or real-time automatic analyses of long-term
recordings by wearable devices in free-moving individuals. In this context, it is useful to
associate a quality index with the ECG, scoring the adequacy of the recording for heart rate
variability to identify noise or arrhythmias. Therefore, this work aims to propose and validate
a computational method for assessing the adequacy of single-lead ECGs for heart rate
variability analysis that may run in real time on wearable systems with low computational
power. The method quantifies the ECG pseudo-periodic structure employing cepstral
analysis. The cepstrum (spectrum of log-spectrum) is estimated on a running ECG window
of 10 s before and after “liftering” (filtering in the cepstral domain) to remove slower noise
components. The ECG periodicity generates a dominant peak in the liftered cepstrum at
the “quefrency” of the mean cardiac interval. The Cepstral Quality Index (CQ)) is the ratio
between the cepstral-peak power and the total power of the unliftered cepstrum. Noises
and arrhythmias reduce the relative power of the cepstral peak decreasing CQl. We
analyzed a public dataset of 6072 single-lead ECGs manually classified in normal rhythm or
inadequate for heart rate variability analysis because of noise or atrial fibrillation, and the
CQl = 47% cut-off identified the inadequate recordings with 79% sensitivity and 85%
specificity. We showed that the performance is independent of the lead considering a
public dataset of 1,000 12-lead recordings with quality classified as “acceptable” or
“Unacceptable” by visual inspection. Thus, the cepstrum describes the ECG periodic
structure effectively and concisely and CQI appears to be a robust score of the adequacy
of ECG recording for heart rate variability analysis, evaluable in real-time on wearable
devices.

Keywords: heart rate variability, fourier transform, EKG, power cepstrum, signal quality, premature beat, wearable
system, mobile ECG monitoring

1 INTRODUCTION

Advancements in sensors technology are making it possible to monitor the electrocardiogram (ECG)
for long periods in unattended subjects through wearable systems, promoting solutions for
telemonitoring, home rehabilitation, mobile health, and ambient-assisted living applications.
Most of these applications quantify indexes of heart rate variability to provide information on
the autonomic control and cardiorespiratory interactions, based on ECG recordings performed by
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inexperienced users and on automatic analyses of ECG tracings.
In these cases, it is important to associate a quality score with the
recorded signals. In telemonitoring applications this would
indicate to inexperienced operators the need to repeat the
recording if the ECG quality is too low; in ambient assisted
living applications, this would allow expert systems not to take
decisions on the base of unreliable ECG signals. A further
requirement is to exclude arrhythmias if the aim is to quantify
heart rate variability, as during exercise-based rehabilitation
programs for restoring the autonomic control in cardiac
patients after heart surgery or in diabetic individuals with
autonomic neuropathy. A normal rhythm is indeed necessary
to correctly interpret the indices of heart rate variability.

In the frame of domotic applications aimed at developing a
smart environment for elderly people, we had to deal with the
definition of an automatic score of the ECG quality in normal
rhythm. The domotic application consisted of a first layer of
sensors and devices with low computational power to collect
physiological and behavioral data to be sent to upper
computational levels operating decisions in support of the
assistance staff (Gower et al., 2011). In particular, the ECG
had to be recorded for hours or days on freely moving
subjects for a continuous assessment of heart rate variability
with wearable ECG sensors (Di Rienzo et al., 2010). In this
context, the occurrence of arrhythmic episodes, artifacts, and
noise was expected, making important the dynamic assessment of
data reliability in real-time automatically. These requirements
demanded an algorithm working on different leads separately and
running on low-power microprocessors on board the wearable
devices, to score the ECG quality, select the best lead, and identify

Cepstral Analysis and ECG Quality

the presence of normal sinus rhythm for the online evaluation of
heart rate variability. To deal with these requirements, we
originally designed an algorithm to characterize the ECG
quality from its periodic structure (Castiglioni et al., 2011).

We further developed the original algorithm and this work
aims to illustrate the capability of cepstral analysis to characterize
the pseudo-periodicity of the ECG and to propose and validate a
cepstral method for devices with low-computing power that
scores the quality of ECG leads for heart rate variability
applications.

2 METHODS

2.1 The Power Cepstrum
The Power Spectrum PS(f) of a signal s(t) is the squared
magnitude of its Fourier Transform:

PS(f) = |F[sM] (1)
The Power Cepstrum PC(t) of s(t) is the power spectrum of the
logarithm of PS(f):

PC(x) = |F[log PS(f)][* )

The Power Cepstrum was introduced to identify signals echoes
(Bogert et al.,, 1963; Oppenheim and Schafer, 2004). In fact, the
Fourier spectrum of the superposition of a signal and its echo
after 7 seconds is the product between the spectrum of the signal
and a periodic function with period 1/7 Hertz. The logarithm
converts the product into a sum and the following Fourier

spectral trend.

Time Fourier Frequency Fourier Quefrency
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FIGURE 1 | Power spectra and power cepstra of a sinusoid, sawtooth function and synthesised ECG. The signals were sampled at 200 Hz, the spectra were
calculated over 2048 points by Fast Fourier Transform (FFT) and the cepstra were calculated by FFT of the log-transformed spectra between 0 and 100 Hz (for clarity,
spectra are plotted up to 40 Hz, signals and cepstra up to 4 s). The cepstra of the sawtooth function and synthesized ECG show peaks at 1, 2, and 3 s representing the
train of power spectrum harmonics multiple of the fundamental frequency f, = 1 Hz; the sawtooth cepstrum also shows peaks at 0.24 s and its multiples
representing the modulation with period of 4.2 Hz visible in its log-spectrum; the ECG cepstrum shows a large peak at the lowest quefrency representing the decreasing
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FIGURE 2 | Definition of data windows for ECG cepstral analysis. (A): power spectrum of a synthesised ECG (dotted line) with interpolation of the maxima at the
fundamental harmonic and its multiples (continuous line). (B): average and 95% confidence interval of the lines interpolating the spectral maxima of 8 synthesised ECG.
The average interpolating line is relatively constant up to 20 Hz and rapidly decreases at higher frequencies, suggesting to limit the length of the frequency-domain data
window up to 20 Hz. (C): relative power of the main cepstral peak: median and interquartile range over 8 synthesised ECGs calculated by six different time-domain
data windows and by smoothing the spectral lines using moving average filters with bandwidth between 98 and 684 mHz. The best performance is obtained with the
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analysis identifies the echo delay as a spectral peak at “frequency”
7. The domain of the spectrum of the log-spectrum is treated as a
“frequency domain”, but after two Fourier transforms its units are
those of time, in seconds, not of frequency, in Hertz. For this
reason, it is referred to as the “quefrency” domain. Like
“cepstrum” and “liftering”, this term was coined by
interchanging consonants of familiar words (“frequency”,
“spectrum” and “filtering”) to emphasize that time-domain
methods are applied to functions of the frequency.

The cepstral approach, however, also gives us a concise way
of describing the harmonic structure of periodic signals. This is
illustrated in Figure 1, which compares power spectra and
power cepstra of three periodic functions with a period of 1.

The first function is a sinusoid: its power spectrum is composed of
a single peak at 1 Hz and, consequently, its cepstrum shows very-low
quefrency power only. The second signal is a sawtooth function: the
power spectrum consists of a sequence of harmonics at multiples of
the fundamental frequency f, = 1 Hz. When plotted in a log scale, this
train of peaks appears modulated by a slower oscillation with a
“period” of 4.2 Hz. These components are clear in the cepstrum:
harmonics at quefrencies T multiples of 7y = 1/f;, i.e. at T equal to 1, 2,
and 3 s, represent the train of spectral peaks; and cepstral peaks at 7=
1/42 Hz " (ie., 024 s) and its multiples represent the slower spectral
periodicity. The third periodic function is a synthesized ECG: in this
case, the log-spectrum appears as a quasi-sinusoidal train of peaks that
decays at frequencies higher than 20 Hz. Like the sawtooth cepstrum,
the ECG cepstrum shows peaks at 7 = 1, 2, and 3 s that represent the
train of harmonics.

2.2 Synthesized Electrocardiogram
To identify the parameters that better describe the cepstral
peaks of the ECG, we made use of synthesized ECG signals.

The same synthesized ECGs also allow us to quantify the
effects of added noise and deviations from pseudo-
periodicity. To synthesize ECG waves with realistic shapes,
we started with real recordings. One lead ECG (Einthoven II
lead, 200 Hz) was recorded in eight young volunteers (4 males/
4 females, age 21-38 years) resting supine for 10 min by a
Cardioline Delta 1 plus (REMCO ITALIA, Milan, Italy)
electrocardiograph. An ECG template was obtained from
each recording by R-peak synchronized average. About 600
beats were averaged for each template, virtually removing any
type of noise asynchronous with the R peak (baseline drift,
muscular noise, or 50/60 Hz power noise). A synthesized ECG
was generated from each template sequentially appending
copies of the template, spaced evenly. The mean R-R
interval of the 8 recordings ranged between 738 and
1126 ms and the distance between consecutive R peaks was
equal to the mean R-R interval of each original recording. In
this way, the 8 synthesized signals preserved the original heart
rate and ECG shape (see an example in the lower-left panel of
Figure 1).

2.3 Electrocardiogram Cepstral Estimator

We first introduced the ECG cepstral analysis in a conference
presentation as a new tool for assessing the quality of
electrocardiographic recordings (Castiglioni et al., 2011). In
the present work, we evaluate critically the performance of the
cepstral approach by applying it to synthesized ECG signals, to a
large number of real ECG recordings from public databases, and
to specific ECG tracings selected from our previous works as
being representative of specific physiological or pathological
conditions. However, before applying the cepstral analyses on
synthesized and real ECGs, this paragraph shows how we
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FIGURE 3 | Examples of ECG cepstral analysis. Left: 10-s ECG segments from the Physionet/Computing in Cardiology datasets of the 2011 (A-C) and 2017 (D)
Challenges; centre: log-spectra with polynomial trends (red line); right: cepstra before (dotted black) and after (red) liftering by polynomial detrending, with 75 the
quefrency of the estimated first harmonic. (A) shows a high quality ECG and a cepstrum with a single harmonic; the corresponding CQlis 91.1%. (B) shows a high quality
ECG, its cepstrum with 3 harmonics multiple of 7o, and CQl is 67.2%. (C) shows a low-quality ECG with a single harmonic identifiable in the liftered cepstrum and
CQl is 29.3% due to consistent low-quefrency noise. (D) shows a high quality ECG during atrial fibrillation: the log-spectrum does not have a periodic structure, the
liftered cepstrum does not show a clear first harmonic, and CQl is 22.1% only. When a clear cepstral first harmonic is identifiable (A-C), its quefrency 1, practically
coincides with the mean R-R interval, RR,.

empirically optimized some parameters of the cepstral estimator.
In particular, the power cepstrum estimator depends on the type
of data windowing and spectral smoothing, like the traditional
Fourier periodogram. Since the cepstrum consists of two
consecutive Fourier spectra, the length of the data windows
should be defined in the time domain for the first Fourier
Transform, selecting the duration of the ECG segments, and
in the frequency domain for the second Fourier Transform,
selecting the frequency range of the log-spectrum. The
window length in the time domain was set equal to 10s as a
trade-off between frequency resolution, which should be
sufficiently high to distinguish ECG harmonics, and amplitude

of heart rate changes, which should be relatively small to locally
preserve the pseudo-periodicity of the signal.

The optimal window length in the frequency domain was
identified as the frequency band where the height of ECG spectral
peaks remains relatively constant. This choice avoids introducing
very low quefrency components in the cepstrum due to slow
decreasing trends in the train of harmonics. The band was
identified by calculating the power spectrum for consecutive
10-s segments of each synthesized ECG and by interpolating
the maxima (Figures 2A,B). The interpolating function is
relatively stable below 20Hz and decreases at higher
frequencies, coherently with the literature (Golden et al,
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inset is an example of simulated supraventricular premature beat.
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FIGURE 4 | Effects of noise and deviations from periodicity on CQI. CQI median and interquartile range over 8 synthesised ECGs. (A): CQI at decreasing levels of
signal-to-noise ratios, SNR (SNR = o means no noise, SNR = 0 means noise only) with * indicating statistically significant difference vs. SNR =0 at p < 0.05; the inset is an
example of ECG with SNR = 4. (B): CQl at increasing values of variation coefficient, VC, of R-R interval when the heart rate dynamics consists in monotonic ramps (solid
circles) or random changes (open circles): median and interquartile range over 8 synthesised ECGs with * indicating statistically significant difference between ramp
and random changes at p < 0.05. (C): CQl without or with 1, 2 or 3 premature beats, with * indicating statistically significant difference vs. no premature beats at p < 0.05:
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1973). This suggests setting the length of frequency-domain data
windows between 0 and 20 Hz.

The type of window function critically defines the proper
combination between power leakage and main-lobe amplitude of
the Fourier spectrum (Marple, 1987), determining the relative
power of the cepstral peak at the quefrency 7, corresponding to
the mean R-R interval. To choose the time-domain data window,

the relative amplitude of the main cepstral peak was calculated
using six different windows (rectangular, triangular, 10%-cosine,
Hann, Hamming, and Blackman) and by smoothing the resulting
spectral lines with moving average filters of different orders. The
best performance was obtained with the Blackmann window
(Figure 2C): about 90% of the cepstral power is concentrated
in the main cepstral peak if the Blackman window is used in the
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time domain and the resulting spectral lines are smoothed with
moving average filters of order between 250 and 500 mHz.

As regards the data window in the frequency domain, we
selected the 10%-cosine taper (Bingham et al., 1967) because the
window length is relatively short (up to 20 Hz only, implying a
relatively large main lobe) and the cosine taper reduces leakage
with a small increase only of the width of the main lobe.

2.4 A Cepstral Score of the

relative power of this cepstral peak (and its higher harmonics if
present) as the index of ECG signal quality. To obtain a Cepstral
Quality Index (CQI), first the ECG cepstrum and its total power are
estimated as follows:

1. a 10-s ECG segment is selected, linearly detrended and
Blackman windowed, s(t);

. i . 2. the FFT power spectrum of s(¢) is calculated, P(f);
Electrocardiogram Quality in Normal Sinus 3. P(f) is truncated at 20 Hz, smoothed averaging contiguous
Rhythm lines over a frequency band of 300 mHz and log-transformed,
The evidence that the harmonic structure of synthesized ECGs log P(f);
produces cepstra with a dominant peak at the quefrency 7, 4. log P(f)islinearly detrended by least-square fitting a regression
corresponding to the average R-R interval, suggests taking the line and windowed by the 10%-cosine taper, log P(f)crs
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5. the FFT power spectrum of log P(f)cr is calculated obtaining
the cepstrum CP(7) at quefrencies 7> 0.05 s (inverse of 20 Hz,
highest frequency in the log spectrum);

6. the total cepstral power TOT is calculated by integrating
CP(t) up to 7 = 3.

Figure 3 shows examples of power cepstra CP(7) from real
ECG recordings selected from the datasets of the PhysioNet/

Computing in Cardiology 2011 Challenge (Silva et al., 2011) and
2017 Challenge (Clifford et al., 2017). Figures 3A,B show high-
quality ECG in normal sinus rhythm: their cepstrum consists of
the main harmonic at the quefrency of the mean R-R interval and
possibly higher harmonics. By contrast, Figure 3C shows that
noise may produce spurious cepstral peaks with larger power
than the true ECG peak; in this case, high-pass “liftering”
(i.e., filtering in the frequency domain) the log-spectra may
help identifying the true peaks. Thus, to properly calculate the
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FIGURE 9 | Examples of running cepstral during ramp-like heart-rate changes. Upper panels: ECG (A), R-R intervals, RRI (B), and respiratory movements of the
thorax (C) during sleep apneas; color codes represent the CQl levels. Even if apnea/deep breathing events produced large ramp-like changes of heart rate, the CQl score
remained relatively high classifying the data segment of good quality for heart rate variability analysis. Lower panels: R-R intervals (D) and ECG (E) during an incremental
exercise test on the cycloergometer: the ECG was in normal sinus rhythm (see insets) and the CQI score remained high even when RRI progressively decreased
during the exercise.

power associated with the ECG cepstral harmonics, a liftered
cepstrum is also estimated as follows:

7. log P(f) (calculated at step 3) is “liftered” by least-square
fitting and removing a polynomial of order 10, log P(f)r;

8. the 10% cosine taper is applied to log P(f); obtaining log
P(Drer

9. the FFT of log P(f)icr is calculated obtaining the liftered
cepstrum CP;(7);

10. a moving average over a quefrency band of 0.20 s further
improves the statistical consistency of CP;(7);

Figure 3 shows that liftering removes very-low quefrency
power due to noise without affecting the true ECG cepstral

Frontiers in Physiology | www.frontiersin.org

131 June 2022 | Volume 13 | Article 921210


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Castiglioni et al.

Cepstral Analysis and ECG Quality

#38F
50— o

2% 86%

0 10 30 50 70 90
cal

(CQI < 40%) for 12% of the recording.

FIGURE 10 | Overall quality of very long-term ECG recordings from the distribution of running CQI values. Distributions (relative frequencies) of CQls calculated
second-by-second on ECG Holters recorded for 7 consecutive days continuously with a wearable device (RootiRx”, Rooti Labos Ltd., Taipei, Taiwan) at 250 Hz in two
subjects. The recording of the subject on the right (#1556) is almost completely analysable having good quality (CQI > 50%) for 97% of the time; by contrast, assessing
heart rate variability in the recording on the left (#38F) might be problematic for a not negligible fraction of the time, being the quality “very low” or “unacceptable”
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peaks. Readers may find a detailed description of the MATLAB
code implementing steps from 1 to 10 in the Supplemental
Material. We define the quality score as the power of the
liftered cepstral peaks relative to the total power of the
unliftered cepstrum as follows:

11. the power of CP(7) first and second harmonics, H, is
calculated;

12. the cepstral quality index is the ratio between H and TOT:
CQI = H/TOT.

In our application, the main ECG peak is identified between
0.30< 7 < 2.5 s (the quefrency band where 74 corresponding to the
average R-R interval is expected) by comparison with a threshold
equal to the 90% percentile of the liftered cepstrum: the peak of
the ECG first cepstral harmonic should overcross this threshold.
A second cepstral peak that falls in the quefrency band
corresponding to twice the band of the main harmonic is
recognized as a genuine second harmonic. CQI may therefore
range between 100% (when all the power of the cepstrum is
contained in the first and second harmonics of the ECG
cepstrum) and 0% (when no ECG peaks are identified in the
cepstrum).

When the hypothesis of ECG pseudoperiodicity does not hold,
as during arrhythmias episodes, a cepstral main harmonic might
not be detected even in a high-quality ECG. Figure 3D shows an
ECG segment during atrial fibrillation: the power spectrum does
not have a periodic structure, cepstral harmonics cannot be

correctly associated with a spectral periodicity, and the
resulting CQI is remarkably low.

When the ECG recording is longer than 10s, continuous,
second-by-second CQI estimates are calculated for the whole
duration of the recording performing the cepstral analysis on
90%-overlapped, running ECG segments of 10-s length.

2.5 Validation on Synthesized and Real

Electrocardiograms

We quantified the effects of noise and deviations from
pseudoperiodicity on CQI using the synthesized ECGs. The
effect of broadband noise was evaluated by adding increasing
levels of white noise to the synthesized ECGs, with signal-to-noise
ratio, SNR (ratio between the ECG power and the power of added
noise), between 9 and 1/9. The effects of deviations from
periodicity were evaluated on synthesized ECGs appending the
ECG templates at uneven periods. Two types of heart rate
changes were simulated preserving the original mean heart
rate: monotonic ramps, with R-R intervals increasing or
decreasing linearly in time, and random fluctuations, with
independent changes of R-R intervals from one beat to the
next. Monotonic heart-rate ramps during normal sinus
rhythm can be observed in 10-s ECG tracings following
cardiac sympathetic or vagal activations, as well as during
deep breathing episodes. Random heart-rate changes may
somehow model the disordered cardiac rhythm in atrial
fibrillation. The variation coefficient, VC (ratio between
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standard deviation and mean) of the original R-R intervals in
healthy volunteers was 4.5% when calculated over 10-s segments
and the ECGs were synthesized with VC between half and twice
this physiological value. Premature beats may also alter the ECG
pseudo-periodicity. Supraventricular beats were simulated by
removing the portion of the template before the QRS complex
which includes the P wave. One, two, or three altered templates
were added randomly to the equispaced sequence of
synthesized ECGs.

To validate the proposed cepstral score on real ECG tracings,
we considered recordings from two datasets provided by the
Physionet Community at the MIT Laboratory for Computational
Physiology (Goldberger et al., 2000). To test the effects of noise
and artifacts on real ECG recordings, CQI was evaluated on “set-
A” of ECG recordings made available for the Physionet/
Computing in Cardiology 2011 Challenge (Silva et al., 2011).
The recordings consisted of 12 ECG leads (I, II, III, aVR, aVF,
aVL, V1-V6) sampled at 500 Hz, 16 bit with 5 uV resolution, and
standard diagnostic bandwidth (0.05-100 Hz). The overall
quality of each multi-lead recording was manually scored by a
group of annotators. Combining their scores, ECG recordings
were classified as having “acceptable” (n = 773) or “unacceptable”
(n = 225) signal quality.

To systematically check how the CQI score detects
arrhythmias, the cepstral analysis was applied to the training
dataset of the PhysioNet/Computing in Cardiology 2017
Challenge (Clifford et al., 2017). The dataset is composed of
single-channel (equivalent to lead I) ECGs recorded with the
AliveCor devices at 300 Hz and 16 bit, with 0.5-40 Hz bandwidth,
visually classified by experts into 4 groups: noisy, or in normal
rhythm, or in atrial fibrillation, or in any “other” rhythm. From
the whole dataset, we considered the 5050 normal-rhythm
recordings, the 738 atrial fibrillation recordings, and the 284
noisy ECGs. Their duration ranged between 9 and 61 s, with a
median value of 30 s. The running cepstral analysis was applied
and the second-by-second estimates were averaged to obtain a
single CQI score for each recording. The Area Under the Curve
(AUC) of Receiver-Operator Characteristic (ROC) analysis
measured how CQI classifies between cases for which heart
rate variability analysis is feasible (i.e, normal rhythm
recordings without excessive noise), and cases to be excluded
from heart rate variability analysis (i.e., atrial fibrillation or too
noisy recordings). The Youden index, calculated as in (Goksuluk
et al., 2016), provided the cut-off value for the classification.

Statistical comparisons between groups were performed with
the Wilcoxon matched-pairs test.

Additionally, we illustrated the performance of the
proposed score by applying the running cepstral analysis on
ECG tracings collected in our previous experiments, which
included long-term recordings in free-moving volunteers at
high altitudes (Lombardi et al., 2013; Caravita et al., 2015). The
experiments were approved by the ethic committee of Istituto
Auxologico Italiano, IRCCS (EudraCT No. 2010-019986-27)
and conducted in agreement with the principles of the
Declaration of Helsinki, after having received informed
consent.

Cepstral Analysis and ECG Quality

3 RESULTS

3.1 Validation on Synthesized

Electrocardiograms

Figure 4A shows the effect of broadband noise on CQI. The index
progressively decreases from values greater than 90%, when noise
is absent, to 68% when SNR = 1. CQI falls more rapidly when
SNR < 1 and at SNR = 1/9 it is statistically indistinguishable from
CQI of pure noise. Figure 4B illustrates the effects of increasing
levels of heart rate variability, quantified by VC, on CQI,
comparing random changes with ramp-like changes. In both
cases, CQI decreases with increasing levels of VC, but the effects
depend on the type of heart rate dynamics, being more important
for random than monotonic changes. As to the effects of
premature beats on CQI, Figure 4C shows that even a single
ectopic beat in the 10-s ECG segment reduces CQI importantly.

3.2 Validation on Real Electrocardiograms
3.2.1 Physionet/Computing in Cardiology 2011
Challenge

The effects of noise and artifacts on real ECG recordings were
tested systematically on the Physionet/Computing in Cardiology
2011 Challenge dataset (Silva et al., 2011). Figure 5 shows two
examples of multi-lead ECGs, one classified as “unacceptable”
and one as “acceptable”; the CQI of each lead is reported. Since
the Physionet classification regards the quality of multi-lead
ECGs as a whole, a single lead might have sufficient quality
for heart rate variability analysis even in a multi-lead recording
scored as globally unacceptable: this is the case of lead I of
#2722184 recording. Similarly, individual leads may
occasionally have poor quality even in globally “acceptable”
recordings, such as lead V6 of #2984955 recording. In these
two examples, the CQI scores allow automatically selecting the
proper ECG leads for heart rate variability discarding
inadequate leads.

Figure 6 shows the results of cepstral analysis for the whole
dataset. The median CQI score of each lead is coherent with the
manual classification through visual inspection of the recordings,
being close to 70% for all the leads of the “acceptable” group and
much lower for all the leads of the “unacceptable” group (close to
30% for limb leads, to 7% for chest leads).

However, the CQI interquartile range is remarkably wide for
the “unacceptable” group, suggesting that leads with a sufficient
CQI score for heart rate variability analysis may be identified in
most cases even in this group, as the example of Figure 5A
suggests.

3.2.2 Physionet/Computing in Cardiology 2017
Challenge

Figure 7A compares CQI values in the three groups of recordings
of the PhysioNet/Computing in Cardiology 2017 Challenge
(Clifford et al, 2017). These three groups were selected to
quantify the effects of deviations due to noise or atrial
fibrillation from the pseudoperiodicity of the normal rhythm.
Most of the recordings in normal rhythm have CQIs greater than
50%, as the “acceptable” recordings of the 2011 Challenge. Atrial
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fibrillation or noise substantially reduces CQI, which is lower
than 40% in most of these recordings.

The ROC curve that was calculated to quantify the capability
of CQI to identify an ECG recording as adequate for heart rate
variability analysis, was associated with a consistently high AUC
(Figure 7B). The Youden criterion identified in CQI > 47% the
cut-off to classify an ECG recording as adequate, with 79.0%
sensitivity and 85.2% specificity.

3.2.3 Running Cepstral Analysis

Figure 8 shows examples of running cepstral analysis on ECGs
collected with wearable/mobile devices affected by different types
of noise. A four-level color code is used to represent the CQI
values estimated second by second. Based on the cut-off defined
by ROC analysis (Figure 7B), we classified the ECG as having
good quality when CQI > 50%, representing the time window in
green color, and as having “acceptable quality” when 40 < CQI <
50%, representing the time window in yellow. ECG classified with
“very low” or “unacceptable” quality are associated with 25 < CQI
< 40% and CQI < 25%, and are represented in magenta and red
respectively.

Panel a) is a segment of 24-h ECG (250 Hz sampling, 16 bit) in
a healthy volunteer during daily-life activities with a wearable
device (Faros 360 Mega, Kuopio, Finland). The ECG shows a
short burst of muscular noise followed by a movement artifact:
the running analysis associates both the events with locally low
CQI values.

Panel b) is a segment of ECG recorded in a healthy
volunteer during night-time sleep at a high altitude
(Lombardi et al., 2013). The ECG (200 Hz, 12 bit) was
recorded with the MagIC device, a wearable system with
woven ECG electrodes, a textile plethysmograph for
measuring respiratory movements of the thorax, and a
sternal accelerometer (Di Rienzo et al., 2010), connected to
a pulse oximeter (Nonin Xpod®, Nonin Medical, Inc.,
Plymouth, MN, United States). The running analysis
classified unacceptable (CQI < 25%) a data segment with a
temporary signal loss, likely due to a bad contact between
textile electrodes and skin. The recovery of the ECG waveform
was identified by classifying the signal as having CQI > 50%.

Panel c) is a high-quality ECG with frequent premature beats
recorded by MaglIC in a volunteer resting at a high altitude
(Caravita et al., 2015). While most of the recording is associated
with high CQI values, each premature beat causes a dramatic local
fall in the quality score. These beats are classified as
“unacceptable” for heart rate variability analysis.

Panel d) is an example of running cepstral analysis during
random heart-rate variations due to the lack of normal sinus
rhythm. The ECG was recorded with a mobile electrocardiograph
(AliveCor Inc., Mountain View, CA, United States) by a patient in
atrial fibrillation (#A00027 of the PhysioNet/Computing in
Cardiology Challenge 2017 dataset). The whole signal is
associated with very low CQI values indicating that it is
unacceptable for heart rate variability.

Figure 9 shows examples of running cepstral analysis on ECG
tracings in normal sinus rhythm with large ramp-like changes in
heart rate. The upper panels regard a segment of a sleep recording

Cepstral Analysis and ECG Quality

at a high altitude by the MagIC device. The low barometric
pressure at high altitude induced frequent apneas/hypopneas
events followed by deep breathing, which caused wide ramp-
like changes in R-R intervals and fluctuations of the ECG
baseline. These wide heart rate fluctuations occurred in
normal sinus rhythm and did not prevent the cepstral analysis
to quantify high CQI scores and classify the segment as acceptable
for heart rate variability analysis.

The lower panels of Figure 9 regard an ECG recording
(1000 Hz sampling rate, PowerLab 8/35 Bioamp—Data
Acquisition System, ADInstruments, Dunedin, New Zealand)
during an incremental exercise test up to exhaustion on the
cycle ergometer (Ergoselect 100, ergoline GmbH, Bitz,
Germany). The test was performed by a 14-year-old male
participant with an increasing exercise load at 12 W/min. Even
if the R-R intervals decreased progressively during the test with a
ramp-like pattern as the load increased, the CQI score remained
sufficiently high and classified the ECG quality as “good” or
“acceptable” throughout the test.

4 DISCUSSION AND CONCLUSION

In the last years, several methods have been proposed for
evaluating the quality of ECG recordings: the principles on
which they are defined and comparisons among methods are
reported in two recent reviews (Satija et al., 2018; Rahman et al,,
2022). These reviews highlight that the accuracy of each method
depends on the medical context for which it is proposed.
Therefore, while some methods are aimed at the correct
identification of the QRS complex only, others require a more
detailed morphological identification of specific ECG features,
like amplitudes and intervals between waves (Satija et al., 2018).
Furthermore, the accuracy depends on the testing dataset because
the type of artifacts and noises affecting mobile ECGs for
telemonitoring applications differ from those expected for
wearable ECG devices or ECGs recorded in the doctor’s office
or in intensive care units (Rahman et al., 2022). In this context,
the usefulness of our cepstral approach is to address a specific
aspect of the ECG signal quality that has not been explicitly
considered by other methods: the acceptability of ECG recordings
for heart rate variability analysis. In this frame, an ECG segment
should be considered not acceptable even in absence of noise
components or artifacts if it does not occur during normal sinus
rhythm, a condition not considered by other indexes of signal
quality. In addition, our work was motivated by the need to
evaluate the ECG adequacy for heart rate variability analysis
continuously onboard wearable devices with low computational
power. We found the cepstral analysis to be a promising approach
because the power cepstrum describes the periodic structure of
ECG recordings in a simple way (i.e., with the main harmonic at
7o and very few multiples at most) that can be calculated and
interpreted easily. This makes the power cepstrum a potentially
useful tool in heart rate variability studies to identify and discard
noisy ECG recordings or recordings not in normal sinus rhythm.
The estimation of the power cepstrum does not require important
computational resources and consent defining a simple score,
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CQ], evaluable by the wearable systems themselves. In multi-lead
ECG recordings, CQI could allow selecting and transmitting the
ECG lead with the best quality only (that is the lead with the
highest CQI), reducing the flow of redundant information within
the monitoring system and the power consumption for signal
transmission.

The dataset of the Physionet/Computing in Cardiology 2017
Challenge demonstrated that CQI is useful to distinguish ECGs in
normal rhythm from unacceptable recordings due to noise or
arrhythmias, and provided us with an objective cut-off threshold
for the classification. In ambient-assisted living applications,
thresholds on running CQI estimates may be employed to
send alerts from the wearable device to upper computational
levels, which may apply more sophisticated analysis tools,
possibly integrating other physiological, behavioral, and
environmental signals, to properly manage the alarm. On
very-long term monitoring, comparing the distribution of CQI
values with cut-off thresholds provides an effective way to
summarize the overall quality of the ECG recording, as in the
example of Figure 10.

It is worth noting that deviations from the ECG periodicity
may occur also in normal sinus rhythm due to physiological
changes in heart rate. Even if most applications of heart rate
variability require stationarity, which assures a stable mean heart
rate, time-varying methods are employed to describe autonomic
activations that induce rapid changes in the cardiac rhythm.
These changes appear as heart-rate ramps in the short running
window used for cepstral analysis and they should not be
excluded from the evaluation of heart rate variability. Results
on synthesized ECGs (Figure 4B) showed that a chaotic heart-
rate pattern decreases CQI significantly more than a ramp-like
pattern with the same variation coefficient. As Figure 9
exemplifies, this means that even marked ramp-like changes in
the heart rate may be correctly classified as adequate for
evaluating the heart rate variability if they occur in normal
sinus rhythm, in absence of artifacts or noise.

4.1 Limitations and Future Perspectives

We defined CQI to assess recordings in adults or the elderly
during daily activities. Therefore, the parameters defining our
method should be modified to properly monitor subjects with
much higher heart rates, such as neonates or young athletes
during maximal exercise. This can be done easily because the
parameters are easily interpretable. For instance, let’s consider the
frequency data window we defined between 0 and 20 Hz and the
cepstral band for identifying the peak at 7 between 0.3 and 2.5 s;
if the heart rate is 180 bpm, only 6 harmonics fall in the frequency
data window and 7j is very close to the lower limit of the cepstral
band. Thus, if such high average heart rates are expected, it may
be desirable to increase the upper limit of the frequency window
above 20 Hz and to shift the cepstral band toward quefrencies
lower than 0.3 s to better capture the cepstral power around the

Cepstral Analysis and ECG Quality

mean R-R interval. Moreover, a limit of CQI is that it does not
distinguish between noise and arrhythmias, being similarly low in
the case of noise and atrial fibrillation (Figure 7A), even if the
causes for the deviations from the ECG periodicity are rather
different in the two cases. More detailed quantification of the
cepstral morphology than CQI might better characterize the
chaotic rhythm of atrial fibrillation, possibly integrating
traditional spectral methods to distinguish among types of
atrial fibrillation and between atrial fibrillation and noise.
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Atrial fibrillation (AF) is the most common cardiac dysrhythmia and percutaneous catheter
ablation is widely used to treat it. Panoramic mapping with multi-electrode catheters has
been used to identify ablation targets in persistent AF but is limited by poor contact and
inadequate coverage of the left atrial cavity. In this paper, we investigate the accuracy with
which atrial endocardial surface potentials can be reconstructed from electrograms
recorded with non-contact catheters. An in-silico approach was employed in which
“ground-truth” surface potentials from experimental contact mapping studies and
computer models were compared with inverse potential maps constructed by
sampling the corresponding intracardiac field using virtual basket catheters. We
demonstrate that it is possible to 1) specify the mixed boundary conditions required
for mesh-based formulations of the potential inverse problem fully, and 2) reconstruct
accurate inverse potential maps from recordings made with appropriately designed
catheters. Accuracy improved when catheter dimensions were increased but was
relatively stable when the catheter occupied >30% of atrial cavity volume. Independent
of this, the capacity of non-contact catheters to resolve the complex atrial potential fields
seen in reentrant atrial arrhythmia depended on the spatial distribution of electrodes on the
surface bounding the catheter. Finally, we have shown that reliable inverse potential
mapping is possible in near real-time with meshless methods that use the Method of
Fundamental Solutions.

Keywords: atrial fibrillation, open basket catheters, inverse problem, non-contact mapping, endocardial potentials

INTRODUCTION

Intracardiac catheters can acquire electrograms simultaneously at multiple sites on or close to the
heart wall and have been used to construct panoramic maps of electrical activity in patients during
persistent atrial fibrillation (AF) (Narayan et al., 2012; Pathik et al., 2018). While macro-scale atrial
activation is disorganized in AF, it is argued that repeated patterns of local electrical reentry in such
maps may provide targets for the percutaneous catheter ablation procedures used to treat this
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dysrhythmia (Narayan et al, 2012; Haissaguerre et al.,, 2016).
Effective contact mapping with multi-electrode catheters presents
challenges. The spatial distribution of electrodes in the 8-spline
basket catheters that have been used for intra-atrial mapping is
inherently non-uniform, with greater density along splines than
around the equator of these devices when fully deployed (Pathik
et al., 2018). Deformation of basket catheter splines in contact
with the wall can exacerbate sampling heterogeneity (Pathik et al.,
2018). Furthermore, experimental and modelling studies indicate
incomplete wall coverage, with ~50% only of electrodes close to
the atrial wall (<5 mm from endocardium) in typical studies of
the left atrium (LA) (Oesterlein et al., 2016; Martinez-Mateu et al.,
2018; Pathik et al., 2018).

Inverse methods can be used to reconstruct potential maps on
the heart surface from electrograms recorded with electrodes that
are not in contact with it (Johnson and Bronzino, 2000; Pullan
et al., 2005). This requires information about the geometry of the
heart surface, the 3D locations of the electrodes and the electrical
properties of the volume between them. Mesh-based solutions of
the inverse potential problem have been widely used for non-
invasive electrocardiographic imaging (ECGi) (Barr et al., 1977;
Johnson and Bronzino, 2000; Ramanathan and Rudy, 2001;
Pullan et al., 2005; Cluitmans et al,, 2017; Duchateau et al,
2019) but also for non-contact intracardiac potential mapping
with electrodes arrays mounted on the surface of inflatable
balloons (Khoury et al,, 1995). To solve this problem, it is
necessary to specify Cauchy boundary conditions; that is to
assign both potentials and normal potential gradients at points
across the boundary on which electrical recordings are made
(Johnson and Bronzino, 2000; Pullan et al., 2005). This presents
no difficulties for ECGi or for intracardiac inverse potential
mapping if electrodes are mounted on an inflatable balloon.
Sampling surfaces are insulating in both instances and the
normal potential gradient is zero everywhere on them. This is
not the case, however, for a multi-electrode basket catheter and
normal potential gradients must be estimated on the virtual
surface that bounds the electrodes to solve mesh-based
formulations of the inverse potential problem. While reliable
solutions of the inverse potential problem can in principle be
obtained with mesh-based methods such as the finite element
method (FEM) or boundary element method (BEM) if
appropriate input information is provided (Johnson and
Bronzino, 2000; Pullan et al., 2005), meshless methods that
employ the Method of Fundamental Solutions (MFS)
(Fairweather and Karageorghis, 1998) offer a simpler
alternative. The latter approach has been used for ECGi
(Wang and Rudy, 2006; Bear et al, 2018) and was recently
proposed for non-contact intracardiac potential mapping
(Meng et al., 2022).

Here, we provide a systematic in silico analysis of mesh-based
and meshless methods for solving the intracardiac inverse
potential problem—for the first time as far as we are aware.
The mathematical bases of the approaches used in this setting are
summarized and a simple method for estimating Cauchy
boundary conditions from electrograms recorded with a multi-
electrode basket catheter is outlined. This is tested in a simplified
2D domain and then used for an FEM-based investigation of

Intracardiac Inverse Potential Mapping

inverse potential mapping in the 3D atria. The extent to which
accuracy is affected by catheter dimensions, electrode distribution
and noise are considered. Finally, we compare the efficacy of this
mesh-based approach with meshless methods that use the MFS.

This study demonstrates that reliable non-contact potential
mapping can be achieved across a wide range of basket catheter
dimensions using mesh-based inverse methods if the electrode
distribution is sufficient to provide representative samples of the
intracardiac potential field. It also shows that the MFES is equally
accurate over most of this range but computationally more efficient.

MATHEMATICAL BACKGROUND

The electrostatic potential ¢ in a biological volume conductor is
typically represented as

V-oVp= -1, (1)

where o is the electrical conductivity tensor and I, is the current
per unit volume defined within the solution domain Q.
Electrostatic potentials associated with cardiac electrical
activity flow are caused by current flow via transmembrane
ion channels and transporters in heart muscle cells, but there
is no nett current flow elsewhere in the domain. Therefore,

V.oV = 0inQy (2)

where Qy is a heart cavity.

A Mesh-Based Inverse Approach

A representation of the potential problem is given in Figure 1A. If
the potential on the endocardial surface I'y is specified (Dirichlet
boundary conditions), ¢ can be estimated throughout Qpy by
solving the forward problem Eq. 2.

The objective of the corresponding inverse problem is to
reconstruct ¢ on I'y from potentials recorded with an array of
electrodes introduced into the cavity on a catheter. This can be
expressed as a boundary value problem by defining a surface I'c
that bounds the electrodes on the catheter and encloses the
domain Q¢c. We seek to define a set of linear equations that
satisfies Eq. 2 in Qg — Q¢ and can be reformulated as

A¢H = ¢c (3)

where ¢y, is a vector of data on I'yy and ¢, is a vector of data on I'c.
The inverse problem is to determine ¢;; given ¢.

Both problems can be solved numerically using finite
difference, finite element and finite volume methods or, because
the problem can be reduced to the boundaries alone since o is
uniform and isotropic throughout Qy, using boundary integral
and boundary element methods (Oostendorp and van Oosterom,
1991; Johnson and Bronzino, 2000; Pullan et al., 2005). To do so,
it is first necessary to discretize the solution domain with an
appropriate mesh. Because the inverse problem is ill-posed,
solutions are not unique and this amplifies the effects of noise.
Tikhonov regularization (Johnson and Bronzino, 2000) is widely
used in this setting to reduce instability. It seeks to identify the
regularization parameter A that optimises the objective function
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FIGURE 1 | Schematic representations of (A) mesh-based and (B) meshless/MFS formulations of the intracardiac inverse potential problem which seeks to map
the potential distribution on the surface Ty that bounds a heart cavity Qn from a set of M potentials ¢ (x) sampled at electrodes inside Q. In (A) potentials and normal
potential gradients on the surface I'c that bounds the electrodes are related to the potential distribution on Ty and in solution domain Qn — Qc. In (B) N fictitious sources /;
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where the first term is the sum of squared residuals from Eq. 3
and the second penalizes lack of smoothness of the solution
vector. With zero-order Tikhonov regularization L is the identity
matrix (Tikhonov and Arsenin, 1977). The closely related inverse
problem of electrocardiography ECGi, in which voltages
measured on the torso are used to calculate voltages on the
surface of the heart, has been solved using all the numerical
methods above (Barr et al., 1977; Johnson and Bronzino, 2000
Pullan et al.,, 2005; Cluitmans et al., 2017; Bear et al., 2018).

To solve the intracardiac inverse problem, it is necessary to
specify appropriate boundary conditions at I'c. Continuity of
potential and normal current flow is maintained on both sides of
the interface (Pullan et al., 2005).

That is

n = g
VPP -1 = 00 VPR -1 ®)

where in and out indicate inner and outer sides of I'¢ respectively.

For a balloon catheter, o;, = < and V¢.-n =0, and the
inverse problem for this case has been solved using a boundary
element method very similar to equivalent approaches used for
ECGi (Khoury et al., 1995; Pullan et al., 2005). However, current
flows freely across I'c with a basket catheter and the dispersion of
current in Qg — Q¢ can vary substantially between these cases
depending on the geometry of I'y and I'c. The distribution of ¢ in
Qp — Q¢ reflects this and it follows that ¢ cannot be estimated
adjacent to I'c unless Cauchy boundary conditions which specify
both ¢ and V¢.n are used. A simple way to set these boundary
conditions is to solve the forward problem Eq. 2 for the
subdomain Q¢ using ¢ recorded on I'c as Dirichet boundary
conditions so that ¢™ adjacent to I'c can be estimated. Provided

that ¢ samples the potentials on I'c adequately, V¢ - n can be
estimated enabling Cauchy boundary conditions to be specified.

Meshless Inverse Methods That Use the

Method of Fundamental Solutions

The Method of Fundamental Solutions (MES) provides a means
of solving partial differential equations such as the Laplace
equation without the need to set up connected internal meshes
in the solution domain (Fairweather and Karageorghis, 1998).
This approach was applied to ECGi by Wang and Rudy (Wang
and Rudy, 2006) and here we extend it to intracardiac inverse
potential mapping.

The meshless/MFS formulation of the intracardiac problem is
presented in Figure 1B. Potentials ¢ (x) at points x in Qy are
approximated as the linear superposition of source functions
positioned at locations {f,»}fi , around a virtual surface I'y that
encloses Qy. It is assumed that the conductivity o throughout the
extended domain bounded by T'y is uniform and isotropic, and
that the electrical properties of the basket catheter can be
neglected.

At any instant, the potential ¢ (x) at each of the M electrodes
at x in Qp is estimated as

p(x) =) oI,G(&,x) ©)

where I; = (I},...,Iy) are the source current magnitudes at
{E,-}iN=1 and G is the fundamental solution of the 3D Laplace
operator at each point. That is,

G(&x) = (7)

4rlE - x|

where | — x| is the Euclidean distance between x and &.
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FIGURE 2 | 2D illustration of mesh-based inverse potential mapping. (A) Schematic of steps in specifying Cauchy boundary conditions on T'c. The potential
distribution in Qy (upper panel) is sampled at 8 recording electrodes (black dots). Potentials around I'c are reconstructed from these samples with radial basis
interpolation and used as Dirichlet boundary conditions in numerical solution of potential distribution in Q¢ (lower panel). This enables estimation of potentials and normal
potential gradients around I'c. B and (C) Potential distributions on T'yy reconstructed from potentials sampled in Q for (B) relatively simple, and (C) more complex
potential fields in Q. Ground-truth potential distributions in Q are given on left and the broken circles indicate the internal boundaries around which samples are
acquired (16 sites in both cases). Potentials on I'y are reconstructed using Cauchy boundary conditions on I'c and compared with ground-truth potentials in the graphs
at right. Normalized ground truth surface potentials (solid line, blue diamonds), and surface potentials reconstructed from samples acquired on internal boundaries with
relative radii 0.469 (dashed line, green squares) and 0.375 (dotted line, red circles) are plotted as functions of angular coordinate 6.
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This results in an M x N system of equations and solution of
the inverse problem yields the source current magnitudes that
best match the ¢.(x) recorded with the catheter. The
corresponding endocardial potentials ¢;;(x) can then be
reconstructed by evaluating Eq. 6 V x € I'y.

This system is inherently under-determined because the
number of electrodes M is generally less than N, the number
of fictitious sources needed to map potentials faithfully onto I'y.

METHODS

A well-established computational approach (Ramanathan and
Rudy, 2001) was used to quantify the accuracy with which
potentials around an external boundary can be reconstructed
from non-contact potentials sampled within the corresponding
domain using inverse solution methods. The basic steps were as
follows. First, “ground-truth” potential distributions, one simple
and one more complex, were specified on the external boundary.
The corresponding internal field was then determined by
numerical solution of Laplace’s equation and this potential
field was sampled at points corresponding to different catheter
dimensions and electrode distributions. Finally, potentials on the

outer boundary were reconstructed using the sampled potentials
and compared with ground-truth potentials to assess the accuracy
of inverse mapping. Key features of our mesh-based inverse
approach were tested first with simple 2D problems and then
extended to a more realistic 3D FEM analysis using atrial
endocardial boundary geometry and representative potential
distributions on this anatomy based on experimental
measurement and simulation. Finally, the efficacy of inverse
potential mapping using a meshlesssMES approach was
compared with a representative mesh-based FEM analysis.

2D Analysis

Aspects of the approach employed here are illustrated in Figure 2.
Two different arbitrary ground-truth potential distributions were
specified on the boundary I'y of the circular domain Qy and the
associated potential fields in Qy were constructed by solving
Laplace’s equation with these boundary conditions (Figure 2A)
using the finite difference method (FDM) on a polar grid centered
on the origin.

Cauchy boundary conditions on I'c were determined as shown
in Figure 2A. Potentials were sampled at discrete points
distributed uniformly on I'c which bounds the circular interior
domain Q¢. Potentials around I'c were reconstructed using
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radial-based interpolation and the corresponding potential field
in Q¢ was estimated by solving Laplace’s equation with a polar
finite difference scheme. Gradients normal to I'c were estimated
using the FDM with a polar grid centered on the origin of the
domains. Transfer Eq. 3 relating ¢;; and ¢, were formulated
using the boundary integral approach developed by Barr et al.
(1977) (Barr et al,, 1977), then discretized and evaluated as
outlined by this group. The inverse problem was solved
employing zero-order Tikhonov regularization (Tikhonov and
Arsenin, 1977) with the regularization parameter selected using a
U-curve algorithm (Chamorro-Servent et al., 2019) based on the
discrete Picard condition (Hansen, 2010). This optimizes the
singular value decomposition associated with the regularization
problem.

3D Analyses
Anatomic and experimental data used for 3D analyses were
acquired from an anesthetized closed-chest sheep employing
methods summarized below. All procedures were approved by
the Animal Ethics Committee of the University of Auckland and
conform to the Guide for the Care and Use of Laboratory Animals
(National Institutes of Health publication no. 85-23).
Gadolinium-enhanced (Gd-DTPA 0.2 mmol kg) ECG-gated
magnetic resonance images (MRIs) of the atria (1.0 mm? X
1.0mm?® in-plane resolution approximately parallel to the
atrio-ventricular valve plane and 1.6 mm between slices) were
acquired with a 3T Siemens Magnetom Skyra scanner in late
diastole with lungs inflated. Atrial electrical activation was
subsequently mapped using 38 and 48 mm 64-electrode
Constellation™  catheters (Boston Scientific) introduced
percutaneously into the atria via the jugular vein under
fluoroscopic guidance. Catheters were positioned in the LA
using a guide wire and sheath introduced by trans-septal
puncture. Electrograms from LA catheters (bandlimited to
0.5-1,500Hz and sampled at 3kHz) were recorded
simultaneously in sinus rhythm (SR) using a multi-channel
acquisition system (UnEmap, Auckland UniServices) with
catheters in different locations. Serial biplane ciné X-ray views
of the catheters (LAO/RAOQO, 25 frames/second, with concurrent
Lead II ECG added for synchronization) were acquired
immediately after each electrical recording. The ventilator was
switched off during fluoroscopy to minimize respiratory motion.
Endocardial surface geometry from a representative LA was
segmented from serial MRI using Amira 5.4 (Thermo Fisher
Scientific) and reconstructed in 3D with the atrial appendage
cropped (see Figure 2). LA electro-anatomic maps were
reconstructed for this heart from recordings in SR with 3D
electrode locations estimated from biplane X-ray records
(Meng et al., 2017). Ground-truth potential distributions in SR
were constructed at selected activation times by interpolating
potentials around the activation wavefront from recorded
electrograms. Ground truth data representing reentrant atrial
activation were simulated. Meandering spiral wave reentry was
simulated on an isotropic 2D monodomain with Fenton Karma
activation kinetics (Fenton and Karma, 1998) using a standard
cross-field S1-S2 stimulus protocol (Pandit et al., 2005). Points on
the 2D domain were sampled and mapped onto the 3D surface
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mesh so that surface area was similar in both, with a contour
adjacent to the boundary in the former assigned to the mitral
valve orifice. Extracellular potentials were approximated from the
transmembrane currents computed at each 3D point at a
sampling rate of 1 kHz.

The open-source software environment SCIRun (Burton et al.,
2011) was used for FEM solutions of 3D forward problems. A
triangular surface mesh (1,529 nodes) was fitted to the LA and Qy
was discretized using tetrahedral elements. Intracardiac potential
fields were computed from the ground-truth surface potential
distributions by solving Laplace’s equation throughout Qg. The
intracardiac field was sampled at points corresponding to
electrodes on two basket catheter configurations with 1) 64
channels with 8 equally spaced electrodes along 8 splines at
equal radial angles, and 2) 130 channels with 8 equally spaced
electrodes along 16 splines at equal radial angles and electrodes at
upper and lower poles. Basket dimensions were uniformly scaled
to vary the ratio of catheter volume to LA volume. The centroids
of catheters and the LA chamber were aligned to allow maximum
catheter expansion and to ensure reproducibility between results.
Noise was imposed by adding Gaussian noise independently to
the electrograms recorded at each electrode with power set at
realistic levels. Signal-to-noise ratio (SNR) is quantified as the
ratio of root-mean-squared (RMS) voltages of reconstructed
electrograms and noise.

SCIRun was also used for FEM solutions of 3D inverse
problems. The methods outlined above for estimating Cauchy
boundary conditions for the 2D case were extended to 3D as
follows. Intracardiac fields were sampled at points corresponding
to electrodes on specified intracardiac catheters. A triangular
mesh was fitted to I'c (6,720 nodes) and the potential field on this
surface was reconstructed from the sampled data using radial-
based interpolation. Laplace’s equation was solved in Q¢ using
these potentials as Dirichlet boundary conditions and V¢ - n was
estimated on I'c with the FDM using a polar grid centered on the
catheter. Finally, the volume between boundaries I'c and I'y was
discretized with a tetrahedral mesh. The inverse problem was
solved subject to the potential and normal potential gradient
boundary conditions specified on it using zero-order Tikhonov
regularization (Tikhonov and Arsenin, 1977) employing the
L-curve method to calculate the regularization parameter
(Hansen, 2010).

Inverse solutions with the MFS were run with purpose-written
code and a more detailed account of the methods used is given in
Meng et al. (Meng et al., 2022). In brief, the virtual boundary I',
was formed by uniform radial inflation of the atrial surface mesh
I'y by 6% and individual sources were associated with each of its
nodes. Inverse endocardial potential distributions for intracardiac
potentials “sampled” with virtual catheters were obtained using
zero-order Tikhonov regularization (Tikhonov and Arsenin,
1977) employing the L-curve method to calculate the
regularization parameter (Hansen, 2010). Comparisons
between FEM and MEFS inverse solutions were made at
common points on I'y.

Correspondence between ground-truth and reconstructed
potential maps were quantified by evaluating normalized root-
mean-squared error (nRMSE) and correlation coefficient (CC).
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TABLE 1 | Effects of number of points on sampling boundary I'c represented in Figure 2A and its location relative to outer boundary Ty on the accuracy with which
potentials and normal potential gradients on I'c are reconstructed. Potential distribution in Qn shown in Figure 2A. T is concentric with T and the radius of the former is

increased as indicated by the area ratio Q¢ relative to Q. Samples are acquired at 8,16 and 32 uniformly spaced points around T'c.

0.541 0.779 0.914 Samples
0.9989 0.9984 0.9970 8
0.0137 0.0170 0.0241

0.9977 0.9879 0.9689

0.0268 0.0280 0.0428

0.9999 0.9997 0.9986 16
0.0031 0.0078 0.0161

0.9989 0.9949 0.9797

0.0105 0.0184 0.0347

1.0000 1.0000 0.9999 32
0.0023 0.0027 0.0046

0.9996 0.9996 0.9996

0.0062 0.0055 0.0156

Area ratio 0.049 0.195 0.346

o (xj) CC 0.9999 0.9995 0.9991
nRMSE 0.0041 0.0101 0.0128

% CC 0.9996 0.9961 0.9947
nRMSE 0.0078 0.022 0.0263

é(x) cc 1.0000 1.0000 1.0000
nRMSE 0.0022 0.0020 0.0023

<7v>a(:i) CC 0.9998 0.9996 0.9994
nRMSE 0.0049 0.0061 0.0079

o (X;) CC 1.0000 1.0000 1.0000
nRMSE 0.0014 0.0017 0.0020

0%(::) CC 0.9999 0.9997 0.9995
nRMSE 0.0030 0.0055 0.0074

N (i i\2
nRMSE = Z’igjb(? p )¢;R) and
le (leT (8)
cC = Yo (d6r — P‘GT) ((le ~ Hy)

Y (B - eV (B )

where N is the number of surface points compared, ¢} and ¢,
are ground-truth and reconstructed potentials at surface point i,
while p;r and pp are mean values for ground-truth and
reconstructed potentials, respectively, across the surface.

Activation times (ATs) for ground-truth and reconstructed
electrograms were estimated as maximum negative rate of
potential change and the activation time difference AT at each
surface point was evaluated as the difference between the ground-
truth and reconstructed ATs

AT = |ATgr — ATg| ©)

SCIRun was used for 3D FEM forward and inverse
calculations and for visualization of all 3D results. Meshless/
MES inverse solutions were run in purpose-written C code. All
other computation (2D analysis, estimation of potential
gradients, regularization and evaluation of correspondence
measures), was implemented in the MATLAB programming
language (The Mathworks, Natick, Massachusetts).

RESULTS

2D Analysis of Mesh-Based Intracardiac
Potential Mapping

We used a simple 2D analysis initially to test the feasibility of our
methods for estimating intracardiac Cauchy boundary
conditions. Figure 2A illustrates the steps involved. It shows
that the ground truth potential field in Q¢ (upper panel) is
replicated qualitatively in the lower panel using a limited set
of samples around T'c. Table 1 presents corresponding median
CC and nRMSE for ¢ and V¢ - n around I'c and demonstrates
that both can be estimated with good accuracy in this case. Error

increased as I'c was enlarged relative to I'y but was offset by
increasing the number of samples.

In this figure, we also compare ground-truth potentials on I'y
with corresponding inverse results reconstructed from samples
around internal circles in simple (Figure 2B) and more complex
(Figure 2C) fields. Surface potentials reconstructed from samples
around an internal radius of 0.469 relative to I'y were close to
ground-truth (nRMSE 0.02 and 0.06, CC 1.0 and 0.99 for simple
and more complex fields, respectively). However, error increased
when the dimension of I'c was reduced further. With a relative
radius of 0.375 (~14% of the domain area), reconstructed surface
potentials were overestimated, and the complex surface potential
distribution captured less well (nRMSE 0.14 and 0.48, CC 0.99
and 0.70 for simple and more complex fields, respectively). These
results demonstrate that mesh-based inverse potential mapping
can be used to reconstruct surface potential distributions, but that
accuracy is influenced by the dimension of the surface relative to
the solution domain.

3D Analysis of Mesh-Based Intracardiac
Potential Mapping Accuracy

Figure 3 presents the results of an in silico analysis of the accuracy
with which LA surface potential distributions can be
reconstructed from non-contact electrograms recorded in SR
using 64-channel basket catheters. The ground truth
endocardial potential distribution at one instant (43.9 msec
after onset of atrial activation) is shown in Figure 3A with the
3D locations of basket catheter electrodes superimposed (the
volume ratio of the catheter with respect to LA cavity was 0.67).
The corresponding inverse reconstruction of atrial surface
potentials in Figure 3B is qualitatively similar to the ground-
truth map, while reference and inverse electrograms at a
representative site (point 1 in Figure 3B) correspond closely
throughout the activation cycle (Figure 3C). Figures 3D-F show
acceptable non-contact mapping accuracy for a wide range of
catheter dimensions (median: CC >0.96; nRMSE <0.12; AT =
3ms for catheter-atrial volume ratios >0.3). However, error
accumulates progressively when catheter dimensions are
decreased below this range.
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FIGURE 3 | Effect of catheter size on accuracy of inverse potential mapping. Comparison of ground truth potential maps on endocardial surface of LA in SR with
inverse maps reconstructed using FEM. Inverse potential maps were reconstructed from electrograms “sampled” using a 64-electrode basket catheter, with centroids of
catheter and LA chamber aligned. The upper panel presents typical results for a catheter which bounds a volume fraction of 0.67 relative to LA volume. These include (A)
ground-truth surface potential distribution 43.9 msec after onset of activation with basket catheter superimposed, and (B) corresponding potential maps
reconstructed using FEM. Finally, in (C) a ground-truth electrogram (black) at point 1 is compared with corresponding electrograms reconstructed using FEM (blue). In
the lower panel, (D) correlation coefficient (CC) (E) normalized root-mean-squared error (nRMSE), and (F) activation time difference (AT) are presented as functions of
relative catheter volume for FEM. Median values and interquartile range are given. Abbreviations: FEM, finite element method; SR sinus rhythm.
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FIGURE 4 | Effect of boundary value specification on accuracy of inverse potential mapping using FEM. Comparison of ground truth potential maps on endocardial
surface of LA in SR 43.9 msec after onset of activation with inverse maps reconstructed using FEM from potentials sampled with centrally located internal basket
catheters with 64 equi-spaced electrodes. In (A) and (B), respectively, relative root-mean-squared error (NRMSE) and correlation coefficient (CC) are presented as
functions of catheter volume relative to LA. Additional error introduced by not estimating normal potential gradients on the virtual surface bounding electrodes is
indicated by the no flux results (open circles) in which normal potential gradients are set to zero. Abbreviations: FEM, finite element method; SR, sinus rhythm.
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FIGURE 5 | Effects of catheter dimension and noise on inverse potential maps reconstructed during macro-reentry using FEM. LA surface potentials during 3
cycles of simulated atrial flutter are reconstructed from electrograms sampled inside the LA cavity with 130-electrode basket catheters and compared with ground-truth
data. The upper panel presents typical results for catheters that bound a volume fraction of 0.67 relative to LA volume. These include (A) the ground-truth surface
potential distribution at one instant with catheter electrodes overlaid (B) corresponding potential map reconstructed using electrograms “sampled” with a 130-
electrode basket catheter, and (C) electrograms reconstructed at location 1 from sampled records with 18 pV RMS (blue), 56 pV RMS (red) and 178 pV RMS (black) of
added Gaussian noise compared with the ground truth electrogram (grey) at the same site. In the lower panel, (D) correlation coefficient (CC) (E) normalized root-mean-
squared error (NRMSE), and (F) activation time difference (AT) are presented as functions of catheter-atrial volume ratio for these levels of added noise. Median values and
interquartile range are given. Abbreviation: FEM, finite element method.

Figure 4 presents the error introduced when the normal
potential gradient on the surface bounding the electrodes, T'c,
is not accounted for. In this example, one time-point only is
considered (43.9 msec after onset of atrial activation). % is
assumed to be zero which corresponds to a no-flux condition at
I'c. Incorporation of realistic estimates of normal potential
gradients on I'c reduces nRMSE, with greatest absolute
reduction in error for the intermediate range of relative
volume ratios. The effects are modest with ~9% reduction in
CCand ~10% increase in nRMSE at a catheter-atrial volume ratio
of 0.3 and absolute error appears to be reduced at the extremes of
the relative volume ratio range.

Results of an analysis of inverse mapping accuracy for more
complex atrial rhythms in the presence of noise are presented in
Figure 5. In this case, a simulated rotor with a moving core was
used as ground-truth. Three activation cycles were sampled with a
130-electrode basket catheter and Gaussian noise at RMS voltages
of 18, 56 and 178 uV was added to these records. The upper panel
shows representative results for a catheter-atrial volume ratio of
0.67. Ground-truth surface potential maps (Figure 5A) were
reconstructed with reasonable accuracy in the absence of noise
(see Figure 5B). Median results were CC = 0.92, nRMSE = 0.11

and AT = 2 ms; clearly better than the corresponding result with a
64-electrode catheter (CC = 0.83, nRMSE = 0.14 and AT = 3 ms).
At this catheter dimension also, inverse mapping was robust in
the presence of realistic levels of electrical noise. Results with
systematic variation of relative catheter dimension and noise are
shown in Figures 5D-F. Accuracy was relatively invariant despite
increasing noise as catheter-atrial volume ratio was reduced from
0.67 to ~0.2. At dimensions less than this, however, there was a
progressive increase in error which scaled with noise level. It is
noteworthy that activation time estimates were markedly
degraded by noise at reduced catheter dimensions.

An important final observation is that the transfer matrices
used for 3D FEM analyses were over-determined in all cases, with
the LA represented by a 1529-node triangular surface mesh while
a 6720-node triangular mesh was fitted to the catheter. This was
necessary to achieve stable solutions.

Comparison of FEM and MFS Inverse

Solutions
In Figure 6, we compare the performance of mesh-based inverse
mapping employing a FEM solver with a meshless approach that
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FIGURE 6 | Comparison of inverse potential maps reconstructed during macro-reentry using FEM and meshless methods that employ the MFS. LA surface
potentials throughout 3 activation cycles in simulated atrial flutter reconstructed from electrograms sampled inside LA cavity with 130-electrode basket catheters and
compared with ground-truth data. (A) Correlation coefficient (CC) (B) normalized root-mean-squared error ((RMSE), and (C) activation time difference (AT) are
presented as functions of catheter-atrial volume ratio for FEM (blue) and meshless/MFS (red). Median values and interquartile range are given. Abbreviations: FEM,
finite element method; MFS method of fundamental solutions.

employs the MFS. We used the simulated rotor in Figure 5 as
ground-truth and again “sampled” 3 activation cycles with 130-
electrode basket catheters of different dimensions. FEM inverse
solutions matched ground-truth maps quite well, with median
values of CC = 0.91 and nRMSE = 11.3% across the activation
sequence at a catheter-atrial volume ratio of 0.67. Corresponding
results for the meshless/MFS approach were 0.95 and 4.9%, but
activation time differences with ground truth were the same for
both. While CC was marginally better with MFS than FEM for
catheter-atrial volume ratios >0.3, this measure decreased more
rapidly with the MFS when catheter dimensions were reduced
further (see Figure 6A). Likewise, AT was greater with the MFS
for catheter-atrial volume ratios <0.3. In contrast, nRMSE was
substantially less for MFS than FEM inverse results across the full
volume range.

The main difference between methods was that the MFS was
much more efficient computationally than the FEM in our hands.
Transfer matrices were simple to set up and inverse solutions
were obtained in near real-time using purpose-written code.
Finally, the meshless/MFS formulation was robust, with stable
inverse solutions despite the fact that transfer matrices were
inherently under-determined.

DISCUSSION

Summary

In this paper, we present the results of a computational analysis of
the accuracy with which endocardial potential maps can be
reconstructed from non-contact multi-electrode basket catheter
recordings. This inverse problem is addressed initially using a
mesh-based approach where transfer relationships are
formulated between potentials on the two boundaries involved.
This is accurate in principle because assumptions made about the
electrical properties of the solution domain are limited (and
inherently realistic). However, it requires Cauchy conditions to

be specified on the surface I'c that bounds the electrodes. A simple
and robust way of doing this is outlined and used to solve
representative 2D and 3D problems. We demonstrate that
effective non-contact intracardiac potential mapping can be
achieved using mesh-based methods and that accuracy is
determined by 1) the spatial complexity of the intracardiac
potential field, 2) the dimensions of the catheter relative to
those of the cavity, 3) the distribution of electrodes on the
catheter, and 4) the signal-to-noise ratio of the potentials
acquired. Finally, we show that a much simpler meshless
method which uses the MFES is at least as accurate as mesh-
based inverse potential mapping over a wide range of catheter
dimensions and computationally far more efficient. This work
addresses an important problem in cardiac electrophysiology and
is the first in silico investigation of this topic, as far as we
are aware.

Mesh-Based Inverse Potential Mapping
With the mesh-based inverse solvers used in this analysis, it is
necessary to specify potentials at sufficient points on the surface
T'c that bounds the electrodes to ensure that the transfer matrices
are well-determined. These boundary potentials can be faithfully
reconstructed by interpolation if their distribution is represented
by the data sampled. This is not sufficient here for complete
specification of boundary conditions. It is evident that current
flux through an open basket catheter affects the distribution of
potentials across the heart cavity and with mesh-based inverse
solvers this is captured by specifying normal potential gradients
on I'c as outlined in the Mathematical Background.

Our 2D analysis demonstrates that intracardiac potential fields
in the vicinity of T'¢ can be reconstructed accurately from a
relatively small number of potentials sampled uniformly around
this boundary. The difference between estimated and expected
potentials and normal potential gradients on I'c depended on
matching the number of electrodes to the spatial complexity of
the potential distribution, and correspondence improved as the
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distance between I'c and heart surface I'y increased. These
findings indicate that it is possible to specify the boundary
conditions necessary for non-contact potential mapping using
mesh-based inverse solution methods. We have demonstrated
that normal potential gradients on I'c can be estimated with
acceptable accuracy and have shown in Figure 4 that inclusion of
this information improves the accuracy of 3D non-contact
potential mapping with mesh-based inverse solvers. The
robustness of this approach is confirmed by the precision of
non-contact potential mapping across a wide range of catheter
dimensions in complex rhythms and in the presence of noise
(Figures 3, 5).

Our analyses show that the accuracy of inverse potential
mapping decreases when catheter dimensions are reduced and
this becomes more marked as noise levels are increased. In the 3D
examples presented here (Figures 3, 5), error remains relatively
low as catheter-atrial volume ratios decrease to ~0.3 but increases
exponentially with further reduction. These findings are
intuitively reasonable. With increasing distance from the heart
surface, intracardiac potentials are progressively attenuated and
smoothed. The extent to which high temporal frequencies on I'y
can be recovered depends on the regularization method used, but
the presence of noise introduces additional problems (Johnson
and Bronzino, 2000; Pullan et al., 2005). Because the magnitude of
intracardiac electrograms decreases toward the center of I'y, the
signal-to-noise ratio of records sampled with a small catheter is
reduced and the noise is amplified by inverse mapping. Finally, if
the catheter is too small it cannot provide an adequate
representation of the potentials distributed throughout the
cavity, particularly when they are complex spatially.

The 3D analyses above also show that the accuracy with which
potentials on I'yy are reconstructed is improved by matching the
number of electrodes to the spatial complexity of the “ground
truth” potential distribution. While acceptable non-contact
mapping accuracy was achieved in SR using a 64-electrode
basket catheter (see Figure 3), a 130-electrode catheter was
needed to achieve similar performance for non-stationary
reentrant activity (see Figure 5 and related text). If the
electrode distribution is not sufficiently dense, high spatial
frequencies cannot be recovered and low frequency artefacts
(aliasing) may occur (Rice, 1950). This holds for both non-
contact and contact mapping.

Comparison of Mesh-Based and Meshless

Inverse Potential Mapping

As noted at the start of the Discussion, we opted to use mesh-
based inverse potential mapping as the reference method in this
study because assumptions made about the electrical properties of
the solution domain with this approach are minimal. We argue
that the correspondence of the 3D FEM solutions presented here
with ground truth and the stability of these results support this
strategy. In contrast, the meshless/MFS alternative with which it
is compared employs a much simpler representation of the
intracardiac forward problem but introduces additional
assumptions about the current sources that give rise to
intracardiac potential distributions. The fact that the MFS

Intracardiac Inverse Potential Mapping

approach performs better for catheter-atrial volume ratios >0.3
(Figure 6) warrants further consideration. It is likely that much of
the apparent improvement with meshless/MFS is due to the
compact support for linear interpolation in the FEM
implementation used. This gives rise to discontinuities across
element boundaries (see Figure 5B) whereas potentials on the
heart surface are continuous with meshless inverse mapping. We
note that there is no difference in AT for catheter-atrial volume
ratios >0.3 and argue that meshlesssMFS inverse potential
mapping is at least as accurate as mesh-based inverse methods
over this range.

The major advantage of meshless/MFS methods in this setting
is that the forward transfer function is computationally simple
and can be assembled very rapidly. In contrast, with mesh-based
alternatives, such as FEM, the forward transfer function is
complex and time consuming to assemble and invert.
Furthermore, our results indicate that the meshless/MFS
representation of the intracardiac problem is much better
conditioned and therefore more robust than FEM. This is
reflected by the fact that an over-determined transfer matrix
was needed for stable inverse solutions with FEM, whereas
accurate solutions were obtained with MFS despite the fact
that transfer matrices were under-determined.

Potential Clinical Impact of These Findings
Non-contact intracardiac mapping systems that have been used
clinically have utilized balloon-mounted multi-electrode array for
potential mapping (Khoury et al., 1995; Khoury et al., 1998;
Schilling et al., 1999) or have reconstructed membrane charge
density from electrograms recorded with an open basket catheter
(Willems et al., 2019). While the inverse problem techniques used
are different, one would expect the information recovered to be
affected similarly by electrode density and positioning, and
catheter size, i.e. the number of recording electrodes, their
physical spacing on the catheter and proximity of the
electrodes to the atrial wall once the catheter is fully deployed.
Validation studies have shown that the accuracy with which
endocardial electrograms are constructed with the first of these
approaches is inversely related to the distance from the electrodes
array to corresponding points on the cavity surface (Earley et al.,
2006). As far as we are aware, an equivalent systematic validation
has not been completed for the second. This study indicates that
reliable non-contact potential mapping can also be performed
using multi-electrode catheters and could be carried out in near
real-time using meshless methods that employ the MFS.

In terms of optimal catheter design, greater electrode density
and more uniform distribution would be expected to provide
higher resolution. However, the question of how much is enough
has only started to be addressed recently. Martinez et al.
(Martinez-Mateu et al,, 2018) showed computationally that
methods used to transform basket electrogram signals back
into catheter surface potential maps may result in the creation
of fictitious repetitive activation patterns resembling AF rotors
when the input information was too sparsely sampled. Williams
et al. (Williams et al., 2018) on the other hand defined optimal
endocardial sampling densities, both computationally and in-
vivo, required to resolve activation patterns of varying
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complexities. They report that a minimum endocardial sampling
density of 1.0-1.5 points/cm® is required, with higher densities
needed to resolve spiral wave activity. Whilst they were looking at
endocardial interpolation of contact recordings not inverse
solutions, it is evident from our work here that potential
pitfalls in inverse mapping also need to be addressed with
good catheter design and mechanistic insight.

Limitations

It could be argued that the BEM is better matched to the mesh-
based inverse potential problem addressed here (Oostendorp and
van Qosterom, 1991; Johnson and Bronzino, 2000; Pullan et al.,
2005). The FEM generates sparse transfer matrices and is
computationally expensive, while BEMs reduce the solution
domain to the boundaries only giving rise to compact transfer
matrices that can reduce computational overheads and improve
accuracy (Johnson and Bronzino, 2000; Pullan et al., 2005).
However, our purpose here was to benchmark the mesh-based
approach and we opted to use FEM to avoid possible instability
that can occur when boundaries are geometrically complex as is
the case in the atria. We note that our mesh-based analysis has
proved stable and that the meshless/MFS methods with which
they are compared are much more efficient computationally than
either FEM or BEM. A further limitation is that although our
ground-truth data represent atrial rhythms of increasing
complexity they do not replicate the spatio-temporal disorder
that characterizes AF.

CONCLUSION

This computational analysis indicates that potentials on the
endocardial surface of a cardiac chamber can be reconstructed
with intracardiac multi-electrode basket catheters using inverse
solution methods provided that the boundary geometry is
specified and the 3D location of catheters with respect to it
are known. These data are now available clinically. Panoramic
electro-anatomic maps can therefore be generated at successive
time steps from non-contact recordings. Mapping accuracy is
determined by 1) the distance of recording electrodes from the
endocardium, 2) their distribution within the subdomain
sampled, and 3) rhythm complexity. These issues should be
factored into the design of future non-contact multi-electrode
basket catheters. We conclude that reliable non-contact potential
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