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Editorial on the Research Topic
Surfacing best practices for AI software development and integration in
healthcare
Introduction

The evidence supporting the mainstream use of artificial intelligence (AI) software in

healthcare is rapidly mounting. Three systematic reviews of AI software randomized

controlled trials (RCTs) were published in 2021 and 2022, including 95 studies across 29

countries (1–3). In the United States (US), the Centers for Medicare and Medicaid

Services (CMS) is approving AI software systems for reimbursement through multiple

payment mechanisms (4). In the United Kingdom (UK), the National Screening

Committee is exploring the use of AI software in national cancer screening and has

awarded £90 million to prospective multi-center trials (5, 6). Two large, multi-hospital

studies showed the mortality benefit of early detection and treatment of inpatient

deterioration and pneumonia (7, 8). However, despite advances in technology and policy,

isolated success stories are not leading to efficient diffusion of validated AI software

across settings.

A key barrier preventing efficient translation of AI software to new clinical settings is the

lack of visibility into poorly characterized, yet critically important labor that Mary Gray and

Siddharth Suri call “Ghost Work” (9). Ghost work is broadly described as the invisible labor

that powers technology platforms. In healthcare, ghost work is carried out by front-line

clinical and administrative staff working beyond the contours of technical AI systems to

effectively integrate the technologies into local social environments. But while the

brittleness of AI software systems over time and across sites is broadly recognized (10,

11), health systems develop strategies largely in silos. To fill this gap, we invited teams

from health systems around the globe to contribute to the research topic “Surfacing Best

Practices for AI Software Development and Integration in Healthcare (12).” The research

topic was sponsored by Janssen Pharmaceuticals of Johnson & Johnson. In this editorial,
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we present a synthesis of the nine featured manuscripts and

highlight strategies used across settings as well as future

opportunities for development and partnership.
Methods

We conducted two primary analyses of the nine research topic

manuscripts to identify key themes. We then complement the two

primary analyses with details about the host institution, country,

model use case, manuscript objectives, and key takeaways.

In the first primary analysis, we mapped the topics described in

each manuscript to various stages of the AI software lifecycle. The

four stages are defined as follows. First, problem definition and

solution procurement describes the activities related to how

organizations identify and prioritize problems and then allocate

resources and personnel to pursue opportunities. Second, AI

solution development and adaptation describes the activities

related to how organizations either build technologies internally

or adapt externally built tools. Third, technical and clinical

integration describes the activities related to how organizations

integrate AI solutions into legacy information technology systems

and clinical workflows, roles, and responsibilities. Fourth, lifecycle

management describes the activities related to maintenance,

updating, and decommissioning of AI solutions used in clinical

care. Each research topic manuscript could be mapped to

multiple lifecycle stages.

In the second primary analysis, we reviewed biosketches,

organization websites, and professional social media pages to

map each research topic manuscript author to formal academic

training across disciplines. Due to the large number of

manuscript authors and broad range of formal training, we

grouped disciplines into seven categories: engineering, computer

science, and physics; statistics, biostatistics, and bioinformatics;

business and management; public health and economics;

biological or behavioral science; clinical doctorate; ethics or

bioethics. Each author could be mapped to multiple academic

disciplines.
Results

The research topic “Surfacing Best Practices for AI Software

Development and Integration in Healthcare” features 9

manuscripts with 73 authors from 7 institutions across 4

countries. Two institutions published two manuscripts each,

including The Hospital for Sick Children in Toronto, Canada

and University of Wisconsin in Madison, Wisconsin, USA. The

AI software use cases featured in the research topic include three

pediatric applications (hydronephrosis due to obstruction,

arrhythmia detection, and sleep-wake patterns in neonates), one

mental health application (suicide prevention), three general

adult applications (30-day readmission, inpatient deterioration,

and new-onset atrial fibrillation), and two geriatrics applications

(advance care planning, falls risk in the emergency department).
Frontiers in Digital Health 025
One research topic manuscript describes an organizational

governance framework that has overseen ten AI software

integrations, two decommissions, and one decision to not

integrate (Liao et al.). Additional information about the use cases

and key takeaways are presented in Table 1.
AI software lifecycle stages

The research topic features manuscripts that contribute

insights related to all four AI software lifecycle stages (problem

definition and solution procurement, development and

adaptation, technical and clinical integration, and lifecycle

management). Two manuscripts describe programs that span all

lifecycle stages, including the implementation of an AI quality

management system at University Medical Center in Ultrecht,

Netherlands and an AI organizational governance process at

University of Wisconsin in Madison, USA. Two manuscripts

present different frameworks for AI solution development,

technical and clinical integration, and lifecycle management. A

team from The Hospital for Sick Children in Toronto, Canada

presents an approach that adopts language from systems

engineering, while a team from University College London in the

UK presents an approach that adopts language from therapeutics

development (Assadi et al.). Two manuscripts present case

studies focused on technical and clinical integration, including an

adult deterioration model integrated at St. Michael’s Hospital in

Toronto, Canada, and a falls risk model integrated at University

of Wisconsin in Madison, USA (Pou-Prom et al.). Lastly, three

manuscripts present best practices related to specific lifecycle

stages. A team from The Hospital for Sick Children in Toronto,

Canada describes the use of AI software silent trials during

technical integration (Kwong et al.), a team from Stanford Health

Care in Palo Alto, USA describes reliability and fairness audits

during lifecycle management (Lu et al.), and a team from

Vanderbilt Health describes AI solution monitoring and updating

during lifecycle management (Davis et al.).
Team composition

In some ways, the research topic authorship teams are similar.

All manuscripts feature interdisciplinary teams at academic health

centers and graduate students and clinical trainees made significant

contributions as co-authors. All manuscripts include clinical and

technical expert co-authors. And lastly, all manuscripts build on

prior work from authorship teams who have previously

published AI solution validation studies.

In other ways, the research topic authorship teams are

heterogeneous. The smallest teams were a group of three

clinicians and informaticians at Vanderbilt Health who describe

AI software monitoring and updating challenges and a group of

four engineers, public health experts, and clinicians who describe

the AI software organizational governance model at University of

Wisconsin. The largest team was a group of twenty-seven
frontiersin.org
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engineers, bioinformaticians, managers, public health experts,

biological science experts, and clinicians who conducted

fairness and robustness audits of multiple models at Stanford

Health Care. All teams included experts with formal training in

at least three of the disciplines listed in Table 1 and two teams

included experts with formal training in six disciplines. Among

the 73 authors who contributed to the research topic, two

perspectives were unique. There was a single AI ethics expert

from The Hospital for Sick Children in Toronto, Canada and

there was a senior data scientist at University Medical Center

in Utrecht, Netherlands who is also a clinical microbiologist

who has implemented and audited laboratory quality

management systems.
Discussion

The research topic “Surfacing Best Practices for AI Software

Development and Integration in Healthcare” features a

remarkably diverse set of insights and learnings from teams

around the globe integrating and using AI software into practice

(12). Throughout the research topic, teams consistently describe

responses to unexpected challenges encountered in the transition

from conducting AI software research to translating a technology

into practice. The success of AI in healthcare hinges on the

ability to adapt and transition from research into routine clinical

practice. Sharing challenges, failures and describing promising

approaches that were implemented in real-world settings can

inform teams around the globe looking to advance the use of AI

software in healthcare.

Across the research topic, consensus emerged around three

important AI software integration practices. First, many teams

highlighted the importance of simulating AI software

performance in local, operational settings prior to initial use in

clinical care. One method discussed in multiple articles involved

the operationalization of a “silent trial,” during which bedside

clinicians are initially blinded to the AI software as it is

prospectively applied on operational data. While not novel,

consensus is emerging around the importance of this activity

(13–15). Silent trials can alert AI software developers to potential

patient safety risks, bias, or integration concerns prior to clinical

testing in a manner that minimizes risk to patients. Another

article described the creation of a synthetic clinical deployment

environment that anticipates real-world clinical decision making

(Harris et al.).

Second, many teams highlighted the importance of AI software

governance and management. Articles highlighted the importance

of transdisciplinary teams and the need to assign responsibility and

accountability to oversee AI software performance and appropriate

use. One team used international standards to create a quality

management system for AI software lifecycle management

(Bartels et al.). Manuscripts in the research topic build upon

existing frameworks and broaden the focus from AI software

manufacturers to humans within health systems who oversee AI

software used in clinical settings. The frameworks complement
Frontiers in Digital Health 0811
national efforts to equip the healthcare workforce to effectively

adopt AI (16).

Lastly, many teams highlighted the importance of ongoing AI

software monitoring and auditing. Some articles used existing

standards for evaluating AI, including Health Canada/FDA/

MHRA Joint Statement on 10 guiding principles for Good

Machine Learning Practices (GMLP), however real-world

experience led to additional recommendations, such as

emphasizing user engagement, utilizing a silent trial, and creating

downtime protocols. Another team described periodic reliability

and fairness audits that went beyond quantitative comparison of

AI software performance across demographic subgroups to also

include stakeholder interviews to better understand the impact of

the AI software.

While consensus emerged on the themes described above, the

research topic did surface divergent perspectives on the

importance of interpretability and explainability of AI software.

For example, the teams at University of Wisconsin and

University College London explicitly promote the use of

explainable models. One team explained that “a desire to ensure

we had an interpretable model further influenced our choice to

pursue regression rather than tree-based models (Engstrom et al.

).” The other team explained that “most AI models that operate

as “black-box models” are unsuitable for mission-critical

domains, such as healthcare, because they pose risk scenarios

where problems that occur can remain masked and therefore

undetectable and unfixable” (Harris et al.). This perspective

offers a contrasting view from prior work examining the use of

“black-box models” in clinical care (17), the limitations of current

explainability methods (18), and the approach of regulators at the

U.S. Food and Drug Administration (19). The research topic

exposes the urgent need for research and policies that help

organizations understand whether or not to prioritize AI software

interpretability and explainability.
Future directions

The research topic reveals five important opportunities to

advance AI software integration in health care, summarized in

Box 1. First, governments and health systems must invest in

building and sustaining transdisciplinary teams that manage AI

software integrations. Best practices did not emerge from the

heroic acts of individual scientists, but rather from

transdisciplinary teams of experts working with health systems.

These types of roles are often funded through health system

operations and require significant investment.

Second, health systems must broaden stakeholder engagement

throughout the AI software lifecycle. Unfortunately, only a single

instance of direct patient engagement was described in the

research topic, occurring at The Hospital for Sick Children in

Toronto, Canada. Otherwise, there was limited patient and

community engagement. And while the research topic authors

were diverse, there was minimal representation of legal and

regulatory experts and social scientists. These perspectives are

crucial to ensure that AI software integration aligns with
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BOX 1 Five recommendations that emerged from research topic manuscripts

1) Governments and health systems must invest in transdisciplinary teams that manage AI software integrations

2) Health systems must broaden stakeholder engagement to include patients, legal and regulatory experts, and social scientists

3) Practitioner and research community must standardize AI software integration definitions, processes, and procedures, as well as

communication approaches

4) Governments and health systems must establish durable, multi-stakeholder collaboratives to continue surfacing and disseminating

AI software integration best practices

5) Governments must fund programs designed to foster the adoption of well-validated AI software beyond highly resourced

academic health systems
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rapidly evolving regulations, and unintended consequences of AI

software integration and use are anticipated, identified, and

mitigated.

Third, there is an urgent need to develop and formalize

standard AI software integration definitions, processes, and

procedures as well as communication approaches (20). The

research topic features teams that used language from different

disciplines to describe AI software integration, including drug

discovery, systems engineering, and international quality

management standards. While it’s important to build upon

existing work across disciplines, the multiplicity of terms creates

unnecessary ambiguity and confusion. Precisely defined steps and

procedures need to be specified for rapid diffusion of more

mature best practices, such as the “silent trial”.

Fourth, durable, multi-stakeholder collaboratives are needed to

continue surfacing and disseminating AI software integration best

practices. Efforts that we are directly involved in to achieve this aim

are the Health AI Partnership (21) to disseminate best practices

across health systems and the development of AI software

reporting standards, including DECIDE-AI (22), CONSORT-AI

(23), STARD-AI (24), and SPIRIT-AI (25).

Fifth, the research topic highlights the importance of fostering

the adoption of well-validated AI software beyond highly

resourced academic health systems. Persistence of the status quo,

where AI software is best integrated within settings with the most

expertise, will undermine the potential benefit of AI software.

Business models and public sector programs must be designed to

enable academic health systems to support smaller under-

resourced settings that do not have the internal capabilities to

utilize AI software most effectively. One research topic manuscript

described a promising approach: “For smaller entities, such as a

single general practitioner, this effort [to establish an AI software

quality management system] seems unfeasible. In this situation,

complete dependence on the manufacturer is imaginable, making

it difficult to establish truly safe performance. Again, inspiration

can be found in the regional services of medical laboratories that

very often provide access to competences and resources for safe

application of diagnostics. Regional AI labs could provide services

for the development, acquisition, and quality control of AI/ML for

smaller healthcare institutes including general practitioners

(Bartels et al.).” Programs that test different approaches of

regional, multi-institutional support are urgently needed to ensure

equitable diffusion of AI software.
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Conclusion

The research topic “Surfacing Best Practices for AI Software

Development and Integration in Healthcare” successfully surfaced

best practices from 7 organizations across 4 countries. All teams

were based at academic health systems and had previously

published AI software validation studies. The research topic

features insights across the AI software integration lifecycle and

contributing authors represent diverse domains of expertise.

There was consensus around the importance of local evaluations

of AI software in a “silent trial”, establishing organizational

governance structures for AI software, and monitoring of

technologies post-integration. However, the research topic also

exposed limitations of current work and we present five

recommendations to further advance AI software integration

across settings. We hope our work informs AI software

developers and policy makers and contributes to future efforts to

broadly engage stakeholders in multi-institutional learning

collaboratives.
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Although many artificial intelligence (AI) and machine learning (ML) based algorithms

are being developed by researchers, only a small fraction has been implemented

in clinical-decision support (CDS) systems for clinical care. Healthcare organizations

experience significant barriers implementing AI/ML models for diagnostic, prognostic,

and monitoring purposes. In this perspective, we delve into the numerous and

diverse quality control measures and responsibilities that emerge when moving from

AI/ML-model development in a research environment to deployment in clinical care.

The Sleep-Well Baby project, a ML-based monitoring system, currently being tested

at the neonatal intensive care unit of the University Medical Center Utrecht, serves as

a use-case illustrating our personal learning journey in this field. We argue that, in

addition to quality assurance measures taken by the manufacturer, user responsibilities

should be embedded in a quality management system (QMS) that is focused on life-cycle

management of AI/ML-CDS models in a medical routine care environment. Furthermore,

we highlight the strong similarities between AI/ML-CDS models and in vitro diagnostic

devices and propose to use ISO15189, the quality guideline for medical laboratories, as

inspiration when building a QMS for AI/ML-CDS usage in the clinic. We finally envision

a future in which healthcare institutions run or have access to a medical AI-lab that

provides the necessary expertise and quality assurance for AI/ML-CDS implementation

and applies a QMS that mimics the ISO15189 used in medical laboratories.

Keywords: AI, machine learning (ML), clinical decision support, implementation, quality management system,

ISO15189

INTRODUCTION

Despite the promise of new digital technologies supporting a more data-driven healthcare system,
a significant gap exists between the high number of reported artificial intelligence (AI) and
machine learning (ML) based algorithms in academic research and the small number of successfully
implemented AI/ML-based clinical decision support (AI/ML-CDS) systems in clinical care. The
valorization of AI/ML algorithms into safe and valuable AI/ML-CDS tools is considered a
cumbersome process that requires broad in-depth expertise and experience in multiple domains
that transcend computer-science and data analysis (1–5).
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In 2017, the University Medical Center Utrecht (UMC
Utrecht), one of the largest academic teaching hospitals in
the Netherlands, started a hospital-wide innovation program to
explore if analyses of clinical-care data could be used for AI/ML-
CDS-aided personalized care. During this program, several
AI/ML-CDS tools were developed in-house and some in co-
creation with private parties. In this practice-oriented program,
an important lesson learned was the value of a multidisciplinary
approach including clinical experts, data scientists, end-users,
product/service designers, software engineers, (software) security
experts, ethicists, legal experts, financial/business development
experts, and change management experts (6). The program
evolved into the Digital Health department of the UMC Utrecht,
which focuses on accelerating the implementation of digital-
health technologies in clinical care for the benefit of our patients.

To support the AI/ML-CDS development process, an
innovation funnel geared toward product development for
use in clinical care was developed (6) and later served as a
blueprint for the development of a national AI innovation
tool by the Dutch Ministry of Health (7). The funnel
starts with idea generation and ends with implementation
in clinical care and transfer of responsibility to operational
management. It is divided into seven distinctive phases with
transition gates. In each phase, the relevant requirements for
the specific phase are addressed including the applicable EU-
laws and regulations, existing guidelines, and field standards
for AI/ML development, among which are the General Data
Protection Regulation (GDPR), Medical Device Regulation/in-
vitro Diagnostic Regulation (MDR/IVDR), ISO13485 (QMS for
the development of medical devices), and IEC62304 (software
development lifecycle).

The GDPR, MDR/IVDR, ISO13485 and IEC62304 guidelines
and standards are not explicitly developed for AI/ML-CDS
tools. Efforts are undertaken to develop standards for AI/ML
development (8) and numerous guidance documents exist on
how to report AI/ML clinical studies (9–13). Furthermore, in a
recent scoping review on guidelines and quality criteria for AI
prediction models, it is acknowledged that substantial guidance
is available for data preparation, model development, and model
validation, while software development, impact assessment,
and implementation have received less attention in scientific
literature (14). Inspiration for AI/ML-lifecycle management can
be gained from approaches such as CRISP-DM/ML (15–17) and
contemporary software practices such as DevOps and MLOps
(18, 19).

While using the national AI innovation tool as a standardized
product development procedure, we have added local AI/ML-
description standards, AI/ML-specific standards for version
control, AI/ML audits, risk assessments, and ethical assessments.
In addition, UMC Utrecht-specific templates and formats have

Abbreviations: AI, artificial intelligence; CDS, clinical decision support; CRISP-

DM, cross industry standard process for data mining; GDPR, general data

protection regulation; IVDR, in-vitro diagnostic regulation; MDR, medical device

regulation; ML, machine learning; NICU, neonatal intensive care unit; QMS,

quality management system; SaMD, software as a medical device; SOP, standard

operating procedure; SWB, sleep well baby.

been developed for business case analysis, stakeholder analysis,
patient and customer journey analysis, data descriptions, bias
risk, and so on. This way, in accordance with the core principles
of MDR/IVDR, UMC Utrecht aims to direct the AI/ML-CDS
development and implementation process toward a thoroughly
controlled standard operating procedure (SOP) to increase the
quality of the development process and its delivered products.

The Digital Health department has now progressed to
implementing AI/ML-CDS tools in clinical care and this sparked
a discussion on how to organize sustainable quality control
of AI/ML-CDS tools within the UMC Utrecht, including roles
and corresponding responsibilities of the user. ISO13485 and
IEC62304 are written from the perspective of the manufacturer
and are thus focused on development, implementation, and
post-market surveillance procedures of the manufacturer. These
guidelines appear less focused on the responsibilities of the user
and the implementation of AI/ML-CDS in clinical care. Proper
quality assurance requires involvement of both the manufacturer
and user.

It struck us that AI/ML-CDS tools, when used as a diagnostic
support system, share many similarities with clinical in vitro
diagnostic tests used in medical laboratories. For in vitro devices,
input material is urine, blood, or other materials, and the
machine is typically a CE-marked chemical analyzer. Likewise,
AI/ML-CDS input consists of data and the machine is a software
system. Elaborating on this viewpoint, it is our opinion that
ISO15189 for medical laboratories may serve as QMS blueprint
for operating AI/ML-CDS tools in clinical practice under the
MDRor IVDR. This is particularly true when used in conjunction
with IEC62304. The interplay between ISO15189 and IEC62304
for software as a medical device (SaMD) under the IVDR has
recently been discussed in a paper from our group (20).

In this perspective we illustrate our learnings regarding quality
management of AI/ML-CDS tools through an example from our
development pipeline, SleepWell Baby (SWB). After introducing
the SWB project and describing the development phase we
address life-cycle management questions that arose while
operationalizing SWB. When addressing these questions, we
illustrate how the organizational structure of medical laboratories
and ISO15189 can inspire healthcare institutes in building an
effective and sustainable Quality Management System (QMS) for
AI/ML usage in clinical care. Finally, in the discussion we provide
an outlook how quality management of AI/ML-CDS extends to
third-party AI/ML tools and settings outside healthcare institutes
other than academic teaching hospitals.

SLEEP-WELL-BABY

SWB started as a grassroots project winning the best innovation
price at Dutch Hacking Health 20191 It is an in-house developed
MLmodel intended formonitoring real-time sleep-wake patterns
in preterm neonates between 28 and 34 weeks gestational age2

For the untrained caregiver it is almost impossible to accurately

1https://dutchhackinghealth.nl/
2At the time of writing the bedside implementation of SWB is still in the process

of being clinically verified.
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assess the sleep-wake state of preterm infants (21). The added
value of real-time sleep-wake state monitoring comes from
adapting elective clinical management of these preterm infants
toward less disturbance during sleep periods. For a detailed
discussion we refer to Sentner et al. (22).

SWB Development Phase
SWB was developed following the UMC Utrecht product
innovation funnel. According to the MDR it is classified as
software as a medical device class 2A, and according to the
IEC62304 as category A. Being an in-house developed AI/ML-
CDS, it was developed in accordance with art. 5.5 of the MDR
where UMCUtrecht is both manufacturer and user. It is running
at the NICU of the Wilhelmina Children’s hospital (WKZ) in
Utrecht and ready for use in clinical impact studies addressing
how incorporating sleep-wake state information during clinical
care improves patient outcomes. Development was done by
a multidisciplinary development team consisting of a clinical
expert, several data scientists, ML engineer, user representative
and numerous experts in specific fields. During this development
process, quality standards including IEC62304, ISO14971, and
internal AI/ML standards were applied. Technical and clinical
validation was performed by comparing predictions against a
ground truth, namely sleep-wake state observations by a highly-
trained and internally-calibrated team of students according
to a standardized observation method (21). In Figure 1 an
overview is given of SWB development and implementation
at the NICU of the WKZ. The roles and steps in the
development phase are visualized on the left. Moving to the
right in the figure the roles and activities in the operational
phase are depicted. While transitioning to the operational
phase and transferring usage and maintenance responsibilities
of the SWB AI/ML-CDS tool to the clinical department, we
ran into questions related to SWB life-cycle management that
needed answers.

Who Is Responsible for the AI/ML-CDS
Device Configuration?
The SWB configuration was developed involving multiple
parties in the UMC Utrecht including the departments of
Information Technology (IT), Digital Health and Clinical
Physics. Each had a specific role in the development of
the device configuration. In summary, the IT department
provided the server and platform hosting the model, the
Digital Health department data-science team provided the ML
application code, and the Clinical Physics department was
responsible for real-time extraction of vital parameter data
from source instruments. Together with the Digital Health
department they arranged the data exchange between source
instrumentation, algorithm, and bedside monitor. Finally, they
provide the user interface on the bedside monitor for model
output. It has been decided that the Digital Health department
will serve as the manufacturer and the IT and Clinical
Physics departments will serve as subcontractors. The NICU
serves as the user. With this division of roles, accompanying
responsibilities were established and documented in SOPs and
service agreements.

The questions who is responsible for which part of the
configuration and who is the manufacturer are crucial in
this respect. As variations exist in how AI/ML-CDS tools
are configured and hosted, answers may vary per case. For
example, a device can be fully developed and hosted by a third-
party manufacturer, a UMC Utrecht AI/ML application can be
hosted by a third-party, a third-party AI/ML application can be
deployed on UMC Utrecht infrastructure, or any other variation.
Agreements between parties on for instance maintenance,
change management, and support during malfunction need to
be addressed using a risk-based approach. ISO15189 contains
several norms related to service agreements with suppliers (art.
4.6) and customers (art. 4.4).

Who Gives Clearance for the Use of SWB
in Clinical Practice?
The intended use of SWB was specified by the user, the
neonatologist involved. The neonatologist furthermore specified
the acceptance criteria and carries responsibility for clearance of
the SWB tool. Since clearance requires knowledge about both the
healthcare process as well as the AI/ML model performance and
its lifecycle, the clinician in charge can bear this responsibility
only in consultation with a data scientist who is aware of
the medical domain and can assess the device for model
performance and lifecycle-management requirements. ISO15189
contains clear guidance on assigning tasks and responsibilities
between employees (art 5.1).

The act of formal clearance for use needs to be repeated
at specified intervals once the device is in use as part
of the regular review cycle and after specific situations in
which the performance of the device may be questioned, for
example after observed incidents, downtime due to power
failure, new releases of supportive software systems, or regular
maintenance. Within the UMC Utrecht a record of AI/ML-
CDS tools is kept, formal review periods are set, and standard
operational qualification procedures are determined using a
risk-based approach. ISO15189 contains clear norms for the
introduction of equipment (art 5.3.1), reagents and disposables
(art 5.3.2) and selection of examination processes (art 5.5.1)
which can be extrapolated to introduction of AI/ML-CDS tools
in clinical practice.

How to Ensure Safe Change Management
and Revision of SWB?
As part of the development process and before implementation,
an extensive risk analysis resembling a health failure mode
and effect analysis on the use of the device in the care
for patients within the NICU was performed. From this risk
analysis agreement was reached between the stakeholders on
for example forms of malfunctioning, impact of malfunctioning,
and accepted downtimes. ISO15189 contains clear norms on
preventive action (art 4.11).

As in-house manufacturer we applied best practices
from DevOps to minimize the chance of SWB malfunction
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FIGURE 1 | Overview of Sleep Well Baby. Pictorial representation of how SWB was implemented on the NICU of the UMC Utrecht. The algorithm was developed by a

multidisciplinary team. Currently, SWB is running bedside. It uses data from the NICU to provide sleep-wake states for preterm infants. The data scientist and software

engineer remain involved for troubleshooting, monitoring and continuous maintenance. The director of the NICU is responsible for SOPs regarding AI/ML use.

Governance of AI/ML-SaMDs can be done by a central AI lab with a QMS inspired by ISO15189 of the diagnostic laboratory.

and guarantee quick recovery3. Change management was
done using git4. Data version control (dvc5) was used to
ensure reproducibility and usage of the correct model in
production. SWB code was extensively documented to optimize
maintainability and transferability between contributors.

Unit and integration tests were written for application code
lowering the risk of SWB malfunctioning in clinical practice
and ensuring consistency between consecutive releases. Before
a change is released it first passes through mandatory review
enforced by pull requests. These steps allow semi-automated
and fast re-deployment of SWB. When complemented by
ISO62304, ISO15189 forms a highly suitable QMS for in-house
manufacturing of AI/ML-CDS tools (20).

SWB is an MDR class 2a device and carries limited

patient risk. Nevertheless, appropriate procedures and

3The DevOps movement is the current paradigm in software development,

combining development (Dev) and operations (Ops) teams for increased efficiency

throughout the software lifecycle (18). IEC62304 is sometimes believed to hamper

the use of contemporary software development practices such as DevOps (26).

However, we believe that agile DevOps change management practices can be

successfully combined with the MDR and IVDR, which prescribe the use of

generally acknowledged state-of-the-art technologies. Moreover, we are of the

opinion that activities prescribed by IEC62304 and the quality control measures

they enforce can be successfully incorporated within the DevOps philosophy.
4https://git-scm.com
5https://dvc.org

responsibilities must be assigned in the SOPs of the user

in case of SWB being temporarily out of service. In our

role as manufacturer this implies we have an agreement

with the NICU ensuring limited downtime. In practice this
means that the software engineer involved in development

remains involved to update SWB following the procedures

specified above. This specific data science and software

engineering knowledge was not transferred to the user.
One can imagine that for critical devices (class 3) the user
might require 24/7 support and appropriate arrangements

within the organization should be established. Again,

ISO15189 contains clear norms regarding the management
responsibilities in providing resources to ensure quality of

provided services (art 4.1.2).

What if Model Performance Starts
Degrading?
Predictive models can degrade over time due to their dependence

on input data from potentially changing environments or

self-induced feedback loops. Consequently, AI/ML models

require monitoring of model performance. During the
AI/ML risk analysis, the question was asked: what are the

chances of SWB performance degrading? Which process
mitigation measures can be applied? And what to do in case
of degradation?
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SWB is a locked algorithm6. Since it only depends on vital
parameters, major performance degradation was considered
unlikely in the risk analysis. Nevertheless, a change in hardware
collecting vital parameters or a changing patient population
could result in model drift. The user should be aware of this
risk and should be capable to identify it on occurrence. The
manufacturer should inform users of this risk in general and
specifically in relation to the context in which the AI/ML-
CDS tool is used. Building on best-practices from the MLOps
movement a monitoring dashboard was designed for SWB,
tracking the fraction of valid requests to the model service and
tracking distributions of predicted sleep-wake states over time.
These distributions serve as a proxy for model performance
in absence of a direct accuracy measurement (no other sleep-
wake state measurements are performed with regular intervals).
Monitoring model performance is, contrary to application
performance, not a requirement of the IEC62304, but its
relevance is acknowledged (23). In case of degrading model
performance, a decision should be made by the user to either
(temporarily) terminate the application and/or to re-calibrate
and re-validate SWB.

SWB monitoring and re-calibration of the model is done by
the Digital Health department since they have the appropriate
procedures and competencies. Again, monitoring and re-
calibration requires the expertise of data scientists. Furthermore,
since UMC Utrecht is the manufacturer and user, we have
access to the required data to perform monitoring. However,
for most manufacturers this will not necessarily be the case.
In this situation the manufacturer could make available tooling
for monitoring and re-calibration, or the user should set up
monitoring procedures themselves. Figure 1 on the right depicts
the continuous involvement of the data scientist in monitoring
the application.

Who Provides a Helpdesk for Users?
Sections How to ensure safe change management and revision
of SWB? and What if model performance starts degrading?
discussed malfunction and model degradation. This raises the
question, what if a user experiences a malfunction? Or what
if an incident involving SWB occurs? The user is responsible
for having appropriate incident management, in addition to the
post market surveillance responsibilities of the manufacturer.
Feedback of incidents affecting patient care is already covered
by existing NICU procedures. For malfunctions not directly
affecting the patient a SWB helpdesk was created. Here reports
can be filed and will be handled by the appropriate experts, such
as described in the previous section and illustrated in Figure 1.

6There is a distinction between locked and adaptive algorithms. Locked algorithms

are static functions. SWB is a static classifier, given the same input data it

will always return the same result. A locked algorithm can be re-calibrated or

updated manually in an ad-hoc fashion, for example when introduced to a new

ward or when a larger dataset becomes available. On the contrary, adaptive

algorithms are continuously updated through a (semi-)automatic process. In

theory, such algorithms can adapt automatically to a changing environment to

prevent model drift.

How Are Users Trained?
A prospective risk analysis performed by the user revealed the
risk of SWB being incorrectly used due to imperfect model
performance and raised the question: how can this be prevented?
SWB is a sleep-wake monitoring system intended primarily for
nurses to plan elective care (e.g., changing diapers). It differs from
other monitors-such as heart rate-in that it is not based on direct
physiological measurement but instead makes a prediction with
imperfect precision. In addition, it was developed for a particular
population of preterm infants, i.e., inclusion criteria. Nurses and
neonatologists should be aware of these limitations such that
they can use the device appropriately. The NICU should ensure
appropriate SOPs for SWB, including procedures on disregarding
SWB advice. Meanwhile, the manufacturer should provide user
instructions and guidance documentation specifying amongst
other things the intended use, mode of operation, intended
patient population and limitations in terms of sensitivity
and specificity. This is similar to instructions included with
medication or in vitro devices. User-employed specialists or the
manufacturer should provide training and guidance to end-
users when required. In the medical lab it is customary to
organize a training by the manufacturer with the introduction
of a new analyzer. After the introduction of the analyzer new
employees are trained internally by internal employees who
are competent in operating the analyzer. ISO15189 provides
clear norms on training programs for employees (5.1.5) and
monitoring and assessing competences of employees (5.1.6)
which can be extrapolated to AI/ML-CDS usage.

DISCUSSION AND CONCLUSION

In the context of SWB, we discussed a selection of quality aspects
and responsibilities that surface when operating AI/ML-CDS in
clinical practice. We showed how ISO15189 can be a source of
inspiration for a healthcare institute its QMS for operating and
in-house manufacturing of AI/ML-CDS tools. UMC Utrecht is
learning-by-doing, SWB is only a first example and the effort of
implementing quality measures to ensure safe use of AI/ML-CDS
tools in clinical practice is still in progress. Moreover, the AI/ML
field itself is still maturing and quickly evolving.

SWB is an in-house developed ML algorithm where UMC
Utrecht is both manufacturer and user. The extrapolation to
AI/ML purchased from a third-party is relatively straightforward.
Manufacturers should adhere to a QMS for production such
as ISO13485. Users of third-party devices are accountable for
responsible use of AI/ML-CDS, their QMS should include
processes for selection, clearance and performance verification,
appropriate SOPs, and service agreements with the manufacturer
relating to monitoring and change management. ISO15189 could
provide inspiration for this. It is of great importance that the user
has the appropriate expertise to audit (24) and validate AI/ML-
CDS tools or else a situation can arise where underperforming
and potentially harmful use of AI/ML in clinical practice is
not being identified (25). In case departments of a healthcare
institution are unable to provide this expertise themselves, it
could be bundled in a centralized AI laboratory.
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Our recommendations hold true for larger healthcare
institutions such as academic teaching hospitals who can
build the necessary resources and competences needed for
safe operation of AI/ML-CDS tools. For smaller entities, such
as a single general practitioner, this effort seems unfeasible.
In this situation, complete dependence on the manufacturer
is imaginable, making it difficult to establish truly safe
performance. Again, inspiration can be found in the regional
services of medical laboratories that very often provide
access to competences and resources for safe application of
diagnostics. Regional AI labs could provide services for the
development, acquisition, and quality control of AI/ML for
smaller healthcare institutes including general practitioners. Like
medical laboratories they could educate and assist healthcare
professionals in the selection and safe use of AI/ML.

Complying with an extensive user QMS is time-intensive,
expensive, and might appear to hamper innovation. However,
just like in vitro devices, an appropriate QMS is a necessity for
safe AI/ML use within healthcare settings. In spirit with the
MDR/IVDR it is quality first. Moreover, so far AI/ML has not
yet lived up to its promise to revolutionize healthcare. Although
we believe it has the potential to do so, we do not envision
a disruptive change in which dozens of AI/ML-CDS systems

will independently enter every department in the coming years.
Instead, it will more likely be a regulated introduction similar
in pace to the way new in vitro devices or medication are
introduced. We strongly believe an appropriate QMS will not
only guarantee safe use, but also helps accelerate implementation.
The lessons learned and identified quality criteria in this
perspective illustrate that ISO15189 can serve as an inspiration
and provide a starting point for organizations building their own
data-driven capacity to improve patient care.
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Background and Objectives: Machine Learning offers opportunities to improve
patient outcomes, team performance, and reduce healthcare costs. Yet only a
small fraction of all Machine Learning models for health care have been
successfully integrated into the clinical space. There are no current
guidelines for clinical model integration, leading to waste, unnecessary costs,
patient harm, and decreases in efficiency when improperly implemented.
Systems engineering is widely used in industry to achieve an integrated
system of systems through an interprofessional collaborative approach to
system design, development, and integration. We propose a framework
based on systems engineering to guide the development and integration of
Machine Learning models in healthcare.
Methods: Applied systems engineering, software engineering and health care
Machine Learning software development practices were reviewed and
critically appraised to establish an understanding of limitations and
challenges within these domains. Principles of systems engineering were
used to develop solutions to address the identified problems. The framework
was then harmonized with the Machine Learning software development
process to create a systems engineering-based Machine Learning software
development approach in the healthcare domain.
Results: We present an integration framework for healthcare Artificial
Intelligence that considers the entirety of this system of systems. Our
proposed framework utilizes a combined software and integration
engineering approach and consists of four phases: (1) Inception, (2)
Preparation, (3) Development, and (4) Integration. During each phase, we
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present specific elements for consideration in each of the three domains of integration:
The Human, The Technical System, and The Environment. There are also elements that
are considered in the interactions between these domains.
Conclusion: Clinical models are technical systems that need to be integrated into the
existing system of systems in health care. A systems engineering approach to
integration ensures appropriate elements are considered at each stage of model
design to facilitate model integration. Our proposed framework is based on principles
of systems engineering and can serve as a guide for model development, increasing
the likelihood of successful Machine Learning translation and integration.

KEYWORDS

Integration engineering, artificial intelligence, machine learning, digital health, system of systems

(SoS), human factors engineering (HFE), healthcare (MeSH)
Glossary of key terms used in this
manuscript

Artificial Intelligence (AI): A field that combines computer

science and robust datasets to solve problems. These systems

can be said to think like humans, act like humans, think

rationally, or act rationally (1).

Food and Drug Administration (FDA): Regulatory body of

the government responsible for maintaining health and safety of

humans and animals within the United States through

regulating food, drug, and technology (2).

Human Factors Engineering (HFE): A field of engineering

focusing on the design of technology tailored to people as

well as sociotechnical integration involving large, complex

systems such as healthcare (3, 4).

ISO/IEC/IEEE: Global product, technological, procedural,

and engineering standards set by globally recognized ISO/

IEC/IEEE organizations (5, 6).

Machine Learning (ML): A branch of artificial intelligence

and computer science that describes the ability of an

algorithm to “learn” by finding patterns in large datasets (7).

Software Development Lifecycles (SDLC): The various

software development frameworks that are used to structure

software development (8).

System of Systems (SOS): A system that is composed of

other systems and its “elements are managerially and/or

operationally independent” (9).
Introduction

Artificial Intelligence offers transformational opportunities in

medicine, but this potential remains limited by a translation gap

(10, 11). There are a variety of drivers that contribute to this

gap. First, restrictions in data sharing limit training, validation

and improvement of models (12). Second, lack of data and

model transparency limit clinicians’ ability to interpret the

model and evaluate it for relevance, accuracy and bias
02
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impacting their trust in the model and thereby limiting

utilization (12–14). Third, the absence of established model

verification processes impose further challenges (12–14).

Financial constraints, limited physician training in the field and

rules and regulations that often lag technological advances

further affect model integration (12–14). While the Food and

Drug Administration has proposed guidelines to regulate some

clinical models (15, 16), there are no current guidelines for

clinical model integration. The term “model integration” is a

more appropriate term than “implementation” as it recognizes

that Artificial Intelligence models need to be compatible with

the complex sociotechnical environments that characterize

healthcare. Integration is defined as “an act or instance of

combining into an integral whole” and refers to combining

several implemented elements to form a fully realized system

that enables interoperability between the various elements of the

system (9). Improper integration of new systems may lead to

additional costs, patient harm, damage to other systems, and

decrease in efficiency (9). To address this translation gap, we

present a systems engineering framework to guide the

development of models with explicit consideration of elements

that are crucial for successful model integration in healthcare.
Foundations

Systems engineering

Systems engineering is an interdisciplinary approach to

system design to ensure its interactive elements are organized

to achieve the purpose of the system (17, 18). The term dates

to the early 1940’s and Bell Telephone Laboratories where it

was used during World War II (19). The need for systems

engineering came from the discovery that satisfactory

components did not necessarily combine to produce a

satisfactory system (20). This was particularly a problem for

industries which produced complex systems at an early date,

such as communications and aircraft industries (20). Systems
frontiersin.org
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engineering forms the foundations of ISO/IEC/IEEE and is

currently applied in a wide variety of industries from

manufacturing to engineering and aerospace (18). A system is

defined as “an aggregation of elements organized in some

structure to accomplish system goals and objectives, is usually

composed of humans and machines and has a definable

structure and organization with external boundaries that

separate it from elements outside the system (4).” A Machine

Learning model should really be considered as a system

composed of the model and data sources, its users, and its

context. At higher degrees of abstraction, a system can be

composed of other systems to create a system of systems

(SOS), defined as a system whose “elements are managerially

and/or operationally independent” (9). The healthcare system

is a SOS (Figure 1) that results from the integration of the

medical system, the regulatory, legal, and ethical systems, the

financial system, the hospital system, the electronic health

records, and many others. Therefore, for applied Machine

Learning to become part of this existing SOS, it must be

effectively integrated. Integration is the key to viability of any

SOS (21) and achieving it requires effective collaboration
FIGURE 1

System of systems of healthcare and how applied machine learning
should integrate into these existing systems. Each of the elements
shown here influence every other element in an interconnected
network. Electronic Health Record (EHR); Artificial Intelligence/
Machine Learning (AI/ML).
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between these inter-operable systems (9). Integration,

therefore, is a process that is analyzed, planned, designed,

developed, executed, managed, and monitored throughout the

system’s entire lifecycle and not just a distinct phase at the

end (9).

Integration should consist of integrating the technical

aspects of the system as well the human-system aspects.

Technical integration of systems ensures that the various

technical aspects of the system can work together to achieve

the common objective (9). In the context of applied Machine

Learning, this requires the interoperability of the models with

the existing hardware and software infrastructure. To facilitate

the technical integration of software, modular programming

styles as well as Software Development Life Cycle (SDLC)

frameworks have mechanisms that require developers to

understand the existing systems and evaluate how the new

system fits within this existing system as they progress

through iterative development cycles. This is particularly

important in dynamic industries like healthcare. The human-

system integration aspect, also known as the sociotechnical

integration, refers to the integration of a system within the

social construct of the environment (9). Social demands as

well as the societal or cultural values can play a major role in

determining optimal performance of the entire system (22).

Sociotechnical integration can be achieved through Human

Factors Engineering (HFE), which is a field of engineering

focusing on the design of technology tailored to people as

well as sociotechnical integration involving large, complex

systems such as healthcare (3, 4). The Systems Engineering

Initiative for Patient Safety model provides a framework for

integrating HFE in to healthcare to improve patient care

quality and safety (23). Currently in its third iteration, this

framework strongly advocates for a human centered design

approach to engineering various aspects of the health care

system such that the needs of patient and the people who care

for these patients are put at the center of the design process (23).

Within systems engineering, the domains of integration are

The Technical System, The Human, and The Environment and

the interactions between them which have been previously

described in literature (24) and summarized in Table 1. While

this framework for integration has been used in the industry,

it has not been applied to integrating Machine Learning in

healthcare.
Systems engineering in software
development

Systems engineering principles are applied in software

development. The SDLC defines the development process of

software (8). It also relates to the architecture of the software

and facilitates an understanding of the required resources for

the software (8). The use of agile software development
frontiersin.org
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TABLE 1 Domains of integration and the interaction between them.

Domains of
Integration

Definition

The Technical System “An aggregation of elements organized in some structure to accomplish system goals and objectives, is usually composed of humans and
machines and has a definable structure and organization with external boundaries that separate it from elements outside the system” (4)

Human “An individual, a group of individuals, or organizations which have connections to the system in the form of owners, users, operators,
managers, service providers, supplies, producers, or other stakeholders, who directly or indirectly have an interest in the system.” (9)

Environment “All the relevant parameters that can influence or be influenced by the system in any lifecycle phase.” (9)

System-Environment
interaction

A physical interaction occurs through technical interfaces while a non-physical interaction can occur through laws, regulations, policy,
market demands and political interests, which may influence or be influenced by the system (9).

Human-System interaction The physical, logical, or emotional relationship between the human and the system that can be influenced by or influence the system. HFE
largely aims to optimize this interaction (9, 25).

Human-Environment
interaction

Relationship between the human and the internal and external workplace or system environment. Some examples include organizational
attributes that may affect decision-making processes of humans, circumstances that may cause deviation from standard operating
procedures, impact of noise, temperature, illness, fatigue, interpersonal relationships, etc. can also influence the system or be influenced
by it (9, 25). HFE can also be used here to optimize some of these challenges.

HFE, Human Factors Engineering.
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techniques has facilitated software implementation but is

seldom used by healthcare Machine Learning model

developers. This approach also fails to recognize some of the

unique implications of applied Machine Learning in practice.

The purpose of SDLC has evolved over its 60-year history

from ensuring an understanding of what needs to be done to

focusing on structured development methods, to focusing on

product delivery (26). To achieve this, there needs to be a

balance between the structured and agile SDLC frameworks

(26). The evolution of these different life cycles has been in

response to the increasing complexity of software, the systems

for which new software are being designed, advancements in

hardware, and the widespread use of software in society.

Despite successful use of software globally, a strong emphasis

on time to market has led to the incomplete application of

many well-known SDLC recommendations, particularly those

of requirement gathering, planning, specifications,

architecture, design, and documentation (27). There are also

inherent limitations to each of the SDLC models that can

further contribute to poor software design (Table 2). In

addition to cost, technical concerns, need for workflow

alterations, privacy concerns, perceived lack of usefulness,

productivity loss, and usability issues have contributed to the

very slow uptake of healthcare software such as electronic

health record systems in United States (30).
Challenges of machine learning and
existing software development life cycle

There are multiple frameworks proposed for Machine

Learning development that essentially focus on context

understanding, data curation, data modeling, and production

and monitoring (31–34). Yet, despite relatively fast and cheap
Frontiers in Digital Health 04
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development and deployment of Machine Learning models,

they have been difficult and expensive to maintain and

integrate (35). This is in part due to existing challenges with

medical software and in part due to some unique Machine

Learning issues (35). Table 3 illustrates some of the Machine

Learning challenges that impact its development.
Challenges with machine learning model
integration into healthcare

Developing Machine Learning models for healthcare

imposes unique challenges that can impact successful clinical

integration. Some challenges relate to the social complexity of

medicine and others to the safety critical nature of medical

systems. Table 4 summarizes some of the described challenges

and gaps in clinical Artificial Intelligence models and the

health care environment that limit their use. For example,

health care data can be very noisy and as such, often subject

to data preprocessing. This preprocessing may result in

training and testing data that may not be representative of the

“real world” data that the model will experience in practice

(Table 3, M14; Table 4, C7). Variations in institutional

Electronic Health Record and the information in the structure

of this type of data also challenge model performance across

institutions (45).
Methods

A modified narrative review method was used to understand

(a) the challenges and gaps in integrating Machine Learning

models in health care, (b) challenges associated with Machine

learning models and current SDLC, and (c) principles of
frontiersin.org
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TABLE 2 Overview of current software development life cycle models and their limitations (8, 28, 29).

SDLC Overview Limitations

Classical
Waterfall

model

- Series of processes in succession without gap
- Foresees defect or fault
- Requires proper planning and well-articulated documentation
- “Characterize before the design”
- Used in safety critical systems where phases and processes are inter-dependent and there is a high

need for assurance with no tolerance for mistakes

- Not flexible
- Prototypes made late in the overall process
- Product delivery often delayed
- High risk and uncertainty
- Not suitable for complex and object-oriented

projects
- Not suitable for long and ongoing projects
- Not suitable for existing systems

Iterative
Waterfall

model

- Use iterations to prototype and refine the project’s requirements before proceeding with the
waterfall model for the rest of the development process

- Iteration is possible but predisposed to errors
and costly

- Not suitable for long term projects
- Difficult to gather requirements
- Changes in previous stages can cause big issues

in subsequent stages

Prototyping
model

- Leverage the use of prototypes to clarify and refine requirements
- May use prototype to iteratively build the finished project or simply use it as a demonstration of

what is being proposed as a solution

- Requires system modifications after
implementation

- Can increase complexity of the system
- Leads to incomplete applications

Evolutionary
model

- Requirements change over time and the initial design evolves with user interaction and input as
well as with new requirements

- Planning and design phase are incomplete
- Not suitable for incremental building
- Costly

Spiral model - Combination of top-down and bottom-up constructs
- Can be used with other models
- Breaks a project into smaller segments so simplify development and evaluation
- For systems when cost and risk assessment are key
- Also, when users are uncertain about their needs

- Costly
- Requires high expertise for risk analysis
- Risk analysis central to project success
- Not suitable for small projects

V-model - Focus on validation and verification—the product from each phase is checked and approved before
moving on to the next phase

- Very rigid
- Prototypes are available late in the

development phase
- Changes require lots of documentation

RAD model - Rapid, iterative design of small parts of the project to put into test and ensure project on track and
meeting requirements before pursuing the next iteration

- Agile software development falls in this category

- Depends on strong member performance to
identify requirements

- Only suitable for modular systems
- Requires very skilled developers with good

modeling skills
- Costly

SCLD, Software Development Life Cycle; RAD, Rapid Application Development.
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integration engineering from a systems engineering and human

factors engineering perspective. A narrative review method is

the searching of the literature with a specific goal in mind

where manuscripts are hand-selected for inclusion based on

the research questions (46). The ACM-DL, PubMed, and

IEEE Xplore databases were used for this narrative review

with the following search terms: (“All Metadata”:“machine

learning” OR “All Metadata”:“artificial intelligence” OR “All

Metadata”:“algorithm” OR “All Metadata”:“model”), (“All

Metadata”:“healthcare” OR “All Metadata”:“medicine” OR

“All Metadata”:“clinical” OR “All Metadata”:“health care” OR

“All Metadata”:“health”), (“All Metadata”:framework), (“All

Metadata”:development), and (“All Metadata”:“software
Frontiers in Digital Health 05
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development lifecycle”). The search was restricted to

publications in the last 5 years and original peer-reviewed

research and reviews. Duplicate results were removed based

on manuscript title, and relevant manuscripts were selected

based on abstracts. The selected manuscripts were then

reviewed, summarized, and synthesized to outline (a)

challenges and gaps in integrating Machine Learning Models

in health care, (b) challenges associated with Machine

learning models and current SDLC, and (c) principles of

integration engineering from a systems engineering and

human factors engineering perspective.

To address some of the challenges associated with Machine

Learning models and current SDLC as well as Machine
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TABLE 3 Summary of challenges associated with machine learning life cycle (35).

Aspects of software
Development

Features and challenges with Machine Learning development

Software Requirements - Uncertain requirements (conceptual description of the goal after applying Machine Learning systems; different data and different
application context would lead to different requirements) [M1]

- Quantitative measures such as accuracy define requirements with little regard to functional requirements (the exact desired
quantitative measures (e.g., accuracy) are not always known) [M2]

- Requirement validation requires a larger number of preliminary experiments, ideally with real data [M3]
- Requirement must consider the predictable degradation in performance of Machine Learning systems (must be degradation-

sensitive and adapt to degradation through ongoing training or re-training) [M4]

Software Design - Insufficient emphasis on the coupling of components (e.g., quality of data processing and performance of Machine Learning
models) [M5]

- Flexible detailed design with need for multiple, iterative experimentation to develop an effective model [M6]

Software Construction and Tools - Bulk of coding is focused on developing an effective Machine Learning model [M7]
- Debugging focused on improving model performance (need real data and often delayed until last stages) [M8]
- Debugging can take a very long time based on data size and complexity of a model [M9]
- Bugs can be hidden in the data [M10]

Software Testing and Quality - Hard to reproduce test results because of sources of randomness [M11]
- Testing output are often a range or probability based rather than a single value [M12]
- Quality of testing is highly dependent on the quality of the test case and testing dataset [M13]
- Good testing results cannot guarantee performance in production or generalizability (highly dependent on similarities of training/

testing datasets and the real-world data) [M14]

Software Maintenance and
Configuration

Management

- Expect performance degradation [M15]
- Require configuration management to keep track of varying models and associated tradeoffs, algorithm choice, architecture, data,

hyperparameters, etc. [M16]

Software engineering Process and
Management

- Overestimation of what Machine Learning can do leading to mismatch of expectation and reality [M17]
- Limited incorporation of domain expertise into the engineering and management process [M18]
- Sustained performance requires ongoing monitoring and planned evaluation to determine timing to retrain and to rectify mistakes

and unexpected consequences [M19]
- No standard guidance for the management of Machine Learning development [M20]

ML, Machine Learning.
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Learning models for the health care environment, we adapted

existing software development guidelines as well as principles

of systems engineering to develop our framework described

below. The framework was iteratively designed through

synthesis of the literature with expert input from the research

team in domains of human factors engineering, Machine

Learning, medicine, and software development. Consensus

was achieved on the final iteration of the framework which

was organized in keeping with steps in Machine Learning

model development. In the supplementary material, we apply

this framework to the design of an arrhythmia detection

model intended for clinical integration.
Results

We present a generalizable framework (Figure 2) that

identifies four phases in the development of Artificial

Intelligence models in healthcare: (1) Inception, (2)
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Preparation, (3) Development, and (4) Integration. Each phase

incorporates considerations from the key domains of

integration and systems engineering as well as the interaction

between them for an integrated SOS as we show below.

Outcomes from each phase while informing the phase that

follows, also provides feedback to previous phases, particularly

when there are new findings in a phase that were not

previously considered. The challenges outlined in Table 3 that

are addressed with our proposed model are indicated in [M#]

format while challenges from Table 4 are indicated in [C#] as

the features and steps are described. We have applied this

framework to an arrhythmia detection model and have

implemented this as a best practice at the Hospital for Sick

Children. This practical application is demonstrated in the

supplementary material. It is important to note, that the

successful integration of a system into an existing system also

requires ongoing maintenance and refinement which includes

detection of performance degradation, changing workflows

and policies, changing hardware and data acquisition, and
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TABLE 4 Challenges with machine learning models in healthcare.

Aspects of Machine Learning-models and the
healthcare environment

Gaps or Challenges

Context - Need to thoroughly understand the clinical data being used for model development (13, 36) [C1]
- Need models with impactful clinical utility (13) [C2]
- Need models that fit within the environment they are intended for (13, 37–41) [C3]

Data - Need access and availability to well labeled, high quality, large datasets (13, 14, 39) [C4]
- Need consistency in data collection techniques (13) [C5]
- Need to acknowledge and minimize inaccurate or incomplete data (13, 41) [C6]
- Need to ensure that model training/test data is representative of what the model will experience during

operation; consider pre-processing of data and its effect [C7]
- Need to identify, remove, and account for biased data (13, 14, 40, 41) [C8]
- Need to account for data shifts and their effect on model performance [C9]

Model validation and performance - Need to conduct and develop clinical validation studies (11, 13, 14, 37) [C10]
- Need to conduct clinical impact/outcome studies as Machine Learning metrics (accuracy, precision, etc.)

often do not map directly to clinical performance indicators (14, 37) [C11]
- Need model transparency (11, 39, 41) [C12]

Ethics and Regulation - Need regulation and safe use guidelines (14, 39, 42) [C13]
- Need privacy and cybersecurity regulations (39–41, 43) [C14]
- Need to screen for algorithmic biases (11) [C15]

Financial issues - Need adequate resources (hardware, expertise, software, etc. all in high demand, limited, and expensive)
to develop and integrate models (39) [C16]

Knowledge gap - Need users to have sufficient knowledge to interpret model output or compare different models (11, 39,
41, 44) [C17]

ML, Machine Learning.
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changing knowledge and familiarity with Artificial Intelligence

[M15, M19, M20]. This maintenance phase is not included in

our integration framework as this follows successful initial

model integration which is our focus.
Inception

Inception refers to the very first phase of model development

during which an appropriate use case and modelling approach

are identified. During this phase, specific considerations for the

Technical System include clear problem definition and clinical

applications [M1, C1 & C2], strategies, and techniques to

address the problem [M1], the kinds of data the model would

need and whether the data is available or can be made

available [M5, M13 & M14], sourcing the data, and whether

the data considered for training is similar to what would be

used in the intended environment [M5, M13, M14, C1-4, C7].

Close collaboration between clinicians (the domain experts and

future users), model developers, and data scientists is essential.

The optimal way of achieving this collaboration is through the

expertise of project managers, product owners, and business

analysts who specialize in gathering requirements, documenting

specifications, uncovering pain points, defining business key
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performance indicators [M1-4, M16, M18, C1-3, C10-11, C14,

C16, C17]. Given the need for a wide variety of expertise, close

collaboration of a multidisciplinary team is central to the

successful design and development of Artificial Intelligence

models for healthcare. Our proposed inception phase

incorporates integration considerations into the context

understanding phase of current Machine Learning model

development lifecycles.

The Human considerations during this phase include

identification of all stakeholders (clinicians, data scientists, and

modeling experts) and clear problem definition [M17, M18, C1

& C2]. As part of defining the problem, it is important to

identify existing human challenges with the problem (e.g., who

is affected by the problem, how and why), any previous

attempts at addressing the problem (e.g., what has been tried,

what has worked, what failed and why), and ensuring a

Machine Learning solution is suitable to the problem. Some

potential strategies to achieve these objectives at this phase

include stakeholder engagement, informal focus groups, and

immersion in the problem space. Early involvement of

stakeholders provides them with a greater understanding of the

limitations of Machine Learning as well as investment in model

evaluation, knowledge translation, integration, and monitoring

(4, 25). Similarly, Machine Learning model developers and data
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FIGURE 2

Proposed healthcare AI integration framework. Curved arrows show the progression through the integrated AI development process while the
straight arrows show feedback from each phase into a previous phase. The framework begins in the top left with Inception and moves down and
to the right, culminating in Integration.
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scientists can also gain insight into the nature of the medical

problem they are solving, as well as the unique features and

properties of the data they would analyze and the environment

they would be designing for.

Some Environmental considerations during this phase

include an understanding of environmental constraints, the

kinds of necessary hardware for the model training and

operation, and data storage. This assessment of the

environment can allow for more accurate estimates of cost as it

relates to the clinical integration of the model which can

facilitate estimations on feasibility of integration as well as

future evaluation of balancing measures and project costs

[C16]. Supplementary Table S1 illustrates the practical

application of this phase of our proposed framework as it

relates to the arrhythmia detection model.
Preparation

The Technical System related considerations during the

preparation phase ensure relevant data are consistently,
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accurately, and reliably acquired and labelled for model training

and evaluation [C4-7]. This is particularly important in clinical

data as high-quality labels require the expertise of clinicians

who are often restricted by availability. In addition,

disagreements between multiple clinicians labeling the data can

also introduce noise to the data and impact model training

[C4-5, C7]. Preliminary analysis is also done on the “real” data

to ensure it is suitable for the model as imagined [M3, M5, C1,

C7] as well as ensuring any systematic bias or inaccuracies are

identified and addressed [C8, C15]. This phase combines the

current model development lifecycle phases of data curation,

data modeling while also incorporating integration considerations.

Human considerations include the completion of a formal

needs assessment, as well as cognitive and workflow analysis to

identify specific needs and inefficiencies [M1, C2, C3]. User

requirements are further defined and clarified in this phase

through engagement with representatives from all stakeholders

[M1, M18]. This can be achieved through cognitive task

analysis, task analysis, workflow analysis, focus groups,

interviews, and simulations. This establishes expectations which

are calibrated during model development. Knowledge gaps
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https://www.frontiersin.org/articles/10.3389/fdgth.2022.932411/full#supplementary-material
https://doi.org/10.3389/fdgth.2022.932411
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Assadi et al. 10.3389/fdgth.2022.932411
among model users should be formally studied and identified to

guide the development of a knowledge translation plan in the

Development phase [C17]. This includes knowledge gaps in the

clinical field for which a model is being designed for.

Environmental considerations in this phase include an

evaluation of existing privacy and data security measures, as

well as ethical and policy regulations that may need to be

further developed to facilitate model integration and clinical

utility. Supplementary Table S2 illustrates the practical

application of this phase of our proposed framework as it

relates to the arrhythmia detection model.
Development

During this phase, the Technical System (the model and its

associated user interface) is developed through iterative design,

testing, and statistical evaluations. This process should mimic

that of agile software design (RAD model) with rapid

modeling and testing of the model output evaluated against

clinical gold standards and with real production datasets [M6,

M7, M14, C7 & C11]. Other SDLC models can be more

expensive, slower to iterate and develop, and present fewer

opportunities for user and stakeholder engagement

throughout the development cycles. This rapid and iterative

development and testing would allow early and real-time

feedback on the performance of the model [M8-10, M13, &

M17] and generate performance matrices that can be used in

testing with users to determine acceptable ranges of

performance based on the clinical context of the application

[M2, & M12]. The results of these assessments and the

features of the model at each stage should be recorded to

allow future auditing as well as the establishment of a track

record and rigor that would be important in establishing

clinician trust [M16]. Model output should also be

reproducible through thoughtful selection of training and

testing data instead of random sampling [M11]. These

objectives can be realized through iterative retrospective

studies as well as prospective silent trials that can be coupled

with simulation testing to evaluate some of the system-human

interaction considerations. If explainable Artificial Intelligence

is required to achieve transparency of a model and facilitate

its clinical integration, the explanations should also be

developed during this time and evaluated together with the

technical system itself for both accuracy and relevance, as well

as usability and impact on decision making as described

below [C12, C16]. Other means of achieving transparency

include ensuring data properties (including pre-processing

techniques), algorithmic properties, validation testing results,

and other properties are well documented and disclosed to

users as needed [C12]. These would be most relevant at the

initial adoption phase of a model until its performance is

experientially understood by users. The production phase of
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current model development lifecycles correlates to this new

proposed phase.

The technical system is also refined based on considerations

of the Human which involve a variety of formative and

summative assessments that ensure user centered design and a

robust knowledge translation strategy. Simulations and other

human factors assessments should be used during this phase

to evaluate the model’s fit within the cognitive schema of

users and their existing or proposed workflow. These

investigations allow for further improvements to the model.

Based on the stage of the model development, simulations of

varying fidelity, from low fidelity tabletop activities to evaluate

workflow and the model’s user interface, to high fidelity in

person simulations done in near-live environments with

potentially real or realistic patient data and scenario can be

conducted. Another opportune moment to understand

relevant interactions is during silent trials where the model is

run on real data, but its output is not made visible to the

clinicians providing direct patient care. At the same time, the

model can be made available to off-service clinician

representatives from the previously defined user groups, and

their interactions with the tool as well as its effect on their

decision making, workflow, efficiency, accuracy, team

dynamics, and much more can be studied and evaluated [C3].

The results of such a study can be fed back to the system

developers to further optimize the system as well as used by

policy makers and HFEs to refine the environment, training

materials, education sessions, policies and much more.

Depending on the complexity of the system and the fidelity of

the simulation, these studies should be repeated until there is

consistency and satisfaction in the performance of the SOS.

It’s important to note that through these simulations, broader

user engagement can be achieved which would serve as a

medium through which the stakeholders are made familiar

with a tool that is under development as well as the ways in

which it is being proposed for use clinically [M17-19, & C16].

The Environmental considerations during this phase ensure

the development and security of software and hardware that

facilitate optimal model operation within its intended

environment. Infrastructure is also evaluated and optimized

for various failure modes, inefficiencies, and instabilities.

Necessary policies, regulations, and rules of engagement with

the model, as well as ethical and privacy guidelines would

also be developed and evaluated during this phase of model

development [C13, C14]. Supplementary Table S3 illustrates

the practical application of this phase of our proposed

framework as it relates to the arrhythmia detection model.
Integration

The Technical System at this phase should be performing

optimally for its intended problem, stakeholders, and
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healthcare context. During this phase, the model is launched for

a prospective clinical evaluation [C10] and further refined based

on live performance and user feedback [M19]. These

prospective clinical evaluations should be subject to the peer

review process to facilitate model adoption [C10]. Prospective

studies should also be conducted to evaluate any long-term

effects of model adoption (e.g., performance degradation

secondary to practice changes) [C10] as well as any

indications to suspect algorithmic biases [C14]. Finally, system

monitoring should be ensued. This includes monitoring

system metrics (e.g., server load, throughput, latency, etc.),

input metrics (e.g., number of missing values, failed event

detections, minimums, maximums, means, standard

deviations, central frequencies, etc.), and output metrices (e.g.,

null predictions, model confusion, rate of change, etc.). It

should also be evaluated for possible effects of data shift

secondary to practice driven changes in data which may be

due to the use of the model itself [M15, C9].

The Human considerations involve the launch of the

developed knowledge translation plan prior to model

deployment with ongoing just-in-time training when the

model is clinically deployed. User engagement in the previous

stages to develop knowledge translation strategies as well as

evaluate model performance and usability would have allowed

opportunities to calibrate user expectations to model

capabilities and performance. Nevertheless, a formal

knowledge translation process before the launch of the

technical system and during the integration phase will further

calibrate these expectations and establish a functional

understanding of the technical system’s operation and place

within the existing workflow [M1, M17, C17]. Ongoing cost,

workflow, and cognitive assessments are also leveraged as a

feedback mechanism to further refine the overall system [C2].

The Environmental considerations during this phase, in

addition to rolling out the developed and tested infrastructure

as well as policies, procedures, privacy, and ethical

considerations should also include an ongoing evaluation and

refinement of these in practice. Supplementary Table S4

illustrates the practical application of this phase of our proposed

framework as it relates to the arrhythmia detection model.

Upon the completion of this last phase, the Artificial

Intelligence system is expected to be fully integrated into its

intended healthcare environment and ready for clinical use.
Discussion

The healthcare environment is a complex SOS with multiple

integrated systems from a wide variety of domains. Recognizing

this complexity, our framework takes a systems engineering

approach to Machine Learning model design for integration.

The interdisciplinary approach promoted by systems

engineering ensures that the interactive components of a
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system are organized to achieve the purpose of the system (9,

10). For Machine Learning system design in the healthcare

space, utilizing clinical, legal, ethical, and human factors

expertise is as important as ensuring adequate Machine

Learning, data science, and infrastructure expertise in the

design and development process. Therefore, these aspects of a

healthcare Machine Learning system are incorporated from

inception and the involvement of experts from these different

disciplines are expected throughout the development lifecycle of

such systems in our framework. Involving project managers

and business analysts, for example, can further strengthen the

collaboration among different domain experts and facilitate the

development of a well-designed product. End-user engagement

is also emphasized in our framework as early and close

engagement with the development of Machine Learning

systems for healthcare will lead to improvements in system

performance and fit. Greater transparency from this early and

collaborative engagement, as well as user driven development

of model explanations contribute to end-users’ trust and

adoption of Machine Learning.

As the number of integrated models for the healthcare

domain increases and as users become increasingly familiar

with Machine Learning models in healthcare, the need to

integrate models designed in other clinical environments and

institutions will increase. Our proposed framework could be

used to evaluate these existing models for their fit into the new

SOS. Issues with performance due to differences in data

properties, fit in the workflow, usability, policies, environmental

space, hardware requirements and others can be identified

through the steps in this framework. Solutions to these issues

can then be developed and tested until deemed adequate before

the model is integrated into the new SOS.

Finally, the transformational opportunities that Machine

Learning, and more broadly Artificial Intelligence, offer the

field of medicine and healthcare, range from improving quality

and efficiency in healthcare, improving accessibility,

personalizing medicine, to advancing the field of medicine and

healthcare. These models are fundamentally different to the

current technology used in healthcare and they can not only

move research in medicine from a hypothesis driven model to

one that is data driven, but also modify clinical decision-

making to be more data driven as well (47). The rigorous

development and integration of these models is therefore

crucial in maximizing their beneficial impact on healthcare.
Limitations

The framework that is proposed here aims at guiding the

development of models for healthcare from their inception to

their integration into the intended clinical space. For systems

to be successful, they should also have a maintenance plan

which would allow for ongoing modifications to optimize the
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system within its broader SOS in response to rare scenarios that

may not have been encountered during the development phase

as well as changes in the SOS that occur over time. For Machine

Learning models, this is particularly relevant as the introduction

of new technologies and changing practice patterns can have

significant implications for the data based on which these

models operate, potentially leading to a deterioration in model

performance. The degradations in model performance should

be continuously monitored and acted upon to ensure ongoing

acceptable performance and reliability in their clinical

application. To ensure due attention to integration without

overlooking the important features in integration and

maintenance, the detailed description of a maintenance phase

for health care models was left out of this manuscript. We

intend on exploring and developing a comprehensive

maintenance phase in our future work. This will include

guidelines on monitoring and maintaining longitudinal key

performance indicators and model performance, as well as

establishing thresholds for model retraining, workflow

modifications, user re-training, and environmental

modification (e.g., new policies, technology, and laws).
Conclusion

Artificial Intelligence models in healthcare are technical

systems that need to be integrated into an existing system of

systems that also includes the human and the environment.

An integration engineering approach allows the creation of a

pragmatic framework that we believe will both address the

translation gap and inform and support regulatory approaches

to Artificial Intelligence models in healthcare.
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As more artificial intelligence (AI) applications are integrated into healthcare,
there is an urgent need for standardization and quality-control measures to
ensure a safe and successful transition of these novel tools into clinical
practice. We describe the role of the silent trial, which evaluates an AI model
on prospective patients in real-time, while the end-users (i.e., clinicians) are
blinded to predictions such that they do not influence clinical decision-
making. We present our experience in evaluating a previously developed AI
model to predict obstructive hydronephrosis in infants using the silent trial.
Although the initial model performed poorly on the silent trial dataset (AUC
0.90 to 0.50), the model was refined by exploring issues related to dataset
drift, bias, feasibility, and stakeholder attitudes. Specifically, we found a shift
in distribution of age, laterality of obstructed kidneys, and change in imaging
format. After correction of these issues, model performance improved and
remained robust across two independent silent trial datasets (AUC 0.85–
0.91). Furthermore, a gap in patient knowledge on how the AI model would
be used to augment their care was identified. These concerns helped inform
the patient-centered design for the user-interface of the final AI model.
Overall, the silent trial serves as an essential bridge between initial model
development and clinical trials assessment to evaluate the safety, reliability,
and feasibility of the AI model in a minimal risk environment. Future clinical
AI applications should make efforts to incorporate this important step prior
to embarking on a full-scale clinical trial.

KEYWORDS

dataset drift, bias, feasibility, stakeholder attitudes, artificial intelligence

Introduction

While artificial intelligence (AI) has gained much attention in healthcare, there is a

pressing need for standardization and quality-control measures to ensure a safe and

successful implementation into clinical practice. Premature deployment of machine

learning (ML) models without rigorous external validation and governance can lead
01 frontiersin.org
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TABLE 1 Major themes to explore during the silent trial before transitioning to the clinical trial phase. Each theme is associated with a suggested list
of questions that should be considered.

Themes Key questions

Dataset drift: Are there any changes between the training dataset and
patients evaluated in the silent trial?a

1. Are there any changes as to how data are defined and collected?
2. Are there any changes to patient demographics, clinical settings, or unexpected events (i.e.:
COVID-19) that would impact the patient population in which the model is applied?

3. Are there any changes in clinical practice such as indication, standard of care, or patient
preference, that would influence the data being collected?

Bias: Was the model trained on a generalizable dataset to ensure
fairness to all patients regardless of gender, race, etc.?

1. Which subset of patients benefit from the model?
2. Which subset of patients are harmed by the model?

Feasibility: Can the AI intervention be easily integrated within the
existing clinical workflow?

1. How much time does it take for the end-user (i.e.: clinician) to input the necessary variables to
generate a prediction?

2. How is the clinical workflow or duration of a clinic visit impacted with the use of the AI
intervention? Importantly, does it slow down clinical workflow without a clear benefit?

3. Is the user interface simple enough to be used at point of care with minimal or no training?
4. Are the model predictions easy to understand? Are the model explanations easy to interpret?
5. How much computing resources or infrastructure are required to maintain the AI model at
scale?

Stakeholder attitudes: Are there any concerns with respect to the use
of AI to augment patient care?

1. Does the AI intervention facilitate patient counseling, decision-making, or treatment planning?
2. Are patients comfortable with the use of AI interventions to support their care?
3. What are the patient’s priorities or goals of care regarding their condition and are they
addressed by the AI intervention?

aBased on Finlayson et al. (13).
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to discrepancies between reported and real-world performance,

which may ultimately lead to patient harm. A recent example of

this is the widely adopted Epic Sepsis Model that was found to

have poor discrimination and calibration in predicting the onset

of sepsis on external validation (1).

To mitigate these risks, several AI implementation pathways

have been described (2, 3). We have previously outlined a 3-

stage roadmap for the evaluation and validation of AI models

into clinical care (4, 5), which has been implemented at scale

at our institution. These phases include (1) exploratory model

development, (2) a silent trial, and (3) prospective clinical

evaluation. Several guidelines address the first and third

phases to help standardize reporting, enhance reproducibility,

and reliability of AI studies in healthcare (6–9). However,

there has been limited discussion of the role of the silent trial,

which evaluates the proposed model on patients in real-time,

while the end-users (i.e., clinicians) are blinded to predictions

such that they do not influence clinical decision-making. As

shown in Table 1, this phase is essential to establishing

feasibility and safety of AI models prior to proceeding with

clinical evaluation where the model influences patient care.

The purpose of this article is to highlight the lessons learned

from our experience in validating a previously developed model

within the context of the silent trial. Here, we present the

development of a classification model to predict obstruction in

hydronephrotic kidneys of infants using ultrasound images. The

current standard of care for infants with hydronephrosis,

defined as swelling of one or both kidneys due to inadequate

urinary drainage, involves serial ultrasounds typically every 3–6

months for several years. Patients may also undergo more
Frontiers in Digital Health 02
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invasive testing such as a diuretic renogram. While these

investigations may provide useful information, the trade-off

includes exposing patients to radioisotope and ionizing radiation

as well as painful procedures such as venous canulation and

urethral catheterization (10). Therefore, our aim was to develop

an AI model that could reliably distinguish between self-

resolving hydronephrosis vs. those that would ultimately require

operative management based on initial kidney ultrasound

images, thereby potentially reducing the number of invasive

tests and expediting surgical interventions when necessary.

Using our model as a case study, we illustrate how issues

related to dataset drift, bias, feasibility, and stakeholder

attitudes were identified and addressed. This article is intended

for clinicians and ML engineers wishing to gain a deeper

understanding of the rationale behind the silent trial and

provide insights as to how this phase serves as a bridge

between initial model development and clinical trials assessment.
Materials and methods

Exploratory model development

We have previously developed a deep learning classification

model to predict obstructive hydronephrosis in infants using

still images from kidney ultrasound (11). Using sagittal and

transverse images as inputs, the model would determine the

probability of obstructive hydronephrosis and highlight areas

of importance on the ultrasound images via GradCAM

heatmaps (12). Obstructive hydronephrosis was defined by
frontiersin.org
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whether a patient ultimately required operative intervention to

relieve the obstruction based on chart review. This tool was

intended to be used at point-of-care to support clinical

decision-making and patient counseling.
Silent trial

Following in silico/algorithmic validation, the AI model was

prospectively validated in the silent trial from August to

December 2020. During this period, the clinical team assessed

and managed patients as per current standard of care.

Concurrently, a separate research team recorded model

predictions based on ultrasound images obtained at the time

of the clinic visit. Additional patient demographics and the

clinical decision to proceed with surgery were later collected.

The clinical team was blinded to model predictions to avoid

influencing clinical decision-making. This “Silent Trial 1” data

was used to assess generalization of our initial model in a

prospectively collected dataset (Figure 1). The results from

Silent Trial 1 were then used to inform the refinement of the

original model and data preprocessing steps. Once

generalization was achieved on the Silent Trial 1 dataset, the

original and Silent Trial 1 datasets were combined for model

re-training. This updated model was then evaluated on

another prospectively collected dataset, “Silent Trial 2”. Model

performance was characterized by area under the receiver-

operating characteristic curve (AUROC) and area under the

precision-recall curve (AUPRC), along with sensitivity and

specificity found at a threshold set in the validation set

targeting 90% sensitivity, based on consensus among the

clinical expert group. The target of 90% sensitivity was chosen

as false negatives would be particularly detrimental. Moreover,

assessing model performance with a set threshold allowed us
FIGURE 1

Silent trial workflow for model development. Initially, the model was
trained and tested on a random 20% split of the initial dataset.
Following successful generalization in this random split, the model
was evaluated on new patients using prospectively collected data,
Silent Trial 1. From this dataset, we identified any weaknesses in
our model preventing it from generalizing successfully and adapted
our initial model to overcome these limitations. Once the model
generalized in this new set, the model was re-trained on both the
initial and Silent Trial 1 datasets. This updated model was then
tested on another prospectively collected data set, Silent Trial 2.
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to test our model in a more real-world scenario of decision-

making at a specific cut-off, rather than merely noting the

separation of obstructed vs. non-obstructed cases.

Given that AI in healthcare is still in its infancy, patient and

family attitudes toward AI integration in their urologic care are

not well understood. Therefore, it was essential to characterize

patient perceptions about these tools to ensure that they were

aligned with patient values and their role as a decision-

support tool was clearly defined. To explore how patients and

families would respond to the introduction of an AI tool into

their care, we probed their initial thoughts and values through

a standard post-visit follow-up questionnaire (Supplementary

Table S1). This survey also sought to understand other

patient priorities, such as the need for invasive testing,

hospital visits, risks of infections, and renal impairment,

however these were not the focus of this paper. Similarly,

provider attitudes on the value of this AI intervention were

assessed through clinical team meetings. We worked with

multiple stakeholders in designing the user interface of our AI

application. Feasibility was assessed by measuring the average

time from starting the AI application to obtaining the

probability of obstructive hydronephrosis based on user-

uploaded ultrasound images.
Results

The initial training set contained 1,643 kidneys (1,456 non-

obstructed/187 obstructed) from 294 patients (240 non-

obstructed/54 obstructed) (Table 2). From a random test set of

20% drawn from the initial training set, the model achieved an

AUROC of 90%, AUPRC of 58%, sensitivity of 92%, and

specificity of 69% (Table 3, row 1). This model was then

evaluated on the Silent Trial 1 dataset, which included 523

kidneys (387 non-obstructed/136 obstructed). This revealed a

significant drop in performance with an AUROC of 50%,

AUPRC of 26%, sensitivity of 100%, and specificity of 0%

(Table 3, row 2). The following sections highlight how the

silent trial enabled us to improve model performance and

clinical utility by systematically examining the model with

respect to dataset drift, bias, feasibility, and stakeholder attitudes.
Dataset drift

Through multidisciplinary discussions, we hypothesized

several reasons for this change in performance including a

shift in (1) age distribution, (2) distribution of laterality of

obstructed kidneys, and (3) a change in processing of the input

images (Figure 2). Indeed, patients included in the Silent

Trial 1 dataset were younger (35 ± 39 vs. 61 ± 92 weeks, p < 0.01,

Figure 2A), had predominantly right-sided obstructed kidneys

(42 vs. 36%, p < 0.01, Figure 2B), and were visually different
frontiersin.org
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TABLE 2 Baseline characteristics of each dataset.

Non-obstructed Obstructed Total

Variable Training Silent
Trial 1

Silent
Trial 2

Training Silent
Trial 1

Silent
Trial 2

Training Silent
Trial 1

Silent
Trial 2

Sex

Male 981 326 530 138 104 69 1,119 430 599

Female 247 61 106 42 32 6 289 93 112

Age groups

<2 years 1,025 359 561 171 128 71 1,196 487 632

2–5 years 143 28 72 9 6 0 152 34 72

>5 years 60 0 3 0 1 3 60 1 6

Ultrasound number

1 403 127 214 69 46 28 472 173 242

2 316 110 184 50 39 24 366 149 208

3 248 74 130 34 24 11 282 98 141

4 161 39 63 19 12 8 180 51 71

5 112 16 32 8 5 2 120 21 34

6 84 11 10 3 3 1 87 14 11

7 63 6 2 4 3 1 67 9 3

8 37 3 1 0 2 0 37 5 1

9 18 1 0 0 1 0 18 2 0

10 13 0 0 0 1 0 13 1 0

11 1 0 0 0 0 0 1 0 0

Ultrasound Machine

Philips 891 88 155 101 33 23 992 121 178

Samsung 34 59 125 2 21 17 36 78 125

Toshiba 448 229 347 69 48 32 517 277 379

GE 37 1 0 8 9 1 45 10 1

Acuson 23 0 0 2 0 0 25 0 0

ATL 17 0 0 5 0 0 22 0 0

Siemens 4 0 0 0 0 0 4 0 0

Outside 0 10 9 0 25 2 0 35 11

APD Group

<6 mm 113 157 284 6 1 0 119 158 284

6–9 mm 119 92 150 6 10 5 125 102 155

9–14 mm 190 69 131 29 34 7 219 103 138

>14 mm 187 64 70 139 90 62 326 154 132

Not measured 847 5 1 7 1 1 854 6 2

Kidney view side

Right 737 192 222 68 57 14 805 249 236

Left 719 195 414 119 79 61 838 274 475

Hydronephrosis side

Right 673 126 83 56 52 13 729 178 96

Left 635 143 275 106 61 61 741 204 336

Bilateral 148 118 278 25 23 1 173 141 279

Overall observations 1,456 387 636 187 136 75 1,643 523 711

Overall unique
patients

240 105 174 54 45 28 294 150 202

APD, anterior-posterior diameter.
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TABLE 3 Iterative model performance.

Row Train Test Model AUROC AUPRC Sensitivity Specificity

1 Original set Random 20%
from original set

Image only 0.90 (0.85, 0.95) 0.58 (0.39, 0.74) 0.92 (0.81, 1.0) 0.69 (0.63, 0.74)

2 Original set Silent trial 1 Image only 0.50 (0.50, 0.50) 0.26 (0.21, 0.32) 1.00 (1.00, 1.00) 0.0 (0.0, 0.0)

3 Original set Silent trial 1 Age and side covariates 0.51 (0.506, 0.52) 0.26 (0.22, 0.32) 1.00 (1.00, 1.00) 0.0 (0.0, 0.0)

4 Original set Silent trial 1 Age-ablated 0.57 (0.55, 0.59) 0.28 (0.24, 0.35) 1.00 (1.00, 1.00) 0.005 (0.0, 0.01)

5 Original set Silent trial 1 Side-ablated 0.54 (0.52, 0.55) 0.27 (0.22, 0.34) 1.00 (1.00, 1.00) 0.005 (0.0, 0.01)

6 Original set Silent trial 1 Revised data prep, with covariates 0.85 (0.81, 0.88) 0.67 (0.58, 0.75) 0.98 (0.95, 1.00) 0.32 (0.27, 0.36)

7 Original set Silent trial 1 Revised data prep, image only 0.84 (0.80, 0.88) 0.65 (0.57, 0.74) 0.99 (0.96, 1.00) 0.26 (0.22, 0.31)

8 Original set + silent trial 1 Silent trial 2 Revised data prep, with covariates 0.91 (0.88, 0.94) 0.52 (0.41, 0.64) 0.97 (0.93, 1.00) 0.54 (0.50, 0.57)

9 Original set + silent trial 1 Silent trial 2 Revised data prep, image only 0.92 (0.88, 0.95) 0.52 (0.41, 0.64) 0.99 (0.95, 1.00) 0.52 (0.48, 0.56)

Values reflect performance of data in the Test column. Model formulation described in the Model column, indicating iterative experiments performed to rescue Silent

trial performance. Sensitivity and specificity thresholds set in validation set targeting 90% sensitivity.

FIGURE 2

Dataset drift between our original training set and Silent Trial 1. (A) The shift in age to younger individuals in the Silent Trial 1 dataset. (B) The shift
between left and right-sided kidneys in which a larger proportion of right-sided obstructed kidneys were found relative to the left in the Silent
Trial 1 set. (C) The qualitative shift in images despite the same cropping and normalization procedures for both datasets.

Kwong et al. 10.3389/fdgth.2022.929508
even following the same preprocessing steps (Figure 2C).

Therefore, we postulated that these differences may explain the

precipitous drop in model performance.

To overcome the limitations of the original model in the

Silent Trial 1 dataset, we adapted the original model to

incorporate kidney laterality and patient age as covariates to

adjust for the dataset drift (Figure 3). With this approach, we

found a minor improvement in AUROC, although other

performance metrics remained unchanged (Table 3, row 3).

We then ablated each covariate by setting either all age or

laterality values to zero to evaluate the degree to which each

covariate impacted the model’s performance, with the

hypothesis that one may be more impactful than the other.

This procedure resulted in a small but significant increase in

model performance for each ablation (Table 3, rows 4–5).

We next turned to image preprocessing and found that the

original dataset included processed jpeg files, whereas the Silent

Trial 1 dataset included either unprocessed or processed png
Frontiers in Digital Health 05
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files. We first experimented with merely passing these images

through the same preprocessing steps and reading them into

the model. However, this had clearly not addressed the shift

in image formatting. Therefore, we experimented with adding

the additional step of saving our newly processed data as

jpegs files and re-reading them into the model in the same

format. This approach led to a tremendous boost in

performance on the Silent Trial 1 dataset, with an AUROC of

85% for the model with covariates and 84% for the image-

only model (Table 3, rows 6–7).

After addressing these dataset drift issues, we evaluated

these updated models on a third dataset, Silent Trial 2, to

confirm the generalizability of this approach and assess if

covariates should continue to be included. We found that

these models do indeed perform well on the Silent Trial 2

dataset, with an AUROC of 91% for the model

with covariates and 92% for the image-only model (Table 3,

rows 8–9).
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FIGURE 3

Original and updated models used to overcome dataset drift. (A) The original model used from the initial dataset. (B) Updated model with covariates
for age and kidney laterality, with the goal of overcoming the generalization failure observed on the Silent Trial 1 dataset.
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Bias

Next, we conducted a bias assessment of our model to

ensure there were no substantial differences in performance

when stratified by clinically relevant subgroups including

sex, side of hydronephrosis, ultrasound machine, and

patient postal code (Table 4). We find in all cases >90%

sensitivity for each subgroup, therefore supporting the

overall safety of our model. Specificity is far more variable,

however in all cases, we find it >50%, therefore every group

would benefit from safe and effective streamlined care with

this model.
Feasibility

To ensure that the AI intervention was appropriate for

routine clinical use, we considered whether the application was

simple-to-use and minimally disruptive to the existing

workflow. Feasibility was assessed by diverse stakeholders

including clinicians, nurse practitioners, trainees, computer

scientists, web developers, and patient representatives. The user

interface for the AI application was developed using an

iterative process involving all stakeholders to simplify

instructions, improve clinical utility, and protect patient
Frontiers in Digital Health 06
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confidentiality (Figure 4). The average time to generate a

model prediction from start-to-finish without prior training

was less than one minute. Model output is saved locally within

the computer that the program runs on and is analyzed

without sending any data over the internet, therefore data and

patient-specific findings remain confidential and secure.
Stakeholder attitudes

Understanding the views and perspectives of patients and

providers were essential to ethical integration of the AI

intervention. From the provider’s perspective, the clinical

team felt that this intervention would potentially augment

their clinical care by identifying patients at risk of requiring

surgical intervention for their hydronephrosis. These opinions

were aligned with the potential benefits previously outlined by

the clinical team during the model development phase (11). It

would also provide useful clinical decision support without

adding significant time to each patient visit.

A questionnaire on the use of AI in clinical care was

distributed to patients and their families after clinic visits to

explore whether they would be open to consenting to use of an

AI intervention and if they felt it could address their primary

concerns. Out of 44 respondents, 34 (77%) prioritized knowing
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TABLE 4 Bias assessment of our final AI model.

Variable AUROC AURPC Sensitivity Specificity

Sex

Male 0.91 (0.87, 0.94) 0.52 (0.42, 0.65) 0.97 (0.93, 1.00) 0.53 (0.49, 0.57)

Female 0.96 (0.91, 1.00) 0.38 (0.12, 0.80) 1.00 (1.00, 1.00) 0.59 (0.50, 0.68)

Side of hydronephrosis

Left 0.88 (0.84, 0.93) 0.57 (0.45, 0.72) 0.97 (0.92, 1.00) 0.48 (0.43, 0.53)

Right 0.96 (0.91, 0.99) 0.61 (0.39, 0.86) 1.00 (1.00, 1.00) 0.60 (0.50, 0.71)

Both 0.98 (0.96, 0.99) 0.08 (0.05, 0.30) 1.00 (1.00, 1.00) 0.58 (0.52, 0.63)

Ultrasound machine

Philips 0.89 (0.83, 0.95) 0.50 (0.31, 0.71) 0.96 (0.84, 1.00) 0.53 (0.46, 0.62)

Samsung 0.92 (0.86, 0.96) 0.50 (0.30, 0.71) 1.00 (1.00, 1.00) 0.58 (0.50, 0.66)

Toshiba 0.93 (0.86, 0.97) 0.53 (0.39, 0.72) 0.97 (0.90, 1.00) 0.53 (0.48, 0.58)

Postal code

K 1.00 (1.00, 1.00) 0.86 (0.67, 0.91) 1.00 (1.00, 1.00) 0.50 (0.24, 0.82)

L 0.90 (0.85, 0.95) 0.49 (0.37, 0.65) 0.95 (0.89, 1.00) 0.58 (0.52, 0.63)

M 0.91 (0.86, 0.97) 0.57 (0.35, 0.76) 1.00 (1.00, 1.00) 0.50 (0.45, 0.56)

N NA NA NA 0.75 (0.25, 1.00)

P 1.00 (1.00, 1.00) 0.86 (0.00, 0.91) 1.00 (1.00, 1.00) 0.57 (0.24, 0.89)

Performance of our model was stratified by sex, side of hydronephrosis, ultrasound machine, and postal code in our Silent Trial 2 set.
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whether their child would require surgery as the most important,

which was aligned with the primary objective of the AI

intervention. Majority of respondents (68%) supported the use

of AI in their care, while those who did not cited concerns that

it would replace the physician-patient interaction or insufficient

knowledge regarding AI itself. As a result, this questionnaire

helped identify areas to educate patients and their families

regarding how the AI intervention would act as a clinical

adjunct to facilitate personalized and data-driven care.
Discussion

AI integration in healthcare is growing exponentially with a

diverse range of applications, from aiding diagnosis and

prognosis, to supporting treatment planning and patient

counseling. As more AI applications move into the clinical

space, researchers have an ethical obligation to evaluate these

interventions in a minimal risk environment to ensure their

safety and efficacy. This is the primary motivation behind the

silent trial. Here, we demonstrate the iterative changes applied

to our predictive model for obstructive hydronephrosis and

the resulting improvements in its accuracy and generalizability.
Why is a silent trial warranted?

AI models trained on retrospective data alone cannot reliably

function in real-world clinical settings as they are prone to dataset
Frontiers in Digital Health 07
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drift, which may include variations in how data is defined and

collected, or potential changes in the standard of care if

training cohorts span long periods of time (13). Use of real-

time data may present additional challenges such as delays in

preprocessing data or incomplete data at a given time-point.

Other considerations include establishing a decision pathway

and legal framework (14). A silent trial also facilitates an

assessment of bias to ensure social disparities are not

accentuated by the model. In this study, failure to adequately

assess and account for bias may result in overtreatment of

certain patient subgroups due to an inappropriately high

predicted risk of obstructive hydronephrosis. We compared

model performance with respect to sex, side of hydronephrosis,

ultrasound machine, and patient postal code. Taken together,

the silent trial enables clinicians and researchers to explore

these issues in-depth without putting patients at risk of

unvalidated predictions (15).
How did the silent trial improve the
applicability of our model?

While the first iteration of our model demonstrated

excellent discriminative capability on a retrospective

exploratory dataset (AUROC 0.90), it performed poorly on

real-time data (AUROC 0.50). By validating our model in a

silent trial instead of a clinical trial setting, we were able to

recognize this performance drop without subjecting patients

to unnecessary harm due to misclassification. Through careful
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FIGURE 4

User-interface for image-only model. A basic user-interface was developed to allow clinicians and researchers who are not computer scientists to
test the model. (A) The user-interface with no data input, in which a user can specify a sagittal and transverse ultrasound image file of the kidney,
along with an option for the program to further crop the image and where to save the output. The lower-half of the interface is blank at this point, as
it will display the uploaded images. (B) This view now shows the user-interface once the model has run. This displays the probability of surgery, the
original input images following the preprocessing procedure, and a gradient-based class activation maps to the image to indicate which part of the
image is most important for the prediction.
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consideration of dataset drift, potential sources of bias, and

inclusion of other clinically relevant features, the model

accuracy improved on the Silent Trial 1 dataset (AUROC

0.85) and remained robust when applied to the Silent Trial 2

dataset (AUROC 0.91). Another benefit of the silent trial is

the potential to reveal discrepancies between the AI model

and the current standard of care, which may highlight

opportunities for quality improvement and promote

hypothesis generation.

The silent trial also enables investigators to evaluate whether

the proposed AI model is appropriate for real-world clinical

applications. In contrast to performance evaluations which

look at objective metrics, a feasibility assessment helps ensure

adequate buy-in from all stakeholders. This is an essential

consideration because even the most accurate AI model

cannot provide meaningful clinical benefit if it is too time-

consuming, difficult to use, not clinically relevant, or not

endorsed by patients and physicians. In the present study, we

identified nearly one-third of patients and families who were

hesitant regarding the use of AI interventions to support

patient care. Chew et al. found that patient concerns about AI

integration were primarily attributed to a lack of trust in data

privacy, patient safety, maturity of AI interventions, and risk

of complete automation of their care (16). These findings
Frontiers in Digital Health 08
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underscore the need for more patient engagement prior to

recruiting patients for an AI clinical trial and identifies key

issues for patient education (e.g., AI will not replace their

clinician, patients will still be seen by clinicians, etc.).

Therefore, incorporating both patient and provider feedback

into the design process can help build trust and strengthen

the partnership between developers and end-users (17).

Similarly, measuring patient-reported outcomes and health

systems benefits in conjunction with traditional performance

metrics may provide a more holistic assessment of how AI

models may improve clinical practice (18). For example, a

ML-based model to screen urine samples was accepted by

providers because of the significant time and cost-savings

without compromising care (19). Overall, the silent trial can

not only refine model performance, but also facilitate a

transition into clinical practice and better tailor a prospective

clinical evaluation (3, 20).
Tips to successfully implement the
silent trial

Several factors outlined below are vital to the success of

implementing a silent trial. The clinical team should manage
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sufficient patient volumes for the proposed clinical question to

accrue enough patient data for the silent trial within a

reasonable timeframe. The research team should have

appropriate AI expertise to adequately assess the proposed

model across the four themes of the silent trial. Strong

partnerships between the clinical and research teams are

essential and infrastructure should be established to facilitate

collaboration and regular meetings between the two groups. The

host institution should also be capable of storing data and the

final trained model. Finally, the project should be championed

by a clinical expert who can secure funding and advocate for

the implementation of the AI tool into clinical practice.
Limitations

Several limitations of this study merit discussion. The

outcome of interest (obstructive hydronephrosis) was defined

based on whether patients underwent surgical intervention.

However, this may vary based on patient preferences, surgeon

clinical judgement, and changes in clinical practice guidelines

over time. Serial ultrasounds for each patient and kidney were

treated as independent samples, therefore additional prognostic

information from changes across serial ultrasounds may be lost.

However, we felt that a rapid, point-of-care tool using single

ultrasound images would be more beneficial in most clinical

settings. Finally, our assessment of patient perspectives on

implementation of our AI tool was based on an unvalidated

questionnaire due to resource and time constraints. Future

work can explore the use of validated surveys and the impact

of our AI tool on patient reported outcomes.
Conclusion

Here, we highlight our experience with the silent trial, using

an AI-based classification model for hydronephrosis as an

illustrative example. This phase enables stakeholders to audit

and report on issues related to dataset drift, bias, feasibility,

and stakeholder attitudes. These are important considerations

which must be made to ensure the safety, reliability, and

feasibility of AI models in real-world clinical practice. Future

clinical applications of AI should make efforts to demonstrate

and reflect on model changes using this process.
Data availability statement

The data is not publicly available, since all research or

research-related activities that involve an external party may
Frontiers in Digital Health 09

42
require, at the discretion of The Hospital for Sick Children,

Toronto, Canada, a written research agreement in order to

define the obligations and manage the risks.
Ethics statement

The studies involving human participants were reviewed

and approved by The Hospital for Sick Children. Written

informed consent from the participants’ legal guardian/next of

kin was not required to participate in this study in accordance

with the national legislation and the institutional requirements.
Author contributions

JCCK, Conceptualization, Writing - Original Draft/Review

& Editing, Visualization; LE, Conceptualization, Methodology,

Software, Validation, Formal analysis, Investigation, Writing -

Review & Editing, Visualization; AK, Writing - Review &

Editing; MS, Writing - Review & Editing; AG, Writing -

Review & Editing, Supervision; MDM, Writing - Review &

Editing; AJL, Writing - Review & Editing, Supervision; MR,

Writing - Review & Editing, Supervision. All authors

contributed to the article and approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdgth.

2022.929508/full#supplementary-material.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fdgth.2022.929508/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fdgth.2022.929508/full#supplementary-material
https://doi.org/10.3389/fdgth.2022.929508
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Kwong et al. 10.3389/fdgth.2022.929508
References
1. Wong A, Otles E, Donnelly JP, Krumm A, McCullough J, DeTroyer-Cooley
O, et al. External validation of a widely implemented proprietary sepsis prediction
model in hospitalized patients. JAMA Intern Med. (2021) 181(8):1065–70. doi: 10.
1001/jamainternmed.2021.2626

2. Sendak MP, D’Arcy J, Kashyap S, Gao M, Nichols M, Corey KM, et al. A Path
for Translation of Machine Learning Products into Healthcare Delivery. In (2020).

3. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, et al. Do no
harm: a roadmap for responsible machine learning for health care. Nat Med.
(2019) 25(9):1337–40. doi: 10.1038/s41591-019-0548-6

4. McCradden MD, Stephenson EA, Anderson JA. Clinical research underlies
ethical integration of healthcare artificial intelligence. Nat Med. (2020)
26:1325–6. doi: 10.1038/s41591-020-1035-9

5. McCradden MD, Anderson JA, Stephenson E A, Drysdale E, Erdman L,
Goldenberg A, et al. A research ethics framework for the clinical translation of
healthcare machine learning. Am J Bioeth. (2022) 22(5):8–22. doi: 10.1080/
15265161.2021.2013977

6. Kwong JCC, McLoughlin LC, Haider M, Goldenberg MG, Erdman L, Rickard
M, et al. Standardized reporting of machine learning applications in urology: the
STREAM-URO framework. Eur Urol Focus. (2021) 7(4):672–82. doi: 10.1016/j.
euf.2021.07.004

7. Vasey B, Clifton DA, Collins GS, Denniston AK, Faes L, Geerts BF, et al.
DECIDE-AI: new reporting guidelines to bridge the development-to-
implementation gap in clinical artificial intelligence. Nat Med. (2021):1–2.

8. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK. Reporting
guidelines for clinical trial reports for interventions involving artificial
intelligence: the CONSORT-AI extension. Nat Med. (2020) 26:1364–74. doi: 10.
1038/s41591-020-1034-x

9. Cruz Rivera S, Liu X, Chan AW, Denniston AK, Calvert MJ; SPIRIT-AI and
CONSORT-AI Working Group. Guidelines for clinical trial protocols for
interventions involving artificial intelligence: the SPIRIT-AI extension. Lancet
Digit Health. (2020) 2(10):e549–60. doi: 10.1016/S2589-7500(20)30219-3

10. Jacobson DL, Flink CC, Johnson EK, Maizels M, Yerkes EB, Lindgren BW,
et al. The correlation between serial ultrasound and diuretic renography in
children with severe unilateral hydronephrosis. J Urol. (2018) 200(2):440–7.
doi: 10.1016/j.juro.2018.03.126
Frontiers in Digital Health 10

43
11. Erdman L, Skreta M, Rickard M, McLean C, Mezlini A, Keefe DT, et al.
Predicting obstructive hydronephrosis based on ultrasound alone. In: Lecture
notes in computer science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Springer Science and Business
Media Deutschland GmbH (2020). p. 493–503.

12. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-
CAM: visual explanations from deep networks via gradient-based localization.
Int J Comput Vis. (2020) 128(2):336–59. doi: 10.1007/s11263-019-01228-7

13. Finlayson SG, Subbaswamy A, Singh K, Bowers J, Kupke A, Zittrain J, et al.
The clinician and dataset shift in artificial intelligence. N Engl J Med. (2021)
385:283–6. doi: 10.1056/NEJMc2104626

14. Binkley CE, Green BP. Does intraoperative artificial intelligence decision
support pose ethical issues? JAMA Surg. (2021). doi: 10.1001/jamasurg.2021.
2055. [Epub ahead of print]

15. McCradden MD, Anderson JA, Zlotnik Shaul R. Accountability in the
machine learning pipeline: the critical role of research ethics oversight. Am
J Bioeth. (2020) 20(11):40–2. doi: 10.1080/15265161.2020.1820111

16. Chew HSJ, Achananuparp P. Perceptions and needs of artificial intelligence
in health care to increase adoption: scoping review. J Med Internet Res. (2022) 24
(1):e32939. doi: 10.2196/32939

17. Yang Q, Steinfeld A, Zimmerman J. Unremarkable ai: Fitting intelligent
decision support into critical, clinical decision-making processes. In: Proceedings
of the 2019 CHI conference on human factors in computing systems.
(2019). p. 1–11.

18. Tasian GE, Ellison JS. The surgical improvement cycle: improving surgical
outcomes through partnerships and rigor. J Urol. (2021) 205:1554–6. doi: 10.
1097/JU.0000000000001626

19. Burton RJ, Albur M, Eberl M, Cuff SM. Using artificial intelligence to
reduce diagnostic workload without compromising detection of urinary tract
infections. BMC Med Inform Decis Mak. (2019) 19(1):171. doi: 10.1186/
s12911-019-0878-9

20. Hemming K, Haines TP, Chilton PJ, Girling AJ, Lilford RJ. The stepped
wedge cluster randomised trial: rationale, design, analysis, and reporting. Br
Med J. (2015) 350:h391. doi: 10.1136/bmj.h391
frontiersin.org

https://doi.org/10.1001/jamainternmed.2021.2626
https://doi.org/10.1001/jamainternmed.2021.2626
https://doi.org/10.1038/s41591-019-0548-6
https://doi.org/10.1038/s41591-020-1035-9
https://doi.org/10.1080/15265161.2021.2013977
https://doi.org/10.1080/15265161.2021.2013977
https://doi.org/10.1016/j.euf.2021.07.004
https://doi.org/10.1016/j.euf.2021.07.004
https://doi.org/10.1038/s41591-020-1034-x
https://doi.org/10.1038/s41591-020-1034-x
https://doi.org/10.1016/S2589-7500(20)30219-3
https://doi.org/10.1016/j.juro.2018.03.126
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1056/NEJMc2104626
https://doi.org/10.1001/jamasurg.2021.2055
https://doi.org/10.1001/jamasurg.2021.2055
https://doi.org/10.1080/15265161.2020.1820111
https://doi.org/10.2196/32939
https://doi.org/10.1097/JU.0000000000001626
https://doi.org/10.1097/JU.0000000000001626
https://doi.org/10.1186/s12911-019-0878-9
https://doi.org/10.1186/s12911-019-0878-9
https://doi.org/10.1136/bmj.h391
https://doi.org/10.3389/fdgth.2022.929508
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


TYPE Review
PUBLISHED 19 August 2022| DOI 10.3389/fdgth.2022.939292
EDITED BY

Karandeep Singh,

University of Michigan, United States

REVIEWED BY

Manisha Mantri,

Center for Development of Advanced

Computing (C-DAC), India

Patrick Lyons,

Washington University in St. Louis, United States

Jean Feng,

University of California, San Francisco, United

States

*CORRESPONDENCE

Steve Harris

steve.harris@ucl.ac.uk

†These authors share first authorship

SPECIALTY SECTION

This article was submitted to Health

Informatics, a section of the journal Frontiers in

Digital Health

RECEIVED 09 May 2022

ACCEPTED 25 July 2022

PUBLISHED 19 August 2022

CITATION

Harris S, Bonnici T, Keen T, Lilaonitkul W,

White MJ and Swanepoel N (2022) Clinical

deployment environments: Five pillars of

translational machine learning for health.

Front. Digit. Health 4:939292.

doi: 10.3389/fdgth.2022.939292

COPYRIGHT

© 2022 Harris, Bonnici, Keen, Lilaonitkul, White
and Swanepoel. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Digital Health
Clinical deployment
environments: Five pillars of
translational machine learning
for health
Steve Harris1,2*†, Tim Bonnici 1,2†, Thomas Keen1,
Watjana Lilaonitkul1, Mark J. White4 and Nel Swanepoel3

1Institute of Health Informatics, University College London, London, United Kingdom, 2Department of
Critical Care, University College London Hospital, London, United Kingdom, 3Centre for Advanced
Research Computing, University College London, London, United Kingdom, 4Digital Healthcare,
University College London Hospital, London, United Kingdom

Machine Learning for Health (ML4H) has demonstrated efficacy in computer
imaging and other self-contained digital workflows, but has failed to
substantially impact routine clinical care. This is no longer because of poor
adoption of Electronic Health Records Systems (EHRS), but because ML4H
needs an infrastructure for development, deployment and evaluation within
the healthcare institution. In this paper, we propose a design pattern called a
Clinical Deployment Environment (CDE). We sketch the five pillars of the
CDE: (1) real world development supported by live data where ML4H teams
can iteratively build and test at the bedside (2) an ML-Ops platform that
brings the rigour and standards of continuous deployment to ML4H (3)
design and supervision by those with expertise in AI safety (4) the methods
of implementation science that enable the algorithmic insights to influence
the behaviour of clinicians and patients and (5) continuous evaluation that
uses randomisation to avoid bias but in an agile manner. The CDE is
intended to answer the same requirements that bio-medicine articulated in
establishing the translational medicine domain. It envisions a transition from
“real-world” data to “real-world” development.

KEYWORDS

translational medicine, machine learning, health informatics, ML-Ops, safety, artificial

intelligence

Introduction

Bold claims and huge investments suggest Machine Learning (ML) will transform

healthcare (1). High impact publications showcase precision models that predict

sepsis, shock, and acute kidney injury (2–4). Outside healthcare, tech titans such as

AirBnB, Facebook, and Uber create value from ML despite owning “no property, no

content and no cars” (5). Inspired by this, and very much aware of the flaws and

unwarranted variation in human decision making (6), government and industry are

now laying heavy bets on ML for Health (ML4H) (7, 8).

Widespread adoption of electronic health records (EHR) might be thought a

sufficient prerequisite for this ambition. Yet while EHR adoption is growing at pace
01 frontiersin.org
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(9), those ML4H models that have reached the market rarely use

the EHR. They are instead embedded in isolated digital

workflows (typically radiology) or medical devices (10). Here

the context of deployment is static and self-contained

(imaging), or fully specified (devices), and translation has

proved easier to navigate.

In contrast, the EHR is in constant flux. Both the data and

the data model are updating. New wards open, staffing patterns

are adjusted and from time to time major incidents (even global

pandemics) disrupt everything. There are multiple interacting

users, and eventually there will be multiple interacting

algorithms, and organizations will face the ML equivalent of

poly-pharmacy (11). Algorithms will require stewards (12).

Whilst the aforementioned high impact prediction models are

developed on real-world data, this is not the same as real-

world development. Data are either anonymized and analyzed

offline, or moved out of the healthcare environment into an

isolated Data Safe Haven (DSH) [also known as Trusted

Research Environment (TRE)] (13). This separation is the first

fracture leading to the oft-cited AI chasm (14) leaving the

algorithms stranded on the laboratory bench.

A future that sees ML4H generate value from the EHR

requires an alternative design pattern. TREs excel at meeting

the needs of population health scientists but they do not have

the full complement of features required to take an ML4H

algorithm from bench-to-bedside. Using drug development as

an an analogy, a TRE is custom made for drug discovery not

translational medicine (15).

In this paper, we describe the functional requirements for a

Clinical Deployment Environment (CDE) for translational

ML4H. These requirements map closely to the classical

components of translational medicine, but differ in that

algorithms will require ongoing stewardship even after a

successful deployment. The CDE is an infrastructure that

manages algorithms with the same regard that is given to

medicines (pharmacy) and machines (medical physics).

Moreover, the value of ML4H will not just be from externally

developed blockbuster models, but will also derive from

specific and local solutions. Our vision of a CDE therefore

enables both development and deployment.

Our CDE is supported by five pillars:
1. Real World Development

2. ML-Ops for Health

3. Responsible AI in practice

4. Implementation science

5. Continuous evaluation
We describe these pillars below alongside figures and vignettes

reporting early local experience in our journey building this

infrastructure.
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1. Real world development

Real-world data (RW-Data) means the use of observational

data at scale augmented by linking across multiple data sources

to generate insights simply not available from isolated

controlled clinical trials (16). The FDA uses data from tens of

millions of patients in its Sentinel programme to monitor

drug safety, and the OpenSafely programme in the UK

generated impactful insights into COVID-19 within the first

few months of the global pandemic (17).

Given the sensitive nature of health data, these initiatives

depend on expanding investment into TREs (18). TREs are an

example of “data-to-modeler” (DTM) designs where data

flows from source (primary, secondary, social care and

elsewhere) to a separate, secure landing zone. Here research

teams write the code to link, clean and analyze the data.

Derived insights eventually return to the bedside through

clinical guidelines and policy. To date, DTM is also the

dominant design pattern in ML4H but this approach is

fundamentally flawed.

It is flawed because it imposes a separation between the

modeller and the end-user. ML4H is not concerned with better

guidelines or policy but with better operational and clinical

decision making. This requires the practitioner to work

alongside the end-user because excellent offline model

performance provides no guarantee of bedside efficacy.

Algorithms with inferior technical performance may even

provide greater bedside utility (19, 20). An inverted “modeler-

to-data” (MTD) paradigm was initially proposed to reduce

privacy concerns (data are no longer copied and shared but

analyzed in situ (21)), but we see important additional value in

that it forces “real-world development” (RW-Dev) and enables

the end-user to work with the modeler in rapid-cycle build-

test-learn loops. This first pillar of the CDE is the equivalent of

an internal TRE within the healthcare institution (21).

RW-Dev has four functional sub-requirements that

distinguish it from a TRE. (1) Firstly, data updates must

match the cadence of clinical decision making. For most

inpatient and acute care pathways, decisions are in real-time

(minutes or hours) at the bedside or in the clinic. (2)

Secondly, development using live data must be sandboxed and

so the clinical system responsible for care delivery is protected

(3) thirdly, privacy must be managed such that teams are able

to develop end-user applications that inevitably display patient

identifiable information (PII) alongside the model outputs: an

anonymous prediction is of little use to a clinician. (4)

Fourthly, attention must be paid to developer ergonomics.

Where development and deployment steps are separated

physically (the TRE paradigm) or functionally (via different

languages and technologies), ownership is often split between

two different teams. One team prepares the raw data and

develops the model, and another prepares the live data and

deploys the model. We argue instead that the same team
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should be able develop and deploy. This should accelerate

iteration, reduce cost and increase quality (22).

We illustrate this idea with a description of our local real-

world development platform in Figure 1, and provide an

extended description in the Supplementary Material.
2. ML-OPS (for health)

Hitherto in ML4H, the data and the algorithm have been

the “celebrity couple”. State-of-the-art models trained on RW-

Data deliver high profile publications (3, 4). But only a tiny

handful (fewer than 10 studies in a recent high quality

systematic review of nearly 2000 ML4H publications (23)),

were prospectively implemented. The standard offline “data-

to-modeler” (DTM) paradigm described above incurs a

significant but “hidden technical debt” that includes

configuration, data collection and verification, feature

extraction, analysis and process tools, compute and storage

resource management, serving infrastructure, and monitoring

(24). In fact, the code for the underlying ML model is

estimated to be at most 5% of the total code with the other

95% as additional code to make the system work. “Glue-

code”, “pipeline jungles”, and “dead experimental codepaths”

are some of the anti-patterns that make the transition into

production costly and hazardous.1

Agencies such as the FDA, EMA, and MHRA are working

toward safety standards for AI and machine learning, but the

majority of these efforts derive from medical devices

regulation. Treating Software as a Medical Device (SaMD) is

appropriate where the algorithms operate within a constant

and predictable environment (e.g. code embedded within a

cardiac pacemaker). But, as already argued, ML4H models

working with the EHR are likely to find themselves operating

in a significantly more complex landscape. This inconstant

environment where algorithms themselves may only have

temporary utility has parallels to the commercial environment

exploited so successfully by the tech giants.

These companies have cultivated an approach to model

deployment called “ML-Ops”. This combines the practices of

“DevOps” (a portmanteau of Software Development plus IT

operations) (22) that focuses on the quality and speed with

which software moves from concept to production, with

robust data engineering and machine learning. A typical ML-
1One infamous example from the financial services sector saw a firm lose

170, 000persecond(morethan400m in 45 min) when an outdated piece

of code leaked into production. The firm in question was fined a

further <$>12m for “inadequate safeguards” allowing “millions of

erroneous orders” (25).

Frontiers in Digital Health 03

46
Ops system monitors raw input data, checks for distribution

drift, provides a feature store to avoid train/serve skew and

facilitate collaboration between teams, and maintains an

auditable and monitored model repository (26). We present a

prototype implementation interacting with the EHRS in

Figure 2 (called FlowEHR).

This constant adjustment of algorithms based on their

continuously measured quality and performance needs a

workforce as well as a technology stack. Just as the safe

delivery of medicines to the bedside is the central activity of a

hospital pharmacy team, the safe delivery of algorithms will

require the development of similarly skilled and specialized

practitioners, and we should expect to see clinical ML-Ops

departments in the hospital of the future. Others have made

similar proposals and labeled this as “algorithmic

stewardship” or “AI-QI” (12, 27). Similarly, the FDA is now

proposing “automatic Algorithmic Change Protocols” (aACP)

and proposals have been advanced to guard against gradual

deterioration in prediction quality (“biocreep”) (28, 29).
3. Responsible AI in practice

Pillars 1 and 2 should engender well designed and well

engineered algorithms, but they do not protect against the

unintentional harm that AI may induce. Algorithms can only

learn from a digital representation of the world that

representation in turn cannot encode moral or ethical

standards. Unfair outcomes, discrimination against sub-

populations and bias are all reported shortcomings (30). In a

dynamic setting, risk can also arise in the form of degraded

predictive performance over time. Models that modify

clinician’s behavior alter patient profiles by design, but

predictive success today inevitably erodes future performance

by rendering obsolete the historical patterns that drove the

performance of the original model (31). Responsible AI in

practice requires a systems approach that preempts and safe-

guards against these potential risks to patients. We highlight

three promising responses to components of this challenge

that need to become part of the risk management approach

for ML4H.
3.1. Model explainability

We argue that model explainability (Explainable Artificial

Intelligence [XAI]) methods need to be prioritized to help

systematize and coordinate the processes of model

troubleshooting by developers, risk-management by service

providers, and system-checks by auditors (32–35). Most AI

models that operate as “black-box models” are unsuitable for

mission-critical domains, such as healthcare, because they

pose risk scenarios where problems that occur can remain
frontiersin.org
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FIGURE 1

Our real-world development is performed on the Experimental Medicine Application Platform (EMAP). EMAP is a clinical laboratory within which
ML4H researchers can iteratively build, test and gather feedback from the bedside. It unifies the data and the tools for off-line and online
development of ML4H models (see figure and the (numbers) in the following sentences that refer to objects in the figure). In brief, EMAP builds a
patient orientated SQL database from Health Level 7 version 2 (HL7v2) messages that are being exchanged between hospital systems. HL7v2
messages are ubiquitous in health care, and the de facto standard for internal communication. Rather than multiple pairwise connections
between different hospital electronic systems, an integration engine acts as a single hub that routes HL7 messages, and where necessary
translates to ensure compatibility. EMAP copies each message passing through the integration engine to a PostgreSQL database, the Immutable
Data Store (IDS) (1). A message reader (2) processes each live message to an interchange format so that downstream processing is insulated
from local HL7 implementation. Separately, the table reader (6) processes historical data (e.g. from the reporting database) to the same
interchange format. Live messages take priority over historical messages in a queue that feeds the event processor (3). This links each message
to a patient and a hospital visit, makes appropriate updates for out of order messages, and merges when separate identifiers are recognised to
represent the same patient. A full audit trail is maintained. Each event updates a second live PostgreSQL database, the User Data Store (UDS) (4).
The hospital hosts Jupyter and RStudio servers, and a Linux development environment is provided that allows docker deployment, installation of
analysis libraries and frameworks, exposes SSH and HTTPS services, and allows user verification against the hospital active directory. (5) A typical
workflow might include investigation and experimentation in a Jupyter Notebook with data from the UDS, then using a small network of docker
containers to run the development script, log outputs to a testing database, and report to users via email or a locally hosted web application or
dashboard. A fuller explanation is available in the Supplementary Material (Section 2: EMAP data flows).
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FIGURE 2

Our ML-Ops platform is called FlowEHR. Moving from left to right across the figure, the system monitors raw input data including checks for
distribution shift, builds features with testable and quality controlled code, makes those features available to for both training and predictions to
avoid train/serve skew, and maintains an auditable and monitored model repository.
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masked and therefore undetectable and unfixable. We

acknowledge recent critiques (36, 37) of explainability

methods that argue the methods cannot yet be relied on to

provide a determinate answer as to whether an AI-

recommendation is correct. However, these methods do

highlight decision-relevant parts of AI representations, and

offer promise in measuring and benchmarking interpretability

(38, 39). They are particularly promising for risk management

as they can be used to structure a systematic interrogation of

the trade-off between interpretability, model accuracy and the

risk of model misbehavior.
3.2. Model fail-safes

Prediction models that map patient data to medically

meaningful classes are forced to predict without the option

to flag users when the model is unsure of an answer. To

address this problem, there is good evidence that methods

such as Bayesian deep learning and various uncertainty

estimates (40) can provide promising ways to detect and

refer data samples with high probability of misprediction for

human expert review (41–43). These fail safes, or selective

prediction approaches should be designed into support

systems to preempt and mitigate model misbehavior (29, 44–

47). Of note, the European Commission High-Level Expert

Group on AI presented guidelines for trustworthy AI in
Frontiers in Digital Health 05
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April 2019 with such recommendations: for systems that

continue to maintain human-agency via a human-in-the-

loop oversight. This may even permit less interpretable

models to operate when implemented in conjunction with an

effective fail-safe system.
3.3. Dynamic model calibration

As discussed, models that influence the evolution of its own

future input data are at risk of performance deterioration over

time due to input data shifts (48). In such cases, continual

learning via calibration drift detection and model recalibration

(27, 49) provides a promising solution but remains a

challenging paradigm in AI. Recalibration with non-stationary

incremental data can lead to catastrophic forgetting when the

new data negatively interferes with what the model has

already learned (50), or a convergence where the model just

predicts its own effect and thus should not be updated (31).

On the other hand, models can propose poor decisions

because of the inherent biases found within the original

dataset. In this case, dynamic model recalibration is unlikely

to be sufficient and larger model revisions may be required.

Here Pillar 1 (RW-dev) with suitable audit and monitoring

via Pillar 2 (ML-Ops) will be required to overcome what

would otherwise be a learning process encumbered by

regulatory barriers (51).
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4. Implementation science

A well designed, safe, and responsible AI algorithm may still

be ineffective if it does not reach a modifiable target on the

clinical pathway (19). Unlike medications, algorithms can only

effect health by influencing the behavior of clinicians and

patients. This translational obstacle parallels the second arm

of translational medicine (T2): implementation science (15).

Behavior change, in most instances, will be via a modification

of the choice architecture (passive) (52, 53) or via interruptive

alerts (active) embedded in the EHR (53). Effective

implementation requires a multi-disciplinary approach

including human-computer interaction, behavioral science,

and qualitative analysis (54).

We strongly argue that this task will be more difficult if

done offline and in isolation. Pillar 1 crucially permits not

just tuning of the technical performance of the algorithm but

rapid build-test-learn cycles that directly involve the target

user and the clinical pathway in question. This approach will

reduce costs and improve impact, sometimes leading to trade-

offs which might appear surprising to those developing away

from the bedside (11, 20). This efficiency will again depend

on the problem space: where the algorithmic target depends

on information arising from the EHR rather than an isolated

device or image, and where the pathway involves multiple

end-users, then successful implementation will be near

impossible if done sequentially (development then

deployment) rather than iteratively (54, 55). Academic health

science centres must become design “laboratories” where

rapid prototyping at the bedside crafts the deployment

pathway for effectiveness (T2) rather than just efficacy (T1) (15).

Investigations to define how system can influence behavior

will need specialist support and tooling. This might require

tools embedded within the user interface to evaluate and

monitor user interaction, and capture user feedback (56), or

directed implementation studies (57).

Despite the oft cited risks of alert fatigue with Clinical

Decision Support Systems (CDSS) (58), there is good evidence

that well designed alerts can be impactful (53, 59, 60). Overt

behavioural modifications will need a mechanism to explain

their recommendation (as per XAI) or generate trust (see

Pillar 5) (61). Trust will possibly be more important where

behavior modification is indirect through non-interruptive

techniques (e.g. re-ordering preference lists or otherwise

adapting the user interface to make the recommended choice

more accessible).
5. Continuous clinical evaluation

Our analogy with translational medicine breaks down at the

evaluation stage. For drug discovery, evaluation is via a
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randomized controlled trial (RCT). Randomization handles

unanticipated bias and ML4H should hold itself to the same

standard but of 350,000 studies registered on

ClinicalTrials.gov in 2020, just 358 evaluated ML4H, and only

66 were randomized (62). As usual for ML4H, those RCTs

were not interacting with EHR data. They were evaluations of

algorithms supporting imaging, cataract screening,

colonoscopy, cardiotocographs and more (63–69).

Where the ML4H intervention delivers a novel biological

treatment strategy, then it is appropriate to reach for the full

paraphenalia used in Clinical Trials of Investigational

Medicinal Products (CTIMPs) (2). But in many cases,

algorithms will be used to optimize operational workflows and

clinical pathways. These pathways may be specific and

contextual rather than generalizable. Poor external validity is

not a critique: an algorithm that is useful or important in one

institution does not have to be relevant in the next (the

“myth of generalizability”) (70). Moreover, the algorithm is

not the same as the patented and fixed active ingredient in a

medicinal product. This is no single point in time nor single

host environment at which it can be declared enduringly

effective. This means that institutions deploying and relying

on these tools need a strategy for rapid continuous clinical

and operational evaluation.

This time the EHR may provide an advantage instead of just

additional complexity. Since ML4H algorithms must be

implemented through some form of direct or indirect CDSS,

then the next logical step is to randomize the deployment of

those alerts. This in itself is not novel. Randomized

deterministic alerts from CDSS are part of the standard

evaluation toolkit for quality improvement initiatives in at

NYU Langone (71), and for research elsewhere (72). At NYU

Langone, such tooling permitted a small team to deliver 10

randomized trials within a single year (71).

The final pillar in our CDE uses the same approach for the

probabilistic insights derived from ML4H. Excellent patient and

public involvement, and ethical guidance, will be required to

distinguish those algorithms that require per patient point-of-

care consent from those that can use opt-out or cluster

methods. But we think that latter group is large for two

reasons. Firstly, patients are exposed to varying treatment

regimes by dint of their random interaction with different

clinicians based on geography (the healthcare provider they

access) and time (staff holidays and shift patterns etc.). This

routine variation in practice is summarized as the 60-30-10

problem: 60% of care follows best practice; 30% is wasteful or

ineffective and 10% is harmful (6). Secondly, because the

intervention is informational, there is ethical precedent for

patient level randomization without consent (e.g. Acute

Kidney Injury alerts) (72). This hints at a larger and more

routine role for randomization in evaluation of algorithms.

This in turn is supported by a growing (52, 73, 74) but

sometimes conflicting (75) literature on opt-out consent in
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Learning Healthcare Systems (LHS). As such, progress will

require careful attention to a range of concerns.

At our own institution, we have extended this ethical and

safety case one step further, and we are piloting a study

design where the randomization is non-mandatory: a nudge

not an order (76). The clinician is explicitly invited to only

comply with the randomization where they have equipoise

themselves. Where they have a preference, they overrule the

alert (see Vignette 1 in the Supplementary Material).

Embedded randomized digital evaluation should permit

rapid evidence generation, and build the trust needed to

support the implementation described under Pillar 4.
Drug discovery parallels

We have described a template for a Clinical Deployment

Environment that supports the translation of ML4H

algorithms from bench to bedside. Although the requirements

differ, the objective is similar to that for drug development. A

similar approach to phasing has previously been proposed for

(biomarker) prediction models (77).

Most ML4H that derives value from the EHR is in the pre-

clinical phase. In drug development, the objective of this phase

is to identify candidate molecules which might make effective

drugs. Evaluation is conducted in vitro. Metrics used to

evaluate candidates, such binding affinity or other

pharmacokinetic properties, describe the properties of the

molecule (78). For ML, the objective is to identify candidate

algorithms, comprising of input variables and model

structures, which might make the core of an effective CDSS.

Evaluation is conducted offline on de-identified datasets.

Metrics used to evaluate candidates, such Area Under the

Receiver Operator Curve (AUROC), the F1 score and

calibration, describe the properties of the algorithm (79).

Phase 1 drug trials are the first time a drug candidate is

tested in humans. They are conducted in small numbers of

healthy volunteers. The aim of the trial is to determine the

feasibility of progressing to trials in patients by determining

drug safety and appropriate dosage. Drug formulation, the

processes by which substances are combined with the active

pharmaceutical ingredient to optimize the acceptability and

effective delivery of the drug, is also considered at this stage.

Phase 1 ML4H trials are the first time an algorithm candidate

is tested within the healthcare environment. The aim of the

trial is to determine the feasibility of progressing to trials of

efficacy by ensuring the algorithm implementation is safe,

reliable and able to cope with real-world data quality issues.

The development of a mechanism to deliver of algorithm

outputs embedded in the clinical workflow is also be

considered at this stage.

Phase 2 drug trials involve recruitment of small numbers

patients with the disease of interest, typically 50–200. The aim
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is to determine drug efficacy at treating the disease. Treating

clinicians are involved in so far as they must agree to

prescribe the drug for their patients. The trials are often too

short to determine long term outcomes, therefore surrogate

measures such biomarker status or change in tumour size are

used as endpoints (80). Phase 2 ML4H trials involve

recruitment of small numbers of clinicians making the

decision of interest, typically 5–10. The aim is to determine

the efficacy of the algorithm in improving their decisions.

Patients are involved in so far as they must agree to be on the

receiving end of these supported decisions and identifiable

data is required. Endpoints are markers of successful task

completion in all cases. Investigations to determine ways in

which the system could be more successful in influencing user

behavior are carried out at this stage. These include usability

analyses, considerations of how well the ML4H/CDSS is

integrated into the overall system and implementation studies

to identify how best to optimize end-user adoption and

engagement (57).

Phase 3 drug trials involve the recruitment of large numbers

of patients to determine whether a drug is effective in improving

patient outcomes. The gold standard of trial design is a double-

blinded randomized controlled trial (RCT). Phase 3 ML4H

trials will require integration of data from multiple centers for

algorithms acting on specific decisions but inevitably adapted

to their local data environment.

The phases of drug development are not meant to be

matched 1:1 to the pillars of the CDE described here: in fact,

our argument for “real-world” development deliberately seeks

to merge the steps. But the parallel is drawn to highlight the

effort necessary to see ML4H have an impact on the clinical

and operational decision making in the workplace. Heretofore

this effort has been hugely underestimated.
Conclusion

Even this analogy stops short of the full task of deployment.

With drug development, the universities and the

pharmaceutical industry go on to take advantage of a supply

chain to deliver the drug to the hospital with the necessary

quality control and monitoring. Those prescribing and

administering the drug have spent years in training, and are

supported by pharmacists and medication safety experts. And

even after the drug is administered, observation and long

term follow-up continue to identify side-effects and long term

hazards.

That network of expertise and infrastructure is largely in

place where software is within (not as) a medical device, but

is only just being envisioned where the data driving ML4H

comes from the EHR. This distinction needs to be made else

the disillusionment with the promise of ML4H will continue.

The technology does have the potential to change how we
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deliver health but the methodology alone is insufficient. The

impressive demonstrations of the power of AI and ML to

beat humans in games, and predict protein structures does

not mean that these tools are ready for wide spread

deployment.

But we should not be pessimistic. As per author William

Gibson, it is clear that “The Future Has Arrived — It”s Just

Not Evenly Distributed.” Beyond healthcare, machine learning

has already demonstrated that it can reliably create value (5).

It is now our responsibility to take those lessons and adapt

them for our patients.

The Five Pillars outlined here are a sketch of that

redistribution. They are born from our local experience

(Pillars 1, 2 and 5) and our wider observations (Pillars 3

and 4). They fundamentally are an argument for a

professionalization of ML4H, and a caution against the

“get-rich quick” headlines in the popular and scientific

press (1). We envision a future where each algorithm is

managed in a digital pharmacy with the same rigor that we

apply to medicines. But unlike drugs, some of these

algorithms will have their entire life-cycle, from

development to deployment, managed by the local

healthcare provider. Computer vision tasks that support

diagnostic radiology can be partially developed offline.

Components of sepsis prediction tools will transfer from

institution to institution but will need adapting to local

clinical workflows. But there will be opportunity and value

for ML4H to optimize operational tasks that are temporary

or specific to that institution. This means that some

development and much of the deployment will require a

suitably trained workforce, and an infrastructure perhaps

supported by these five pillars.
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One of the key challenges in successful deployment and meaningful adoption
of AI in healthcare is health system-level governance of AI applications. Such
governance is critical not only for patient safety and accountability by a
health system, but to foster clinician trust to improve adoption and facilitate
meaningful health outcomes. In this case study, we describe the
development of such a governance structure at University of Wisconsin
Health (UWH) that provides oversight of AI applications from assessment of
validity and user acceptability through safe deployment with continuous
monitoring for effectiveness. Our structure leverages a multi-disciplinary
steering committee along with project specific sub-committees. Members of
the committee formulate a multi-stakeholder perspective spanning
informatics, data science, clinical operations, ethics, and equity. Our
structure includes guiding principles that provide tangible parameters for
endorsement of both initial deployment and ongoing usage of AI
applications. The committee is tasked with ensuring principles of
interpretability, accuracy, and fairness across all applications. To
operationalize these principles, we provide a value stream to apply the
principles of AI governance at different stages of clinical implementation.
This structure has enabled effective clinical adoption of AI applications.
Effective governance has provided several outcomes: (1) a clear and
institutional structure for oversight and endorsement; (2) a path towards
successful deployment that encompasses technologic, clinical, and
operational, considerations; (3) a process for ongoing monitoring to ensure
the solution remains acceptable as clinical practice and disease prevalence
evolve; (4) incorporation of guidelines for the ethical and equitable use of AI
applications.
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TABLE 1 Challenges to the adoption of AI categorized by domains
with associated constituencies and goals.

Domain Constituents Goals of governance

Clinical Patients, clinicians, staff Patient safety, model effectiveness,
explainability and adoption

Operational Clinical and operational
stakeholders

Integration of AI models into routine
health system operations

Leadership Hospital and health
system leaders

Endorsement by senior leadership,
integration into overall strategic plans

Liao et al. 10.3389/fdgth.2022.931439
Introduction

Artificial intelligence (AI) holds the promise to transform

clinical care (1), and is increasingly being used in clinical

practice. However, appropriate governance of these models

remains in its infancy, especially as larger governing bodies

like the Food and Drug Administration and World Health

Organization are trying to keep up with the advancements in

technology and its role in health care. Unlike other sectors,

healthcare must carry a lower tolerance for error and bias as

AI-driven tools have a direct impact on patient lives and

unchecked errors may cause harm or death (2). UW Health,

like many academic institutions, frequently encounters new

commercial products and scientific innovations that leverage

AI for healthcare delivery in both diagnostics and prognosis.

While several groups have discussed the importance of, and

methodologies for, responsible development of these

interventions (3), the accountability of safe and effective

deployment of AI-driven applications ultimately falls onto the

health system. As the ethics surrounding AI-development has

received increasing scrutiny (4), there has been little literature

focusing on institutional governance. As we expand our

technical ability to provide solutions, more skepticism and

questions surface, and at times resistance, around the

suitability of using AI in routine clinical care from all levels of

the organization, ranging from front-line clinical staff to

executive leadership. In response to these questions and the

challenges for implementation, the health system recognized

the need for a governance structure to endorse and oversee

adoption, implementation, and ongoing value evaluation of

AI-driven applications. This case study describes the

development and nature of governance of clinical AI

applications at our institution.
The role of governance

Challenges

During deployment of the first set of AI-driven

applications, we encountered several challenges unique to the

field. From a systems perspective these challenges can be

grouped into three domains, where each domain represents a

particular constituency with associated considerations

(Table 1). The first domain is clinical, and its constituents

are the patients, clinicians and other front-line users of the

AI solution. The challenges associated with the first domain

are related to clinical acceptability of the AI output, and

actionability (in terms of personal agency), as well as

explainability. The goal of governance for this domain is

maintaining patient safety, as well as securing clinician

acceptance and adoption.
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The second domain is operational; the constituents of this

domain represent the systems-level components that are part

the care delivery mechanism. This group includes the

stakeholders that represent clinical operations, information

services and informatics. The challenges for the second

domain are related to actionability (in terms of clinical

protocols and governance), performance validity,

sustainability, and accountability (in terms of ongoing support

mechanisms). The goal of the governance for this domain is

complementary oversight that is compatible with the routine

operating model of the health system.

The third domain is leadership and its constituents are

those who manage the strategic direction of the health system,

hold key decision rights, and govern the resources. The

challenges for the third domain are related to oversight,

accountability, and equitability. The goal of the governance

for this domain is endorsement by senior leadership in health

operations.

As we operationalized predictive models, we surfaced

challenges in each domain. Some domains, such as clinical

and operational, required more focus earlier in development,

with rapid adaption and evolution, while the leadership

domain, adapted at a different rate that required more focus

with commensurate experience of the organization. The focus

of the domain shifted and adapted over time depending on

the maturity of each domain and the individualized needs of

each AI application.

To address the challenges in the first and second domain

during rollout of our initial models, individual solution

workgroups were established in an ad hoc fashion. The

responsibility of these workgroups was performing due

diligence and providing detailed scrutiny of the AI solutions

to establish the necessary validity both clinically, technically,

and ethically. Examples of specific activities include

retrospective and prospective validations of the performance

of the AI solution on the UWH patient population as a whole

and on specific demographic sub-populations; closer

examination of the clinical inputs or variables used by the AI

solution; the suitability of the solution’s output within its

specific operational and clinical context; and ongoing

assessment of the solution’s performance, clinician adoption

and usage, and other related metrics.
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The output of the workgroups was also synthesized and

disseminated to the constituents in the second domain to

procure complementary governance such as the approval of

new or updated clinical protocols that incorporated the AI

solution, or operational buy-in to update the ongoing or

routine processes of the health system. The designation of

these workgroups evolved along with the AI maturity of the

organization, beginning with “algorithm workgroups”, then to

“algorithm committees”, with a current designation of

“algorithm sub-committees”. Initially, challenges within the

third domain, leadership, were addressed through executive

sponsorship of a specific use case, which constituted simple

endorsement for smaller applications and executive steering

committees when necessary for larger projects.

The composition and membership of workgroups were

multi-disciplinary, as necessary to perform their function. Key

disciplines included clinical subject matter expertise, data

science, informatics, information technology, clinical

operations, bioethics, human factors or design thinking.

Common roles that were represented included physicians,

nurses, data scientists, analytics professionals, information

services, clinical quality, and academic faculty. The primary

advantage of these workgroups was the ability to bring the

content and methodologic expertise a solution required for

operationalization. Furthermore, by combining clinical and

operational considerations for narrowly focused use cases,

these workgroups were able to maintain a nimble, innovative

approach to each use case.

However, after several solutions were enacted, weaknesses of

these ad hoc workgroups in addressing challenges from

operational and leadership domains became more apparent.

From a system-wide standpoint, more integration was needed

to create visibility and oversight of all models, and retain

consistent governance across a variety of clinical use cases. To

address these challenges while keeping the advantages of the

individual use case workgroups, we created an institutional-

level steering committee which would provide a front door

and maintain oversight of all models while retaining

individual workgroups for more detailed governance. This

“Clinical AI and Predictive Analytics Committee” is multi-

disciplinary and included a superset of the same disciplines

that comprised the use-case specific algorithm workgroups.

Figures 1, 2 show the composition and representation of the

institutional committee and its relationship with the sub-

committees, respectively. However, one advantage of an

institutional-level committee was a stronger ethics and equity

perspective. Another advantage of institution-level committee

is a clear and strong connection to the University of

Wisconsin campus. Connection to the campus brings

academic expertise in the relevant domains, and the

associated research enterprise including complementary

guidelines to other institutions like the Institutional Review

Board (IRB). The committee functions as a front door for the
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evaluation and vetting of predictive solutions prior to

implementation, and for new models it commissions and

oversees workgroups. The committee reports up to existing

clinical and informatics leadership structures in the university

and health system and provides visibility on all clinical uses of

AI to these groups.

The institutional-level committee defines and establishes

definitions of key terms such as “predictive model” as well as

guiding principles. However, given the broad scope of

potential AI applications, the committee does not seek to

perform all of the duties previously performed by algorithm

workgroups for each application. Rather, once an application

is brought to the committee, it commissions an “Algorithm

sub-committee” with the scope of a specific application. Each

sub-committee follows the established guiding principles and

applies them when evaluating the algorithm(s) for its specific

use case, and reports back to the institutional Clinical AI and

predictive Analytics Committee. This federated system seeks

to retain the benefits of the application specific workgroups

while realizing the advantages of a single committee to govern

all applications.
Scope

The committee oversees AI and predictive solutions which

affect clinical care in the health system, including workflow

and implementation. This includes solutions aimed at clinical

care (e.g. patient deterioration or sepsis), patient access and

resource allocation (e.g. length-of-stay (LOS) predictions,

inpatient capacity management). The committee does not

oversee models in which there is no clear connection to

clinical care (e.g., a financial model to predict likelihood of

payment). AI as a component of an FDA approved medical

device is not necessarily overseen if a model isn’t modifiable

at the health system level and its performance has been well-

characterized (e.g., an FDA approved software program to

evaluate diabetic retinopathy from retinal pictures).
Guiding principles

Below are the currently endorsed set of guiding principles:

1. Predictive model (including outside vendors or internal

innovation) evaluation includes validation of performance

on UW Health production data and clinician review

against the appropriate target labels for application.

2. Model evaluation includes statistical measures (e.g.,

sensitivity, specificity, PPV) and relevant operational and

health metrics (e.g., alarm rate, work-up to detection ratio,

appropriate use, fairness, cost-effectiveness and

intervention effectiveness on health outcomes).
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FIGURE 1

Clinical AI and predictive analytics committee composition with participants by role by respective disciplines.

FIGURE 2

Clinical AI and predictive analytics committee and sub-committees.
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3. Model output follows the five rights of Clinical Decision

Support (CDS) * and is associated with interventions

whenever possible.

4. Model monitoring (pilot or scale-out) includes statistical

measures, operational metrics, relevant outcomes and

reevaluation criteria, especially for calibration as absolute

risk may change over time.

5. The basic principle of health care ethics autonomy, beneficence,

justice and non-maleficence will be incorporated in all stages of

model evaluation and validation. We aim to first do no harm

with our AI-driven tools and ensure bioethical principles are

integrated into our governance.

Predictive solution life cycle

A key aspect of appropriate governance is establishing a full

life cycle for models. This includes processes for evaluation and

potential adoption of models, monitoring to ensure they

continuously meet the needs of all constituents, and appropriate

processes for periodic reevaluation and decommissioning of

models no longer needed or functioning correctly. Given the

current institutional adoption of Lean methodology and

specifically A3 thinking (5), we built our approval form starting

with our institutional A3 project template, but added specific

questions focused on relevant questions for AI implementation.

A fuller description of the usefulness of Lean’s FOCUS PDCA

methodology for AI can be found in our previous work

(6) with a toolkit available at www.hipxchange.org/

ImplementPredictiveModels. Supplementary Appendix 1

provides our model intake form, through which potential

models are evaluated prior to approval. The intake form is

designed to be completed in 2 stages. Basic model questions, in

green, are designed to be filled out by the requestor prior to

discussion with the Clinical AI and Predictive Analytics

Committee. Once the committee has evaluated the use case, it

can commission an algorithm subcommittee which provides the

necessary expertise to complete the intake form in its entirety,

which is necessary for model approval.

In addition, we developed a value stream beginning with the

intake form through model re-evaluation over time. Figure 3

depicts the life cycle of a typical predictive solution, from

initial presentation to the Clinical AI and Predictive Analytics

Committee to periodic review and update or decommissioning.
FIGURE 3

UW Health predictive model value stream.

Frontiers in Digital Health 05

58
Results

Clear institutional apparatus
for governance

At the time of this publication, the governance framework

has overseen ten successful deployments, two successful

retirements, and one successful non-deployment across nine

applications. We expressly use the terminology of

“deployment” and “retirement” as technical terms defined in

the software and application development disciplines, where

“deployment” refers to the promotion of the AI-driven

application from a development environment into a

production environment; and “retirement” is the removal of

the application from a production environment after it is

deemed to be no longer necessary. We distinguish this from

the case of removing a solution from production due to errors

or poor performance. The purpose of this technical

terminology is to provide a necessary level of objectivity as it

relates to endorsement, approvals, and IT change

management. Applications include diverse uses of AI

prediction for outputs including severe sepsis, clinical

deterioration (7), physician panel weighting, COVID detection

on radiographs (8), emergency department screening for falls

prevention (9, 10), screening for opioid abuse (11), and

Emergency Department crowding to drive adaptive staffing.

One key function of the governance framework is including

all relevant AI applications. For AI applications which predated

the current governance framework, there is an abbreviated

process to grandfather these use cases into the current

standard of oversight and transition ad hoc working groups to

algorithm subcommittees which report up to the Committee.

For AI-driven applications that are custom-built at UW

Health, the University of Wisconsin, or involve a large-scale

deployment, we have confidence that these are under the

governance and oversight of this framework, due to the robust

engagement and support of Informatics and IT within the

current system. Another paradigm is the implementation of

vendor-created models: these use cases are under governance

particularly for vendor products that are explicitly marketed

as an algorithm. However, we acknowledge that there may be

use cases outside of the committee’s awareness, especially for

cases where the AI solution is embedded within a broader
frontiersin.org
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product and is not marketed as an algorithm. Finally, we note

that non-clinical use cases at our institution have adopted

similar principles particularly the guiding principle of local

validation of model performance.
Successful deployments spanning
clinical and technology domains

We believe that one of the key drivers of our success has

been comprehensive participation between clinical,

operational, and IS stakeholders. While our IT professionals

have a prominent role within our governance structure, AI

application deployments are viewed as clinical projects

analogous to other clinical initiatives in the hospital and our

governance structure and use of A3 thinking mirrors that for

purely clinical interventions such as clinical guideline

development.
Process for ongoing monitoring to ensure
performance

Once applications have been deployed, the algorithm sub-

committees continue to meet on a pre-determined frequency

that is compatible with its use case and to monitor the

performance of the solution over subsequent years.

We maintain that ongoing monitoring has been successful

as proven by two types of occurrences. The first type that has

occurred is a successive deployment where the previous

version of the AI application was replaced with a more

performant solution that included cases spanning a different

machine learning algorithm, an updated target or prediction

outcome, or a re-trained model. This necessitates that the

previous solution was actively monitored and that a new

solution was also evaluated and validated with clear criteria

regarding performance and acceptability.

The second type of occurrences are successful retirements,

where an AI solution was removed from production after the

solution delivered its intended value. We wish to clearly

distinguish successful retirements from successful non-

deployments. The latter indicates a situation where the AI

solution was deemed to be non-performant prior to its use in

clinical care and was never fully deployed in the production

system. This differs from a successful retirement, where the

AI solution was used in production as part of routine clinical

care and performing appropriately. In these cases, the needs

or requirements that the solution fulfilled have changed. For

example, one of our successful applications was the use of a

model to predict days with high emergency department

volumes at one of our hospital sites, which was used to guide

a decision to call in additional physician staff. While initially

useful, this model slowly became less relevant as average daily
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volumes increased and daily staffing was increased, obviating

the need for a call-in shift or the predictive model.
Mechanism to incorporate the equitable
and ethical use of AI guidelines over time

To address the equitable and ethical use of AI, the

membership of our institutional committee includes ethics

expertise, including a prominent faculty member from the

Law School, and staff from our office for Diversity, Equity,

and Inclusion, and we maintain a line of communication with

our medical bio-ethicists.

Drawing upon this expertise and membership, the guiding

principles defined by the committee include guidelines for the

equitable and ethical use of AI. We note that our guidelines

also incorporate the evaluation of the intervention derived

from the AI algorithm, which provides a more comprehensive

determination of equitable and ethical impacts of how health

interventions are administered across the system.

Supplementary Appendix 1, the model intake form, shows

explicit steps in the model vetting and monitoring process

which are undertaken to ensure equity and evaluate for other

potential ethical issues.

Our approach to the impactful enforcement of the equitable

and ethical use of AI is to incorporate these guidelines as part of

the same guiding principles that address technical and clinical

guidelines. This is in contrast to treating the equity and ethics

considerations as separate from other aspects of oversight. We

believe this approach has been successful because it provides a

clear charter for the sub-committees when applying the whole

of the guiding principles to their use cases.
Interface with research

The committee specifically oversees AI applications which

are instituted by the health system for the purpose of

improving clinical care. We see this as a complementary role

to research oversight; AI applications for research purposes

are overseen by the IRB and research leadership. The

committee is made aware of research-related IT build, and

works with the IRB to ensure all AI applications are governed

via either this clinical workflow or considered research.
Discussion

As adoption of AI applications in healthcare accelerates,

there is an acute need for appropriate governance to address

ethical, regulatory and trust concerns (12, 13). At the hospital

level, effective governance offers the ability to specifically

address these concerns while facilitating deployment and
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adoption (14). In our governance development, we have found

that an effective system should not only be comprehensive, i.e.,

addressing all three domains as described in Challenges, but

also adaptive, scaling appropriately with development of a

program for implementing predictive solutions. This ensures

that the level of oversight is proportional for each of the three

domains at a given degree of program maturity. Our approach

of adaptive governance evolved organically over time: we

would likely have been unable to justify our current

institutional committee without a number of extant solutions

in need of oversight. At our current state we expect that our

mechanisms will continue to evolve to meet organizational

needs.

Faculty, in general have been supportive of the committee.

While we expected some resistance to centralization of

governance and a proscribed pathway for model deployment,

these disadvantages seem to have been outweighed by the

benefits of consistent expectations and process for all models.

Research faculty have expressed favorable comments noting

that introduces a consistent and supervised process for

implementation of models after their development and

validation.

While our current system developed organically, if we were

to re-establish governance we would advocate a similar program

of iterative building, allowing those involved in predictive model

adoption to maintain flexibility early in the program and take

advantage of gained institutional knowledge as it accrues. Key

advantages of our current system of an oversight committee

with federated small working groups include the breadth of

recruited stakeholders and system scalability. Our current

structure enables scaling by taking advantage of two tiers of

governance. The institutional-level committee can and does

charter multiple sub-committees as needed across multiple

use cases to facilitate adoption and endorsement within each

sub-committee’s respective use cases. At the same time, the

institution-level committee sets the guiding principles to

enforce the consistency of standards and confidence of

oversight while minimizing overhead. The goal is to meet the

business needs of our health system while remaining

cognizant of the AI guiding principles to prevent medical

error and harm.
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As the implementation of artificial intelligence (AI)-enabled tools is realized
across diverse clinical environments, there is a growing understanding of the
need for ongoing monitoring and updating of prediction models. Dataset
shift—temporal changes in clinical practice, patient populations, and
information systems—is now well-documented as a source of deteriorating
model accuracy and a challenge to the sustainability of AI-enabled tools in
clinical care. While best practices are well-established for training and
validating new models, there has been limited work developing best
practices for prospective validation and model maintenance. In this paper,
we highlight the need for updating clinical prediction models and discuss
open questions regarding this critical aspect of the AI modeling lifecycle in
three focus areas: model maintenance policies, performance monitoring
perspectives, and model updating strategies. With the increasing adoption of
AI-enabled tools, the need for such best practices must be addressed and
incorporated into new and existing implementations. This commentary aims
to encourage conversation and motivate additional research across clinical
and data science stakeholders.

KEYWORDS

dataset shift, model updating, machine learning, risk model surveillance, artificial

intelligence

Introduction

As the implementation of artificial intelligence (AI)-enabled tools is realized across

diverse clinical environments, there is a growing understanding of the need for ongoing

monitoring and updating of prediction models (1–5). Beyond initial validation and local

tailoring of models transported across settings, temporal deterioration in model accuracy

after development has been documented across clinical domains and settings (6–10).

Neither regression nor advanced machine learning algorithms are exempt from these

temporal changes in performance (8, 11). Such performance drift degrades the clinical

utility of AI-enabled tools, jeopardizes user trust, and poses safety concerns when

insufficiently accurate predictions are used in decision-making (1, 6, 12, 13).
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Dataset shift (14)—temporal changes in clinical practice,

patient populations, and information systems—is well-

documented as a source of performance drift and recognized as

a challenge to the sustainability of AI-enabled tools in clinical

care (6–8, 15–17). Model developers and system managers have

access to a variety of approaches to address performance drift

and underlying dataset shift in order to restore model

performance to clinically acceptable levels. In some cases,

model performance may be restored by correcting technical

errors introduced by structural changes in information systems,

such as implementation of revised data standards. However, in

many cases where dataset shift is more nuanced and

multifaceted, model updating through recalibration, retraining,

or revision will be required. While best practices are well-

established for training and validating new AI models (18),

there is limited guidance on prospective validation and few best

practices for model monitoring and updating.

In this paper, we highlight the need for maintaining clinical

prediction models and discuss open questions regarding this

critical aspect of the AI modeling lifecycle. First, we illustrate

performance drift across models implemented in the

production electronic health record (EHR) system at an

academic medical center. Second, we discuss several open

research questions and describe the nuances required for best

practice guidance. Despite advances in continuous learning

algorithms that evolve models as data accrue, such algorithms

are subject to additional challenges and healthcare applications

still predominantly rely on static models that will require

periodic updating (19). Although we focus our discussion on

updating static models, similar questions may arise around

surveillance practices for continuous learning models.
Performance drift in operational
models

Most studies documenting temporal model performance

have been conducted in registry or research datasets rather

than with operational data from models running in real-time

clinical settings (7–9, 16). However, the transition from a
TABLE 1 Prediction models evaluated for temporal validation of real-time sc

Details LACE+

Outcome 30-day readmission

Intended use Quality benchmarking using predicted risk of readmission calcula
discharge

Development
setting

Patients from multiple hospitals in Ontario, Canada

Modeling approach Logistic regression

Evaluation period January 2018 through March 2022

VUMC, Vanderbilt University Medical Center.
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retrospective research frame to real-time operational

implementation may impact performance as input mappings

change and the timing data availability shifts (20–22). To

explore performance drift in an operational setting, we

evaluated the performance of two models currently

implemented in the production EHR system at Vanderbilt

University Medical Center (VUMC): a non-proprietary,

externally developed model predicting readmission (LACE+)

(23) and a locally developed model predicting suicidal

behaviors (Vanderbilt Suicide Attempt and Ideation

Likelihood model, VSAIL) (24).

Table 1 provides an overview of each model, highlighting

differences in modeling methods, training cohorts, and

intended use. We extracted stored predictions calculated in

real-time and outcomes associated with each prediction using

data available in VUMC’s EHR. For the LACE+ model, we

note that this approach may undercount readmissions if

patients were readmitted to a different medical facility.

Monthly performance was evaluated using metrics relevant to

each model’s intended use. We measured the mean calibration

of the LACE+ readmission model with the observed to

expected outcome ratio (O:E) and clinical utility of the VSAIL

suicidality model with the number needed to screen (NNS;

the inverse of positive predictive value).

The LACE+ model, locally calibrated to the VUMC

population, sustained performance over the evaluation

period (Figure 1A). Monitoring highlighted the importance

of distinguishing noise from both informative local change

in performance and true model deterioration. Over the first

2.5 years, variability in observed O:Es did not follow a

significant trend. In the last year of evaluation, however,

there may be a trend toward lower O:Es. Depending on the

use case, this declining O:E could be seen as indicating

improved local quality (i.e., reducing readmissions) or

increasing miscalibration. We note that O:E, a crude

measure of calibration, may conceal calibration drift within

clinically important risk ranges (25). VSAIL maintained a

relatively stable NNS during the first year of implementation

(median monthly NNS = 19), with the NNS abruptly

increasing in February 2021 (median monthly NNS = 136);
ores generated within a production electronic medical record system.

VSAIL

30-day suicidal ideation or attempt

ted at Clinical decision support delivered at arrival for inpatient and outpatient
encounters

VUMC patient population

Random forest

December 2019 through January 2022
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FIGURE 1

Temporal performance at Vanderbilt University Medical Center of the (A) LACE+ readmission model in terms of mean calibration (O:E); and (B) VSAIL
suicidality model in terms of number needed to screen (NNS).
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Figure 1B). This shift corresponds to operational changes in

implementation, with the model being applied to a much

broader patient population. Within the original population,

VSAIL’s NNS remained stable (median monthly NNS = 22).

The higher NNS in the broader population may still be

feasible but should be considered in the implementation

team’s cost-benefit analysis and may warrant further

investigation of performance in select clinical settings or

subpopulations. These findings illustrate performance drift in

a single health system’s EHR and contribute to the mounting

evidence that AI-enabled tools require long-term strategies

to understand performance trajectories and maintain utility.
Research and best practice gaps in
model maintenance

Despite concerns over the long-term stability of model

performance, health systems lack generalizable guidance for

operationalizing post-implementation maintenance strategies.

To develop guidance and establish best practices, additional

research and debate are needed in three focus areas: model

maintenance policies, performance monitoring perspectives,

and model updating strategies (Table 2).
Maintenance policies

Oversight policies at the health system level could facilitate

the maintenance of a portfolio of models by defining a

consistent, systematic groundwork for sustaining both new

and existing AI-enabled tools. System-level policies can also

inform use case parameters to consider when establishing

model-specific maintenance plans.
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How should model ownership impact local
control over maintenance?

Health systems certainly have a right and duty to monitor

the local performance of the AI models they implement,

regardless of where those models originated. However, how to

address deteriorations in performance is complicated by

model ownership and licensing restrictions. For models

developed in-house and local implementations of models in

the public domain, health systems have full control over

maintenance approaches and may consider the full spectrum

of updating methods. At VUMC, the local VSAIL model will

be retrained using more recent data and subsequently

maintained through a tailored data-driven surveillance

approach. When models are developed in collaboration across

health systems, best practices could guide collaborative

updating and establishment of parameters for local model

adjustments.

Updating proprietary models is particularly challenging,

despite locally documented drift having required the

deactivation of proprietary AI-enabled clinical tools (6).

Licenses may restrict updating by not permitting local model

recalibration or retraining. Updating options may be further

limited by inadequate documentation of training methods

(26). Proactive updating of proprietary models by model

owners, such as semi-annual updates of the National Surgical

Quality Improvement Program (ACS NSQIP) risk models,

may alleviate some, but not all, of the need for local

updating options. Health systems, national organizations, and

policymakers should advocate for more complete

documentation of proprietary models and increased access to

updating options. This may include the relaxation of local

updating restrictions; clear documentation of owner-driven

maintenance plans; and proactive, transparent dissemination

of updated models to all customers. Enabling such

expectations of model owners will require more detailed and
frontiersin.org
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TABLE 2 Overview of gaps in best practices for model maintenance.

Domain Gaps/Needs

Maintenance policies

How should model ownership impact local control over
maintenance?

• Policies establishing updating expectations of proprietary models
• Clarity and fairness of local updating opportunities of proprietary models
• Prototypes for establishing collaborative updating of multi-system owned models

How do we ensure comparable performance across demographic
groups is sustained during the maintenance phase?

• Guidance on whether and when changes in model fairness warrant pausing AI-enabled tools
• Methods for addressing performance fairness drift when model performance deteriorates

differentially across subpopulations

How do we communicate model changes to end users and promote
acceptance?

• Design of effective communication strategies for warning end users of model performance drift
and informing users when updated models are implemented

• Guidance on aligning messaging with end-user AI literacy

Performance monitoring

At what level should model performance be monitored and
maintained?

• Guidance on aligning monitoring and maintenance with use case needs
• Recommendations for handling monitoring in smaller health systems, including determining

minimum sample size and methods for collaborative monitoring
• Policies supporting collaborative model maintenance in low data resource settings
• Guidance on managing interim periods of local performance drift between releases of

proprietary models that cannot be locally updated

What aspects of performance should be monitored? • Generalization recommendations on frequency and sample sizes for measuring performance
across a variety of metrics

• Customizable and expandable tools to monitor a matrix of metrics
• Guidelines for aligning metrics of interest with use case needs

How do we define meaningful changes in performance? • Framework for selecting drift detection methods
• Guidance on establishing clinically acceptable ranges of performance and defining clinically

relevant decision boundaries
• Methods for tailoring drift detection algorithms to detect a clinically important change

Are there other aspects of AI models that we should monitor, in
addition to performance?

• Approaches to systematically surveil external features that may impact model inputs and for
monitoring input data distributions

• Guidance on when to update in response to changes in model inputs if performance remains
stable

• Systems for disseminating information on changes anticipated to affect common AI models

Model updating

What updating approaches should be considered? • Approaches to optimizing update method selection based on performance characteristics most
relevant to use case needs

• Expanded suite of testing procedures options for more updating methods and increased
computational efficiency

• Guidance on defining acceptable performance and methods to determine which updating
methods, if any, restore acceptable performance

Should clinically meaningful or statistically significant changes in
performance guide updating practice?

• Guidance on whether to update models when statistically significant improvement is possible
but updating would not provide a clinically meaningful improvement

• Methods for comparing updating options that incorporate tests for both statistical and clinical
significance

• Recommendations for decision-making in cases where available updating methods do not
restore performance to acceptable levels

How do we handle biased outcome feedback after model
implementation?

• Recommendations for assessing feedback from effective AI-enabled interventions
• Methods for model development, validation, and updating that are robust to confounding by

intervention

Davis et al. 10.3389/fdgth.2022.958284
consistent guidance on model updating practices covering the

concerns described throughout this paper.

How do we ensure comparable performance
across demographic groups is sustained during
the maintenance phase?

Model fairness is now recognized as a critical element of

clinical AI models (27, 28). While model fairness comprises a
Frontiers in Digital Health 04
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broad set of concerns regarding implementation practices,

user uptake and application, and sociotechnical contexts of

use (29), fairness also requires models to perform similarly

across demographic groups. Establishing initial comparable

model performance across subpopulations and subsequently

maintaining comparable performance within these groups is

thus critical to ensuring model fairness. Novel metrics for

evaluating algorithmic fairness across subpopulations are
frontiersin.org
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providing insight during model validation and selection of

models for implementation in clinical tools (30, 31). A clear

next step is to incorporate these new metrics and performance

within subpopulations into model monitoring to evaluate

fairness over time. This poses new questions regarding how to

handle the potential for fairness drift, defined as differential

performance drift across subpopulations. Researchers and

policymakers will need to address tests for temporal changes

in fairness metrics; methods for updating models experiencing

fairness drift that prioritize equitable utility for all patients;

and whether and when changes in model fairness warrant

pausing AI-enabled tools to avoid creating or exacerbating

disparities.
How do we communicate model changes to
end users and promote acceptance?

Open communication between modeling teams and

clinical end users is essential to the monitoring and

maintenance phase of the AI lifecycle. End users may

identify failing AI-enabled tools before performance

monitors detect changes in accuracy. They may also provide

insight when models are no longer useful from a clinical

perspective even with sustained performance, allowing tools

to be de-implemented or revised as needed. At the same

time, modeling teams should establish policies for

disseminating information about model updates to end-

users, whether updating is driven by end-user concerns,

local model maintenance efforts, or new releases of

proprietary models. Such communication, while particularly

important for reestablishing trust in models updated in

response to end-user concerns, is relevant for all updates.

Model maintenance programs need to include specific

strategies for this bidirectional communication. Such

engagement and transparency regarding model maintenance

may also increase acceptance of AI more broadly by

assuring users that models are actively being curated,

monitored, and assessed with an eye to promoting utility

and safety.

The appropriate mode of communication and level of

detail provided about model updates are likely to use case-

dependent. The ACS NSQIP surgical risk calculator, for

example, displays a banner message highlighting recent

updates, setting expectations for any noticeable changes in

predictions, and eliciting feedback if concerns arise (32).

Extensive model revisions or reimplementation of a paused

model with restored performance may require more

explanation than a banner message can effectively convey.

Workflow and communication experts will be key

collaborators in designing best practices for disseminating

information on model updates. These best practices will

likely need to evolve as the health care workforce becomes

better trained in AI.
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Performance monitoring perspectives

Ongoing monitoring provides necessary insight into model

stability and can alert model managers to concerning

performance trends in need of intervention (3, 33, 34).

However, insights from monitoring require careful

determinations of how model performance is defined and

evaluated.
At what level should model performance be
maintained?

AI models, even when operationalized to meet the needs of

a specific health system, may need to be monitored and updated

locally, regionally, or nationally. Key features to consider in

determining the appropriate level of model maintenance

include use case goals, model ownership, and data and

analysis resources.

Our understanding of best practices is well-defined in terms

of use case and the level of model maintenance. For

benchmarking models in quality evaluations, maintenance

should be centralized at the largest relevant scope. Stabilizing

the performance of quality-oriented models at higher levels

imbues local performance deviations with information about

variations in care and allows facilities to validly interpret

performance trends as indicating improvement or

deterioration of local performance over time. For AI-enabled

tools aimed at clinical decision-making and population

management, individual predictions should be well-calibrated

to ensure utility and benefit to patients (13). As a result, more

localized monitoring and maintenance are appropriate.

Unfortunately, practical considerations may require

centralized monitoring and updating at regional or national

scales even when local performance would typically be

prioritized. Ownership and licensing requirements of

proprietary models may preclude updating models to optimize

local performance. Guidance on how to assess and handle

local drift in light of such restrictions is necessary to trigger

pauses in model implementations when local monitoring

efforts reveal concerning performance drift; facilitate

communication with end users about paused models and

support end users’ information needs during such pauses, and

promote timely reporting of issues to model owners.

When local updating is permissible, monitoring and

updating remain a challenge for small organizations where

data volumes and analytic resources may be limited.

Insufficient sample sizes can lead to highly variable

performance during monitoring and limit the ability to

distinguish performance drift from noise. Smaller

organizations, as well as their larger peers, should leverage

recent studies by Riley et al. to assess whether sufficient

sample sizes are available to validate binary (35), time-to-

event (36), and continuous models (35). Recalibration,
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retraining, and model revision also require sufficient sample

sizes (37) and dedicated data science teams that may not be

feasible for all organizations. One solution would be to

explore whether health information exchanges could be

leveraged for collaborative monitoring and updating where

local resources are insufficient. Broader research and policy

discussions are needed as we think creatively about such

multi-level, coordinated efforts to ensure the benefits of

predictive tools are available and practical for health care

organizations serving all communities.

What aspects of performance should be
monitored?

While some metrics appear more robust to dataset shift,

performance drift has been documented in measures of

discrimination, calibration, and clinical utility (7, 8, 10, 16,

38). Monitoring metrics relevant to an AI-enabled tool’s use

case is critical to understanding whether changes in

performance warrant updating or whether updating may have

little impact on model use and outcomes. For example, the

number needed to screen was identified by the VSAIL team

as the target metric for monitoring and stabilizing model

performance as this impacts the cost-benefit analysis of clinics

adopting the tool (39). For models deployed in diverse clinical

contexts or across multiple tools, tracking a matrix of

performance measures would provide insights supporting a

variety of user perspectives (12, 40). Monitoring

recommendations should thus include components that are

agnostic to the performance metrics under consideration (e.g.,

selection of measurement), as well as components regarding

metric selection.

How do we define meaningful changes in
performance?

Monitoring performance alone is insufficient; model

managers need to be able to determine when observed

deterioration in performance warrants intervention. Drift

detection methods surveil temporal performance to alert

users to statistically significant changes (41, 42) and have

been applied to monitoring clinical prediction models. (34,

38) Methods vary in their ability to handle multiple forms

and speeds of performance drift, as well as in their

applicability to clinical contexts where calibration is of

interest (43). Best practice recommendations will need to

provide a decision framework for selecting between drift

detection approaches, including considerations of whether

detection algorithms are model-independent; can handle

data streams of individual or batched observations, and are

flexible in their ability to monitor prediction errors using a

variety of metrics.

We note small differences in performance may be detected

by the statistical tests underlying drift detection algorithms.

However, statistically significant differences in performance
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may not directly translate into clinically meaningful

differences. In such cases, users may question the value of

updating or pausing a model in response to detections of

small statistically significant, but not clinically important

performance drift. The magnitude of acceptable inaccuracy

and performance variability likely varies by use case. For

example, performance drift is most likely to impact clinical

utility when the calibration of predictions near clinically

relevant decision thresholds or near classification cut-points

deteriorates. Understanding whether, when, and how

performance drift affects the clinical utility of predictions for

decision-making is key to detecting meaningful changes in

monitored models. Defining and measuring clinically

acceptable performance and defining clinically relevant

decision boundaries remains an open area of research.

Subsequent research and guidance will need to address

tailoring drift detection algorithms to place more import on

clinically important changes in model performance.
Are there other aspects of AI models that we
should monitor?

In addition to performance metrics, the inputs of AI

models could be monitored. This may involve evaluating

data streams for changes in predictor distributions and

associations (17), as well as establishing teams to actively

evaluate external influences in clinical guidelines, software

systems, data standards, and health care policies (6).

Tracking external influences would allow teams to recognize

structural changes that could render a model unreliable and

plan customized updating approaches. Changes in data

stream features, however, may not necessitate updating

unless and until they affect the model accuracy in clinically

meaningful ways. Best practices will need to address

integrating insights from performance monitoring and

evaluations of factors impacting model inputs to promote

stable performance while efficiently and conservatively

updating models. Additional research could investigate

strategies for monitoring these non-performance aspects of

AI models and policies for disseminating information across

health systems when new practices are anticipated to impact

widely adopted models.
Updating strategies

When updating is initiated by pre-established schedules or

detected performance drift, model managers must choose

between a range of updating methods – from recalibration to

retraining to model revision. As not all methods will be

feasible, permissible, or successful in all situations, research

and recommendations are needed to guide updating practice.
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What updating approaches should be
considered?

Although retraining with a cohort of recent observations

may be established practice, this approach fails to build on

the knowledge encoded in existing models, can be susceptible

to overfitting, and may not improve performance above that

achieved through recalibration (11, 44–47). For health systems

with smaller populations, concerns regarding performance

instability when retraining complex models may be more

pronounced. Several methods have been developed to

compare updating approaches on a particular cohort and

recommend the approach that most improves accuracy (17,

45, 46). These methods, however, test for statistically rather

than clinically significant differences across potential updates

and do not consider whether the recommended update

sufficiently restores performance. As methods for establishing

clinically relevant decision thresholds mature, testing

procedures for selecting updating methods could be

implemented with weighted scoring rules to emphasize

accuracy in critical regions. Future research should consider

expanding options for optimizing decisions using varied

performance metrics; increasing test efficiency, particularly for

computationally intensive models; methods for evaluating

whether updating provides clinically meaningful improvement;

and recommendations for cases in which available updating

methods do not restore models to acceptable levels of accuracy.
How do we handle biased outcome feedback
after implementation?

Model updating with current recalibration, retraining, and

model revision methods has been developed, evaluated, and

applied primarily in research databases. In production

systems, interactions between users and AI-enabled decision

support tools will, if successful, alter treatment decisions and

improve patient outcomes. As a result, the observed data in

production systems will be biased and updates using these

biased data may reduce future model utility by updating away

useful signals (48). These feedback loops created by successful

clinical AI tools pose new challenges to updating practice that

requires additional methodological research to better

characterize the problem; to distinguish between dataset shift

and performance changes due to model interventions; and to

develop novel algorithms and updating approaches that are

robust to confounding by intervention.
Conclusion

The clinical AI lifecycle is incomplete without components

to monitor and stabilize accuracy in evolving clinical

environments. Despite the diverse landscape of AI-enabled

tools, common challenges to model maintenance impact new
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and existing implementations regardless of clinical domain

and underlying modeling algorithms. Methods development

for model monitoring and updating is accelerating, yet open

questions for the design of maintenance programs, those

described here and more, require additional research and

scientific consensus to devise best practices. Establishing best

practices is critical to designing AI-enabled tools that deliver

reliable predictions, promote adoption, and realize the

promise of AI to improve patient care.
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Background: Deploying safe and effective machine learning models is essential
to realize the promise of artificial intelligence for improved healthcare. Yet,
there remains a large gap between the number of high-performing ML
models trained on healthcare data and the actual deployment of these
models. Here, we describe the deployment of CHARTwatch, an artificial
intelligence-based early warning system designed to predict patient risk of
clinical deterioration.
Methods: We describe the end-to-end infrastructure that was developed to
deploy CHARTwatch and outline the process from data extraction to
communicating patient risk scores in real-time to physicians and nurses. We
then describe the various challenges that were faced in deployment,
including technical issues (e.g., unstable database connections), process-
related challenges (e.g., changes in how a critical lab is measured), and
challenges related to deploying a clinical system in the middle of a
pandemic. We report various measures to quantify the success of the
deployment: model performance, adherence to workflows, and
infrastructure uptime/downtime. Ultimately, success is driven by end-user
adoption and impact on relevant clinical outcomes. We assess our
deployment process by evaluating how closely we followed existing
guidance for good machine learning practice (GMLP) and identify gaps that
are not addressed in this guidance.
Results: The model demonstrated strong and consistent performance in real-
time in the first 19 months after deployment (AUC 0.76) as in the silent
deployment heldout test data (AUC 0.79). The infrastructure remained online
for >99% of time in the first year of deployment. Our deployment adhered to
all 10 aspects of GMLP guiding principles. Several steps were crucial for
deployment but are not mentioned or are missing details in the GMLP
principles, including the need for a silent testing period, the creation of
robust downtime protocols, and the importance of end-user engagement.
Evaluation for impacts on clinical outcomes and adherence to clinical
protocols is underway.
Conclusion: We deployed an artificial intelligence-based early warning system
to predict clinical deterioration in hospital. Careful attention to data
01 frontiersin.org
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TABLE 1 Example of measured labs
training dataset. For these vitals an
values, the 1st quantile (Q01), the 9
value (Min) and maximum value (Max
values often fall outside of the range
(e.g., a maximum body temperature va

Feature Mean

Vital—temperature 36.91

Vital—diastolic blood pressure 71.49

Vital—systolic blood pressure 129.89

Vital—respirations 20.53

Lab—troponin 0.28

Lab—HBA1 −2.73

Lab—glucose random 1.95

Lab—Hemoglobin 106.09

Lab—Basophils 0.03

Lab—Alanine Aminotransferease 3.38

Pou-Prom et al. 10.3389/fdgth.2022.932123
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infrastructure, identifying problems in a silent testing period, close monitoring during
deployment, and strong engagement with end-users were critical for successful
deployment.

KEYWORDS

machine learning, healthcare, deployment, early warning system, clinical pathway
Introduction

Despite advancements in machine learning algorithms for

solving healthcare problems, there still remains a gap between

the number of developed algorithms and the number of

successful deployments (1, 2).

Problems can arise at any stage of deployment (3). Prior to

model development, unclear problem definition is often cited as

a barrier to successful deployment (4). Then, during model

development, the training data can be biased, either due to

missingness of vulnerable populations, small sample size, or

erroneous data (5). When transitioning to production data,

there can be a drop in model performance from test data to

production data, which may result from changes in data

formats, timing, and context (3). Problems can also arise with

out-of-distribution generalization and incorrect feature

attribution (for example, if clinical protocols or target

populations change over time) (6). If a model makes it to the

deployment phase, end-user engagement is a crucial facilitator

of, or barrier to, successful uptake. Introducing a clinical team

to a ML model may require changes in workflow and change

management. Ensuring that end-users correctly use a

deployed product is difficult if there is no buy-in or trust (7).

Because of the issues listed above, there are few successful

deployments of ML in healthcare settings. The scarcity of

deployments means there are no widely accepted “best

practices” or standards by which to evaluate the success of a
and vitals in the CHARTwatch
d labs, we report their mean
9th quantile (Q99), minimum
). The minimum and maximum
of biologically possible values
lue of 6932 °C).

Q01 Q99 Min Max

34.8 38.3 0 6932

47 101 0 173

85 183 1 16,070

15 28 0 20,147

−1.9 5.58 −1.9 7.13

−3.14 −1.9 −3.3 2.29

1.22 3.29 0 4.51

63 160 1 214

0 0.13 0 2.69

1.61 7.08 1.61 8.78

02
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deployment. Recent work has looked at assessing the quality

of the data that goes into model through the creation of

“Datasheets for Datasets” (8). In the past year, Health

Canada, the U.S. Food and Drug Administration (FDA), and

the United Kingdom’s Medicines and Healthcare products

Regulatory Agency (MHRA) have released the Good Machine

Learning Practice (GMLP) guiding principles, a document

providing 10 principles to address deployment of healthcare

algorithms (9). More recently, the DECIDE-AI steering

committee have released DECIDE-AI, a set of guidelines and

checklists meant for early live clinical evaluation.

In Fall 2020, we deployed CHARTwatch to the General

Internal Medicine (GIM) ward at St. Michael’s Hospital, an

inner city teaching hospital in Canada (2, 10). The GIM ward

currently holds 78 beds and receives approximately 4,000

admissions each year. Here, we describe in detail, the system’s

infrastructure and assess the success of our deployment

through quantitative metrics (such as model performance,

end-user engagement, and adherence to workflows) and by

comparing our deployment to the GMLP principles. The

purpose of this manuscript is to provide concrete insights into

the deployment of ML in a healthcare setting and highlight

opportunities to strengthen GMLP guidance.
Materials and methods

Model development

We developed a model to detect inpatient deterioration,

defined as in-hospital death or transfer to the intensive care

unit (ICU).

We obtained historical development data through the

hospital’s enterprise data warehouse. We used the following

data sources: demographic information (sex and age),

laboratory and vitals measurements. Our dataset consisted of

all complete inpatient admissions to the GIM service between

the dates of April 1, 2011 and December 11, 2019. We split

the data into training and validation based on calendar date.

Then, following silent deployment, we used data generated in

the production environment between January 1, 2020 to May

30, 2020 as our test dataset. In the training and validation

sets, we excluded any visits with length of stay less than 8 h

or more than 40. The exclusion criteria were not applied to

the test dataset. This was done to avoid biasing model
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development with outliers but to ensure accurate reporting of

expected performance in a production environment. During

training, death on the ward, transfer to the ICU, transfer to

the step-up unit (a 4-bed unit on the GIM ward for higher

acuity patients), and transfer to palliative care were used as

the outcomes. Model performance was ultimately evaluated on

the composite outcome of ICU transfer and in-hospital

mortality.

We processed the data into a timeseries of 6-hour windows

for each patient encounter, from admission timestamp to the

first of either discharge timestamp or outcome timestamp. We

took the mean value of numeric features (laboratory and

vitals measurements) when the data were recorded multiple

times within the same interval.

We observed a few data quality issues caused by data entry

errors. For example, we found a body temperature value of 700 °C

(see Table 1 for more examples of laboratory and vitals

measurements). To address this, we processed all of our

numeric features in the following way: we trimmed numeric

features that were less than the 1st percentile or greater than

the 99th percentile (as determined from the training data),

and normalized the values to be between 0 and 1, using the

1st and 99th percentile. We then created “[feature]_measured”

variables to indicate whether the feature was measured in the

6-hour window and “[feature]_time_since_last_measured”

variables to keep track of the number of hours since the

feature was previously measured. To address missingness, we

imputed data with the last observation carried forward,

followed by mean imputation. Details on data processing can

be found in (10).

Following numerous experiments with various machine

learning methods, including logistic regression, Lasso

regression, generalized additive models, and neural networks

(10), we trained a “time-aware MARS model” to predict

patient deterioration. This model consisted of two

components: (1) The Multivariate Adaptive Regression Spline

(MARS) used all processed input features to get a score of

patient deterioration for each 6-hour window. (2) Then,

additional features were created from the MARS scores (for

example, current MARS score, baseline MARS score, change

in score from previous time window, change since baseline)

and were given as input to a logistic regression model. We

selected this approach because it achieves similar performance

to the more complex ML models, intrinsically incorporates a

degree of feature selection, successfully models non-linear

interactions, and was computationally efficient for deployment.

The risk scores generated by the time-aware MARS model

were then categorized into “High risk”, “Medium risk”, and

“Low risk”. We used 10-fold cross-validation on the validation

set to pick the thresholds that would yield a visit-level positive

predictive value (PPV) of 40% and a negative predictive value

(NPV) of 99%. This threshold was selected because clinicians

expressed the need to minimize false alerts, and they
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recommended a ratio of 2 false alerts to a single true positive

(10). Models were not selected or adjusted after assessing

performance in the validation dataset.
Description of system

CHARTwatch was developed using the open source

programming language R and the codebase was deployed to a

local server with access to the hospital source systems.

Various automated scripts are scheduled to run at different

intervals. A summary of the scripts is provided in Appendix

Table 1. The main CHARTwatch pipeline script runs hourly.

It connects to the hospital databases, extracts the current

patient census, and then pulls demographics, labs, and vitals

data for current GIM patients. The script then does data

cleaning, data processing, model prediction, and risk group

assignment. The outputs of the CHARTwatch pipeline script

are then communicated to clinicians through different

methods, which are part of a comprehensive clinical

intervention that was designed by an interdisciplinary team

(the team has previously been described) (2):

- “High risk” alerts are sent in real-time to the GIM physicians

through a paging application—“SPOK”1—running on the

GIM team phones and the charge nurse phone. At our

hospital, each GIM team and on-shift charge nurses carry a

hospital-assigned mobile phone device 24-hours per day.

Typically, the GIM team phones are carried by in-house

residents.

- Patient risk groups are displayed, and updated hourly, in a

locally-developed “electronic sign out” tool, which is used

by GIM physicians to organize their teams.

- Emails are sent twice a day to the GIM charge nurses. This

email contains the census of all GIM patients and their

CHARTwatch risk group. The email is used by the charge

nurses when they are assigning bedside nurses for the next

12-hour shift. They proactively attempt to match more

experienced or skilled nurses with higher risk patients and

to avoid one nurse from having multiple “High risk” patients.

- An email is sent once daily to the Palliative care team. This

email contains a list of all patients who received their first

“High risk” prediction in the past 24 h. The palliative care

team contacts the patients’ GIM physicians to ask whether

a palliative care consultation would be helpful, with the

goal of improving access to high quality end-of-life care for

“High risk” patients, when appropriate.
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“High risk” alerts to the mobile devices are triggered if a

patient is classified as “High risk” by the CHARTwatch

model. To minimize alert fatigue, the following alerting

protocol is applied:

- After an alert, no further alerts are sent for the same patient

for the next 48 h.

- Subsequent alerts only occur if a patient’s status changes from

“High risk” to “Low risk” or “Medium risk”, and then back to

“High risk”.

- Alerts for patients who are transferred from the ICU to the

GIM ward are silenced for 24 h after transfer, as these

patients are already known to be “High risk” and are

proactively followed by the critical care response team.

- In March 2022, in response to feedback that a small number of

patients were getting a very large number of alerts, we began

silencing all alerts after the fifth alert for a patient, although

their status is still indicated as “High risk” in other

communications.

A clinical pathway for “High risk” alerted patients was

developed by an implementation team as described in detail

elsewhere (2). This pathway was continuously refined by an

implementation committee composed of GIM, ICU, and

palliative care physicians and nurses, the chief medical

resident, a clinical informatics specialist, and the lead data

scientist. The committee met weekly through the pilot and

early phases of the implementation and then was scaled back

to meet monthly.
Silent deployment and pilot phase

CHARTwatch silent deployment was affected by the onset

of the COVID-19 pandemic. We initially planned a 4-month

silent deployment, which was subsequently extended for 6

more months to accommodate the clinical changes that were

being made amidst the challenges of the first wave of the

pandemic. During silent testing, we used weekly check-in

meetings with stakeholders to ensure the system was running

smoothly and had some preliminary training sessions with

end-users to assess buy-in and trust. The weekly check-in

meetings included members from the following groups: the

model development team, hospital Information Technology

(IT), clinical informatics, and clinicians working on GIM,

ICU and Palliative Care.

We began silent deployment in November 2019 and

planned to launch the intervention in March 2020. During

this time, we focused on several data-related issues. First, our

testing period coincided with the hospital changing from

traditional troponin measurement to a new “high sensitivity”

troponin assay. In order to address this change, we modified

our pre-processing code to scale the lab value accordingly.

Earlier versions of CHARTwatch relied on medications and
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nurse notes. However, this silent testing period uncovered

database connection issues, and these data sources were

subsequently removed. This had no impact on model

performance.

The onset of the COVID-19 pandemic resulted in numerous

changes on the GIM unit, as this was the unit primarily

responsible for care of COVID-19 ward patients. This resulted

in physical changes to the ward, relocation of patients to

other units in the hospital, and creation of new clinical care

teams. All of these changes needed to be accommodated in

CHARTwatch, including ensuring the model continued to

identify the correct cohort of GIM patients and would be

delivered to all the relevant care teams. We made a plan to

deploy the model for GIM patients with COVID-19 as well as

for those with other illnesses. Once these changes were made,

we focused on model validation and data quality to ensure

accurate performance (see Results section for details).

In August 2020, we initiated the pilot phase of our

intervention. We began by deploying the system for 2 of the 7

GIM teams. Deployment progressed in a phased approach

over a 6-week period, rolling out to all GIM teams and then

to nurses and the palliative care team. The system was fully

running by October 20, 2020.

The silent deployment and pilot phases were essential as it

allowed the technical team to uncover issues with pipelines and

workflows, and also allowed the clinical team to collect feedback

from end-users.

A summary of major changes resulting from silent

deployment and iterative refinement of the solution during

the pilot and implementation phases is provided in Appendix

Table 2.
Downtime protocols

To ensure that CHARTwatch could run smoothly with

minimal interruptions, all deployed scripts were developed so

that emails to the project team would be sent out if any script

failed. Furthermore, the data extract scripts were set to run

hourly. If data extraction failed, the model outputs could rely

on an earlier data extract that is at most 3 h old. In the rare

case where errors would affect end-users, we developed email

templates to: (1) notify end-users of the unplanned downtime;

and (2) notify them when the unplanned downtime was over.

Planned downtimes are inevitable (e.g., due to database

updates, server updates) and we also developed email

templates accordingly.
End-user engagement

End-users were engaged through the full life-cycle of this

project as described in the methods and previous manuscripts
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(2, 10). A comprehensive effort was made to train physicians

and nurses prior to, and during the deployment of

CHARTwatch about the system, the interpretation of risk

groups, the meaning of alerts, and the expected clinical

responses. We incorporated CHARTwatch training into the

orientation of all new nurses, such that all nurses working on

the GIM ward receive CHARTwatch training. CHARTwatch

training was integrated into the monthly orientation for

residents, which includes in-person and emailed materials,

and involves approximately 100 resident physicians annually.

GIM staff physicians were trained through several

presentations at division meetings and all GIM physicians

(approximately 20) received the training.
Performance measures

To measure model performance, we report the area under

the receiver-operative curve (AUC), the positive prediction

value (PPV), and sensitivity. We compute these metrics in the

heldout test data (January 2020–May 2020), and in the real-

time data from deployment (August 2020–March 2022). The

model PPV is computed at the encounter-level. We calculate

sensitivity based on the visit’s maximum risk group, in order

to get an estimate of the proportion of outcomes that would

be captured by the visit’s maximum risk group. We want this

metric to be low for patients whose maximum risk group is

“Low risk”.

To estimate adherence to clinical pathways, we used the

number of vital sign assessments in the 24 h following an

alert. This reflects both physician and nurse adherence as

physicians must place an order and nurses must perform the

measurements. According to the clinical pathway, vital signs

should be measured every 4 h (the maximum frequency of

routine measurement for patients on the GIM ward). Thus,

adherence is measured as the total number of alarms that

follow the clinical pathway (i.e., are followed by vital signs

measurements every four hours) divided by the total number

of alarms. We compute this metric at a weekly level and

report the weekly percentage of alerts that follow the clinical

pathway.
Results

Model performance

Model performance metrics on the heldout test data

(January 2020 to May 2020, silent testing period) and the

deployment data (August 2020 to March 2022) are reported

in Table 2. When predicting the composite outcome of ICU

transfer and in-hospital mortality, the time-aware MARS

model achieved an AUC of 0.786 and of 0.759 on the test
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data and deployment data, respectively. When predicting

patient deterioration within the next 48 h, the AUC was of

0.626 and 0.753.

Maximum risk group sensitivity was of 0.530 for the “High

risk” group, 0.471 for the “Medium risk” group, and 0 for the

“Low risk” group in the test data. In production, the risk

group sensitivity was of 0.559, 0.417, and 0.023.

During validation, we iterated through a range of risk score

values and selected a threshold that would yield a PPV of 0.40

on the composite outcome of ICU transfer, in-hospital

mortality, step-up unit transfer, and Palliative Care transfer.

With this outcome, the model achieved a PPV of 0.306 and

0.272 in the test data and deployment data, respectively. In

the composite outcome of ICU transfer and in-hospital

mortality only, the model achieved a PPV of 0.172 and 0.257

in the test and deployment data, respectively.
Alerts

Since deployment, there has been a mean of 2.60 (SD: 1.71)

alerts per day and a median of 2 (IQR: [1–4]), for a mean of

84.02 (SD: 7.48) and median 84 (IQR: [79–89]) total GIM

patients per day. There were 56 (9.589%) days where no alerts

were sent. Figure 1 shows the daily number of alerts since

deployment. The alerts were equally spread out across the

different GIM teams.
Adherence to clinical pathway

To assess adherence, we reported the percentage of alerted

patients who had at least 4 vital signs measurements. The

weekly percentage of adherence increased as users became

more familiar with the system. Between August 2020 and

November 2020, this weekly percentage was at a mean of 65%

(SD: 11%) and a median of 65% (IQR: [59%–75%]). Between

December 2021 and March 2022, this weekly rate had

increased to a mean of 74% (SD: 11%) and a median of 71%

(IQR: [69%–80%]).
CHARTwatch pipeline runtime and data
size

The pipeline runtime remains consistent and takes a mean

of 196.83 seconds (SD: 121.05 seconds) to complete and a

median of 151 seconds (IQR: [133–194] seconds). Similarly,

the data size remains consistent at a mean of 26.44 MB (SD:

3.98 MB) and a median of 26.25 MB (IQR: [24.42–28.06] MB).
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Downtime events

We experienced few downtime events and most of them

were planned. In total, the system was down for 52.5 out of

14,016 h (584 days). Thus, CHARTwatch was running for

99.6% of the time. 20 h (38.1%) of downtime were planned

(scheduled database maintenance/upgrade, updates to server,

etc.), and 32.5 h (61.9%) of downtime were due to unplanned

events (such as unexpected database or network failure).
Adherence to GMLP guidelines

1. Multi-Disciplinary Expertise Is Leveraged Throughout

the Total Product Life Cycle. CHARTwatch was

developed and deployed by a team from various fields of

expertise with strong end-user engagement including

advice from patients and caregivers, as previously

described in detail (2).

2. Good Software Engineering and Security Practices Are

Implemented. Our infrastructure follows best practices for

security; the deployment server for CHARTWatch sits in

the same secure private network as the clinical systems.

Access to all systems is restricted to authorized personnel

and continuously audited. Database administrators of

clinical systems provided guidance to data engineers in

developing high performance queries. The data pipelines

were coded using techniques to minimize the risk of SQL
TABLE 2 Performance of the CHARTwatch model in the test data and
the deployment data. AUC, PPV, and sensitivity are reported in the test
data (January 2020–May 2020) and in the deployment data (August
2020–March 2022). Metrics are reported on the composite outcome
of ICU transfer and in-hospital mortality (Outcome: ICU/Death), as
well as in the composite outcome of ICU transfer, in-hospital
mortality, step-up unit transfer, and Palliative Care transfer
(Outcome: ICU/Death/step-up/Palliative).

Metric Test Data Deployment Data

Outcome:
ICU/
Death

Outcome:
ICU/
Death/
step-up/
Palliative

Outcome:
ICU/
Death

Outcome:
ICU/
Death/
step-up/
Palliative

AUC
(ever)

0.786 0.735 0.759 0.768

AUC (in
next 48 h)

0.626 0.791 0.753 0.759

PPV of
alerted
encounters

0.172 0.306 0.257 0.272

Sensitivity (based on maximum risk group)

High
risk

0.480 0.53 0.565 0.559

Medium
risk

0.520 0.471 0.419 0.417

Low risk 0 0 0.016 0.023
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injection in case of a system breach, while leaving a

minimal footprint on the source systems. Furthermore, the

data science team employed an agile development

approach to develop the final deployed product. This

included regular meetings to assess tasks, re-visiting the

backlog and prioritizing as needed.

3. Clinical Study Participants and Data Sets Are

Representative of the Intended Patient Population. The

model was trained on historical hospitalizations from the

same patient population at the same institution, to

maximize representativeness. During model development,

we worked directly with source database systems to ensure

high quality data, including performing clinical validation

ensured that the data sets were representative of real-

world data.

4. Training Data Sets Are Independent of Test Sets. Our

training data sets and test data sets were independent of

each other. We used calendar-based data split approach to

ensure that performance reported on the test set would be

representative of deployment-level performance by

simulating historical training and deployment in a future

time period. Furthermore, silent testing did not overlap

with our training/validation/test datasets.

5. Selected Reference Datasets Are Based Upon Best

Available Methods. We tried multiple models and settled

on the one that gave us the best performance and could

work within constraints and limitations set by the system.

Further, the features and models used in CHARTwatch

were backed by previous evidence (10, 11).

6. Model Design Is Tailored to the Available Data and

Reflects the Intended Use of the Device. When

developing the model, we used data available at time of

each prediction. Any data generated or updated after the

expected prediction time was excluded from the training

dataset. The silent deployment periods also allowed us to

validate this.

7. Focus Is Placed on the Performance of the Human-AI

Team. The clinical team was involved in development and

deployment with regular meetings with all stakeholders

and with extensive training on how to use the system. We

suggested CHARTwatch predictions be used by clinicians

in conjunction with their own clinical judgement rather

than in isolation. Further, we conducted a clinical

validation, comparing CHARTwatch model predictions to

more than 3,000 real-time clinical predictions, to engender

trust and inform our understanding of the human-AI

team (manuscript under review).

8. Testing Demonstrates Device Performance during

Clinically Relevant Conditions. We had silent testing

periods as well as a pilot phase and a phased rollout.

Model performance was monitored throughout the silent

testing period and continues to be monitored on an

ongoing basis.
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FIGURE 1

Daily alerts sent by CHARTwatch. The red solid line indicates the median number of daily alerts. The blue dashed lines indicate the 25th quantile and
the 75th quantile.
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9. Users Are Provided Clear, Essential Information. To

ensure the delivery of simple, actionable messages for

clinicians, CHARTwatch predictions were categorized into

“High risk”, “Medium risk”, and “Low risk” groups.

Messaging alerts contain the following text: “[Patient Last

Name, First Name, Medical Record Number] is high risk

for transfer to ICU or death. Please refer to LINK for

more information.” The link takes users to a brief

description of the clinical protocol for alerted patients. All

clinicians receive training on how to use this system.

10. Deployed Models Are Monitored for Performance and

Re-training Risks are Managed. Model performance is

measured and monitored by an implementation

committee, using a small number of key performance

and process measures, including those reported in this

manuscript: model sensitivity, PPV, number of daily

alerts, number of outcomes for patients in different risk

groups, and number of vital signs measurements in the

24 h following an alert. These were initially monitored

weekly and once the intervention moved into a more

stable maintenance phase, committee meetings are held

monthly. Error alerts on the automated pipelines ensure

timely identification of errors by the team. Re-training

poses an important challenge, as the model has altered
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clinical workflows, particularly for alerted patients. Given

that clinical interventions are intended to prevent adverse

outcomes for alerted patients, re-training the model may

lead to undesired feedback loops resulting in poorer

performance. This remains an area of active research for

our team and others (12), including exploring the use of

proxy labels to ensure that high risk patients who do not

experience adverse outcomes are still captured in the

modelling.

Discussion

In this manuscript, we describe our experience deploying

an early warning system for GIM patients in an academic

hospital, which highlights numerous practical lessons. We

observed that the GMLP guiding principles offer a helpful

starting point, and our solution was developed in alignment

with these suggestions. We offer concrete and detailed

descriptions of how we were able to operationalize the various

GMLP recommendations, to assist future initiatives. Beyond

these principles, we identified several aspects that have been

critical for successful deployment of our solution. First,

engagement of end-users was essential in designing,

deploying, and iteratively refining the solution. Second, a
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silent testing period and phased launch was crucial for

identifying unanticipated issues with models and data

pipelines and resulted in numerous updates before launch.

Third, it was important to create robust downtime protocols,

with a careful plan to prevent disruptions in clinical workflow

or patient harm.

Engaging a multidisciplinary group of end-users from the

project’s outset ensured that there was a high level of trust

and uptake of the designed solution. We discuss in more

detail our findings of engaging a multidisciplinary group in

(2). Ongoing engagement led to important iterations in the

intervention. Our engagement included identifying key

champions to participate in committees and lead the initiative

and a comprehensive training program for all clinicians.

Regular implementation committee meetings, initially held

weekly and then scaled back over time to monthly, allowed

the team to refine the intervention in response to feedback

from clinicians.

We achieve high model performance and, on average,

CHARTwatch only sends out two alerts each day. The

outcomes not captured by the alert are captured by the

“Medium risk” group. Combining the “High risk” and

“Medium risk” groups together yields a sensitivity of 0.976. In

addition to monitoring various measures of model

performance and clinical outcomes, we used a simple process

measure to capture clinical adherence (the number of vital

signs measurements). This reflects both physician and nurse

practice and demonstrated good adherence at the project’s

outset, with further improvements over time.

There is a notable absence of “best practices” in deploying

ML solutions in healthcare. The GMLP guiding principles are

an important step forward and as high-level guides, they are

very useful. However, greater specificity is needed to

understand how these principles can be operationalized, and

this manuscript reflects an effort to provide some of that

additional detail. We also note that there are several crucial

areas for ML deployment which are referred to only

tangentially in the GMLP and ought to be mentioned

specifically. GMLP Principle 1 (“Multi-Disciplinary Expertise

Is Leveraged Throughout the Total Product Life Cycle”) is

very applicable to the importance of end-user engagement,

although it does not mention this specifically. GMLP

Principle 8 (“Testing Demonstrates Device Performance

during Clinically Relevant Conditions”) may be strengthened

by highlighting the importance of silent testing in a real-

time production environment before deployment into

clinical care. An important area for future research is to

develop a guiding framework that would help determine

what duration of silent testing is sufficient before

deployment. This duration would be affected by parameters

related to model performance (e.g., prevalence of outcome

events, desired model accuracy) and factors related to the

data pipeline and clinical context (e.g., number of clinical
Frontiers in Digital Health 08
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systems involved, planned updates to systems and processes).

GMLP Principles 9 (“Users Are Provided Clear, Essential

Information”) and 10 (“Deployed Models Are Monitored for

Performance and Re-training Risks are Managed”) should be

expanded to include downtime protocols. While system and

model failures are rare, they are bound to happen, and end-

users should not be left in the dark. Borrowing from safety

engineering, failure modes and effect analysis could be a

good way to identify all potential risks within the deployed

system and, accordingly, develop downtime protocols (13).

Finally, we note that GMLP Principle 10 raises a crucial area

for future research. Re-training models that have already

been deployed into, and affected, clinical practice raises

challenging methodological issues (12). Identifying methods

to maintain highly accurate models over time is an urgent

need as models are increasingly deployed into clinical

environments.

This work has several limitations. First, our deployment

was conducted in a single academic hospital and thus

generalizability to other settings must be considered.

However, we believe the key lessons from our experience are

very likely to apply to a wide range of ML solutions. Second,

our deployment relates to a clinical decision-support and

predictive analytics solution. Other ML applications (e.g.,

computer vision) may require a different set of approaches

for their deployment. Third, we relied primarily on

routinely-collected data to measure model performance and

clinical adherence. This has the advantage of being scalable

and resource-efficient, but lacks granularity and clinical

context. Targeted chart reviews, as have been described in

the quality improvement literature (14), or interviews with

clinicians represent other important ways of gathering this

information.

In conclusion, deploying machine learning models in

healthcare settings is challenging and requires a multi-

disciplinary team to ensure success. As these deployments

become more frequent, we hope that more rigorous standards

and best practices will arise. The evolution of the GMLP

guiding principles, and lessons learned from real-world

implementations, can assist with strengthening best practices

in the deployment of machine learning models.
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Appendix Table 1: Table of scheduled
scripts.
Script Description Schedule

CHARTwatch
pipeline

The script extracts data from the source
systems, processes the data, generates
model prediction, and classifies each
patient into risk groups (“Low risk”,
“Medium risk”, “High risk”).

Hourly

Charge nurse email The scripts sends a list of the patient
census, including CHARTwatch risk
groups, to the charge nurse twice a day.

Every 12 h

SPOK alert update The script sends alerts to the “SPOK”
application on the GIM team phones and
charge nurse phone. The script sends
alerts on “High risk” patients and applies
re-alerting silencing rules (as specified in
Section “Description of system”).

Hourly

“Electronic sign out”
tool update

The script updates the CHARTwatch risk
groups in the “electronic sign out”
database.

Hourly

Palliative team email The script sends a daily email to the
Palliative care team. The email contains a
list of all new “High risk” patients.

Daily

Date Change Type of
change

13-Nov-
19

Silent deployment. Deployment was on an older
server and consisted in an ensemble model that
used the following input data: demographics, labs,
vitals, medications, clinical orders, nursing notes.

Silent
deployment

26-Nov-
19

New “high sensitivity troponin” lab added. Process change

20-Dec-
19

Silent deployment update. The model was
updated to an ensemble that relied only on
demographics, labs, and vitals. We also fixed an
issue where sodium labs (lab code is “NA”) were
getting interpreted as “Not available”.

Silent
deployment

24-Dec-
19

Silent deployment update. The data processing
was changed to address the troponin lab update.

Silent
deployment

14-May-
20

Silent deployment update. The deployment was
moved to a different server and we used the time-
aware MARS model (as described in Section
“Model development”).

Silent
deployment

25-Aug-
20

Start of pilot phase. Alerts and ‘electronic sign
out’ was activated for 2 GIM teams.

Deployment

11-Sep-
20

Risk group rule change: if patient is on step-up
unit, their risk group must at minimum be
“Medium risk”.

CW change
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Appendix Table 2: Timeline of
CHARTwatch major changes
11-Sep-
20

Alerting rule change: Alerts silenced for 24 h after
patient leaves ICU.

CW change

11-Sep-
20

Add “Team Stroke” to data extraction query. Process change

11-Sep-
20

Add new GIM ward location to data extraction
query, corresponding to the opening of a new
patient care tower.

Process change

15-Sep-
20

Launch to all GIM teams. Deployment

6-Oct-
20

Deployment to charge nurses. Emails are sent to
the charge nurse email address twice a day. Alerts
are sent to the charge nurse phone.

Deployment

20-Oct-
20

Deployment to palliative team—Full
deployment. Emails are sent daily to the Palliative
Care team email.

Deployment

19-Jan-
21

Switch from alerts 3×/day to hourly alerts. CW change

27-Apr-
21

Add an extra GIM team (opened for COVID-19)
to data extraction query.

Deployment

11-Jun-
21

Remove extra COVID-19 team from data
extraction query, as team closed.

Deployment

8-Mar-
22

Alerting rule change: stop repeat alerts after 5th
alert.

CW change
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Appendix 3: Details on the
CHARTwatch model

The final deployed model consists of two pieces:
(1) The Multivariate Adaptive Regression Spline (MARS) is a

weighted sum of basis functions (15). To determine the

coefficients, we used cross-validation to train the model.

The inputs to the MARS model are the features

described in Section “Model development”.
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(2) The output of the MARS model is a score ranging from 0

to 1. The MARS score, as well as the difference in MARS

score between this time window and the previous one,

the percent change, and the percent change from

baseline, are then given as input to a logistic regression

model. The logistic model is trained on the training data.

The MARS and logistic regression models were trained

using R (version 3.6.3) (16) with the packages ‘earth’ (version

5.1.2) (17) and ‘glmnet’ (4.0-2), respectively (18). We use the

‘tidymodels’ suite of packages (19) to train and tune the models.
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Considerations in the reliability
and fairness audits of predictive
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Multiple reporting guidelines for artificial intelligence (AI) models in healthcare
recommend that models be audited for reliability and fairness. However, there
is a gap of operational guidance for performing reliability and fairness audits in
practice. Following guideline recommendations, we conducted a reliability
audit of two models based on model performance and calibration as well as
a fairness audit based on summary statistics, subgroup performance and
subgroup calibration. We assessed the Epic End-of-Life (EOL) Index model
and an internally developed Stanford Hospital Medicine (HM) Advance Care
Planning (ACP) model in 3 practice settings: Primary Care, Inpatient
Oncology and Hospital Medicine, using clinicians’ answers to the surprise
question (“Would you be surprised if [patient X] passed away in [Y years]?”) as
a surrogate outcome. For performance, the models had positive predictive
value (PPV) at or above 0.76 in all settings. In Hospital Medicine and
Inpatient Oncology, the Stanford HM ACP model had higher sensitivity (0.69,
0.89 respectively) than the EOL model (0.20, 0.27), and better calibration
(O/E 1.5, 1.7) than the EOL model (O/E 2.5, 3.0). The Epic EOL model
flagged fewer patients (11%, 21% respectively) than the Stanford HM ACP
model (38%, 75%). There were no differences in performance and calibration
by sex. Both models had lower sensitivity in Hispanic/Latino male patients
with Race listed as “Other.” 10 clinicians were surveyed after a presentation
summarizing the audit. 10/10 reported that summary statistics, overall
performance, and subgroup performance would affect their decision to use
01 frontiersin.org

82

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2022.943768&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2022.943768
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2022.943768/full
https://www.frontiersin.org/articles/10.3389/fdgth.2022.943768/full
https://www.frontiersin.org/articles/10.3389/fdgth.2022.943768/full
https://www.frontiersin.org/articles/10.3389/fdgth.2022.943768/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2022.943768
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Lu et al. 10.3389/fdgth.2022.943768

Frontiers in Digital Health
the model to guide care; 9/10 said the same for overall and subgroup calibration. The
most commonly identified barriers for routinely conducting such reliability and
fairness audits were poor demographic data quality and lack of data access. This audit
required 115 person-hours across 8–10 months. Our recommendations for
performing reliability and fairness audits include verifying data validity, analyzing
model performance on intersectional subgroups, and collecting clinician-patient
linkages as necessary for label generation by clinicians. Those responsible for AI
models should require such audits before model deployment and mediate between
model auditors and impacted stakeholders.

KEYWORDS

model reporting guideline, electronic health record, artificial intelligence, advance care planning,

fairness, audit
Introduction

Concern about the reliability and fairness of deployed artificial

intelligence (AI) models trained on electronic health record (EHR)

data is growing. EHR-based AI models have been found to be

unreliable, with decreased performance and calibration across

different geographic locations and over time; for example, an

Epic sepsis prediction algorithm had reduced performance when

validated by University of Michigan researchers (1) and acute

kidney injury models have shown worsening calibration over

time (2). AI models have also been found to be unfair, with

worse performance and calibration for historically marginalized

subgroups; for example, widely used facial recognition

algorithms have lower performance on darker-skinned females

(3); and widely used health insurance algorithms underrate the

disease status of Black patients compared with similar White

patients (4). Despite lacking evidence of reliability and fairness,

algorithms are still being deployed (5).

To promote improved reliability and fairness of deployed EHR

models, at least 15 different model reporting guidelines have been

published (6–20). Some commonly included items related to

reliability in these guidelines include external validation (6, 8–10,

14–17, 19); multiple performance metrics such as Area Under

Receiver Operating Curve (AUROC) (6, 8–12, 14–18), positive

predictive value (PPV) (9–12, 14, 16–18), sensitivity (8–12, 14,

16–18), and specificity (8–12, 14, 17, 18); confidence intervals or

another measure of variability of the performance (6, 8–12, 15,

18–20); and calibration plots (6, 8–10, 12, 14). Some commonly

included items related to fairness include summary statistics (10,

11, 15, 17, 18, 20), like the distribution of demographics such as

sex (11, 15, 17, 20) and race/ethnicity (15, 17, 20), as well as

subgroup analyses that investigate how a model performs for

specific subpopulations (7, 9, 11–13, 15, 18, 20). Nevertheless,

many of these items are infrequently reported for both published

(21) and deployed EHR models (22).

Several efforts seek to address this reporting gap. For

example, there is an existing auditing framework that supports

AI system development end-to-end and links development
02
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decisions to organizational values/principles (23). There is also

currently an open-source effort to better understand,

standardize and implement algorithmic audits (24).

In this work, we illustrate a reliability/fairness audit of 12-

month mortality models considered for use in supporting team-

based ACP in three practice settings (Primary Care, Inpatient

Oncology, Hospital Medicine) at a quaternary academic medical

center in the United States (25–27) (Figure 1). We (1) design

and report a reliability/fairness audit of the models following

existing reporting guidelines, (2) survey decision makers about

how the results impacted their decision of whether to use the

model, and (3) quantify the time, workflow and data

requirements for performing this audit. We discuss key drivers

and barriers to making these audits standard practice. We

believe this may aid other decision makers and informaticists in

operationalizing regular reliability and fairness audits (22, 23).

Note: we use recorded race/ethnicity in the EHR as a way to

measure how models may perform across such groupings, as

recommended (15, 21). Importantly, race/ethnicity is not used

as an input for any of the models and we do not use it as a

“risk factor” for health disparities (28–30). We recognize race/

ethnicity has widely varying definitions (31) and is more a

social construct (32) than a biological category (30). We also

caution that studies have found poor concordance of race/

ethnicity data as recorded in the EHR with the patient’s self-

identification (33, 34). However, performance by race/ethnicity

subgroups is a recommended analysis in reporting guidelines.
Background on advance care
planning and model usage

Much of care for patients at the end of their lives is not goal-

concordant, i.e. not consistent with the patients’ goals and values.

For example, a survey (35) of Californians’ attitudes towards

death and dying found that 70% would prefer to die at home.

Despite this, only 30% of all deaths happened at home in 2009.

Meanwhile 60% occurred in a hospital or nursing home (26).
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FIGURE 1

Overview of audit process. Results and plots listed are for the Epic End-of-life Index Low Threshold for Primary Care. The “labeling question” under
Summary Statistics is “Would you be surprised if this patient passed away in 2 years?”.
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In 2018 the Stanford Department of Medicine began

implementation of Ariadne Labs’ Serious Illness Care Program

(SICP) (36) to promote goal-concordant care by improving

timing and quality of advance care planning conversations. By

following best practices (37), the Stanford SICP trained and

supported clinicians in using the structured Serious Illness

Conversation Guide (SICG) in their practice.

Through the duration of this audit, Primary Care and Inpatient

Oncology were developing implementation plans, while Hospital

Medicine had an active implementation after SICG training of key

physicians and staff members using a 12-month mortality model

to generate patient prognoses that were shared with the entire

clinical team (25). Two models were considered: (1) the 12-month

mortality model which runs only on currently hospitalized patients

only and is currently used by the Hospital Medicine SICP team

(HM ACP), and (2) the Epic End-of-life (EOL) Index, which

unlike HM ACP, runs for all patients receiving care in the health

system, not just hospitalized patients.

We assessed these models by performing a reliability audit

(model performance and calibration) and fairness audit

(summary statistics, subgroup performance, subgroup

calibration) to ascertain whether the Epic EOL Index

appropriately prioritize patients for ACP in Primary Care, and

which of the two models appropriately prioritizes patients for

ACP in Inpatient Oncology and Hospital Medicine.
Methods

Wefirst provide details on the twomodels and then summarize

the processes required to complete the fairness and reliability audit.

We describe the metrics that comprised the quantitative aspect of

the audit. We then describe the methods we used to identify and

gather the data needed to complete the audit, including

calculating the minimum sample size of ground truth labels

required for model evaluation, obtaining those ground truth

labels by clinician review, and merging those labels with patient

records to create the audit dataset. Lastly, we describe the

methods used to compute the audit metrics, and how we

presented the results of the audit to clinicians to obtain feedback.
AI models

We audited two models currently deployed at Stanford

Health Care: the Epic EOL Index model and Stanford HM

ACP model (Table 1).

The Epic EOL Index model (38) is a logistic regression model

that predicts risk of 12-month mortality (Table 1). It takes in 46

input features including demographics (e.g., age, sex, insurance

status), labs (e.g., albumin, RDW), comorbidities (e.g., such as

those relating to cancer, neurological diagnoses, cardiologic

diagnoses, and more), and medications. While organizations using
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the Epic EHR software are able to set any threshold for converting

the model output into a flag to indicate an action is recommended,

two thresholds are pre-specified by Epic: a low threshold of 0.15

selected based on sensitivity (38), and a high threshold of 0.45

selected based on positive predictive value (38). We decided to

audit the Epic EOL Index with the low threshold in Primary Care

(given lower patient acuity) and with the high threshold in

Inpatient Oncology and Hospital Medicine. We retrieved scores on

16 November 2021 for Primary Care, 14 June 2021 for Inpatient

Oncology and 31 January 2022 for Hospital Medicine.

The Stanford HMACPmodel is a gradient boosted tree model

(39) that predicts risk of 3–12 month mortality (Table 1). It takes

13,189 input features including demographics (e.g., age, sex), lab

orders (e.g., complete blood count with differential, arterial blood

gas) and procedure orders (e.g., ventilation, respiratory nebulizer)

for all hospitalizations within the last year and is run daily on

patients admitted to the Hospital. Patients with a model output

probability above 0.25 are flagged in a “Recommended for

Advance Care Planning” column in Epic available to all clinicians

at Stanford (25, 26). On a retrospective cohort involving 5,965

patients with 12-month mortality labels (prevalence of 24%), this

model flagged 23% of patients and had a PPV of 61% (25). For

Inpatient Oncology and Hospital Medicine, we retrieved scores for

patients on the day of the clinician’s label for that patient.
Audit metrics

In previous work (22) we synthesized items that were

suggested for reporting by model reporting guidelines to

identify the most relevant items for reliability and fairness.

To quantify model reliability, we computed sensitivity,

specificity and PPV as these estimate a model’s diagnostic

capabilities. We computed 95% confidence intervals for each of

these metrics using the empirical bootstrap (40) with 1,000

bootstrap samples. We also assessed model calibration using

calibration plots and the Observed events/Expected events (O/E)

ratio (see details below in the section titled Performing the Audit).

To quantify model fairness, we computed summary

statistics across subgroups, defined by sex, race/ethnicity, and

age as well as the intersection of race/ethnicity and sex. We

also evaluated the model’s performance metrics and

calibration in each of these subgroups (see details below in

the section titled Performing the Audit).
Gathering the data required for the audit

Sample size calculation
We calculated a minimum necessary sample size for

external validation of the two prediction models, based on a

desired level of calibration (41). We measured calibration as

O/E and used the delta method for computing a confidence
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TABLE 1 Model information for each setting.

Setting Primary Care Inpatient Oncology Inpatient Oncology Hospital Medicine Hospital Medicine

Model Epic EOL – Low Threshold Epic EOL – High Threshold Stanford HM ACP Epic EOL – High Threshold Stanford HM ACP

Features Demographics (Age, Sex,
Insurance status),
Labs (Albumin, RDW),
Comorbidities (Cancer,
Neuro., Psych.,… Cardio.,
Resp.,… ),
Medications (many)

Demographics (Age, Sex,
Insurance status),
Labs (Albumin, RDW),
Comorbidities (Cancer,
Neuro., Psych.,… Cardio.,
Resp.,… ),
Medications (many)

Demographics (Age, Sex),
Lab/Procedure Orders
(done in the last year)

Demographics (Age, Sex,
Insurance status),
Labs (Albumin, RDW),
Comorbidities (Cancer,
Neuro., Psych.,… Cardio.,
Resp.,… ),
Medications (many)

Demographics (Age, Sex),
Lab/Procedure Orders
(done in the last year)

# Features 46 46 13,189 46 13189

Model Type Logistic Regression Logistic Regression Gradient boosted Tree Logistic Regression Gradient boosted Tree

Output One-year Mortality Risk One-year Mortality Risk One-year Mortality Risk One-year Mortality Risk One-year Mortality Risk

Predictions
Available
For:

All adult patients within health
system

All adult patients within health
system

All currently hospitalized
adult patients

All adult patients within health
system

All currently hospitalized
adult patients

Threshold 0.15 (Low) 0.45 (High) 0.25 (HM Implementation
Threshold)

0.45 (High) 0.25 (HM Implementation
Threshold)

Source of
Model
Information

Epic Cognitive Computing
Model Brief: End of Life
Index (Galaxy, PDF)

Epic Cognitive Computing
Model Brief: End of Life
Index (Galaxy, PDF)

AI ACP Technical Details Epic Cognitive Computing
Model Brief: End of Life
Index (Galaxy, PDF)

AI ACP Technical Details

Time of Model
Predictions

11/16/2021 6/14/2021 8/15/2021–3/19/2022 1/31/2022 2/21/2022, 2/23/2022, 3/1/
2022, 3/4/2022, 3/7/
2022, 3/14/2022, 3/21/
2022

Notes on Time
of Model
Predictions

Daily predictions are
performed, but were not
available to be extracted or
retrospectively pulled, so we
only used a one-time pull on
11/16/2021

Daily predictions are
performed, but were not
available to be extracted or
retrospectively pulled, so we
only used a one-time pull on
6/14/2021

Daily predictions were
performed and the most
recent model prediction
on or before the date of
the clinician label was
used.

Daily predictions are
performed, but were not
available to be extracted or
retrospectively pulled, so we
only used a one-time pull on
1/31/2022

Daily predictions were
performed and were
stored before sending
out email requesting
clinicians to label.

Location of
Model
Predictions

Box Folder: Epic EoL Index
Validation

Box Folder: Epic EoL Index
Validation

shahlab secure server:
/data4/AI-ACP/
predictions/ngb_hist

Box Folder: Epic EoL Index
Validation

shahlab secure server:
/data4/AI-ACP/
predictions/ngb_hist
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interval for O/E (41). Assuming a perfect O/E value being 1.0,

we aimed for a 95% confidence interval width of [0.74, 1.34].

Based on clinician feedback, in Primary Care, we assumed a

20% prevalence of the positive label; in Inpatient Oncology,

we assumed a 70% prevalence of the positive label. In

Hospital Medicine, we assumed a 40% prevalence of the

positive label.

Obtaining ground truth labels
We used a validated instrument, the surprise question (42), to

assign ground truth labels for patients. The surprise question asks

“Would you be surprised if [patient X] passed away in [Y years]?”

An answer of “no” to the surprise question for a given patient

constitutes a positive label (for example, if the treating physician

would not be surprised if a patient died in 1 year, we assume that

the patient is at high risk of dying and should be labeled as

“recommended for advance care planning”). A recent meta-

analysis (43) found that among 16 studies, the 6-to-12-month

surprise question’s sensitivity (using records of 12-month

mortality as ground truth) ranged from 12% to 93%; specificity

ranged from 14% to 98%, PPV ranged from 15% to 79%, and c-

statistic ranged from 0.51 to 0.82. In other words, we used the
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answer to the surprise question as a proxy for Y-year mortality in

our patient population, because waiting the Y years to ascertain

whether patients passed away would have greatly extended the

timeframe required to complete the audit. Our audit thus

assessed model performance based on concordance of model

predictions with clinician-generated assessments of patient

mortality via the surprise question.

We specified Y = 1 year for the surprise question for

Inpatient Oncology and Hospital Medicine patients and Y = 2

years for the Primary Care setting, given lower acuity of

patients in Primary Care clinics (Table 2).

To obtain answers to the surprise question for Primary Care

patients, we first selected from patients who had a visit with a

provider between 7 October 2021 and 7 January 2022. We

then randomly sampled 5 unique patients to generate a list

for each provider; if there were fewer than 5 unique patients,

all patients were kept in the provider’s list. We then sent

personalized messages using our EHR’s messaging system to

each provider asking them to answer the surprise question for

each randomly selected patient (Table 3, Supplementary

Figure S1). For Hospital Medicine, we identified providers

who were on service between 21 February 2022 and 21 March
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TABLE 2 Clinician label information.

Setting Primary Care Inpatient Oncology Inpatient Oncology Hospital Medicine Hospital Medicine

Model Epic EOL – Low Threshold Epic EOL – High Threshold Stanford HM ACP Epic EOL – High Threshold Stanford HM ACP

Clinician
Label

2-year Surprise Question 1-year Surprise Question 1-year Surprise Question 1-year Surprise Question 1-year Surprise Question

Time of
Clinician
Labels

2/11/2022–3/7/2022 8/15/2021–3/19/2022 8/15/2021–3/19/2022 2/21/2022–3/22/2022 2/21/2022–3/22/2022

Clinician
Population

All Primary Care clinician
faculty at Department of
Primary Care and
Population Health

2 Oncology attending
physicians/faculty at
Stanford’s (ARK, KR)

2 Oncology attending
physicians/faculty at
Stanford’s (ARK, KR)

Every Hospital Medicine
attending physician on
service during 2/21/2022–
3/22/2022

Every Hospital Medicine
attending physician on
service during 2/21/2022–
3/22/2022

Blinding of
Clinicians
to Model
Predictions

Clinicians were blinded to
Epic EOL (the model
predictions were not
available in the EHR).
However, clinicians were
not specfically blinded
from the Stanford HM
ACP model (which was
available as a flag in Epic).

Clinicians were blinded to
Epic EOL (the model
predictions were not
available in the EHR).
However, clinicians were
not specfically blinded
from the Stanford HM
ACP model (which was
available as a flag in Epic).

Clinicians were blinded to
Epic EOL (the model
predictions were not
available in the EHR).
However, clinicians were
not specfically blinded
from the Stanford HM
ACP model (which was
available as a flag in Epic).

Clinicians were blinded to
Epic EOL (the model
predictions were not
available in the EHR).
However, clinicians were
not specfically blinded
from the Stanford HM
ACP model (which was
available as a flag in Epic).

Clinicians were blinded to
Epic EOL (the model
predictions were not
available in the EHR).
However, clinicians were
not specfically blinded
from the Stanford HM
ACP model (which was
available as a flag in Epic).

Unit of Data
Set

A clinician’s Surprise
Question Label for a
randomly selected patient
within the clinician’s
panel who had a recent
visit with the clinician
within the last 3 months

A physician’s Surprise
Question Label for a
patient they are
responsible for while they
are on service

A physician’s Surprise
Question Label for a
patient they are
responsible for while they
are on service

A physician’s Surprise
Question Label for a
patient they are
responsible for on the day
of solicitation

A physician’s Surprise
Question Label for a
patient they are
responsible for on the day
of solicitation
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2022, and sent them a message once a week during that period

requesting them to answer the surprise question for the patients

they had been responsible for during their shifts in that period

(Table 3, Supplementary Figure S2). For both Primary Care

and Hospital Medicine, we incentivize providers to answer the

surprise question by offering chocolates to those who received

the message. For Inpatient Oncology we selected patients who

were seen by either co-author ARK or KR between 15 August

2021 and 19 March 2022. ARK and KR answered the 1-year

surprise question for all patients they were responsible for

while on hospital service during that period (Table 2).

Note that the physicians were blinded to Epic EOL Index

model predictions, but they were not blinded to the Stanford

HM ACP Flag as the flag was available in Epic and in active

use at the time of the audit. Co-author ARK reported

occasionally referencing the flag when answering the surprise

question for patients with rarer cancers. While we recognize

this biases our results in favor of the Stanford HM ACP

model, we also did not have the ability to suppress the flag

just for those clinicians.
Creating the audit data set
Each patient’s surprise question ground truth labels were

linked with their corresponding patient records from our

clinical data warehouse (44), which included patient

demographics (sex, date of birth, race, ethnicity), and with the

two models’ output predictions (Figure 1).
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We excluded all patients where their provider had not

answered the surprise question during the response period. For

Inpatient Oncology, we also excluded all patients for which a

medical record number was not available. The number of

patients excluded for these reasons are provided in the Results.

Finally, we converted patient demographic data into one-hot

encoded columns. For sex, we assigned this value based on

biological sex (45) (and did one-hot encodings of the potential

values). For age, we computed the patient’s age at the time of the

clinician’s surprise question assessment by subtracting their date

of birth; we then generated age subgroups by decade of life, e.g.,

(10, 20], (20, 30], etc. For ethnicity/race, we pulled the ethnicity

variable and the race variable, both based on Office of

Management and Budget variables (46). We then performed

one-hot encoding of the ethnicity and race variables separately,

and used a logical AND to generate the ethnicity/race variable:

e.g., a Hispanic or Latino, White patient. Lastly, for ethnicity/race

and sex, we created intersectional combinations using a logical

AND to identify all observed permutations of these variables.
Performing the audit

After we generated the audit data set, we first computed

summary statistics. Specifically, for each demographic variable

(sex, age, ethnicity/race, and the intersection of ethnicity/race

and sex), we computed the counts of each subgroup within
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TABLE 3 Solicitation of clinician labels.

Setting Primary Care Inpatient
Oncology

Inpatient
Oncology

Hospital Medicine Hospital Medicine

Model Epic EOL – Low Threshold Epic EOL – High
Threshold

Stanford HM ACP Epic EOL – High Threshold Stanford HM ACP

Sample Size Required to
achieve calibration
95% O/E CI of [0.74,
1.34] (assuming true
O/E = 1)

176 assuming prevalence of 20% 19 assuming prevalence
of 70%

19 assuming
prevalence of 70%

66 assuming prevalence of
40%

66 assuming prevalence of
40%

Solicitation of Clinician
Labels

Epic Staff Message sent 2/11/2022 N/A (Physician
answered surprise
question for all
patients responsible
for each morning
on service)

N/A (Physician
answered surprise
question for all
patients each
morning on
service)

Secure Emails sent 2/21/2022,
2/23/2022, 3/1/2022, 3/4/
2022, 3/7/2022, 3/14/2022,
3/21/2022

Secure Emails sent 2/21/2022,
2/23/2022, 3/1/2022, 3/4/
2022, 3/7/2022, 3/14/2022,
3/21/2022

Generation of
Solicitations

1. Link visits at a primary care
visit site since 09/2021 with
patient demographics

2. Filter to visits after 10/72/2021
3. For each provider: filter to

visits with the provider that
were with patients within their
panel

4. Remove visits for providers on
days where that provider had
more than 30 visits (assume
this is artifact of data base)

5. Randomly sample 5 patients of
remaining

N/A N/A 1. For each attending
physician on service,
generate an email asking
them to answer the
surprise question for all
patients they are
responsible for that day

1. For each attending
physician on service,
generate an email asking
them to answer the
surprise question for all
patients they are
responsible for that day

Example Solicitation Link N/A N/A Link Link

Announcement of
Solicitation

Slide in Division Meeting N/A N/A Email at week start Email at week start

Incentive with
Solicitation

Bag of Ghirardelli Chocolates
personally addressed, thanking
for answering the surprise
question

N/A N/A Bag of Ghirardelli Chocolates
personally addressed,
thanking for answering the
surprise question

Bag of Ghirardelli Chocolates
personally addressed,
thanking for answering the
surprise question

Location of Code to
Generate Solicitations

shahlab secure server: /data4/jhlu
/EOL/[2022-02-01 using
concept] pcph_merge_visits_
generate_validation_lists_and
_plausibility_lists.ipynb

N/A N/A shahlab secure server: /data4/
jhlu/hm-surprise-
gathering/PROD

shahlab secure server: /data4/
jhlu/hm-surprise-
gathering/PROD

# Clinicians Solicited 79 N/A N/A 22 22

Size of Solicitations 386 N/A N/A 545 545
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that demographic, as well as the % of the count within the entire

data set, and the number and % of positive ground truth labels.

We also computed a 95% confidence interval on the positive

ground truth label prevalence in each subgroup, using the

Clopper-Pearson interval (47) and determined if it overlapped

with the confidence interval of the overall positive label

prevalence; this evaluated whether ground truth labels were

consistent across different demographic subgroups.

We next evaluated model performance. With the ground

truth labels and model flags, we computed the following
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metrics: number of flagged patients, PPV, sensitivity, and

specificity. For completeness, we also include the AUROC and

Accuracy in the Supplementary Results, but do not focus on

these in the main text as the other metrics were considered

more clinically and diagnostically relevant. We computed 95%

confidence intervals on the performance metrics using the

empirical bootstrap: we generated 1,000 bootstrap samples of

the data set. For each sample, we computed the performance

metrics, and computed the difference between each metric

from the bootstrap sample and that from the overall study
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group. (Note the metric on the bootstrap sample may have been

null due to dividing by zero, e.g., for PPV if there were no

patients that were flagged by the model) We used these

differences to generate a distribution of 1,000 bootstrap

differences, computed the 2.5th and 97.5th percentiles of the

differences (excluding null values), and subtracted these from

each metric to generate the empirical bootstrap confidence

interval for each metric.

We also evaluated model performance for the subgroups

defined by the demographic variables above by computing

PPV, sensitivity, and specificity. We computed 95%

confidence intervals for each subgroup as above, replacing

“overall study group” with the subgroup. We then check if the

confidence intervals overlap. Note that resulting confidence

intervals had values in some cases that were above 1 or below

0, due to large differences resulting from wide variation in the

metric over the bootstrap sampling (40).

We evaluated the models’ calibration using calibration plots.

A calibration plot provides a visual assessment of how well

predicted risk probabilities are aligned with observed

outcomes. To generate the calibration plots, we grouped

predicted probabilities into quintiles, and within each quintile,

computed the average of the predicted risks. We then plotted

the averaged predicted risk for each quintile on the x-axis and

proportion of positive ground truth labels for each quintile on

the y-axis (6, 8–10, 12, 14). We also computed the Observed

events/Expected events ratio O/E, which measures the overall

calibration of risk predictions, which is computed as the ratio

of the total number of observed to predicted events. We

computed O/E by dividing the total number of positive

ground truth labels by the sum of model output probabilities

and used the delta method for computing a 95% confidence

interval on O/E (50). The ideal value for O/E is 1; a value <1

or >1 implies that the model over or under predicts the

number of events, respectively (41).

We evaluated subgroup calibration by generating

calibration plots and by computing the O/E for each

subgroup, again using the delta method to compute a 95%

confidence interval on O/E (50). Note: because this method’s

standard error formula for ln(O/E) has O in the

denominator, the interval is undefined if O = 0.
Presenting audit results to decision
makers

We presented the results of our audit to decision makers in

Primary Care (co-authors AS, WT), Inpatient Oncology (co-

authors ARK, WT, SC, KR, MG), and Hospital Medicine (co-

authors SW, LS, RL), in a separate presentation for each

setting. Each presentation first gave context to the audit,

including sharing previous findings that AI models have been

unreliable (5, 48) or unfair (4), as well as that race/ethnicity
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data in the EHR is known to have inaccuracies (33). Then, we

shared the summary statistics, model performance, model

calibration, subgroup performance and subgroup calibration.

We also designed a survey for the decision makers to

complete at the end of each presentation (Supplementary

Methods). In the survey, we assessed their understanding of

reliability/fairness by asking “What does it mean to you for a

model to be reliable/fair?” and “What are the first thoughts

that came to your mind on seeing the results of the reliability

and fairness audit?” We also assessed whether specific

components of the reliability/fairness audit would or would

not affect decision making, and asked if there would be any

other information they believe should be included in the

audit. Example surveys were shared with several decision

makers (co-authors WT, SW, AS), informaticists (co-authors

AG, AC) and the director of operations of an AI research &

implementation team (co-author MS) for feedback prior to

giving the survey.

After we received the survey responses, we reviewed and

summarized the most common structured responses. We also

read the free text responses, identified themes (ensuring that

every response had at least one theme represented) and

categorized responses by the themes. JL was the sole coder,

and performed inductive thematic analysis to generate codes.
Results

Reliability and fairness audit

We report the reliability and fairness audits below. For

simplicity, all confidence intervals are listed in the tables.

Also, only statistically significant results are listed in the

tables; full results including those without statistically

significant differences are listed in the Supplementary Tables.

Primary Care
We calculated we would need a sample size of 176 to

achieve an O/E 95% confidence interval of [0.74, 1.34],

assuming a 20% prevalence of the positive label. We solicited

79 clinicians for 386 labels of their patients (2-year surprise

question answers). 70 clinicians responded with 344 labels

(89% response rate). Six of the response labels were “Y/N” or

“DECEASED” and were filtered out, leaving 338 labels fitting

the schema.

Epic EOL Low Threshold in Primary Care
The final data set size for the Epic EOL – Low Threshold model

in Primary Care was 338 with 68 positive labels after we linked

the 338 clinician labels fitting the schema with Epic EOL model

predictions and patient demographics (Table 4).

The overall prevalence was 0.2. There was significantly

higher prevalence for Age: (80, 90] at 0.55. There was
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TABLE 4 Processing and final data sets.

Setting Primary Care Inpatient
Oncology

Inpatient
Oncology

Hospital
Medicine

Hospital
Medicine

Model Epic EOL – Low
Threshold

Epic EOL – High
Threshold

Stanford HM ACP Epic EOL – High
Threshold

Stanford HM ACP

Location of Gathered Clinician Labels Box file Box file Box file Box folder Box folder

# Clinicians Responding 70 2 2 18 18

Size of Clinician Labels (raw) 344 225 225 413 413

Clinician Labels/Solicitations (%) 89% N/A N/A 76% 76%

Missing Clinician Labels 42 N/A N/A 132 132

Size of Clinician Labels Fitting Schema 338 202 202 409 409

# Outcomes in Clinician Labels Fitting
Schema

68 136 136 178 178

% Outcomes in Clinician Labels Fitting
Schema

20% 67% 67% 44% 44%

Clinician Labels not fitting schema 4 – “Y/N”
2 – “DECEASED"

23 – Not linked to
numerical MRN

23 – Not linked to
numerical MRN

2 – “TRANSFERRED”
2 – “Maybe”

2 – “TRANSFERRED”
2 – “Maybe”

Final Data Set Size (has Clinician Label,
Model Prediction, and Demographics)

338 150 115 305 225

# Outcomes in Final Data Set 68 105 79 133 99

% Outcomes in Final Data Set 20% 70% 69% 44% 44%
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significantly lower prevalence for Age: (20, 30] at 0 and

Age: (30, 40] at 0. There were no significant differences

in prevalence found by Sex, Ethnicity/Race, or the intersection

of Ethnicity/Race and Sex (Table 5, Supplementary

Tables S1–S4).

The model flagged 30 patients out of 338 (9%), exhibiting low

sensitivity (0.37), high specificity (0.98), and high PPV (0.83). The

model also underpredicted events relative to clinicians by a factor

of O/E = 4.1. There was significantly lower sensitivity for Age: (60,

70] at 0.1 and Age: (70, 80] at 0.07. The model also underpredicted

events more for Age: (60, 70], by a factor of O/E = 9.3 (Table 5).

For several other groups, there were statistically significant

differences in prevalence, performance or O/E, but these

subgroups had less than 10 patients to calculate the metric for,

making results inconclusive (Table 5).
Inpatient Oncology
We calculated we would need a sample size of 19 to achieve

an O/E 95% confidence interval of [0.74, 1.34], assuming a 70%

prevalence of the positive label. Two clinicians (ARK, KR)

completed 225 labels for patients they saw while on service (1-

year surprise question answers). Note: each data point

corresponds with a unique patient encounter (some patients

were included multiple times due to re-hospitalization). Of the

225 labels, 23 did not have a numerical MRN associated and

were filtered out, leaving 202 clinician labels fitting the schema.
Frontiers in Digital Health 09

90
Epic EOL High Threshold in Inpatient Oncology
The final data set size for the Epic EOL – High Threshold model

in Inpatient Oncology, was 150 with 105 positive labels after we

linked the 202 clinician labels fitting the schema with Epic EOL

model predictions and patient demographics (Table 4).

The overall prevalence was 0.7. There was significantly

lower prevalence for younger patients (0.23 for Age: (20, 30]).

There were no significant differences in prevalence by Sex,

Ethnicity/Race, and the intersection of Ethnicity/Race and Sex

(Table 6).

The model flagged 32 patients out of 150 (21%) with a

sensitivity of 0.27, specificity of 0.91, and PPV of 0.88. The

model predicted many fewer events relative to the number of

positive clinician labels, with an O/E ratio of 3. Sensitivity for

Hispanic or Latino patients with Race “Other” (0.09) was

significantly lower than the model’s overall sensitivity (0.27).

This was also true for Hispanic or Latino Males with Race

“Other” specifically, for which the model’s sensitivity was

0. The model significantly underpredicted events for both

subgroups relative to clinicians, with O/E ratios of 6.9 and 9,

respectively. Several other subgroups exhibited statistically

significant differences in model performance or O/E, but these

subgroups had less than 10 patients to calculate the metric

for, making such claims inconclusive. See Table 6 for details.

Stanford HM ACP in Inpatient Oncology
The final data set size for the Stanford HM ACP model in

Inpatient Oncology was 114 with 79 positive labels after we

linked the 202 clinician labels fitting the schema with
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Stanford HM ACP model predictions and patient demographics

(Table 4).

The overall prevalence was 0.69. There were no significant

differences in prevalence amongst the demographic subgroups

considered.

The Stanford HM ACP model flagged 85 patients out of 114

(75%) with sensitivity 0.89, specificity 0.57, and PPV 0.82. The

model moderately underestimated events relative to clinicians,

with an O/E of 1.7. Model performance and O/E appeared to

differ for some subgroups, but these subgroups had less than

10 patients to calculate the metric for, making any associated

claims inconclusive. See Table 7 for details.

Model comparison in Inpatient Oncology
Comparing model performance in Inpatient Oncology, the

Stanford HM ACP model flagged more patients (75% vs.

21%), had significantly higher sensitivity (0.89 vs. 0.27), and

exhibited similar PPV (0.82 vs. 0.88, 95% confidence intervals

overlap). The Epic EOL High Threshold model had

significantly higher specificity (0.91 vs. 0.57). Comparing

model calibration, the Stanford HM ACP model had

significantly better calibration in terms of O/E (1.7 vs. 3).

Hospital Medicine
We calculated we would need a sample size of 66 to achieve

an O/E confidence interval of [0.74, 1.34], assuming a 40%

prevalence of the positive label. We solicited 22 clinicians for

545 labels of their patients seen while they were on service (1-

year surprise question answers). 18 clinicians responded with

413 labels (76% response rate). Note: each data point

corresponds with a unique patient encounter (some patients

were included multiple times due to long hospital stays). Four

of these were “Maybe” or “TRANSFERRED” and were filtered

out, leaving 409 clinician labels fitting the schema.

Epic EOL High Threshold in Hospital Medicine
The final data set size for the Epic EOL – High Threshold model

in Hospital Medicine, was 305 with 133 positive labels after we

linked the 409 clinician labels fitting the schema with Epic EOL

model predictions and patient demographics (Table 4).

The overall prevalence was 0.44. Prevalence did not differ by

sex, but was significantly higher for older patients (0.76 for Age:

(80, 90] and 0.94 for Age: (90, 100]) and significantly lower for

younger patients (0.12 for Age: (20, 30] and 0.15 for Age: (30,

40]). Prevalence was also significantly higher for Non-

Hispanic Asian patients (0.68) but significantly lower for

Hispanic or Latino patients with Race “Other” (0.18) and, in

particular, Hispanic or Latino Males of Race “Other” (0.14).

The model flagged 34 out of 305 patients (11%). The model

demonstrated a sensitivity of 0.2, specificity of 0.95, and PPV of

0.76. The model underpredicted events relative to clinicians

(O/E ratio of 2.5). There was significantly lower sensitivity for

Age: (50,60] at 0. The model significantly underestimated
Frontiers in Digital Health 12

93
events relative to clinicians for Non-Hispanic White Females

(O/E = 3.7). Differences in performance and O/E were

statistically significant for other subgroups, but these

subgroups had less than 10 patients to calculate the metric

for, preventing conclusive statements regarding disparate

performance. See Table 8 for details.

Stanford HM ACP in Hospital Medicine
The final data set size for the Stanford HM ACP model in

Hospital Medicine, was 225 with 99 positive labels after we

linked the 409 clinician labels fitting the schema with

Stanford HM ACP model predictions and patient

demographics (Table 4).

The overall prevalence was 0.44. Prevalence was significantly

higher for older patients (0.8 for Age: (80, 90], 0.92 for Age: (90,

100]) and significantly lower for younger patients (0.11 for Age:

(30, 40]). Prevalence was also significantly lower for Hispanic or

Latino patients with Race “Other” (0.16) and significantly

higher for Non-Hispanic Asian patients (0.7), especially Non-

Hispanic Asian Males (0.81).

The Stanford HM ACP model flagged 85 out of 225 patients

(38%), with sensitivity 0.69, specificity 0.87, and PPV 0.8.

Relative to clinicians, the model underestimated events by a

factor of O/E = 1.5. For patients Age: (90, 100], this

underestimation was even more substantial with an O/E ratio

of 2.5. Specificity was lower (0.57) for Age: (70, 80]. Relative

to the model’s overall PPV, the PPV for Hispanic or Latino

patients with Race “Other” was significantly lower (0.29 vs.

0.8). Model performance disparities in other subgroups were

inconclusive given they had less than 10 patients to calculate

the metric for. See Table 9 for details.

Model comparison in Hospital Medicine
Comparing model performance in Hospital Medicine, relative

to the Epic EOL – High Threshold model the Stanford HM

ACP model flagged more patients (38% vs. 11%), had

significantly higher sensitivity (0.69 vs. 0.2), similar specificity

(0.87 vs. 0.95, 95% confidence intervals overlap), and similar

PPV (0.8 vs. 0.76, 95% confidence intervals overlap).

Comparing model calibration, the Stanford HM ACP model

had significantly better calibration in O/E (1.5 vs. 2.5).

Supplemental analysis with class balancing
We also performed a supplemental analysis of the

reliability/fairness audits after using random oversampling to

achieve class balance (see Supplementary Results). Overall,

model sensitivity and specificity stayed the same for all

settings. Model PPV increased when class balancing increased

the prevalence (Primary Care, Hospital Medicine), and

decreased when class balancing decreased the prevalence

(Inpatient Oncology). Model calibration in O/E had

inconsistent changes after class balancing. The differences in

performance and calibration between the Epic EOL High
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TABLE 11 Survey responses to “what does it mean to you for a model
to be fair?”.

Theme Example Response Response
Count

Similar Model Performance
across demographics

“It doesn’t over or under flag
patients based on race,
ethnicity, age or sex”

6

Lu et al. 10.3389/fdgth.2022.943768
Threshold model and the Stanford HM ACP model stayed the

same in each setting in the class balance analysis. Some of the

subgroup differences in prevalence, performance and

calibration were maintained in the class balance analysis.

Overall, interpretation of the results after class balancing is

difficult given that class balancing can lead to poorly

calibrated models (49, 50).

Similar Model Performance

across demographics:
Race/Ethnicity

“The model would treat all
people the same, regardless of
sex or race”

4

Similar Model Performance
across demographics:
Sex

“Performance is not
preferentially high or low
based on race, sex, etc.”

4

Depends on How Model is
Used

“I’m not sure a model is
inherently fair or not fair, it
seems to me that the way the
model is used could be fair or
unfair. In one context, being
more sensitive for patients of
a certain group could be good
(fair) for those patients, in

2

Survey of decision makers

After the presentations, we administered a survey about

how the audit impacted decision makers’ decision to use the

model. We gathered 10 responses: 2 for Primary Care, 5 for

Inpatient Oncology and 3 for Hospital Medicine. 7 responses

were from Attending Physicians, 1 was from a Physician

Assistant, and 2 were from the Lead for the Serious Illness

Care Program.

another context it could be
bad (unfair).”

Similar Model Performance
across demographics:
Age

“To not over or under flag
patients based on race,
ethnicity, age or sex”

2

Similar Model Performance
across demographics:
Intersectional

“Outputs are fair across
subpopulations and
intersectionality”

1

Representative Patient Data “Was the patient data
representative”

1

Considers Socioeconomic
Factors

“Takes into account
socioeconomic factors,
insurance factors”

1

Understandings of reliable/fair models
Decision makers used themes of Accurate (9/10) and

Consistent (5/10) when asked to describe what it meant to

them for a model to be reliable (Table 10). For example, one

response said: “not brittle (doesn’t give really weird answers if

some data are missing).”

When asked to describe what it meant to them for a model

to be fair, they tended to use themes of Similar Model

Performance across demographics (6/10) often specifically

citing Race/Ethnicity (4/10) and Sex (4/10) (Table 11).

Another common theme was Depends on How Model is

Used (2/10). For example, one response said: “… In one

context, being more sensitive for patients of a certain group

could be good (fair) for those patients, in another context it

could be bad (unfair).”

Decision makers used a variety of themes to describe their first

thoughts on seeing the results of the reliability and fairness audit

(Supplementary Table S21). In Primary care, the decision
TABLE 10 Survey responses to “what does it mean to you for a model
to be reliable?”.

Theme Example Response Response
Count

Accurate “How well it predicts what is trying to
be predicted”

9

Consistent “Will the model change over time” 5

Accurate: Identifies
Appropriate patients

“That it never identifies patients who
are not appropriate for our
intervention. Once it does that, then
users will stop finding it useful”

3

Accurate: Across
subpopulations

“Consistent outputs across time and is
accurate across different
subpopulations”

2
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makers used Excitement and Trust to Use the Model For

Intended Purpose (2/2), whereas in Hospital Medicine, they

used Interesting (3/3). In Inpatient Oncology, 2 of 5 responses

referred to Low Sample Size, for example “… There may be

some signals of differences based on age and race/ethnicity groups,

but I wonder if this is in part limited by low power.”

Audit components affecting decision making
Decision makers felt that every component of the audit

would affect their decision to deploy the model, including

Summary Statistics, Performance, and Subgroup Performance

(10/10); and Calibration and Subgroup Calibration (both 9/

10). When asked for any other information they would want

included in the audit to support their decision on whether to

deploy a model (Supplementary Table S22), decision makers

most commonly responded with more reliable race data in

EHR (2/10).

Drivers and barriers for audits and AI model use
Decision makers identified Findings that AI models

are not fair (10/10), Findings that AI models are not
frontiersin.org
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reliable (9/10), and Academic medicine’s push toward

racial equity (9/10) as key drivers to making reliability

and fairness audits standard practice (Supplementary Table S23).

For key barriers, they tended to identify Poor demographic data

quality (8/10), Poor data quality (6/10), and Lack of data access

(5/10) (Supplementary Table S24).

Decision makers largely saw Helps triage patients and

identify who would benefit the most (10/10) and Shared

understanding of patients for our whole care team (9/10) as

key advantages of using AI to support their work

(Supplementary Table S25). When asked what cons they see

in using an AI model to support their work, decision makers

tended to respond with Lack of transparency of the model

(5/10) and Takes effort to maintain (4/10) (Supplementary

Table S26).
TABLE 12 Time and requirements to generate reliability and fairness audits.

Average across
3 Settings
(estimated

person-hours)

Primary Care
(estimated
person –
hours)

Inpatient
Oncology
(estimated

person-hou

Sample Size Calculation 15 25 10

Pull Epic Model
Predictions

1 1 1

IRB for Clinician-
Patient Linkage in
Primary Care

9 9 N/A

Clinician Label-
Gathering:
Solicitation

24 25 N/A

Clinician Label-
Gathering: Chocolate
Incentive

24 26 N/A

Clinician Label-
Gathering: Responses

7 6 8

Clinician Label-
Gathering: Recording
Responses

3 2

Processing & Analysis 48 41 58

Presentation 1 1 2

Survey 8 8 8

TOTAL TIME 115 145 88

TIME OF ITERATION
(Code Iterating for
Sample Size
Calculation &
Reliability/Fairness
Audit, and Iterating
on Presentation)

40 45 45

TOTAL TIME
WITHOUT
ITERATION

75 100 43
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Time and resources required to perform
audit

We documented the main tasks, persons performing each

task, and estimated time required to perform each task in

Supplementary File S1, summarizing in Table 12. Note: we

estimated response time per clinician using the median time

per surprise question from our decision maker survey

responses: 1 min for Primary Care and for Hospital Medicine,

and 2 min for Inpatient Oncology.

Averaged across the three settings, we spent 115 h on the

audit. Some of the most time-intensive tasks involved

processing and analysis of the data (48 person-hours),

soliciting clinician labels (24 person-hours), designing and

implementing an incentive program to support gathering
For further detail, see Supplementary File S1.

rs)

Hospital
Medicine
(estimated

person-hours)

Primary
Care (date
range)

Inpatient
Oncology

(date range)

Hospital
Medicine

(date range)

10 8/12/2021–
11/8/2021

8/24/2021–11/8/
2021

8/24/2021–11/
8/2021

1 11/16/2021 6/14/2021 1/31/2022

N/A 12/7/2021–1/
14/2022

N/A N/A

22 11/19/2021–
2/23/2022

N/A 2/15/2022–3/
21/2022

22 1/26/2022–2/
14/2022

N/A 1/26/2022–2/
20/2022

7 2/11/2022–3/
7/2022

8/15/2021–3/19/
2022

2/21/2022–3/
22/2022

3 2/11/2022–3/
7/2022

8/15/2021–3/19/
2022

2/21/2022–3/
22/2022

44 10/31/2021–
4/21/2022

11/22/2021–4/
21/2022

3/30/2022–4/
21/2022

1 3/21/2022 3/25/2022, 3/29/
2022

3/30/2022

8 3/3/2022–4/
23/2022

3/3/2022–4/23/
2022

3/3/2022–4/23/
2022

111 8/12/2021–4/
23/2022

6/14/2021–4/23/
2022

8/24/2021–4/
23/2022

30

81
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clinician labels (24 person-hours), and calculating the

required sample size (15 person-hours). Notably, the

actual responses by the clinicians and recording of

responses by the clinicians required less time (9 person-

hours), as did designing and implementing the survey (8

person-hours) and presenting to the decision makers (1

person-hours).

Of the 115 h, we classified 40 (35%) of these hours as

iteration time – time that JL spent mainly on iterating on

writing code (e.g., for calculating required sample sizes and

estimating model performance for each subgroup) or

drafting presentation material. If we were to do the same

study again at this point, presuming we could bypass the

iteration time, the audit could likely be done in 75 h (65% of

total hours).

In calendar time, the audits were completed 8–10 months

from the start, underscoring the need for balancing competing

priorities amongst both study designers and participants,

building relationships among team members to enable the

project, and waiting for clinicians to respond.

Lastly, we emphasize key requirements in two categories:

stakeholder relationships and data access. On stakeholder

relationships, physicians’ understanding of the best way to

communicate with their colleagues and designing appropriate

incentives (e.g., chocolate) were crucial to ensure a high

response rate. On data access, there were multiple data

sources with different access requirements. Some required

healthcare system employees to use their privileged access.

For example, KS had to extract Epic model predictions

from our EHR for us to perform the audit. Similarly,

multiple IT subunits had to coordinate to deliver patient
FIGURE 2

Summary of fairness audit findings, for Hispanic patients for the Epic EOL Hig
significant difference in prevalence for Hispanic patients. (B) Subgroup perfo
was especially low for Hispanic male patients. (C) Subgroup calibration reveale
Hispanic female patients and especially for Hispanic male patients. Note: we r
“Sig.” stands for “statistically significant”.
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panels for us. Alternatively, other data sources could be

accessed using existing data infrastructure. Crucially, our

patient demographics and patient visits were already

available in a common data format (OMOP-CDM) (44).

This allowed iterative querying and refinement to ensure we

were pulling the most relevant patients and patient

information. Having existing access to a daily hospital

census feed and having query access to the hospitalist

attending schedules were critical in enabling our hospital

medicine clinician labeling workflow (26).
Discussion

We operationalized reliability and fairness audits of

predictive models in ACP, with the best attempt to adhere to

model reporting guidelines (22). We highlight key insights

and themes across audits below and conclude with

recommendations for informaticists and decision makers.
Key insights from model fairness
audits

We use the Epic EOL High Threshold’s performance for

Hispanic patients in Inpatient Oncology as an illustrative

example (Figure 2) to show the value of reporting summary

statistics, subgroup performance and subgroup calibration.

(Note: the specific group is Hispanic/Latino patients with

Race listed as Other, but we denote them as “Hispanic”

patients here for simplicity).
h Threshold in Inpatient Oncology. (A) Summary statistics revealed no
rmance revealed decreased sensitivity on Hispanic patients and that it
d significantly greater miscalibration for Hispanic patients, including for
efer to Hispanic patients with Race listed as Other as Hispanic patients.
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First, summary statistics revealed no significant differences

in prevalence of the outcome label for Hispanic patients,

including after disaggregating by the intersection of race/

ethnicity and sex (Figure 2A). Assuming no systematic

differences in mortality risk or appropriateness of ACP for

Hispanic patients vs. Non-Hispanic patients, this reassured us

that our surrogate outcome exhibited no obvious signs of bias.

Second, despite insignificant differences in clinician label

prevalence, the Epic EOL – High Threshold revealed reduced

sensitivity (0.09) for Hispanic patients (Figure 2B). The

model only flagged 2 of 22 positive patients identified by

clinician review. Disaggregation by the intersection of race/

ethnicity and sex revealed that the model had significantly

reduced sensitivity (0.0) for Hispanic male patients

specifically, flagging 0 of 13 positive patients. This

demonstrates the value of analyzing model performance for

different subgroups (51) and intersectional subgroups (3).

Third, subgroup calibration revealed significant

underprediction of events (O/E: 6.9) for Hispanic patients

(Figure 2C), especially Hispanic male patients (O/E: 9.0). The

subgroup calibration shows that the model was systematically

giving lower scores to Hispanic patients relative to clinicians,

which is potentially linked to the model’s lower sensitivity for

those groups. Again, this shows how subgroup calibration aids

understanding algorithms’ impacts on different groups (4).

Differences in the Epic EOLmodel’s sensitivity for Hispanics

vs. Non-Hispanics and themodel’s O/E ratio relative to clinicians

for this subgroup also highlights one of the key challenges in using

surrogate outcomes (e.g., clinician responses to the surprise

question) for reliability and fairness audits. Was the Epic EOL

model’s sensitivity low for Hispanic Males because it

underestimated true risk, or was it that clinicians overestimated

risk for those Hispanic Male patients that the model did not

flag? Given the consistency of clinician labels across subgroups,

we lean toward the former interpretation, but it is impossible to

saywith certainty in the absence of an objective ground truth label.

Lastly, in all three cases, reporting numerators and

denominators put the metrics in context. There were many

otherwise seemingly significant results that were marred by low

number of patients to calculate the metric for (e.g., for sensitivity,

there may be few patients with the positive label). This is especially

true for intersectional subgroups that have low representation in

the data set (e.g., American Indian or Alaska Native Males).
Consistent themes across audits

Considering the summary statistics of the data sets, there

were generally no differences in prevalence of clinician-

generated positive labels by sex, race/ethnicity or race/

ethnicity and sex. Out of 5 data sets considered, 4 showed

either significantly higher prevalence of positive labels for

older patients (Age: (70, 80], Age: (80, 90], Age: (90, 100]) or
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significantly lower prevalence for younger patients (Age: (20,

30], Age: (30, 40]). This is consistent with the older patients

having worse prognosis than younger patients and thus was

not a cause for concern with respect to label bias. However, it

was surprising that for the two Hospital Medicine data sets,

there was a higher prevalence of positive labels for non-

Hispanic Asian patients (including specifically for those of

Male sex) and lower prevalence for Hispanic patients for

whom Race was listed as Other (including specifically those of

Male sex).

Considering the model performance and calibration, in

every setting, all models had high PPV at 0.76 or above;

several of our clinicians considered this the most important

metric, roughly corresponding to “would a clinician agree if

the model flagged a patient?”. In Hospital Medicine and

Inpatient Oncology, the Epic EOL model at High Threshold

tended to flag fewer patients (11%, 21% respectively) than the

Stanford HM ACP model (38%, 75%). Meanwhile, the

Stanford HM ACP model had higher sensitivity (0.69, 0.89 vs.

0.20, 0.27), and better calibration (O/E 1.5, 1.7) than the Epic

EOL model (O/E 2.5, 3.0).

Beyond that, the models often had low sensitivities or PPVs

or high rate of underprediction (O/E) for several patient

subgroups that had less than 10 patients to compute the

metric for in the data set. We emphasize that there is a need

to increase representation for these groups so that accurate

values can be obtained. Such subgroups include Native

Hawaiian or Other Pacific Islander patients, American Indian

or Alaska Native patients, Hispanic or Latino patients with

race “White” or “Other”, and Black or African American

patients, among others.

Decision makers overall felt every component of the audit

would affect their decision to turn on the model. They most

often responded with themes of Accurate and Consistent for

“What does it mean to you for a model to be reliable?”. They

most often responded with Similar Model Performance

across demographics, especially for Race/Ethnicity and Sex

for “What does it mean to you for a model to be fair?”. The

most commonly identified key barriers for making reliability

and fairness audits standard practice were Poor demographic

data quality, Poor data quality, and Lack of data access.

Recommendations for informaticists
Invest in checking and improving data validity
Our audit was influenced by multiple unreliable data cascades

(52) that hindered our ability to draw decisive conclusions

regarding model fairness and reliability. Firstly, it is likely that

the race/ethnicity variables were inaccurate, given widespread

low concordance with patients’ self-identified race/ethnicity

found in one of our family medicine clinics (33) and other

data sets (34). Thus, a prerequisite for reporting summary

statistics and model subgroup performance, as recommended

by many model reporting guidelines (9, 11–13, 15, 17, 18, 20,
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53), would be better collection of race/ethnicity data. We also

again emphasize that race/ethnicity is more a social construct

than fixed biological category (32) and the goal of the fairness

audit is to understand the demographics of who is

represented in data sets and how models impact them.

Another data cascade we experienced was large loss of

clinician labels after linking these to model predictions and

patient demographics (25%–27% for the Epic EOL and 44%–

45% for the Stanford HM ACP, in Inpatient Oncology and

Hospital Medicine).

Lastly, it is important to verify the validity of source data in

detail i.e., via manual inspection of the raw data, summary

statistics, and metadata for all variables used in the audit. For

example, the Sex variable we used from the patient demographic

table came from a column called “gender_source_value”;

OMOP-CDM documentation (45) clarified “The Gender domain

captures all concepts about the sex of a person, denoting the

biological and physiological characteristics. In fact, the Domain

(and field in the PERSON table) should probably should be called

‘sex’ rather than ‘gender’, as gender refers to behaviors, roles,

expectations, and activities in society.” Relatedly, we found

hundreds of visits on a single day for two of the Primary Care

providers in the visits table. Our frontline clinicians advised this

was likely an artifact given the unrealistic number (AS, WT), so

we filtered those two days out.

Perform intersectional analyses
Intersectional analyses proved crucial as they often lended

greater clarity to specific subgroups that were being impacted.

For example, in Inpatient Oncology, the Epic EOL-High

Threshold had low sensitivity (2/22) for Hispanic patients and

when disaggregated, specifically had a sensitivity of 0% (0/13)

for Hispanic male patients. This would not have been

recognized if only looking at sex or race/ethnicity individually.

This phenomenon has been discussed in Kimberlé Crenshaw’s

pioneering intersectionality research to specifically address

discrimination against Black women, who often face distinct

barriers and challenges relative to White women or Black

men (15, 54).

Intersectional subgroup analyses are not difficult to

perform, as generating intersectional demographics from one-

hot encoded columns only requires performing a logical

intersection operation between demographic one-hot encoded

columns. However, care must be taken in interpretation of

these subgroup analyses as many intersectional subgroups will

have poor representation even in large overall sample sizes.

Below, we discuss strategies to aid in interpreting results from

less frequently represented subgroups.

Contextualize small sample sizes by calculating
confidence intervals and reporting metrics as fractions
Small sample sizes of certain subgroups should not be a

reason to not consider the subgroups. Proper interpretation
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of subgroup audit results can be supported by (1) using

confidence intervals (e.g., via the bootstrap or exact

analytical approaches) to appropriately capture sampling

variation and (2) reporting metrics with the involved whole

numbers (e.g., numerator and denominator, or number of

patients) so that if values are extreme, they can be considered

in context. For example, several of our bootstrap confidence

intervals did not have any width due to there only being

one data point from which to resample. [In future work, we

would use analytical methods to calculate exact confidence

intervals for small sample sizes, such as the Clopper-Pearson

interval (47)].

It is especially important to not ignore small sample sizes as

doing so can contribute to understudying patient subgroups,

especially those that are underrepresented in healthcare data

sets due to societal inequities and structural racism. For

example, Indigenous peoples have regularly been excluded

from COVID-19 data (55) and American Indian and Alaska

Native Peoples have often been ignored in data sets due to

aggregate analyses (56). Devising sampling strategies in

advance to account for known underrepresented populations

can help mitigate these issues (e.g., by oversampling

underrepresented minorities or increasing sample sizes so that

tests for model performance discrepancies between subgroups

are adequately powered).

Provider-Patient linkages are necessary data to perform
audits using expert-generated labels
Before performing the audit, we did not realize how important it

was to be able to generate a list of relevant patients for whom

the clinicians would feel comfortable answering the surprise

question. Concretely, our clinician annotators felt most

comfortable providing labels (the “surprise question”) for

patients that they had cared for recently. For Primary Care,

this required finding recent visits (available in our OMOP-

CDM infrastructure) and linking that with patient panels

(which we retrieved from business analysts). For Hospital

Medicine, this required linking a daily hospital census feed

that had assigned treatment teams, with attending- treatment

teams. Informatics teams should view clinician-patient linkage

as necessary to perform audits in cases where clinician-

generated labels are required.

Recommendations for decision makers
Acknowledge limits on data quality for
evaluation
Decision makers should recognize the limitations of data

quality when performing audits. Race/ethnicity data is likely

inaccurate unless proven otherwise given the widespread

low concordance with patients’ self-identification, as found

in our and other data sets (33, 34). Surrogate clinician-

generated outcomes used may also be imperfect: our clinician

surprise question (a surrogate outcome for appropriateness
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of an ACP consultation) did not include blinding to the

Stanford HM ACP model because it was actively in use as an

Epic column as part of the Hospital Medicine SICP

implementation. Moreover, while our clinician surprise

question generally did not exhibit any obvious differences

across ethnicity/race, other studies have found that using

surrogate outcomes (e.g., health spending as a proxy for

health risk) can exacerbate existing disparities in health (e.g.,

by estimating that Black patients are at lower health risk

because health spending for Black patients has historically

been lower than for White patients) (4). Lastly, there were

many dropped patients due to lack of an associated model

prediction which, if not missing at random, could affect the

reliability of our audit.

Require reliability and fairness audits of models before
deployment
Our work demonstrates that it is feasible to do thorough

reliability and fairness audits of models according to model

reporting guidelines, despite low adherence to such guidelines

for many deployed models (22). In particular, beyond

the usual aggregate model performance metrics, it is

straightforward to perform pre-study sample size calculations

(41), to report confidence intervals on performance metrics

(e.g., using bootstrap sampling), to report summary statistics

of the evaluation dataset by subgroup, to share calibration

plots and calibration measures, and to do subgroup and

intersectional subgroup analyses (3, 15). 90% of our decision

makers felt that summary statistics, model performance, model

calibration, model subgroup performance and model subgroup

calibration affected their decision on whether to turn on

the model.

Such audits can be performed by internal organizational

teams responsible for deploying predictive models in

healthcare (23, 57), with the caveat that internal audits may

have limited independence and objectivity (23). Alternatively,

regulators may conduct such audits, such as the Food and

Drug Administration (FDA)’s proposed Digital Health

Software Precertification Program which evaluates real world

performance of software as a medical device (58). A more

likely scenario is the emergence of community standards (59)

that provide consensus guidance on responsible use of AI in

Healthcare. We propose that the cost of performing such

audits be included in the operating cost of running a care

program in a manner similar to how IT costs are currently

paid for, with a specific carveout to ensure audits are

performed and needed resources are funded.

Enable audits via connecting impacted stakeholders and
informaticists
Our decision makers facilitated relationships with their

colleagues in Primary Care, Inpatient Oncology and Hospital

Medicine that enabled generation of sufficient clinician labels
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for us to perform our external validation with excellent

response rates. This shows the value of interdisciplinary teams

and how important it is to honor the trust that comes with

personal connections (27, 60, 61). Without this strong

relationship, we would have been unable to perform our

analysis.
Interpret fairness audits in context of the broader
sociotechnical system
Fairness is not solely a property of a model but rather

encopmpases the broader sociotechnical system in which

people are using a model (62). As one of the decision makers

noted, “I’m not sure a model is inherently fair or not fair,…

In one context, being more sensitive for patients of a certain

group could be good (fair) for those patients, in another

context it could be bad (unfair).” Furthermore, fairness is not

just a mathematical property, but it involves process, is

contextual, and can be contested (62). Thus, we note that a

fairness audit depicting a model in a favorable light does not

by itself prevent unfair treatment of patients nor guarantee

that use of the model will reduce health disparities.
Conclusion

Despite frequent recommendations by model reporting

guidelines, reliability and fairness audits are not often

performed for AI models used in health care (21, 22). With

respect to reliability, there is a gap in reporting external

validation with performance metrics, confidence intervals, and

calibration plots. With respect to fairness, there is a gap in

reporting summary statistics, subgroup performance and

subgroup calibration.

In this work, we audited two AI models, the Epic EOL Index

and a Stanford HM ACP model, which were considered for use

to support ACP in three care settings: Primary Care, Inpatient

Oncology and Hospital Medicine. We calculated minimum

necessary sample sizes, gathered ground truth labels from

clinicians, and merged those labels with model predictions

and patient demographics to create the audit data set.

In terms of reliability, all models exhibited a PPV of 0.76 or

above in all settings, which clinicians identified as the

most important metric. In Inpatient Oncology and Hospital

Medicine, the Stanford HM ACP model had higher

sensitivity and calibration. Meanwhile, the Epic EOL model

flagged fewer patients than the Stanford HM ACP model.

In terms of fairness, the clinician-generated data set exhibited

few differences in prevalence by sex or ethnicity/race. In

Primary Care, Inpatient Oncology, and Hospital medicine the

Epic EOL model tended to have lower sensitivity in Hispanic/

Latino Male patients with Race listed as “Other”. The

Stanford HM ACP model similarly had low sensitivity for
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this subgroup in Hospital Medicine but not in Inpatient

Oncology.

The audit required 115 person-hours, but every component

of the audit was valuable, affecting decision makers’

consideration on whether to turn on the models. Key

requirements for the audit were (1) stakeholder relationships,

which enabled gathering ground truth labels and presenting

to decision makers, and (2) data access, especially establishing

linkages between providers and patients under their care. For

future audits, we recommend recognizing data issues upfront

(especially race/ethnicity data), handling small sample sizes by

showing confidence intervals and reporting metrics as

fractions, and performing intersectional subgroup analyses.

Above all, we recommend that decision makers require

reliability and fairness audits before using AI models to guide

care. With established processes, the 8–10 month calendar

time can be compressed to a few weeks given that actual

person hours were approximately 3 weeks of effort.
Contribution to the field statement

Artificial intelligence (AI) models developed from electronic

health record (EHR) data can be biased and unreliable. Despite

multiple guidelines to improve reporting of model fairness and

reliability, adherence is difficult given the gap between what

guidelines seek and operational feasibility of such reporting.

We try to bridge this gap by describing a reliability and

fairness audit of AI models that were considered for use to

support team-based advance care planning (ACP) in three

practice settings: Primary Care, Inpatient Oncology, and

Hospital Medicine. We lay out the data gathering processes as

well as the design of the reliability and fairness audit, and

present results of the audit and decision maker survey. We

discuss key lessons learned, how long the audit took to

perform, requirements regarding stakeholder relationships and

data access, and limitations of the data. Our work may

support others in implementing routine reliability and fairness

audits of models prior to deployment into a practice setting.
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Predictive models are increasingly being developed and implemented to improve
patient care across a variety of clinical scenarios. While a body of literature exists
on the development of models using existing data, less focus has been placed on
practical operationalization of these models for deployment in real-time
production environments. This case-study describes challenges and barriers
identified and overcome in such an operationalization for a model aimed at
predicting risk of outpatient falls after Emergency Department (ED) visits among
older adults. Based on our experience, we provide general principles for
translating an EHR-based predictive model from research and reporting
environments into real-time operation.

KEYWORDS
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Introduction

Predictive models have the potential to transform clinical care by providing clinical

decision support, but only when implemented correctly. A large body of literature exists

on the development of models using existing data (1–6), and an increasing number of

studies have additionally focused on the importance of designing appropriate

interfaces to present the output of models to clinicians (7–9). Less focus has been

placed on the technical and system challenges of operationalizing these models by

running them in clinical environments in which they can function in real time. This

case-study describes challenges and barriers we overcame in the use of such a model

after it had been created and validated in silico. Based on this experience, we provide

general principles for translating an EHR-based predictive model from research and

reporting environments into real-time operation.
Case: Preventing falls after ED visits

Falls are the leading traumatic cause of both injury and death among older adults

(age≥ 65 years) (10). Over 3 million patients who have fallen and require medical
01 frontiersin.org
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care present to US emergency departments (EDs) every year

(11); however, the ED itself has not traditionally played a

major role in outpatient fall prevention (12). In our health

system, 34% of patients presenting to the ED for a fall have

had at least one ED visit in the prior six months (13),

demonstrating a missed opportunity to connect patients with

existing clinical interventions to reduce future fall risk.

Our research team has developed and validated an

innovative automated screening algorithm that uses machine

learning coupled with electronic health record (EHR) data to

predict fall risk in the 180 days following an ED visit using

retrospective data (14). This algorithm had the promise of

identifying older adults at high risk of falling in the 6 months

following the ED visit. Furthermore, engaging with experts in

human factors engineering and clinicians, the study team

designed a workflow and alerts designed to create a system in

which the algorithm facilitates screening of older adult

patients in the ED and facilitating referral for fall prevention

services (15). Fulfilling this promise required successful

translation of the predictive screening algorithm to hospital IT

systems and clinical care.

Our task was to operationalize a functional model derived

from a research dataset into production. Real impact

depended on the ability to translate the research model into a

corresponding operational model with minimal effects on

model performance.
Steps to operationalization

To be successful, we needed to overcome the translational

barriers involved in implementing a real-time machine

learning model for predicting older adult ED patients at

highest risk for a fall event during the following 6 months. In

early meetings between the operational and research teams,

we identified several issues with the research model which

necessitated changes before implementation would be
FIGURE 1
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possible. Firstly, some features used in the research model,

while theoretically referring to events that happened in the

ED, would not be accessible for use in real time during ED

visits. This empirical issue is sometimes referred to as “data

latency” or “time travel”, where the retrospective data set does

not appropriately reflect the real-time availability of the

features (16, 17). In our case, diagnosis codes referring to the

ED visit were added not only by clinicians at the time of the

visit but by professional coders several days later.

Additionally, based on our data infrastructure, there was a

computational and maintenance advantage to simplifying our

model type and decreasing the number of features. For this

reason, the diagnosis codes were left out of the final machine

learning model during the operationalization phase.

Our model was implemented in three stages. Time from

initial discussion with operational stakeholders to active

deployment to clinic front line staff was a total of 15 months.

As shown in Figure 1, the overall process can be thought of

as three stages, ranging from training and testing on a

research dataset in Stage 1 to a production-side validation in

Stage 2 to a live implementation in Stage 3.
Stage 1: Research dataset

The research dataset used for training and testing consisted

of 9,687 instances from patient visits to the Emergency

Department (ED) over a span of three and a half years.

Roughly 725 features relating to vital signs, past diagnoses,

and demographics were selected for the modeling process. In

the end, six models were chosen based on area under the

ROC curve (AUROC). The AUROC performance of these

models ranged from 0.72 for logistic regression to 0.78 for

forest-based prediction algorithms (18). Prior to moving from

the research environment, we trained models using fewer

features and were able to maintain performance while paring

down to 15 features. Features involving historic diagnosis
frontiersin.org
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data, vital signs, and lab values were ultimately left out, as they

were not as predictive as initially thought. Height, weight, and

age were found to be strong predictors of future falls and

were retained, along with those features pertaining to patients’

mobility assistance, dementia status, and past occurrences of

at-home falls.
Validation in reporting database

Validating our model on the production side during the

second stage involved collaboration with the health system’s

applied data science team. Before moving the model into a

real-time scenario, we first validated it using our operational

reporting database. This database, while theoretically

containing the same information as the research database,

required re-querying for features used in our research model

to match reporting needs for the production model which

would gather data from the electronic health record. This was

accomplished by issuing SQL queries to the database one-by-

one for features of interest. These features were then fed into

the models developed in Stage 1 and evaluated on the same

metrics. This process resulted in an AUROC of 0.69 for a

production-ready logistic regression model, a slightly lower,

but still acceptable, performance for selecting the most at-risk

patients.
Implementation in production
transactional database

Planning for final model deployment involved a partnership

between physicians, data scientists, computer scientists, health

services researchers, and industrial engineers. Ultimately, the

features validated in Stage 2 were retrieved from the

operational transactional database and forwarded to a model

deployed in the cloud, which returns a patient risk score to

the EHR. In a separate publication we describe the design of

the physician facing interface, an interruptive alert which fires

when the returned risk score is above a threshold value. This

alert notifies ED clinicians of patients’ elevated risk of future

fall and facilitates a referral order for our outpatient fall

prevention services after an ED visit (15).
Challenges

In moving from Stage 1 to Stages 2 and 3, several unforeseen

feature translation considerations presented themselves. One

of the conveniences of Stage 1 was the availability of a curated

research dataset generated from patient visits. The features

from this dataset had been cleaned, however, with some

features being removed and new features being added that
Frontiers in Digital Health 03

109
were derived from others in the dataset. Mapping features to

the operational dataset necessitated re-querying features

directly from the same data source that would be used in

production. Maintenance of the model would require

evaluating the consistency of features over time in production

data, which would be challenging with so many features. For

this reason, the feature set was pared down to include a final

production of 15 features. Additionally, ICD data used in the

research dataset was not available in real time. For this

reason, when moved to the real-time environment we

substituted chief complaint data for the ICD data (19).

After these feature-related challenges were overcome, our

model was able to compute a risk score for each patient based

on the 15 features, all available at time of visit. In our Stage 1

research, random forest-based models outperformed every

other model; however, the difference in practice between these

and regression models was minimal. IT constraints existed to

operationalizing a random forest-based model; as this was the

first such model being put into production, there was a strong

operational preference for a regression-based model for

simplicity of implementation.

From a provider standpoint, this change made sense as well.

Providers tend to trust more transparent models that are more

explainable (20). Logistic regression is comprised of a linear

combination of variables, the importance of which is

determined by coefficients that can be interpreted by

providers and compared to what they know about falls risk. A

desire to ensure we had an interpretable model further

influenced our choice to pursue regression rather than tree-

based models. Also noteworthy was that the physicians

interpreting model performance were interested in number

needed to treat (NNT) at a given operational threshold (14), a

clinical measure that summarizes interventional effectiveness

by estimating the number of patients referred to the clinic to

prevent a single future fall, rather than AUROC. In summary,

our model started as a 700+ feature random forest in the

research space but was adapted to a 15-feature regression

model for our first operational deployment. This resulted in a

small decrease in AUROC and small increase in NNT;

however, given the advantages in ease of deployment and

maintenance, this was seen as an acceptable tradeoff.

In our research phase, six models (i.e., standard linear and

logistic regression, ridge logistic regression, LASSO logistic

regression, AdaBoost, and random forests) were tested. For

simplicity, the logistic regression model was ultimately chosen

as the only one used in production to predict the likelihood

of falling six months after leaving the ED. After choosing a

model, the threshold at which it fired needed to be specified.

The clinic to which the intervention referred patients had

constraints on the number of patients that they could

accommodate each week. This required the model threshold

to be adjusted to flag a number of patients commensurate

with the operational referral capacity. Our ability to describe
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TABLE 1 Guiding considerations: from research to practice.

Consideration for
Implementation

Research Design Operational
Adaption

Translational
Considerations

725 Features 15 Features

IT Constraints Tree-Based Models Logistic Regression

Model Interpretation Tree-Based Models Logistic Regression

Communicating model
performance and
thresholding

Area Under ROC
Curve (AUROC) and
various NNT
thresholds

Adjustable threshold
chosen based on NNT
and operational capacity

Model Placement in
Workflow

Not Considered Discharge Navigator in
Emergency Department
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thresholds based on both the number of likely referred patients

and the NNT among this group allowed all stakeholders to

understand the implications of threshold selection and

ongoing adjustment. We have developed a free toolkit which

allows calculation of projected NNT at various model

thresholds for predictive models, available at www.hipxchange.

org/NNT.

Finally, as part of implementing the model in the electronic

health record, a point for model placement in the workflow

had to be chosen so that an interruptive alert would fire,

informing the provider to the patient’s fall risk. Since all

features were available at the time of discharge, this was

chosen as the time for the model to run. We describe the

design of the alert interface separately (15), but note here that

ideal workflow placement of the alert was not achievable, as

we were forced to fire the alert at a time when all necessary

information to assess patient eligibility was already

electronically available in the chart, and further in an area of

the chart which was a required portion of the workflow for all

discharged patients, to ensure providers would see the alert.
Discussion

Key considerations and questions

While there is increasing recognition that implementation

of predictive models requires appropriate validation and

governance, the act of moving models from a research

platform to operational use presents a unique set of more

mundane challenges. In addressing the issues as they arose

during the deployment of an EHR-based fall risk prediction

model, we identified a series of questions which needed to be

addressed. We group these questions below into five domains,

summarized in Table 1 along with examples of our own

adaptations in response to these considerations. In future

projects, we have found this set of considerations to provide a

useful checklist for operationalization.
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Feature translation considerations
Do the features that were used to develop the model exist in

the context in which the model will be receiving data? Are any

features no longer available, or do they change between real-

time and retrospective queries? Does the gain in performance

from additional features justify the effort needed to create and

maintain a more complex model? In our case, review of

features from our model revealed that some were not available

in real-time. In particular, a diagnosis was thought to be

entered only by a physician in the research phase, but most

diagnoses are actually entered after a patient visit by

professional coders. For this reason, the “diagnosis” feature

from the research model was excluded from the production

model. Among the features that were available, many did not

add enough to our model to justify the additional

maintenance and complexity of including them. For example,

vital signs and many historical diagnoses were features that

were part of the research set but were ultimately left out of

the production model for lack of predictive value.

IT constraints
Is it possible for the organization to implement the model?

How might model choice be influenced by a healthcare

institution’s EHR hardware and software? How can models be

kept as simple as possible during implementation? In our case

there was a preference for a simpler regression-based model

for our first attempt at real time prediction to simplify our

technical workload, since this time we have iteratively built to

more complex model types for other use cases.

Model interpretation
How will model choice impact provider trust? What metrics

will such providers use in assessing model viability? In our case,

an additional consideration for moving from tree-based to

regression models was the ease of communicating model

features and operations to our clinical staff.

Communicating model performance and
thresholding

What cut-off should be chosen for a model in classifying

patients? How should it be chosen based on model

performance and clinical scenario? For our clinical scenario,

an adjustable threshold based on projected number of patients

referred per week by the model, with the resultant

performance expressed in NNT, proved a valuable asset in

gaining model trust from our referral partners.

Model placement in workflow
When in the user’s workflow is sufficient data to run the

model entered into the EHR? How quickly will a score need

to be calculated in order to be displayed back to the end user

in time for action? Is there a distinct electronic trigger that
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can be used to act on a model score? In our case, responding to

these technical considerations significantly impacted our clinical

decision support (CDS) design process; in order to collect the

required inputs before sending an alert, we were forced to

place the tool later in the workflow than our design indicated

was optimal.
Conclusion

As machine learning has seen wider uptake in the

healthcare setting, there has been an increased need for

translating models developed in silico to the bedside. Our

team successfully migrated one such model focused on at-

home falls risk to our university’s emergency department. The

process of doing so revealed several challenges which do not

fall explicitly within the realm of model development and

validation or within the traditional scope of intervention

design from a physician workflow perspective.

Ultimately, these challenges were surmountable, but our

experience suggests that model operationalization should not

be considered a purely technical barrier to implementation

but given early consideration when planning an intervention.

We hope that the considerations presented here provide

guidance for future translation of models into “the wild”

and, more generally, bridge the gap that currently exists

between research and practice where modeling techniques

are concerned.
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