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Editorial on the Research Topic

Using novel technologies and models to identify biomarkers and explore

therapeutic strategies for neurological disorders

Neurological disorders are a group of diseases that affect the structure or function

of the central and peripheral nervous systems. In addition to stroke and diseases of the

blood vessels supplying the brain, representative central nervous system diseases also

include neurodevelopmental disorders brought on by faulty genes, risky environmental

factors, or gene-environment interactions, such as autism spectrum disorders (ASD),

neurodegenerative disorders where nerve cells are damaged or die, such as Parkinson’s

disease (PD) and Alzheimer’s disease (AD), as well as major depressive and bipolar disorders

(Pena et al., 2020). More than 600 neurological disorders afflict the nervous system (Matilla-

Dueñas et al., 2017). The absolute number of deaths brought by neurological disorders has

climbed by 39%, and disability-adjusted life years have increased by 15% over the past 30

years (Feigin et al., 2020). According to a systematic analysis for the Global Burden of

Disease Study 2015, neurological diseases are the secondmost common cause of death (GBD

2015 Disease Injury Incidence Prevalence Collaborators, 2016). Neurological disorders have

attracted increasing attention from around the world and the resulting burden has become

more widely acknowledged as a global public health concern in the coming decades.

Although these neurological disorders place a significant burden on society and

individuals, the pathogenesis and biomarkers of these diseases are not yet fully understood.

For example, ASD is a complex neurodevelopmental disorder probably caused by

several pathological factors, such as neurochemical alterations including changes of

gamma aminobutyric acid, glutamate, serotonin, dopamine, N-acetyl aspartate, oxytocin,

arginine-vasopressin, melatonin, vitamin D, orexin, endogenous opioids, and acetylcholine

(Marotta et al., 2020), abnormal brain structure and development (Gibbard et al., 2018;

Lee et al., 2020; Thompson et al., 2020), as well as immunity dysregulation (Kim

et al., 2017; Robinson-Agramonte et al., 2022). Studies have also shown that more

Frontiers in Behavioral Neuroscience 01 frontiersin.org45

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2023.1151667
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2023.1151667&domain=pdf&date_stamp=2023-03-23
mailto:qindong108@163.com
mailto:190876072@qq.com
https://doi.org/10.3389/fnbeh.2023.1151667
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1151667/full
https://www.frontiersin.org/research-topics/27881/using-novel-technologies-and-models-to-identify-biomarkers-and-explore-therapeutic-strategies-for-neurological-disorders
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Xing et al. 10.3389/fnbeh.2023.1151667

than 1,000 genes are related to the pathogenesis of ASD

(Famitafreshi and Karimian, 2018; Qin et al., 2021). At the same

time, environmental factors, including nutrition, medications,

toxic substances, and maternal infections during pregnancy, have

been extensively studied and found to be associated with ASD

(Wang et al., 2016). The etiology and pathogenesis of depression

are reported to be highly associated with synaptic remodeling,

transcription factors and epigenetics, immunity and inflammation,

as well as astrocyte function (Ménard et al., 2016). However, the

understanding of themechanisms and biomarkers underlying these

neurological disorders has been still far from complete.

Based on public health trends and epidemiology patterns,

the World Health Organization (WHO) has proposed a

recommended formulary for high-priority diseases, serving

as a guide for countries, particularly low- and lower-middle-

income countries, to develop their own national essential

medicines list. However, drugs that target neurologic disorders

are poorly represented on the WHO model list (Rimmer et al.,

2017). Besides, behavioral therapy, neurostimulation, and

dietary interventions are also recommended in therapies and

preventive measures of neurological disorders. New targeted

drugs and novel therapeutic strategies concerning different

pathogenesis are still depending on sufficient clinical and

pre-clinical trials.

In view of the above realization, this special issue was

organized to advance the understanding of the pathogenesis and

biomarkers of neurological disorders, as well the most recent and

advanced work on novel technologies identifying or preventing

neurological disorders. Furthermore, novel therapeutic strategies

are also discussed. This will serve as a foundation and perhaps

provide valuable hints for clinical therapies and pharmacological

development. For this Research Topic, twelve manuscripts have

been submitted. After 7 months of critical peer review, ten papers

have been accepted.

In the original research titled “Brain somatic variant in Ras-

like small GTPase RALA causes focal cortical dysplasia type II”,

Xu et al. performed deep whole-exome sequencing and targeted

amplicon sequencing in the postoperative brain tissue of epilepsy

patients with focal cortical dysplasia type II (FCD II). In their study,

HEK293T cells were transfected in vitro, with wild-type andmutant

RALA plasmids were transfected into the local cortex of mice using

in utero electroporation to evaluate the effect of RALA c.G482A

on neuronal migration. The results demonstrated that the somatic

gain-of-function variant of RALA activated themTOR pathway and

led to neuronal migration disorders in the brain, facilitating the

development of FCD II.

In the case report titled “Case report: Identification and clinical

phenotypic analysis of novel mutation of the PPP1CB gene in NSLH2

syndrome”, He X. et al. screened and analyzed the genetic mutations

in a patient with Noonan syndrome with loose anagen hair-2

(NSLH2) in Yunnan Province, China. The clinical manifestations

of NSLH2 included prominent forehead, yellowish hair, slightly

wide eye distance, sparse eyebrows, bilateral auricle deformity,

reduced muscle tension, as well as cardiac and visual abnormalities.

This article identified a novel mutation of PPP1CB, which enriched

the mutation spectrum of the PPP1CB gene and provided a basis

for the diagnosis of NSLH2.

In the methods article titled “Development and validation of

a system for the prediction of challenging behaviors of people with

autism spectrum disorder based on a smart wearable shirt: A

mixed-methods design”, Zwilling et al. developed an ML algorithm,

which was capable of predicting immediate challenging behavior

(CB) occurrence based on physiological parameter variations. An

efficient proof of concept (POC) was also carried out to identify

the strengths and weaknesses of the developed system. The results

demonstrated the developed algorithm could be used to predict CBs

that were about to occur in the upcoming 1 min.

In the mini review titled “Research progress on transcranial

magnetic stimulation for post-stroke dysphagia”, Li Y. et al. discussed

the effectiveness, mechanisms, potential limitations, and prospects

of transcranial magnetic stimulation (TMS) for clinical application

in post-stroke dysphagia rehabilitation. This has introduced a safe

and non-invasive technology of nerve stimulation that can be used

to directly manipulate post-stroke dysphagia.

In the review titled “Transcranial direct current stimulation of

the dorsolateral prefrontal cortex for treatment of neuropsychiatric

disorders”, Li Q. et al. performed searches on PubMed to

collect clinical and preclinical studies that using transcranial

direct current stimulation (tDCS) as neuromodulation technique,

dorsolateral prefrontal cortex (DLPFC) as the stimulation target

in treating neuropsychiatric disorders. The results indicated that

tDCS stimulation of DLPFC could alleviate the clinical symptoms

of schizophrenia, depression, drug addiction, attention deficit

hyperactivity disorder and other mental disorders.

In the original research titled “Safety and effects of transcranial

direct current stimulation on hand function in preschool children

with hemiplegic cerebral palsy: A pilot study”, He W. et al. designed

a crossover, single-blind, sham-controlled study in 30 preschool

children with hemiplegic cerebral palsy (HCP). Transcranial direct

current stimulation (tDCS) on the primary motor cortex of the

affected hemisphere was given with a 24-h interval between

the two sessions. Box and Block Test, Selective Control of the

Upper Extremity Scale, Modified Ashworth Scale, and Melbourne

Assessment 2 were conducted at baseline, immediately, and 90min

after each session. The results supported the safety and efficacy of

a single anodal tDCS on improving the manual dexterity of the

hemiplegic hand for preschool children with HCP.

In the mini review titled “Application of cognitive bias testing in

neuropsychiatric disorders: a mini-review based on animal studies”,

Zhang et al. summarized the application of cognitive bias tests in

animal models of neuropsychiatric disorders such as depression,

anxiety, bipolar disorder, and pain. They also discussed its critical

value in the identification of neuropsychiatric disorders and the

validation of therapeutic approaches.

In the review titled “Research progress on the role of vitamin D

in autism spectrum disorder”, Wang et al. reviewed the correlation

between vitamin D level and ASD, the effects of vitamin D

supplementation on ASD, the possible mechanism of vitamin D

involved in ASD, and insights from ASD animal models. This

can help to open-up a simple, cheap, and safe strategy for the

prevention and treatment of ASD.

In the original research titled “The effect of constraint-induced

movement therapy combined with repetitive transcranial magnetic

stimulation on hand function in preschool children with unilateral
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cerebral palsy: A randomized controlled preliminary study”, Wu

et al. designed a prospective, assessor-blinded, randomized

controlled study. In their study, 40 preschool children (aged 2.5–

6 years) with unilateral cerebral palsy (UCP) were randomized to

receive 10 days of constraint-induced movement therapy (CIMT)

combined with active or sham rTMS (repetitive transcranial

magnetic stimulation). Upper limb extremity, social life ability, and

perceived changes by parents and motor-evoked potentials were

assessed. The CIMT plus active rTMS had greater gains in the

affected hand function (range of motion, accuracy, and fluency)

than the CIMT plus sham rTMS group, but there was no significant

difference in muscular tone, social life ability, and perceived

changes by parents between the two groups. This demonstrates that

the treatment of CIMT combined with rTMS is safe and feasible for

preschool children with UCP.

In the review titled “Research progress on rheumatoid arthritis-

associated depression”, Liu et al. provided an overview of the

etiology and pathological mechanisms of rheumatoid arthritis-

associated depression. They also reviewed recent advances in

treatment with biologics, which would facilitate the development

of new and effective prevention and treatment strategies.

Overall, these studies have systematically explored the

pathophysiology and biomarkers of neurological disorders.

They also covered the most recent and cutting-edge research on

technologies for diagnosing or preventing neurological disorders,

as well as novel therapy approaches. Future large-scale multi-center

randomized controlled trials and in-depth mechanistic analysis are

still required to further clarify the pathophysiological mechanisms

underlying neurological disorders, thereby promoting translational

medicine and drug development.
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Yiting Zhao 1, Chaoqiong Fu 1, Shiya Huang 1, Yuan Huang 1,2, Hongyu Zhou 1, Yun Liu 3,
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Constraint-induced movement therapy (CIMT) combined with repetitive transcranial

magnetic stimulation (rTMS) have shown great potential in improving function in

schoolchildren with unilateral cerebral palsy attributed to perinatal stroke. However,

the prospect of application in preschool children with unilateral cerebral palsy (UCP)

attributed to various brain disorders remains unclear. In this prospective, assessor-

blinded, randomized controlled study, 40 preschool children with UCP (aged 2.5–6 years)

were randomized to receive 10 days of CIMT combined with active or sham rTMS.

Assessments were performed at baseline, 2 weeks, and 6 months post-intervention to

investigate upper limb extremity, social life ability, and perceived changes by parents

and motor-evoked potentials. Overall, 35 participants completed the trial. The CIMT plus

active stimulation group had greater gains in the affected hand function (range of motion,

accuracy, and fluency) than the CIMT plus sham stimulation group (P < 0.05), but there

was no significant difference in muscular tone, social life ability, and perceived changes

by parents between the two groups (P > 0.05). In addition, there was no significant

difference in hand function between children with and without motor-evoked potential

(P > 0.05). No participants reported severe adverse events during the study session.

In short, the treatment of CIMT combined with rTMS is safe and feasible for preschool

children with UCP attributed to various brain disorders. Randomized controlled studies

with large samples and long-term effects are warranted.

Keywords: constraint-induced movement therapy, repetitive transcranial magnetic stimulation, preschool

children, unilateral cerebral palsy, hand function
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INTRODUCTION

Cerebral palsy is the most common physical disability in
childhood, occurring in 2.5–3.5 per 1,000 live births and with
complicated etiology (Bax et al., 2005; Li et al., 2021). Unilateral
cerebral palsy (UCP), which mainly affects the function of
children’s lateral extremity, accounts for 44% of the cases
(Stavsky et al., 2017). The main manifestations in children
are motor impairments and may encompass heterogeneous
clinical performance including impairment of communication,
cognition, or sensation (especially tactile sensation), the difficulty
of daily task performance, and quality of life (Senst, 2014).

Over the last decade, studies on interventions for children
with UCP have grown exponentially. It was indicated that the
effect of most treatments for upper limb function in hemiplegic
patients is induced by the principles of task- and context-
specific motor learning and repetition (Veerbeek et al., 2014).
One of the most popular treatments among clinicians and
researchers is constraint-induced movement therapy (CIMT),
with an emphasis on constraining the unaffected extremity and
coupling task-related practice with the affected upper extremity,
and increasing evidence proved the effect of CIMT in children
with UCP (Reedman et al., 2017; Hoare et al., 2019; Ilieva and
Ilieva, 2020; Simon-Martinez et al., 2020). What is more, it
was proved that CIMT might promote neural remodeling and
thereby improve motor function (Liu et al., 2021). However,
the findings on the effect of CIMT on improving bimanual
coordination are controversial (Reid et al., 2015; Hoare et al.,
2019). In addition, it has not been proven to have much effect
on improving decreasing muscle tone (Reid et al., 2015). Studies
have shown that neuromodulation technology such as repetitive
transcranial magnetic stimulation (rTMS), which acts directly
on the central nervous system, may yield a great impact on the
overall motor ability and decrease the muscle tone of children
with cerebral palsy (Boddington and Reynolds, 2017; Gupta and
Bhatia, 2018; Parvin et al., 2018; Rajak et al., 2019).

Children with UCP demonstrate atypical patterns of
corticospinal tract development and organization, which
leads to an imbalance in excitability between the affected and
unaffected hemispheres (Berweck et al., 2008; Chen et al., 2016).
These neural changes may underlie the limitations in upper
extremity function and social life ability (Holmström et al.,
2010). Given that rTMS depolarizes neurons by means of strong,
short magnetic pulses, aiming to suppress or facilitate cortical
excitability depending on electrode polarity, it may make up the
shortcomings of CIMT (Klomjai et al., 2015; Lefaucheur et al.,
2020). Indeed, the effect of CIMT combined with rTMS has been
proven in improving behavioral function and neurophysiologic
responses in school-aged children with UCP attributed to
perinatal strokes (Kirton et al., 2016).

Furthermore, emerging evidence suggested that the CIMT
was more effective during the early developmental period (Reid
et al., 2015; Boddington and Reynolds, 2017). To our best
of knowledge, there are few studies to evaluate the effect of
CIMT combined with rTMS on the treatment response in
young children (Novak et al., 2020). Due to the immature
pattern of hand function and poor self-control, preschool

children with UCP, who are often affected by joint reaction
and mirror movements, i.e., involuntary imitations of unilateral
voluntary movements, can easily be affected by the motor
pattern of the affected side. This period may be critical for
more effective rehabilitation. On the other hand, most studies
focused on perinatal strokes, although UCP has complicated
pathogenic factors.

To fill this gap, we carried out a randomized controlled study
to evaluate the effect of CIMT combined with rTMS in preschool
children with UCP attributed to various brain disorders.

METHODS

The design of this study was a prospective, assessor-blind, and
randomized controlled trial, which was registered at chictr.org
(ChiCTR1900021924). The institutional research ethics board
approval was obtained from Guangzhou Women and Children’s
medical center, and written informed consent was obtained from
the legal representative of each participant before enrollment.

Participants
Eighty-four preschool children with UCP were recruited
through the goal-directed, peer-supported CIMT camp program.
Recruitment occurred from March 25, 2019 to August 31, 2019.
Inclusion criteria were as follows: (i) aged 2.5–6 years; (ii)
Manual Ability Classification System levels I-II or Mini-Manual
Ability Classification System levels I-II; (iii) ≥20◦ wrist active
extension and ≥10◦ metacarpophalangeal active extension from
full flexion; (iv) a 20–80% difference of global rating scale scores
between the affected and unaffected hands; and (v) written
informed consent. Participants were excluded if they met any of
these criteria: (i) other neurological diagnosis; (ii) uncontrolled
seizures; (iii) severe sensory impairment or visual problems; (iv)
contraindication for rTMS (Wassermann, 1998; Kirton et al.,
2008); (v) upper limb surgery; or (vi) botulinum toxin treatment
within 6 months. A total of 40 children met the inclusion criteria.
Thirty-five children completed the study in the end (with 17
children in the CIMT plus active stimulation group). The flow
of patients is summarized in Figure 1.

Design
Participants were randomly assigned to CIMT plus active or
sham stimulation groups (1:1) in an unbiased manner using
a random number table produced by Statistical Product and
Service Solutions for Windows (release 25.0, SPSS). Assessments
and administration of the functional scales and questionnaires
were performed by two independent assessors who had
received training and certification of the study measures. CIMT
assignment was concealed from the assessors. Assessors were
blind to rTMS assignment. Endpoints were assessed at the
baseline visit, 2 weeks, and 6 months postintervention.

Interventions
All the involved children participated in the 10 consecutive days
of goal-directed CIMT camp, active or sham rTMS was applied
independently in a separate room before daily CIMT therapy.
During the rTMS stimulation, participants were seated in a chair
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FIGURE 1 | Study flow diagram.

in a comfortably static position and wore a cap for marking
stimulation points. An eight-shaped circular coil connected to a
Yiruide CCY-1 stimulator (Yiruide Company Limited, Wuhan,
China) was positioned on the hotspot area pressing to the scalp. A
single pulse of transcranial magnetic stimulation was delivered to
detect the motor-evoked potential (MEP) by electromyographic
monitoring from the affected first dorsal interosseous muscle.
Theminimum stimulation intensity was considered as the resting
motor threshold when the collected amplitude was >50 µV in at
least 5 out of 10 trials.

After the determination of the resting motor threshold,
participants received priming rTMS for the unaffected primary
motor cortex. A therapist orientated the handle pointing at a 45◦

angle to the sagittal line for the CIMT plus active stimulation
group or a 90◦ angle for the CIMT plus sham stimulation group.
Parameters for rTMS were as follows: intensity 90% resting
motor threshold multiplied by 1 T, frequency 1Hz for 20min.
For children with absent resting motor thresholds, the fixed
resting motor threshold was set as 40% machine output for the
consideration of the rough mean resting motor threshold in
studies with different groups of people (Delvaux et al., 2003;
Ciechanski et al., 2017). That is to say, the stimulation intensity
was set as 40% × 90% × 1 T for the participants with absent
resting thresholds.

After the active or sham rTMS intervention, a tailor-made
restrictive glove was fitted and applied to all the participants
on the unaffected hand and forearm (from fingertips to middle
forearm) for more than 6 h each day. The restricted hand

retained the ability to support or prevent falls (Xu et al., 2012).
Motor learning for the affected upper extremity totaled 3 h
each day. The participant/therapist ratio of group activities was
3:1 to secure individual guidance. Group activities were age-
appropriate and play-based daily living activities to improve
children’s desire to participate (e.g., tug-of-war, shooting contest,
balloon transmission, and desktop cleaning). After the 3-h
hospital-centered CIMT training, participants continued family-
centered training for 3 h with an exercise program set by
therapists to practice with the affected upper extremity under the
guidance of caregivers. Telephone follow-up and rehabilitation
guidance were conducted every 2 weeks. Daily caregiver-
supervised records were followed-up.

Outcome Assessment
Assessments based on the dimensions of the international
classification of functioning, disability, and health (ICF) were
performed at the baseline visit, 2 weeks, and 6 months
postintervention (Cieza et al., 2019; Angeli et al., 2021).
The MEPs and adverse events were assessed to investigate
corticospinal excitability changes and safety. Safety was assessed
through the self-reporting of symptoms, updating medical
records, and physician review.

The manual abilities were classified by the Manual Ability
Classification System (for children aged over 4 years old) or
Mini-Manual Ability Classification System (for children aged 1–
4 years old), the evidence-based standard for upper extremity
functional levels (Eliasson et al., 2017; Palisano et al., 2018). The
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Melbourne Assessment 2 (MA2), a validated tool to evaluate
the unaffected upper limb function, was the main outcome
measure in this study (Wang et al., 2017). The modified
Ashworth scale was performed for the description muscle
tone (Meseguer-Henarejos et al., 2018; Zurawski et al., 2019).
Bimanual hand performance was assessed by the selective control
of the upper extremity scale (Wagner et al., 2016). Perceived
changes by caregivers were evaluated by global rating scale
and social life ability was evaluated by social life ability scale
for Chinese infant–junior school students, which comprised
six domains: independent living, athletic abilities, operational
abilities, communicative abilities, participation in collective
activities, and self-management abilities, with excellent reliability
and validity (Zhang et al., 1995). The MEPs in the unaffected
motor cortices were measured in the first dorsal interosseous
muscles by single-pulse TMS.

Adverse events related to CIMT or rTMSwere assessed during
the whole study period. A summary of the transient minor
adverse events was summarized in prior publications (Gillick
et al., 2018).

Statistical Analysis
The data were analyzed using SPSS version 25.0. For continuous
variables, an independent sample t-test was performed to
compare the baseline data between the two groups which
accorded to normal distribution. The ranked variables or
variables that did not conform to normal distribution were
analyzed by 2 independent samples such as Wilcoxon signed-
rank sum test. For categorical variables, the chi-squared
test was analyzed. Repeated measures analyses of variance
and simple effect analysis were performed for the within-
group and between-group differences of upper extremity
function, social life ability, perceived changes by parents,

and MEP data. Analysis of covariance was used to compute
mean differences between the two groups adjusting for
baseline. Level information was expressed by frequency and
percentage. For every analysis, the significance level was set
at P < 0.05.

RESULTS

There were no significant differences in baseline demographic
characteristics or functional performance between the two
groups (Table 1), with the independent sample t-test orWilcoxon
signed-rank sum test (P > 0.05).

Improvement of Affected Upper Extremity
Function
Most participants had significantly increased MA2 subscale
scores (range of motion, accuracy, dexterity, and fluency) at
both 2 weeks and 6 months post-intervention compared with
the baseline in the two groups (P < 0.05, Table 2). The CIMT
plus active stimulation group was associated with larger gains
in the subscales of accuracy, fluency, and range of motion
than the CIMT plus sham stimulation group (P < 0.05). Just
as important, the difference of average change value of MA2
subscales between groups exceeded the minimum clinically
important difference (MCID) of MA2 subscales that has been
established (the MCID of MA2 subscales are 2.35, 3.20, 2.09, and
2.22, respectively) (Wang et al., 2017). No significant diffidence
was reported between the two groups in the subscale of dexterity
(P > 0.05).

For muscular tone, no treatment-related change emerged in
the modified Ashworth scale (forearm, wrist, thumb, and fingers)
in the two groups (P > 0.05, Figure 2).

TABLE 1 | Baseline participant characteristics by the group.

CIMT + rTMS (+) (n = 17) CIMT + rTMS (−) (n = 18) P-value

Age (m) 50.6 (10.5) 43.83 (12.6) 0.123

Gender, male/female 6/11 8/10 0.594

Left side of hemiparesis, n (%) 8 (47.1) 10 (55.6) 0.620

Gross motor function classification system, level I/II 15/2 13/5 0.249

Manual ability classification system, level I/II 11/6 8/10 0.236

The modified Ashworth scale, median (range) 1+ (1–3) 2 (1–3) 0.756

Melbourne assessment 2

Range of motion 72.77 (17.37) 68.90 (19.05) 0.535

Accuracy 82.59 (15.16) 74.49 (19.20) 0.177

Dexterity 65.03 (15.34) 59.18 (15.52) 0.271

Fluency 70.31 (13.21) 62.15 (11.85) 0.052

SCUES of affected side 8.71 (2.4) 8.17 (3.6) 0.603

SCUES of the unaffected side 14.00 (2.3) 14.17 (1.7) 0.465

Global rating scale 4.76 (1.8) 4.11 (1.9) 0.304

Standard scores of social life ability scale 10 (1.2) 10 (1.4) 0.930

Magnetic resonance imaging (n) PVL (6), ventricle broadening (3), cyst

(1); normal (1), absence (6)

PVL (9); ventricle broadening (4); cyst (2);

absence (3)

P-value represents between-group differences. Data shown are means (SD) or n (%), unless otherwise stated.

CIMT, constraint-induced movement therapy; rTMS, repetitive transcranial magnetic stimulation; SCUES, selective control of upper extremity scale; PVL, periventricular leukomalacia.
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TABLE 2 | Pre- and post-intervention changes in the Melbourne Assessment 2 in the 2 treatment groups.

Assessments Intervention point CIMT + rTMS (+) (n = 17) CIMT + rTMS (−) (n = 18) P-value

MA2-range of motion Baseline 72.77 (17.4) 68.90 (19.0) 0.021

2 Weeks 83.44 (13.7)## 75.36 (20.5)#

6 Months 81.25 (14.4)# 71.80 (16.1)

MA2-accuracy Baseline 82.59 (15.2) 74.44 (19.2) 0.017

2 Weeks 90.35 (10.5)## 82.89 (19.1)##

6 Months 90.59 (10.6)# 80.4 (19.3)#

MA2-dexterity Baseline 65.03 (15.3) 59.18 (15.5) 0.356

2 weeks 78.28 (14.2)## 64.06 (13.8)#

6 months 73.49 (13.4)## 65.25 (13.7)##

MA2-fluency Baseline 70.31 (13.2) 62.15 (11.8) 0.020

2 Weeks 79.83 (11.1)## 74.60 (11.4)##

6 Months 79.27 (12.8)## 68.26 (11.0)##

SCUES (affected) Baseline 8.71 (2.4) 8.17 (3.6) 0.742

2 Weeks 12.59 (2.5)## 11.28 (3.5)##

6 Months 10.76 (2.2)## 9.56 (2.5)

SCUES (unaffected) Baseline 14.00 (2.3) 14.17 (1.7) 0.451

2 Weeks 13.24 (2.4) 12.94 (3.6)

6 Months 14.06 (1.5) 13.89 (1.2)

P-value represents between-group differences (the bold values represent P < 0.05). Values are reported as mean (SD). Within-group and between-group differences were analyzed

with repeated measures analyses of variance.
#Significantly different than baseline, P < 0.05.
##Significantly different than baseline, P < 0.01.

CIMT, constraint-induced movement therapy; rTMS, repetitive transcranial magnetic stimulation; MA2, the modified Melbourne assessment 2; SCUES, selective control of upper

extremity scale.

Bimanual Performance
Although most participants had increased selective control of the
affected upper extremity scale scores, there was no significant
difference between the two groups (P > 0.05, Table 2). As for
the unaffected upper extremity, there was no significant within-
group and between-groups difference (P > 0.05).

Social Life Ability and Perceived Changes
by Caregivers
For the social life ability scale, there were no significant within-
group and between-group differences between the two groups
(P > 0.05; Figure 3A). We found that the global rating scale
scores achieved clinically significant gains at 2 weeks of post-
intervention in both the groups (P< 0.01), even though there was
no significant between-group difference (P > 0.05; Figure 3B).

Motor-Evoked Potential Outcomes
To investigate the correlations between MEP outcomes and
hand function after the intervention of CIMT combined with
active rTMS stimulation, we compared MA2 outcomes between
children with (n= 7) and without (n= 10) MEPs in the lesioned
hemisphere at 2 weeks of post-intervention. No significant
difference emerged between the groups (P > 0.05, Table 3).

Safety
Headache occurred in one participant, which was relieved after
several minutes. No participants reported severe adverse events

such as epileptic seizures or behavioral problems during the
study session.

DISCUSSION

We examined the effect of the intervention of CIMT combined
with rTMS on preschool children with UCP and found that the
addition of rTMS exaggerated the effect on the affected upper
extremity function induced by CIMT. No serious adverse events
occurred during the study period, only one participant reported
a self-limiting headache.

In this study, most participants experienced improvements
in the affected upper extremity function after 2 weeks and 6
months post-intervention. Greater improvement in accuracy,
fluency, and range of motion in the CIMT plus active stimulation
group, suggested a greater impact of CIMT combined with rTMS
than CIMT alone, which is consistent with the previous study
in school-age children (Kirton et al., 2016). Young children
with UCP are often affected by joint reaction and mirror
movements (Ismail et al., 2017). Hence, it is still necessary
to carry out effect-oriented trials of CIMT combined with
rTMS in younger children, and our results complemented this
evidence in preschool children with UCP. Even though no
significant difference in dexterity and selective control of the
upper extremity scale of the affected upper extremity were
reported between the two groups, participants who received
CIMT combined with active stimulation had more favorable
mean scores 2 weeks postintervention. Notably, improvements
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FIGURE 2 | Changes of muscle tone of the affected upper extremity in the constraint-induced movement therapy (CIMT) plus active stimulation group and sham

stimulation group. (A) Muscle tone of forearm. (B) Muscle tone of wrist. (C) Muscle tone of thumb. (D) Muscle tone of the other fingers. rTMS, repetitive transcranial

magnetic stimulation.

FIGURE 3 | Perceived changes by caregivers and changes of activity of daily living in the constraint induced movement therapy (CIMT) plus active stimulation group

and sham stimulation group. (A) Changes of global rating scale. (B) Changes of social life ability scale for Chinese infant-junior school student. rTMS, repetitive

transcranial magnetic stimulation.

measured with MA2 sustained for 6 months in this study may
reflect long-term depression of 1-Hz rTMS in corticospinal
excitability. The maintained after-effect, which may be relevant
to a complex scenario (e.g., gene activation/regulation, de-novo
protein expression, and postsynaptic excitability state), is the

rationale for rTMS applications as a clinical tool (Cirillo et al.,
2017; Baur et al., 2020).

The muscle tone was not reported with significant differences
between groups. The previous study has indicated the positive
effect of 10-Hz rTMS on muscle tone of children with cerebral
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TABLE 3 | Comparison of upper extremity function between the groups with or without MEPs at 2 weeks of postintervention.

Measurements Intervention point With MEP (n = 7) Without MEP (n = 10) Between-group comparison (P)

MA2-range of motion Baseline 80.42 (4.90) 78.27 (8.51) 0.826

2 Weeks 87.83 (4.41) 82.54 (6.40)

MA2-accuracy Baseline 76.57 (18.82) 86.86 (13.41) 0.426

2 Weeks 88.57 (13.35) 90.29 (9.48)

MA2-dexterity Baseline 58.64 (18.59) 74.47(8.24) 0.381

2 Weeks 78.59 (19.39) 82.57 (8.42)

MA2-fluency Baseline 69.38 (17.14) 75.51 (9.29) 0.329

2 Weeks 74.53 (19.48) 80.03 (6.40)

SCUES (affected) Baseline 7.71 (2.36) 10.00 (1.91) 0.648

2 Weeks 12.71 (2.87) 13.43 (2.15)

SCUES (unaffected) Baseline 14.29 (1.89) 15.00 (0.00) 0.288

2 Weeks 12.71 (2.87) 13.86 (2.27)

Values are reported as mean (SD).

MEP, motor-evoked potential; CIMT, constraint-induced movement therapy; rTMS, repetitive transcranial magnetic stimulation.

palsy (Rajak et al., 2019). In light of the proven safety of low-
frequency rTMS, we adhered to established principles of 1-Hz
rTMS applied to the unaffected motor cortex (Emara et al.,
2010; Gillick et al., 2014a). Rossi et al. had compared the safety
between high-frequency and low-frequency rTMS and found that
induction of seizures was with 1.4% and crude risk estimate in
epileptic patients and <1% under high-frequency stimulation in
patients without the history of seizures, yet was hardly reported in
studies with low-frequency stimulation (Gillick et al., 2014a). In
line with the evidence of low-frequency rTMS, no serious adverse
event was reported in this study. For developing brains, safety
deserves to be handled with the utmost seriousness, and more
studies of low-frequency rTMS on this group are warranted.

A previous study reported improvements in quality-of-life
measures in children older than six (Gillick et al., 2014b; Kirton
et al., 2016; Rich et al., 2016). However, we did not find
any significant differences in social life ability scale scores and
perceived changes by caregivers between the two groups. One of
the potential factors to consider was the educational environment
in China. Many Chinese caregivers, especially grandparents,
usually overprotect their kids and are used to reducing the
opportunities of their children to complete the tasks in life by
themselves, which may limit the improvements to the children’s
social abilities to a certain extent. What is more, the optimal
timing of follow-up for clinically relevant change of CIMT
combined with rTMS is not well understood in young children.
A longer follow-up period and more follow-up time points may
be important for the understanding of clinically relevant change.

It was shown that MEPs were detected only from some
participants. We wondered if children with absent MEP on the
affected side do worse than the others after the intervention of
CIMT combined with active rTMS. Interestingly, we did not find
significant differences in upper extremity function between the
groups with or without MEP, which provides a train of thought
to search for an optimal fixedmotor threshold for young children
with absentMEP. On the other hand, the reason forMEP absence

in young children is not well understood yet. We presumed that
the high level of motor cortex excitability and the difficulty for
young children to maintain relaxed muscles may be important
resources. An increased understanding of the developmental
neurophysiological processes in preschool children with cerebral
palsy is essential for the establishment of neuromodulation
principles. Considering the difficulty of measuring the MEPs for
preschool children, our study may be a beneficial exploration of
the rTMS parameters for this group.

In addition, studies reported that the integrity of underlying
brain anatomy and various brain disorders could potentially
influence the distribution of current across the scalp, which
may contribute to the variable efficacy of rTMS in children
with brain disorders (Rossi et al., 2009; Klomjai et al., 2015).
Importantly, a large number of studies have focused on UCP
attributed to perinatal stroke, although complicated factors may
play an important role in cerebral palsy (e.g., leukomalacia and
intracranial hemorrhage in infants). Participants in the study
were represented with various brain disorders, expanding the
chance of variable efficacy of rTMS. Furthermore, consistent
with the adult stroke model, current models considered
interhemispheric balance in young children as a spectrum, rather
than a dichotomy. Pino et al. (2014) demonstrated that the
cerebral structural reserve (preservation of neural pathways and
connections) was important to cerebral plasticity. The chance is
that the treatment effect is related to interhemispheric balance
rather than the simple interhemispheric competition model. In
this context, the determination of brain damage is important to
the rTMS effect.

Limitations of this study embodied the modest sample size,
the insufficient follow-up time points, and lack of subgroups
for lesion location of brain and age. Still, there was no
formal assessment of potential complications and the impact
of parental education and social background on treatment.
Different requirements and expectations of the parent may lead
to bias in some subjective indicators.
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Concerns about the deeper influence of age and
lesion location of the brain on CIMT combined with
rTMS warrant further investigation in studies. With the
combination of neuroimaging techniques, we can observe
the changes of cerebral blood flow and molecular biology
in the course of rTMS action, thus providing more
help for studying the mechanism of rTMS and the best
treatment parameters.

CONCLUSION

The rTMS combined with CIMT has a superimposed
therapeutic effect on the affected hand function in preschool
children with UCP attributed to various brain disorders,
which is safe and worthy of promotion among this group
of children.
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Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can lead to
severe social behavioral difficulties, which mainly manifests as social communication and
interaction disorders; narrow interests; and repetitive, stereotyped behaviors. In recent
years, the prevalence of ASD has increased annually, and it has evolved from a rare
disease to one with a high incidence among childhood developmental disorders. The
pathogenesis of ASD is considered to be the interaction of genetic and environmental
factors. There is increasing evidence that vitamin D deficiency in pregnancy and early
childhood can lead to the occurrence of ASD. Studies have demonstrated that vitamin
D intervention can significantly improve the symptoms of ASD, but the underlying
mechanism is still unclear. Therefore, exploring the neuroprotective mechanism of
vitamin D against ASD is a huge challenge currently being worked on by current basic
and clinical researchers, a task which is of great significance for the clinical promotion
and optimization of vitamin D in the treatment of ASD. To further clarify the relationship
between vitamin D and ASD, this review summarizes the correlation between vitamin
D level and ASD, the effects of vitamin D supplementation on ASD, the possible
mechanism of vitamin D involved in ASD, and insights from ASD animal models.
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INTRODUCTION

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by
impaired social interaction and communication, repetitive and stereotyped behaviors, limited
interests, and abnormalities in sensory processing, generally occurring in early childhood (Lord
et al., 2018). The American Psychiatric Association’s Diagnostic and Statistical Manual of Mental
Disorders, fifth edition, refers to childhood autism, uncategorized generalized developmental
disorder, and Asperger’s syndrome collectively as ASD (Battle, 2013). The etiology and pathogenesis
of ASD are unknown, although the interaction of genetic and environmental factors is believed
to play a role in the occurrence of ASD. The specific pathogenesis still requires further study
(Lord et al., 2020). In recent years, it was determined that vitamin D, besides regulating calcium and
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phosphorus metabolism, also has a significant role in fetal and
early postnatal brain development. Mounting evidence suggests
that vitamin D likely participates in the pathogenesis of ASD, and
vitamin D deficiency may be one of the causes of ASD (Eissa
et al., 2018). Meanwhile, some studies have illustrated the fact that
vitamin D can improve the core symptoms of ASD in children
(Wang et al., 2020). This review discusses the correlation between
vitamin D level and ASD, the treatment effects of vitamin D
on the symptoms of ASD, the possible mechanism of vitamin
D’s involvement in ASD, and the current insights available from
ASD animal models.

AUTISM SPECTRUM DISORDER

The Epidemiology of Autism Spectrum
Disorder
ASD was first reported in 1943 by Leo Kanner, an American
physician, who referred to it as “early infantile autism”
(Harris, 2018). ASD was once considered an infrequent disease;
nevertheless, the prevalence of ASD has risen dramatically in
the last several decades in various countries (Zablotsky et al.,
2015). The World Health Organization pointed out that ASD
has become one of the most rapidly growing severe diseases in
the world, and it is a major public concern that seriously affects
the health of children (Lai et al., 2014; Sandin et al., 2017).
The U.S. Centers for Disease Control and Prevention reported
that the prevalence of autism among 8-year-old children in the
United States in 2016 was 1/54, with a 4.3:1 ratio of males to
females (Maenner et al., 2020). Surveys in other countries have
shown that the prevalence of ASD has increased over time (Lai
et al., 2019). Although there are no national investigation data on
the epidemic of ASD in China, a multicenter study reported that
the prevalence of ASD among those 6–10 years of age is about 1%
in China, suggesting a rising tendency (Sun et al., 2019). However,
the reason for such a jump has not been fully recognized. ASD
is more common in urban than rural areas, and urban areas
are associated more closely with cloudy and rainy weather, less
ultraviolet B (UVB) exposure, and greater air pollution (Cannell,
2017). These factors reduce ultraviolet radiation at the surface
and vitamin D production in the skin, consistent with the
etiological hypothesis that vitamin D deficiency might contribute
to ASD (Cannell, 2008; Wai et al., 2015).

The Etiology and Pathogenesis of Autism
Spectrum Disorder
The etiology and pathogenesis of ASD are currently unclear.
Since the 1980s, research on autism has entered a novel stage, and
researchers began to abandon the hypothesis of the cause being
so-called “improper parental care.” Medical workers first tried to
identify the cause of ASD in the field of biology (Campisi et al.,
2018). With the deepening of investigations on ASD, however, we
have come to know that ASD is a complex neurodevelopmental
disorder caused by the interaction of genetic and environmental
factors (Steinman, 2020). Studies have shown that > 1,000 genes
are related to ASD. The comorbidity rate of ASD in identical

twins is also significantly higher than that in fraternal twins, and
some immediate family members of ASD patients have clinical
symptoms similar to ASD even if they themselves have not
been diagnosed with ASD, such as social and communication
disorders, stereotyped behaviors, etc. These findings all suggest
that genetic factors play an important role in the pathogenesis
of ASD (Famitafreshi and Karimian, 2018; Bölte et al., 2019).
However, only 25–30% of ASD children have detectable ASD-
related genes, and nearly 70% of cases have a cause that does not
involve genetics (Famitafreshi and Karimian, 2018). Therefore,
the role of environmental factors in the pathogenesis of ASD
cannot be overlooked (Modabbernia et al., 2017; Uçar et al.,
2020). Lifestyle and environmental factors, such as nutrition (Bala
et al., 2016), medications (Bromley, 2016; Kaplan et al., 2016),
toxic substances (Kardas et al., 2016; Skalny et al., 2016), maternal
infections during pregnancy (Jiang et al., 2016; Bilbo et al.,
2018), stress, and vaccine immunization, have been extensively
studied and found to be associated with ASD (Wang et al.,
2016). About 1/3 of ASD children have significantly increased
serotonin (5-hydroxytryptamine [5-HT]) levels in peripheral
blood, and 5-HT reuptake inhibitors can improve the emotional
symptoms and repetitive, stereotyped behaviors of ASD patients
(Abdulamir et al., 2018). The rise in dopamine levels in the
hypothalamus can induce stereotyped behaviors in ASD children,
while dopamine-blocking drugs can reduce the stereotyping of
ASD children (Kirsten and Bernardi, 2017). Meanwhile, ASD
children have abnormal electroencephalographs, brain structure,
and brain function (Gibbard et al., 2018). Studies have found
that the frontal, parietal, and occipital cortices of ASD patients
are thinner. ASD patients also have brain network–connection
disorders, and the functional connections between the frontal
and temporal cortices of the brain and other brain regions
are reduced, resulting in less information transmission (Naaijen
et al., 2018; Pagnozzi et al., 2018). Immunological studies have
illustrated that the numbers of white blood cells and CD38+
B-cells and the levels of HLA-DR (the cell-activation marker of
CD8+ and CD4+ T-cells) are increased, suggesting that there
is an imbalance in immunity, in ASD children (Kim et al.,
2017). The currently applied maternal immune-activation (MIA)
model is a type of ASD model that activates the immune system
during pregnancy and leads to disease in the offspring. Pregnant
rats were injected with double-stranded polyinosine:cytosine
at 9.5 days of gestation, and their offspring showed ASD-
like behaviors (Meltzer and Van de Water, 2017). Cannell’s
epidemiological survey results revealed that the prevalence of
ASD was higher in areas with greater air pollution, urban
areas, and those at higher altitudes. These areas have less
UVB light, which results in a deficiency of vitamin D. Using
these findings, combined with the impact of vitamin D on
brain development, the etiological hypothesis that vitamin D
deficiency might result in ASD was first proposed (Cannell,
2008). In particular, the factors that cause ASD—such as air
pollution, cloudy weather, seasonal factors, migration of dark-
skinned immigrants to poleward latitudes, birth order, gestational
diabetes, preeclampsia, cesarean delivery, autoimmune disease in
the family, and nutrition—are all associated with a deficiency of
vitamin D (Alzghoul, 2019).
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AUTISM SPECTRUM DISORDER AND
VITAMIN D

Vitamin D
Vitamin D, a fat-soluble vitamin, is a general title for a
collection of steroid-like substances, including ergocalciferol and
cholecalciferol (D3; Grant, 2016). Vitamin D is an essential
nutrient for the human body. Vitamin D3 is synthesized in the
skin by the reaction of 7-dehydrocholesterol with UVB radiation
(Bivona et al., 2019). It mainly comes from skin exposure to UVB
radiation (Landel et al., 2018). Subsequently, it undergoes 2-step
hydroxylation in the liver and kidneys to first form 1,25(OH)D,
then 1,25(OH)2D3, which binds to vitamin D receptors (VDRs)
and exerts a biological effect. Because 1,25(OH)2D3 synthesis
is tightly regulated, 25-(OH)D in serum has been suggested
to be the best single indicator of vitamin D status. It has
been thought that the main role of vitamin D is to regulate
calcium and phosphorus metabolism, thus affecting bone growth
and development (García-Serna and Morales, 2020). Current
studies have found that 1α-hydroxylase, the key enzyme for
vitamin D synthesis, and VDRs are widely present in brain
tissue, and vitamin D plays a crucial role in brain development
(Zhou et al., 2018). Vitamin D has important effects on brain
development and function, including neuronal differentiation,
proliferation, and apoptosis; regulates synaptic plasticity and the
dopaminergic system; and reduces the oxidative burden (Karras
et al., 2018). Studies have found that vitamin D3 can also promote
the development of regulatory T-cells and inhibit an excessive
immune response and autoimmune reactions (Mak, 2018). In
addition, vitamin D plays an important role in the regulation
of gene expression. One study revealed that 223 ASD risk genes
in the SFARI database were vitamin D3–sensitive genes, which
means that these ASD-relevant genes might be regulated by
vitamin D (Trifonova et al., 2019).

The Correlation Between Vitamin D Level
and Autism Spectrum Disorder
Peripheral Blood Vitamin D Levels in Children With
Autism Spectrum Disorder
Since Cannell proposed the hypothesis that vitamin D deficiency
may contribute to ASD, an increasing number of researchers have
begun to assess changes in serum vitamin D levels among ASD
children. A great number of studies investigating the vitamin
D status of children and adolescents with ASD from different
countries and races reported that ASD children and adolescents
had lower vitamin D levels (Fahmy et al., 2016; Basheer et al.,
2017; Cieśliñska et al., 2017; Desoky et al., 2017; Garipardic
et al., 2017; Altun et al., 2018; Arastoo et al., 2018). Arastoo
et al. analyzed the vitamin D levels of 31 ASD children and
31 healthy children and found that 96.8% of the ASD children
were deficient in vitamin D (Arastoo et al., 2018). The level of
25-(OH)D in ASD children was significantly lower than that of
the control group, and the Social Response Scale (SRS) scores
of ASD children with vitamin D deficiency were significantly
higher than those of ASD children with normal vitamin D levels
(Dong et al., 2017; Guo et al., 2019). Compared to the healthy

children, they found that the level of vitamin D in ASD children
was lower than that in the control group, and the level of vitamin
D was significantly negatively correlated with the total scores of
the Autism Behavior Checklist (ABC), Childhood Auditing Scale
(CARS), SRS, Autism Treatment Evaluation Checklist (ATEC),
behavioral energy zone, and the ATEC social energy zone,
indicating that the lower the vitamin D level, the more severe
the core symptoms of ASD were. Recently, a meta-analysis of 24
case–control studies demonstrated that children and adolescents
with ASD had significantly lower vitamin D concentrations than
those of participants in the control group (mean difference,
−7.46 ng/mL; 95% confidence interval, −10.26 to −4.66 ng/mL;
p < 0.0001; I2 = 98%; Wang et al., 2020).

The Maternal Vitamin D Level During Pregnancy
A higher prenatal 25-(OH)D level exerts a positive influence
on the cognitive development of the offspring, and the 25-
(OH)D level in early pregnancy may have a stronger influence
on the offspring’s neurodevelopment relative to that in the
late period (García-Serna and Morales, 2020). Diverse studies
have investigated the impact of prenatal exposure to vitamin D
on brain development. A systematic review and meta-analysis
published in 2019 summarized evidence of the association
between 25-(OH)D levels in maternal blood in pregnancy or
newborn blood at birth and neurodevelopmental outcomes and
found that children with a low prenatal 25-(OH)D (<20 ng/mL)
level exhibited more ASD-related symptoms, greater behavioral
difficulties, and less social skills at 5 years of age (López-
Vicente et al., 2019). In a study of 4,229 children, researchers
detected maternal vitamin D levels in the second trimester and
at birth, then used SRS to assess ASD-like symptoms in the
children until 6 years of age, ultimately finding that vitamin
D deficiency during pregnancy increased the risk of ASD-like
symptoms in childhood (Vinkhuyzen et al., 2018). Another study
demonstrated that mothers in the ASD group had significantly
lower maternal serum levels of 25-(OH)D than those in the
neurotypical group, with 55.9 and 29.4% of mothers being
vitamin D–deficient, respectively (Chen et al., 2016). Lower first-
trimester maternal serum levels of 25-(OH)D are associated with
a significantly increased risk of ASD development in offspring
(p < 0.001; Vinkhuyzen et al., 2018). Researchers have also
illustrated that decreased vitamin D levels during pregnancy and
decreased exposure to solar UVB might increase the risk of ASD
(Wang et al., 2016). In 2020, a systematic review found that
low vitamin D levels might lead to the development of ASD
(Famitafreshi and Karimian, 2018).

Vitamin D Level in the Peripheral Blood of Autism
Spectrum Disorder Rats
Clinical studies have shown that the use of valproate acid (VPA)
during pregnancy is a risk factor for children to suffer from ASD
(Wood et al., 2015). The valproic acid (VPA) rat model is a
common ASD animal model. The offspring of rats exposed to
VPA in utero by an intraperitoneal injection of 600 mg/kg of
VPA at 12.5 days of gestation showed symptoms consistent with
those of ASD children. Researchers tested the level of 25-(OH)D
in the peripheral blood of ASD rats treated by VPA at birth and
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21 days after birth and recorded a persistent vitamin D deficiency
from birth to 21 days after birth, consistent with measurements
of the peripheral blood of ASD children (Kim et al., 2013;
Selim and Al-Ayadhi, 2013; Ahn et al., 2014). However, this
study could not prove that the symptoms of ASD rats were
caused by vitamin D deficiency. Vitamin D deficiency in animals
causes brain structural and functional alterations similar to those
found in humans with ASD. A severe vitamin D deficiency
during pregnancy in rats can cause pathological changes, such
as brain volume enlargement and ventricular enlargement, and
can affect neuron differentiation and axonal connection (Principi
and Esposito, 2019). The behaviors of offspring born to vitamin
D–deficient animals are similar to those of young children
with ASD. An animal model of the development of vitamin D
(DVD) deficiency has been proven to reproduce the phenotype
related to ASD in the domain of neuroanatomy (Ali et al.,
2019). Meanwhile, some studies have reported that vitamin D
has preventive or therapeutic effects in ASD rats induced by
propionic acid (Alfawaz et al., 2014).

THE IMPACT OF VITAMIN D
ADMINISTRATION ON SYMPTOMS OF
AUTISM SPECTRUM DISORDER

The Preventive Effects of Vitamin D on
Autism Spectrum Disorder
A systematic review and meta-analysis published in 2019
summarized evidence of the association between 25-(OH)D
levels in maternal blood during pregnancy or newborn blood
at birth and neurodevelopmental consequences (García-Serna
and Morales, 2020). The meta-analysis offered evidence that
prenatal exposure to increased 25-(OH)D levels is associated
with improved cognitive development and a reduced risk of
attention-deficit/hyperactivity disorder and ASD-related traits
later in life (Stubbs et al., 2016). Researchers enrolled mothers
who had given birth to ASD children already and provided
them with 5,000 IU of supplemental vitamin D daily during
subsequent pregnancies. Then, after delivery, each mother was
given 7,000 IU of supplemental vitamin D daily during lactation
or 1,000 IU of supplemental vitamin D daily if their child
was not breastfed until they reached 1 year of age. The study
investigators found that the ASD prevalence of these children was
reduced to 1/4 (5 vs. 20%) compared to reports in the literature.
Nevertheless, some scholars believe that this result needs to be
carefully considered because this study was uncontrolled and
included an exceedingly low number of pregnant women with
varied durations of vitamin D supplementation; they argue that
the current data do not support the hypothesis that vitamin D
supplementation during pregnancy can prevent the development
of ASD (Principi and Esposito, 2019).

The Therapeutic Effect of Vitamin D on
Autism Spectrum Disorder
Quite a few studies have also demonstrated that vitamin D can
help to improve symptoms of ASD children. The first report
of the use of vitamin D3 for ASD treatment dates to 2014

wherein a 32-month-old boy with ASD and vitamin D deficiency
was administered 150,000 IU of vitamin D3 intramuscularly
every month and 400 IU/day orally for 2 months and showed
improvements in ASD core symptoms in a transitory amount
of time (Jia et al., 2015). In 2015, a randomized controlled trial
reported that the CARS scores and social intelligence quotients
of ASD children were better than those in the control group
after 3 months of supplementation with vitamin D (Azzam
et al., 2015). A recent clinical study found that daily high-dose
vitamin D (300 U/kg·d) supplementation significantly improved
the core symptoms of ASD children as mainly reflected in the
CARS score, stereotypes, and greater eye contact and attention
duration (Saad et al., 2019). During a long-term follow-up study
of vitamin D treatment for ASD children, in 37 children with
ASD [25-(OH)D < 75 nm/L] who were supplemented with
vitamin D for 3 months, ASD symptoms were significantly
improved when assessed using the ABC and CARS scores
(Feng et al., 2017). One study found that early intervention
with vitamin D could improve the growth, development, and
behavioral performance of ASD rats, and vitamin D had a
therapeutic effect on ASD rats. On the contrary, vitamin D3
supplementation was reported to have no effect in a double-
blind, randomized, placebo-controlled trial in which 38 children
(mean age, 7.1 years) were enrolled (Kerley et al., 2017). Among
them, 18 were given vitamin D3 (2,000 IU/day for 20 weeks)
and 20 received placebo therapy. Serum 25-(OH)D3 levels
were measured before vitamin D3 administration and at the
end of the study period, and ASD symptoms were evaluated
before and after supplementation by parents and clinicians
using the ABC, SRS, and Developmental Disabilities—Children’s
Global Assessment Scale (DD-CGAS). Although the treatment
group showed a significant increase in serum 25-(OH)D3
concentrations (23.4 vs. 34.4 ng/mL) compared to patients
receiving placebo therapy (20.7 vs. 20.2 ng/mL; p = 0.0016),
no improvements in scores of the SRS, DD-CGAS, or 5 ABC
subscales were recorded. Similarly, some scholars have found
that oral 2,000 U/d of vitamin D3 can increase vitamin D
levels in children with ASD, but their symptoms of ASD did
not improve. Researchers believe that, in order to determine
whether ASD symptoms have improved due to vitamin D
supplementation given to alleviate insufficient vitamin D levels,
it is essential to further increase the vitamin D supplement dose
(Principi and Esposito, 2019).

THE POSSIBLE MECHANISM OF
VITAMIN D INVOLVED IN AUTISM
SPECTRUM DISORDER

It has been hypothesized that ASD is a combination of both
organ-specific physiologic and systematic abnormalities, such
as gene mutations, oxidative stress, an impaired detoxification
system, inflammation, immune dysregulation, abnormal
neurotrophic factor and neurotransmitter levels, and seizures—
at least, in a subset of individuals with ASD (Rossignol and Frye,
2014). Mounting evidence suggests that low vitamin D levels
are involved in the etiology of the aforementioned abnormalities
(Groves et al., 2014).
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Vitamin D and Gene Mutations
ASD is partly genetically derived (Sandin et al., 2014). A study
linking vitamin D metabolic gene variants to ASD risk illustrated
that the risk for ASD was increased in children inheriting the
AA genotype of the GC gene (vitamin D–binding protein), the
GG genotype of the CYP2R1 gene (a catalyst enzyme involved in
the transformation of vitamin D to 25-(OH)D), and the paternal
Taq l and Bsml genotypes of the VDR gene, highlighting the
possible etiological role of low vitamin D levels in ASD (Schmidt
et al., 2015). Current genetic studies on ASD have found that
there are multiple neonatal mutations in affected children (De
Rubeis et al., 2014). Vitamin D can perform DNA-repair and
-maintenance functions through a variety of mechanisms. At
present, it has been confirmed that > 5 vitamin D–dependent
genes encode DNA-repair proteins as full-time DNA mutation–
repair proteins (Fleet et al., 2012). In addition, studies have
found that, when the vitamin D level is reduced, the DNA
repair enzyme poly(adenosine diphosphate ribose) polymerase
tends to overreact and damage neighboring DNA, and daily
supplementation with minor doses of vitamin D3 can increase
Bax levels, promote apoptosis, and prevent gene mutations
(Fedirko et al., 2009). Studies have found that Growth arrest
and DNA-damage-inducible alpha, p53, RAD23 homolog B,
Proliferating cell nuclear antigen, Poly(adenosine diphosphate
ribose) and polymerase Death associated protein 1α (Trifonova
et al., 2019), which are closely related to vitamin D, have
the function of repairing DNA damage (Fedirko et al., 2009;
Fleet et al., 2012; De Rubeis et al., 2014) (Table 1). Therefore,
it is speculated that vitamin D deficiencies may cause novel
gene mutations in children with ASD, and the multiple novel
mutations currently found in children with ASD may be the result
of vitamin D deficiencies rather than a pathogenic factor of ASD
(Shan et al., 2016; Siracusano et al., 2020).

Vitamin D Deficiency Leads to Excessive
Proliferation of Neuronal Cells
Early brain overgrowth is considered an important
neuropathological feature of ASD. Magnetic resonance imaging
studies have revealed that the brain volumes of children with
ASD are greater than those of normal children. At the cellular
level, the expansion of the ASD brain involves quite a few
neurons in the anterior prefrontal and dorsolateral prefrontal
cortices (Hazlett et al., 2011). Studies have found that vitamin
D can inhibit cell proliferation by inducing the proliferation of

TABLE 1 | Vitamin D and gene-mutation repair (Fedirko et al., 2009; Fleet et al.,
2012; De Rubeis et al., 2014).

Repair proteins/enzymes Function

Growth arrest and DNA-damage-inducible alpha DNA-damage repair

p53 DNA-damage repair

RAD23 homolog B DNA-damage repair

Proliferating cell nuclear antigen DNA-damage repair

Death-associated protein 1α (Trifonova et al., 2019) DNA-damage repair

Poly(adenosine diphosphate ribose) polymerase DNA-damage repair

Bax Promoting apoptosis and
preventing gene mutations

the cyclin-dependent kinase inhibitors p21 and p27. It can also
inhibit cell proliferation by inhibiting the expression of other
proteins required for the cell cycle, such as proliferating cell
nuclear antigen and cyclin D1 (Marini et al., 2010). An animal
model of developmental vitamin D deficiency has been proven
to reproduce the phenotype associated with ASD in the field of
neuroanatomy (Ali et al., 2018). Therefore, when the vitamin D
level is deficient, neuronal cells proliferate excessively, leading
to overgrowth of the brain in the early stages of development,
which may correlate with the occurrence of ASD.

Vitamin D and Neurotransmitters
Multiple lines of evidence suggest an involvement of dysregulated
neurotransmitter systems (serotonergic, oxytocinergic, and
dopaminergic systems) in ASD. These systems play key roles
in neurotransmission, brain maturation, cortical organization,
and behavior (including social and repetitive behaviors; Staal
et al., 2012). Vitamin D-associated neurotransmitters regulates
learning, memory, and emotions (Staal et al., 2012; Patrick and
Ames, 2014; Pertile et al., 2018) (Table 2). A deficiency of the
inhibitory neurotransmitter γ–aminobutyric acid (GABA) in the
brain is associated with ASD. Studies have found that long-term
treatment of rodents with vitamin D can promote the synthesis
of GABA in brain tissues, such as the prefrontal cortex, anterior
cingulate cortex, and hippocampus (Staal et al., 2012). Vitamin
D influences the synthesis and metabolism of dopamine and
the expression of glial cell line–derived neurotropor (GDNF).
GDNF is crucial to the survival of dopaminergic neurons,
and the absence of vitamin D may be involved in dopamine
signal transduction (Pertile et al., 2018). Lower levels of plasma
oxytocin and abnormal serotonin concentrations in the brain
and tissues outside the blood–brain barrier have been reported
in populations with ASD (Patrick and Ames, 2014). While the
binding of brain serotonin transporter was significantly lower in
high-functioning ASD adults than healthy controls, the binding
of brain dopamine transporter was significantly higher in ASD
patients (Nakamura et al., 2010). Studies have shown that the
concentration of 5-HT in the brains of ASD patients is lower
and that of 5-HT in the peripheral blood is higher (Patrick
and Ames, 2014). Vitamin D can increase the expression of
tyrosine hydroxylase, which is involved in the synthesis of
dopamine; vitamin D can also increase the transcription of

TABLE 2 | Vitamin D–associated neurotransmitters (Staal et al., 2012; Patrick and
Ames, 2014; Pertile et al., 2018).

Neurotransmitter Function

5-hydroxytryptamine Regulating emotions in social
decision-making

Oxytocin Improving social skills

Seronine Promote pro-social behavior
and assess emotions

Dopamine Motor control, reward
motivation, emotional
regulation, and social
interaction

γ-aminobutyric acid Involved in brain cognition,
learning, and memory
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tryptophan hydroxylase 2, which promotes the synthesis of 5-
HT synthetase. 5-HT is a monoamine neurotransmitter, which
plays a significant role in regulating emotions in social decision-
making. At the same time, a proper amount of vitamin D
can inhibit the transcription of tryptophan hydroxylase 1 in
peripheral tissues, thus explaining the serotonin paradox in ASD
in which peripheral serotonin is increased but central serotonin
is decreased (Patrick and Ames, 2014).

The Immunomodulatory Effects of
Vitamin D
Studies have demonstrated that immune-activation may be a
risk factor for ASD. A lack of vitamin D may alter the immune
responses of patients with ASD, and vitamin D may prevent
ASD-related behavior dilemmas induced by immune activation
(Nakamura et al., 2010). Studies have shown that patients
with ASD have higher levels of autoimmune markers, such as
anti-nuclear antibodies, anti-ganglioside M1 antibodies, anti-
MPB autoantibodies, and anti-nucleosome–specific antibodies.
Some studies have shown that the levels of these markers
are significantly positively correlated with the severity of ASD
(Wang et al., 2016). Vitamin D exerts an immunomodulatory
effect through helper T-cells and CD4+CD25+ regulatory T-cells,
and regulatory T-cells prevent autoimmunity by inhibiting
Th17 cells (Chambers and Hawrylowicz, 2011). Some scholars
have found that vitamin D supplementation can increase the
proportion of regulatory T-cells in the body, upregulate the
production of dendritic cells, and upregulate interleukin (IL)-
10, thereby reducing the intensity of autoimmune attacks,
inhibiting damage to tissues by immune cells, and reducing the
severity of autoimmune diseases (Saad et al., 2018). Mostafa
et al. found that 70% of children with ASD had higher
anti-myelin–associated glycoprotein (anti-MAG) levels, and
research suggests that serum 25-(OH)D) levels are significantly
negatively correlated with anti-MAG levels (Mostafa and Al-
Ayadhi, 2012). As the level of anti-MAG correlates with
the severity of ASD, this finding suggests that the 25-
(OH)D) deficiency in some ASD children is likely a factor
that promotes increased anti-MAG levels, and anti-MAG
may play a role in brain damage in children with ASD.
Vitamin D also modifies the expression of several genes
involved in axogenesis and myelination (Ritterhouse et al.,
2011). These findings suggest that vitamin D plays a crucial
role in auto-antibody production and ASD pathogenesis,
perhaps being similar in its manner to other autoimmune
diseases like multiple sclerosis and systemic lupus erythematosus
(Mazahery et al., 2016).

The Anti-inflammatory Effects of
Vitamin D
Current studies have found that ASD is an inflammation-related
disease (Basheer et al., 2017; Cieśliñska et al., 2017). Some
studies contend that vitamin D has an immunomodulatory
effect, which can enhance the protective immune response and
reduce the inflammatory response (El-Sharkawy and Malki,
2020). Vitamin D has different anti-inflammatory effects on
the brain, including decreasing harmful inflammatory cytokines

and neuro-inflammation caused by oxidants and toxins. ASD
individuals have immune function abnormalities similar to
those of individuals afflicted by vitamin D deficiency, such as
increased inflammatory cytokine levels (Cannell, 2017). Evidence
suggests that children with ASD have elevated levels of pro-
inflammatory cytokines, including IL-6, tumor necrosis factor
alpha (TNF-α), and interferon-γ, in different tissues (Napolioni
et al., 2013). When elevated, it is strongly associated with
cognitive impairment in ASD (Krakowiak et al., 2017). Vitamin D
metabolites have been shown to decrease the secretion of IL-6 and
TNF-α, enhance the expression of anti-inflammatory cytokines
such as interleukin 10 (IL-10) from activated B-cells, and direct
dendritic cells toward a more tolerogenic state. The activation of
vitamin D hormone (calcitriol) protects brain tissue by reducing
inflammatory cytokine levels (Mazahery et al., 2016).

The Anti-oxidative Effects of Vitamin D
At present, there are several lines of evidence indicating oxidative
stress and mitochondrial dysfunction are prevalent in ASD,
and oxidative stress may be a general feature of ASD (Giulivi
et al., 2010). Antioxidants, especially glutathione, are the key
to early neural survival. Elevated levels of oxidative stress in
the brain can damage or interfere with brain development and
result in ASD-like symptoms (Jia et al., 2018). It has been
found that the concentration of oxidized glutathione in the
plasma of ASD children is increased, and the concentration of
oxidative stress in these individuals is similarly increased as a
result of ASD (James et al., 2006). Vitamin D has an antioxidant
effect and can inhibit the synthesis of nitric oxide synthase,
upregulate glutathione, reduce glial cell activation and neuro-
inflammation, and play a significant role in neuroprotection and
neuromodulation (DeLuca, 2016). It has also been reported that
vitamin D can directly upregulate certain antioxidant-related
genes (such as those that encode superoxide dismutase and
thioredoxin reductase; Halicka et al., 2012). Existing evidence
also reveals that 25-(OH)D concentrations correlate significantly
positively with glutathione levels in healthy adult populations
(Alvarez et al., 2014). Therefore, it is believed that vitamin D
supplementation can reduce the level of oxidative stress and play
a protective role in the brain.

INSIGHTS FROM AUTISM SPECTRUM
DISORDER ANIMAL MODELS

Animal models provide advantages over human research due
to their controllability, availability, and predictability. They play
a crucial role in exploring the etiology and pathogenesis of
diseases. The animal model of ASD has become a key platform
by which to explore the relationship between vitamin D and
ASD. At present, the understanding of ASD and its animal
models in medical circles domestic and abroad is extremely
limited, and existing ASD animal models may be categorized in
three ways: genetic animal models (Südhof, 2017; Dadalko and
Travers, 2018; Nakai et al., 2018), VPA-exposure models (Barrett
et al., 2017), and MIA models (Kim et al., 2017). Although
researchers have reached a consensus on the close relationship
between genetic factors and ASD, definite genetic evidence
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has been found in only 25–30% of ASD cases using existing
technical methods. In such cases, the factors at play usually
involve chromosome rearrangement and gene copy number
variations or point mutation (De Rubeis et al., 2014). The gene
models currently in use domestically and abroad include a
neuroligins gene model, neurexins gene model, SH3 and multiple
ankyrin repeat domains protein 3 gene model, methyl-CpG–
binding protein 2 gene model, fragile X mental retardation 1
gene model, and tuberous sclerosis complex 1/2 gene model
(Südhof, 2017; Dadalko and Travers, 2018; Nakai et al., 2018).
These genes are all found in ASD individuals and have been
verified by gene-knockout animal models. Strong evidence of the
genetic heritability of ASD is also a key gene for studying gene
target regulation. Gene-abnormality models have been created
for specific gene deletions and research purposes, and they
have specific applications. Regulated environmental factor ASD
models include the VPA-exposure model (Barrett et al., 2017),
MIA model (Kim et al., 2017), and maternal auto-antibody
model (Martínez-Cerdeño et al., 2016). Offspring mice exposed
to VPA during pregnancy exhibit typical behavioral performances
similar to those of children with ASD, consistent with the current
research results of brain structure and function damage and
changes in brain transmitters. This model is also the most
commonly employed animal model in China (Caspers et al.,
2014). To induce the MIA model, pregnant female mice are
exposed to polyinosine:cytosine, lipid polysaccharides, simulated
viruses, bacterial infections, and other environments to activate
the maternal immune system (Boksa, 2010). Studies have found
that offspring in the MIA model have behaviors similar to
those of children with clinical ASD, which mainly manifest as
social impairment and increased repetitive, stereotyped behaviors
(Wong and Hoeffer, 2018). At present, several mouse and rat
strains have been selected worldwide through behavioral methods
that can better simulate the core symptoms of ASD and may be
considered to be models of idiopathic ASD; primary examples
include the inbred line BTBR-T+tf/J mouse model and the inbred
line BALB/cByJ mouse model (Chang et al., 2018). Current
animal studies of vitamin D and ASD mainly assess the level of
vitamin D in the serum and the therapeutic and preventive effects
of vitamin D on animal ASD models. Although studies have
found lower levels of vitamin D in the peripheral blood of ASD
rats, there is currently no animal model of ASD caused by vitamin
D deficiency (Kim et al., 2013; Selim and Al-Ayadhi, 2013; Ahn
et al., 2014). To further investigate the relationship between
vitamin D deficiency and ASD, the behavior of offspring of
vitamin D-deficient animals should be studied in the future (Ali
et al., 2019). Research has found that serum vitamin D levels of
ASD rats were significantly lower than those of normal rats, and
the behavior of ASD ratwas aggravated with a reduction in serum
vitamin D level in the later developmental stage. At the same
time, it was found that a vitamin D intervention could promote
the growth and development of ASD rats and improve their ASD-
like behaviors. Currently, animals used for vitamin D deficiency
disease research include pigs, dogs, rats, and mice. Research on
diseases associated with vitamin D deficiency has shifted from
rickets to immune, tumor, cardiovascular, and other diseases
(Cannell, 2017) and has gradually progressed to cellular and
molecular levels. A vitamin D deficiency model constructed by

researchers suggests that maternal vitamin D deficiency is one of
the important factors that causes embryonic development delay
in mice after pregnancy. Nevertheless, whether this embryonic
developmental delay can cause ASD in humans remains to be
further studied.

OUTLOOK

The high incidence of ASD has made it a social problem
that urgently requires solutions, but the cause of the disease
is still unknown. ASD is mostly considered to be the result
of a combination of genetic and environmental factors, but
current findings concerning the etiology of genetic factors
and environmental factors cannot reasonably explain the
epidemiological characteristics of ASD, and clinical drug
treatments based on various existing pathogenesis have not
achieved recognized clinical efficacy. Therefore, it is necessary
to explore the etiology and pathogenesis of ASD from a
new perspective to provide novel ideas for the treatment of
ASD. Low vitamin D levels in utero, postnatal, and in early
childhood have been hypothesized to be a risk factor for
neurodevelopmental disorders, particularly ASD. Animal and
human cellular, biological, and physiologic studies have provided
compelling evidence for numerous roles of vitamin D in various
body processes, some of which are involved in the pathobiology
of ASD. Some researchers have found that children with ASD
and vitamin D deficiency experience improvements in their
core symptoms with an increase in vitamin D levels; however,
due to different methods, fewer interventional experiments, and
inconsistent results, there is no consensus on the therapeutic
effect of vitamin D in ASD, so it is necessary to further
implement large-sample, randomized double-blind trials in the
future. Progress in understanding the etiology and pathogenesis
of vitamin D and ASD requires the conduct of a large number of
rigorous scientific experiments. At the same time, we can observe
vitamin D levels in ASD animal models and further study the
preventive and therapeutic effects and mechanism of vitamin D
in this context. If the relationship between vitamin D and ASD
is clarified by further research, it would open up a simple, cheap,
and safe new path for the prevention and treatment of ASD.
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Background: The dorsolateral prefrontal cortex (DLPFC) is a key node of the frontal
cognitive circuit. It is involved in executive control and many cognitive processes.
Abnormal activities of DLPFC are likely associated with many psychiatric diseases.
Modulation of DLPFC may have potential beneficial effects in many neural and
psychiatric diseases. One of the widely used non-invasive neuromodulation technique
is called transcranial direct current stimulation (or tDCS), which is a portable and
affordable brain stimulation approach that uses direct electrical currents to modulate
brain functions.

Objective: This review aims to discuss the results from the past two decades which
have shown that tDCS can relieve clinical symptoms in various neurological and
psychiatric diseases.

Methods: Here, we performed searches on PubMed to collect clinical and preclinical
studies that using tDCS as neuromodulation technique, DLPFC as the stimulation target
in treating neuropsychiatric disorders. We summarized the stimulation sites, stimulation
parameters, and the overall effects in these studies.

Results: Overall, tDCS stimulation of DLPFC could alleviate the clinical symptoms of
schizophrenia, depression, drug addiction, attention deficit hyperactivity disorder and
other mental disorders.

Conclusion: The stimulation parameters used in these studies were different from each
other. The lasting effect of stimulation was also not consistent. Nevertheless, DLPFC
is a promising target for non-invasive stimulation in many psychiatric disorders. TDCS
is a safe and affordable neuromodulation approach that has potential clinical uses.
Larger clinical studies will be needed to determine the optimal stimulation parameters
in each condition.

Keywords: non-invasive neuromodulation, dorsolateral prefrontal cortex (DLPFC), schizophrenia, addiction,
depression, psychiatric disease
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INTRODUCTION

Neuropsychiatric disorders are combinations of psychiatric
and neurologic malfunction that deal with mental disorders,
including degenerative diseases, addictions, mood disorders,
neurotic disorders, etc. Current treatments of neuropsychiatric
diseases mainly include drug therapy, physical therapy
and psychotherapy. Common physical therapies included
electroconvulsive treatment (ECT), deep brain stimulation
(DBS), transcranial magnetic stimulation (TMS), transcranial
direct current stimulation (tDCS), etc. Among these techniques,
tDCS becomes an increasingly employed clinically due to its
economical, convenient, non-invasive and mild side effects.
However, current dilemma in using tDCS as a option of
clinical treatment is that there is no common standard, and the
therapeutic effects vary from case to case.

In this review, we discussed: (1) the mechanism of tDCS and
the application of tDCS technique in clinical research, focusing
on five types of psychiatric disorders; (2) and the potential
therapeutic brain target DLPFC.

AN OVERVIEW OF TRANSCRANIAL
DIRECT CURRENT STIMULATION
TECHNIQUE

Accumulating knowledge has supported that transcranial direct
current stimulation (tDCS) can relieve symptoms of various
diseases, including pain (Wrigley et al., 2013), depression (Sharafi
et al., 2019), schizophrenia (Brunelin et al., 2012a), attention
deficit disorder (Cosmo et al., 2015), drug addiction (da Silva
et al., 2013), and anxiety disorder (Heeren et al., 2017). In
recent years, tDCS has been widely used in clinical research
due to the advantages mentioned above. tDCS is a non-invasive
brain stimulation technique that uses low-intensity direct current
(1–2 mA) to modulate cortical activity (Woods et al., 2016).
A common tDCS stimulator consists of a controller to generate
a constant current, and at least one pair of stimulation electrodes
to attach to the surface of the scalp. Although there is no uniform
standard for stimulation parameters in clinical studies, electrodes
of 20–35 cm2, with application of 1–2 mA currents, 20- or 30-
min stimulation duration for one session with one or multiple
sessions through a certain period have been employed in a large
body of studies.

The activity of the brain is based on the electrical activity of
neurons. It is believed that tDCS may modulate the brain activity
at different scales. First, from a macro perspective, tDCS likely
modulate the brain activity via changing the cortical excitability
directly. In general, anodal stimulation depolarizes neurons,
whereas cathodal stimulation hyperpolarizes neurons (Purpura
and McMurtry, 1965; Bikson et al., 2004). In addition, tDCS
may regulate the activity of neural networks by influencing other
brain regions associated with the target brain region. It has
been suggested that neuronal networks were more sensitive than
single neuron in the weak electric field (Francis et al., 2003).
By using resting-state functional magnetic resonance imaging
(fMRI) technique, it has been found that anode tDCS intensified

the functional connection among the thalamus, the temporal
lobe and the left caudate nucleus (Dalong et al., 2020). At
the neuronal levels, tDCS has been shown to modulate the
neural oscillations. McDermott et al. (2019) reported that anode
tDCS increased spontaneous activity in the theta (4–7 Hz) and
alpha (9–14 Hz) bands in prefrontal and occipital cortices in
a flanker task. Finally, from the molecular perspective, tDCS
may modulate neurotransmitter release to regulate synaptic
plasticity. For example, long-term potentiation (LTP) which was
observed after anodal tDCS coupling with synaptic activation
(Fritsch et al., 2010). Another study found that the effects
of tDCS may be related to the polarity-specific changes in
neurotransmitter concentrations. Anodal tDCS caused locally
reduced GABA concentrations while cathodal stimulation caused
reduced glutamatergic neuronal activity with a highly correlated
increase in GABA concentration (Stagg et al., 2009). Liebetanz
et al. (2002) showed that, dextromethorphan, an antagonist of
N-Methyl-D-Aspartic Acid receptors (NMDAR, receptors that
are involved in synaptic plasticity regulation), suppressed the
post-stimulation effects of both anode and cathode stimulation.

In order to recommend this convenient technique as a
powerful therapeutic strategy, a remarkable effort is still needed
to further understand how tDCS modulate the brain activity.

DORSOLATERAL PREFRONTAL CORTEX
IS A TARGET FOR NON-INVASIVE
STIMULATION IN NEUROPSYCHIATRIC
DISEASES

One of the most common cortical targets for tDCS is the
dorsolateral prefrontal cortex (DLPFC; Figure 1). DLPFC is
a structurally and functionally heterogeneous region (Glasser
et al., 2016), and is closely related with cognitive functions
[attention (Vossel et al., 2014; Bidet-Caulet et al., 2015), decision-
making (Philiastides et al., 2011; Rahnev et al., 2016), working
memory (Barbey et al., 2013), and emotion regulation (Shahani
and Russell, 1969; Buhle et al., 2014; Frank et al., 2014)]. The
DLPFC is located in the middle frontal gyrus, and it is a part
of the prefrontal cortex (PFC) which regulates the marginal
reward area, and involves in higher executive function and
impulsive behaviors (Fitzpatrick et al., 2013; Xu et al., 2017).
The left DLPFC connects to the primary motor area, primary
sensory area, etc. It mainly participates in pain perception
and emotional cognitive processing through a top-down neural
network (Koenigs and Grafman, 2009; Vaseghi et al., 2015). The
right DLPFC is selectively involved in processing pessimistic,
negative emotions and mediates vigilance and arousal (Hecht,
2010). DLPFC has become an important target in the treatment
for mental disorders.

A large number of studies have shown that tDCS targeting
at DLPFC can alleviate a variety of neuronal and psychiatric
diseases symptoms. For example, anode tDCS (2 mA) can
reduce the pain caused by multiple sclerosis (Ayache et al.,
2016). Anode stimulation of the right DLPFC, and cathode at
the left DLPFC improved the risk preference of the subjects
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FIGURE 1 | tDCS of the dorsal lateral prefrontal cortex (DLPFC) for treatment of neuropsychiatric disorders. The red circle shows the DLPFC. It is the center for
higher brain functions such as working memory, executive function, attention, etc. Dysfunction of DLPFC was found in many psychiatric disorders such as
schizophrenia, depression, ADHD, etc. tDCS of DLPFC has become a popular treatment option for these disorders. It has been proposed that tDCS changes the
functional connectivity, neuronal excitability and synaptic plasticity of the related brain regions.

(Yang et al., 2017). Studies have shown that anodal tDCS
stimulation of left DLPFC could decrease negative emotions and
improve cognitive control (Pena-Gomez et al., 2011). Here, we
summarize and discuss perspectives of the parameters and effects
of tDCS targeting DLPFC in the treatment of different types of
neuropsychiatric disorders.

Depression
Depression (also known as depressive disorder) is a mental
disease that causes a persistent feeling of sadness and loss of
interests, with high recurrence rate, disability rate and suicide
rate. In general, it can be classified into major depression, bipolar
disorder or treatment-resistant depression. Bipolar disorder,
causing extreme mood swings that include emotional highs
(mania or hypomania) and lows (depression). Treatment-
resistant depression refers to no response to at least two different
antidepressant treatments.

Twenty studies collected from PubMed were shown in Table 1.
Majority of these studies have shown that tDCS targeting at
DLPFC (mostly the left DLPFC) can significantly improve
depression symptoms for a month or longer. All studies placed
the anode electrodes on the left DLPFC and the cathode
electrodes on the opposite side (right DLPFC or orbitofrontal
region). 17 out of 20 studies reported improvement of depressive
symptoms. Besides, tDCS also improved working memory and
attention (Loo et al., 2012). Importantly, tDCS in combination
with other treatments, such as an antidepressant drug (Brunoni
et al., 2013b) or with computerized cognitive behavioral therapy
(Welch et al., 2019), can reduce depressive symptoms even better
than tDCS alone (Brunoni et al., 2013a). It is important to
note that tDCS on DLPFC may have some side effects, such as
mania, although this is not common (Loo et al., 2012). For the
stimulation parameters, most studies have used a current of 2 mA,
electrode sizes of 25–35 cm2, and a total of more than five sessions
(see details in Table 1). Though various parameters have shown

different effects on depression symptoms, most stimulation
protocols with longer stimulation duration for one session and
repeated sessions were shown to have therapeutic effects.

Schizophrenia
Schizophrenia is a chronic mental disorder. The most typical
symptoms of schizophrenia include hallucinations and delusions,
which are often referred to as positive symptoms. Schizophrenia
may also experience negative symptoms, such as social
withdrawal, anhedonia, hyperboulia, affective blunting and
alogia (Carpenter et al., 2016). In recent years, clinical studies
have shown that tDCS may be effective in reducing auditory
hallucination symptoms in patients with schizophrenia. For
example, a study reported that anode tDCS showed a significant
increase in short- interval intracortical inhibition in the left
motor cortex, but no change in intra-cortical facilitation (ICF)
compared to sham stimulation (Gordon et al., 2019). Yoon et al.
(2019) found that decreased functional network connectivity
was negatively correlated with the increase of hallucinogenic
behavior at baseline and was significantly enhanced after anode
2 mA tDCS. This may suggest that fronto-temporal tDCS may
regulate abnormal hallucination-related functional network
connectivity in patients with schizophrenia. Decline in insight
is also one of the main symptoms of schizophrenia. Patients
with insight deficits often fail to recognize that they are ill
and may refuse treatment. Bose et al. (2014) found that 2 mA
anode tDCS stimulation over left DLPFC and cathode over the
left temporo-parietal junction, could improve the insight and
decrease auditory hallucination symptoms in patients. However,
no such effect was observed after 1 mA stimulation, which
indicates that the current intensity of tDCS is a key factor (Hill
et al., 2016). A combination of medication, physical therapy,
and psychotherapy usually have a synergic effect. Non-invasive
brain stimulation combined with physical therapy has been
shown to improve motor performance and language function
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TABLE 1 | Effects of DLPFC tDCS on depression.

References Electrode montage Electrode
size (cm2)

Current
intensity

(mA)

Stimulation
duration (min)

Stimulation
sessions

Total
sessions

Key findings

Anode (+) Cathode (−)

Brunoni et al.,
2017

DLPFC (F3) DLPFC (F4) / 2 30 1/day, 3 weeks + 1/week ×
7 weeks

22 Have a significant effect, but it was
inferior to escitalopram

Aparicio
et al., 2019

DLPFC (F3) DLPFC (F4) 25 2 30 1/day, 3 weeks, +1/week,
7 weeks

22 Reduced recurrence rate
significantly

Moreno et al.,
2020

DLPFC (F3) DLPFC (F4) / 2 30 1/day, 3 weeks, +1/week,
7 weeks

22 Reduced practice effects in
processing speed, but no change
in cognitive deficits

Palm et al.,
2012

DLPFC (F3) Orbitofrontal
region

35 1/2 20 1/day, 4 weeks 20 No significant effect

Martin et al.,
2013

DLPFC (F3) Arm/opposite
Side of track

(F8) (two forms
of tDCS)

35 2 20 1/week × 3 months + 1/2
weeks × 3 months

18 Reduced the recurrence rate for
relapse significantly

Sampaio-
Junior et al.,
2018

DLPFC (F3) DLPFC (F4) 25 2 30 1/day, 2 weeks + 2/other
week, 6 weeks

16 Have a significant improvement

Brunoni et al.,
2013b

DLPFC (F3) DLPFC (F4) 25 2 30 1/day × 2 weeks + 1/2
weeks × 2

12 Improved mood significantly
[tDCS + sertraline (50 mg/d)]

Welch et al.,
2019

DLPFC (F3) DLPFC (F4) 25 2 30 3/week × 4 weeks 12 Reduced depressive symptoms
significantly (tDCS + computerized
cognitive behavioral therapy)

Brunoni et al.,
2014

DLPFC (F3) DLPFC (F4) 25 2 30 1/day, 2 weeks 10 Reduced depressive symptoms
significantly

Blumberger
et al., 2012

DLPFC (F3) DLPFC (F4) 35 2 20 1/day, 3 weeks 15 No significant effect

Loo et al.,
2012

DLPFC (F3) Orbitofrontal
region (F8)

35 2 20 1/day, 3 weeks 15 Improved mood significantly

Loo et al.,
2010

DLPFC (F3) Orbitofrontal
region

35 1 20 5 active + 5 active sessions 10 Improved overall depression
significantly over 10 tDCS
treatments, no between-group
difference in the five-session,
sham-controlled phase

20 5 sham session + 5 active
sessions

10

Dell’Osso
et al., 2012

DLPFC (F3) Contralateral
cortex

32 2 20 2/day × 5 days 10 Have a significant improvement

Sharafi et al.,
2019

DLPFC (F3) DLPFC (F4) 20 2 20 1/day, 2 weeks 10 Have a significant effect (lasted for
1 month after treatment)

Lin et al.,
2021

DLPFC (F3) DLPFC (F4) 35 2 20 2/day × 5 days 10 Improved unipolar and bipolar
depression rapidly

Brunoni et al.,
2011

DLPFC (F3) DLPFC (F4) 35 2 20 2/day × 5 days 10 Improved depression for 1 week in
MDD group and 1 month in BDD
group

Rigonatti
et al., 2008

DLPFC (F3) Contralateral
Superior orbital

region

35 2 20 1/day × 10 days 10 Have a significant effect (similar to
fluoxetine 20 mg/day for 6 weeks)

Boggio et al.,
2008a

DLPFC (F3) Contralateral
Supraorbital

area

35 2 20 1/day, 2 weeks 10 Reduced depression scores
significantly (lasted for 1 month
after treatment) after DLPFC tDCS
compared to occipital and sham
tDCS

Bennabi
et al., 2015

DLPFC (F3) Contralateral
superior Orbital

region

35 2 20 2/day × 5 days 10 No significant effect

Kumar et al.,
2020

left DLPFC
(F3) + right
DLPFC (F4)

Iz 25 1 30 1/day, 2 weeks 10 No significant effect

MDD, major depressive disorder; BDD, bipolar depressive disorder.
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in stroke patients (Barros Galvao et al., 2014; Rubi-Fessen et al.,
2015). Orlov et al. (2017) found that anode tDCS stimulation
combined with cognitive behavioral training showed significant
improvement in working memory and learning. However,
Shiozawa et al. (2016) found that tDCS combined with cognitive
training failed to produce a synergic effect in schizophrenia
patients. This may due to the small sample size and the use of
antipsychotics in patients (Orlov et al., 2017).

We summarized 28 studies using tDCS as a treatment
strategy for schizophrenia in Table 2. Overall, tDCS improved
both positive syndromes and negative syndromes in patients
with schizophrenia. Only two studies showed no significant
improvement after tDCS. For the electrodes positions, in 26
out of 28 studies placed the anode in the left DLPFC (F3)
or a point midway between F3 and FP1 and the cathode in
the right hemisphere (left temporoparietal junction, FP2, or
right contralateral superior orbital region). 20 out of 28 studies
used 25–35 cm2 electrodes. For stimulating current intensity,
26 studies used 2 mA current, only 1 study used 1 mA
current, and 1 study used both 1 mA and 2 mA current. For
stimulation duration, 26 studies used 20 min/session, 1 study
used 30 min/session, and 1 study used 15 min/session. All studies
adopted multiple stimulation sessions (from 5 to 20 sessions),
only two studies used one single session of tDCS. Most multiple
sessions of tDCS brought a better curative effect, pointing to a
repeated application of tDCS as therapeutic strategy. In studies
with one single session of tDCS, 2 mA but not 1 mA was shown
to induce a positive effect. Taken together, 2 mA multi-session
anodal tDCS of the left DLPFC or left temporoparietal junction
area has the most potential to improve symptoms in patients
with schizophrenia.

Addiction
Addiction is a chronic brain disease characterized by compulsive
use of drugs, with loss of self-control and a high relapse
rate (Berke and Hyman, 2000; Preller et al., 2013). Patients
may experience negative emotions during withdrawal, such as
sadness, restlessness, subdued pleasure. The relapse tendency
indicates that a solid memory of drugs, a pathological memory,
also called drug memory formed in addiction patients (Boning,
2009; Nestler, 2013). Drug memory is signaled by dynamic
neuronal activity patterns in the brain areas such as prefrontal
cortex, hippocampus and the ventral tegmental area (VTA;
Berke and Hyman, 2000). Drugs increase the activity of
VTA dopaminergic neurons as well as the concentration of
dopamine in the projection area (Hyman and Malenka, 2001;
Pierce and Kumaresan, 2006). The downstream targets of VTA
dopaminergic neurons mainly includes ventral striatum, which
is responsible for processing reward information, and prefrontal
cortex, which is responsible for higher brain functions such as
decision making, executive function, etc. (Robbins and Everitt,
2002; Hyman et al., 2006). Reward related perception and
executive function can be modulated by the release of dopamine
in the frontal lobe (Goldstein and Volkow, 2002).

Many studies have shown that tDCS can significantly relieve
the symptoms of addictions (such as craving for cocaine,
cigarette, alcohol, etc.). Bilateral DLPFC tDCS stimulation

reduced cocaine craving with a linear decrease within 4 weeks,
and improved anxiety symptoms and overall quality of life in
patients (Batista et al., 2015). In addition to cocaine, tDCS
stimulation can also reduce cravings for alcohol and cigarettes.
Klauss et al. (2018b) showed that bilateral DLPFC tDCS
stimulation significantly reduced alcohol cravings and reduced
recurrence rates. Fecteau et al. (2014) found that the number
of cigarettes consumed decreased significantly after bilateral
DLPFC stimulation, and the effect could last for 4 days after
the stimulation. Besides, non-substance addiction, such as food
addiction, gambling addiction and internet addiction, shows
executive function (such as decision-making and risk- taking
processes) and working memory deficits similar to those in drug
addiction (Fernandez-Serrano et al., 2010; Marazziti et al., 2014;
Potenza, 2014). Studies have shown that anode tDCS stimulation
of the right DLPFC decreased craving and negative emotions
in addicted internet gaming players (Wu et al., 2020). Fregni
et al. (2008b) found that the bilateral tDCS stimulation, left
anode/right cathode or right anode/left cathode, reduced the food
craving as well.

In Table 3, we summarized 21 studies evaluated tDCS
treatment in substance addiction. Four studies didn’t observe
any improvement after tDCS treatment. All other studies showed
tDCS reduced craving, improved behavioral control and reduced
likelihood of relapse. Most studies used 25–35 cm2 electrodes. For
stimulating current intensity, 14 studies used 2 mA current, and
7 studies used a lower current. For stimulation duration, 4 studies
used 10∼15 min/session, other studies used 20 min/session.
There are 18 studies applied stimulation sessions from 1 to 4,
and three of these studies showed no positive effects the rest
studies used stimulation sessions from 5 to 20, which induced
significant improvement of addiction symptoms except for one
study. Roughly half of the studies placed anodal electrode on the
right DLPFC, and the other half on the left. A couple of studies
tried both montages. Together, tDCS of the DLPFC (left and/or
right) has the potential to improve symptoms and reduce craving
in substance addiction.

Attention Deficit Hyperactivity Disorder
Attention Deficit Hyperactivity Disorder (ADHD) is a brain
disorder that characterized with inattention, impulsivity,
hyperactivity and learning disabilities. ADHD mainly occurs
in primary and middle schools (6–17 years old), and the
prevalence is as high as over 6% (Rowland et al., 2015). The
prevalence of ADHD is higher in boys than girls, and the
risk for premature infants is also higher (Polanczyk et al.,
2015). Neuroimaging studies have shown that the symptoms
in ADHD patients may be related to abnormalities in fronto–
striato–cerebellar neural circuit, especially the prefrontal lobe
(Cubillo et al., 2012; Christakou et al., 2013). Specifically, the
activity of bilateral striato-thalamus, left DLPFC and superior
parietal cortex was significantly reduced in ADHD patients,
and the activity of precuneus was significantly increased (Hart
et al., 2013). Adults with childhood ADHD showed reduced
activation in bilateral inferior prefrontal cortex, caudate and
thalamus compared to controls. Neuro-functional abnormalities
in ADHD patients are likely to persist from childhood to
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TABLE 2 | Effects of tDCS of DLPFC on schizophrenia.

References Electrode montage Electrode
size (cm2)

Current
intensity

(mA)

Stimulation
duration (min)

Stimulation
sessions

Total
sessions

Key findings

Anode (+) Cathode (−)

Weickert et al.,
2019

Right DLPFC
(F4)

Left Temporoparietal
junction

35 2 20 1/day, 4 weeks 20 Improved language-based
working memory after
2 weeks, and oral fluency
after 2 and 4 weeks
significantly

Bose et al., 2015 Right DLPFC (a
point midway
between F4

and FP2)

Right left
temporoparietal

junction

35 2 20 2/day × 9 days 18 Right DLPFC tDCS reduced
auditory hallucinations, but
no change after left DLPFC
tDCS

Left DLPFC (a
point midway
between F3

and FP1)

Left temporoparietal
junction

Fitzgerald et al.,
2014

Left DLPFC (F3) Left temporo-parietal
junction (unilaterally
F3/TP3 or bilaterally
F3 + F4/TP3 + TP4)

35 2 20 1/day, 3 weeks 15 No significant effect

Brunelin et al.,
2012a

Left DLPFC (F3) Left temporo-parietal
cortex

35 2 20 2/day × 5 days 10 Reduced AVH significantly
(lasted for 3 months after
treatment), improved
negative symptoms

Brunelin et al.,
2012b

Left DLPFC (F3) Left temporo-parietal
cortex

35 2 20 2/day × 5 days 10 Have a significant effect
(lasted for 3 months after
treatment)

Shiozawa et al.,
2013

Left DLPFC (F3) Cathode: right
DLPFC (F4)

35 2 20 1/day × 10 days 10 Improved catatonic
symptoms significantly
(remained for 4 weeks after
treatment)

Jacks et al., 2014 Left DLPFC (F3) Left temporo-parietal
cortex

/ 2 20 2/day × 5 days 10 Improved mood, feelings of
hope, and fewer AVH, but
no change in PANSS score

Jeon et al., 2018 Left DLPFC (F3) Right DLPFC (F4) 25 2 30 1/day, 2 weeks 10 Improved working memory
over time

Valiengo et al.,
2020

Left DLPFC (F3) Left temporoparietal
junction

35 2 20 2/day × 5 days 10 Improved PANSS score
significantly

Narayanaswamy
et al., 2014

Left DLPFC (F3) Cathode: left
temporo-parietal

cortex

/ 2 20 2/day × 5 days 10 Improved in negative
symptoms and AVH
significantly (lasted for
6 months after treatment)

Palm et al., 2016 Left DLPFC (F3) Right contralateral
superior orbital region

35 2 20 1/day, 2 weeks 10 Improved negative and
positive symptoms
significantly

Palm et al., 2013 Left DLPFC Right contralateral
superior orbital region

/ 2 20 1/day × 10 days 10 Improved negative and
positive symptoms
significantly

Brunelin et al.,
2015

Left DLPFC Left temporoparietal
junction

35 2 20 2/day × 5 days 10 Reduced AVH significantly

Bose et al., 2014 Left DLPFC (a
point midway
between F3

and FP1)

Left temporoparietal
junction

35 2 20 2/day × 5 days 10 Improved insight and
reduced AVH

Mondino et al.,
2015

Left DLPFC (a
point midway
between F3

and FP1)

Left temporoparietal
junction

35 2 20 2/day × 5 days 10 Reduced AVH significantly

Mondino et al.,
2016

Left DLPFC (a
point midway
between F3

and FP1)

Left temporoparietal
junction

35 2 20 2/day × 5 days 10 Improved in negative
symptoms and AVH
significantly

(Continued)
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TABLE 2 | (Continued)

References Electrode montage Electrode
size (cm2)

Current
intensity

(mA)

Stimulation
duration (min)

Stimulation
sessions

Total
sessions

Key findings

Anode (+) Cathode (−)

Nawani et al.,
2014a

Left DLPFC (a
point midway
between F3

and FP1)

Left temporoparietal
junction

/ 2 20 2/day × 5 days 10 Have a significant reduction
in AHRS score

Rakesh et al., 2013 Left DLPFC (a
point midway
between F3

and FP1)

Left temporoparietal
junction

/ 2 20 2/day × 5 days 10 Reduced AVH significantly

Shenoy et al., 2015 Left DLPFC (a
point midway
between F3

and FP1)

Left temporoparietal
junction

/ 2 20 2/day × 5 days 10 Reduced AVH significantly
(lasted for 1 month after
treatment)

Chang et al., 2019 Left DLPFC (a
point midway
between F3

and FP1)

Left temporo-parietal
junction

35 2 20 2/day × 5 days 10 Improved overall symptoms

Chang et al., 2020 Left DLPFC (a
point midway
between F3

and
FP1) + right

DLPFC (a point
midway

between F4
and Fp2)

Forearms 35 2 20 2/day × 5 days 10 Reduced AVH significantly
(lasted for 3 months after
treatment)

Homan et al., 2011 Left temporo-
parietal
cortex

Right supraorbital
area

35 1 15 1/day, 2 weeks 10 Reduced AVH significantly
(lasted for 6 weeks after
treatment)

Praharaj et al.,
2015

Left DLPFC (F3) Midway between T3
and P3

25 2 20 1/day × 5 days 5 Reduced AVH temporarily

Nawani et al.,
2014b

Left prefrontal Left temporoparietal / 2 20 1/day × 5 days 5 Reduced AVH significantly

Smith et al., 2015 Left DLPFC (F3) Right contralateral
superior orbital region

5.08 2 20 1/day × 5 days 5 Improved memory,
attention, and cognitive
function significantly

Frohlich et al., 2016 Left DLPFC (a
point midway
between F3

and FP1)

Left temporoparietal
junction

35 2 20 1/day × 5 days 5 Reduced AVH, but overall
symptoms did not change
significantly

Schilling et al.,
2021

Left DLPFC (F3) FP2 25 2 20 1/day 1 No enhancement in
executive functions

Hoy et al., 2014 Left DLPFC (F3) Right contralateral
superior orbital region

35 1/2 20 1/day 1 Improved cognitive
performance only after
2 mA tDCS

adulthood (Cubillo et al., 2010). fMRI studies also showed
that striatum activation was abnormal in ADHD children
(Durston et al., 2003).

In recent years, tDCS has been considered to have an
ameliorative effect on ADHD symptoms. Studies have shown that
1 mA anode tDCS of the left DLPFC improved the executive
function in adolescent ADHD patients. After tDCS, they showed
better inhibitory control, interference control, working memory
and cognitive flexibility (Nejati et al., 2020). Blair’s research
showed that inhibitory control is the main executive problem

for adolescents with ADHD, and the problems with inhibitory
control will lead to dysfunctions in memory, emotion regulation
and other executive functions (Blair and Razza, 2007). tDCS
improves the symptoms not only in adolescent patients, but also
in adult ADHD patients. Left DLPFC tDCS in adult ADHD
patients improved the impulsiveness symptoms (Allenby et al.,
2018), and bilateral tDCS (anode over right DLPFC, cathode
over left DLPFC) improved the inattention symptoms (Cachoeira
et al., 2017). Only several studies were collected here which were
shown in Table 4. All these studies targeted left DLPFC with
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TABLE 3 | Effects of DLPFC tDCS on addiction behaviors.

References Substance Electrode montage Electrode
size (cm2)

Current
intensity

(mA)

Stimulation
duration (min)

Stimulation
sessions

Total
sessions

Key findings

Anode (+) Cathode (−)

Ghorbani
Behnam et al.,
2019

Smoking Left DLPFC (F3) Right DLPFC
(F4)

35/100 2 20 1/day, 4 weeks 20 Reduced smoking
addiction only in active
group (20 sessions,
12 weeks). The effect was
similar to 300 g bupropion

1/day,
2 weeks + 1/week,
10 weeks

20

Mondino et al.,
2018

Smoking Right DLPFC (F4) Left occipital
region

35/100 2 20 2/day × 5 days 10 Reduced smoking cue
related craving significantly
and increased brain
reactivity in the right
posterior cingulate cortex

Klauss et al.,
2018a

Cocaine Right DLPFC (F4) Left DLPFC (F3) 35 2 20 1/every other day 10 No significant effect

Klauss et al.,
2018b

Alcohol Right DLPFC (F4) Left DLPFC (F3) 35 2 20 1/every other day 10 Reduced alcohol cravings
and recurrence rates
significantly

da Silva et al.,
2013

Alcohol Left DLPFC (F3) Contralateral
(right)

supradeltoid
area

35 2 20 1/day × 5 days 5 Improved depressive
symptoms and reduced
alcohol craving

Holla et al.,
2020

Alcohol Right DLPFC (F4) Left DLPFC (F3) 35 2 20 1/day × 5 days 5 Increase the global
efficiency of brain networks
significantly with a
concurrent significant
reduction in global
clustering

Batista et al.,
2015

Cocaine Left DLPFC (F3) Right DLPFC
(F4)

35 2 20 1/every other day 5 Decreased craving for
crack-cocaine use, anxiety,
and improved quality of life

Vitor de Souza
Brangioni et al.,
2018

Smoking Left DLPFC (F3) Right
supra-orbital

area

35 1 20 1/day × 5 days 5 Reduced cigarette
consumption up to
4-weeks post-intervention
coupled with high
motivation to quite

Boggio et al.,
2009

Smoking Left DLPFC (F3) Right DLPFC
(F4)

35/100 2 20 1/day × 5 days 5 A significant cumulative
effect on modifying
smoking cue-provoked
craving, with significant
decrease in the number of
cigarettes

Fecteau et al.,
2014

Smoking Right DLPFC (F4) Left DLPFC (F3) 35 2 30 1/day × 4 days 4 Decreased the amount of
smoking significantly (lasted
for 4 days after stimulation)

den Uyl et al.,
2017

Alcohol Left DLPFC (F3) Right DLPFC
(F4)

35/100 2 20 1/day × 4 days 4 No significant effect

den Uyl et al.,
2016

Alcohol Contralateral
supraorbital region

Left DLPFC (F3) 35 1 15 1/day × 3 days 3 Decreased cue-induced
craving (but not overall
craving) on post
assessment, but no effects
on cognitive bias
modification (CBM)

Alghamdi et al.,
2019

Smoking Left DLPFC (F3) Right DLPFC
(F4)

25 1.5 20 1/day × 3 days 3 No significant effect

(Continued)
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TABLE 3 | (Continued)

References Substance Electrode montage Electrode
size (cm2)

Current
intensity

(mA)

Stimulation
duration (min)

Stimulation
sessions

Total
sessions

Key findings

Anode (+) Cathode (−)

Boggio et al.,
2008b

Alcohol Right DLPFC (F4) Left DLPFC (F3) 35 2 20 1/day 1 Reduced alcohol craving
significantly in two active
stimulation groups, and
alcohol craving did not
increase further after
treatment

left DLPFC (F3) Right DLPFC
(F4)

den Uyl et al.,
2015

Alcohol Left DLPFC (F3) Contralateral
supraorbital

region

35 1 10 1/day 1 Anodal tDCS over the
DLPFC reduced alcohol
craving significantly,
stimulation of the IFG did
not decrease craving

Right inferior frontal
gyrus (IFG)

Contralateral
supraorbital

region

Wietschorke
et al., 2016

Alcohol Right DLPFC (F4) Left DLPFC (F3) 35 1 20 1/day 1 Reduced alcohol craving

Left DLPFC (F3) Right DLPFC
(F4)

Fregni et al.,
2008a

Smoking Left DLPFC (F3) Contralateral
hemisphere

35/100 2 20 1/day 1 Both anodal and cathodal
tDCS to left DLPFC
significantly reduced
craving

Right DLPFC (F4) Contralateral
hemisphere

Xu et al., 2013 Smoking Left DLPFC (F3) Right
supra-orbital

area

35 2 20 1/day 1 Reduced negative
emotions, but no reduction
in cigarette craving

Kroczek et al.,
2016

Smoking Left DLPFC (F3) Contralateral
right

supradeltoid
area

35 2 15 1/day 1 No significant effect

Falcone et al.,
2016

Smoking Left DLPFC (F3) Right
supra-orbital

area

25 1 20 1/day 1 Increased latency to smoke
and decreased the total
number of cigarettes
smoked significantly

Gorini et al.,
2014

Cocaine Left DLPFC (F3) Right DLPFC
(F4)

32 1.5 20 1/day 1 Increased safe behavior
after right DLPFC anodal
stimulation, increased
risk-taking behavior after
left DLPFC anodal
stimulation

Right DLPFC (F4) Left DLPFC (F3)

anodal stimulation. One out of six studies (used a single session
protocol) showed negative results, and all the rest found tDCS
improved ADHD related symptoms. The stimulation current was
1 mA or 2 mA, 1 session to 5 sessions in total. While the potential
of tDCS of the DLPFC to treat ADHD is promising, the published
studies are relatively fewer compared to other diseases.

Anxiety
Anxiety disorders are the most common form of emotional
disorder characterized by nervousness, worry and fear. There

are several types of anxiety disorders, including generalized
anxiety disorder (GAD), Social anxiety disorder (SAD),
post-traumatic stress disorder (PTSD), panic disorder (PD),
obsessive compulsive disorder (OCD), agoraphobe and specific
phobia. Studies have shown that OCD symptoms are related
to the cortico-striato-thalamocortical circuitry, including
DLPFC, orbital frontal lobe (OFC), medial prefrontal lobe
(MPF), and anterior cingulate cortex (ACC; Del Casale et al.,
2011; Fineberg et al., 2011). Striatal dysfunction may lead
to hypothalamic gating problems and hyperactivity in the
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TABLE 4 | Effects of DLPFC tDCS on ADHD.

References Electrode montage Electrode size
(cm2)

Current
intensity

(mA)

Stimulation
duration (min)

Stimulation
sessions

Total
sessions

Key findings

Anode (+) Cathode (−)

Soff et al., 2017 DLPFC (F3) Vertex 3.14/12.5 1 20 1/day × 5 days 5 Improved inattention and
impulsivity, and the effect
lasted for 7 days

Cachoeira
et al., 2017

DLPFC (F3) DLPFC (F4) 35 2 20 1/day × 5 days 5 Improved inattention

Allenby et al.,
2018

DLPFC (F3) Supra-orbital area 25 2 20 3/week 3 Improved impulsivity
symptoms acutely (conners
continuous performance
task) but not the stop signal
task

Dubreuil-Vall
et al., 2021

DLPFC (F3) Contralateral
Supraorbital region

(Fp1 or Fp2)

3.14 2 30 1/day 1 Modulated reaction time
and P300 amplitude in the
Eriksen flanker task, but not
in the stop signal task

DLPFC (F4)

Cosmo et al.,
2015

DLPFC (F3) Right DLPFC (F4) 35 1 20 1/day 1 No significant differences in
behavioral performance

Gogler et al.,
2017

DLPFC (F3) Right contralateral
Superior orbital

region

25 2 20 1/day 1 Improved inattention

TABLE 5 | Effects of tDCS on OCD and anxiety.

References Disease Electrode montage Electrode
size

(cm2)

Current
intensity

(mA)

Stimulation
duration

(min)

Stimulation
sessions

Total
sessions

Key findings

Anode (+) Cathode (−)

Narayanaswamy
et al., 2015

OCD Fz2 Right
supra-orbital

area

35 2 20 2/day × 10 days 20 Clinical improvement,
enhanced pre-SMA/SMA
activation

D’Urso et al.,
2016a

OCD Presupplementary
motor area
(pre-SMA)

Right deltoid 35 2 20 1/day × 20 days 20 Improved OCD symptoms

Shiozawa et al.,
2014

OCD Contralateral
deltoid

Right DLPFC 25 2 20 1/day, 3 weeks 15 Improved anxiety
symptoms

Volpato et al.,
2013

OCD Posterior
neck-base

Left DLPFC (F3) 35 2 20 1/day, 10 days 10 Improved depression and
anxiety, reduced
interhemispheric imbalance

Ahmadizadeh
et al., 2019

PTSD DLPFC (F3) Right DLPFC 35 2 20 1/day, 2 weeks 10 Reduced PTSD symptoms,
hyper-arousal and negative
alterations in cognition and
mood sub-symptoms as
well as depressive and
anxiety symptoms

Jafari et al., 2021 SAD DLPFC (F3) Medial PFC
(Fpz)

35 1/2 20 2/day × 5 days 10 Reduced fear/avoidance
symptoms, worries and
improved emotion
regulation

de Lima et al.,
2019

GAD DLPFC (F3) Contralateral
supraorbital
area (Fp2)

35 2 20 1/day, week 5 Improved in physical
symptoms significantly, but
no improvements in anxiety,
mood symptoms of stress,
affectivity, or depression

Heeren et al.,
2017

SAD DLPFC (F3) Vertically at the
ipsilateral arm

35 2 25 1/day 1 Decreased attentional bias
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orbitofrontal cortex and anterior cingulate cortex in OCD
patients (Milad and Rauch, 2012). Sakai et al. (2011)
found that functional connections of the orbitofrontal
cortex, medial prefrontal cortex, DLPFC and ventral
striatum were significantly increased in patients with
OCD, but there was no significant correlation between
symptom severity and connection strength. D’Urso et al.
(2016b) reported that patients received cathode stimulation
over the left DLPFC showed significant improvement
in OCD symptoms.

Generalized anxiety disorder is characterized by persistent
unspecified nervousness, excessive anxiety and worry about
everyday life events (Locke et al., 2015; Stein et al., 2017).
Previous studies have shown that brain regions related
to rumination and introspection in GAD patients were
overactivated (Locke et al., 2015). Patients also showed
autonomic nervous dysfunction, vagus-mediated decreased
heart rate variability, and neurostructural abnormalities in
the rostral ACC, left medial orbitofrontal cortex, and right
isthmic cingulate gyrus (Etkin and Wager, 2007; Carnevali
et al., 2019). Neuroplasticity in prefrontal and limbic regions
is also altered in patients with a variety of subtypes of
anxiety disorders (Ironside et al., 2019). Vicario et al.
(2019) reviewed the using of non-invasive brain stimulation
techniques for the treatment of anxiety previously. A study
showed that stimulation of the left DLPFC with 2 mA
tDCS significantly improved physical stress symptoms in
patients, however, there was no significant improvement
in major psychological symptoms, such as anxiety, tension,
emotion, or depression (de Lima et al., 2019). In another
case report, a total of 15 sessions of 2 mA cathode tDCS
stimulation improved anxiety symptoms in patients with GAD
(Shiozawa et al., 2014).

Social anxiety disorder is an anxiety disorder characterized by
extreme fear in getting involved in social interactions. Studies
have shown that patients with SAD have attentional bias brought
by social threats, and the attentional bias will increase the anxiety
of patients with SAD (Klosowska et al., 2015). Anode tDCS of
the left DLPFC significantly reduced attentional bias compared to
the sham stimulation (Heeren et al., 2017). In addition, a single
dose of 1 mA of tDCS reduced pain anxiety caused by burns
(Hosseini Amiri et al., 2016), and improved anxiety symptoms
caused by major depression (Nishida et al., 2019). Although
there are only a few studies on the tDCS treatment of anxiety,
these findings indicate that this technique can be an effective
therapeutic option. We have summarized some of the published
studies in Table 5.

SUMMARY AND OUTLOOK

In recent years, tDCS is increasingly being studied for the
therapeutic potential in neurological and psychiatric disorders.
DLPFC is involved in many higher brain functions such as
working memory, decision making, impulsivity, attention, etc.
DLPFC also plays an important role in cognition and emotion.
These brain functions were often disrupted in neurological and
psychiatric diseases. Thus, modulation of the activity of DLPFC
is a major strategy in treatment of these diseases. Although
the neural mechanisms of tDCS is still not quite clear. It is
believed that anodal stimulation increases brain activity while
cathodal stimulation inhibits brain activity. One of the major
problems of tDCS treatment of neuropsychiatric diseases is that
each study used slightly different stimulation parameters. For
instance, the current intensities were from 1 to 2 mA, tDCS
sessions were from one session to more than 20 sessions. The
tDCS frequency varies from twice daily to once every other day.
Thus, it’s not appropriate to compare the current results directly
side by side. Future studies will need to investigate the effects of
tDCS using the different parameters in the same study or the
same parameters in different studies. Nevertheless, this review
demonstrates clearly that tDCS of DLPFC has a great potential
to treat neuropsychiatric disorders.
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Purpose: In our group’s previous study, we performed deep whole-exome sequencing
and targeted amplicon sequencing in the postoperative brain tissue of epilepsy patients
with focal cortical dysplasia type II (FCD II). We identified the first somatic variant of RALA
in the brain tissue of a child with FCD type IIb. RALA encodes a small GTPase of the
Ras superfamily. To date, the role of RALA in brain development is not yet known. In this
study, we reported that the RALA somatic variant led to FCD type II through activation
of the mammalian target of rapamycin (mTOR) pathways.

Materials and Methods: HEK293T cells were transfected in vitro to analyze the
expression of the RalA protein, as well as phosphorylated S6 (P-S6), one of the major
markers of mTOR pathway activation, RalA GTPase activity, and the interaction between
RalA and its downstream binding effectors. In vivo, wild-type, and mutant RALA
plasmids were transfected into the local cortex of mice using in utero electroporation
to evaluate the effect of RALA c.G482A on neuronal migration.

Results: The RALA c.G482A mutation increased RalA protein expression, the abnormal
activation of the mTOR pathways, RalA GTPase activity, and binding to downstream
effectors. RALA c.G482A local transfection in the embryonic brain in utero induced
abnormal cortical neuron migration in mice.

Conclusion: This study demonstrated for the first time that the somatic gain-of-function
variant of RALA activates the mTOR pathway and leads to neuronal migration disorders
in the brain, facilitating the development of FCD II. Therefore, RALA brain somatic
mutation may be one of the pathogenic mechanisms leading to FCD II, which is always
related to drug-resistant epilepsy in children. However, more somatic variations of this
gene are required to be confirmed in more FCD II patient brain samples.

Keywords: pediatric drug-resistant epilepsy, FCD II, somatic mutation, RalA, mTOR pathway
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INTRODUCTION

Malformation of cortical development (MCD) is a common
cause of drug-refractory epilepsy in children. Focal cortical
dysplasia (FCD), a type of MCD, is characterized by the impaired
migration and proliferation of localized cortical neurons during
embryonic development, and this is accompanied by abnormal
cell proliferation (Mariasavina et al., 2020). In 2011, the
International League Against Epilepsy (ILAE) proposed a
classification consensus of FCD that divided FCD into three
categories (Ingmar et al., 2011), among which FCD II has received
widespread attention due to its unique pathological features.
FCD II is associated with specific cytological abnormalities,
such as dysmorphic neurons (DNs) and balloon cells (BCs), in
addition to disrupted cortical lamination. FCD II was further
divided into two subtypes, FCD IIa with dysmorphic neurons but
without balloon cells and FCD IIb with both dysmorphic neurons
and balloon cells. Evidence from research statistics shows that
FCD accounts for approximately 75% of the surgically resected
MCD brain tissue samples from children undergoing epilepsy
surgery, with FCD II being the most common pathological type,
accounting for approximately 45.3% (Blumcke et al., 2017).

The underlying molecular genetic etiology of FCD II remains
unclarified, but recent genetic studies have shown that somatic
mutations in the mammalian target of rapamycin (mTOR)
pathway gene have a pivotal role in the pathogenesis of FCD
II. Through deep sequencing of surgically resected FCD II
brain tissue samples and using matched peripheral blood cell
sequencing results of patients as a control, somatic variants were
detected in 10–63% of the brain tissues, with mutated genes
including MTOR, PIK3CA, AKT3, RHEB, DEPDC5, NPRL2,
NPRL3, TSC2, and PTEN primarily located in the mTOR
pathways (Lim et al., 2015; Nakashima et al., 2015; Moller
et al., 2016; Baulac et al., 2019; Oegema et al., 2020; Blumcke
et al., 2021). In addition, the variant allele frequency (VAF)
in the tissues was only 0.93–12.63% (Marsan and Baulac,
2018; Baulac et al., 2019; Zhang et al., 2020). Among them,
somatic activating mutations in the MTOR gene accounted for
approximately 15.6–46% of the FCD samples, which is the most
common somatic genetic cause of FCD II at present (Lim et al.,
2015). mTOR is an evolutionarily conserved serine/threonine-
protein kinase, and the PI3K-AKT-mTOR signaling pathway is
one of the vital intracellular signaling pathways that regulate
cellular transcription, translation, metabolism, proliferation, and
migration. When external stimuli act on cells, PI3K can be
phosphorylated, and this in turn phosphorylates AKT. Activated
AKT inhibits the TSC1/TSC2 complex, and this deactivates
the downstream Rheb, leading to the activation of the mTOR
complex 1 (mTORC1). Then, the downstream substrates, namely,
P70-S6K and S6, are phosphorylated, exerting regulatory effects
on protein synthesis, proliferation, and autophagy. In the central
nervous system (CNS), the mTOR pathway is involved in
regulating neural development, neuronal morphology, neural
circuits, and synaptic plasticity (Saxton and Sabatini, 2017).
Nevertheless, pathogenic mutations have not been detected in
more than half of FCD II brain tissues, and it is unclear
whether the occurrence of FCD II is associated with somatic

mutations in other pathway-related genes or new mTOR
pathway-regulated genes.

The somatic variant of the Ras-Like Proto-Oncogene A
gene (RALA, c.G482A, p.Arg161Gln) with a VAF of 5.50% was
detected for the first time in surgically resected FCD IIb brain
tissue by our group earlier, and the activation of the mTOR
pathway was also confirmed in the lesions (Zhang et al., 2020).
RALA encodes a small GTPase of the Ras superfamily, RalA,
that is implicated in a range of biological functions including
metabolic and transcriptional regulation. In the CNS, RalA
is involved in neuronal development, plasticity, polarization,
migration, and renewal of synaptic vesicles as well as NMDA,
AMPA, and dopamine receptor regulation (Teodoro et al., 2013;
Zheng et al., 2016). Previous studies have focused on the role
of RALA variants in tumor cell proliferation and metastasis,
but RALA has never been reported to be associated with FCD.
In this study, we performed functional studies on the newly
discovered somatic variant of RALA to explore the effect of this
variant on the PI3K-AKT-mTOR signaling pathway and thus
on neuronal proliferation and migration. Using in-depth studies
of the RALA variant, we expected to provide significant clues
for further interpretation of the pathogenesis of FCD and the
mechanism of epileptogenesis.

MATERIALS AND METHODS

Clinical Data Collection
This study was approved by the Ethics Committee of Peking
University First Hospital, and informed consent was signed
by the guardians of the participant. Clinical data of the
child were collected, including gender, age, epilepsy seizure
symptoms, video-electroencephalogram (V-EEG), MRI imaging,
and postoperative histopathology.

Plasmid Constructs for Generating the
Wild-Type and the Mutant RALA
GV141 Flag-tagged wild-type RALA (NM_005402) and GV141
Flag-tagged mutant RALA constructs were purchased from
the GeneChem Company in Shanghai. After generating the
mutant constructs, we checked the full sequence of the coding
region for each construct and found no secondary missense or
truncated mutation.

Cell Culture, Transfection, and Western
Blotting
Human embryonic kidney 293T (HEK293T) cells were cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented
with 100 units/ml of penicillin, 100 mg/ml of streptomycin,
and 10% of fetal bovine serum at 37◦C and 5% CO2.
The cells were transfected with flag-tagged wild-type and
mutant RALA plasmids while growing to a 70% density.
For the immunoblotting, the cells were lysed to extract the
total proteins. The membranes were incubated with primary
antibodies including anti-phospho-S6 ribosomal protein, anti-S6
ribosomal protein, anti-β-actin, and anti-RalA in TBST overnight
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at 4◦C after electrophoresis. Then, the secondary antibody was
incubated and developed for imaging.

Quantitative Real-Time PCR Analysis
The total RNA was isolated and transcribed into cDNA.
Quantitative real-time PCR (qPCR) was performed using the
qPCR Kit (Promega) with specific primers designed for the
target gene and housekeeping gene. GAPDH was used as the
internal control.

Protein Purification and the RalA GTPase
Assays
Flag-tagged proteins were purified using Pierce DYKDDDDK
magnetic agarose (Thermo Fisher Scientific) according to the
manufacturer’s protocol. Protein purity was assessed using
standard SDS-PAGE blotting. The protein concentration was
quantified and normalized among samples in an elution buffer
prior to use in the assays. The GTPase activity of 5 µg of purified,
recombinant proteins was assessed using the GTPase-Glo Assay.
The luminescence was quantified using a microplate reader.

RalA Effector Binding Assays
The binding of the purified, recombinant proteins to a
proprietary Ral effector protein was assessed using the RalA
G-LISA Activation Assay Kit following the protocols. In brief,
purified RalA protein was incubated in the presence or absence
of 15 µM of GTP for 1.5 h at 25◦C, and then 50 ng of the purified
RalA/GTP mixture was applied to the Ral-BP binding plate.

Immunofluorescence of the Focal
Cortical Dysplasia Brain Tissues
The FCD brain specimens were collected after surgery. Surgical
tissues were fixed in 4% paraformaldehyde (PFA) overnight,
cryoprotected overnight in 20% buffered sucrose, and made
into OCT-embedded tissue blocks. Then, cryostat-cut sections
(20 µm thick) were performed. Then, cryostat-cut sections
were immune-stained with anti-NeuN/SMI-311/Vimentin (V9)
antibodies, the mouse antibody to RalA, and then stained with
the Alexa Fluor 488-conjugated and Alexa Fluor 568-conjugated
secondary antibodies separately. Then, the images were scanned
and analyzed using a laser scanning confocal microscope.

Tandem Mass Tag-Labeled Quantitative
Proteome Assay
The transfected cell samples were prepared according to the
requirements described in the literature (Wiśniewski et al.,
2009; Carolyn et al., 2015; Gillette et al., 2020), and three
biological replicates were set for each sample group. Quantitative
proteomics analysis was performed by Novogene Company.

In utero Electroporation and Image
Analysis
Pregnant ICR mice at embryonic day 14.5 (E14.5) were used
in this experiment, and the detailed procedures are described
in the previous literature (Wang and Mei, 2013; Baumgart and

Baumgart, 2016). The mouse brains were harvested at E18.5, and
20 µm thick Cryostat brain sections were immune-stained with
the anti-GFP antibody and fluorescence-conjugated secondary
antibody. Images were collected using a confocal microscope.
GFP-positive cells in the different cortical layers were analyzed
using ImageJ. All animal experiments were approved by the
Animal Ethics Committee of Peking University First Hospital.

Statistical Analysis
All experimental data were processed using SPSS 25.0 for Mac
and GraphPad Prism statistical software. The normal distribution
data of the continuous variables were represented by the
mean ± standard deviation (SD). A student’s t-test was used for
comparison between two groups, and a one-way ANOVA was
used for comparison between three groups and more than three
groups. An LSD analysis was used for comparisons between the
two groups. A P < 0.05 was considered statistically significant.

RESULTS

Clinical Characteristics of a Patient With
the Brain RALA c.G482A Somatic Variant
Male focal seizures began at 8 months of age, and these were
characterized by squinting of the eyes to the left, clenching
of the right hand, flexion, and stiffness of the right limb
lasting for several minutes, and relieving by dozens to hundreds
of attacks per day. The patient was treated with valproic
acid, clonazepam, levetiracetam, and oxcarbazepine successively,
which were poorly controlled and accompanied by severe
developmental retardation. The video electroencephalogram
(EEG) monitored multiple left frontopolar onset seizures during
the waking hours. The cranial magnetic resonance imaging (MRI;
Figure 1A) suggested dysplasia of the left frontal cortex. At the
age of 1 year and 11 months, the child underwent resection of the
left frontal epileptogenic focus, and the postoperative pathology
suggested FCD Type IIb (Figure 1B). There was no recurrence of
epilepsy at the 3-year postoperative follow-up, and there existed
an Engel grade of I. Development was also significantly improved
compared with the preoperative period.

RALA Variation Site and the RalA Protein
Structure
We identified the first somatic variant of RALA (c.G482A,
p.Arg161Gln) in the brain tissue of FCD II in our previous
study, which was not retrieved as a minor allele frequency in the
dbSNP, ExAC, and GnomAD databases and was predicted to be
pathogenic by various mutation hazard analysis software such as
SIFT and PolyPhen-2. The VAF was 5.50% in the lesions and was
not detected in the perilesional brain tissues or peripheral blood.
RalA is a small GTPase encoded by the RALA gene, a member of
the Ral subfamily of the Ras superfamily of proto-oncogenes. The
RalA structural domain primarily consists of three components
that include three GTP/GDP binding domains, one effector
binding domain, and a posttranslational modification site
(containing the phosphorylation site of serine/threonine kinase)

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 9194854647

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-919485 June 25, 2022 Time: 14:15 # 4

Xu et al. RALA Causes Focal Cortical Dysplasia

FIGURE 1 | Representative MRI and pathology of patients with RALA c.G482A somatic variant. (A) MRI axial representations of the RALA somatic mutation patient.
T1WI, T1-weighed image; T2WI, T2-weighed image; T2 FLAIR, T2 fluid-attenuated inversion recovery. The location of the lesion is indicated by a white arrow.
(B) Histopathological results of the patient. Dysmorphic neurons and balloon cells are shown in the red arrow. HE, 10 × 40; DNs, dysmorphic neurons; BCs,
balloon cells.

located at the COOH end (Figure 2A). Analysis of the RalA
secondary structural domain showed that the p.Arg161Gln
variant was located near the GTP/GDP binding domain. The
homology alignment of multispecies sequences revealed that
the variation loci were relatively conservative among species
(Figure 2B). In addition, a predicted comparison of the tertiary
protein structure before and after the mutation showed that the
RALA p.Arg161Gln variant changed the arginine to glutamine
at position 161 of the RalA protein, and this may lead to a
reduction in the binding of hydrogen bonds and loosening of
the protein structure. This results in the exposure and activation
of the GTP/GDP binding domain and promotes the binding
and hydrolysis of GTP while activating the corresponding
downstream effector molecules (Figure 2C).

RALA c.G482A Increased the RalA
Expression
After transfection of the HEK293T cells in vitro, we found that
transfection of the RALA c.G482A mutant significantly increased
the expression of the RalA protein. Compared with the vector
group (0.64 ± 0.06 vs. 0.09 ± 0.04, P = 0.000, n = 6) and
the wild-type group (0.64 ± 0.06 vs. 0.38 ± 0.08, P = 0.000,
n = 6), the RalA protein expression was significantly increased
in the RALA mutant group (Figure 3A). In addition, the
immunofluorescence staining also exhibited consistent results

(Figure 3B). The mRNA expression was also significantly
upregulated in the RALA c.G482A group compared with the
vector group (1.46 ± 0.23 vs. 0.32 ± 0.06, P = 0.000, n = 4)
and the wild-type group (1.46 ± 0.23 vs. 0.83 ± 0.12, P = 0.024,
n = 4) (Figure 3C).

RALA c.G482A Led to Increased RalA
GTPase Activity and the Activation of
Downstream Effectors
To illustrate the effect of this variant on RalA GTPase activity and
downstream effectors, subsequent experiments were conducted.
According to the characteristic tags carried by the transfected
plasmids, Flag-tagged protein purification was first performed
on the extracted total cell proteins using specific DYKDDDDK
magnetic agar to obtain different groups of RalA proteins.
Following that, the RalA GTPase activity was assayed using the
Ral GTPase kit. The results demonstrated that the RalA GTPase
activity was enhanced in the RALA c.G482A group compared
with the vector group (35.68 ± 0.53 vs. 0.37 ± 0.20, P = 0.000,
n = 3) and the wild-type group (35.68 ± 0.53 vs. 18.54 ± 0.39,
P = 0.000, n = 3) (Figure 3D).

Then, RalA downstream effector binding assays were
implemented based on the purified proteins harvested above.
The results showed that the downstream effector binding was
also significantly increased (Figure 3E) compared with the

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 9194854748

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-919485 June 25, 2022 Time: 14:15 # 5

Xu et al. RALA Causes Focal Cortical Dysplasia

FIGURE 2 | Domain diagram of human RalA and RALA variants. (A) Domains of RalA. GBR, GTP/GDP binding regions; ER, effector region; PTM, posttranslational
modification. A red asterisk *: mutation site of RALA we identified in FCD type II tissue. The other variants associated with neurological diseases are also shown.
(B) Homology comparison between species of RALA variant. (C) Protein structure before and after mutation of RALA c.G482A (p.Arg161Gln), as indicated by the
black arrow.

vector group (3.2384 ± 0.0436 vs. 0.0017 ± 0.0010, P = 0.000,
n = 3) and the wild-type transfected group (3.3284 ± 0.0436 vs.
1.7440± 0.0719, P = 0.000, n = 3).

The above results indicated thatRALA c.G482A brought about
a significant increase in RalA GTPase activity as well as activation
of downstream effectors. This implied that the RALA c.G482A
mutation resulted in a gain of function.

RALA c.G482A Caused Aberrant
Activation of the Mammalian Target of
Rapamycin Pathway
To verify whether the RALA mutation leads to mTORC1
overactivation, we examined the level of ribosomal S6 protein
phosphorylation in HEK293T cells after transfection, a typical
marker of mTOR pathway activation. We observed that cells
expressing the RALA c.G482A mutant had significantly higher

levels of S6 phosphorylation compared with wild-type or
vector-transfected group cells (Figures 3F,G). These results
suggest that the RALA c.G482A mutation leads to abnormal
activation of the mTOR pathway.

Immunofluorescence staining was performed on the
brain tissue sections of patients carrying the somatic
variant of RALA c.G482A labeled with NeuN, SMI-311,
and Vimentin (V9) for neurons, DNs, and BCs, respectively.
The phosphorylation level of the S6 protein was significantly
higher at the FCD lesion than in the perilesional tissues and
colocated with DNs and BCs (Figure 3H), indicating the
overactivation of the mTOR pathway in the patient’s brain
tissue, which was consistent with the results of the in vitro
cellular experiments. Then, we detected the expression and
localization of the RalA protein in the lesioned brain tissue,
the results proved that the expression of the RalA protein
was significantly colocalized with BCs and DNs, and the
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FIGURE 3 | RALA c.G482A increases the expression of RalA and promotes mTOR pathway overactivation. (A) Expression of RalA protein between different groups
after RALA c.G482A transfection. Ctl, control; WT, wild type of RALA; a, compared with Ctl; b, compared with vector; c, compared with WT. n = 6; ***P < 0.001.
(B) Immunofluorescence of RalA protein in different groups after RALA mutant transfection. (C) Changes of RALA mRNA expression in different groups. n = 4;
*P < 0.05; **P < 0.01; ***P < 0.001. (D) Detection of GTPase activity of RalA. a, compared with vector group; b, compared with wild type. n = 3; ***P < 0.001.
(E) Downstream effector activation assay after RALA mutation. a, compared with vector group; b, compared with wild type. n = 3; ***P < 0.001. (F,G)
Immunofluorescence staining and Western blotting showed the activation of the mTOR pathway. P-S6, phospho-S6 Ribosomal protein (Ser240/244), one of the
typical markers of mTOR pathway activation. Bar = 100 µm; magnification: 10 × 60. n = 6; ***P < 0.001. (H) Activation of mTOR pathway in brain tissue. NeuN,
marker of neurons; SMI-311, marker of dysmorphic neurons; Vimentin (V9), marker of balloon cells. (I) Expression of RalA protein in brain tissue. Bar = 50 µm;
magnification: 10 × 40.

RalA expression was more enriched in the BCs than the
DNs (Figure 3I).

RALA c.G482A Might Mediate Activation
of Downstream Mammalian Target of
Rapamycin Pathways via Downstream
Effectors Phospholipase D1 or EXOC2
Furthermore, to inquire about the pathway through which RalA
activates the mTOR pathway, we further conducted quantitative
proteomic analysis on the transfected cells of RALA wild-type
and RALA mutant. A total of 10 FC > 1.2-fold differentially
expressed proteins (DEPs) were identified in the mutant and
wild-type groups by proteomic mass spectrometry, with a total
of 7,208 proteins detected in each sample. Gene ontology
(GO) enrichment analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment results of DEPs are shown
in Figures 4A–F, which are mainly involved in regulating
cytoskeleton assembly, microtubule movement, phospholipase
activity, and docking of exocytosis vesicles. Finally, we used

the String DB protein interaction database to map the top 10
protein molecules that directly interact with RalA (Figure 4G
and Table 1) and hypothesized that RALA c.G482A may be
involved in the regulation of cell polarity and cell migration
through the downstream pathway of phospholipase D1 (PLD1)-
mediated activation of mTOR, or through EXOC8/EXOC2
(Figure 4H) mediated exocyst complex to recruit downstream
kinases, which in turn leads to aberrant activation of the mTOR
pathway (Zaman et al., 2021). Whether the RALA c.G482A
variant mediates downstream mTOR pathway activation via
PLD1/EXOC2 is currently only a hypothesis and requires further
experimental validation.

In utero Electroporation of the RALA
c.G482A Somatic Mutation-Induced
Migration Disorders of Mice Cortex
Neurons
We electrotransfected wild-type or RALA c.G482A IRES-GFP
plasmids into E14.5 mice embryos (Figure 5A) and sacrificed the
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FIGURE 4 | Tandem mass tag (TMT) quantitative proteomics assay. (A) Differential proteins volcano map. The horizontal axis represents the multiple of difference
(Log2 value) of differential proteins, the vertical axis represents P-value (–log10 value), the black represents the protein with no significant difference, the red
represents the upregulated protein, and the green represents the downregulated protein. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
bubble chart. The abscissa in the figure is the ratio of the number of differential proteins in the corresponding pathway to the total number of proteins identified in the
pathway. The size of the point represents the number of differential proteins in the corresponding pathway. The larger the point, the more differential proteins in the
pathway. (C) Interproscan software enrichment scatterplot. The abscissa is the ratio of the number of differential proteins in the corresponding domain to the total
number of proteins identified in the domain. The size of the point represents the number of differential proteins in the corresponding domain. The larger the point, the
more differential proteins in the domain. (D) Gene ontology enrichment analysis histogram. BP, GO_Class, biological process; CC, GO_Class, cellular component;
MF, GO_Class, molecular function. x, the number of differential proteins associated with the gene ontology (GO); n, number of differential proteins annotated by GO.
The diagram shows the enrichment of the three categories as a result, each show at most 20 (P-value ≤ 0.05), and the percentage of the ordinate represents the x/n
in the table. (E) Subcellular localization analysis of differential proteins. (F) Differential protein-protein interaction analysis. Each node in the interaction network
represents a protein, and the node size represents the number of proteins interacting with it. The larger the node, the more the proteins interacting with it. The color
of the node indicates the expression level of this protein in the comparison pair. The red color represents the upregulated proteins, and the blue color represents the
significantly downregulated proteins. (G) Top 10 proteins that interact with RalA, identified using the String DB protein interaction database (http://string-db.org/). (H)
RALA somatic variant might activate mTOR pathway through downstream effectors PLD1 or EXOC8/EXOC2.

mice at E18.5 for brain slices to measure the radial migration
of GFP-positive cells in the cortex and the distribution of
neurons in different cortical areas. The immunofluorescence
results showed that neurons in the RALA c.G482A group
migrated less from the paraventricular to the cortical plate

(CP) and were more concentrated in the intermediate zone
(IZ) compared with the wild-type group (Figure 5B). Neurons
were counted in different parts of the mouse cerebral cortex
(Fata et al., 2014), and the results displayed that the number of
neurons migrating to the CP was significantly decreased in the
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TABLE 1 | A list of the top 10 proteins interacting with RalA.

Predicted partners Functional annotations

RalA-binding protein 1 (RalBP1) As a downstream effector of RalA and RalB.
As a GTPase-activating protein/GAP inactivated CDC42 and RAC1.
As an effector of RalA controlling mitochondrial fission in mitosis.
Regulating ligand-dependent EGF and insulin receptors-mediated endocytosis.

Exocyst complex component 2 (EXOC2) Component of the exocyst complex involved in the docking of exocytic vesicles.
Belongs to the SEC5 family.

Exocyst complex component 8 (EXOC8) Component of the exocyst complex involved in the docking of exocytic vesicles.
Belongs to the EXO84 family.

Ral guanine nucleotide dissociation stimulator (RALGDS) Stimulating GTP binding and activation of the RalA and RalB GTPases.
Interacts and acts as an effector molecule for R-Ras, H-Ras, K-Ras.

Phospholipase D1 (PLD1) Implicated in signal transduction, membrane trafficking, and the regulation of mitosis.

Unconventional myosin-Ic (MYO1C) Actin-based motor molecules with ATPase activity served in intracellular movements.
Involved in glucose transporter recycling by regulating movement of intracellular GLUT4-containing
vesicles to the plasma membrane.
Acts as a mediator of adaptation of mechanoelectrical transduction.

Exocyst complex component 4 (EXOC4) Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the
plasma membrane.

Y-box-binding protein 3 (YBX3) Binds to the GM-CSF promoter as a repressor.
Binds to full-length mRNA and to short RNA sequences containing the consensus site 5′-UCCAUCA-3′

acted as translation repression.

Ral GTPase-activating protein subunit beta (RALGAPB) Non-catalytic subunit of the heterodimeric RalGAP1 and RalGAP2 complexes.
GTPase activators for the Ras-like small GTPases RALA and RALB.

Phospholipase D2 (PLD2) Involved in signal-induced cytoskeletal regulation and/or endocytosis.

RALA c.G482A group mice compared with the wild-type group
(77.33 ± 16.21 vs. 129.00 ± 16.46, P = 0.000, n = 6), while the
number of neurons in the IZ region was significantly increased
(137.33± 15.96 vs. 77.17± 11.41, P = 0.000, n = 6). The number
of neurons in the subventricular area (SVZ) in the two groups
was 72.83 ± 12.14 vs. 75.50 ± 10.33 (P = 0.747, n = 6), and
the difference was not statistically significant (Figure 5C). Mice
expressing RALA c.G482A had reduced numbers of GFP-positive
cells in the CP areas and increased numbers of GFP-positive
cells in the ventricular and paraventricular areas, suggesting
that the expression of RALA c.G482A can lead to neuronal
migration disorders.

To further confirm the effect of RALA variation on neuronal
migration, we labeled the superficial layer II–IV neurons (CUX-
1) and the deep layer V/VI neurons (TBR1) separately, and
the staining results revealed that more cortical neurons in
the mutant group resided in the layer V/VI cortex and fewer
neurons migrated to the layer II–IV compared with the wild-type
mice (Figure 5D).

DISCUSSION

RALA encodes a small GTPase of the Ras superfamily, RalA,
that is widely expressed in various tissues throughout the body
and is involved in a series of biological functions, such as
gene expression, cell migration, cell proliferation, and membrane
transport by interacting with different downstream effectors
(Yan and Theodorescu, 2018). In the CNS, RalA is engaged
in neuronal development, plasticity, polarization, migration,
synaptic vesicle fusion, NMDA, AMPA, and dopamine receptor
regulation (Teodoro et al., 2013; Zheng et al., 2016).

Our group first detected the RALA somatic variant in FCD
II brain tissue using whole-exome sequencing (WES), and we
verified this using amplicon sequencing with a VAF of 5.50%.
In this study, we discovered that the in vitro transfection of
the RALA c.G482A variant resulted in increased RalA protein
expression and RalA GTPase activity and the activation of its
downstream effectors. In addition, we observed an obvious
increase in S6 phosphorylation and overactivation of the mTOR
pathway after transfection. Immunofluorescence staining of the
brain tissue specimens from this patient also confirmed the
overactivation of the mTOR pathway in brain tissue, and that
the RALA c.G482A variant was more enriched in the BCs and
DNs. Then, by constructing an in vivo electrotransfected mice
model, we found that the RALA c.G482A variant apparently
affected cortical neuronal migration, and this resulted in more
cortical neurons residing in the paraventricular region and the
layer V/VI cortex and less migration in the superficial II-IV
cortex. These results suggest that in FCD type II brain tissue
lesions, the somatic variant of the RALA gene is primarily
distributed in BCs and DNs, and this variant leads to the
functional gain of RalA, activating its downstream effector
molecules, further activating the PI3K-AKT-mTOR pathway,
thus affecting neuronal migration, and ultimately leading to the
development of FCD.

Somatic variants of RALA have been previously reported
in cancers, and a total of 492 RALA somatic variants have
been found in various tissues and organs, suggesting that
pathogenic RALA somatic variants are associated with a wide
range of disease phenotypes. Among them, the RALA c.G482A
somatic variant we identified has been reported to be associated
with adult T-cell lymphoma leukemia (Kataoka, 2015) and
malignant melanoma (Hayward et al., 2017; Wilmott et al.,
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FIGURE 5 | Simulation of cortical dysplasia in mouse models via in utero electroporation. (A) Schematic diagram of animal experiment. (B) RALA c.G482A causes
disorders of cortical neuron migration, as indicated by the thick red arrow. (C) Count and statistics of neurons in different areas of mouse cortex. Local amplification
figure from the red square area. (D) Immunofluorescence labeled layer II/III/IV and layer V/VI neurons, thin red arrows. IUE, in utero electroporation; E14.5, embryo
14.5 days; VZ, ventricular zone; SVZ, subventricular zone; IZ, intermediate zone; CP, cortical plate; EEG, Electroencephalogram; shRNA, short hairpin RNA; TBR1,
T-box brain transcription factor 1; CUX-1, Cut Like Homeobox 1. a, compared with RALA-shRNA group; b, compared with RALA-(shRNA + WT) group. n = 6,
***P < 0.001. Bar = 10 µm; magnification: 10 × 10.

2019), and no studies have been performed to associate
them with neurological diseases. Moreover, Hiatt et al. (2018)
reported cases of de novo RALA germline variants causing
Hiatt-Neu-Cooper neurodevelopmental syndromes (HINCONS)
with the variation that included six missense variants of
c.G73A, c.G73T, c.A383G, c.A389G, c.T469G, and c.C526T
and one chromosomal microdeletion of c.472_474delGCT.
HINCONS is an autosomal dominant neurodevelopmental
disorder characterized by generalized developmental delay,
intellectual disability, language deficits, and facial dysmorphism.
It may also be accompanied by epilepsy, autism, and structural
brain abnormalities, such as corpus callosum dysplasia and
polymicrogyria. The phenotypic heterogeneity between germline
variants and somatic variants of the same gene has also

been appeared in other variants associated with neurological
disorders. Bonduelle et al. (2021) investigated 20 cases of mild
malformations of cortical development with oligodendroglial
hyperplasia in epilepsy (MOGHE) children using brain tissue
sequencing. SLC35A2 somatic mutations were detected in 9/20
(45%) patient brains, while the germline variants of the SLC35A2
gene led to developmental and epileptic encephalopathies. Their
findings highlight the importance of brain somatic mutations in
the etiology of focal epilepsy associated with MCD.

Currently, the genes located in the mTOR pathway identified
in the FCD II brain tissues are classified into three types:
(Mariasavina et al., 2020) gain-of-function variation in the
mTOR upstream regulatory genes, such as PIK3CA, AKT3, and
RHEB; (Ingmar et al., 2011) loss-of-function variation of the
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mTOR pathway suppressor genes, such as DEPDC5, NPRL2,
NPRL3, and PTEN; and (Blumcke et al., 2017) somatic gain-
of-function mutations in the MTOR gene. Several of these
genes also have somatic second-hit mutations, including AKT3,
DEPDC5, MTOR, PIK3CA, RHEB, TSC1, and TSC2. Jansen et al.
(2015) identified AKT3 and PIK3CA somatic mutations in the
brain tissue of FCD II patients using targeted sequencing of 10
genes of the mTOR pathway. Mirzaa et al. (2016) performed
WES of lesioned brain tissues and peripheral blood samples to
find MTOR somatic mutations, and these somatic pathogenic
variants were enriched in the DNs and BCs, suggesting that
DNs and BCs may be the few abnormally differentiated somatic
cells that carry pathogenic variants. Our group (Zhang et al.,
2020) previously screened seven potential FCD II-related somatic
variants using WES and amplicon sequencing in 6/17 (35%)
brain tissue specimens from FCD II patients. Except for MTOR
and TSC2, which are the reported genes, the remaining five
genes, IRS1, ZNF337, HTR6, RALA, and RAB6B, were not yet
associated with FCD. Nevertheless, no clear pathogenic somatic
mutations have been detected in the brain tissue of more than
half of the patients. Therefore, it remains to be determined
whether other genetic variants in the upstream pathway related
to mTOR and abnormal regulation of other signaling pathways
are also implicated in the pathogenesis of FCD. Our findings
suggest that there are other genetic variants in FCD II brain
tissue. However, our findings show that RALA c.G482A can
also activate the mTOR pathway, and we hypothesized that
the RALA variant can lead to the aberrant activation of the
mTOR pathway through PLD1-mediated downstream signaling
pathways. Several previous studies have also reported that
activation of PLD1, a downstream effector of RalA, can lead to
an increased intracellular phosphatidic acid concentration that
in turn activates the mTOR pathway (Xu et al., 2011; Bernfeld
et al., 2018). Therefore, mTOR pathway activation may also be a
common pathway for FCD II pathogenesis.

However, there are still some limitations in this study:
(Mariasavina et al., 2020) all of the FCD II-related somatic
variant genes discovered and reported so far are in the mTOR
pathway and its regulatory pathways, including the RALA gene
that we newly identified in this study, and no variant of genes
in other pathways outside this pathway has been found (Ingmar
et al., 2011). Due to the limitation of the sequencing depth
and cost of WES, the somatic variants were only detected in
a small number of FCD II brain tissue samples, among which
the RALA somatic variant was detected in the brain tissue of
only one FCD IIb patient, and more than half of the samples
were still negative for genetic testing, pending further sequencing
(Blumcke et al., 2017). Although our study found that the RALA
c.G482A variant activated the mTOR pathway and caused cortical
neuronal migration disorders, considering that children carrying
this variant have epilepsy, further studies are required to better
correlate genotype with phenotype as to how RALA c.G482A
causes FCD and subsequently affects the electrophysiological
properties of neurons, ultimately leading to epilepsy.

In summary, we investigated the role of RALA gene
dysfunction in the formation of FCD II using functional studies
of the newly identified brain RALA somatic variant at the cellular

and animal levels in terms of their effects on the PI3K-AKT-
mTOR signaling pathway and on cortical neuronal migration,
thus confirming that RALA is a new pathogenic gene related to
FCD II. The results of the study help to expand the understanding
of the pathogenesis of FCD II, enrich the gene spectrum of
somatic variants associated with MCD, and provide a basis for
clarifying the mechanism of FCD II to explore new therapeutic
targets. However, the brain RALA somatic variant was found
in only one patient with FCD II, and this result needs to be
confirmed in more patient samples.
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Cognitive biases can arise from cognitive processing under affective states and reflect
the impact of emotion on cognition. In animal studies, the existing methods for detecting
animal emotional state are still relatively limited, and cognitive bias test has gradually
become an important supplement. In recent years, its effectiveness in animal research
related to neuropsychiatric disorders has been widely verified. Some studies have
found that cognitive bias test is more sensitive than traditional test methods such
as forced swimming test and sucrose preference test in detecting emotional state.
Therefore, it has great potential to become an important tool to measure the influence
of neuropsychiatric disorder-associated emotions on cognitive processing. Moreover,
it also can be used in early drug screening to effectively assess the potential effects
or side effects of drugs on affective state prior to clinical trials. In this mini-review, we
summarize the application of cognitive bias tests in animal models of neuropsychiatric
disorders such as depression, anxiety, bipolar disorder, and pain. We also discussed
its critical value in the identification of neuropsychiatric disorders and the validation of
therapeutic approaches.

Keywords: cognitive bias test, animal research, affective state, application, memory bias, interpretation bias

INTRODUCTION

Emotions can cause the brain to distort the truth, leading to a discrepancy between what we
believe is true and reality. Cognitive bias is the tendency of the brain to process information
in favor of certain emotional valence (Lovibond and Lovibond, 1995). Positive emotions lead to
positive cognitive biases, while negative emotions cause negative biases, affecting multiple cognitive
processes such as attention, memory, and decision-making (Everaert et al., 2012). The phenomenon
of cognitive bias is widespread, especially in neuropsychiatric disorders. The concept of “cognitive
bias” was first proposed by Beck in the study of patients with depression (Beck, 1967). Based on
Beck’s theory, early adverse experiences can trigger negative cognitive schemas leading to negative
views of the self, the world, and the future, which in turn lead to biases in cognitive processing
(Segal, 1988). According to Bower’s theory of mood congruity (Bower, 1981), during cognitive
processing, individuals tend to focus, process, and recall information that is consistent with their
emotional state, resulting in cognitive biases.
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Cognitive biases can be divided into three types: attentional
bias, interpretation bias, and memory bias. Attentional bias
indicates that individuals are more likely to allocate attention to
stimuli consistent with their current emotional state (Mennen
et al., 2019). In animal research, attentional bias can be
investigated by analyzing the behavioral response to threatening
stimuli (Lee et al., 2016; Luo et al., 2019). Interpretation bias
affects decision-making processes. Individuals are more likely
to interpret ambiguous cues to be consistent with their current
affective state (Everaert, 2021). Interpretation bias in animal
research is often measured using the judgment bias test (JBT)
(Nguyen et al., 2020), which relies on certain behaviors (like
bar-pressing) and these results are then interpreted with respect
to certain human constructs, one of them being “attitude” (see
more details in Table 1). For example, animals in a more positive
affective state tend to interpret ambiguous cues in a more positive
way. Memory bias is most often measured through the affective
bias test (ABT) and the modified affective bias test (mABT) in
animals (Mitte, 2008). The ABT is based on the assumption
that emotional state during the memory coding stage affects the
perception of reward value (Stuart et al., 2013), while the mABT
examines the ability of an animal to form memory bias based on
reward value (Stuart et al., 2015).

Animal experiments are an important complement to
human research, especially in the study of neurological
and psychological phenomena. Animal research has unique
advantages to investigate the underlying mechanisms of these
phenomena. For ethical considerations, pharmacological,
genetic, and invasive human research is greatly limited,
while neurophysiological methods that simulate abnormal
states and pharmacological experiments in animals can be
conducted to explore specific brain regions, neurons, and
even molecules, to better understand the mechanisms behind
phenomena, leading to targeted interventions. Harding et al.
(2004) were the first to use cognitive bias testing in animals.
The presented mini-review briefly summarizes the application
of cognitive bias tests in animal research to further explore
cognitive bias alterations in neuropsychiatric disorders and
the neuropsychological mechanism of cognitive bias, which
can ultimately lead to the early identification and treatment of
these disorders.

APPLICATION OF ANIMAL COGNITIVE
BIAS TESTING

Cognitive Bias in Neuropsychiatric
Disorders
Many neuropsychiatric disorders are accompanied by emotional
alterations which in turn can lead to cognitive biases. One
application of cognitive bias testing is to reflect the affective state
under different disorders. Currently, cognitive bias tests have
been applied in animal models of depression, anxiety, bipolar
disorder, and pain (see more details in Table 2). The next
section briefly discusses the application of cognitive bias tests in
some disorders.

Depression
Depression is a mood disorder accompanied by low self-esteem,
impaired cognitive function, and decreased pleasure (Monroe
and Anderson, 2015). In human studies of cognitive bias, it was
found that depressed subjects are more inclined to focus on
negative stimuli (Armstrong and Olatunji, 2012), choose more
negative words as self-descriptive (Dainer-Best et al., 2018), and
recall more negative items and less positive items on memory
tests (Bianchi et al., 2020). Harding et al. were the first to apply
the judgment bias paradigm to investigate the cognitive bias of
rats (Harding et al., 2004), demonstrating that the JBT can be used
to detect negative emotions in animals.

Animal models of depression include chronic stress, learned
helplessness, deficits in the serotonin system, and adverse
experiences in early life (Czéh et al., 2016). Rats exposed
to chronic physical stress or chronic psychosocial stress
negatively interpret ambiguous cues, approach rewards more
slowly, and experience a series of long-term cognitive and
behavioral changes (Salmeto et al., 2011; Hymel and Sufka,
2012; Chaby et al., 2013; Papciak et al., 2013). Compared
with congenitally non-helpless rats, congenitally helpless rats
showed decreased positive responses and increased negative
responses to ambiguous cues (Enkel et al., 2010; Richter et al.,
2012). A study found that inhibiting serotonin synthesis through
para-chlorophenylalanine (pCPA) dosing in pigs leads to a shift
to more pessimistic judgments of ambiguous stimuli (Stracke
et al., 2017). Results from early adverse experience models
have shown lowered expectation of reward in response to
ambiguous information (Bateson et al., 2015). Of particular
interest, Stuart et al. (2019) found that rats experiencing maternal
separation were more prone to corticosterone-induced negative
bias and showed a deficit in reward-associated positive bias
in mABT, whereas no significant difference was found in the
sucrose preference test. This finding indicates that cognitive
bias testing is a sensitive and important tool in depression-like
state assessment.

Forced swimming test, sucrose preference test, and open-field
test are widely used in animal studies to detect depression-like
behaviors such as behavioral despair, anhedonia, and exploratory
behaviors (Hu et al., 2017). These tests do not require training,
while cognitive biased tasks require long-term and complex
conditional training, as shown in Table 1. Although the cognitive
bias test needs more experimental efforts, the affective bias
measured by it could not be replaced by other tests (Robinson,
2018). Therefore, cognitive bias test can be used as a good
supplement to the commonly used depression-like behavior test
and plays a unique role in mechanism research (Stuart et al.,
2015) and drug screening (Stuart et al., 2017).

Anxiety
Negative cognitive biases induced by anxiety can help an
organism attend to threatening stimuli quickly, leading to
an avoidance of potential danger. In a human study, it was
found that anxious subjects exhibit an exaggerated attentional
bias toward threats and overestimate detrimental consequences
of events (Aue and Okon-Singer, 2015). In a JBT study of
chicks under anxiety-like state, more pessimistic-like approach
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TABLE 1 | Some methodological details of representative cognitive bias paradigms.

Paradigm Stimuli/Cues Reward Punishment Training duration Testing duration References

Auditory judgment
bias test

Tones Sweetened condensed
milk

Electric shock 3 phases, 21−27 days,
1 session/day, 30 min
or 20 trials/session

6 days, 1 session/day,
23 trials/session

Enkel et al., 2010

One food pellet Air-puff 3 phases, 15−40 days,
1 session/day

40 min or when 66
trials were completed

Jones et al., 2018

3 phases, 16−22 days,
1 session/day

40 min or when 60
trials were completed

Four reward pellets
(high reward); one
reward pellet (low
reward)

\ 4 phases, 23−29 days,
1 session/day,
maximum 100 trials or
60 min/session

2 sessions of 100 trials,
2 sessions of 120 trials,
1 session/day

Hales et al., 2020

Spatial judgment
bias test

Positions Overhead light off and
20 mg chocolate
flavored pellet paired
with one arm

Overhead light on
paired with
another arm

6 days, 10 min/day 10 min Novak et al., 2015

One food pellet (high
reward); one
quinine-soaked pellet
(low reward)

\ 2 days, 12 trials/day 3 days, 13 trials/day Burman et al., 2009

Tactile judgment
bias test

Sandpapers Chocolate (high
reward); cheerio (low
reward)

\ Minimum 10 days, 4
trials/day

5 days, 4 trials/day Brydges et al.,
2012

Visual judgment
bias test

Bars Sweet condensed milk Houselight on 9 phases,
89−111 days,
maximum 50 trials/day

5 days, 50 trials/day
and no more than
30 min/day

Krakenberg et al.,
2019

Olfactory judgment
bias test

Scents Dried, sweetened
banana chips (high
reward), regular rodent
chow (low reward)

\ 3 phases, 17−19 days,
2−4 trials/day

3 trials, 2 min/trial Resasco et al.,
2021

Affective bias test Substrates One sugar tablet \ 5 days 5 days, including
4 days for reward
pairing, and 1 day for
preference testing (1
session, 30 trials)

Stuart et al., 2013,
2015

Modified affective
bias test

Substrates Two sugar tablets (high
reward); one sugar
tablet (low reward)

\ *5 days 5 days, including
4 days for reward
pairing, and 1 day for
preference testing (1
session, 30 trials)

Stuart et al., 2013;
Hinchcliffe et al.,
2017

*In the current studies, the modified affective bias test is often carried out after the affective bias test, therefore no additional training is required before testing.

behaviors were exhibited to ambiguous aversive cues (Salmeto
et al., 2011; Hymel and Sufka, 2012). Using pharmacological
methods, one study found that sheep injected with the
anxiety-stimulating drug 1-methyl-chlorophenylpiperazine (m-
CPP) show increased attention toward threats accompanied
by increased vigilance (Lee et al., 2016), leading to negative
attentional bias. Other studies found that acute injection of
anxiogenic drug FG7142 in rats led to negative cognitive bias in
both judgment bias tests (Hales et al., 2016) and affective bias tests
(Stuart et al., 2013, 2015; Hinchcliffe et al., 2017).

Studies have shown that high-intensity light and white light
are aversive to rodents, while dim light and red light are more
neutral (Burman et al., 2009; Boleij et al., 2012) and therefore,
alterations in lighting can be used to manipulate anxiety level
in rodents. There is strong evidence that rats trained in dim
lighting conditions but tested in bright lighting conditions have
longer approach latencies when exposed to ambiguous cues

(Burman et al., 2009; Boleij et al., 2012), indicating that acute
increase in anxiety leads to negative judgment bias.

Bipolar Disorder and Mania
Depression and mania are the two core components of bipolar
disorder. The cognitive and emotional correlates of depression
have been extensively studied, but related research on mania is
relatively lacking. Chronic administration of the psychostimulant
d-amphetamine has been used to cause manic-like symptoms in
animals (Valvassori et al., 2019). Some studies have shown that
acute d-amphetamine administration can induce an optimistic
bias in rats (Rygula et al., 2014; Hales et al., 2017), while
another study found that two consecutive weeks of amphetamine
treatment does not cause significant positive bias (Rygula et al.,
2015b). However, it is not clear whether acute administration
of amphetamines induces a manic-like state or simply a state of
hyperactivity (Minassian et al., 2016).
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TABLE 2 | Cognitive bias in animal models of neuropsychiatric disorders.

Models of neuropsychiatric
disorders

Animals Gender Paradigm Bias

Depression

Chronic psychosocial stress: daily
social defeat for 3 weeks

Sprague Dawley rats Male Auditory judgment bias test Negative; Papciak et al., 2013

Chronic restraint stress: 1-h daily
immobilization for 3 weeks

Sprague Dawley rats Male Auditory judgment bias test Negative; Rygula et al., 2013

Chronic unpredictable mild stress
(CUMS): Both physical and social
stressors were presented randomly
across the light/dark cycle

Long-Evans rats Male Tactile judgment bias test Negative; Chaby et al., 2013

Early life adversity: Maternal separation Sprague Dawley rats Male Auditory judgment bias test; Non-significant; Stuart et al., 2019

Affective bias test; Modified
affective bias test

More prone to corticosterone induced
negative bias; A significant deficit in
reward-associated positive bias; Stuart
et al., 2019

Early life adversity: Early life competition European starlings Male
and

female

Visual judgment bias test Negative; Bateson et al., 2015

Genetic model: 5-HTT knockout Wildtype (+/+),
heterozygous (+/−), and
homozygous (−/−) 5-HTT
knockout mice

Female Spatial judgment bias test No significant difference between the
three groups; Kloke et al., 2014

Genetic model: Learned helpless model Congenitally helpless
(cLH) and congenitally
non-helpless (cNLH) rats

Male Spatial judgment bias test More negative in cLH rats than that in
cNLH rats; Enkel et al., 2010; Richter
et al., 2012

Auditory judgment bias test

5-HT depletion model:
Para-chlorophenylalanine (pCPA)
(50 mg/kg) for 6 days

German Landrace piglets Female Spatial judgment bias test Negative; Stracke et al., 2017

Exposure to an isolation stressor of
60 min

Gallus Male Visual judgment bias test Negative; Salmeto et al., 2011; Hymel
and Sufka, 2012

Anxiety

Change in light levels: Switch from low
to high light levels

Lister-hooded rats Male Spatial judgment bias test Negative; Burman et al., 2009

Light stimuli: Red or white light BALB/c mice Male Olfactory judgment bias test Negative bias in white light than in red
light; Boleij et al., 2012

Anxiogenic drug FG7142 (3.0,
5.0 mg/kg)

Lister-hooded rats Male Auditory judgment bias test Negative; Hales et al., 2016

FG7142 (1.0, 3.0, 5.0 mg/kg) Lister-hooded rats Male Affective bias test Negative in 3.0, 5.0 mg/kg and
non-significant in 1.0 mg/kg; Stuart et al.,
2013

FG7142 (5.0 mg/kg) Lister-hooded rats Male Affective bias test Negative; Stuart et al., 2015

FG7142 (3.0, 6.0 mg/kg) Sprague Dawley rats Male Affective bias test Negative; Hinchcliffe et al., 2017

Exposure to an isolation stressor of
5 min

Gallus Male Visual judgment bias test Negative; Salmeto et al., 2011; Hymel
and Sufka, 2012

1-methyl-chlorophenylpiperazine(m-
CPP)
(2 mg/kg)

Merino sheep Female Attention bias test Negative; Lee et al., 2016

Bipolar disorder and Mania

D-amphetamine (2 mg/kg) for 2 weeks Sprague Dawley rats Male Auditory judgment bias test Non-significant; Rygula et al., 2015b

*D-amphetamine (0.1, 0.5, 1 mg/kg) Sprague Dawley rats Male Auditory judgment bias test Positive in 1 mg/kg and non-significant in
0.1 and 0.5 mg/kg; Rygula et al., 2014

*Amphetamine (0.1, 0.3 mg/kg) Lister-hooded rats Male Auditory judgment bias test Positive in 0.3 mg/kg and non-significant
in 0.1 mg/kg; Hales et al., 2017

Pain

Chemotherapy-induced mucositis:
Fluorouracil (5-FU) (150 mg/kg)

Sprague Dawley rats Male Tactile judgment bias test Negative (72 h post 5-FU injection) and
non-significant (120 h post 5-FU
injection); George et al., 2018

(Continued)
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TABLE 2 | (Continued)

Models of neuropsychiatric disorders Animals Gender Paradigm Bias

Partial saphenous nerve injury (PSNI) Lister-hooded rats Male Affective bias test; Negative bias was corrected by
gabapentin; 50 mg/kg; Phelps et al., 2021

Modified affective bias test A significant deficit in reward-associated
positive bias; Phelps et al., 2021

Postoperative pain: Hot-iron disbudding Holstein calves Male Visual judgment bias test Negative; Neave et al., 2013

Tumors transplantation Nude mice Male Olfactory judgment bias test Negative; Resasco et al., 2021

Female Non-significant; Resasco et al., 2021

*Acute administration of amphetamines may simply induce hyperactivity rather than strictly mania.

In clinics, the mood stabilizers lithium and valproate are the
most commonly used drugs to treat bipolar disorder (Geddes and
Miklowitz, 2013). They can help patients find a balance between
depression and mania (McIntyre et al., 2020). An animal study
found that acute administration of lithium induced optimistic
bias in rats that were generally pessimistic, while no significant
bias was observed after injection of valproic acid in rats that were
more neutral at baseline, which suggests that the effect direction
of lithium may be affected by the valence of cognitive bias (Rygula
et al., 2015a). Although such studies are rare, it still suggests
that cognitive bias tests have the potential to be applied to the
animal study of pharmacological mechanisms associated with
bipolar disorder.

Pain
Pain includes not only physiological components but emotional
and cognitive components as well (Price, 2000). Pain in humans
can lead to decreased quality of life, anxiety, and depression
(Kendig et al., 2000), while pain in animals can lead to
reduced water and food intake and abnormal grooming, nesting,
and burrowing behaviors (Jirkof, 2017). Previous studies have
frequently used conditioned place avoidance (CPA) to examine
emotion and avoidance associated with pain (Tappe-Theodor
et al., 2019). However, the emotional and cognitive components
of pain may be more complex. Cognitive bias tests, such as the
JBT, focus on animals’ interpretation of ambiguous information,
while the ABT includes reward value. Therefore, cognitive bias
tests will help to explore the emotion-motivation and cognition-
evaluation dimensions of pain from diverse perspectives.

Dairy calves experiencing postoperative pain associated with
hot-iron disbudding to prevent horn growth exhibited a negative
interpretation of ambiguous cues (Neave et al., 2013). A study on
rats with chronic inflammatory pain as a result of 5-fluorouracil
(5-FU) injection to simulate chemotherapy-induced intestinal
mucositis, found that 72 h after injection, optimistic decision-
making was significantly reduced (George et al., 2018), while
120 h after injection, optimistic decision-making increased as
the damaged intestine gradually recovered (George et al., 2018).
Chronic neuropathic pain caused by saphenous nerve injury
leads to a negative bias which can be corrected by gabapentin as
tested by the ABT, and a reward deficit in developing value-based
memory bias in the mABT (Phelps et al., 2021), suggesting that
rats with chronic neuropathic pain experience negative emotions
and deficits in sensitivity to reward value. In addition, a study
using the JBT to examine cancer pain and discomfort in mice

with tumors found that tumor-bearing male mice were more
pessimistic than healthy controls (Resasco et al., 2021). In sum,
these studies indicate that cognitive bias tests can effectively
measure the negative emotional state caused by pain in animals
from acute pain to chronic pain and that analgesics can partially
correct this state, therefore can be used in the validation of
therapeutic approaches.

Cognitive Bias Tests in Assessing the
Effect of Drugs on Affective State
Cognitive bias tests have shown good validity in the assessment
of drug-induced affective changes (Robinson, 2018), providing a
new approach for preclinical drug screening. Studies using the
ABT found that acute administration of the antidepressants such
as fluoxetine, reboxetine, venlafaxine, and mirtazapine induced
positive biases in animals (Hales et al., 2017). However, one
problem with the ABT and other preclinical testing methods,
such as forced swimming, is the inability to distinguish between
acute and delayed onset of antidepressant action. For example,
fluoxetine was found to act quickly in preclinical trials using
forced swimming, but with delayed clinical onset (Cryan and
Holmes, 2005). The JBT can help to resolve this issue. Acute
administration of the conventional antidepressants fluoxetine,
reboxetine, or venlafaxine did not cause an interpretation bias
in animals compared to the clinical fast-acting antidepressant
ketamine, and only long-term use of fluoxetine resulted in a
positive bias (Hales et al., 2017). These data indicate that the
JBT better reflects the time course of antidepressant effects and
effectively screens out fast-acting drugs at the preclinical stage.

Negative emotional side effects caused by drugs can greatly
reduce a patient’s quality of life, affect medication compliance,
and even cause the original therapeutic regimen to be broken
down (George et al., 2018). Therefore, it is critical to assess
potential emotional side effects of medication during preclinical
studies. Cognitive bias tests have been used to study the
emotional side effects of medications. One study used ABT to
test some drugs that can increase the risk of depression in clinical
patients and found that lipopolysaccharides (LPS), interferons-
alpha (IFN-α), and tetrabenazine (a drug for the treatment
of chorea in Huntington’s disease) (Frank, 2010) can induce
negative deviation in rats, but varenicline (a smoking cessation
drug) (Tonstad et al., 2020), carbamazepine (an anticonvulsant)
(Israel and Beaudry, 1988), or montelukast (an anti-asthma drug)
(Markham and Faulds, 1998) did not induce significant bias
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(Stuart et al., 2017). At present, the JBT has not been widely used
in the preclinical screening of emotional side effects of drugs due
to its long training time and complexity. It is necessary to further
develop a more sensitive, fast, and simple animal experimental
paradigm for cognitive bias in future research.

DISCUSSION

An important interpretation for the behavioral results of
cognitive bias test is to reflect the emotional state of animals and
its effectiveness has been widely verified (Nguyen et al., 2020),
indicating potential application in animal studies associated with
neuropsychiatric disorders. Compared to the forced swimming
test, the JBT is more sensitive to the clinical onset time
of antidepressants, while the ABT is more sensitive in the
assessment of reward deficits than the sucrose preference test.
Therefore, cognitive bias tests may be used for the early
identification of neuropsychiatric disorders and validation of
their therapies.

It should be mentioned that in addition to the change of
emotional state, motivation factors can also affect cognitive
bias. For example, Enkel et al. (2010) noticed that in different
depression-like states, a pessimistic judgment bias toward
ambiguous cues could result from a decrease in positive response
rate coupled with either (1) an increase in negative response
rate or (2) an increase in omission rate. The former may reflect
increased motivation to avoid potential punishment, whereas the
latter may reflect decreased motivation to approach potential
reward. This indicates that even in similar affective states,
different motivational mechanisms may underlie the formation
of bias. Due to the length of the min-review, we cannot discuss
more, but we refer interested readers to the review by Lewis et al.
(2019) and a recent paper by Neville et al. (2020), both of which
provide an in-depth discussion on this topic.

The psychological mechanisms underlying the emergence
and transition of cognitive bias remain unclear. One theory
explains the emergence of cognitive bias from the perspective
of biological evolution and adaptation (Durisko et al., 2015).
In everyday life, most information is ambiguous with few
explicit cues. Therefore, individuals must use prior experiences
to interpret the meaning of current situation ambiguous cues
(Norbury et al., 2018). This cognitive process is vital to animal
survival and is an adaptive behavior that can be influenced
by cognitive bias, which can be advantageous in limiting
cognitive resources for faster and more efficient decision-making
(Enkel et al., 2010). However, in some disorders, cognitive bias
may remain constant, leading to non-adaptive behaviors. For
example, negative cognitive biases associated with depression are
developed by exposure to persistent stress and other adverse
factors. These negative cognitive biases lead to risk-avoidance
and loss-reducing behavioral strategies (Durisko et al., 2015)
which can be advantageous in an unsafe environment. However,
in a safe environment, these behaviors can be non-adaptive.
A depressed individual may not have the capacity to alter

negative biases in different situations. The ability to alter
biases to appropriately address the presented situation needs
further research.

Precision medicine is a hot spot in clinical research in
recent years (Manchia et al., 2020). The detection of individual
emotional characteristics will help to formulate an individualized
treatment plan for emotional diseases. Prior studies have shown
that the effects of acute manipulation of the dopamine and
serotonin systems on cognitive bias may depend on cognitive
bias baseline. After acute administration of haloperidol, a
dopamine D2 receptor antagonist, or escitalopram, a 5-HT
reuptake inhibitor, “optimistic” rats became more pessimistic,
while “pessimistic” rats became more optimistic (Golebiowska
and Rygula, 2017a). Therefore, cognitive bias tests may serve
to formulate therapeutic regimens based on individual patient
characteristics and, as such, should be included in future
neuropsychiatric drug research.

Finally, the neural mechanisms of cognitive biases are
understudied. The prefrontal area plays an important role in
decision-making under ambiguity and risk (Rouault et al.,
2019). A study in rats found that lesions to the orbitofrontal
cortex (OFC) but not to the medial PFC (mPFC) decreased
the proportion of positive lever presses and increased the
proportion of negative lever presses in response to ambiguous
tones, indicating increased pessimism (Golebiowska and Rygula,
2017b). The basolateral amygdala is closely associated with
prefrontal regions and is also involved in the assessment of
ambiguity and uncertainty (Davis and Whalen, 2001). One study
found that unpredictability increased c-Fos expression in the
lateral amygdala of mice (Herry et al., 2007). Likewise, the lateral
septum is an important area for the integration of cognitive
and affective information that compares known information with
unknown and inferred ambiguous cues (Wirtshafter and Wilson,
2021). A study has shown a decrease in c-Fos expression in the
lateral septum in response to ambiguous cues (Boleij et al., 2012).
Further research using surgery, electrophysiology, optogenetics,
in vivo calcium imaging, and other techniques to study the neural
correlates of cognitive bias is necessary to identify key brain
regions and molecular targets of potential therapeutics.
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Dysphagia is one of the most common manifestations of stroke, which

can affect as many as 50–81% of acute stroke patients. Despite the

development of diverse treatment approaches, the precise mechanisms

underlying therapeutic efficacy remain controversial. Earlier studies have

revealed that the onset of dysphagia is associated with neurological damage.

Neuroplasticity-based transcranial magnetic stimulation (TMS), a recently

introduced technique, is widely used in the treatment of post-stroke

dysphagia (PSD) by increasing changes in neurological pathways through

synaptogenesis, reorganization, network strengthening, and inhibition. The

main objective of this review is to discuss the effectiveness, mechanisms,

potential limitations, and prospects of TMS for clinical application in PSD

rehabilitation, with a view to provide a reference for future research and

clinical practice.

KEYWORDS

post-stroke dysphagia, neuroplasticity, transcranial magnetic stimulation,
effectiveness, therapeutic mechanism

Introduction

Dysphagia, defined as “difficulty swallowing,” is one of the most important clinical
manifestations of stroke and a common consequence of neurological damage caused by a
range of diseases (Fung et al., 2004). Studies have confirmed that 50–81% of acute stroke
patients may experience swallowing problems (Hamdy, 2010). In most cases, the post-
stroke dysphagia (PSD) will improve spontaneously. However, approximately 11–50%
of patients may have long-term disability (Kumar et al., 2010; Cohen et al., 2016).

Although dysphagia gradually resolves spontaneously in the early stages
of disease in most cases, severe and persistent forms of dysphagia remain
prevalent in about 13% of stroke patients (Mann et al., 1999). The presence
of dysphagia is linked to increased physical and psychological stress in
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patients, families, and caregivers, along with reduced quality
of life (Eslick and Talley, 2008). In addition, dysphagia may
cause various life-threatening complications, such as aspiration
pneumonia, asphyxia, dehydration, and malnutrition (Smithard
et al., 1996). In particular, aspiration pneumonia can trigger
various complications, the most acute being infection and
sepsis (Kalita et al., 2015). These complications increase the
risk of prolonged hospital stays, high medical expenses and
significant mortality, causing a major negative impact at
both the individual and society level. Therefore, rehabilitation
therapy of PSD remains a significant clinical issue that needs to
be urgently addressed.

Studies have demonstrated that central causes of dysphagia
in stroke patients include cortical or brain-stem damages, and
peripheral causes include damages to the nerves or muscles
involved in swallowing. The brain-stem lesions are more
commonly associated with dysphagia (Balcerak et al., 2022).
Notably, dysphagia is usually caused by infratentorial lesions,
while sensory afferent disturbances usually cause dysphagia in
supratentorial stroke. However, the exact mechanism of PSD is
not well understood.

The treatment options of PSD include behavioral therapy,
oral care, pharmacology, neurostimulation, and dietary
interventions. Various physical therapies and preventive
measures can avoid dysphagia-related complications. However,
there is a lack of medical or electrophysiological interventions to
facilitate recovery from dysphagia after acute or subacute stroke.

Existing treatments for PSD include postural training (Hägg
and Larsson, 2004), dietary modification (Hägg and Anniko,
2008; McCullough et al., 2012), swallowing movements (Hägg
and Anniko, 2008), compensation techniques (Lin et al., 2003),
drug therapy, oral motor stimulation (Kang et al., 2012), music
therapy (Kim, 2010), facial sensory stimulation, pharyngeal
electrical stimulation, neuromuscular electrical stimulation,
non-invasive brain stimulation, botulinum toxin injection, and
acupuncture therapy (Terré et al., 2013; Yang et al., 2015).
Nevertheless, these treatment strategies cannot change the
physiology of impaired swallowing biomechanics as well as
cannot promote the recovery of impaired swallowing neural
networks in stroke patients (Speyer et al., 2010).

According to a previous study, the pathogenic cascade of
dysphagia is as follows: after peripheral or central (corticobulbar
tract) impairment of the cranial nerves innervating the
swallowing muscles, tongue movement is limited, with soft
palate paralysis. Consequently, intraoral and pharyngeal
pressure cannot be fully increased, movement of food from
the oral cavity to the pharynx and esophagus is weak, and
transit time is significantly prolonged. The retention increases
hyperreflexia or spasm of sphincter and cricopharyngeal
muscle in the esophageal inlet of patients with supraglomerular
damage (pseudobulbar palsy) and movement of the swallowing
muscles is uncoordinated, resulting in accidental ingestion of
food into the trachea (Ertekin et al., 2000). In recent years,

accumulating evidence has shown that transcranial magnetic
stimulation (TMS) can induce changes in the excitability of
the cerebral cortex, promote plastic alterations in nerves,
control the release of neurotransmitters (Lanza et al., 2015),
and manage dysphagia through regulating neuroplasticity. The
main objective of this review is to synthesize clinical studies and
investigate the effectiveness, mechanisms of action, advantages,
and disadvantages of TMS in clinical practice.

Transcranial magnetic stimulation

Transcranial magnetic stimulation is a non-invasive
stimulation technique based on the principles of neuroplasticity
that induces changes in neurological pathways by altering
neurons in target cortical areas through synaptogenesis,
reorganization, network strengthening, and inhibition, causing
local depolarization of the magnetic field below the skull and
activation or inhibition of activity in cortical areas (Hallett,
2000; Koerselman et al., 2004). It was also reported that the
feasibility of using external magnetism to stimulate the nerves
and brain (Barker et al., 1985). The group described TMS as a
non-invasive technique to stimulate the human motor cortex.
At present, TMS is widely used as a routine diagnostic tool
in neurophysiological studies owing to its safe and technical
characteristics (Rossi et al., 2009). This approach is based on
speech, language, and swallowing disorders of the nervous
system (Naeser et al., 2005; Khedr et al., 2009; Verin and
Leroi, 2009; Barwood et al., 2011a,b,c). TMS exerts therapeutic
effects by directly modulating specific pathways in the brain,
which may ultimately affect longer-term communication and
swallowing outcomes. Recent advances in TMS technology
facilitate its application in clinical neurorehabilitation programs
for patients with brain injury. Earlier reports have also
demonstrated positive therapeutic effects on swallowing
function after TMS, highlighting its potential as a treatment
modality for dysphagia (Ridding and Rothwell, 2007). Multiple
systematic reviews and meta-analyses have confirmed the
beneficial effects of TMS on PSD (Yang et al., 2015; Pisegna
et al., 2016; Liao et al., 2017; Chiang et al., 2019; Marchina et al.,
2021) and swallow-related outcomes in patients. Moreover, the
most intense effects of peripheral and cortical neurostimulation,
including those of TMS, occur during the first 2 weeks after
stroke (Yang et al., 2015). The efficacy of TMS for PSD from
clinical trials and meta-analyses were illustrated in Table 1.

Mechanism of action of transcranial
magnetic stimulation

Transcranial magnetic stimulation, a tool for high-pressure
brain stimulation, presents an alternative method for treatment
of dysphagia via modulation of neuroplasticity. The procedure
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TABLE 1 Summary of studies on the efficacy of TMS for PSD from clinical trials and meta-analyses.

Stimulation
mode and
intensity

Stimulation target Sample Treatment
cycle

Test
method

Main results References

rTMS (3 Hz) Target cortical
representation in
ipsilateral pharyngeal
region

21 5 days WST rTMS > basic rehabilitation training;
improvement rates of the control and
rTMS groups were 31.0 and 65.6%,
respectively; WST score; the standard,
improvement of dysphagia in the rTMS
group was significantly higher than that in
the control group (p < 0.05)

Yang et al., 2015;
Jiao et al., 2022

rTMS (10 Hz) Bilateral irritation 35 3 weeks CDS, DOSS,
PAS, VDS

CDS, DOSS, PAS, and VDS scores in both
groups; scores in the bilateral
group > scores in the unilateral group
(p < 0.05)

Park et al., 2017

rTMS (10 Hz) Ipsilateral motor cortex 35 3 weeks CDS, DOSS,
PAS, VDS

CDS, DOSS, PAS, and VDS scores in both
groups; scores in the bilateral
group > scores in the unilateral group
(p < 0.05)

Park et al., 2017

TMS (5 Hz) Lingual cortical motor
area

15 10 days VFSS, SAPP No significant difference in VFSS or SAPP
were observed between the two groups

Cheng et al.,
2017

TMS (3 Hz) Ipsilateral 15 5 days WST, DD,
cortical
excitability

Both WST and DD were improved as well
as cortical excitability in the affected
hemisphere

Du et al., 2016

TMS (1 Hz) Contralateral 13 5 days WST, DD,
cortical
excitability

Both WST and DD were improved as well
as cortical excitability in the unaffected
hemisphere and cortical excitability in the
affected hemisphere

Du et al., 2016

rTMS (10 Hz) Ipsilateral 16 10 days SSA, DD,
cortical
excitability

Cortical excitability in the affected or
unaffected hemisphere were improved;
significant improvement in SSA score; no
change in DD score

Zhang et al.,
2019

rTMS (1 Hz) Contralateral 16 10 days SSA, DD,
cortical
excitability

Cortical excitability in the affected or
unaffected hemisphere were improved;
significant improvement in SSA score; no
change in DD score

Zhang et al.,
2019

rTMS (1 Hz) Epilepsy 16 10 days SSA, DD,
cortical
excitability

Cortical excitability in the affected or
unaffected hemisphere were improved;
SSA score in the bilateral group > SSA
score in the unilateral group; no change in
DD score

Zhang et al.,
2019

rTMS (1 Hz) Contralateral 6 15 days MASA and
Functional
Oral Intake
Scale

MASA and functional oral intake scale
scores were improved

Tarameshlu
et al., 2019

TMS (3 Hz) Ipsilateral esophageal
cortical area

14 5 days DD Improvement in DD score Khedr et al.,
2009

rTMS (10 Hz) Contralateral motor
cortex of bilateral
mylohyoid muscles

11 2 weeks CDS, DOSS,
PAS, VDS

DOSS, PAS and VDS scores in the bilateral
group > scores in the unilateral group

Park et al., 2017

rTMS (10 Hz) Ipsilateral motor cortex
of mylohyoid muscle

12 2 weeks CDS, DOSS,
PAS, VDS

DOSS, PAS and VDS scores in the bilateral
group > scores in the unilateral group

Park et al., 2017

rTMS (1 Hz) Ipsilateral 4 5 days MASA MASA scores were improved Ghelichi et al.,
2016

rTMS (5 Hz) Ipsilateral pharyngeal
motor hotspot

8 2 weeks PAS, VDS VDS score: significant improvement in
pharyngeal motor function. Activation of
bilateral primary motor cortices, anterior
motor cortex, and right prefrontal cortex

Park et al., 2019

(Continued)
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TABLE 1 Continued

Stimulation
mode and
intensity

Stimulation target Sample Treatment
cycle

Test
method

Main results References

rTMS (5 Hz) Lingual motor cortex 2 2 weeks MASA and
swallowing-
related
quality of
life

MASA and swallowing-related quality of
life were improved

Cheng et al.,
2015

rTMS (10 Hz) Cerebellum 1 / PMEP, cPAS Improvement in PMEP amplitude (55%
above baseline) and swallowing safety
(17% below baseline)

Vasant et al.,
2019

rTMS (1 Hz) Contralateral 14 4 weeks MASA and
quality of
life
assessments

Improvement in quality of life; no
significant change in MASA

Ünlüer et al.,
2019

TMS, transcranial magnetic stimulation; PSD, post-stroke dysphagia; WST, water-swallowing test; CDS, Clinical Dysphagia Scale; DOSS, Dysphagia Outcome and Severity Scale; PAS,
Permeation Aspiration Scale; MASA, Mann Assessment of Swallowing Ability; VDS, Videofluoroscopic Dysphagia Scale; PMEP, representative pharyngeal motor evoked potential
amplitude; VFSS, videofluoroscopic swallowing study; SAPP, swallowing activity and participation profile; cPAS, cumulative penetration-aspiration score; DD, degree of dysphagia; SSA,
standardized swallowing assessment.

is based on the principle of inductance and non-invasively
transmits electrical energy to the brain through the scalp and
skull (Wassermann, 1998). A large current pulse generator
is employed to release high currents thousands of amperes
greater than that flowing through the coil, up to several
kilowatts in power. These short magnetic pulses cause a
sustained increase or decrease in cortical excitability. A brief
but intense current is passed through a TMS coil placed on
the scalp, creating a magnetic field that penetrates the skull
to a depth of about 1.5–2 cm and induces a sufficiently
strong electric field to depolarize surface axons and activate
cortical neural networks (Lefaucheur et al., 2014). In addition,
an electromyographic response to the target musculature is
produced, known as motor-evoked potential (MEP) (Fitzgerald
et al., 2006). Subsequently, descending motor shooting along
the corticospinal tracts from the cortex to peripheral muscles
is elicited to adjust the excitability of the cerebral cortex.
TMS can be divided into high frequency (≥1 Hz) TMS and
low frequency (≤1 Hz) stimulation processes (Wassermann,
1998). High frequency tends to enhance the excitability of
the cerebral cortex while low frequency exerts the opposite
effect (Hamdy et al., 1998; Fitzgerald et al., 2006). In stroke
patients recovering from dysphagia, functional recovery was
found to be associated with increased cortical representation
of the intact hemisphere, highlighting the importance of
reorganization of intact neural networks in PSD recovery
(Pascual-Leone et al., 1998). Repetitively applied TMS, also
known repetitive TMS (rTMS), can induce changes in synaptic
plasticity similar to long-term potentiation (LTP) or long-
term depression (LTD), that is, increased or decreased synaptic
strength (Stefan et al., 2002; Hoogendam et al., 2010). The
precise mechanism remains unknown but is thought to be
mediated by the activity of N-methyl-D-aspartate (NMDA)
receptors, as revealed by studies using NMDA antagonists

(Fitzgerald et al., 2006; Huang et al., 2007). Other known
rTMS modalities include intermittent (excitatory) theta burst
stimulation (iTBS) and continuous (inhibitory) TBS (cTBS)
(Ridding and Rothwell, 2007). However, recent reports suggest
that the ability to respond to these protocols varies on an
individual basis (Ridding and Rothwell, 2007).

Studies have confirmed that the damages to subcortical
white matter (the internal capsule and within the brainstem)
caused dysphagia, possibly due to disruption in the
sensorimotor pathways of the corticobulbar tract. TMS
may exert effects on PSD by regulating sensorimotor pathways
in the brain. However, the details of how TMS change the
communication and connection of cortical neural networks to
achieve the therapeutic effect remain largely unexplored. The
advantages and disadvantages of TMS were shown in Table 2.

Advantages of transcranial magnetic
stimulation

Transcranial magnetic stimulation is widely regarded as a
safe and non-invasive form of nerve stimulation that can be used
to directly manipulate cerebral cortex activity. In recent years,
this innovative neuromodulation technology has been widely
applied in neuroscience and countless cognitive fields (Barwood
et al., 2011b) and shown to exert therapeutic effects by directly
regulating specific pathways in the brain, which could ultimately
affect longer-term communication and swallowing disorder
prognosis (Naeser et al., 2005; Cotelli et al., 2008; Khedr et al.,
2009; Verin and Leroi, 2009; Barwood et al., 2011a,c; Geeganage
et al., 2012; Murdoch et al., 2012). The potential nerve priming
effect induced by TMS is reported to effectively improve
performance. Recent progress in TMS technology facilitates

Frontiers in Behavioral Neuroscience 04 frontiersin.org

6667

https://doi.org/10.3389/fnbeh.2022.995614
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-16-995614 August 12, 2022 Time: 17:57 # 5

Li et al. 10.3389/fnbeh.2022.995614

TABLE 2 Advantages and disadvantages of transcranial magnetic stimulation (TMS).

Advantages Disadvantages

À Good safety and non-invasiveness À No significant beneficial effects on genetic factors, death, dependence,
disability, prognosis and length of hospital stay

Á Long-term impact on communication and swallowing disorder prognosis Á The effect of nerve stimulation therapy was not analyzed separately

Â Potentially improves performance after administration Â The number of studies is limited, with small sample sizes, uneven case quality,
and heterogeneity among studies

Ã TMS can enhance muscle control of swallowing after stroke

Ä Shorter course of treatment

Å TMS induces alterations in the functional status of local cerebral cortex, enhances
synaptic function, and regulates neuronal function in the brain

Æ Accurate and optimal balance in the excitatory and inhibitory control functions of
the cerebral cortex

its application in clinical neurorehabilitation programs for
patients with brain injury and the existing evidence shows
that high-frequency TMS can enhance the muscle control of
swallowing after stroke. For instance, in a study by Verin and
Leroi (Geeganage et al., 2012) using TMS to stimulate the
musculohyoid cortical area, the swallowing function of the
patient improved at 3 days after stimulation. In a review by
Cochrane (Zhai et al., 2020) on management of PSD, cortical
rTMS reduced the need for physical or cognitive engagement
in complex cases and had the potential to shorten the course
of treatment. Previous studies have demonstrated that this
non-reduced magnetic signal can reach the target area of
brain tissue through the skull, thereby changing the functional
status of the local cerebral cortex, enhancing synaptic function,
and regulating neuronal function in the brain (Bath et al.,
2018). Moreover, TMS has different intensities, frequencies
and stimulation areas and can modulate the relationships and
interactions among neural networks, thus affecting the functions
of different regions. TMS promotes accurate and optimal
balance of excitatory and inhibitory control functions in the
cerebral cortex.

Current limitations

Despite the considerable benefits of TMS, lots of limitations
restrict its use in clinical practice in terms of effectiveness,
safety, and clinical study design. First, no significant beneficial
effects of TMS on genetic factors, death, dependence, disability,
prognosis, or length of hospital stay have been reported (Hoshi
and Tamura, 1993; Wiethoff et al., 2014; Horvath et al.,
2016). Second, patients in a few of earlier trials received
traditional rehabilitation training, which made it impossible
to separately analyze the effects of nerve stimulation therapy.
In treatment of PSD with TMS, the optimal choice of
stimulation site (unaffected hemisphere, affected hemisphere,
or bilateral hemispheres) has not yet been determined. Based
on different viewpoints on the recovery mechanism of PSD,

the choice of excitatory stimulation (high frequency) or
inhibitory stimulation (low frequency) at the corresponding
site (involved, affected, or bilateral side) is controversial. In
additions, the number of reported studies is limited, with small
sample sizes, uneven case quality and significant heterogeneity
among studies. Therefore, the available data are insufficient
draw accurate conclusions on the recommended optimal
treatment regimen.

Future prospects

This review provides a summary of the efficacy and
underlying mechanisms of TMS activity in patients with PSD.
A large majority of studies to date has used water-swallowing
test (WST), clinical dysphagia scale (CDS), Dysphagia Outcome
and Severity Scale (DOSS), Permeation Aspiration Scale
(PAS), Mann Assessment of Swallowing Ability (MASA),
Videofluoroscopic Dysphagia Scale (VDS), representative
pharyngeal motor evoked potential (PMEP) amplitude,
cumulative penetration-aspiration score (cPAS), and degree
of dysphagia (DD) to evaluate the significance of the results.
However, given the evidence for the validity of the results, it
may be possible to incorporate more credible tests to draw
strong conclusions in future studies. In 1993, Hoshi and
Tamura demonstrated the validity of measuring different
cortical regions with functional near-infrared spectroscopy
(fNIRS). For the first time, the potential of fNIRS imaging brain
activation sequences were reported (Ehlis et al., 2009). fNIRS is a
neuroimaging technique used to map the function of the human
cerebral cortex that utilizes the principle of near-infrared
(NIR) spectroscopy (NIRS). Changes in optical properties of
the human cerebral cortex are detected simultaneously from
multiple measurement sites and the results displayed in the form
of maps or images in specific areas. Over the years, fNIRS has
emerged as a key neuroimaging technique that has contributed
significantly to advances in understanding human brain
function. In recent years, the validity of fNIRS measurements
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has been repeatedly demonstrated by simultaneous functional
magnetic resonance imaging (fMRI) measurements, with
widely recognized applications in newborn/child and adult
language processing in cognitive neuroscience. Although TMS
demonstrate great potential to accelerate the improvement of
swallowing function in patients with PSD, there is currently a
lack of real-time assessment tool for brain function to optimize
TMS parameters. As an assessment tool of brain activity, fNIRS
can be used to measure the changes in hemoglobin (Hb)
concentrations within the brain, which can not only evaluate the
effect of TMS treatment, but also can guide the optimization of
TMS treatment regimen during the PSD rehabilitation. In the
future, we should combine the TMS and fNIRS to serve as a
reference for upcoming clinical and laboratory research.
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Objective: To screen and analyze the genetic mutations in the PPP1CB gene in

a patient with Noonan syndrome with loose anagen hair-2 (NSLH2) in Yunnan

Province, China and explore the possible molecular pathogenesis.

Methods: After obtaining informed consent, we collected the patient’s

medical history and carried out physical and laboratory examinations for

the NSLH2 proband and the family members. Genomic DNA was extracted

from the peripheral blood of all individuals. The coding regions including all

pathogenic exons, parts of introns, and promoters of genes were sequenced

by next-generation sequencing. Pathogenic mutations, which were detected

in the probands and their parents, were verified by Sanger sequencing.

Results: The clinical manifestations of NSLH2 included prominent forehead,

yellowish hair, slightly wide eye distance, sparse eyebrows, bilateral auricle

deformity, reduced muscle tension, and cardiac and visual abnormalities. The

proband carried a c.371A>G mutation in exon 3 of PPP1CB, which is a

missense mutation. This was a de novomutation as the parents of the proband

showed no mutation at this site.

Conclusion: In this study, we identified a novel mutation of PPP1CB, which

enriched the mutation spectrum of the PPP1CB gene and provided a basis for

the diagnosis of NSLH2.
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Introduction

Noonan syndrome-like disorder with loose anagen hair-2 (NSLH2, OMIM: 617506)

is an autosomal dominant inherited disorder. It is a class of RAS signaling pathway-

related syndromes (RASopathies) resulting from genetic variations in the RAS/MAPK

pathways (Mazzanti et al., 2003). The presently reported pathogenic genes are SHOC2

and PPP1CB. The SHOC2 gene mutation causes type 1 Noonan syndrome with
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loose anagen hair (NSLH1) and the PPP1CB gene mutation

causes NSLH2. Protein phosphatase 1 (PPP1), a major type 1

serine/threonine phosphatase, is widely expressed and regulates

a variety of cellular functions, including metabolism, cell

division, and muscle contraction (Barker et al., 1994). In

addition to certain characteristics of Noonan syndrome, NSLH2

is characterized by chronic hair loss due to easily pulled out and

thinning hair, slow growth, and pale color. Most NSLH2 patients

are short in stature owing to lack of growth hormone (Cordeddu

et al., 2009). This disease can also involve the skin and nervous,

cardiovascular, and skeletal systems.

In this study, we identified and analyzed the genetic

mutations of a pediatric patient with a clinical diagnosis of

“general developmental delay, visual dysplasia, ventricular septal

defect, nodal cause to be investigated” and his parents by using

total exome sequencing technology. The sequencing results

showed that the child carried the c.371A>G (exon 3) mutation

in PPP1CB. This study enriched the mutation spectrum of the

PPP1CB gene and provided a certain reference for the diagnosis

of NSLH.

Case presentation

Case

The probandwas a female patient aged 6months and 14 days

with general developmental delay, visual dysplasia, ventricular

septal defect, and nodding of unknown cause who was admitted

to our hospital in Yunnan Province in 2019. Clinical data of

the patient and her families were collected, and comprehensive

physical examination and intelligence assessment were carried

out. Computed tomography (CT) of the temporal bone and

magnetic resonance imaging (MRI) of the skull were performed.

This study was approved by the Medical Ethics Committee

of Kunming Children’s Hospital. The genetic diagnosis was

approved by the child’s family members, and informed consent

was signed.

Genetic testing methods

Peripheral blood of the patient and her family members

was collected to construct a DNA extraction. Tissue genomic

DNA was extracted using the Blood Genome Column Medium

Volume Extraction Kit (Convoy Century), following the kit

instructions. All exon sequences related to clinical diseases were

captured and hybridized to enrich the target region sequences.

Double-end sequencing with the aid of low depth whole genome

sequencing based on the Illumina technology sequencing

platform. The filtered sequences were aligned to the Human

Genome Reference Sequence (UCSC, HG19) of the NCBI

database using BWA software (http://bio-bwa.sourceforge.net/),

and any redundant data in the PCR process were removed. The

relevant information of single nucleotide polymorphism (SNP)

and insertion-deletion mutation (Indels) was analyzed using

GATK software. All SNPs and Indels were annotated byAnnovar

software. Mutant loci with a frequency of <0.05 were screened

out from the standard databases including the 1000 Genome

Project, Exome Variant Server, and Exec. SIFT. Polyphen-2

Mutation Taster and GERP++ software were used to predict

the pathogenicity and conservatism of missense mutations.

SPidex software was used to analyze the pathogenicity of shear

site changes. Sanger sequencing verified the second-generation

sequencingmutation sites. Mutation pathogenicity was analyzed

according to the ACMG guidelines. The relation of genotype to

phenotype was conducted.

Clinical data analysis

The patient was a girl aged 6 months and 14 days who was

admitted to our hospital on July 14, 2020, for “developmental

delay.” The baby was delivered by cesarean section owing to

uterine scarring at 38 weeks+6 of gestation, with a birth weight

of 3,100 grams. Her mother denied any history of abnormal

pregnancy or perinatal asphyxia and rescue; moreover, the

patient’s jaundice was not severe in the neonatal period. The

child’s psychomotor development was delayed since childhood,

and the stability of the head in the vertical plane was poor

when examined by the doctor. She could only turn over from

the supine position to the lateral position, and her hands could

not take objects actively. Her eyes followed the red ball <90◦,

and she was not good at following the sources of sound. She

often sucked her fingers. Her family members complained that

her facial expression was slightly tense when she changed from

the lying position to the sitting position without the back chair,

and occasionally exhibited double oblique vision. She was in

good spirits and sleeping well, but she had poor appetite and

indigestion often, milk flap in stool, and would often vomit milk

before the age of 6 months. After 6 months, her symptoms began

to ease. Family members reported that she exhibited frequent

nodding behavior, but no symptoms of epileptic seizure such

as mouth and face blue, hug shape, limb shaking, eyes staring,

foaming etc.

The patient’s elder sister was 3.5 years old, and her

development was consistent with age. Her parents were in good

health and were not closely related. There was no similar medical

history in her family.

Physical examination analysis

The patient showed stable vital signs and the head

circumference was 41 cm. The anterior fontanelle was flat and

soft with a size of about 0.5 × 0.5 cm. As shown in Figure 1,
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FIGURE 1

Head and facial features of the child at the age of 1 year. (A)

Wide eye spacing, sparse eyebrows, light color; (B) Loose hair,

sparse hair, light color; (C) abnormal auricle appearance; (D) dry

and eczema-prone skin.

she exhibited some unique head and facial features, including

prominent forehead, white skin, yellowish hair color, slightly

wider eye distance, scant eyebrows, light complexion, bilateral

auricle shape abnormity, Both pupils are equal in size and round,

and dry skin that was prone to eczema (Figure 1). There was no

desquamation, no light reflex, no congestion in the pharynx, no

resistance in the neck, and no obvious abnormality in the heart,

lung, and abdomen. Extremities did not exhibit the symptoms

of edema and cyanosis. The muscle volume of the extremities

was normal, but the muscle tone was reduced. The knee reflex

was present. Her hands are less flexible for active picking and

she has less movement in the midline position of her body.

Prone position could be assumed with elbow support, but the

patient could lean forward to sit independently only for some

time. Standing double lower limbs will support, but she could

not jump.

Auxiliary examination analysis

Blood biochemical indices, thyroid function, and vitamin

D level were normal in July 2020. The electroencephalogram

was also normal. Chromosomal karyotyping showed 46, XX.

Ultrasonography of the heart revealed ventricular septal defect

and pseudomonal tumor formation (rupture of about 2.5mm

and 1.8mm) (Figure 2A). Radiography of the hip joint showed

bilateral hip dysplasia (Figure 3). Brain MRI showed slightly

wider extracerebral space in the bilateral frontotemporal region;

no definite abnormality was found in the rest of the brain. The

results of auditory brain stem response were Transient Evoked

Otoacoustic Emission (TEOAE) in both ears. The auditory brain

stem response was as follows: The click waveform of 70 dBnHL

in both ears was well-differentiated, and the interval and latency

were normal. The response threshold was 20 dBnHL in the right

ear and 25 dBnHL in the left ear.

Gri�ths developmental assessment

Motor:score 3.8 points, developmental age 3 month,

developmental level percentile1–2.5%; Personal-society: score

3.4 points, developmental age 2–2.5m, developmental level

percentile <1%; Language: score 2.1 points, developmental

age 1m, developmental level percentile <1%. Hand-eye

coordination:score 2.4 points, developmental age 1.5–2m,

developmental level percentile <1%; Performance:score 2.7

points, developmental age 2.5m, developmental level percentile

<1%. These results indicate that the development of each

energy region was delay. Fundus examination revealed retinal

exudation around the right eye and no obvious abnormality in

the left eye. Fundus examination in August 2020 showed no

abnormality in either eye.

Follow-up: (i) The follow-up to October 1, 2020, 9 months of

age 27 days, children from 7.8 kg weight increased to 8.5 kg, head

circumference has no obvious change, will each hand holding

a toy, can sit alone 10 s, the light can be caught and beat 180◦,

rattle loss will be looking for, the reaction is a bit slow, call

names I will turn, slower reaction, will imitate poop-poop sound,

cookies from hello, like to play with a rattle, fine motor, chase,

chase before listening, language is improved. (ii) In the follow-

up to December 24, 2020, the child could sit independently

for 2–3min, pick things with both hands, and laugh when

communicating with others. Gross motor, fine motor, cognition,

language, and social interaction were better than before. (iii)

Follow-up was carried out until January 8, 2021. At that time, the

child was 1 year and 9 days old. The child could sit independently

for 7–8min and could turn over, but not crawl; Will take the

initiative, will hold their toys, model bell ringing, will tear paper,

not the thumb and forefinger pinch pills; Listen to the sound

will look for the sound source, will change hands; Made will

laugh aloud, will unconsciously shout “mom”, will lift surface

play peek-a-boo, can recognize a person, sometimes nod, spirit,

poor diet, prone to indigestion, defecate have milk disc, stool

stem node, to sleep, sometimes nod, no opening week and was

blue, no hug, no limb jitter, unique eye gaze, no saliva and so on.

Gross motor, fine motor, cognition, language, and social skills

showed progress compared to before. The follow-up to January

2021, her EEG was normal.

Frontiers in Behavioral Neuroscience 03 frontiersin.org

7374

https://doi.org/10.3389/fnbeh.2022.987259
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


He et al. 10.3389/fnbeh.2022.987259

FIGURE 2

Comparison of the results of two cardiac ultrasonographies of the child (A) ventricular septal defect and pseudomonal tumor formation (rupture

of about 2.5mm and 1.8mm) were found in July 2020; (B) Ventricular septal defect and pseudo membrane tumor formation (1.3mm rupture)

were found by heart color doppler ultrasound in January 2021.

Cardiac ultrasonography in January 2021 revealed

ventricular septal defect and pseudo membrane neoplasm

(1.3mm rupture) (Figure 2B). The GDF showed the

following results:

Exercise: total bare 7, developmental age 6.5–7m,

percentile 1–2.5%; Personal-society: total bare value 6.5,

developmental age 5–5.5m, percentile <1%; Language: total

bare 6.5, developmental age 6–6.5m, percentile 1–2.5%;

Hand-eye coordination: total bare 6.5, developmental age

6.5–7m, percentile 1–2.5%; and Performance: Total bare 6.5,

developmental age 6.5–7m, percentile 1–2.5%. The results of

her development evaluation indicate that the development of

each area is deficient, but the overall development level was

slightly improved. Evaluation of bone age indicated that her

bone age was equivalent to 2 years. Radiographs of the hip joint

showed that the bilateral acetabular fossa was slightly flat and

shallower, and the bilateral acetabular angle was enlarged.

Genetic test results

The patient had a novel heterozygous mutation in exon

3 of the coding region of PPP1CB (CHR2-29001861), and

the nucleotide 371 changed from A to G (C. 371A→ G)

(Figure 4A), resulting in the mutation of the amino acid at the

124th position from histidine to arginine (p.H124R). This is a

missense mutation and predicts a change of protein function.

Sanger sequencing verified that the child’s parents did not carry

the mutation at the site, which was a spontaneous mutation

(Figure 4B), according to the ACMG guidelines. The mutation

is classified as “class 2 - possibly pathogenic.”

The missense mutation c.371A>G was predicted to result

in a histidine to arginine substitution at codon 124. The

alignment of PPP1CB from different genera namely Homo, Pan,

Macaca, Canis, Bos, Mus, Rattus, Gallus, Danio, Drosophila,

and Anopheles is shown in Figure 5A. The three-dimensional

FIGURE 3

Radiographs of the child’s hip joint show slightly flat and shallow

bilateral acetabular fossa and enlarged bilateral acetabular angle.

structures of wild-type PPP1CB was simulated according to the

crystal structure (Figure 5B). The missense variant (p.H124R)

was predicted to perturb protein structure because of the

substitution of histidine by arginine. In this respect, our

prediction study revealed that the novel mutation possibly lead

to protein dysfunction (Figures 5C,D).

Discussion

Ras/mitogen-activated protein Kinase (RAS/MAPK) is

one of the most important signaling pathways involved

in the regulation of cell proliferation, survival, apoptosis,

differentiation, immune response, and nervous system function

(Zhang and Zeng, 2020). RAS signaling pathway-related

syndromes are a group of syndromes caused by germline

mutations in genes affecting the RAS mitogen-activated protein

kinase (MAPK) pathway (Schubbert et al., 2007; Matozaki

et al., 2009; Motta et al., 2020). RAS signaling pathway-related
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FIGURE 4

(A) Children with family figure for NSLH2 clinical phenotype. Her father (I-a) and mother (I-b) had normal clinical manifestations; (B) children

with children and parents Sanger sequencing diagram (II-a) for c. 371 A>G heterozygous mutations. Her father (I-a) and mother (I-b) the site are

for the wild type.

FIGURE 5

Conservation and 3D molecular model of PPP1CB mutations. (A) Protein alignment showing PPP1CB p.H124 occurred at evolutionarily

conserved amino acids (in red box) across 11 genera; (B) Wild type of PPP1CB; (C) Three-dimensional molecular models of wild-type protein at

site p.H124; (D) Abnormal structure of mutant-type protein.

syndromes are a group of diseases caused by gene mutations

in the RAS/MAPK pathway, including Noonan syndrome

(NS), Noonan-like syndrome with multiple lentigines, NSML),

NSLH, Capillary malformation-arteriovenous malformation

(CM-AVM), Costello syndrome (CS), Cardio-facio-cutaneous

syndrome (CFCS), neurofibromatosis type 1 (NF1), and
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TABLE 1 Basic information of the 17 cases of NSLH2 caused by PPP1CB gene mutation reported in literature.

SN Sex Nationality Base sequence Amino acid PMID

1 Female China c.146C>G p.Pro49Arg PMID: 32476286

2 Male China c.548A>C p.Glu183Ala PMID: 30236064

3 Male America c.146G>C p.Pro49Arg PMID: 27264673

4 Male America c.166G>C p.Ala56Pro PMID: 27264673

5 Female America c.146G>C p.Pro49Arg PMID: 27264673

6 Female America c.146G>C p.Pro49Arg PMID: 27264673

7 Male Brazil c.146G>C p.Pro49Arg PMID: 28211982

8 Male America c.146C>G p.Pro49Arg PMID: 27868344

9 Male America c.146C>G p.Pro49Arg PMID: 27681385

10 Female America c.146C>G p.Pro49Arg PMID: 27681385

11 Male America c.146C>G p.Pro49Arg PMID: 27681385

12 Male America c.146C>G p.Pro49Arg PMID: 27681385

13 Male America c.548A>C p.Glu183Ala PMID: 27681385

14 Male America c.548A>T p.Glu183Val PMID: 27681385

15 Male America c.754G>T p.Asp252Tyr PMID: 27681385

16 Male America c.820G>A p.Glu274Lys PMID: 27681385

17 Female America c.371A>G p.His124Arg This case

Legius syndrome (LS). The overall incidence of RAS signal-

associated syndromes in live births has been reported to

be as high as 1 in 1250-700 (Wright and Kerr, 2010). In

addition, the clinical manifestations of these diseases such as

cardiovascular abnormalities, skin abnormalities, special facial

features, neurological abnormalities, and varying degrees of

intellectual disability overlap to a certain extent. It is difficult

to diagnose these diseases only through clinical manifestations.

Currently, whole exome sequencing has played a role in

identifying the genetic etiology of RAS signaling pathway-

related syndromes (Gripp et al., 2016).

To date, 23 genes related to RAS signaling pathway-related

syndrome have been reported in literature; these are PTPN11,

SOS1, RAF1, NRAS, CBL, NF1, RASA1, HRAS, BRAF, MAP2K1,

MAP2K2, KRAS, SPRED1, SHOC2, RRAS, RIT1, RASA2, SOS2,

MAP3K8, SPRY1, MYST4, LZTR1, and A2ML1 (Schubbert et al.,

2007; Matozaki et al., 2009; Wright and Kerr, 2010; Gripp et al.,

2016; Umeki et al., 2018; Motta et al., 2020; Zhang and Zeng,

2020). Among them, 16 genes are related to Noonan syndrome

(Li et al., 2020), and two genes, namely SHOC2 and PPP1CB,

are related to Noonan syndrome with birth hair loosening

(Haverfield et al., 2018).

Protein phosphatase 1 (PPP1), a major type 1

serine/threonine phosphatase, is widely expressed and

regulates a variety of cellular functions including metabolism,

cell division, and muscle contraction (Barker et al., 1994).

PPP1 is a serine/threonine specific phosphatase that balances

serine/threonine kinases to regulate the activation of signaling

proteins such as mitogen-activated protein kinases in the

RAS/MAPK pathway. PPP1 is a holoenzyme composed of a

catalytic subunit (PPP1C) and a regulatory subunit (PPP1R).

PPP1 has three catalytic subunits (PPP1C), namely alpha

subunit (encoded by PPP1Ca), beta subunit (encoded by

PPP1CB), and gamma subunit (encoded by PPP1Cc), and

selective splicing within each site produces multiple PPP1

holoenzymes and leads to different functions. Differential

expression of the PPP1c subtype depends on cell type or tissue

or even cell location, but they have similar functional properties

in vitro. Many studies have demonstrated the multiple roles of

PPP1c subtype in the regulation of cell function. PPP1CA has

been widely studied for its role in the cell cycle and apoptosis

of immune cells. The PPP1CB subtype is muscle specific and

involved in glycogen metabolism and muscle contraction.

Recently, the role of PPP1CB in cardiomyocytes has also

been demonstrated: it is a myosin light chain phosphatase

responsible for transient Ca2+ increase and the increase of

cell shortening, and PPP1CC’s role in the regulation of mitosis

and metabolic glutamate receptor inactivation has recently

received attention (Dard et al., 2018; Degirmenci et al., 2020).

SHOC2 is a widely expressed protein that is rich in leucine

repeats, which interacts with the catalytic subunit of PPP1.

PPP1c plays an important role in the regulation of Ras /MAPK

pathway; moreover, it also forms a complex with SHOC2,

which is stimulated by MRAS and dephosphorylates RAFs

at a serine inhibition site, thereby activating the signaling

cascade. Although some studies have speculated that mutations

in PPP1CB may lead to the activation of MAPK through the

activation of RAF, further studies are needed to confirm this

conclusion, e.g., amino acid changes resulting from PPP1CB

mutation may result in enhanced substrate binding of the
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PP1/SHOC2 complex or prolonged activation after stimulation

(Young et al., 2018).

NSLH2 is also known as Mazzanti syndrome, and its

main clinical features are loose hair, relative giant, growth

hormone deficiency, and low intelligence (Li et al., 2020).

Clinical reports are based on this syndrome’s unique hair

manifestations, combined with the findings of growth hormone

deficiency and other typical Noonan-syndrome features. Loose

growing hair is characterized by easily pluckable, sparse, thin,

slow-growing, and irregularly textured hair, which is caused

by abnormal hair bulbs lacking internal and external root

sheaths. Most patients with NSLH2 have short stature due

to growth hormone deficiency, but our patient has not yet

shown this clinical symptom. Special facial features include big

head; prominent forehead; wide eye spacing; drooping eyelids;

flappy and low-set ears with oval helices often accompanied

by thickening; short nose with a low bridge; short neck; and

neck webbing. The facial features of patients of different ages

are different, which are more prominent in infancy and early

and middle childhood; these characteristic facial features tend

to become increasingly untypical with age. The disease can

also involve other ectodermal tissue such as the skin, and

some patients have eczema, ichthyosis, and hair keratosis. Some

other patients have congenital heart disease. Cardiovascular

system involvement may be manifested as loss of the atrial or

ventricular septum, mitral/tricuspid valve dysplasia, pulmonary

artery stenosis, and/or cardiac hypertrophy. Some patients may

also show abnormal skeletal development such as shield chest,

chicken chest, funnel chest, and elbow valgus. Central nervous

system involvement may be manifested as intellectual disability,

often accompanied by attention deficit/hyperactivity disorder

(Zarbo and Shwayder, 2018). Feeding difficulties are common

in infants and young children.

At present, 16 cases of PPP1CB gene mutation type 2

Noonan-like syndrome associated with birth hair loosening

have been reported worldwide. Of these, two cases are reported

in China (Zhou et al., 2020); ours is the third reported case

in China. As shown in Table 1, there are seven types of

gene mutations reported in 16 patients (Matozaki et al., 2009;

Zambrano et al., 2017; Lin et al., 2018; Zhou et al., 2020;

Maruwaka, 2022; 21). c.146C>G (p.Pro49Arg) is the hot spot of

PPP1CB gene mutations (Zambrano et al., 2017). The mutation

in this case was c.371A>G (p.His124Arg), which is a novel

mutation to the best of our knowledge (Table 1). The main

clinical manifestation of the 17 NSLH2 patients reported thus

far (including our patient) includes unusual facial features, short

stature, chest deformity, and congenital heart disease. Among

them, 76.5% patients had short stature and low ear position;

70% patients had loose hair; 58% had forehead protrusion; and

47% had heart disease, wide-set eyes, and feeding difficulties

(Figure 6).

The diagnosis of NSLH2 was confirmed by combining the

results of genetic testing. Our patient had hip dysplasia, which

FIGURE 6

The type of NSLH2 clinical manifestations in 17 cases caused by

PPP1CB gene mutation.

was not found in previous reports. Further, most patients with

NSLH2 had low ear position, but our patient did not, rather only

bilateral auricle shape abnormality. Until now, no symptoms

such as short stature, slow growth, and thoracic deformity

have been found in the patient. Cerebellar tonsil hernia, Chiari

malformation, or changes in corpus callosum have not been seen

by cranial NMR. This may be because the patient is still young

and has not yet shown other possible symptoms of the disease;

hence, continued follow-up and preventive treatment for some

of the predicted dysfunction may be required.

The diagnosis of NSLH2 is based on the patient’s history,

physical examination, genetic testing, and other auxiliary

tests. After the definite diagnosis of NSLH2, the evaluation

of cardiovascular system, endocrine system, skeletal system,

digestive system, nerve, vision, skin, hearing and growth and

development should be improved (Li et al., 2020). At present,

there is no specific treatment for NSLH2, and symptomatic

treatment is still the first choice of therapy. Cardiovascular

system involvement may manifest as atrial or ventricular

septal defects, mitral/tricuspid valve dysplasia, pulmonary artery

stenosis, and cardiac hypertrophy. Regular follow-up, drug

therapy, interventional therapy, or surgical operation should be

selected according to the condition and severity (Maruwaka,

2022). Because most NSLH2 patients have problems such

as overall stunting and short stature, the nutritional status

and feeding conditions should be followed-up long-term, and

regular nutritional assessments and timely interventions should

be carried out. In 2007, the guidelines of the US Food and Drug

Administration and the Pediatric Endocrinology, Genetics, and

Metabolism Group of the Chinese Medical Association used

recombinant human growth hormone (rhGH) for the treatment
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of short stature caused by Noonan syndrome (Degirmenci et al.,

2020). In 2020, a study used rhGH to treat a patient with

NSLH2 type 2 caused by PPP1CB mutation, and the results

showed that the linear growth of the patient had improved

(Zhou et al., 2020).

Among the 16 patients reported, one patient developed

severe intractable epileptic convulsions due to a mutation in

the PPP1CB gene C.548A>C (P.Glu183Ala). The patient’s

seizures were barely controlled by conventional antiepileptic

drugs, but were eventually relatively controlled by a ketogenic

diet. It is suggested that NSLH2 may cause RAS/MAPK-related

epilepsy, and ketogenic diet may have a certain effect on

PPP1CB-associated Noonan syndrome manifested as infantile

spasm (Lin et al., 2018). The family members of the patient in

this study complained that the patient had frequent nodding,

and regular follow-up was needed to recheck the video

electroencephalogram to exclude epilepsy. In future follow-

up, attention should be paid to the electroencephalogram

results, to ensure early detection, early diagnosis, and

early treatment.

At present, there are no long-term follow-up reports of

patients with type 2 Noonan syndrome with hair loosening.

Through regular follow-up, we found that active comprehensive

rehabilitation therapy could improve the patient’s motor,

language, social, and cognitive skills. Comprehensive

rehabilitation training including physical therapy, occupational

therapy, speech therapy, sensory integration training, and

special education can improve the level of intellectual function,

social life ability, and self-care ability of children, and reduce

the degree of treatment barriers and limited participation.

Although no serious complications have occurred in our patient

up to the time of writing, it is still necessary to follow-up the

organ function of each system and carry out Multidisciplinary

teamwork of the children are normal, and the risk of rebearing

children with NSLH2 is small. However, we still need to be alert

regarding reproductive chimerism. Genotypes and phenotypes

caused by RASopathies are better understood now than before

and hence, it is relatively easy for families for obtain a prenatal

diagnosis. However, the new variation of prenatal diagnosis

still has certain limitations, thus, clinicians should increase

alertness, carefully check when prenatal diagnosis fetal face,

once found, wide eyes, short nose forehead the special features

such as, low set ears, should be on high alert, genetic tests in a

timely manner.

In conclusion, we report a novel variant c.371A>G in

exon 3 of the PPP1CB gene in a young pediatric patient with

NSLH2. This study enriched the gene mutation spectrum of

PPP1CB, and provided some reference for the diagnosis of this

syndrome. To our knowledge, this is the first Chinese study

to report this novel mutation in PPP1CB in NSLH2; therefore,

further functional studies are needed to confirm the underlying

pathogenic mechanism.
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Guangzhou, China

Transcranial direct current stimulation (tDCS) has shown a promising prospect

in improving function and spasticity in school-aged children with cerebral

palsy, but little is known in preschool children. The aim of this study was

to explore the safety and e�ects of tDCS on hand function in preschool

children (aged 3–6 years) with hemiplegic cerebral palsy (HCP). We designed

a crossover, single-blind, sham-controlled study in 30 preschool children with

HCP, who were recruited to receive one session of sham and one session of

active anodal tDCS (1.5mA, 20min) on the primarymotor cortex of the a�ected

hemisphere, with a 24-h interval between the two sessions. Questionnaire was

completed by each participant and their attendants immediately, 90min, and

24h after each session to monitor common adverse events of tDCS, such

as skin irritation, skin erythema, burning sensation, headache, dizziness, etc.

Box and Block Test, Selective Control of the Upper Extremity Scale, Modified

Ashworth Scale, and Melbourne Assessment 2 were conducted at baseline,

immediately, and 90min after each session. No severe adverse event occurred

during the study and only a few of them felt transient and slight discomfort.

Results also showed that all participants performed better at Box and Block Test

of the hemiplegic hand immediately after a single anodal tDCS (P < 0.05) and

this improvement lasted at least 90min and more than 24h. However, there

was no significant improvement in Selective Control of the Upper Extremity

Scale of both hands, Box and Block Test of the non-hemiplegic hand, Modified

Ashworth Scale, and Melbourne Assessment 2 of the hemiplegic upper limb

(P > 0.05). Shortly, this study supported the safety and e�ects of a single

anodal tDCS on improving the manual dexterity of the hemiplegic hand for

preschool children with HCP. Further researches with larger samples about

the optimal dose and treatment cycle of tDCS for preschool children with
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HCP are warranted. This study gained the approval of ethics committee of the

organization and was registered at chictr.org (ChiCTR2000031141).

KEYWORDS

hemiplegic cerebral palsy, transcranial direct current stimulation, safety, hand

function, preschool children

Introduction

Cerebral palsy is characterized as movement and

posture disorders with complicated etiology and stable

prevalence of 2–3.5 cases per 1,000 live births (Colver et al.,

2014; Li et al., 2022). Hemiplegic cerebral palsy (HCP)

is the most common type of cerebral palsy, accounting

for 44% (Zelnik et al., 2016). Hemiplegic cerebral palsy

affects one side of the body and the upper limb is more

involved, which causes unimanual dysfunction, impaired

dexterity, and poor bimanual coordination, exerting

serious negative effects on daily activities throughout

their lifetime.

Several types of interventions have been successfully

employed to improve hand function for children with HCP

in recent years, such as constraint-induced movement therapy

and bimanual intensive therapy, which aim at improving motor

function by specific upper limb tasks and may facilitate the

brain plasticity in a way from the periphery to the center

(Gordon et al., 2011; Novak et al., 2020). Meanwhile, the effect

was still unsatisfactory for some children and there were a

few new techniques, such as transcranial magnetic stimulation

and transcranial direct current stimulation (tDCS), combined

with intensive therapy to enhance the effect (Duarte Nde et al.,

2014; Wu et al., 2022). Transcranial direct current stimulation, a

simple and portable non-invasive brain stimulation which works

by means of delivering low-level direct current to facilitate or

inhibit cortical spontaneous neuronal activity (DaSilva et al.,

2011; Brunoni et al., 2012; Marquez et al., 2015), has attracted

more and more attention in healthy humans and clinical

populations (Shin et al., 2015; Lefaucheur et al., 2017; O’Leary

et al., 2021). In healthy volunteers, interesting findings that tDCS

could safely enhance memory, emotional regulation, language,

attention, and learning processes have been reported (Shin et al.,

2015; Ciechanski and Kirton, 2017). In clinical studies, previous

findings demonstrated that anodal tDCS was effective for limb-

kinetic apraxia in Parkinson’s disease, for motor function in

stroke patients, for control functions in children with attention

deficit/hyperactivity disorder and for symptom reduction in

autism spectrum disorder (Kang et al., 2016; Osorio and

Brunoni, 2019; Nejati et al., 2020; Park et al., 2022).

For children with HCP, the majority of tDCS researches

focused on improving spasticity and lower limb function and

only a few researches investigated the tDCS effects on hand

function in HCP (Fleming et al., 2018; O’Leary et al., 2021).

Most studies showed the improvement in spasticity, gait velocity

and cadence, body sway velocity and balance after single or

continuous anodal tDCS combinedwith other therapy (Collange

Grecco et al., 2015; Auvichayapat et al., 2017; Grecco et al., 2017).

But two studies showed no significant effect in hand function

after serial sessions of cathodal tDCS over the contralesional

primary motor cortex (Kirton et al., 2017; Gillick et al.,

2018). Meanwhile, anodal tDCS, usually applied separately or

combined with other traditional therapies, unilaterally over the

primary motor cortex (M1) of the affected or more affected

hemisphere, safely improved hand function for school-aged

children with HCP without serious adverse event reported

(Auvichayapat et al., 2017; Moura et al., 2017; Inguaggiato et al.,

2019). All of the above researches were primarily conducted in

school-aged children and young adults with HCP and there was

a paucity of researches about the safety and effects of tDCS on

preschool children (aged 3–6 years old). However, preschool

children are in a developing stage of cortical excitability and

corticospinal excitability (Säisänen et al., 2018). Given the

potential mechanism of tDCS, this period might be more critical

for its application and rehabilitation of hand function.

The evidence about optimal tDCS current and duration

for HCP is still insufficient but some studies have shown that

the safety and effects of tDCS could be influenced by density

(Krishnan et al., 2015). Current intensities in most studies about

tDCS in pediatric populations have ranged from 0.3 to 2.0mA

and the most frequently used intensity in HCP was 1mA with a

duration of 20min (Krishnan et al., 2015; O’Leary et al., 2021).

Notably, relevant researches have indicated that low current

(0.7mA) was too weak to produce measurable corticospinal

excitability changes and behavioral effects for individuals with

HCP (Gillick et al., 2018; Nemanich et al., 2019). Another pilot

study first explored the safety and effects of anodal tDCS at

1.5mA for 20min in school-aged children with HCP, whose

parameters were on the basis of evidence from stroke in adults

(Inguaggiato et al., 2019). The safety and effects of these tDCS

parameters (1.5mA, 20min) remain unknown in preschool

children with HCP.

To fill this gap, we designed this study to investigate the

safety and effects of a single anodal tDCS (1.5mA, 20min) over

the M1 on hand function in preschool children with HCP.
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Methods

Our study was a crossover, single-blind, sham controlled

trial, which gained the approval of ethics committee

of the organization and was registered at chictr.org

(ChiCTR2000031141). All legal guardians of participants

signed the informed consent before enrollment.

Participants

Thirty participants were recruited in the rehabilitation

department of Guangzhou Women and Children’s Medical

Center from September 2019 to February 2020. We screened

children (3–6 years old) diagnosed as HCP according to

published criteria (Rosenbaum et al., 2007) and categorized as

Manual Ability Classification System or Mini-Manual Ability

Classification System levels I to II. The exclusion criteria

were as follows: (i) other severe illness such as congenital

heart disease, uncontrolled epilepsy, leukemia, severe sensory

disturbance, and visual problem; (ii) contraindications for tDCS

including children with metal or electronic implants, with

local skin injury or inflammation, with significantly increased

intracranial pressure, with hyperalgesia in the stimulated area,

with convulsions or uncontrolled seizure and those who suffered

from serious adverse events after tDCS (Antal et al., 2017); (iii)

previous botulinum toxin treatment over the past 6 months

or preparation for receiving botulinum toxin treatment during

trial; (iv) previous surgery of the impaired upper limb. Thirty

children completed the entire study. The flow chart of this study

was shown in Figure 1.

Design

All recruited children were randomized into two groups in

a 1:1 ratio using a random number table produced by Statistical

Product and Service Solutions for Windows (release 26.0, SPSS),

and each group received a single session of active anodal tDCS

or a single sham tDCS over M1 first and the stimulation

was switched after 24 h (crossover phase). Participants and

guardians were blind to tDCS assignment. Safety questionnaire

was completed immediately (T1), 90min (T2), and 24 h after

tDCS (T3). Assessments of hand function were performed by

two independent and occupational therapists at baseline (T0),

immediately (T1), and 90min (T2) after each session. The device

was produced by Wuhan Yimai Medical Technology Co., Ltd.

and the model was EM8060.

Interventions

Two 5.5 × 4.0 cm electrodes were placed on the scalp

with the anode positioned in the region over the M1 of the

affected or more affected hemisphere according to the 10–

20 electroencephalogram system, with the cathode electrode

placed over the contralateral supraorbital area. The rationale of

unilateral stimulation was based on a concept that stimulating

the injured brain could enhance motor learning. During active

anodal tDCS, a constant current of 1.5mA was applied for

20min (with 30 s for ramping up at the beginning and down

at the end). The same stimulation protocol was applied in

sham tDCS but the current lasted only 30 s. This protocol was

proposed by previous tDCS investigation on HCP (Inguaggiato

et al., 2019).

Outcome assessments

Safety

All participants and their attendants completed an adverse

events questionnaire at T1, T2, T3. The questionnaire consisted

of eight commonly-reported adverse events (i.e., dizziness,

headache, scalp pain, burning sensation, tingling, drowsiness,

itching, skin redness) as well as an “other” category that allowed

them to describe uncovered experiences/sensations (Brunoni

et al., 2011; Krishnan et al., 2015; Reckow et al., 2018). The

intensity of adverse events was rated verbally by one of the

occupational therapists (i.e., 0, absent; 1, mild; 2, moderate;

3, severe).

Hand function

The gross motor function of all children was measured by

Gross Motor Function Classification System (GMFCS) (Paulson

and Vargus-Adams, 2017). The manual abilities were classified

by the Manual Ability Classification System (for children over

4 years old) or Mini-Manual Ability Classification System (for

children aged 3–4 years old) (Eliasson et al., 2017; Paulson and

Vargus-Adams, 2017).

All assessments of hand function were based on the

dimensions of international classification of functioning,

disability, and health (ICF) (Cieza et al., 2019; Madden and

Bundy, 2019) and conducted at T0, T1, and T2. Box and Block

Test was used to measure the gross manual dexterity for adults

with upper limb paresis and also to determine therapeutic

efficiency for children with HCP in clinical rehabilitation, which

features advantages of simplicity of operator, reliability, and

repeatable measurement (Platz et al., 2005; Jongbloed-Pereboom

et al., 2013; Araneda et al., 2019). Melbourne Assessment 2

mainly assessed the movement quality of the upper limb for

children with neurological impairment aged 2 years and 6

months to 15 years (Randall et al., 2012, 2014; Elvrum et al.,

2016). Selective Control of the Upper Extremity Scale was a

method that could be used to evaluate the selective motor

control of the upper extremity in children aged 3–18 years
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FIGURE 1

Consort diagram and study flow.

with cerebral palsy, whose content validity, reliability, construct

validity, intra-, and interrater reliability have been determined

(Wagner et al., 2016; Yildiz et al., 2020). The Modified Ashworth

Scale was the most prevalent tool to measure the tone of specific

muscles in children with cerebral palsy (Meseguer-Henarejos

et al., 2018).

Statistical analysis

SPSS 26.0 (IBM, Armonk, NewYork, USA) was used to carry

out statistical analysis. We adopted repeated-measures analysis

of variance [tDCS (active vs. sham) or Day (Day 1 vs. Day 2) ×

time] for all assessments of hand function. Follow-up one-way

repeated-measures ANOVAwas used for significant interactions

and single effects for time, whereas one-way between-factor

ANOVA was used for tDCS and day and corrected for multiple

comparisons (Bonferroni).

The normality of data was examined by the Shapiro-Wilk

test. Moreover, before running the analysis, the sphericity

test for repeated measures analysis of variance was assessed

by Mauchly’s test; whenever assumptions were not met,

Greenhouse-Geisser correction was used for violations

of sphericity.

Results

In total, 15 boys and 15 girls were recruited into this trial

(mean age ± SD: 47.53 ± 11.23 months, range: 36–72 months).

The ratio of damaged hemispheres on the left and right was

13:17. For MACS, 28 and 2 children were at level I and level II,
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TABLE 1 Characteristics of the participants.

No. tDCS order Gender Age (months) HCP side MACS GMFCS High risk factors MRI

1 AS F 38 L I I Premature birth White matter maldevelopment

2 AS F 37 L I I NA NA

3 AS M 44 L I I NA NA

4 AS F 70 R I I Premature birth NA

5 AS F 42 R I II Premature birth NA

6 AS F 40 R I II Premature birth NA

7 AS M 46 L I I Premature birth Left ventricle semicovoid patch

8 AS M 63 L I I NA NA

9 AS F 68 R I I NA White matter maldevelopment

10 AS F 38 L I I Jaundice, hypoxia NA

11 AS M 51 L I I Premature birth NA

12 AS M 53 R I I NA NA

13 AS M 44 L I I NA NA

14 AS M 36 R II I Premature birth NA

15 AS M 43 R I I Hypoxia Left brain patchy lesion

16 SA F 41 L I I Premature birth NA

17 SA F 45 R I I Meconium aspiration NA

18 SA M 40 R I I NA NA

19 SA M 43 R I I NA NA

20 SA F 61 R I I NA NA

21 SA M 40 L I II Cerebral hemorrhage Left ventricular dilation

22 SA F 67 R I I NA NA

23 SA M 49 L I I NA NA

24 SA F 41 R I I NA NA

25 SA M 38 R II II NA NA

26 SA M 50 R I I Hypoxia NA

27 SA F 42 L I I NA White matter maldevelopment

28 SA M 41 L I I NA NA

29 SA F 72 R I I NA NA

30 SA F 41 R I I NA Left ventricular dilation

HCP, hemiplegic cerebral palsy; No., number; M, male; F, female; A, active; S, sham; R, right; L, left; MACS, manual ability classification system; GMFCS, Gross Motor Function

Classification System; NA, not available.

respectively. For GMFCS, 26 and 4 children were at level I and

level II, respectively. The characteristics of all participants were

shown in Table 1.

Safety

No severe adverse event occurred among the 30 participants

and only a few of them felt transient and slight discomfort

(tingling, itching, burning sensation, dizziness, etc.). With

respect to the self-report questionnaire assessing tDCS adverse

events, as shown in Table 2, only a limited number of

participants reported transient and slight discomfort after both

active (the proportion of dizziness, burning sensation, tingling,

and itching were 1/30, 1/30, 2/30, and 1/30, respectively) and

sham stimulation (the proportion of tingling is 2/30). All adverse

events were mild.

Improvement of unimanual function

The affected hand of all participants performed better after

accepting active tDCS at T1 and T2 compared to baseline in Box

and Block Test. There was significant interaction of “tDCS ×

time” (P < 0.01) and no significant interaction of “Day × time”

(P = 0.465). There were significant simple effect for tDCS (P <

0.01) and time (P < 0.01), whereas no significant main effect

for day (P = 0.229). Follow-up one-way repeated-measures

ANOVA was used for significant interactions and single effects

for time and post-hoc pairwise comparison revealed significantly
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TABLE 2 Adverse events of participants during the study.

T1 T2 T3

Adverse events No. (Mean intensity) No. (Mean intensity) No. (Mean intensity)

Active Sham Active Sham Active Sham

Dizziness 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Headache 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Scalp pain 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Burning sensation 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Tingling 2 (1) 2 (1) 0 (0) 0 (0) 0 (0) 0 (0)

Drowsiness 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Itching 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Skin redness 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Other Absent Absent Absent Absent Absent Absent

T1, immediately after the end of two transcranial direct current stimulation sessions (tDCS); T2, 90min after two tDCS sessions; T3, 24 h after two tDCS sessions; No., number; Mean

intensity, mean intensity range of the events (0, absent; 1, mild; 2, moderate; 3, severe).

more at T1 (P < 0.01) and T2 (P < 0.01) compared to baseline

after active tDCS and no main effect of time after sham tDCS

(P = 0.114; Figure 2A). We also separately analyzed the Box

and Block Test data of each day, the outcome showed that the

affected hand performed better only after active tDCS at both

Day 1 and Day 2 (T1Day1 vs. T0Day1, P < 0.01 and T2Day1 vs.

T0Day1, P < 0.01; T1Day2 vs. T0Day2, P < 0.01; and T2Day2 vs.

T0Day2, P < 0.01; Figures 3A,C).

In addition, we applied a pair T-test to assess the baseline

of Box and Block Test of the affected hand for the group who

received active tDCS first and significant difference was found

(T0Day1 = 19.93 vs. T0Day2 = 21.00, P = 0.02), while there

was no significant difference between T0Day1 and T0Day2 in the

group who received sham tDCS first (P = 0.262).

As for the unaffected hand, there was no significant

interaction of “tDCS × time” (P = 0.098) and no significant

interaction of “day × time” (P = 0.244) in Box and Block Test

between active and sham tDCS. There was no significant main

effect of time (P = 0.091), Day (P = 0.37), and tDCS (P =

0.058) (Figure 2A and Table 3). The separate analysis of the Box

and Block Test data showed no significant difference in T1 and

T2 compared baseline in both Day 1 and Day 2 (all P > 0.05,

Figures 3B,D). All children showed no difference in Selective

Control of the Upper Extremity Scale of both hands after active

or sham tDCS (Figure 2B).

A�ected upper extremity performance

There was no difference for the four sub-scales ofMelbourne

Assessment 2 (range of motion, level of grasp and release,

accuracy, and fluency; Figure 2C). As for muscular tone, nearly

all children showed no difference in the outcome of Modified

Ashworth Scale (biceps brachii, forearm pronator, flexor carpi

radialis, adductor pollicis, and digiti flexor; Figure 2D).

Discussion

This study aimed to investigate the safety as well as the

immediate and short-term effects of a single anodal tDCS

(1.5mA) over M1 on the upper limb function for preschool

children. No serious adverse event occurred during this study.

The outcomes also showed that a single anodal tDCS (1.5mA,

20min) over the affected M1 improved dexterity of the

affected hand for preschool children with HCP. These results

complemented the existing evidence on the safety and effects of

tDCS (1.5mA, 20min) in preschool children with HCP.

Consistent with previous studies (Ciechanski and Kirton,

2017; Gillick et al., 2018), no serious adverse event occurred

among all children during and after our experiment. Only a

few of participants felt transient and slight discomfort (tingling,

itching, burning sensation, dizziness, etc.), which occurred in

both active tDCS stimulation and sham tDCS stimulation. And

these adverse effects also occurred in similar investigations with

higher incidence (Mutlu et al., 2008; Inguaggiato et al., 2019).

The recorded lower frequency of adverse events in our study

might attribute to the parameters of tDCS and the poorer ability

to describe uncomfortable feelings for preschool children.When

adverse events occurred, we would stop the intervention as

soon as possible and activated code blue if needed and we had

a professional medical team to track every participant all the

way. Our study provided evidence for safety of a single anodal

tDCS over M1 at used parameter (1.5mA, 20min) for preschool

children with HCP.

A previous study indicated that younger children obtained

lower scores than older children with HCP in Box and Block

Test which means poorer hand dexterity (Jongbloed-Pereboom
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FIGURE 2

Changes of hand function in the two transcranial direct current stimulation (tDCS) sessions at T0, T1, T2. (A) Box and Block Test scores of both

hands. (B) Selective Control of the Upper Extremity Scale scores of both hands. (C) Melbourne Assessment 2 scores of the hemiplegic hand. (D)

Modified Ashworth Scale scores of the hemiplegic hand. T0, baseline; T1, immediately after two tDCS sessions; T2, 90min after two tDCS

sessions. *Significant di�erence compared to baseline (P < 0.05).

et al., 2013). According to a research about the reliability and

responsiveness of the Box and Block Test for children with

cerebral palsy, the clinical significant difference for the Box and

Block Test was 1.9 (blocks) on the more affected hand (Araneda

et al., 2019). The results of this study showed a change in the Box

and Block Test of the affected hand at T1 (3.73 blocks) and T2

(3.14 blocks) compared to T0, which indicated that preschool

children with HCP performed better in Box and Block Test of

the affected hand after a single anodal tDCS (1.5mA, 20min)

over the affected M1; improvement was found immediately

after stimulation and lasted for at least 90min. Meanwhile, the

significant difference of T0Day1 and T0Day2 for the group who

received a single active tDCS firstly indicated that this positive

effect might last over 24 h, which differed from a similar study

(Inguaggiato et al., 2019). According to a study about the impact

of age on tDCS (Saldanha et al., 2020), we considered that the

difference of age in the focused population (preschool children

vs. individuals aged 10–28 years old) might account for this

inconsistent result. The plasticity-dependent effects induced by

tDCS indicated that the brain of preschool children featured

with developing cortical and corticospinal excitability might

benefit more from this tool than school-aged children and

adult individuals with HCP. In short, this improvement was

temporary rather than long-term, which was consistent with

previous study. For example, a single session of anodal tDCS

over the primary motor cortex of the hemisphere ipsilateral

to the brain lesion led to momentary motor improvements in

both upper limbs of the children with spastic hemiparetic CP

in a study (Moura et al., 2017). Another study also indicated

that a single anodal tDCS temporarily improved hand dexterity

skills for patients in the subacute phase of stroke (Fusco et al.,

2014). Contrast to the hemiplegic hand, the dexterity of non-

hemiplegic one was not weaken by stimulation, which was in line

with a previous study (Inguaggiato et al., 2019). Although there
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FIGURE 3

(A) The Box and Block Test of the a�ected hand in Day 1; (B) The Box and Block Test of the una�ected hand in Day 1; (C) The Box and Block Test

of the a�ected hand in Day 2; (D) The Box and Block Test of the una�ected hand in Day 2; *significant di�erence compared to baseline (P <

0.05).

was no significant difference, we noticed that some participants

got higher scores at the Box and Block Test of the non-

hemiplegic hand after active tDCS rather than sham tDCS.

Because of the interhemispheric competition and inhibition,

the loss of inhibition over the unaffected hemisphere from the

affected hemisphere caused the increased excitability of the

unaffected hemisphere for individuals with HCP. Based on that

anodal tDCS might improve hand dexterity by upregulating the

excitability of the lesioned motor cortex, the different pattern of

interhemispheric competition, and inhibition might contribute

to the outcome of non-paretic hand. According to previous

study, greater hemisphere excitation was associated with greater

gains in motor function (Cunningham et al., 2015).

With regard to Melbourne Assessment 2, Selective Control

of the Upper Extremity Scale, Modified Ashworth Scale, no

positive effect emerged after a single anodal tDCS, which

might be due to the following reasons. For one thing,

the Box and Block Test was to test the hand dexterity

featuring advantages of simplicity of operator, high reliability,

and responsiveness (Araneda et al., 2019). The Melbourne

Assessment 2 tested the affected hand function and motor

quality and the Selective Control of the Upper Extremity Scale

tested selective motor control of the upper extremity but their

responsiveness to determine whether it could assess therapy-

induced improvements remains to be determined (Elvrum

et al., 2016; Lieber et al., 2021). The Modified Ashworth Scale

mainly tested the muscle tone. The Box and Block Test was

sensitive to changes produced by a single anodal tDCS in

hands due to its high reliability and responsiveness. Conversely,

the Melbourne Assessment 2 and the Selective Control of the

Upper Extremity Scale might be less sensitive. Secondly, for the

Modified Ashworth Scale, a single anodal tDCS might produce

no effect on muscle tone, which was consistent with previous

study (Comino-Suárez et al., 2021).

Limitations of the present study were that the washout

period of 24 h was not long, which might lead to significant
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TABLE 3 Comparison of Box and Block Test between the two treatment groups.

Assessments Intervention point Active tDCS (n = 30) Sham tDCS (n = 30) P-value

Box and Block Test (affected hand) T0 20.93 (5.70) 21.45 (5.57) 0.095

T1 24.66 (5.73) 21.76 (5.49) <0.001

T2 24.07 (5.93) 21.34 (5.52) <0.001

Box and Block Test (unaffected hand) T0 33.10 (8.01) 32.63 (7.60) 0.098*

T1 34.20 (7.79) 33.10 (7.41)

T2 33.70 (7.53) 32.80 (7.57)

P-value represents between-group differences. Data shown are means (SD). tDCS, transcrainal direct current stimulation; T0, baseline; T1, immediately after the end of two tDCS sessions;

T2, 90min after the two tDCS sessions. *Interaction “tDCS× time” showed no significant difference in this index.

difference on T0Day1 and T0Day2 for the group who received

active tDCS first. Also, this study was not double blind. It was

indicated that the wash-out time should be longer in future

similar study. At the same time, relevant clinical information

on brain lesions and injuries for the part of participants was

incomplete. Lastly, according to the available MRI information,

there were variety of findings related to white matter injuries or

malformations, but the anodal tDCS only applied to presumed

M1, which might neglect the relationship of lesions/injuries and

stimulation area.

Studies with larger samples about the optimal dose, duration,

and treatment cycle of tDCS for preschool children with HCP

are warranted. On the other hand, there are some views that the

timing, severity of brain lesion and the individual corticospinal

tracts projections in HCPmight exert influence on tDCS efficacy

(Gillick et al., 2018). Further researches are needed to focus on

these points, thus providing more help for applying tDCS into

neurodevelopmental rehabilitation in pediatric population.

Conclusion

A single application of anodal tDCS (1.5mA, 20min) over

M1 safely and tolerably improved the affected hand dexterity for

preschool children with HCP.
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Background: Most people with autism spectrum disorder (ASD) present at

least one form of challenging behavior (CB), causing reduced life quality, social

interactions, and community-based service inclusion.

Objectives: The current study had two objectives: (1) to assess the differences

in physiological reaction to stressful stimuli between adults with and without

high-functioning ASD; (2) to develop a system able to predict the incoming

occurrence of a challenging behaviors (CBs) in real time and inform the

caregiver that a CB is about to occur; (3) to evaluate the acceptability and

usefulness of the developed system for users with ASD and their caregivers.

Methods: Comparison between physiological parameters will be conducted

by enrolling two groups of 20 participants with and without ASD monitored

while watching a relaxing and disturbing video. To understand the variations

of the parameters that occur before the CB takes place, 10 participants with

ASD who have aggressive or disruptive CBs will be monitored for 7 days.

Then, an ML algorithm capable of predicting immediate CB occurrence

based on physiological parameter variations is about to be developed. After

developing the application-based algorithm, an efficient proof of concept

(POC) will be carried out on one participant with ASD and CB. A focus group,

including health professionals, will test the POC to identify the strengths and

weaknesses of the developed system.

Results: Higher stress level is anticipated in the group of people with ASD

looking at the disturbing video than in the typically developed peers. From the
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obtained data, the developed algorithm is used to predict CBs that are about

to occur in the upcoming 1 min. A high level of satisfaction with the proposed

technology and useful consideration for further developments are expected

to emerge from the focus group.

Clinical trial registration: [https://clinicaltrials.gov/], identifier [NCT05

340608].

KEYWORDS

autism spectrum disorder, adult, problem behavior, wearable electronic devices,
accident prevention, recurrent neural network

Introduction

Autism spectrum disorder (ASD) refers to a heterogeneous
neurodevelopmental condition with symptoms that range from
mild to severe. ASD is generally detected in childhood and
is lifelong. It affects between 1 and 2% of the population
(Baron-Cohen et al., 2009) and is characterized by social
communication deficits, repetitive and unusual sensory-motor
behaviors, and restricted and specific interests (American
Psychiatric Association, 2013). The literature indicates that
about 55% of the people diagnosed with ASD also exhibit
intellectual disabilities (Knapp et al., 2009), and about 25% are
non or minimally verbal (Arnold and Reed, 2016).

Challenging behaviors (CBs) (Murphy et al., 2005; Prizant
and Wetherby, 2005; Reese et al., 2005; Baker et al., 2008;
Chiang, 2008; O’Donnell et al., 2012) refer to a broad range
of unusual behaviors expressed by individuals with ASD.
Such behaviors might include aggression, destructiveness, self-
injurious, and a range of other behaviors, such as unacceptable
social and sexual conduct (Emerson, 2001; Holden and Gitlesen,
2006). Most studies reported high rates of CBs among
individuals with ASD, with a prevalence of up to 94% presenting
at least one type of challenging behavior (CB) (Matson et al.,
2008; Jang et al., 2011). Other studies have reported on the
appearance of CBs among 82% of participants, with 32.5%
involving aggressive behavior toward themselves or others
(Woodbury-Smith et al., 2006; Murphy et al., 2009). CBs
may significantly impair the physical and mental health and
the quality of life of the persons presenting such behaviors,
those who care for them, those who manage them (therapists;
teachers), and even their neighbors (Nissen and Haveman,
1997; Blacher and McIntyre, 2006; Mukaddes and Topcu, 2006;
Felce et al., 2011).

Applying therapeutic strategies in such cases is strongly
warranted to prevent the CBs from becoming a part of an
individual’s behavioral repertoire. In the absence of therapeutic
strategies, such behaviors are unlikely to decrease and will
typically remain or worsen without intervention (Berg et al.,
2000). An effective intervention to reduce the outburst of CBs
and one that could possibly lessen the severity of a CB could

enhance the involvement of the person with ASD within society
and reduce the financial and emotional burden of the family
and caregivers while simultaneously decreasing the need for
medications (Rose et al., 2004).

Several forms of intervention have been proposed for
reducing CB in people with ASD, including medications
(Malone et al., 2005; Blankenship et al., 2010; McPheeters
et al., 2011; Sawyer et al., 2014), behavioral interventions
(Scotti et al., 1996; Didden et al., 2006; Machalicek et al.,
2007, 2016; Lydon et al., 2013; Fettig and Barton, 2014; Erturk
et al., 2018; MacNaul and Neely, 2018; Weston et al., 2018;
Inoue, 2019), cognitive/emotion-oriented interventions (Neal
and Barton Wright, 2003; Zetteler, 2008; O’Neil et al., 2011;
Cotelli et al., 2012; Subramaniam and Woods, 2012; Doyle
et al., 2013), sensory stimulation/integration interventions
(Lang et al., 2012; Barton et al., 2015; Case-Smith et al., 2015;
Leong et al., 2015; Wan Yunus et al., 2015; Watling and
Hauer, 2015), music therapy (Gold et al., 2006; Stephenson,
2006; Simpson and Keen, 2011; James et al., 2015; Fakhoury
et al., 2017), psychosocial interventions (Seida et al., 2009;
Reichow et al., 2013; Vanderkerken et al., 2013; Bishop-
Fitzpatrick et al., 2014; Lim, 2019), communication training
(Mirenda, 1997; Goldstein, 2002; Lequia et al., 2012; Walker
and Snell, 2013; Gerow et al., 2018; Gregori et al., 2020),
physical exercises (Eggermont and Scherder, 2006; Ogg-
Groenendaal et al., 2014; Sorensen and Zarrett, 2014; Forbes
et al., 2015; Bremer et al., 2016), and others (McDonnell
et al., 2008; Tanner et al., 2015; Lindgren et al., 2016;
Ferguson et al., 2019; Walker et al., 2021; Wahman et al.,
2022). Despite the wide availability of intervention forms, no
consensus has been reached concerning the global efficacy
of any CB treatment in treating all the CBs types. As
both desirable and undesirable behaviors are learned and
maintained through interaction with the social and physical
environment, the behavior-environment interaction can be
described as positive or negative behavior contingencies.
Experts agree in affirming that a better understanding of
behavior-environment relations may lead to more effective
interventions (Lloyd and Kennedy, 2014). Such knowledge
can be obtained by analyzing the function of the behavior.
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Functional behavior assessment (FBA) enables hypotheses about
the relations among specific types of environmental events and
behaviors. The idea behind FBA is that if these reinforcement
contingencies can be identified, then interventions can be
designed to decrease problem behavior and increase adaptive
behavior by altering these contingencies (Cooper et al.,
2020). Reinforcement contingencies maintaining CBs include
positive and negative reinforcement. Positive reinforcements
comprise social positive reinforcements (attention), tangible
reinforcements (items or activities), and automatic positive
reinforcements (engaging in the behavior itself, independently
from the social environment). Negative reinforcements include
social negative reinforcement (escape from socially mediated
stimuli), and automatic negative reinforcement (escape from
non-socially mediated stimuli such as pain) (Lloyd and
Kennedy, 2014; Cooper et al., 2020). Evidence from the literature
suggests that interventions based on functional assessment
outcomes are more effective than those that are not function-
based. Most interventions for CBs aim to prevent the occurrence
of CBs themselves by guiding the person toward more
adaptive behaviors while avoiding managing the consequences
of CBs.

In line with the need for effective prevention strategies,
the literature has been recently enriched with the proposal of
using technological devices to predict CB occurrence based
on the physiological parameters of the individual with ASD.
The presence of atypical physiological arousal in people with
ASD has been known for a long time, and the functional
relation between homeostatic regulation and CB has already
been hypothesized (Hutt and Hutt, 1965; Ornitz and Ritvo,
1968; Kinsbourne, 1980). More recently, atypical autonomic
reactivity was reported as a common feature in people with
ASD (Cohen et al., 2011; Levine et al., 2014; Klusek et al.,
2015; Lydon et al., 2016). The use of physiological-biological
signals such as the electrocardiogram, heart rate (HR), HR
variability, respiratory rate (as well as changes in respiratory
rate), and body movements are reiterated in several articles
as markers for CB expressed in people with ASD (Goodwin
et al., 2018, 2019; Ozdenizci et al., 2018; Taj-Eldin et al., 2018;
Nuske et al., 2019).

Smart wearable shirts (SWS) are wearable medical devices
that are considered to be a technological breakthrough, enabling
continuous surveillance of human vital physiological signs
without any disturbance to the activities of daily living. The
SWS technology has been used in clinical research for the last
two decades. In the previous few years, SWS have enabled the
collection of varied physiological data outside the laboratory for
a prolong time such as weeks at a time. The constant surveillance
enabled by these devices allows for identifying physiological
anomalies that deviate from the typical individual’s behaviors
that can be received, analyzed, and treated (Banaee et al., 2013).
Furthermore, garments, such as t-shirts, have been found to be
a highly preferred device to be used by individuals with ASD

(Koo et al., 2018), with a moderate to high suitability index for
this population (Taj-Eldin et al., 2018). Moreover, few studies
have used SWS among individuals with ASD (Taj-Eldin et al.,
2018; Black et al., 2020).

The analysis of physiological data can be achieved by
machine learning (ML). ML is a method that provides
automated approaches for data analysis (Murphy, 2012). It
utilizes machine-constructed algorithms that detect specific
patterns in the data through a training process (Gulshan et al.,
2016). The use of ML approaches to predict CBs occurrence
has increased in recent years (Francese and Yang, 2021). Masino
et al. (2019) evaluated the accuracy of support vector machine
(SVM) and logistic regression (LR) classifiers in differentiating
physiological states associated with stressful and non-stressful
scenarios in children with ASD in a controlled laboratory setting
using wearables data. The authors reported on higher accuracy
of the SVM classifier and suggested that ML models combined
with wearables data may support real-time intervention in
the population with ASD. Imbiriba et al. (2020) reported
similar results when using an SVM combined with a principal
component analysis (PCA) model to predict aggression in
youth with ASD. The authors stated the adequacy of the
model to predict aggression 3 min before their appearance.
Moreover, higher prediction performance was reported for the
SVM + PCA model than for the LR model. Consistently,
Cantin-Garside et al. (2021) reported higher accuracy of SVM
and k-nearest neighbor (kNN) algorithm in classifying self-
injurious behavior in children with ASD compared to other
methods [discriminant analysis (DA), decision trees (DT), Naïve
Bayes (NB), and neural networks (NN)]. Furthermore, Zheng
et al. (2021) proposed a multimodal data analysis to predict
precursors of CBs of children with ASD through various
ML algorithms. Their multimodal data capture platform is
composed of wearable bio (peripheral physiological signals)
and gesture (acceleration signals) sensors combined with Kinect
cameras (facial expressions and head rotations). The study
results pointed on a higher prediction accuracy for random
forest (RF) and NN algorithms compared to SVM, DA, kNN,
DT, and NB algorithms when looking for precursors of CBs.
Although referred to the pediatric population only, these
preliminary insights support using ML algorithms and wearable
devices to predict CBs in people with ASD.

The current protocol consists of three phases, each with
a specific goal. The first aim is to assess the differences in
the measured physiological reaction between adults with high-
functioning ASD and their typically developed peers utilizing
SWS. The second goal is to create an ad hoc ML algorithm that
will be utilized for real-time CB prediction and combined with a
smartphone application that sends an alert when the CB is likely
to occur. Finally, we aimed to test the developed system among
people with ASD and assess its acceptability and usefulness for
users with ASD and their caregivers.
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Materials and methods

Study design

An observational study design will be implemented in
the first two phases of the current research. In phase one,
participants’ (with and without ASD) physiological reactions
to two visual stimuli (pleasant vs. disturbing) will be
collected and analyzed. The physiological characteristics of
the CBs presented by people with ASD will be collected
in phase two, coupled with behavioral diaries filled out
by the care providers. Finally, a single case study with
a mixed-method design will be implemented in phase
three, where the system validity proof of concept (POC)
will be performed.

Ethics and safety issues

The research proposal was approved by the Ariel University
Institutional Review Board (AU-HEA-ML-20201203), Asaf
Harofe Institutional Review Board (0136-21-ASF), and the
Israeli Ministry of Health (MOH_2022-01-25_010570). The
implementation of the protocol was also approved by the
head scientist from the Israeli Ministry of Social Affairs
and Welfare. The trial protocol was registered in the World
Health Organization Trial Registry (ClinicalTrials.gov ID:
NCT05340608). Written consent was also given by the
head of the residential centers hosting the second section
of the proposed study. The study will be carried out
following the Declaration of Helsinki principles. Written
informed consent will be collected from all participants or
their legal guardians at the recruitment stage. The SWSs
planned to be used are non-invasive medical devices with
sensors that collect physical signals from the participants.
However, if a participant refuses to wear the SWS, he or
she may withdraw from the study at any time without
any repercussions.

Participants

According to the sample size calculation performed, a
group of 20 subjects diagnosed with high-functioning ASD
aged between 20 and 40 years residing at home [observation
group (OG)], along with an age- and sex-matched control group
(CG) of 20 typically developed peers, will be enrolled in the
first protocol phase. In the second phase, 10 people with ASD
presenting with intensive aggressive or disruptive CBs aged 20–
40 years and their caregivers will be recruited. Finally, one
participant with ASD aged 20–40 years exhibiting aggressive
or disruptive CBs will participate in the third phase of the
research as POC.

Outcome measures

Smart wearable shirt
The Hexoskin SWS (Hexoskin Inc., Montreal, QC,

Canada) is a wearable device with several sensors to measure
physiological signals. Its producer declares the SWS as a
non-invasive SWS with textile-embedded sensors that allow
the collection of multiple parameters. A detailed description
of sensors equipped in the Hexoskin SWS is available on the
producer’s website.1 The Hexoskin SWS will be used in all three
phases of the research.

Behavioral diary
The care providers of participants enrolled in phase two

will be asked to fill out a daily behavioral diary reporting
the arousal level of each participant. Three arousal levels
will be collected: quiet, agitated, and CB. The “quiet” state
refers to a period in which the subject is relaxed or calmly
going about his or her daily routine (e.g., resting on the
sofa). Being “agitated” describes a behavioral activation state
higher than “quiet”. It can correspond to situations in which
a physiological reaction is observed, such as redness, sweating,
and increased respiratory rate, among others. It can occur
in cases of euphoria (e.g., the subject is watching a show
that he or she extremely enjoys); intense activity (e.g., doing
a sport activity); or anger (e.g., the subject has been told
that he or she cannot do an activity that he or she has
requested and therefore vigorously protests), but cannot be
defined as CB. “CB” state describes extreme agitation and an
intense physiological response (redness, sweating, or increased
respiratory rate). It can be accompanied by fierce anger (with
or without aggressive or disruptive behaviors), strong states of
anxiety, or a need to move intensely. In general, “CB” should
correspond to reactions identified as exaggerated, excessive
for the situation, or inadequate relative to the social context.
Aggression behaviors will include self or other-directed physical
or verbal aggression. In some cases, such behaviors may
be uncontrolled by the participants. For each arousal level
reported, caregivers will be asked to report on the following
items: the beginning and ending time and date, arousal
level, and operational definition of the accompanying behavior
and activities. The behavioral diary will be collected within
the second phase.

Quebec user evaluation of satisfaction with
assistive technology

The Quebec User Evaluation of Satisfaction with Assistive
Technology second edition (QUEST 2.0) (Demers et al., 2000)
is a 12-item questionnaire designed to assess users’ satisfaction
with a wide range of assistive technology (Scherer, 2005). The 12

1 https://www.hexoskin.com
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items are grouped into two areas representing user satisfaction
with the assistive technologies related to the assistive device
(eight items) and provided service (four items). A five-point
Likert scale is given to each item, ranging from one (“not
satisfied at all”) to five (“very satisfied”). Strong psychometric
proprieties have been published for the QUEST 2.0 (Demers
et al., 2002). The QUEST 2.0 will be administered in phase three
of the current protocol by participants’ caregivers.

Focus group
A focus group is a qualitative data collection method often

used in health research. The technique is used to produce
a controlled discussion on specific issues within a group of
people who share different experiences or relations with the
focused topics (Kitzinger, 1994; Flores and Alonso, 1995). Under
the focus group method, the group discussion is recorded,
transcribed, and analyzed. In addition, a search for themes
relevant to the investigated topic and the group agreement
assessment is performed (Breen, 2006). Research questions that
will be raised during the focus group include:

• Did wearing the SWS upset the participants?
• Was the system able to detect all relevant CBs?
• Was the system’s operational speed sufficient to allow the

in-time application of appropriate prevention strategies?
• Has the use of the system reduced the amount of CBs?
• What improvements can be applied to the system to

increase its effectiveness?

Procedure

The research procedure is outlined in Figure 1. The
protocol’s expected start date is June 2022.

Phase one – Comparison of physiological
outcomes between people with and without
autism spectrum disorder

For the first phase, the physiological parameters of the
people in the OG and CG will be acquired and recorded
using the Hexoskin SWS while participants watch two different
5 min videos. One video will show relaxing images while
emitting relaxing music (relaxing video). The second video
will present human facial deformities accompanied by anxious
music (disturbing video). Both videos will be presented to
the participant when in a seated position. Before starting
the relaxing video, the participant will be invited to relax
and lean back onto the chair’s backrest. The participant
can close his eyes or keep them open at his or her
discretion to promote relaxation. To watch the disturbing
video, participants will be asked not to lean against the
chair backrest and keep their eyes open for the duration
of the video. The video viewed by each participant will
be chosen randomly between the two videos. The entire
session will be measured as lasting after approximately 20 min
(including explaining the research protocol, putting on, and
taking off the SWS).

Phase two – Classify the variations of the
physiological parameters in people with autism
spectrum disorder

Each participant enrolled in phase two will be asked to
wear the Hexoskin SWS for seven consecutive days during
waking hours while performing his or her usual daily activities.
During the same 7 days, care providers will be asked to report
the participants’ status in the behavioral diary. Each evening
the data collected by the Hexoskin SWS will be uploaded to
an online cloud that is provided with the behavioral diary
records of the day. Once the data from all the 10 participants

FIGURE 1

Protocol flowchart. The dotted arrow indicates that the integration of the data obtained from phase one will only occur if they bring added
value to the development of the algorithm. OG, observation group; CG, control group; SWS, smart wearable shirt; ASD, autism spectrum
disorder; DL, deep learning; CB, challenging behavior; QUEST 2.0, Quebec User Evaluation of Satisfaction with Assistive Technology 2nd edition.
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FIGURE 2

Brief system architecture description. Physiological signals are captured by the Hexoskin smart wearable shirt (SWS) and recorded by the
provided data recorder. Recorded data are transferred in real time via Bluetooth technology to a remote server where they are analyzed. If the
ad hoc developed algorithm detects the incoming data suggesting the occurrence of challenging behavior (CB), the remote server immediately
sends a notification alert to the caregiver’s smartphone.

have been collected, a deep learning long short-term memory
algorithm (LSTM), which is perceived as a neural network
algorithm composed of many layers that the neural network
accumulates over time, will be developed in order to understand
the variations in the individual’ physiological parameters that
occur before a CB and predict the eruption of future CBs. The
SWS data will be sent in real-time via Bluetooth technology
to a remote server, where it will be classified and analyzed
through the developed algorithm, thus yielding a CB behavior
alert. In case of “normal” behavior, the algorithm will not
classify the existing behavior of the participant as CB. Based
on the algorithm mentioned above, a smartphone application
will be developed to receive the data. If the algorithm detects
the possibility of an incoming CB, a notification will be
sent to the care provider’s smartphone to inform on the
possible oncoming CB, thereby enabling the implementation
of the selected intervention strategy. The system architecture is
explained in Figure 2.

Phase three – System proof of concept
The developed system prototype and its efficacy will be

tested on one participant with ASD for 7 days at the participant’s
residence. The participant will wear the Hexoskin SWS during
waking hours. Before the beginning of the POC phase, the
teachers and caregivers who will interact with the system will
be trained on its use, and the authors will be available to clarify

any doubts and provide technical assistance during the POC
week. At the end of those 7 days, the QUEST 2.0 will be
administered to each professional interacting with the system.
In addition, a focus group will be carried out with the same
care providers, addressing the research questions mentioned
above. The focus group will discuss on the information obtained
from the QUEST 2.0 administration. In the last part of the
focus group, a summation of solutions to each research question
will be proposed to the group, and the number of participants
who agree or disagree with the proposed summation solutions
will be collected.

Data analyses

Section 1
Data collected by the Hexoskin SWS from participants

in the OG and CG will be analyzed and compared. From
electrocardiogram data, HR will be calculated between two
consecutive QRS complexes. Considering the time interval
between two QRS complexes as “t,” the corresponding temporal
HR will be 60/t (Becker, 2006). In order to remove unwanted
artifacts from the HR, a percentage threshold value will be set
using the sliding window method, and a minimum allowed peak
width will be identified. The removal process will be performed
for positive and negative peaks in two rounds. A window
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will be slid over the HR signal, and its median value will be
calculated. The maximum (positive and negative) allowed peak
amplitude will be determined for every window by multiplying
the window’s median value by a threshold value. The threshold
value for positive peaks was set at 30% (for the first removal
round) and 25% (for the second removal round) of the window’s
mean value. For negative peaks, the threshold value was set
at 50% (for the first removal round) and 30% (for the second
removal round) of the window’s mean value. Then, all peaks
with amplitude larger than the allowed value will be identified
from every window. If one of these peaks is found as narrower
than the minimum allowed peak width, it will be replaced with
the reference window median value. Otherwise, if an identified
peak width is larger than the pre-set peak width, its value will
be replaced with the maximal allowed HR (for positive peaks)
or the minimal allowed HR (for negative peaks). The maximal
allowed HR will be calculated with the following formula:"209 −

(0.7 × (Participant age))" (Tanaka et al., 2001). The minimal
allowed HR will be 60 beats per minute (Sidhu and Marine,
2020). After removing abnormal peaks, the signal will be filtered
with a Gaussian filter with a sigma equal to one. After the HR
signal filtering process, the obtained cleaned HR signal will be
used to classify the participant’s CBs (herein “stress”) within
the following levels: “no stress,” “mild stress,” “moderate stress,”
and “high stress.” Each stress level will refer to an HR signal
positioned within a specific range of values. The “no stress” level
will include the HR values below 90% of the cleaned HR signal’s
lowest peak. The “high stress” level will comprise values above
90% of the cleaned HR signal’s highest peak. If this value exceed
the maximal allowed HR, it will be substituted with 90% of the
maximal allowed HR value. The range left between these two
thresholds will be divided into two equal parts (lower and upper
half). The HR data positioned in the lower half of this range will
be classified as “mild stress” and those positioned in the upper
half as “moderate stress.” Each HR value will be classified and
assigned with a numerical value corresponding to a stress level
(“no stress” = 0, “mild stress” = 1, “moderate stress” = 2, and
“high stress” = 3). After acquiring the sequences of the stress
levels of all participants of section two, the sequences of the
subjects in the OG and CG will be compared using a version of
the Smith-Waterman algorithm adapted for the analysis of the
obtained data.

Section 2
The data gathered by the Hexoskin SWS from participants

enrolled in section two will be analyzed as described above.
A deep learning algorithm will be developed to predict the
incoming participants’ stress levels. To find CB patterns among
subjects, the authors intend to construct a classifier based on
supervised learning to find anomalies in the subject’s data that
might indicate an upcoming CB. Therefore, an LSTM algorithm
along with other ML strategies (e.g., RF algorithm) will be
guided through pre-defined rule sets to recognize data patterns

corresponding to CB occurrence using the data collected by the
participants’ caregivers via the behavioral diary and information
collected by the SWS.

Long short-term memory algorithm is an extension of
the recurrent neural network (RNN). In contrast to the
application of machine learning and deep learning, in the
process of analyzing and predicting time series information,
each data point is based on previous information, which must
be examined as well. RNN is the most used network for time
series applications since it can form the target vector observing
the current input data history, using shared weights among the
hiding units of the network across each time step of the data.
The authors chose the usage of LSTM, and not RNN, since RNN
has one significant problem (the vanishing gradient), where
the gradient of the output error is based on previous inputs
vanishes when time lags between inputs and errors increases.
To overcome this problem, the LSTM is introduced. LSTM
is designed as having a memory, which comes into practice
by replacing the nonlinear units of RNN in the hidden layers
with memory blocks. The network propagates errors throughout
the entire network, and as a result, it can learn long-term
dependencies and forget unnecessary information based on the
data at hand (El Boujnouni and Tali, 2019).

The best classification algorithm will be selected based on
the obtained prediction accuracy. The accuracy of the prediction
model will be calculated according to common estimation
methods such as the confusion matrix, and the area under
the curve (AUC) values corresponding to the receiver operator
characteristic curve (Ozdenizci et al., 2018; Goodwin et al., 2019;
Nuske et al., 2019). These values range from 0.5 to 1 and will
be designated as follow: 0.90–1 = excellent, 0.80–0.90 = good,
0.70–0.80 = fair, 0.60–0.70 = poor, and 0.50–0.60 = fail.

Section 3
In section three, the themes that will emerge from the

focus group will be extracted from the discussion transcription.
An axial coding strategy will be applied to calculate the
extensiveness of each theme. This qualitative data analysis
consists of assigning a reference number to each theme and
marking any sentence related to that theme with that number.
A reliability check for the code-to-sentence matches will be
applied by giving the list of codes to an independent researcher
experienced in qualitative analysis and asking him or her to
identify the sentence that matches each code (Breen, 2006). The
level of agreement with each summation answer to the research
questions will be obtained by calculating the percentage of
participants that agree with the proposed statement. The authors
will discuss the developed answers to the research questions in
light of the relevant themes that will have emerged, along with
the level of agreement of the discussion group. The participants’
responses to the focus group will be used to improve the usage
of the SWS within the context of CB and ASD, as well as further
develop the mobile application.
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Results

The expected results for each part of the current
investigation are summarized below.

Phase one

From the data gathered in the study phase one, the authors
expect to recognize a higher stress level within the sequences
obtained from participants in the OG compared to those from
the CG. Although the literature reported a similar HR variation
in adults with and without ASD exposed to stressful situations
(Bishop-Fitzpatrick et al., 2017; Dijkhuis et al., 2019), adults
with ASD are overall experiencing higher stress levels than
typically developed peers when exposed to stressors (Gillott
and Standen, 2007; Hirvikoski and Blomqvist, 2015; Bishop-
Fitzpatrick et al., 2017). Therefore, the authors expect to be able
to detect a difference within the stress sequences obtained from
the proposed HR classification system during the disturbing
video watching using the adapted Smith-Waterman algorithm.
On the other hand, the authors expect no difference between the
stress sequences obtained from individuals in the OG and CG
when the participants watched at the relaxing video.

Phase two

Although, to the authors’ knowledge, there is no literature
reporting the capability of HR analysis in predicting the
occurrence of CB in adults with ASD, the reports related to
children and youth with ASD are encouraging. Relying on
previous findings, the authors expect that the developed LSTM
algorithm will be able to predict CBs that are about to occur at
least in the upcoming 1 min with an AUC value at least above
0.70 (representing a fair prediction sensitivity) by analyzing
the data gathered in the previous 60 s (Ozdenizci et al., 2018;
Goodwin et al., 2019; Nuske et al., 2019).

Phase three

Quest 2.0
At the end of the protocol’s POC phase, the QUEST 2.0

questionnaire will be administered to each teacher and caregiver
who use the system with the participant with ASD. Within the
area related to user satisfaction with the assistive technologies,
the authors expect to achieve a high satisfaction value (mean
score above 4.0) as the Hexoskin SWS only has to be worn
by the participant, and the caregiver side of the system will be
integrated into his smartphone (smartphone application). Once
the SWS and the smartphone are paired with the remote server,
no other actions are required from the caregiver. Therefore, no

safety problems are anticipated, and easy use of the system is
expected. Moreover, the smartphone application will provide
visual and auditory stimuli related to the participant’s stress level
leading to comfort use and the possibility of intervening when a
high-stress level is identified.

A high satisfaction score is anticipated concerning the area
of provided service (mean score above 4.0) as there will be a
training period for all who will interact with the system and the
availability to provide technical assistance during the POC week.
Moreover, the focus group that will be conducted represents a
reasonable opportunity to verify the system’s functioning.

Focus group
As to the authors’ knowledge, the current protocol

represents the first attempt to conduct a focus group evaluating
the experience of caregivers with the use of a smart wearable
device to predict the CBs of adults with ASD. It is challenging to
rely on previous reports that mainly focus on design suggestions
for wearable devices for people with ASD. In the discussion of
the first research question (“Did wearing the SWS upset the
participants?”), the authors expect that no difficulties will be
reported on the selected SWS wearing during the POC week
as it is a soft undershirt out of the participant’s direct field of
vision. Moreover, garments, such as t-shirts, have been found
to be a highly preferred device to be used by individuals with
ASD (Koo et al., 2018). However, reflections are anticipated
about the individual sensory preferences of each person that
may compromise the use of SWS in some people with ASD.
Themes similar to this one emerged from a previous focus group
related to the design of wearable technologies for people with
ASD (Cantin-Garside et al., 2021). Furthermore, concerns can
arise related to the hottest times of the year, when wearing a tank
top under the shirt may be inappropriate.

Concerning the second, third, and fourth research questions
(“Was the system able to detect all relevant CBs?”; “Was
the system’s operational speed sufficient to allow the in-time
application of appropriate prevention strategies?”; “Has the
use of the system reduced the amount of CBs?”), the authors
expect that the emerging themes will crosscut them. Anticipated
themes relate to the different CBs that can occur and the
system’s ability to predict all of them. Moreover, considerations
are expected about the usefulness of the classification system’s
ability to reflect the current participant status and how the
real-time knowledge of his arousal level changes the caregivers’
carrying strategies. Finally, anticipated themes comprise the
discussion of the usefulness of the time with which the CB is
predicted. Reflections may emerge about whether the prediction
time is sufficient or not to implement the appropriate CB
prevention strategies.

During the fifth research question discussion, one
anticipated theme relates to the possibility of using the
proposed system in several environments, as the current
architecture requires a Bluetooth connection with a server
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nearby. Moreover, reflections may occur about the benefit of
a smaller wearable device, which is less recognizable by the
participant, and the possibility of having a wider prediction
window. The system’s availability in all the participant’s daily
living environments can help the prevention of during the
whole day. A smaller device can improve the wearability of
the system, increasing the acceptability of the device. Finally,
a wider prediction window may be required in some cases for
appropriate prevention strategies application.

Discussion

Many individuals with ASD present aggressive or disruptive
CB, negatively affecting the quality of life of the person
presenting the CBs. CBs can also reduce the possibility of
receiving a proper education, social participation, and job
opportunities for the person with ASD. Although numerous
interventions have been proposed in the literature regarding
how to cope with such behaviors, to date, most of them have
not been found to affect CBs in a significant manner positively.
Therefore, there is a need for effective strategies to support such
interventions that can anticipate oncoming CBs. The results
obtained from the analysis described in “Section 1” will deepen
the knowledge related to the relationship between HR and
stress levels in adults with ASD. Moreover, to the authors’
best knowledge, this study represents the first attempt of using
SWSs and physiological parameters to predict CBs of adults
with ASD. The results obtained from the prediction algorithm
development will lay the foundation for expanding the field of
study of CBs prediction through ML techniques to the adult
population with ASD. The availability of an effective strategy
to anticipate the CBs occurrence will allow the caregivers
to intervene, applying the adequate procedure to reduce the
person’s stress level and avoid the behavioral meltdown. Such
technology can potentially improve the quality of life of people
with ASD presenting aggressive and disruptive CBs and their
peers, care providers, and healthcare professionals. Moreover,
the proposed system will be cost-effective, easy to use even
for non-experts, and widely accessible. Furthermore, results
that will be obtained at the end of this project can assist in
the further development of wearable devices to predict CB, a
field of growing interest among health and medical researchers
with the potential to help other populations presenting CBs,
such as those with intellectual and developmental disabilities,
dementia, and other mental challenges. Finally, the mixed-
method design proposed for phase three of the protocol will
involve care providers and healthcare professionals who handle
CB daily. Their participation will allow for the integration of
their clinical experience and perceived needs and will provide
valuable information to be considered for developing the
current application and future similar devices. The current
method presents some limitations. First, one participant only

will be included in the POC phase. However, although this
choice can limit the external validity of the results obtained in
the POC phase, it will provide initial data on the usability of the
developed system. Moreover, the videos that were chosen for
the study phase one were not previously validated to elicit the
desired stress increase (or reduction) in the population enrolled
in the study (typically developed adults and adults with ASD).
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Depression is an independent mood disorder and one of the most common

comorbidities of rheumatoid arthritis (RA). Growing evidence suggests that there

is two-way regulation between RA and depression, resulting in a vicious cycle

of RA, depression, poor outcomes, and disease burden. The rising prevalence of

RA-associated depression warrants a re-examination of the relationships between

them. Here we provide an overview of the etiology and pathological mechanisms

of RA-associated depression, and recent advances in treatment with biologics,

which will facilitate the development of new and effective prevention and

treatment strategies.

KEYWORDS

rheumatoid arthritis, depression, etiology, pathology, biological therapies, research progress

1. Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by synovitis,
joint erosion, and cartilage damage. In the global burden of disease study in 2010, the disability
imposed by RA ranked 42 among the 291 diseases included (Cross et al., 2014). In addition to the
disability caused by joint pain, swelling, and deformation, the extra-articular symptoms of RA
also require attention. Depression is a mood disorder affecting 322 million people worldwide,
and one of the most common comorbidities in RA (World Health Organization, 2017; Baerwald
et al., 2019). Depression can be triggered by multiple stimuli such as repeated physical pain,
fatigue, gradual loss of function, lack of social role, and financial burden. In a cross-sectional
study conducted in 17 countries, depression was the most frequent complication in RA, with
prevalence ranging between 14% and 48% (Nerurkar et al., 2019). In China, the proportion
was as high as 48%, and the respective prevalence of mild, moderate, and severe depression
was 30%, 18%, and 18% (Fu et al., 2017). Although the prevalence of depression in RA patient
groups varies in different countries and regions due to measurement methods as well as the
non-uniform threshold of diagnostic criteria for major depressive disorder (MDD; Sturgeon
et al., 2016), it also reminds us that depression is a link that cannot be ignored in RA treatment.
This article reviews the research progress on RA-associated depression from: (1) etiology;
(2) pathology; and (3) biological therapies, hoping to provide a reference for future basic and
clinical research on RA-associated depression.

2. What causes depression in RA patients?

In 1977, Professor Engel of the Medical School of the University of Rochester
put forward a new medical model, the bio-psycho-social medical model.
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This new model emphasized the combination of biology, psychology,
and sociology to search for the causes, diagnosis, and treatment
methods of diseases, instead of investigating diseases from a single
biomedical perspective. Given the debate as to why RA is often
associated with depression, more complex and comprehensive factors
covering biological, psychological, and sociological needed to be
considered rather than a simple causal model of psychological
impairment due to chronic pain and long-term disability associated
with RA.

There is a bidirectional association between RA and depression.
On the one hand, under the influence of pain, fatigue, drugs, diet,
micronutrient, gender, lack of exercise, aberrant testosterone levels,
and social support (including social tool support, emotional support,
and financial assistance), RA patients often face poor health-related
quality of life, reduced chance of joint symptom relief, and a higher
risk of death (Marrie et al., 2018; Shadick et al., 2019; Vallerand et al.,
2019; Lwin et al., 2020; Figure 1). They have to overcome more severe
obstacles in maintaining biological function, mental health, as well as
social participation. As a result, the risk of depression in RA patients is
significantly higher than in non-RA groups (Lin et al., 2015; Lu et al.,
2016; Marrie et al., 2018). On the other hand, RA patients associated
with depression will bear “overload hospitalization costs” due to more
physician visits, increased emergency care utilization, and the use of
more drug types to treat depression (Hitchon et al., 2021). Thus, some
patients have to reduce the cost of RA treatment, which aggravates
RA. In a word, RA is a risk factor for depression, and depression can
exacerbate the severity of RA. The two diseases fed on each other,
pushing the patients into a vicious cycle of “RA-depression-adverse
outcomes-social and economic burden”.

2.1. Physical and mental symptoms

Pain is the most typical symptom of RA. Even if the inflammation
has been controlled, patients often experience chronic pain. A
German cross-sectional study based on data from nationwide
statutory health insurance fund (BARMER GEK) reported that
depressive symptoms were far more likely to develop in RA patients
with severe pain (75.3%) than in those with moderate pain (53.1%) or
mild/no pain (21.0%; Jobski et al., 2017).

Fatigue is a common mental symptom in RA patients.
Approximately one-sixth of RA patients experience severe fatigue,
which is related to pain, personality characteristics, gender, sleep,
social support, and comorbidities (Nikolaus et al., 2013). In addition,
it is affected by drugs such as methotrexate (Pope, 2020). A
study investigating risk factors for depression and deterioration of
depressive symptoms in 2018 indicated that depression and depressive
symptom deterioration in RA positively correlated with the degree
of fatigue [odds ratio (OR) 1.26] (Cheon et al., 2018). These results
suggest that doctors need to pay more attention to the possibility of
depression for RA patients who are prone to fatigue symptoms.

2.2. Drugs

The finding that recurrent depressive disorder without
antidepressant treatment is a significant predictor of the progression
of joint destruction in RA suggests both RA and depression have to
be taken into account in the treatment for RA-associated depression

(Abramkin et al., 2020). Similarly, it is necessary to be aware of
the possibility of depression caused by the drugs for RA treatment.
Among the drugs currently used to treat RA, glucocorticoids (GCs)
and infliximab need attention. GCs have a series of biological effects,
including anti-inflammation, immunosuppression, regulation of
metabolism, and cognitive signal transduction (Scherholz et al.,
2019). Exogenous GCs supplementation is a conventional treatment
for RA. Long-term exposure to exogenous GCs can also cause
some severe adverse effects however, such as infection, osteoporosis,
cushing syndrome, and some emotional disorder symptoms including
depression (Pamukcu et al., 2021). A German study compared the
physical condition of RA patients whose daily dose of prednisone
exceeded 0.5 mg in the past 6 months with others that had not
received any GCs therapy in the past 12 months. The results showed
that a daily dose of prednisone exceeding 7.5 mg was a threshold for
a significant increase in the frequency of depression (Huscher et al.,
2009). Through the study of the macaque rhesus model of depression,
the mechanism of depression induced by chronic GCs exposure was
found to be related to the decrease of hypothalamic-pituitary-adrenal
(HPA) axis cortisol level in blood, the increase of hair cortisol
concentration, and the decrease of dopamine level in cerebrospinal
fluid (Qin et al., 2019).

Another drug with a high possibility of causing depression is
infliximab, the first tumor necrosis factor α (TNF-α) antagonist
used to treat chronic inflammatory diseases, and characterized by
rapid therapeutic effect and high bioavailability. The up-regulation of
TNF levels in depressed patients has been demonstrated, therefore,
infliximab is used to treat depression also (Rani et al., 2022). In
2014, a clinical study involving 34 RA-associated depression patients
showed that infliximab could reduce RA disease activity and improve
symptoms of depression (Miwa et al., 2014). However, randomized
controlled trials conducted in Canada and the United States showed
that infliximab did not significantly reduce depression in adults
with bipolar depression compared with a placebo (McIntyre et al.,
2019). Infliximab is ineffective in reducing depressive symptoms
when used for treatment-resistant depression, which is significantly
related to TNF levels. Furthermore, according to the research of
the Thillard team, which enrolled 118,528 RA patients, the hazard
ratio of developing depression associated with infliximab exposure is
3.49 (Thillard et al., 2020). Compared with infliximab, RA patients
who received etanercept had a lower risk of depression, and it is
suggested that etanercept may be the more appropriate biologic drug
for RA-associated depression (Ng et al., 2020). Although there is still a
lack of high-quality research evidence on the risk of depression caused
by RA treatment drugs, it is undeniable that the existing evidence may
still help clinicians adjust the choice of drugs and improve the benefit-
hazard ratio.

2.3. Vitamin D and magnesium deficiency

Vitamins and minerals in a healthy body are maintained at a
relatively constant concentration, involved energy metabolism, DNA
synthesis, oxidative stress, and neuronal function to support the
normal function of bone, muscle, and brain. Once the stability of
this concentration is broken, it means the possibility of disease
(Tardy et al., 2020). Recent studies have shown that vitamins,
magnesium (Mg), zinc, selenium, copper, and other trace elements
with antioxidant effects are involved in RA inflammation, whereas
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FIGURE 1

Factors that contribute to the development of depression in RA. A variety of complex and comprehensive factors, including physical and mental symptoms,
drugs, food and micronutrients, lack of exercise, aberrant testosterone levels, and social support may contribute to depression in RA.

research on RA-associated depression has mainly focused on vitamin
D and magnesium.

Vitamin D is a fat-soluble vitamin that can bind to vitamin D
receptors in different tissues and cells, and plays an essential role
in calcium homeostasis and bone metabolism (Sizar et al., 2022).
Evidence suggests that vitamin D can also affect mental health
(Föcker et al., 2017). In a 2017 study of 161 RA patients, serum
vitamin D levels in those with depression were significantly lower
than those without depression, and vitamin D levels were negatively
correlated with Hamilton Depression Scale scores and Hamilton
Anxiety Scale scores (Pu et al., 2017). The results suggested that
vitamin D deficiency may be a risk factor for depression in RA
patients.

Mg is an antioxidant micronutrient to improve the function of
antioxidant enzymes and reduces inflammatory conditions. 50%–60%
of Mg is stored in bone tissue to maintain bone health, and relieve
chronic musculoskeletal pain in RA (Arablou et al., 2019; Capozzi
et al., 2020; Elma et al., 2020). In terms of brain biochemistry,
patients with depression show abnormal glutamate and gamma-
aminobutyric acid (GABA) neurotransmission. Mg can increase the
expression of GluN2B, a subunit of the glutamatergic n-methyl-D-
Aspartate receptor (NMDAR), and inhibit the phosphorylation of
eukaryotic elongation factor 2 (eEF2) in cells, antagonize the NMDAR
to affect the transmission of glutamate and other neurotransmitters,
resulting in antidepressant effects (Górska et al., 2019). Although
Mg plays a vital role in the regulation of both inflammation and
brain biochemistry, its efficacy in the treatment of RA-associated
depression remains controversial. Cross-sectional studies indicated
that the dosage of Mg on diet was inversely associated with the
risk of RA and depression (Sun et al., 2018; Hu et al., 2020). RA
prevalence was kept to a minimum when Mg intake was between

181 and 446 mg/day, and the risk of depression was reduced at
320 mg/day (Li et al., 2017; Hu et al., 2020). However, a prospective
study in the SUN Mediterranean cohort with an expanded sample
size of 15,836, and an extended follow-up (median = 10.2 years) study
confirmed that no significant association between Mg intake and low
risk of depression (OR = 0.85, 95% CI: 0.60–1.22; Martínez-González
and Sánchez-Villegas, 2016). In addition, low Mg intake has been
identified as a protective factor in reducing the risk of depression in
older adults (Tarleton and Littenberg, 2015). These results may be
influenced by the uncertainty and complexity of causality in cross-
sectional studies. More prospective studies are needed to evaluate the
effect of magnesium on RA-associated depression in the future.

2.4. Exercise

Sedentary behavior is prevalent in RA patients due to impaired
physical function and persistent fatigue (Fenton et al., 2018).
Overwhelming data indicate that exercise treatment has a therapeutic
effect on various chronic diseases involved in many systems, including
the neuropsychiatric system, endocrine system, cardiovascular
system, and musculoskeletal system, among others. Reductions
in daily physical activity can lead to impaired functionality and
premature damage to health (Booth et al., 2012; Pedersen and Saltin,
2015). For RA patients, any exercise will get more clinical benefits
than no exercise, whether it is hand exercise, rejoice exercise, Taichi,
strength training, aquatic exercise, resistance exercise, or cryotherapy
(Hu et al., 2021).

Exercise also has a therapeutic effect on depression. Studies
have found that exercise and antidepressant drugs can increase the
secretion of brain-derived neurotrophic factor (BDNF), serotonin,
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and norepinephrine, enhance the activity of the HPA axis, reduce
systemic inflammatory signals to promote the development of new
neurons, and strengthen synaptic connections between neurons to
alleviate depression. In addition, exercise changed the structure of the
hippocampus, anterior cingulate, orbitofrontal cortex, and enriched
the blood vessels of the brain (Gujral et al., 2017). Aerobic exercise
and/or strength training can significantly relieve depressive symptoms
in adults with arthritis and other rheumatic diseases (Kelley et al.,
2015). Tai Chi (Waite et al., 2013), Pilates (Yentür et al., 2021), yoga
(Bosch et al., 2009), and medium-high intensity exercise (Kucharski
et al., 2019) were also influential. What calls for special attention is
that some patients may have limited exercise patterns due to arthritis
or functional impairment. To maximize the benefit, the intensity,
frequency, and cycle of exercise should be formulated according to
individual symptoms and wishes. It poses a greater challenge to
the professionalism of healthcare personnel and the improvement of
social movement facilities.

2.5. Diet

The involvement of dietary structure in the pathogenesis of
depression in general population has long been confirmed by clinical
studies. In 2021, scholars introduced this concept into the field of RA,
and results showed that the eating habits of RA patients were also
associated the occurrence of depression. It has been demonstrated
that among 20 foods, including vegetables, grains, meat, fish, and
fruits, intake of fish, vegetables, and fruits were inversely related to
depression scores in RA patients with frequent intake of fish (≥3 times
per week). Improving eating habits, especially increasing intake of fish
may contribute to alleviating depression in RA patients (Minamino
et al., 2021). In addition to dietary structure, food source security
is highly correlated with the development of depression in RA, and
their correlation becomes much more conspicuous as soon as food
safety declines. Compared to RA patients with complete food security,
food-insecure patients had a significantly higher risk of depression
(OR = 2.96, 95% CI: 1.48–5.90; Cai et al., 2022). Once food insecurity
is improved, the statistical significance of the correlation gradually
declines.

2.6. Gender

Patients with RA are at greater risk for severe depression than
gender-matched healthy individuals (Khan et al., 2021), and the risk
within the RA group is reflected in the higher risk of depression in
females compared to males (Albrecht, 2014; Kim et al., 2020). In
addition, there are also gender-related differences in the causes of
severity of depression among RA patients. According to McQuillan
et al. (2022), RA functional disability is more strongly associated with
depression in males than in females. Depressive symptoms in female
patients appear to be more closely related to poor sleep quality or
family pressure (Hughes et al., 2021; Hamasaki et al., 2022).

2.7. Aberrant testosterone levels

Testosterone is a sex hormone synthesized in the gonads and the
adrenal gland. In genera, testosterone levels are significantly higher in

men than in women. Previous studies have shown that testosterone
has an immunosuppressive effect, which can inhibit the onset of RA
to an extent. A decline in testosterone level is related to RF-negative
RA, and may also induce depression (Pikwer et al., 2014; Gubbels
Bupp and Jorgensen, 2018; Walther et al., 2019; Maharjan et al.,
2021). However, there is also evidence that excessive testosterone can
have adverse effects on mental and physical health. In a two-sample
Mendelian randomization study conducted in 2021 abnormally high
testosterone level is associated with a risk of RA and depression (Syed
et al., 2020). Thus, aberrant fluctuation of testosterone may contribute
to RA and depression.

2.8. Social support

Social tools and social emotional support are independent factors
affecting the severity of depression in RA. Based on DAS28 score,
an analysis of psychosocial characteristics in RA patients with and
without remission showed that emotional support had a significantly
beneficial effect on the severity of depressive symptoms in RA in
remission, whereas instrumental support had an extremely limited
effect. In the non-remission group, the positive regulatory effect
of instrumental support was relatively significant, and emotional
support was also helpful for depression (Yasuoka et al., 2021). The
results indicated that the treatment of RA-associated depression
should not focus solely on the medical control of disease activity by
doctors, but should also recognize the need for social support to cover
instrumental and emotional to improve overall physical and mental
wellbeing (Khan et al., 2021).

3. Pathology of interaction between RA
and depression

Although the mechanism of interaction between RA and
depression is still unclear, some previous findings have provided
insight into directions for further investigation. As an immune-
mediated inflammatory disease, RA has associated the abnormal
expression of pro-inflammatory and anti-inflammatory mediators
induced by an imbalance in immune tolerance. Similarly, depression
is associated with abnormal activation of the immune system
and inflammatory responses (Beurel et al., 2020). Depressed
patients are likely to exhibit increases in neutrophil/lymphocyte,
platelet/lymphocyte, monocyte/lymphocyte ratios (Marazziti et al.,
2021), and a shift from classical monocytes toward non-classical
monocytes (Hasselmann et al., 2018). Serum interleukin 6 (IL-6),
TNF, and C-reactive protein (CRP) were also higher in depressed
patients than in a healthy control group (Beurel et al., 2020). The
levels of IL-6 and TNF in cerebrospinal fluid, and translocator protein
(PET marker of central inflammation) in the anterior cingulate cortex
and temporal cortex are higher in MDD patients when compared
to controls, suggesting that central inflammation may be involved in
MDD (Enache et al., 2019). Notably, there is significant heterogeneity
in the levels of circulating inflammatory factors in patients with
depression, and this heterogeneity is also reflected in responses
to antidepressants (Liu J. J. et al., 2020). For example, increased
CRP is seen in resistant MDD, rather than in depressed patients
generally (Chamberlain et al., 2019). It seems that as well as immune
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disorder and inflammation, other mechanisms are also involved in the
interaction between RA and depression.

3.1. Immune inflammatory stimulation

The stimulating effects of peripheral inflammation in RA on
the central nervous system (CNS) are regarded as the main
triggering mechanism of depression. The inflammatory bias is
one of the most important mechanisms that connect the two
diseases. A genetically-based inflammatory bias that arose during
early human evolution is critical for humans to fight infection, heal
wounds, and maintain vigilance to attack. This inflammatory bias is
suppressed by regulatory T (Treg) cells, regulatory B (Breg) cells, and
immunoregulatory M2 macrophages, as well as the anti-inflammatory
cytokines interleukin-10 (IL-10) and transforming growth factor β

(TGF-β) in the rural environment. In modern society, psychological
challenges have been increasing along with the decline in infectious
challenges that have left the former immune checks and balances
lacking. These psychological challenges stimulate the overproduction
of inflammasome in myeloid cells, which mediates responses to
non-pathogenic or “sterile” stressors and leads to the development
of a variety of disorders, including depression (Miller and Raison,
2016). In previous studies, the activation of inflammasome also
plays a crucial role in immune dysregulation and joint inflammation
(Jiang et al., 2022). NLRP3 inflammasome expression in the
synovium is increased in collagen-induced arthritis (CIA) model, and
targeted inhibition of NLRP3 activation, contributes to inhibiting the
progression of RA (Zhang et al., 2016; Liu P. et al., 2020).

Peripheral inflammatory signals can reach the brain through
humoral and neural pathways. There are three types of humoral
pathways. First, pro-inflammatory cytokines can cross the blood-
brain barrier (BBB), and contact the brain via periventricular organs
and the choroid plexus. Second, TNF and other inflammatory
mediators bind to cytokine receptors on the membranes of
cerebrovascular endothelial cells directly, activate a second messenger,
are transported into the CNS, which leads to the activation of
microglia and the subsequent secretion of pro-inflammatory factors in
the brain. Third, blood-derived immune cells and pro-inflammatory
cytokines can access the brain through a damaged BBB (Süß et al.,
2020). A recent study found that microglia in the area postrema (a
brain region lacking a BBB) significantly increased in density and
kept highly activated during persistent autoimmune arthritis, which
demonstrates that chronic inflammation in RA may affect microglia
in brain regions lacking a BBB and result in CNS-mediated symptoms,
such as depression (Matsushita et al., 2021).

In the neural pathways, pro-inflammatory mediators stimulate
active primary afferent nerves to transmit peripheral inflammation
to the CNS (Fakra and Marotte, 2021). The immune system and
nervous system can communicate with each other mainly depending
on the activation of the HPA axis by pro-inflammatory cytokines
and afferent vagal fibers. Cytokines also directly impact the cerebral
cortex and nuclei in the brain stem (Ingegnoli et al., 2020). How
the vagus transduces inflammatory signals to the CNS and causes
depression is still not fully understood. Vagus nerve stimulation
is routinely used in the clinic to treat depression. It has been
shown that severing the connections between the nucleus of the
solitary tract (NTS) and the higher brain regions can reduce
stimulation-induced activation for NTS neurons receiving myelinated

vagal input, suggesting that higher brain regions play a significant
role in maintaining both regular activity in NTS and indirect
mechanisms of enhancing NTS neuronal activity during vagus nerve
stimulation (Cooper et al., 2021). The study indirectly explains
the vagal pathway that transmits inflammatory signals to the CNS.
Once the level of inflammatory cytokines in the CNS increases,
activated indoleamine 2,3-dioxygenase may enhance tryptophan
catabolism, inducing serotonin depletion and kynurenine production.
Kynurenine is then further transformed to 3-hydroxykynurenine and
quinolinic acid, which can lead to an elevated glutamate level and
oxidative stress response, reduce GABAergic inhibitory control, and
cause apoptosis in the hippocampal and medial prefrontal cortex
(Belleau et al., 2019). Previous studies have also shown that IL-1β and
TNF reduced serotonin levels by activating serotonin transporters,
ultimately causing a depressive state (Zhu et al., 2006; Malynn
et al., 2013). Furthermore, pro-inflammatory cytokines can affect
synaptic plasticity and neurogenesis by reducing the expression
of brain-derived neurotrophic factors, resulting in structural and
functional alteration of the brain (Calabrese et al., 2014). Cortical
neural circuits involved in emotion and stress regulation trigger
depression under the above triple stimuli (Fakra and Marotte,
2021). The over-active HPA axis, which is wildly associated with
depression, can also be induced by pro-inflammatory cytokines.
Adzic et al. (2015) have already shown that depressive-like behavior
caused by lipopolysaccharide-inducing peripheral inflammation
in rats emerges from HPA axis activation and sex-specific
alterations of hypothalamic molecular signaling. Interestingly, it is
found that MDD can in turn trigger pro-inflammatory shifts in
monocyte subsets and decrease the expression of steroid signaling-
related genes (Hasselmann et al., 2018). Under stress, upregulated
calcium/calmodulin-dependent protein kinase II in the hippocampus
will promote the transcription and expression of cyclooxygenase-2,
enhance the level of the pro-inflammatory factor prostaglandin E2,
and aggravate RA joint synovial inflammation (Vallerand et al., 2019).
Furthermore, depression is associated with the overactivation of the
sympathetic nervous system (SNS; Bucciarelli et al., 2020). It has
been demonstrated that RA patients frequently have an unbalanced
autonomic nervous system, with decreased parasympathetic and
increased sympathetic tone (Koopman et al., 2011). In a murine
model of lymphoproliferative disease, the SNS induces apoptosis
in immunosuppressive CD4(+) Foxp3(+) regulatory T cells, which
suggests overactive SNS driven by depression can lead to RA via
peripheral immune activation (Wirth et al., 2014).

3.2. Signal pathways

In the bi-directional feedback between RA and depression,
the transduction of immune and inflammatory signals inside and
outside cells is mainly completed by JAK/STAT and MAPK signal
pathways. JAK/STAT is a rapid membrane nuclear signal module
composed of transcription factors of the Janus kinase family and
the STAT family, which regulate the pathological and physiological
processes of RA by mediating interferon (Villarino et al., 2017).
The JAK/STAT pathway is driven by pro-inflammatory cytokines,
leading to elevated expression of the matrix metalloproteinase
gene, accelerated chondrocyte apoptosis, and decreased apoptosis
resistance in inflamed synovial tissue, which plays a critical role in
the development of RA (Malemud, 2018). Cytokines can also activate
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FIGURE 2

Pathology of interaction between RA and depression. RA immune tolerance imbalance induces abnormal expression of inflammatory mediators, activated
peripheral inflammatory signals enter the brain through humoral and neural pathways. CNS inflammation is induced, as are overactivation of HPA,
changes in brain structure and function, upregulation of glutamate levels, reduced GABA expression and brain-derived neurotrophic factors, enhanced
oxidative stress, and increased ROS levels, leading to depression. In the two-way feedback between RA and depression, the transduction of immune and
inflammatory signals in and out of cells mainly involves JAK/STAT and MAPK signaling cascades. In addition, central sensitization enhances pain perception
and aggravates depression under the stimulus of chronic inflammation in RA. Oversensitivity caused by depression in turn exacerbates pain, creating a
vicious circle between RA and depression.

indoleamine 2,3-dioxygenase in glial cells by stimulating STAT1,
leading to a reduced source of serotonin production and subsequent
depression (Yan et al., 2018). MAPK is a group of threonine/serine
protein kinases that transduce extracellular stimuli to the nucleus.
In RA, inflammatory factors activate the MAPK signaling pathway,
causing synovial tissue proliferation and joint destruction. It can also
accelerate the clearance of serotonin in synapses via the p38 MAPK
signaling pathway, enhance glucocorticoid resistance, cause synaptic
plasticity imbalance, and ultimately lead to depression (Malemud and
Miller, 2008).

3.3. Oxidative stress

Oxidative stress is a pathological state of redox imbalance caused
by increased production of reactive oxygen species (ROS) and/or
decreased antioxidant capacity (Salim, 2017), which produces free
radicals that act as oxidants and inflammatory mediators involved in
RA pathology. Excessive ROS in RA patients can reduce the function
of free radical enzyme defense systems, lead to a rapid increase in
free radical levels, aggravate weakening effects on the hippocampus,
amygdala, and cortex connection, and eventually accelerate the
occurrence of depression (Bala et al., 2017; Salim, 2017). Alouffi
et al. (2018) found that compared to patients with RA alone, levels of
carbonyl (a protein oxidation marker mediated by ROS) were higher
in patients with RA and depression. It is speculated that inhibiting the

process of oxidative stress in RA will help to reduce the probability of
RA-associated depression, or alleviate the degree of depression.

3.4. Central sensitization and pain

Pain is not only the leading cause of the medical behavior of RA,
it is also strongly associated with the occurrence of depression (Lwin
et al., 2020). Recent studies have shown that the pain symptoms in
RA are co-regulated by both the peripheral nervous system and the
CNS (Harth and Nielson, 2019). In the pathological process of RA,
adaptive and innate immune systems are activated, producing a series
of inflammatory mediators. Then, neutrophils, T lymphocytes, and B
lymphocytes are driven into the synovium, leading to local synovial
inflammation. In the inflammatory environment, fibroblast-like
synovial cells secrete nerve growth factors and upregulate the release
of substance P, neuropeptide, kinin, IL-6, TNF, and other molecules,
sensitizing the nociceptor terminals of inflammatory periarticular
tissues and primary afferent neurons, resulting in the production
of pain (Walsh and McWilliams, 2014). Central sensitization in the
spinal dorsal horn of the cerebrospinal fluid expands and enhances
pain perception in the sensory area. Remodeling of inflammatory
joint nerve fibers may also contribute to the generation and
maintenance of arthritis pain (Gonçalves Dos Santos et al., 2020).
Inflammation, the central source of pain in RA, is also closely
related to non-inflammatory factors. Researchers have revealed
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that cytokines can directly cause central sensitization through the
nociceptive nervous system, and reduce the pain threshold, resulting
in persistent pain (Schaible, 2014; Sebba, 2021). Although there is
no direct correlation between depression and central sensitization,
patients with depression are more sensitive to psychological and
physical pain than patients without depression (Conejero et al., 2018;
Figure 2). In RA patients, chronic inflammation impairs physiological
stress resistance and effective coping behavior, leading to depression.
Hypersensitivity caused by depression will also undoubtedly aggravate
pain, and indirectly promote the deterioration of RA. Clinicians
should be mindful that anti-depressants is considered if pain
symptoms persist after early, standardized, combined DMARDs,
NSAIDs, and GC treatment, if patients have achieved remission but
still experience joint pain based on the DAS28 score (Zhang and Lee,
2018).

4. Biological therapies for
RA-associated depression

The treatment of depression mainly includes drug therapies,
psychological intervention, and comprehensive nursing. In a study
conducted by Yasuoka et al. (2021), the depressive symptoms of RA
patients in remission (DAS28 score < 2.6) could be significantly
improved by emotional support, but whether this applies to
non-remission patients remains uncertain. From this study, there
is general uncertainty about the efficacy of non-pharmacological
therapies for depression with RA. With the role of cytokines in the
pathological mechanism of RA-associated depression gradually being
discovered, the value of biological agents in the treatment of RA and
depression has become a hot research topic (Table 1).

4.1. bDMARDs

Variation in responses to conventional antidepressants is
a recognized limitation of evidence-based pharmacotherapy for
MDD. Shariq et al. (2018) reported that cytokine blockade
effectively improved the therapeutic efficacy of MDD patients with
immune dysfunction, which cannot be achieved by conventional
antidepressants alone. Another large-scale, self-controlled study
including 18,241 RA-associated depressed patients showed that 20%
to 40% of patients who received biologics improved their depressive
symptoms after 1 year. Patients with pre-existing depressive
symptoms who received biologics for the first time had a lower
rate of response to treatment (Matcham et al., 2018). In addition,
females, younger ages, and lower baseline HAMD scores were positive
factors for improving the response rate to biological disease modifying
anti-rheumatic drugs (bDMARDs; Miwa et al., 2018).

It should be noted that bDMARDs are not an absolute
advantage in the effect of RA-associated depression, some studies
have reached the opposite conclusion. A randomized controlled
trial involving 90 patients (Yayikci and Karadag, 2019) indicated
that bDMARDs were not better than conventional synthetic
disease modifying anti-rheumatic drugs (csDMARDs) for the
treatment of RA-associated depression. Compared with methotrexate,
leflunomide, and hydroxychloroquine, bDMARDs are associated with
high rates of depression, anxiety, and suicide in RA patients (Pinho de

Oliveira Ribeiro et al., 2013). These results showed that the efficacy
of biological agents for RA-associated depression is controversial, but
the specified types of biological agents are not clear in these studies,
which may be one of the reasons for the controversial conclusions. Of
course, there are also some studies on specific biological agents that
may provide more valuable evidence.

4.2. Anti-TNF

The levels of TNF in RA patients with depression generally rise
(Köhler et al., 2017; Enache et al., 2019). Compared with those who
do not respond to anti-TNF treatment, those who do respond to
it take a lower risk of depression (Deb et al., 2019). Accordingly,
depression may be a predictor of no response or a poor response after
3–6 months of anti-TNF or methotrexate treatment of RA. Infliximab
was the first anti-TNF drug used in RA. Early studies found that
infliximab could reduce disease activity and improve depression in RA
patients (Michelsen et al., 2017). In a 2020 systematic retrospective
meta analysis of four randomized controlled studies, infliximab did
not have any therapeutic effects on depressive symptoms in RA
patients (Bavaresco et al., 2020), and it even seemed to induce
suicidal tendencies in a subset of RA patients according to a French
retrospective cohort study (Thillard et al., 2020).

4.3. IL-6 antibody

IL-6 antibody may have a positive effect on mental health
in RA patients. Tocilizumab was the first humanized anti IL-6
receptor monoclonal antibody approved for treating RA refractory
to methotrexate or TNF inhibitors. The weekly use of tocilizumab
via subcutaneous injection has been widely claimed to improve
depression in RA patients (Figueiredo-Braga et al., 2018; Tiosano
et al., 2020). In contrast to tocilizumab, which targets the IL-6
receptor, sirukumab, and siltuximab directly antagonize IL-6 and
block its function. Two-phase double-blind placebo-controlled trials
to evaluate the efficacy of sirukumab and siltuximab in RA patients
with depression showed that both drugs could improve depressive
symptoms, even in patients who did not respond to RA treatment
(Sun et al., 2017). However, safety may be a considerably important
issue. In the phase 3 double-blind sirukumab study, the respective
incidences of adverse events and serious adverse events were 93.4%
and 7.4% (Takeuchi et al., 2018).

In summary, compared with non-biological therapies, the
efficacy of biological agents in RA patients with depression is
still controversial. They may even be associated with more severe
depression, anxiety, and suicidal tendencies. Moreover, biotherapies
may also lead to adverse effects such as tumors, abnormal blood
parameters, infection, and allergy. Hence, the value of biological
agents for the treatment of RA-associated depression requires further
research.

5. Conclusion and prospects

RA can be associated with various comorbidities, among which
depression has attracted much attention due to its high incidence
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TABLE 1 Biotherapies for RA-associated depression.

Research type Intervention Number of
subjects

Time Results Reference

Randomized control trial bDMARDS vs. csDMARDS 90 24 w bDMARDs were not superior to csDMARDs with regard to their effects on anxiety
and depression in patients with RA.

Yayikci and Karadag (2019)

Randomized control trial bDMARDs vs. MTX vs. LEF vs. HCQ 105 unclear RA with bDMARDs had the high rate of depression compared with MTX, LEF, and
HCQ.

Pinho de Oliveira Ribeiro et al.
(2013)

Self-control trial bDMARDS 18,241 48 w Depressive symptoms improved by 20%–40% after 1 year of biologic therapy, but
preexisting depressive symptoms at the time of receiving the first biologic may reduce
the chance of treatment response.

Matcham et al. (2018)

Retrospective study bDMARDS 152 24 w Younger patients with lower depression scores at baseline can achieve depressive
remission with bDMARDs.

Miwa et al. (2018)

Retrospective observational
cohort study

Anti-TNF 4,222 48 w RA patients who responded to anti-TNF had significantly lower risk of depression Deb et al. (2019)

Prospective cohort study Anti-TNF vs. MTX 1,326 48 w Depression was a strong negative predictor of disease remission in patients with RA
after 3 and 6 months of anti-TNF or MTX treatment.

Michelsen et al. (2017)

Systematic review and
meta-analysis

Infliximab vs. placebo 152 12 w There was no statistically significant effect of infliximab as an adjuvant treatment for
treatment-resistant depression.

Bavaresco et al. (2020)

Retrospective cohort study Infliximab 7,600 unclear Infliximab treatment increased the risk of adverse events of mental illness, and may
increase suicidal tendencies in RA patients.

Thillard et al. (2020)

Case control study Tocilizumab vs. non-biological
systemic treatments

82 4 w High IL-10 in RA is associated with an increased risk of depression, tocilizumab can
reduce depressive symptoms.

Figueiredo-Braga et al. (2018)

Multi-center, single-arm study Tocilizumab 91 24 w Tocilizumab treatment may be significantly associated with improvement
RA-associated depression.

Tiosano et al. (2020)

Note: This table summarizes research of bDMARDs for the treatment of RA-associated depression. HCQ, hydroxychloroquin; LEF, leflunomide; MTX, methotrexate; w, weeks.
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and seriousness. The etiology and pathological mechanism of
RA- associated depression are complex, in addition to somatic
symptoms, drugs, diet, and exercise habits, vitamin D deficiency,
Mg deficiency, abnormal testosterone levels, social support, and
RA disease activity itself may induce or aggravate the depression,
resulting in a vicious circle of “RA-depression-adverse outcomes-
social and economic burden”. Immune imbalance and inflammatory
stimulation are important pathological mechanisms leading to the
bidirectional association between RA and depression. Taking these
factors into consideration when choosing a treatment regimen will
help with disease remission. At present, some studies have attempted
to use biological agents for the efficacy of RA-associated depression,
but there is no consensus. Doctors should be alert to the possible
risks of biological agents. In the future, larger sample, multi-center,
higher-level evidence-based studies related to biologics are needed to
provide high-quality evidence for clinical decision-making pertaining
to biologics for treating of RA-associated depression.
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